
World Wide Web

ww
Perso

ore

y

merchant system
ML

Int

server
security

ne

URL

HT

r

na
community system

Ja

Mozill

Publis

Chat

encryp

SSL
TCP/IP

nal

ISt

Prox

HT

Inte

vigator

a

hing

Core JavaScript Guide

 October 30, 1998

Version 1.4
comp.sys
directory server

http://www
ernet

ws

ML

mail

electronic commerce

vaScript
Proxycertificate

Publishing

tion

secure sockets layer

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software
programs offered by Netscape (referred to herein as "Software") and related documentation. Use of the Software and
related documentation is governed by the license agreement accompanying the Software and applicable copyright
law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or
compilation works is prohibited and constitutes a punishable violation of the law. Netscape may revise this
documentation from time to time without notice.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL
NETSCAPE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTERRUPTION
OF BUSINESS, OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND,
ARISING FROM ANY ERROR IN THIS DOCUMENTATION.

The Software and documentation are copyright ©1994-1998 Netscape Communications Corporation. All rights
reserved.

The Software contains JavaScript software technology invented and implemented by Netscape Communications
Corporation. The JavaScript name is a trademark or registered trademark of Sun Microsystems, Inc. in the United
States and other countries and is used under license.

Netscape, Netscape Navigator, Netscape Certificate Server, Netscape DevEdge, Netscape FastTrack Server, Netscape
ONE, SuiteSpot and the Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications
Corporation in the United States and other countries. Other Netscape logos, product names, and service names are
also trademarks of Netscape Communications Corporation, which may be registered in other countries. Other product
and brand names are trademarks of their respective owners.

The downloading, export or reexport of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software
or documentation to the U.S. Government is with restricted rights as described in the license agreement
accompanying Netscape software.

.

Version 1.4

©1998 Netscape Communications Corporation. All Rights Reserved

Printed in the United States of America. 00 99 98 5 4 3 2 1

Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper

New Features in this Release
JavaScript version 1.4 provides the following new features and enhancements:

• Exception handling. You can throw and catch exceptions using the
throw and try...catch statements. See “Exception Handling
Statements” on page 82.

• New operators in and instanceof. The in operator returns true if the
specified property is in the specified object; see “in” on page 50. The
instanceof operator returns true if the specified object is of the specified
object type; see “instanceof” on page 50.

• Changes to LiveConnect. Several changes to LiveConnect improve the
way Java and JavaScript code communicate:

• JavaClass objects are automatically converted to instances of
java.lang.Class when you pass them as parameters to methods.
See “JavaClass objects” on page 159.

• You can pass a one-character string to a Java method which requires an
argument of type char. See “Arguments of Type char” on page 147.

• If your JavaScript code accesses a Java data member or method and
fails, the Java exception is passed on to JavaScript for you to handle.
See “Handling Java Exceptions in JavaScript” on page 147.

• Enhancements to the JSException class change the way you handle
JavaScript exceptions in your Java code. See “Handling JavaScript
Exceptions in Java” on page 150.

• Changes to the Function object. You should no longer specify a
function name when using the arguments array; the arguments array is
a variable and is no longer a property of Function objects. This change
improves performance. See “Using the arguments Array” on page 89.
3

4 Core JavaScript Guide

Contents

New Features in this Release ...3

About this Book ..11

New Features in this Release ..11

What You Should Already Know ...11

JavaScript Versions ..12

Where to Find JavaScript Information ..13

Document Conventions ...14

Chapter 1 JavaScript Overview ..15

What Is JavaScript? ...16

JavaScript and Java ..17

Debugging JavaScript ..18

Visual JavaScript ..19

JavaScript and the ECMA Specification ..19

Relationship Between JavaScript and ECMA Versions20

JavaScript Documentation vs. the ECMA Specification21

JavaScript and ECMA Terminology ..21

Part 1 Core Language Features

Chapter 2 Values, Variables, and Literals ..25

Values ...25

Data Type Conversion ..26

Variables ...27

Declaring Variables ...27

Evaluating Variables ..27

Variable Scope ..28
Contents v

Literals .. 29

Array Literals ... 29

Boolean Literals .. 30

Floating-Point Literals ... 31

Integers ... 31

Object Literals ... 31

String Literals .. 32

Unicode ... 34

Unicode Compatibility with ASCII and ISO .. 35

Unicode Escape Sequences ... 35

Displaying Characters with Unicode ... 37

Chapter 3 Expressions and Operators ... 39

Expressions .. 39

Operators ... 40

Assignment Operators .. 41

Comparison Operators ... 41

Arithmetic Operators .. 42

Bitwise Operators ... 43

Logical Operators ... 45

String Operators .. 47

Special Operators ... 47

Operator Precedence ... 54

Chapter 4 Regular Expressions .. 55

Creating a Regular Expression ... 56

Writing a Regular Expression Pattern .. 56

Using Simple Patterns .. 57

Using Special Characters .. 57

Using Parentheses .. 62

Working With Regular Expressions ... 62

Using Parenthesized Substring Matches .. 65

Executing a Global Search and Ignoring Case ... 67
vi Core JavaScript Guide

Examples ... 68

Changing the Order in an Input String ... 68

Using Special Characters to Verify Input ... 69

Chapter 5 Statements .. 71

Conditional Statements ... 72

if...else Statement .. 72

switch Statement ... 73

Loop Statements .. 74

for Statement ... 75

do...while Statement ... 76

while Statement .. 77

label Statement ... 78

break Statement .. 78

continue Statement ... 79

Object Manipulation Statements ... 80

for...in Statement ... 80

with Statement .. 81

Comments .. 82

Exception Handling Statements .. 82

The throw Statement .. 82

The try...catch Statement .. 83

Chapter 6 Functions .. 87

Defining Functions .. 87

Calling Functions ... 88

Using the arguments Array ... 89

Predefined Functions .. 90

eval Function .. 91

isFinite Function ... 91

isNaN Function ... 92

parseInt and parseFloat Functions ... 92

Number and String Functions .. 93

escape and unescape Functions .. 94
Contents vii

Chapter 7 Working with Objects .. 95

Objects and Properties .. 96

Creating New Objects ... 97

Using Object Initializers ... 97

Using a Constructor Function .. 98

Indexing Object Properties .. 100

Defining Properties for an Object Type .. 100

Defining Methods ... 101

Using this for Object References ... 102

Deleting Objects ... 103

Predefined Core Objects ... 103

Array Object .. 103

Boolean Object ... 107

Date Object ... 107

Function Object .. 110

Math Object .. 112

Number Object ... 113

RegExp Object .. 113

String Object ... 114

Chapter 8 Details of the Object Model ... 117

Class-Based vs. Prototype-Based Languages ... 118

Defining a Class .. 118

Subclasses and Inheritance .. 119

Adding and Removing Properties .. 119

Summary of Differences ... 119

The Employee Example .. 120

Creating the Hierarchy .. 121

Object Properties ... 125

Inheriting Properties ... 125

Adding Properties ... 126

More Flexible Constructors ... 127
viii Core JavaScript Guide

Property Inheritance Revisited ... 133

Local versus Inherited Values .. 133

Determining Instance Relationships .. 135

Global Information in Constructors ... 136

No Multiple Inheritance ... 138

Part 2 Working with LiveConnect

Chapter 9 LiveConnect Overview ... 143

Working with Wrappers ... 143

JavaScript to Java Communication ... 144

The Packages Object .. 145

Working with Java Arrays .. 146

Package and Class References ... 146

Arguments of Type char ... 147

Handling Java Exceptions in JavaScript ... 147

Java to JavaScript Communication ... 148

Using the LiveConnect Classes .. 149

Data Type Conversions ... 153

JavaScript to Java Conversions ... 153

Java to JavaScript Conversions ... 161

Glossary .. 163

Index .. 167
Contents ix

x Core JavaScript Guide

About this Book
JavaScript is Netscape’s cross-platform, object-based scripting language. This
book explains everything you need to know to begin using core JavaScript.

This preface contains the following sections:

• New Features in this Release

• What You Should Already Know

• JavaScript Versions

• Where to Find JavaScript Information

• Document Conventions

New Features in this Release
For a summary of JavaScript 1.4 features, see “New Features in this Release” on
page 3. Information on these features has been incorporated in this manual.

What You Should Already Know
This book assumes you have the following basic background:

• A general understanding of the Internet and the World Wide Web (WWW).

• Good working knowledge of HyperText Markup Language (HTML).

Some programming experience with a language such as C or Visual Basic is
useful, but not required.
11

JavaScript Versions
JavaScript Versions
Each version of Navigator supports a different version of JavaScript. To help
you write scripts that are compatible with multiple versions of Navigator, this
manual lists the JavaScript version in which each feature was implemented.

The following table lists the JavaScript version supported by different Netscape
versions. Versions of Navigator prior to 2.0 do not support JavaScript.

Each version of the Netscape Enterprise Server also supports a different version
of JavaScript. To help you write scripts that are compatible with multiple
versions of the Enterprise Server, this manual uses an abbreviation to indicate
the server version in which each feature was implemented.

Table 1 JavaScript and Navigator versions

JavaScript version Navigator version

JavaScript 1.0 Navigator 2.0

JavaScript 1.1 Navigator 3.0

JavaScript 1.2 Navigator 4.0–4.05

JavaScript 1.3 Navigator 4.06–4.5

JavaScript 1.4

Table 2 JavaScript and Netscape Enterprise Server versions

Abbreviation Enterpriser Server version

NES 2.0 Netscape Enterprise Server 2.0

NES 3.0 Netscape Enterprise Server 3.0
12 Core JavaScript Guide

Where to Find JavaScript Information
Where to Find JavaScript Information
The core JavaScript documentation includes the following books:

• The Core JavaScript Guide (this book) provides information about the core
JavaScript language and its objects.

• The Core JavaScript Reference provides reference material for the core
JavaScript language.

If you are new to JavaScript, start with Chapter 1, “JavaScript Overview,” then
continue with the rest of the book. Once you have a firm grasp of the
fundamentals, you can use the Core JavaScript Reference to get more details on
individual objects and statements.

DevEdge, Netscape’s online developer resource, contains information that can
be useful when you’re working with JavaScript. The following URLs are of
particular interest:

• http://developer.netscape.com/library/documentation/
javascript.html

The JavaScript page of the DevEdge library contains documents of interest
about JavaScript. This page changes frequently. You should visit it
periodically to get the newest information.

• http://developer.netscape.com/library/documentation/

The DevEdge library contains documentation on many Netscape products
and technologies.

• http://developer.netscape.com

The DevEdge home page gives you access to all DevEdge resources.
13

Document Conventions
Document Conventions
JavaScript applications run on many operating systems; the information in this
book applies to all versions. File and directory paths are given in Windows
format (with backslashes separating directory names). For Unix versions, the
directory paths are the same, except that you use slashes instead of backslashes
to separate directories.

This book uses uniform resource locators (URLs) of the following form:

http://server.domain/path/file.html

In these URLs, server represents the name of the server on which you run your
application, such as research1 or www; domain represents your Internet
domain name, such as netscape.com or uiuc.edu; path represents the
directory structure on the server; and file.html represents an individual file
name. In general, items in italics in URLs are placeholders and items in normal
monospace font are literals. If your server has Secure Sockets Layer (SSL)
enabled, you would use https instead of http in the URL.

This book uses the following font conventions:

• The monospace font is used for sample code and code listings, API and
language elements (such as method names and property names), file
names, path names, directory names, HTML tags, and any text that must be
typed on the screen. (Monospace italic font is used for placeholders
embedded in code.)

• Italic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

• Boldface type is used for glossary terms.
14 Core JavaScript Guide

C h a p t e r

1
Chapter 1JavaScript Overview
This chapter introduces JavaScript and discusses some of its fundamental
concepts.

This chapter contains the following sections:

• What Is JavaScript?

• JavaScript and Java

• Debugging JavaScript

• Visual JavaScript

• JavaScript and the ECMA Specification
Chapter 1, JavaScript Overview 15

What Is JavaScript?
What Is JavaScript?
JavaScript is Netscape’s cross-platform, object-oriented scripting language.
JavaScript is a small, lightweight language; it is not useful as a standalone
language, but is designed for easy embedding in other products and
applications, such as web browsers. Inside a host environment, JavaScript can
be connected to the objects of its environment to provide programmatic control
over them.

Core JavaScript contains a core set of objects, such as Array, Date, and Math,
and a core set of language elements such as operators, control structures, and
statements. Core JavaScript can be extended for a variety of purposes by
supplementing it with additional objects; for example:

• Client-side JavaScript extends the core language by supplying objects to
control a browser (Navigator or another web browser) and its Document
Object Model (DOM). For example, client-side extensions allow an
application to place elements on an HTML form and respond to user events
such as mouse clicks, form input, and page navigation.

• Server-side JavaScript extends the core language by supplying objects
relevant to running JavaScript on a server. For example, server-side
extensions allow an application to communicate with a relational database,
provide continuity of information from one invocation to another of the
application, or perform file manipulations on a server.

Through JavaScript’s LiveConnect functionality, you can let Java and JavaScript
code communicate with each other. From JavaScript, you can instantiate Java
objects and access their public methods and fields. From Java, you can access
JavaScript objects, properties, and methods.

Netscape invented JavaScript, and JavaScript was first used in Netscape
browsers.
16 Core JavaScript Guide

JavaScript and Java
JavaScript and Java
JavaScript and Java are similar in some ways but fundamentally different in
others. The JavaScript language resembles Java but does not have Java’s static
typing and strong type checking. JavaScript supports most Java expression
syntax and basic control-flow constructs.

In contrast to Java’s compile-time system of classes built by declarations,
JavaScript supports a runtime system based on a small number of data types
representing numeric, Boolean, and string values. JavaScript has a prototype-
based object model instead of the more common class-based object model. The
prototype-based model provides dynamic inheritance; that is, what is inherited
can vary for individual objects. JavaScript also supports functions without any
special declarative requirements. Functions can be properties of objects,
executing as loosely typed methods.

JavaScript is a very free-form language compared to Java. You do not have to
declare all variables, classes, and methods. You do not have to be concerned
with whether methods are public, private, or protected, and you do not have to
implement interfaces. Variables, parameters, and function return types are not
explicitly typed.

Java is a class-based programming language designed for fast execution and
type safety. Type safety means, for instance, that you can’t cast a Java integer
into an object reference or access private memory by corrupting Java
bytecodes. Java’s class-based model means that programs consist exclusively of
classes and their methods. Java’s class inheritance and strong typing generally
require tightly coupled object hierarchies. These requirements make Java
programming more complex than JavaScript authoring.

In contrast, JavaScript descends in spirit from a line of smaller, dynamically
typed languages such as HyperTalk and dBASE. These scripting languages offer
programming tools to a much wider audience because of their easier syntax,
specialized built-in functionality, and minimal requirements for object creation.
Chapter 1, JavaScript Overview 17

Debugging JavaScript
For more information on the differences between JavaScript and Java, see
Chapter 8, “Details of the Object Model.”

Debugging JavaScript
JavaScript allows you to write complex computer programs. As with all
languages, you may make mistakes while writing your scripts. The Netscape
JavaScript Debugger allows you to debug your scripts.

For information on using the Debugger, see Getting Started with Netscape
JavaScript Debugger.

Table 1.1 JavaScript compared to Java

JavaScript Java

Interpreted (not compiled) by client. Compiled bytecodes downloaded from
server, executed on client.

Object-oriented. No distinction between
types of objects. Inheritance is through
the prototype mechanism, and properties
and methods can be added to any object
dynamically.

Class-based. Objects are divided into
classes and instances with all inheritance
through the class hierarchy. Classes and
instances cannot have properties or
methods added dynamically.

Variable data types not declared
(dynamic typing).

Variable data types must be declared
(static typing).

Cannot automatically write to hard disk. Cannot automatically write to hard disk.
18 Core JavaScript Guide

Visual JavaScript
Visual JavaScript
Netscape Visual JavaScript is a component-based visual development tool for
the Netscape Open Network Environment (ONE) platform. It is primarily
intended for use by application developers who want to build cross-platform,
standards-based, web applications from ready-to-use components with minimal
programming effort. The applications are based on HTML, JavaScript, and Java.

For information on Visual JavaScript, see the Visual JavaScript Developer’s
Guide.

JavaScript and the ECMA Specification
Netscape invented JavaScript, and JavaScript was first used in Netscape
browsers. However, Netscape is working with ECMA (European Computer
Manufacturers Association) to deliver a standardized, international
programming language based on core JavaScript. ECMA is an international
standards association for information and communication systems. This
standardized version of JavaScript, called ECMAScript, behaves the same way in
all applications that support the standard. Companies can use the open
standard language to develop their implementation of JavaScript. The first
version of the ECMA standard is documented in the ECMA-262 specification.

The ECMA-262 standard is also approved by the ISO (International
Organization for Standards) as ISO-16262. You can find a PDF version of
ECMA-262 at Netscape DevEdge Online. You can also find the specification on
the ECMA web site. The ECMA specification does not describe the Document
Object Model (DOM), which is being standardized by the World Wide Web
Consortium (W3C). The DOM defines the way in which HTML document
objects are exposed to your script.
Chapter 1, JavaScript Overview 19

JavaScript and the ECMA Specification
Relationship Between JavaScript and
ECMA Versions

Netscape works closely with ECMA to produce the ECMA specification. The
following table describes the relationship between JavaScript and ECMA
versions.

Table 1.2 JavaScript and ECMA versions

JavaScript version Relationship to ECMA version

JavaScript 1.1 ECMA-262 is based on JavaScript 1.1.

JavaScript 1.2 ECMA-262 was not complete when JavaScript 1.2 was released.
JavaScript 1.2 is not fully compatible with ECMA-262 for the
following reasons:

• Netscape developed additional features in JavaScript 1.2
that were not considered for ECMA-262.

• ECMA-262 adds two new features: internationalization using
Unicode, and uniform behavior across all platforms. Several
features of JavaScript 1.2, such as the Date object, were
platform-dependent and used platform-specific behavior.

JavaScript 1.3 JavaScript 1.3 is fully compatible with ECMA-262.

JavaScript 1.3 resolved the inconsistencies that JavaScript 1.2
had with ECMA-262, while keeping all the additional features of
JavaScript 1.2 except == and !=, which were changed to
conform with ECMA-262. These additional features, including
some new features of JavaScript 1.3 that are not part of ECMA,
are under consideration for the second version of the ECMA
specification.

For example, JavaScript 1.2 and 1.3 support regular expressions,
which are not included in ECMA-262. The second version of the
ECMA specification had not been finalized when JavaScript 1.3
was released.

JavaScript 1.4 JavaScript 1.4 is fully compatible with ECMA-262.

The second version of the ECMA specification was not finalized
when JavaScript 1.4 was released.
20 Core JavaScript Guide

JavaScript and the ECMA Specification
The Core JavaScript Reference indicates which features of the language are
ECMA-compliant.

JavaScript will always include features that are not part of the ECMA
specification; JavaScript is compatible with ECMA, while providing additional
features.

JavaScript Documentation vs. the ECMA
Specification

The ECMA specification is a set of requirements for implementing ECMAScript;
it is useful if you want to determine whether a JavaScript feature is supported
under ECMA. If you plan to write JavaScript code that uses only features
supported by ECMA, then you may need to review the ECMA specification.

The ECMA document is not intended to help script programmers; use the
JavaScript documentation for information on writing scripts.

JavaScript and ECMA Terminology

The ECMA specification uses terminology and syntax that may be unfamiliar to
a JavaScript programmer. Although the description of the language may differ
in ECMA, the language itself remains the same. JavaScript supports all
functionality outlined in the ECMA specification.

The JavaScript documentation describes aspects of the language that are
appropriate for a JavaScript programmer. For example:

• The global object is not discussed in the JavaScript documentation because
you do not use it directly. The methods and properties of the global object,
which you do use, are discussed in the JavaScript documentation but are
called top-level functions and properties.

• The no parameter (zero-argument) constructor with the Number and
String objects is not discussed in the JavaScript documentation, because
what is generated is of little use. A Number constructor without an
argument returns +0, and a String constructor without an argument
returns “” (an empty string).
Chapter 1, JavaScript Overview 21

JavaScript and the ECMA Specification
22 Core JavaScript Guide

1
Core Language Features
• Values, Variables, and Literals

• Expressions and Operators

• Regular Expressions

• Statements

• Functions

• Working with Objects

• Details of the Object Model

24 Core JavaScript Guide

C h a p t e r

2
Chapter 2Values, Variables, and Literals
This chapter discusses values that JavaScript recognizes and describes the
fundamental building blocks of JavaScript expressions: variables and literals.

This chapter contains the following sections:

• Values

• Variables

• Literals

• Unicode

Values
JavaScript recognizes the following types of values:

• Numbers, such as 42 or 3.14159.

• Logical (Boolean) values, either true or false.

• Strings, such as “Howdy!”.

• null, a special keyword denoting a null value; null is also a primitive
value. Because JavaScript is case sensitive, null is not the same as Null,
NULL, or any other variant.
Chapter 2, Values, Variables, and Literals 25

Values
• undefined, a top-level property whose value is undefined; undefined is
also a primitive value.

This relatively small set of types of values, or data types, enables you to
perform useful functions with your applications. There is no explicit distinction
between integer and real-valued numbers. Nor is there an explicit date data
type in JavaScript. However, you can use the Date object and its methods to
handle dates.

Objects and functions are the other fundamental elements in the language. You
can think of objects as named containers for values, and functions as
procedures that your application can perform.

Data Type Conversion

JavaScript is a dynamically typed language. That means you do not have to
specify the data type of a variable when you declare it, and data types are
converted automatically as needed during script execution. So, for example,
you could define a variable as follows:

var answer = 42

And later, you could assign the same variable a string value, for example,

answer = "Thanks for all the fish..."

Because JavaScript is dynamically typed, this assignment does not cause an
error message.

In expressions involving numeric and string values with the + operator,
JavaScript converts numeric values to strings. For example, consider the
following statements:

x = "The answer is " + 42 // returns "The answer is 42"
y = 42 + " is the answer" // returns "42 is the answer"

In statements involving other operators, JavaScript does not convert numeric
values to strings. For example:

"37" - 7 // returns 30
"37" + 7 // returns 377
26 Core JavaScript Guide

Variables
Variables
You use variables as symbolic names for values in your application. You give
variables names by which you refer to them and which must conform to certain
rules.

A JavaScript identifier, or name, must start with a letter or underscore (“_”);
subsequent characters can also be digits (0-9). Because JavaScript is case
sensitive, letters include the characters “A” through “Z” (uppercase) and the
characters “a” through “z” (lowercase).

Some examples of legal names are Number_hits, temp99, and _name.

Declaring Variables

You can declare a variable in two ways:

• By simply assigning it a value. For example, x = 42

• With the keyword var. For example, var x = 42

Evaluating Variables

A variable or array element that has not been assigned a value has the value
undefined. The result of evaluating an unassigned variable depends on how
it was declared:

• If the unassigned variable was declared without var, the evaluation results
in a runtime error.

• If the unassigned variable was declared with var, the evaluation results in
the undefined value, or NaN in numeric contexts.
Chapter 2, Values, Variables, and Literals 27

Variables
The following code demonstrates evaluating unassigned variables.

function f1() {
return y - 2;

}
f1() //Causes runtime error

function f2() {
return var y - 2;

}
f2() //returns NaN

You can use undefined to determine whether a variable has a value. In the
following code, the variable input is not assigned a value, and the if
statement evaluates to true.

var input;
if(input === undefined){

doThis();
} else {

doThat();
}

The undefined value behaves as false when used as a Boolean value. For
example, the following code executes the function myFunction because the
array element is not defined:

myArray=new Array()
if (!myArray[0])

myFunction()

When you evaluate a null variable, the null value behaves as 0 in numeric
contexts and as false in Boolean contexts. For example:

var n = null
n * 32 //returns 0

Variable Scope

When you set a variable identifier by assignment outside of a function, it is
called a global variable, because it is available everywhere in the current
document. When you declare a variable within a function, it is called a local
variable, because it is available only within the function.

Using var to declare a global variable is optional. However, you must use var
to declare a variable inside a function.
28 Core JavaScript Guide

Literals
You can access global variables declared in one window or frame from another
window or frame by specifying the window or frame name. For example, if a
variable called phoneNumber is declared in a FRAMESET document, you can
refer to this variable from a child frame as parent.phoneNumber.

Literals
You use literals to represent values in JavaScript. These are fixed values, not
variables, that you literally provide in your script. This section describes the
following types of literals:

• Array Literals

• Boolean Literals

• Floating-Point Literals

• Integers

• Object Literals

• String Literals

Array Literals

An array literal is a list of zero or more expressions, each of which represents
an array element, enclosed in square brackets ([]). When you create an array
using an array literal, it is initialized with the specified values as its elements,
and its length is set to the number of arguments specified.

The following example creates the coffees array with three elements and a
length of three:

coffees = ["French Roast", "Columbian", "Kona"]

Note An array literal is a type of object initializer. See “Using Object Initializers” on
page 97.

If an array is created using a literal in a top-level script, JavaScript interprets the
array each time it evaluates the expression containing the array literal. In
addition, a literal used in a function is created each time the function is called.

Array literals are also Array objects. See “Array Object” on page 103 for details
on Array objects.
Chapter 2, Values, Variables, and Literals 29

Literals
Extra Commas in Array Literals

You do not have to specify all elements in an array literal. If you put two
commas in a row, the array is created with spaces for the unspecified elements.
The following example creates the fish array:

fish = ["Lion", , "Angel"]

This array has two elements with values and one empty element (fish[0] is
“Lion”, fish[1] is undefined, and fish[2] is “Angel”):

If you include a trailing comma at the end of the list of elements, the comma is
ignored. In the following example, the length of the array is three. There is no
myList[3]. All other commas in the list indicate a new element.

myList = [’home’, , ’school’,];

In the following example, the length of the array is four, and myList[0] is
missing.

myList = [, ’home’, , ’school’];

In the following example, the length of the array is four, and myList[3] is
missing. Only the last comma is ignored. This trailing comma is optional.

myList = [’home’, , ’school’, ,];

Boolean Literals

The Boolean type has two literal values: true and false.

Do not confuse the primitive Boolean values true and false with the true and
false values of the Boolean object. The Boolean object is a wrapper around the
primitive Boolean data type. See “Boolean Object” on page 107 for more
information.
30 Core JavaScript Guide

Literals
Floating-Point Literals

A floating-point literal can have the following parts:

• A decimal integer

• A decimal point (“.”)

• A fraction (another decimal number)

• An exponent

The exponent part is an “e” or “E” followed by an integer, which can be signed
(preceded by “+” or “-”). A floating-point literal must have at least one digit and
either a decimal point or “e” (or “E”).

Some examples of floating-point literals are 3.1415, -3.1E12, .1e12, and 2E-12

Integers

Integers can be expressed in decimal (base 10), hexadecimal (base 16), and
octal (base 8). A decimal integer literal consists of a sequence of digits without
a leading 0 (zero). A leading 0 (zero) on an integer literal indicates it is in octal;
a leading 0x (or 0X) indicates hexadecimal. Hexadecimal integers can include
digits (0-9) and the letters a-f and A-F. Octal integers can include only the digits
0-7.

Some examples of integer literals are: 42, 0xFFF, and -345.

Object Literals

An object literal is a list of zero or more pairs of property names and associated
values of an object, enclosed in curly braces ({}). You should not use an object
literal at the beginning of a statement. This will lead to an error.

The following is an example of an object literal. The first element of the car
object defines a property, myCar; the second element, the getCar property,
invokes a function (Cars("honda")); the third element, the special
property, uses an existing variable (Sales).
Chapter 2, Values, Variables, and Literals 31

Literals
var Sales = "Toyota";

function CarTypes(name) {
if(name == "Honda")

return name;
else

return "Sorry, we don’t sell " + name + ".";
}

car = {myCar: "Saturn", getCar: CarTypes("Honda"), special: Sales}

document.write(car.myCar); // Saturn
document.write(car.getCar); // Honda
document.write(car.special); // Toyota

Additionally, you can use an index for the object, the index property (for
example, 7), or nest an object inside another. The following example uses these
options. These features, however, may not be supported by other ECMA-
compliant browsers.

car = {manyCars: {a: "Saab", b: "Jeep"}, 7: "Mazda"}

document.write(car.manyCars.b); // Jeep
document.write(car[7]); // Mazda

String Literals

A string literal is zero or more characters enclosed in double (") or single (’)
quotation marks. A string must be delimited by quotation marks of the same
type; that is, either both single quotation marks or both double quotation
marks. The following are examples of string literals:

• "blah"

• ’blah’

• "1234"

• "one line \n another line"

You can call any of the methods of the String object on a string literal value—
JavaScript automatically converts the string literal to a temporary String object,
calls the method, then discards the temporary String object. You can also use
the String.length property with a string literal.

You should use string literals unless you specifically need to use a String object.
See “String Object” on page 114 for details on String objects.
32 Core JavaScript Guide

Literals
Using Special Characters in Strings

In addition to ordinary characters, you can also include special characters in
strings, as shown in the following example.

"one line \n another line"

The following table lists the special characters that you can use in JavaScript
strings.

Table 2.1 JavaScript special characters

Character Meaning

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

\’ Apostrophe or single quote

\" Double quote

\\ Backslash character (\)

\XXX The character with the Latin-1 encoding specified by up to three
octal digits XXX between 0 and 377. For example, \251 is the octal
sequence for the copyright symbol.

\xXX The character with the Latin-1 encoding specified by the two
hexadecimal digits XX between 00 and FF. For example, \xA9 is the
hexadecimal sequence for the copyright symbol.

\uXXXX The Unicode character specified by the four hexadecimal digits
XXXX. For example, \u00A9 is the Unicode sequence for the
copyright symbol. See “Unicode Escape Sequences” on page 35.
Chapter 2, Values, Variables, and Literals 33

Unicode
Escaping Characters

For characters not listed in Table 2.1, a preceding backslash is ignored, with the
exception of a quotation mark and the backslash character itself.

You can insert a quotation mark inside a string by preceding it with a
backslash. This is known as escaping the quotation mark. For example,

var quote = "He read \"The Cremation of Sam McGee\" by R.W. Service."
document.write(quote)

The result of this would be

He read “The Cremation of Sam McGee” by R.W. Service.

To include a literal backslash inside a string, you must escape the backslash
character. For example, to assign the file path c:\temp to a string, use the
following:

var home = "c:\\temp"

Unicode
Unicode is a universal character-coding standard for the interchange and
display of principal written languages. It covers the languages of Americas,
Europe, Middle East, Africa, India, Asia, and Pacifica, as well as historic scripts
and technical symbols. Unicode allows for the exchange, processing, and
display of multilingual texts, as well as the use of common technical and
mathematical symbols. It hopes to resolve internationalization problems of
multilingual computing, such as different national character standards. Not all
modern or archaic scripts, however, are currently supported.

The Unicode character set can be used for all known encoding. Unicode is
modeled after the ASCII (American Standard Code for Information Interchange)
character set. It uses a numerical value and name for each character. The
character encoding specifies the identity of the character and its numeric value
(code position), as well as the representation of this value in bits. The 16-bit
numeric value (code value) is defined by a hexadecimal number and a prefix
U, for example, U+0041 represents A. The unique name for this value is LATIN
CAPITAL LETTER A.

JavaScript versions prior to 1.3. Unicode is not supported in versions of
JavaScript prior to 1.3.
34 Core JavaScript Guide

Unicode
Unicode Compatibility with ASCII and
ISO

Unicode is compatible with ASCII characters and is supported by many
programs. The first 128 Unicode characters correspond to the ASCII characters
and have the same byte value. The Unicode characters U+0020 through U+007E
are equivalent to the ASCII characters 0x20 through 0x7E. Unlike ASCII, which
supports the Latin alphabet and uses 7-bit character set, Unicode uses a 16-bit
value for each character. It allows for tens of thousands of characters. Unicode
version 2.0 contains 38,885 characters. It also supports an extension
mechanism, Transformation Format (UTF), named UTF-16, that allows for the
encoding of one million more characters by using 16-bit character pairs. UTF
turns the encoding to actual bits.

Unicode is fully compatible with the International Standard ISO/IEC 10646-1;
1993, which is a subset of ISO 10646, and supports the ISO UCS-2 (Universal
Character Set) that uses two-octets (two bytes or 16 bits).

JavaScript and Navigator support for Unicode means you can use non-Latin,
international, and localized characters, plus special technical symbols in
JavaScript programs. Unicode provides a standard way to encode multilingual
text. Since Unicode is compatible with ASCII, programs can use ASCII
characters. You can use non-ASCII Unicode characters in the comments and
string literals of JavaScript.

Unicode Escape Sequences

You can use the Unicode escape sequence in string literals. The escape
sequence consists of six ASCII characters: \u and a four-digit hexadecimal
number. For example, \u00A9 represents the copyright symbol. Every Unicode
escape sequence in JavaScript is interpreted as one character.

The following code returns the copyright symbol and the string “Netscape
Communications”.

x="\u00A9 Netscape Communications"
Chapter 2, Values, Variables, and Literals 35

Unicode
The following table lists frequently used special characters and their Unicode
value.

The JavaScript use of the Unicode escape sequence is different from Java. In
JavaScript, the escape sequence is never interpreted as a special character first.
For example, a line terminator escape sequence inside a string does not
terminate the string before it is interpreted by the function. JavaScript ignores
any escape sequence if it is used in comments. In Java, if an escape sequence is
used in a single comment line, it is interpreted as an Unicode character. For a
string literal, the Java compiler interprets the escape sequences first. For
example, if a line terminator escape character (\u000A) is used in Java, it
terminates the string literal. In Java, this leads to an error, because line
terminators are not allowed in string literals. You must use \n for a line feed in
a string literal. In JavaScript, the escape sequence works the same way as \n.

Table 2.2 Unicode values for special characters

Category Unicode value Name Format name

White space values \u0009 Tab <TAB>

\u000B Vertical Tab <VT>

\u000C Form Feed <FF>

\u0020 Space <SP>

Line terminator values \u000A Line Feed <LF>

\u000D Carriage Return <CR>

Additional Unicode escape
sequence values

\u000b Backspace <BS>

\u0009 Horizontal Tab <HT>

\u0022 Double Quote "

\u0027 Single Quote ’

\u005C Backslash \
36 Core JavaScript Guide

Unicode
Displaying Characters with Unicode

You can use Unicode to display the characters in different languages or
technical symbols. For characters to be displayed properly, a client such as
Netscape Navigator 4.x needs to support Unicode. Moreover, an appropriate
Unicode font must be available to the client, and the client platform must
support Unicode. Often, Unicode fonts do not display all the Unicode
characters. Some platforms, such as Windows 95, provide a partial support for
Unicode.

To receive non-ASCII character input, the client needs to send the input as
Unicode. Using a standard enhanced keyboard, the client cannot easily input
the additional characters supported by Unicode. Often, the only way to input
Unicode characters is by using Unicode escape sequences. The Unicode
specification, however, does not require the use of escape sequences. Unicode
delineates a method for rendering special Unicode characters using a
composite character. It specifies the order of characters that can be used to
create a composite character, where the base character comes first, followed by
one or more non-spacing marks. Common implementations of Unicode,
including the JavaScript implementation, however, do not support this option.
JavaScript does not attempt the representation of the Unicode combining
sequences. In other words, an input of a and ’ does not produce à. JavaScript
interprets a' as two distinct 16-bit Unicode characters. You must use a Unicode
escape sequence or a literal Unicode character for à.

For more information on Unicode, see the Unicode Consortium Web site and
The Unicode Standard, Version 2.0, published by Addison-Wesley, 1996.
Chapter 2, Values, Variables, and Literals 37

Unicode
38 Core JavaScript Guide

C h a p t e r

3
Chapter 3Expressions and Operators
This chapter describes JavaScript expressions and operators, including
assignment, comparison, arithmetic, bitwise, logical, string, and special
operators.

This chapter contains the following sections:

• Expressions

• Operators

Expressions
An expression is any valid set of literals, variables, operators, and expressions
that evaluates to a single value; the value can be a number, a string, or a logical
value.

Conceptually, there are two types of expressions: those that assign a value to a
variable, and those that simply have a value. For example, the expression
x = 7 is an expression that assigns x the value seven. This expression itself
evaluates to seven. Such expressions use assignment operators. On the other
hand, the expression 3 + 4 simply evaluates to seven; it does not perform an
assignment. The operators used in such expressions are referred to simply as
operators.
Chapter 3, Expressions and Operators 39

Operators
JavaScript has the following types of expressions:

• Arithmetic: evaluates to a number, for example 3.14159

• String: evaluates to a character string, for example, “Fred” or “234”

• Logical: evaluates to true or false

Operators
JavaScript has the following types of operators. This section describes the
operators and contains information about operator precedence.

• Assignment Operators

• Comparison Operators

• Arithmetic Operators

• Bitwise Operators

• Logical Operators

• String Operators

• Special Operators

JavaScript has both binary and unary operators. A binary operator requires two
operands, one before the operator and one after the operator:

operand1 operator operand2

For example, 3+4 or x*y.

A unary operator requires a single operand, either before or after the operator:

operator operand

or

operand operator

For example, x++ or ++x.

In addition, JavaScript has one ternary operator, the conditional operator. A
ternary operator requires three operands.
40 Core JavaScript Guide

Operators
Assignment Operators

An assignment operator assigns a value to its left operand based on the value of
its right operand. The basic assignment operator is equal (=), which assigns the
value of its right operand to its left operand. That is, x = y assigns the value of
y to x.

The other assignment operators are shorthand for standard operations, as
shown in the following table.

Comparison Operators

A comparison operator compares its operands and returns a logical value based
on whether the comparison is true. The operands can be numerical or string
values. Strings are compared based on standard lexicographical ordering, using
Unicode values. The following table describes the comparison operators.

Table 3.1 Assignment operators

Shorthand operator Meaning

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x <<= y x = x << y

x >>= y x = x >> y

x >>>= y x = x >>> y

x &= y x = x & y

x ^= y x = x ^ y

x |= y x = x | y
Chapter 3, Expressions and Operators 41

Operators
Arithmetic Operators

Arithmetic operators take numerical values (either literals or variables) as their
operands and return a single numerical value. The standard arithmetic
operators are addition (+), subtraction (-), multiplication (*), and division (/).
These operators work as they do in most other programming languages, except
the / operator returns a floating-point division in JavaScript, not a truncated
division as it does in languages such as C or Java. For example:

1/2 //returns 0.5 in JavaScript
1/2 //returns 0 in Java

Table 3.2 Comparison operators

Operator Description Examples returning truea

Equal (==) Returns true if the operands are equal. If the two
operands are not of the same type, JavaScript
attempts to convert the operands to an
appropriate type for the comparison.

3 == var1
"3" == var1
3 == ’3’

Not equal (!=) Returns true if the operands are not equal. If the
two operands are not of the same type, JavaScript
attempts to convert the operands to an
appropriate type for the comparison.

var1 != 4
var2 != "3"

Strict equal (===) Returns true if the operands are equal and of the
same type.

3 === var1

Strict not equal (!==) Returns true if the operands are not equal and/or
not of the same type.

var1 !== "3"
3 !== ’3’

Greater than (>) Returns true if the left operand is greater than the
right operand.

var2 > var1

Greater than or equal
(>=)

Returns true if the left operand is greater than or
equal to the right operand.

var2 >= var1
var1 >= 3

Less than (<) Returns true if the left operand is less than the
right operand.

var1 < var2

Less than or equal (<=) Returns true if the left operand is less than or
equal to the right operand.

var1 <= var2
var2 <= 5

a. These examples assume that var1 has been assigned the value 3 and var2 has been assigned the value 4.
42 Core JavaScript Guide

Operators
In addition, JavaScript provides the arithmetic operators listed in the following
table.

Bitwise Operators

Bitwise operators treat their operands as a set of 32 bits (zeros and ones), rather
than as decimal, hexadecimal, or octal numbers. For example, the decimal
number nine has a binary representation of 1001. Bitwise operators perform
their operations on such binary representations, but they return standard
JavaScript numerical values.

The following table summarizes JavaScript’s bitwise operators.

Table 3.3 Arithmetic Operators

Operator Description Example

%
(Modulus)

Binary operator. Returns the integer remainder of
dividing the two operands.

 12 % 5 returns 2.

++
(Increment)

Unary operator. Adds one to its operand. If used as a
prefix operator (++x), returns the value of its
operand after adding one; if used as a postfix
operator (x++), returns the value of its operand
before adding one.

If x is 3, then ++x sets x to 4
and returns 4, whereas x++
sets x to 4 and returns 3.

--
(Decrement)

Unary operator. Subtracts one to its operand. The
return value is analogous to that for the increment
operator.

If x is 3, then --x sets x to 2
and returns 2, whereas x++
sets x to 2 and returns 3.

-
(Unary negation)

Unary operator. Returns the negation of its operand. If x is 3, then -x returns -3.

Table 3.4 Bitwise operators

Operator Usage Description

Bitwise AND a & b Returns a one in each bit position for which
the corresponding bits of both operands are
ones.

Bitwise OR a | b Returns a one in each bit position for which
the corresponding bits of either or both
operands are ones.
Chapter 3, Expressions and Operators 43

Operators
Bitwise Logical Operators

Conceptually, the bitwise logical operators work as follows:

• The operands are converted to thirty-two-bit integers and expressed by a
series of bits (zeros and ones).

• Each bit in the first operand is paired with the corresponding bit in the
second operand: first bit to first bit, second bit to second bit, and so on.

• The operator is applied to each pair of bits, and the result is constructed
bitwise.

For example, the binary representation of nine is 1001, and the binary
representation of fifteen is 1111. So, when the bitwise operators are applied to
these values, the results are as follows:

• 15 & 9 yields 9 (1111 & 1001 = 1001)

• 15 | 9 yields 15 (1111 | 1001 = 1111)

• 15 ^ 9 yields 6 (1111 ^ 1001 = 0110)

Bitwise XOR a ^ b Returns a one in each bit position for which
the corresponding bits of either but not both
operands are ones.

Bitwise NOT ~ a Inverts the bits of its operand.

Left shift a << b Shifts a in binary representation b bits to
left, shifting in zeros from the right.

Sign-propagating right
shift

a >> b Shifts a in binary representation b bits to
right, discarding bits shifted off.

Zero-fill right shift a >>> b Shifts a in binary representation b bits to
the right, discarding bits shifted off, and
shifting in zeros from the left.

Table 3.4 Bitwise operators

Operator Usage Description
44 Core JavaScript Guide

Operators
Bitwise Shift Operators

The bitwise shift operators take two operands: the first is a quantity to be
shifted, and the second specifies the number of bit positions by which the first
operand is to be shifted. The direction of the shift operation is controlled by the
operator used.

Shift operators convert their operands to thirty-two-bit integers and return a
result of the same type as the left operator.

The shift operators are listed in the following table.

Logical Operators

Logical operators are typically used with Boolean (logical) values; when they
are, they return a Boolean value. However, the && and || operators actually
return the value of one of the specified operands, so if these operators are used
with non-Boolean values, they may return a non-Boolean value. The logical
operators are described in the following table.

Table 3.5 Bitwise shift operators

Operator Description Example

<<
(Left shift)

This operator shifts the first operand the
specified number of bits to the left. Excess bits
shifted off to the left are discarded. Zero bits
are shifted in from the right.

9<<2 yields 36, because 1001
shifted 2 bits to the left becomes
100100, which is 36.

>>
(Sign-propagating
right shift)

This operator shifts the first operand the
specified number of bits to the right. Excess
bits shifted off to the right are discarded.
Copies of the leftmost bit are shifted in from
the left.

9>>2 yields 2, because 1001
shifted 2 bits to the right becomes
10, which is 2. Likewise, -9>>2
yields -3, because the sign is
preserved.

>>>
(Zero-fill right shift)

This operator shifts the first operand the
specified number of bits to the right. Excess
bits shifted off to the right are discarded. Zero
bits are shifted in from the left.

19>>>2 yields 4, because 10011
shifted 2 bits to the right becomes
100, which is 4. For non-negative
numbers, zero-fill right shift and
sign-propagating right shift yield
the same result.
Chapter 3, Expressions and Operators 45

Operators
Examples of expressions that can be converted to false are those that evaluate
to null, 0, the empty string (“”), or undefined.

The following code shows examples of the && (logical AND) operator.

a1=true && true // t && t returns true
a2=true && false // t && f returns false
a3=false && true // f && t returns false
a4=false && (3 == 4) // f && f returns false
a5="Cat" && "Dog" // t && t returns Dog
a6=false && "Cat" // f && t returns false
a7="Cat" && false // t && f returns false

The following code shows examples of the || (logical OR) operator.

o1=true || true // t || t returns true
o2=false || true // f || t returns true
o3=true || false // t || f returns true
o4=false || (3 == 4) // f || f returns false
o5="Cat" || "Dog" // t || t returns Cat
o6=false || "Cat" // f || t returns Cat
o7="Cat" || false // t || f returns Cat

The following code shows examples of the ! (logical NOT) operator.

n1=!true // !t returns false
n2=!false // !f returns true
n3=!"Cat" // !t returns false

Table 3.6 Logical operators

Operator Usage Description

&& expr1 && expr2 (Logical AND) Returns expr1 if it can be
converted to false; otherwise, returns expr2.
Thus, when used with Boolean values, && returns
true if both operands are true; otherwise, returns
false.

|| expr1 || expr2 (Logical OR) Returns expr1 if it can be converted
to true; otherwise, returns expr2. Thus, when
used with Boolean values, || returns true if either
operand is true; if both are false, returns false.

! !expr (Logical NOT) Returns false if its single operand
can be converted to true; otherwise, returns true.
46 Core JavaScript Guide

Operators
Short-Circuit Evaluation

As logical expressions are evaluated left to right, they are tested for possible
“short-circuit” evaluation using the following rules:

• false && anything is short-circuit evaluated to false.

• true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that
the anything part of the above expressions is not evaluated, so any side effects
of doing so do not take effect.

String Operators

In addition to the comparison operators, which can be used on string values,
the concatenation operator (+) concatenates two string values together,
returning another string that is the union of the two operand strings. For
example, "my " + "string" returns the string "my string".

The shorthand assignment operator += can also be used to concatenate strings.
For example, if the variable mystring has the value “alpha,” then the
expression mystring += "bet" evaluates to “alphabet” and assigns this value
to mystring.

Special Operators

JavaScript provides the following special operators:

• conditional operator

• comma operator

• delete

• in

• instanceof

• new

• this

• typeof

• void
Chapter 3, Expressions and Operators 47

Operators
conditional operator

The conditional operator is the only JavaScript operator that takes three
operands. The operator can have one of two values based on a condition. The
syntax is:

condition ? val1 : val2

If condition is true, the operator has the value of val1. Otherwise it has the
value of val2. You can use the conditional operator anywhere you would use
a standard operator.

For example,

status = (age >= 18) ? "adult" : "minor"

This statement assigns the value “adult” to the variable status if age is
eighteen or more. Otherwise, it assigns the value “minor” to status.

comma operator

The comma operator (,) simply evaluates both of its operands and returns the
value of the second operand. This operator is primarily used inside a for loop,
to allow multiple variables to be updated each time through the loop.

For example, if a is a 2-dimensional array with 10 elements on a side, the
following code uses the comma operator to increment two variables at once.
The code prints the values of the diagonal elements in the array:

for (var i=0, j=9; i <= 9; i++, j--)
document.writeln("a["+i+","+j+"]= " + a[i,j])

delete

The delete operator deletes an object, an object’s property, or an element at a
specified index in an array. Its syntax is:

delete objectName
delete objectName.property
delete objectName[index]
delete property // legal only within a with statement

where objectName is the name of an object, property is an existing property,
and index is an integer representing the location of an element in an array.
48 Core JavaScript Guide

Operators
The fourth form is legal only within a with statement, to delete a property from
an object.

You can use the delete operator to delete variables declared implicitly but not
those declared with the var statement.

If the delete operator succeeds, it sets the property or element to undefined.
The delete operator returns true if the operation is possible; it returns false if
the operation is not possible.

x=42
var y= 43
myobj=new Number()
myobj.h=4 // create property h
delete x // returns true (can delete if declared implicitly)
delete y // returns false (cannot delete if declared with var)
delete Math.PI // returns false (cannot delete predefined properties)
delete myobj.h // returns true (can delete user-defined properties)
delete myobj // returns true (can delete user-defined object)

Deleting array elements

When you delete an array element, the array length is not affected. For
example, if you delete a[3], a[4] is still a[4] and a[3] is undefined.

When the delete operator removes an array element, that element is no
longer in the array. In the following example, trees[3] is removed with delete.

trees=new Array("redwood","bay","cedar","oak","maple")
delete trees[3]
if (3 in trees) {

// this does not get executed
}

If you want an array element to exist but have an undefined value, use the
undefined keyword instead of the delete operator. In the following
example, trees[3] is assigned the value undefined, but the array element still
exists:

trees=new Array("redwood","bay","cedar","oak","maple")
trees[3]=undefined
if (3 in trees) {

// this gets executed
}

Chapter 3, Expressions and Operators 49

Operators
in

The in operator returns true if the specified property is in the specified object.
syntax is:

propNameOrNumber in objectName

where propNameOrNumber is a string or numeric expression representing a
property name or array index, and objectName is the name of an object.

The following examples show some uses of the in operator.

// Arrays
trees=new Array("redwood","bay","cedar","oak","maple")
0 in trees // returns true
3 in trees // returns true
6 in trees // returns false
"bay" in trees // returns false (you must specify the index number,

// not the value at that index)
"length" in trees // returns true (length is an Array property)

// Predefined objects
"PI" in Math // returns true
myString=new String("coral")
"length" in myString // returns true

// Custom objects
mycar = {make:"Honda",model:"Accord",year:1998}
"make" in mycar // returns true
"model" in mycar // returns true

instanceof

The instanceof operator returns true if the specified object is of the specified
object type. Its syntax is:

objectName instanceof objectType

where objectName is the name of the object to compare to objectType, and
objectType is an object type, such as Date or Array.

Use instanceof when you need to confirm the type of an object at runtime.
For example, when catching exceptions, you can branch to different exception-
handling code depending on the type of exception thrown.

For example, the following code uses instanceof to determine whether
theDay is a Date object. Because theDay is a Date object, the statements in
the if statement execute.
50 Core JavaScript Guide

Operators
theDay=new Date(1995, 12, 17)
if (theDay instanceof Date) {

// statements to execute
}

new

You can use the new operator to create an instance of a user-defined object
type or of one of the predefined object types Array, Boolean, Date,
Function, Image, Number, Object, Option, RegExp, or String. On the
server, you can also use it with DbPool, Lock, File, or SendMail. Use new as
follows:

objectName = new objectType (param1 [,param2] ...[,paramN])

You can also create objects using object initializers, as described in “Using
Object Initializers” on page 97.

See new in the Core JavaScript Reference for more information.

this

Use the this keyword to refer to the current object. In general, this refers to
the calling object in a method. Use this as follows:

this[.propertyName]

Example 1. Suppose a function called validate validates an object’s value
property, given the object and the high and low values:

function validate(obj, lowval, hival) {
if ((obj.value < lowval) || (obj.value > hival))

alert("Invalid Value!")
}

You could call validate in each form element’s onChange event handler,
using this to pass it the form element, as in the following example:

Enter a number between 18 and 99:
<INPUT TYPE = "text" NAME = "age" SIZE = 3

onChange="validate(this, 18, 99)">
Chapter 3, Expressions and Operators 51

Operators
Example 2. When combined with the form property, this can refer to the
current object’s parent form. In the following example, the form myForm
contains a Text object and a button. When the user clicks the button, the value
of the Text object is set to the form’s name. The button’s onClick event
handler uses this.form to refer to the parent form, myForm.

<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
</FORM>

typeof

The typeof operator is used in either of the following ways:

1. typeof operand
2. typeof (operand)

The typeof operator returns a string indicating the type of the unevaluated
operand. operand is the string, variable, keyword, or object for which the type
is to be returned. The parentheses are optional.

Suppose you define the following variables:

var myFun = new Function("5+2")
var shape="round"
var size=1
var today=new Date()

The typeof operator returns the following results for these variables:

typeof myFun is object
typeof shape is string
typeof size is number
typeof today is object
typeof dontExist is undefined

For the keywords true and null, the typeof operator returns the following
results:

typeof true is boolean
typeof null is object

For a number or string, the typeof operator returns the following results:

typeof 62 is number
typeof ’Hello world’ is string
52 Core JavaScript Guide

Operators
For property values, the typeof operator returns the type of value the property
contains:

typeof document.lastModified is string
typeof window.length is number
typeof Math.LN2 is number

For methods and functions, the typeof operator returns results as follows:

typeof blur is function
typeof eval is function
typeof parseInt is function
typeof shape.split is function

For predefined objects, the typeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void

The void operator is used in either of the following ways:

1. void (expression)
2. void expression

The void operator specifies an expression to be evaluated without returning a
value. expression is a JavaScript expression to evaluate. The parentheses
surrounding the expression are optional, but it is good style to use them.

You can use the void operator to specify an expression as a hypertext link.
The expression is evaluated but is not loaded in place of the current document.

The following code creates a hypertext link that does nothing when the user
clicks it. When the user clicks the link, void(0) evaluates to 0, but that has no
effect in JavaScript.

Click here to do nothing

The following code creates a hypertext link that submits a form when the user
clicks it.

Click here to submit
Chapter 3, Expressions and Operators 53

Operators
Operator Precedence

The precedence of operators determines the order they are applied when
evaluating an expression. You can override operator precedence by using
parentheses.

The following table describes the precedence of operators, from lowest to
highest.

Table 3.7 Operator precedence

Operator type Individual operators

comma ,

assignment = += -= *= /= %= <<= >>= >>>= &= ^= |=

conditional ?:

logical-or ||

logical-and &&

bitwise-or |

bitwise-xor ^

bitwise-and &

equality == !=

relational < <= > >= in instanceof

bitwise shift << >> >>>

addition/subtraction + -

multiply/divide * / %

negation/increment ! ~ - + ++ -- typeof void delete

call ()

create instance new

member . []
54 Core JavaScript Guide

C h a p t e r

4
Chapter 4Regular Expressions
Regular expressions are patterns used to match character combinations in
strings. In JavaScript, regular expressions are also objects. These patterns are
used with the exec and test methods of RegExp, and with the match,
replace, search, and split methods of String. This chapter describes
JavaScript regular expressions.

JavaScript 1.1 and earlier. Regular expressions are not available in
JavaScript 1.1 and earlier.

This chapter contains the following sections:

• Creating a Regular Expression

• Writing a Regular Expression Pattern

• Working With Regular Expressions

• Examples
Chapter 4, Regular Expressions 55

Creating a Regular Expression
Creating a Regular Expression
You construct a regular expression in one of two ways:

• Using an object initializer, as follows:

re = /ab+c/

Object initializers provide compilation of the regular expression when the
script is evaluated. When the regular expression will remain constant, use
this for better performance. Object initializers are discussed in “Using
Object Initializers” on page 97.

• Calling the constructor function of the RegExp object, as follows:

re = new RegExp("ab+c")

Using the constructor function provides runtime compilation of the regular
expression. Use the constructor function when you know the regular
expression pattern will be changing, or you don’t know the pattern and are
getting it from another source, such as user input. Once you have a defined
regular expression, if the regular expression is used throughout the script,
and if its source changes, you can use the compile method to compile a
new regular expression for efficient reuse.

Writing a Regular Expression Pattern
A regular expression pattern is composed of simple characters, such as /abc/,
or a combination of simple and special characters, such as /ab*c/ or /
Chapter (\d+)\.\d*/. The last example includes parentheses which are used
as a memory device. The match made with this part of the pattern is
remembered for later use, as described in “Using Parenthesized Substring
Matches” on page 65.
56 Core JavaScript Guide

Writing a Regular Expression Pattern
Using Simple Patterns

Simple patterns are constructed of characters for which you want to find a
direct match. For example, the pattern /abc/ matches character combinations
in strings only when exactly the characters ’abc’ occur together and in that
order. Such a match would succeed in the strings "Hi, do you know your abc’s?"
and "The latest airplane designs evolved from slabcraft." In both cases the
match is with the substring ’abc’. There is no match in the string "Grab crab"
because it does not contain the substring ’abc’.

Using Special Characters

When the search for a match requires something more than a direct match,
such as finding one or more b’s, or finding whitespace, the pattern includes
special characters. For example, the pattern /ab*c/ matches any character
combination in which a single 'a' is followed by zero or more 'b's (* means 0 or
more occurrences of the preceding character) and then immediately followed
by 'c'. In the string "cbbabbbbcdebc," the pattern matches the substring
'abbbbc'.

The following table provides a complete list and description of the special
characters that can be used in regular expressions.
Chapter 4, Regular Expressions 57

Writing a Regular Expression Pattern
Table 4.1 Special characters in regular expressions.

Character Meaning

\ Either of the following:

• For characters that are usually treated literally, indicates that the
next character is special and not to be interpreted literally.

For example, /b/ matches the character 'b'. By placing a backslash
in front of b, that is by using /\b/, the character becomes special
to mean match a word boundary.

• For characters that are usually treated specially, indicates that the
next character is not special and should be interpreted literally.

For example, * is a special character that means 0 or more
occurrences of the preceding character should be matched; for
example, /a*/ means match 0 or more a’s. To match * literally,
precede the it with a backslash; for example, /a*/ matches 'a*'.

^ Matches beginning of input or line.

For example, /^A/ does not match the 'A' in "an A," but does match it
in "An A."

$ Matches end of input or line.

For example, /t$/ does not match the 't' in "eater", but does match it
in "eat"

* Matches the preceding character 0 or more times.

For example, /bo*/ matches 'boooo' in "A ghost booooed" and 'b' in
"A bird warbled", but nothing in "A goat grunted".

+ Matches the preceding character 1 or more times. Equivalent to {1,}.

For example, /a+/ matches the 'a' in "candy" and all the a’s in
"caaaaaaandy."

? Matches the preceding character 0 or 1 time.

For example, /e?le?/ matches the 'el' in "angel" and the 'le' in
"angle."
58 Core JavaScript Guide

Writing a Regular Expression Pattern
. (The decimal point) matches any single character except the newline
character.

For example, /.n/ matches ’an’ and ’on’ in "nay, an apple is on the
tree", but not ’nay’.

(x) Matches ’x’ and remembers the match.

For example, /(foo)/ matches and remembers ’foo’ in "foo bar." The
matched substring can be recalled from the resulting array’s elements
[1], ..., [n], or from the predefined RegExp object’s properties $1,
..., $9.

x|y Matches either 'x' or 'y'.

For example, /green|red/ matches 'green' in "green apple" and 'red'
in "red apple."

{n} Where n is a positive integer. Matches exactly n occurrences of the
preceding character.

For example, /a{2}/ doesn’t match the 'a' in "candy," but it matches
all of the a’s in "caandy," and the first two a’s in "caaandy."

{n,} Where n is a positive integer. Matches at least n occurrences of the
preceding character.

For example, /a{2,} doesn’t match the 'a' in "candy", but matches all
of the a’s in "caandy" and in "caaaaaaandy."

{n,m} Where n and m are positive integers. Matches at least n and at most m
occurrences of the preceding character.

For example, /a{1,3}/ matches nothing in "cndy", the 'a' in "candy,"
the first two a’s in "caandy," and the first three a’s in "caaaaaaandy"
Notice that when matching "caaaaaaandy", the match is "aaa", even
though the original string had more a’s in it.

[xyz] A character set. Matches any one of the enclosed characters. You can
specify a range of characters by using a hyphen.

For example, [abcd] is the same as [a-d]. They match the 'b' in
"brisket" and the 'c' in "ache".

Table 4.1 Special characters in regular expressions. (Continued)

Character Meaning
Chapter 4, Regular Expressions 59

Writing a Regular Expression Pattern
[^xyz] A negated or complemented character set. That is, it matches anything
that is not enclosed in the brackets. You can specify a range of
characters by using a hyphen.

For example, [^abc] is the same as [^a-c]. They initially match ’r’
in "brisket" and ’h’ in "chop."

[\b] Matches a backspace. (Not to be confused with \b.)

\b Matches a word boundary, such as a space or a newline character. (Not
to be confused with [\b].)

For example, /\bn\w/ matches the ’no’ in "noonday";/\wy\b/
matches the ’ly’ in "possibly yesterday."

\B Matches a non-word boundary.

For example, /\w\Bn/ matches ’on’ in "noonday", and /y\B\w/
matches ’ye’ in "possibly yesterday."

\cX Where X is a control character. Matches a control character in a string.

For example, /\cM/ matches control-M in a string.

\d Matches a digit character. Equivalent to [0-9].

For example, /\d/ or /[0-9]/ matches ’2’ in "B2 is the suite
number."

\D Matches any non-digit character. Equivalent to [^0-9].

For example, /\D/ or /[^0-9]/ matches ’B’ in "B2 is the suite
number."

\f Matches a form-feed.

\n Matches a linefeed.

\r Matches a carriage return.

\s Matches a single white space character, including space, tab, form feed,
line feed. Equivalent to [\f\n\r\t\v].

For example, /\s\w*/ matches ’ bar’ in "foo bar."

Table 4.1 Special characters in regular expressions. (Continued)

Character Meaning
60 Core JavaScript Guide

Writing a Regular Expression Pattern
\S Matches a single character other than white space. Equivalent to [^
\f\n\r\t\v].

For example, /\S\w*/ matches ’foo’ in "foo bar."

\t Matches a tab

\v Matches a vertical tab.

\w Matches any alphanumeric character including the underscore.
Equivalent to [A-Za-z0-9_].

For example, /\w/ matches ’a’ in "apple," ’5’ in "$5.28," and ’3’ in "3D."

\W Matches any non-word character. Equivalent to [^A-Za-z0-9_].

For example, /\W/ or /[^$A-Za-z0-9_]/ matches ’%’ in "50%."

\n Where n is a positive integer. A back reference to the last substring
matching the n parenthetical in the regular expression (counting left
parentheses).

For example, /apple(,)\sorange\1/ matches ’apple, orange,’ in
"apple, orange, cherry, peach." A more complete example follows this
table.

Note: If the number of left parentheses is less than the number
specified in \n, the \n is taken as an octal escape as described in the
next row.

\ooctal
\xhex

Where \ooctal is an octal escape value or \xhex is a hexadecimal
escape value. Allows you to embed ASCII codes into regular
expressions.

Table 4.1 Special characters in regular expressions. (Continued)

Character Meaning
Chapter 4, Regular Expressions 61

Working With Regular Expressions
Using Parentheses

Parentheses around any part of the regular expression pattern cause that part of
the matched substring to be remembered. Once remembered, the substring can
be recalled for other use, as described in “Using Parenthesized Substring
Matches” on page 65.

For example, the pattern /Chapter (\d+)\.\d*/ illustrates additional escaped
and special characters and indicates that part of the pattern should be
remembered. It matches precisely the characters 'Chapter ' followed by one or
more numeric characters (\d means any numeric character and + means 1 or
more times), followed by a decimal point (which in itself is a special character;
preceding the decimal point with \ means the pattern must look for the literal
character '.'), followed by any numeric character 0 or more times (\d means
numeric character, * means 0 or more times). In addition, parentheses are used
to remember the first matched numeric characters.

This pattern is found in "Open Chapter 4.3, paragraph 6" and '4' is remembered.
The pattern is not found in "Chapter 3 and 4", because that string does not have
a period after the '3'.

Working With Regular Expressions
Regular expressions are used with the RegExp methods test and exec and
with the String methods match, replace, search, and split.These methods
are explained in detail in the Core JavaScript Reference.

Table 4.2 Methods that use regular expressions

Method Description

exec A RegExp method that executes a search for a match in a string. It
returns an array of information.

test A RegExp method that tests for a match in a string. It returns true or
false.

match A String method that executes a search for a match in a string. It
returns an array of information or null on a mismatch.

search A String method that tests for a match in a string. It returns the index
of the match, or -1 if the search fails.
62 Core JavaScript Guide

Working With Regular Expressions
When you want to know whether a pattern is found in a string, use the test or
search method; for more information (but slower execution) use the exec or
match methods. If you use exec or match and if the match succeeds, these
methods return an array and update properties of the associated regular
expression object and also of the predefined regular expression object, RegExp.
If the match fails, the exec method returns null (which converts to false).

In the following example, the script uses the exec method to find a match in a
string.

<SCRIPT LANGUAGE="JavaScript1.2">
myRe=/d(b+)d/g;
myArray = myRe.exec("cdbbdbsbz");
</SCRIPT>

If you do not need to access the properties of the regular expression, an
alternative way of creating myArray is with this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myArray = /d(b+)d/g.exec("cdbbdbsbz");
</SCRIPT>

If you want to be able to recompile the regular expression, yet another
alternative is this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myRe= new RegExp ("d(b+)d", "g:);
myArray = myRe.exec("cdbbdbsbz");
</SCRIPT>

With these scripts, the match succeeds and returns the array and updates the
properties shown in the following table.

replace A String method that executes a search for a match in a string, and
replaces the matched substring with a replacement substring.

split A String method that uses a regular expression or a fixed string to
break a string into an array of substrings.

Table 4.2 Methods that use regular expressions

Method Description
Chapter 4, Regular Expressions 63

Working With Regular Expressions
RegExp.leftContext and RegExp.rightContext can be computed from the
other values. RegExp.leftContext is equivalent to:

myArray.input.substring(0, myArray.index)

and RegExp.rightContext is equivalent to:

myArray.input.substring(myArray.index + myArray[0].length)

As shown in the second form of this example, you can use the a regular
expression created with an object initializer without assigning it to a variable. If
you do, however, every occurrence is a new regular expression. For this
reason, if you use this form without assigning it to a variable, you cannot
subsequently access the properties of that regular expression. For example,
assume you have this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myRe=/d(b+)d/g;
myArray = myRe.exec("cdbbdbsbz");
document.writeln("The value of lastIndex is " + myRe.lastIndex);
</SCRIPT>

Table 4.3 Results of regular expression execution.

Object Property or
index

Description In this example

myArray The matched string and all remembered substrings ["dbbd", "bb"]

index The 0-based index of the match in the input string 1

input The original string "cdbbdbsbz"

[0] The last matched characters "dbbd"

myRe lastIndex The index at which to start the next match. (This
property is set only if the regular expression uses the
g option, described in “Executing a Global Search
and Ignoring Case” on page 67.)

5

source The text of the pattern "d(b+)d"

RegExp lastMatch The last matched characters "dbbd"

leftContext The substring preceding the most recent match "c"

rightContext The substring following the most recent match "bsbz"
64 Core JavaScript Guide

Working With Regular Expressions
This script displays:

The value of lastIndex is 5

However, if you have this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myArray = /d(b+)d/g.exec("cdbbdbsbz");
document.writeln("The value of lastIndex is " + /d(b+)d/g.lastIndex);
</SCRIPT>

It displays:

The value of lastIndex is 0

The occurrences of /d(b+)d/g in the two statements are different regular
expression objects and hence have different values for their lastIndex
property. If you need to access the properties of a regular expression created
with an object initializer, you should first assign it to a variable.

Using Parenthesized Substring Matches

Including parentheses in a regular expression pattern causes the corresponding
submatch to be remembered. For example, /a(b)c/ matches the characters
’abc’ and remembers ’b’. To recall these parenthesized substring matches, use
the RegExp properties $1, ..., $9 or the Array elements [1], ..., [n].

The number of possible parenthesized substrings is unlimited. The predefined
RegExp object holds up to the last nine and the returned array holds all that
were found. The following examples illustrate how to use parenthesized
substring matches.

Example 1. The following script uses the replace method to switch the words
in the string. For the replacement text, the script uses the values of the $1 and
$2 properties.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr = str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This prints "Smith, John".
Chapter 4, Regular Expressions 65

Working With Regular Expressions
Example 2. In the following example, RegExp.input is set by the Change
event. In the getInfo function, the exec method uses the value of
RegExp.input as its argument. Note that RegExp must be prepended to its $
properties (because they appear outside the replacement string). (Example 3 is
a more efficient, though possibly more cryptic, way to accomplish the same
thing.)

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
function getInfo(){

re = /(\w+)\s(\d+)/
re.exec();
window.alert(RegExp.$1 + ", your age is " + RegExp.$2);

}
</SCRIPT>

Enter your first name and your age, and then press Enter.

<FORM>
<INPUT TYPE="text" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>

Example 3. The following example is similar to Example 2. Instead of using
the RegExp.$1 and RegExp.$2, this example creates an array and uses a[1]
and a[2]. It also uses the shortcut notation for using the exec method.

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
function getInfo(){

a = /(\w+)\s(\d+)/();
window.alert(a[1] + ", your age is " + a[2]);

}
</SCRIPT>

Enter your first name and your age, and then press Enter.

<FORM>
<INPUT TYPE="text" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>
66 Core JavaScript Guide

Working With Regular Expressions
Executing a Global Search and Ignoring
Case

Regular expressions have two optional flags that allow for global and case
insensitive searching. To indicate a global search, use the g flag. To indicate a
case insensitive search, use the i flag. These flags can be used separately or
together in either order, and are included as part of the regular expression.

To include a flag with the regular expression, use this syntax:

re = /pattern/[g|i|gi]
re = new RegExp("pattern", [’g’|’i’|’gi’])

Note that the flags, i and g, are an integral part of a regular expression. They
cannot be added or removed later.

For example, re = /\w+\s/g creates a regular expression that looks for one or
more characters followed by a space, and it looks for this combination
throughout the string.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /\w+\s/g;
str = "fee fi fo fum";
myArray = str.match(re);
document.write(myArray);
</SCRIPT>

This displays ["fee ", "fi ", "fo "]. In this example, you could replace the line:

re = /\w+\s/g;

with:

re = new RegExp("\\w+\\s", "g");

and get the same result.
Chapter 4, Regular Expressions 67

Examples
Examples
The following examples show some uses of regular expressions.

Changing the Order in an Input String

The following example illustrates the formation of regular expressions and the
use of string.split() and string.replace(). It cleans a roughly formatted
input string containing names (first name first) separated by blanks, tabs and
exactly one semicolon. Finally, it reverses the name order (last name first) and
sorts the list.

<SCRIPT LANGUAGE="JavaScript1.2">

// The name string contains multiple spaces and tabs,
// and may have multiple spaces between first and last names.
names = new String ("Harry Trump ;Fred Barney; Helen Rigby ;\

 Bill Abel ;Chris Hand ")

document.write ("---------- Original String" + "
" + "
")
document.write (names + "
" + "
")

// Prepare two regular expression patterns and array storage.
// Split the string into array elements.

// pattern: possible white space then semicolon then possible white space
pattern = /\s*;\s*/

// Break the string into pieces separated by the pattern above and
// and store the pieces in an array called nameList
nameList = names.split (pattern)

// new pattern: one or more characters then spaces then characters.
// Use parentheses to "memorize" portions of the pattern.
// The memorized portions are referred to later.
pattern = /(\w+)\s+(\w+)/

// New array for holding names being processed.
bySurnameList = new Array;

// Display the name array and populate the new array
// with comma-separated names, last first.
//
// The replace method removes anything matching the pattern
// and replaces it with the memorized string—second memorized portion
// followed by comma space followed by first memorized portion.
//
// The variables $1 and $2 refer to the portions
// memorized while matching the pattern.
68 Core JavaScript Guide

Examples
document.write ("---------- After Split by Regular Expression" + "
")
for (i = 0; i < nameList.length; i++) {

document.write (nameList[i] + "
")
bySurnameList[i] = nameList[i].replace (pattern, "$2, $1")

}

// Display the new array.
document.write ("---------- Names Reversed" + "
")
for (i = 0; i < bySurnameList.length; i++) {

document.write (bySurnameList[i] + "
")
}

// Sort by last name, then display the sorted array.
bySurnameList.sort()
document.write ("---------- Sorted" + "
")
for (i = 0; i < bySurnameList.length; i++) {

document.write (bySurnameList[i] + "
")
}

document.write ("---------- End" + "
")

</SCRIPT>

Using Special Characters to Verify Input

In the following example, a user enters a phone number. When the user
presses Enter, the script checks the validity of the number. If the number is
valid (matches the character sequence specified by the regular expression), the
script posts a window thanking the user and confirming the number. If the
number is invalid, the script posts a window informing the user that the phone
number is not valid.

The regular expression looks for zero or one open parenthesis \(?, followed
by three digits \d{3}, followed by zero or one close parenthesis \)?, followed
by one dash, forward slash, or decimal point and when found, remember the
character ([-\/\.]), followed by three digits \d{3}, followed by the
remembered match of a dash, forward slash, or decimal point \1, followed by
four digits \d{4}.
Chapter 4, Regular Expressions 69

Examples
The Change event activated when the user presses Enter sets the value of
RegExp.input.

<HTML>
<SCRIPT LANGUAGE = "JavaScript1.2">

re = /\(?\d{3}\)?([-\/\.])\d{3}\1\d{4}/

function testInfo() {
OK = re.exec()
if (!OK)

window.alert (RegExp.input +
" isn’t a phone number with area code!")

else
window.alert ("Thanks, your phone number is " + OK[0])

}

</SCRIPT>

Enter your phone number (with area code) and then press Enter.
<FORM>
<INPUT TYPE="text" NAME="Phone" onChange="testInfo(this);">
</FORM>

</HTML>
70 Core JavaScript Guide

C h a p t e r

5
Chapter 5Statements
JavaScript supports a compact set of statements that you can use to incorporate
a great deal of interactivity in Web pages. This chapter provides an overview of
these statements.

This chapter contains the following sections, which provide a brief overview of
each statement:

• Conditional Statements: if...else and switch

• Loop Statements: for, while, do while, label, break, and continue
(label is not itself a looping statement, but is frequently used with these
statements)

• Object Manipulation Statements: for...in and with

• Comments

• Exception Handling Statements: try...catch and throw

Any expression is also a statement. See Chapter 3, “Expressions and
Operators,” for complete information about statements.

Use the semicolon (;) character to separate statements in JavaScript code.

See the Core JavaScript Reference for details about the statements in this
chapter.
Chapter 5, Statements 71

Conditional Statements
Conditional Statements
A conditional statement is a set of commands that executes if a specified
condition is true. JavaScript supports two conditional statements: if...else
and switch.

if...else Statement

Use the if statement to perform certain statements if a logical condition is true;
use the optional else clause to perform other statements if the condition is
false. An if statement looks as follows:

if (condition) {
statements1

}
[else {

statements2
}]

The condition can be any JavaScript expression that evaluates to true or false.
The statements to be executed can be any JavaScript statements, including
further nested if statements. If you want to use more than one statement after
an if or else statement, you must enclose the statements in curly braces, {}.

Do not confuse the primitive Boolean values true and false with the true and
false values of the Boolean object. Any object whose value is not undefined or
null, including a Boolean object whose value is false, evaluates to true when
passed to a conditional statement. For example:

var b = new Boolean(false);
if (b) // this condition evaluates to true
72 Core JavaScript Guide

Conditional Statements
Example. In the following example, the function checkData returns true if the
number of characters in a Text object is three; otherwise, it displays an alert
and returns false.

function checkData () {
if (document.form1.threeChar.value.length == 3) {

return true
} else {

alert("Enter exactly three characters. " +
document.form1.threeChar.value + " is not valid.")
return false

}
}

switch Statement

A switch statement allows a program to evaluate an expression and attempt to
match the expression’s value to a case label. If a match is found, the program
executes the associated statement. A switch statement looks as follows:

switch (expression){
case label :

statement;
break;

case label :
statement;
break;

...
default : statement;

}

The program first looks for a label matching the value of expression and then
executes the associated statement. If no matching label is found, the program
looks for the optional default statement, and if found, executes the associated
statement. If no default statement is found, the program continues execution at
the statement following the end of switch.

The optional break statement associated with each case label ensures that the
program breaks out of switch once the matched statement is executed and
continues execution at the statement following switch. If break is omitted, the
program continues execution at the next statement in the switch statement.
Chapter 5, Statements 73

Loop Statements
Example. In the following example, if expr evaluates to "Bananas", the
program matches the value with case "Bananas" and executes the associated
statement. When break is encountered, the program terminates switch and
executes the statement following switch. If break were omitted, the statement
for case "Cherries" would also be executed.

switch (expr) {
case "Oranges" :

document.write("Oranges are $0.59 a pound.
");
break;

case "Apples" :
document.write("Apples are $0.32 a pound.
");
break;

case "Bananas" :
document.write("Bananas are $0.48 a pound.
");
break;

case "Cherries" :
document.write("Cherries are $3.00 a pound.
");
break;

default :
document.write("Sorry, we are out of " + i + ".
");

}

document.write("Is there anything else you’d like?
");

Loop Statements
A loop is a set of commands that executes repeatedly until a specified condition
is met. JavaScript supports the for, do while, while, and label loop
statements (label is not itself a looping statement, but is frequently used with
these statements). In addition, you can use the break and continue statements
within loop statements.

Another statement, for...in, executes statements repeatedly but is used for
object manipulation. See “Object Manipulation Statements” on page 80.
74 Core JavaScript Guide

Loop Statements
for Statement

A for loop repeats until a specified condition evaluates to false. The JavaScript
for loop is similar to the Java and C for loop. A for statement looks as
follows:

for ([initialExpression]; [condition]; [incrementExpression]) {
statements

}

When a for loop executes, the following occurs:

1. The initializing expression initial-expression, if any, is executed. This
expression usually initializes one or more loop counters, but the syntax
allows an expression of any degree of complexity.

2. The condition expression is evaluated. If the value of condition is true,
the loop statements execute. If the value of condition is false, the for
loop terminates.

3. The statements execute.

4. The update expression incrementExpression executes, and control
returns to Step 2.

Example. The following function contains a for statement that counts the
number of selected options in a scrolling list (a Select object that allows
multiple selections). The for statement declares the variable i and initializes it
to zero. It checks that i is less than the number of options in the Select object,
performs the succeeding if statement, and increments i by one after each pass
through the loop.

<SCRIPT>
function howMany(selectObject) {

var numberSelected=0
for (var i=0; i < selectObject.options.length; i++) {

if (selectObject.options[i].selected==true)
numberSelected++

}
return numberSelected

}

Chapter 5, Statements 75

Loop Statements
</SCRIPT>
<FORM NAME="selectForm">
<P>Choose some music types, then click the button below:

<SELECT NAME="musicTypes" MULTIPLE>
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age
<OPTION> Classical
<OPTION> Opera
</SELECT>
<P><INPUT TYPE="button" VALUE="How many are selected?"
onClick="alert (’Number of options selected: ’ +
howMany(document.selectForm.musicTypes))">
</FORM>

do...while Statement

The do...while statement repeats until a specified condition evaluates to
false. A do...while statement looks as follows:

do {
statement

} while (condition)

statement executes once before the condition is checked. If condition
returns true, the statement executes again. At the end of every execution, the
condition is checked. When the condition returns false, execution stops and
control passes to the statement following do...while.

Example. In the following example, the do loop iterates at least once and
reiterates until i is no longer less than 5.

do {
i+=1;
document.write(i);

} while (i<5);
76 Core JavaScript Guide

Loop Statements
while Statement

A while statement executes its statements as long as a specified condition
evaluates to true. A while statement looks as follows:

while (condition) {
statements

}

If the condition becomes false, the statements within the loop stop executing
and control passes to the statement following the loop.

The condition test occurs before the statements in the loop are executed. If the
condition returns true, the statements are executed and the condition is tested
again. If the condition returns false, execution stops and control is passed to the
statement following while.

Example 1. The following while loop iterates as long as n is less than three:

n = 0
x = 0
while(n < 3) {

n ++
x += n

}

With each iteration, the loop increments n and adds that value to x. Therefore,
x and n take on the following values:

• After the first pass: n = 1 and x = 1

• After the second pass: n = 2 and x = 3

• After the third pass: n = 3 and x = 6

After completing the third pass, the condition n < 3 is no longer true, so the
loop terminates.

Example 2: infinite loop. Make sure the condition in a loop eventually
becomes false; otherwise, the loop will never terminate. The statements in the
following while loop execute forever because the condition never becomes
false:

while (true) {
alert("Hello, world") }
Chapter 5, Statements 77

Loop Statements
label Statement

A label provides a statement with an identifier that lets you refer to it elsewhere
in your program. For example, you can use a label to identify a loop, and then
use the break or continue statements to indicate whether a program should
interrupt the loop or continue its execution.

The syntax of the label statement looks like the following:

label :
statement

The value of label may be any JavaScript identifier that is not a reserved
word. The statement that you identify with a label may be any type.

Example. In this example, the label markLoop identifies a while loop.

markLoop:
while (theMark == true)

doSomething();
}

break Statement

Use the break statement to terminate a loop, switch, or label statement.

• When you use break with a while, do-while, for, or switch statement,
break terminates the innermost enclosing loop or switch immediately
and transfers control to the following statement.

• When you use break within an enclosing label statement, it terminates the
statement and transfers control to the following statement. If you specify a
label when you issue the break, the break statement terminates the
specified statement.

The syntax of the break statement looks like the following:

1. break
2. break [label]

The first form of the syntax terminates the innermost enclosing loop, switch,
or label; the second form of the syntax terminates the specified enclosing label
statement.
78 Core JavaScript Guide

Loop Statements
Example. The following example iterates through the elements in an array
until it finds the index of an element whose value is theValue:

for (i = 0; i < a.length; i++) {
if (a[i] = theValue);

break;
}

continue Statement

The continue statement can be used to restart a while, do-while, for, or
label statement.

• In a while or for statement, continue terminates the current loop and
continues execution of the loop with the next iteration. In contrast to the
break statement, continue does not terminate the execution of the loop
entirely. In a while loop, it jumps back to the condition. In a for loop, it
jumps to the increment-expression.

• In a label statement, continue is followed by a label that identifies a
label statement. This type of continue restarts a label statement or
continues execution of a labelled loop with the next iteration. continue
must be in a looping statement identified by the label used by continue.

The syntax of the continue statement looks like the following:

1. continue
2. continue [label]

Example 1. The following example shows a while loop with a continue
statement that executes when the value of i is three. Thus, n takes on the
values one, three, seven, and twelve.

i = 0
n = 0
while (i < 5) {

i++
if (i == 3)

continue
n += i

}

Chapter 5, Statements 79

Object Manipulation Statements
Example 2. A statement labeled checkiandj contains a statement labeled
checkj. If continue is encountered, the program terminates the current
iteration of checkj and begins the next iteration. Each time continue is
encountered, checkj reiterates until its condition returns false. When false
is returned, the remainder of the checkiandj statement is completed, and
checkiandj reiterates until its condition returns false. When false is
returned, the program continues at the statement following checkiandj.

If continue had a label of checkiandj, the program would continue at the top
of the checkiandj statement.

checkiandj :
while (i<4) {

document.write(i + "
");
i+=1;
checkj :

while (j>4) {
document.write(j + "
");
j-=1;
if ((j%2)==0);

continue checkj;
document.write(j + " is odd.
");

}
document.write("i = " + i + "
");
document.write("j = " + j + "
");

}

Object Manipulation Statements
JavaScript uses the for...in and with statements to manipulate objects.

for...in Statement

The for...in statement iterates a specified variable over all the properties of
an object. For each distinct property, JavaScript executes the specified
statements. A for...in statement looks as follows:

for (variable in object) {
statements }
80 Core JavaScript Guide

Object Manipulation Statements
Example. The following function takes as its argument an object and the
object’s name. It then iterates over all the object’s properties and returns a string
that lists the property names and their values.

function dump_props(obj, obj_name) {
var result = ""
for (var i in obj) {

result += obj_name + "." + i + " = " + obj[i] + "
"
}
result += "<HR>"
return result

}

For an object car with properties make and model, result would be:

car.make = Ford
car.model = Mustang

with Statement

The with statement establishes the default object for a set of statements.
JavaScript looks up any unqualified names within the set of statements to
determine if the names are properties of the default object. If an unqualified
name matches a property, then the property is used in the statement; otherwise,
a local or global variable is used.

A with statement looks as follows:

with (object){
statements

}

Example. The following with statement specifies that the Math object is the
default object. The statements following the with statement refer to the PI
property and the cos and sin methods, without specifying an object. JavaScript
assumes the Math object for these references.

var a, x, y
var r=10
with (Math) {

a = PI * r * r
x = r * cos(PI)
y = r * sin(PI/2)

}

Chapter 5, Statements 81

Comments
Comments
Comments are author notations that explain what a script does. Comments are
ignored by the interpreter. JavaScript supports Java-style comments:

• Comments on a single line are preceded by a double-slash (//).

• Comments that span multiple lines are preceded by /* and followed by */:

Example. The following example shows two comments:

// This is a single-line comment.

/* This is a multiple-line comment. It can be of any length, and
you can put whatever you want here. */

Exception Handling Statements
You can throw and catch exceptions using the throw and try...catch
statements.

You also use the try...catch statement to handle Java exceptions. See
“Handling Java Exceptions in JavaScript” on page 147 and “Handling JavaScript
Exceptions in Java” on page 150 for information.

The throw Statement

Use the throw statement to throw an exception. When you throw an
exception, you specify an expression containing the value of the exception:

throw expression

The following code throws several exceptions.

throw "Error2" // generates an exception with a string value
throw 42 // generates an exception with the value 42
throw true // generates an exception with the value true

You can specify an object when you throw an exception. You can then
reference the object’s properties in the catch block. The following example
creates an object myUserException of type UserException and uses it in
a throw statement.
82 Core JavaScript Guide

Exception Handling Statements
// Create an object type UserException
function UserException (message) {

this.message=message
this.name="UserException"

}
// Create an instance of the object type and throw it
myUserException=new UserException("Value too high")
throw myUserException

The try...catch Statement

The try...catch statement marks a block of statements to try, and specifies
a response should an exception be thrown. If an exception is thrown, the
try...catch statement catches it.

The try...catch statement consists of a try block, which contains one or
more statements, and a catch block, containing statements that specify what
to do if an exception is thrown in the try block. That is, you want the try
block to succeed, and if it does not succeed, you want control to pass to the
catch block. If any statement within the try block (or in a function called
from within the try block) throws an exception, control immediately shifts to
the catch block. If no exception is thrown in the try block succeed, the
catch block is skipped. The finally block executes after the try and
catch blocks execute but before the statements following the try...catch
statement.

The following example uses a try...catch statement. The example calls a
function that retrieves a month name from an array based on the value passed
to the function. If the value does not correspond to a month number (1-12), an
exception is thrown with the value “InvalidMonthNo” and the statements in the
catch block set the monthName variable to “unknown”.

function getMonthName (mo) {
mo=mo-1 // Adjust month number for array index (1=Jan, 12=Dec)
var months=new Array("Jan","Feb","Mar","Apr","May","Jun","Jul",

"Aug","Sep","Oct","Nov","Dec")
if (months[mo] != null) {

return months[mo]
} else {

throw "InvalidMonthNo"
}

}

Chapter 5, Statements 83

Exception Handling Statements
try {
// statements to try
monthName=getMonthName(myMonth) // function could throw exception

}
catch (e) {

monthName="unknown"
logMyErrors(e) // pass exception object to error handler

}

The catch Block

Use the try...catch statement’s catch block (recovery block) to execute
error-handling code.

A catch block looks as follows:

catch (catchID) {
statements

}

Every catch block specifies an identifier (catchID in the preceding syntax)
that holds the value specified by the throw statement; you can use this
identifier to get information about the exception that was thrown. JavaScript
creates this identifier when the catch block is entered; the identifier lasts only
for the duration of the catch block; after the catch block finishes executing,
the identifier is no longer available.

For example, the following code throws an exception. When the exception
occurs, control transfers to the catch block.

try {
throw "myException" // generates an exception

}
catch (e) {

// statements to handle any exceptions
logMyErrors(e) // pass exception object to error handler

}

84 Core JavaScript Guide

Exception Handling Statements
The finally Block

The finally block contains statements to execute after the try and catch
blocks execute but before the statements following the try...catch
statement. The finally block executes whether or not an exception is thrown.
If an exception is thrown, the statements in the finally block execute even if
no catch block handles the exception.

You can use the finally block to make your script fail gracefully when an
exception occurs; for example, you may need to release a resource that your
script has tied up. The following example opens a file and then executes
statements that use the file (server-side JavaScript allows you to access files). If
an exception is thrown while the file is open, the finally block closes the
file before the script fails.

try {
openMyFile() // tie up a resource
writeMyFile(theData)

}
finally {

closeMyFile() // always close the resource
}

Nesting try...catch Statements

You can nest one or more try...catch statements. If an inner
try...catch statement does not have a catch block, the enclosing
try...catch statement’s catch block is checked for a match.
Chapter 5, Statements 85

Exception Handling Statements
86 Core JavaScript Guide

C h a p t e r

6
Chapter 6Functions
Functions are one of the fundamental building blocks in JavaScript. A function
is a JavaScript procedure—a set of statements that performs a specific task. To
use a function, you must first define it; then your script can call it.

This chapter contains the following sections:

• Defining Functions

• Calling Functions

• Using the arguments Array

• Predefined Functions

Defining Functions
A function definition consists of the function keyword, followed by

• The name of the function.

• A list of arguments to the function, enclosed in parentheses and separated
by commas.

• The JavaScript statements that define the function, enclosed in curly braces,
{ }. The statements in a function can include calls to other functions defined
in the current application.
Chapter 6, Functions 87

Calling Functions
For example, the following code defines a simple function named square:

function square(number) {
return number * number;

}

The function square takes one argument, called number. The function consists
of one statement that indicates to return the argument of the function multiplied
by itself. The return statement specifies the value returned by the function.

return number * number

All parameters are passed to functions by value; the value is passed to the
function, but if the function changes the value of the parameter, this change is
not reflected globally or in the calling function. However, if you pass an object
as a parameter to a function and the function changes the object’s properties,
that change is visible outside the function, as shown in the following example:

function myFunc(theObject) {
theObject.make="Toyota"

}

mycar = {make:"Honda", model:"Accord", year:1998}
x=mycar.make // returns Honda
myFunc(mycar) // pass object mycar to the function
y=mycar.make // returns Toyota (prop was changed by the function)

In addition to defining functions as described here, you can also define
Function objects, as described in “Function Object” on page 110.

A method is a function associated with an object. You’ll learn more about
objects and methods in Chapter 7, “Working with Objects.”

Calling Functions
Defining a function does not execute it. Defining the function simply names the
function and specifies what to do when the function is called. Calling the
function actually performs the specified actions with the indicated parameters.
For example, if you define the function square, you could call it as follows.

square(5)

The preceding statement calls the function with an argument of five. The
function executes its statements and returns the value twenty-five.
88 Core JavaScript Guide

Using the arguments Array
The arguments of a function are not limited to strings and numbers. You can
pass whole objects to a function, too. The show_props function (defined in
“Objects and Properties” on page 96) is an example of a function that takes an
object as an argument.

A function can even be recursive, that is, it can call itself. For example, here is a
function that computes factorials:

function factorial(n) {
if ((n == 0) || (n == 1))

return 1
else {

result = (n * factorial(n-1))
return result
}

}

You could then compute the factorials of one through five as follows:

a=factorial(1) // returns 1
b=factorial(2) // returns 2
c=factorial(3) // returns 6
d=factorial(4) // returns 24
e=factorial(5) // returns 120

Using the arguments Array
The arguments of a function are maintained in an array. Within a function, you
can address the parameters passed to it as follows:

arguments[i]

where i is the ordinal number of the argument, starting at zero. So, the first
argument passed to a function would be arguments[0]. The total number of
arguments is indicated by arguments.length.

Using the arguments array, you can call a function with more arguments than
it is formally declared to accept. This is often useful if you don’t know in
advance how many arguments will be passed to the function. You can use
arguments.length to determine the number of arguments actually passed to
the function, and then treat each argument using the arguments array.
Chapter 6, Functions 89

Predefined Functions
For example, consider a function that concatenates several strings. The only
formal argument for the function is a string that specifies the characters that
separate the items to concatenate. The function is defined as follows:

function myConcat(separator) {
result="" // initialize list
// iterate through arguments
for (var i=1; i<arguments.length; i++) {

result += arguments[i] + separator
}
return result

}

You can pass any number of arguments to this function, and it creates a list
using each argument as an item in the list.

// returns "red, orange, blue, "
myConcat(", ","red","orange","blue")

// returns "elephant; giraffe; lion; cheetah;"
myConcat("; ","elephant","giraffe","lion", "cheetah")

// returns "sage. basil. oregano. pepper. parsley. "
myConcat(". ","sage","basil","oregano", "pepper", "parsley")

See the Function object in the Core JavaScript Reference for more
information.

JavaScript 1.3 and earlier versions. The arguments array is a property of
the Function object and can be preceded by the function name, as follows:

functionName.arguments[i]

Predefined Functions
JavaScript has several top-level predefined functions:

• eval

• isFinite

• isNaN

• parseInt and parseFloat

• Number and String

• escape and unescape

The following sections introduce these functions. See the Core JavaScript
Reference for detailed information on all of these functions.
90 Core JavaScript Guide

Predefined Functions
eval Function

The eval function evaluates a string of JavaScript code without reference to a
particular object. The syntax of eval is:

eval(expr)

where expr is a string to be evaluated.

If the string represents an expression, eval evaluates the expression. If the
argument represents one or more JavaScript statements, eval performs the
statements. Do not call eval to evaluate an arithmetic expression; JavaScript
evaluates arithmetic expressions automatically.

isFinite Function

The isFinite function evaluates an argument to determine whether it is a finite
number. The syntax of isFinite is:

isFinite(number)

where number is the number to evaluate.

If the argument is NaN, positive infinity or negative infinity, this method returns
false, otherwise it returns true.

The following code checks client input to determine whether it is a finite
number.

if(isFinite(ClientInput) == true)
{

/* take specific steps */
}

Chapter 6, Functions 91

Predefined Functions
isNaN Function

The isNaN function evaluates an argument to determine if it is “NaN” (not a
number). The syntax of isNaN is:

isNaN(testValue)

where testValue is the value you want to evaluate.

The parseFloat and parseInt functions return “NaN” when they evaluate a
value that is not a number. isNaN returns true if passed “NaN,” and false
otherwise.

The following code evaluates floatValue to determine if it is a number and
then calls a procedure accordingly:

floatValue=parseFloat(toFloat)

if (isNaN(floatValue)) {
notFloat()

} else {
isFloat()

}

parseInt and parseFloat Functions

The two “parse” functions, parseInt and parseFloat, return a numeric value
when given a string as an argument.

The syntax of parseFloat is

parseFloat(str)

where parseFloat parses its argument, the string str, and attempts to return a
floating-point number. If it encounters a character other than a sign (+ or -), a
numeral (0-9), a decimal point, or an exponent, then it returns the value up to
that point and ignores that character and all succeeding characters. If the first
character cannot be converted to a number, it returns “NaN” (not a number).
92 Core JavaScript Guide

Predefined Functions
The syntax of parseInt is

parseInt(str [, radix])

parseInt parses its first argument, the string str, and attempts to return an
integer of the specified radix (base), indicated by the second, optional
argument, radix. For example, a radix of ten indicates to convert to a decimal
number, eight octal, sixteen hexadecimal, and so on. For radixes above ten, the
letters of the alphabet indicate numerals greater than nine. For example, for
hexadecimal numbers (base 16), A through F are used.

If parseInt encounters a character that is not a numeral in the specified radix,
it ignores it and all succeeding characters and returns the integer value parsed
up to that point. If the first character cannot be converted to a number in the
specified radix, it returns “NaN.” The parseInt function truncates the string to
integer values.

Number and String Functions

The Number and String functions let you convert an object to a number or a
string. The syntax of these functions is:

Number(objRef)
String(objRef)

where objRef is an object reference.

The following example converts the Date object to a readable string.

D = new Date (430054663215)
// The following returns
// "Thu Aug 18 04:37:43 GMT-0700 (Pacific Daylight Time) 1983"
x = String(D)
Chapter 6, Functions 93

Predefined Functions
escape and unescape Functions

The escape and unescape functions let you encode and decode strings. The
escape function returns the hexadecimal encoding of an argument in the ISO
Latin character set. The unescape function returns the ASCII string for the
specified hexadecimal encoding value.

The syntax of these functions is:

escape(string)
unescape(string)

These functions are used primarily with server-side JavaScript to encode and
decode name/value pairs in URLs.
94 Core JavaScript Guide

C h a p t e r

7
Chapter 7Working with Objects
JavaScript is designed on a simple object-based paradigm. An object is a
construct with properties that are JavaScript variables or other objects. An
object also has functions associated with it that are known as the object’s
methods. In addition to objects that are predefined in the Navigator client and
the server, you can define your own objects.

This chapter describes how to use objects, properties, functions, and methods,
and how to create your own objects.

This chapter contains the following sections:

• Objects and Properties

• Creating New Objects

• Predefined Core Objects
Chapter 7, Working with Objects 95

Objects and Properties
Objects and Properties
A JavaScript object has properties associated with it. You access the properties
of an object with a simple notation:

objectName.propertyName

Both the object name and property name are case sensitive. You define a
property by assigning it a value. For example, suppose there is an object
named myCar (for now, just assume the object already exists). You can give it
properties named make, model, and year as follows:

myCar.make = "Ford"
myCar.model = "Mustang"
myCar.year = 1969;

An array is an ordered set of values associated with a single variable name.
Properties and arrays in JavaScript are intimately related; in fact, they are
different interfaces to the same data structure. So, for example, you could
access the properties of the myCar object as follows:

myCar["make"] = "Ford"
myCar["model"] = "Mustang"
myCar["year"] = 1967

This type of array is known as an associative array, because each index
element is also associated with a string value. To illustrate how this works, the
following function displays the properties of the object when you pass the
object and the object’s name as arguments to the function:

function show_props(obj, obj_name) {
var result = ""
for (var i in obj)

result += obj_name + "." + i + " = " + obj[i] + "\n"
return result

}

So, the function call show_props(myCar, "myCar") would return the
following:

myCar.make = Ford
myCar.model = Mustang
myCar.year = 1967
96 Core JavaScript Guide

Creating New Objects
Creating New Objects
JavaScript has a number of predefined objects. In addition, you can create your
own objects. In JavaScript 1.2, you can create an object using an object
initializer. Alternatively, you can first create a constructor function and then
instantiate an object using that function and the new operator.

Using Object Initializers

In addition to creating objects using a constructor function, you can create
objects using an object initializer. Using object initializers is sometimes referred
to as creating objects with literal notation. “Object initializer” is consistent with
the terminology used by C++.

The syntax for an object using an object initializer is:

objectName = {property1:value1, property2:value2,..., propertyN:valueN}

where objectName is the name of the new object, each propertyI is an
identifier (either a name, a number, or a string literal), and each valueI is an
expression whose value is assigned to the propertyI. The objectName and
assignment is optional. If you do not need to refer to this object elsewhere, you
do not need to assign it to a variable.

If an object is created with an object initializer in a top-level script, JavaScript
interprets the object each time it evaluates the expression containing the object
literal. In addition, an initializer used in a function is created each time the
function is called.

The following statement creates an object and assigns it to the variable x if and
only if the expression cond is true.

if (cond) x = {hi:"there"}

The following example creates myHonda with three properties. Note that the
engine property is also an object with its own properties.

myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}

You can also use object initializers to create arrays. See “Array Literals” on
page 29.
Chapter 7, Working with Objects 97

Creating New Objects
JavaScript 1.1 and earlier. You cannot use object initializers. You can create
objects only using their constructor functions or using a function supplied by
some other object for that purpose. See “Using a Constructor Function” on
page 98.

Using a Constructor Function

Alternatively, you can create an object with these two steps:

1. Define the object type by writing a constructor function.

2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its
name, properties, and methods. For example, suppose you want to create an
object type for cars. You want this type of object to be called car, and you
want it to have properties for make, model, year, and color. To do this, you
would write the following function:

function car(make, model, year) {
this.make = make
this.model = model
this.year = year

}

Notice the use of this to assign values to the object’s properties based on the
values passed to the function.

Now you can create an object called mycar as follows:

mycar = new car("Eagle", "Talon TSi", 1993)

This statement creates mycar and assigns it the specified values for its
properties. Then the value of mycar.make is the string “Eagle”, mycar.year is
the integer 1993, and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car("Nissan", "300ZX", 1992)
vpgscar = new car("Mazda", "Miata", 1990)
98 Core JavaScript Guide

Creating New Objects
An object can have a property that is itself another object. For example,
suppose you define an object called person as follows:

function person(name, age, sex) {
this.name = name
this.age = age
this.sex = sex

}

and then instantiate two new person objects as follows:

rand = new person("Rand McKinnon", 33, "M")
ken = new person("Ken Jones", 39, "M")

Then you can rewrite the definition of car to include an owner property that
takes a person object, as follows:

function car(make, model, year, owner) {
this.make = make
this.model = model
this.year = year
this.owner = owner

}

To instantiate the new objects, you then use the following:

car1 = new car("Eagle", "Talon TSi", 1993, rand)
car2 = new car("Nissan", "300ZX", 1992, ken)

Notice that instead of passing a literal string or integer value when creating the
new objects, the above statements pass the objects rand and ken as the
arguments for the owners. Then if you want to find out the name of the owner
of car2, you can access the following property:

car2.owner.name

Note that you can always add a property to a previously defined object. For
example, the statement

car1.color = "black"

adds a property color to car1, and assigns it a value of “black.” However, this
does not affect any other objects. To add the new property to all objects of the
same type, you have to add the property to the definition of the car object
type.
Chapter 7, Working with Objects 99

Creating New Objects
Indexing Object Properties

In JavaScript 1.0, you can refer to an object’s properties by their property name
or by their ordinal index. In JavaScript 1.1 or later, however, if you initially
define a property by its name, you must always refer to it by its name, and if
you initially define a property by an index, you must always refer to it by its
index.

This applies when you create an object and its properties with a constructor
function, as in the above example of the Car object type, and when you define
individual properties explicitly (for example, myCar.color = "red"). So if you
define object properties initially with an index, such as myCar[5] = "25 mpg",
you can subsequently refer to the property as myCar[5].

The exception to this rule is objects reflected from HTML, such as the forms
array. You can always refer to objects in these arrays by either their ordinal
number (based on where they appear in the document) or their name (if
defined). For example, if the second <FORM> tag in a document has a NAME
attribute of “myForm”, you can refer to the form as document.forms[1] or
document.forms["myForm"] or document.myForm.

Defining Properties for an Object Type

You can add a property to a previously defined object type by using the
prototype property. This defines a property that is shared by all objects of the
specified type, rather than by just one instance of the object. The following
code adds a color property to all objects of type car, and then assigns a value
to the color property of the object car1.

Car.prototype.color=null
car1.color="black"

See the prototype property of the Function object in the Core JavaScript
Reference for more information.
100 Core JavaScript Guide

Creating New Objects
Defining Methods

A method is a function associated with an object. You define a method the
same way you define a standard function. Then you use the following syntax to
associate the function with an existing object:

object.methodname = function_name

where object is an existing object, methodname is the name you are assigning
to the method, and function_name is the name of the function.

You can then call the method in the context of the object as follows:

object.methodname(params);

You can define methods for an object type by including a method definition in
the object constructor function. For example, you could define a function that
would format and display the properties of the previously-defined car objects;
for example,

function displayCar() {
var result = "A Beautiful " + this.year + " " + this.make

+ " " + this.model
pretty_print(result)

}

where pretty_print is function to display a horizontal rule and a string.
Notice the use of this to refer to the object to which the method belongs.

You can make this function a method of car by adding the statement

this.displayCar = displayCar;

to the object definition. So, the full definition of car would now look like

function car(make, model, year, owner) {
this.make = make
this.model = model
this.year = year
this.owner = owner
this.displayCar = displayCar

}

Then you can call the displayCar method for each of the objects as follows:

car1.displayCar()
car2.displayCar()
Chapter 7, Working with Objects 101

Creating New Objects
This produces the output shown in the following figure.

Figure 7.1 Displaying method output

Using this for Object References

JavaScript has a special keyword, this, that you can use within a method to
refer to the current object. For example, suppose you have a function called
validate that validates an object’s value property, given the object and the
high and low values:

function validate(obj, lowval, hival) {
if ((obj.value < lowval) || (obj.value > hival))

alert("Invalid Value!")
}

Then, you could call validate in each form element’s onChange event
handler, using this to pass it the form element, as in the following example:

<INPUT TYPE="text" NAME="age" SIZE=3
onChange="validate(this, 18, 99)">

In general, this refers to the calling object in a method.

When combined with the form property, this can refer to the current object’s
parent form. In the following example, the form myForm contains a Text object
and a button. When the user clicks the button, the value of the Text object is
set to the form’s name. The button’s onClick event handler uses this.form to
refer to the parent form, myForm.

<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
</FORM>
102 Core JavaScript Guide

Predefined Core Objects
Deleting Objects

You can remove an object by using the delete operator. The following code
shows how to remove an object.

myobj=new Number()
delete myobj // removes the object and returns true

See “delete” on page 48 for more information.

JavaScript 1.1. You can remove an object by setting its object reference to null
(if that is the last reference to the object). JavaScript finalizes the object
immediately, as part of the assignment expression.

JavaScript 1.0. You cannot remove objects—they exist until you leave the
page containing the object.

Predefined Core Objects
This section describes the predefined objects in core JavaScript: Array,
Boolean, Date, Function, Math, Number, RegExp, and String.

Array Object

JavaScript does not have an explicit array data type. However, you can use the
predefined Array object and its methods to work with arrays in your
applications. The Array object has methods for manipulating arrays in various
ways, such as joining, reversing, and sorting them. It has a property for
determining the array length and other properties for use with regular
expressions.

An array is an ordered set of values that you refer to with a name and an
index. For example, you could have an array called emp that contains
employees’ names indexed by their employee number. So emp[1] would be
employee number one, emp[2] employee number two, and so on.
Chapter 7, Working with Objects 103

Predefined Core Objects
Creating an Array

To create an Array object:

1. arrayObjectName = new Array(element0, element1, ..., elementN)
2. arrayObjectName = new Array(arrayLength)

arrayObjectName is either the name of a new object or a property of an
existing object. When using Array properties and methods, arrayObjectName
is either the name of an existing Array object or a property of an existing
object.

element0, element1, ..., elementN is a list of values for the array’s
elements. When this form is specified, the array is initialized with the specified
values as its elements, and the array’s length property is set to the number of
arguments.

arrayLength is the initial length of the array. The following code creates an
array of five elements:

billingMethod = new Array(5)

Array literals are also Array objects; for example, the following literal is an
Array object. See “Array Literals” on page 29 for details on array literals.

coffees = ["French Roast", "Columbian", "Kona"]

Populating an Array

You can populate an array by assigning values to its elements. For example,

emp[1] = "Casey Jones"
emp[2] = "Phil Lesh"
emp[3] = "August West"

You can also populate an array when you create it:

myArray = new Array("Hello", myVar, 3.14159)
104 Core JavaScript Guide

Predefined Core Objects
Referring to Array Elements

You refer to an array’s elements by using the element’s ordinal number. For
example, suppose you define the following array:

myArray = new Array("Wind","Rain","Fire")

You then refer to the first element of the array as myArray[0] and the second
element of the array as myArray[1].

The index of the elements begins with zero (0), but the length of array (for
example, myArray.length) reflects the number of elements in the array.

Array Methods

The Array object has the following methods:

• concat joins two arrays and returns a new array.

• join joins all elements of an array into a string.

• pop removes the last element from an array and returns that element.

• push adds one or more elements to the end of an array and returns that last
element added.

• reverse transposes the elements of an array: the first array element
becomes the last and the last becomes the first.

• shift removes the first element from an array and returns that element

• slice extracts a section of an array and returns a new array.

• splice adds and/or removes elements from an array.

• sort sorts the elements of an array.

• unshift adds one or more elements to the front of an array and returns the
new length of the array.
Chapter 7, Working with Objects 105

Predefined Core Objects
For example, suppose you define the following array:

myArray = new Array("Wind","Rain","Fire")

myArray.join() returns “Wind,Rain,Fire”; myArray.reverse transposes the
array so that myArray[0] is “Fire”, myArray[1] is “Rain”, and myArray[2] is
“Wind”. myArray.sort sorts the array so that myArray[0] is “Fire”,
myArray[1] is “Rain”, and myArray[2] is “Wind”.

Two-Dimensional Arrays

The following code creates a two-dimensional array.

a = new Array(4)
for (i=0; i < 4; i++) {

a[i] = new Array(4)
for (j=0; j < 4; j++) {

a[i][j] = "["+i+","+j+"]"
}

}

This example creates an array with the following rows:

Row 0:[0,0][0,1][0,2][0,3]
Row 1:[1,0][1,1][1,2][1,3]
Row 2:[2,0][2,1][2,2][2,3]
Row 3:[3,0][3,1][3,2][3,3]

Arrays and Regular Expressions

When an array is the result of a match between a regular expression and a
string, the array returns properties and elements that provide information about
the match. An array is the return value of regexp.exec, string.match, and
string.replace. For information on using arrays with regular expressions,
see Chapter 4, “Regular Expressions.”
106 Core JavaScript Guide

Predefined Core Objects
Boolean Object

The Boolean object is a wrapper around the primitive Boolean data type. Use
the following syntax to create a Boolean object:

booleanObjectName = new Boolean(value)

Do not confuse the primitive Boolean values true and false with the true and
false values of the Boolean object. Any object whose value is not undefined
or null, including a Boolean object whose value is false, evaluates to true
when passed to a conditional statement. See “if...else Statement” on page 72 for
more information.

Date Object

JavaScript does not have a date data type. However, you can use the Date
object and its methods to work with dates and times in your applications. The
Date object has a large number of methods for setting, getting, and
manipulating dates. It does not have any properties.

JavaScript handles dates similarly to Java. The two languages have many of the
same date methods, and both languages store dates as the number of
milliseconds since January 1, 1970, 00:00:00.

The Date object range is -100,000,000 days to 100,000,000 days relative to 01
January, 1970 UTC.

To create a Date object:

dateObjectName = new Date([parameters])

where dateObjectName is the name of the Date object being created; it can be
a new object or a property of an existing object.

The parameters in the preceding syntax can be any of the following:

• Nothing: creates today’s date and time. For example, today = new Date().

• A string representing a date in the following form: “Month day, year
hours:minutes:seconds.” For example, Xmas95 = new Date("December
25, 1995 13:30:00"). If you omit hours, minutes, or seconds, the value
will be set to zero.
Chapter 7, Working with Objects 107

Predefined Core Objects
• A set of integer values for year, month, and day. For example, Xmas95 =
new Date(1995,11,25). A set of values for year, month, day, hour,
minute, and seconds. For example, Xmas95 = new
Date(1995,11,25,9,30,0).

JavaScript 1.2 and earlier. The Date object behaves as follows:

• Dates prior to 1970 are not allowed.

• JavaScript depends on platform-specific date facilities and behavior; the
behavior of the Date object varies from platform to platform.

Methods of the Date Object

The Date object methods for handling dates and times fall into these broad
categories:

• “set” methods, for setting date and time values in Date objects.

• “get” methods, for getting date and time values from Date objects.

• “to” methods, for returning string values from Date objects.

• parse and UTC methods, for parsing Date strings.

With the “get” and “set” methods you can get and set seconds, minutes, hours,
day of the month, day of the week, months, and years separately. There is a
getDay method that returns the day of the week, but no corresponding setDay
method, because the day of the week is set automatically. These methods use
integers to represent these values as follows:

• Seconds and minutes: 0 to 59

• Hours: 0 to 23

• Day: 0 (Sunday) to 6 (Saturday)

• Date: 1 to 31 (day of the month)

• Months: 0 (January) to 11 (December)

• Year: years since 1900

For example, suppose you define the following date:

Xmas95 = new Date("December 25, 1995")
108 Core JavaScript Guide

Predefined Core Objects
Then Xmas95.getMonth() returns 11, and Xmas95.getFullYear() returns 95.

The getTime and setTime methods are useful for comparing dates. The
getTime method returns the number of milliseconds since January 1, 1970,
00:00:00 for a Date object.

For example, the following code displays the number of days left in the current
year:

today = new Date()
endYear = new Date(1995,11,31,23,59,59,999) // Set day and month
endYear.setFullYear(today.getFullYear()) // Set year to this year
msPerDay = 24 * 60 * 60 * 1000 // Number of milliseconds per day
daysLeft = (endYear.getTime() - today.getTime()) / msPerDay
daysLeft = Math.round(daysLeft) //returns days left in the year

This example creates a Date object named today that contains today’s date. It
then creates a Date object named endYear and sets the year to the current
year. Then, using the number of milliseconds per day, it computes the number
of days between today and endYear, using getTime and rounding to a whole
number of days.

The parse method is useful for assigning values from date strings to existing
Date objects. For example, the following code uses parse and setTime to
assign a date value to the IPOdate object:

IPOdate = new Date()
IPOdate.setTime(Date.parse("Aug 9, 1995"))

Using the Date Object: an Example

In the following example, the function JSClock() returns the time in the
format of a digital clock.

function JSClock() {
var time = new Date()
var hour = time.getHours()
var minute = time.getMinutes()
var second = time.getSeconds()
var temp = "" + ((hour > 12) ? hour - 12 : hour)
temp += ((minute < 10) ? ":0" : ":") + minute
temp += ((second < 10) ? ":0" : ":") + second
temp += (hour >= 12) ? " P.M." : " A.M."
return temp

}

Chapter 7, Working with Objects 109

Predefined Core Objects
The JSClock function first creates a new Date object called time; since no
arguments are given, time is created with the current date and time. Then calls
to the getHours, getMinutes, and getSeconds methods assign the value of
the current hour, minute and seconds to hour, minute, and second.

The next four statements build a string value based on the time. The first
statement creates a variable temp, assigning it a value using a conditional
expression; if hour is greater than 12, (hour - 13), otherwise simply hour.

The next statement appends a minute value to temp. If the value of minute is
less than 10, the conditional expression adds a string with a preceding zero;
otherwise it adds a string with a demarcating colon. Then a statement appends
a seconds value to temp in the same way.

Finally, a conditional expression appends “PM” to temp if hour is 12 or greater;
otherwise, it appends “AM” to temp.

Function Object

The predefined Function object specifies a string of JavaScript code to be
compiled as a function.

To create a Function object:

functionObjectName = new Function ([arg1, arg2, ... argn], functionBody)

functionObjectName is the name of a variable or a property of an existing
object. It can also be an object followed by a lowercase event handler name,
such as window.onerror.

arg1, arg2, ... argn are arguments to be used by the function as formal
argument names. Each must be a string that corresponds to a valid JavaScript
identifier; for example “x” or “theForm”.

functionBody is a string specifying the JavaScript code to be compiled as the
function body.

Function objects are evaluated each time they are used. This is less efficient
than declaring a function and calling it within your code, because declared
functions are compiled.

In addition to defining functions as described here, you can also use the
function statement. See the Core JavaScript Reference for more information.
110 Core JavaScript Guide

Predefined Core Objects
The following code assigns a function to the variable setBGColor. This
function sets the current document’s background color.

var setBGColor = new Function("document.bgColor=’antiquewhite’")

To call the Function object, you can specify the variable name as if it were a
function. The following code executes the function specified by the
setBGColor variable:

var colorChoice="antiquewhite"
if (colorChoice=="antiquewhite") {setBGColor()}

You can assign the function to an event handler in either of the following ways:

1. document.form1.colorButton.onclick=setBGColor
2. <INPUT NAME="colorButton" TYPE="button"

VALUE="Change background color"
onClick="setBGColor()">

Creating the variable setBGColor shown above is similar to declaring the
following function:

function setBGColor() {
document.bgColor=’antiquewhite’

}

Assigning a function to a variable is similar to declaring a function, but there are
differences:

• When you assign a function to a variable using var setBGColor = new
Function("..."), setBGColor is a variable for which the current value is
a reference to the function created with new Function().

• When you create a function using function setBGColor() {...},
setBGColor is not a variable, it is the name of a function.

You can nest a function within a function. The nested (inner) function is private
to its containing (outer) function:

• The inner function can be accessed only from statements in the outer
function.

• The inner function can use the arguments and variables of the outer
function. The outer function cannot use the arguments and variables of the
inner function.
Chapter 7, Working with Objects 111

Predefined Core Objects
Math Object

The predefined Math object has properties and methods for mathematical
constants and functions. For example, the Math object’s PI property has the
value of pi (3.141...), which you would use in an application as

Math.PI

Similarly, standard mathematical functions are methods of Math. These include
trigonometric, logarithmic, exponential, and other functions. For example, if
you want to use the trigonometric function sine, you would write

Math.sin(1.56)

Note that all trigonometric methods of Math take arguments in radians.

The following table summarizes the Math object’s methods.

Unlike many other objects, you never create a Math object of your own. You
always use the predefined Math object.

Table 7.1 Methods of Math

Method Description

abs Absolute value

sin, cos, tan Standard trigonometric functions; argument in radians

acos, asin,
atan

Inverse trigonometric functions; return values in radians

exp, log Exponential and natural logarithm, base e

ceil Returns least integer greater than or equal to argument

floor Returns greatest integer less than or equal to argument

min, max Returns greater or lesser (respectively) of two arguments

pow Exponential; first argument is base, second is exponent

round Rounds argument to nearest integer

sqrt Square root
112 Core JavaScript Guide

Predefined Core Objects
It is often convenient to use the with statement when a section of code uses
several math constants and methods, so you don’t have to type “Math”
repeatedly. For example,

with (Math) {
a = PI * r*r
y = r*sin(theta)
x = r*cos(theta)

}

Number Object

The Number object has properties for numerical constants, such as maximum
value, not-a-number, and infinity. You cannot change the values of these
properties and you use them as follows:

biggestNum = Number.MAX_VALUE
smallestNum = Number.MIN_VALUE
infiniteNum = Number.POSITIVE_INFINITY
negInfiniteNum = Number.NEGATIVE_INFINITY
notANum = Number.NaN

You always refer to a property of the predefined Number object as shown
above, and not as a property of a Number object you create yourself.

The following table summarizes the Number object’s properties.

RegExp Object

The RegExp object lets you work with regular expressions. It is described in
Chapter 4, “Regular Expressions.”

Table 7.2 Properties of Number

Method Description

MAX_VALUE The largest representable number

MIN_VALUE The smallest representable number

NaN Special “not a number” value

NEGATIVE_INFINITY Special infinite value; returned on overflow

POSITIVE_INFINITY Special negative infinite value; returned on overflow
Chapter 7, Working with Objects 113

Predefined Core Objects
String Object

The String object is a wrapper around the string primitive data type. Do not
confuse a string literal with the String object. For example, the following
code creates the string literal s1 and also the String object s2:

s1 = "foo" //creates a string literal value
s2 = new String("foo") //creates a String object

You can call any of the methods of the String object on a string literal
value—JavaScript automatically converts the string literal to a temporary
String object, calls the method, then discards the temporary String object.
You can also use the String.length property with a string literal.

You should use string literals unless you specifically need to use a String
object, because String objects can have counterintuitive behavior. For
example:

s1 = "2 + 2" //creates a string literal value
s2 = new String("2 + 2")//creates a String object
eval(s1) //returns the number 4
eval(s2) //returns the string "2 + 2"

A String object has one property, length, that indicates the number of
characters in the string. For example, the following code assigns x the value 13,
because “Hello, World!” has 13 characters:

myString = "Hello, World!"
x = mystring.length

A String object has two types of methods: those that return a variation on the
string itself, such as substring and toUpperCase, and those that return an
HTML-formatted version of the string, such as bold and link.

For example, using the previous example, both mystring.toUpperCase()
and "hello, world!".toUpperCase() return the string “HELLO, WORLD!”.

The substring method takes two arguments and returns a subset of the string
between the two arguments. Using the previous example,
mystring.substring(4, 9) returns the string “o, Wo.” See the substring
method of the String object in the Core JavaScript Reference for more
information.
114 Core JavaScript Guide

Predefined Core Objects
The String object also has a number of methods for automatic HTML
formatting, such as bold to create boldface text and link to create a hyperlink.
For example, you could create a hyperlink to a hypothetical URL with the link
method as follows:

mystring.link(“http://www.helloworld.com”)

The following table summarizes the methods of String objects.

Table 7.3 Methods of String

Method Description

anchor Creates HTML named anchor

big, blink, bold,
fixed, italics, small,
strike, sub, sup

Creates HTML formatted string

charAt, charCodeAt Returns the character or character code at the specified
position in string

indexOf, lastIndexOf Returns the position of specified substring in the string
or last position of specified substring, respectively

link Creates HTML hyperlink

concat Combines the text of two strings and returns a new
string

fromCharCode Constructs a string from the specified sequence of
ISO-Latin-1 codeset values

split Splits a String object into an array of strings by
separating the string into substrings

slice Extracts a section of an string and returns a new string.

substring, substr Returns the specified subset of the string, either by
specifying the start and end indexes or the start index
and a length

match, replace, search Used to work with regular expressions

toLowerCase,
toUpperCase

Returns the string in all lowercase or all uppercase,
respectively
Chapter 7, Working with Objects 115

Predefined Core Objects
116 Core JavaScript Guide

C h a p t e r

8
Chapter 8Details of the Object Model
JavaScript is an object-based language based on prototypes, rather than being
class-based. Because of this different basis, it can be less apparent how
JavaScript allows you to create hierarchies of objects and to have inheritance of
properties and their values. This chapter attempts to clarify the situation.

This chapter assumes that you are already somewhat familiar with JavaScript
and that you have used JavaScript functions to create simple objects.

This chapter contains the following sections:

• Class-Based vs. Prototype-Based Languages

• The Employee Example

• Creating the Hierarchy

• Object Properties

• More Flexible Constructors

• Property Inheritance Revisited
Chapter 8, Details of the Object Model 117

Class-Based vs. Prototype-Based Languages
Class-Based vs. Prototype-Based Languages
Class-based object-oriented languages, such as Java and C++, are founded on
the concept of two distinct entities: classes and instances.

• A class defines all of the properties (considering methods and fields in Java,
or members in C++, to be properties) that characterize a certain set of
objects. A class is an abstract thing, rather than any particular member of
the set of objects it describes. For example, the Employee class could
represent the set of all employees.

• An instance, on the other hand, is the instantiation of a class; that is, one of
its members. For example, Victoria could be an instance of the Employee
class, representing a particular individual as an employee. An instance has
exactly the properties of its parent class (no more, no less).

A prototype-based language, such as JavaScript, does not make this distinction:
it simply has objects. A prototype-based language has the notion of a
prototypical object, an object used as a template from which to get the initial
properties for a new object. Any object can specify its own properties, either
when you create it or at run time. In addition, any object can be associated as
the prototype for another object, allowing the second object to share the first
object’s properties.

Defining a Class

In class-based languages, you define a class in a separate class definition. In
that definition you can specify special methods, called constructors, to create
instances of the class. A constructor method can specify initial values for the
instance’s properties and perform other processing appropriate at creation time.
You use the new operator in association with the constructor method to create
class instances.

JavaScript follows a similar model, but does not have a class definition separate
from the constructor. Instead, you define a constructor function to create
objects with a particular initial set of properties and values. Any JavaScript
function can be used as a constructor. You use the new operator with a
constructor function to create a new object.
118 Core JavaScript Guide

Class-Based vs. Prototype-Based Languages
Subclasses and Inheritance

In a class-based language, you create a hierarchy of classes through the class
definitions. In a class definition, you can specify that the new class is a subclass
of an already existing class. The subclass inherits all the properties of the
superclass and additionally can add new properties or modify the inherited
ones. For example, assume the Employee class includes only the name and
dept properties, and Manager is a subclass of Employee that adds the reports
property. In this case, an instance of the Manager class would have all three
properties: name, dept, and reports.

JavaScript implements inheritance by allowing you to associate a prototypical
object with any constructor function. So, you can create exactly the Employee-
Manager example, but you use slightly different terminology. First you define
the Employee constructor function, specifying the name and dept properties.
Next, you define the Manager constructor function, specifying the reports
property. Finally, you assign a new Employee object as the prototype for the
Manager constructor function. Then, when you create a new Manager, it
inherits the name and dept properties from the Employee object.

Adding and Removing Properties

In class-based languages, you typically create a class at compile time and then
you instantiate instances of the class either at compile time or at run time. You
cannot change the number or the type of properties of a class after you define
the class. In JavaScript, however, at run time you can add or remove properties
from any object. If you add a property to an object that is used as the prototype
for a set of objects, the objects for which it is the prototype also get the new
property.

Summary of Differences

The following table gives a short summary of some of these differences. The
rest of this chapter describes the details of using JavaScript constructors and
prototypes to create an object hierarchy and compares this to how you would
do it in Java.
Chapter 8, Details of the Object Model 119

The Employee Example
The Employee Example
The remainder of this chapter uses the employee hierarchy shown in the
following figure.

Figure 8.1 A simple object hierarchy

Table 8.1 Comparison of class-based (Java) and prototype-based (JavaScript) object systems

Class-based (Java) Prototype-based (JavaScript)

Class and instance are distinct entities. All objects are instances.

Define a class with a class definition; instantiate a
class with constructor methods.

Define and create a set of objects with constructor
functions.

Create a single object with the new operator. Same.

Construct an object hierarchy by using class
definitions to define subclasses of existing classes.

Construct an object hierarchy by assigning an object
as the prototype associated with a constructor
function.

Inherit properties by following the class chain. Inherit properties by following the prototype chain.

Class definition specifies all properties of all
instances of a class. Cannot add properties
dynamically at run time.

Constructor function or prototype specifies an initial
set of properties. Can add or remove properties
dynamically to individual objects or to the entire set
of objects.

SalesPerson Engineer

Employee

Manager WorkerBee
120 Core JavaScript Guide

Creating the Hierarchy
This example uses the following objects:

• Employee has the properties name (whose value defaults to the empty
string) and dept (whose value defaults to “general”).

• Manager is based on Employee. It adds the reports property (whose value
defaults to an empty array, intended to have an array of Employee objects
as its value).

• WorkerBee is also based on Employee. It adds the projects property
(whose value defaults to an empty array, intended to have an array of
strings as its value).

• SalesPerson is based on WorkerBee. It adds the quota property (whose
value defaults to 100). It also overrides the dept property with the value
“sales”, indicating that all salespersons are in the same department.

• Engineer is based on WorkerBee. It adds the machine property (whose
value defaults to the empty string) and also overrides the dept property
with the value “engineering”.

Creating the Hierarchy
There are several ways to define appropriate constructor functions to
implement the Employee hierarchy. How you choose to define them depends
largely on what you want to be able to do in your application.

This section shows how to use very simple (and comparatively inflexible)
definitions to demonstrate how to get the inheritance to work. In these
definitions, you cannot specify any property values when you create an object.
The newly-created object simply gets the default values, which you can change
at a later time. Figure 8.2 illustrates the hierarchy with these simple definitions.

In a real application, you would probably define constructors that allow you to
provide property values at object creation time (see “More Flexible
Constructors” on page 127 for information). For now, these simple definitions
demonstrate how the inheritance occurs.
Chapter 8, Details of the Object Model 121

Creating the Hierarchy
Figure 8.2 The Employee object definitions

The following Java and JavaScript Employee definitions are similar. The only
differences are that you need to specify the type for each property in Java but
not in JavaScript, and you need to create an explicit constructor method for the
Java class.

The Manager and WorkerBee definitions show the difference in how to specify
the next object higher in the inheritance chain. In JavaScript, you add a
prototypical instance as the value of the prototype property of the constructor
function. You can do so at any time after you define the constructor. In Java,
you specify the superclass within the class definition. You cannot change the
superclass outside the class definition.

JavaScript Java

function Employee () {
 this.name = "";
 this.dept = "general";
}

public class Employee {
public String name;
public String dept;
public Employee () {

this.name = "";
this.dept = "general";

}
}

WorkerBee
function WorkerBee() {
 this.projects = [];
}
WorkerBee.prototype=new Employee;

Manager
function Manager () {
 this.reports = [];
}
Manager.prototype=new Employee;

SalesPerson
function SalesPerson () {
 this.dept = "sales";
 this.quota = 100;
}
SalesPerson.prototype=new WorkerBee;

Engineer
function Engineer () {
 this.dept = "engineering";
 this.machine = "";
}
Engineer.prototype=new WorkerBee;

Employee
function Employee () {
 this.name = "";
 this.dept = "general";
}

122 Core JavaScript Guide

Creating the Hierarchy
The Engineer and SalesPerson definitions create objects that descend from
WorkerBee and hence from Employee. An object of these types has properties
of all the objects above it in the chain. In addition, these definitions override
the inherited value of the dept property with new values specific to these
objects.

Using these definitions, you can create instances of these objects that get the
default values for their properties. Figure 8.3 illustrates using these JavaScript
definitions to create new objects and shows the property values for the new
objects.

JavaScript Java

function Manager () {
 this.reports = [];
}
Manager.prototype = new Employee;

function WorkerBee () {
 this.projects = [];
}
WorkerBee.prototype = new Employee;

public class Manager extends Employee {
public Employee[] reports;
public Manager () {

this.reports = new Employee[0];
}

}

public class WorkerBee extends Employee {
public String[] projects;
public WorkerBee () {

this.projects = new String[0];
}

}

JavaScript Java

function SalesPerson () {
this.dept = "sales";
this.quota = 100;

}
SalesPerson.prototype = new WorkerBee;

function Engineer () {
this.dept = "engineering";
this.machine = "";

}
Engineer.prototype = new WorkerBee;

public class SalesPerson extends WorkerBee
{

public double quota;
public SalesPerson () {

this.dept = "sales";
this.quota = 100.0;

}
}

public class Engineer extends WorkerBee {
public String machine;
public Engineer () {

this.dept = "engineering";
this.machine = "";

}
}

Chapter 8, Details of the Object Model 123

Creating the Hierarchy
Note The term instance has a specific technical meaning in class-based languages. In
these languages, an instance is an individual member of a class and is
fundamentally different from a class. In JavaScript, “instance” does not have this
technical meaning because JavaScript does not have this difference between
classes and instances. However, in talking about JavaScript, “instance” can be
used informally to mean an object created using a particular constructor
function. So, in this example, you could informally say that jane is an instance
of Engineer. Similarly, although the terms parent, child, ancestor, and
descendant do not have formal meanings in JavaScript; you can use them
informally to refer to objects higher or lower in the prototype chain.

Figure 8.3 Creating objects with simple definitions

jim = new Employee
jim.name is ""
jim.dept is "general"

sally = new Manager
sally.name is ""
sally.dept is "general"
sally.reports is []

mark = new WorkerBee
mark.name is ""
mark.dept is "general"
mark.projects is []

fred = new SalesPerson
fred.name is ""
fred.dept is "sales"
fred.projects is []
fred.quota is 100

jane = new Engineer
jane.name is ""
jane.dept is "engineering"
jane.projects is []
jane.machine is ""

SalesPerson Engineer

Employee

Object hierarchy Individual objects

Manager WorkerBee
124 Core JavaScript Guide

Object Properties
Object Properties
This section discusses how objects inherit properties from other objects in the
prototype chain and what happens when you add a property at run time.

Inheriting Properties

Suppose you create the mark object as a WorkerBee as shown in Figure 8.3
with the following statement:

mark = new WorkerBee;

When JavaScript sees the new operator, it creates a new generic object and
passes this new object as the value of the this keyword to the WorkerBee
constructor function. The constructor function explicitly sets the value of the
projects property. It also sets the value of the internal __proto__ property to
the value of WorkerBee.prototype. (That property name has two underscore
characters at the front and two at the end.) The __proto__ property
determines the prototype chain used to return property values. Once these
properties are set, JavaScript returns the new object and the assignment
statement sets the variable mark to that object.

This process does not explicitly put values in the mark object (local values) for
the properties mark inherits from the prototype chain. When you ask for the
value of a property, JavaScript first checks to see if the value exists in that
object. If it does, that value is returned. If the value is not there locally,
JavaScript checks the prototype chain (using the __proto__ property). If an
object in the prototype chain has a value for the property, that value is
returned. If no such property is found, JavaScript says the object does not have
the property. In this way, the mark object has the following properties and
values:

mark.name = "";
mark.dept = "general";
mark.projects = [];

The mark object inherits values for the name and dept properties from the
prototypical object in mark.__proto__. It is assigned a local value for the
projects property by the WorkerBee constructor. This gives you inheritance
of properties and their values in JavaScript. Some subtleties of this process are
discussed in “Property Inheritance Revisited” on page 133.
Chapter 8, Details of the Object Model 125

Object Properties
Because these constructors do not let you supply instance-specific values, this
information is generic. The property values are the default ones shared by all
new objects created from WorkerBee. You can, of course, change the values of
any of these properties. So, you could give specific information for mark as
follows:

mark.name = "Doe, Mark";
mark.dept = "admin";
mark.projects = ["navigator"];

Adding Properties

In JavaScript, you can add properties to any object at run time. You are not
constrained to use only the properties provided by the constructor function. To
add a property that is specific to a single object, you assign a value to the
object, as follows:

mark.bonus = 3000;

Now, the mark object has a bonus property, but no other WorkerBee has this
property.

If you add a new property to an object that is being used as the prototype for a
constructor function, you add that property to all objects that inherit properties
from the prototype. For example, you can add a specialty property to all
employees with the following statement:

Employee.prototype.specialty = "none";

As soon as JavaScript executes this statement, the mark object also has the
specialty property with the value of "none". The following figure shows the
effect of adding this property to the Employee prototype and then overriding it
for the Engineer prototype.
126 Core JavaScript Guide

More Flexible Constructors
Figure 8.4 Adding properties

More Flexible Constructors
The constructor functions shown so far do not let you specify property values
when you create an instance. As with Java, you can provide arguments to
constructors to initialize property values for instances. The following figure
shows one way to do this.

Object hierarchy Individual objects

WorkerBee
function WorkerBee() {
 this.projects = [];
}
WorkerBee.prototype=new Employee;

Engineer

Employee

Manager

SalesPerson

function Employee () {
 this.name = "";
 this.dept = "general";
}
Employee.prototype.specialty = "none"

jim = new Employee
jim.specialty is "none"

mark = new WorkerBee
mark.specialty is "none"

jane = new Engineer
jane.specialty is "code"

function Engineer () {
 this.dept = "engineering";
 this.machine = "";
}
Engineer.prototype = new WorkerBee;
Engineer.prototype.specialty = "code"
Chapter 8, Details of the Object Model 127

More Flexible Constructors
Figure 8.5 Specifying properties in a constructor, take 1

The following table shows the Java and JavaScript definitions for these objects.

Object hierarchy Individual objects

WorkerBee

Engineer

Employee

Manager

SalesPerson

function Employee (name, dept) {
 this.name = name || "";
 this.dept = dept || "general";
}

function WorkerBee(projs) {
 this.projects = projs || [];
}
WorkerBee.prototype=new Employee;

function Engineer (mach) {
 this.dept = "engineering";
 this.machine = mach ||"";
}
Engineer.prototype=new WorkerBee;

jane = new Engineer ("belau")
jane.name is ""
jane.dept is "engineering"
jane.projects is []
jane.machine is "belau"

mark = new WorkerBee (["javascript"])
mark.name is ""
mark.dept is "general"
mark.projects is ["javascript"]

jim = new Employee("Jones, Jim", "marketing")
jim.name is "Jones, Jim"
jim.dept is "marketing"
128 Core JavaScript Guide

More Flexible Constructors
These JavaScript definitions use a special idiom for setting default values:

this.name = name || "";

JavaScript Java

function Employee (name, dept) {
 this.name = name || "";
 this.dept = dept || "general";
}

public class Employee {
public String name;
public String dept;
public Employee () {

this("", "general");
}
public Employee (name) {

this(name, "general");
}
public Employee (name, dept) {

this.name = name;
this.dept = dept;

}
}

function WorkerBee (projs) {
 this.projects = projs || [];
}
WorkerBee.prototype = new Employee;

public class WorkerBee extends Employee {
public String[] projects;
public WorkerBee () {

this(new String[0]);
}
public WorkerBee (String[] projs) {

this.projects = projs;
}

}

function Engineer (mach) {
this.dept = "engineering";
this.machine = mach || "";

}
Engineer.prototype = new WorkerBee;

public class Engineer extends WorkerBee {
public String machine;
public WorkerBee () {

this.dept = "engineering";
this.machine = "";

}
public WorkerBee (mach) {

this.dept = "engineering";
this.machine = mach;

}
}

Chapter 8, Details of the Object Model 129

More Flexible Constructors
The JavaScript logical OR operator (||) evaluates its first argument. If that
argument converts to true, the operator returns it. Otherwise, the operator
returns the value of the second argument. Therefore, this line of code tests to
see if name has a useful value for the name property. If it does, it sets
this.name to that value. Otherwise, it sets this.name to the empty string. This
chapter uses this idiom for brevity; however, it can be puzzling at first glance.

With these definitions, when you create an instance of an object, you can
specify values for the locally defined properties. As shown in Figure 8.5, you
can use the following statement to create a new Engineer:

jane = new Engineer("belau");

Jane’s properties are now:

jane.name == "";
jane.dept == "general";
jane.projects == [];
jane.machine == "belau"

Notice that with these definitions, you cannot specify an initial value for an
inherited property such as name. If you want to specify an initial value for
inherited properties in JavaScript, you need to add more code to the
constructor function.

So far, the constructor function has created a generic object and then specified
local properties and values for the new object. You can have the constructor
add more properties by directly calling the constructor function for an object
higher in the prototype chain. The following figure shows these new
definitions.
130 Core JavaScript Guide

More Flexible Constructors
Figure 8.6 Specifying properties in a constructor, take 2

Let’s look at one of these definitions in detail. Here’s the new definition for the
Engineer constructor:

function Engineer (name, projs, mach) {
 this.base = WorkerBee;
 this.base(name, "engineering", projs);
 this.machine = mach || "";
}

Suppose you create a new Engineer object as follows:

jane = new Engineer("Doe, Jane", ["navigator", "javascript"], "belau");

JavaScript follows these steps:

1. The new operator creates a generic object and sets its __proto__ property
to Engineer.prototype.

2. The new operator passes the new object to the Engineer constructor as the
value of the this keyword.

jim = new Employee("Jones, Jim", "marketing");
jim.name is "Jones, Jim"
jim.dept is "marketing"

Object hierarchy Individual objects

WorkerBee

Engineer

Employee
function Employee (name, dept) {
 this.name = name || "";
 this.dept = dept || "general";
}

Manager

SalesPerson
function Engineer (name, projs, mach){
 this.base = WorkerBee;
 this.base(name, "engineering", projs);
 this.machine = mach ||"";
}
Engineer.prototype=new WorkerBee;

function WorkerBee(name, dept, projs){
 this.base = Employee;
 this.base(name, dept);
 this.projects = projs || [];
}
WorkerBee.prototype=new Employee;

mark = new WorkerBee("Smith, Mark","training",
 ["javascript"]);
mark.name is "Smith, Mark"
mark.dept is "training"
mark.projects is ["javascript"]

jane = new Engineer ("Doe, Jane",
 ["navigator","javascript"],"belau");
jane.name is "Doe, Jane"
jane.dept is "engineering"
jane.projects is ["navigator","javascript"]
jane.machine is "belau"
Chapter 8, Details of the Object Model 131

More Flexible Constructors
3. The constructor creates a new property called base for that object and
assigns the value of the WorkerBee constructor to the base property. This
makes the WorkerBee constructor a method of the Engineer object.

The name of the base property is not special. You can use any legal
property name; base is simply evocative of its purpose.

4. The constructor calls the base method, passing as its arguments two of the
arguments passed to the constructor ("Doe, Jane" and ["navigator",
"javascript"]) and also the string “engineering”. Explicitly using
“engineering” in the constructor indicates that all Engineer objects have the
same value for the inherited dept property, and this value overrides the
value inherited from Employee.

5. Because base is a method of Engineer, within the call to base, JavaScript
binds the this keyword to the object created in Step 1. Thus, the
WorkerBee function in turn passes the "Doe, Jane" and ["navigator",
"javascript"] arguments to the Employee constructor function. Upon
return from the Employee constructor function, the WorkerBee function
uses the remaining argument to set the projects property.

6. Upon return from the base method, the Engineer constructor initializes the
object’s machine property to "belau".

7. Upon return from the constructor, JavaScript assigns the new object to the
jane variable.

You might think that, having called the WorkerBee constructor from inside the
Engineer constructor, you have set up inheritance appropriately for Engineer
objects. This is not the case. Calling the WorkerBee constructor ensures that an
Engineer object starts out with the properties specified in all constructor
functions that are called. However, if you later add properties to the Employee
or WorkerBee prototypes, those properties are not inherited by the Engineer
object. For example, assume you have the following statements:

function Engineer (name, projs, mach) {
 this.base = WorkerBee;
 this.base(name, "engineering", projs);
 this.machine = mach || "";
}
jane = new Engineer("Doe, Jane", ["navigator", "javascript"], "belau");
Employee.prototype.specialty = "none";
132 Core JavaScript Guide

Property Inheritance Revisited
The jane object does not inherit the specialty property. You still need to
explicitly set up the prototype to ensure dynamic inheritance. Assume instead
you have these statements:

function Engineer (name, projs, mach) {
 this.base = WorkerBee;
 this.base(name, "engineering", projs);
 this.machine = mach || "";
}
Engineer.prototype = new WorkerBee;
jane = new Engineer("Doe, Jane", ["navigator", "javascript"], "belau");
Employee.prototype.specialty = "none";

Now the value of the jane object’s specialty property is “none”.

Property Inheritance Revisited
The preceding sections described how JavaScript constructors and prototypes
provide hierarchies and inheritance. This section discusses some subtleties that
were not necessarily apparent in the earlier discussions.

Local versus Inherited Values

When you access an object property, JavaScript performs these steps, as
described earlier in this chapter:

1. Check to see if the value exists locally. If it does, return that value.

2. If there is not a local value, check the prototype chain (using the
__proto__ property).

3. If an object in the prototype chain has a value for the specified property,
return that value.

4. If no such property is found, the object does not have the property.
Chapter 8, Details of the Object Model 133

Property Inheritance Revisited
The outcome of these steps depends on how you define things along the way.
The original example had these definitions:

function Employee () {
 this.name = "";
 this.dept = "general";
}

function WorkerBee () {
 this.projects = [];
}
WorkerBee.prototype = new Employee;

With these definitions, suppose you create amy as an instance of WorkerBee
with the following statement:

amy = new WorkerBee;

The amy object has one local property, projects. The values for the name and
dept properties are not local to amy and so are gotten from the amy object’s
__proto__ property. Thus, amy has these property values:

amy.name == "";
amy.dept = "general";
amy.projects == [];

Now suppose you change the value of the name property in the prototype
associated with Employee:

Employee.prototype.name = "Unknown"

At first glance, you might expect that new value to propagate down to all the
instances of Employee. However, it does not.

When you create any instance of the Employee object, that instance gets a local
value for the name property (the empty string). This means that when you set
the WorkerBee prototype by creating a new Employee object,
WorkerBee.prototype has a local value for the name property. Therefore,
when JavaScript looks up the name property of the amy object (an instance of
WorkerBee), JavaScript finds the local value for that property in
WorkerBee.prototype. It therefore does not look farther up the chain to
Employee.prototype.
134 Core JavaScript Guide

Property Inheritance Revisited
If you want to change the value of an object property at run time and have the
new value be inherited by all descendants of the object, you cannot define the
property in the object’s constructor function. Instead, you add it to the
constructor’s associated prototype. For example, assume you change the
preceding code to the following:

function Employee () {
this.dept = "general";

}
Employee.prototype.name = "";

function WorkerBee () {
 this.projects = [];
}
WorkerBee.prototype = new Employee;

amy = new WorkerBee;

Employee.prototype.name = "Unknown";

In this case, the name property of amy becomes “Unknown”.

As these examples show, if you want to have default values for object
properties and you want to be able to change the default values at run time,
you should set the properties in the constructor’s prototype, not in the
constructor function itself.

Determining Instance Relationships

You may want to know what objects are in the prototype chain for an object,
so that you can tell from what objects this object inherits properties. In a class-
based language, you might have an instanceof operator for this purpose.
JavaScript does not provide instanceof, but you can write such a function
yourself.

As discussed in “Inheriting Properties” on page 125, when you use the new
operator with a constructor function to create a new object, JavaScript sets the
__proto__ property of the new object to the value of the prototype property
of the constructor function. You can use this to test the prototype chain.

For example, suppose you have the same set of definitions already shown, with
the prototypes set appropriately. Create a __proto__ object as follows:

chris = new Engineer("Pigman, Chris", ["jsd"], "fiji");
Chapter 8, Details of the Object Model 135

Property Inheritance Revisited
With this object, the following statements are all true:

chris.__proto__ == Engineer.prototype;
chris.__proto__.__proto__ == WorkerBee.prototype;
chris.__proto__.__proto__.__proto__ == Employee.prototype;
chris.__proto__.__proto__.__proto__.__proto__ == Object.prototype;
chris.__proto__.__proto__.__proto__.__proto__.__proto__ == null;

Given this, you could write an instanceOf function as follows:

function instanceOf(object, constructor) {
while (object != null) {

if (object == constructor.prototype)
return true;

object = object.__proto__;
}
return false;

}

With this definition, the following expressions are all true:

instanceOf (chris, Engineer)
instanceOf (chris, WorkerBee)
instanceOf (chris, Employee)
instanceOf (chris, Object)

But the following expression is false:

instanceOf (chris, SalesPerson)

Global Information in Constructors

When you create constructors, you need to be careful if you set global
information in the constructor. For example, assume that you want a unique ID
to be automatically assigned to each new employee. You could use the
following definition for Employee:

var idCounter = 1;

function Employee (name, dept) {
this.name = name || "";
this.dept = dept || "general";
this.id = idCounter++;

}

136 Core JavaScript Guide

Property Inheritance Revisited
With this definition, when you create a new Employee, the constructor assigns
it the next ID in sequence and then increments the global ID counter. So, if
your next statement is the following, victoria.id is 1 and harry.id is 2:

victoria = new Employee("Pigbert, Victoria", "pubs")
harry = new Employee("Tschopik, Harry", "sales")

At first glance that seems fine. However, idCounter gets incremented every
time an Employee object is created, for whatever purpose. If you create the
entire Employee hierarchy shown in this chapter, the Employee constructor is
called every time you set up a prototype. Suppose you have the following
code:

var idCounter = 1;

function Employee (name, dept) {
this.name = name || "";
this.dept = dept || "general";
this.id = idCounter++;

}

function Manager (name, dept, reports) {...}
Manager.prototype = new Employee;

function WorkerBee (name, dept, projs) {...}
WorkerBee.prototype = new Employee;

function Engineer (name, projs, mach) {...}
Engineer.prototype = new WorkerBee;

function SalesPerson (name, projs, quota) {...}
SalesPerson.prototype = new WorkerBee;

mac = new Engineer("Wood, Mac");

Further assume that the definitions omitted here have the base property and
call the constructor above them in the prototype chain. In this case, by the time
the mac object is created, mac.id is 5.

Depending on the application, it may or may not matter that the counter has
been incremented these extra times. If you care about the exact value of this
counter, one possible solution involves instead using the following constructor:

function Employee (name, dept) {
this.name = name || "";
this.dept = dept || "general";
if (name)

this.id = idCounter++;
}

Chapter 8, Details of the Object Model 137

Property Inheritance Revisited
When you create an instance of Employee to use as a prototype, you do not
supply arguments to the constructor. Using this definition of the constructor,
when you do not supply arguments, the constructor does not assign a value to
the id and does not update the counter. Therefore, for an Employee to get an
assigned id, you must specify a name for the employee. In this example,
mac.id would be 1.

No Multiple Inheritance

Some object-oriented languages allow multiple inheritance. That is, an object
can inherit the properties and values from unrelated parent objects. JavaScript
does not support multiple inheritance.

Inheritance of property values occurs at run time by JavaScript searching the
prototype chain of an object to find a value. Because an object has a single
associated prototype, JavaScript cannot dynamically inherit from more than one
prototype chain.

In JavaScript, you can have a constructor function call more than one other
constructor function within it. This gives the illusion of multiple inheritance. For
example, consider the following statements:

function Hobbyist (hobby) {
this.hobby = hobby || "scuba";

}

function Engineer (name, projs, mach, hobby) {
this.base1 = WorkerBee;
this.base1(name, "engineering", projs);
this.base2 = Hobbyist;
this.base2(hobby);
this.machine = mach || "";

}
Engineer.prototype = new WorkerBee;

dennis = new Engineer("Doe, Dennis", ["collabra"], "hugo")

Further assume that the definition of WorkerBee is as used earlier in this
chapter. In this case, the dennis object has these properties:

dennis.name == "Doe, Dennis"
dennis.dept == "engineering"
dennis.projects == ["collabra"]
dennis.machine == "hugo"
dennis.hobby == "scuba"
138 Core JavaScript Guide

Property Inheritance Revisited
So dennis does get the hobby property from the Hobbyist constructor.
However, assume you then add a property to the Hobbyist constructor’s
prototype:

Hobbyist.prototype.equipment = ["mask", "fins", "regulator", "bcd"]

The dennis object does not inherit this new property.
Chapter 8, Details of the Object Model 139

Property Inheritance Revisited
140 Core JavaScript Guide

2
Working with LiveConnect
• LiveConnect Overview

142 Core JavaScript Guide

C h a p t e r

9
Chapter 9LiveConnect Overview
This chapter describes using LiveConnect technology to let Java and JavaScript
code communicate with each other. The chapter assumes you are familiar with
Java programming.

This chapter contains the following sections:

• Working with Wrappers

• JavaScript to Java Communication

• Java to JavaScript Communication

• Data Type Conversions

For additional information on using LiveConnect, see the JavaScript technical
notes on the DevEdge site.

Working with Wrappers
In JavaScript, a wrapper is an object of the target language data type that
encloses an object of the source language. On the JavaScript side, you can use
a wrapper object to access methods and fields of the Java object; calling a
method or accessing a property on the wrapper results in a call on the Java
object. On the Java side, JavaScript objects are wrapped in an instance of the
class netscape.javascript.JSObject and passed to Java.
Chapter 9, LiveConnect Overview 143

JavaScript to Java Communication
When a JavaScript object is sent to Java, the runtime engine creates a Java
wrapper of type JSObject; when a JSObject is sent from Java to JavaScript,
the runtime engine unwraps it to its original JavaScript object type. The
JSObject class provides an interface for invoking JavaScript methods and
examining JavaScript properties.

JavaScript to Java Communication
When you refer to a Java package or class, or work with a Java object or array,
you use one of the special LiveConnect objects. All JavaScript access to Java
takes place with these objects, which are summarized in the following table.

Note Because Java is a strongly typed language and JavaScript is weakly typed, the
JavaScript runtime engine converts argument values into the appropriate data
types for the other language when you use LiveConnect. See “Data Type
Conversions” on page 153 for complete information.

In some ways, the existence of the LiveConnect objects is transparent, because
you interact with Java in a fairly intuitive way. For example, you can create a
Java String object and assign it to the JavaScript variable myString by using
the new operator with the Java constructor, as follows:

var myString = new java.lang.String("Hello world")

Table 9.1 The LiveConnect Objects

Object Description

JavaArray A wrapped Java array, accessed from within JavaScript
code.

JavaClass A JavaScript reference to a Java class.

JavaObject A wrapped Java object, accessed from within JavaScript
code.

JavaPackage A JavaScript reference to a Java package.
144 Core JavaScript Guide

JavaScript to Java Communication
In the previous example, the variable myString is a JavaObject because it
holds an instance of the Java object String. As a JavaObject, myString
has access to the public instance methods of java.lang.String and its
superclass, java.lang.Object. These Java methods are available in
JavaScript as methods of the JavaObject, and you can call them as follows:

myString.length() // returns 11

The Packages Object

If a Java class is not part of the java, sun, or netscape packages, you access
it with the Packages object. For example, suppose the Redwood corporation
uses a Java package called redwood to contain various Java classes that it
implements. To create an instance of the HelloWorld class in redwood, you
access the constructor of the class as follows:

var red = new Packages.redwood.HelloWorld()

You can also access classes in the default package (that is, classes that don’t
explicitly name a package). For example, if the HelloWorld class is directly in
the CLASSPATH and not in a package, you can access it as follows:

var red = new Packages.HelloWorld()

The LiveConnect java, sun, and netscape objects provide shortcuts for
commonly used Java packages. For example, you can use the following:

var myString = new java.lang.String("Hello world")

instead of the longer version:

var myString = new Packages.java.lang.String("Hello world")
Chapter 9, LiveConnect Overview 145

JavaScript to Java Communication
Working with Java Arrays

When any Java method creates an array and you reference that array in
JavaScript, you are working with a JavaArray. For example, the following
code creates the JavaArray x with ten elements of type int:

x = java.lang.reflect.Array.newInstance(java.lang.Integer, 10)

Like the JavaScript Array object, JavaArray has a length property which
returns the number of elements in the array. Unlike Array.length,
JavaArray.length is a read-only property, because the number of elements
in a Java array are fixed at the time of creation.

Package and Class References

Simple references to Java packages and classes from JavaScript create the
JavaPackage and JavaClass objects. In the earlier example about the
Redwood corporation, for example, the reference Packages.redwood is a
JavaPackage object. Similarly, a reference such as java.lang.String is a
JavaClass object.

Most of the time, you don’t have to worry about the JavaPackage and
JavaClass objects—you just work with Java packages and classes, and
LiveConnect creates these objects transparently.

In JavaScript 1.3 and earlier, JavaClass objects are not automatically
converted to instances of java.lang.Class when you pass them as
parameters to Java methods—you must create a wrapper around an instance of
java.lang.Class. In the following example, the forName method creates a
wrapper object theClass, which is then passed to the newInstance method
to create an array.

// JavaScript 1.3
theClass = java.lang.Class.forName("java.lang.String")
theArray = java.lang.reflect.Array.newInstance(theClass, 5)

In JavaScript 1.4 and later, you can pass a JavaClass object directly to a
method, as shown in the following example:

// JavaScript 1.4
theArray = java.lang.reflect.Array.newInstance(java.lang.String, 5)
146 Core JavaScript Guide

JavaScript to Java Communication
Arguments of Type char

In JavaScript 1.4 and later, you can pass a one-character string to a Java method
which requires an argument of type char. For example, you can pass the
string “H” to the Character constructor as follows:

c = new java.lang.Character("H")

In JavaScript 1.3 and earlier, you must pass such methods an integer which
corresponds to the Unicode value of the character. For example, the following
code also assigns the value “H” to the variable c:

c = new java.lang.Character(72)

Handling Java Exceptions in JavaScript

When Java code fails at run time, it throws an exception. If your JavaScript code
accesses a Java data member or method and fails, the Java exception is passed
on to JavaScript for you to handle. Beginning with JavaScript 1.4, you can catch
this exception in a try...catch statement.

For example, suppose you are using the Java forName method to assign the
name of a Java class to a variable called theClass. The forName method
throws an exception if the value you pass it does not evaluate to the name of a
Java class. Place the forName assignment statement in a try block to handle
the exception, as follows:

function getClass(javaClassName) {
try {

var theClass = java.lang.Class.forName(javaClassName);
} catch (e) {

return ("The Java exception is " + e);
}
return theClass

}

In this example, if javaClassName evaluates to a legal class name, such as
“java.lang.String”, the assignment succeeds. If javaClassName evaluates to an
invalid class name, such as “String”, the getClass function catches the
exception and returns something similar to the following:

The Java exception is java.lang.ClassNotFoundException: String
Chapter 9, LiveConnect Overview 147

Java to JavaScript Communication
See “Exception Handling Statements” on page 82 for more information about
JavaScript exceptions.

Java to JavaScript Communication
If you want to use JavaScript objects in Java, you must import the
netscape.javascript package into your Java file. This package defines the
following classes:

• netscape.javascript.JSObject allows Java code to access
JavaScript methods and properties.

• netscape.javascript.JSException allows Java code to handle
JavaScript errors.

Starting with JavaScript 1.2, these classes are delivered in a .jar file; in previous
versions of JavaScript, these classes are delivered in a .zip file. See the Core
JavaScript Reference for more information about these classes.

To access the LiveConnect classes, place the .jar or .zip file in the CLASSPATH of
the JDK compiler in either of the following ways:

• Create a CLASSPATH environment variable to specify the path and name of
.jar or .zip file.

• Specify the location of .jar or .zip file when you compile by using the
-classpath command line parameter.

For example, in Navigator 4. 0 for Windows NT, the classes are delivered in the
java40.jar file in the Program\Java\Classes directory beneath the
Navigator directory. You can specify an environment variable in Windows NT
by double-clicking the System icon in the Control Panel and creating a user
environment variable called CLASSPATH with a value similar to the following:

D:\Navigator\Program\Java\Classes\java40.jar

See the Sun JDK documentation for more information about CLASSPATH.

Note Because Java is a strongly typed language and JavaScript is weakly typed, the
JavaScript runtime engine converts argument values into the appropriate data
types for the other language when you use LiveConnect. See “Data Type
Conversions” on page 153 for complete information.
148 Core JavaScript Guide

Java to JavaScript Communication
Using the LiveConnect Classes

All JavaScript objects appear within Java code as instances of
netscape.javascript.JSObject. When you call a method in your Java
code, you can pass it a JavaScript object as one of its argument. To do so, you
must define the corresponding formal parameter of the method to be of type
JSObject.

Also, any time you use JavaScript objects in your Java code, you should put the
call to the JavaScript object inside a try...catch statement which handles
exceptions of type netscape.javascript.JSException. This allows
your Java code to handle errors in JavaScript code execution which appear in
Java as exceptions of type JSException.

Accessing JavaScript with JSObject

For example, suppose you are working with the Java class called JavaDog. As
shown in the following code, the JavaDog constructor takes the JavaScript
object jsDog, which is defined as type JSObject, as an argument:

import netscape.javascript.*;

public class JavaDog
{

public String dogBreed;
public String dogColor;
public String dogSex;

// define the class constructor
public JavaDog(JSObject jsDog)
{

// use try...catch to handle JSExceptions here
this.dogBreed = (String)jsDog.getMember("breed");
this.dogColor = (String)jsDog.getMember("color");
this.dogSex = (String)jsDog.getMember("sex");

}
}

Notice that the getMember method of JSObject is used to access the
properties of the JavaScript object. The previous example uses getMember to
assign the value of the JavaScript property jsDog.breed to the Java data
member JavaDog.dogBreed.
Chapter 9, LiveConnect Overview 149

Java to JavaScript Communication
Note A more realistic example would place the call to getMember inside a
try...catch statement to handle errors of type JSException. See
“Handling JavaScript Exceptions in Java” on page 150 for more information.

To get a better sense of how getMember works, look at the definition of the
custom JavaScript object Dog:

function Dog(breed,color,sex) {
this.breed = breed
this.color = color
this.sex = sex

}

You can create a JavaScript instance of Dog called gabby as follows:

gabby = new Dog("lab","chocolate","female")

If you evaluate gabby.color, you can see that it has the value “chocolate”.
Now suppose you create an instance of JavaDog in your JavaScript code by
passing the gabby object to the constructor as follows:

javaDog = new Packages.JavaDog(gabby)

If you evaluate javaDog.dogColor, you can see that it also has the value
“chocolate”, because the getMember method in the Java constructor assigns
dogColor the value of gabby.color.

Handling JavaScript Exceptions in Java

When JavaScript code called from Java fails at run time, it throws an exception.
If you are calling the JavaScript code from Java, you can catch this exception in
a try...catch statement. The JavaScript exception is available to your Java
code as an instance of netscape.javascript.JSException.

JSException is a Java wrapper around any exception type thrown by
JavaScript, similar to the way that instances of JSObject are wrappers for
JavaScript objects. Use JSException when you are evaluating JavaScript code
in Java.
150 Core JavaScript Guide

Java to JavaScript Communication
When you are evaluating JavaScript code in Java, the following situations can
cause run-time errors:

• The JavaScript code is not evaluated, either due to a JavaScript compilation
error or to some other error that occurred at run time.

The JavaScript interpreter generates an error message that is converted into
an instance of JSException.

• Java successfully evaluates the JavaScript code, but the JavaScript code
executes an unhandled throw statement.

JavaScript throws an exception that is wrapped as an instance of
JSException. Use the getWrappedException method of
JSException to unwrap this exception in Java.

For example, suppose the Java object eTest evaluates the string jsCode that
you pass to it. You can respond to either type of run-time error the evaluation
causes by implementing an exception handler such as the following:

import netscape.javascript.JSObject;
import netscape.javascript.JSException;

public class eTest {
public static Object doit(JSObject obj, String jsCode) {

try {
obj.eval(jsCode);

} catch (JSException e) {
if (e.getWrappedException()==null)

return e;
return e.getWrappedException();

}
return null;

}
}

In this example, the code in the try block attempts to evaluate the string
jsCode that you pass to it. Let’s say you pass the string “myFunction()” as
the value of jsCode. If myFunction is not defined as a JavaScript function,
the JavaScript interpreter cannot evaluate jsCode. The interpreter generates
an error message, the Java handler catches the message, and the doit method
returns an instance of netscape.javascript.JSException.
Chapter 9, LiveConnect Overview 151

Java to JavaScript Communication
However, suppose myFunction is defined in JavaScript as follows:

function myFunction() {
try {

if (theCondition == true) {
return "Everything’s ok";

} else {
throw "JavaScript error occurred" ;

}
} catch (e) {

if (canHandle == true) {
handleIt();

} else {
throw e;

}
}

}

If theCondition is false, the function throws an exception. The exception is
caught in the JavaScript code, and if canHandle is true, JavaScript handles it.
If canHandle is false, the exception is rethrown, the Java handler catches it,
and the doit method returns a Java string:

JavaScript error occurred

See “Exception Handling Statements” on page 82 for complete information
about JavaScript exceptions.

Backward Compatibility

In JavaScript 1.3 and earlier versions, the JSException class had three public
constructors which optionally took a string argument, specifying the detail
message or other information for the exception. The getWrappedException
method was not available.

Use a try...catch statement such as the following to handle LiveConnect
exceptions in JavaScript 1.3 and earlier versions:

try {
global.eval("foo.bar = 999;");

} catch (Exception e) {
if (e instanceof JSException) {

jsCodeFailed()”;
} else {

otherCodeFailed();
}

}

152 Core JavaScript Guide

Data Type Conversions
In this example, the eval statement fails if foo is not defined. The catch
block executes the jsCodeFailed method if the eval statement in the try
block throws a JSException; the otherCodeFailed method executes if
the try block throws any other error.

Data Type Conversions
Because Java is a strongly typed language and JavaScript is weakly typed, the
JavaScript runtime engine converts argument values into the appropriate data
types for the other language when you use LiveConnect. These conversions are
described in the following sections:

• JavaScript to Java Conversions

• Java to JavaScript Conversions

JavaScript to Java Conversions

When you call a Java method and pass it parameters from JavaScript, the data
types of the parameters you pass in are converted according to the rules
described in the following sections:

• Number Values

• Boolean Values

• String Values

• Undefined Values

• Null Values

• JavaArray and JavaObject objects

• JavaClass objects

• Other JavaScript objects

The return values of methods of netscape.javascript.JSObject are
always converted to instances of java.lang.Object. The rules for
converting these return values are also described in these sections.

For example, if JSObject.eval returns a JavaScript number, you can find the
rules for converting this number to an instance of java.lang.Object in
“Number Values” on page 154.
Chapter 9, LiveConnect Overview 153

Data Type Conversions
Number Values

When you pass JavaScript number types as parameters to Java methods, Java
converts the values according to the rules described in the following table:

When a JavaScript number is passed as a parameter to a Java method which
expects an instance of java.lang.String, the number is converted to a
string. Use the == operator to compare the result of this conversion with other
string values.

Java parameter type Conversion rules

double The exact value is transferred to Java without rounding
and without a loss of magnitude or sign.

lava.lang.Double

java.lang.Object

A new instance of java.lang.Double is created, and the
exact value is transferred to Java without rounding and
without a loss of magnitude or sign.

float • Values are rounded to float precision.

• Values which are unrepresentably large or small are
rounded to +infinity or -infinity.

byte
char
int
long
short

• Values are rounded using round-to-negative-infinity
mode.

• Values which are unrepresentably large or small
result in a run-time error.

• NaN values are converted to zero.

java.lang.String Values are converted to strings. For example,

• 237 becomes “237”

boolean • 0 and NaN values are converted to false.

• Other values are converted to true.
154 Core JavaScript Guide

Data Type Conversions
Boolean Values

When you pass JavaScript Boolean types as parameters to Java methods, Java
converts the values according to the rules described in the following table:

When a JavaScript Boolean is passed as a parameter to a Java method which
expects an instance of java.lang.String, the Boolean is converted to a
string. Use the == operator to compare the result of this conversion with other
string values.

Java parameter type Conversion rules

boolean All values are converted directly to the Java equivalents.

lava.lang.Boolean

java.lang.Object

A new instance of java.lang.Boolean is created. Each
parameter creates a new instance, not one instance with
the same primitive value.

java.lang.String Values are converted to strings. For example:

• true becomes “true”

• false becomes “false”

byte
char
double
float
int
long
short

• true becomes 1

• false becomes 0
Chapter 9, LiveConnect Overview 155

Data Type Conversions
String Values

When you pass JavaScript string types as parameters to Java methods, Java
converts the values according to the rules described in the following table:

Java parameter type Conversion rules

lava.lang.String

java.lang.Object

JavaScript 1.4:

• A JavaScript string is converted to an instance of
java.lang.String with a Unicode value.

JavaScript 1.3 and earlier:

• A JavaScript string is converted to an instance of
java.lang.String with an ASCII value.

byte
double
float
int
long
short

All values are converted to numbers as described in
ECMA-262.

char JavaScript 1.4:

• One-character strings are converted to Unicode
characters.

• All other values are converted to numbers.

JavaScript 1.3 and earlier:

• All values are converted to numbers.

boolean • The empty string becomes false.

• All other values become true.
156 Core JavaScript Guide

Data Type Conversions
Undefined Values

When you pass undefined JavaScript values as parameters to Java methods,
Java converts the values according to the rules described in the following table:

The undefined value conversion is possible in JavaScript 1.3 and later versions
only. Earlier versions of JavaScript do not support undefined values.

When a JavaScript undefined value is passed as a parameter to a Java method
which expects an instance of java.lang.String, the undefined value is
converted to a string. Use the == operator to compare the result of this
conversion with other string values.

Java parameter type Conversion rules

lava.lang.String

java.lang.Object

The value is converted to an instance of java.lang.String
whose value is the string “undefined”.

boolean The value becomes false.

double
float

The value becomes NaN.

byte
char
int
long
short

The value becomes 0.
Chapter 9, LiveConnect Overview 157

Data Type Conversions
Null Values

When you pass null JavaScript values as parameters to Java methods, Java
converts the values according to the rules described in the following table:

JavaArray and JavaObject objects

In most situations, when you pass a JavaScript JavaArray or JavaObject as
a parameter to a Java method, Java simply unwraps the object; in a few
situations, the object is coerced into another data type according to the rules
described in the following table:

Java parameter type Conversion rules

Any class
Any interface type

The value becomes null.

byte
char
double
float
int
long
short

The value becomes 0.

boolean The value becomes false.

Java parameter type Conversion rules

Any interface or class
that is assignment-
compatible with the
unwrapped object.

The object is unwrapped.

java.lang.String The object is unwrapped, the toString method of the
unwrapped Java object is called, and the result is
returned as a new instance of java.lang.String.
158 Core JavaScript Guide

Data Type Conversions
An interface or class is assignment-compatible with an unwrapped object if the
unwrapped object is an instance of the Java parameter type. That is, the
following statement must return true:

unwrappedObject instanceof parameterType

JavaClass objects

When you pass a JavaScript JavaClass object as a parameter to a Java
method, Java converts the object according to the rules described in the
following table:

byte
char
double
float
int
long
short

The object is unwrapped, and either of the following
situations occur:

• If the unwrapped Java object has a doubleValue
method, the JavaArray or JavaObject is
converted to the value returned by this method.

• If the unwrapped Java object does not have a
doubleValue method, an error occurs.

boolean In JavaScript 1.3 and later versions, the object is
unwrapped and either of the following situations occur:

• If the object is null, it is converted to false.

• If the object has any other value, it is converted to
true.

In JavaScript 1.2 and earlier versions, the object is
unwrapped and either of the following situations occur:

• If the unwrapped object has a booleanValue
method, the source object is converted to the return
value.

• If the object does not have a booleanValue method,
the conversion fails.

Java parameter type Conversion rules

java.lang.Class The object is unwrapped.

java.lang.JSObject

java.lang.Object

The JavaClass object is wrapped in a new instance of
java.lang.JSObject.

Java parameter type Conversion rules
Chapter 9, LiveConnect Overview 159

Data Type Conversions
Other JavaScript objects

When you pass any other JavaScript object as a parameter to a Java method,
Java converts the object according to the rules described in the following table:

java.lang.String The object is unwrapped, the toString method of the
unwrapped Java object is called, and the result is
returned as a new instance of java.lang.String.

boolean In JavaScript 1.3 and later versions, the object is
unwrapped and either of the following situations occur:

• If the object is null, it is converted to false.

• If the object has any other value, it is converted to
true.

In JavaScript 1.2 and earlier versions, the object is
unwrapped and either of the following situations occur:

• If the unwrapped object has a booleanValue
method, the source object is converted to the return
value.

• If the object does not have a booleanValue method,
the conversion fails.

Java parameter type Conversion rules

java.lang.JSObject

java.lang.Object

The object is wrapped in a new instance of
java.lang.JSObject.

java.lang.String The object is unwrapped, the toString method of the
unwrapped Java object is called, and the result is
returned as a new instance of java.lang.String.

Java parameter type Conversion rules
160 Core JavaScript Guide

Data Type Conversions
Java to JavaScript Conversions

Values passed from Java to JavaScript are converted as follows:

• Java byte, char, short, int, long, float, and double are converted to JavaScript
numbers.

• A Java boolean is converted to a JavaScript boolean.

• An object of class netscape.javascript.JSObject is converted to the
original JavaScript object.

• Java arrays are converted to a JavaScript pseudo-Array object; this object
behaves just like a JavaScript Array object: you can access it with the
syntax arrayName[index] (where index is an integer), and determine its
length with arrayName.length.

byte
char
double
float
int
long
short

The object is converted to a value using the logic of the
ToPrimitive operator described in ECMA-262. The
PreferredType hint used with this operator is Number.

boolean In JavaScript 1.3 and later versions, the object is
unwrapped and either of the following situations occur:

• If the object is null, it is converted to false.

• If the object has any other value, it is converted to
true.

In JavaScript 1.2 and earlier versions, the object is
unwrapped and either of the following situations occur:

• If the unwrapped object has a booleanValue
method, the source object is converted to the return
value.

• If the object does not have a booleanValue method,
the conversion fails.

Java parameter type Conversion rules
Chapter 9, LiveConnect Overview 161

Data Type Conversions
• A Java object of any other class is converted to a JavaScript wrapper, which
can be used to access methods and fields of the Java object:

• Converting this wrapper to a string calls the toString method on the
original object.

• Converting to a number calls the doubleValue method, if possible, and
fails otherwise.

• Converting to a boolean in JavaScript 1.3 and later versions returns false
if the object is null, and true otherwise.

• Converting to a boolean in JavaScript 1.2 and earlier versions calls the
booleanValue method, if possible, and fails otherwise.

Note that instances of java.lang.Double and java.lang.Integer are converted
to JavaScript objects, not to JavaScript numbers. Similarly, instances of
java.lang.String are also converted to JavaScript objects, not to JavaScript
strings.

Java String objects also correspond to JavaScript wrappers. If you call a
JavaScript method that requires a JavaScript string and pass it this wrapper,
you’ll get an error. Instead, convert the wrapper to a JavaScript string by
appending the empty string to it, as shown here:

var JavaString = JavaObj.methodThatReturnsAString();
var JavaScriptString = JavaString + "";
162 Core JavaScript Guide

Glossary

This glossary defines terms useful in understanding JavaScript applications.

ASCII American Standard Code for Information Interchange. Defines the codes used
to store characters in computers.

BLOb Binary large object. The format of binary data stored in a relational database.

CGI Common Gateway Interface. A specification for communication between an
HTTP server and gateway programs on the server. CGI is a popular interface
used to create server-based web applications with languages such as Perl or C.

client A web browser, such as Netscape Navigator.

client-side
JavaScript

Core JavaScript plus extensions that control a browser (Navigator or another
web browser) and its DOM. For example, client-side extensions allow an
application to place elements on an HTML form and respond to user events
such as mouse clicks, form input, and page navigation. See also core JavaScript,
server-side JavaScript.

CORBA Common Object Request Broker Architecture. A standard endorsed by the
OMG (Object Management Group), the Object Request Broker (ORB) software
that handles the communication between objects in a distributed computing
environment.

core JavaScript The elements common to both client-side and server-side JavaScript. Core
JavaScript contains a core set of objects, such as Array, Date, and Math, and
a core set of language elements such as operators, control structures, and
statements. See also client-side JavaScript, server-side JavaScript.

deprecate To discourage use of a feature without removing the feature from the product.
When a JavaScript feature is deprecated, an alternative is typically
recommended; you should no longer use the deprecated feature because it
might be removed in a future release.

ECMA European Computer Manufacturers Association. The international standards
association for information and communication systems.
Glossary 163

ECMAScript A standardized, international programming language based on core JavaScript.
This standardization version of JavaScript behaves the same way in all
applications that support the standard. Companies can use the open standard
language to develop their implementation of JavaScript. See also core JavaScript.

external function A function defined in a native library that can be used in a JavaScript
application.

HTML Hypertext Markup Language. A markup language used to define pages for the
World Wide Web.

HTTP Hypertext Transfer Protocol. The communication protocol used to transfer
information between web servers and clients.

IP address A set of four numbers between 0 and 255, separated by periods, that specifies a
location for the TCP/IP protocol.

LiveConnect Lets Java and JavaScript code communicate with each other. From JavaScript,
you can instantiate Java objects and access their public methods and fields.
From Java, you can access JavaScript objects, properties, and methods.

MIME Multipart Internet Mail Extension. A standard specifying the format of data
transferred over the internet.

primitive value Data that is directly represented at the lowest level of the language. A JavaScript
primitive value is a member of one of the following types: undefined, null,
Boolean, number, or string. The following examples show some primitive
values.

a=true // Boolean primitive value
b=42 // number primitive value
c="Hello world" // string primitive value
if (x==undefined) {} // undefined primitive value
if (x==null) {} // null primitive value

server-side
JavaScript

Core JavaScript plus extensions relevant only to running JavaScript on a server.
For example, server-side extensions allow an application to communicate with
a relational database, provide continuity of information from one invocation to
another of the application, or perform file manipulations on a server. See also
client-side JavaScript, core JavaScript.
164 Core JavaScript Guide

static method or
property

A method or property of a built-in object that cannot be a property of instances
of the object. For example, you can instantiate new instances of the Date
object. Some methods of Date, such as getHours and setDate, are also
methods of instances of the Date object. Other methods of Date, such as
parse and UTC, are static, so instances of Date do not have these methods.

URL Universal Resource Locator. The addressing scheme used by the World Wide
Web.

WWW World Wide Web
Glossary 165

166 Core JavaScript Guide

Index

Symbols
- (bitwise NOT) operator 44

- (unary negation) operator 43

-- (decrement) operator 43

! (logical NOT) operator 46

!= (not equal) operator 42

!== (strict not equal) operator 42

% (modulus) operator 43

%= operator 41

&& (logical AND) operator 46

& (bitwise AND) operator 43

&= operator 41

*/ comment 82

*= operator 41

+ (string concatenation) operator 47

++ (increment) operator 43

+= (string concatenation) operator 47

+= operator 41

/* comment 82

// comment 82

/= operator 41

< (less than) operator 42

<< (left shift) operator 44, 45

<<= operator 41

<= (less than or equal) operator 42

== (equal) operator 42

=== (strict equal) operator 42

-= operator 41

> (greater than) operator 42

>= (greater than or equal) operator 42

>> (sign-propagating right shift) operator 44,
45

>>= operator 41

>>> (zero-fill right shift) operator 44, 45

>>>= operator 41

?: (conditional) operator 48

^ (bitwise XOR) operator 44

^= operator 41

| (bitwise OR) operator 43

|= operator 41

|| (logical OR) operator 46

‚ (comma) operator 48

A
AND (&&) logical operator 46

AND (&) bitwise operator 43

arguments array 89

arithmetic operators 42
% (modulus) 43
-- (decrement) 43
- (unary negation) 43
++ (increment) 43

Array object
creating 104
overview 103
Index 167

arrays
associative 96
defined 103
deleting elements 48
indexing 105
Java 146
literals 29
populating 104
referring to elements 105
regular expressions and 106
two-dimensional 106
undefined elements 27

ASCII
glossary entry 163
Unicode and 34

assignment operators 41
%= 41
&= 41
*= 41
+= 41
/= 41
<<= 41
-= 41
>>= 41
>>>= 41
^= 41
|= 41
defined 39

B
bitwise operators 43

& (AND) 43
- (NOT) 44
<< (left shift) 44, 45
>> (sign-propagating right shift) 44, 45
>>> (zero-fill right shift) 44, 45
^ (XOR) 44
| (OR) 43
logical 44
shift 45

BLOb, glossary entry 163

Boolean literals 30

Boolean object 107
conditional tests and 30, 72

Boolean type conversions (LiveConnect) 155

booleanValue method 162

break statement 78

C
case sensitivity 27

object names 96
property names 96
regular expressions and 67

case statement
See switch statement

catching exceptions 83

CGI, glossary entry 163

char arguments 147

class-based languages, defined 118

classes
defining 118
Java 146
LiveConnect 148, 149

client
glossary entry 163

client-side JavaScript 16
glossary entry 163

comma (‚) operator 48

comments, types of 82

comment statement 82

comparison operators 41
!= (not equal) 42
!== (strict not equal) 42
< (less than) 42
<= (less than or equal) 42
== (equal) 42
=== (strict equal) 42
> (greater than) 42
>= (greater than or equal) 42

conditional (?:) operator 48

conditional expressions 48
168 Core JavaScript Guide

conditional statements 72–74
if...else 72
switch 73

conditional tests, Boolean objects and 30, 72

constructor functions 98
global information in 136
initializing property values with 127

containership
specifying default object 81
with statement and 81

continue statement 79

CORBA, glossary entry 163

core JavaScript, glossary entry 163

D
data types

Boolean conversions 155
converting 26
converting with LiveConnect 153–162
and Date object 26
JavaArray conversions 158
JavaClass conversions 159
JavaObject conversions 158
in JavaScript 17, 25
JavaScript to Java conversion 153
Java to JavaScript conversion 161
null conversions 158
number conversions 154
other conversions 160
string conversions 156
undefined conversions 157

Date object
creating 107
overview 107

Debugger 18

decrement (--) operator 43

default objects, specifying 81

delete operator 48, 103

deleting
array elements 48
objects 48, 103
properties 48

deprecate, glossary entry 163

directories, conventions used 14

do...while statement 76

document conventions 14

E
ECMA, glossary entry 163

ECMAScript, glossary entry 164

ECMA specification 19
JavaScript documentation and 21
JavaScript versions and 20
terminology 21

else statement
See if...else statement

escape function 94

escaping characters 34
Unicode 36

eval function 91

exceptions
catching 83
handling 82–85
handling in Java 150
Java, handling in JavaScript 147
throwing 82

exec method 62

expressions
See also regular expressions
conditional 48
overview 39
that return no value 53
types of 40

external functions, glossary entry 164
Index 169

F
floating-point literals 31

floatValue method 162

for...in statement 80, 96

for loops
continuation of 79
sequence of execution 75
termination of 78

for statement 75

function keyword 87

Function object 110

functions 87–94
arguments array 89
calling 88
defining 87
Function object 110
predefined 90–94
recursive 89
using built-in 90–94

G
getDay method 108

getHours method 110

getMember method 149

getMinutes method 110

getSeconds method 110

getTime method 109

global object 21

H
HTML

glossary entry 164

HTTP
glossary entry 164

I
if...else statement 72

increment (++) operator 43

inheritance
class-based languages and 119
multiple 138
property 133

initializers for objects 97

in operator 50

instanceof operator 50

integers, in JavaScript 31

internationalization 34

IP address, glossary entry 164

isFinite function 91

isNaN function 92

J
Java

See also LiveConnect
accessing JavaScript 148
accessing with LiveConnect 144
arrays in JavaScript 146
calling from JavaScript 144
classes 146
communication with JavaScript 143–162
compared to JavaScript 17, 117–139
exceptions in JavaScript 147
to JavaScript communication 148
JavaScript exceptions and 150
methods requiring char arguments 147
objects, naming in JavaScript 145
object wrappers 143
packages 146

JavaArray object 144, 146

JavaArray type conversions 158

JavaClass object 144, 146
170 Core JavaScript Guide

JavaClass type conversions (LiveConnect) 159

JavaObject object 144, 145

JavaObject type conversions 158

java package 145

JavaPackage object 144, 146

JavaScript
accessing from Java 148
background for using 11
communication with Java 143–162
compared to Java 17, 117–139
differences between server and client 16
ECMA specification and 19
to Java Communication 144
object wrappers 162
overview 16
special characters 33
versions and Navigator 12

JSException class 148, 150

JSObject, accessing JavaScript with 149

JSObject class 148

L
labeled statements

with break 78
with continue 79

label statement 78

left shift (<<) operator 44, 45

length property 114

links
with no destination 53

literals 29
Array 29
Boolean 30
floating point 31
integers 31
object 31
string 32

LiveConnect 143–162
accessing Java directly 144
converting data types 153–162
glossary entry 164
Java to JavaScript communication 148
objects 144

logical operators 45
! (NOT) 46
&& (AND) 46
|| (OR) 46
short-circuit evaluation 47

loops
continuation of 79
for...in 80
termination of 78

loop statements 74–80
break 78
continue 79
do...while 76
for 75
label 78
while 77

lowercase 27

M
matching patterns

See regular expressions

match method 62

Math object 112

methods
defined 88
defining 101
static 165

MIME, glossary entry 164

modulus (%) operator 43
Index 171

N
Navigator

JavaScript versions supported 12

Navigator JavaScript. See client-side JavaScript

netscape package 145

Netscape packages
See packages

new operator 51, 98

NOT (!) logical operator 46

NOT (-) bitwise operator 44

null keyword 25

null value conversions (LiveConnect) 158

Number function 93

Number object 113

numbers
Number object 113
parsing from strings 92

number type conversions (LiveConnect) 154

O
object manipulation statements

for...in 80
this keyword 51
with statement 81

object model 117–139

objects 95–115
adding properties 99, 100
confirming property type for 50
constructor function for 98
creating 97–99
creating new types 51
deleting 48, 103
determining type of 50
establishing default 81
getting list of properties for 96
indexing properties 100
inheritance 125
initializers for 97
iterating properties 96
JavaScript in Java 149

objects (continued)
literals 31
LiveConnect 144
model of 117–139
overview 96
predefined 103
single instances of 97

operators
arithmetic 42
assignment 41
bitwise 43
comparison 41
defined 39
logical 45
order of 54
overview 40
precedence 54
special 47
string 47

OR (|) bitwise operator 43

OR (||) logical operator 46

P
packages, Java 146

Packages object 145

parentheses in regular expressions 62, 65

parseFloat function 92

parseInt function 92

parse method 109

pattern matching
See regular expressions

PI property 112

predefined objects 103

primitive value, glossary entry 164

properties
adding 100, 126
class-based languages and 119
confirming object type for 50
creating 126
getting list of for an object 96
indexing 100
172 Core JavaScript Guide

properties (continued)
inheritance 125, 133
initializing with constructors 127
iterating for an object 96
overview 96
static 165

prototype-based languages, defined 118

prototypes 125

Q
quotation marks

for string literals 32

R
RegExp object 55–70

regular expressions 55–70
arrays and 106
creating 56
defined 55
examples of 68
global search with 67
ignoring case 67
parentheses in 62, 65
remembering substrings 62, 65
special characters in 57, 69
using 62
writing patterns 56

replace method 62

return statement 88

S
search method 62

server-side JavaScript 16
glossary entry 164

setDay method 108

setTime method 109

short-circuit evaluation 47

sign-propagating right shift (>>) operator 44, 45

special characters in regular expressions 57, 69

special operators 47

split method 62

statements
break 78
conditional 72–74
continue 79
do...while 76
exception handling 82–85
for 75
for...in 80
if...else 72
label 78
loop 74–80
object manipulation 80–81
overview 71–85
switch 73
while 77

static, glossary entry 165

String function 93

string literals 32
Unicode in 35

String object
overview 114
regular expressions and 62

strings
changing order using regular expressions 68
concatenating 47
operators for 47
regular expressions and 55
searching for patterns 55
type conversions (LiveConnect) 156

subclasses 119

sun package 145

switch statement 73

T
test method 62

this keyword 98, 101
described 51
for object references 102

throwing exceptions 82
Index 173

throw statement 82

toString method 162

try...catch statement 83

typeof operator 52

U
unary negation (-) operator 43

undefined property 26

undefined value 27
conversions (LiveConnect) 157

unescape function 94

Unicode 34–37
described 34
escape sequences 36
string literals and 35
Unicode Consortium 37
values for special characters 36

uppercase 27

URLs
conventions used 14
glossary entry 165

V
variables

declaring 27
in JavaScript 27
naming 27
scope of 28
undefined 27

var statement 27

versions of JavaScript 12

Visual JavaScript 19

void operator 53

W
while loops

continuation of 79
termination of 78

while statement 77

with statement 113
described 81

wrappers
for Java objects 143
for JavaScript objects 162

WWW, glossary entry 165

X
XOR (^) operator 44

Z
zero-fill right shift (>>>) operator 44, 45
174 Core JavaScript Guide

	Core JavaScript Guide
	New Features in this Release
	Contents
	About this Book
	New Features in this Release
	What You Should Already Know
	JavaScript Versions
	Where to Find JavaScript Information
	Document Conventions

	1. JavaScript Overview
	What Is JavaScript?
	JavaScript and Java
	Debugging JavaScript
	Visual JavaScript
	JavaScript and the ECMA Specification
	Relationship Between JavaScript and ECMA Versions
	JavaScript Documentation vs. the ECMA Specification
	JavaScript and ECMA Terminology

	Part I. Core Language Features
	2. Values, Variables, and Literals
	Values
	Data Type Conversion

	Variables
	Declaring Variables
	Evaluating Variables
	Variable Scope

	Literals
	Array Literals
	Boolean Literals
	Floating-Point Literals
	Integers
	Object Literals
	String Literals

	Unicode
	Unicode Compatibility with ASCII and ISO
	Unicode Escape Sequences
	Displaying Characters with Unicode

	3. Expressions and Operators
	Expressions
	Operators
	Assignment Operators
	Comparison Operators
	Arithmetic Operators
	Bitwise Operators
	Logical Operators
	String Operators
	Special Operators
	Operator Precedence

	4. Regular Expressions
	Creating a Regular Expression
	Writing a Regular Expression Pattern
	Using Simple Patterns
	Using Special Characters
	Using Parentheses

	Working With Regular Expressions
	Using Parenthesized Substring Matches
	Executing a Global Search and Ignoring Case

	Examples
	Changing the Order in an Input String
	Using Special Characters to Verify Input

	5. Statements
	Conditional Statements
	if...else Statement
	switch Statement

	Loop Statements
	for Statement
	do...while Statement
	while Statement
	label Statement
	break Statement
	continue Statement

	Object Manipulation Statements
	for...in Statement
	with Statement

	Comments
	Exception Handling Statements
	The throw Statement
	The try...catch Statement

	6. Functions
	Defining Functions
	Calling Functions
	Using the arguments Array
	Predefined Functions
	eval Function
	isFinite Function
	isNaN Function
	parseInt and parseFloat Functions
	Number and String Functions
	escape and unescape Functions

	7. Working with Objects
	Objects and Properties
	Creating New Objects
	Using Object Initializers
	Using a Constructor Function
	Indexing Object Properties
	Defining Properties for an Object Type
	Defining Methods
	Using this for Object References
	Deleting Objects

	Predefined Core Objects
	Array Object
	Boolean Object
	Date Object
	Function Object
	Math Object
	Number Object
	RegExp Object
	String Object

	8. Details of the Object Model
	Class-Based vs. Prototype-Based Languages
	Defining a Class
	Subclasses and Inheritance
	Adding and Removing Properties
	Summary of Differences

	The Employee Example
	Creating the Hierarchy
	Object Properties
	Inheriting Properties
	Adding Properties

	More Flexible Constructors
	Property Inheritance Revisited
	Local versus Inherited Values
	Determining Instance Relationships
	Global Information in Constructors
	No Multiple Inheritance

	Part II. Working with LiveConnect
	9. LiveConnect Overview
	Working with Wrappers
	JavaScript to Java Communication
	The Packages Object
	Working with Java Arrays
	Package and Class References
	Arguments of Type char
	Handling Java Exceptions in JavaScript

	Java to JavaScript Communication
	Using the LiveConnect Classes

	Data Type Conversions
	JavaScript to Java Conversions
	Java to JavaScript Conversions

	Glossary
	Index

