
C++ FAQ

Matthew D. Peavy
www.GiveMeFish.com

© 2009

Last Updated: 2009-07-01

[Note: This is FAQ is not yet completed.]

Summary of Contents
0 FAQ about this FAQ.. 7

1 Language Specific.. 10

2 Compiler Specific Issues...................................... 21

3 Style.. 24

4 Techniques... 31

5 Bibliography... 43

6 Contributors... 45

C++ FAQ www.GiveMeFish.com 2

Contents of FAQ
0 FAQ about this FAQ.. 7

0.1 Who maintains this FAQ?... 7
0.2 Is this FAQ copyrighted?.. 7
0.3 May I use the source code? How is it licensed?..................... 7
0.4 May I link to this FAQ?.. 7
0.5 Why is this FAQ written?... 7
0.6 May I contribute, correct, or make a suggestion?................... 7
0.7 Is there any guarantee or warranty offered with this

information?... 8
0.8 What other C++ FAQs are available?..................................... 8

1 Language Specific.. 10
1.1 What should main() return?... 10
1.2 What #include form should I use for standard library headers?

... 11
1.3 What does using namespace xxx mean? Why should I not use

it in a header file?.. 14
1.4 What is an anonymous (or unnamed) namespace?................ 14
1.5 What is the difference between ++var and var++? Which

should I prefer?.. 15
1.6 What is the difference between NULL and 0 for pointers?

Which should I prefer?... 16
1.7 Can I delete a null pointer safely?... 17
1.8 What is the class initialization list and why should I use it?. 17
1.9 For std::vector, is --vect.end() equivalent to vect.end()-1?

Which should I prefer?... 18

2 Compiler Specific Issues...................................... 21
2.1 Should I use #pragma once or #ifndef / #define / #endif?. . 21
2.2 Why should I not use _ (and especially not __) to prefix

variable or function names?... 21
2.3 How do I call a system command?... 21
2.4 Does NULL always mean the same thing?............................ 22

3 Style.. 24
3.1 Are these style issues mandatory, suggested, or merely

preference?.. 24
3.2 What is the difference between func(void) and func()? Which

C++ FAQ www.GiveMeFish.com 3

should I prefer?.. 24
3.3 Should I #include files in the header or source file?............. 24
3.4 Why should I avoid (or minimize) using /* */ style comments?....

24
3.5 Should I use Hungarian notation?... 25
3.6 Should public, protected, or private declarations come first?... .

25
3.7 Should I avoid the goto statement?....................................... 26
3.8 Why should I avoid public data in classes?............................ 26
3.9 Why should I avoid global variables?.................................... 26
3.10 Why should I avoid the use of the preprocessor for variable

definitions?... 26
3.11 Why should I avoid the use of the preprocessor for pseudo

macros?.. 26
3.12 Should I avoid multiple inheritance?................................... 26
3.13 Should I declare all the variables used in a function at the top

of that function?... 27
3.14 Should temporary for-loop variables be declared within the

loop statement?.. 28
3.15 What should I name the inclusion guard variable?............. 29

4 Techniques... 31
4.1 How do I convert a string into a numerical type (i.e., int or

double)?.. 31
4.2 How do I convert a number to a string?................................ 31
4.3 How do I tell if a character is a digit or not?......................... 32
4.4 How can I tell if a string contains a number (i.e., an int, float,

or double)?... 32
4.5 How do I trim extra spaces off the beginning or end of a

string?.. 33
4.6 How do I use the command-line arguments passed to main?.....

33
4.7 How do I create and use dynamic multi-dimensional arrays?.....

34
4.8 How do I tell if a number is even or odd?.............................. 36
4.9 How do I copy one stringstream to another?........................ 36
4.10 How do I tell if a stringstream is empty?............................. 36
4.11 How do I generate random numbers?................................. 36
4.12 How do I print a number with a certain precision?............. 38
4.13 How do I print columns that align?..................................... 39
4.14 How do I return more than one value?................................ 40
4.15 How do I create and time and date stamp?......................... 41

C++ FAQ www.GiveMeFish.com 4

5 Bibliography... 43

6 Contributors... 45

C++ FAQ www.GiveMeFish.com 5

C++ FAQ www.GiveMeFish.com 6

0 FAQ about this FAQ
0.1 Who maintains this FAQ?
This FAQ is maintained by Matthew Peavy of Give Me Fish, LLC. You
may find more information about the company at
www.GiveMeFish.com

0.2 Is this FAQ copyrighted?
Yes, this FAQ is copyrighted by Matthew D. Peavy.

0.3 May I use the source code? How is it licensed?
Yes, you may use the source code for whatever purpose you would
like. It is licensed under a FreeBSD license. This gives you the right
to use it in commercial (proprietary) or open-source / free software.

All the examples in this FAQ have source code provided. Builds for
several platforms are provided.

The source code is available here:

http://www.givemefish.com/Downloads/Downloads.php

0.4 May I link to this FAQ?
Yes, by all means. If you are quoting or paraphrasing parts of this
FAQ, it is your responsibility to reference this FAQ. Please include a
reference or a hyper-link.

0.5 Why is this FAQ written?
Because I was tired of repeating answers to these issues on
programming user-group and forum web-sites. It's much easier to
say, “see the FAQ, section 2” than to repeat the answer time after
time. It's part of the “teach me to fish” initiative.

0.6 May I contribute, correct, or make a suggestion?
Yes. Please send any contribution, corrections, or suggestions to the
FAQ email address: faq@GiveMeFish.com. Contributors will be
recognized in the Contributors section at the end of this FAQ. Thanks
in advance.

C++ FAQ www.GiveMeFish.com 7

http://www.givemefish.com/Downloads/Download_cppFAQ/Download_cppFAQ.php

0.7 Is there any guarantee or warranty offered with this
information?

No. This information is offered as is, with no warranty expressed or
implied. Use this information (as well as all information) at your own
risk.

0.8 What other C++ FAQs are available?
There are many. I list a few here:

Title Link Comments

Stroustrup
FAQ

http://www.research.att.com/

~bs/bs_faq.html

Bjarne Stroustrup is the
original author of C++.

FAQ Lite http://www.parashift.com/

c++-faq-lite/

Marshall Cline's excellent
FAQ

Comeau http://www.comeaucomputing
.com/techtalk/

Comeau – compiler
writers who know their
stuff

C++ FAQ www.GiveMeFish.com 8

C++ FAQ www.GiveMeFish.com 9

1 Language Specific
1.1 What should main() return?

1.1.1 Short Answer:
Either:

1) an int, with 0 indicating success and any other number indicating
failure, or

2) EXIT_SUCCESS or EXIT_FAILURE, both defined in <cstdlib>.

1.1.2 Long Answer
The function main() has the prototype int main(int argc, char** argv).
Thus the function prototype requires the returning of an integer.
However, the body of the function doesn't actually have to return a
value. The lack of a user-specified return value will default to 0.
Some compilers allow the prototype to specify a return type of void,
i.e.,
void main() //This is an error

This is not standard-compliant and should be eschewed.

It is customary to return a 0 to indicate success and any other number
to indicate failure. This may, at first blush, seem strange. Why
should a value of 0 indicate success? Would a positive number not be
a better choice?

First, the discussion centers on what is customary. There is nothing
preventing you from returning 1 to indicate success. However, some
programs that are run from the command line do check the return
code and will follow the custom of interpreting non-0 values to
indicate a program's failure. Thus it is recommended to follow the
custom.

Second, the custom is historical. The return value was usually used to
return error codes. Thus returning 0 indicated “no errors”, whereas 1
might indicate “one error” or “error type one” or something
completely different.

The question has been posed whether negative numbers may be used.
For portability reasons, it is not recommend. There are platforms that
will truncate the low 8 bits from an int. Thus the “negative”ness of
the number will not always be seen.

C++ FAQ www.GiveMeFish.com 10

In addition, the standard provides two pre-defined values to indicate
success or failure. Those are EXIT_SUCCESS and EXIT_FAILURE, both
defined in <cstdlib>.
The values are portable and are extremely clear as to their meaning.
Therefore this FAQ recommends the use of the pre-defined terms for
most cases. The only exception would be if the user wanted to specify
more explicit error return codes. In this case, a specialized
numbering scheme could be employed (e.g., 1 = no data available, 2 =
memory error, 3 = other error). The scheme could further be
formalized as an enumeration.

Here is a properly formed Hello World program skeleton:
#include <cstdlib>
#include <iostream>
int main()
{
 std::cout << “Hello World!” << std::endl;
 return EXIT_SUCCESS;
}

1.2 What #include form should I use for standard
library headers?

The #include pre-processor directive is seen in three different forms
for standard library header files:
#include "math.h"
#include <math.h>
#include <cmath>

Which should you use? The short answer is the <cmath> form. As with
all good questions, the complete answer takes a bit of explaining.
There are several issues, and we'll take a look at each.

With the 1998 standardization of C++, four major things happened to
the standard library header files.

1) The C++ specific header files were declared of the form
<header>, dropping the earlier syntax of <header.h>

2) The C library files included in ANSI C++ were prefixed with the
character 'c' and the .h suffix was dropped

3) The C library files included in ANSI C++ usually implement
their functions as templates rather than macros.

4) All names in both sets of these files were placed within the std
namespace

C++ FAQ www.GiveMeFish.com 11

For C++ programs, choose the non .h header files for standard library
headers. This is a simple rule that's easy to follow. For example,
choose <iostream> rather than <iostream.h>. Or choose <cmath> rather
than <math.h>.
The old .h variety of the C++ header files are pre-standard (or
pseudo-standard, as Meyers calls it in Effective C++) and are
considered deprecated. This means you definitely should not use
them (although compiler support may likely last for a long time to
come). Examples of the deprecated header files are: <complex.h>,
<iostream.h>, <limits.h>, etc.

All the functionality defined within the non .h standard library header
files are declared within the std namespace. Therefore if you convert
your program to use the C++ version of the C libraries (e.g., you
change from <math.h> to <cmath>), the functions will be hidden within
the std namespace. This will require you to either qualify the
functions with std:: or to place a using namespace std; directive at the
top of your .cpp file (not within your .h file! See next item.)

There is one specific header file that can cause confusion. That is the
family of <string>, <string.h>, and <cstring>. In summary, <string> is
the C++ string class header file. The other two are the char* header
files. <string.h> is the old C header file, whereas <cstring> is the
modern std wrapped version. So both <string> and <cstring> can be
used legitimately within a modern C++ program, each offering
different library support. They are not mutually exclusive. However,
<string.h> should be replaced with <cstring>.
The following table summarizes the header files that make up the C+
+ standard library, as well as the C Header files that are included in
ANSI C++ with the new “c” prefix nomenclature and the original
ANSI C file equivalents. Files in the last column should not be used in
C++ programs.

C++ Standard
Header Files

C Header Files
Included in ANSI

C++

Equivalent File in
ANSI C

Note: Functionality
within std namespace

Note: Don't use these
in C++ programs

<algorithm> <cassert> <assert.h>
<bitset> <cctype> <ctype.h>
<complex> <cerrno> <errno.h>
<deque> <cfloat> <float.h>

C++ FAQ www.GiveMeFish.com 12

C++ Standard
Header Files

C Header Files
Included in ANSI

C++

Equivalent File in
ANSI C

<exception> <ciso646> <iso646.h>
<fstream> <climits> <limits.h>
<functional> <clocale> <locale.h>
<iomanip> <cmath> <math.h>
<ios> <csetjmp> <setjmp.h>
<iosfwd> <csignal> <signal.h>
<iostream> <cstdarg> <stdarg.h>
<istream> <cstddef> <stddef.h>
<iterator> <cstdio> <stdio.h>
<limits> <cstdlib> <stdlib.h>
<list> <cstring> <string.h>
<locale> <ctime> <time.h>
<map> <cwchar> <wchar.h>
<memory> <cwtype> <wtype.h>
<new>
<numeric>
<ostream>
<queue>
<set>
<sstream>
<stack>
<stdexcept>
<streambuf>
<string>
<typeinfo>
<utility>
<valarray>
<vector>

C++ FAQ www.GiveMeFish.com 13

1.3 What does using namespace xxx mean? Why
should I not use it in a header file?

The using declaration brings the stated namespace (in our example,
xxx) into scope. This means that none of the names within that
namespace has to be qualified. For example, the following two
functions incorporate the standard string and iostream classes. The
first takes advantage of a using declaration, the second doesn't. They
are functionally equivalent.
void func()
{
 using namespace std; //Acceptable use of “using”
 string s1(“Hello World.”);
 cout << s1 << endl;
}
void func2()
{
 //No using declaration, so must qualify with std::

 std::string s1(“Hello World.”);
 std::cout << s1 << std::endl;
}

While the using declaration has saved some typing and made things a
bit more succinct, it is important not to include a using declaration
within a header file. The reason for this is because the using
declaration will be “in effect” for every file that includes the offending
header file. In addition, every file that includes a header file that
includes the offending header file will also be subjected to the using
declaration.

In essence, such a using declaration increases scope greatly and may
become global (or nearly so) for your project. The intent of
namespaces is to hide names and isolate them from the global
namespace. Inserting a using declaration in a header file undermines
these objectives. Therefore don't include a using declaration within
header files.

1.4 What is an anonymous (or unnamed) namespace?
The use of the namespace keyword followed by an open curly bracket
(rather than by a name and then a curly bracket) creates an
anonymous or unnamed namespace. The names that are declared
within this namespace are in effect visible only to the current file.
This is a technique to localize and hide functions that are only used

C++ FAQ www.GiveMeFish.com 14

within one source file.1

If the function is only used within a single source file, then it is usually
a good idea to place it within an anonymous namespace. If it is used
in more than one file, it cannot be placed within an unnamed
namespace. This method is preferred to (and replaces) the use of the
static keyword for specifying internal linkage.

If you are using one, it is common practice to place the anonymous
namespace near the top of a source file and group all anonymous
namespace functions within that single namespace. However it is
permissible to have multiple unnamed namespaces throughout a
translation unit. Every translation unit may contain its own
anonymous namespace.

An example of an anonymous namespace within a .cpp file might look
like this:
//Anonymous namespace

namespace {
 void foo(); // foo() is only visible within this translation unit
}

1.5 What is the difference between ++var and var++?
Which should I prefer?

1.5.1 The short answer
There is no way to say that one form is always better. The use of one
may be wrong in certain situations. However, it is correct to prefer
the pre-increment ++var form for efficiency if the post-fix behavior is
not necessary [but please, please read the long answer.]

1.5.2 The long answer
Functionally, the two operators will differ in the precedence of
operation, the parameter type, and often their return type. This may
lead to different behavior between the prefix and postfix operators. A
short example will help illustrate the difference.

1: int x, y, z;
2:
3: x = 1; // x = 1
4: y = ++x; // x = 2, y = 2

1 This is accomplished in practice through the use of a unique name which the compiler assigns to the
anonymous namespace. The names declared within that namespace are brought into scope automatically
via a using declaration.

C++ FAQ www.GiveMeFish.com 15

1: int x, y, z;
5: z = x++; // x = 3, z = 2
6: x++; // x = 4
7: ++x; // x = 5
8:
9: cout << x++; // 5
10: cout << x; // 6
11: cout << ++x; // 7
12: cout << x; // 7

Clearly, the precedence does matter when used for assignment in
lines 4 and 5. Lines 6 and 7 are functionally interchangeable, since
there is no concern for precedence.

In line 9, the call to cout is passed the un-incremented value of x,
whereas in line 11, the value is first incremented before being passed.

You can remember the precedence order by associating prefix with
"increment and fetch" and postfix as "fetch and increment."
[Meyers97]

The two forms of the increment operator for class objects are actually
different function calls. The difference is made by an int argument
that is silently passed to the postfix operator. For example, here is a
prototype of the two operator functions:
MyClass& operator++(); //Prefix, ++var
const MyClass operator++(int); //Postfix, var++

It is important to note that the return types differ. Prefix often
returns a non-const reference whereas postfix often returns a const
object. While this is not always true, it is often true1. Returning a
reference will execute faster than returning a copy of the object. Thus
when the precedence issue is not important, prefer the pre-increment
form.

For built-in types (e.g., int) and some standard types (e.g., complex),
the different calls are identical in speed of execution. [Sutter00]

A common case where pre-increment should always be used is within
standard for-loop iteration.
for(vector::iterator vi = vect.begin(); vi != vect.end(); ++vi)
{

...
}

Because an iterator is being used (which is an object), prefix will be
more efficient than postfix.

1 There are good arguments for writing your classes so that they do so, but this another topic.

C++ FAQ www.GiveMeFish.com 16

1.6 What is the difference between NULL and 0 for
pointers? Which should I prefer?

In standard C++, NULL is defined as an integral constant with a 0
value. Often times, the standard library implementation will macro
define NULL to be zero, as in:
#define NULL 0
In C, NULL was often defined (via a macro) as 0 or as ((void *)0), which
are two different types. Problems could arise if the set of header files
compiled and linked against are specific to C rather than C++. The
assumption that NULL is equivalent to 0 may not be valid in this case.

Assuming you are using pure C++, you can thus use either 0 or NULL
interchangeably when assigning to a pointer. Which should you
prefer? The tendency has been moving towards using 0 rather than
NULL. However, if a standards-compliant compiler is used, this
becomes a style issue rather than a substantive issue. If you want a
definite recommendation, Bjarne Stroustrup (the father of C++)
recommends the use of 0 rather than NULL for pointers.

The upcoming C++0X standard will introduce the keyword nullptr.

1.7 Can I delete a null pointer safely?
Yes. The standard guarantees that a null pointer (one that equals 0)
may be safely deleted. The pointer need not have ever been set to
point to a dynamically allocated object.

However, remember that an uninitialized pointer will not, in general,
point to 0. Thus the deleting of an uninitialized pointer should always
be considered an error.

Therefore it is recommended that pointers that are not initialized to a
defined memory location be initialized to 0 to avoid accidental deletion
of an uninitialized pointer.

1.8 What is the class initialization list and why should I
use it?

The class initialization list is a list that is defined in the constructor
(specifically just after the argument list but before the body of the
constructor). It is used to initialize some or all of the class member
variables (except static data members). In addition, it is used to
initialize base classes, if applicable. The initialization may use
whatever data is available at the time, including the parameters

C++ FAQ www.GiveMeFish.com 17

passed into the constructor.

The list should be used used whenever possible.

First, the list must be used in certain cases. Any const data variables
must be initialized in the list. References must also be initialized in
the list (whether const or not).

For example, give then class Example:
class Example {
public:
 Example(SomeClass& aRef, double aVal, const string& aString);
private:
 SomeClass& m_ref;
 double m_dblValue;
 const int m_aConstInt;
 SomeClass* m_aPointer;
 string m_aString;
};

The constructor and initialization list might look like this:
Example::Example(SomeClass& aRef, double aVal, const string& aString)
: m_ref(aRef), m_dblValue(aVal), m_aConstInt(7),
 m_aPointer(0), m_aString(aString)
{

//Other constructor activities happens here.
}

In this case, the reference and const value must be initialized using
the initialization list. The other member variables do not require the
use of the initialization list but should, none the less, use it for the
second and third reasons listed.

Second, efficiency may be achieved through the initialization list. For
the above Example class, if the initialization list is not used, then the
m_aString variable will automatically be constructed once. It must
then also be assigned in the body of the constructor. Whereas if the
initialization list is used, the copy constructor is called only once.

Third, the list should be used to initialize data at the earliest possible
moment. This can help avoid errors of using uninitialized member
variables. If the constructor is considerable in length and the
initialization list were not used, a programmer might inadvertently
attempt to use an uninitialized member variable (including the use of
uninitialized pointers). This is automatically avoided by sticking to
the rule of using the initialization list wherever possible.

C++ FAQ www.GiveMeFish.com 18

1.9 For std::vector, is --myVector.end() equivalent
to myVector.end()-1? Which should I prefer?

These two are not equivalent. In fact, --myVector.end() will likely fail
and should always be avoided. Depending on implementation, calling
myVector.end() may return a temporary of a built-in type. C++ does
not allow for the modification of temporaries of built-in types. Not all
compilers will choose such an implementation, but the standard does
not forbid it. Thus using --myVector.end() is not safe.

When you need to access the last (one less than end) element in a
vector, you may use myVector.end()-1 safely so long as the vector
contains at least one element.

C++ FAQ www.GiveMeFish.com 19

C++ FAQ www.GiveMeFish.com 20

2 Compiler Specific Issues
2.1 Should I use #pragma once or #ifndef /
#define / #endif?

While the #pragma preprocessor command is defined by the standard,
it's implementation is compiler specific and therefore not portable.
Some compilers (including Microsoft Visual C++) use #pragma once to
guarantee that a header file is only included once. But others will
issue an error if they encounter #pragma once.
The #ifndef / #define / #endif inclusion guard paradigm is portable
and should therefore be used. The following is an example of a
header file implementing the recommended method:
#ifndef MYCLASS_H
#define MYCLASS_H
class MyClass {
public:
 MyClass();
};
#endif

2.2 Why should I not use _ (and especially not __) to
prefix variable or function names?

2.2.1 Short Answer
To avoid accidental name conflicts.

2.2.2 Long Answer
Some underbar-prefixed names are reserved by the standard for
compiler implementation. “For example, names with leading
underscores are technically reserved only for nonmember names, so
some would argue that this isn't a problem and that class member
names with leading underscores are fine. That's not entirely true in
practice, because some implementations #define macros with leading-
underscore names, and macros don't respect scope. [Sutter00], Item
21, pg. 74.”

$EXPAND THIS

2.3 How do I call a system command?
Within <cstdlib>, the command system is available. The system call

C++ FAQ www.GiveMeFish.com 21

takes a const char *, which will be executed by a command processor
on the target environment. It returns an int, which is the value
returned by the command processor in response to the command.

Here is a short program that prints the current working directory
contents.

#include <cstdlib>
#include <iostream>
int main() {
 system("ls -la");
 return EXIT_SUCCESS;
}

$EXPAND THIS – and add references.

2.4 Does NULL always mean the same thing?
Yes. Within a standards compliant C++ environment, you can be sure
that NULL is an integral constant with 0 value. Be aware that C
libraries may define NULL as ((void *)0). See item 1.6 in this FAQ for
more details.

C++ FAQ www.GiveMeFish.com 22

C++ FAQ www.GiveMeFish.com 23

3 Style
3.1 Are these style issues mandatory, suggested, or
merely preference?

These issues are all style issues and should not be considered
mandatory. Code that contravenes these points may still be correct
and fully functional. However, it is suggested that you follow these
guidelines. There is fairly wide-spread consensus on most of these
issues, though some software shops continue (for historical reasons or
otherwise) to contravene some or all of the suggestions laid out here.

3.2 What is the difference between func(void) and
func()? Which should I prefer?

Nothing is functionally different between the two. The newer, C++
style is the latter, and that's what I recommend using.

3.3 Should I #include files in the header or source file?
Include as many files as possible from the source file, and then
include the remaining files from the header file. This can reduce build
times considerably. It also may reduce file dependencies.

If you can get away with including files from the source file, do so.
This means that if you are using only a pointer or reference to a class
within the header file, you should use a forward reference to that
class rather than a full #include.
In addition, many classes are only seen within the source file. For
example, if you're doing some string manipulation, you may use the
stringstream class within the cpp file. stringstream is not used within
the interface at all. Then you should include <sstream> only in the
source file.

3.4 Why should I avoid (or minimize) using /* */ style
comments?

The C-style comment blocks that use /* */ should be avoided because
they do not nest. For example, if you intend to comment out a
function that is already using C-style comments, you will introduce an
error.
/*
int calcSquareSum()
{

C++ FAQ www.GiveMeFish.com 24

 int squareSum =0; /* Used to sum */
 for(int i=0; i<10; ++i)
 squareSum += (i * i);
 return squareSum;
}
*/

Your editor's code colorization may help you to visualize what blocks
of code are commented, making this type of error more obvious. And
you might not want to type or delete the // on each line (although
there are macros for doing this). It's best to minimize the use of C-
style comments, and certainly avoid them for single line comments as
shown in the example above.

3.5 Should I use Hungarian notation?
No. Hungarian notation is out-dated and obsolete. In today's modern,
generic C++, it is often times impossible to denote type information.

For example, what is the type of a vector<int>? And how does that
differ from a vector<double>?
C++ is a (mostly) strongly typed language, so compiler-enforcement
of type will keep you from going astray (at least as far as type is
concerned!)

In addition, the prefixes can become long-winded and a distraction.
Typing lpsz before every “long pointer to a null-terminated ASCII
string” becomes a real waste of time and screen space.

This practice still has its strong adherents, and many software shops
continue to require the practice.

3.6 Should public, protected, or private
declarations come first?

This is a matter of personal taste, and one that certainly doesn't have
a right or wrong answer. I would recommend public declarations be
placed before private. The reason being that the user of the class only
has access to the public section of the class. Thus the private
members and functions should be placed out of the way (i.e., at the
end). Private information is an implementation detail that the class
user should not be interested in nor burdened with. And protected
falls naturally in the middle. I strongly dislike having multiple class
access specifiers of the same type within a class (e.g., seeing public:,
then private:, followed by a public: specifier.) I would rather group all
my public functions at the top, and put my private data and functions
below.

C++ FAQ www.GiveMeFish.com 25

3.7 Should I avoid the goto statement?
Yes, in general. The goto statement exists within the C++ language,
inherited from C. The statement can make programs incredibly
difficult to understand and maintain. It is error prone. There is wide
spread agreement in the programming community that goto should be
avoided for general control, and many argue to avoid it in all cases.

One example given to justify the use of the goto statement is breaking
out of deeply nested loops when a condition has been met. The use of
goto in this case can simplify the look of the code. Within very this
specific example, goto could be an acceptable control structure. As a
general style rule, it should be avoided. Francis Glassborow summed
it up succinctly on the newsgroup comp.lang.c++.moderated:

“I am not of the school that says 'never use goto' but I
cannot remember when I last found the need for one.”

3.8 Why should I avoid public data in classes?
One word: encapsulation. $EXPAND

3.9 Why should I avoid global variables?
Because global variables are error prone and needless. $EXPAND

3.10 Why should I avoid the use of the preprocessor for
variable definitions?

Despite the nearly universal recommendations from C++ authorities
on this issue, it is common practice to see modern code (including
newly written code) that includes the use of preprocessor variable
definitions. This is a result of ignorance of the dangers of the practice
combined with current-practice inertia within some shops.

3.11 Why should I avoid the use of the preprocessor for
pseudo macros?

For most of the same reasons as the previous FAQuestion. Instead of
using error prone pseudo-macros, use a template function. You get all
the functionality, but you also have the type-safety that you desire.

3.12 Should I avoid multiple inheritance?
Not necessarily, but use multiple inheritance (MI) carefully. MI, when
used properly, works as advertised. It solves the problem of modeling

C++ FAQ www.GiveMeFish.com 26

a situation where an object logically “is a” two different base types.

However, MI can get you into trouble if you're not careful. This is
especially true when considering the “diamond of death” inheritance
hierarchy, whereby two two different child classes inherit from a
parent class, and a fourth grand-child class inherits multiply from the
two children classes.

Many shops have simply outlawed MI. This shouldn't be seen as a
tragedy, as you should still be able to write clear and correct C++
without MI. But a blanket rule like this may also be overly stifling.
See Scott Meyer's description in Effective C++ for more details.

3.13 Should I declare all the variables used in a function
at the top of that function?

No. This violates the programming ideal of minimizing variable
scope. You should strive to scope variables as tightly as possible.
This means placing the variable at the tightest scope (inner most
scope) as possible. In addition, variables should be declared only
when needed.

There is no programmatic benefit to placing all the variables at the
top of a function. Conversely, the benefits of tight scoping are clear.

It can be argued that placing variables at the top of a function allows
a new user of the function to immediately see all the variables in one,
concise are of code. However, that usually comes from programmers
who are accustomed to this style and therefore desire to see all the
variables in one place. Seeing the variables at the beginning of the
function doesn't help the reader understand the function. In fact, it
burdens the reader by declaring the variables too early, possibly
forcing the reader to look back to the beginning of the function to find
the variable's type when it is first used.

The two following functions illustrate the point:
void notTightlyScoped()
{
 int i, iSquared;
 string str;
 for(i =0; i<5; ++i) {
 str += "X";
 iSquared = i * i;
 cout << "String: " << str << ". ";
 cout << "i squared = " << iSquared << endl;
 }
 cout << "String Final: " << str << endl;
}

C++ FAQ www.GiveMeFish.com 27

void tightlyScoped()
{
 string str;
 for(int i =0; i<5; ++i) {
 str += "X";
 int iSquared = i * i;
 cout << "String: " << str << ". ";
 cout << "i squared = " << iSquared << endl;
 }
 cout << "String Final: " << str << endl;
}

One might argue that iSquared should be placed between the two cout
statements. Indeed, that would be tighter scoping. However, I
include this example to illustrate that code clarity and flow may
sometimes trump the scoping rules slightly. It makes sense to me to
keep the two cout statements together.

3.14 Should temporary for-loop variables be declared
within the loop statement?

Yes, if possible. For example:
for(int i=0; i<10; ++i)
 cout << i << endl;

is preferable to:
int i;
for(i=0; i<10; ++i)
 cout << i << endl;

if i is not needed later in the function.

The only reason not to include the variable declaration within the for-
loop is if you need access to that value after the for-loop has ended.

Some argue that several for loops in one function benefit for only
declaring one integer value and re-using that value. This misplaced
zeal for optimization is not only not an optimization (at least with
today's aggressive-optimizing compiles), but it is error prone to boot.

Note that Microsoft's Visual C++ compiler (through and including
version 2005) contains a compiler switch that will recognize or “force”
for-loop scope conformance. They have included this switch since so
much legacy code written using Visual C++ violates the standard on
for-loop scope conformance.

Unfortunately the switch is set by default to not conform with the

C++ FAQ www.GiveMeFish.com 28

standard. This leads many programmers to assume that their C++ is
legal when it is not. One should always start out a project by setting
the switch to conform to the standard for-scope rules. This can be
accomplished by changing the Project properties -> C/C++ ->
Language -> For Conformance in For Loop Scope, set to YES. This is
the /Zc compiler switch.

3.15 What should I name the inclusion guard variable?
Inclusion guards are used to force the compiler to only view header
files once. They are implemented using the preprocessor directives
#ifndef, #define, #endif.
There are no hard-and-fast rules as to what the inclusion guards
should be named. This is a style issue that should be decided on and
applied consistently throughout a project. Although the style may
differ from project to project, the style should remain consistent
throughout a single project.

One common style is to use all-caps and name the variable as the
header file, substituting and _ for the . of the file ending. For
example, for the MyClass.h header file, I would use:
#ifndef MYCLASS_H
#define MYCLASS_H

If the project uses namespaces, I opt to include the namespace that
the class resides in as well. For example,
#ifndef MYNAMESPACE_MYCLASS_H
#define MYNAMESPACE_MYCLASS_H

The goal is for uniqueness. The class and namespace combination
should nearly always guarantee that uniqueness. For situations
where there is more than one namespace at play in a header file, just
develop your own strategy that will result in a unique pre-processor
definition and stick to it.

C++ FAQ www.GiveMeFish.com 29

C++ FAQ www.GiveMeFish.com 30

4 Techniques
4.1 How do I convert a string into a numerical type
(i.e., int or double)?

An easy way to convert a string into a number is using the
stringstream class. This class takes care of most of the work for you.
For example:
string numInString(“96.7”);
double number;
stringstream converter;
converter << numInString;
converter >> number; //number now contains 96.7

This glosses over several issues such as precision (see the item on
precision in this chapter for more details) and, more basically,
verifying whether the string holds a number in the first place.

One of the disadvantages of this method is the introduction of the
temporary variable converter. This can be avoided by using the boost
lexical_cast library. The header file boost/lexical_cast.hpp must be
included. The above could be condensed into the following line. This
should be preferred if boost can be used in your project.
double number = boost::lexical_cast<double>(numInString);

A quality discussion of different converting and formatting options can
be found here: http://www.gotw.ca/publications/mill19.htm

4.2 How do I convert a number to a string?
In the same way as in the previous question – using stringstream or
lexical_cast<string>.
string numInString;
double number(96.7);
stringstream converter;
converter << number;
converter >> numInString; //numInString now contains “96.7”

If you need to get to a character array (a C-style string):
char* cStyleString = numInString.c_str();

For lexical_cast, the following will work:
string numInString = boost::lexical_cast<string>(number);

C++ FAQ www.GiveMeFish.com 31

4.3 How do I tell if a character is a digit or not?
Use the standard function std::isdigit() within the <cctype> header.
As an example, this custom written function would accomplish the
same thing.
//This function returns whether the char passed in is a digit or not.
//Consider using the standard isdigit() function.
bool isDigit(char c)
{
 return(c >= '0' && c <= '9');
}

Within <cctype>, several other functions are made available for
classifying and converting characters, such as isspace(), toupper(), etc.

4.4 How can I tell if a string contains a number (i.e., an
long, or double)?

The functions strtol() and strtod() can accomplish this task. They
can be found within the <cstdlib> header. They are of the form:
long strtol(const char* s, char** endptr, int base);
double strtod(const char* s, char** endptr);

A char array containing the value to be tested is passed to the
functions. If the conversion attempt fails, the second argument will
be set equal to that of the first. Thus to test whether a C-string value
contains a long or double, call the conversion function and check
whether (s != endptr). Note that in testing this way, a string that
contains a double will test true for long, since the long value is present
within the string.

Another option is to use the boost lexical_cast template function. If
the conversion is successful, then the string tested contains a value of
the template parameter type used in the lexical_cast. If the test fails,
a bad_lexical_cast object is thrown. Therefore this test must by within
a try / catch block. A simple function can help to isolate this test.
template<typename T>
bool lexTest(const string& s)
{
 try {
 boost::lexical_cast<T>(s);
 return true;
 }
 catch(boost::bad_lexical_cast&) {
 return false;
 }
}

C++ FAQ www.GiveMeFish.com 32

Note that a call to lexTest with a string containing a double will not
return true if the template parameter is long (which is in contrast to
the behavior of the strtod() function above).

4.5 How do I trim extra spaces off the beginning or end
of a string?

One method is to use the string member function find_last_not_of in
order to find the last character that is not a space. Knowing this
position, take a sub-string starting from position 0. Use the position
of the find_last_not_of +1 as the number of characters for the sub-
string function. If no space was found (resulting in a position of npos),
simply do nothing with the string line.
string line("Example line of text. ");
string::size_type pos = line.find_last_not_of(' ');
if(pos != string::npos)
 line = line.substr(0, pos+1);

Another source of excellent string processing functions is the Boost
String Algorithms Library. This library contains similar trim functions
and much more.

4.6 How do I use the command-line arguments passed
to main?

Command-line arguments are passed to main each time the program is
executed. Remember, the prototype of main that takes arguments is:
int main(int argc, char** argv)

Alternatively, this could be written as:
int main(int argc, char* argv[])

The first argument (argc) denotes how many command-line arguments
are being passed, while the second argument (argv) actually holds the
arguments. argv is a pointer to an array of char pointers.

The number of command-line arguments will always be at least one.
The first character string in argv will contain the name of the
application, regardless of whether any command-line arguments were
specified. If the number of arguments indicated by argc is greater
than one, then command-line arguments were specified when running
the application. They will be stored in argv starting at argv[1].
I find it preferable to use a vector of strings in place of the error-
prone array of character arrays inherited from C. Thus I usually

C++ FAQ www.GiveMeFish.com 33

incorporate the following function to parse the command-line
arguments for me.
std::vector<std::string> parseCommandLine(int argc, char** argv)
{
 //Parse out command-line args. Ignore the first arg, which is
 // the application name. If you don't want to ignore this arg,
 // loop from i=00 to i<argc rather than from i=1 to i<argc.
 vector<string> commandLineArgs;
 for(int i=1; i<argc; ++i)
 commandLineArgs.push_back(argv[i]);
 return commandLineArgs;
}

In this form, the programmer may do with the arguments what he or
she would like. They are readily accessible. Note that this function
will ignore the first argument, which is guaranteed to be the
application name. If this argument is needed, simply alter the for-loop
to start at i=0 rather than i=1.
A more succinct version was offered by Igor Mikushkin as:
std::vector<std::string> parseCommandLine(int argc, char** argv)
{
 return vector<string>(argv+1, argv + argc);
}

Arguments may be safely ignored. In fact, the programmer may
explicitly ignore all command-line arguments by writing:
int main()
{

...
}

Another good choice is to use the Boost Program_options library. This
library contains functions for command-line and other program
options handling.

4.7 How do I create and use dynamic multi-dimensional
arrays?

There are many methods from which to choose, and the choice will
depend on the exact needs for a multi-dimensional array. For
mathematics, many numerical class libraries exist which handle
arrays of any dimension. For example, see the TNT library, the
Matrix Template Library (MTL), the Boost uBLAS library, or several
others at ooNumerics. [Links are provided in the bibliography.]

Another solution is to write a multi-dimension array class which
implements your needs exactly. However, this should only be done if
absolutely necessary (i.e., if none of the present libraries does what

C++ FAQ www.GiveMeFish.com 34

you need).

The Boost.MultiArray library provides a very well written library that
may accomplish what you're looking for. It's not specifically a
mathematical library. It handles multi-dimensional arrays of various
sizes. It is designed to behave similarly to STL containers and is
extremely efficient. This should be a candidate for your multi-
dimensional needs.

For very simple needs, however, I will recommend the following: a
vector of vectors. This has fulfilled my needs countless times and is
extremely easy to implement. You also don't need to obtain or link
external libraries.

In the following example, I'll implement a 3x3 matrix that contains the
integers 0 to 8.
vector< vector<int> > myArray; //Note space between > >
for(int row=0; row<3; ++row) {

 //Add another row
 myArray.push_back(vector<int>());
 for(int col=0; col<3; ++col) {
 int value = row*3 + col;
 myArray[row].push_back(value);
 }
}

//Print out the values in the array
cout << "The values contained in the array: " << endl << endl;
for(int row=0; row<3; ++row) {
 for(int col=0; col<3; ++col) {
 cout << myArray[row][col] << " ";
 }
 cout << endl;
}

//Now print out the value at the 1,2 position. Note vectors are base 0.
cout << endl << "The (1,2) cell of the array contains: " <<
 myArray[1][2] << endl;

A couple points of interest here. First, the declaration of myArray must
include a space between the two > characters. Otherwise the
compiler will interpret this as an extractor (>>) operator. [This may
change in the upcoming C++ 0x standard due out by the end of the
decade.]

Another is that the array does not need to be square, or even
rectangular. In fact, each row in the array can be as long or as short
as desired (including 0 length).

C++ FAQ www.GiveMeFish.com 35

Accessing values may be accomplished via operator[] or through
iterators.

Finally, C++ standard vectors are base 0, so indexing begins with 0.

4.8 How do I tell if a number is even or odd?

bool isEven(int i)
{
 return (i%2 == 0);
}

or:
bool isOdd(int i)
{
 return (i%2 != 0);
}

4.9 How do I copy one stringstream to another?
The copying of stringstream objects is specifically disallowed. The
reason for this is the lack of proper semantics for certain copy
functions.

However, the contents of one stringstream can easily be copied to
another using the following:
//Copy from stringstream s1 to s2, assuming s2 is empty
s2 << s1.str();

4.10 How do I tell if a stringstream is empty?
You can use this function (perhaps in an anonymous namespace within
the source file that needs it) in order to determine if a stringstream is
empty.
//This function returns whether a stringstream object is empty.
template <class S>
bool isEmpty(S& a)
{
 return(S::traits_type::eq_int_type(a.rdbuf()->sgetc(),
 S::traits_type::eof())
);
}

4.11 How do I generate random numbers?
Random numbers are the subject of a wide body of literature. There
are manifold techniques for generating “pseudo-random” numbers. A
full discussion of the theory and implementation of random numbers is
beyond the scope of this FAQ. C++ also includes a simple random

C++ FAQ www.GiveMeFish.com 36

number generator which is covered below.

4.11.1 Strongly Random Numbers
The Boost libraries contains a well documented, well written, free
random numbers library. These classes should be acceptable for
strongly random generation.

There are many libraries available at OO Numerics
(www.oonumerics.org).

Finally, a search of web will results numerous additional random
number libraries.

4.11.2 Simple Random Numbers
For simple cases (and understand this to mean “not acceptable for
scientific or technical programming requiring a true degree of
randomness”), the rand() function within the <cstdlib> header should
do.

The rand() function return an integer between 0 and RAND_MAX. RAND_MAX
is an implementation-specific variable (thus it may vary between
compilers and / or platforms.) You may test against or use RAND_MAX if
you need.

As an example, the following values were obtained for RAND_MAX:
● Microsoft Visual C++ 2003 on WinXP = 32767.

● Microsoft Visual C++ 2005 on WinXP = 32767.

● Cygwin (Pentium 4, Windows XP) using gcc 3.3.3 = 2147483647.

● Linux (Pentium 4, Mandrake 10.1) using gcc 3.4.1 = 2147483647.

● Linux (Pentium M, Debian) using gcc 4.3.3 = 2147483647.

Note that RAND_MAX may be as low as 32767, but will be no lower.

The following example illustrates the use of rand and RAND_MAX:
void item_4_11_maxRandomNumber()
{
 cout << “The largest possible random number is: “ << RAND_MAX
 << endl;
}
void item_4_11_generateRandomNumbersInRange()
{
 //Seed the random number generator
 srand(static_cast<unsigned>(time(0)));
 //Print out 10 random numbers
 for(int i=0; i<10; ++i)

C++ FAQ www.GiveMeFish.com 37

 cout << i << “: “ << rand() << endl;
}

It is important to know that random numbers generated by rand() will
eventually repeat. In order to initialize the random number generator
(often referred to as “seeding” the generator), one may use the
srand(unsigned) function.

Any number may be used to seed srand(). However, seeding the
generator with a hard-coded value makes little sense. This will cause
your program to use the same “random” sequence each time it is run.
A practical way around this is to seed the number with a value obtain
based on the system time. The following line illustrates srand's usage:
srand(static_cast<unsigned>(time(0)));

The time(0) function will return a value (in seconds) from a specific
date. It should be cast into an unsigned int.

4.11.3 Simple Random Numbers within a Range
Given the int values lowerBound and range, you can use the following
expression to obtain a random number in the range [lowerBound,
lowerBound + range). Note that the notation [) means that the range
includes the value lowerBound (i.e., that lowerBound may be selected),
and includes all numbers up to, but not including, lowerBound + range.
For example, choosing lowerBound as 50 and range as 430, you can
expect any number between and including 50 to 479 to be selected.
int randNum = lowerBound + static_cast<int>(range * (rand() /
 (RAND_MAX + 1.0)));

One interesting note is that the second set of parentheses (just
preceding rand()) was necessary for the correct program execution
when compiled under gcc and run on Linux. However, the example
ran fine without that set of parentheses when compiled under
Microsoft Visual Studio 2005 and run on Windows XP.

4.12 How do I print a number with a certain precision?
The stringstream class is robust and covers a lot of programming
needs. This example shows only how to set the precision for printing
of an int or double value.

The I/O manipulators are held in <iomanip>, so don't forget to #include
<iomanip>, nor std:: or using namespace std; as necessary.

The fixed format flag must be set before setting the width of precision.
This only needs to be done once, even if the precision is reset many

C++ FAQ www.GiveMeFish.com 38

times.

Set width only (for int values):
stream << std::fixed << std::setw(5) << intVal;

Set width and precision (for double values) In this case, we're setting
the width of the number to 15 and the precision to 5:
stream << fixed << setw(15) << setprecision(5) << doubleVal;

Note that std::fixed is different than std::ios::fix. The former is a
flag to be called with the stream's setf() function. The latter is a
manipulator that can be “inserted” into the stream via the << inserter.

4.13 How do I print columns that align?
Sometimes you need to print columns of numbers and text that must
align in a certain way. For example, the left column is an integer that
should align right, the next two columns are doubles that should align
their decimal points, followed by a column of left-aligned text. The
desired output might look like this:

8 12.4556 8553.3 axw

12 244.5454 102.4 qropc

54 8.1017 599.3 aszv

102 11.5555 10112.3 pyhkmm

You will want to set the stream to fixed, so do this before you enter
the loop. The width must be set each time you use an inserter or
extractor. It doesn't stay set (or maintain “state”). The precision,
which is used just for the doubles, does maintain state. But since we
want the two columns to have different precision, it will have to also
be set anew when printing each column. And we'll set the left and
right justification as appropriate. Justification defaults to right, but
we'll need to explicitly set it to right in the loop, since it maintains its
state of right coming into the 2nd iteration of the loop.
out << fixed; //Set the float field to fixed using a manipulator

//Iterate over the vector of Data objects
for(vector<Data>::const_iterator dataIter = data.begin();
 dataIter != data.end(); ++dataIter) {

 //Must set the width before each extractor / inserter call.
 //Also, start out with right justified.
 out << right << setw(5) << dataIter->intData();

C++ FAQ www.GiveMeFish.com 39

 out << setprecision(4) << setw(13) << dataIter->doubleData1();
 out << setprecision(1) << setw(9) << dataIter->doubleData2();
 //Need to leave space between right and left justified columns
 // otherwise they would touch
 out << “ “;
 out << left << dataIter->stringData() << endl; //Add new-line
}

4.14 How do I return more than one value?
Functions are designed to return either void or a single entity (which
could be an atomic type, an object, a reference, or a pointer).
However, a programmer would sometimes like to return more than
one value.

One common way around this issue is for the programmer to choose
to pass in non-const references to the function, planning to alter the
value of the underlying variable during the course of the function.
Using this method, however, it is easy to overlook that you are
passing in references to a function. The prototype looks very similar
to pass-by-value, differing only by a & character. Non-const references
are used more seldom than const references, and the lack of const may
cause one to forget about the reference symbol. This can become a
problem when multiple programmers are working on a piece of code.

In addition, it is more natural for functions that are designed to
calculate values to return an argument containing those values. It is
more semantically proper to return values from a “calc” type function
than it is for the function to set references that are passed in.

Programmers have often solved this problem by writing dedicated
structs to accomplish the task. The struct works for returning
aggregated data from a single function call. This technique avoids the
criticisms leveled above, but it adds overhead to the programmer's job
since an additional type must be written.

The pre-processor was sometimes used to automate this task. But
that gets us back to the bad old days of un-type safe macros.

Note that the above discussion does not take into account the
efficiency gains associated with passing references versus passing
arguments by value. This can certainly be a concern (perhaps the
over-riding concern), and should be properly considered when
deciding whether to pass a non-const reference or not.

With the advent of template programming, the type-safe tuple became
readily available. This allows for n-sized collections of un-related
types to be passed as an object.

C++ FAQ www.GiveMeFish.com 40

The STL implements a pair type which takes a pair of template
arguments. As its name implies, this works well for pairs. In
addition, boost offers an n-sized collection (currently written for up to
10 parameters, but easily extended to any size). The pair construct is
primarily used in the map container, but may be used independently of
map.
The pair class uses first and second functions to access the values it
holds. The tuple class accesses its elements with the expression:
obj.get<N>()

or
get<N>(obj)

where obj is the tuple object and N is a constant integral
corresponding to the index of the element in the tuple (base-0). This
function is within the boost::tuples namespace.

pair is found in the <utility> header and the std namespace. tuple is
found in the boost/tuple/tuple.hpp header and in the boost namespace.

The following is an example using both the pair and tuple types:
pair<int, string> ageAndName = getAgeAndName();
cout << ageAndName.second << “ is age “ << ageAndName.first << “.”;

// Age = 33, Average Score = 96.7, Name = “Matthew D. Peavy”
boost::tuple<int, double, string> studentInfo;
get<0>(studentInfo) = 33;
get<1>(studentInfo) = 96.7;
get<2>(studentInfo) = “Matthew D. Peavy”;

You may create tuples of tuples and pairs of pairs, though nesting at
this level becomes confusing and error prone. If you find yourself
nesting tuples or pairs, consider using a struct or class instead.

4.15 How do I create and time and date stamp?
Time and date stamps are effective ways to order provide information
and to name files. If the stamp is given in the format: yyyymmdd-
hhmmss, then all files will be automatically sorted chronologically.

The following function returns a time/date stamp according to that
format. Note that the headers <ctime>, <sstream>, and <iomanip> are
required for this function.
 time_t now = time(0);

C++ FAQ www.GiveMeFish.com 41

 tm testTime = *localtime(&now);

 //Year is only a 2 digit number, assuming we start at 1900.
 //Month is base 0 (i.e., 0-11), so add 1
 stringstream ss;
 ss << testTime.tm_year +1900; //Make a full 4 digit year
 //The following two lines will fill in a 0 before a single digit
 ss.fill('0');
 ss.setf(ios::right, ios::adjustfield);
 //The width must be set to 2 before each use of the inserter.
 ss << setw(2) << testTime.tm_mon +1
 << setw(2) << testTime.tm_mday << "-"
 << setw(2) << testTime.tm_hour
 << setw(2) << testTime.tm_min
 << setw(2) << testTime.tm_sec;

4.16 How do I print the contents of a vector in one line?
You can print the contents of a vector to a stream in a single line by using the copy
algorithm found in <algorithm>. Here we assume a vector of string objects being
copied to cout using a single space delimeter between the objects:

copy(vec.begin(), vec.end(), ostream_iterator<string>(cout, " "));

Modify the template parameter type of the iterator, the output stream, and delimiter
as necessary. Use "\n" to print the contents one-per-line, for example. Or use
ostream_iterator<int> to print a vector of ints. In the sample code, this function
is used to print the command-line arguments, which are parsed into a vector of
string objects.

C++ FAQ www.GiveMeFish.com 42

5 Bibliography
Meyers97: Scott Meyers, Effective C++, Second Eddition. Addison-Wesley, 1997.
Sutter00: Herb Sutter, Exceptional C++. Addison-Wesley, 2000.

Links:

FAQ
Article

Link Library

4.7 http://math.nist.gov/tnt/download.html TNT

4.7

4.11.1

http://www.oonumerics.org Various

4.7 http://www.osl.iu.edu/research/mtl/ Matrix Template
Library

4.1 http://www.boost.org/ lexical_cast

4.5 String Algorithms

4.6 Program_options

4.7 MultiArray, uBLAS

4.11.1 random

4.13 tuple

N/A http://www.trumphurst.com/

cpplibs/cpplibs.phtml

A long list of
available C++
libraries

C++ FAQ www.GiveMeFish.com 43

C++ FAQ www.GiveMeFish.com 44

6 Contributors

I would like to recognize and thank those who have contributed to this
FAQ. If you have a contribution, please email me at
faq@GiveMeFish.com. Include any contact information you would like
included in this Contributors list.

Name Contact Contribution

Mark Jablin jablin@pair.com Various grammatical corrections.

Seungbeom Kim Technical corrections to Ch. 1, 3, and 4.

Igor Mikushkin Suggestion of alternative command line
argument parsing function.

C++ FAQ www.GiveMeFish.com 45

	0 FAQ about this FAQ
	0.1 Who maintains this FAQ?
	0.2 Is this FAQ copyrighted?
	0.3 May I use the source code? How is it licensed?
	0.4 May I link to this FAQ?
	0.5 Why is this FAQ written?
	0.6 May I contribute, correct, or make a suggestion?
	0.7 Is there any guarantee or warranty offered with this information?
	0.8 What other C++ FAQs are available?

	1 Language Specific
	1.1 What should main() return?
	1.1.1 Short Answer:
	1.1.2 Long Answer

	1.2 What #include form should I use for standard library headers?
	1.3 What does using namespace xxx mean? Why should I not use it in a header file?
	1.4 What is an anonymous (or unnamed) namespace?
	1.5 What is the difference between ++var and var++? Which should I prefer?
	1.5.1 The short answer
	1.5.2 The long answer

	1.6 What is the difference between NULL and 0 for pointers? Which should I prefer?
	1.7 Can I delete a null pointer safely?
	1.8 What is the class initialization list and why should I use it?
	1.9 For std::vector, is --myVector.end() equivalent to myVector.end()-1? Which should I prefer?

	2 Compiler Specific Issues
	2.1 Should I use #pragma once or #ifndef / #define / #endif?
	2.2 Why should I not use _ (and especially not __) to prefix variable or function names?
	2.2.1 Short Answer
	2.2.2 Long Answer

	2.3 How do I call a system command?
	2.4 Does NULL always mean the same thing?

	3 Style
	3.1 Are these style issues mandatory, suggested, or merely preference?
	3.2 What is the difference between func(void) and func()? Which should I prefer?
	3.3 Should I #include files in the header or source file?
	3.4 Why should I avoid (or minimize) using /* */ style comments?
	3.5 Should I use Hungarian notation?
	3.6 Should public, protected, or private declarations come first?
	3.7 Should I avoid the goto statement?
	3.8 Why should I avoid public data in classes?
	3.9 Why should I avoid global variables?
	3.10 Why should I avoid the use of the preprocessor for variable definitions?
	3.11 Why should I avoid the use of the preprocessor for pseudo macros?
	3.12 Should I avoid multiple inheritance?
	3.13 Should I declare all the variables used in a function at the top of that function?
	3.14 Should temporary for-loop variables be declared within the loop statement?
	3.15 What should I name the inclusion guard variable?

	4 Techniques
	4.1 How do I convert a string into a numerical type (i.e., int or double)?
	4.2 How do I convert a number to a string?
	4.3 How do I tell if a character is a digit or not?
	4.4 How can I tell if a string contains a number (i.e., an long, or double)?
	4.5 How do I trim extra spaces off the beginning or end of a string?
	4.6 How do I use the command-line arguments passed to main?
	4.7 How do I create and use dynamic multi-dimensional arrays?
	4.8 How do I tell if a number is even or odd?
	4.9 How do I copy one stringstream to another?
	4.10 How do I tell if a stringstream is empty?
	4.11 How do I generate random numbers?
	4.11.1 Strongly Random Numbers
	4.11.2 Simple Random Numbers
	4.11.3 Simple Random Numbers within a Range

	4.12 How do I print a number with a certain precision?
	4.13 How do I print columns that align?
	4.14 How do I return more than one value?
	4.15 How do I create and time and date stamp?
	4.16 How do I print the contents of a vector in one line?

	5 Bibliography
	6 Contributors

