
 

 

 

 
 

 
Mastering JXTA: Building Java Peer-to-Peer Applications 

by Joseph D. Gradecki (Author), Joe Gradecki  

Paperback: 552 pages ; 

 Publisher: John Wiley & Sons; 

 ISBN: 0471250848 

 



Wiley Publishing, Inc.

Mastering JXTA
Building Java Peer-to-Peer Applications

Joseph D. Gradecki





Mastering JXTA
Building Java Peer-to-Peer Applications





Wiley Publishing, Inc.

Mastering JXTA
Building Java Peer-to-Peer Applications

Joseph D. Gradecki



Publisher: Robert Ipsen Copyeditor: Elizabeth Welch
Editor: Robert M. Elliott Proofreader: Nancy Sixsmith
Managing Editor: John Atkins Compositor: Gina Rexrode
Book Packaging: Ryan Publishing Group, Inc. Technical Editor: Stan Ng

Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where Wiley Publishing, Inc., is aware of a claim, the product names appear in initial capital
or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies for more complete
information regarding trademarks and registration.

This book is printed on acid-free paper. ∞

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspointe Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-
4447, email: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this book and specifically disclaim any implied warranties of mer-
chantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suit-
able for your situation. You should consult with a professional where appropriate. Neither the pub-
lisher nor author shall be liable for any loss of profit or any other commercial damages, including but
not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Depart-
ment within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax
(317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-25084-8

Printed in the United States of America

10   9   8   7   6   5   4   3   2   1



Chapter 8 Peer Information Protocol 123
An Overview of the PIP 123

PIP Query Messages 124
PIP Response Messages 124

Java Binding of the PIP 126
Requesting Peer Information 127
Building a Listener 127
Viewing the Information Returned 128

Summary 129

Chapter 9 Peer Endpoint Protocol 131
An Overview of the Peer Endpoint Protocol 131

Endpoint Service 132
Sending a Message 133

Endpoint Protocols 133
Java Binding of the Peer Endpoint Protocol 134

Summary 136

Chapter 10 Pipe Binding Protocol 137
Overview of the Pipe Binding Protocol 137
Pipe Advertisements 138
Pipe Binding Query Messages 138
Java Binding 140

Creating a Pipe 141
Receiving Information 142
Building the Pipe 143
Advertising the Pipe 143
Discovering an Input Pipe 144

Summary 144

Chapter 11 Rendezvous Protocol 145
Rendezvous Advertisements 146

Message Propagation 146
The Java Binding 147

Dynamic Rendezvous Service Implementation 147
Finding Rendezvous Peers Dynamically 148
Connecting to Rendezvous Peers 148
Disconnecting from a Rendezvous Peer 149

Summary 150

Chapter 12 Developing a JXTA Application 151
The Basic Structure for JXTA Applications 152

Connecting to the JXTA Network 153
Viewing Peer Group Information 154
Viewing Peer Group Advertisement 155

Contents ix



C o n t e n t sx

Building a Peer to Offer Services 157
Obtaining Group Services 162
Building and Publishing the Module Class Advertisement 163
Building the Pipe Advertisement 164
Building and Publishing the Module Specification Advertisement 166
Waiting for Messages 167
Putting It All Together 168

Building a Peer for Using Services 169
Code for the Receiver Peer 170
Getting Services 175
Finding the Advertisement through Discovery 175
Building an Output Pipe 176
Sending a Message through a Pipe 177
Application Basics 177

Creating a New Peer Group 178
Creating a Peer Group ID  178
Creating a Module Implementation Advertisement 179
Creating a Group Advertisement 180
Creating a New Peer Group 180

A Peer that Discovers and Joins a New Peer Group 187
Creating a Secure Peer Group 192

Using a Membership Service Implementation 192
Changing the Default Class Implementation Advertisement 193
Code for a Secure Peer Group 194
A Secure Peer Group Advertisement 201
Becoming Authenticated 202
New Class Implementation Advertisement Details 204
Peer Group Advertisement Details 205
authenticateMe() Method Details 206
Client for the Secure Peer Group 207

Summary 207

Chapter 13 JXTA Pipes 209
Publishing and Discovering Pipes 210

Publishing 210
Discovery 210

Unicast Pipes 214
Unicast Pipes on a Local Peer 214
Remote Peers 216

UnicastSecure Pipes 218
Propagate Pipes 218
Bidirectional Pipes 225

The Bidirectional Pipe Code 225
The Bidirectional Pipe Discovery Code 229

Reliable Pipes 234
Sender Code 237
The Receiver Code 242

Summary 242



Contents xi

Part III JXTA Implementation

Chapter 14 Content Sharing and the Content Management Service (CMS) 243
Overview of the CMS  243
Implementing the CMS in Peers 245

Initializing the CMS 250
Sharing Content 250
Viewing the Shared Content List 251
Searching For and Getting Content 251

Summary 254

Chapter 15 Implementing Security 255
JXTA Security Toolkit 255

Building Keys 256
Secure Membership Service 263

Building a New Membership Service 264
Changing the Peer Group Creator Code 275

Secure Transport 277
JxtaUnicastSecure Pipes 277
Separately Encrypted Data 279

Summary 300

Chapter 16 Peer Monitoring and Metering 301
Finding Peers in a Group 301

Building the Peer Discovery Listener 301
Interpreting Events 302
The Discovery Code 304
Local Peers versus Remote Peers 305

Obtaining Information about a Peer 307
A Sample Application for Discovering Peers 309

Explaining the Code 315
Code Output 316

Summary 317

Chapter 17 Configuring NAT and Firewall Peers 319
The JXTA Network Topology 319
Running a Peer Behind a Firewall/NAT 320

Communication Peer Configuration 320
Gateway Configuration 323
The Discovery Peer Configuration 324

Using the Configurator’s Debug Option 326
Building a Router/Rendezvous Peer 327
Summary 330



Chapter 18 Using Endpoints for Low-Level Communication 331
The Endpoint Service 331
Code for the Endpoint Receiving Peer 334
Code for the Endpoint Sending Peer 337
Summary 341

Chapter 19 Building a Generic Framework for Distributed Computing 343
Master Code 344
Worker Code 349

Setup 355
Work 355

Computational Code 356
Summary 358

Chapter 20 Building an Encrypted, Highly Available Storage System 359
System Architecture 359

Our Example 361
Database Schema 362
Message Schema 362
Executing the System 363

DatabasePeer 366
DatabasePeer Connectivity 372
Setup 374
Publishing a Data Input Pipe 375
Publishing a Query Bidirectional Pipe 375
Processing Input 375

BusinessPeer 377
Setup 383
Discovery 384
Processing Input 384

GatheringPeers 385
ClientPeer 386

Setup 393
Pipe Discovery 394
The Query Request 395
The Image Request 395

Summary 396

Part IV JXTA Reference

Appendix A Installing JXTA and Compiling JXTA Applications 397
Installing JXTA 397

Easy Install 397
Installing on a Windows System 398

C o n t e n t sxii



Installing on a Linux System 399
JXTA Libraries 399
Stable Builds 400
Daily Builds 401

Compiling the Examples 401
Windows 401
Linux 402

Running the Examples 402
Windows 402
Linux 403

JBuilder Compiling and Execution 403
Adding a New JBuilder Project 404

Appendix B JXTA API 407
Class Advertisement 407

Field Summary 408
Constructor Summary 408
Method Summary 408
Example 408

Class AdvertisementFactory 408
Method Summary 408

Class AuthenticationCredential 409
Constructor Summary 410
Method Summary 410
Example 410

Class Codat 411
Field Summary 411
Constructor Summary 411
Method Summary 411
Example 411

Class CodatID 412
Constructor Summary 412
Method Summary 412
Example 412

Interface Credential 412
Method Summary 412

Class DiscoveryEvent 413
Constructor Summary 413
Method Summary 413
Example 413

Interface DiscoveryListener 413
Method Summary 414
Example 414

Class DiscoveryQueryMsg 414
Field Summary 414
Constructor Summary 414
Method Summary 414

Contents xiii



Class DiscoveryResponseMsg 415
Field Summary 415
Constructor Summary 415
Method Summary 415
Example 416

Interface DiscoveryService  416
Field Summary 416
Method Summary 417
Example 418

Interface Document  418
Method Summary 418
Example 418

Interface Element  419
Method Summary 419
Example 419

Interface EndpointAddress 419
Method Summary 419
Example 420

Class EndpointAdvertisement 420
Constructor Summary 420
Method Summary 420

Interface EndpointFilterListener 421
Method Summary 421

Interface EndpointProtocol 421
Method Summary 421
Example 422

Interface EndpointService  422
Method Summary 422
Example 423

Interface GenericResolver  424
Method Summary 424

Class ID 424
Field Summary 424
Constructor Summary 424
Method Summary 425

Class IDFactory 425
Method Summary 425
Example 426

Interface InputPipe  426
Method Summary 426
Example 426

Class JxtaError 427
Field Summary 427
Constructor Summary 427
Method Summary 427

C o n t e n t sxiv



Class MembershipService 427
Constructor Summary 427
Method Summary 427
Example 428

Interface Message 428
Method Summary 429
Example 430

Class MessageElement 430
Constructor Summary 430
Method Summary 430
Example 431

Class MimeMediaType 431
Constructor Summary 431
Method Summary 432
Example 432

Class ModuleClassAdvertisement 432
Constructor Summary 433
Method Summary 433
Example 433

Class ModuleClassID 434
Constructor Summary 434
Method Summary 434

Class ModuleImplAdvertisment 434
Constructor Summary 434
Method Summary 434
Example 435

Class ModuleSpecAdvertisement 435
Constructor Summary 436
Method Summary 436
Example 437

Class ModuleSpecID 437
Constructor Summary 437
Method Summary 437
Example 437

Interface OutputPipe 438
Method Summary 438
Example 438

Class PeerAdvertisement 438
Constructor Summary 438
Method Summary 438
Example 439

Interface PeerGroup  439
Constructor Summary 440
Method Summary 440
Example 442

C o n t e n t s xv



Class PeerGroupAdvertisement 442
Constructor Summary 442
Method Summary 442
Example 443

Class PeerGroupFactory 443
Constructor Summary 443
Method Summary 443
Example 444

Class PeerGroupID 444
Field Summary 444
Constructor Summary 444
Example 444

Class PeerID 445
Constructor Summary 445
Method Summary 445
Example 445

Class PeerInfoEvent 445
Constructor Summary 445
Method Summary 445
Example 446

Interface PeerInfoListener  446
Method Summary 446

Class PeerInfoQueryMessage 446
Constructor Summary 446
Method Summary 446
Example 447

Class PeerInfoResponseMessage 447
Constructor Summary 447
Method Summary 447

Class PipeAdvertisement 448
Field Summary 448
Constructor Summary 449
Method Summary 449
Example 449

Class PipeID 450
Constructor Summary 450
Method Summary 450
Example 450

Class PipeMsgEvent 450
Constructor Summary 450
Method Summary 451
Example 451

Interface PipeMsgListener 451
Example 451

C o n t e n t sxvi



Interface PipeService  452
Field Summary 452
Method Summary 452
Example 452

Interface QueryHandler  453
Method Summary 453

Interface RendezvousListener 453
Method Summary 453

Interface RendezVousService 453
Method Summary 453

Class ResolverResponseMsg 455
Field Summary 455
Constructor Summary 455
Method Summary 455

Interface ResolverService  455
Method Summary 456

Interface StructuredDocument 456
Method Summary 456

Class StructuredDocumentFactory 456
Method Summary 456
Example 457

Interface StructuredTextDocument  457
Method Summary 457
Example 458

Interface TextDocument  458
Method Summary 458

Interface TextElement  458
Method Summary 458
Example 458

Appendix C Current Add-on JXTA Services 459

Appendix D Latest JXTA Projects 463

Appendix E JXTA Resources 467
Mailing Lists 467

Discuss Mailing List 467
Announce Mailing List 467
Dev Mailing List 468
User Mailing List 468

JXTA Tutorials 468
OpenP2P 468
Sun.com 468

C o n t e n t s xvii



Appendix F JXTA Bindings 469
Java 469
Java ME (JXME) 470
jxta-c 471
jxtaPerl 471
jxtapy 472
jxtaruby 472
pocketJXTA 473

Appendix G Other Peer-to-Peer Implementations and Toolkits 475
IBM BabbleNet 475
Intel 476
Microsoft .NET and P2P 476
The Peer-to-Peer Trusted Library 476
The Bluetooth P2P Toolkit 477
Other Tools 477

Index 479

C o n t e n t sxviii



xix

C O N T E N TS  

xix

I would like to acknowledge several folks.  First, Tim Ryan for every-
thing he does to support the writing of this book and his friendship.  Sec-
ond, Liz Welch for her diligent editing of this manuscript. Third, Stan Ng
for his technical editing and keeping me straight on the use of the JXTA
software.

A C K N O W L E D G M E N TS





xxi

C O N T E N TS  

Joseph D. Gradecki is a software engineer at Comprehensive Software
Systems, where he works on its SABIL product, an enterprise-level 
securities processing system. He has built numerous dynamic enterprise
applications using Java, C++, servlets, JSPs, Resin, MySQL, BroadVision,
XML, and other technologies.

Joe has also built many P2P distributed computing systems in a variety of
languages, including Java/JXTA, C/C++, and Linda. He holds Bachelor’s
and Master’s degrees in Computer Science, and is currently pursuing a
Ph.D. in Computer Science. Joe also regularly teaches Java and OOP
courses at Colorado Technical University.

xxi

A B O U T  T H E  A U T H O R





Many of us tend to think of the Internet, and most other networks, as
inherently client-server systems. Web developers spend a lot of time
building powerful sites that serve information and services to the thou-

sands of browser clients that visit them. But peer-to-peer (P2P) applications
like KaZaA, Napster, and SETI have demonstrated the true power of the Inter-
net: the millions of information stores—common PCs—sitting idle on desks
around the world. Peer-to-peer technologies harness the CPUs and storage
devices of these PCs to produce huge data stores, communications systems,
and processing engines.

Due to a lack of standards and toolkits, early P2P application developers spent
much of their time reinventing the wheel—building the same system “plumb-
ing” for each new app they wrote. Developers at Sun created the JXTA specifi-
cation to solve this problem. The specification is a basic building block from
which developers can produce applications that

■■ Allow sharing of resources between peers without a central server

■■ Use idle cycles of desktop machines for solving complex problems

■■ Expose Web services to be used by other peers

What’s In This Book

This book contains a complete discussion of the latest JXTA specification and
the Java binding. As with any new technology, a number of components form

Introduction

xxiii



the foundation of the specification. This book explains each of the core com-
ponents and protocols of JXTA, and includes comprehensive examples to back
up the concepts. Some of the concepts discussed in this book are

Peers—An application, executing on a computer, that has the ability to
communicate with similar peer applications

Peer groups—A logical grouping of peers

Modules—Code that is made available by a peer or peer group for use by
another peer or peer group.

Pipes—Communication channels created between peers

Services—Predefined functionality that can be utilized by peers

Advertisements—XML-based messages used to publish information
between peers

Following a complete discussion of the specification, this book provides many
code examples and full P2P applications written in Java. After reading Master-

ing JXTA, you will have a foundation in P2P programming and, more impor-
tant, you will have several examples and full-blown applications to use as a
springboard for your own creations. One of the major examples in this book
builds a framework for distributed computations using JXTA. Using a generic
work class, you can build P2P applications that will pass computational work
to be done to peers and accumulate the results. Another example will show you
how to build a comprehensive, three-tier storage system; this system allows
data to be sent from client peers to business peers to database peers. The data-
base peer connects to a MySQL database to store the data. 

One of the major goals of this book is demonstrating how to develop P2P appli-
cations by stepping you through the process of building a comprehensive appli-
cation framework that you can reuse to develop your own applications.

You can find the code in this book at www.wiley.com/compbooks/gradecki. The
code for each chapter is located in a separate file so that you can quickly find
what you need. The JXTA Java Reference Implementation can be found at
www.jxta.org. You will also need the Java SDK, which you can find at
www.javasoft.com.

Who Should Read This Book

This book assumes that you are new to JXTA and P2P concepts, but have pro-
gramming experience with Java. To quickly understand some of the more com-
plex examples in this book, you will need to be familiar with Java interface
implementation, anonymous inner classes, and callbacks.

I n t r o d u c t i o nxxiv



If you want to know how to build sophisticated, Java-based, peer-to-peer appli-
cations, then this book is for you.

Book Organization

This book is organized into three parts. Part I is a comprehensive overview of
P2P, the JXTA specification, and the JXTA architecture and its components.
Part II discusses the JXTA protocols, which are the core of the specification;
you must understand the protocols in order to build robust P2P applications
using a binding language. Finally, Part III takes all of the concepts learned in
Parts I and II and applies them to many small examples and two large applica-
tions: a distributed computational engine and a robust storage service. Let’s
take a look at each of the chapters making up the three parts of the book.

Part I: JXTA Overview

Chapter 1: Introduction to Peer-to-Peer

This chapter provides the uninitiated with a comprehensive overview of what
P2P is, where it came from, and how it’s been used. We look to the past in order
to understand that the concepts of a P2P network are really quite old. Next, we
examine the various architectures that can be created when a P2P system is
developed. Finally, we look into the more common P2P systems—such as
Usenet, Napster, Gnutella, Instant Messaging, and distributed.net—to under-
stand what you can do with peer-to-peer.

Chapter 2: An Overview of JXTA

This chapter is the fundamental chapter in the book. We describe the JXTA sys-
tem, starting with its short history. Then we examine the JXTA architecture,
which consists of three layers: the core layer, the services layer, and the appli-
cation layer. We describe each of the layers in detail, and explain the compo-
nents needed in each layer. The layers rely on several JXTA technologies, which
are described next. These technologies are

■■ Peer

■■ Group

■■ Advertisement

■■ Protocols

■■ Pipes

Book Organization xxv



■■ Services

■■ Rendezvous peers

Finally, we include an overview of how you can use JXTA in networks that 
have firewalls and peers that use a NAT address. Because XML is used through-
out JXTA, an overview of XML is also provided for those who are new to that
technology.

Chapter 3: JXTA Shell 

One of the easiest ways to experience the JXTA system is through the JXTA
shell. The JXTA shell is an interactive application that allows a command-line
interface to the JXTA network; it is modeled after a Unix shell, and includes a
number of commands for manipulating the shell presence on the network.
Some of the commands we discuss are whoami, peers, env, share, and search,
among many others. We provide a comprehensive overview of the shell and
how to use it on the network. We cover all of the commands in the shell, along
with helpful examples, and conclude with a discussion on writing shell scripts
and user-defined classes.

Chapter 4: Using myJXTA 

In order to further explain the code necessary to write JXTA P2P applications,
this chapter focuses on the InstantP2P application, which you can download
from the JXTA project web site. We examine major features of this application,
including

■■ Chatting with InstantP2P in a group

■■ Using one-to-one chatting

■■ Searching for files in a group

■■ Sharing your own files

We discuss each of these features as well as the code used to implement them.

Chapter 5: JXTA Advertisements 

One of the core concepts in JXTA is that of the advertisement. All resources,
such as peers, groups, pipes, and services, rely on the advertisement to repre-
sent themselves on the JXTA network. This chapter provides a complete view
of the JXTA advertisement based on the latest specification. For each of the dif-
ferent advertisements—including peer, peer group, module class, module spec-
ification, module implementation, pipe, peer info, and rendezvous—we offer
complete descriptions, along with discussions of how the advertisements are
created and used within the network. 

I n t r o d u c t i o nxxvi



Part II: JXTA Protocols

Chapter 6: Peer Discovery Protocol 

This chapter provides a detailed view of the Peer Discovery Protocol (PDP),
which is used for all discovery of advertisements from peers. A peer uses the
PDP for resource queries, and will receive zero or more responses. In this chap-
ter, we describe the messages received from a query as well as how to perform
a PDP query. In addition, we briefly discuss how the protocol was implemented,
and the features available for those peers that want to build and use their own
discovery mechanism.

Chapter 7: Peer Resolver Protocol 

The Peer Resolver Protocol is a generic query protocol designed to allow peers
to query either specific peers or peers within a peer group. In this chapter, we
examine the protocol specification and how it is used to implement a number
of the JXTA protocols. We also cover the message formats and how to use the
protocol. At the end of the chapter, you’ll find a discussion of how the protocol
is implemented.

Chapter 8: Peer Information Protocol 

In any peer-to-peer environment, information about peers must be readily avail-
able. The Peer Information Protocol is a powerful mechanism for obtaining
information about a peer once it has been discovered. In this chapter, we exam-
ine the protocol. As in the other protocol chapters, we cover the query and
response messages, along with specific implementation details.

Chapter 9: Peer Endpoint Protocol

The JXTA network is designed to allow for routing between peers. There are
times when one peer needs to send a message to another peer and they are not
“directly” connected. In these situations, a relay peer will be used. In this chap-
ter, we dive into the details behind the Peer Endpoint Protocol. We cover all of
the query and response messages as well as implementation details.

Chapter 10: Pipe Binding Protocol 

When peers want to communicate by sending more than advertisements, a pipe
is necessary. The Pipe Binding Protocol provides the details behind pipes, end-
points, and transport mechanisms. In this chapter, we discuss all of these con-
cepts and examine the various messages being transferred between peers. 

Book Organization xxvii



Chapter 11: Rendezvous Protocol 

The Rendezvous Protocol allows for the propagation of messages within a P2P
system. In this chapter, we cover the Rendezvous Protocol, which is used by
both the Peer Resolver and Pipe Binding Protocols.

Chapter 12: Developing a JXTA Application 

This chapter provides the details behind building JXTA P2P applications. Using
the information gathered from the first two parts of the book, this chapter
guides you through the development of both command-line and GUI-based Java
applications. You will learn how to build JXTA P2P applications using a simple-
to-understand skeleton. We expand the skeleton to include creating and joining
peer groups with both secure and non-secure membership rules.

Chapter 13: JXTA Pipes 

One of the primary reasons to build a P2P system is to facilitate the transfer of
information between the peers. The peers and services are made known to each
other through advertisements, and information is transfer through a pipe. The
concept is the same as that found in the Unix system, in which a pipe connects
two commands. In this chapter, we explain the pipes used in JXTA, and illus-
trate with examples. 

Part III: JXTA Implementation

Chapter 14: Content Sharing and the Content Management
Service (CMS)

The Content Management Service (CMS) is a perfect example of an add-on to
the JXTA network using a service. This software allows for easy sharing,
access, and retrieval of all kinds of content in the JXTA networks. As you’ll
learn in this chapter, by using simple commands peers can implement the CMS
and instantly be able to share content with other peers.

Chapter 15: Implementing Security 

As noted in Chapter 12, the level of security provided in the default Java bind-
ing for JXTA is weak. Most of the security found in JXTA is located in the
JXTACryptoSuite, which we discuss in detail. The default weak authentication
code for group membership is expanded to include much stronger algorithms.
Finally, we address the issue of security along the network transport.

I n t r o d u c t i o nxxviii



Chapter 16: Peer Monitoring and Metering 

As peers are developed and deployed, the issue of monitoring and metering will
arise. In this chapter, each of these issues are addressed. On the topic of moni-
toring, we present code that allows a P2P system to keep track of the peers in
the group, when they joined the group, when they left the group, and when sud-
den peer death occurs. 

Chapter 17: Configuring NAT and Firewall Peers

Of particular importance to enterprise systems is how to handle firewall and
Network Address Translation (NAT). In this chapter, we explain how to config-
ure peers that use a NAT address and/or exist behind a firewall. We present
code that you can use to build a simple peer to be used as a gateway or ren-
dezvous peer. 

Chapter 18: Using Endpoints for Low-level Communication

Under the high-level pipe component is a lower-level mechanism for communi-
cating between peers. Endpoints represent portals into and out of individual
peers and can be used as a low-level communication channel. This chapter will
explore endpoints and present code for using them in peers.

Chapter 19: Building a Generic Framework for Distributed
Computing

This chapter builds an application like SETI or distributed.net using the JXTA
framework. We examine the process of building a framework system, in which
computationally complex algorithms can be distributed to peers on the net-
works that choose to subscribe.

Chapter 20: Building an Encrypted, High-Availability Storage
System 

Imagine building an encrypted remote storage service in which clients can sign
up and store vital records. In this chapter, we build such a system, and explore
topics such as using replication among peers and handling integration with
backend databases.

Book Organization xxix



Part IV: JXTA Reference

Appendix A: Installing JXTA and Compiling JXTA Applications 

Appendix A provides a guide for installing and using the JXTA system. Infor-
mation covered in the appendix includes

■■ Finding JXTA

■■ Finding the ancillary installs you need

■■ Downloading the files

■■ Installing on Windows

■■ Installing on Linux

■■ Installing on Solaris

■■ Obtaining daily builds for the latest code

Appendix B: JXTA API 

Appendix B provides a complete listing of the current JXTA API, along with
descriptions.

Appendix C: Current Add-on JXTA Services 

Since JXTA is a core technology, a number of complementary systems have
been developed that can be “bolted” onto a P2P system. In this appendix, we
look at some of those services and their current status.

Appendix D: Latest JXTA Projects 

Anyone who has taken the time to look at the JXTA web site will find a number
of projects. This chapter details the most important of those projects and how
services provided by the projects can be utilized in other applications.

Appendix E: JXTA Resources

Appendix E covers the latest information about the Project JXTA web site, and
provides listings of other web sites that can be used for resource purposes. We
also include a number of mailing lists aimed at developers who want to remain
in the loop of JXTA development. 

I n t r o d u c t i o nxxx



Appendix F: JXTA Bindings

Appendix F covers the current language bindings of the JXTA specification.
While Java was the first, a number of other bindings have been created using
most of the recent and popular languages.

Appendix G: Other Peer-to-Peer Implementations and Toolkits

In this appendix, we examine some of the other P2P implementations and
toolkits. We discuss both commercial and open-source systems.

Book Organization xxxi





Mastering JXTA
Building Java Peer-to-Peer Applications





The early developers of ARPANET and the Internet allowed themselves to
dream about a day when computers around the world would be linked
together to share resources in a peer-to-peer fashion. In 1962, one of

those early dreamers, J.C.R. Licklider of MIT, wrote a now-famous series of
memos in which he described an “Intergalactic Network” of interconnected
computers. His vision led to the creation of the Network Control Program
(NCP), the first “host-host” networking protocol and the precursor to TCP/IP.

The host-host concept—which we now call peer-to-peer—was crucial in devel-
oping the Internet. Every computer on the network was an equal: Each com-
puter could access the resources of any other computer on the network while
making its own resources available. Communication among hosts was also
equal: No computer was seen as a client or component of another, and all com-
puters shared more-or-less equal bandwidth access to one another.

Several events have conspired to change the Internet landscape from primarily
peer-to-peer to the now more familiar client-server architecture. The Internet
has gradually become more commercial, and corporations build firewalls
around their information to control access. Millions of people “log on” to the
Internet using desktop computers that cannot match the power of the servers
that form the backbone of the Internet. And many popular Internet applications
and services, including the World Wide Web and FTP, are based on a client-
server architecture.

Introduction to Peer-to-Peer

C H A P T E R 1

1



In the last few years, however, peer-to-peer (P2P) technology has once again
had a profound effect on the Internet and the distribution of information and
resources. P2P is being aggressively hyped in the media, but there are a wide
variety of opinions as to what exactly P2P is:

■■ Clay Shirky (Internet consultant, writer, and speaker) once said that “P2P
is a class of applications that takes advantage of resources—storage,
cycles, content, human presence—available at the edges of the Internet.”

■■ Li Gong of Sun Microsystems wrote that “The term peer-to-peer network-
ing is applied to a wide range of technologies that greatly increase the uti-
lization of information, bandwidth, and computing resources in the
Internet. Frequently, these P2P technologies adopt a network-based com-
puting style that neither excludes nor inherently depends on centralized
control points.”

■■ Ed Dumbill of XML.com said, “P2P is whoever says they’re P2P.”

Right now Mr. Dumbill’s definition seems to be winning the popular vote. One
of the purposes of this chapter is to help you formulate your own answer to the
question, “What is P2P?” The next section begins our discussion of peer-to-peer
technology with a quick review of network topologies. In the final section, we
look at Napster, Morpheus, instant messaging, and Usenet from a P2P perspec-
tive; and then discuss some of the legal, technical, and security issues that have
arisen from the use of these and similar applications.

What Is a Peer-to-Peer Architecture?

If we take a moment to consider the Internet itself, we will see that there are
millions of computers connected in the network at any given time. All of the
computers are theoretically connected to one another, and information stored
on any of the systems can be accessed. As a whole, the topology or layout of the
computers on the Internet is a grouping of machines spread out in various loca-
tions. Within each of the groups or subnets, computers will be visible to other
computers on the subnet and sometimes to the outside Internet. 

Some of the computers will be servers and host information. The machines at
Yahoo! that serve up contents are web servers. Browsing to Yahoo! on your
local computer turns the machine into a client. This type of client-server inter-
action is happening for hundreds of thousands of computers at the same time.
While a client machine is browsing to Yahoo!, it could also be sharing a local
drive with group members. In this situation, the machine will become a server
to any client that tries to access files on the local drive. 

C h a p t e r  1 I n t r o d u c t i o n  t o  Pe e r - t o - Pe e r2



In most peer-to-peer systems, the division between a server and a client is
blurred. The computer itself might be connected to other computers using a
token-ring topology, but a peer-to-peer system might have a completely differ-
ent architecture. The peers could all be communicating with a central server,
like Napster.

In most cases, peers will be connected to one another over the Internet 
using either the TCP or HTTP protocol. As you probably already know, TCP/IP
is the fundamental protocol for transferring information over the Internet. 
The HTTP protocol is built on top of TCP/IP and allows communication
between computers using port 80. HTTP is very popular for peer-to-peer 
systems because most organizations keep port 80 clear on their firewalls for
web browser traffic.

Several network topologies can be used for connecting P2P systems. In this
section, we discuss the major P2P network topologies in order to explain how
information can be transmitted between peers effectively.

The Hierarchical Topology
One of the most common topologies is the hierarchy. Every time you type a
website URL into your browser, you are using a system called DNS, or Domain
Name Server. This system is set up in a hierarchy, with root servers at the very
top levels. The hierarchy topology looks like Figure 1.1. For several years now,
critics have called for an overhaul of the DNS architecture because the root
servers represent a single point of failure. However, because the entire system
is based on replication and the chance of the DNS system going down is very
small, no real work has occurred in this area.

What Is a Peer-to-Peer Architecture? 3

Root

Middle
Nodes

Leaf Nodes

Figure 1.1 The hierarchy network topology.



The Ring Topology
Token Ring is a network topology that uses the concept of passing a single
token around to the computers connected in a ring pattern. When a machine
receives the token, it can send information out onto the network. The ring
topology isn’t used much anymore for common networks, but does provide an
interesting pattern for load-balancing a single-server system or hierarchy. The
top rung of a hierarchy topology could actually be a ring of servers that balance
the network requests. Figure 1.2 shows what a ring topology looks like.

C h a p t e r  1 I n t r o d u c t i o n  t o  Pe e r - t o - Pe e r4

Node 5 Node 3

Node 1

Token

Figure 1.2 The ring network topology.

The Client-Server, or Centralized, Topology
By far the most common topology is the client-server, or centralized, topology.
The terminology of client-server has been with us for many years; more
recently, the term centralized has been used to describe a system in which a
single computer, the server, makes services available over the network. Client
machines contact the server when the services are needed. Obviously, the more
clients in the system, the larger the server must be. At some point, the server
will need to be replicated in order to handle the traffic volume from all clients.
Figure 1.3 shows an example of the centralized topology.

Server

Clients

Figure 1.3 The client-server, or centralized, network topology.

The Decentralized Topology
The decentralized topology is a network topology that comes closest to being
truly peer-to-peer. There is no central authority, only individual computers that



are able to connect and communicate with any of the other computers on the
network. When a packet of information starts its travels on the Internet, it is
basically traveling through a decentralized topology. Information within the
packet itself tells each computer where to send the packet next. Figure 1.4
shows an example of a decentralized network topology. Basically, all of the
peers in the system act as both clients and servers, handling query requests and
downloads while also making media searches and download request them-
selves. The KaZaA and Gnutella applications use this decentralized topology for
their P2P systems.

What Is a Peer-to-Peer Architecture? 5

Peer

Peer

Peer

Peer

Figure 1.4 The decentralized network topology.

The Hybrid Topology
In the hybrid topology shown in Figure 1.5, we have an example of a situation
where the individual computers are considered clients when they need infor-
mation. The client that needs information will contact a central server (the cen-
tralized servers are distributed in the example shown in Figure 1.5) to obtain
the “name” of another client where the requested information is stored. The
requesting client will then contact the client with the information directly. With
the hybrid, a computer can be either a client or a server. This is the topology
used for the Napster system—individual peers contact a localized server for
searching and proceed to contact peers directly for media downloading.

Centralized
Servers

Figure 1.5 The hybrid network topology.



Examples of Peer-to-Peer Systems

This section describes several well-known peer-to-peer applications. We briefly
examine how each one shares resources and services so that by the end of this
section you’ll have a clearer idea of what functional, real-world P2P really
means.

Napster
Napster is the software that thrust the peer-to-peer concept into the limelight.
As you probably know, Napster was developed to allow the sharing of MP3
music files created from CDs and other sources. Later in the chapter, we briefly
discuss why Napster isn’t the peer-to-peer powerhouse it once was, but for now
let’s look at how Napster works:

1. A prospective user downloads the Napster peer software from a Napster
primary or mirror web site.

2. Once installed and launched, the peer software attempts to connect to a
central Napster server, where the user is required to choose a username
and password. 

3. The user can have the peer software search his or her local hard drive for
MP3 files to share with others. If this option is selected, the user’s hard
drive will be searched and the names of any media files will be transferred
to the central server. Note that only the filenames are transferred.

4. The user can search for media in the Napster network. The peer software
will transfer the search string to the central server, which will return a list
of files found and connection information about the peer computers where
the files reside, including the username, the IP address, the port to connect
to, the connection speed, and the file size.

5. The Napster peer making the request will attempt to directly contact the
Napster peer on the remote computer where the target file resides. At this
point, the central server is no longer involved in the file transfer.

For Napster, the central server is just a large database containing a list of all
files found in all clients in the network. The system worked very well, and many
of the peers who had a fast connection to the Internet were typically slammed
with file requests. If your system was being swamped with requests to down-
load files, you could set a limit to allow only N number of active downloads at
any one time. If a new download request came into the peer, the peer would
respond with a message indicating that the download request was added to the
queue. The queue would automatically keep track of all download requests and
move them into an active state as older download requests finished.

C h a p t e r  1 I n t r o d u c t i o n  t o  Pe e r - t o - Pe e r6



From this explanation, it is clear that the Napster system uses a hybrid topol-
ogy. Without the centralized server, all of the peers in the system would have
media to share and also want to search for media, but they wouldn’t know
about one another. The centralized server is responsible for keeping a database
of all peers and what they have to share available to all peers in the network.

Gnutella
As Napster became successful, other P2P products such as Gnutella were cre-
ated to enable information sharing. One feature that distinguishes Gnutella is
that it uses the HTTP protocol to transfer information. HTTP is used by web
browsers to contact web servers, so in a sense a Gnutella peer is actually a
transparent web site “server” with links for each of the pieces of media being
shared. A Gnutella peer contacts a Gnutella “server” in much the same way that
a standard web browser contacts a web server. 

The topology for Gnutella is decentralized, and there is no centralized author-
ity. So, if there is no central authority, how does a peer obtain a list of the media
files available in the network?

The real key to Gnutella is its search capability. With no central server, the
peers need to be able to determine what files are available in a fashion that is
both quick and effective. The search mechanism works by creating a search
packet with a max hops value that indicates the maximum number of times the
search packet will be propagated in the Gnutella network before it is returned
to the peer that originated it. So, if a packet has a max hops value of 3, the
packet will be allowed to be propagated throughout the Gnutella network a
maximum of three peers away from its peer of origin. As each peer receives the
packet, it decrements an internal counter. When the internal counter reaches
zero, the search packet is no longer forwarded to other peers. 

When a peer requests a search, the search packet is sent to all the peers that the
requesting peer knows about. Those peers will immediately send all media file
descriptions matching the search string in the packet back to the requesting peer;
the peers will then forward the search packet to all the peers they know about.

The search process does have a problem in that you can never be sure your
search packet reaches a peer that has the information you want. Further, the
process of broadcasting the search packet to all known peers has a predictable
consequence of using high bandwidth. If you increase the maximum hops
allowed for the search, you might find your information, but there will also be a
penalty in search time. In addition, when the search result is sent back to the
originator, it must pass back through the same sequence of peers it initially
traveled. Figure 1.6 shows an example of passing a search request between
three sites.

Examples of Peer-to-Peer Systems 7



Figure 1.6 The Gnutella search process.

In this example, Site A is requesting all files that match the phrase Rush. Site A
sends the search packet to Site B. Site B creates a list of the items requested by
Site A (assigning a unique request number to the search packet), sends any
matches it has locally back to Site A, and then forwards the search packet to
Site C. If Site C has any matching files, the results will not be directly sent to
Site A, but instead to Site B. When Site B receives the results from Site C, it
checks its list, sees that Site A originally requested the information, and for-
wards it to Site A. 

Morpheus/KaZaA
Another file-sharing system, called Morpheus, was developed by MusicCity to
replace a central server system with a decentralized system. Morpheus is based
on FastTrack’s P2P Stack, also used in the KaZaA file-sharing system. Morpheus
and KaZaA aren’t limited in their sharing of file types. You will find audio, video,
images, documents, and even software in the two applications’ networks. The
two systems have improved the technologies involved in file download and
search on a decentralized system by allowing for file restarts during download
and by keeping lists of multiple peers who have the same file available. 

Although the peers are basically decentralized, a central server is still used for
providing username/password functionality and maintaining the overall net-
work. In addition, the systems use a pure hybrid topology, as shown earlier.
When a peer logs on, it is associated with a peer hub. These peer hubs are
responsible for maintaining a list of the media files on their peers, and assisting

C h a p t e r  1 I n t r o d u c t i o n  t o  Pe e r - t o - Pe e r8

5) Look up source

6)
 R

et
ur

ns
 R

es
ult

   
  4) Returns Result     

3) Forward Request1)
 In

itia
te

 S
ea

rc
h

2) Record Request

1)   . . .

2)   . . .

3)   . . .

Site B

Site CSite A



in the search requests between peers and peer hubs. If you are a peer on the net-
work, and you have high bandwidth and a good deal of CPU power, your peer
can be elected a peer hub automatically; however, you can select an option to
not become a peer hub.

The hub peers are very important to the overall efficiency of the P2P network.
Individual peers don’t need to send requests to every peer in the network or
worry about a max hops value—they send requests to their hub peer. The hub
peer can quickly answer requests with information about media residing on the
other peers in the hub. At the same time, the hub peers can contact other hub
peers to find even more results. The amount of network traffic involved in a
search is drastically reduced.

Media is transferred between peers on a purely peer-to-peer basis with no inter-
mediary peers propagating them. The files are transferred using HTTP in order
to reach peers behind firewalls. It should be noted that all transfers display the
IP address of the machines involved in the transfer.

Usenet
One of the oldest peer-to-peer systems, Usenet is based on a hybrid topology in
which server nodes will be contacted for information from clients, and the
server nodes will communicate with one another to ensure widespread distrib-
ution of information. The server nodes in Usenet are really the peers in the net-
work. They have information to share and also request updates as needed from
other peers. For the most part, the server nodes will all contain the same infor-
mation if they choose to keep all newsgroups. Figure 1.7 shows an example of
how the server nodes communicate to keep one another up-to-date.

Examples of Peer-to-Peer Systems 9

Send 5, 8, 18

Have 4, 5, 6

Have 4, 66, 99

Need 45, 78

Server

Server

Server

Figure 1.7 The Usenet server message-sharing process.



Client applications will connect to the server peers to obtain a listing of title
messages available. When a message is selected, the actual data behind the title
will be sent. It is obvious from this description that the developers of Usenet
built an early prototype of a peer-to-peer system.

Instant Messaging
Instant messaging systems, such as AOL Instant Message (AIM) and Yahoo!
Instant Message, typically work in a topology in which central servers are used
to coordinate your group of connections. When you log into an instant messag-
ing service, the server will keep a temporary list of your contacts. The server
will check to see if any of your contacts is currently logged into the system. If
so, the IP and port information for the instant messaging client on the contact
will be provided to your client, and your client information will be provided to
the contact. From that point on, all communication between you and the con-
tact will be in a peer-to-peer fashion. 

Extreme Peer-to-Peer: Distributed
Computational Engines

Several years ago, a tremendous piece of software was created that 
revolutionized the way Grand Challenge and computationally complex 
problems were solved. This software follows the traditional habit of building
larger and larger supercomputers to solve problems. While distributed.net
(www.distributed.net) wasn’t the first system to use the idle CPU cycles of
machines on a network, they are certainly the biggest. Using client software
that runs as a background process in a “nice” mode, distributed.net has
announced its intention to break RSA Labs’ 56-bit secret-key code in response
to a challenge put forth by RSA Labs.

When installed, the client software contacts a central server and requests pack-
ets of encrypted data that it will attempt to decrypt using a brute-force algo-
rithm. When those packets have been processed, the results are sent to the
central authority and a new set of packets is retrieved. 

The resulting computation power and magnitude of machines involved is enor-
mous. For example, there are on average 33,000 participants active on any
given day. All of those participants have a minimum of one computer, and some
are using entire labs. The participants are working through 92,141,082 keys per
second, which equates to roughly .01% of the entire keyspace every day.

When the popularity of distributed.net rose, another group decided to use the
same principle in the search for extraterrestrials. SETI@home (which stands
for Search for Extraterrestrial Intelligence) produced a client that works in
much the same way. The client receives signal data from the SETI installation,

C h a p t e r  1 I n t r o d u c t i o n  t o  Pe e r - t o - Pe e r10



and applies an algorithm to the information. The results are sent back to a cen-
tral server, and more data is retrieved for processing. Figure 1.8 shows the
transfer part of the system, which can be loosely called a peer-to-peer network.

Warnings 11

SETI@Home
Server

Backend
DB/Processing

SETI
Website

Reports,
Stats

PC/Mac/Unix

PC/Mac/Unix

PC/Mac/Unix

Figure 1.8 A traffic example within SETI.

Warnings

While peer-to-peer systems offer great benefits in resource distribution, com-
munication, and problem solving, developers and users alike should be aware
of unresolved issues involved in using them. In this section, we briefly discuss
four broad issues to raise your awareness level and spur your own conversa-
tions and research.

Workplace Policies
Recently, there was a case in which a university system administrator installed
a distributed computational engine on some of the computers under his con-
trol. When the university found out, he was charged with theft. In effect, he had
stolen both CPU utilization and bandwidth of those computers. While there is
much argument over the dollar figures provided by the university, you must be
careful about how machines in your care are used.

The company I work for has a strict policy: No peer-to-peer systems or software
shall operate on company computers. Before using a peer-to-peer system at
work, check with those who make and enforce the policy.

Intellectual Property
One of the major faults commonly associated with the Internet is that it enables
users to inappropriately distribute copyrighted material quickly and on a global
basis. This issue has caused many heated arguments among consumers, 



distributors, copyright owners, artists, civil libertarians, and others; but it all
comes down to what the law says about intellectual property. If you buy some-
thing and offer it for sale or give it away, there is usually no problem because
the property has been transferred to another individual (one notable exception
to this is software that is typically licensed, not purchased). If you buy some-
thing and make a copy of it, and then you offer that copy for sale or give it away,
you are no longer transferring the property you purchased—instead, you are
transferring a copy and keeping the original. The law says this is theft, and this
is ultimately why Napster failed. Be careful what you offer to other peers in a
peer-to-peer system.

Bandwidth Costs
Peer-to-peer applications eat bandwidth for lunch, and as we all know, there are
no free lunches. In many cases, a peer-to-peer application will be in violation of
an ISP’s service agreement because it can act as a server. ISPs put these policies
in place to guard their precious bandwidth.

In addition to the bandwidth costs, there is a real concern for peer-to-peer sys-
tems that use broadcast mechanisms to locate other peers. As messages propa-
gate across the Internet, more and more “garbage” broadcast packets are
bouncing off the infrastructure. There have even been cases of denial of service
occurring because of the volume of broadcast messages occurring on a net-
work. In some cases, it might be preferable for peer-to-peer applications to
operate on private networks with a limited connection to the “outside world.”

Security
Internet applications are known for security holes. What kind of access does a
remote peer have to your computer when it makes a request to the peer soft-
ware you are running? Do you really know what information is gathered and
sent to some remote server? What about the application itself? Is it secure?
Buggy? Does it contain a Trojan horse? Most recently, it was released that the
KaZaA client contained a stealth application designed to use the spare CPU
cycles of the machine it was installed on. The stealth nature of the application
allowed it to process work undetected by the computer’s owner. These are all
questions and situations that you must ask when using peer-to-peer software.
And as a developer, you have a responsibility to ensure that the peer-to-peer
applications you create are secure.

C h a p t e r  1 I n t r o d u c t i o n  t o  Pe e r - t o - Pe e r12



Summary

This chapter has enumerated several clear and not-so-clear examples of peer-
to-peer applications. Most of the applications, which allow the sharing of infor-
mation over the Internet, have had a profound effect on society. Sometimes, the
effect is to challenge the norm, and in other cases, it provides the ability to get
more work done through increased communication. Throughout this book, we
will learn about the tools available and necessary to build peer-to-peer systems.

Summary 13





JXTA is a peer-to-peer platform specification developed in the Apache open-
source model by Sun Microsystems under the direction of Bill Joy and
Mike Clary. Some of the basic goals of the platform are

■■ Peers should be able to discover one another.

■■ Peers should self-organize into peer groups.

■■ Peers should advertise and discover network resources.

■■ Peers should communicate with one another.

■■ Peers should monitor one another.

■■ The platform should not require the use of any particular computer lan-
guage or operating system.

■■ The platform should not require the use of any particular network trans-
port or topology.

■■ The platform should not require the use of any particular authentication,
security, or encryption model.

The overriding tenet for JXTA was to create a platform with enough standard-
ized functionality to enable open-source and commercial developers to create
interoperable services and applications. To facilitate this tenet as well as the
other goals, the platform was not created based on one software language over
another. The platform was created through a design process, and the result was
a specification that describes the major points of the system and provides
implementation information.

An Overview of JXTA

C H A P T E R 2

15



The entire JXTA system is modeled using a small number of protocols for han-
dling JXTA services. The protocols can be implemented using any language,
thus allowing heterogeneous devices to exist and communicate with one
another in a huge peer-to-peer system. Currently, there are six protocols in the
system:

Peer Resolver Protocol (PRP)—Used to send a query to any number of
other peers and to receive a response.

Peer Discovery Protocol (PDP)—Used to advertise content and discover
content.

Peer Information Protocol (PIP)—Used to obtain peer status 
information.

Pipe Binding Protocol (PBP)—Used to create a communication path
between peers.

Peer Endpoint Protocol (PEP)—Used to find a route from one peer to
another.

Rendezvous Protocol (RVP)—Used to propagate messages in the 
network.

In Figure 2.1, the six different protocols are shown in their relationships to each
other. The illustration further shows how a Java reference implementation can
be built between the Java JRE and an application.

C h a p t e r  2 A n  O v e r v i e w  o f  J X TA16

Application

Dependency

Peer Discovery Protocol

Peer Resolver Protocol

Peer Endpoint Protocol

Java JRE

Rendezvous Protocol

Peer Information ProtocolPipe Binding Protocol

Figure 2.1 JXTA specification protocols hierarchy.

These six protocols are all that is needed for individual peers to exist in a
decentralized peer-to-peer environment that is self-forming and that has no
need for a centralized server. Peers have the ability to exist on private networks
behind firewalls, and can be assigned Internet addressable IP addresses or an



address through the Network Address Translation process. Network assump-
tions in the protocols were kept to a minimum to allow implementations on a
variety of transport mechanisms. The protocols allow peers to

■■ Advertise content they would like to share

■■ Discover content they are interested in

■■ Form and join peer groups, both public and private

■■ Assist in the routing and forwarding of messages transparently

The protocols and the entire JXTA specification do not specify languages that
must be used for implementation. As one would expect, Sun chose to do the
initial reference implementation in Java.

NOTE
By using Java as the first implementation language for JXTA, Sun has made the toolkit
available to a large audience on many different platforms. You can find the current
binding on the JXTA website; Appendix A contains full installation instructions.

The JXTA Architecture

In order for the JXTA protocols to work together to form a complete system, an
architecture must be in place. Figure 2.2 shows the architecture defined for the
JXTA specification.

The JXTA Architecture 17

Application
layer

Services
layer

Core
layer

JXTA Community Services

JXTA Community Applications

Sun
JXTA
Services

• Indexing
• Searching
• File Sharing

JXTA
Shell

Peer
Commands

Peer Groups Peer Pipes

Security

Any Peer on the Extended Web

Peer Monitoring

Sun
JXTA
Applications

Figure 2.2 The JXTA peer-to-peer architecture.

The Core Layer
The core layer is where the code for implementing the protocols is found. The
protocols provide the functionality for peers, peer groups, security, and moni-
toring; as well as all the message-passing and network protocols. 



Sitting over the protocols is a universal peer group called the WorldPeerGroup.
When a peer starts executing, it will automatically become part of the World-
PeerGroup, and will have access to peer group functionality or services already
implemented. This functionality allows the peer to perform discoveries, join
and create other peer groups, and exchange messages using pipes.

The Services Layer
A service is a  functionality, built on top of the core layer, that uses the proto-
cols to accomplish a given task. The services layer can be divided into two
areas: essential and convenient. To illustrate this difference, consider two ser-
vices: a service that provides membership and a service that translates mes-
sages from AOL Instant Messenger (AIM) to MSN Messenger. The membership
service is an essential service in a peer-to-peer environment. In the JXTA archi-
tecture, all peers automatically join a default group called the NetPeerGroup.
This peer group provides basic services, but not all peers will want to be part of
the big umbrella group at all times. By using a membership function, peers can
join smaller private groups, and interact only with other known peers. On the
other hand, the instant messaging translator service is a convenient service
because a peer does not have the inherent need to translate messages between
AIM and MSN.

All of the services that could be created will allow peer-to-peer applications to
be written more quickly and, more important, allow the sharing of code the
likes of which haven’t been seen. In fact, the entire Microsoft .NET system is
based on the concept of having services available so they don’t have to be rein-
vented by every company that needs them.

The Application Layer
The application layer is where you come into the picture as the developer of
peer-to-peer applications that will be used by others in the Internet community.
The application layer hosts code that pulls individual peers together for a com-
mon piece of functionality—for instance, to perform the computational model-
ing of a new virus or to decipher an encrypted code. 

One of the important points to remember is that the line between the layers in
the architecture is not rigid. If you develop a peer that provides functionality,
one peer might see your peer’s functionality as a service that fits into a niche
needed by the peer, but another might see it as a complete application without
pulling in other pieces. For the JXTA specification and related bindings to be
successful, developers need to fill out the application layer.

C h a p t e r  2 A n  O v e r v i e w  o f  J X TA18



Major JXTA Technologies

This section is an overview of the major technologies and concepts used in
JXTA. We discuss these technologies in greater depth throughout the remainder
of the book.

IDs
As you would expect in a peer-to-peer system, the resources of the system have
to be referenced in some manner. A simple name isn’t enough because
resources could have identical names. There could easily be two peer groups
called “Home Office” or 1,000 files named me.jpg. JXTA solves this problem
with a JXTA ID, also referred to as a URN, which is a unique string used for the
identification of six types of resources:

■■ Peers

■■ Peer groups

■■ Pipes

■■ Content

■■ Module classes

■■ Module specifications

String Format

The JXTA ID consists of three parts. It is important to note that the URN and
JXTA portions of the ID are not case-sensitive, but the data portion of the ID is
case-sensitive.

■■ Namespace identifier—jxta

■■ Format specifier—urn

■■ ID—unique value

The entire ID can be specified by using the following Augmented Backus-Naur
Form shown in Listing 2.1.

Major JXTA Technologies 19

<JXTAURN>    ::= "urn:" <JXTANS> ":" <JXTAIDVAL>

<JXTANS>     ::= "jxta"

<JXTAIDVAL>  ::= <JXTAFMT> "-" <JXTAIDUNIQ>

Listing 2.1 The JXTA URN specification. (continues)



C h a p t e r  2 A n  O v e r v i e w  o f  J X TA20

<JXTAFMT>    ::= 1 * <URN chars>

<JXTAIDUNIQ> ::= 1 * <URN chars>

<URN chars>  ::= <trans> | "%" <hex> <hex>

<trans>      ::= <upper> | <lower> | <number> | <other> |

<reserved>

<upper>      ::= "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" |

"I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" |

"Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" |

"Y" | "Z"

<lower>      ::= "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |

"i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" |

"q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" |

"y" | "z"

<hex>        ::= <number> | "A" | "B" | "C" | "D" | "E" | "F" |

"a" | "b" | "c" | "d" | "e" | "f"

<number>     ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" |

"8" | "9"

<other>      ::= "(" | ")" | "+" | "," | "-" | "." |

":" | "=" | "@" | ";" | "$" |

"_" | "!" | "*" | "‘"

<reserved>   ::= "%" | "/" | "?" | "#"

Listing 2.1 The JXTA URN specification. (continued)

Examples

The peer IDs in Figure 2.3 are valid JXTA IDs, created and displayed using the
program in Listing 2.2. This program will come in handy later when we create
advertisements to publish new resources and services.

Figure 2.3 Sample peer IDs.



Major JXTA Technologies 21

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import net.jxta.document.*;

import net.jxta.peergroup.*;

import net.jxta.exception.*;

import net.jxta.impl.peergroup.*;

import net.jxta.id.*;

import net.jxta.discovery.*;

import net.jxta.pipe.*;

import net.jxta.protocol.*;

import net.jxta.platform.*;

import net.jxta.endpoint.*; 

import net.jxta.peer.*;

import net.jxta.codat.*;

public class PeerGroupIDCreator extends JFrame {

private JTextArea displayArea;

public static void main(String args[]) {

PeerGroupIDCreator myapp = new PeerGroupIDCreator();

myapp.addWindowListener (

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

myapp.run();

}

public PeerGroupIDCreator() { 

super("Creator");

Container c = getContentPane();

displayArea = new JTextArea();

c.add (new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300,150);

show();

Listing 2.2 The code for generating IDs. (continues)



C h a p t e r  2 A n  O v e r v i e w  o f  J X TA22

PeerGroupID myNewPeerGroupID = (PeerGroupID)

net.jxta.id.IDFactory.newPeerGroupID();

displayArea.append("PeerGroupID is: " + myNewPeerGroupID +

"\n");

PeerID myNewPeerID = (PeerID)

net.jxta.id.IDFactory.newPeerID(myNewPeerGroupID);

displayArea.append("PeerID is: " + myNewPeerID + "\n");

CodatID myCodatID = (CodatID)

net.jxta.id.IDFactory.newCodatID(myNewPeerGroupID);

displayArea.append("CodatID is: " + myCodatID + "\n");

ModuleClassID myModuleClassID = (ModuleClassID) 

net.jxta.id.IDFactory.newModuleClassID();

displayArea.append("ModuleClassID is: " + myModuleClassID

+ "\n");

ModuleSpecID myModuleSpecID = (ModuleSpecID)

net.jxta.id.IDFactory.newModuleSpecID(myModuleClassID);

displayArea.append("ModuleSpecID is: " + myModuleSpecID +

"\n");

PipeID myNewPipeID = (PipeID)

net.jxta.id.IDFactory.newPipeID(myNewPeerGroupID);

displayArea.append("PipeID is: " + myNewPipeID + "\n");

}

public void run() {

}

}

Listing 2.2 The code for generating IDs. (continued)

Specific IDs

The IDs for peers, peer groups, pipes, and content are fairly self-explanatory,
but the Module Class ID and Module Spec ID deserve a little more detail. Both
of these IDs deal with a JXTA technology called a module. We discuss modules
in detail later in the chapter, so for now, consider a module to be an implemen-
tation of some named functionality. 

Typically, functionality is based on a specification that describes and/or names
the desired features. JXTA has a method of publishing a specification to a peer
group, which must contain an ID called the Module Spec ID. No code—only a
specification—is involved here. When a developer creates an implementation



based on the specification, that implementation is advertised with a Module
Impl ID. The container used for the advertisement of the implementation will
also contain the Module Spec ID of the specification being implemented. If sev-
eral implementations of the same specification exist, all of the implementation
containers will have different Module Impl IDs but the same Module Spec ID.

Well-Known IDs

There are three reserved IDs in the JXTA specification:

■■ NULL ID

■■ World Peer Group ID

■■ Net Peer Group ID

The ABNF for these IDs is:

<JXTAJXTAURN>    ::= "urn:" <JXTANS> ":" <JXTAJXTAFMT> "-"

<JXTAJXTAFMTID>

<JXTAJXTAFMT>    ::= "jxta"

<JXTAJXTAFMTID>  ::= <JXTANULL> | <JXTAWORLDGROUP> | <JXTANETGROUP>

<JXTANULL>       ::= "Null"

<JXTAWORLDGROUP> ::= "WorldGroup"

<JXTANETGROUP>   ::= "NetGroup"

Java Binding for IDs

Our previous discussions have focused on how the specification defines IDs. The
Java binding builds an ID based on a Universal Unique Identifier (UUID), which
is a 128-bit hexadecimal number that functions as a unique identifier for each
object. The last two hex characters of the ID define the type of ID being encoded.
The current values can be seen in the ABNF for the Java binding of IDs:

<JXTAUUIDURN>    ::= "urn:" <JXTANS> ":" <JXTAUUIDFMT> "-"

<(1*(<hex> <hex>)) <JXTAUUIDIDTYPE>

<JXTAUUIDFMT>    ::= "uuid"

<JXTAUUIDIDTYPE> ::= <CODATID> | <PEERGROUPID> | <PEERID> |

<PIPEID> | <MODULECLASSID> | <MODULESPECID>

<CODATID>        ::= "01"

<PEERGROUPID>    ::= "02"

Major JXTA Technologies 23



<PEERID>         ::= "03"

<PIPEID>         ::= "04"

<MODULECLASSID>  ::= "05"

<MODULESPECID>   ::= "06"

The Peer
The most common and widely understood component of any P2P system is the
peer. A peer is simply an application, executing on a computer device, that has
the ability to communicate with other peers. For the entire system to work, it is
fundamental that the peer have the ability to communicate with other peers.
Obviously, with this definition, a wide variety of applications can be considered
P2P.

One computer system might be host to any number of peers. In fact, if you con-
sider the systems presented in the first chapter, your own computer might be
using its extra CPU cycles for distributed.net while at the “same time” perform-
ing a query on the Gnutella network. Shortly, you will be developing JXTA
peers. All of the peers will be executing on the same computer, but each will
interact in different P2P systems.

In the client-server paradigm, clients contact a central server that stores data
and delivers services. In peer-to-peer systems, all peers can be clients, servers,
or both. In file-sharing P2P systems, many peers in the network share their own
files while at the same time pulling new files from distant peers. A single peer
can function both as a “client” (to request information from other peers) and as
a “server” (to answer requests from other peers). 

As you begin to dig deeper into the definition of a peer, you will discover other
characteristics, including

Peer identity—A peer needs to be known.

Peer membership—A single peer isn’t much use.

Peer transport—Peers must communicate to survive.

For the purposes of JXTA, a peer “is any networked device . . . that implements
the core JXTA protocols.” This is the definition in the specification, but you
should note that a single “networked device” can have any number of JXTA
peers executing on it. The peers could all be implementing different service
code or participating in a computational complex algorithm. By using the term
networked device, the creators of JXTA are also stating that peers are not lim-
ited to computers that sit on a desk but also extend from mainframes to the
smallest PDAs and devices that we might not normally think of as “computers.” 

C h a p t e r  2 A n  O v e r v i e w  o f  J X TA24



Some of the other capabilities and features of JXTA peers include

A JXTA peer could volunteer to implement a module specification and lend
its host computer to some task. In JXTA, any peer can implement a specifi-
cation regardless of the binding used by the peer. All of the peers that
implement the same specification are interchangeable and transparent to
the peer using the peer’s service.

Peers can—but are not required to—share content within a peer group. 

Peers have the ability to discover other peers and content using all of the
network transport protocols implemented by the specification binding;
however, the peer will use the defined JXTA message format for all commu-
nications.

Peers are not required to remain on the JXTA network for any known
period. A peer that is using the services of another peer cannot be guaran-
teed that a peer will remain on the network until its services are no longer
needed.

Peers are not required to have direct communication or live directly on the
Internet. Peers may use the services of a routing or rendezvous peer for
communicating on the network.

Peer Groups
If several peers get together to share files or work on a large, computationally
intensive problem, they have formed a group. The formation of a group is usu-
ally attributed to several things:

■■ Membership to a shared system using a username/password

■■ Common transport 

■■ Access to a centralized server

In the first case, the group is formed when peers log into a group with a prede-
termined username/password or one picked by the peer itself. In some cases,
the group is defined by one of the peers publishing the information necessary to
join. If the peer publishes its own username/password, the group would be con-
sidered private because not all peers would potentially know about the group.

In the second case, the transport system used to connect peers and exchange
information can produce a group in itself. Take, for example, Napster and
Gnutella; these two systems are unable to communicate between themselves
because the network transport is different and the format of the messages
exchanged between peers is unique. The potential to create an even larger
group of peers is lost because the individual peers don’t know how to commu-
nicate with each other. We have seen this in the instant messaging world as
well; AOL, Microsoft, and Yahoo! all have proprietary systems, and if you want

Major JXTA Technologies 25



to communicate with someone on each system, you must have three individual
clients.

Finally, a group is formed when all of the peers are required to log into a cen-
tralized server in order to be a part of the group. Although the log will require a
username and password, the group hasn’t been set up by an individual peer but
by the network itself.

Joining a group can provide many benefits that a single peer would have to
implement itself. The group will have features—commonly called services—
which each peer can take advantage of. The JXTA network has one umbrella
peer group called the WorldPeerGroup. Because the WorldPeerGroup is the
default group that all new peers automatically join on the JXTA network, a
JXTA peer has a number of services immediately available to it, including dis-
covery, advertisements, and pipes, among others. The current implementation
includes code for creating and joining new peer groups in a public and private
format. The public peer group doesn’t require a username or password, but a
private one does. Any peer can create either type of peer group for whatever
purpose it desires.

You might think there is a common peer group server on the network some-
where. There really isn’t, because the Java realization of the JXTA specification
has all of the default peer group functionality built in. This means that one or
more peers can be launched in a network completely cut off from the Internet
and still function. The default peer group exists by name, and its functionality
is contained within all peers by default.

Peer groups have a number of services, which have been defined as a core set
by the specification. Those services listed in the current specification are

Discovery Service—Allows searching for peer group content.

Membership Service—Allows the creation of a secure peer group.

Access Service—Permits validation of a peer.

Pipe Service—Allows creation and use of pipes.

Resolver Service—Allows queries and responses for peer services.

Monitoring Service—Enables peers to monitor other peers and groups.

Peer groups have the option of creating and implementing additional services
as desired.

Advertisements
When peers and peer groups have services that they want to make known to the
P2P network, they use an advertisement. An advertisement is an XML-based

C h a p t e r  2 A n  O v e r v i e w  o f  J X TA26



document that describes JXTA resource and content. All of the protocols use
advertisements to pass information. An example of a pipe advertisement is:

<?xml version="1.0" encoding="UTF-8"?>

<jxta:PipeAdvertisement>

<Name>JXTA-CH20EX1</Name>

<Id>urn:jxta:uuid-

9CCCDF5AD8154D3D87A391210404E59BE4B888209A2241A4A162A10916074A9504</Id>

<Type>JxtaUnicast</Type>

</jxta:PipeAdvertisement>

All advertisements are hierarchical in nature and will contain elements specific
to the advertisement type. Of particular importance is the ID of the resource,
which will be used to identify the resource being advertised. 

Modules
Peer groups provide the basic functionality needed for a P2P system, but at
some point you will want to create additional features or services usable by all
peers. You might want to expand on the base JXTA specification and provide
better, stronger, faster resources; or you may need to provide new services,
such as a distributed storage system. A module is one of the ways the function-
ality can be provided. A module is simply a piece of functionality designed to be
“downloaded” or obtained outside the core JXTA implementation. In most
cases, a P2P group will advertise a specification that tells about the functional-
ity needed. The specification will be propagated through the JXTA network. A
peer can discover the specification and want to use the new functionality.

This might sound a little strange, considering the fact that we are talking about
software, but imagine for a moment that a peer that has some task to perform.
A developer could write code to perform the task directly in the peer, yet also
use services provided in the JXTA network. The situation could evolve like this:
The peer begins execution by first requesting data from all peers. The peer has
been programmed to execute some functionality on the incoming data, yet the
functionality as written in the peer is expensive. Therefore, it performs a key-
word search within the network to find if any peers have implemented the
desired functionality. If a module is found within the network that handles that
functionality, the peer could be programmed to use the less “expensive” func-
tionality. Granted, a fairly large and sophisticated network would be needed for
this type of scenario, but it isn’t beyond reason.

The specification doesn’t actually provide the functionality; it only supplies the
information about it. Another peer and its associated human developer can
build a service using the specification and publish an implementation adver-
tisement. The implementation advertisement tells the network that a service is
available at a specific peer that implements the functionality described in the

Major JXTA Technologies 27



specification. One of the goals of a P2P system is that multiple peers can have
implementations of the same specification. The implementations could be in
different languages, yet still provide the same service. This specification/imple-
mentation paradigm allows for redundancy of services so that functionality is
still available in the network when peers are overloaded or unavailable. We
cover modules in detail in Chapter 12, where we will build a specification and
its implementations.

Transport Mechanisms and Pipes
When a peer wants to communicate with other peers, it must use some sort of
network transport. The network transport is the protocol used to send infor-
mation over the wires connecting all the peers. In all cases, the peers will be
connected to a computer network. The network itself will likely be an Ethernet
system. Ethernet, a protocol that dictates how information is passed from one
network card to another, is really the barebones network transport. However,
because of the housekeeping involved, another protocol was created, called the
Transmission Control Protocol (TCP). The job of TCP is to manage the Ether-
net packets of information being sent from one machine to another. On top of
TCP is the Internet Protocol (IP). IP is primarily concerned with routing, and
describes the steps necessary to route packages across the Internet from one
machine to another. When you activate a peer call FTP, it is using TCP/IP to
transfer data from one machine to another.

It is fair to say that all P2P systems use TCP/IP as a network transport because
all of them allow peers to exist on the Internet. Without TCP/IP, Internet traffic
isn’t possible, so these protocols must exist. Now, with that out of the way, let’s
look at networks more closely to see how many of the various P2P systems are
able to operate.

For communication to occur using TCP/IP from a computer application, a set of
sockets is used. The socket on the transmitting computer binds to a socket on
the receiving computer using a port. There are many common ports on a com-
puter, including 20/21 (for FTP), 80 for (HTTP), and others. The ports below
1024 are generally reserved for system use, and those above 1024 can be used
by any application. So, when a peer wants to communicate with another peer, it
will ultimately create a socket connection to the remote peer. A port will be
specified in the connection process and communication will begin.

For simplicity’s sake, we will say that the information passed between the
machines is sent in a message. The message will contain information about the
sender and receiver, as well as the data to be transmitted. Don’t confuse this
high-level message with the low-level packets TCP/IP and Ethernet are han-
dling to make network communication possible.

C h a p t e r  2 A n  O v e r v i e w  o f  J X TA28



With this background knowledge, we can discuss the two primary network
transport differences between all P2P systems. Basically, these two differences
keep peers belonging to different systems from communicating with each
other. The differences are

■■ The high-level network protocol

■■ The message format

The High-Level Network Protocol

Given the fact that all communication will occur using TCP/IP, what do some
systems do above and beyond that? The answer is HTTP and security. HTTP is
a protocol, much like FTP or other Internet protocols, that defines how infor-
mation should be passed from one machine to another, and specifies which
port should be used for the communication. HTTP is the protocol used by the
World Wide Web over port 80. All common web servers bind to port 80 on the
machine they are executing. TCP/IP traffic, which arrives at port 80, will be
consumed by the web server, and the information in the traffic will be parsed
using the HTTP protocol. Because HTTP is built on top of TCP/IP, the informa-
tion will also include the IP address of the machine that originated the transfer;
this allows the web server to send a response back to the originator.

If a P2P system uses the HTTP protocol for sending information between peers,
then to all of the machines in the route from peer 1 to peer 2, the message will
look like a request from a browser to a web server. This is important to those
peers who are behind firewalls because firewalls will generally reduce the num-
ber of ports open between the outside and inside networks, but they allow
HTTP port 80. This is the primary reason for using HTTP as a network protocol
on top of TCP/IP (we will discuss this in detail later).

If a system doesn’t use HTTP, but simply relies on TCP/IP, it can choose from
any number of ports to send data to a remote peer. Whether the peers use HTTP
or not, the format of the message is also important.

The Message Format

The HTTP protocol dictates a specific format for requesting information from a
web server as well as sending the response back to the browser; however, our
peers aren’t web servers and browsers (but they probably could be if we
wanted because there is nothing within the JXTA specification to prohibit a
peer implementing the functionality necessary for either a Web server or a
browser). When a P2P system uses HTTP or just TCP/IP for information trans-
fer, a predefined message format will be used. Napster does, Gnutella does,
AIM does, and so does JXTA. The sending peer is responsible for putting its

Major JXTA Technologies 29



information into the correct format so that the receiving peer will be able to
find the information easily.

The primary reason all of the numerous peers in use today cannot communi-
cate with one another is the message format. If you want your AIM Instant Mes-
saging application to “see” Yahoo! peers, it will need to know the message
format to talk with Yahoo!’s central server and with the individual peers. Would-
n’t the industry be revolutionized if a specification were created that had a com-
mon message format?

Pipes

The JXTA specification takes the concept of using a pipe as its communication
mechanism from the Unix operating system and its shell. Information is put in
one end of the pipe, and it comes out at the other end. Through the pipes, mes-
sages can be sent between peers without having to know anything about the
underlying infrastructure. As long as a pipe is involved, peers don’t need to
worry about the network topology or where a peer is located on the network in
order to send messages. Pipes use the concept of an endpoint to indicate the
input and output points of communication; a channel is the connection
between the endpoints.

The Java implementation of the specification has three pipe types:

Unicast—One-way, not secure, and unreliable

Unicast secure—One-way, secure, and unreliable

Propagating—Propagating pipe, not secure, and unreliable

The unicast pipes connect one peer to another for one-way communication.
The propagating pipe connects an output pipe to multiple input pipes. We will
cover pipes in detail in Chapter 13.

Services
By far, one of the most hyped concepts in recent months is the service. The con-
cept of services in JXTA goes above and beyond the simple web service and
extends to functionality that needs to exist in a decentralized network. Pass-
word verification and authentication, purchasing systems, and money handlers
are just a few of the services needed. Because there are two primary entities in
a P2P system—the peer and the peer group—both should be expected to have
services available for all to use.

Peer Group Services

Depending on the implementation of the system, peer groups might have ser-
vices available that peers can take advantage of. Some of the more common

C h a p t e r  2 A n  O v e r v i e w  o f  J X TA30



services include group startup, discovery, and membership. When a new peer
group is put into existence, there are usually a number of startup activities that
have to take place in order to let other peer groups know about the new group.
Once the new peer group has been established, peers should have the ability to
not only find the peer group, but also find other peers within the group. Dis-
covery is paramount to any P2P system, and we will discuss this issue in detail
shortly. When a peer finds a new group that it would like to belong to, the peer
group should have a membership service available.

Within a JXTA peer group, a number of high-level or core services are available.
These services include the ability to propagate advertisements throughout the
network, creation of pipes, and discovery.

Peer Services

In most cases, the primary service that an individual peer will make available is
the sharing of content. A peer will let the group know what types of content it
has available for sharing. The peer will also use the services of the group to find
content it is interested in. Specialized peers can be created to provide services
that aren’t supplied by the group. For example, a peer could be created to serve
as an intermediary between a customer and a store for the purpose of credit
card validation. Customers would provide their credit card to a secure peer,
and the store could provide the order. Customers wouldn’t have to give their
credit card information to the store directly, and the store wouldn’t have to
worry about stolen cards because the intermediary peer would handle all the
details. Customers would get their merchandise, and the store would get paid.

All JXTA peers have the ability to share content with other peers. The content
is published using a peer group service, and a peer can query for content using
a discovery service. When a JXTA peer wants to provide direct paths of com-
munication, it will advertise the existence of a pipe service. Other peers can
find the pipe and communicate one-on-one as needed.

Discovery
Discovery is the process of one peer searching for another peer—in the same
peer group—that contains the desired content. In the example about the cus-
tomer, store, and clearinghouse peers, we have a situation that illustrates the
importance of discovery. Suppose a retail store creates a peer on a local P2P
network to sell encrypted data storage. Also on the network is a peer that needs
encrypted storage. These two peers must be able to discover each other’s exis-
tence before they can exchange content. The content can be an image, a text
file, or any other type of media available for sharing. In addition, peers will want
to be able to locate services created using the modules described earlier. There
are three basic discovery arenas:

Major JXTA Technologies 31



■■ Local

■■ Direct

■■ Propagated

Local

Wouldn’t it be great if all a peer had to do was open the yellow pages and
instantly be able to find the service or content it needs? JXTA peers have a sort
of yellow pages functionality available through the use of a local cache of adver-
tisements. The first time a peer is executed, the local cache is generally empty,
though you can seed a peer’s cache with information about other known peers.
When a peer initiates a search, it checks its own cache first, as shown in step 1
of Figure 2.4. If the search comes up positive from the cache, that peer has the
option of connecting to the peer listed in its cache. If the necessary information
isn’t found in the local cache, a remote discovery will be attempted, as shown
in steps 2 and 3 of the illustration. As a peer performs searches and discovers
new advertisements, it will populate its cache with this information.

C h a p t e r  2 A n  O v e r v i e w  o f  J X TA32

Peer1

Peer2

2) Peer1 Uses advertisement 
to contact Peer2

3) Peer1 tries to contact
Peer3 which is offiine

1) Peer1 checks local cache
for advertisement

Figure 2.4 A local cache and peer contact.



There are times when a peer’s own local cache is the only place it can search for
content—for example, when the peer doesn’t have direct access to an outside
network or the Internet, or in the event of a failure of a remote site that has the
ability to search for content. In these situations, the peer cannot use any of the
other types of discovery.

Many peers will have a local cache, whether they are directly attached to the
Internet or not. The cache has the obvious advantage of enabling quick
searches for content. However, the local peer cannot be 100 percent confident
of the status of the peer found in the local cache. The remote peer might not be
available, or the peer may no longer have the information found in the search
(some peers rotate their content). In either case, the local peer will have to
resort to a more expansive discovery.

If a peer has a local cache and is not directly connected to the Internet, you will
need to seed its cache initially with information about peers with services or
content available. Obviously, the seeded information could become quickly out-
of-date and increasingly worthless.

To solve the problem of a stale cache, you can associate a time-to-live parame-
ter with the cached information. When the time-to-live value expires, the entity
is removed from the cache and destroyed. It is hoped that the peer will have the
ability to reseed its cache at some point. 

Direct

When a peer exists on a network with other peers, the discovery process gets a
little easier. Using a number of different methods, the peer will contact each of
the peers on its network, and discover what services or content they have avail-
able. Fortunately, TCP/IP has a protocol for just this type of discovery—broad-

cast or multicast. A peer can send out a discovery request along with search
criteria in a broadcast message. All of the peers on the local network will
receive the message and respond appropriately. Figure 2.5 shows an example of
a direct discovery.

For obvious reasons, the multicast protocol works only on your local subnet
and is not allowed to traverse routers to the Internet. For discovery outside the
local network, another method must exist. The JXTA specification allows direct
discovery using the multicast or broadcast feature of the TCP/IP network pro-
tocol. For the most part, though, direct and indirect discovery processes (which
we will explain next) will occur at the same time if both the TCP and HTTP pro-
tocols are utilized under JXTA.

Major JXTA Technologies 33



C h a p t e r  2 A n  O v e r v i e w  o f  J X TA34

Peer2 Peer4

2) Peer1 tries remote
discovery to all other peers

1) Peer1 checks local cache
for advertment

Peer1

Peer3

Figure 2.5 The direct discovery of services.

Propagated

Discovering peers outside your local network requires the use of a rendezvous

peer. The rendezvous peer serves primarily as a place where a peer can go to
find other peers. The rendezvous peer will cache all of the peers it comes in
contact with over the course of time. It can also be used as an intermediary for
discovery operations. 

A peer can contact a rendezvous peer and request that it perform a search. This
capability is a big advantage for those peers on a local network that have the
ability to get outside the network; they can use the rendezvous peer to perform
discovery outside the network. Figure 2.6 shows an example of using the ren-
dezvous peer for discovery.

If there are a number of rendezvous peers on the network, a large discovery
can take place in a short amount of time; each of the rendezvous peers will for-
ward discovery requests to one another as well as other peers. Those peers will
send the discovery request to other peers and probably even rendezvous peers.
But what happens if one peer gets a discovery request it has already seen and
forwards it to other peers who have already seen it, and so on? The answer
again is a time-to-live parameter. When a peer receives a discovery request, it
can decrement the parameter. When the parameter gets to zero, the request is
thrown out. This keeps a discovery request from living in the network forever. 



Major JXTA Technologies 35

Peer2 Peer4

Peer3

Peer5 Peer6 Peer7

2) Peer1 tries remote
discovery to all other peers

Peers 2 and 4
propagate

discovery request

1) Peer1 checks local cache
for advertisement

Peer1

Figure 2.6 A propagation discovery request.

But what about the case where a peer has already seen a request? By keeping a
list within the discovery-request message of peers that have already seen the
request, a peer can easily check and discard a message it has already seen. This
allows a request to exist in the network efficiently. 

The JXTA specification has defined a number of protocols that are combined to
allow discovery requests to be propagated to any of the peers on the JXTA net-
work. Individual peers will obtain a discovery, check their own advertisements,
and send the query request to all the peers it knows about. Special rendezvous
peers can be used that know about many more peers than individual peers
know about. Rendezvous peers will contact other rendezvous peers, and in
short order, a query will have propagated throughout a JXTA peer group. You
should note that queries are specific to the group to which a peer currently
belongs.



Handling Private Networks
As mentioned before, not all applications execute on machines that are directly
connected to the Internet. A P2P system that wants to take into consideration
the many peers existing on a private network will need to handle two situa-
tions: firewalls and NATs.

Firewalls

The job of a firewall is to restrict the TCP/IP traffic coming from the Internet
into a private network, and many times also restrict the traffic going from the
private network to the Internet. A network administrator will “lock down” all of
the ports TCP/IP traffic could use to send data. When required services such as
e-mail and possibly the web server need to be allowed access through the fire-
wall, those specific ports will be opened for traffic. Ports can also be opened
that allow traffic to go from the private network to the Internet, but not the
reverse.

Firewalls are often the reason applications such as streaming media players
don’t work within a private network. The ports used to transfer the data are typ-
ically locked down. The same thing can occur with peers in a P2P system; the
ports needed for communication are locked. 

One of the ways system designers have gotten around this situation is by using
the HTTP protocol to send data through the same port a browser would use to
send a request to a web server. Because the port is already open, the firewall
doesn’t know the data isn’t destined for a web server, but instead a P2P net-
work. The remote peer is able to respond to the peer behind the firewall using
a response protocol defined in the HTTP protocol. The firewall allows the
response to go through the wall to the appropriate peer. In this type of situation,
peers outside the firewall will not be able to find the internal peer. 

A relay peer solves this problem by becoming a bridge between the internal
peers and the peers on the Internet. When a peer on the Internet wants to send
a message to the internal peer, it will contact the relay peer with the message.
The peer will hold onto the message until the internal peer sends a request to
the relay peer. Now that the relay peer has the ability to send a response to the
internal peer, it will put in the message from the Internet peer. When the inter-
nal peer gets the message, it has the ability to send messages directly to the
Internet peer because it now has an address for it. Some systems do not allow
this direct connection and still require the internal peer to communicate with
Internet peers using the router.

C h a p t e r  2 A n  O v e r v i e w  o f  J X TA36



NATs

A NAT isn’t a small insect but a TLA (three-letter acronym) for Network

Address Translation. All computers on an internal network need IP addresses
in order to communicate on the corporate network as well as on the Internet.
However, getting an IP address can be expensive over time, and not all internal
computers need to have a “real” IP address. The Internet protocols keep a num-
ber of IP addresses out of circulation for use in internal networks. These
addresses are in the IP groups 10.x.x.x, 192.168.x.x, and 172.16.x.x. The address
can be assigned to any computer on an internal network that doesn’t have
direct access to the Internet. Typically, these computers will be behind a router
that prohibits the internal computer from accessing the Internet. While this is
all good for the internal network and the pocketbook, it doesn’t help the inter-
nal computers get to the Internet.

The NAT process allows the router to translate the internal addresses to a real
IP address. The router will be assigned a real IP address, which will be used to
communicate with the outside Internet. When an internal machine requests
access to the Internet, its request will be wrapped by the router and the router’s
IP address will be used in place of the internal address. When a response from
a request arrives at the router, it will check for the wrapper and the response
will be forwarded to the internal computer. 

This could pose something of a problem for the peer on the internal network,
especially when a firewall is in place as well. But the situation isn’t all bad. All
of the work is done by the router performing the NAT; the peer system doesn’t
need to do anything. The internal peer must communicate with the P2P system
just as if a firewall were in place by using the router and rendezvous peers for
discovery requests and pulling information from Internet peers.

The JXTA specification allows for peers to be located behind firewalls by incor-
porating the use of the HTTP protocol and enabling communication to occur
over all ports defined for a system. If communication needs to occur over port
80, only a small change is needed to a peer’s configuration. Peers can also have
IP addresses through Network Address Translation without any problem. Gate-

way peers allow access to the JXTA network from a peer located on an internal
network. The gateway peer is responsible for delivering advertisements from
the internally bound peer to the outside network.

Major JXTA Technologies 37



Summary

With the major component of a P2P system and a review of the JXTA specifica-
tion behind us, we are ready to investigate some of the major applications built
using JXTA. The next chapter will show how to use the JXTA Shell and provide
many examples of using its built-in commands.

C h a p t e r  2 A n  O v e r v i e w  o f  J X TA38



One of the goals of the JXTA team was to create tools that would have a
familiar feel to developers. To partially achieve this goal, the team cre-
ated the JXTA shell, an interactive application that provides direct

access to the JXTA network in much the same way that a Unix shell provides
direct access to the operating system. Through a series of commands, the shell
enables you to interact with the network and provide information about it. As
with the Unix shell, commands are loaded when executed, and the shell can be
extended. In this chapter, we take an in-depth look at how to use the JXTA shell.

Executing the Shell

You can execute the shell in one of two ways. If you installed JXTA on a Win-
dows system using the instructions in Appendix A, the shell will have an icon
under the Start menu. In addition, for both Windows and Unix, you can find the
shell in a directory called Shell. There will be either a BAT or a SH script file for
starting the shell application. Once started, the shell will display a configuration
screen. See Appendix A for instructions on filling out this screen.

After you’ve entered the correct information, the shell application window will
appear, as shown in Figure 3.1 (this could take as long as 60–120 seconds).

JXTA Shell

C H A P T E R 3

39



The shell application begins with an explanation of what the application is all
about. At the end of the text is the shell command prompt, JXTA>, which indi-
cates that the user can now enter a command. In the rest of this chapter, we will
run through the various commands available in the shell.

Shell Commands

In both the Windows Command Prompt window and a Unix shell, you can use
a number of built-in commands to perform some simple operations. The JXTA
shell leans toward the Unix side of things, which features a mix of both simple
and complex commands. The following section lists the commands available in
the current implementation of the JXTA shell. Each of the commands is 
presented with its available options, as well as some sample output where
appropriate.

Shell

The Shell command is used to create a new shell from the command prompt of
another shell. A new shell lets us perform an operation without disrupting the

C h a p t e r  3 J X TA  S h e l l40

Figure 3.1 JXTA shell’s main window.



current commands in the original shell. The format of the command is

Shell [-f filename] [-s]

The –f option allows a Shell command to execute commands from a file you
specify. The –s option indicates the new shell should fork a new window and
environment. The –s option is appended to the Shell command to force a new
shell window to appear. The –f option is used to both create a new shell and
execute commands. For example, the command Shell –f batch will execute the
commands within a file called batch, located in the same directory in which the
shell was first started

Figure 3.2 shows what happens when one shell invokes another using the 
command

Shell –s

The shell is case-sensitive, so be sure to enter Shell –s instead of shell –s.

If you want specific commands to be executed each time the shell is initiated,
you can place them in a file called $HOME/.jshrccan. These commands will be
executed once the shell is completely set up, but before a command prompt is
provided.

Shell Commands 41

Figure 3.2 One shell invoking another.



whoami

One of the most-used Unix shell commands is whoami. Under Unix, this com-
mand will display a string giving the name of the user currently logged into the
machine. The JXTA shell uses the whoami command to show either the peer
advertisement of the current user, or the peergroup advertisement of the group
currently logged into. The format of the command is:

whoami [-g][-l]

The –g option is used to display the current peer group advertisement. The –l
option is used to display the entire peer or peer group advertisement. 

By default, the command only displays consolidated information. The output of
the command when using no options is:

JXTA>whoami

<Peer>JosephGradecki</Peer>

<PeerId>urn:jxta:uuid-9616261646162614A787461503250339

1329E2072D241499211AE2F2CB657BC03</PeerId>

<TransportAddress>tcp://12.254.21.182:9701/</TransportAddress>

<TransportAddress>jxtatls://uuid-

9616261646162614A7874615032503391329E2072D241499211AE2

F2CB657BC03/TlsTransport/jxta-WorldGroup</TransportAddress>

<TransportAddress>jxta://uuid-

9616261646162614A7874615032503391329E2072D241499211AE2

F2CB657BC03/</TransportAddress>

<TransportAddress>http://JxtaHttpClientuuid-

9616261646162614A7874615032503391329E2072D241499211AE2

F2CB657BC03/</TransportAddress>

JXTA>

The command will show only the important information about the peer, includ-
ing its ID, name, and the input/output connections available on the peer. The
output of the command using the –g option is:

JXTA>whoami -g

<PeerGroup>NetPeerGroup</PeerGroup>

<Description>NetPeerGroup by default</Description>

<PeerGroupId>urn:jxta:jxta-NetGroup</PeerGroupId>

JXTA>

The output of the command using the –l option is:

JXTA>whoami -l

jxta:PGA : 

GID : urn:jxta:jxta-NetGroup

MSID : urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000010206

Name : NetPeerGroup

Desc : NetPeerGroup by default

JXTA>

C h a p t e r  3 J X TA  S h e l l42



env

The env command displays all of the current environment variables and their
associated values. Environment variables are created from the output of a JXTA
shell command, and will be illustrated in later sections. The command does not
have any parameters and will display a listing like this:

JXTA>env

stdout = Default OutputPipe (class 

net.jxta.impl.shell.ShellOutputPipe)

SHELL = Root Shell (class net.jxta.impl.shell.bin.Shell.Shell)

consout = Default Console OutputPipe (class 

net.jxta.impl.shell.ShellOutputPipe)

History = History (class 

net.jxta.impl.shell.bin.history.HistoryQueue)

stdgroup = Default Group (class 

net.jxta.impl.peergroup.ShadowPeerGroup)

stdin = Default InputPipe (class 

net.jxta.impl.shell.ShellInputPipe)

consin = Default Console InputPipe (class 

net.jxta.impl.shell.ShellInputPipe)

Shell = Root Shell (class net.jxta.impl.shell.bin.Shell.Shell)

JXTA>

peers

The shell can be used to find or discover other peers in the current peer group.
The format of the peers command is:

peers [-r][-p peername][-n limit][-a tagname][-v tagvalue] [-f]

The simplest version of the command is to execute

peers

This command will display all of the peers in the local cache of the peer. For
example:

JXTA>peers

peer0: name = Florin

peer1: name = JXTA.ORG 237

peer2: name = joe2jake

peer3: name = JosephGradecki

peer4: name = pauld

JXTA>

If it’s been awhile since peers have been discovered with the shell, we can exe-
cute the command peers –r to send a remote discovery to the JXTA network.
The remote discovery is a request to all peers in the network to return informa-
tion about themselves. For example:

Shell Commands 43



JXTA>peers -r

peer discovery message sent

JXTA>

Not what you expected? The peers –r command just sends the request to the
network. To see the results of the discovery request, execute the peers com-
mand again to see if any additional peers have been found. All of the peers
found will be placed in the local cache of the shell and given a number. If you
are aware of a specific rendezvous peer in the network, it can be specified using
the –p option, as in

peers –p myRendezvous

Here, myRendezvous is the name of the peer. 

Many times, a discovery needs to be narrowed to find specific peers. We can
use the –a option to specify an element within a peer advertisement to be used
as a search name. The –v option is used to specify the value of the element used
for the search. For example: 

JXTA>peers –a name –v a*

This command will attempt to find peers in the network where the name ele-
ment of the peer’s advertisement has a value of * (where * is a wildcard). 

At some point, the local cache might have stale or old peer advertisements in it.
We can flush the cache by using the –f option. 

Finally, we can limit the total number of peers returned from the remote dis-
covery request by using the –n option. For example, the following command
will return 10 peers from the local cache: 

JXTA>peers –n 10

groups

The shell also provides a way to search for new groups in the JXTA network:
the groups command. The format of this command is:

groups [-r][-p peername][-n limit][-a tagname][-v tagvalue] [-f]

Notice that the format of the command is the same as that of peers, and it works
the same way. Here’s an example of submitting a group search request, along
with the results:

JXTA>groups –r –a name –v m 

JXTA>groups

group0: name = MyShareGroup

group1: name = MuzzleGroup

group2: name = mdc-test

group3: name = momo

C h a p t e r  3 J X TA  S h e l l44



mkadv

As we discuss later in the book, the advertisement is the file tool the JXTA
specification uses for configuration information. The advertisement is an XML
document that is both human-readable and able to be parsed by the computer.
The shell environment uses the mkadv command to build advertisements
dynamically for new peer groups, or pipes (which are used for peer communi-
cation). The format of the mkadv command is:

mkadv [-g|p] [-t type] [-d doc] name

The –g option is used to create a new peer group. If the –d option isn’t used, the
peer group advertisement will be a clone of the current group. The –p option
specifies that a pipe advertisement should be created. The –t option is used for
pipe advertisements and specifies the type of pipe; the values are JxtaUnicast,
JxtaUnicastSecure, and JxtaPropagate. The –d option specifies the name of a
document that contains the XML advertisement in use. Finally, name is the
name to be used for the new pipe or peer group.

Creating a Peer Group Advertisement

The mkadv command creates an advertisement object based on an advertise-
ment XML document found on the local file system of the computer or by using
a clone advertisement. Creating an advertisement for a new peer group can be
done in two ways. First, we can create a new peer group advertisement based
on the current peer group or the NetPeerGroup. The command is:

JXTA>Mynewpeergroupadv = mkadv –g myGroup

We can create the group by using a peer group advertisement pulled from a file
using the importfile command (which we discuss later in this chapter). For
example:

JXTA>importfile –f myDoc groupfileadv

JXTA>Mynewgroup = mkadv –g –d myDoc

The file with the peer group advertisement is called groupfileadv. The contents
of the file are read into the shell variable, myDoc. The mkadv command builds
a new peer group advertisement using the myDoc variable, as specified by the
–d option in the command. 

Creating a Pipe Advertisement

Creating a pipe can only be done using an advertisement pulled from a file on
the local machine. An example of the command is:

JXTA>mkadv –p –t JxtaUnicast inputPipe 

Shell Commands 45



This command will build a new pipe advertisement as specified by the –p
option. The –t option tells the system to use a JxtaUnicast type. The name of the
pipe will be inputPipe. At this time, the shell does not support building a pipe
advertisement.

mkpgrp

If a new peer group is needed, we can use the mkpgrp command. This com-
mand can create a new peer group by using an advertisement or by cloning the
NetPeerGroup advertisement. The format of the command is:

mkpgrp  [-d doc] [-m policy] groupname

The –d option tells the command the document that contains the peer group
advertisement; the document is the environment variable with the advertise-
ment. The –m option specifies the policy to use in the new peer group, and 
wasn’t implemented in the current shell. The groupname is the name to be used
for the new group.

To create a new peer group that is a clone of the current peer group, we use the
following command:

JXTA>mkpgrp myGroup

JXTA>groups

group0: name = myGroup

JXTA>

Notice that the new group is in the local cache of the peer. A peer group can be
created with an advertisement located in a document by using this code:

JXTA>importfile –f myDoc groupfileadv

JXTA>mynewgroup = mkadv –g –d myDoc

JXTA>mkpgrp –d mynewgroup myGroup

Here, the advertisement is read from a local file and placed in an environment
variable called myDoc. Next, a peer group advertisement object is created with
the mkadv command using the document in the environment variable. Finally,
the peer group is created with the group advertisement. 

join

Once peer groups are discovered using the groups command, a specific group
can be joined using the join command. The format of the command is:

join [-r] [-d doc] [-c credential] [groupname]

The –r option tells the new group to use the current peer as a rendezvous peer.
The –d option specifies the advertisement of the peer group to join. The –c
option allows a credential to be provided to the group being joined. The group-

name is the name of the group to join. The group should be in the local cache.

C h a p t e r  3 J X TA  S h e l l46



A peer group can be joined by either specifying the name of the group or pro-
viding the peer group advertisement using the –d option. For example:

JXTA>join myGroup

Stopping rdv

Enter the identity you want to use when joining this peer 

group (nobody)

1Identity : JosephGradecki

JXTA>

Listing Join Status

If we want to list all groups in the local cache and learn whether or not they are
joined, we can specify the join command by itself. For example:

JXTA>join

Unjoined Group : myGroup

JXTA>

chpgrp

A peer can join as many groups as it wants, but there can be only one default
group. The chpgrp command allows the default group to be changed. The for-
mat of the command is:

chpgrp group

The group is the name of the group to join. If the current default peer group is
NetPeerGroup, it can be changed with this command: 

JXTA>chpgrp myGroup

leave

Any peer group that has been joined can also be left. The format for the leave
command is:

leave [-k]

The –k option tells the system to delete and remove the peer group from the
JXTA network, if possible. When a peer group is left using the leave command,
the default peer group is reset to be the NetPeerGroup. 

search

We can use the search command to find advertisements in the JXTA network.
The format of the command is:

search [-n limit] [-p peername] [-f] [-r] [-a] [-v]

The –n attribute limits the total number of advertisements found before the
command returns. The –p attribute searches for advertisements at a specific

Shell Commands 47



peer. The –f attribute will flush the local cache of advertisements. The –r
attribute will force a remote propagated search. We use the –a attribute to spec-
ify a search using an element of the advertisement. And finally, the –v attribute
is used with the –a attribute for the search value.

If executed by itself, the search command will find only those advertisements
in the local cache. The –a and –v options allow searching based on an element
of the advertisement. A common example is searching on the name element
using a pattern such as apple. To perform a search for jpg in the name element,
the command would look like this:

Jxta>search –r –a name –v jpg

The shell will put all of the found advertisements in the local cache using envi-
ronment variables named adv#. For example:

JXTA>search

JXTA Advertisement adv0 

JXTA Advertisement adv1 

JXTA Advertisement adv2 

JXTA Advertisement adv3 

JXTA Advertisement adv4 

JXTA Advertisement adv5 

JXTA Advertisement adv6 

JXTA Advertisement adv7 

JXTA>

To see the contents of an advertisement, use the cat command:

JXTA> cat adv0

mkpipe

The shell has the capability to create input and output pipes based on a given
pipe advertisement. The mkadv command is used to create the pipe advertise-
ment, and the mkpipe command is used to build the pipe. The format of the
command is:

mkpipe –i|o pipeadv

The –i option creates an input pipe; the –o option creates an output pipe. The
pipeadv is the pipe advertisement to use when creating the pipe. 

The command is quite simple to use. Here’s an example of building a pipe:

JXTA>InputPipeAdv = mkadv –p 

JXTA>InputPipe = mkpipe –I InputPipeAdv

Once the input pipe is created, we can use the recv command to receive a mes-
sage from a peer that connects to the input pipe. 

C h a p t e r  3 J X TA  S h e l l48



mkmsg

A message is the container used to receive data from a pipe or to send data out
a pipe. A message container is built using the mkmsg command, whose format
is as follows:

mkmsg

If the command is used by itself from a command prompt, a new container is cre-
ated and assigned an environment variable using the format env#. In many cases,
you will create a message and provide a name with the following command:

JXTA>AMessage = mkmsg

The message is now ready for data, and can be sent to another peer or used for
receiving data. The put, send, and recv commands will use the new message
container.

put

We use the put command to store data in a message container. The format of
the command is:

put msg tag document

The msg is the message container. The tag is the data tag used to store the data.
The document is the data to be stored in the data tag. An example of using the
command is:

JXTA>Amessage = mkmsg

JXTA>put Amessage "newData" "this is the data"

get

Once a message has been received from a pipe using the recv command, we can
use the get command to extract data from the message. The format of the com-
mand is:

get msg tag

The msg is the message container. The tag is the data tag to extract the data
from.

An example of using the get command is:

JXTA>InputPipeAdv = mkadv –p 

JXTA>InputPipe = mkpipe –i InputPipeAdv

JXTA>Amessage = recv InputPipe

JXTA>Thedata = get Amessage newData

Shell Commands 49



send

The basic format for the send command is:

send outputpipe msg

The outputpipe is the pipe to be used to send the message. The msg is the mes-
sage container. An example of using the send command is:

JXTA>OutputPipeAdv = mkadv –p 

JXTA>OutputPipe = mkpipe –o OutputPipeAdv

JXTA>Importfile –f  datafile dataDocument

JXTA>Amessage = mkmsg

JXTA>put  Amessage newData dataDocument

JXTA>send OutputPipe Amessage

recv

The recv command is used to accept a message from an input pipe. The format
of the command is:

recv [-t timeout] inputpipe

The –t option is used to limit the amount of time the shell will wait for a mes-
sage on the pipe. The inputpipe is the input pipe to used for reception of a mes-
sage.

An example of using the recv command is:

JXTA>InputPipeAdv = mkadv –p 

JXTA>InputPipe = mkpipe –i InputPipeAdv

JXTA>Amessage = recv InputPipe

man

Because the shell application is constantly changing, the man command is
extremely valuable. The format of the command is:

man [commandname]

The commandname is the name of the command that we want to find more
information about. We can list all of the current commands in the application by
executing the man command by itself. In the current application, the man com-
mand produces:

JXTA>man

The 'man' command is the primary manual system for the JXTA Shell.

The usage of man is:

JXTA> man <commandName>

C h a p t e r  3 J X TA  S h e l l50



For instance typing

JXTA> man Shell

displays man page about the Shell

The following is the list of commands available:

cat         Concatane and display a Shell object

chpgrp      Change the current peer group

clear       Clear the shell’s screen

env         Display environment variable

exit        Exit the Shell

exportfile  Export to an external file

get         Get data from a pipe message

grep        Search for matching patterns

groups      Discover peer groups

help        No description available for this ShellApp

history     No description available for this ShellApp

importfile  Import an external file

instjar     Installs jar-files containing additional Shell commands

join        Join a peer group

leave       Leave a peer group

man         An on-line help command that displays information about a

specific Shell command

mkadv       Make an advertisement

mkmsg       Make a pipe message

mkpgrp      Create a new peer group

mkpipe      Create a pipe

more        Page through a Shell object

peerconfig  Peer Configuration

peerinfo    Get information about peers

peers       Discover peers

put         Put data into a pipe message

rdvserver   No description available for this ShellApp

rdvstatus   Display information about rendezvous

recv        Receive a message from a pipe

search      Discover jxta advertisements

send        Send a message into a pipe

set         Set an environment variable

setenv      Set an environment variable

share       Share an advertisement

Shell       JXTA Shell command interpreter

sql         Issue an SQL command (not implemented)

sqlshell    JXTA SQL Shell command interpreter

talk        Talk to another peer

uninstjar   Uninstalls jar-files previously installed with 'instjar'

version     No description available for this ShellApp

wc          Count the number of lines, words, and chars in an object

who         Display credential information

whoami      Display information about a peer or peergroup

JXTA>

Shell Commands 51



As you look through the commands, you’ll notice that several are not imple-
mented at this time. You can learn more information about a command by exe-
cuting the man command, followed by that command’s name.

importfile

Files on the current file system can be brought into the shell using the import-
file command. The format of the command is:

importfile –f filename [env]

The –f option specifies the location of the file. The filename is the name of the
file to be loaded. The env option is the name of the environment variable for
storing the file’s contents.

exportfile

The contents of an environment variable can be exported to a file using the
exportfile command. The format of the command is:

exportfile –f filename [env]

The –f option specifies the location of the file. The filename is the name of the
file to use on the file system. The env option is the environment variable that
will be exported.

Here’s an example:

JXTA>exportfile –f c:/shell/myFile variableToExport

version

We can learn the current version of the shell application by executing the ver-
sion command. For example:

JXTA>version

jxta version 1.0 (build 41e, 12-03-2001)

JXTA>

clear

To clear the screen of the current shell application, execute the clear command. 

exit

To terminate the shell, use the exit command. There are no options to the com-
mand, and the application will be terminated once the command is executed.

C h a p t e r  3 J X TA  S h e l l52



Writing New Shell Commands

As mentioned at the beginning of the chapter, the shell is extensible. New com-
mands can be added very easily. The code in Llisting 3.1 shows a new command
called tank.

Summary 53

package net.jxta.impl.shell.bin;

import net.jxta.Impl.shell.ShellEnv;

public class tank extends ShellApp {

private ShellEnv myEnv;

public int startApp(String []args) {

myEnv = getEnv();

System.out.println("tank");

return ShellApp.appNoError;

}

public void stopApp() {

}

}

Listing 3.1 A new shell command.

The code in Listing 3.1 should be placed in the bin directory of the shell in order
for the shell application to find the new command. All new commands are
required to extend ShellApp. ShellApp is a framework for new commands that
includes two methods: startApp() and stopApp(). These two methods must be
overridden in any new command. The startApp() method is appropriately
called when the user enters a command. When the command has finished its
work, it will call the stopApp() method to perform any necessary housekeep-
ing. The primary work of the new command should be contained in the star-
tApp() method or called from startApp().

Summary

This chapter has provided a comprehensive view of the JXTA shell application.
We covered all of the commands available in the shell, as well as the process of
building commands that aren’t included in the shell itself. When you’re devel-
oping JXTA applications, the JXTA shell can be a useful tool for finding the peer
application and making sure it is executing in the network appropriately.





When the JXTA specification and Java binding were first introduced, an
application called InstantP2P (later called myJXTA) was also pro-
vided to teach many of the key concepts of the specification/binding.

myJXTA has the following functions: 

■■ One-to-one chat

■■ Group chat

■■ Resource sharing

■■ Searching

■■ Document downloading

myJXTA has taken on a life of its own, and has its own project page off the main
JXTA web site at http://myjxta.jxta.org/servlets/ProjectHome. This chapter dis-
cusses the features of myJXTA, and also provides pointers to the code where
you can see the implementations of those features. Because the source code to
the myJXTA application is available, you can study and reuse many of the com-
mon functions desirable in a peer-to-peer application. 

In addition, the myJXTA application can be considered a peer within the JXTA
network. As a peer, it will have a name visible to other peers in the network and
share the common NetPeerGroup upon execution. Being a part of the NetPeer-
Group enables the application to publish advertisements, create pipes, and
exchange content. 

Using myJXTA

C H A P T E R 4

55



Downloading myJXTA

The myJXTA application is installed when you download the JxtaInst.exe appli-
cation (see Appendix A). After you’ve installed the application, click Start, Pro-
grams, JXTA to see an entry called myJXTA. Click on the entry to launch the
myJXTA application. If you right-click on the listing and select Properties, you
will find that the application is stored in a directory called <root>/JXTA_Demo/
InstantP2P. There is no source code in this directory; it contains only the appli-
cation executables. You can find the application in a similar directory after a
Linux/Unix installation, often in the path /usr/local/JXTA_Demo/InstantP2P. 

You can find the source for this application at http://download.jxta.org/stable-
builds/index.html, and the instructions for building the myJXTA application are
located at http://instantp2p.jxta.org/build.html. I recommend you install both
the application executable file and the source code; both will be referenced in
this chapter.

Executing myJXTA

When you first execute the application, you’ll see a splash screen like the one
shown in Figure 4.1. As you can see, a few options are available:

Quit—The application will quit.

Quit & Reconfigure—The application will quit, but will allow the reconfig-
uration window to be displayed when the application is started again.

Just Wait—If this is the first time the application has been executed, the
configuration window will appear; otherwise, the application will continue
to connect to the JXTA network.

Proceed Anyway—This command will launch the application, even if the
appropriate JXTA network peers haven’t been contacted.

Executing myJXTA for the First Time
The first time you start myJXTA, you will need to configure it. Figure 4.2 shows
the first Configurator dialog box. You must provide a valid peer name; because
the application is a peer within the default peer group, it needs a name. This
name will be put into a peer advertisement and then distributed within the net-
work and made available upon request by another peer. You don’t need a unique
name; it serves only as a human-readable identifier for peers. 

Next, click the Security button; you will see the dialog box shown in Figure 4.3.
Each peer must have a personal security name and password, so fill in the

C h a p t e r  4 U s i n g  m y J X TA56



Executing myJXTA 57

Figure 4.1 The myJXTA splash screen.

Figure 4.2 Enter a peer name in the myJXTA Configurator dialog box.



appropriate values. Make the username and password something you will
remember; the system won’t allow you to start the application without the cor-
rect values. For simplicity’s sake, the peer name and the secure peer name can
be the same. The secure peer name and password are used only on the local
machine (and stored only in a file locally as well). Once you’ve entered the user-
name and password, click the OK button to continue.

You can find the code for the splash screen and the JXTA network connection
in the instantp2p.java file in the root directory /binding/java/src/net/
jxta/instantp2p/desktop. Located in the file is the InstantP2P class, which con-
tains the application’s main() method. The constructor of the class handles
most of the GUI details through object instantiation and configuration. The
main() method includes a call to a class method called startJxta(). Within
startJxta() is the code for joining the default peer group and handling the
splash status bar graphic:

statusBar.setPercentage(.50);

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

statusBar.setPercentage(1.0);

After the peer is joined to the peer group, an attempt is made to contact one of
the rendezvous peers. At this point, the splash screen remains on the screen,
giving the user the ability to continue with the application without having 

C h a p t e r  4 U s i n g  m y J X TA58

Figure 4.3 Entering a username and password in the myJXTA Configurator dialog box.



contacted a rendezvous peer. The run() method will execute once a peer is
found or the user clicks to continue without waiting. (Note that this doesn’t
mean the attempt to contact the rendezvous peer isn’t still occurring; however,
it will no longer block waiting on the attempt.) The code in the run() method
will finish the setup of the main application GUI and make it visible.

myJXTA Window
After several seconds, the application tries to connect to the NetPeerGroup.
(As you’ll recall, NetPeerGroup is the name of the default peer group that all
JXTA peers will initially join.) The myJXTA window will appear, as shown in
Figure 4.4. The functionality provided by the myJXTA application is found in
three areas:

Executing myJXTA 59

Figure 4.4 myJXTA window.



■■ Menu bar

■■ Dialog box tabs

■■ Search panel

On the menu bar, the File menu allows the user to create and accept chat invi-
tations as well as launch the Shell application. The Edit menu includes the abil-
ity to save the session and activate sharing. The Help menu contains the About
option, which you can select to display the application version. The Navigation
menu duplicates the tabs in the dialog box; and you use the Group menu to cre-
ate, join, and leave groups. We discuss both the File and Group menu items in
detail a little later.

The dialog box tabs—Group Chat (the default), Chat, Search, and Share—are
located in the center of the application. The Search panel is located at the top
of the application; it is visible in all tabs. We also discuss these features later in
this chapter.

Within the instantp2p.java file mentioned earlier, the menu and buttons are cre-
ated, and appropriate ActionListeners are built. A specific actionPerformed()
method is created to handle the menu item events; the code is shown in Listing
4.1. Notice that for each menu event, a specific method is called to handle the
request.

C h a p t e r  4 U s i n g  m y J X TA60

if (item == exit) {

exitInstantP2P();

} else if (item == prefs) {

//net.jxta.impl.peergroup.ConfigDialog config =

//    new net.jxta.impl.peergroup.ConfigDialog (

//            application.getAdvertisement());

//  config.setVisible ( true );

} else if (item == sharingPrefs) {

setSharingPreferences();

} else if (item == about) {

String[] str = new String[1];

str[0] = "myJXTA Version: " + Version.version;

getDialog().setText(str);

} else if (item == addGroup) {

addNewGroup();

} else if (item == joinGroup) {

joinGroup();

} else if (item == leaveGroup) {

leaveGroup();

/*        } else if (item == refresh) {

Listing 4.1 The myJXTA code for handling menu events. (continues)



Executing myJXTA 61

refreshGroup(); This is broken and redundant with

search */

} else if (item == shell) {

runShell();

} else if (item == invite) {

invite();

} else if (item == accept) {

accept();

}

}

Listing 4.1 The myJXTA code for handling menu events. (continued)

Group Chat

When the myJXTA application launches, the default tab is Group Chat, as
shown in Figure 4.4. All of the users who are part of the currently selected
group in the Peer Groups panel will be displayed in the users panel on the left.
The right panel contains the messages being constantly sent by users in the
group. As peers join and leave the group, indicator messages will be displayed.
To send a message to the group, simply enter text in the Send Message text
area.

If you want to view the chat in other groups, just click on any of the groups
listed in the Peer Groups panel. Notice that when you’re switching to other peer
groups, you will not see any of the chat history, but only the chat that occurs
while you are viewing the group chat. 

The code for the group chat can be found in the GroupChat.java file in the <root
directory where you installed source>/binding/java/src/net/jxta/instantp2p/.
When an object is instantiated from the GroupChat class, one of the first things
the constructor does is create a separate thread to contain the instantiation.
This allows the object to constantly be aware of new peers entering the Net-
PeerGroup, and display their peer name and chat in the Group Chat tab.

All communication received by this peer during the group chat is funneled to
the pipeMsgEvent() method. This method receives information about the
sender as well as the sender’s message (see Listing 4.2).

public void pipeMsgEvent(PipeMsgEvent event) {

Message msg = event.getMessage();

Listing 4.2 The myJXTA code for handling group peer discussions. (continues)



C h a p t e r  4 U s i n g  m y J X TA62

try {

String        sender = getTagString(msg,

SENDERNAME, "anonymous");

String     groupname = getTagString(msg,

SENDERGROUPNAME, "unknown");

String senderMessage = getTagString(msg, 

SENDERMESSAGE, null);

String msgstr;

if (groupname.equals(group.getPeerGroupName()) ) {

//message is from this group

msgstr = sender + "> " + senderMessage;

} else {

msgstr = sender + "@" + groupname + "> " +

senderMessage;

}

for (int i = 0; i < applisteners.size(); i++) {

ChatListener cl = (ChatListener)

applisteners.elementAt(i);

cl.chatEvent(msgstr);

}

updateList(sender);

} catch (Exception e) {

e.printStackTrace();

}

}

Listing 4.2 The myJXTA code for handling group peer discussions. (continued)

When a peer enters a message in the Send Message control box, the code found
in sendMsg() is executed:

public void sendMsg(String gram) {

try {

Message msg = pipe.createMessage();

msg.setString(SENDERMESSAGE, gram);

msg.setString(SENDERNAME, userName);

msg.setString(SENDERGROUPNAME,

group.getPeerGroupName());

queue.push(msg);

} catch (Exception ex) {

ex.printStackTrace();

}

}

This code accepts message text in the form of a String object. The text along
with the peergroup name and username of the current peer is inserted into a
Message object and placed on a queue to be sent to other peers.



Chat

If you click on the Chat tab, you’ll see the window shown in Figure 4.5. The
Chat functionality in the application is designed to allow a chat session
between two users. The chat session will be secure, but both of the peers need
to be in the same group. 

Chatting with a User

Chatting with a user is very simple; just locate his or her peer name in the User
List panel of the known peer group, and double-click on it. When you do, the

Executing myJXTA 63

Figure 4.5 The myJXTA Chat window.



application will first attempt to find the user in the current peer group. (There
may be times when users appear in the User List panel, but they have left the
current peer group or closed their application.) Once the peer has been located,
a connection will be made with the remote peer. After the connection is estab-
lished, messages can be sent. It should be noted that each peer will be required
to connect to the other peer. In other words, if Sam connects to Joe, Sam will
be able to send secure messages to Joe, but Joe will not be able to send mes-
sages to Sam until Joe double-clicks on Sam’s name in the User List panel. 

Changing Users

It is possible to chat with a number of users at the same time. To do this, just
double-click on another user in the User List panel of the current group. A con-
nection will be attempted with that user; if found, a one-way connection will be
established. The new user will be placed in your My Preferred Users list. Simply
click on a user to send a message to that user specifically.

Changing Groups

If you join a group and then click on that group in the Peer Group panel, the
User List panel will refresh to display all the peers in the new group. 

You can find the code for the one-to-one chat in the chat.java file in the <root
directory where you installed source>/binding/java/src/net/jxta/instantp2p/. As
in the case of the group chat, the one-to-one chat class places itself in a thread
when instantiated. Recall that numerous one-to-one chat sessions can occur, so
it isn’t surprising to see a number of array attributes for the class. These attrib-
utes will be used to hold the various peer names and pipes. The majority of the
code in the Chat class handles administration tasks, such as changing users you
are chatting with and handling the change from one group to another. One of
the most important methods is processMessage(), which handles a new mes-
sage when it arrives at the peer (see Listing 4.3).

C h a p t e r  4 U s i n g  m y J X TA64

protected void processMessage(Message msg) {

String messageID;

byte[] buffer = null;

String srcPeerAdvWireFormat = msg.getString (SRCPEERADV);

PeerAdvertisement srcPeerAdv = null;

try {

if (srcPeerAdvWireFormat != null) {

srcPeerAdv = (PeerAdvertisement)

AdvertisementFactory.newAdvertisement(

Listing 4.3 The processMessage() method handles new chat messages as they arrive at the
peer. (continues)



Executing myJXTA 65

new MimeMediaType("text/xml"),

new ByteArrayInputStream(

srcPeerAdvWireFormat.getBytes()));

discovery.publish(srcPeerAdv, DiscoveryService.PEER);

}

} catch (Exception e) {

}

String srcPipeAdvWireFormat = msg.getString (SRCPIPEADV);

PipeAdvertisement srcPipeAdv = null;

try {

if (srcPipeAdvWireFormat != null) {

srcPipeAdv = (PipeAdvertisement) 

AdvertisementFactory.newAdvertisement(

new MimeMediaType("text/xml"),

new ByteArrayInputStream(

srcPipeAdvWireFormat.getBytes()));

discovery.publish(srcPipeAdv, DiscoveryService.ADV);

}

} catch (Exception e) {

}

String groupId = msg.getString (GROUPID);

PeerGroup group = null;

if (groupId != null) {

group = getGroup (groupId);

}

String sender = null;

String groupname = null;

String senderMessage = null;

// Get sender information

try {

sender = getTagString(msg, SENDERNAME, "anonymous");

groupname = getTagString(msg, SENDERGROUPNAME, "unknown");

senderMessage = getTagString(msg, SENDERMESSAGE, null);

String msgstr;

if (groupname.equals(manager.getSelectedPeerGroup()

.getPeerGroupName()) ) {

//message is from this group

msgstr = sender + "> " + senderMessage +EOL ;

} else {

msgstr = sender + "@" + groupname + "> " 

+ senderMessage +EOL;

Listing 4.3 The processMessage() method handles new chat messages as they arrive at the
peer. (continues)



C h a p t e r  4 U s i n g  m y J X TA66

}

if (senderMessage != null) {

messageBoard.displayMessage( msgstr, sender);

}

// If there is a PipeAdvertisement piggy backed 

//into the message

// create a new buddy.

if ((srcPipeAdv != null) && (group != null)) {

PipePresence p  =  getPipePresence (group, myPipeAdvt);

if (p != null) {

p.addOnlineBuddy (sender, srcPipeAdv);

}

}

} catch (Exception e) {

messageBoard.error(e.getMessage());

}

// Process any Chat commands

String cmd = msg.getString (COMMAND);

if (cmd == null) {

// Nothing to do

return;

}

if (cmd.equals (PING) && (group != null)) {

// This is a PING request. We need to reply ACK

OutputPipe op = null;

Vector dstPeers = new Vector (1);

dstPeers.add (srcPeerAdv.getPeerID());

try {

op = group.getPipeService().createOutputPipe (scPipeAdv,

dstPeers.elements(),

PipeTimeout);

if (op != null) {

// Send the ACK

Message rep = pipes.createMessage();

rep.setString (COMMAND, ACK);

rep.setString (GROUPID, groupId);

rep.setString (SENDERNAME, myName);

op.send (rep);

} else {

}

} catch (Exception ez1) {

// We can’t reply. Too bad...

}

Listing 4.3 The processMessage() method handles new chat messages as they arrive at the
peer. (continues)



Executing myJXTA 67

}

if (cmd.equals (ACK) && (group != null)) {

// This is a ACK reply. Get the appropriate PipePresence

PipePresence p  =  getPipePresence (group, myPipeAdvt);

if (p != null) {

p.processAck (sender);

}

}

}

Listing 4.3 The processMessage() method handles new chat messages as they arrive at the
peer. (contiued)

Notice where the method compares the tag of the received message to deter-
mine what to do with the message. The action could be to display the contents
of the message because it was sent to the current peergroup, or it could be a
ping message which requires an acknowledgment message be returned to the
caller. This type of processing will be shown again in Chapter 15, where we
examine the default password membership service and have to process various
messages from peers.

Search

Clicking the Search tab displays the search features that enable a peer in a
group to find resources that have been made available by other peers. Figure
4.6 shows an example of searching in the default peer group for the text string
“html”. As you can see, several different filenames have been identified. If you
click on any of the filenames, you will see the dialog box shown in Figure 4.7.

You can save the file at the given path or browse to place the file in a different
location. If you just want to view the file, click the View button to launch a
viewer (if you have one on your system). 

You can find the code for the search functionality in the files Search.java,
SearchListener.java, SearchManager.java, and SearchResult.java in the <root
directory where you installed source>/binding/java/src/net/jxta/instantp2p/.
The Search.java file handles the basic mechanics of the search functionality by
searching through the instantiation of SearchListener objects as well as cancel-
ing currently executing searches. When a search result occurs, the advertise-
ment sent back from each of the peers will include not only the name of the
content but a pipe advertisement that the local peer can use to obtain the con-
tent. The result is handled in the SearchResult class, located in the SearchRe-
sult.java file. The SearchManager class (which is located in the
SearchManager.java file) does quite a bit of work when dealing with the shared
content the local peer has provided to the peer group. When a request from



C h a p t e r  4 U s i n g  m y J X TA68

Figure 4.6 Performing a search.

Figure 4.7 Saving and viewing a search result.

another peer arrives at the local peer, SearchManager will check to see
if any of the local shared content matches the search text. If there is a
match, an output pipe will be opened, and an advertisement will be cre-
ated and sent to the requesting peer.



Share

Clicking the Share tab will open the window shown in Figure 4.8. The Share
part of the application allows contents to be shared among the peers in a group.
Content is added to the Share Content panel at the bottom of the GUI. When
you click the Add button, you’ll see a Select File dialog box, which lets you add
content. If you want to remove any of the pieces of content, just highlight the
entry and click the Remove Content button. 

You can find the code for the share functionality in the LocalContentTab.java
file in the <root directory where you installed source>/binding/java/src/
net/jxta/instantp2p/desktop. The code for the local content isn’t too complex; it
simply handles the adding and removing of content from the Share tab’s display
panel.

Executing myJXTA 69

Figure 4.8 The myJXTA Share window.



Using the File Menu 

The File menu contains three commands. The first, called Shell, opens a Shell
application to the JXTA network (see Chapter 3 for a complete discussion of
the shell’s functionality). The second and third commands are called Create
Invite and Accept Invite. The Create Invite command will create a peer adver-
tisement that can be sent to other users. A user who receives a peer advertise-
ment can use the Accept Invite command to load the peer advertisement from
the local drive. 

You can find the code for the File menu functionality in the instantp2p.java file
in the <root directory where you installed source>/binding/java/src/
net/jxta/instantp2p/desktop. The code for starting a new peer group shell can
be found in the same file. For invite() and accept() functionality, the final code
resides in the PeerGroupPanel.java file, located in the same directory. The
invite() method pulls information about the local peer and peer group, and
saves the information to the local disk. The code is a good example of using
disk operations within JXTA. The accept() method contains code for pulling an
advertisement from the disk and building appropriate JXTA objects from it.

Using the Group Menu

The Group menu contains three separate commands all related to dealing with
peer groups. The commands are

■■ Create New Group

■■ Join Group

■■ Leave Group

The Create New Group command allows a new peer group to be advertised and
created in the JXTA network. When you choose this command, you’ll see the
window shown in Figure 4.9.

To create a new peer group, enter the desired name of the group in the provided
space. By default, the new peer group will act as a rendezvous, but can be
turned off if you desire. If you click OK at this point, the new peer group will be
visible to all who discover it. There are no restrictions for joining the group. If
you select the Create Private Group check box, you’ll have to supply a pass-
word for the group. After you click OK, the new peer group will be available
only to those peers who know the password to the group.

In either case, the new peer group will appear in the Peer Groups panel at the
top of the application. You will not be automatically joined to the group because
you created it. 

C h a p t e r  4 U s i n g  m y J X TA70



If you want to join a group, that group must appear in the Peer Group panel.
Click on the group you want to join, and select the Join Group command from
the Group menu. Either you will be joined to the group, or a dialog box will
appear asking you for the password to the group. In either case, a Joined label
will indicate the joined group after the peer group name in the Peer Group
panel.

When you have finished with a group, just highlight it in the panel, and choose
Leave Group from the Group menu to resign from the group. 

You can find the code for the Group menu commands in the PeerGroupPanel.
java file in the <root directory where you installed source>/ binding/java/src/
net/jxta/instantp2p/desktop. The code for creating new peer groups, joining
groups, and leaving groups can be found in that file. 

Searching for a Group

If you look at Figure 4.8 again, you will see that quite a few peer groups are
listed in the top panel of the application. We discovered the peer groups by plac-
ing search text with an asterisk (*) wildcard in the Search Group text area at the
top of the myJXTA application. A discovery is attempted against peer group
advertisements in the JXTA network based on the search text. All of the peer
groups found will be listed in the panel. If you click on one of the groups, you
can join it using the Join Group command on the Group menu.

You can find the code for the group search functionality in the PeerGroup-
Panel.java file in the <root directory where you installed source>/binding/
java/src/net/jxta/instantp2p/desktop. The code for building the search panel is
in this file. 

Executing myJXTA 71

Figure 4.9 Creating a new peer group.



Summary

This chapter has been an overview of the myJXTA sample application provided
by the developers of the Java binding. The application introduces the full capa-
bilities of the JXTA Java binding. In addition, we supplied pointers to the under-
lying source code that provides the functionality in the application. Reusing the
source code from the application gives us a foundation on which we can build
new and innovative programs. Next, we will begin looking into the details
behind the JXTA specification and Java implementation with a discussion of
JXTA advertisements.

C h a p t e r  4 U s i n g  m y J X TA72



The advertisement is the primary tool the JXTA protocols use for making general
peer, peer group, and resource configuration information available to the net-
work, peers, and peer groups. The advertisement is a container that can be

passed from peer to peer using a common format. To provide a generalized format, the
JXTA team chose to implement the advertisement using XML, thus providing an easily
expandable and hierarchical representation of information needed by all peers to 
support the JXTA network. In this chapter, we discuss the major advertisements, as
well as the code needed to pull advertisements from files or to build them on the fly 
programmatically.

Core Advertisements

The core advertisements defined in the current specification include the
following:

■■ Peer advertisement

■■ Peer group advertisement

■■ Module class advertisement

■■ Module specification advertisement

■■ Module implementation advertisement

■■ Pipe advertisement

■■ Rendezvous advertisement (discussed in Chapter 11)

JXTA Advertisements

C H A P T E R 5

73



An XML-Based Format
Instead of creating yet another configuration description format, the JXTA
team chose to format the advertisement using XML. This section contains a
brief introduction to XML; if you are already familiar with XML, you can safely
skip ahead.

The JXTA team selected XML as the configuration description language
because XML is the following:

■■ Independent of any language

■■ Self-describing

■■ Extensible

■■ Strongly typed

Because of these important features, XML is a format that can be shared
between implementations of the JXTA specification, regardless of how the pro-
tocols have been coded. XML is plain text, and parsing engines are widely avail-
able. Listing 5.1 contains a simple XML document.

C h a p t e r  5 J X TA  A d v e r t i s e m e n t s74

<?XML  VERSION="1.0"?>

<root>

<elem1>

value

</elem1>

<elem2 attrib="value2">

value3

</elem2>

</root>

Listing 5.1 A simple XML document.

All XML documents must begin with a processing instruction:

<?XML VERSION="1.0"?>

An XML parser uses this instruction to confirm that the document it is starting
to work with is indeed a XML document. A hierarchy of elements follows the
instruction. An XML element is denoted by a text string enclosed in < > sym-
bols. Here’s an example of an element pair:

<address>

</address>

Note the use of the / symbol for the ending element. If you are familiar with
HTML, this syntax won’t be new to you. Although the JXTA specification has
defined a number of specific elements for advertisements, XML’s extensibility



enables you to define your own elements as well. The JXTA system will simply
ignore additional elements; you will need to parse the XML document on your
own to find the elements.

XML is hierarchical, which means you can nest elements within other elements,
as in the following:

<account>

<name>

</name>

</account>

Elements are allowed to contain a value, which is either a string value or
another element. For example:

<account>

<name>

John Smith

</name>

</account>

In this case, the value of the <account> element is the <name> element, and the
<name> element has a string value. You can have any number of subelements
within a parent element:

<account>

<name>John Smith</name>

<address>123 S. Anywhere Street></address>

<city>Nowhere</city>

</account>

All XML documents must have a high-level root element, which means that all
documents will consist of a minimum of three lines. For example:

<?XML VERSION="1.0">

<root>

</root>

Here are some important XML rules to keep in mind:

■■ The document must be well formed; elements must have matching begin-
ning and ending elements.

■■ Attribute values must be enclosed with double quote characters.

■■ Documents must contain one and only one root element.

Peer Advertisements
The peer advertisement has a twofold purpose. The first is to identify the peer
to outside entities, such as peer groups or other peers. This public part of the
peer advertisement is made available to convey information, such as its name,

Core Advertisements 75



ID, the endpoint addresses currently available on the peer, and other elements
that are placed in the advertisement by current group services. The second pur-
pose of a peer advertisement is to hold local configuration information that isn’t
published.

Listing 5.2 shows the JXTA specification-defined elements of a peer advertise-
ment. These elements are defined in the advertisement:

Name—The name of the peer is taken from the name provided when the
peer was first configured (see Chapter 4 for information about configuring a
peer with myJXTA).

Desc—You can supply a description string in the peer advertisement for 
the primary purpose of having text available for searching. Note that you
have to separate the keywords in the description by spaces, and the terms
don’t have to be unique—in other words, the description string for one
advertisement might match or be close to the same as another advertise-
ment.

PID—Each peer in a JXTA network will have a unique ID, as described in
Chapter 2. It is imperative that the PID be unique in order for the JXTA pro-
tocols to be able to locate peers.

GID—The group ID (GID) is the name of the group to which the peer
belongs (in formal notation).

Svc—This element contains information relevant to the peer, including its
certificate and transports that it supports.

Dbg—This element corresponds to the Debug option found on the
Advanced tab of the Configuration window. The value is used to display
some level of debugging during the execution of the peer. At a high level, all
types of messages will be displayed at the command prompt or terminal
window from where the peer was executed.

C h a p t e r  5 J X TA  A d v e r t i s e m e n t s76

<xs:complexType name="PA">

<xs:element name="Name" type="xs:string" minOccurs="0"/> 

<xs:element name="PID" type="JXTAID"/>

<xs:element name="GID" type="JXTAID"/>

<xs:element name="Desc" type="xs:anyType" minOccurs="0"/>

<xs:element name="Dbg" type="xs:token" minOccurs="0"/>

<xs:element name="Svc" type="jxta:serviceParams" minOccurs="0" 

maxOccurs="unbounded"/>

</xs:complexType>

<xs:simpleType name="JXTAID">

<xs:restriction base="xs:anyURI">

Listing 5.2 The specification-defined structure of a peer advertisement. (continues)



Core Advertisements 77

<pattern value="([uU][rR][nN]:[jJ][xX][tT][aA]:)+\-+"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="serviceParam">

<xs:element name="MCID" type="JXTAID"/>

<xs:element name="Parm" type="xs:anyType"/>

</xs:complexType>

Listing 5.2 The specification-defined structure of a peer advertisement.

Listing 5.3 shows an example of a “real” peer advertisement. Notice the <parm>
element, which includes information specific to the peer, such as available end-
points into the peer. The values in Listing 5.3 include two endpoints and their
related protocols (TCP as well as the Transport Layer Security protocols).

<?xml version="1.0"?>

<!DOCTYPE jxta:PA>

<jxta:PA xmlns:jxta="http://jxta.org">

<PID>

urn:jxta:uuid-5961626164616261

4A787461503250336027A230B57E4EBBB32DA84EAC3588F003

</PID>

<GID>

urn:jxta:jxta-NetGroup

</GID>

<Name>

JosephGradeckiClient

</Name>

<Svc>

<MCID>

urn:jxta:uuid-DEADBEEFDEAFBABA

FEEDBABE0000000805

</MCID>

<Parm>

<Addr>

tcp://12.254.21.182:9702/

</Addr>

<Addr>

jxtatls://uuid-5961626164

6162614A787461503250336027A230B57E4EB

BB32DA84EAC3588F003/TlsTransport/jxta-WorldGroup

</Addr>

<Addr>

jxta://uuid-59616261646

Listing 5.3 A valid peer advertisement. (continues)



C h a p t e r  5 J X TA  A d v e r t i s e m e n t s78

162614A787461503250336027A230B57E4EBBB32DA84EAC3588F003/

</Addr>

</Parm>

</Svc>

<Svc>

<MCID>

urn:jxta:uuid-DEADBEEFDEAFB

ABAFEEDBABE0000000105

</MCID>

<Parm>

<RootCert>

MIICVDCCAb2gAwIBAgIBATANBgkqhkiG9w0BAQUFADByMRUw

EwYDVQQKEwx3d3cuanh0YS5vcmcxCzAJBgNVBAcTAlNGMQswCQYDVQQGEwJVUzEg

MB4GA1UEAxMXSm9zZXBoR3JhZGVja2lDbGllbnQtQ0ExHTAbBgNVBAsTFEZBNjY2

QTQxRjg2NDAwNjlCN0NBMB4XDTAxMTIxMTA1MzMwNVoXDTExMTIxMTA1MzMwNVow

cjEVMBMGA1UEChMM

d3d3Lmp4dGEub3JnMQswCQYDVQQHEwJTRjELMAkGA1UEBhMCVVMxIDAeBgNVBAMT

F0pvc2VwaEdyYWRlY2tpQ2xpZW50LUNBMR0wGwYDVQQLExRGQTY2NkE0MUY4NjQw

MDY5QjdDQTCBmzALBgkqhkiG9w0BAQEDgYsAMIGHAoGBAIwUgZp16K4D1q82iIm5

iXojbUznV+dtwjZnqXhqtvVOoP7JNTRPiK/fNGUTGDVrJTohlPJmVkwEj1HLbx27

3jmiVNGvkLbDM+sFG+ZaTAwjuOmfDei81aiYnKx1fKSz+MQ8OAnQwUeBPHYW611k

IwhXxJ/mJCvjtFy/PzyuNFy7AgERMA0GCSqGSIb3DQEBBQUAA4GBAA4oO0HH1f7a

bB200hsceRi2IjQtL8d6ZXAbHSa93VMRoYQ2gI68ORAbNlZErRKFX3u1XgSq7oxF

6UP8Jnm0D5S/8cSsEigN46pTiSo8RifniqOaD6RnW8qZZJea4y968A6NYtZfH44z

EDzrh7OhEX8KvMDoopTR3hcrqTVVuwBn

</RootCert>

</Parm>

</Svc>

</jxta:PA>

Listing 5.3 A valid peer advertisement. (continued)

You can obtain all of the information from a peer advertisement by using the
methods associated with the PeerAdvertisement object. The most important
methods are as follows:

String getAdvertisementType()—Returns a string representing the type
of the current advertisement.

String getDescription()—Returns the description string found in the peer
advertisement.

ID getID()—Returns the ID associated with the peer advertisement for
unique identification.

ID getPeerID()—Returns the ID of the peer associated with this 
advertisement.

String getName()—Returns the name of the peer.



PeerGroupID getPeerGroupID()—Returns the ID of the group the peer
is currently associated with.

StructuredDocument getServiceParam(ID key)—Returns the element
found in the <parm> hierarchy that matches the parameter key.

Hashtable getServiceParams()—Returns all of the elements found in the
<parm> hierarchy.

The PeerAdvertisement object also includes the appropriate setter methods
corresponding to these getter methods.

Peer Group Advertisements
A peer group advertisement is created for all peer groups in the JXTA network.
As with peers, the advertisement describes the group, and provides other infor-
mation necessary for creating a new group. To create a new peer group, you
must create an advertisement and provide it to a current group. This is one of
the reasons that all peers are part of a default peer group. Listing 5.4 shows the
definition of a peer group advertisement as outlined in the specification. Within
the peer group advertisement are the following elements:

GID—A unique peer group ID.

MSID—The Module Specification ID, which defines the basic functionality
necessary for a peer group. You can locate any number of implementations
of the functionality in the JXTA network by using the MSID of the peer
group.

Name—The name of the peer group.

Desc—A description string useful for searching.

Svc—A list of services available from this peer group as well as the attrib-
utes necessary for the services. A peer group advertisement can include any
number of Svc elements.

Core Advertisements 79

<xs:complexType name="PGA">

<xs:element name="GID" type="JXTAID"/>

<xs:element name="MSID" type="JXTAID"/>

<xs:element name="Name" type="xs:string" minOccurs="0"/>

<xs:element name="Desc" type="xs:anyType" min0ccurs="0"/>

<xs:element name="Svc" type="jxta:serviceParam"

minOccurs="0" maxOccurs="unbounded"/>

</xs:complexType>

Listing 5.4 The specification definition of a peer group advertisement.



Module Class Advertisements
When a peer is expected to provide some type of functionality to a peer group,
a number of advertisements will be used to publish this fact. At the top level of
the necessary advertisements is the module class advertisement. This adver-
tisement is designed to be a high-level announcement of pending functionality.
It could be considered analogous to a package in the Java language. The pack-
age describes and contains some level of functionality, and acts as a high-level
descriptor, just as the module class advertisement does. Listing 5.5 shows the
specification’s definition of the module class advertisement. In the specifica-
tion, the elements are:

MCID—The Module Class ID is an ID created to be unique and to represent
this module.

Name—The name of the module class.

Desc—A description of the class.

C h a p t e r  5 J X TA  A d v e r t i s e m e n t s80

<xs:complexType name="MCA">

<xs:element name="MCID" type="JXTAID"/>

<xs:element name="Name" type="xs:string" minOccurs="0"/>

<xs:element name="Desc" type="xs:anyType" min0ccurs="0"/>

</xs:complexType>

Listing 5.5 The module class advertisement.

Listing 5.6 shows an example of a valid module class advertisement. Notice that
the advertisement is quite simple. The most important part of the advertisement
is the MCID, which you must use when providing a specification and an imple-
mentation to the JXTA network. The module class advertisement also has the
purpose of associating an ID to the functionality a peer wants to put into 
the peer group. All of the functionality will be tied to the ID placed within the
advertisement.

<?xml version="1.0"?>

<!DOCTYPE jxta:MCA>

<jxta:MCA xmlns:jxta="http://jxta.org">

<MCID>

urn:jxta:uuid-401A2D3C453F4893A6A48684B9DE6B9B05

</MCID>

<Name>

Listing 5.6 A valid module class advertisement. (continues)



Core Advertisements 81

JXTAMOD:JXTA-CH15EX2

</Name>

<Desc>

Service 1 of Chapter 15 example 2

</Desc>

</jxta:MCA>

Listing 5.6 A valid module class advertisement. (continued)

Module Specification Advertisements
After a module class advertisement has been published to the JXTA network, it
should normally be followed up by a module specification advertisement
(MSA). The MSA has two purposes:

■■ Provides references to documentation describing how to implement the
services of the module class.

■■ Provides an instance of a class discoverable by remote peers and contain-
ing information about how to obtain the code behind a class.

The MSA is a human-readable advertisement designed to provide information
about a module class. The specification of the class is defined in the advertise-
ment. Listing 5.7 shows the definition of the advertisement as given in the spec-
ification. The elements of the advertisement include those listed here in the
order found in the specification:

Name—The name of the specification this advertisement is describing.

Desc—A description string that can be searched by other entities.

MSID—A unique ID used by the JXTA network.

CRTR—A string representing the creator of this specification.

SURI—A URI that points to an actual specification. This could be a URL to
a web server, for instance.

Vers—A string representing the version of the specification. This value is
mandatory.

Parm—Parameters that can be retrieved by the receiver of the 
advertisement.

Pipe—A pipe advertisement that may be used to communicate with a peer
that implements this module specification.

Proxy—An optional Module Spec ID of a module that can be used to com-
municate with the module of this specification.

Auth—The Module Spec ID of a module that may be required for authenti-
cation before using modules of this specification.



C h a p t e r  5 J X TA  A d v e r t i s e m e n t s82

<xs:complexType name="MSA">

<xs:element name="MSID" type="JXTAID"/>

<xs:element name="Name" type="xs:string" minOccurs="0"/>

<xs:element name="Crtr" type="xs:string" minOccurs="0"/>

<xs:element name="SURI" type="xs:anyURI" min0ccurs="0"/>

<xs:element name="Vers" type="xs:string"/>

<xs:element name="Desc" type="xs:anyType" min0ccurs="0"/>

<xs:element name="Parm" type="xs:anyType" min0ccurs="0"/>

<xs:element name="PipeAdvertisement" 

type="jxta:PipeAdvertisement" min0ccurs="0"/>

<xs:element name="Proxy" type="xs:anyURI" min0ccurs="0"/>

<xs:element name="Auth" type="JXTAID" min0ccurs="0"/>

</xs:complexType>

Listing 5.7 The module specification advertisement definition.

The valid advertisement is shown in Listing 5.8.

<?xml version="1.0"?>

<!DOCTYPE jxta:MSA>

<jxta:MSA xmlns:jxta="http://jxta.org">

<MSID>

urn:jxta:uuid-69D41BB186FF4E1AB9E

AAB40F1BC6EDC0F0F6A0680D54A7A8A85BD1C68BF2B06

</MSID>

<Name>

JXTASPEC:JXTA-CH15EX2

</Name>

<Crtr>

gradecki.com

</Crtr>

<SURI>

&lt;http://www.jxta.org/CH15EX2>

</SURI>

<Vers>

Version 1.0

</Vers>

<jxta:PipeAdvertisement>

<Id>

urn:jxta:uuid-9CCCDF5AD8154D3D8

7A391210404E59BE4B888209A2241A4A162A10916074A9504

</Id>

<Type>

JxtaUnicast

Listing 5.8 A valid module specification advertisement. (continues)



Core Advertisements 83

</Type>

<Name>

JXTA-CH15EX2

</Name>

</jxta:PipeAdvertisement>

</jxta:MSA>

Listing 5.8 A valid module specification advertisement. (continued)

Module Implementation Advertisements
An advertisement isn’t much good without implementations. The module
implementation advertisement (MIA) is designed to be published when an
implementation of a specification has been created. This advertisement is used
to tell peers where to find the implementation. The MIA references the ID of the
MSA so that peers can find implementations based on the ID of the specifica-
tion. As one might expect, there can be a whole host of implementations of a
single specification.

The MIA contains all of the information necessary to execute the implementa-
tion. As you’ll see in a moment, the elements <Code> and <PURI> contain the
class of the code and the download location, respectively. Depending on the
implementation desired, the <Code> element might contain some other kind of
execution information. Listing 5.9 shows the advertisement as defined in the
JXTA specification; Listing 5.10 contains a valid advertisement. 

The elements of the advertisement are as follows:

Name—The name of the specification this implementation is based on.

Desc—A description of the implementation. This is an optional name that
can be associated with a specification. The name does not have to be
unique unless it is obtained from a centralized naming service that guaran-
tees name uniqueness. 

Proxy—An element used to hold a URL through which communication
should be directed. Some organizations don’t use port 80 for communica-
tion, but instead use an IP address and port 8080 to act as a proxy.  

MSID—The Module Spec ID from the MSA of the specification this imple-
mentation is based on. This is a mandatory field.

Comp—An element with required information about the environment this
implementation can execute.

PURI—The location of the package, if not found in the code on the client’s
machine.



Code—Information needed for a peer to load and execute the code. This
could be the entire code. 

Parm—Parameters for the implementation.

Prov—A string with information about the provider of this implementation.

C h a p t e r  5 J X TA  A d v e r t i s e m e n t s84

<xs:complexType name="MIA">

<xs:element name="MCID" type="JXTAID"/>

<xs:element name="Comp" type="xs:anyType"/>

<xs:element name="Code" type="xs:anyType"/>

<xs:element name="PURI" type="xs:anyURIv min0ccurs="0"/>

<xs:element name="Prov" type="string" min0ccurs="0"/>

<xs:element name="Desc" type="xs:anyType" min0ccurs="0"/>

<xs:element name="Parm" type="xs:anyType" min0ccurs="0"/>

</xs:complexType>

Listing 5.9 A module implementation advertisement definition.

<?xml version="1.0"?>

<!DOCTYPE jxta:MIA>

<jxta:MIA xmlns:jxta="http://jxta.org">

<MSID>

urn:jxta:uuid-DEADBEEFDEAF

BABAFEEDBABE000000010306

</MSID>

<Comp>

<Efmt>

JDK1.4

</Efmt>

<Bind>

V1.0 Ref Impl

</Bind>

</Comp>

<Code>

net.jxta.impl.peergroup.StdPeerGroup

</Code>

<PURI>

http://www.jxta.org/download/jxta.jar

</PURI>

<Prov>

sun.com

</Prov>

<Desc>

General Purpose Peer Group Implementation

Listing 5.10 A valid module implementation advertisement. (continues)



Core Advertisements 85

</Desc>

<Parm>

<Svc>

<jxta:MIA>

<MSID>

urn:jxta:uuid-DEADBEEF

DEAFBABAFEEDBABE000000060106

</MSID>

<Comp>

<Efmt>

JDK1.4

</Efmt>

<Bind>

V1.0 Ref Impl

</Bind>

</Comp>

<Code>

net.jxta.impl.rendezvous.RendezVousServiceImpl

</Code>

<PURI>

http://www.jxta.org/download/jxta.jar

</PURI>

<Prov>

sun.com

</Prov>

<Desc>

Reference

Implementation of the Rendezvous service

</Desc>

</jxta:MIA>

</Svc>

<Svc>

<jxta:MIA>

<MSID>

urn:jxta:uuid-DEAD

BEEFDEAFBABAFEEDBABE000000030106

</MSID>

<Comp>

<Efmt>

JDK1.4

</Efmt>

<Bind>

V1.0 Ref Impl

</Bind>

</Comp>

Listing 5.10 A valid module implementation advertisement. (continues)



C h a p t e r  5 J X TA  A d v e r t i s e m e n t s86

<Code>

net.jxta.impl.discovery.DiscoveryServiceImpl

</Code>

<PURI>

http://www.jxta.org/download/jxta.jar

</PURI>

<Prov>

sun.com

</Prov>

<Desc>

Reference Implementation of the DiscoveryService service

</Desc>

</jxta:MIA>

</Svc>

<Svc>

<jxta:MIA>

<MSID>

urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000050106

</MSID>

<Comp>

<Efmt>

JDK1.4

</Efmt>

<Bind>

V1.0 Ref Impl

</Bind>

</Comp>

<Code>

net.jxta.impl.membership.NullMembershipService

</Code>

<PURI>

http://www.jxta.org/download/jxta.jar

</PURI>

<Prov>

sun.com

</Prov>

<Desc>

Reference Implementation of the 

MembershipService service

</Desc>

</jxta:MIA>

</Svc>

<Svc>

Listing 5.10 A valid module implementation advertisement. (continues)



Core Advertisements 87

<jxta:MIA>

<MSID>

urn:jxta:uuid-

DEADBEEFDEAFBABAFEEDBABE000000070106

</MSID>

<Comp>

<Efmt>

JDK1.4

</Efmt>

<Bind>

V1.0 Ref Impl

</Bind>

</Comp>

<Code>

net.jxta.impl.peer.PeerInfoServiceImpl

</Code>

<PURI>

http://www.jxta.org/download/jxta.jar

</PURI>

<Prov>

sun.com

</Prov>

<Desc>

Reference Implementation of the 

Peerinfo service

</Desc>

</jxta:MIA>

</Svc>

<Svc>

<jxta:MIA>

<MSID>

urn:jxta:uuid-

DEADBEEFDEAFBABAFEEDBABE000000020106

</MSID>

<Comp>

<Efmt>

JDK1.4

</Efmt>

<Bind>

V1.0 Ref Impl

</Bind>

</Comp>

<Code>

net.jxta.impl.resolver.ResolverServiceImpl

Listing 5.10 A valid module implementation advertisement. (continues)



C h a p t e r  5 J X TA  A d v e r t i s e m e n t s88

</Code>

<PURI>

http://www.jxta.org/download/jxta.jar

</PURI>

<Prov>

sun.com

</Prov>

<Desc>

Reference Implementation of the

ResolverService service

</Desc>

</jxta:MIA>

</Svc>

<Svc>

<jxta:MIA>

<MSID>

urn:jxta:uuid-

DEADBEEFDEAFBABAFEEDBABE000000040106

</MSID>

<Comp>

<Efmt>

JDK1.4

</Efmt>

<Bind>

V1.0 Ref Impl

</Bind>

</Comp>

<Code>

net.jxta.impl.pipe.PipeServiceImpl

</Code>

<PURI>

http://www.jxta.org/download/jxta.jar

</PURI>

<Prov>

sun.com

</Prov>

<Desc>

Reference Implementation of the

PipeService service

</Desc>

</jxta:MIA>

</Svc>

<App>

<jxta:MIA>

<MSID>

Listing 5.10 A valid module implementation advertisement. (continues)



Core Advertisements 89

urn:jxta:uuid-

DEADBEEFDEAFBABAFEEDBABE0000000C0206

</MSID>

<Comp>

<Efmt>

JDK1.4

</Efmt>

<Bind>

V1.0 Ref Impl

</Bind>

</Comp>

<Code>

net.jxta.impl.shell.bin.Shell.Shell

</Code>

<PURI>

http://www.jxta.org/download/jxta.jar

</PURI>

<Prov>

sun.com

</Prov>

<Desc>

JXTA Shell reference implementation

</Desc>

</jxta:MIA>

</App>

</Parm>

</jxta:MIA>

Listing 5.10 A valid module implementation advertisement. (continued)

Pipe Advertisements
The final advertisement we will look at is the pipe advertisement, which has the
job of informing one peer how to establish a connection with another peer. List-
ing 5.11 shows the schema for the pipe advertisement, and Listing 5.12 shows a
sample pipe advertisement. The elements of the advertisement are:

Name—The name of the pipe. 

Type—The type of the pipe:
■■  xtaUnicast

■■  JxtaUnicastSecure

■■  JxtaPropagateSecure

Id—The ID of the pipe. 



C h a p t e r  5 J X TA  A d v e r t i s e m e n t s90

<xs:element name="PipeAdvertisment" type="jxta:PipeAdvertisment"/>

<xs:complexType name="PipeAdvertisement">

<xs:element name="Name" type="xs:string” minOccurs="0"/>

<xs:element name="Id" type="JXTAID"/>

<xs:element name="Type" type=”xs:string"/>

</xs:complexType>

Listing 5.11 A pipe advertisement schema.

Another peer will discover the pipe advertisement of a remote peer in a number
of ways:

■■ From a file on the local machine

■■ Through an already established pipe

■■ In a module specification advertisement

<?xml version="1.0"?>

<jxta:PipeAdvertisement>

<Id> UUID </Id>

<Type> type of the pipe </Type>

<Name> optional symbolic name that can be used by

any search engine </Name>

</jxta:PipeAdvertisement>

Listing 5.12 A sample pipe advertisement.

Displaying an Advertisement

During the process of debugging a JXTA application, the capability to display
the contents of an advertisement is invaluable. Fortunately, the code that dis-
plays the contents is quite simple. Listing 5.13 shows the code that you can use
for any advertisement class. The code creates a PipeAdvertisement object in
the first line. In the next line, a StructuredTextDocument object is created using
the getDocument() method of the advertisement. The code will pull the adver-
tisement as XML, based on the getDocument() method’s parameter. A Struc-
turedTextDocument object contains a method called sendToStream(), which
outputs the contents of the document object into the specified stream object.
Subsequently, the advertisement will appear in the terminal window or the
command prompt from where the application is started.



Creating an Advertisement 91

PipeAdvertisement aPipeAdv = new PipeAdvertisement();

StructuredTextDocument aDoc = (StructuredTextDocument)

aPipeAdv.getDocument(new MIMETYPE("text/xml"));

try {

aDoc.sendToStream(System.out);

} catch(Exception e) {}

Listing 5.13 Display advertisement code.

Creating an Advertisement

At some point, a peer will need to create an advertisement for a service or pipe.
As we mentioned earlier, there are several ways to obtain an advertisement.
One way is to receive the advertisement from another peer in a pipe. In this
case, the pipe advertisement is already built. 

Another way a peer can obtain an advertisement is to pull it from the local file
system. The code in Listing 5.14 shows how to pull an advertisement from the
local file system into an object.

PipeAdvertisement myPipeAdvertisement = null;

try {

FileInputStream is = new

FileInputStream("service1.adv");

myPipeAdvertisement = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(new

MimeMediaType("text/xml"), is);

} catch (Exception e) {

System.out.println("failed to read/parse pipe

advertisement");

e.printStackTrace();

System.exit(-1);

}

Listing 5.14 Code to pull an advertisement from a local file system.

The code assumes that the advertisement is already in a valid XML format. The
code begins by creating a null PipeAdvertisement object. Next, a FileInput-
Stream object is created using the filename of the advertisement that will be
pulled. The code starting in Line 7 uses a class called AdvertisementFactory to
build a new advertisement object based on data fed to it. In this case, the data



is of XML type, and thus the first parameter to the newAdvertisement() method
of the factory is the data type. The second parameter is where the information
for the advertisement can be found. If any of these steps fail, an exception will
be raised. Once the code finishes successfully, the PipeAdvertisement object
will have valid information from the data file. 

Building an Advertisement from Scratch
There will be times when you have to create a new advertisement on the fly.
The code in Listing 5.15 shows the steps for building a new advertisement using
all code and no data files. 

C h a p t e r  5 J X TA  A d v e r t i s e m e n t s92

ModuleSpecAdvertisement myModuleSpecAdvertisement = 

(ModuleSpecAdvertisement)AdvertisementFactory.

newAdvertisement(ModuleSpecAdvertisement.

getAdvertisementType());

myModuleSpecAdvertisement.setName(

"JXTASPEC:JXTA-CH15EX2");

myModuleSpecAdvertisement.setVersion("Version 1.0");

myModuleSpecAdvertisement.setCreator("gradecki.com");

myModuleSpecAdvertisement.setModuleSpecID(

IDFactory.newModuleSpecID(myService1ID));

myModuleSpecAdvertisement.setSpecURI(

"<http://www.jxta.org/CH15EX2>");

myModuleSpecAdvertisement.setPipeAdvertisement(

myPipeAdvertisement);

Listing 5.15 Code for building an advertisement.

The code in Listing 5.15 starts by calling the newAdvertisement() method of the
AdvertisementFactory class. The exact method called is an overloaded method,
which accepts the type of advertisement needed. The parameter to the method
is obtained using the getAdvertisementType() method of the desired advertise-
ment class. After the advertisement object has been created, the individual
methods of the advertisement class are called with appropriate parameter val-
ues. The methods will basically fill in the values of specific elements in the
advertisement. After all of the necessary methods are called, a valid advertise-
ment object will have been populated.



Summary

Advertisements are the main information-dissemination tool for the JXTA sys-
tem. Most all of the advertisements covered in this chapter are designed to be
manipulated by a JXTA application and the developer. The next six chapters 
discuss the underlying protocols defined in the JXTA specification. Each of
these protocols include their own advertisements for encapsulated communi-
cation between protocols and peers.

Summary 93





The Peer Discovery Protocol (PDP) is a protocol designed to allow for the
discovery of advertisements published by peers within a peer group. As
we saw in the previous chapter, we use advertisements to describe and

make available a wide variety of resources, including other peers, peer groups,
and ordinary content. All resources must have an advertisement associated
with them. 

The PDP works in conjunction with a peer group, and is implemented as a dis-
covery service. In the Java reference implementation, the DiscoveryService
class allows peers associated with a particular group to publish and discover
advertisements. The NetPeerGroup, the default group that all peers belong to,
provides a discovery service to all peers without individual peers having to
write their own service. When developers create their own peer group, the new
group will typically be derived from the NetPeerGroup, thus enabling the new
group to have publish and discovery services. The designers of the discovery
protocol have written the specification and the Java reference implementation
in a manner that allows the basic discovery service and PDP to serve as a basis
for more intelligent and high-level discovery services.

This chapter, and all the other protocol chapters in this book, takes a twofold
approach to presenting information about the JXTA protocols. First, we explain
the protocol as it is defined in the specification. Second, we discuss the Java
reference implementation for the protocol. It is not our intention to provide all
of the code necessary to use the protocol—you can find most of that informa-
tion in later chapters. Here, we want to provide insights into the reference
implementation, and examine how the functionality is defined.

Peer Discovery Protocol

C H A P T E R 6

95



PDP Protocol Overview

The PDP works on two basic levels: local (within the requesting peer’s own
cache) and remote (across the network). In both cases, the requesting 
peer calls an exposed method of the discovery service implemented by a 
language binding of the JXTA specification. The methods have the following
parameters:

■■ An element name to use as a search key

■■ A value for the search key

■■ A value indicating the number of returned responses desired

The discovery service, which implements the PDP, packages the information
provided as parameters into a PDP query message represented as XML (see the
section “The PDP Query Message Format”). We will examine the discovery ser-
vice in detail later in this chapter.

In the case of a remote query, the requesting peer sends a query message to
other peers on the network, including rendezvous peers, using the Peer
Resolver Protocol (which we discuss in Chapter 7). Each peer that receives the
query message will examine its advertisements to see if any match the search
key and its associated value. If a match is found, the matching advertisement is
returned to the requesting peer. The requesting peer has the option of using any
of the returned advertisements. 

In the case of a local query, the discovery service will check in the local cache
of the peer to find any advertisements that match the request. The local cache
contains advertisements sent from other peers, as well as advertisements cre-
ated by the local peer. The discovery service doesn’t need to build a query mes-
sage when searching the local cache—the code can simply perform a search of
the data structure used for holding the local cache. All of the obvious concerns
exist with the local cache, including stale advertisements and peers that are no
longer connected to the network. The local cache will also be populated 
with the advertisements found during any remote discoveries. In both the
local and remote queries, results will be returned from peers with matching
resource using a response message (see the section “The PDP Response 
Message Format”).

The local cache is maintained in a directory called cm, which is located in the
root directory in which a peer’s application was started. Within the cm directory
are a number of subdirectories, as shown in the following diagram. At the low-
est level of the cache are the XML advertisements.

C h a p t e r  6 Pe e r  D i s c ov e r y  P r o t o c o l96



/cm

/info-jxta-NetGroup

/info-jxta-WorldGroup

/jxta-NetGroup

/Adv

/Groups

/Peers

uuid-59494383938492020934845093982092

uuid-90230832484849320982092092020200

/private

/public

/tmp

/jxta-WorldGroup

Within the cm directory are the peer groups the peer has contacted. The system
doesn’t allow the mixing of advertisements across peer groups (notice the sep-
arate Adv, Peers, and Groups directories). In the publishing and discovery of
advertisements, these three directories will be used as key parameters in the
methods implementing the discovery of publishing.

In many cases, a discovery will return advertisements that aren’t of the type
being searched for. This is a normal operation for the JXTA network, and it
enables the system to propagate advertisements effectively. For this reason, all
advertisements found will need to be cast to the appropriate type and rejected
if the cast is not successful. 

In summary, a service that implements the PDP will follow these basic steps:

1. Receives a request for discovery, either local or remote, from an
application.

2. For a local discovery, searches the local cache of the peer for the desired
key/value.

3. For a remote discovery, builds a query message, and forwards it to all
known peers.

4. Places responses from the query message in the local cache based on their
type, and subsequently places them in the appropriate directory on the
hard drive.

The PDP Query Message Format

The XML in Listing 6.1 shows the format required for a PDP query message. The
elements are defined as follows:

Type—The advertisement type to be explicitly searched during the query.
Its values are the following: 

PDP Protocol Overview 97



PEER—An advertisement that includes information about an individ-
ual peer 

GROUP—An advertisement that includes information about a group 

ADV—All advertisements

Threshold—The maximum number of advertisements to be returned by
each peer.

PeerAdv—The advertisement of the peer performing the discovery request.

Attr—The <element> name that should be searched in all advertisements.
An obvious example is the <name> element.

Value—The search string to be matched using the Attr element. The value
can contain a wildcard character (*) at either end (or both ends of) the
value string. A value of * will draw any advertisement of the specified type,
although an implementation may choose to match no advertisement. If the
Attr and Value elements are not present, peers will return a random number
of advertisements up to the stated Threshold value.

C h a p t e r  6 Pe e r  D i s c ov e r y  P r o t o c o l98

<xs:element name="DiscoveryQuery" type="jxta:DiscoveryQuery"/>

<xs:complexType name="DiscoveryQuery">

<!-- this should be an enumeration -->

<xs:element name="Type" type="xs:string"/>

<xs:element name="Threshold" type=”xs:unsignedInt" minOccurs="0"/>

<xs:element name="PeerAdv” type="jxta:PA" minOccurs="0"/>

<xs:element name="Attr" type="xs:string" minOccurs="0"/>

<xs:element name=vValue" type="xs:string" minOccurs="0"/>

</xs:complexType>

Listing 6.1 PDP query message XML format.

PDP Response Message Format

The XML in Listing 6.2 shows the format of a PDP response message. The ele-
ments in the response message are the following:

Type—The advertisement type returned in the <response> element.

Count—The total number of <response> elements in the response mes-
sage.

PeerAdv—The peer advertisement of the responding peer.

■■ Expiration—An attribute of the <response> element that indicates
the total number of milliseconds until expiration of the returned ad-
vertisement.

Attr—The element used in the search for the enclosed advertisements.



Value—The search string this response message relates.

Response—The <count> element noted previously indicates the total num-
ber of response advertisements that will appear under this element.

■■ Expiration—An attribute of the <response> element that indi-
cates the total number of milliseconds until the expiration of the
returned advertisement.

Java Binding of the PDP 99

<xs:element name="DiscoveryResponse" type="jxta:DiscoveryResponse"/>

<xs:complexType name="DiscoveryResponse">

<!-- this should be an enumeration -->

<xs:element name="Type" type="xs:string"/>

<xs:element name="Count" type="xs:unsignedInt" minOccurs="0"/>

<xs:element name="PeerAdv" type="xs:anyType" minOccurs="0">

<xs:attribute name="Expiration" type="xs:unsignedLong"/>

</xs:element>

<xs:element name="Attr" type=”xs:string" minOccurs="0"/>

<xs:element name="Value" type=”xs:string" minOccurs="0"/>

<xs:element name="Response" type="xs:anyType" maxOccurs="unbounded">

<xs:attribute name=vExpiration" type="xs:unsignedLong"/>

</xs:element>

</xs:complexType>

Listing 6.2 PDP response message XML format.

Java Binding of the PDP

In the remainder of this chapter, we will look at the code necessary to perform
discovery operations as defined in the Java binding of the JXTA specification.
The classes necessary to implement discovery within a peer group, and ulti-
mately a peer, are as follows:

■■ net.jxta.discovery.DiscoveryService

■■ net.jxta.discovery.DiscoveryListener

■■ net.jxta.impl.discovery.DiscoveryServiceImpl

■■ net.jxta.impl.discovery.DiscoveryServiceInterface

Discovery Service
The heart of the discovery implementation is the discovery service. The service
has a twofold purpose: publishing of new advertisements and querying 
for advertisements. To support these purposes, the following methods are 
available:



■■ public Enumeration getLocalAdvertisements(int type, String attribute,
String value);

■■ public int getRemoteAdvertisements(String peerid, int type, String
attribute, String value, int threshold);

■■ public void getRemoteAdvertisements(String peerid, int type, String
attribute, String value, int threshold, DiscoveryListener listener);

■■ public void publish(Advertisement advertisement, int type);

■■ public void publish(Advertisement adv, int type, long lifetime, long 
lifetimeForOthers);

■■ public void remotePublish(Advertisement adv, int type);

■■ public void remotePublish(Advertisement adv, int type, long lifetime);

A discovery service is a core service provided with the NetPeerGroup or any
other group created using the NetPeerGroup as a default implementation. To
obtain a discovery service object, simply use the getDiscoveryService()
method belonging to the PeerGroup object obtained when the peer first joined
a group. For example:

PeerGroup netPeerGroup; //holds a peergroup object associated

with the NetPeerGroup

DiscoveryService myDiscoveryService =

netPeerGroup.getDiscoveryService();

All of the initialization work required by the discovery service will be handled
internally with the object. The discovery service interacts with the other proto-
cols to both push and publish new advertisements in the current peer group. If
a peer needs to publish or query advertisements in another peer group, it will
have to obtain a PeerGroup object and instantiate a DiscoveryService object
specific to that group.

Publishing Advertisements

Before advertisements can be queried, some advertisements must exist in the
peer group. All peers will have advertisements cached relating to themselves as
well as their peer group, but an application will also want to publish advertise-
ments about resources available in the group. As we mentioned earlier, four
methods are available for publishing advertisements:

public void publish(Advertisement advertisement, int type);

public void publish(Advertisement adv, int type, long 

lifetime, long lifetimeForOthers);

public void remotePublish(Advertisement adv, int type);

public void remotePublish(Advertisement adv, int type, long

lifetime);

C h a p t e r  6 Pe e r  D i s c ov e r y  P r o t o c o l100



The methods can be grouped in terms of local publishing and remote publish-
ing. All published advertisements have a default lifetime and a default expira-
tion expressed in milliseconds. The current Java binding sets these values as
the following:

public final static long DEFAULT_LIFETIME = 1000 * 60 * 60 * 

24 * 365;

public final static long DEFAULT_EXPIRATION = 1000 * 60 * 60 * 2;

The overloaded publishing methods allow the lifetime and expiration to be
specified. In the case of the publish() method with a parameter called lifetime-
ForOthers, all peers who discover this advertisement will hold onto the adver-
tisement for the number of milliseconds specified in lifetimeForOthers. This is
because the peer that originally published the advertisement will republish the
advertisement using the same time frame.

Local Publishing

An advertisement that is published locally will be placed in the cache of the
executing peer and use a multicast transport, if available, to disseminate the
advertisement to other peers. If the TCP transport is available, all peers on the
local network will receive a copy of the published advertisement. The two
methods available for a local publish are the following:

public void publish(Advertisement advertisement, int type);

public void publish(Advertisement adv, int type, long

lifetime, long lifetimeForOthers);

In the first case, the advertisement will be published using the default lifetime
and expiration values. In the second method, the lifetime and expiration 
(lifetimeForOthers) can be specified using milliseconds. Consider the code in
Listing 6.3, which builds a ModuleClassAdvertisement object and publishes it
locally.

Java Binding of the PDP 101

ModuleClassAdvertisement myService1ModuleAdvertisement =

(ModuleClassAdvertisement)

AdvertisementFactory.newAdvertisement

(ModuleClassAdvertisement.getAdvertisementType());

myService1ModuleAdvertisement.setName("JXTAMOD:JXTA-CH15EX2");

myService1ModuleAdvertisement.setDescription(“Service 1 of

Chapter 15 example 2");

myService1ID = IDFactory.newModuleClassID();

myService1ModuleAdvertisement.setModuleClassID(myService1ID);

try {

Listing 6.3 A local publishing example. (continues)



C h a p t e r  6 Pe e r  D i s c ov e r y  P r o t o c o l102

myDiscoveryService.publish(myService1ModuleAdvertisement,

DiscoveryService.ADV);

} catch (Exception e) {

System.out.println("Error during publish of Module

Advertisement");

System.exit(-1);

}

}

Listing 6.3 A local publishing example. (continued)

The Java binding requires that the publish() method be enclosed in a try
block—it will throw an exception if there is any problem with the publishing. 

Remote Publishing

An advertisement that is published remotely will be placed in the local cache,
as well as broadcast to the current peer group using all available transports.
This means that the advertisement will be delivered to all remote rendezvous
peers using HTTP or TCP (depending on which protocol is available). Obvi-
ously, advertisements that are remotely published get the widest audience. Two
methods are available for publishing remote advertisements:

public void remotePublish( Advertisement adv, int type );

public void remotePublish( Advertisement adv, int type, long 

lifetime );

To use the methods, just place them within a try block. For example:

try {

myDiscoveryService.publish(myService1ModuleAdvertisement,

DiscoveryService.ADV);

myDiscoveryService.remotePublish(myService1ModuleAdvertisement,

DiscoveryService.ADV);

} catch (Exception e) {

System.out.println(“Error during publish of Module

Advertisement”);

System.exit(-1);

}

}

The discovery service will create an Advertisement object from the information
provided as parameters to the methods. The Advertisement will be sent to all
known peers, as well as any currently configured rendezvous peers. In the
examples preceding, it should be noted that we don’t have to call publish() and
then remotePublish() if the peer application does not need to publish 



advertisement to all remote peers. Remember that publish() uses only multi-
cast protocols that will not allow publishing over HTTP.

Discovering Advertisements

The other primary functionality provided in the DiscoveryService object is
querying for advertisements that meet a particular criterion. Three methods are
available for finding advertisements in a peer group:

public Enumeration getLocalAdvertisements( int type, 

String attribute, String value );

public int getRemoteAdvertisements( String peerid, int type,

String attribute, String value, int threshold );

public void getRemoteAdvertisements( String peerid, int type,

String attribute, String value, int threshold, 

DiscoveryListener listener );

The getLocalAdvertisements() method is responsible for pulling advertise-
ments from the local cache of the current peer only. All of the advertisements
found in the cache matching the type, attr, and value specified in the method
will be returned in an Enumeration object. 

Both of the getRemoteAdvertisements() methods will send a propagated query
message to all possible peers to find matching advertisements up to the speci-
fied threshold. When a remote peer finds a match, the advertisement will be
returned to the requesting peer. The returned advertisement will be placed in
the local cache, where a call to getLocalAdvertisements() will find it. Option-
ally, a listener object can be attached to the getRemoteAdvertisements()
method, which will be called when any remote advertisement is returned that
relates to the query. 

Checking Advertisements

The advertisements are pulled from the local cache and placed into an Enu-
meration object. The Enumeration object consists of numerous XML elements,
which in turn make up the advertisements. A loop is typically used to move
through the Enumeration object. For example, the following code will loop
through the Enumeration, looking for the start of a pipe advertisement and then
determining its name:

TextElement singleElement = null;

TextElement childElements = null;

while (elements.hasMoreElements()) {

singleElement = (TextElement) elements.nextElement();

if (singleElement.getName().equals("jxta:PipeAdvertisement")) {

childElements = (TextElement)singleElement.getChildren();

Java Binding of the PDP 103



while (childElements.hasMoreElements()) {

tempElement = (TextElement) childElements.nextElement();

if (tempElement.getName().equals(“Name”)) {

//do something

// check value with tempElement.getValue()

}

}

}

}

The code begins by checking to make sure there are elements in the current
Enumeration. If elements are available, the name of the current element is
checked; if the name is jxta:PipeAdvertisement, then a valid PipeAdvertise-
ment is the current element. Because the code is XML, it must obtain the child
elements of the current element in order to process them. Within the code, a
loop is used to look at each of the child elements of the pipe advertisement
and determine if the <Name> element is found, the value associated with the
element is compared against the text passed to the method. The code will
loop through all of the elements of each PipeAdvertisement element found in
the Enumeration.

A Local Query

The code necessary to query the current cache for an advertisement is shown
in Listing 6.4. The code starts by defining a local Enumeration object to 
hold any of the advertisements found in the cache. Next, a try block is cre-
ated, and a call is made to the method getLocalAdvertisements(), using the
appropriate parameters. The discovery service will use the information to
pull appropriate advertisements from the local cache. No query message is
sent on the network or to other peers—all advertisements are pulled from the
cache only.

C h a p t e r  6 Pe e r  D i s c ov e r y  P r o t o c o l104

Enumeration localEnum;

try {

localEnum = myDiscoveryService.getLocalAdvertisements(DiscoveryService.ADV, 

-name”, -*group*”);

if (localEnum != null) {

while (localEnum.hasMoreElements()) {

Element elem = localEnum.nextElement();

}

}

} catch (Exception e) {}

Listing 6.4 Local cache advertisement query code.



A Remote Query

A remote query is performed using the getRemoteAdvertisements() methods.
The code in Listing 6.5 shows an example of requesting a remote discovery. The
code is very basic—the only thing required is a call to the method using the
appropriate parameters. The discovery service will create a query message
using the parameter information and cause the message to be propagated
within the JXTA network if the appropriate network protocols are available. All
of the peers that receive the query message have the option of responding with
advertisements matching the desired criteria. The advertisements are returned
to the original peer and placed in the local cache. At this point, the peer would
make a call to getLocalAdvertisements() using the same search criteria to find
any returned advertisements.

Java Binding of the PDP 105

try {

myDiscoveryService.getRemoteAdvertisements(null,

DiscoveryService.ADV, --name", --Group*", null);

} catch(Exception e) {}

Listing 6.5 Remote query discovery code.

Using an Asynchronous Listener

At the same time the getRemoteAdvertisements() functionality is placing a new
response advertisement in the local cache, it also has the capability to call a
method asynchronously when a new response appears. The functionality to do
this callback is a listener, which works the same way as a button listener on a
Java GUI screen. Your application can use the listener functionality in one of
two ways. First, it can specify on the class line that it implements Discov-
eryListener—the interface used to implement the remote query callback mech-
anism. The class declaration would look similar to this:

public class Client implements DiscoveryListener {

// code to implement listener goes here

}

The DiscoveryListener interface requires a single method be available based on
the following prototype:

public void discoveryEvent(DiscoveryEvent e);

If the application states that it implements the interface, one of the methods must
be discoveryEvent(). We will discuss the contents of this method in a moment.

The second way to implement DiscoveryListener is to use an inner anonymous
class. The inner anonymous class is used to build a self-contained object, which



will handle all of the incoming advertisements from a given query. Listing 6.6
shows an example.

The primary part of the code in Listing 6.6 is the creation of a new DiscoveryLis-
tener object. After the instantiation of the object, the discoveryEvent() method is
created, along with the code necessary to handle a response message.

C h a p t e r  6 Pe e r  D i s c ov e r y  P r o t o c o l106

DiscoveryListener myDiscoveryListener = new 

DiscoveryListener() { 

public void discoveryEvent(DiscoveryEvent e) { 

Enumeration enum;

String str;

DiscoveryResponseMsg myMessage = e.getResponse();

enum = myMessage.getResponses();

str = (String)enum.nextElement();

try {

ModuleSpecAdvertisement myModSpecAdv =

(ModuleSpecAdvertisement) AdvertisementFactory.newAdvertisement(new 

MimeMediaType("text",

"xml"), new ByteArrayInputStream(str.getBytes()));

PipeAdvertisment myPipeAdvertisement =

myModSpecAdv.getPipeAdvertisement();

} catch(Exception ee) {

ee.printStackTrace();

System.exit(-1);

}

}

};

Listing 6.6 DiscoveryListener inner anonymous class.

DiscoveryEvent Method

The DiscoveryEvent() method will be called each time a new discovery response
is received. The parameter passed to the method is a DiscoveryEvent object,
which contains a DiscoveryResponseMsg object. The Msg object is pulled from
the DiscoveryEvent using the getResponse() method. An enumeration of the
responses from the remote query is obtained by calling the getResponse()
method of the DiscoveryResponseMsg object. Now, the advertisements returned
can be parsed and processed as desired. 



Assigning the Listener

After a listener object is created, it should be attached to the DiscoveryService
object. There are basically two ways to perform the attachment. The first is by
using an overloaded version of getRemoteAdvertisements():

myDiscoveryService.getRemoteAdvertisements(null,

DiscoveryService.ADV, searchKey, searchValue, 1,

myDiscoveryListener);

In this overloaded method, the DiscoveryListener object is passed to the dis-
covery service as the last parameter and attached to the service. The second
way to attach the listener is to use the addDiscoveryListener() method of the
DiscoveryService object. The method is as follows:

public void addDiscoveryListener( DiscoveryListener 

listener );

If the listener is no longer needed, but the DiscoveryService object isn’t
destroyed, a listener can be removed with the following statement:

public boolean removeDiscoveryListener( DiscoveryListener

listener );

Flushing Advertisements

One of the ancillary functions available through a DiscoveryService object is the
capability to flush the cache of all current advertisements. Although a user can
flush the advertisement quite easily by removing the /cm subdirectory found in
the directory where the peer is executed, programmatically a peer can use the
flushAdvertisements() method. The prototype for the method is as follows:

public void flushAdvertisements( String id, int type );

The id parameter is a valid document, peer, or peer group ID value. The type
parameter is PEER, GROUP, or ADV. For the most part, the local cache will han-
dle advertisements that have expired; however, if the expiration threshold of an
advertisement hasn’t been reached, but the peer that originally published the
advertisement cannot be reached, the developer may want to flush the adver-
tisement. For example:

flushAdvertisement(aPipeAdvertisement.getID().toString(),

DiscoveryService.ADV);

This code will flush the advertisement associated with the object aPipeAdver-
tisement. It could be that all attempts were made to use the advertisement, but
that all failed, so it will be flushed. Notice the use of the toString() method. The
first parameter to the flushAdvertisement () method is a string, so the ID of the
advertisement must be converted. 

Java Binding of the PDP 107



As you might expect though, there can be many reasons an advertisement
appears to be “bad.” The peer associated with the advertisement could be
rebooting, or a network segment may be down. The peer itself could be down
for several days, or perhaps permanently. Great care should be taken when
flushing advertisements; however, all is not lost when one is flushed. The code
just needs to perform a discovery to find new advertisements. 

Summary

The Peer Discovery Protocol is essential to a JXTA application, which relies on
resources being dynamically published to the group and discovered by other
peers. As a core mechanism, the PDP provides the most basic and brute-force
implementation for finding advertisements across any number of peers in a
peer group. Peers and peer groups have the flexibility to use the basic mecha-
nism, provide their own service, or extend the current one. Many of the services
of the DiscoveryService class will be used in the next part of the book, in which
we build JXTA applications. In the next chapter, the Peer Resolver Protocol will
show how peers are able to find and communicate with each other without the
use of a centralized server.

C h a p t e r  6 Pe e r  D i s c ov e r y  P r o t o c o l108



When a peer needs to instantiate a query to other peers in the network,
massive confusion would result if the peer just sent its own message
to the other peers using whatever network protocol it had available.

The JXTA specification defines a protocol called the Peer Resolver Protocol
(PRP) with the purpose of laying out a framework for generic query and
response communication between peers. The specification does not define any
type of peer searching or discover service, but expects that such a service
would be built using the framework. The service would be made available
within a peer group.

The Java binding of the specification builds a resolver service using the PRP
specification. The resolver service is directly associated with a peer group as a
default or core service. The discovery service discussed in Chapter 6 is one of
the beneficiaries of this service. The discovery service relies on the resolver
service to handle the exchange of the query and response messages necessary
for publishing and discovery.

An Overview of the PRP

The PRP is a set of generic query and response messages designed to facilitate
a common messaging system among peers in the JXTA network. To reduce the
amount of processing a service has to do, the messages are assigned and deliv-
ered to a specific handler on the peer. The handler is a name assigned to a def-
inition that specifies the format of a message, as well as the response that can

Peer Resolver Protocol

C H A P T E R 7

109



occur when a message of that type is received. For instance, a handler might
use the rendezvous service to propagate a message to multiple peers or to send
the message to a specific peer.

As you might expect, the discovery service will have a handler assigned to it
that is designed to handle the discovery query and response messages. When
the discovery service needs to send a query message, it passes the message to
the PRP. The PRP will wrap the discovery query message in its own message,
and send the new message to other peers. The PRP on the remote peers will
receive the wrapper message and then forward the underlying message to the
appropriate handler.

Handler Naming
The PRP uses the handler name to transfer messages arriving at, or leaving
from, the peer to a specific endpoint service. (We cover the endpoint service,
which handles low-level communication, in Chapter 9.) A listener is used to
connect an endpoint service to a handler name. All of the details are currently
handled by the Java binding’s implementation of a resolver service. The current
specification states that all PRP bindings must use a common format for nam-
ing. The format is a string concatenation of the service name, the ID of the
peer’s group, and a unique value. The ABNF for the handler name is shown in
Listing 7.1.

C h a p t e r  7 Pe e r  R e s o l v e r  P r o t o c o l110

<JXTARSLVRRSQRY>  ::= <JXTARSLVRNAM> <JXTAIDVAL> <JXTARSLVRQRYTAG>

<JXTARSLVRRSRSP>  ::= <JXTARSLVRNAM> <JXTAIDVAL> <JXTARSLVRRSPTAG>

<JXTARSLVRQRYTAG> ::= "ORes"

<JXTARSLVRRSPTAG> ::= "IRes”

<JXTARSLVRNAM>    ::= "jxta.service.resolver"

<JXTAIDVAL>       ::= JXTA ID

Listing 7.1 Listener naming syntax ABNF.

Only two listeners are currently defined for the PRP. 

For queries: 

jxta.service.resolver[group unique Id string]ORes 

For responses:

jxta.service.resolver[group unique Id string]IRes



Although the service will be unique on a specific peer, all peers within a group
will use the same service. Obviously, we can create a group that doesn’t use the
default resolver service implementation. In this situation, the query and
response messages should still be the same because they are defined by the
specification. However, we could create other handlers with unique messages
and handler names.

Resolver Query Messages
As we discussed in Chapter 6, when a discovery service has to send a query to
peers within a group, it will put the query into its own message format. The mes-
sage will be given to the resolver service for delivery to other peers, and the
resolver service will wrap the discovery message into its own message. Listing
7.2 shows the XML used for the resolver query message; the elements of the
message are the following:

Credential—The credential object of the query peer.

SrcPeerID—The ID of the query peer.

HandlerName—A string that the receiving resolver service will use to
determine how the enclosed query will be processed.

QueryID—A JXTA ID of the query; it must be used in response messages to
identify the query.

Query—A string, in our case the discovery message, which represents the
query.

An Overview of the PRP 111

<xs:element name="ResolverQuery" type="jxta:ResolverQuery"/>

<xs:complexType name="ResolverQuery">

<xs:element name="Credential" type="xs:anyType" minOccurs="0"/>

<xs:element name="SrcPeerID" type="xs:anyURI"/>

<!-- This could be extended with a pattern restriction -->

<xs:element name="HandlerName" type="xs:string"/>

<xs:element name="QueryID” type="xs:string" minOccurs="0"/>

<xs:element name="Query" type="xs:anyType"/>

</xs:complexType>

Listing 7.2 Resolver query message format.

Listing 7.3 shows an example of a query executed from the myJXTA applica-
tion; the query is searching for content containing the string jpg. The XML mes-
sage begins with the ResolverQuery element. This is the root element for the
message, and it indicates that the message was created by the resolver service.
The elements after the root are those required by the resolver query message
format, including the handler name, credential, query ID, ID of the peer that



issued the query, and the query itself. The <query> element is used to hold the
discovery query message and its elements. The message starts on line 14 and
runs through line 24.

C h a p t e r  7 Pe e r  R e s o l v e r  P r o t o c o l112

Line 1: <?xml version="1.0"?>

<!DOCTYPE jxta:ResolverQuery>

<jxta:ResolverQuery xmlns:jxta="http://jxta.org">

<HandlerName>

urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000305

</HandlerName>

<Credential>JXTACRED</Credential>

<QueryID>0</QueryID>

<SrcPeerID>

Line 10:   urn:jxta:uuid-59616261646162614A787

4615032503304BD268FA4764960AB93A53D7F15044503

</SrcPeerID>

<Query>

<?xml version="1.0"?>

<!DOCTYPE jxta:DiscoveryQuery>

<jxta:DiscoveryQuery xmlns:jxta="http://jxta.org">

<Type>2/Type>

<Threshold>25</Threshold>

<PeerAdv>

<?xml version="1.0"?>

<!DOCTYPE jxta:PA>

Lne 20:                    ...just too big to show ...

</jxta:PA>

</PeerAdv>

<Attr>Name</Attr>

<Value>*jpg*</Value>

</jxta:DiscoveryQuery>

</Query>

</jxta:ResolverQuery>

Listing 7.3 Sample of a resolver query.

Resolver Response Messages
When a query is executed, the remote peers are more than likely (although
not required) to reply to the query with a result. The remote peers will put 
the response into a discovery service response message, and the discovery
service will pass the message to the resolver service to deliver to the request-
ing peer. The resolver service will then wrap the message into its own mes-
sage format, which is shown in Listing 7.4. The elements in the response
message are as follows:



Credential—The credential object of the query peer.

HandlerName—A string that the receiving resolver service will use to
determine how the enclosed query will be processed.

QueryID—A JXTA ID of the query; it must be used in response messages to
identify the query.

Response—A string-based response to the query. In the case of the discov-
ery service, the response will be its specified message.

An Overview of the PRP 113

<xs:element name="ResolverResponse" type="ResolverResponse"/>

<xs:complexType name="ResolverResponse">

<xs:element name="Credential" type="xs:anyType" minOccurs="0"/>

<xs:element name="HandlerName" type="xs:string"/>

<xs:element name="QueryID" type="xs:string" minOccurs="0"/>

<xs:element name="Response" type="xs:anyType"/>

</xs:complexType>

Listing 7.4 Resolver service response message.

Listing 7.5 shows an example of a response message from a remote peer. You
can see the wrapping of various core service messages in the message. On line
3, an element named ResolverResponse indicates that this XML document is a
message created by the resolver service. This root element is followed by the
elements specific to the resolver service response message, such as the handler
name, the credential, the query ID, and the response. 

Within the Response element resides the discovery response message (remem-
ber that the resolver service is just handling the messages between handlers).
Line 14 is the start of this message. Notice that the message is a complete and
valid XML document because it begins with the processing instruction <?xml
version=“1.0”?>. Lines 14 through 41 represent the entire discovery response
message.

Embedded in the message are the required fields: Count (the number of
responses), Type (the discovery type used—PEER, PEERGROUP, ADV (2)),
PeerAdv (most of the peer advertisement is removed because it is very large),
and the Response element. The responses for the discovery query begin on line
27. The responses are advertisements, and subsequently include their appropri-
ate elements. Notice the expiration on the advertisement being returned. This
particular advertisement is a pipe advertisement that includes the pipe type and
the ID that a peer can use to connect with the response peer.



C h a p t e r  7 Pe e r  R e s o l v e r  P r o t o c o l114

Line 1:<?xml version="1.0"?>

<!DOCTYPE jxta:ResolverResponse>

<jxta:ResolverResponse xmlns:jxta="http://jxta.org">

<HandlerName>

urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE0000000305

</HandlerName>

<Credential>

JXTACRED

</Credential>

Line 10:    <QueryID>

0

</QueryID>

<Response>

<?xml version="1.0"?>

<!DOCTYPE jxta:DiscoveryResponse>

<jxta:DiscoveryResponse xmlns:jxta="http://jxta.org">

<Count>1</Count>

<Type>2</Type>

<PeerAdv>

Line 20:                <?xml version="1.0"?>

<!DOCTYPE jxta:PA>

<jxta:PA xmlns:jxta="http://jxta.org">

too big to show.

</jxta:PA>

</PeerAdv>

<Response Expiration="7200000">

<?xml version="1.0"?>

<!DOCTYPE jxta:PipeAdvertisement>

<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">

Line 30:                    <Id>

urn:jxta:uuid-59616261646162

614E50472050325033D1D1D1D1D1D1D1D1D1D1D1D1D1D1D1D104

</Id>

<Type>

JxtaPropagate

</Type>

<Name>

JxtaInputPipe

</Name>

Line 40:                </jxta:PipeAdvertisement>

</Response>

</jxta:DiscoveryResponse>

</Response>

</jxta:ResolverResponse>

Listing 7.5 A sample response message. (continued)



Java Binding of the PRP

The Java binding for the PRP is defined in the following files:

■■ net.jxta.protocol.ResolverQueryMsg.java

■■ net.jxta.protocol.ResolverResponseMsg.java

■■ net.jxta.protocol.GenericResolver.java

■■ net.jxta.protocol.QueryHandler.java

■■ net.jxta.protocol.ResolverService.java

■■ net.jxta.protocol.ResolverInterface.java

You can find the actual implementation of the definition in the corresponding
files in the net.jxta.impl.resolver package; the Java Reference implementation
includes the PRP as a peer group service called the resolver service. For all of
the basic and fundamental query/response operations found in the JXTA speci-
fications, all you need is the default resolver service in the NetPeerGroup peer
group. As an application developer, you do not have to become involved with
the details of using the service. However, if you develop a new service and want
to take advantage of the resolver’s query/response mechanism, the remaining
sections of this chapter will show you some of the basic code.

GenericResolver is a base interface that defines the methods for sending and
receiving query and response messages. The ResolverService interface, which
is derived from GenericResolver, implements methods for registering and
unregistering handlers based on the QueryHandler interface. QueryHandler
will receive objects of types ResolverQueryMsg and ResolverResponseMsg
when the resolver service has to invoke a specific handler. 

Java Binding of the PRP 115

No Guarantees

We all know the adage that the only guarantees in life are death and taxes; JXTA
messages aren’t going to challenge that. As we’ve seen, the PRP is designed to
wrap query messages from high-level components and deliver them to the JXTA
network. As responses are available, the PRP provides them to the calling compo-
nents. Unfortunately, there are no guarantees that a query message sent from the
discovery service and resolved through the PDP will arrive at a destination; fur-
thermore, there are no guarantees that a response will be generated from the
query. 



Building a Handler
The process of implementing code that handles developer-defined 
query/ response messages begins with the development of a handler. The
QueryHandler interface contains two methods (note that we don’t show the 
exceptions):

■■ ResolverResponseMsg ProcessQuery(ResolverQueryMsg)

■■ void ProcessResponse(ResolverResponseMsg)

The processQuery() method will be called with an object of type Resolver-
QueryMsg. The code within the method is responsible for creating a Resolver-
ResponseMsg to send to the calling peer, and should have a response based on
the query message received. The processResponse() method will receive a
ResolverResponseMsg, and will perform actions based on the response.

The processQuery() method has a number of exceptions that will be thrown in
specific cases. These exceptions are as follows:

DiscardException—This exception is thrown when there is no response
to the query and the query should not be propagated to other peers for an
answer.

NoResponseException—This exception is thrown when the handler has
no response to the query.

ResendQueryException—This exception is thrown when the current peer
has no response to the query, but wants to know the answer. The query
message will be re-sent to other peers to obtain an answer.

IOException—This exception is thrown when the handler is unable to
respond to the query due to an error.

So, let’s say we want to build a peer that offers a service that automatically trans-
lates a phrase from one language to another. We could implement this service in
the application part of the peer, but it is such a routine request that the service
can be moved into core functionality. Just as in the case of the discovery service,
our new service will need query and response messages. The query message is
shown in Listing 7.6, and the response message is shown in Listing 7.7.

C h a p t e r  7 Pe e r  R e s o l v e r  P r o t o c o l116

<?xml version="1.0"?>

<translate:TranslateQuery  xmlns:translate="http://jxta.org">

<from> </from>

<to> </to>

<phrase> </phrase>

</translate:TranslateQuery>

Listing 7.6 Translation query message.



Java Binding of the PRP 117

<?xml version="1.0"?>

<translate:TranslateResponse  xmlns:translate="http://jxta.org">

<from> </from>

<to> </to>

<phrase> </phrase>

</translate:TranslateResponse>

Listing 7.7 Translation response message.

Based on these two messages, we need to build a QueryHandler object that will
take the information provided in the query message, perform a translation, and
return the new phrase in a response message. Listing 7.8 shows the code nec-
essary to build a QueryHandler for our translation messages. As we discussed
earlier, only two methods are available in the QueryHandler interface: process-
Query() and processResponse().

The processQuery() method has four functions. First, the query message
received needs to be parsed and the individual message pieces extracted. This
parsing is accomplished using a loop and several conditional statements to pull
out the to, from, and phrase strings. Next, the phrase has to be translated from
the “from” language into the “to” language. Then, an XML document is created
with the new phrase. Finally, a response object is created that wraps the new
XML document. During the translation, the code should throw any of the excep-
tions listed earlier as appropriate. For instance, there could be languages that
aren’t recognized, and as such, the handler should not produce a response.

The processResponse() method is simple in that the only functionality is the
parsing of the response message. The to, from, and phrase parts of the response
are obtained and dealt with appropriately.  

class TranslationHandler implements QueryHandler

{

public ResolverResponseMsg processQuery(ResolverQueryMsg queryMsg) 

throws IOException, NoResponseException,

DiscardQueryException, ResendQueryException

{

ResolverResponse responseMsg;

String to = null; 

String from = null;

String phrase = null;

String newPhrase = null;

Listing 7.8 Translation QueryHandler. (continues)



C h a p t e r  7 Pe e r  R e s o l v e r  P r o t o c o l118

//parse the query Message

StructuredTextDocument doc = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

new MimeMediaType(“text/xml”), queryMsg.getQuery() );

Enumeration elements = doc.getChildren();

while (elements.hasMoreElements()) {

TextElement element = (TextElement)

elements.nextElement();

if(element.getName().equals("to")) {

to = element.getTextValue();

continue;

}

if(element.getName().equals("from")) {

from = element.getTextValue();

continue;

}

if(element.getName().equals("phrase")) {

phrase = element.getTextValue();

continue;

}

}

// Perform the translation and place the new phrase 

// in the variable newPhrase

// Insert code here

// Build the response 

Element element;

StructuredDocument doc = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

new MimeMediaType( "text/xml" ),

"translate:TranslateResponse");

element = doc.createElement("to", to);

doc.appendChild(element);

element = doc.createElement("from", from);

doc.appendChild(element);

element = doc.createElement("phrase", newPhrase);

doc.appendChild(element);

responseMsg = new ResolverResponse("TranslateHandler",

Listing 7.8 Translation QueryHandler. (continues)



Java Binding of the PRP 119

"JXTACRED", queryMsg.getQueryId(),

doc.toString());

return responseMsg;

}

public void processResponse(ResolverResponseMsg responseMsg)

{

String to = null;

String from = null;

String phrase = null;

String newPhrase = null;

try {

StructuredTextDocument doc = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(

new MimeMediaType("text/xml"),

responseMsg.getResponse() );

Enumeration elements = doc.getChildren();

while (elements.hasMoreElements()) {

TextElement element = (TextElement) 

elements.nextElement();

if(element.getName().equals("to")) {

to = element.getTextValue();

continue;

}

if(element.getName().equals("from")) {

from = element.getTextValue();

continue;

}

if(element.getName().equals("phrase")) {

phrase = element.getTextValue();

continue;

}

}

}

catch (Exception e){

// ignore

}

}

}

Listing 7.8 Translation QueryHandler. (continued)



Getting the Resolver and Registering a Handler
With the query and response messages created and a QueryHandler built, it is
time to associate the handler with the resolver service. This is a twofold
process. First, the resolver service has to be obtained from the peer group. The
following code will handle this:

ResolverService resolver = currentGroup.getResolverService();

Next, the resolver service’s register() method is called using an instance of the
QueryHandler class built earlier as a parameter. The statement that performs
the registration is the following: 

TranslationHandler handler = new 

TranslationHandler();

resolver.registerHandler("TranslationHandler",

handler);

The first parameter to the registerHandler() method is the name of the handler.
Notice that this name is the same as that found in the instantiation of a
ResolverResponse in the processQuery() method of the query handler. This
name tells the resolver where to send query and response messages. 

Sending a Query
After the handler is registered, a peer can send a query to the handler using the
resolver. For example:

Element element;

StructuredDocument doc = StructuredTextDocument) 

StructuredDocumentFactory.newStructuredDocument(

new MimeMediaType( "text/xml" ), 

"translate:TranslateResponse");

element = doc.createElement("to", "German");

doc.appendChild(element);

element = doc.createElement("from", "English");

doc.appendChild(element);

element = doc.createElement("phrase", "Have a good 

day");

doc.appendChild(element);

ResolverQuery query = new 

ResolverQuery("TranslationHandler","JXTACRED",

netPeerGroup.getPeerID().toString(), doc.toString(),

0);

resolver.sendQuery(null, query);

C h a p t e r  7 Pe e r  R e s o l v e r  P r o t o c o l120



This code begins by creating a new XML document with the to, from, and
phrase elements containing the information for the translation. Next, a new
ResolverQuery object is instantiated using the name of the query handler, and
the XML document is created. The message will be sent to other peers in the
last line of the code, where the sendQuery() method is called. When the current
peer receives a response from the query, the processResponse() method of the
handler will be called, and the appropriate actions outlined in the code will be
executed.

Summary

The Peer Resolver Protocol is another step in the progression toward exchang-
ing information between peers. The Java binding’s resolver service acts as a
traffic director, pushing query and response messages to the proper handlers.
The PRP is used by the Peer Discovery Protocol, but doesn’t do the actual trans-
mission of the query and response messages. This task is left to other protocols,
as explained in upcoming chapters. Next, we look at the Peer Information Pro-
tocol, which has the singular purpose of providing information about a peer.

Summary 121





With most network-based applications, there is always the desire to
know what the remote peers are doing. The desire could be to know
just the peer’s name, but might also include knowing how long the

peer has been active, when the peer last sent a message, and even how much
data has been transferred from the peer.

The JXTA specification includes a protocol called the Peer Information Proto-
col (PIP) to handle information requests about remote peers. Like most of the
other JXTA protocols, the PIP is implemented by using a series of messages
transferred between two or more peers. In Chapter 16, we’ll use this protocol to
implement peer monitoring. 

The PIP is not a complete protocol at this time, and is changing with each new
release of the specification. The information contained in this chapter, as well
as Chapter 16, was accurate as of the time this book went to print, but may
change as the JXTA specification matures in this area. 

An Overview of the PIP

The JXTA specification declares that the PIP is optional in any binding; accord-
ingly, the specification doesn’t place any requirements on remote peers to
respond to PIP messages. The PIP messages are sent via unreliable and non-
secure pipes, which in themselves could prevent messages from getting to 
a remote peer. To handle the routing and transport of the PIP messages, the 

Peer Information Protocol

C H A P T E R 8

123



protocol is built on top of the Peer Resolver Protocol, which uses other proto-
cols for actual message transport.

PIP Query Messages
The PIP uses a query message (shown in Listing 8.1) to request information
from a remote peer. The elements of the message are as follows:

sourcePid—The ID of the requesting peer

targetPid—The ID of the destination peer

request—An optional request

The request element forms the basis of this message. If the element itself is
empty, the destination peer will assume that the requestor wants only default
information, and that information is returned based on the PIP response mes-
sage (which we will cover in a moment). If the requesting peer is interested in
additional information, a query message can be made a part of the element. The
implementation of the PIP must be able to receive and process the information
request appropriately. 

C h a p t e r  8 Pe e r  I n f o r m a t i o n  P r o t o c o l124

<xs:element name="PeerInfoQueryMessage" type="jxta:PeerInfoQueryMessage"/>

<xs:complexType name="PeerInfoQueryMessage">

<xs:element name="sourcePid" type="xs:anyURI"/>

<xs:element name="targetPid" type="xs:anyURI"/>

<xs:element name="request" type="xs:anyType" minOccurs="0"/>

</xs:complexType>

Listing 8.1 PIP query message format.

PIP Response Messages
When a peer receives a PIP response message, the peer resolver forwards the
message to the appropriate handler, which is responsible for responding to the
query. The elements in the message are as follows:

sourcePid—The ID of the requesting peer

targetPid—The ID of the destination peer

uptime—The time (in milliseconds) since the PIP service started execution
on the remote peer

timestamp—Epoch time (in milliseconds) when the response message was
created

traffic—The parent element for information about network traffic gener-
ated by this peer 



■■  lastIncomingMessageAt—Epoch time (in milliseconds) since the
remote peer last received a message

■■  lastOutgoingMessageAt—Epoch time (in milliseconds) since the
remote peer last sent a message

■■  in—The parent element for incoming traffic information

•  transport—The number of bytes received at a specific end-
point address

■■  out—The parent element for outgoing traffic information

•  transport—The number of bytes sent to a specific end-
point address

response—The element that optionally contains information based on the
corresponding request element of the query message

Listing 8.2 contains a sample PIP query sent to a remote peer. Listing 8.3 shows
the remote peer’s response to the PIP query. 

An Overview of the PIP 125

<xs:element name="PeerInfoResponse" type="jxta:PeerInfoResponse"/>

<xs:complexType name="PeerInfoResponse">

<xs:element name="sourcePid" type="xs:anyURI"/>

<xs:element name="targetPidv type=vxs:anyURI"/>

<xs:element name="uptime” type="xs:unsignedLong" minOccurs="0"/>

<xs:element name="timestamp" type="xs:unsignedLong" minOccurs="0"/>

<xs:element name=vresponse" type="xs:anyType" minOccurs="0"/>

<xs:element name="traffic" type="jxta:piptraffic" minOccurs="0"/>

</xs:complexType>

<xs:complexType name="piptraffic">

<xs:element name="lastIncomingMessageAt"

type=”xs:unsignedLong" minOccurs="0"/>

<xs:element name="lastOutgoingMessageAt"

type=”xs:unsignedLong" minOccurs="0"/>

<xs:element name="in" type="jxta:piptrafficinfo" minOccurs="0"/>

<xs:element name="out" type="jxta:piptrafficinfo" minOccurs="0"/>

</xs:complexType>

<xs:complexType name="piptrafficinfo">

<xs:element name="transport" type=”xs:unsignedLong"

maxOccurs="unbounded">

<xs:attribute name="endptaddr" type="xs:anyURI"/>

</xs:element>

</xs:complexType>

Listing 8.2 PIP query message.



C h a p t e r  8 Pe e r  I n f o r m a t i o n  P r o t o c o l126

<?xml version="1.0"?>

<!DOCTYPE jxta:PeerInfoAdvertisement>

<jxta:PeerInfoAdvertisement xmlns:jxta="http://jxta.org">

<sourcePid>

urn:jxta:uuid-

59616261646162614A787461503250337CE1ACE17356403D8EECBE6B9D25351303

</sourcePid>

<targetPid>

urn:jxta:uuid-

59616261646162614A787461503250337CE1ACE17356403D8EECBE6B9D25351303

</targetPid>

<uptime>

22642

</uptime>

<timestamp>

1010872452153

</timestamp>

<traffic>

<in>

</in>

<lastIncomingMessageAt>

0

</lastIncomingMessageAt>

<out>

</out>

<lastOutgoingMessageAt>

0

</lastOutgoingMessageAt>

</traffic>

</jxta:PeerInfoAdvertisement>

Listing 8.3 Corresponding PIP response message.

Java Binding of the PIP

The Java binding of the PIP is defined in these files:

■■ net.jxta.peer.PeerInfoAdv.java

■■ net.jxta.protocol.PeerInfoAdvertisement.java

■■ net.jxta.peer.PeerInfoEvent.java

■■ net.jxta.peer.PeerInfoListener.java

■■ net.jxta.peer.PeerInfoService.java



■■ net.jxta.impl.peer.PeerInfoServiceImpl.java

■■ net.jxta.impl.peer.PeerInfoServiceInterface.java

The PIP service is created and a listener object attached to it; the listener is
defined in the PeerInfoListener class. (See Chapter 16 for a working application
that demonstrates these concepts.) When a query is sent, the listener object will
wait for a response. When a response is returned, it is encapsulated in a Peer-
InfoEvent object. The PeerInfoEvent object includes a method for extracting a
PeerInfoAdvertisement object. Within the PeerInfoAdvertisement object are
methods for extracting the various elements of the object without having to
perform XML parsing. 

Requesting Peer Information
All peers in the JXTA network have a peer ID associated with them. The peer ID
is a unique identifier and is present in all peer advertisements. If a peer knows
the advertisement or ID of another peer in the network, it can make a peer
information request. The first step in requesting peer information is to obtain a
reference to the PeerInfoService:

private PeerInfoService myPeerInfoService = null;

myPeerInfoService = netPeerGroup.getPeerInfoService();

Next, a request is made of the PeerInfoService object in the same manner as a
query using the discovery service. The code is the following:

myPeerInfoService.getRemotePeerInfo(localPeerID,

peerInfoListener);

Two parameters to the getRemotePeerInfo() method provide all of the infor-
mation necessary to request a PeerInfoAdvertisement from a remote peer. The
first parameter is the ID of the remote peer from which information is
requested. The second parameter is a listener that will be called when the
remote peer returns a PIP response.

Building a Listener
The listener class for a PIP response is shown in Listing 8.4. A PIP listener is
defined based on the PeerInfoListener interface, and requires a method called
peerInfoResponse(). When the listener is activated, the peerInfoResponse()
method will be executed and provided with a PeerInfoEvent object. One of the
primary methods of the PeerInfoEvent object is getPeerInfoAdvertisement().
The return value of this method is a PeerInfoAdvertisement object, which
allows access to its internal attributes using a series of methods. 

Java Binding of the PIP 127



C h a p t e r  8 Pe e r  I n f o r m a t i o n  P r o t o c o l128

PeerInfoListener peerInfoListener = new PeerInfoListener() {

public void peerInfoResponse(PeerInfoEvent e) { 

PeerInfoAdvertisement adv = e.getPeerInfoAdvertisement(); 

//displaying information from peer

}

};

Listing 8.4 PIP listener.

Viewing the Information Returned
The PeerInfoAdvertisement object includes a number of methods for obtaining
the information contained within the advertisement. These methods are:

Enumeration getIncomingTrafficChannels()—Returns an enumeration
of all incoming traffic channels

long getIncomingTrafficOnChannel(String channelName)—Returns
the total bytes received on the specified channel

long getLastIncomingMessageTime()—Returns a timestamp indicating
when the last incoming message was received

long getLastOutgoingMessageTime()—Returns a timestamp indicating
when the last outgoing message was sent

Enumeration getOutgoingTrafficChannels()—Returns an enumeration
of all outgoing traffic channels

long getOutgoingTrafficOnChannel(String channelName)—Returns
the total bytes sent on the specified channel

long getUptime()—Returns the total uptime of the peer in milliseconds

The basic information about the peer can be displayed by calling the appropri-
ate method. For example:

displayArea.append("Total Uptime in milliseconds – " + 

adv.getUptime() + "\n");

For the channel traffic information, we must use an enumeration. This code
will pull an enumeration for all the incoming channels on the remote peer and
display the total bytes in each: 

Enumeration localInEnum = 

adv.getIncomingTrafficChannels();

while (localInEnum.hasMoreElements()) {

String inChannelName = (String)localInEnum.nextElement();



displayArea.append("Incoming Channel Bytes = " + 

adv.getIncomingTrafficOnChannel(inChannelName) + "\n");

}

Summary

The Peer Information Protocol is basically an ancillary protocol created within
the JXTA specification for the monitoring and metering of JXTA peers. The cur-
rent specification isn’t completed as of this writing, but all indications point to
a robust protocol in the future. In the next chapter, the Peer Endpoint Protocol
(PEP) will be discussed. This is the protocol responsible for determining and
finding a route between two peers that need to communicate.

Summary 129





All of the protocols we’ve covered up to this point deal with the manipu-
lation and encapsulation of messages for transport to another peer;
however, none of those protocols is able to perform the actual trans-

portation of the messages. The Peer Endpoint Protocol (PEP) is responsible for
determining a route between peers in the JXTA network. The endpoint service
is a core service in the Java reference implementation that is responsible for
implementing the PEP.

The PEP is designed to provide the communication channel between one peer
and possibly several others. Located at the bottom of the protocol layer, the
PEP handles many of the low-level details of communication.

An Overview of the Peer Endpoint Protocol

The PEP is responsible for providing a facade that makes two peers that don’t
have a direct connection to each other seem as if they do. This makes the JXTA
network appear to be a many-to-many network topology. Having a separate pro-
tocol for this virtual connection means that the endpoint service doesn’t need
to know whether two peers are directly connected.

To accomplish this, the protocol defines a number of messages, consisting of
queries and responses (in much the same way many of the other protocols do).
The query and response messages are as follows:

Peer Endpoint Protocol

C H A P T E R 9

131



Ping query—The endpoint service sends this message to determine
whether a route exists between peers. In most situations, the connection
will be a direct one and won’t involve propagation. When a peer receives a
ping query message, it responds to that message.

Ping response—When a peer receives a ping query, it sends a ping
response message. The message will let the source peer know that a route
is available between the peers.

Route query—If a peer needs to send a message to another peer, but 
doesn’t have a direct route, it sends a route query message to the peer’s
directly connected peer looking for a route to the peer.

Route response—If a peer has a route to a target peer, the peer sends a
route response to the requesting peer. In other words, the route response
message is an answer to a route query message.

Each of the query and response messages contains a number of elements,
including the following:

Source—The endpoint address of the source peer

Destination—The endpoint address of the potential destination peer

LastHop—The endpoint address of the last router to touch the message

NbOfHop—The total number of peers the message has touched

ForwardRoute—An optional list of endpoint address strings a peer would
need to send a message to reach a destination peer

ReverseRoute—An optional list of endpoint address strings a peer would
use to respond to a message sent from a source peer 

Endpoint Service
The endpoint service is a core peer group service that provides transport func-
tionality between peers using a JXTA transport protocol. The current JXTA
transport protocols are as follows:

■■ HTTP Transport

■■ TCP Transport

■■ TLS Transport

■■ Beep Transport

■■ ServletHttpTransport

The JXTA transport protocols are responsible for the low-level communication
over those specific channels. The endpoint service is used by other core ser-
vices, such as the resolver and propagation services. By using the endpoint 

C h a p t e r  9 Pe e r  E n d p o i n t  P r o t o c o l132



service, peers can be assured that messages sent on the JXTA network are
using the network topology defined in the specification. We will see in Chapter
18 that there are ways to bypass the topology of the JXTA network and send
“raw” messages using any topology necessary for a given task.

If you dig into the details of the endpoint service, it will become clear that the
service is responsible only for sending messages from one peer to another. The
peers can be local to each other or connected through relay peers. This makes
sense because most of the JXTA transport protocols are designed for one-to-
one communication between directly connected peers. The Peer Endpoint Pro-
tocol handles the process of making disconnected peers appear to be
connected.

Sending a Message
When a message is ready to be sent from one peer to another, the endpoint ser-
vice needs a source and destination in the form of an ID. The ID is constructed
in the following format:

protocol://address_as_per_protocol/unique_name_of_recipient/

unique_name_in_recipient_context

Based on the value of the protocol string, the endpoint service invokes an end-
point protocol, such as TCP or HTTP. The address_as_per_protocol value rep-
resents the machine that the message is being sent to. For the TCP protocol,
this value would typically be an IP address. When the message arrives at the
destination machine, a handler is invoked based on a concatenation of the
unique_name_of_recipient and unique_name_in_recipient_context values.

Endpoint Protocols

Currently, five endpoint protocols are defined in the Java binding of the JXTA
specification:

■■ HTTP Transport

■■ TCP Transport

■■ TLS Transport

■■ Beep Transport

■■ ServletHttpTransport

The protocols defined in the current Java implementation are all written to fol-
low the endpoint protocol, but provide different functionality. All potential pro-
tocols must implement the following methods:

Endpoint Protocols 133



public EndpointMessenger getMessenger (EndpointAddress dest);

public void propagate (Message msg, String serviceName, 

String serviceParams, String prunePeer);

public boolean allowOverLoad();

public String getProtocolName();

public EndpointAddress getPublicAddress();

public boolean isConnectionOriented();

public boolean allowRouting();

public boolean ping (EndpointAddress addr);

The two most important methods are getMessenger() and propagate(). Both
methods accept an endpoint address that consists of the concatenated
unique_name_of_recipient and unique_name_in_recipient_context values.
The getMessenger() method is used to send a message from one peer directly
to another without any type of routing needed, whereas the propagate()
method is called when a message should be given to all local peers reachable
from the current peer. Each of the individual transport implementations are
responsible for overriding the methods above as well as for providing all of the
code necessary for handling traffic to and from individual peers.

The actual Java implementations of the transport protocols can be found in
these files:

■■ HttpTransport.java

■■ ServletHttpTransport.java

■■ TcpTransport.java

■■ TlsTransport.java

■■ BeepTransport.java

Java Binding of the Peer Endpoint Protocol
The Peer Endpoint Protocol is implemented in the Java binding within the file
EndpointRouter.java. The purpose of the endpoint router is to get a message
from point A to point B. With this task in mind, the router will do everything it
can to minimize the amount of work necessary to accomplish the task. One of
the tools the router uses to minimize the work is a route cache. When a route is
needed between two peers, the endpoint router checks its internal cache to find
the route. If a route is found, it will be used; if no route is found in the cache, a
route query message is sent to the JXTA network.

All messages from the endpoint router use both the discovery and router ser-
vices. These core services allow the query messages to be published and routed
throughout the JXTA network. The method within the endpoint router that
does the work of finding an address is the following:

public EndpointAddress getAddress(String pId)

C h a p t e r  9 Pe e r  E n d p o i n t  P r o t o c o l134



This method accepts the ID of a peer and returns an endpoint address that can be
used to communicate with the peer. The steps to finding a route are as follows:

1. Check to see whether the peer is directly connected; the endpoint router
will attempt to reach the destination peer locally. If the peer is directly con-
nected to the current peer, the route is found.

2. If no direct route exists, check the already routed routes. This step checks
the cache for the route. If a route is found, it is used.

3. If the peer is not directly connected and no route is found in the cache, a
query must be sent into the JXTA network to find a route. The code for
building the query is in the findRoute() method.

This code snippet illustrates the building of a query message:

StructuredTextDocument doc = ( StructuredTextDocument )

StructuredDocumentFactory.newStructuredDocument(new

MimeMediaType("text/xml"),"jxta:EndpointRouter");

Element e = null;

e = doc.createElement(TypeTag, RouteQuery);

doc.appendChild(e);

e = doc.createElement(DestPeerIdTag, peer);

doc.appendChild(e);

e = doc.createElement(RoutingPeerAdvTag, localPeerAdv);

doc.appendChild(e);

After the query message is created, a resolver object is instantiated, and the
query is sent throughout the network.

If a response is received for the query, the route listed in the response message
will be added to the cache. The code will loop, trying to find the route, up to one
minute. After a minute, the attempt is abandoned, and no route will be available
to the peer. Note that most of this functionality is hidden within the endpoint
service.

The code to perform this basic functionality is shown in Listing 9.1.

Endpoint Protocols 135

EndpointService myEndpointService = 

netPeerGroup.getEndpointService();

EndpointAddress endpointAddress = 

myEndpointService.newEndpointAddress(toAddress);

endpointAddress.setServiceName("tempServiceName");

Listing 9.1 Obtaining and sending data through endpoints. (continues)



C h a p t e r  9 Pe e r  E n d p o i n t  P r o t o c o l136

endpointAddress.setServiceParameter("tempParams");

if (myEndpointService.ping(endpointAddress)) {

Message message = myEndpointService.newMessage();

Line 110:        message.setString("MessageText", "Just a String");

try {

EndpointMessenger messenger = 

myEndpointService.getMessenger(endpointAddress);

messenger.sendMessage(message);

} catch (IOException e) {

System.out.println("Error sending to endpoint");

}

} else {

displayArea.append("No Endpoint Available\n");

}

Listing 9.1 Obtaining and sending data through endpoints. (continued)

The code first obtains the endpoint service from the current peer group. Next,
an endpointAddress object is instantiated. This object holds the ID—the toAd-
dress parameter—of the peer to which a connection is being requested. After
the address of the remote peer is known, a call is made to the ping() method of
the endpointService object. The ping() method has the effect of putting into
motion the sending of query messages in order to find a route between the
requesting peer and the remote peer. 

If the query is successful, an endpoint message will be created and sent to the
remote peer; otherwise, an error message is displayed informing the user that
no endpoint connection is available between the two peers. You can find addi-
tional code in Chapter 18, which shows all the steps necessary to use the Peer
Endpoint Protocol and its implementation, the endpoint service, to send infor-
mation between peers.

Summary

All of the JXTA protocols rely on the endpoint service, transport protocols, and
the Endpoint Router Transport Protocol to send messages throughout the net-
work. These protocols and service work together to send data in the network,
as well as to find routes to both direct and remote peers. In the next chapter, we
discuss the Pipe Binding Protocol. This protocol builds on the low-level func-
tionality presented in this chapter to allow information to be passed through a
higher level channel called a pipe.



One of the most used protocols of the JXTA specification is the Pipe Bind-
ing Protocol (PBP). It is based on the assumption that a peer will create
an input pipe and want to have remote peers connect to the pipe for

information transfer. 

The PBP defines a pipe, and specifies how the pipe can be used for communi-
cation between peers within a group. The pipe is an abstract communication
channel built on an Internet transport protocol, such as HTTP or TCP/IP. Just as
in the case of a Unix shell pipe, there are two ends to the pipe: an input, or
receiving, end and the output, or sending, end. 

Overview of the Pipe Binding Protocol

To facilitate the transfer of information down the pipe, the Pipe Binding Proto-
col is built on top of the Peer Endpoint Protocol (see Chapter 9). The PBP is 
a high-level service within the JXTA specification, and exists for the purpose 
of allowing messages to be passed from peer to peer. The PBP uses the 
Peer Resolver Protocol to obtain a path from one peer to another. The Peer
Resolver Protocol will use the Rendezvous Protocol if it needs to propagate
messages to a remote peer; it will use the Endpoint Protocol for more direct
communication.

Pipe Binding Protocol

C H A P T E R10

137



The current protocol specification outlines three different types of pipes:

Unicast—A one-way connection between two peers. The specification
states that the Unicast pipe is unreliable and not secure. Most bindings will
use TCP/IP for the Unicast pipe. In the specification and Java implementa-
tion, the descriptor for this pipe type is JxtaUnicast.

SecureUnicast—A one-way connection between two peers. The connec-
tion is secured using TLS for data encryption. In the specification and Java
implementation, the descriptor for this pipe type is JxtaUnicastSecure.

Propagate—A one-to-many connection between a host peer and multiple
remote peers. The connection is unreliable and not secure. In the 
specification and Java implementation, the descriptor for this pipe type 
is JxtaPropagate.

As we will see in Chapter 13, the Java binding contains reliable and bi-
directional pipes, both of which are built on the one-way and unreliable pipes
defined in the JXTA specification.

Pipe Advertisements

A peer uses a pipe advertisement to describe the characteristics of a pipe. As
you might expect, the pipe advertisement encompasses all of the information
necessary to describe a pipe. Listing 10.1 shows the format of a pipe advertise-
ment (a full example found in Listing 10.4 will be discussed later in the chap-
ter). The elements in the advertisement are the following:

Name—An optional name used for the pipe

ID—A JXTA ID for the pipe

Type—JxtaUnicast, JxtaUnicastSecure, or JxtaPropagate

C h a p t e r  10 P i p e  B i n d i n g  P r o t o c o l138

<?xml version="1.0" encoding="UTF-8"?>

<jxta:PipeAdvertisement>

<Name></Name>

<Id></Id>

<Type></Type>

</jxta:PipeAdvertisement>

Listing 10.1 Pipe advertisement format.

Pipe Binding Query Messages

The PBP has to perform quite a bit of work in order to connect two peers using
a pipe. A peer will create an input pipe as well as a pipe advertisement. A



remote peer will discover the pipe advertisement through a query or through
information provided directly by the host peer. The remote peer cannot assume
that the host peer actually has the pipe built and ready for communication;
therefore, the peer sends a pipe resolver message to the host peer. The message
format is shown in Listing 10.2; the elements of the message are:

MsgType—A value of either Query or Answer. A Query value occurs when
a remote peer initially sends the message to a host peer. An Answer value
occurs when the host peer responds to the remote peer’s original request.

PipeID—The JXTA ID of the pipe being queried.

Type—The pipe type: JxtaUnicast, JxtaUnicastSecure, or JxtaPropagate. 

Cached—A value of false means that the answer shouldn’t come from the
cache of the remote peer, but needs to be provided based on current data. 

Peer—The peer ID of the host peer that should answer the query. If the
value isn’t present and the cached element has a value of true, an intermedi-
ary peer could respond to the query.

Found—A value of true indicates that the pipe was found on the 
remote peer

PeerAdv—The peer advertisement of the pipe

The PBP will use the answer message to build an appropriate output pipe to the
remote peer.

Pipe Binding Query Messages 139

<xs:element name="PipeResolver" type="jxta:PipeResolver"/>

<xs:complexType name="PipeResolver">

<!-- should be an enumeration choice -->

<xs:element name="MsgType" type="xs:string"/>

<xs:element name="PipeId" type="JXTAID"/>

<xs:element name="Type" type="xs:string" minOccurs="0"/>

<!-- used in the query -->

<xs:element name="Cached” type="xs:boolean" default="false" 

minOccurs="0"/>

<xs:element name="Peer" type="JXTAID" minOccurs="0"/>

<!-- used in the answer -->

<xs:element name="Found" type="xs:boolean" minOccurs="0"/>

<!-- This should refer to a peer adv, but is instead a whole 

doc -->

<xs:element name="PeerAdv" type="xs:string" minOccurs="0"/>

</xs:complexType>

Listing 10.2 Pipe resolver message.



Java Binding

The Java binding of the PBP is implemented in the following files.

■■ PipeID.java

■■ PipeAdv.java

■■ PipeResolver.java

■■ PipeServiceImpl.java

■■ PipeServiceInterface.java

The protocol is implemented as the pipe service in the same manner as the
other protocols. A pipe service is obtained through the peer group of which the
peer is currently a member. The implementation of the pipe service is a core
function within the default peer group provided with the JXTA Java binding. In
order to use the PBP, a pipe service is obtained for the peer group with the
code:

PipeService localPipeService = netPeerGroup.getPipeService();

The service itself provides the ability to create input and output pipes and cre-
ate a message object to be sent through an output pipe. The methods for these
operations are shown in Table 10.1.

Table 10.1 Pipe Operations and Corresponding Methods

OPERATION METHOD

InputPipe createInputPipe(PipeAdvertisement adv) 

InputPipe createInputPipe(PipeAdvertisement adv, PipeMsgListener listener)

OutputPipe createOutputPipe(PipeAdvertisement adv, 
java.util.Enumeration peers, long timeout) 

OutputPipe createOutputPipe(PipeAdvertisement adv, long timeout) 

void createOutputPipe(PipeAdvertisement adv, OutputPipeListener 
listener)

Looking through the implementation, you will find that the pipe service is basi-
cally a wrapper around the PipeResolver class. The PipeService class provides
the high-level functionality for such applications as creating pipes and mes-
sages. The PipeResolver class is responsible for all aspects of query/answer
message handling as well as pipe advertisement discovery.

C h a p t e r  10 P i p e  B i n d i n g  P r o t o c o l140



Creating a Pipe
As we mentioned earlier, the PBP is based on the assumption that a peer will
create an input pipe and want to have remote peers connect to the pipe for
information transfer. The pipe advertisement will provide information about
the pipe’s ID and type. Just creating the pipe advertisement doesn’t inform
other peers about the existence of the communication channel. The peer will
need to use the discovery service to let other peers know about it.

The input pipe is created using one of the methods listed in Table 10.1. Each of
the methods takes the pipe advertisement as a parameter. The Pipe Service
implementation will build one of the three known pipe object types: JxtaUni-
cast, JxtaUnicastSecure, or JxtaPropagate. At this point, the pipe’s input is
bound to the peer that has created it. If the createInputPipe() method used
accepts a listener, the peer application is required to pass an object that imple-
ments the PipeMsgListener interface. Otherwise, the polling functionality avail-
able in the pipe object can be used. The steps in using pipes typically are as
follows:

■■ On the peer with an input pipe available:

1.  Get the PipeService object.

2.  Build the input pipe advertisement.

3.  Create an InputPipe listener.

4.  Create an input pipe.

5.  Publish the pipe advertisement.

■■ On the peer with an output pipe:

1.  Discover the pipe advertisement.

2.  Build an output pipe.

From a code standpoint, the first step is to obtain the pipe service. This is done
with the following statement:

PipeService pipeService = netPeerGroup.getPipeService();

In this example, the object netPeerGroup has been previously assigned when
the peer was first booted into the JXTA network.

Two different pipes are available: the input and output pipes. For the most part,
an output pipe is created in response to an input pipe created on a remote peer.
The remote peer will advertise the existence of the pipe using an advertise-
ment—specifically, the pipe advertisement. Listing 10.3 shows an example of a
pipe advertisement. The advertisement can be built using the code in Listing
10.4, which assigns a unique ID, a pipe name, and the pipe type.

Java Binding 141



C h a p t e r  10 P i p e  B i n d i n g  P r o t o c o l142

<?xml version="1.0"?>

<!DOCTYPE jxta:PipeAdvertisement>

<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">

<Id>

urn:jxta:uuid-

59616261646162614E5047205032503331BE4F9EC1D941BBBDA18B3273791A9D04

</Id>

<Type>

JxtaPropagate

</Type>

<Name>

bipipe2.end1

</Name>

</jxta:PipeAdvertisement>

Listing 10.3 Sample pipe advertisement.

PipeAdvertisement pipeAdv = 

(PipeAdvertisement)AdvertisementFactory.newAdvertisement(PipeAd

vertisement.getAdvertisementType());

pipeAdv.setName("JXTA:KEYRECEIVE");

pipeAdv.setType("JxtaUnicast");

pipeAdv.setPipeID((ID) net.jxta.id.IDFactory.

newPipeID(netPeerGroup.getPeerGroupID()));

Listing 10.4 Sample code to build a pipe advertisement.

Receiving Information
Before an input pipe is created, there must be a way to receive information
through the pipe. Two methods are available: synchronous and asynchronous.
The PipeMsgListener interface allows PipeMsgEvent events to be received
asynchronously. An object that implements the interface must include a
method called public void pipeMsgEvent(PipeMsgEvent event). This method
will be called when information is received through the input pipe. For the syn-
chronous method, a poll() method is available on the pipe. 

Polling for Information on the Input Pipe

When an input pipe is created (as described in the next section), the easiest way
to get a message from the pipe is to call the pipe’s poll() method. For example:

Message newMessage = inputPipe.poll(30000);



The parameter to the poll() method is a timeout period in milliseconds. The sys-
tem will block up to the timeout period or until a message is received. 

Building a Listener Event Class

A better situation could be the use of a callback object. When a message arrives
at the pipe, a specific method will be called within a listener object. The format
of the required listener is shown here:

PipeMsgListener pipeListener = new PipeMsgListener() {

public void pipeMsgEvent(PipeMsgEvent event) {

try {

Message msg = event.getMessage();

} catch (Exception e) {

e.printStackTrace();

return;

}

}

};

The listener is an interface called PipeMsgListener and requires the pipeMs-
gEvent() method (defined above). When the method is called, a PipeMsgEvent
object is passed to the method, which has a method called getMessage(). The
method returns the message sent through the pipe.

Building the Pipe
Both the input and output pipes require an advertisement in order to be built.
For the most part, the output pipe will be created when a pipe advertisement is
discovered using the discovery service. This process is described in the upcom-
ing section “Discovering an Input Pipe.” For the input pipe, the CreateInput-
Pipe() method of the pipe service is used to build the necessary pipe. The code
will use the listener event class and advertisement built earlier.

InputPipe inputPipe = pipeService.createInputPipe(pipeAdv, new 

inputPipeListener());

This code builds a new input pipe with its specifics based on the pipeAdv pipe
advertisement and assigned a new Listener object. 

Advertising the Pipe
Once the input pipe has been established on the local peer, the pipe advertise-
ment can be advertised. In fact, the input pipe doesn’t have to be established for
the advertisement to be published—the remote peer will find out the pipe isn’t
available when it tries to connect to it.

Java Binding 143



A remote peer will discover the pipe advertisement and attempt to build an out-
put pipe using the advertisement. The pipe service begins the process of
attempting to determine whether the pipe is available on the peer advertising it
and creating the necessary connection. The process involves the pipe service
sending a query message to the peer that might have an input pipe available.
The pipe service of the input pipe peer will process the query and determine the
current state of the input pipe, and an answer message will be returned to the
querying peer. If an input pipe is available, the newly created output pipe is
bound to the input pipe, and then information can begin flowing between the
peers.

The code to publish the advertisement might look like the following:

discoveryService.publish(pipeAdv, DiscoveryService.ADV);

discoveryService.remotePublish(pipeAdv, DiscoveryService.ADV);

Discovering an Input Pipe
The discovery of a pipe advertisement is based on the code presented in Chap-
ter 6, and won’t be repeated here. The following statement builds an Output-
Pipe object based on a valid pipe advertisement received from the discovery
service:

OutputPipe = 

pipeService.createOutputPipe(discoveredPipeAdv, TIMEOUT_VALUE );

Summary

The Pipe Binding Protocol is the protocol used by the JXTA system to create
and administer pipes. Pipes allow communication between peers within the
JXTA network and are fundamental to the entire system. Various implementa-
tion classes are available that keep the application developer out of the details
when creating and using pipes. In the next chapter, we discuss the Rendezvous
Protocol, which allows messages to be propagated between peers in the net-
work.

C h a p t e r  10 P i p e  B i n d i n g  P r o t o c o l144



The Rendezvous Protocol is designed to propagate messages between
peers within a group. An implementation of the protocol specification
allows a peer to use a rendezvous service for message propagation and

rely on the service itself for administering the propagation. Some of the admin-
istration includes monitoring the time-to-live variable in each message and
ensuring that messages are not caught in loops. 

The transport mechanisms used by the Java binding of the specification are
HTTP and TCP/IP. For the most part, these mechanisms aren’t designed to send
information from one machine to several other machines. The transports are
basically one-to-one (with the exception of the TCP/IP multicast mechanism).
The rendezvous protocol was created to facilitate the transportation of mes-
sages to multiple peers within the JXTA network.

A rendezvous peer is simply a peer that decides to propagate messages that it
receives. You can designate a peer as a rendezvous peer by selecting the Ren-
dezvous checkbox on the configuration screen or by dynamically invoking the
appropriate service. At the same time, a peer can download available ren-
dezvous peers on the configuration screen or dynamically discover the peers.

When a peer uses the discovery service to find advertisements in the JXTA net-
work, that service uses the resolver service implemented based on the Peer
Resolver Protocol. The resolver service will have the choice of using either the
Peer Endpoint Protocol or the Rendezvous Protocol, or both. By using the Ren-
dezvous Protocol and, subsequently, the rendezvous service, the discovery ser-
vice will gain a much wider audience for a discovery or publish event.

Rendezvous Protocol

C H A P T E R11

145



When a peer is designated as a rendezvous peer, a listener will be invoked to lis-
ten for messages using the service name JxtaPropagate and a service parame-
ter of a peer group ID. When a message is received through the listener, the peer
will check its current peer group and propagate the message accordingly.

Rendezvous Advertisements

When a peer is either configured as a rendezvous or becomes one dynamically,
it creates a rendezvous advertisement to advertise the rendezvous service to
other peers in the group. The advertisement is described in Listing 11.1. The ele-
ments in the advertisement are the following:

Name—An optional name for the rendezvous peer

RdvGroupID—The peer group ID with which this rendezvous peer is asso-
ciated

RdvPeerID—The peer ID of this rendezvous peer

C h a p t e r  11 R e n d e z v o u s  P r o t o c o l146

<?xml version="1.0" encoding="UTF-8"?>

<jxta:RdvAdvertisement>

<Name> name of the rendezvous peer</Name>

<RdvGroupId> PeerGroup UUID </RdvGroupId>

<RdvPeerId>Peer ID of the rendezvous peer</RdvPeerId>

</jxta:RdvAdvertisement>

Listing 11.1 Rendezvous advertisement format.

Message Propagation
As mentioned earlier, the Rendezvous Protocol must be aware of the messages
being propagated around the network in order to keep garbage from accumulat-
ing. The housekeeping is accomplished by embedding a rendezvous propagate
message within the message being propagated throughout the network. The mes-
sage is shown in Listing 11.2; the elements of the message are as follows:

MessageId —A JXTA ID associated with the message

DestSName—A string representing the name of the destination

DestSParam—A string representing any parameters associated with the
destination

TTL—The time-to-live integer for the message

Path—The URI where the message has already visited



Installing Custom Controls 147

<xs:element name="RendezVousPropagateMessage" 

type="jxta:RendezVousPropagateMessage"/>

<xs:complexType name="RendezVousPropagateMessage">

<xs:element name="MessageId" type=”xs:string"/>

<!-- This should be a constrained subtype -->

<xs:element name="DestSName" type="xs:string"/>

<xs:element name="DestSParam" type="xs:string"/>

<xs:element name="TTL" type="xs:unsignedInt”/>

<xs:element name="Path" type="xs:anyURI" maxOccurs="unbounded"/>

</xs:complexType>

Listing 11.2 Rendezvous propagate message.

The Java Binding

The Java binding of the Rendezvous Protocol is defined in the following class
files:

■■ RendezvousEvent.java

■■ RendezvousListener,java

■■ RendezVousManager.java 

■■ RendezVousMonitor.java 

■■ RendezVousService.java 

■■ Rendezvous.java

■■ RendezVousPropagateMessage 

■■ RendezVousServiceImpl.java 

■■ RendezVousServiceInterface.java 

Dynamic Rendezvous Service
Implementation

A peer can take advantage of the rendezvous service implemented by a default
peer group through a call to the peer group object:

RendezVousService netPeerGroup.getRendezVousService();

NOTE
Notice the use of the capital V character in the RendezVousService call; this is a poten-
tial source for a number of syntax errors.



Three different methods are associated with the RendezVousService object for
sending propagated messages within a peer group:

public void propagate (Message msg, String serviceName,

String serviceParam, int defaultTTL);

public void propagateInGroup (Message msg, String serviceName,

String serviceParam, int defaultTTL, String prunePeer);

public void propagateToNeighbors (Message msg, String serviceName,

String serviceParam, int defaultTTL, String prunePeer);

The methods take a Message object and propagate the message through the
network. Associated with each message is a serviceName that represents the
handler responsible for the interpretation of the method. A new listener or han-
dler can be added to the RendezVousService object with the following method:

void addPropagateListener(java.lang.String name, EndpointListener 

listener);

This method will add a listener using the specified name. When a message is
received with the same serviceName, the listener method is called. The listener
is responsible for parsing the message.

Finding Rendezvous Peers Dynamically
The discovery service can be used to locate rendezvous peers dynamically dur-
ing the execution of a peer. The discovery request code is

myDiscoveryService.getRemoteAdvertisements( null,

DiscoveryService.ADV,

netPeerGroup.getPeerGroupID().toString(),

100, myListener );

This code publishes a query into the current peer group, and looks for all adver-
tisements with an element named RdvGroupID and a value of the current peer
group. The myListener() method is called when any rendezvous advertisements
are found. The advertisements can be used to connect to the rendezvous peer.

Connecting to Rendezvous Peers
Connecting to a rendezvous peer basically means that the rendezvous peer is
added to the querying peer’s list of known rendezvous peers. The current list of
rendezvous peers could have been found dynamically or by using the configu-
ration screen. 

There are two ways to connect to a remote rendezvous peer: sending a raw con-
nect advertisement or via a method of the RendezVousService. In either case,

C h a p t e r  11 R e n d e z v o u s  P r o t o c o l148



the rendezvous service will pass a rendezvous connect message, as shown in
Listing 11.3. The message consists of a <jxta:Connect> element wrapping the
local peer’s advertisement denoted by the <jxta:PA> advertisement. In Listing
11.3, the peer advertisement has not been shown due to its enormous size.

The following method is the most common way to send the connect advertise-
ment to the remote peer:

Installing Custom Controls 149

public void connectToRendezVous (PeerAdvertisement adv);

<jxta:Connect xmlns:jxta="http://jxta.org">

<jxta:PA xmlns:jxta="http://jxta.org">

//Peer Advertisement

</jxta:PA>

</jxta:Connect>

Listing 11.3 Rendezvous connect message.

When either the connect message is sent to the remote rendezvous peer or the
connectToRendezVous() method is called, the remote rendezvous peer will
respond with a RendezvousAdvertisementReply message (shown in Listing
11.4). The message will be handled by the requesting peer’s rendezvous service.
The most important part of the message is the ConnectedLease element, which
indicates how long the requesting peer will be kept in the remote rendezvous
peer’s list of peers to send propagated messages to.

<jxta:RdvAdvReply xmlns:jxta="http://jxta.org">

<jxta:PA xmlns:jxta="http://jxta.org">

// Peer Advertisment of the peer granting the lease

</jxta:PA>

</jxta:RdvAdvReply>

<jxta:ConnectedPeer xmlns:jxta="http://jxta.org">

// ID

</jxta:ConnectedPeer>

<jxta:ConnectedLease xmlns:jxta="http://jxta.org">

value in milliseconds that the lease Is granted for

</jxta:ConnectedLease>

Listing 11.4 RendezvousAdvertisementReply message.

Disconnecting from a Rendezvous Peer
When a peer is finished being part of a rendezvous chain, whether the ren-
dezvous was created dynamically or through the configuration screen, it can



disconnect by either sending a disconnect advertisement (as shown in Listing
11.5) or by calling the following method:

C h a p t e r  11 R e n d e z v o u s  P r o t o c o l150

public void disconnectFromRendezVous (PeerID peerID);

<jxta:Disconnect xmlns:jxta="http://jxta.org">

<jxta:PA xmlns:jxta="http://jxta.org">

//Peer Advertisement of the peer requesting the disconnection

</jxta:PA>

</jxta:Disconnect>

Listing 11.5 A disconnect message.

Summary

The Rendezvous Protocol is an important part of the JXTA specification. The
protocol allows messages to be propagated between peers using a transport
that isn’t designed for propagated messages. As a go-between protocol, the
Rendezvous Protocol is used by the Peer Discovery Protocol and the Resolver
Protocol. This section of the book has covered the protocol outlined in the
JXTA Specification as well as Java code from the reference implementation. In
the next part of the book, the Java reference implementation will be used to
build peer-to-peer applications.



In the first two parts of this book, we covered the structure and theory
behind JXTA. We begin this third part with the process of developing JXTA
applications. We have two primary goals in this chapter:

■■ To demonstrate the process for building and executing simple JXTA 
command-line and GUI applications

■■ To explain how to create independent peer groups

To accomplish these goals, we build two peers that can connect and transmit
information to each other through pipes. The first peer will advertise the exis-
tence of a pipe using three separate advertisements: the module class adver-
tisement, the module specification advertisement, and the pipe advertisement.
Once the advertisements have been published to the JXTA network, we create
an input pipe to accept messages. The second peer will join the JXTA network,
locate the advertisements, create an output pipe, and then connect its output
pipe to the first peer’s input pipe. Once the connection is successful, the second
peer will transmit data to the first peer. In other words, the two peers provide
the following functionality:

■■ Initialize the Java JXTA reference implementation

■■ Connect to the JXTA network and its default peer group

■■ Obtain internal services for publishing, discovery, and pipe functionality

■■ Communicate information between peers

In the final section of this chapter, we add functionality that enables the peers
to create and join groups outside the global NetPeerGroup.

Developing a JXTA Application

C H A P T E R12

151



The Basic Structure for JXTA Applications

In this section, we examine the process for building a basic structure for writ-
ing JXTA applications. The JXTA applications in this book all begin with the
basic structure of a Java application, including a class and a main() method, as
well as a launchJXTA() method for performing basic initialization (as shown in
Listing 12.1). 

The code for Chapter 12 as well as the other chapters in the book can be found
on the companion website at the URL www.wiley.com/compbooks/Gradecki.

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n152

Line 1:      import net.jxta.peergroup.PeerGroupFactory;

Line 2:      import net.jxta.exception.PeerGroupException;

Line 3:      import net.jxta.impl.peergroup.Platform;

Line 4:      import net.jxta.impl.peergroup.GenericPeerGroup;

Line 5:      import net.jxta.peergroup.PeerGroup;

Line 6:      public class Example1 {

Line 7:

Line 8:          static PeerGroup netPeerGroup = null;

Line 9:

Line 10:          public static void main(String args[]) {

Line 11:            Example1 myapp = new Example1();

Line 12:            System.out.println ("Launching JXTA");

Line 13:

Line 14:            myapp.launchJXTA();

Line 15:

Line 16:            System.out.println ("Terminating Application");

Line 17:            System.exit(0);

Line 18:          }

Line 19:

Line 20:          /*

Line 21:           *  Default Constructor

Line 22:         */

Line 23:          public void Example1() {

Line 24:         }

Line 25:

Line 26:         /*

Line 27:          *  Private method for starting the JXTA platform.

Line 28:         */

Line 29:         private void launchJXTA() {

Line 30:         }

Line 31:      }

Listing 12.1 Basic Java skeleton for a JXTA application.



You can compile and execute the code in Listing 12.1 by using the instructions
in Appendix A. When executed, the application will simply print:

Launching JXTA

Terminating Application

The output will appear immediately after the application executes because
there is no code in the launchJXTA() method. The application code simply
begins executing in the main() method, where an object of type Example is
instantiated and the launchJXTA() method is called. After control returns to
main(), the application is terminated.

Connecting to the JXTA Network
To enable our application to become a peer and connect to the JXTA network,
we add the code from Listing 12.2 to the launchJXTA() method.

The Basic Structure for JXTA Applications 153

Line 1: try {

Line 2:   netPeerGroup = PeerGroupFactory.newNetPeerGroup();

Line 3: } catch (PeerGroupException e) {

Line 4:     System.out.println("Unable to create PeerGroup - Failure");

Line 5:     e.printStackTrace();

Line 6:     System.exit(1);

Line 7: }

Listing 12.2 Connecting to the JXTA network.

Before reading the following discussion, take the time to add Listing 12.2 to the
application; then compile and run it. If all goes well, you will see one of two pos-
sible outcomes:

1. If this is the first time you have executed the application, you will be asked
to configure the peer just as you did when you executed the JXTA shell. At
a minimum, you will need to enter a peer name and a security name. The
application will then connect to the JXTA network. 

2. If this isn’t the first time you have executed the application, you will be
asked to enter your sign-in name and password. The application will then
connect to the JXTA network.

Of particular importance to us is what the code is doing when the
launchJXTA() method is called. Because this code is fundamental to other code
that we will add to the application, the initial connection to the JXTA network
is embedded in a try catch block. Lines 1 and 3 set up the block, and in line 2 an
attempt is made to connect to the network using the information provided in
the configuration window when it was first displayed.



All JXTA applications (peers) want to be a part of a peer group, so one of the
first things an application will do is create a default peer group by calling the
newNetPeerGroup() method. In turn, this method creates a default peer group
with the name NetPeerGroup. As a general rule, all JXTA applications will
belong to this peer group. The group itself provides a number of services for
finding and creating additional groups.

If the method call is successful—which means the current peer was able to con-
nect to a rendezvous router and to the default group NetPeerGroup—a Peer-
Group object is returned. This object is stored in a static variable called
netPeerGroup. If for some reason the method call fails, it will throw a Peer-
GroupException, which will cause the catch block to execute and exit the
application.

When the peer joins the NetPeerGroup group, the ID of the group, as well as the
group advertisement, is assigned. The next section explains how to view these
properties.

Viewing Peer Group Information
Once a peer connects to the JXTA network, a call to the newNetPeerGroup()
method will reveal a number of properties from the PeerGroup object. In this
section, we discuss methods that we can use to obtain information about our
peer in the default NetPeerGroup peer group (see Appendix B for the complete
PeerGroup API):

getPeerGroupID()—Returns the ID of the group associated with this
PeerGroup object

getPeerGroupName()—Returns the name of the group associated with
this PeerGroup object

getPeerID()—Returns the ID of the peer in this peer group 

getPeerName()—Returns the name of the peer in this peer group

To use these methods, we make two changes to our sample program from List-
ings 12.1 and 12.2. First, in the main() method, we replace the line

myapp.launchJXTA();

with
myapp.launchJXTA();

myapp.getJXTAInfo();

Second, we add the following getJXTAInfo() method code immediately after
the launchJXTA() method:

public void getJXTAInfo() {

System.out.println("This Peer’s ID in the group : " + 

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n154



netPeerGroup.getPeerID().toString());

System.out.println("This Peer’s Name in the group : " + 

netPeerGroup.getPeerName());

System.out.println("The Peergroup’s ID : " + 

netPeerGroup.getPeerGroupID().toString());

System.out.println("The Peergroup’s name : " + 

netPeerGroup.getPeerGroupName());

}

After compiling and executing the revised application, you should see some-
thing similar to the following output:

Launching JXTA

This Peer’s ID in the group : urn:jxta:uuid-

59616261646162614A787461503250330783192C4C59465BB731B8AD1A67F6C403

This Peer’s Name in the group : JosephGradecki

The Peergroup’s ID : urn:jxta:jxta-NetGroup

The Peergroup’s name : NetPeerGroup

Terminating Application

As evidenced by the information returned, our application has become a peer in
the NetPeerGroup peer group. Note that the peer name and ID are pulled from
our JXTA configuration information we supplied when the application was first
executed. Once the peer connects to the peer group, various IDs and names will
be displayed.

Viewing Peer Group Advertisement
To view advertisements from the peer’s current peer group, simply add the code
from Listing 12.3 to our application. You should add this code where class meth-
ods are located. In addition, a call to the method getAdvertisements() should be
placed in either the main() or constructor method.

The Basic Structure for JXTA Applications 155

public void getAdvertisements() {

PeerGroupAdvertisement  myPeerGroupAD;

Document advertisementDocument;

myPeerGroupAD = netPeerGroup.getPeerGroupAdvertisement();

System.out.println("\n\nPeerGroup Advertisement:" +

myPeerGroupAD.toString());

System.out.println("PeerGroup Advertisement Type:" +

myPeerGroupAD.getAdvertisementType());

System.out.println("PeerGroup Advertisement Description:" + 

myPeerGroupAD.getDescription());

Listing 12.3 Code for viewing a peer group advertisement. (continues)



C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n156

advertisementDocument = myPeerGroupAD.getDocument(new

MimeMediaType("text/xml"));

try {

advertisementDocument.sendToStream(System.out);

} catch(IOException e) {

System.exit(1);

}

}

Listing 12.3 Code for viewing a peer group advertisement. (continued)

Now add the following code at the top of our sample application in order to
resolve classes used in the getAdvertisements() method:

import java.io.*;

import net.jxta.document.Document;

import net.jxta.document.MimeMediaType;

import net.jxta.protocol.PeerGroupAdvertisement;

Now when you run the application, you will see output similar to this:

PeerGroup Advertisement:net.jxta.impl.protocol.PeerGroupAdv@7e121c

PeerGroup Advertisement Type:jxta:PGA

PeerGroup Advertisement Description:NetPeerGroup by default

<?xml version="1.0"?>

<!DOCTYPE jxta:PGA>

<jxta:PGA xmlns:jxta="http://jxta.org">

<GID>

urn:jxta:jxta-NetGroup

</GID>

<MSID>

urn:jxta:uuid-DEADBEEFDEAFB

ABAFEEDBABE000000010206

</MSID>

<Name>

NetPeerGroup

</Name>

<Desc>

NetPeerGroup by default

</Desc>

</jxta:PGA>

The first three lines of output show generic information about the advertise-
ment, including the name of the advertisement, the type (PGA = Peer Group
Advertisement), and the description. Following the first three lines is the XML
representation of the actual advertisement. As we know, advertisements are
designed to publish available peers, groups, and/or services. As we can see
from the advertisement for the NetPeerGroup, no services are available or 



provided by the peer group itself; however, this doesn’t mean there aren’t peers
in the group that have services available. Before we start looking for services in
the group, let’s provide our own.

Building a Peer to Offer Services

The code from the previous section instantiates a peer that can then become a
member of the default NetPeerGroup peer group. In this section, we add a sim-
ple pipe service where messages can be sent. This peer has all of the basic parts
needed for communication with another peer. The class name is called sender
because it sends out an advertisement for a communication channel. Once the
peer is executed, the advertised pipe remains open and available, regardless of
whether any remote peers need it. The steps to be performed are:

1. Obtaining group services

2. Building and publishing a module class advertisement

3. Building a pipe advertisement

4. Building and publishing a module specification advertisement

5. Waiting for messages

Figure 12.1 shows the completed peer. Each time a remote peer sends data to
this peer, the data will be displayed in the GUI windows (as shown in Figure
12.2).

Building a Peer to Offer Services 157

Figure 12.1 Completed service peer.

Figure 12.2 Service peer receives data.



NOTE
To obtain the complete code for the service peer found in Listing 12.4, go to
www.wiley.com/compbooks/Gradecki, download the file for Chapter 12, and look in
the /jxtawiley/chapter12/example2/sender directory.

For the remainder of this section, the code in Listing 12.4 will be referenced by
line number. This source code is based on the examples found in Listings 12.1,
12.2, and 12.3 that we discussed earlier in the chapter; however there are two
primary changes. First, we include code to support the advertising and support
of the peer’s service. Second, we’ve changed the code to allow the use of a Java
GUI instead of a command-line operation. The GUI components cause the fol-
lowing to occur:

■■ All of the System.out.println statements for non-error strings are changed
to displayArea.append() methods. The displayArea is a JtextArea placed
on the window of the application.

■■ GUI code is added to the constructor for the application.

■■ Class now extends JFrame.

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n158

Line 1: import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import net.jxta.document.Document;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupFactory;

import net.jxta.exception.PeerGroupException;

Line 10:  import net.jxta.document.AdvertisementFactory;

import net.jxta.impl.peergroup.Platform;

import net.jxta.impl.peergroup.GenericPeerGroup;

import net.jxta.id.ID;

import net.jxta.id.IDFactory;

import net.jxta.discovery.DiscoveryService;

import net.jxta.pipe.PipeService;

import net.jxta.protocol.ModuleClassAdvertisement;

import net.jxta.platform.ModuleClassID;

import net.jxta.document.StructuredDocumentFactory;

Line 20: import net.jxta.document.StructuredTextDocument;

import net.jxta.document.StructuredDocument;

import net.jxta.document.StructuredDocumentUtils;

import net.jxta.document.MimeMediaType;

Listing 12.4 A peer that offers a pipe service. (continues)



Building a Peer to Offer Services 159

import net.jxta.protocol.PipeAdvertisement;

import net.jxta.document.Element;

import net.jxta.protocol.ModuleSpecAdvertisement;

import net.jxta.endpoint.Message; 

import net.jxta.protocol.PeerGroupAdvertisement;

import net.jxta.pipe.InputPipe;

Line 30: import net.jxta.pipe.PipeMsgListener;

import net.jxta.pipe.PipeMsgEvent;

public class sender extends JFrame {

static PeerGroup netPeerGroup = null;

private DiscoveryService myDiscoveryService = null;

private PipeService myPipeService = null;

private ModuleClassID myService1ID = null;

private InputPipe myPipe = null;

Line 40:    private JTextArea displayArea;

public static void main(String args[]) {

sender myapp = new sender();

myapp.addWindowListener (

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

Line 50:          }

);

myapp.launchJXTA();

myapp.getServices();

myapp.buildModuleAdvertisement();

myapp.buildModuleSpecificationAdvertisement(myapp.createPipeAdvertisement());

myapp.run();

}

Line 60:    public sender() { 

super("sender");

Container c = getContentPane();

displayArea = new JTextArea();

c.add (new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300,150);

show();

Line 70:    }

Listing 12.4 A peer that offers a pipe service. (continues)



C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n160

public void run() {

displayArea.append("Waiting for message...\n");

}

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

Line 80:        } catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - Failure");

e.printStackTrace();

System.exit(1);

}

}

private void getServices() {

displayArea.append("Obtaining Discovery and Pipe Services....\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

Line 90:      myPipeService = netPeerGroup.getPipeService();

}

private void buildModuleAdvertisement() {

ModuleClassAdvertisement myService1ModuleAdvertisement = 

(ModuleClassAdvertisement) AdvertisementFactory.newAdvertisement

(ModuleClassAdvertisement.getAdvertisementType());

myService1ModuleAdvertisement.setName("JXTAMOD:JXTA-CH15EX2");

myService1ModuleAdvertisement.setDescription(“Service 1 of Chapter 15

example 2");

myService1ID = IDFactory.newModuleClassID();

Line 100:       myService1ModuleAdvertisement.setModuleClassID(myService1ID);

displayArea.append("Publishing our Module Advertisement....\n");

try {

myDiscoveryService.publish(myService1ModuleAdvertisement,

DiscoveryService.ADV);

myDiscoveryService.remotePublish(myService1ModuleAdvertisement,

DiscoveryService.ADV);

} catch (Exception e) {

System.out.println("Error during publish of Module Advertisement");

System.exit(-1);

}

Line 110:    }

private PipeAdvertisement createPipeAdvertisement() {

Listing 12.4 A peer that offers a pipe service. (continues)



Building a Peer to Offer Services 161

PipeAdvertisement myPipeAdvertisement = null;

try {

FileInputStream is = new FileInputStream("service1.adv");

myPipeAdvertisement = (PipeAdvertisement)AdvertisementFactory.

newAdvertisement(new MimeMediaType("text/xml"), is);

} catch (Exception e) {

System.out.println("failed to read/parse pipe advertisement");

Line 120:            e.printStackTrace();

System.exit(-1);

}

return myPipeAdvertisement;

}

private void buildModuleSpecificationAdvertisement(PipeAdvertisement 

myPipeAdvertisement) {

Line 130:

ModuleSpecAdvertisement myModuleSpecAdvertisement = 

(ModuleSpecAdvertisement) AdvertisementFactory.newAdvertisement

(ModuleSpecAdvertisement.getAdvertisementType());

myModuleSpecAdvertisement.setName("JXTASPEC:JXTA-CH15EX2");

myModuleSpecAdvertisement.setVersion("Version 1.0");

myModuleSpecAdvertisement.setCreator("gradecki.com");

myModuleSpecAdvertisement.setModuleSpecID(IDFactory.newModuleSpecID

(myService1ID));

myModuleSpecAdvertisement.setSpecURI("<http://www.jxta.org/CH15EX2>");

myModuleSpecAdvertisement.setPipeAdvertisement(myPipeAdvertisement);

Line 140:      displayArea.append("Publishing Module Specification 

Advertisement....\n");

try {

myDiscoveryService.publish(myModuleSpecAdvertisement,

DiscoveryService.ADV);

myDiscoveryService.remotePublish(myModuleSpecAdvertisement,

DiscoveryService.ADV);

} catch (Exception e) {

System.out.println("Error during publish of Module Specification

Advertisement");

e.printStackTrace();

System.exit(-1);

}

Listing 12.4 A peer that offers a pipe service. (continues)



C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n162

Line 150:      createInputPipe(myPipeAdvertisement);

}

private void createInputPipe(PipeAdvertisement myPipeAdvertisement) {

displayArea.append("Creating Input Pipe....\n");

PipeMsgListener myService1Listener = new PipeMsgListener() {

public void pipeMsgEvent(PipeMsgEvent event) {

Message myMessage = null;

try {

myMessage = event.getMessage();

Line 160:

String myMessageContent;

myMessageContent = myMessage.getString("DataTag");

if (myMessageContent != null) {

displayArea.append("Message received: " + myMessageContent +

"\n");

displayArea.append("Waiting for message...\n");

return;

} else {

displayArea.append("Invalid tag\n");

Line 170:              return;

}

} catch (Exception ee) {

ee.printStackTrace();

return;

}

}

};

try {

Line 180:        myPipe = myPipeService.createInputPipe(myPipeAdvertisement,

myService1Listener);

} catch (Exception e) {

System.out.println("Error creating Input Pipe");

e.printStackTrace();

System.exit(-1);

}

}

}

Listing 12.4 A peer that offers a pipe service. (continued)

Obtaining Group Services
When our peer from Listing 12.4 connects to the NetPeerGroup peer group (or
any other group, for that matter), it becomes a peer in the group with the 



ability to provide or request services. For our example, we provide a pipe
through which other peers can communicate or exchange data.

A peer must execute two primary operations in order to provide a service: pub-
lish the existence of the service and provide the mechanism to perform the
work of the service. For each of these operations, the JXTA group we have
joined provides group-level services in the form of the discovery service and
the pipe service; thus, our peer will need to instantiate an object of each ser-
vice. The code to handle the instantiation is found in the following lines:

■■ Lines 87 through 91 create a method called getServices().

• Line 89 instantiates an object named myDiscoveryService from the cur-
rent group by using the getDiscoveryService() method. 

• Line 90 instantiates an object named myPipeService from the current
group by using the getPipeService() method.

■■ Lines 15 through 16 import the correct JXTA code for the calls made in
lines 89 and 90.

■■ Lines 36 through 37 declare variables to hold the objects instantiated in
lines 89 and 90.

■■ Line 54 makes the method call to getServices() once the peer has commu-
nicated with the JXTA network.

Building and Publishing the Module
Class Advertisement

In order for a peer to offer a service to other peers, it must create several adver-
tisements. The first is the module class advertisement, which is a shell adver-
tisement used to indicate that a service is available. The second type of
advertisement, the module class advertisement, provides the specifics of the
service available. The module class advertisement has a specific format defined
in the JXTA specification (Chapter 5 describes these advertisements in detail). 

In Listing 12.4, lines 93 through 110 handle the creation and functionality for the
module class advertisement. Line 94 instantiates the advertisement using the
JXTA advertisement factory. The parameter to the factory is the advertisement
type returned using the static method getAdvertisementType() from the Mod-
uleClassAdvertisement class.

Line 96 assigns a name to the service. In this case, the name JXTASPEC:JXTA-
EXAMPLE is optional; during debugging, a meaningful name is helpful because
the name of the advertisement can be displayed.

Building a Peer to Offer Services 163



Line 97 adds a description for the service. A remote peer searching for a service
can access this description, so you’ll want to include relevant keywords.

Lines 99 and 100 create a new module class ID and assign it to the advertise-
ment for this specific service. The ID will uniquely identify the class module to
other peers.

Lines 104 and 105 are the key to making the new service known to other peers
in the group. Line 104 publishes the advertisement in the local cache, and 
line 105 publishes the advertisement to the group. It should be noted that if
you are part of a group other than NetPeerGroup, the advertisement 
published with the remotePublish() method will only go to the group of
which your peer is currently a member. An advertisement that must be pub-
lished to the NetPeerGroup will have to use the getParent() method of the
current group to obtain the parent group. For our example, if either of the
publishing methods fails, any exception thrown will be caught and the appli-
cation will be closed.

Lines 17 through 23 contain imports necessary for the creation and publishing
of the advertisement. Line 55 makes the actual method call to build the module
class advertisement.

Building the Pipe Advertisement
Two more advertisements are necessary in order to give other peers the ability
to discover and use our service: the module specification advertisement and the
pipe advertisement. We just built the module class advertisement, whose pri-
mary purpose is to publish a module class ID and provide searchable keywords.
Once a peer finds the module class advertisement, it will try to retrieve the
module specification advertisement (MSA), which acts as a container for the
actual service.

Within the MSA are service advertisements. The service advertisements pub-
lish the existence of a service that a remote peer can take advantage of. In most
cases, the service advertisements will be an input pipe advertisement, which
the remote peer will use to build a pipe connection. Because a service adver-
tisement is needed to build the MSA, we will create it next. 

The service that will be exposed by our peer is an input pipe that accepts 
text messages from another peer. There are three key elements to the adver-
tisement (for details of the pipe advertisement specification, refer to Chapter 5,
Listing 5.11):

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n164



name—Even though the name is optional, it is still good practice to include it
in the advertisement. You will notice that the name of the pipe is the same as the
name used in the module class advertisement. 

ID—The ID of the pipe uniquely identifies the pipe. 

type—The type dictates what can be done with the pipe. 

For our purposes, the pipe is kept in a file in the same directory as the applica-
tion—this is not necessary, but doing so provides the ability to change the ID or
pipe type without recompiling the application. Listing 12.5 shows the contents
of the pipe advertisement file named service1.adv. 

Building a Peer to Offer Services 165

<?xml version="1.0" encoding="UTF-8"?>

<jxta:PipeAdvertisement>

<Name>JXTA-EXAMPLE</Name>

<Id>urn:jxta:uuid-

9CCCDF5AD8154D3D87A391210404E59BE4B888209A2241A4A162A10916074A9504</Id>

<Type>JxtaUnicast</Type>

</jxta:PipeAdvertisement>

Listing 12.5 Pipe advertisement (service1.adv).

With the pipe advertisement description file created, the code for building 
the internal representation begins. The following line descriptions refer to 
Listing 12.4.

Lines 112 through 125 define a method called createPipeAdvertisement(),
which handles all of the details for pulling in the pipe service advertisement
defined in the service1.adv file. The outcome of the method is a PipeAdvertise-
ment object; this object will subsequently be passed to a method called 
buildModuleSpecificationAdvertisement().

Line 113 declares a local variable, which will ultimately point to a new pipe
advertisement. Line 116 opens an input stream to the local file called 
service1.adv.

Line 117 uses the advertisement factory to instantiate a new advertisement
object. The object is based on the XML in the service1.adv file. Note the use of
the MimeMediaType object to specify to the factory that the advertisement
should be built from data presented in XML format. 

Once the object has been created by the factory, it is cast to a PipeAdvertise-
ment object. Line 124 returns the new PipeAdvertisement object to the caller.



Line 56 is the method call to createPipeAdvertisement(). The call is actually a
parameter to the buildModuleSpecificationAdvertisement() method.

Building and Publishing the Module
Specification Advertisement

As we mentioned earlier, the module class advertisement is just a “courtesy”
advertisement that can be searched by other peers looking for specific services.
The pipe advertisement we created in the previous section is more concrete
because it defines the name, type, and ID for a specific service. The final adver-
tisement we need to build is the module specification advertisement, the pur-
pose of which is to specify services described by the module class
advertisement. Once a peer has found a necessary service, it will pull the MSA
and locate the embedded service. Our code needs to build the MSA, embed the
pipe advertisement, and publish the advertisement.

Lines 127 through 148 define the buildModuleSpecificationAdvertisement()
method, which creates the MSA, embeds the pipe advertisement, and publishes
the advertisement. Line 130 uses the advertisement factory to instantiate a new
ModuleSpecAdvertisement object. A call to the getAdvertisementType()
method of the MSA class ensures that the correct advertisement object is gen-
erated.

Lines 132 through 135 fill in the details of the advertisement object. Most of the
information is optional, including the name of the spec, the creator, and the
Supported Universal Resource Identifier or SURI. The module’s version is a
required component. In the call to setModuleSpecID(), a new ModuleSpecID is
built that is based on the ID of the module class advertisement we created ear-
lier. By using the previous ID, the code links the ModuleAdvertisement and the
ModuleSpecAdvertisement objects.

Lines 142 and 143 perform the publishing of the advertisement to the local and
remote systems so that other peers can find our service. If any problems are
found with the publishing, an exception will be caught and the program ended.

Line 150 makes a call to a private method of the peer to build the actual Input-
Pipe object we’ve just advertised. By putting the method call in the method that
builds and publishes the MSA, we are assured that the pipe will be available if a
remote peer discovers our advertisement and tries to send information.

Line 56 contains the method call to buildModuleSpecificationAdvertisement().
The single parameter to the method is the PipeAdvertisement object returned
from the call to buildPipeAdvertisement().

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n166



Waiting for Messages
The last statement in the buildModuleSpecificationAdvertisement() method is
a call to createInputPipe(). The createInputPipe() method is an essential com-
ponent in the overall system because it creates the input pipe that will receive
string data from other peers. As you might expect, the input pipe works on an
asynchronous basis. Our peer has no idea when information will be received
from another peer in the system; for this reason, we have to decide how to mon-
itor the pipe for incoming data. 

We have two choices. The first is to use the waitForMessage() method defined
for input pipes. A simple piece of code illustrates this:

while (true) {

Messsage myMessage;

Try {

MyMessage = myInputPipe.waitForMessage();

} catch(Exception e) {}

do something with message

}

In this code snippet, an infinite loop is both pulling messages from the input
pipe and processing the messages. The call to waitForMessage() is blocked
until a message arrives at the input pipe. In most situations, we try to avoid the
use of an infinite loop because it will put the CPU at 100 percent usage. How-
ever, in this case, the waitForMessage() method will block and not allow the
infinite loop to pull 100 percent CPU. Of course, this method isn’t very elegant
and is thus not in keeping with the purpose of Java.

The second and better choice for handling the asynchronous nature of an input
pipe is through a listener. Fortunately, we have defined a listener interface
called PipeMsgListener. We will be using the listener and an anonymous class to
handle all of the communication that occurs with our input pipe. The code for
the listener will be explained as we walk through the createInputPipe()
method. Lines 153 through 188 define this method. 

Lines 156 through 177 create an object that implements the PipeMsgListener
interface by using an anonymous inner class. When using the pipe listener, the
pipeMsgEvent() method must be overridden with the functionality to be exe-
cuted when a new message appears on the pipe. The pipe message from a
remote peer (another machine or on the same machine) will be encapsulated in
a PipeMsgEvent object. The PipeMsgEvent object is the parameter to the lis-
tener’s pipeMsgEvent() method. When the method fires, an attempt is made to
pull a message object from the event using the getMessage() method provided
by the PipeMsgEvent class.

Building a Peer to Offer Services 167



Once the message object has been obtained, the string contents of the message
can be pulled using the getString() method, as shown in line 163. Of particular
importance is the key value provided as a parameter to the method. In our case,
we are using a key value of DataTag. Because we are in a peer-to-peer environ-
ment, anyone could be sending data to our input pipe, so the key value can be
used to discard message objects that aren’t appropriate for our service. When
the client side of our peer-to-peer application is created later in the chapter, it
will need to use the DataTag key when sending messages to the server. In this
sample program, the message received from the client is printed in the server’s
content pane.

Line 180 attempts to create an inputPipe object and assign the resulting object
to the myPipe object attribute. If the attempt is not successful, an exception
will be thrown. The exception will be caught locally and the application exited.

Putting It All Together
All of the major functionality for the sender peer that is providing a service has
been described in the previous sections. We need only add four primary meth-
ods to complete the application and tie everything together.

Lines 42 through 58 define the main() method of the application. The code
within the main() method instantiates a new application object, starts the JXTA
environment, calls the appropriate methods defined earlier for creating and
publishing the necessary advertisements, and finally calls the run() method of
the application object.

Lines 60 through 70 define the default constructor for the application class. The
only code found in the constructor is the code that builds the GUI components
of the application. 

Lines 72 through 74 define the run() method of the application class. Since we
are building a GUI-based Java application, we need to invoke the run() method
so that the internal Java event loop is started. The application will continue to
run until the GUI window closes.

Lines 76 through 85 define the launchJXTA() method. This method uses the
same code as that created in our command-line examples earlier in the chapter.

With the code in place, executing the application will cause an initial applica-
tion GUI to be displayed, along with the JXTA configuration window or login
dialog box. After the correct information or login is provided, the application
will connect to the NetPeerGroup group, advertise our input pipe service, and
await messages. Now we need to look at building a peer that will find our ser-
vice and send messages.

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n168



Building a Peer for Using Services

The sender peer from the previous section advertises the existence of an input
pipe through which data can be transferred. In this section, we build a receiver
peer with the necessary components for discovering and using the sender
peer’s pipe. In simple terms, a receiver peer joins the default NetPeerGroup
peer group, searches for the sender peer’s advertisement, and then uses the
pipe by sending data to it.

When executed, the receiver peer displays the GUI shown in Figure 12.3. When
the user clicks on the Send Data button, a message is sent through the peer’s
output pipe to the input pipe of the sender peer that published the pipe adver-
tisement. The sender peer will receive the message and display its contents.

The client peer will need to execute a few steps into order to use the pipe pub-
lished by the sender peer. These steps are as follows:

1. The receiver peer will attempt to find the advertisement in the local cache.

2. When that attempt fails, a remote discovery request is sent by the receiver
peer using the Discovery Service.

3. The module specification advertisement is obtained from the remote dis-
covery request.

4. The receiver peer obtains the pipe advertisement from the module specifi-
cation advertisement.

5. The receiver obtains the pipe data from the pipe advertisement.

6. The receiver creates the pipe advertisement.

7. The receiver creates the output pipe, and uses it to send data to the sender
peer.

Building a Peer for Using Services 169

Figure 12.3 Receiver peer’s GUI.



Code for the Receiver Peer
The code for our client peer appears in Listing 12.6. We describe the code in this
section.

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n170

Line 1:import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

//For Local Search

import java.util.Enumeration;

Line 10:import net.jxta.document.Document;

import net.jxta.peergroup.PeerGroup;

import net.jxta.peergroup.PeerGroupFactory;

import net.jxta.exception.PeerGroupException;

import net.jxta.document.AdvertisementFactory;

import net.jxta.impl.peergroup.Platform;

import net.jxta.impl.peergroup.GenericPeerGroup;

import net.jxta.id.ID;

import net.jxta.id.IDFactory;

Line 20://For Getting Services

import net.jxta.discovery.DiscoveryService;

import net.jxta.pipe.PipeService;

//build Spec Adv

import net.jxta.document.MimeMediaType;

import net.jxta.document.StructuredTextDocument;

import net.jxta.protocol.ModuleSpecAdvertisement;

import net.jxta.protocol.DiscoveryResponseMsg;

Line 30://build pipe adv

import java.net.MalformedURLException;

import java.net.URL;

import net.jxta.protocol.PipeAdvertisement;

import net.jxta.pipe.PipeID;

import net.jxta.document.TextElement;

import net.jxta.pipe.OutputPipe;

import net.jxta.endpoint.Message;

import net.jxta.discovery.DiscoveryListener;

Line 40:import net.jxta.discovery.DiscoveryEvent;

import net.jxta.document.Advertisement;

Listing 12.6 Receiver peer. (continues)



Building a Peer for Using Services 171

public class receiver extends JFrame{

static  PeerGroup netPeerGroup = null;

private DiscoveryService myDiscoveryService = null;

private PipeService myPipeService = null;

Line 50:    private PipeAdvertisement myPipeAdvertisement = null;

private OutputPipe myOutputPipe;

private JTextArea displayArea;

private JButton   sendButton;

String  valueString = "JXTA-EXAMPLE";

private final static MimeMediaType XMLMIMETYPE = new

MimeMediaType("text/xml");

public static void main(String args[]) {

Line 60:        receiver myapp = new receiver();

myapp.addWindowListener (

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

Line 70:        myapp.launchJXTA();

myapp.getServices();

myapp.findAdvertisement("Name", "JXTASPEC:JXTA-CH15EX2");

myapp.run();

}

public receiver() { 

super("receiver");

Line 80:      Container c = getContentPane();

sendButton = new JButton("Send Data");

sendButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

sendData();

}

}

Listing 12.6 Receiver peer. (continues)



C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n172

);

Line 90:      c.add(sendButton, BorderLayout.NORTH);

displayArea = new JTextArea();

c.add(new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300,150);

show();

}

public void run() {

Line 100:      displayArea.append("Click on Button to send data...\n");

}

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - Failure");

e.printStackTrace();

Line 110:            System.exit(1);

}

}

private void getServices() {

displayArea.append("Getting Services...\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

myPipeService = netPeerGroup.getPipeService();

}

Line 120:        private void findAdvertisement(String searchKey, String

searchValue) {

Enumeration myLocalEnum = null;

displayArea.append("Trying to find advertisement...\n");

try {

myLocalEnum = myDiscoveryService.getLocalAdvertisements

(DiscoveryService.ADV, searchKey, searchValue);

if ((myLocalEnum != null) && myLocalEnum.hasMoreElements()) {

displayArea.append("Found Local Advertisement...\n");

Listing 12.6 Receiver peer. (continues)



Building a Peer for Using Services 173

ModuleSpecAdvertisement myModuleSpecAdv = (ModuleSpecAdvertise-

ment)myLocalEnum.nextElement();

Line 130:

myPipeAdvertisement = myModuleSpecAdv.getPipeAdvertisement();

createOutputPipe(myPipeAdvertisement);

}

else {

DiscoveryListener myDiscoveryListener = new DiscoveryListener() { 

public void discoveryEvent(DiscoveryEvent e) { 

Enumeration enum;

PipeAdvertisement pipeAdv = null;

String str;

Line 140:

displayArea.append("Found Remote Advertisement...\n");

DiscoveryResponseMsg myMessage = e.getResponse();

enum = myMessage.getResponses();

str = (String)enum.nextElement();

try {

ModuleSpecAdvertisement myModSpecAdv = (ModuleSpecAdvertise-

ment) AdvertisementFactory.newAdvertisement(XMLMIMETYPE, new ByteArrayInput-

Stream(str.getBytes()));

myPipeAdvertisement = myModSpecAdv.getPipeAdvertisement();

Line 150:                createOutputPipe(myPipeAdvertisement);

} catch(Exception ee) {

ee.printStackTrace();

System.exit(-1);

}

}

};

displayArea.append("Launching Remote Discovery Service...\n");

myDiscoveryService.getRemoteAdvertisements(null,

DiscoveryService.ADV, searchKey, searchValue, 1, myDiscoveryListener);

Line 160:        }

} catch (Exception e) {

System.out.println("Error during advertisement search");

System.exit(-1);

}

}

Listing 12.6 Receiver peer. (continues)



C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n174

private void createOutputPipe(PipeAdvertisement myPipeAdvertisement) {

boolean noPipe = true;

int count = 0;

Line 170:

myOutputPipe = null; 

while (noPipe && count < 10) {

count++;

try {

myOutputPipe = myPipeService.createOutputPipe(myPipeAdvertisement,

100000);

displayArea.append("Output Pipe Created...\n");

noPipe = false;

} catch (Exception e) {

System.out.println("Unable to create output pipe");

Line 180:            System.exit(-1);

}

}

if (count >= 10) {

System.out.println("no Pipe");

System.exit(-1);

}

}

Line 190:    private void sendData() {

String data = "Hello my friend!";

Message msg = myPipeService.createMessage();

msg.setString("DataTag", data);

try {

myOutputPipe.send (msg);

} catch (Exception e) {

System.out.println("Unable to print output pipe");

Line 200:          e.printStackTrace();

System.exit(-1);

}

displayArea.append("message \"" + data + "\" sent to the Server\n");

}

}

Listing 12.6 Receiver peer. (continued)



Getting Services
Just as the sender peer needed services of the peer group, so does the receiver
peer. Lines 114 through 118 are identical to the code in the sender peer where
discovery and pipe service objects are obtained and stored in attributes for
later use. The call to the getServices() method is found in line 71.

Finding the Advertisement through Discovery
As we discussed in earlier chapters, the sender peer uses an advertisement to
communicate to the world that it has a service available. You will also recall
that each peer has a local cache that stores advertisements as they are discov-
ered in the various peer groups. When a peer needs to access a service, it first
checks its local cache for the advertisement. If it doesn’t find the advertisement
in the local cache, it initiates a remote discovery query. Our client peer code
does exactly this type of operation. A method called findAdvertisement() is cre-
ated that accepts a name-value pair indicating how the advertisement should be
found. In our case, the name is denoted by the Name variable; the value is the
name of our module class. 

First, the receiver  will try to find the advertisement in the local cache. Lines 125
through 132 handle the discovery of a cached local advertisement. The primary
statement is line 125, where a call is made to the getLocalAdvertisements()
method. Using the parameters provided—including our search name-value
pair—the method searches for advertisements that match the appropriate values.
If an appropriate advertisement is found, an Enumeration object is returned.
Before the code does any work with the object, the object must pass the test of
being non-null and having a number of elements associated with it. If the condi-
tions are met, the Enumeration object is passed to the obtainPipeAdvertise-
ment() method, where the specific PipeAdvertisement object will be extracted.

If the advertisement isn’t found locally, a remote discovery is attempted. A
remote discovery is accomplished through the Discovery Service, and attempts
to find advertisement on peers within the JXTA network. The primary compo-
nent is a listener for the discovery service. Recall that the discovery service is
asynchronous. We don’t want to force our application to wait for the discovery
to complete, so an anonymous class listener is created.

Lines 135 through 156 handle the creation of the discovery service listener. As
we mentioned earlier, the functionality of the listener is built using an inner
anonymous class. First, we create an object of type DiscoveryListener. The
functionality behind the resulting object is the definition of the DiscoveryEvent

Building a Peer for Using Services 175



object, as defined in the interface specification. When a remote discovery
attempt is made, the system returns a DiscoveryEvent object to the method.
The first task is to determine if the data found is an actual advertisement.

Line 1421 pulls a message from the DiscoveryEvent object provided to the lis-
tener. Line 1423 attempts to obtain an Enumeration object from the message by
using a call to the getResponses() method. If there is a valid response from the
discovery service, the response will be provided as an Enumeration object.

Line 144 converts the Enumeration object to a string in an attempt to build a
valid advertisement. Line 147 contains the actual attempt to build an advertise-
ment from the XML. In this line, a call is made to the advertisement factory.
Instead of trying to build a generic advertisement, the code creates a stream
object from the discovered strings. If an advertisement is made successfully, an
attempt is made to cast the advertisement to a module specification advertise-
ment so we can pull out the pipe information. 

Line 147 makes a call to the getPipeAdvertisement() method, which attempts to
pull the pipe advertisement from the MSA. Line 150 builds an output pipe with
the pipe advertisement found in line 147.

If any of the attempts to pull out the advertisement or the MSA fail, an excep-
tion will be thrown. For the sample code in this chapter, the exception is
ignored and no output pipe is created. The code we described earlier does the
majority of the work for remote advertisement discovery; however, the code
does have to be launched.

Lines 158 through 164 are invoked when a local discovery fails. The code con-
sists of a single call to the getRemoteAdvertisement() method on line 158,
where our key-value pair along with the listener object are passed to the dis-
covery service. The method will set up our listener object before starting the
process of discovering an advertisement that matches our search criteria.

In either local or remote discovery, what we are ultimately discovering is the
MSA. This advertisement is important to us because the input pipe advertise-
ment is embedded in it.

Building an Output Pipe
The pipe advertisement obtained from the MSA provides all the information
needed for the JXTA system to build a connection between the sender and
receiver peers. After the advertisement is obtained, either in the local cache or
through remote discovery, a call is made to the createOutputPipe() method.

Lines 167 through 188 contain the code for the createOutputPipe() method.
This method makes 10 attempts to create the connection between the remote

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n176



InputPipe object described in the PipeAdvertisement object and a newly cre-
ated OutputPipe object. The code will wait for 10 seconds after each attempt to
make the connection. 

Line 175 contains the call to the pipe service method createOutputPipe(). If a
connection between the input and output pipes is successful, an OutputPipe
object is returned. The object is stored in a class attribute for use by the 
sendData() method.

Lines 178 through 180 will be called if there is a problem with the internal sys-
tem during the connection attempt. Lines 184 through 187 check the total num-
ber of connection attempts. If a connection could not be created after 10
attempts, an error will be generated and the application stopped.

Sending a Message through a Pipe
At this point in the receiver application, all of the components have been dis-
covered and connected to allow communication between the sender and
receiver peers. The last thing to do is send data to the sender.

Lines 190 through 206 contain the code for a method called sendData(). This
method sends a message through the client peer’s output pipe, and is received
by the input pipe of the server.

Lines 193 and 194 instantiate a new message object and then set the string
attribute, which is basically a name-value pair. You will recall from our discus-
sion of the server code that only messages received through the input pipe will
be accepted if the key value of DataTag is associated with a message. Line 194
sets both the key and value pair using the DataTag key and a specified string for
the data.

Line 197 uses the send() method associated with the OutputPipe object to push
the message object out the client pipe. If the method fails, the application will
stop.

Application Basics
Finally, there are a couple of methods associated with the receiver application
that set up the GUI and begin the event loop. In lines 78–97, the constructor
receiver() does the work of setting up the GUI for the application. One of the
primary components created is a button on the GUI. The button is associated
with the sendData() method, so that each time the button is clicked, a message
is sent to the sender peer.

The run() method is called when the GUI has been created and the JXTA net-
work contacted.

Building a Peer for Using Services 177



Creating a New Peer Group

Now that we’ve covered the basics of building peers and transferring informa-
tion between them, let’s look at how we enable our peers to build and join a pri-
vate peer group. A private peer group has all of the same functionality as the
NetPeerGroup, but a password is required to join a private peer group.

A new peer group is created using a series of steps consisting of:

1. Obtaining a unique PeerGroup ID

2. Establishing a Module Implementation Advertisement specifying services
from the NetPeerGroup

3. Creating a PeerGroup Advertisement

4. Creating a new PeerGroup 

5. Advertising the existence of the new peer group

6. Joining the new peer group

Creating a Peer Group ID 
Let’s tackle the creation of a new peer group ID. The code in Listing 12.7 creates
a unique peer group ID, and displays the ID in the GUI window. This new ID is
used as the ID for the peer group we are trying to create. The code in Listing
12.7 is executed only a single time for each application being built. The ID cre-
ated will be hard-coded into all application code in order for it to be used each
time the peers are executed. By using the same peer group ID for our new group
each time the peer application is executed, we avoid cluttering the JXTA net-
work with many advertisements, each with a different ID, that refer to the same
peer group. This simple step greatly decreases stress on the JXTA network.

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n178

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import net.jxta.peergroup.*;

import net.jxta.exception.*;

public class PeerGroupIDCreator extends JFrame {

private JTextArea displayArea;

Listing 12.7 Code for creating a peer group ID. (continues)



Creating a New Peer Group 179

public static void main(String args[]) {

PeerGroupIDCreator myapp = new PeerGroupIDCreator();

myapp.addWindowListener (

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

myapp.run();

}

public PeerGroupIDCreator() { 

super("Creator");

Container c = getContentPane();

displayArea = new JTextArea();

c.add (new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300,150);

show();

PeerGroupID myNewPeerGroupID = (PeerGroupID) 

net.jxta.id.IDFactory.newPeerGroupID();

displayArea.append("PeerGroupID is: " + myNewPeerGroupID);

}

public void run() {

}

}

Listing 12.7 Code for creating a peer group ID. (continued)

Creating a Module Implementation
Advertisement

When creating a new peer group, you must also create a new advertisement
that indicates that the new group will be using a peer group implementation
already in the system. From our early discussions, we know the NetPeerGroup
implements the basic services of a peer group. The NetPeerGroup can be used
as the basis for other peer groups, and provides a good starting point for our



group. By using the specification and default implementation provided by the
NetPeerGroup, we automatically have access to the discovery and pipe ser-
vices within our new group. So, the first step in creating our new peer group is
to copy the implementation advertisement from the NetPeerGroup. Since we
are creating a peer group that implements the same functionality as the default
NetPeerGroup, the only thing we need from the implementation advertisement
is the module spec ID associated with it.

Recall that all advertisements need a module spec ID, which is usually pub-
lished with an MSA. A module implementation advertisement publishes infor-
mation about an implementation of a module class that is advertised using the
MSA. By using the same module spec ID as the one found in the NetPeerGroup,
we are signaling that our new group uses the same implementation. Our new
group is just reusing an implementation already created. In line 108 of Listing
129, the Module Spec ID from the NetPeerGroup implementation is used as the
Module Spec ID for the new peer group being created. The NetPeerGroup
implementation is obtained in line 99.

Creating a Group Advertisement
The next step is to build the group advertisement representing our new group.
The group advertisement requires the following:

PeerGroupID—Obtained from the PeerGroupIDCreator code in 
Listing 12-5

ModuleSpecID—Obtained from the module implementation advertisement
by using the getModuleSpecID() method

GroupName—Can be any string

Description—Can be any string

After the advertisement is built, it is published to both the local and remote
JXTA network. Note that the advertisement is being published in the NetPeer-
Group using its associated discovery service. 

Because we already have the advertisement for our new group, we could go
ahead and just create the group. Instead, for learning purposes, we will go
through the exercise of trying to locate the group advertisement we just pub-
lished before creating the group.

Creating a New Peer Group
Creating a new group is done by using a single method called newGroup(),
found in the PeerGroup class. The NetPeerGroup allows new groups to be cre-
ated using the method. Note that only one of the peers in the system should cre-
ate the new group.

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n180



Once the new group has been created, our peer joins the group. Joining a new
group can be simple or complex—it all depends on the membership require-
ments of the group. In other words, does the group require a username and
password to join? For our first example, there are no such requirements
because we are using the default services of the NetPeerGroup, which, as you
know, can be joined by any peer that joins the JXTA network. Our next exam-
ple will expand on this work to build a private peergroup.

Joining a new peer group is fairly easy when no logins are involved. The
sequence of steps is:

1. Build an authenticated credential.

2. Obtain the membership service from the peer group.

3. Apply for membership using the membership service’s authenticator.

4. Check to see if everything was filled out in our credentials.

5. Join the group.

For our current example, the membership service uses a null implementation;
therefore, not much work is involved during any of these steps (but we must
follow them in order). In the next section, we build a peer group that requires a
login and password, and all of these steps will be expanded.

Listing 12.8 contains the code for creating and joining a new peer group. This
code performs the steps we just described, including creating and advertising a
new group as well as joining the group itself.

Creating a New Peer Group 181

Line 1: import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.net.*;

import java.util.Enumeration;

import net.jxta.peergroup.*;

import net.jxta.exception.*;

Line 10: import net.jxta.id.IDFactory;

import net.jxta.protocol.*;

import net.jxta.discovery.*;

import net.jxta.document.*;

import net.jxta.credential.*;

import net.jxta.membership.*;

public class Example3 extends JFrame {

Listing 12.8 Creating, advertising, and joining a new group. (continues)



C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n182

private static PeerGroup netPeerGroup = null,

Line 20:                             wileyHowGroup = null,

discoveredWileyHowGroup = null;

private static PeerGroupID wileyHowGroupID;

private DiscoveryService myDiscoveryService = null;

private JTextArea displayArea;

private final static MimeMediaType XMLMIMETYPE = new

MimeMediaType("text/xml");

public static void main(String args[]) {

Example3 myapp = new Example3();

Line 30:

myapp.addWindowListener (

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

myapp.run();

Line 40:    }

public Example3() { 

super("Creator");

Container c = getContentPane();

displayArea = new JTextArea();

c.add (new JScrollPane(displayArea), BorderLayout.CENTER);

Lien 50:      setSize(300,150);

show();

launchJXTA();

getServices();

wileyHowGroupID = createPeerGroupID("jxta:uuid-

DCEF4386EAED4908BE25CE5019EA02");

wileyHowGroup = createPeerGroup(wileyHowGroupID, "wileyHowGroup",

"Experimentation Group");

joinGroup(wileyHowGroup);

}

Line 60:    public void run() {

Listing 12.8 Creating, advertising, and joining a new group. (continues)



Creating a New Peer Group 183

}

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - Failure");

e.printStackTrace();

Line 70:            System.exit(1);

}

}

private void getServices() {

displayArea.append("Obtaining Discovery Service....\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

}

PeerGroupID createPeerGroupID(String myStringID) {

Line 80:      PeerGroupID tempPeerGroupID = null;

try {

tempPeerGroupID = (PeerGroupID) IDFactory.fromURL(new URL("urn", "",

myStringID));

} catch (Exception e) {

e.printStackTrace();

System.exit(-1);

}

displayArea.append("Valid PeerGroupID has been created from

StringID\n");

Line 90:      return tempPeerGroupID;

}

PeerGroup createPeerGroup(PeerGroupID myPeerGroupID, String myPeerGroup-

Name, String myPeerGroupDescription) {

PeerGroupAdvertisement wileyHowGroupAdvertisement;

PeerGroup tempPeerGroup = null;

ModuleImplAdvertisement myGroupImpl = null;

try {

myGroupImpl = netPeerGroup.getAllPurposePeerGroupImplAdvertisement();

Line 100:      } catch (Exception e) {

e.printStackTrace();

System.exit(-1);

}

Listing 12.8 Creating, advertising, and joining a new group. (continues)



C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n184

wileyHowGroupAdvertisement = (PeerGroupAdvertisement) 

AdvertisementFactory.newAdvertisement(PeerGroupAdvertisement.getAdvertise-

mentType());

wileyHowGroupAdvertisement.setPeerGroupID(myPeerGroupID);

wileyHowGroupAdvertisement.setModuleSpecID

(myGroupImpl.getModuleSpecID());

wileyHowGroupAdvertisement.setName(myPeerGroupName);

Line 110:      wileyHowGroupAdvertisement.setDescription

(myPeerGroupDescription);

displayArea.append("New Peer Group Advertisement has been created\n");

try {

myDiscoveryService.publish(wileyHowGroupAdvertisement,

myDiscoveryService.GROUP, PeerGroup.DEFAULT_LIFETIME, PeerGroup.

DEFAULT_EXPIRATION);

myDiscoveryService.remotePublish(wileyHowGroupAdvertisement,

myDiscoveryService.GROUP, PeerGroup.DEFAULT_EXPIRATION);

} catch (Exception e) {

e.printStackTrace();

Line 120:        System.exit(-1);

}

displayArea.append("New Peer Group Advertisement has been

published\n");

try {

tempPeerGroup = netPeerGroup.newGroup(wileyHowGroupAdvertisement);

} catch (Exception e) {

e.printStackTrace();

System.exit(-1);

}

Line 130:      displayArea.append("New Peer Group has been created\n");

return tempPeerGroup;

}

void joinGroup(PeerGroup myLocalGroup) {

StructuredDocument myCredentials = null;

try {

AuthenticationCredential myAuthenticationCredential = 

new AuthenticationCredential(myLocalGroup, null, myCredentials);

MembershipService myMembershipService = 

myLocalGroup.getMembershipService();

Line 140:        net.jxta.membership.Authenticator myAuthenticator = 

myMembershipService.apply(myAuthenticationCredential);

if (!myAuthenticator.isReadyForJoin()) {

displayArea.append(“Authenticator is not complete\n”);

return;

}

Listing 12.8 Creating, advertising, and joining a new group. (continues)



Creating a New Peer Group 185

myMembershipService.join(myAuthenticator);

displayArea.append("Group has been joined\n");

} catch (Exception e) {

displayArea.append("Authentication failed - group not joined\n");

e.printStackTrace();

Line 150:        System.exit(-1);

}

}

}

Listing 12.8 Creating, advertising, and joining a new group.

The code in Listing 12.8 has a number of primary components that are related
to the steps necessary to create a new peer group. In the sections that follow,
we discuss the code for each of these components.

main() Method

The main() method is executed when the application starts. Line 29 begins the
normal creation of the application object (called Example3). Line 39 fires the
run() method, which causes the application to loop on its internal event loop.

Constructor

The majority of the work for setting up the object occurs in the constructor.
Lines 43 through 51 do the work of creating the window and building a
JTextArea control within it.

Line 53 calls the launchJXTA() method, where the work is performed to put the
current peer into the NetPeerGroup group. Line 54 calls the getServices()
method in order to obtain the discovery service from the NetPeerGroup group;
the discovery service will be used to publish advertisements about our new
peer group.

Line 55 calls the createPeerGroupID() method to build an internal Peer-
GroupID object based on a string representation of an ID. Line 56 calls the cre-
atePeerGroup() method that does the actual work of building the
advertisements necessary for the new group. Once built, the advertisements are
published in the local cache and remotely. Line 57 calls the joinGroup() method
to join the new peer group just created

createPeerGroupID() Method

As discussed earlier, when an advertisement is published repeatedly for the same
resource, it is not desirable to build a new ID each time since this will clutter the
cache and the JXTA network with basically identical advertisements. For this 



reason, we use a separate program to generate an ID. The ID is passed to the cre-
atePeerGroupID() method as a string parameter, and a “real” PeerGroupID is
returned.

Line 83 does all of the work in this method by using the IDFactory to build
a PeerGroupID object using the string ID and the string “urn” as a URL. If every-
thing works, the method will return the new object; otherwise, the application
will exit with an error.

createPeerGroup() Method

The createPeerGroup() method does the work required to build and publish
the necessary advertisements for our new group. Line 99 obtains the default
peer group implementation advertisement from the NetPeerGroup group so
that we have a valid ModuleSpecID to use for our peer group advertisement.

Line 105 builds a new PeerGroupAdvertisement object. For this application, we
are building the advertisement from scratch instead of reading it from a file.
Line 106 assigns the PeerGroupID object created earlier to the advertisement.

Line 107 sets the ModuleSpecID of the new advertisement to be the same ID
that the implementation advertisement obtains in line 99. Our peer group now
is assumed to implement the default peer group services.

Line 108 sets the name of the peer group, line 109 sets the description of the
peer group, and lines 113 through 114 publish the new peer group advertise-
ment to the local cache and remotely.

Line 122 is an example of building the new group right away with the advertise-
ment just created. There really isn’t any reason to search for the peer group
advertisement since our own application created it—this line of code just cre-
ates the new group.

joinGroup() Method

The final method in our code is the joinGroup() method, which does the work
of joining a new peer group.

Line 133 creates a variable that holds a document; this document contains the
identity of the peer trying to join the new group. Since our new group is using a
null membership service, the identity will be null as well.

Line 135 creates a new AuthenticationCredential object based on the group
being joined, the authentication method we want peers to use when joining the
group (null in our case), and the credentials of the peer attempting to join.

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n186



Line 136 obtains the membership service of the group to be joined. 
Line 137 takes our AuthenticationCredential and gives it to the membership 
service of the group we are attempting to join. Success or failure is checked in
line 138.

Line 138 determines whether all of the information needed for authentication to
the new group was provided. If the credentials weren’t all available, the group
will not be joined.

Line 142 is executed when line 138 evaluates to false. This line does the work of
actually joining the group—something of a formality since our credentials
already checked out with the group.

A Peer that Discovers and Joins a New Peer Group

The peer group application created in the previous section did all of the work of
creating a new peer group and advertising it. As a side note, the application also
joins the group, although this step isn’t exactly necessary. In this section, we
build a peer that uses the peer group application—what this means is that this
new peer will not create a peer group, but instead will discover another peer
group’s advertisement and join that group. In Listing 12.9, some of the code is the
same as our previous application, but we’ve removed the code for building
advertisements and added code for discovering the peer group advertisement.

The code for discovering a peer group advertisement is very similar to the code
we discussed earlier for our receiver peer that enabled it to discover an MSA
advertisement and use the message pipe service.

A Peer that Discovers and Joins a New Peer Group 187

Line 1: import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.net.*;

import java.util.Enumeration;

import net.jxta.peergroup.*;

import net.jxta.exception.*;

Line 10: import net.jxta.id.IDFactory;

import net.jxta.protocol.*;

import net.jxta.discovery.*;

import net.jxta.document.*;

import net.jxta.credential.*;

Listing 12.9 Finding and joining a new peer group. (continues)



C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n188

import net.jxta.membership.*;

public class Example3 extends JFrame {

private static PeerGroup netPeerGroup = null,

Line 20:                             wileyHowGroup = null,

discoveredWileyHowGroup = null;

private static PeerGroupID wileyHowGroupID;

private DiscoveryService myDiscoveryService = null;

private JTextArea displayArea;

private final static MimeMediaType XMLMIMETYPE = new

MimeMediaType("text/xml");

public static void main(String args[]) {

Example3 myapp = new Example3();

Line 30:

myapp.addWindowListener (

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

myapp.run();

Line 40:    }

public Example3() { 

super("User");

Container c = getContentPane();

displayArea = new JTextArea();

c.add (new JScrollPane(displayArea), BorderLayout.CENTER);

Line 50:      setSize(300,150);

show();

launchJXTA();

getServices();

findAdvertisement("Name", "wileyHowGroup");

}

public void run() {

}

Line 60:

Listing 12.9 Finding and joining a new peer group. (continues)



A Peer that Discovers and Joins a New Peer Group 189

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - Failure");

e.printStackTrace();

System.exit(1);

}

Line 70:    }

private void getServices() {

displayArea.append("Obtaining Discovery Service....\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

}

private void findAdvertisement(String searchKey, String searchValue) {

Enumeration myLocalEnum = null;

PeerGroupAdvertisement localWileyHowGroupAdv = null;

Line 80:      displayArea.append("Trying to find advertisement...\n");

try {

myLocalEnum = myDiscoveryService.getLocalAdvertisements

(DiscoveryService.GROUP, searchKey, searchValue);

if ((myLocalEnum != null) && myLocalEnum.hasMoreElements()) {

displayArea.append("Found Local Advertisement...\n");

PeerGroupAdvertisement myFoundPGA = null;

while (myLocalEnum.hasMoreElements()) {

myFoundPGA = (PeerGroupAdvertisement) myLocalEnum.nextElement();

Line 90:            if (myFoundPGA.getName().equals(searchValue)) {

localWileyHowGroupAdv = myFoundPGA;

break;

}

}

if (localWileyHowGroupAdv != null) {

displayArea.append("Creating new group variable...\n");

wileyHowGroup = netPeerGroup.newGroup(localWileyHowGroupAdv);

joinGroup(wileyHowGroup);

Line 100:           }

}

else {

DiscoveryListener myDiscoveryListener = new DiscoveryListener() { 

public void discoveryEvent(DiscoveryEvent e) { 

Enumeration enum;

String str;

Listing 12.9 Finding and joining a new peer group. (continues)



C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n190

displayArea.append("Found Remote Advertisement...\n");

DiscoveryResponseMsg myMessage = e.getResponse();

Line 110:               enum = myMessage.getResponses();

str = (String)enum.nextElement();

try {

PeerGroupAdvertisement myPeerGroupAdv = 

(PeerGroupAdvertisement) AdvertisementFactory.

newAdvertisement(XMLMIMETYPE, new ByteArrayInputStream(str.getBytes()));

displayArea.append("Creating new group variable...\n");

wileyHowGroup = netPeerGroup.newGroup(myPeerGroupAdv);

joinGroup(wileyHowGroup);

Line 120:       } catch(Exception ee) {

ee.printStackTrace();

System.exit(-1);

}

}

};

displayArea.append("Launching Remote Discovery Service...\n");

myDiscoveryService.getRemoteAdvertisements(null,

DiscoveryService.GROUP, searchKey, searchValue, 1, myDiscoveryListener);

}

Line 130:      } catch (Exception e) {

System.out.println("Error during advertisement search");

System.exit(-1);

}

}

void joinGroup(PeerGroup myLocalGroup) {

StructuredDocument myCredentials = null;

try {

AuthenticationCredential myAuthenticationCredential = 

new AuthenticationCredential(myLocalGroup, null, myCredentials);

Line 140:        MembershipService myMembershipService = 

myLocalGroup.getMembershipService();

net.jxta.membership.Authenticator myAuthenticator = 

myMembershipService.apply(myAuthenticationCredential);

if (!myAuthenticator.isReadyForJoin()) {

displayArea.append("Authenticator is not complete\n");

return;

}

myMembershipService.join(myAuthenticator);

displayArea.append("Group has been joined\n");

Listing 12.9 Finding and joining a new peer group. (continues)



A Peer that Discovers and Joins a New Peer Group 191

} catch (Exception e) {

displayArea.append("Authentication failed - group not joined\n");

e.printStackTrace();

System.exit(-1);

}

}

}

Listing 12.9 Finding and joining a new peer group. (continued)

Much of the code in Listing 12.9 will look familiar; it includes code for the con-
structor and the main(), launchJXTA(), run(), and getServices() methods. The
joinGroup() method is exactly the same as the code found in our application
that creates a peer group shown in Listing 12.8.

The new method in this application is findAdvertisement(). In our previous
examples, we had to find the module spec advertisement of a remote peer
because it held a pipe advertisement we needed in order to use the remote pipe.
This time, we have to locate the group advertisement. We use code from the
previous example and modify it to handle a group advertisement instead of a
module spec advertisement (we will discuss that code in detail shortly). Peers
search for the group advertisement in both the local cache and remotely if
needed. Once the current advertisement is found, the program creates a new
group.

Lines 83 through 101 do the work to find the peer group advertisement in the
local cache. You should note that in line 83, we changed the first parameter
from the value DiscoveryServer.ADV (which is used to indicate general adver-
tisements like pipe advertisements) to DiscoveryService.GROUP, which tells
the service to look only at group advertisements. 

Lines 88 through 94 contain a loop based on the elements in the Enumeration
object returned by the call in line 83. For each of the advertisements found in
the local cache, the name is compared to ensure that the correct advertisement
is found. So, in order for this peer to join a peer group, it will need to know the
name of the group it wants to join. 

Lines 96 through 100 are executed when the appropriate advertisement has
been found. Line 98 builds an internal PeerGroup object for the new group, and
line 99 makes a call to the joinGroup() method for doing the official work of
joining the group.

If the peer cannot find the advertisement for the new group in the local cache,
lines 102 through 134 initiate a remote discovery query. Since the discovery
process is asynchronous, a listener is created for when an advertisement is
found.



Lines 103 through 125 contain the code behind the listener class. The first few
lines of the code pull the event, message, and resulting Enumeration object
from the parameter passed to the method.

Line 114 attempts to obtain a PeerGroupAdvertisement object from the Enu-
meration object created in the previous lines. If successful, a new PeerGroup
object is created, and a call is made to the joinGroup() method.

Line 128 does the work of launching the remote discovery for the peer group
advertisement. Notice the use of the DiscoveryService.GROUP parameter in
order to ensure that the correct advertisement is found. 

Creating a Secure Peer Group

We have discussed how to discover peers and advertisements, connect to pipes
and transfer data, and build new peer groups. Up to this point, no authentica-
tion between peers, groups, and services has been required. Membership to the
peer group was accomplished by creating credentials and attempting to authen-
ticate the user with the membership service associated with the new peer
group.

In our final application for this chapter, we build a secure peer group. Instead
of the membership service being null, the secure peer group requires a peer to
provide a specific username and password before being allowed to join. The big
question is, where does the new membership service come from, and how does
the new peer group know about it?

Using a Membership Service
Implementation

Recall that we have a number of advertisements associated with a peer group.
The first advertisement is called the module class specification, which is
designed to let the community know about a new set of specifications that are
available. The specification can be implemented and advertised using a module
class implementation. The implementation advertisement includes a number of
<Svc> elements, which look like this:

<Svc>

<jxta:MIA>

<MSID>

urn:jxta:uuid-DEADBEEFDEAFBABAFEEDBABE000000050106

</MSID>

<Comp>

<Efmt>

JDK1.4

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n192



</Efmt>

<Bind>

V1.0 Ref Impl

</Bind>

</Comp>

<Code>

net.jxta.impl.membership.NullMembershipService

</Code>

<PURI>

http://www.jxta.org/download/jxta.jar

</PURI>

<Prov>

sun.com

</Prov>

<Desc>

Reference Implementation of the MembershipService service

</Desc>

</jxta:MIA>

</Svc>

Of particular importance are the MSID, Code, and PURI entries. As we know, all
resources must have a unique MSID to identify the resource. The Code element
indicates the Java class and the path to the class; and finally, the PURI element
indicates where the code for this implementation can be found if not on the
local client machine. The <Svc> element is embedded in the class implementa-
tion advertisement, and a peer can request a specific implementation based on
the MSID of this advertisement. If the client peer doesn’t have the code neces-
sary for the implementation, it can be loaded based on the PURI.

Changing the Default Class
Implementation Advertisement

For the secure peer group, we use an implementation coded by the JXTA team
and incorporated into the jxta.jar file. In order to use this new service (which is
called PasswdMembershipService), we have to build a class implementation
advertisement for our new peer group that includes the information necessary
for the new service in the <Svc> element. This seems simple, but the class
implementation advertisement includes many standard peer group services. We
will need to include all these services in our advertisement as well. The solution
is to copy a default class implementation peer group advertisement and change
the membership service element only. The code in Listing 12.10 (which we
introduce in the next section) features a method called updateElementMSID(),
which updates the MSID, Code, and Description elements for the new service.
We don’t need to change the PURI because the code is in the same JAR file as
the null membership service.

Creating a Secure Peer Group 193



The process of building our own class implementation advertisement involves
these steps:

1. Copy a default class implementation advertisement for peer groups.

2. Locate the <Svc> element for the membership service.

3. Update the membership element with information on the 
PasswdMembershipService.

4. Change the MSID of the class implementation advertisement because it is
no longer associated with the default advertisement.

5. Publish the new advertisement locally and remotely.

We will discuss these steps when we walk through the code in an upcoming sec-
tion.

Code for a Secure Peer Group
The code in Listing 12.10 builds a secure peer group, and joins the new group.
In the discussion of the code that follows, we examine three key areas: building
and publishing the new implementation advertisement, building and publishing
the peer group advertisement, and using the authenticateMe() method. In this
code, we use the Java XML Pack from www.javasoft.com for manipulating the
XML advertisements and the latest JDOM package from www.jdom.org. In
order to execute this code, you have to install the Pack and JDOM. Both of the
packages are easy to download and install if you follow the instructions pro-
vided at the respective sites.

The compile and execute commands also change with the new packages. The
compile line follows; it assumes you have created an environment variable
called JXTALIB that points to the location of the JXTA Java implementation
libraries:

javac -d . -classpath %JXTALIB%/jxta.jar

;%JXTALIB%/log4j.jar;%JXTALIB%/beepcore.jar;%JXTALIB%/jxtasecurity.

jar;%JXTALIB%/org.mortbay.jetty.jar;%JXTALIB%/servlet.jar;%JXTALIB%/

cryptix-asn1.jar;%JXTALIB%/cryptix32.jar;%JXTALIB%/

jxtaptls.jar;%JXTALIB%/minimalBC.jar;c:/jdom/jdom.jar;c:/jdom/

xerces.jar Example4.java

The primary change in this command is the addition of the JAR files—
c:/jdom/jdom.jar and c:/jdom/xerces.jar. Both the jdom and xerces JAR files are
located in a directory called jdom. The execute command is:

java -classpath %JXTALIB%/jxta.jar;%JXTA

LIB%/log4j.jar;%JXTALIB%/beepcore.jar;%JXTALIB%/jxtasecurity.jar;%JXTALI

B%/org.mortbay.jetty.jar;%JXTALIB%/servlet.jar;%JXTALIB%/cryptix-

asn1.jar;%JXTALIB%/cryptix32.jar;%JXTALIB%/jxtaptls.jar;%JXTALIB%/mini-

malBC.jar;c:/jdom/jdom.jar;c:/jdom/xerces.jar; Example4

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n194



Creating a Secure Peer Group 195

Line 1: import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.net.*;

import java.util.Enumeration;

import net.jxta.peergroup.*;

Line 10: import net.jxta.exception.*;

import net.jxta.id.IDFactory;

import net.jxta.protocol.*;

import net.jxta.discovery.*;

import net.jxta.document.*;

import net.jxta.credential.*;

import net.jxta.membership.*;

import net.jxta.platform.*;

import org.jdom.input.DOMBuilder;

Line 20: import org.jdom.output.XMLOutputter;

import org.w3c.dom.*;

import net.jxta.impl.membership.*;

import java.lang.reflect.Method;

public class Example4 extends JFrame {

private static PeerGroup netPeerGroup = null,

wileyHowGroup = null,

Line 30:                              discoveredWileyHowGroup = null;

private static PeerGroupID wileyHowGroupID;

private DiscoveryService myDiscoveryService = null;

private JTextArea displayArea;

private final static MimeMediaType XMLMIMETYPE = new

MimeMediaType("text/xml");

public static void main(String args[]) {

Example4 myapp = new Example4();

Line 40:        myapp.addWindowListener (

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

Listing 12.10 Secure peer group creator application. (continues)



C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n196

myapp.run();

}

Line 50: 

public Example4() { 

super("Creator");

Container c = getContentPane();

displayArea = new JTextArea();

c.add (new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300,150);

Line 60:      show();

launchJXTA();

getServices();

wileyHowGroupID = createPeerGroupID("jxta:uuid-

DCEF4386EAED4908BE25CE5019EA02");

wileyHowGroup = createPeerGroup(wileyHowGroupID, "wileyHowGroup",

"Experimentation Group");

joinGroup(wileyHowGroup);

}

public void run() {

Line 70:    }

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - Failure");

e.printStackTrace();

System.exit(1);

Line 80:        }

}

private void getServices() {

displayArea.append("Obtaining Discovery Service....\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

}

PeerGroupID createPeerGroupID(String myStringID) {

PeerGroupID tempPeerGroupID = null;

Line 90:

try {

tempPeerGroupID = (PeerGroupID) IDFactory.fromURL(new URL("urn", "",

Listing 12.10 Secure peer group creator application. (continues)



Creating a Secure Peer Group 197

myStringID));

} catch (Exception e) {

e.printStackTrace();

System.exit(-1);

}

displayArea.append("Valid PeerGroupID has been created from

StringID\n");

return tempPeerGroupID;

Line 100:    }

PeerGroup createPeerGroup(PeerGroupID myPeerGroupID, 

String myPeerGroupName, String myPeerGroupDescription) {

PeerGroupAdvertisement wileyHowGroupAdvertisement;

PeerGroup tempPeerGroup = null;

ModuleImplAdvertisement myGroupImpl = null;

ModuleImplAdvertisement myNewImplAdv = null;

try {

myGroupImpl = netPeerGroup.getAllPurposePeerGroupImplAdvertisement();

Line 110:        StructuredTextDocument paramDoc =

(StructuredTextDocument)myGroupImpl.getDocument(XMLMIMETYPE);

DOMBuilder builder = new DOMBuilder();

org.jdom.Document doc = builder.build(paramDoc.getStream());

org.jdom.Element membershipElement =

getElementMSID(getParamElement(doc.getRootElement()), "urn:jxta:uuid-

DEADBEEFDEAFBABAFEEDBABE000000050106");

updateElementMSID(membershipElement, myGroupImpl);

XMLOutputter outputter = new XMLOutputter();

myNewImplAdv = (ModuleImplAdvertisement)AdvertisementFactory.

newAdvertisement(XMLMIMETYPE, new ByteArrayInputStream(outputter.

outputString(doc).getBytes()));

Line 120:

if (!myNewImplAdv.getModuleSpecID().equals(PeerGroup.

allPurposePeerGroupSpecID)) {

myNewImplAdv.setModuleSpecID(IDFactory.newModuleSpecID(myNewImplAdv.

getModuleSpecID().getBaseClass()));

}

else {

myNewImplAdv.setModuleSpecID((ModuleSpecID)IDFactory.fromURL(new

URL("urn", "", "jxta:uuid-”+”DeadBeefDeafBabaFeedBabe00000001"+"05"+"06")));

}

Listing 12.10 Secure peer group creator application. (continues)



C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n198

Line 130:      myDiscoveryService.publish(myNewImplAdv, DiscoveryService.ADV,

PeerGroup.DEFAULT_LIFETIME, PeerGroup.DEFAULT_EXPIRATION);

myDiscoveryService.remotePublish(myNewImplAdv, DiscoveryService.ADV,

PeerGroup.DEFAULT_EXPIRATION);

} catch (Exception e) {

e.printStackTrace();

System.exit(-1);

}

wileyHowGroupAdvertisement = (PeerGroupAdvertisement) AdvertisementFac-

tory.newAdvertisement(PeerGroupAdvertisement.getAdvertisementType());

wileyHowGroupAdvertisement.setPeerGroupID(myPeerGroupID);

Line 140: wileyHowGroupAdvertisement.setModuleSpecID(myNewImplAdv.getModule-

SpecID());

wileyHowGroupAdvertisement.setName(myPeerGroupName);

wileyHowGroupAdvertisement.setDescription(myPeerGroupDescription);

StructuredTextDocument loginInfo = (StructuredTextDocument)

StructuredDocumentFactory.newStructuredDocument(new

MimeMediaType("text/xml"), "Parm");

String loginString = "username" + ":" +

PasswdMembershipService.makePsswd("password") + ":";

TextElement loginElement = loginInfo.createElement("login", 

loginString);

loginInfo.appendChild(loginElement);

wileyHowGroupAdvertisement.putServiceParam(PeerGroup.membershipClassID,

loginInfo);

Line 150:       displayArea.append("New Peer Group Advertisement has been

created\n");

try {

myDiscoveryService.publish(wileyHowGroupAdvertisement,

myDiscoveryService.GROUP, PeerGroup.DEFAULT_LIFETIME, PeerGroup.DEFAULT_EXPI-

RATION);

myDiscoveryService.remotePublish(wileyHowGroupAdvertisement,

myDiscoveryService.GROUP, PeerGroup.DEFAULT_EXPIRATION);

} catch (Exception e) {

e.printStackTrace();

System.exit(-1);

Line 160:      }

displayArea.append("New Peer Group Advertisement has been

published\n");

try {

tempPeerGroup = netPeerGroup.newGroup(wileyHowGroupAdvertisement);

Listing 12.10 Secure peer group creator application. (continues)



Creating a Secure Peer Group 199

} catch (Exception e) {

e.printStackTrace();

System.exit(-1);

}

displayArea.append("New Peer Group has been created\n");

Line 170:

return tempPeerGroup;

}

org.jdom.Element getParamElement(org.jdom.Element theRootElement) {

java.util.List elements = theRootElement.getChildren();

java.util.Iterator itr = elements.iterator();

org.jdom.Element currentElement = null;

while (itr.hasNext()) {

Line 180:        currentElement = (org.jdom.Element)itr.next();

if (currentElement.getName().equals("Parm"))

return currentElement;

}

return null;

}

org.jdom.Element getElementMSID(org.jdom.Element theParamElement,

String theMatchingID) {

java.util.List elements = theParamElement.getChildren(),

innerElements = null,

Line 190:                     tempList = null;

java.util.Iterator paramItr = elements.iterator();

org.jdom.Element returnElement = null,

localElement = null,

tempElement = null;

while (paramItr.hasNext()) {

returnElement = (org.jdom.Element)paramItr.next();

if (returnElement.getName().equals("Svc")) {

Line 200:            tempList = returnElement.getChildren();

tempElement = (org.jdom.Element)tempList.get(0);

innerElements = tempElement.getChildren();

java.util.Iterator svcItr = innerElements.iterator();

while (svcItr.hasNext()) {

localElement = (org.jdom.Element)svcItr.next();

if (localElement.getName().equals("MSID") && 

localElement.getTextTrim().equals(theMatchingID))

return returnElement;

}

Line 210:          }

Listing 12.10 Secure peer group creator application. (continues)



C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n200

}

return null;

}

void updateElement(org.jdom.Element parentElement, String key, String

value) {

java.util.List elements = parentElement.getChildren();

java.util.Iterator Itr = null;

org.jdom.Element tempElement = null;

Line 220:      Itr = ((org.jdom.Element)elements.get(0)).getChildren().

iterator();

while (Itr.hasNext()) {

tempElement = (org.jdom.Element)Itr.next();

if (tempElement.getName().equals(key)) {

tempElement.setText(value);

return;

}

}

}

Line 230: 

void updateElementMSID(org.jdom.Element membershipElement, 

ModuleImplAdvertisement myGroupImpl) {

updateElement(membershipElement, "MSID", 

PasswdMembershipService.passwordMembershipSpecID.getURL().toString());

updateElement(membershipElement, "Code",

PasswdMembershipService.class.getName());

updateElement(membershipElement, "Desc", “Module Impl Advertisement for

the PasswdMembership Service”);

}

void joinGroup(PeerGroup myLocalGroup) {

StructuredDocument myCredentials = null;

Line 240:      try {

AuthenticationCredential myAuthenticationCredential = 

new AuthenticationCredential(myLocalGroup, null, myCredentials);

MembershipService myMembershipService = 

myLocalGroup.getMembershipService();

net.jxta.membership.Authenticator myAuthenticator = 

myMembershipService.apply(myAuthenticationCredential);

authenticateMe(myAuthenticator, "username", "password");

if (!myAuthenticator.isReadyForJoin()) {

displayArea.append("Authenticator is not complete\n");

return;

Listing 12.10 The secure peer group creator application. (continues)



Creating a Secure Peer Group 201

Line 250:        }

myMembershipService.join(myAuthenticator);

displayArea.append("Group has been joined\n");

} catch (Exception e) {

displayArea.append("Authentication failed - group not joined\n");

e.printStackTrace();

System.exit(-1);

}

}

Line 260:    void authenticateMe(net.jxta.membership.Authenticator 

theAuthenticator, String login, String password) {

Method [] ourMethods = theAuthenticator.getClass().getMethods();

try {

for (int meth=0; meth<ourMethods.length; meth++) {

if (ourMethods[meth].getName().equals("setAuth1Identity")) {

Object [] authLogin = {login};

Method aMethod = (Method)ourMethods[meth];

aMethod.invoke(theAuthenticator, authLogin);

}

Line 270:        else if 

(ourMethods[meth].getName().equals("setAuth2_Password")) {

Object [] authPassword = {password};

Method aMethod = (Method)ourMethods[meth];

aMethod.invoke(theAuthenticator, authPassword);

}

}

} catch (Exception e) {

e.printStackTrace();

System.exit(-1);

}

Line 280:    }

}

Listing 12.10 The secure peer group creator application. (continued)

A Secure Peer Group Advertisement
As in the previous example, a peer group advertisement will need to be pub-
lished as well. The code for creating and publishing the advertisement is basi-
cally the same except for two places. The first difference is the ModuleSpecID
that the peer group advertisement is associated with. Previously, the associa-
tion was with the default class implementation advertisement, but now, since
we want it associated with our new advertisement, we will use its Module-
SpecID instead. The second difference is the addition of a <Parm> element to
the peer group advertisement. The element will appear as follows:



<Parm>

<login>

username:KDIekdI:

</login>

</Parm>

The login element will state the login name necessary to join the secure peer
group as well as an encrypted password. 

Becoming Authenticated
Once the peer group has been published and discovered, a peer can join the
group. The steps are as follows:

1. Build an authenticated credential.

2. Obtain the membership service from the peer group.

3. Apply for membership using the membership service’s authenticator.

4. Authenticate the peer using the username and password.

5. Check to see if everything was filled out in our credentials.

6. Join the group.

This process differs from joining a non-secure peer group; in step 4, the method
that implements the authentication is called authenticateMe(), and it accepts
the authenticator object created in the previous step as well as the username
and password. All of the work is performed in the authenticateMe() method.
Before we look at the method, let’s take a look at the PasswdMembershipSer-
vice we have associated with this peer group.

The PasswdMembershipService code can be found in the jxta.jar file. The 
easiest way to view the file is to download the JXTA source and look in the
directory <root directory>/platform/binding/java/impl/src/net/jxta/impl/ mem-
bership. One of the first things you will notice when reading through the file is
a comment letting you know that this membership service code is not ready for
production use. It is an example of how to write a membership service; we will
actually look at this task in more detail in Chapter 15, “Implementing Security,”
so here we just want to hit the highlights of the code.

Move through the file until you come to the method isReadyForJoin(). The code
is:

synchronized public boolean isReadyForJoin() {

return ( (null != password) && (null != whoami) );

Notice the requirement for a user to be able to join this group; both the pass-
word and whoami objects must not be null. Just a few lines under these are two
methods:

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n202



public void setAuth1Identity( String who ) {

whoami = who;

}

public void setAuth2_Password( String secret ) {

password = secret;

}

These three functions represent the beginning of the membership process for a
client, setting the login and password, and checking to see if the membership is
successful and ready to be joined.

Before we look at the work being done in the middle, consider the following
snippet of code found in the init() method further down in the code:

if( aLogin.getName().equals( "login" ) ) {

String etcPasswd = (String) aLogin.getTextValue( );

int nextDelim = etcPasswd.indexOf( ':' );

if( -1 == nextDelim )

continue;

String login = etcPasswd.substring( 0, nextDelim ).trim();

int lastDelim = etcPasswd.indexOf( ':', nextDelim + 1 );

String passwd = etcPasswd.substring( nextDelim + 1, lastDelim );

LOG.info( "Adding login : '" + login + "' with encoded password : '" +

passwd + "'" );

logins.put( login, passwd );

When the peer group is created, this code will execute and expect to find the
one or more login/password combinations in the peer group advertisement.
The code above will read the combinations and store them internally.

Now let’s look at the middle part of the process for both the peer group and the
client. When the client wanting to join the peer group has set the login and pass-
word, it will call the isReadyForJoin() method to be sure all fields required for
membership have been filled out. If all of the fields are complete, the join()
method is called. A code snippet for join() looks like this:

if( !authenticated.isReadyForJoin() )

throw new PeerGroupException( "Not Ready to join!" );

if( !checkPasswd(

((PasswdAuthenticator)authenticated).getAuth1Identity(),

((PasswdAuthenticator)authenticated).getAuth2_Password() ) )

throw new PeerGroupException( "Incorrect Password!" );

Another call to isReadyForJoin() is made and then an internal method, 
checkPasswd(), is called. This internal method checks the client provided

Creating a Secure Peer Group 203



login/password against the login/password combination(s) assigned in the peer
group advertisement. If a match is not successful, an exception will be thrown;
otherwise, the client will be allowed to join the group. 

NOTE
We skipped a number of details in this discussion, but we cover those details in
Chapter 18 when we build a more secure membership service. If the call to join() 
returns successfully, the client peer is considered joined to the new peer group.

New Class Implementation
Advertisement Details

The majority of the changes from our previous example occur in the develop-
ment of a new implementation advertisement for the peer group. As we men-
tioned previously, several steps must occur in order to build the new
advertisement.

Step 1 takes place in lines 108 and 109, where a call is made to the method
getAllPurposePeerGroupImplAdvertisement(). The call is made against the
root peer group (or NetPeerGroup in our case, because that is the default group
we joined when the application first executed). A ModuleImpleAdvertisement
object is returned once the call completes; it contains quite a few default imple-
mentation <Svc> elements for a peer group. The remainder of the steps replace
the null membership service with the password membership service. Line 109
uses the getDocument() method to pull a structured document in XML format
from the advertisement. It should be noted that the StructuredDocument is a
lightweight XML document. An XML-lite engine is used to handle the data struc-
tures behind the document but it isn’t very powerful—the implementation of
the StructuredDocument does not support all of the functionality normally
found in an XML document. The intent of this document is to act like an XML
document, but not to provide all of the functionality found in other XML imple-
mentations, such as JDOM.

Step 2 is accomplished by putting the advertisement into a DOM object and
using appropriate controls to find the <Svc> element associated with the
default membership service. Line 111 instantiates a DOMBuilder object from
the JDOM package. (As we mentioned earlier, you need to install both the Java
XML Pack and JDOM in order for this code to work correctly.) Once the DOM-
Builder is instantiated, a JDOM document is built using the advertisement’s
structured document and the build() method of the DOMBuilder object. This is
all accomplished on line 112. Line 114 makes a call to a helper method, getEle-
mentMSID(), which is defined in lines 182 through 208. The method searches
through the entire XML document until the <Svc> element is found that is 

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n204



associated with the membership service. The method will return either an Ele-
ment object referencing the element or a null object. 

Now let’s see how steps 3 and 4 are accomplished. Once the <Svc> element has
been found, a call is made to the helper method updateElementMSID(), which
is defined in lines 225 through 230. This method makes three updates to the
membership element.

The MSID of the <Svc> element is changed from the ModuleSpecID of the
default null membership implementation to the ModuleSpecID of the password
membership service. This is a key step because our new peer group will refer-
ence this implementation advertisement, which in turn references the pass-
word membership service instead of the default null service.

The Code element is changed to the implement for the password membership
service.

The description element is changed to something more appropriate for describ-
ing the functionality of the service.

Step 5 begins on line 117 with the instantiation of an XMLOutputter object used
to pull the XML from our XML document. Line 118 instantiates a new Mod-
uleImplAdvertisement using the XML from the DOM document. The final
update before the advertisement is published is to change the ModuleSpecID of
the new ModuleImplAdvertisement. The ModuleSpecID should be different
from the ModuleSpecID of the default implementation advertisement. Finally,
the new advertisement is published both locally and remotely. The ID in line 117
should be changed to a unique ID based on the output from Listing 12.5.

Peer Group Advertisement Details
Before a peer can use the new peer group, it needs to discover a peer group
advertisement. The code for the peer group advertisement resembles the code
in our previous example shown in Listing 12.8; however, we have changed the
ModuleSpecID to that of the implementation advertisement we built in the pre-
vious section, and added a Parm section.

Lines 135–146 build the peer group advertisement, line 135 obtains a generic
advertisement object, and line 136 sets the peer group ID to be that of our new
peer group.

Line 136 fills in the ModuleSpecID of the peer group advertisement. (As we
explained, it will be the same as the ModuleSpecID of the new implementation
advertisement.) Line 137 sets the name of the peer group, and line 138 sets the
description of the peer group.

Creating a Secure Peer Group 205



Lines 140 through 144 build a small XML document with a root element of
<Parm> and a single element of <login>. The value of the <login> element is
“required login string”:”required password string”. Notice how the cleartext
password in the code is converted to an encoded password before being put in
the element value. Finally, the document is added to the peer group advertise-
ment by using the putServiceParam() method. 

After the peer group advertisement is complete, it is published locally and
remotely.

authenticateMe() Method Details
You will recall from our discussion of the authentication process that before we
can call the join() method for the new peer group, we need to fill in the required
fields of the membership service. These fields specify the login and password
values. The methods that need to be called are named setAuth1Identity() and
setAuth2_Password(). The trick to the authenticateMe() method is finding
these methods and invoking them. Lines 255 through 275 make up the authenti-
cateMe() method. 

Line 256 builds an array of all of the methods exposed by the authenticator
class designed as part of the membership service. The class is defined by the
code

public class PasswdAuthenticator implements Authenticator

in the membership service code, Line 256 will return all of the methods defined
in the class. However, we don’t want all of the methods—we only want the two
mentioned previously.

Line 259 loops through all of the methods in the array. Lines 260 through 264
check the name of the current method against the string “setAuth1Identity”. If
the condition is true, meaning the string matches “setAuth1Identity”, the string
value passed to the authenticateMe() method as the login is put into an array
and the method is invoked, sending the current authenticator object and the
login value.

Lines 265 through 269 check the name of the current method against the string
“setAuth2_Password”. If the condition is true, meaning the string matches
“setAuth2_Passwood”, the string value passed to the authenticateMe() method
as the password is put into an array and the method is invoked, sending the cur-
rent authenticator object and the password value.

Since this is a simple password membership service, only these two methods
have to be called to set up a successful join.

C h a p t e r  12 D e v e l o p i n g  a  J X TA  A p p l i c a t i o n206



Client for the Secure Peer Group
The code for the client portion of this code—the code that finds the peer 
group advertisement and joins the group—is basically the same as the code in
Listing 12.10. The only change involves putting the new authenticateMe()
method into the code and selecting the correct username and password.

Summary

In this chapter, we built three comprehensive applications, showing all of the
key features of the JXTA system. Before you move on to the other chapters in
this book, we recommend that you either type in the code or download it from
the site listed in Appendix A, and then build and execute the applications. If you
can understand how the code works, you will be well on your way to building
robust JXTA applications. In the next chapter, the topic of JXTA pipes is cov-
ered. Pipes are the fundamental component for transferring information from
one peer to another. There are a number of different types including one-way,
secure, bi-directional, and reliable.

Summary 207





In Chapter 12, “Developing a JXTA Application,” we used pipes to send data
between peers in a peer group. The pipes were of the Unicast type, which
means information can be sent in only one direction between peers. In this

chapter, we discuss in detail all the pipes available in the current specification
and Java reference implementation. The pipes we focus on are

Unicast—One-way pipe for sending non-secure data over an unreliable
channel

UnicastSecure—One-way pipe for sending secure data over an unreliable
channel

Propagate—One-to-many pipe for sending non-secure data over an unreli-
able channel

Bidirectional—Two-way pipe for sending non-secure data over an unreli-
able channel

Reliable—Pipe that builds on the bidirectional pipe for reliable communi-
cation (this type is still being developed in the JXTA platform) 

We examine the characteristics of each pipe, and show how to build input and
output pipes, how to use the publish/discovery mechanism, and how to transfer
data through each pipe. This chapter also provides all the code necessary to use
the pipes, and demonstrates how to swap various types of pipes in and out of
JXTA peers with very little recoding.

JXTA Pipes

C H A P T E R13

209



Publishing and Discovering Pipes

Several of the code examples from previous chapters demonstrated how to
build pipes, and how to advertise and discover them in the context of simple
JXTA peers. This chapter builds on those examples to give you a full under-
standing of how pipes function; this is critical because pipes are the sole
medium for JXTA peer communication.

Publishing
The purpose of publishing a pipe advertisement is to let all the peers in a group
know of the pipe’s existence. The discovery service offers two publish meth-
ods: publish() and remotePublish(). The publish() method lets peers that 
are directly accessible to the advertising peer know about the new pipe. The
remotePublish() takes the publishing one step further by trying to use all 
available transports, such as TCP/IP and HTTP, in order to get the widest 
distribution.

As we discussed in Chapter 5, “JXTA Advertisements,” one way to let other
peers know about a pipe’s availability is through the use of a module class
advertisement. While this is a good way of providing a high level of documenta-
tion and making comprehensive services available to other peers, it isn’t always
necessary. If you have a pipe that you want to make available just as a singleton
device, you can publish the advertisement of the pipe directly. For example, the
following code will create a pipe advertisement for a Unicast, or one-way, pipe,
and publish the advertisement to all local peers:

PipeAdvertisement pipeAdv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(

PipeAdvertisement.getAdvertisementType());

pipeAdv.setName("JXTA:KEYRECEIVE");

pipeAdv.setType(PipeService.UnicastType);

pipeAdv.setPipeID((ID) net.jxta.id.IDFactory.

newPipeID(netPeerGroup.getPeerGroupID()));

discoveryService.publish(pipeAdv, DiscoveryService.ADV);

Discovery
Once a peer has placed an advertisement into the system, it must be discovered.
In Chapter 6, “Peer Discovery Protocol,” we discussed using the discovery ser-
vice to find advertisements, and in the previous chapter we used the discovery
service to locate module class advertisements and extract an associated 
pipe. However, it is a simpler process to design your peer to look for new pipe

C h a p t e r  13 JXTA Pipes210



advertisements as they are published by remote peers. There are basically two
ways to find advertisements: through the use of callbacks and by utilizing the
local cache.

Using Callbacks

In the case of a callback, a listener object is associated with a discovery
attempt. When the discovery service is contacted with advertisements from
remote peers, the listener object will be passed the advertisements for process-
ing. Listing 13.1 contains code that will attempt to discover pipe advertisements
with a name matching the text DSS*, where * is a wildcard.

Publishing and Discovering Pipes 211

public class localDiscoveryListener implements DiscoveryListener {

public void discoveryEvent(DiscoveryEvent e) { 

DiscoveryResponseMsg myMessage = e.getResponse();

Enumeration enum = myMessage.getResponses();

while (enum.hasMoreElements()) {

try {

String str = (String)enum.nextElement();

PipeAdvertisement pipeAdvt = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(

new MimeMediaType( "text/xml" ),, 

new ByteArrayInputStream(str.getBytes()));

// do something with pipe advertisement

}

catch(Exception ee) {

// not a pipe advertisement

}

}

}

localDiscoveryListener pipeListener = new

localDiscoveryListener();

discoveryServer.getRemoteAdvertisements(null,

DiscoveryService.ADV, "Name", "DSS*", 50, pipeListener);

Listing 13.1 Using a callback to locate new pipe advertisements.

In Listing 13.1, a listener object is created that defines the discoveryEvent()
method required by the DiscoveryListener interface. When the method is
called, the parameter will contain all of the advertisements found with a Name
key having a value of DSS*. An attempt is made to cast each of the found adver-
tisements to a PipeAdvertisement object. If the cast is successful, the pipe
advertisement can be used; otherwise, an exception is thrown and basically
ignored because we don’t care about the advertisement if it isn’t a pipe. 



In the last statement in the code, the DiscoveryService object is instructed to
attempt to find advertisements. As you can see, a total of 50 are requested from
each peer. As all of the advertisements are returned, they are placed in the local
cache for further or later consideration. 

One of the problems with advertisement is their age. Many times, advertise-
ments returned from a remote query will be old, and they will not work when an
attempt is made to connect with a pipe. In addition, you will most definitely
receive duplicate pipe advertisements, which isn’t very useful. 

Filtering Through the Local Cache

When obsolete advertisements are returned from remote queries, one solution
is to use the local cache as the primary place to look for advertisements. This
concept works by configuring the discovery service to find all remote adver-
tisements, but not to call a listener object. Instead, the service can dump any
remote advertisements into the local cache for later processing. At various
times, a call can be made to gather the advertisements found in the local cache.
A data structure can keep track of those advertisements already seen; dead
advertisements can be handled using a connection timeout.

Listing 13.2 contains code that will launch a remote discovery and then call the
getLocalAdvertisements() method to handle pipe processing. The example
uses bidirectional pipes, which we discuss later in this chapter. Further, the
code uses a timer to launch the processing of the local cache.

C h a p t e r  13 JXTA Pipes212

public static void main (String [] args) {

Java.util.timer databaseConnectionTimerTask = new

FindDatabaseTimerTask();

PublishDatabaseTimerTask  databaseConnectionTimer = new

java.util.Timer();

databaseConnectionTimer.schedule(databaseConnectionTimerTask,

15*1000, 5*60*1000);

discoveryService.getRemoteAdvertisements(null,

DiscoveryService.ADV,

"Name", "DSS*", 50);

run();

}

private class FindDatabaseTimerTask extends TimerTask {

Listing 13.2 Filtering advertisements through a peer’s local cache. (continues)



Publishing and Discovering Pipes 213

private Hashtable databaseConnectionIDs = new Hashtable();

public FindDatabaseTimerTask() {

super();

}

public void run() {

try {

Enumeration localEnum = discoveryService.getLocalAdvertisements(

DiscoveryService.ADV, "Name", "DSS*");

while (localEnum.hasMoreElements()) {

PipeAdvertisement aPipeAdv = 

(PipeAdvertisement)localEnum.nextElement();

String pipeName = aPipeAdv.getName();

String pipeID = aPipeAdv.getID().toString();

if ((pipeName.indexOf("DSSDatabaseQueryInputBiPipe") != -1) &&

(!databaseConnectionIDs.containsKey(pipeID))     ) {

try {

BidirectionalPipeService.Pipe pipe =

bidirectionalService.connect(aPipeAdv, 10000);

if (pipe != null) {

databaseSender.addToDatabaseTable(pipeID, pipe);

databaseConnectionIDs.put(pipeID, pipeID);

displayText(aPipeAdv.getID().toString(), databaseText);

}

} catch(Exception e) {

}

}

}

} catch(Exception e) {

}

}

}

Listing 13.2 Filtering advertisements through a peer’s local cache.

In this code, a timer task is set up to find pipe advertisements in the local cache
at 15-minute intervals. When the timer is set off, the run() method of the timer
task will fire. All of the local advertisements are obtained and placed into an
Enumeration object. The object is looped through to extract each of the pipe
advertisements from the cache. If the advertisement found in the cache isn’t a
pipe advertisement, it is skipped, and the next one is attempted. If the adver-
tisement is a pipe, the code checks the full name of the advertisement, and
determines if the ID of the pipe advertisement has already been seen. This is
accomplished by using a hashtable data structure. 



Unicast Pipes
The most basic type of pipe, Unicast allows communication from one peer to
another in a single direction. If information has to be passed between peers in
both directions, both of the peers need to publish pipe advertisements, or one
of the peers can pass pipe information through the one Unicast pipe. When the
other peer receives the pipe advertisement, it will create another pipe. 

Although the Java reference implementation builds JXTA pipes on top of
TCP/IP (which is a reliable protocol), the Unicast pipe is considered an unreli-
able means of communication. This is because the JXTA specification defines
the Unicast pipe as a one-way and unreliable form of communication. Any
implementation of the Unicast pipe is able to build the pipe at this lowest
denominator. If a particular implementation chooses to use a “better-quality”
vehicle such as TCP/IP for the Unicast pipe, it can; however, no implementation
can change the JXTA specification’s definition of the pipe type. The pipe is
defined as unreliable in the specification, and that fact isn’t changed by the
physical implementation, even though in reality the pipe might be reliable as a
side effect of the implementation. 

Here are the steps required to implement a Unicast pipe between two peers.

■■ On a local peer:
•  Build an input pipe advertisement.
• Publish the advertisement.
• Create an input pipe.
• Wait for data using either polling or a listener.

■■ On a remote peer:
• Discover the pipe advertisement.
• Build the output pipe.
• Send data through the pipe.

Unicast Pipes on a Local Peer
In the local peer, an input pipe advertisement needs to be built. One of the simplest
ways to build the advertisement is programmatically, as shown in Listing 13.3.

C h a p t e r  13 JXTA Pipes214

PipeAdvertisement pipeAdv =

(PipeAdvertisement)AdvertisementFactory.newAdvertisement(

PipeAdvertisement.getAdvertisementType());

pipeAdv.setName("JXTA:KEYRECEIVE");

pipeAdv.setType(PipeService.UnicastType);

pipeAdv.setPipeID((ID) net.jxta.id.IDFactory.

newPipeID(netPeerGroup.getPeerGroupID()));

Listing 13.3 Creating an advertisement for a Unicast input pipe.



Next, the advertisement has to be published to other peers. For example:

DiscoveryService discoveryService = 

netPeerGroup.getDiscoveryService();
discoveryService.remotePulish(pipeAdv,
DiscoveryService.ADV);

Now the input pipe must be built, as shown in Listing 13.4. For most input pipes,
a listener object will be used, although you can use the poll() method when an
application has the luxury of blocking while it waits for incoming data. Before
the code can create the input pipe, it must create a listener object. In the fol-
lowing code, the listener object is created as an anonymous class.

Unicast Pipes 215

PipeMsgListener myService1Listener = new PipeMsgListener() {

public void pipeMsgEvent(PipeMsgEvent event) {

Message myMessage = null;

try {

myMessage = event.getMessage();

String myMessageContent;

myMessageContent = myMessage.getString("DataTag");

if (myMessageContent != null) {

System.out.println("Message received: " + 

myMessageContent + "\n");

return;

}

} catch (Exception ee) {

ee.printStackTrace();

return;

}

}

};

InputPipe myPipe = null;

try {

myPipe = myPipeService.createInputPipe(pipeAdv, 

myService1Listener);

} catch (Exception e) {

System.out.println("Error creating Input Pipe");

e.printStackTrace();

System.exit(-1);

}

Listing 13.4 Building a Unicast input pipe.

At this point in the peer application, a run() method could be called, so the peer
just waits until a message is received. For the listener, all of the processing is
handled asynchronously. All messages received by the input pipe will be
checked for a message associated with the DataTag parameter of the message.



Remote Peers
For a remote peer to be able to communicate with another peer through an
already established pipe, it must discover a published pipe advertisement. To
do this, the peer will initiate a search using both the getLocalAdvertisements()
and getRemoteAdvertisements() methods, as shown in Listing 13.5.

C h a p t e r  13 JXTA Pipes216

void findAdvertisements() {

Enumeration advEnum = null;

try {

advEnum = myDiscoveryService.getLocalAdvertisements(

DiscoveryService.ADV, "Name", "DSS*");

while (advEnum.hasMoreElements()) {

try {

PipeAdvertisement pipeAdv = 

(PipeAdvertisement)advEnum.nextElement();

createOutputPipe(pipeAdv);

} catch (Exception e) {

// not a pipe advertisement – skip it

}

}

else {

//Attempt a remote discovery

//Build DiscoveryListener

DiscoveryListener discoveryListener = new 

DiscoveryListener() { 

public void discoveryEvent(DiscoveryEvent e) { 

Enumeration advEnum;

DiscoveryResponseMsg message = e.getResponse();

advEnum = myMessage.getResponses();

while (advEnum.hasMoreElements()) {

try {

String str = (String)enum.nextElement();

pipeAdv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(XMLMIMETYPE,

new ByteArrayInputStream(str.getBytes()));

createOutputPipe(pipeAdv);

} catch (Exception e) {

// not a pipe advertisement – skip it

}

}

};

//Launch the discovery

Listing 13.5 Initiating a search for a pipe advertisement. (continues)



Unicast Pipes 217

discoveryService.getRemoteAdvertisements(null,

DiscoveryService.ADV, "Name", "DSS*", 10, 

discoveryListener);

}

} catch (Exception e) {

System.out.println("Error during advertisement 

search");

System.exit(-1);

}

}

Listing 13.5 Initiating a search for a pipe advertisement. (continued)

The code in Listing 13.5 will first check to find a pipe advertisement in the local
cache with a Name value of DSS*, where * is a wildcard. If a pipe advertisement
is found and successfully cast into a PipeAdvertisement object, the createOut-
putPipe() method is called with the pipe advertisement. If a pipe advertisement
matching the search isn’t found in the local cache, a Discovery Listener object
is created and passed to the getRemoteAdvertisements() method. 

When remote peers provide their advertisements matching the search criteria,
the same code used in the local search is executed, and acceptable pipe adver-
tisements are passed to the createOutputPipe() method:

private void createOutputPipe(PipeAdvertisement pipeAdv) {

outputPipe = null; 

try {

outputPipe = pipeService.createOutputPipe(pipeAdv, 

100000);

} catch (Exception e) {

System.out.println("Unable to create output pipe");

System.exit(-1);

}

}

In this code, the pipe advertisement is passed to the createOutputPipe()
method of the pipe service. The class member variable, outputPipe, is set to the
return value of the createOutputPipe() method, which is called against the pre-
viously defined pipeService variable. If the call is successful, a new pipe will be
available where information can be sent using the following code:

String data = "Hello my friend!";

Message msg = pipeService.createMessage();

msg.setString("DataTag", data);

try {

outputPipe.send (msg);



} catch (Exception e) {

System.out.println("Unable to send data");

e.printStackTrace();

System.exit(-1);

}

In this code, a message object is created and provided with the data to send to
the pipe and the key value DataTag. The message is sent to the pipe through its
send() method. 

UnicastSecure Pipes

The UnicastSecure pipe ensures that all data sent through it is encrypted. The
data sent through the pipe is encrypted by using the Transport Layer Security
(TLS) protocol. TLS can be thought of as an extension or second-generation
protocol over the Secure Sockets Layer (SSL). Believe it or not, to change the
code listed in the previous section from sending non-secure data to sending
secure data, we simply have to change the Type element of the pipe advertise-
ment. The code for building the pipe advertisement would look like this:

PipeAdvertisement pipeAdv = 

(PipeAdvertisement)AdvertisementFactory.

newAdvertisement(PipeAdvertisement.getAdvertisementType());

pipeAdv.setName("JXTA:KEYRECEIVE");

pipeAdv.setType(PipeService.UnicastSecureType);

pipeAdv.setPipeID((ID) net.jxta.id.IDFactory.

newPipeID(netPeerGroup.getPeerGroupID()));

Propagate Pipes

In some application designs, a single peer will need the ability to send informa-
tion to a number of different peers at the same time. One way to handle this
design is to create a data structure, such as an array, to hold a number of pipes,
each specified as type Unicast. When the peer needs to send data to each peer,
it could loop through the data structure and send the same message to each
remote peer. 

Of course, this isn’t a very efficient solution because there could be a large num-
ber of pipes, and the housekeeping would be complex. The JXTA specification
and Java implementation can handle this type of design easily through the use
of the JxtaPropagate pipe type. Listing 13.6 shows an example of a pipe adver-
tisement that supports propagate pipes.

To demonstrate how propagate pipes work, Listings 13.7 and 13.8 show simple
peers with the primary jobs of sending and receiving messages, respectively.

C h a p t e r  13 JXTA Pipes218



The code in Listing 13.7 publishes and builds an output pipe using the pipe
advertisement from Listing 13.6. In most cases, an output pipe is created in
response to the receipt of an input pipe advertisement. However, when a prop-
agate pipe advertisement is used, the output pipe doesn’t require an immediate
input pipe in order to be created; the code will create an output pipe, and wait
for an input pipe connection for about 1 second. After this time frame, the sys-
tem will enter a loop, which pauses and then sends a message about the output
pipe. Any clients currently attached to the output pipe will receive the message. 

The code in Listing 13.8 attempts to find the advertisement published by 
the code discussed in Listing 13.5. When the advertisement is found, an input
pipe is created using the found advertisement. The new pipe is built using a lis-
tener, which will be called when a new message is received. The contents of the
message are displayed in the terminal window where the application is
launched.

The code in Listing 13.8 can be executed any number of times concurrently.
Each of the instances of the code will connect with the output pipe from the
code in Listing 13.7. The message sent out the pipe will be received by all of the
connected peers. The use of a propagate pipe is the only difference in this code.

Propagate Pipes 219

<?xml version="1.0" encoding="UTF-8"?>

<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">

<Name>PropOutput</Name>

<Id>urn:jxta:uuid-094AB61B99C14AB694D

5BFD56C66E512FF7980EA1E6F4C238A26BB362B34D1F104</Id>

<Type>JxtaPropagate</Type>

</jxta:PipeAdvertisement>

Listing 13.6 Propagate pipe advertisements.

import java.io.*;

import java.util.Enumeration;

import net.jxta.document.*;

import net.jxta.peergroup.*;

import net.jxta.exception.*;

import net.jxta.impl.peergroup.*;

import net.jxta.id.*;

import net.jxta.discovery.*;

import net.jxta.pipe.*;

import net.jxta.protocol.*;

import net.jxta.platform.*;

import java.net.MalformedURLException;

Listing 13.7 The propagate sending peer. (continues)



C h a p t e r  13 JXTA Pipes220

import java.net.URL;

import net.jxta.endpoint.Message;

public class sender {

static  PeerGroup       netPeerGroup = null;

private DiscoveryService       myDiscoveryService = null;

private PipeService            myPipeService = null;

private PipeAdvertisement  myDBPipeAdvertisement = null;

private OutputPipe      myOutputPipe = null;

private final static       MimeMediaType XMLMIMETYPE = new 

MimeMediaType("text/xml");

public sender() {

launchJXTA();

getServices();

buildAndPublishOutputPipe();

Message msg = myPipeService.createMessage();

msg.setString("DataTag", "Our Message");

while (true) {

try { 

Thread.sleep(3000);

System.out.println("Sending Message");

myOutputPipe.send(msg);

} catch(Exception e) {}

}

}

static public void main(String[] args) {

new sender();

}

private void launchJXTA() {

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

e.printStackTrace();

System.exit(1);

}

}

Listing 13.7 The propagate sending peer. (continues)



Propagate Pipes 221

private void getServices() {

myDiscoveryService = netPeerGroup.getDiscoveryService();

myPipeService = netPeerGroup.getPipeService();

}

private void buildAndPublishOutputPipe() {

PipeAdvertisement aPipeAdv = null;

try { 

FileInputStream is = 

new FileInputStream("outputpipe.adv");

aPipeAdv = 

(PipeAdvertisement)AdvertisementFactory.newAdvertisement(

new MimeMediaType("text/xml"), is);

} catch (Exception e) {

System.out.println("failed to read/parse pipe 

advertisement");

e.printStackTrace();

System.exit(-1);

}

try {

myDiscoveryService.publish(aPipeAdv,

DiscoveryService.ADV);

myDiscoveryService.remotePublish(aPipeAdv,

DiscoveryService.ADV);

} catch (Exception e) {

e.printStackTrace();

System.exit(-1);

}

createOutputPipe(aPipeAdv);

}

private void createOutputPipe(PipeAdvertisement 

myPipeAdvertisement) {

try {

myOutputPipe = 

myPipeService.createOutputPipe(myPipeAdvertisement,

1000);

System.out.println("Output Pipe Created");

} catch (Exception e) {

e.printStackTrace();

System.exit(-1);

}

}

}

Listing 13.7 The propagate sending peer. (continued)



C h a p t e r  13 JXTA Pipes222

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.util.Enumeration;

import net.jxta.document.*;

import net.jxta.peergroup.*;

import net.jxta.exception.PeerGroupException;

import net.jxta.impl.peergroup.Platform;

import net.jxta.impl.peergroup.GenericPeerGroup;

import net.jxta.id.*;

import net.jxta.discovery.*;

import net.jxta.pipe.*;

import net.jxta.protocol.*;

import java.net.MalformedURLException;

import java.net.URL;

import net.jxta.endpoint.Message;

public class receiver{

static  PeerGroup       netPeerGroup = null;

private DiscoveryService  myDiscoveryService = null;

private PipeService       myPipeService = null;

private PipeAdvertisement myPipeAdvertisement = null,

myInputPipeAdvertisement = null;

private InputPipe         myInputPipe;

private final static      MimeMediaType XMLMIMETYPE = 

new MimeMediaType("text/xml"); 

public static void main(String args[]) {

receiver myapp = new receiver();

}

public receiver() { 

launchJXTA();

getServices();

findAdvertisement("Name", "PropOutput");

run();

}

public void run() {

while (true) {

try { Thread.sleep(300); } catch(Exception e) {}

}

}

private void launchJXTA() {

Listing 13.8 The propagate receiving peer. (continues)



Propagate Pipes 223

System.out.println("Launching Peer into JXTA 

Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

e.printStackTrace();

System.exit(1);

}

}

private void getServices() {

System.out.println("Getting Services...\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

myPipeService = netPeerGroup.getPipeService();

}

private void createInputPipe(PipeAdvertisement pipeAdv) {

System.out.println("Creating Input Pipe....\n");

PipeMsgListener myService1Listener = new PipeMsgListener() {

public void pipeMsgEvent(PipeMsgEvent event) {

Message myMessage = null;

try {

myMessage = event.getMessage();

System.out.println(myMessage.getString("DataTag"));

return;

} catch (Exception ee) {

ee.printStackTrace();

return;

}

}

};

try {

myInputPipe = myPipeService.createInputPipe(pipeAdv,

myService1Listener);

} catch (Exception e) {

System.out.println("Error creating Input Pipe");

e.printStackTrace();

System.exit(-1);

}

}

Listing 13.8 The propagate receiving peer. (continues)



C h a p t e r  13 JXTA Pipes224

private void findAdvertisement(String searchKey, String 

searchValue) {

Enumeration myLocalEnum = null;

System.out.println("Trying to find advertisement...\n");

try {

myLocalEnum = myDiscoveryService.getLocalAdvertisements(

DiscoveryService.ADV, searchKey, searchValue);

if ((myLocalEnum != null) && 

myLocalEnum.hasMoreElements()) {

System.out.println("Found Local Advertisement...\n");

myPipeAdvertisement = 

(PipeAdvertisement)myLocalEnum.nextElement();

createInputPipe(myPipeAdvertisement);

}

else {

DiscoveryListener myDiscoveryListener = 

new DiscoveryListener() { 

public void discoveryEvent(DiscoveryEvent e) { 

Enumeration enum;

System.out.println("Found Remote 

Advertisement...\n");

DiscoveryResponseMsg myMessage = e.getResponse();

enum = myMessage.getResponses();

while (enum.hasMoreElements()) {

try {

String str = (String)enum.nextElement();

myPipeAdvertisement = (PipeAdvertisement) 

AdvertisementFactory.newAdvertisement(

XMLMIMETYPE, new

ByteArrayInputStream(str.getBytes()));

System.out.println("Trying to build pipe");

createInputPipe(myPipeAdvertisement);

} catch(Exception ee) {

ee.printStackTrace();

}

}

}

};

System.out.println("Launching Remote Discovery 

Service...\n");

myDiscoveryService.getRemoteAdvertisements(null,

DiscoveryService.ADV, searchKey, searchValue, 1,

myDiscoveryListener);

Listing 13.8 The propagate receiving peer. (continues)



Bidirectional Pipes 225

}

} catch (Exception e) {

System.out.println("Error during advertisement 

search");

System.exit(-1);

}

}

}

Listing 13.8 The propagate receiving peer. (continued)

Bidirectional Pipes

Although Unicast pipes are effective, they are not efficient because two-way
communication requires that two pipes be created and all necessary house-
keeping handled. Fortunately, the Java binding of the JXTA protocol adds a
bidirectional pipe. Bidirectional pipes are not considered part of the JXTA spec-
ification; only the Unicast, UnicastSecure, and propagate pipes are part of the
Pipe Binding Protocol (which we discussed in Chapter 10). Software develop-
ers can create bidirectional pipes by using two Unicast pipes and hiding all of
the details from the application; in this way, most of the housekeeping details
are contained within the implementation classes. The bidirectional pipe works
like this: 

1. A peer publishes a pipe (Unicast) advertisement.

2. A remote peer discovers the pipe advertisement, and initiates a connection
to the pipe advertisement.

3. Once the connection is made, the original peer will transmit information
about a second pipe, which is used for communication in the other direc-
tion, thus establishing a bidirectional pipe.

The Bidirectional Pipe Code
Listing 13.9 implements a peer that will publish a bidirectional input pipe, also
called an accept pipe. This peer does the job of publishing the pipe advertise-
ment. Later, in Listing 13.10, we implement a peer that will discover the adver-
tisement and begin communication. Using this approach, the discovery peer
sends a message through the bidirectional pipe, and receives a response. The
peer created in Listing 13.9:



1. Creates a bidirectional pipe.

2. Advertises the pipe’s existence.

3. Accepts a connection for the pipe.

4. Accepts data from the pipe and sends a response.

The basic functionality of this application is the same as that found in the exam-
ples from Chapter 12. The GUI is created in the same way, and the peer is “con-
nected” to the default peer group. In the following sections, we explain the
differences involved in using bidirectional pipes.

C h a p t e r  13 JXTA Pipes226

Line 1: import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import net.jxta.document.*;

import net.jxta.peergroup.*;

import net.jxta.exception.*;

import net.jxta.impl.peergroup.*;

Line 10: import net.jxta.id.*;

import net.jxta.discovery.*;

import net.jxta.pipe.*;

import net.jxta.protocol.*;

import net.jxta.platform.*;

import net.jxta.endpoint.*; 

import net.jxta.impl.util.BidirectionalPipeService;

public class server extends JFrame {

Line 20:    static PeerGroup netPeerGroup = null;

private DiscoveryService myDiscoveryService = null;

private BidirectionalPipeService myBiPipeService = null;

private PipeService myPipeService = null;

private ModuleClassID myService1ID = null;

private InputPipe myPipe = null;

private JTextArea displayArea;

public static void main(String args[]) {

server myapp = new server();

Line 30:

myapp.addWindowListener (

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

Listing 13.9 The bidirectional pipe server application. (continues)



Bidirectional Pipes 227

}

}

);

myapp.run();

Line 40:     }

public server() { 

super("Server");

Container c = getContentPane();

displayArea = new JTextArea();

c.add (new JScrollPane(displayArea), BorderLayout.CENTER);

Line 50:       setSize(300,150);

show();

launchJXTA();

getServices();

}

public void run() {

try { 

BidirectionalPipeService.AcceptPipe incomingAcceptPipe =

myBiPipeService.bind("bipipe");

Line 60:         displayArea.append("Pipe Bind...\n");

while (true) {

try {

BidirectionalPipeService.MessageListener

myListenerService = 

new BidirectionalPipeService.MessageListener () {

public void messageReceived (Message msg, OutputPipe

responsePipe) {

String myMessageContent;

myMessageContent = msg.getString("DataTag");

Message sendMsg = null;

Line 70:             if (myMessageContent != null) {

displayArea.append("Message received: " + 

myMessageContent + "\n");

displayArea.append("Sending Response...");

try {

sendMsg = myPipeService.createMessage();

sendMsg.setString("DataTag", "Here’s your 

Listing 13.9 The bidirectional pipe server application. (continues)



C h a p t e r  13 JXTA Pipes228

response");

responsePipe.send(sendMsg);

} catch(Exception e) {}

Line 80:               displayArea.append("Waiting for message...\n");

return;

} else {

displayArea.append("Invalid tag\n");

return;

}

}

};

BidirectionalPipeService.Pipe newPipe = 

incomingAcceptPipe.accept(30000, myListenerService);

Line 90:         displayArea.append("Accepted a pipe 

connection\n");

} catch(Exception e) {}

}

} catch(Exception e) {}

}

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA 

Network...\n");

try {

Line 100:            netPeerGroup = 

PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

e.printStackTrace();

System.exit(1);

}

}

private void getServices() {

displayArea.append("Obtaining Discovery and Pipe 

Services....\n");

Line 110:       myDiscoveryService = 

netPeerGroup.getDiscoveryService();

myBiPipeService = new 

BidirectionalPipeService(netPeerGroup);

myPipeService = netPeerGroup.getPipeService();

}

}

Listing 13.9 The bidirectional pipe server application. (continued)



Initializing the Publishing Peer

Bidirectional pipes don’t use the standard PipeService class; instead, they have
a class called BidirectionalPipeService. In the getServices() method on line
111, an object of type BidirectionalPipeService is instantiated. Within the ser-
vice object, the current peer’s discovery and normal pipe services are refer-
enced for the purposes of advertising the pipes and creating the Unicast pipes.
Thus, it is important that the bidirectional service is not instantiated before the
peer is put into the group that will host the application.

Waiting for Acceptance of the Pipe

The most important method in the server peer is the run() method. This method
includes most of the functionality necessary for the server. 

Lines 57 through 95 implement the run() method. Line 59 creates an Accept-
Pipe object, using the bidirectionalPipeService object and bind() method. This
is a Unicast input pipe with a name based on the single parameter to the bind()
method. The bind() method automatically publishes an advertisement for the
pipe using the discovery service of the peer’s current group.

Line 62 begins a loop that will check for a pipe connection. Lines 64 through 87
implement a pipe input message listener in the same fashion as those found in
Chapter 12.

Line 66 contains the method required to be implemented in a bidirectional pipe
listener. This method is passed the message received on the pipe as well as an
output pipe, which can be used to send a response to the peer who sent the
original message.

Line 77 uses the response pipe to send a message to the peer that sent the orig-
inal message. Line 89 waits for 30,000 seconds or until a peer attempts to create
a connection with the peer’s input pipe. Once a connection is accepted, an
object instance for the pipe is created, and the input pipe message listener is
activated for the input pipe. Any message sent up the input pipe will be
processed by lines 64 through 87.

The Bidirectional Pipe Discovery Code
The bidirectional pipe code in Listing 13.10 is based on the examples in Chap-
ter 12, and includes the same code for the GUI and for advertisement discovery.
The code attempts to discover a pipe advertisement based on the name of the
pipe and the string bipipe. If an acceptable advertisement is found, a connec-
tion is made to the pipe. The user can click a button to send data to the pipe’s
originator. The peer will wait on the input pipe of the connection for a response
from the originator.

Bidirectional Pipes 229



C h a p t e r  13 JXTA Pipes230

Line 1: import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.net.MalformedURLException;

import java.net.URL;

import java.util.Enumeration;

import net.jxta.document.*;

Line 10: import net.jxta.peergroup.*;

import net.jxta.exception.*;

import net.jxta.impl.peergroup.*;

import net.jxta.id.*;

import net.jxta.discovery.*;

import net.jxta.pipe.*;

import net.jxta.protocol.*;

import net.jxta.endpoint.Message;

import net.jxta.impl.util.BidirectionalPipeService;

Line 20: public class client extends JFrame {

static  PeerGroup      netPeerGroup = null;

private DiscoveryService      myDiscoveryService = null;

private BidirectionalPipeService      myBiPipeService = null;

private PipeService myPipeService = null;

private PipeAdvertisement myPipeAdvertisement = null;

private BidirectionalPipeService.Pipe myPipe;

private JTextArea      displayArea;

private JButton        sendButton;

Line 30:    private String       valueString = "bipipe";

private final static      MimeMediaType XMLMIMETYPE = new 

MimeMediaType("text/xml");

public static void main(String args[]) {

client myapp = new client();

myapp.addWindowListener (

new WindowAdapter() {

Line 40:             public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

myapp.run();

Listing 13.10 The bidirectional pipe discovery application. (continues)



Bidirectional Pipes 231

}

public client() { 

Line 50:      super("client");

Container c = getContentPane();

sendButton = new JButton("Send Data");

sendButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

sendData();

}

Line 60:         }

);

c.add(sendButton, BorderLayout.NORTH);

displayArea = new JTextArea();

c.add(new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300,150);

show();

Line 70:      launchJXTA();

getServices();

findAdvertisement("Name", "bipipe");

}

public void run() {

displayArea.append("Click on Button to send data...\n");

}

Line 80:     private void launchJXTA() {

displayArea.append("Launching Peer into JXTA 

Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

e.printStackTrace();

System.exit(1);

}

}

Line 90:

private void getServices() {

displayArea.append("Getting Services...\n");

Listing 13.10 The bidirectional pipe discovery application. (continues)



C h a p t e r  13 JXTA Pipes232

myDiscoveryService = netPeerGroup.getDiscoveryService();

myBiPipeService = new BidirectionalPipeService(netPeerGroup);

myPipeService = netPeerGroup.getPipeService();

}

private void findAdvertisement(String searchKey, String 

searchValue) {

Enumeration myLocalEnum = null;

Line 100:      displayArea.append("Trying to find 

advertisement...\n");

try {

myLocalEnum = myDiscoveryService.getLocalAdvertisements(

DiscoveryService.ADV, searchKey, searchValue);

if ((myLocalEnum != null) && 

myLocalEnum.hasMoreElements()) {

displayArea.append("Found Local Advertisement...\n");

PipeAdvertisement myAdv = 

(PipeAdvertisement)myLocalEnum.nextElement();

createPipe(myAdv);

Line 110:        }

else {

DiscoveryListener myDiscoveryListener = 

new DiscoveryListener() { 

public void discoveryEvent(DiscoveryEvent e) { 

Enumeration enum;

PipeAdvertisement pipeAdv = null;

String str;

displayArea.append("Found Remote 

Advertisement...\n");

DiscoveryResponseMsg myMessage = e.getResponse();

Line 120:              enum = myMessage.getResponses();

str = (String)enum.nextElement();

try {

pipeAdv = (PipeAdvertisement) 

AdvertisementFactory.newAdvertisement(

XMLMIMETYPE, new

ByteArrayInputStream(str.getBytes()));

createPipe(pipeAdv);

} catch(Exception ee) {

ee.printStackTrace();

System.exit(-1);

Listing 13.10 The bidirectional pipe discovery application. (continues)



Bidirectional Pipes 233

Line 130:              }

}

};

displayArea.append("Launching Remote Discovery 

Service...\n");

myDiscoveryService.getRemoteAdvertisements(null,

DiscoveryService.ADV, searchKey, searchValue, 1, 

myDiscoveryListener);

}

} catch (Exception e) {

System.out.println("Error during advertisement 

search");

System.exit(-1);

Line 140:      }

}

private void createPipe(PipeAdvertisement 

myPipeAdvertisement) {

try {

myPipe = myBiPipeService.connect(myPipeAdvertisement, 

30000);

} catch(Exception e) {}

}

private void sendData() {

Lien 150:      String data = "Hello my friend!";

Message msg = myPipeService.createMessage();

msg.setString("DataTag", data);

try {

myPipe.getOutputPipe().send(msg);

displayArea.append("message \"" + data + "\" sent to the 

Server\n");

msg = myPipe.getInputPipe().poll(30000);

Line 160:        displayArea.append("From SErver: " + 

msg.getString("DataTag"));

} catch (Exception e) {

System.out.println("Unable to print output pipe");

e.printStackTrace();

System.exit(-1);

}

}

}

Listing 13.10 The bidirectional pipe discovery application. (continued)



Creating a Connection to the Pipe

Once a pipe advertisement has been found based on the name of the pipe, a call is
made to the createPipe() method. Lines 143 through 147 implement the method.

Line 145 does all of the work inside a try block. A call is made to the connect()
method of the BidirectionalPipeService object with the provided discovered
pipe advertisement and a timeout value. If a successful connection is made, the
myPipe attribute will contain an object for the bidirectional pipe.

Sending Data

Once the pipes have been established, the user can click the Send Data button
to transfer data from the client peer to the server peer. Clicking this button calls
the sendData() method, which appears in lines 149 through 168. 

Lines 152 and 153 create the message that will be sent to the server object. Notice
that the non-bidirectional pipe service is used to build the message object.

Line 156 obtains the output pipe from the bidirectional pipe created by the cre-
atePipe() method. This output pipe’s send() method is called using the message
object as its parameter. The message is then sent to the remote peer. 

Line 159 obtains the input pipe of the BidirectionalPipe object, and waits for a
total of 30,000 seconds or until a message appears on the input pipe to the cur-
rent client peer. Once the message is received, the information from the server
is printed to the GUI’s text area. 

Reliable Pipes

A quick look through the source code can yield all kinds of information. Notice
the implementation of a service called ReliablePipeService. This pipe service is
based on the BidirectionalPipeService presented in the previous section. The
basic idea is to build a reliable connection mechanism to go along with the Uni-
cast and unreliable connection located in the JXTA specification. For the most
part, the ReliablePipeService and its related pipes aren’t documented in the
JXTA specification and Java implementation; the pipes are an add-on you’ll find
referenced in the Java source and in a tutorial on the JXTA web site.

The code in Listing 13.11 and Listing 13.12 (in the next section) implement a
sender and a receiver, respectively, for the reliable pipes. However, note that
although the code is accurate and the pipe might be reliable, the service isn’t.
Some of the time the service will actually connect two peers and pass informa-
tion; other times, the service will fail to connect. The JXTA team continues to
work on this issue, so by the time this book is published, the service should be
more reliable.

C h a p t e r  13 JXTA Pipes234



Reliable Pipes 235

Line 1: import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import net.jxta.impl.util.*;

import net.jxta.document.*;

import net.jxta.peergroup.*;

import net.jxta.exception.*;

Line 10: import net.jxta.impl.peergroup.*;

import net.jxta.id.*;

import net.jxta.discovery.*;

import net.jxta.pipe.*;

import net.jxta.protocol.*;

import net.jxta.platform.*;

import net.jxta.endpoint.*; 

public class server extends JFrame {

Line 20:    static PeerGroup netPeerGroup = null;

private DiscoveryService myDiscoveryService = null;

private ReliablePipeService myReliablePipeService = null;

private PipeService myPipeService = null;

private ModuleClassID myService1ID = null;

private InputPipe myPipe = null;

private JTextArea displayArea;

public static void main(String args[]) {

server myapp = new server();

Line 30: 

myapp.addWindowListener (

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

myapp.run();

Line 40:     }

public server() { 

super("Server");

Container c = getContentPane();

displayArea = new JTextArea();

c.add (new JScrollPane(displayArea), BorderLayout.CENTER);

Listing 13.11 The sending peer code. (continues)



C h a p t e r  13 JXTA Pipes236

Line 50:       setSize(300,150);

show();

launchJXTA();

getServices();

}

public void run() {

try { 

ReliablePipeService.AcceptPipe incomingAcceptPipe = 

myReliablePipeService.bind("bipipe2");

Line 60:        displayArea.append("Pipe Bind...\n");

while (true) {

try {

ReliablePipeService.Pipe newPipe = 

incomingAcceptPipe.accept(30000);

displayArea.append("Accepted a pipe connection\n");

Message msg = newPipe.getInputPipe().poll (30000);

InputStream in2 = msg.getElement ("DataTag").getStream ();

byte[] buf = new byte[8192];

Line 70:       int r = in2.read (buf);

displayArea.append("Message = " + buf);

Message sendMsg = myPipeService.createMessage();

sendMsg.setString("DataTag", "Here’s your response”);

newPipe.getOutputPipe().send(sendMsg);

} catch(Exception e) {}

}

} catch(Exception e) {}

Line 80:    }

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA 

Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

e.printStackTrace();

System.exit(1);

Line 90:        }

}

Listing 13.11 The sending peer code. (continues)



Reliable Pipes 237

private void getServices() {

displayArea.append("Obtaining Discovery and Pipe 

Services....\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

myReliablePipeService = new ReliablePipeService (

new BidirectionalPipeService (netPeerGroup));

myPipeService = netPeerGroup.getPipeService();

}

}

Listing 13.11 Sending peer code. (continued)

Sender Code
The sender code is based on the bidirectional server code with a few changes. 

Sender Initialization

The sender for the reliable server needs a different service for the pipes. Line 96
of Listing 13.12 creates an object for the ReliablePipeService class. Notice the
use of the BidirectionalPipeService class as a parameter to the method call.

Waiting for a Connection

The code for a connection is a little different in that the reliable pipes don’t
allow the use of a message listener. 

Lines 57 through 91 implement a basic run() method for the server. Line 59 cre-
ates an accept pipe for the reliable service just as the bidirectional example did.
In this case, the bind() method is called using a pipe name of bipipe2. Within
the code, the name of the pipe is provided to the internal bidirectional pipe ser-
vice.

Line 62 begins a loop for accepting connection on the reliable pipes. Line 64
calls the accept() method of the pipe created in line 59. The system will wait for
30 seconds, or until a remote peer connects to the pipe.

Line 67 calls the getInputPipe() method of the connected bidirectional pipe in
order to check for a message. The system will wait for 30 seconds to receive a
message from the input pipe.

Lines 68 through 71 pull the data from the message and displays it on the GUI.
Lines 73 through 75 create a new message to send back to the client. Line 75
obtains the output pipe of the bidirectional pipe and calls the send() method to
send the message object to the client.



C h a p t e r  13 JXTA Pipes238

Line 1: import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.net.MalformedURLException;

import java.net.URL;

import java.util.Enumeration;

import net.jxta.document.*;

Line 10: import net.jxta.peergroup.*;

import net.jxta.exception.*;

import net.jxta.impl.peergroup.*;

import net.jxta.id.*;

import net.jxta.discovery.*;

import net.jxta.pipe.*;

import net.jxta.protocol.*;

import net.jxta.endpoint.Message;

import net.jxta.impl.util.BidirectionalPipeService;

import net.jxta.impl.util.ReliablePipeService;

Line 20:

public class client extends JFrame {

static  PeerGroup      netPeerGroup = null;

private DiscoveryService     myDiscoveryService = null;

private ReliablePipeService  myReliablePipeService = null;

private PipeService myPipeService = null;

private PipeAdvertisement myPipeAdvertisement = null;

private ReliablePipeService.Pipe myPipe;

private JTextArea      displayArea;

Line 30:    private JButton        sendButton;

private String      valueString = “bipipe2”;

private final static      MimeMediaType XMLMIMETYPE = 

new MimeMediaType("text/xml"); 

public static void main(String args[]) {

client myapp = new client();

myapp.addWindowListener (

new WindowAdapter() {

Line 40:            public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

myapp.run();

}

Listing 13.12 The reliable receiver application. (continues)



Reliable Pipes 239

public client() { 

super("client");

Line 50:

Container c = getContentPane();

sendButton = new JButton("Send Data");

sendButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

sendData();

}

}

Line 60:      );

c.add(sendButton, BorderLayout.NORTH);

displayArea = new JTextArea();

c.add(new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300,150);

show();

launchJXTA();

Line 70:      getServices();

findAdvertisement("Name", "bipipe2");

}

public void run() {

displayArea.append("Click on Button to send data...\n");

}

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA 

Network...\n");

Line 80:        try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

e.printStackTrace();

System.exit(1);

}

}

private void getServices() {

Line 90:      displayArea.append("Getting Services...\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

myReliablePipeService = new ReliablePipeService (

new BidirectionalPipeService (netPeerGroup));

Listing 13.12 The reliable receiver application. (continues)



C h a p t e r  13 JXTA Pipes240

myPipeService = netPeerGroup.getPipeService();

}

private void findAdvertisement(String searchKey, String 

searchValue) {

Enumeration myLocalEnum = null;

displayArea.append("Trying to find advertisement...\n");

Line 100:      try {

myLocalEnum = myDiscoveryService.getLocalAdvertisements(

DiscoveryService.ADV, searchKey, searchValue);

if ((myLocalEnum != null) && 

myLocalEnum.hasMoreElements()) {

displayArea.append("Found Local Advertisement...\n");

PipeAdvertisement myAdv = 

(PipeAdvertisement)myLocalEnum.nextElement();

createPipe(myAdv);

}

else {

LIne 110:          DiscoveryListener myDiscoveryListener = 

new DiscoveryListener() { 

public void discoveryEvent(DiscoveryEvent e) { 

Enumeration enum;

PipeAdvertisement pipeAdv = null;

String str;

displayArea.append("Found Remote 

Advertisement...\n");

DiscoveryResponseMsg myMessage = e.getResponse();

enum = myMessage.getResponses();

str = (String)enum.nextElement();

Line 120:

try {

pipeAdv = (PipeAdvertisement) 

AdvertisementFactory.newAdvertisement(

XMLMIMETYPE, new

ByteArrayInputStream(str.getBytes()));

createPipe(pipeAdv);

} catch(Exception ee) {

ee.printStackTrace();

System.exit(-1);

}

}

Line 130:          };

Listing 13.12 The reliable receiver application. (continues)



Reliable Pipes 241

displayArea.append("Launching Remote Discovery 

Service...\n");

myDiscoveryService.getRemoteAdvertisements(null,

DiscoveryService.ADV, searchKey, searchValue, 1,

myDiscoveryListener);

}

} catch (Exception e) {

System.out.println("Error during advertisement 

search");

System.exit(-1);

}

}

Line 140:

private void createPipe(PipeAdvertisement 

myPipeAdvertisement) {

try {

displayArea.append("Tying to connect...\n");

myPipe = myReliablePipeService.connect(

myPipeAdvertisement,30000);

displayArea.append("Connected...\n");

} catch (Exception e) {}

}

Line 150:    private void sendData() {

String data = "Hello my friend!";

Message msg = myPipeService.createMessage();

msg.setString("DataTag", data);

try {

myPipe.getOutputPipe().send(msg);

displayArea.append(“message \"" + data + "\" sent to the 

Server\n”);

Line 160:         msg = myPipe.getInputPipe().poll (30000);

InputStream in2 = msg.getElement ("DataTag").getStream ();

byte[] buf = new byte[8192];

int r = in2.read (buf);

displayArea.append("Message = " + buf);

} catch (Exception e) {

System.out.println("Unable to print output pipe");

e.printStackTrace();

System.exit(-1);

Line 170:      }

}

}

Listing 13.12 The reliable receiver application.  (continued)



The Receiver Code
The receiver code begins by trying to find a pipe advertisement with the name
bipipe2. Once it’s found, a connection will be established with the peer who
advertised the pipe. When the user clicks the Send Data button, a message will
be sent to the sender, and the receiver will wait for a message to be sent back. 

Lines 142 through 148 implement the createPipe() method, which is called
when a pipe advertisement is found that matches the name bipipe2. 

Lines 150 through 171 are called when the user clicks the Send Data button. The
code obtains the output pipe of the reliable bidirectional pipe, and sends a mes-
sage to the server. After the message is sent, the input pipe is obtained and the
poll() method is called to wait for a message to appear in the pipe.

Summary

This chapter has taken a look at the many different pipes available with the
Java binding of the JXTA specification. Along with the pipes, some different
mechanisms are provided for publishing and discovering advertisements for
various application demands. In the next chapter, the pipes used for communi-
cating between peers in the JXTA network will be utilized within the Content
Management System for sharing all kinds of content.

C h a p t e r  13 JXTA Pipes242



Up to this point, we have discussed how to publish advertisements about
peers, peer groups, and pipes. The Content Management Service (CMS)
enables a peer to share data—such as text documents, graphics files,

sound files, and other media—with remote peers. To maintain consistency with
the specification, the CMS relies on advertisements to provide information
about the media or files a peer is going to share, and relies on JXTA pipes to
transfer the content.

The CMS is an excellent example of a service that has been built into the JXTA
system. A peer can choose to use the service or not, depending on its desire to
share content within a peer group. By using the CMS, the peer is relieved of the
housekeeping details behind sharing the content and making it available for dis-
covery and transfer.

Overview of the CMS 

The purpose of the CMS is to keep an accurate record of all media files stored
on the local peer that are eligible to be shared. To optimize the use of system
resources, the CMS requires that the shared content remain on the file system.
The CMS does not cache or make copies of these files; instead, it creates a store
that includes information about the shared content, such as advertisements for
the content. This store is used for quick access to the list of shared content on
the local peer.

Content Sharing and the Content
Management Service (CMS)

C H A P T E R14

243



Each shared file must have a unique advertisement that describes its content.
The format of the advertisement appears in Listing 14.1; the elements are as 
follows:

Name—The filename of the media being shared

cid—The content ID unique to the shared file; used to request the download
of a file

Type—A MIME type for the shared file: jpg, gif, and text are common 
examples

Length—The length of the media file (in bytes)

Description—An optional description of the shared file

C h a p t e r  14 C o n t e n t  S h a r i n g  a n d  t h e  C o n t e n t  M a n a g e m e n t  S e r v i c e244

<?xml version="1.0">

<!doctype jxta:contentAdvertisement>

<jxta:contentAdvertisement>

<name>ship.html</name>

<cid> md5:2b9cbd6ab82c8fee8fe2a2b9e7eab7a85</cid>

<type>text/html</type>

<length>1234</length>

<description>Page for Displaying Model Ships</description>

</jxta:contentAdvertisement>

Listing 14.1 An example of a CMS content advertisement.

The CMS doesn’t reinvent the wheel when it comes to retrieving the content
from a remote peer. The JXTA pipes are used for receiving requests, queries,
and content; a single initial pipe is opened for each CMS instantiation. This sin-
gle pipe allows the system to receive pipe advertisements for opening addi-
tional connections, as needed.

All of the content searching is accomplished on top of the traditional JXTA ser-
vices, including pipes and messages. When a query is required, a LIST_REQ
message is sent to remote peers to obtain a list of the currently shared media.
All of the remote peers will respond with a  LIST_RES message containing one
or more content advertisements.

When the local peer picks one of the files to download, a GET_REQ message 
is sent to a specific remote peer based on the information found in its 
content advertisement. All of the communication is accomplished using the
JXTA protocols.  



Implementing the CMS in Peers

The CMS peers we build in this chapter define files to be shared, and they
search for additional files being shared by other peers. For simplicity, the code
presented in Listing 14.2 can be executed by two different peers. When the
application is executed, a small GUI will appear, as shown in Figure 14.1. Upon
execution, the peer will initialize itself into the JXTA network and create the
necessary CMS objects. A single file called image.jpg is shared. 

At this point, the application waits for the user to click a button presented at the
top of the GUI. Clicking the button causes a CMS search to be performed, using
the text “jpg” as the search criterion. All peers with executing CMS services will
respond with their shared filenames. In our sample code, all files that are found
are automatically downloaded, so it’s a good idea to test this peer on a single
machine without the HTTP transport enabled. When a second peer is executed
with the code in Listing 14.2, both of the peers will have shared a file and wait
for the user to click a button.

When the user clicks the button of one of the peers, a search will be sent and
the appropriate file downloaded for the other peer. In our case, the file shared
is called image.jpg, and the application will write the newly downloaded image
to a file called fileimage.jpg. Figure 14.2 shows the output of the GUI when the
button is clicked.

In the following sections, we describe how to implement the individual func-
tions of the CMS.

Implementing the CMS in Peers 245

Figure 14.1 CMS peer opening window.

Figure 14.2 CMS peer when the user clicks a button.



C h a p t e r  14 C o n t e n t  S h a r i n g  a n d  t h e  C o n t e n t  M a n a g e m e n t  S e r v i c e246

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.util.Enumeration;

import net.jxta.document.*;

import net.jxta.peergroup.*;

import net.jxta.exception.*;

import net.jxta.impl.peergroup.*;

import net.jxta.id.*;

import net.jxta.discovery.*;

import net.jxta.pipe.*;

import net.jxta.protocol.*;

import java.net.MalformedURLException;

import java.net.URL;

import net.jxta.endpoint.*;

import net.jxta.discovery.*;

import java.lang.reflect.InvocationTargetException;

import net.jxta.share.*;

import net.jxta.share.client.*;

public class Example1 extends JFrame {

static  PeerGroup            netPeerGroup = null;

private DiscoveryService     myDiscoveryService = null;

private PipeService       myPipeService = null;

private JTextArea            displayArea;

private JButton              sendButton;

private CMS               myCms = null;

private ListRequestor     myListRequestor = null;

private final static    MimeMediaType XMLMIMETYPE = new

MimeMediaType("text/xml");

public static void main(String args[]) {

Example1 myapp = new Example1();

myapp.addWindowListener (

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

myapp.launchJXTA();

myapp.getServices();

myapp.run();

Listing 14.2 Peer with CMS capabilities. (continues)



Implementing the CMS in Peers 247

}

public Example1() { 

super("client");

Container c = getContentPane();

sendButton = new JButton("Send Search");

sendButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

sendData();

}

}

);

c.add(sendButton, BorderLayout.NORTH);

displayArea = new JTextArea();

c.add(new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300,150);

show();

}

public void run() {

displayArea.append("Click on Button to send data...\n");

try {

myCms.getContentManager().share(new File("image.jpg"));

} catch (IOException ex) {

System.out.println(“Share command failed.”);

}

}

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA

Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

e.printStackTrace();

System.exit(1);

}

}

Listing 14.2 A peer with CMS capabilities. (continues)



C h a p t e r  14 C o n t e n t  S h a r i n g  a n d  t h e  C o n t e n t  M a n a g e m e n t  S e r v i c e248

private void getServices() {

displayArea.append("Getting Services...\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

myPipeService = netPeerGroup.getPipeService();

try {

myCms = new CMS();

myCms.init(netPeerGroup, null, null);

if(myCms.startApp(new File("client")) == -1) {

System.out.println("CMS initialization failed");

System.exit(-1);

}

} catch (Exception e) {

System.out.println("CMS init failure");

System.exit(-1);

}

}

public interface ContentListener {

public void finishedRetrieve(String url);

}

class GetRequestor extends GetContentRequest {

private ContentAdvertisement searchResult = null;

private String url = null;

private ContentListener listener;

public GetRequestor( PeerGroup pg, ContentAdvertisement

res, File tmpFile, ContentListener listener )

throws InvocationTargetException {

super( pg, res, tmpFile );

searchResult = res;

url = tmpFile.getAbsolutePath();

this.listener = listener;

}

public ContentAdvertisement getContentAdvertisement() {

return searchResult;

}

public void notifyDone() {

listener.finishedRetrieve( url );

}

}

class ListRequestor extends CachedListContentRequest {

Listing 14.2 Peer with CMS capabilities. (continues)



Implementing the CMS in Peers 249

boolean gotOne = false;

public ListRequestor( PeerGroup group, String inSubStr ) {

super( group, inSubStr );

}

public void notifyMoreResults() {

System.out.println("Search Done");

ContentAdvertisement[] result = 

myListRequestor.getResults();

if ( result != null ) {

displayArea.append("Length = " + result.length + "\n");

for (int i=0;i<result.length;i++) {

ContentAdvertisement myAdv = result[i];

displayArea.append(myAdv.getName() + "\n");

if (!gotOne) {

displayArea.append("Starting Download\n");

File tmpFile = new File( "file" + myAdv.getName()

)

ContentListener myListener = new ContentListener() {

public void finishedRetrieve(String url) {

displayArea.append(“File Download Finished\n”);

}

};

try {

GetRequestor request = new GetRequestor(

netPeerGroup, result[i], tmpFile, myListener );

} catch ( InvocationTargetException e ) {

e.printStackTrace();

}

gotOne = true;

}

}

}

else {

System.out.println("No results");

}

}

private void sendData() {

myListRequestor = new ListRequestor( netPeerGroup, "jpg" );

myListRequestor.activateRequest();

}

}

Listing 14.2 Peer with CMS capabilities. (continued)



C h a p t e r  14 C o n t e n t  S h a r i n g  a n d  t h e  C o n t e n t  M a n a g e m e n t  S e r v i c e250

Initializing the CMS
The first step in using CMS is to instantiate the service. The code necessary to
perform the instantiation is shown in Listing 14.3. For any peer code that
requires CMS capability, two imports are necessary:

import net.jxta.share.*;

import net.jxta.share.metadata.*;

The first line in the code snippet instantiates a new CMS object, which contains
the service itself. Next, the service is initialized using the init() method. The
init() method accepts three parameters: the peer group that the peer wants to
have the content management system associated with, a specific peer ID, and
an advertisement for the peer. In most cases, the only information needed is the
peer group.

The fourth line makes a call to the method startApp(). This method will start
the service itself using the parameters supplied. The method is overloaded to
accept either an array of name-value pairs or a File object. In our case, a File
object is passed to the method containing the name of a directory that CMS can
use as a persistent store when results are returned from a query, or to hold
information about any content being shared on the local peer.

CMS cms = new CMS();

cms.init(netPeerGroup, null, null);

if(cms.startApp(new File("Client")) == -1) {

System.out.println("CMS initialization failed");

System.exit(-1);

}

Listing 14.3 TCMS object instantiation code.

Sharing Content
After the CMS service has been started, two operations are possible: sharing
content and querying other peers for content. The following line of code is all
that it takes to share a file on the local file system with an entire peer group:

myCms.getContentManager().share(new File("image.jpg"));

Two operations are necessary for sharing content. The first is to obtain the Con-
tent Manager of the CMS service. To share a file, the share() method is used,
which contains a total of four parameters. The prototype for the method is

share(java.io.File file, java.lang.String name, java.lang.String type,

java.lang.String desc)



Implementing the CMS in Peers 251

The share() method’s four parameters are the following:

File object—The file to be shared

name—A name to use for the file, possibly other than the filename; this is
optional

type—The MIME type; this parameter is optional

desc—An optional description of the file

In its most simple form, the method provides a File object, as the previous code
snippet shows. If the peer desires more search words to be available for the
shared file, both the name and description should be provided.

Viewing the Shared Content List
The CMS also has the ability to provide a list of all the files currently shared on
the current peer. The code you can use to display all of the names of the files
currently shared is shown in Listing 14.4. The first line of the code pulls an
array of Content objects. The Content object contains, among other things, a
ContentAdvertisement. The ContentAdvertisement contains information about
the file being shared, as well as a PipeAdvertisement, which a remote peer can
use to obtain the shared file. The getName() method is used to pull the file-
name from the ContentAdvertisement.

Content[] content = cms.getContentManager().getContent();

fileList.removeAll();

for (int i=0; i<content.length; i++) {

System.out.println(content[i].getContentAdvertisement().getName())

;}

Listing 14.4 Shared content list.

Searching For and Getting Content
After content is shared, a peer can perform a query for shared content, and
download any of the content needed. Quite a bit of code is involved in the query
and download. Some of the following code is adapted from demonstration code
in the myJXTA application, as well as from the searchDemo and shareDemo
files that accompany the CMS source code. The code for the query and down-
load is shown in Listing 14.5.

The query begins when the statement in line 68 is executed. This statement will
instantiate a new ListRequestor() object that passes the current peer group and



the search string. The ListRequestor() class is a private class defined in lines
26–65 and is a derived class from CachedListContentRequest, which is defined
in the CMS package.

The derived class overrides the notifyMoreResults() method and defines a con-
structor for the class. In the constructor, the peer group and search string are
passed to the parent class in anticipation of the query. When the query is started
in line 69, each time a peer returns results to the query peer, the notifyMoreRe-
sults() method will be called.

The notifyMoreResults() method starts in line 33. It begins by building an array
of ContentAdvertisements, which are sent from a remote peer. The advertise-
ments are loaded by calling the getResults() method of the ListRequestor
object. If there are no advertisements from a remote peer, no additional work is
done.

If there are advertisements, a loop is entered where the names of the files found
are displayed and the first remote file is downloaded. The download is accom-
plished in line 54.  The peer group, the advertisement of the file to download, a
File object used to store the data when retrieved, and a listener object based on
the ContentListener object are built in lines 47 through 50. The listener object
will allow the application to know when the download has finished.

C h a p t e r  14 C o n t e n t  S h a r i n g  a n d  t h e  C o n t e n t  M a n a g e m e n t  S e r v i c e252

Line 1:     public interface ContentListener {

public void finishedRetrieve(String url);

}

class GetRequestor extends GetContentRequest {

private SearchResult searchResult = null;

private String url = null;

private ContentListener listener;

Line 10:      public GetRequestor( PeerGroup pg, SearchResult 

res, File tmpFile, ContentListener listener )

throws InvocationTargetException 

{

super( pg, res.contentAdv, tmpFile );

searchResult = res;

url = tmpFile.getAbsolutePath();

this.listener = listener;

}

public ContentAdvertisement getContentAdvertisement() {

return searchResult.contentAdv;

}

Listing 14.5 Query and download code. (continues)



Implementing the CMS in Peers 253

Listing 14.5 Query and download code. (continues)

Line 20:

public void notifyDone() {

listener.finishedRetrieve( url );

}

}

class ListRequestor extends CachedListContentRequest {

boolean gotOne = false;

public ListRequestor( PeerGroup group, String inSubStr ) {

Line 30:        super( group, inSubStr );

}

public void notifyMoreResults() {

System.out.println("Search Done");

ContentAdvertisement[] result = 

myListRequestor.getResults();

if ( result != null ) {

displayArea.append("Length = " + result.length + "\n");

for (int i=0;i<result.length;i++) {

Line 40:            ContentAdvertisement myAdv = 

result[i].getContentAdvertisement();

displayArea.append(myAdv.getName() + "\n");

if (!gotOne) {

displayArea.append("Starting Download\n");

File tmpFile = new File( "file" + myAdv.getName() );

ContentListener myListener = new ContentListener() 

{

public void finishedRetrieve(String url) {

displayArea.append("File Download 

Finished\n");

}

Line 50:             };

try {

GetRequestor request = new GetRequestor( 

netPeerGroup, result[i], tmpFile, myListener );

} catch ( InvocationTargetException e ) {

e.printStackTrace();

}

gotOne = true;

}

}

Line 60:        }

else



C h a p t e r  14 C o n t e n t  S h a r i n g  a n d  t h e  C o n t e n t  M a n a g e m e n t  S e r v i c e254

System.out.println("No results");

}

}

private void sendData() {

myListRequestor =  new ListRequestor( netPeerGroup, "jpg" );

myListRequestor.activateRequest();

Listing 14.5 Query and download code. (continued)

Summary

In this chapter, we showed you how to use the Content Management System
built into the JXTA system. The peer code we presented illustrates how you can
initialize the CMS service, share files on the local file system, query for remote
files, and allow the files to be downloaded. In Chapter 15, we look at the secu-
rity capabilities of the JXTA specification and Java Reference Implementation.
Topics covered include how to encrypt data sent to another peer and how to
implement a better secure peergroup.



With the increasing number of viruses, hacks, and other attacks occur-
ring on the Internet, it is vital that any distributed system implement
robust security. In this chapter, we examine two different security

issues: login protection and transport security.

To address the issue of login security, we will build our own version of the pass-
word membership service used in Chapter 12 “Developing a JXTA Application.”
Some of the keys issues we want to address in the service are

■■ Encrypting passwords

■■ Storing username/passwords on the server peer

■■ Allowing automatic signups

For all of these issues, we have to build a new skeleton membership service.
For the task of transport security, we examine using secure pipes and encrypt-
ing message data independent of the pipe connection.

JXTA Security Toolkit

One of the primary projects in the JXTA community focuses on security—you
can track this project’s progress at http://security.jxta.org/Security-project.html.
The site provides an overview of the JXTA Security Toolkit, and contains all the
relevant source code. If you download the JXTA installer (as described in Appen-
dix A), the security code will be installed automatically with the system. The
security project has three goals:

Implementing Security

C H A P T E R15

255



To provide secure JXTA pipes—We can create secure JXTA input and
output pipes by using the JxtaUnicastSecure option, which ensures that all
communication between peers will be encrypted. A form of SSL/TLS
encryption, this approach provides a transparent secure connection.

To ensure authenticity and integrity—This functionality is provided 
by the encryption algorithms and various methods of checksum 
administration.

To provide unrepudiated transactions—Having peers sign all messages
being sent to other peers satisfies this goal. The JXTA Security Toolkit pro-
vides the ability to digitally sign data.

The goals of the Security Toolkit are accomplished using both RSA public-key
encryption and a number of independent ciphers, such as RC4. Both of the tech-
niques provide the necessary encryption mechanisms to accomplish the proj-
ect’s goals. In the remainder of this section, we describe the major components
of the JXTA Security Toolkit. Later in this chapter, we use the components to
encrypt data flowing through secure and unsecured pipe connections.

Building Keys
In Public Key Infrastructure (PKI) and the independent ciphers, the concept of
a key is paramount. The key holds the information necessary to both encrypt
and decrypt an array of bytes. For PKI, which requires two keys, one of the keys
will be used for encryption. If the other key isn’t available, the data will remain
encrypted.

The parent class for keys in the toolkit is called key, from which two classes are
derived:

■■ SecretKey—Used for independent ciphers such as RC4 or DES

■■ RSAKey—Used for RSA and further derived as follows:

•  RSAPrivateKey—Used for RSA

•  RSAPublicKey for RSA

A factory class called KeyBuilder is used to instantiate necessary key objects.
The prototype for the key factory is

Key KeyBuilder.buildKey(byte KEYTYPE, 

short KEYLENGTH, 

boolean UNUSEDPARAMETER);

The code behind the buildKey() method is quite simple and uses a compound
IF statement to instantiate either a SecretKey or a RSAKey. The values of KEY-
TYPE currently recognized are

C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y256



■■ TYPE_RSA

■■ TYPE_RSA_PUBLIC

■■ TYPE_RSA_PRIVATE

■■ TYPE_RC4

Note that the code indicates the existence of a DES cipher; however, the cur-
rent buildKey() method does not recognize the type. All three of the RSA con-
stants will produce a RSAKey object. For the KEYLENGTH parameter, the
available values are

■■ LENGTH_RC4—The default value of 128

■■ LENGTH_RSA_MIN—The default value of 384

■■ LENGTH_RSA_512—The default value of 512

The third parameter to the buildKey() method is currently unused, but is
required to be a Boolean value.

Using the Toolkit

The Security Toolkit itself is contained in a “suite,” as explained on the project’s
web site. A suite is similar to a factory but can be extended without changing
factory code. The suite class, called JxtaCryptoSuite, produces a new suite
based on a predefined security profile. The profiles currently available are

■■ PROFILE_RSA_RC4_SHA1

■■ PROFILE_RSA_RC4_MD5

■■ PROFILE_RSA_RC4_SHA1_MD5

■■ MEMBER_RC4

If a developer wants to use message authentication to ensure message integrity,
the following profiles are available:

■■ ALG_RC4_SHA1

■■ ALG_RC4_MD5

And if message signing is desired:

■■ ALG_RSA_SHA1_PKCS1

■■ ALG_RSA_MD5_PKCS1

The JxtaCryptoSuite suite is created using a number of overloaded and
defaulted constructors. The prototype is

JxtaCryptoSuite(ENCRYPTIONPROFILE, key, SIGNATUREPROFILE, MACPROFILE);

There are three ways to use the algorithms in the Security Toolkit:

JXTA Security Toolkit 257



■■ Instantiate a JxtaCryptoSuite object with all algorithms.

■■ Instantiate a JxtaCryptoSuite object with select algorithms.

■■ Bypass the JxtaCryptoSuite, and instantiate independent algorithms.

The following code will instantiate a suite object with three encryption algo-
rithms available:

RSAKey suiteKey = (RSAKey)KeyBuilder.buildKey(KeyBuilder.TYPE_RSA,

KeyBuilder.LENGTH_RSA_512,

false);

JxtaCrypto encryptionSuite = new 

JxtaCryptoSuite(JxtaCrypto.PROFILE_RSA_RC4_MD5,

suiteKey,

Signature.ALG_RSA_MD5_PKCS1,

MAC.ALG_RC4_MD5);

Once instantiated, the encryptionSuite object can be used to obtain specific
algorithms. For example:

Cipher cipherAlgorithm = encryptionSuite.getJxtaCipher();

The cipherAlgorithm object will contain an RC4 algorithm, which can be used
to encrypt and decrypt data, as we’ll see in a moment. The other algorithms can
be obtained using the following code:

Signature signatureAlgorithm = encryptionSuite.getJxtaSignature();

MAC authenticationAlgorithm = encryptionSuite.getJxtaMAC();

Encrypting Data

After a JxtaCryptoSuite object has been instantiated, the various algorithms
can be used to encrypt data for transmission over an non-secure or even a
secure connection path. In this section, we look at using the suite algorithms
for RSA and RC4. For both encryptions, the steps are basically the same:

1. Obtain a JxtaCryptoSuite object.

2. Pull out the necessary encryption algorithm.

3. Encrypt the data.

In the next few sections, we discuss the details of using the Security Toolkit for
encrypting data, providing authentication, and signing.

Using RSA for Data Encryption

Listing 15.1 contains basic code for using the Security Toolkit to encrypt and
decrypt data. This code follows the steps we outlined earlier for building an
RSA cipher using the JXTA Security Toolkit. After we initialize the toolkit, we
extract the RSA cipher from the toolkit suite object, and use it for both the
encryption and decryption of an array of data.

C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y258



JXTA Security Toolkit 259

Line 1:RSAKey  rsaKey = (RSAKey)KeyBuilder.buildKey(

KeyBuilder.TYPE_RSA, KeyBuilder.LENGTH_RSA_512, false);

JxtaCrypto suite = new

JxtaCryptoSuite(JxtaCrypto.PROFILE_RSA_SHA1, rsaKey, 

(byte)0, (byte)0);

PublicKeyAlgorithm rsa = suite.getJxtaPublicKeyAlgorithm();

rsa.setPublicKey();

rsa.setPrivateKey();

RSAPublickeyData rPublicD = (RSAPublickeyData)rsa.getPublickey();

RSAPrivatekeyData rPrivateD = 

(RSAPrivatekeyData)rsa.getPrivatekey();

Line 10:

//Encrypt the Data

byte[] X = new byte[rsa.getMaxInputDataBlockLength()];

for (int i = 0; i < X.length; i++) X[i] = (byte)0xCC;

rsa.setPrivateKey(rPrivateD);

byte[] Y = rsa.Algorithm(X, 0, X.length, 

KeyBuilder.TYPE_RSA_PRIVATE, true);

//Decrypt the Data

rsa.setPublicKey(rPublicD);

byte[] Z = rsa.Algorithm(Y, 0, Y.length, 

KeyBuilder.TYPE_RSA_PUBLIC, false); 

Listing 15.1 Using the JXTA Security Toolkit to encrypt and decrypt code.

Line 1 instantiates a Key object to use in the suite. The key will be 512 bits, and
is an RSA key. Notice the use of the cast for the object returned by the method.

Line 2 instantiates an object for holding the suite created based on the Key
object generated in line 1 and for utilizing the RSA algorithm. Notice that the
third and fourth parameters are null; this tells the suite generator that no
authentication or signing algorithm will be needed.

Line 4 obtains the specific RSA encryption/decryption algorithm created for the
suite. Lines 6 and 7 set the public and private keys to be used in all encryption
and decryption. Of particular importance is the fact that there are no parame-
ters to the methods. The methods are overloaded, and the no-parameter ver-
sions generate random keys.

Lines 8 and 9 pull the keys from the suite, and store them in the local object for
later use. Lines 12 and 13 obtain a byte array of the largest size available for RSA
encryption, and fill the array with sample data. Line 14 sets the private key of
the algorithm to be the private key we stored earlier (just in case it had been
changed).



Line 15 performs the encryption. The first parameter to the method is the byte
array, the second parameter is the byte to begin the encryption, the third param-
eter is the length of the byte array, the fourth parameter is the key to use in the
encryption, and the fifth parameter tells the algorithm to perform an encryp-
tion. The fifth parameter is set to true for encryption and false for decryption.
Line 18 begins the process of decryption, and sets the public key to be the pub-
lic key stored earlier.

Line 19 performs the decryption (notice the false value for the fifth parameter),
and stores the new bytes in the returned array.

Using RC4 for Data Encryption

Listing 15.2 contains code for encryption using the RC4 algorithm. This code is
very similar to Listing 15.1 (for using the RSA cipher); however, the RC4 cipher
can be used to encrypt and decrypt a very large array of data, whereas the RSA
cipher must be used against a specific size array.

C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y260

Line 1: JxtaCrypto suite = 

new JxtaCryptoSuite(JxtaCrypto.MEMBER_RC4, null, (byte)0, (byte)0);

Cipher rc4 = suite.getJxtaCipher();

byte[] password = new byte[KeyBuilder.LENGTH_RC4 >>> 3];

SecretKey key1 = (SecretKey)KeyBuilder.buildKey(

KeyBuilder.TYPE_RC4, KeyBuilder.LENGTH_RC4, false);

byte[] ibuf = new byte[256];

key1.setKey(password, 0); 

rc4.init(key1, Cipher.MODE_ENCRYPT);

Line 10:

// Encrypt the Data

byte[] obuf = new byte[ibuf.length];

rc4.doFinal(ibuf, 0, ibuf.length, obuf, 0);

// Decrypt the Data

byte[] clearText = new byte[obuf.length];// 

rc4.init(key1, Cipher.MODE_DECRYPT);

rc4.doFinal(obuf, 0, obuf.length, clearText, 0);

Listing 15.2 Encryption using the RC4 algorithm.

Line 1 obtains an object containing the JxyaCryptoSuite utilizing the RC4
cipher and no authenticator or signature functionality. Line 2 pulls the RC4
cipher from the suite for later use.

Line 4 builds a password to use in the RC4 algorithm. There should be a value
in the password array—it can be either random or specific values.



Line 5 builds an RC4 key. Notice the key was not necessary when the suite was
initialized in line 1.

Line 7 creates a byte array to hold the data to be encrypted. Just after line 7,
data should be placed in the array.

Line 8 sets the value of the key obtained from the KeyBuilder class to be the
password built in line 4. Line 9 initializes the RC4 cipher using the key built in
line 8 and a modifier telling the algorithm to use the key for encryption.

Line 10 performs the actual encryption. RC4 does not have the size restriction
of RSA, and therefore a large array of bytes can be encrypted. 

Line 13 starts the decryption process. First, a byte array is built as large as the
input array. Line 14 initializes the RC4 algorithm using our key as well as a mod-
ifier that lets the algorithm know to perform a decryption. Line 15 performs the
decryption.

Authenticating Data

The JXTA Security Toolkit contains the algorithms necessary for authenticating
data. By authenticating data, you ensure that bits are not changed—either mali-
ciously or accidentally—during data transfer. The authentication works by build-
ing the necessary authentication object within the toolkit, extracting it, and then
applying the encrypt() method of the authenticator to an array of data. When the
data arrives at a specific location, the verify() method is used to authenticate the
data. If the result of the verify() method is true, the data is original. Listing 15.3
contains the code necessary for providing this level of authentication.

JXTA Security Toolkit 261

Line 1: SecretKey sKey =    (SecretKey)KeyBuilder.buildKey(

KeyBuilder.TYPE_RC4, KeyBuilder.LENGTH_RC4, false);

JxtaCrypto suite = new JxtaCryptoSuite(

JxtaCrypto.PROFILE_RC4_SHA1, null,(byte)0, MAC.ALG_RC4_SHA1); 

MAC mac = suite.getJxtaMAC();

// authenticate it

byte[] privateKey = new byte[sKey.getLength()];

byte[] ibuf = new byte[1024];

byte[] macBuf = new byte[ibuf.length];

mac.init(MAC.MODE_ENCRYPT, (Key)sKey, privateKey);

Line 10: int macLength = mac.encrypt(ibuf, 0, ibuf.length,

macBuf, 0);

//Verify

mac.init(MAC.MODE_VERIFY, (Key)sKey, privateKey);

boolean verified = mac.verify(ibuf, 0, ibuf.length,

macBuf, 0, macBuf.length);

Listing 15.3 Authenticating an RC4 encrypted key.



Lines 1 and 2 obtain a key object and a suite object, as in previous examples.
Notice that the last parameter of line 2 indicates which cipher should be used
for the authentication.

Line 3 obtains an object representing the MAC algorithm. Line 6 creates a pri-
vate key to be used for the MAC algorithm—in practice, a value should be
placed in the array, either known or random.

Line 7 creates an array for the input bytes to be authenticated. This array would
be used for the actual data. Line 8 creates an array to hold the authenticated
bytes

Line 9 initializes the MAC algorithm with the key created in line 1 and the pri-
vate key created in line 6. Line 10 performs the encryption of the input buffer.
The fourth parameter is the new byte array where the encrypted data will be
stored after encryption.

Line 13 begins the process of verifying the authentication of the bytes by ini-
tializing the MAC algorithm with a modifier in the first parameter set to VER-
IFY. Line 14 performs the actual verification based on the original bytes before
signing and the bytes after signing. A value of true indicates that the bytes are
authentic.

Signing Data

Listing 15.4 contains the code necessary to use the Security Toolkit for signing
data. You can use the process of signing data to tell a remote recipient that you
are the one who sent the data. The data is signed and the signature of the sender
is embedded in the data. When the data arrives at a remote site, the verify()
method is used to determine whether the code is signed appropriately.

C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y262

Line 1: RSAKey rsaKey = (RSAKey)KeyBuilder.buildKey(

KeyBuilder.TYPE_RSA, KeyBuilder.LENGTH_RSA_512, false);

JxtaCrypto suite = new JxtaCryptoSuite(

JxtaCrypto.PROFILE_RSA_SHA1, rsaKey,

Signature.ALG_RSA_SHA_PKCS1, (byte)0);

Signature sig = suite.getJxtaSignature();

// Sign the Data

byte[] ibuf = new byte[1024];

sig.init(Signature.MODE_SIGN);

byte[] sigBuf = sig.sign(ibuf, 0, ibuf.length);

Line 10:

// Check the Sign

sig.init(Signature.MODE_VERIFY);

boolean  verified = sig.verify(ibuf, 0, ibuf.length, sigBuf, 0,

sigBuf.length);

Listing 15.4 Signing data and verifying the signature.



Lines 1 and 2 build our RSAKey object, and obtain a suite object with both an
RSA encryption algorithm and a signing algorithm available. Line 3 pulls the
signing algorithm from the suite.

Line 6 builds an input buffer that will store the data to be signed. Line 8 initial-
izes the signing algorithm by using a modifier value of MODE_SIGN. Line 9
signs the data, and returns an array of bytes representing the signed data.

Line 12 initializes the signing algorithm by using a modifier value of
MODE_VERIFY to start the process of verifying that the bytes received are
signed appropriately. A value of true indicates a successful verification.

Secure Membership Service

In Chapter 12, we wrote a simple application that both constructed a secure
peer group and allowed others to join the group. As a quick reminder, the nec-
essary steps for joining a peer group are

1. Build an authenticated credential.

2. Obtain the membership service from the peer group.

3. Apply for membership using the membership service’s authenticator.

4. Check to see if everything was filled out in our credentials.

5. Join the group.

The code we used in Chapter 12 for accomplishing the above steps follows:

StructuredDocument myCredentials = null;

try {

AuthenticationCredential myAuthenticationCredential =

new AuthenticationCredential(myLocalGroup, null, 

myCredentials);

MembershipService myMembershipService = 

myLocalGroup.getMembershipService();

net.jxta.membership.Authenticator myAuthenticator = 

myMembershipService.apply(myAuthenticationCredential);

authenticateMe(myAuthenticator, "username", "password");

if (!myAuthenticator.isReadyForJoin()) {

displayArea.append("Authenticator is not 

complete\n");

return;

}

myMembershipService.join(myAuthenticator);

displayArea.append("Group has been joined\n");

} catch (Exception e) {

displayArea.append("Authentication failed - group not 

Secure Membership Service 263



joined\n");

e.printStackTrace();

System.exit(-1);

}

When we used this code to obtain membership into the secure peer group, the
only thing we supplied was a specific username and password provided by the
peer group. We actually needed to know the username and password before-
hand in order to join the group. This isn’t very practical; we should have the
ability to create a username and password, if the group allows, and have the
information stored by the group. 

If you look at the preceding code and read the description for the Authentica-
tionCredential, you will find that the second parameter to the class’s construc-
tor is supposed to be the method of authentication the membership service
should use to authenticate this peer; the credentials parameter should contain
identity information. 

As you can see, the examples in Chapter 12 and the default membership ser-
vices provided with JXTA don’t use either a method or the Credentials object.
Note that the method is just a string and that the credentials are an XML-based
document (or it appears the intent is for the credentials to be an XML docu-
ment). When the apply() method of the membership service is called, the cre-
dentials and the method are supposed to be used for the membership. 

In the remainder of this section, we deal with changing the password member-
ship service provided with the JXTA system to allow the use of the credentials
and the storing of the username and password.

Building a New Membership Service
Several areas should be changed in the password membership service code
provided with the JXTA toolkit to make it more useful for a peer group:

■■ Using a XML credential from the peers who want to join the group

■■ Allowing passwords to be stored in a database

■■ Creating the potential to use the JXTA Security Toolkit for encryption

Listing 15.5 contains new membership service code that provides this function-
ality. The code class, called UpdatedPasswdMembershipService.java, can be
compiled using the compile command we discussed in Chapter 12. Once com-
piled, the classes generated are stored in a JAR file using the following com-
mand:

jar cvf passwordmem.jar ./net/jxta/impl/membership/*.class

The resulting JAR, called passwordmem.jar, can be placed in the /lib directory

C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y264



that was created when you first installed the JXTA system. The JAR will have to
be added to all compile and run commands found in Chapter 12. Before diving
into the code, a short explanation of how to use the service is in order.

In Chapter 12, we used the membership service passwdMembershipService to
allow secure (password-protected) access to a peer group. The JXTA code for
using the membership service didn’t use all of the capabilities of the JXTA class
(including a credential created by the client who wanted to join the group). In
addition, we had to search for specific methods to call in order to set up the join
process. The new membership service in Listing 15.5 creates a credential with
the following elements:

<Identity>

<login>

login value

</login>

<password>

password encrypted value

</password

</Identity>

When the apply() method of the membership service is called, the credential is
passed to an authenticator, which pulls the login and password values from the
credential, and stores them locally. The credential is checked to be sure a join
can occur. The join() method is then called, and the login/password values are
compared to the hard-coded value (we will discuss changing this later in this
chapter). The login and password values are no longer kept in the peer group
advertisement. The idea for this password membership service is to have one or
more server peers that have access to a secure database storing unique
login/password values. We could expand the service to allow the creation of
login/password combinations by the peers themselves. The potential exists to
create a PassPort type system like the one we find in the Microsoft arena.

In Listing 15.5, all code comments have been removed to save space in this
book, but you can see the comments in the appropriate files in the source code
download.

Secure Membership Service 265

Line 1: package net.jxta.impl.membership;

import java.net.URL;

import java.util.Enumeration;

Listing 15.5 Code for the UpdatedPasswdMembership Service. (continues)



C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y266

import java.util.Vector;

import java.util.Hashtable;

import java.net.MalformedURLException;

import java.net.UnknownServiceException;

import org.apache.log4j.Category;

Line 10: import org.apache.log4j.Priority;

import net.jxta.credential.*;

import net.jxta.document.*;

import net.jxta.protocol.*;

import net.jxta.id.*;

import net.jxta.membership.*;

import net.jxta.peer.*;

import net.jxta.peergroup.*;

import net.jxta.platform.*;

import net.jxta.service.Service;

Line 20:

import net.jxta.exception.*;

public class UpdatedPasswdMembershipService extends

MembershipService {

private static final Category LOG = Category.getInstance(

UpdatedPasswdMembershipService.class.getName());

private class PasswdCredential implements Credential {

UpdatedPasswdMembershipService source;

Line 30:        String whoami;

ID peerid;

String signedPeerID;

protected PasswdCredential(

UpdatedPasswdMembershipService source,

String whoami, String signedPeerID ) {

this.source = (UpdatedPasswdMembershipService) source;

this.whoami = whoami;

this.peerid = source.getPeerGroup().getPeerID();

this.signedPeerID = signedPeerID;

}

Line 40:

protected PasswdCredential( 

UpdatedPasswdMembershipService source, PeerGroupID

peergroup, PeerID peer, String whoami, String 

signedPeerID ) throws PeerGroupException {

this.source = (UpdatedPasswdMembershipService) source;

if( !source.getPeerGroup().getPeerGroupID().equals( 

peergroup ) )

Listing 15.5 Code for the UpdatedPasswdMembership Service. (continues)



Secure Membership Service 267

throw new PeerGroupException( "Cannot credential 

for a different peer group." );

this.whoami = whoami;

this.peerid = peer;

this.signedPeerID = signedPeerID;

}

Line 50:

public MembershipService getSourceService() {

return source;

}

public ID getPeerGroupID() {

return source.getPeerGroup().getPeerGroupID();

}

public ID getPeerID() {

Line 60:            return peerid;

}

public StructuredDocument getDocument(MimeMediaType as) 

throws Exception {

StructuredDocument doc =

StructuredDocumentFactory.newStructuredDocument( as,

"PasswdCredential" );

Element e = doc.createElement( "PeerGroupID", 

peergroup.getPeerGroupID().toString() );

doc.appendChild( e );

e = doc.createElement( "PeerID", 

peergroup.getPeerID().toString() );

Line 70:            doc.appendChild( e );

e = doc.createElement( "Identity", whoami );

doc.appendChild( e );

e = doc.createElement( "ReallyInsecureSignature", 

signedPeerID );

doc.appendChild( e );

return doc;

}

Line 80:        public String getIdentity() {

return whoami;

}

Listing 15.5 Code for the UpdatedPasswdMembership Service. (continues)



C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y268

}

public class PasswdAuthenticator implements Authenticator {

MembershipService source;

AuthenticationCredential application;

Line 90:        String whoami = null;

String password = null;

PasswdAuthenticator( MembershipService source, 

AuthenticationCredential application ) {

this.source = source;

this.application = application;

try {

StructuredTextDocument credentialsDoc = 

(StructuredTextDocument)

application.getDocument(new

MimeMediaType("text/xml"));

Line 100:   Enumeration elements = 

credentialsDoc.getChildren("IdentityInfo");

elements = ((TextElement) 

elements.nextElement()).getChildren();

elements = ((TextElement) 

elements.nextElement()).getChildren();

while (elements.hasMoreElements()) {

TextElement elem = (TextElement) 

elements.nextElement();

String nm = elem.getName();

if(nm.equals("login")) {

whoami = elem.getTextValue();

continue;

Line 110:   }

if(nm.equals("password")) {

password = elem.getTextValue();

continue;

}

}

} catch(Exception e) {

e.printStackTrace();

System.exit(-1);

Line 120:          }

}

Listing 15.5 Code for the UpdatedPasswdMembership Service. (continues)



Secure Membership Service 269

public MembershipService getSourceService() {

return source;

}

synchronized public boolean isReadyForJoin() {

return ( (null != password) && (null != whoami) );

}

Line 130:

public String getMethodName() {

return "PasswdAuthentication";

}

public void setAuth1Identity( String who ) {

whoami = who;

}

public String getAuth1Identity() {

Line 140:            return whoami;

}

public void setAuth2_Password( String secret ) {

password = secret;

}

private String getAuth2_Password() {

return password;

}

Line 150:

public AuthenticationCredential 

getAuthenticationCredential() {

return application;

}

}

static class IdMaker {

static ID mkID( String s ) {

try {

return IDFactory.fromURL(new URL( "urn", "", 

"jxta:uuid-" + s));

Line 160:            } catch (MalformedURLException absurd) {

} catch (UnknownServiceException absurd2) {

}

throw new JxtaError("Hardcoded Spec and Class IDs are 

malformed.");

}

}

Listing 15.5 Code for the UpdatedPasswdMembership Service. (continues)



C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y270

public static final ModuleSpecID passwordMembershipSpecID = 

(ModuleSpecID)

IdMaker.mkID( "DeadBeefDeafBabaFeedBabe00000005"

+ "02"

+ "06" );

private PeerGroup peergroup = null;

Line 170:

private Vector principals = null;

private Vector authCredentials = null;

private ModuleImplAdvertisement implAdvertisement = null;

private Hashtable logins = null;

public void init(PeerGroup group, ID assignedID, 

Advertisement impl)

throws PeerGroupException {

peergroup = group;

implAdvertisement = (ModuleImplAdvertisement) impl;

PeerGroupAdvertisement configAdv = 

(PeerGroupAdvertisement)

group.getPeerGroupAdvertisement();

Line 180:

resign();

}

public Service getInterface() {

return this;

}

public Advertisement getImplAdvertisement() {

return implAdvertisement;

Line 190:    }

public int startApp(String[] arg) {

return 0;

}

public void stopApp() {

}

public PeerGroup getPeerGroup() {

Line 200:        return peergroup;

}

public Authenticator apply(AuthenticationCredential 

application) throws PeerGroupException,

Listing 15.5 Code for the UpdatedPasswdMembership Service. (continues)



Secure Membership Service 271

ProtocolNotSupportedException {

String method = application.getMethod();

if( (null != method) && 

!"UpdatedPasswdAuthentication".equals( method ) )

throw new ProtocolNotSupportedException(

"Authentication method not recognized" );

return new PasswdAuthenticator( this, application );

Line 210:    }

public synchronized Enumeration getCurrentCredentials() 

throws PeerGroupException {

return principals.elements();

}

public synchronized Enumeration getAuthCredentials() throws 

PeerGroupException {

return authCredentials.elements();

}

Line 220:    public synchronized Credential join(Authenticator 

authenticated) throws PeerGroupException {

if( !(authenticated instanceof PasswdAuthenticator) )

throw new ClassCastException( "This is not my 

authenticator!" );

if( !authenticated.isReadyForJoin() )

throw new PeerGroupException( "Not Ready to join!" );

if( !checkPasswd(

((PasswdAuthenticator)authenticated).getAuth1Identity(),

((PasswdAuthenticator)authenticated).getAuth2_Password() ) )

Line 230:            throw new PeerGroupException( "Incorrect Password!" );

Credential newCred = new PasswdCredential( this,

((PasswdAuthenticator)authenticated).getAuth1Identity(),

"blah" );

principals.addElement( newCred );

authCredentials.addElement(

authenticated.getAuthenticationCredential() );

return newCred;

}

Listing 15.5 Code for the UpdatedPasswdMembership Service. (continues)



C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y272

Line 240:

public synchronized void resign() throws PeerGroupException {

principals = new Vector();

authCredentials = new Vector();

principals.addElement( new PasswdCredential( this, 

"nobody", "blah” ) );

}

public Credential makeCredential(Element element) throws 

PeerGroupException, Exception {

Object rootIs = element.getKey();

Line 250:

if( !"PasswdCredential".equals(rootIs) )

throw new PeerGroupException( "Element does not 

contain a recognized credential format" );

Enumeration children = element.getChildren(

"PeerGroupID");

if( !children.hasMoreElements() )

throw new RuntimeException( "Missing PeerGroupID 

Element" );

PeerGroupID peergroup = (PeerGroupID) IDFactory.fromURL( 

new URL( (String) ((Element) 

children.nextElement()).getValue() ) );

if( children.hasMoreElements() )

Line 260:            throw new RuntimeException( "Extra 

PeerGroupID Elements" );

children = element.getChildren( "PeerID" );

if( !children.hasMoreElements() )

throw new RuntimeException( 

"Missing PeerID Element" );

PeerID peer = (PeerID) IDFactory.fromURL( new URL( 

(String) ((Element) children.nextElement()).getValue() )

);

if( children.hasMoreElements() )

throw new RuntimeException( "Extra PeerID Elements" );

Line 270:        children = element.getChildren( "Identity" );

if( !children.hasMoreElements() )

throw new RuntimeException("Missing PeerID Element");

String whoami = (String) ((Element) 

children.nextElement()).getValue();

Listing 15.5 Code for the UpdatedPasswdMembership Service. (continues)



Secure Membership Service 273

if( children.hasMoreElements() )

throw new RuntimeException( "Extra Identity Elements" );

children = element.getChildren( "ReallyInsecureSignature" );

if( !children.hasMoreElements() )

Line 280:            throw new RuntimeException( "Missing 

'ReallyInsecureSignature' Element" );

String signedPeerID = (String) ((Element) 

children.nextElement()).getValue();

if( children.hasMoreElements() )

throw new RuntimeException( "Extra 

'ReallyInsecureSignature' Elements" );

return new PasswdCredential( this, peergroup, peer, 

whoami, signedPeerID );

}

private boolean checkPasswd( String identity, String passwd ) {

Lien 290:       boolean result;

result = passwd.equals(makePsswd("password"));

return result;

}

public static String makePsswd( String source ) {

final String xlateTable = "DQKWHRTENOGXCVYSFJPILZABMU";

Line 300:

StringBuffer work = new StringBuffer( source );

for( int eachChar = work.length() - 1; eachChar >=0; 

eachChar— ) {

char aChar = Character.toUpperCase( 

work.charAt(eachChar) );

int replaceIdx = xlateTable.indexOf( aChar );

if( -1 != replaceIdx )

work.setCharAt( eachChar, (char) (‘A’ + 

replaceIdx) );

}

Line 310:        return work.toString();

}

}

Listing 15.5 Code for the UpdatedPasswdMembership Service. (continued)



Changing the Name of the Class

If you are working from the code in Chapter 12, all references to the class name
passwdMembershipService must be changed to UpdatedPasswdMember-
shipService.

Updating the PasswdAuthenticator Constructor

When the membership service instantiates a new authenticator object, the
object expects to receive an AuthenticationCredential. The credential is sent to
the membership service by the client wanting to join the peer group. In the con-
structor for the AuthenticationCredential, the calling object, a membershipSer-
vice, and the AuthenticationCredential object are stored in object attributes. In
the default password membership service code, the credential is simply stored
and never used. In the new code, the login and password values are extracted
from the credential and stored as well.

Lines 93 through 121 of Listing 15.5 represent the new authenticator class con-
structor. Lines 98 through 120 pull the login and password elements from the
credential document. The entire AuthenticationCredential XML structure is

<?xml version="1.0"?>

<!DOCTYPE AuthenticationCredential>

<AuthenticationCredential>

<Method>

UpdatedPasswdAuthentication

</Method>

<PeerGroupID>

urn:jxta:uuid-DCEF4386EAED4908BE25CE5019EA02

</PeerGroupID>

<PeerID>

urn:jxta:uuid-

59616261646162614A787461503250335CC7FEC3CCB14C3984E9B261BF19BE6803

</PeerID>

<IdentityInfo>

<Identity>

<login>

username

</login>

<password>

SWPPDJFA

</password>

</Identity>

</IdentityInfo>

</AuthenticationCredential>

C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y274



Line 100 pulls the <Identity> element from the full XML document. Line 101
pulls all of the children for the <Identity> element. Each element is compared
to the string’s login and password. When the login and password are found, the
respective values are stored in object attributes for later use.

Changing the init() method of the Membership Service Class

When the default password membership service is first initialized, the login and
password for the peer group is pulled from the peer group advertisement. We
will no longer need the values in the advertisement, so we can remove the code
for pulling the values from the init() method. The new init() method appears in
lines 175 through 182.

Changing the checkPasswd() Method

The other code change needed for the password membership service is com-
paring the password sent by the peer and the password for the secure peer
group. Since we pulled the login and password value from the advertisement, it
needs to be located in another location. The checkPasswd() method handles
the comparison (the current code is located in lines 289 through 295). For our
example, the password is hard-coded; however, this method is a good example
of where a call to a database would be useful. The authenticator has the current
login and password, and the password is encrypted and secure. A secure call
could be made to the database to obtain the necessary login information. By
adding information to the credential, we could instruct the system to place a
new login and password if one is not found in the database. 

Changing the Peer Group Creator Code
The new membership service isn’t useful without a peer group. In the directory
chapter 18/example1/creator located in the downloaded source code, you’ll find
an application called Example1.java. This code is identical to the code in Chapter
12 for creating and using a secure peer group, except that the new code uses the
UpdatedPasswdMembershipService class instead of PasswdMembershipService.
Several important changes occur in the joinGroup() method as well.

Creating a Credential

The code in the joinGroup() method is responsible for handling and making the
necessary calls to the membership service of a particular peer group. The code
for the method is:

Line 1:    void joinGroup(PeerGroup myLocalGroup) {

try {

Secure Membership Service 275



MembershipService myMembershipService = 

myLocalGroup.getMembershipService();

StructuredTextDocument myCredentials = 

(StructuredTextDocument)

StructuredDocumentFactory.new          StructuredDocument(

new MimeMediaType("text/xml"), "Identity");

myCredentials.appendChild(myCredentials.createElement("login",

"username"));

myCredentials.appendChild(myCredentials.createElement("password

", UpdatedPasswdMembershipService.makePsswd("password")));

Line 10:        AuthenticationCredential 

myAuthenticationCredential

= new AuthenticationCredential(myLocalGroup, 

"UpdatedPasswdAuthentication",

myCredentials);

net.jxta.membership.Authenticator myAuthenticator = 

myMembershipService.apply(myAuthenticationCredential);

if (!myAuthenticator.isReadyForJoin()) {

displayArea.append("Authenticator is not 

complete\n");

return;

}

myMembershipService.join(myAuthenticator);

displayArea.append("Group has been joined\n");

} catch (Exception e) {

Line 20:        displayArea.append("Authentication failed - 

group not joined\n");

e.printStackTrace();

System.exit(-1);

}

}

Line 3 obtains the membership service associated with the peer group sent to
the method. You’ll recall that the peer group sent to the method is the new
group we have created and now want to join. Lines 4 through 8 build the cre-
dential XML document necessary for this peer. Notice that the password is
encrypted before being placed in the credential. 

Line 10 obtains an AuthenticationCredential, which will contain the name of
the method the membership service we should use for joining the group as well
as the credential necessary for the join. The AuthenticationCredential is really
just an XML container document, as described earlier.

Line 11 attempts to apply to the membership service for access to the peer
group. The membership service code will instantiate a new authenticator
object and extract the information we put in our credential. When the apply()
method of the membership service is called, the authentication method given in

C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y276



line 10 will be checked in an IF statement. If the method isn’t named Updated-
PasswdAuthentication, an error will occur. This adds another level of protec-
tion to the system, and allows different methods to be used for different peers.

Line 13 will request that the authenticator check to be sure all necessary infor-
mation is available to attempt a join. Line 17 will attempt a join to the peer
group. The join is accomplished in the join() method of the membership ser-
vice. The password of the peer group or a password located in a database is
checked against the password provided by the peer trying to access the new
peer group. If the check is successful, the peer will have joined the group; other-
wise, an exception will be thrown.

The new membership service and the code for creating and joining a new peer
group provide another skeleton for building robust and secure systems.

Secure Transport

If two peers have gone through all the trouble of using password protection to
join a common peer group, it is a good bet that they will also want to be sure
that information transferred via a pipe is also secure. In this section, we con-
sider three ways to build that secure pipe between peers:

■■ Using unicast and secure pipes as defined by JXTA

■■ Using JXTASPEC from the JXTA Security Toolkit

■■ Using our own encryption for data

JxtaUnicastSecure Pipes
If you look back at the examples in Chapter 12 and Chapter 13, the pipe adver-
tisement used to let peers know about an available input pipe is

<?xml version="1.0" encoding="UTF-8"?>

<jxta:PipeAdvertisement>

<Name>JXTA-CH15EX2</Name>

<Id>urn:jxta:uuid-

9CCCDF5AD8154D3D87A391210404E59BE4B888209A2241A4A162A10916074A9504

</Id>

<Type>JxtaUnicast</Type>

</jxta:PipeAdvertisement>

The element <Type> represents the type of pipe being advertised. The JXTA
Pipe Service allows three different types of pipes:

JxtaUnicast—Unicast, unreliable, and non-secure pipe 

JxtaUnicastSecure—Unicast and secure pipe 

JxtaPropagate—Propagated, unreliable, and non-secure pipe 

Secure Transport 277



A quick and easy way to provide encrypted data transfer between clients is to
use a pipe defined as JxtaUnicastSecure. The process is very simple; just
change the <Type> element from JxtaUnicast to JxtaUnicastSecure, and the
pipe is instantly encrypted. Note that using a secure pipe for all communication
slows performance because the system has to encrypt and decrypt all of the
data sent through the pipe.

The code for using a JxtaUnicastSecure pipe is identical to that found in the
examples from Chapter 12, except that the advertisement has been changed to

<?xml version="1.0" encoding="UTF-8"?>

<jxta:PipeAdvertisement>

<Name>JXTA-CH15EX2</Name>

<Id>urn:jxta:uuid-9CCCDF5AD8154D3D87A39

1210404E59BE4B888209A2241A4A162A10916074A9504</Id>

<Type>JxtaUnicastSecure</Type>

</jxta:PipeAdvertisement>

The process of building a secure pipe is so simple that it you might question its
effectiveness, so a quick view of the code is warranted to explain how the pipe
is secured. The code for a secure output pipe is located in a file called Secure-
OutputPipe.java, which builds a new class representing the secure pipe. After
looking through the code, you will find a method called mkAddress(), which is
responsible for building the endpoint address of the destination peer. Within
the method are two key statements:

PeerID asID = (PeerID) IDFactory.fromURL(new 

URL(destPeer));

String asString = "jxtatls://" + 

asID.getUniqueValue().toString();

EndpointAddress addr = 

endpoint.newEndpointAddress(asString);

The first statement of this code snippet builds a PeerID object from the URL of
the destination peer. The second statement creates a string to be used in the
third statement, which creates an EndpointAddress. Of particular importance
is the use of the jxtatls qualifier; this qualifier dictates whether or not the pipe
is secure. Before we get into the specifics of what this qualifier does, a quick
look at the code for a secure input pipe finds the same qualifier used when a
message is received through the pipe:

if (!proto.equals ("jxtatls")) {

When a new message is received through the secure pipe, one of the first 
statements encountered is this if statement. If the message received through
the pipe was not received using the JXTATLS protocol, the message is 
discarded.

C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y278



TLS/SSL

The natural question to ask at this point is: What does the JXTATLS protocol
do? TLS is an Internet specification for ensuring the secure transfer of 
data across unsecured lines. The most common form of this type of security is
SSL—TLS is a newer specification and an implementation of SSL.

JXTATLS is built using the PureTLS system, developed by Claymore Systems,
which implements the SSLv3 and TLSv1 protocols with the following cipher
suites:

■■ TLS_DHE_DSS_WITH_DES_CBC_SHA

■■ TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

■■ TLS_RSA_WITH_DES_CBC_SHA

■■ TLS_RSA_WITH_RC4_128_MD5

■■ TLS_RSA_WITH_RC4_128_SHA

■■ TLS_RSA_EXPORT_WITH_RC4_40_MD5

■■ TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

■■ TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

By using the PureTLS system, we ensure that all of the details for certificate
generation and subsequent encryption of our data is solved for us. Again, look-
ing through the JXTA source code, we find that the cipher used for the certs and
encryption in JXTA is TLS_RSA_WITH_RC4_128_SHA encryption, which pro-
vides a high level of encryption.

Separately Encrypted Data
The JXTA Security Project allows for the encrypting of data to be sent from
peer to peer without relying on a secure channel. By using the toolkit, you can
determine how data is encrypted before being sent to another peer. The
encrypted data can be sent along a secure pipe or an non-secure pipe, as needed
by the application. The code, which we will present here using the JXTA Secu-
rity Toolkit, also shows how to create dynamic pipes between peers in a group
and how to use those pipes for bi-directional communication. For our pur-
poses, we will use the RSA public key portion of the toolkit. Because of the
nature of RSA encryption, only 53 bytes of space are available for each “packet”
to be encrypted; the other 11 bytes are used for padding and other purposes.
Keep this limitation in mind when designing your application. If larger buffers
are necessary, use one of the other ciphers in the toolkit.

Our example includes two applications: a server and a client. The server appli-
cation publishes an advertisement about a pipe it has available and creates two

Secure Transport 279



RSA public-key encryption keys. The pipe accepts two different commands:
RequestKey and EncryptedData. The client will send two messages when but-
tons are pressed—first to request a public encryption key and second to send
encrypted data to the server. 

The process begins with the execution of the server. Figure 15.1 shows the exe-
cution, security key creation, and publishing of the pipe advertisement. After
the pipe advertisement is published, the server creates an input pipe and waits
for messages to be received. Next, the client connects to the JXTA network and
finds the pipe advertisement. Once the pipe advertisement is found (either
locally or remotely), the client builds an output pipe and attempts the connec-
tion to the server’s input pipe.

C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y280

server client

4) Client Starts
5) Finds Pipe

Advertisement
6) Pipe Created

1) Start
2) Create Public and 

Private Keys
3) Advertise Pipe

Pipe to Server

Figure 15.1 Server and client execution.

When the user clicks the Send Key Request button on the client’s GUI, several
tasks are fulfilled by the client. First, a dynamic pipe advertisement is created;
then an input pipe is created. This new pipe will allow the server application to
send the requested public encryption key to the peer. Second, the pipe adver-
tisement is bundled into a message along with a tag value of RequestedKey.
Third, the message is sent to the server, as shown in Figure 15.2.

server client

4) Client Starts
5) Finds Pipe

Advertisement
6) Pipe Created

7) Message to Server
requesting key with Pipe

Advertisement back to client

1) Start
2) Create Public and 

Private Keys
3) Advertise Pipe

Pipe to Server

Figure 15.2 Key request from the client.

Figure 15.3 shows the remainder of the process. The server will receive the
message from the client. The pipe advertisement from the message is extracted,



and an output pipe is connected to the client’s new input pipe. The public
encryption key previously created by the server is “serialized” and sent to the
client. The client receives the public encryption key over its new input pipe and
builds a valid RSA public key out of the serialized data. A test byte string is
encrypted and sent to the server in a message with a tag value of Encrypted-

Data.

Finally, the server application receives the encrypted data over its previously
published pipe, and decrypts the data using its private key. It then displays the
data.

Secure Transport 281

server client

4) Client Starts
5) Finds Pipe

Advertisement
6) Pipe Created

7) Message to Server
requesting key with Pipe

Advertisement back to client

10) Descrypt message 
and display

8) Mesage to Client with
public key

9) Encryted Message 
to Server

1) Start
2) Create Public and 

Private Keys
3) Advertise Pipe

Pipe to Server

Pipe to Client

Figure 15.3 The public key is sent to the client and used to encrypt data; the server decrypts
data with the private key.

The code in Listing 15.6 illustrates how to handle the reception of data on a pipe
that needs to be both plain and encrypted text. We could change the code to
open a secure pipe between the peers as well. In the remainder of this section,
we discuss the code in detail.

The Server Code

The code for the server appears in Listing 15.6. The base code in this example
was taken from the code found in Chapter 12. The code discussion that follows
the code listing will highlight those changes necessary for using the JXTA Secu-
rity Project and the data exchange between the peers.



C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y282

Line 1: import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import net.jxta.document.*;

import net.jxta.peergroup.*;

import net.jxta.exception.PeerGroupException;

import net.jxta.impl.peergroup.Platform;

Line 10: import net.jxta.impl.peergroup.GenericPeerGroup;

import net.jxta.id.*;

import net.jxta.discovery.DiscoveryService;

import net.jxta.protocol.*;

import net.jxta.platform.ModuleClassID;

import net.jxta.endpoint.Message; 

import net.jxta.pipe.*;

import jxta.security.exceptions.CryptoException;

import jxta.security.util.Util;

Line 20: import jxta.security.util.GetOpt;

import java.lang.IllegalArgumentException;

import jxta.security.publickey.RSAPublickeyData;

import jxta.security.publickey.RSAPrivatekeyData;

import jxta.security.impl.publickey.RSAKey;

import jxta.security.impl.publickey.RSA;

import jxta.security.impl.cipher.KeyBuilder;

Line 30:public class Example3 extends JFrame {

static  PeerGroup netPeerGroup = null;

private DiscoveryService myDiscoveryService = null;

private PipeService myPipeService = null;

private ModuleClassID myService1ID = null;

private InputPipe myPipe = null;

private OutputPipe myOutputPipe = null;

private JTextArea displayArea;

Line 40:    private final static     MimeMediaType XMLMIMETYPE = 

new MimeMediaType("text/xml"); 

RSAKey rKey;

RSA rsa;

RSAPublickeyData rPublicD;

RSAPrivatekeyData rPrivateD;

public static void main(String args[]) {

Listing 15.6 The server code for encrypted data and the dynamic pipe example. (continues)



Secure Transport 283

Example3 myapp = new Example3();

Line 50:        myapp.addWindowListener (

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

myapp.run();

}

Line 60:

public Example3() { 

super(“Server”);

Container c = getContentPane();

displayArea = new JTextArea();

c.add (new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300,150);

Line 70:      show();

launchJXTA();

getServices();

doSecurity();

buildModuleAdvertisement();

buildModuleSpecificationAdvertisement(

createPipeAdvertisement());

}

Line 80:    public void run() {

displayArea.append("Waiting for message...\n");

}

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA 

Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

Line 90:            e.printStackTrace();

System.exit(1);

}

Listing 15.6 The server code for encrypted data and the dynamic pipe example. (continues)



C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y284

}

private void getServices() {

displayArea.append("Obtaining Discovery and Pipe 

Services....\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

myPipeService = netPeerGroup.getPipeService();

}

Line 100:

private void doSecurity() {

try {

rKey = (RSAKey)KeyBuilder.buildKey(KeyBuilder.TYPE_RSA, 

KeyBuilder.LENGTH_RSA_512, false);

rsa = new RSA(rKey);

rsa.setPublicKey();

rsa.setPrivateKey();

rPublicD = (RSAPublickeyData)rsa.getPublickey();

rPrivateD = (RSAPrivatekeyData)rsa.getPrivatekey();

Line 110:      } catch (Exception e) {

System.out.println("Error during RSA initialization");

System.exit(-1);

}

}

private void buildModuleAdvertisement() {

ModuleClassAdvertisement myService1ModuleAdvertisement = 

(ModuleClassAdvertisement)

AdvertisementFactory.newAdvertisement(

ModuleClassAdvertisement.getAdvertisementType());

myService1ModuleAdvertisement.setName("JXTAMOD:JXTA-

CH18EX3");

Line 120: myService1ModuleAdvertisement.setDescription("Service 1 

of Chapter 18 example 3");

myService1ID = IDFactory.newModuleClassID();

myService1ModuleAdvertisement.setModuleClassID(myService1ID);

displayArea.append("Publishing our Module 

Advertisement....\n");

try {

myDiscoveryService.publish(myService1ModuleAdvertisement,

DiscoveryService.ADV);

myDiscoveryService.remotePublish(myService1ModuleAdvertisement,

DiscoveryService.ADV);

} catch (Exception e) {

Line 130:         System.out.println("Error during publish of 

Module Advertisement");

Listing 15.6 The server code for encrypted data and the dynamic pipe example. (continues)



Secure Transport 285

System.exit(-1);

}

}

private PipeAdvertisement createPipeAdvertisement() {

PipeAdvertisement myPipeAdvertisement = null;

try {

FileInputStream is = new FileInputStream("service1.adv");

Line 140:        myPipeAdvertisement = 

(PipeAdvertisement)AdvertisementFactory.newAdvertisement(

new MimeMediaType("text/xml"), is);

} catch (Exception e) {

System.out.println("failed to read/parse pipe 

advertisement");

e.printStackTrace();

System.exit(-1);

}

return myPipeAdvertisement;

}

Line 150:    private void 

buildModuleSpecificationAdvertisement(PipeAdvertisement

myPipeAdvertisement) {

ModuleSpecAdvertisement myModuleSpecAdvertisement = 

(ModuleSpecAdvertisement)

AdvertisementFactory.newAdvertisement(

ModuleSpecAdvertisement.getAdvertisementType());

myModuleSpecAdvertisement.setName("JXTASPEC:JXTA-CH18EX3");

myModuleSpecAdvertisement.setVersion("Version 1.0");

myModuleSpecAdvertisement.setCreator("gradecki.com");

myModuleSpecAdvertisement.setModuleSpecID(

IDFactory.newModuleSpecID(myService1ID));

myModuleSpecAdvertisement.setSpecURI(

"<http://www.jxta.org/CH18EX3>");

myModuleSpecAdvertisement.setPipeAdvertisement(

myPipeAdvertisement);

Line 160:      displayArea.append("Publishing Module 

Specification Advertisement....\n");

try {

myDiscoveryService.publish(myModuleSpecAdvertisement,

DiscoveryService.ADV);

myDiscoveryService.remotePublish(myModuleSpecAdvertisement,

DiscoveryService.ADV);

} catch (Exception e) {

Listing 15.6 The server code for encrypted data and the dynamic pipe example. (continues)



C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y286

System.out.println("Error during publish of Module 

Specification Advertisement");

e.printStackTrace();

System.exit(-1);

}

Line 170:

createInputPipe(myPipeAdvertisement);

}

private void createInputPipe(PipeAdvertisement 

myPipeAdvertisement) {

displayArea.append("Creating Input Pipe....\n");

PipeMsgListener myService1Listener = new PipeMsgListener() {

public void pipeMsgEvent(PipeMsgEvent event) {

Message myMessage = null;

try {

Line 180:            myMessage = event.getMessage();

String myMessageContent;

myMessageContent = myMessage.getString("RequestKey");

if (myMessageContent != null) {

createOutputPipe(myMessageContent);

sendKey();

return;

}

Line 190:            myMessageContent = 

myMessage.getString("EncryptedData");

if (myMessageContent != null) {

byte[] encryptedBytes = 

myMessageContent.getBytes();

byte[] decryptedBytes;

try {

rsa.setPrivateKey(rPrivateD);

decryptedBytes = rsa.Algorithm(encryptedBytes, 0, 

encryptedBytes.length,

KeyBuilder.TYPE_RSA_PRIVATE, false);

} catch (Exception eee) {

eee.printStackTrace();

Line 200:                System.out.println("Unable to 

decrypt\n");

return;

}

String newString = new String(decryptedBytes);

displayArea.append("Message received: " + newString 

+ "\n");

Listing 15.6 The server code for encrypted data and the dynamic pipe example. (continues)



Secure Transport 287

return;

} else {

displayArea.append("Invalid tag\n");

return;

}

Line 210:          } catch (Exception ee) {

ee.printStackTrace();

return;

}

}

};

try {

myPipe = 

myPipeService.createInputPipe(myPipeAdvertisement,

myService1Listener);

} catch (Exception e) {

Line 220:          System.out.println("Error creating Input 

Pipe");

e.printStackTrace();

System.exit(-1);

}

}

private void createOutputPipe(String 

myPipeAdvertisementString) {

boolean noPipe = true;

int count = 0;

Line 230:      PipeAdvertisement myOutputPipeAdvertisement = null;

try {

myOutputPipeAdvertisement = (PipeAdvertisement) 

AdvertisementFactory.newAdvertisement(XMLMIMETYPE,

new ByteArrayInputStream(

myPipeAdvertisementString.getBytes()));

} catch (Exception e) {

System.out.println("Error creating output Pipe");

e.printStackTrace();

System.exit(-1);

}

Line 240:      myOutputPipe = null; 

while (noPipe && count < 10) {

count++;

try {

myOutputPipe = 

myPipeService.createOutputPipe(

Listing 15.6 The server code for encrypted data and the dynamic pipe example. (continues)



C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y288

myOutputPipeAdvertisement, 100000);

displayArea.append("Output Pipe Created...\n");

noPipe = false;

} catch (Exception e) {

System.out.println("Unable to create output pipe");

System.exit(-1);

Line 250:        }

}

if (count >= 10) {

System.out.println("no Pipe");

System.exit(-1);

}

}

private void sendKey() {

Line 260:

byte[] myBytes = rPublicD.getModulus();

ByteArrayOutputStream myStream = null;

try {

myStream = (ByteArrayOutputStream) new

ByteArrayOutputStream();

myStream.write(myBytes, 0, myBytes.length);

} catch (Exception e) {

System.out.println("Unable encode public key");

e.printStackTrace();

System.exit(-1);

Line 270:      }

Message msg = myPipeService.createMessage();

msg.setString("RequestedKey", myStream.toString() );

try {

myOutputPipe.send (msg);

} catch (Exception e) {

System.out.println("Unable to print output pipe");

e.printStackTrace();

Line 280:          System.exit(-1);

}

displayArea.append("key sent to the Server\n");

}

}

Listing 15.6 The server code for encrypted data and the dynamic pipe example. (continued)



Security ToolKit Initialization

Before any of the Security Toolkit methods can be used, the toolkit itself must
be initialized. For our current example, only the RSA Public Encryption func-
tionality will be used. 

Lines 18 through 27 list the required imports for the toolkit functionality
required in the application. The actual code for the toolkit is found in the secu-
rity JAR file. The JAR file has been listed in the compile and run commands for
all of our previous examples, so no change needs to occur when compiling and
executing the server application.

Line 74 makes a call to the doSecurity() method from the constructor. Lines 101
through 108 build the doSecurity() method. 

Line 103 executes the buildKey() method of the KeyBuilder class, which cre-
ates a new object of type RSAKey and sets the desired length of RSA keys to be
512 bits using the constant identifier LENGTH_RSA_512.

Line 104 instantiates a RSA object using the RSAKEY object instantiated from
line 103. The RSA object is needed for all subsequent encryption operations.

Lines 105 and 106 call methods to build dynamic public and private keys. Meth-
ods are available in the RSA object for setting the public and private keys to val-
ues previously calculated, but our intent is to have secure data that is built
using different keys each time the server is executed. We can change the code
so that a new private and public key are generated each time a client requests
the key. To do this, move the setPublicKey() and setPrivateKey() methods
found in lines 105 and 106 to the pipe listener code.

Lines 107 and 108 extract the private and public keys for later reference. In our
case, the public key will be serialized and sent to the client peer so it can
encrypt its data for our eyes only.

Of course, if any of these operations fail, an exception will be thrown and the
application halted. 

Advertised Pipe Message Reception

Most all of the work for the server occurs in the listener handler for its input
pipe. All messages received will be filtered by two tags and actions will be taken
when the appropriate tag is received.

Lines 177 through 215 build the listener class for the input pipe. Line 184 pulls
any data associated with the key tag labeled RequestKey. The getString()
method will check the tag value for the current message and return a string if
the tag is the same as the tag. Otherwise, the method will return null.

Secure Transport 289



Lines 185 through 189 check the value of the returned string, and execute if the
value is not null. If the value is not null, then a message has been received from
a client requesting the server send its public key. The idea is that the client
wants to send encrypted data to the server, but needs its public key first. Now,
we certainly have room to expand the application at this point. Can we trust the
client? What if the client wants to send us illegal information? Right now, let’s
just assume the client has good intentions. In addition to the basic request for
the server’s public key (as noted by the tag value of RequestKey), the informa-
tion in the message must be a pipe advertisement. The call on line 186 will send
the message string to the method createOutputPipe() in order to build an out-
put pipe with the requesting client.

Lines 226 through 257 represent the code for the createOutputPipe() method,
and build the output pipe by creating a PipeAdvertisement object and passing
the object to the createOutputPipe() method of the PipeService on line 244. If
the pipe advertisement sent from the client is valid, a new pipe connection will
have been established.

Once the output pipe has been created, a call is made to the sendKey() method.

Sending the Public Key

When the client requests the public key from the server, it will send a pipe
advertisement, and the server will build a pipe connection. Once the pipe con-
nection is created, the server will send the actual public key. Because the pub-
lic key is a Java object, it will need to be converted in some way to allow it to be
sent down the pipe connection. Obviously, the most appropriate way would
have been to use an ObjectOutputStream; however, the public key object 
wasn’t built to implement the serializable interface. Fortunately, the modulus
associated with the public can be grabbed since it is just an array of bytes and
can be used to fully reconstruct the public key. The modulus can also be used
to build the public key by the recipient.

Lines 259 through 285 define the sendKey() method for the server. Line 261
pulls the modulus from the public key and places it in an array of bytes. Lines
262 through 270 convert the bytes into a string, which can be sent to the client.
A ByteArrayOutputStream is used for the conversion.

Lines 272 through 273 create a message and populate the message with the seri-
alized public key. The RequestedKey tag is used for the message since this is
what the client is expecting to receive. Line 276 sends the public key to the
client.

C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y290



As mentioned earlier, if we wanted to build a new private and public key each
time a client peer requested a key, we could call the setPublicKey() and setPri-
vateKey() methods of the RSA object here before pulling the modulus from the
public key.

Handling the Encrypted Data

The last process the server will need to handle is decrypting data that has been
previously encrypted by a client. The current code expects to decrypt data
based on the public key sent, and thus isn’t designed to handle decrypting data
based on multiple public/private key pairs. The code for handling the decryp-
tion is located in the input pipe listener class. Recall that the same code also
obtains the request from a client for a public key. The code will check for a
string associated with the RequestKey tag first. If the method returns a value of
null, the code will check for a tag with a value of EncryptedData.

Lines 190 through 205 handles the decryption of client data. Line 190 attempts
to pull any data string associated with the EncryptedData tag. Line 191 checks
for a valid string from the method in line 190. If the value is not null, an attempt
is made to decrypt the string.

Lines 192 through 204 do the encryption process. The first step is to convert the
string into a byte string. Line 193 does this using the getBytes() method of the
string we received from the client. A new byte array variable is created to hold
the newly encrypted bytes.

The real work occurs in line 197 with a call to the Algorithm() method of the
RSA object. The method takes the encrypted bytes and the type of key to use
for the decryption. Since the public key was used for the encryption, we have to
state that the private key should be used for the decryption.

The last parameter in the method is a Boolean that indicates whether the algo-
rithm should be used for encryption or decryption. A value of false is used for
decryption. The result of the method is a byte array, which we hope are the orig-
inal bytes encrypted by the client.

The Client Code

The client is the controller application for our security communication exam-
ple. Activities occur in the client until the user clicks the Send Key Request or
Send Encrypted Data button. Just as in the server application, the code was
taken from Chapter 12. Additional button code was added for the Send
Encrypted Data functionality, and the code necessary to receive and process a
serialized public key. The code for the client is shown in Listing 15.7.

Secure Transport 291



C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y292

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.util.Enumeration;

import net.jxta.document.*;

import net.jxta.peergroup.*;

Line 10: import net.jxta.exception.PeerGroupException;

import net.jxta.impl.peergroup.Platform;

import net.jxta.impl.peergroup.GenericPeerGroup;

import net.jxta.id.*;

import net.jxta.discovery.*;

import net.jxta.pipe.*;

import net.jxta.protocol.*;

import java.net.MalformedURLException;

import java.net.URL;

import net.jxta.endpoint.Message;

Line 20:

import jxta.security.exceptions.CryptoException;

import jxta.security.util.Util;

import jxta.security.util.GetOpt;

import java.lang.IllegalArgumentException;

import jxta.security.publickey.RSAPublickeyData;

import jxta.security.publickey.RSAPrivatekeyData;

import jxta.security.impl.publickey.RSAKey;

import jxta.security.impl.publickey.RSA;

Line 30: import jxta.security.impl.cipher.KeyBuilder;

public class Example3 extends JFrame {

static  PeerGroup             netPeerGroup = null;

private DiscoveryService        myDiscoveryService = null;

private PipeService       myPipeService = null;

private PipeAdvertisement myPipeAdvertisement = null,

myInputPipeAdvertisement = null;

private OutputPipe        myOutputPipe;

Line 40:    private InputPipe      myInputPipe;

private JTextArea        displayArea;

private JButton       sendButton;

private String        valueString = "JXTA-CH15EX2";

private final static      MimeMediaType XMLMIMETYPE = 

new MimeMediaType("text/xml"); 

Listing 15.7 The client code for encrypted data and the dynamic pipe example. (continues)



Secure Transport 293

RSAKey rKey;

RSA rsa;

RSAPublickeyData rPublicD;

Line 50:

public static void main(String args[]) {

Example3 myapp = new Example3();

myapp.addWindowListener (

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

Line 60:          }

);

myapp.launchJXTA();

myapp.getServices();

myapp.createInputPipe();

myapp.findAdvertisement("Name",

"JXTASPEC:JXTA-CH18EX3");

myapp.run();

}

Line 70:

public Example3() { 

super("client");

Container c = getContentPane();

sendButton = new JButton("Send Key Request");

sendButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

Line 80:            sendKeyRequest();

}

}

);

c.add(sendButton, BorderLayout.NORTH);

sendButton = new JButton("Send encrypted data");

sendButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

Line 90:            sendEncryptedData();

}

}

Listing 15.7 The client code for encrypted data and the dynamic pipe example. (continues)



C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y294

);

c.add(sendButton, BorderLayout.SOUTH);

displayArea = new JTextArea();

c.add(new JScrollPane(displayArea), BorderLayout.CENTER);

Line 100:      setSize(300,150);

show();

}

public void run() {

displayArea.append("Click on Button to send data...\n");

}

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA 

Network...\n");

Line 110:        try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

e.printStackTrace();

System.exit(1);

}

}

private void getServices() {

Line 120:      displayArea.append("Getting Services...\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

myPipeService = netPeerGroup.getPipeService();

}

private void createInputPipe() {

displayArea.append("Creating Input Pipe....\n");

myInputPipeAdvertisement = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(

PipeAdvertisement.getAdvertisementType());

Line 130:      myInputPipeAdvertisement.

setName("JXTA:KEYRECEIVE");

myInputPipeAdvertisement.setType("JxtaUnicast");

myInputPipeAdvertisement.setPipeID((ID)

net.jxta.id.IDFactory.newPipeID(

netPeerGroup.getPeerGroupID()));

Listing 15.7 The client code for encrypted data and the dynamic pipe example. (continues)



Secure Transport 295

PipeMsgListener myService1Listener = new PipeMsgListener() {

public void pipeMsgEvent(PipeMsgEvent event) {

Message myMessage = null;

try {

myMessage = event.getMessage();

Line 140:

String myMessageContent;

myMessageContent = 

myMessage.getString("RequestedKey");

if (myMessageContent != null) {

doSecurity(myMessageContent);

return;

} else {

displayArea.append("Invalid tag\n");

return;

Line 150:            }

} catch (Exception ee) {

ee.printStackTrace();

return;

}

}

};

try {

myInputPipe = myPipeService.createInputPipe(

myInputPipeAdvertisement, myService1Listener);

Line 160:      } catch (Exception e) {

System.out.println("Error creating Input Pipe");

e.printStackTrace();

System.exit(-1);

}

}

private void findAdvertisement(String searchKey, 

String searchValue) {

Enumeration myLocalEnum = null;

Line 170:      displayArea.append("Trying to find 

advertisement...\n");

try {

myLocalEnum = myDiscoveryService.

getLocalAdvertisements(DiscoveryService.ADV,

searchKey, searchValue);

Listing 15.7 The client code for encrypted data and the dynamic pipe example. (continues)



C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y296

if ((myLocalEnum != null) && 

myLocalEnum.hasMoreElements()) {

displayArea.append("Found Local Advertisement...\n");

ModuleSpecAdvertisement myModuleSpecAdv = 

(ModuleSpecAdvertisement)myLocalEnum.nextElement();

myPipeAdvertisement = 

myModuleSpecAdv.getPipeAdvertisement();

Line 180:          createOutputPipe(myPipeAdvertisement);

}

else {

DiscoveryListener myDiscoveryListener = 

new DiscoveryListener() { 

public void discoveryEvent(DiscoveryEvent e) { 

Enumeration enum;

PipeAdvertisement pipeAdv = null;

String str;

displayArea.append("Found Remote 

Advertisement...\n");

Line 190:              DiscoveryResponseMsg myMessage = 

e.getResponse();

enum = myMessage.getResponses();

str = (String)enum.nextElement();

try {

ModuleSpecAdvertisement myModSpecAdv = 

(ModuleSpecAdvertisement)

AdvertisementFactory.  newAdvertisement(

XMLMIMETYPE,

new ByteArrayInputStream(str.getBytes()));

myPipeAdvertisement = 

myModSpecAdv.getPipeAdvertisement();

createOutputPipe(myPipeAdvertisement);

} catch(Exception ee) {

Line 200:                  ee.printStackTrace();

System.exit(-1);

}

}

};

displayArea.append("Launching Remote Discovery 

Service...\n");

myDiscoveryService.getRemoteAdvertisements(null,

DiscoveryService.ADV, searchKey, searchValue, 1, 

myDiscoveryListener);

Listing 15.7 The client code for encrypted data and the dynamic pipe example. (continues)



Secure Transport 297

}

} catch (Exception e) {

Line 210:          System.out.println("Error during 

advertisement search");

System.exit(-1);

}

}

private void createOutputPipe(PipeAdvertisement 

myPipeAdvertisement) {

boolean noPipe = true;

int count = 0;

myOutputPipe = null; 

Line 220:      while (noPipe && count < 10) {

count++;

try {

myOutputPipe = myPipeService.createOutputPipe(

myPipeAdvertisement, 100000);

displayArea.append("Output Pipe Created...\n");

noPipe = false;

} catch (Exception e) {

System.out.println("Unable to create output pipe");

System.exit(-1);

}

Line 230:      }

if (count >= 10) {

System.out.println("no Pipe");

System.exit(-1);

}

}

private void sendKeyRequest() {

Line 240:      ByteArrayOutputStream myStream = 

(ByteArrayOutputStream)

new ByteArrayOutputStream();

StructuredTextDocument paramDoc = 

(StructuredTextDocument)myInputPipeAdvertisement.

getDocument(new MimeMediaType("text/xml"));

try {

paramDoc.sendToStream(myStream);

} catch (Exception e) {

System.out.println("Unable to print output pipe");

e.printStackTrace();

System.exit(-1);

Listing 15.7 The client code for encrypted data and the dynamic pipe example. (continues)



C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y298

}

Line 250:  Message msg = myPipeService.createMessage();

msg.setString("RequestKey", myStream.toString() );

try {

myOutputPipe.send (msg);

} catch (Exception e) {

System.out.println("Unable to print output pipe");

e.printStackTrace();

System.exit(-1);

}

Line 260:    }

private void sendEncryptedData() {

String sendString = null;

try {

byte[] plainBytes = 

new byte[rsa.getMaxInputDataBlockLength()];

for (int i=0;i<plainBytes.length;i++) 

plainBytes[i] = (byte)0xCC;

byte[] encryptedBytes = rsa.Algorithm(plainBytes, 0,

plainBytes.length, KeyBuilder.TYPE_RSA_PUBLIC, true);

Line 270:        sendString = new String(encryptedBytes);

} catch (Exception e) {

System.out.println("Unable to encrypted string");

e.printStackTrace();

System.exit(-1);

}

Message msg = myPipeService.createMessage();

msg.setString("EncryptedData", sendString );

Line 280:      try {

myOutputPipe.send (msg);

} catch (Exception e) {

System.out.println("Unable to print output pipe");

e.printStackTrace();

System.exit(-1);

}

displayArea.append("message \"" + sendString + "\" sent to 

the Server\n");

}

Line 290:

Listing 15.7 The client code for encrypted data and the dynamic pipe example. (continues)



Secure Transport 299

void doSecurity(String myPublicKeyString) {

try {

rKey = (RSAKey)KeyBuilder.buildKey(KeyBuilder.TYPE_RSA, 

KeyBuilder.LENGTH_RSA_512, false);

rsa = new RSA(rKey);

rsa.setPublicKey(myPublicKeyString.getBytes());

} catch (Exception e) {

System.out.println("Unable to do client security\n");

System.exit(-1);

}

Line 300:    }

}

Listing 15.7 The client code for encrypted data and the dynamic pipe example. (continued)

Public Key Request

When the user clicks the client button labeled Send Key Request, the client
application will call the sendKeyRequest() method. This method creates a mes-
sage containing the pipe advertisement for the input pipe that the client has cre-
ated in order to receive the public key.

Lines 239 through 260 contain the code for the sendKeyRequest() method. Line
240 creates a stream object, which will be used to print the pipe advertisement
for the client’s input pipe. Line 241 obtains a document object containing an
XML view of the pipe advertisement

Line 243 uses the sendToStream() method of the StructuredTextDocument
object to move the text from the pipe advertisement to the output stream. Lines
250 and 251 create a message with a tag value of RequestKey and a string based
on the output stream from the work done in lines 240 and 241.

Line 254 sends the request to the server. If and when the server responds to our
request, the response will be caught by the client’s input pipe listener, as we dis-
cuss in the next section.

Public-Key Reception

The client is designed to only process public key messages sent by the server
over its input pipe. As in all JXTA applications we’ve built so far, the input pipe
processing occurs in a listener object.

Lines 134 through 156 create the listener object for the client’s input pipe. Lines
134 and 142 obtain any string value associated with the RequestedKey tag from
a pipe message. If a value is available using this tag value (a potential public key



string), the client will process the value using a method called doSecurity(). If
the message received doesn’t have the required tag, the message is ignored.

Once the security system has been initialized with the public key string
received by the client, the system is ready to send encrypted data to the server.

Lines 290 through 301 represent the doSecurity() method. Lines 293 through
294 initialize the RSA objects, just as we did with the server. Line 295 sets the
public key of the RSA system using the modules bytes found in the string from
the server.

If any of the security initialization steps fail, an exception will occur and the
application will be terminated. 

Data Encryption

The final piece of the client that we should discuss involves the sending of
encrypted data. The user clicks a button on the client’s GUI when he or she
wants to send encrypted data to the server. A method called sendEncrypted-
Data() does the work of encrypting some sample data and sending the data to
the server.

Lines 263 through 290 are the statements for the sendEncryptedData() method.
Line 267 creates an array whose size is based on the largest position data block
for the RSA system.

Line 268 fills the block with sample data. Line 269 calls the Algorithm() method
to encrypt the data. As in the server code, the RSA algorithm requires the key to
be used in the algorithm, and determines whether the code should encrypt or
decrypt. A value of true indicates that the algorithm will encrypt the data.

Line 270 converts the bytes to a string. Lines 277 and 278 build a pipe message
with a tag value of EncryptedData and a string representing the encrypted data.

Line 281 sends the message to the server,

Summary

In this chapter, we have taken a look at the ever-evolving issue of security with
the JXTA network. Security is an important issue when client peers will be exe-
cuting on remote machines. The new membership service built in this chapter
provides the necessary foundation for a truly secure peer group. In the next
chapter, we examine how individual peers in the JXTA network can query other
peers about their state. Using the Peer Information Protocol, peers are able to
respond automatically to such requests.

C h a p t e r  15 I m p l e m e n t i n g  S e c u r i t y300



In a comprehensive peer-to-peer system, it is a good idea to build a peer that
keeps track of the health and status of the network. The goal need not be the
recording of IP information or other functions that raise privacy issues, but

simply a way of providing network performance statistics. In this chapter, we
discuss monitoring and metering between peers in a peer group. At the time of
this writing, the Peer Information Protocol is in a state of flux and all of its func-
tionality isn’t in place. Unfortunately, this is the protocol used to obtain infor-
mation about peers in your local peer group. On a positive note, there is enough
functionality in the current protocol to pull valuable information from clients.

Finding Peers in a Group

Finding other peers in a peer group is a fundamental operation in JXTA, and
specific discovery types are available to make the process as painless as possi-
ble. Most of the code for finding a peer on the local network is similar to the
code for finding a pipe or a group to join. In this section, we present the code
you need to use to find peers.

Building the Peer Discovery Listener
The process of discovering peers in a specific peer group is accomplished by
sending a discovery message to the JXTA network specifying the advertise-
ments that should be discovered. In previous chapters, we used the discovery
service to accomplish this, and we will use it in this case as well.

Peer Monitoring and Metering

C H A P T E R16

301



Recall the method getRemoteAdvertisements() discussed in Chapter12. The
purpose of this method is to send a query on the network. The type of query we
want to perform is provided as the second parameter. To discover other peers,
we must use the type DiscoveryService.PEER. We have the option of specifying
a search parameter, such as “education”, to find peers with a name containing
the string “education”. Or we can use the value null to find all peers on the net-
work. The following is a sample method call:

myDiscoveryService.getRemoteAdvertisements(null,DiscoveryService.PEER,

null, null, 5, peerDiscoveryListener);

When a peer is found, its peer advertisement will be returned and the listener
provided by the last parameter, peerDiscoveryListener, will be activated to
interpret the listener event.

Interpreting Events
When the listener is triggered, its primary responsibility is to interpret the event
sent to it. In the case of the peer discovery event, a message will be found that
contains the peer advertisement of discovered peers. The advertisements might
appear as shown in Listing 16.1:

C h a p t e r  16 Peer Monitoring and Metering302

<?xml version="1.0"?>

<!DOCTYPE jxta:PA>

<jxta:PA xmlns:jxta="http://jxta.org">

<PID>

urn:jxta:uuid-

59616261646162614A787461503250337CE1ACE17356403D8EECBE6B9D25351303

</PID>

<GID>

urn:jxta:jxta-NetGroup

</GID>

<Name>

JosephGradeckiServer

</Name>

<Svc>

<MCID>

urn:jxta:uuid-

DEADBEEFDEAFBABAFEEDBABE0000000805

</MCID>

<Parm>

<Addr>

Listing 16.1 Sample PeerInfoAdvertisement. (continues)



Finding Peers in a Group 303

tcp://12.254.21.182:9701/

</Addr>

<Addr>

jxtatls://uuid-

59616261646162614A787461503250337CE1ACE17356403D8EECBE6B9D253513

03/TlsTransport/jxta-WorldGroup

</Addr>

<Addr>

jxta://uuid-

59616261646162614A787461503250337CE1ACE17356403D8EECBE6B9D25351303/

</Addr>

<Addr>

http://JxtaHttpClientuuid-

59616261646162614A787461503250337CE1ACE17356403D8EECBE6B9D25351303/

</Addr>

</Parm>

</Svc>

<Svc>

<MCID>

urn:jxta:uuid-

DEADBEEFDEAFBABAFEEDBABE0000000105

</MCID>

<Parm>

<RootCert>

MIICVDCCAb2gAwIBAgIBATANBgkqhkiG9w0BAQUFADByMRUw

EwYDVQQKEwx3d3cuanh0YS5vcmcxCzAJBgNVBAcTAlNGMQswCQYDVQQGEwJVUzEg

MB4GA1UEAxMXSm9zZXBoR3JhZGVja2lTZXJ2ZXItQ0ExHTAbBgNVBAsTFDNFNjE3

OEQ4OTM5RTEzQkFDNjU3MB4XDTAyMDExMzE3MjYyMloXDTEyMDExMzE3MjYyMlow

cjEVMBMGA1UEChMMd3d3Lmp4dGEub3JnMQswCQYDVQQHEwJTRjELMAkGA1UEBhMC

VVMxIDAeBgNVBAMTF0pvc2VwaEdyYWRlY2tpU2VydmVyLUNBMR0wGwYDVQQLExQz

RTYxNzhEODkzOUUxM0JBQzY1NzCBmzALBgkqhkiG9w0BAQEDgYsAMIGHAoGBAKqJ

kZr0Ke3T3ZPNsmp/i1t3HYBVKVp4dMOKsDh0RDC3w3xt/LZ0LYA++ekBBUObNBUR

x7TYoTGXmEYWrVr0eYBbq4YUH4bfIARSs+VKoYxP0G0NrhaVt85rKuTmWHuLgHJQ

9G/rn8c3d/lXJktjRm6KkiNxMHBtY/D24wt0fG1AgERMA0GCSqGSIb3DQEBBQUAA

4GBAKWl2u21lQ/Taxv5vbeN7nxj500FUOfwz+ugG5Q6DKKiU39SgSyuCdB6PhI8A

FQhNuiXG5NkP7vtOieClfOvQ83VSxqxP1YUZiJvrzAu8/Sz87FtY4NK31HX0wdd0

QiTL4a8eyqO/7wV

Njvdobfr0DaCWfkx4z81QfiV9ByYV8j3

</RootCert>

</Parm>

</Svc>

</jxta:PA>

Listing 16.1 Sample PeerInfoAdvertisement. (continued)

The code listed in the next section will pull the name of the peer from the adver-
tisement using the method getName().



The Discovery Code
The code in Listing 16.2 is all we need to find peers in a peer group. 

C h a p t e r  16 Peer Monitoring and Metering304

Line 1:  private void findPeers() {

displayArea.append("Sending Peer Discovery...\n”);

DiscoveryListener peerDiscoveryListener = new 

DiscoveryListener() {

public void discoveryEvent (DiscoveryEvent ev) {

PeerAdvertisement localPeerAdv = null;

DiscoveryResponseMsg localResource = ev.getResponse();

String localAdv = localResource.getPeerAdv();

Line 10:

try {

InputStream localIS = new 

ByteArrayInputStream(localAdv.getBytes());

localPeerAdv = 

(PeerAdvertisement)AdvertisementFactory.newAdvertisement(new

MimeMediaType("text/xml"), localIS);

displayArea.append("Discovery Event from peer: " + 

localPeerAdv.getName() + " with " + 

localResource.getResponseCount() + " peers\n");

} catch (Exception e) {

System.out.println("Error during Peer Discovery\n");

e.printStackTrace();

return;

}

Line 20:

Enumeration localEnum = localResource.getResponses();

String tempString = null;

while (localEnum.hasMoreElements()) {

try {

tempString = (String)localEnum.nextElement();

localPeerAdv = 

(PeerAdvertisement)AdvertisementFactory.newAdvertisement(new

MimeMediaType("text/xml"), new 

ByteArrayInputStream(tempString.getBytes()));

displayArea.append("Peer Name = " + 

localPeerAdv.getName() + "\n");

displayArea.append("Sending Peer Info Discovery for 

" + localPeerAdv.getID() + "\n");

Listing 16.2 Locating peers in a peer group. (continues)



Finding Peers in a Group 305

} catch (Exception e) {

Line 30:            System.out.println("Error during Peer 

Discovery\n");

e.printStackTrace();

continue;

}

}

}

};

myDiscoveryService.getRemoteAdvertisements(null,

DiscoveryService.PEER, null, null, 5, peerDiscoveryListener);

Listing 16.2 Locating peers in a peer group. (continued)

Lines 1–40 build a method that can be called to begin the process of finding
peers in a peer group. The code will create a discovery listener and launch the
remote discovery process. Lines 5–37 instantiate a DiscoveryListener object for
asynchronously handling any peers discovered.

Line 11 creates a PeerAdvertisement object from the bytes found in the mes-
sage sent to the listener. Since the code is located within a try block, an excep-
tion will be thrown if the advertisement sent to the listener isn’t a peer
advertisement. When an advertisement is received that isn’t a peer, the applica-
tion shouldn’t end but should instead display a message indicating that an error
has occurred; however, it should continue executing the application so that
other real peers can be found. The first peer advertisement the code pulls isn’t
a real peer advertisement; it is a reference advertisement to let the receiver
code know what is located with the message.

Lines 21–26 do the actual work of pulling individual peer advertisements from
the message received. Each message response is converted to a PeerAdvertise-
ment object. Line 28 uses the getName() method to display the name of the peer
associated with the current peer advertisement.

Line 39 begins the entire discovery process by calling the getRemoteAdvertise-
ments() method of the current peer group’s discovery process. 

Local Peers versus Remote Peers
You can control the process of locating peers in your current group by entering
values into the configuration window when the discovery code is first exe-



Figure 16.1 Locating peers locally.

In Figure 16.2, an additional peer is started on the local network; the peers
found will be the client peers as well as the server because the client peer also
knows about the server peer.

C h a p t e r  16 Peer Monitoring and Metering306

Figure 16.2 Additional local peers.

In Figure 16.3, we changed the values in the configuration window to allow
both TCP and HTTP protocols for discovery and rendezvous peers. Quite a
number of additional peers are found in the NetPeerGroup peer group.

cuted. When the code in Listing 16.2 is executed, the peers located might look
like those in Figure 16.1.

The peers found in Figure 16.1 are all of the JXTA peers that we could find
using only the TCP transport and no outside rendezvous peers. The code will
perform only a local TCP multicast to find peers. Because the peer executing
the code is the only peer on the local network, no others peers are found. 



Figure 16.3 Full peer discovery.

Obtaining Information about a Peer

Once a peer is located, we can find more information about that peer by check-
ing the PeerInfoAdvertisement. Here is some of the information contained in
the advertisement:

■■ Uptime of the peer

■■ Travel bytes transferred

■■ The date of last message sent

■■ The date of last message received

Obtaining Information about a Peer 307



A peer requests a PeerInfoAdvertisement directly by using the peer ID. The
peer ID can be found in the peer advertisement received during the discovery
process, which we described earlier. A sample PeerInfoAdvertisement is shown
in Listing 16.3.

C h a p t e r  16 Peer Monitoring and Metering308

<?xml version="1.0"?>

<!DOCTYPE jxta:PeerInfoAdvertisement>

<jxta:PeerInfoAdvertisement xmlns:jxta="http://jxta.org">

<sourcePid>

urn:jxta:uuid-

59616261646162614A787461503250337CE1ACE17356403D8EECBE6B9D25351303

</sourcePid>

<targetPid>

urn:jxta:uuid-

59616261646162614A787461503250337CE1ACE17356403D8EECBE6B9D25351303

</targetPid>

<uptime>

22642

</uptime>

<timestamp>

1010872452153

</timestamp>

<traffic>

<in>

</in>

<lastIncomingMessageAt>

0

</lastIncomingMessageAt>

<out>

</out>

<lastOutgoingMessageAt>

0

</lastOutgoingMessageAt>

</traffic>

</jxta:PeerInfoAdvertisement>

Listing 16.3 A sample PeerInfoAdvertisement.

Of particular importance are the <in> and <out> elements. Reading the source
code indicates these elements should contain the number of bytes into and out
of the peer. The bytes are tabulated based on channels that appear to be based
on pipe or other transmission avenues. However, the code below in Listing 16.4,
which pulls PeerInfo advertisements, never produces any values for the bytes
in and out of a peer. As we mentioned early in this chapter, the Peer Information
Protocol is still a work in progress and we hope the bytes will become valid
soon.



A Sample Application for Discovering Peers

Listing 16.4 contains a stand-alone application that submits peer-discovery
queries when a user clicks the button at the top of the GUI. The application
should compile and execute in the same manner as other JXTA applications. Of
particular significance is how you set up the configuration window. If you want
to discover all peers in the network, it is important that you provide the
addresses of known rendezvous peers and enable the HTTP protocol. Once the
application has logged into the JXTA network, a user can simply click the top
button to send a peer query; the GUI will display the results of the query. In the
next section, we discuss the details of this code.

A Sample Application for Discovering Peers 309

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import net.jxta.document.*;

import net.jxta.peergroup.*;

import net.jxta.exception.*;

import net.jxta.impl.peergroup.*;

import net.jxta.id.*;

import net.jxta.discovery.*;

import net.jxta.pipe.*;

import net.jxta.protocol.*;

import net.jxta.platform.*;

import net.jxta.endpoint.Message; 

import java.util.Enumeration;

import net.jxta.peer.*;

public class Example1 extends JFrame {

static PeerGroup netPeerGroup = null;

private DiscoveryService myDiscoveryService = null;

private PipeService myPipeService = null;

private PeerInfoService myPeerInfoService = null;

private ModuleClassID myService1ID = null;

private InputPipe myPipe = null;

private JTextArea displayArea;

private JButton sendButton;

public static void main(String args[]) {

Example1 myapp = new Example1();

myapp.addWindowListener (

Listing 16.4 Code for peer and peer info discovery. (continues)



C h a p t e r  16 Peer Monitoring and Metering310

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

myapp.run();

}

public Example1() { 

super("Server");

Container c = getContentPane();

sendButton = new JButton("Send Peer Request");

sendButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

findPeers();

}

}

);

c.add(sendButton, BorderLayout.NORTH);

displayArea = new JTextArea();

c.add (new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300,150);

show();

launchJXTA();

getServices();

buildModuleAdvertisement();

buildModuleSpecificationAdvertisement(createPipeAdvertisement());

}

public void run() {

displayArea.append("Waiting for message...\n");

}

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Listing 16.4 Code for peer and peer info discovery. (continues)



A Sample Application for Discovering Peers 311

Failure");

e.printStackTrace();

System.exit(1);

}

}

private void getServices() {

displayArea.append("Obtaining Discovery and Pipe 

Services....\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

myPipeService = netPeerGroup.getPipeService();

myPeerInfoService = netPeerGroup.getPeerInfoService();

}

private void buildModuleAdvertisement() {

ModuleClassAdvertisement myService1ModuleAdvertisement = 

(ModuleClassAdvertisement) AdvertisementFactory.newAdvertisement(ModuleClas-

sAdvertisement.

getAdvertisementType());

myService1ModuleAdvertisement.setName("JXTAMOD:JXTA-

CH19EX1");

myService1ModuleAdvertisement.setDescription("Service 1 of 

Chapter 19 example 1");

myService1ID = IDFactory.newModuleClassID();

myService1ModuleAdvertisement.setModuleClassID(myService1ID);

displayArea.append("Publishing our Module 

Advertisement....\n");

try {

myDiscoveryService.publish(myService1ModuleAdvertisement,

DiscoveryService.ADV);

myDiscoveryService.remotePublish(myService1ModuleAdvertisement,

DiscoveryService.ADV);

} catch (Exception e) {

System.out.println("Error during publish of Module 

Advertisement");

System.exit(-1);

}

}

private PipeAdvertisement createPipeAdvertisement() {

PipeAdvertisement myPipeAdvertisement = null;

try {

FileInputStream is = new FileInputStream("service1.adv");

myPipeAdvertisement = (PipeAdvertisement)AdvertisementFactory.newAd-

Listing 16.4 Code for peer and peer info discovery. (continues)



C h a p t e r  16 Peer Monitoring and Metering312

vertisement(new

MimeMediaType("text/xml"), is);

} catch (Exception e) {

System.out.println("failed to read/parse pipe 

advertisement");

e.printStackTrace();

System.exit(-1);

}

return myPipeAdvertisement;

}

private void buildModuleSpecificationAdvertisement(PipeAdvertisement 

myPipeAdvertisement) {

ModuleSpecAdvertisement myModuleSpecAdvertisement = 

(ModuleSpecAdvertisement) AdvertisementFactory.newAdvertisement(

ModuleSpecAdvertisement.

getAdvertisementType());

myModuleSpecAdvertisement.setName("JXTASPEC:JXTA-CH19EX1");

myModuleSpecAdvertisement.setVersion("Version 1.0");

myModuleSpecAdvertisement.setCreator("gradecki.com");

myModuleSpecAdvertisement.setModuleSpecID(IDFactory.

newModuleSpecID(myService1ID));

myModuleSpecAdvertisement.setSpecURI("<http://www.jxta.org/CH19EX1>");

myModuleSpecAdvertisement.setPipeAdvertisement(myPipeAdvertisement);

displayArea.append("Publishing Module Specification 

Advertisement....\n");

try {

myDiscoveryService.publish(myModuleSpecAdvertisement,

DiscoveryService.ADV);

myDiscoveryService.remotePublish

(myModuleSpecAdvertisement, DiscoveryService.ADV);

} catch (Exception e) {

System.out.println("Error during publish of Module 

Specification Advertisement");

e.printStackTrace();

System.exit(-1);

}

createInputPipe(myPipeAdvertisement);

}

private void createInputPipe(PipeAdvertisement 

myPipeAdvertisement) {

displayArea.append("Creating Input Pipe....\n");

PipeMsgListener myService1Listener = new PipeMsgListener() {

Listing 16.4 Code for peer and peer info discovery. (continues)



A Sample Application for Discovering Peers 313

public void pipeMsgEvent(PipeMsgEvent event) {

Message myMessage = null;

try {

myMessage = event.getMessage();

String myMessageContent;

myMessageContent = myMessage.getString("DataTag");

if (myMessageContent != null) {

displayArea.append("Message received: " + 

myMessageContent + "\n");

displayArea.append("Waiting for message...\n");

return;

} else {

displayArea.append("Invalid tag\n");

return;

}

} catch (Exception ee) {

ee.printStackTrace();

return;

}

}

};

try {

myPipe = myPipeService.createInputPipe(myPipeAdvertisement, 

myService1Listener);

} catch (Exception e) {

System.out.println("Error creating Input Pipe");

e.printStackTrace();

System.exit(-1);

}

}

private void findPeers() {

displayArea.append("Sending Peer Discovery...\n");

DiscoveryListener peerDiscoveryListener = new 

DiscoveryListener() {

public void discoveryEvent (DiscoveryEvent ev) {

PeerAdvertisement localPeerAdv = null;

DiscoveryResponseMsg localResource = ev.getResponse();

String localAdv = localResource.getPeerAdv();

try {

InputStream localIS = new 

ByteArrayInputStream(localAdv.getBytes());

Listing 16.4 Code for peer and peer info discovery. (continues)



C h a p t e r  16 Peer Monitoring and Metering314

localPeerAdv = (PeerAdvertisement)AdvertisementFactory.

newAdvertisement(new

MimeMediaType("text/xml"), localIS);

displayArea.append("Discovery Event from peer: " + 

localPeerAdv.getName() + " with " + 

localResource.getResponseCount() + " peers\n");

} catch (Exception e) {

System.out.println("Error during Peer Discovery\n");

e.printStackTrace();

return;

}

Enumeration localEnum = localResource.getResponses();

String tempString = null;

while (localEnum.hasMoreElements()) {

try {

tempString = (String)localEnum.nextElement();

localPeerAdv = 

(PeerAdvertisement)AdvertisementFactory.newAdvertisement(new

MimeMediaType("text/xml"), new 

ByteArrayInputStream(tempString.getBytes()));

displayArea.append("Peer Name = " + 

localPeerAdv.getName() + "\n");

displayArea.append("Sending Peer Info Discovery for 

" + localPeerAdv.getID() + "\n");

getPeerInfo(localPeerAdv.getID());

} catch (Exception e) {

System.out.println("Error during Peer Discovery\n");

e.printStackTrace();

continue;

}

}

}

};

myDiscoveryService.getRemoteAdvertisements(null,

DiscoveryService.PEER, null, null, 5, peerDiscoveryListener);

}

Line 233:  private void getPeerInfo(ID localPeerID) {

displayArea.append("Sending Peer Info Request for " + 

localPeerID + "\n");

PeerInfoListener peerInfoListener = new PeerInfoListener() {

public void peerInfoResponse(PeerInfoEvent e) { 

PeerInfoResponseMessage adv = 

e.getPeerInfoResponseMessage();

displayArea.append("Total Uptime in milliseconds = " + 

Listing 16.4 Code for peer and peer info discovery. (continues)



A Sample Application for Discovering Peers 315

adv.getUptime() + "\n");

Enumeration localInEnum = adv.getIncomingTrafficChannels();

if (localInEnum.hasMoreElements()) {

String inChannelName = (String)localInEnum.nextElement();

displayArea.append("Incoming Channel Bytes = " + 

adv.getIncomingTrafficOnChannel(inChannelName) + "\n");

}

Enumeration localOutEnum = adv.getOutgoingTrafficChannels();

if (localOutEnum.hasMoreElements()) {

String outChannelName = 

(String)localOutEnum.nextElement();

displayArea.append("Outgoing Channel Bytes = " + 

adv.getOutgoingTrafficOnChannel(outChannelName) + "\n");

}

}

};

myPeerInfoService.getRemotePeerInfo(localPeerID,

peerInfoListener);

Line 255:  }

}

Listing 16.4 Code for peer and peer info discovery. (continued)

Explaining the Code
The code in Listing 16.4 is based on the peer code from Chapter 12. The code
builds a GUI, advertises an input pipe, and displays a button. When the button
is clicked, the code found in Listing 16.2 will be executed. The method, called
findPeers(), is responsible for building a listener object and submitting the peer
query. When a peer is found, a call is made to the getPeerInfo() method.

Lines 233–255 build the getPeerInfo() method for finding information about a
peer. The method requires a string that represents the peer ID of the peer for
which the information is needed. 

Lines 236–252 instantiate a PeerInfoListener object to handle the asynchronous
reception of PeerInfo messages. Line 238 pulls the PeerInfoAdvertisement from
the event object passed to the listener. The remaining code pulls information
about the advertisement by using the methods associated with the advertise-
ment object. 

Line 254 sets the query of a specific peer for a PeerInfoAdvertisement. When
the peer returns the information, the object built earlier will be executed.



Code Output
When the code is executed, information for the peers will be displayed, as
shown in Figure 16.4. It should be noted that peers aren’t required to respond to
peer information requests. There are times when a request will be made and no
response received.

C h a p t e r  16 Peer Monitoring and Metering316

Figure 16.4 The PeerInfo application.



Summary

In this chapter, we discussed how to find peers in a group by using the discov-
ery service and a listener object. Once a peer is found—either a specific one or
all peers in the group—we can find information about the peer by executing the
getRemotePeerInfo() method. We can further expand the functionality of an
administrator peer by creating a list of the peers and displaying updated infor-
mation in either a list or a graphical representation of the network. 

Sometimes it is useful to keep track of bytes going into and out of a peer. If an
administrator peer sees that another peer is using a proportionally large
amount of bandwidth, it could take action to govern the peer. When the JXTA
Peer Information Protocol matures, this type of functionality may be built into
peers.

In the next chapter, the topic of peers existing behind firewalls and using Net-
work Address Translation is covered. The discussion focuses on how to config-
ure peers to relay messages and find Rendezvous peers out on the open
Internet.

Summary 317





Not all JXTA peers will be attached directly to the Internet—some may
reside behind a firewall or use Network Address Translation (NAT). As
far as the JXTA network is concerned, these peers do not exist since

they cannot be directly contacted. In this chapter, we discuss how to configure
peers so that they can be accessed and connect to the outside world. We build
a simple application that can be used as a router by itself, as a rendezvous peer
by itself, or as both a router and a rendezvous peer.

The JXTA Network Topology

The JXTA network consists of a disparate topology in which peers can exist
independently or as part of a group of peers. Theoretically, each peer has direct
access to all other peers in the JXTA network. However, there are two situa-
tions that can put a wrinkle in this topology. The first is when a peer is located
behind a firewall. A firewall is designed to limit communication in and out of a
private network. This means that the ports used by a JXTA peer will be unable
to pass information back and forth. In most cases where a firewall is in place,
we can still gain access by using the HTTP protocol and port 80. A JXTA peer
can take advantage of this by enabling the transport of information using HTTP
through the Configurator dialog box presented when the peer is first executed. 

Configuring NAT and Firewall Peers

C H A P T E R17

319



Another problem with firewalls and the HTTP protocol is the fact that HTTP is
a push/pull protocol. A peer on the outside of a firewall will be unable to “see”
or use a peer behind the firewall because it needs to send an HTTP request
through the firewall, and most firewalls will only allow a response message
through. To handle this, a router or relay peer can be used to handle the relay of
information between the two peers.

In addition, discovery of advertisements is complicated because of the lack of
complete communication through the firewall. A rendezvous peer can be used
in this case. The rendezvous peer acts as a common peer with a large cache of
advertisements. A peer behind a firewall can designate one or more rendezvous
peers for use when publishing and discovering advertisements. 

The second problem that needs to be considered is Network Address Transla-
tion (NAT). If a network is using NAT, all internal IP addresses aren’t visible to
the outside world. The only IP address visible is the server machine that han-
dles all requests on behalf of the machines in the internal network that have a
NAT IP address. Both the rendezvous and router/relay peers can be used to
solve the problem of peers having internal IP addresses.

Running a Peer Behind a Firewall/NAT

Let’s look at an example in which a peer is behind a firewall and has an IP
address assigned through NAT. Within the network is a gateway peer, which the
client will use to join the JXTA network and WorldNetPeer peer group. The
gateway machine has been seeded with the static rendezvous peers in the JXTA
network as well as another one of our own peers, called a communication

peer. This peer has been configured as a rendezvous peer and has also 
published a pipe advertisement. The code for all three clients can be found 
on the book’s Web site at www.wiley.com/compbooks/gradecki, and is based 
on the code from Chapter 15 and the previous router/rendezvous peer code.
Figure 17.1 shows how the network is currently set up.

Communication Peer Configuration
The communication peer is executing on a machine located on the Internet,
implying that it has a static IP address. The peer has a single input pipe, which
will be advertised locally and remotely to the entire JXTA network. The remote
advertisement is possible because the communication peer is configured to be

C h a p t e r  17 Configuring NAT and Firewall Peers320



a rendezvous peer and has the JXTA network rendezvous peers loaded as well.
When the server peer executes, the pipe advertisement will be propagated
through the entire network.

Figure 17.2 shows the Advanced tab for the communication peer. Since the peer
is located on the Internet, both the TCP and HTTP protocols are checked so
that the peer has complete access to all other peers. It is also important that the
different protocols are using different ports. If you don’t specify different ports,
one of the protocols will be unable to bind a socket for communication. Unfor-
tunately, no application error is created that can be caught, but the error can be
seen in the debug information (which we discuss later in this chapter under the
section “Using the Configurator’s Debug Option”).

Figure 17.3 shows the Rendezvous/Routers tab. The most important thing 
to note on this screen is that the Act As Rendezvous checkbox is enabled,
allowing the peer to act as a rendezvous for advertisements and such. To be
truly effective as a rendezvous, the peer also needs to have a list of other 
rendezvous peers in the network. The list is pulled from one of the JXTA servers
on the network.

Once configured, the server will execute, publish its pipe advertisement, and
wait for both a connection to its pipe and the receipt of information from
clients.

Running a Peer Behind a Firewall/NAT 321

Client
Behind Firewall and NAT

TCP - 9706
HTP - 9705

Firewall

Gateway
Not rendezvous

tcp - 9701
http - 9700

Communication Peer
Functions as a 

Rendezvous Peer

Publishes Input Pipe

Tcp - 9702
http - 9704

Client connects to Gateway
Using Port 9700

Gateway knows about 
Rendezvous  

Figure 17.1 A client behind a firewall and that uses a NAT address.



C h a p t e r  17 Configuring NAT and Firewall Peers322

Figure 17.2 The Advanced tab for the communication peer.

Figure 17.3 The Rendezvous/Routers tab for the communication peer.



Gateway Configuration
The gateway peer is based on the code in Listing 17.1. The peer itself doesn’t
have any functionality, but will be configured to act as a router or gateway for
peers behind firewalls and peers that use NAT addresses. Figure 17.4 shows the
Advanced tab for the gateway machine. The gateway machine is also directly
connected to the Internet, and has both the TCP and HTTP protocols config-
ured. Again, notice the port values are different for the protocols. Although the
values aren’t 9700 and 9701 (the default for JXTA), they are still in the range of
ports that applications can use on a machine. 

Figure 17.5 shows the Rendezvous/Routers tab of the gateway machine. To
make the peer a gateway, the system requires that the checkbox labeled “Act as
a Gateway” be enabled and that the peer have both the TCP and HTTP proto-
cols checked. We can use the edit line under the checkbox to list the IP address
that internal peers should use for contacting this gateway peer. Because we
want this gateway peer to have direct access to the server/rendezvous peer cre-
ated earlier, we added its IP and HTTP port value to the Available HTTP Ren-
dezvous list box. Notice that port 9704 is listed, which matches the port
specified in the HTTP protocol section of the server machine. 

Once executed, the gateway peer will start the appropriate gateway services
and contact the rendezvous peer to be sure it exists on the network. 

Running a Peer Behind a Firewall/NAT 323

Figure 17.4 The Advanced tab for the gateway.



Figure 17.5 The Rendezvous/Routers tab for the gateway.

The Discovery Peer Configuration
The final peer in our sample network is the discovery peer. This peer performs
a local and remote discovery to locate the pipe advertisement created and pub-
lished by the communication peer. Unfortunately, the discovery peer is behind
a firewall and uses a NAT address. For this reason, we must configure the peer
to use the gateway peer as its portal to the network. 

Figure 17.6 shows the Advanced tab of the client peer. The client peer is exe-
cuting on a RedHat Linux box on an internal network. Both the TCP and HTTP
protocols are configured with appropriate port values, but they won’t actually
be used because we will instruct the peer to use a gateway peer instead. 

Figure 17.7 shows the Rendezvous/Routers tab, with the Use A Gateway option
enabled. The value in the Public Address (static NAT address) edit line is the
gateway peer’s IP and port. The system will require that this port value be open
through the firewall. If this port isn’t available, select another port, such as port
80. You also need to modify the gateway peer to use port 80 instead of port 9700. 

Once executed, the discovery peer contacts the gateway peer for access to the
network. The discovery peer then requests a remote discovery for a pipe adver-
tisement. The discovery propagates from the client to the gateway peer and
finally to the communication peer. Once the advertisement is found, appropri-
ate connections are made, and data is sent to the communication peer from the
discovery peer.

C h a p t e r  17 Configuring NAT and Firewall Peers324



Running a Peer Behind a Firewall/NAT 325

Figure 17.6 The discovery peer’s Advanced tab.

Figure 17.7 The discovery peer’s Rendezvous/Routers tab.



Using the Configurator’s Debug Option

If you are interested in seeing the details behind the various “hidden” services
being used by a peer, you can use the Configurator to set the debug option.
Click on the Configurator’s Advanced tab and select the Trace Level drop-down
box (see Figure 17.6). You’ll see several choices, among them the debug option. 

For an example of the output from a debug option, look at Listing 17.1. This out-
put is from a normal peer that has been given a specific rendezvous peer to
access. Unfortunately, the rendezvous peer is not available. There is really
nothing in the application GUI to show a problem, but in Listing 17.1 we see the
rendezvous peer wasn’t found. This specific peer had been instructed via the
Configurator screen to contact a rendezvous peer using the HTTP protocol at
port 9700 and the TCP protocol at port 9701, but neither had a peer available.

After a few moments, the peer tries to find a local advertisement for an input
pipe; it doesn’t find one, so it then tries to send out a remote discovery. How-
ever, since no rendezvous peers were available to handle the remote discovery,
the peer ends. You can see this sequence of errors in Listing 17.2.

C h a p t e r  17 Configuring NAT and Firewall Peers326

<DEBUG 20:45:41,074 HttpClientMessageSender:170> Ping result to 

http://12.254.21.182:9700/ping: false

<DEBUG 20:45:41,074 RendAddrCompactor:197> Cannot connect to 

Rendezvous at http://12.254.21.182:9700:java.io.IOException: 

Cannot ping rendezvous

<DEBUG 20:45:41,074 RendezVousServiceImpl:487> 

connectToRendezVous with EndpointAddress

<DEBUG 20:45:41,084 RendezVousServiceImpl:496>     to = 

tcp://12.254.21.182:9701

<DEBUG 20:45:41,084 TcpTransport:817> ping to 

tcp://12.254.21.182:9701/

<DEBUG 20:45:42,076 TcpTransport:777> Ping 

[tcp://12.254.21.182:9701/] exception

java.net.ConnectException: Connection refused: connect

<DEBUG 20:45:42,076 TcpTransport:841> ping returns false

<DEBUG 20:45:42,076 RendAddrCompactor:197> Cannot connect to 

Rendezvous at tcp://12.254.21.182:9701:java.io.IOException: 

Cannot ping rendezvous

Listing 17.1 Debug errors from an invalid rendezvous peer.

<DEBUG 20:47:21,018 PipeResolver:261> findLocal urn:jxta:uuid

-CCCDF5AD8154D3D87A391210404E59BE4B888209A2241A4A162

Listing 17.2 Failed discovery attempts. (continues)



Building a Router/Rendezvous Peer 327

A10916074A9504

<DEBUG 20:47:21,018 PipeResolver:733> findCached urn:jxta:uuid

-9CCCDF5AD8154D3D87A391210404E59BE4B888209A2241A4A162

A10916074A9504

<DEBUG 20:47:21,018 PipeResolver:733> findCachedurn:jxta:uuid

9CCCDF5AD8154D3D87A391210404E59BE4B888209A2241A4A162

A10916074A9504

<DEBUG 20:47:21,018 PipeResolver:816> findRemote waiting...

<DEBUG 20:47:21,018 PipeResolver:828> findRemote timeout.

<DEBUG 20:47:21,018 NonBlockingOutputPipe:132> Constructor: no 

macthing InputPipe for urn:jxta:uuid-9CCCDF5AD815

4D3D87A391210404E59BE4B888209A2241A4A162A10916074A9504

Unable to create output pipe

Listing 17.2 Failed discovery attempts. (continued)

Building a Router/Rendezvous Peer

If you have a peer behind a firewall, it will need access to a rendezvous peer
outside the firewall in order to gain access to the JXTA network. As we’ve seen,
you can configure a peer to access the known JXTA network rendezvous peers
or you can build your own. The application code in Listing 17.3 provides a sim-
ple peer that can be executed as a rendezvous peer, a router peer, or both simul-
taneously.

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import net.jxta.document.*;

import net.jxta.peergroup.*;

import net.jxta.exception.*;

import net.jxta.impl.peergroup.*;

import net.jxta.id.*;

import net.jxta.protocol.*;

import net.jxta.platform.*;

import net.jxta.endpoint.*; 

public class Example1 extends JFrame {

static PeerGroup netPeerGroup = null;

private JTextArea displayArea;

Listing 17.3 The router/rendezvous peer code. (continues)



C h a p t e r  17 Configuring NAT and Firewall Peers328

public static void main(String args[]) {

Example1 myapp = new Example1();

myapp.addWindowListener (

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

myapp.launchJXTA();

myapp.run();

}

public Example1() { 

super("Router/Rendezvous Peer");

Container c = getContentPane();

displayArea = new JTextArea();

c.add (new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300,150);

show();

}

public void run() {

displayArea.append("Just a Router/Rendezvous Peer");

}

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA 

Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

e.printStackTrace();

System.exit(1);

}

}

}

Listing 17.3 The router/rendezvous peer code. (continued)



As you can see, the code appears to be very simple; it builds a peer, starts the
JXTA service, and waits for the application to be stopped. Behind the scenes,
though, various services are being started. When the code is compiled and exe-
cuted, two additional libraries must be linked into the code:

■■ org.mortbay.jetty.jar

■■ javax.servlet.jar

These two additional libraries provide the HTTP servlet functionality for the
rendezvous functionality. You can find the files on the JXTA web site at
www.jxta.org on the downloads page. Pull down the all.zip of the binaries sec-
tion to find the files. Upon execution, the application will produce the following
on the command screen (be sure you have trace debugging turned on):

15:20:08.458 EVENT  Starting Jetty/3.1.1

15:20:08.528 EVENT  Started ServletHandler in HandlerContext[/]

15:20:08.758 EVENT  Started SocketListener on 

12.254.21.182:9700

15:20:08.768 EVENT  Started org.mortbay.http.HttpServer@2001ff

15:20:10.220 EVENT 

net.jxta.impl.endpoint.servlethttp.HttpRelayServlet: init

15:20:59.201 EVENT

net.jxta.impl.endpoint.servlethttp.HttpMessageReceiverServlet:

init

These lines indicate to the user that the services have started properly. At this
point, how do you activate the rendezvous and router functionality? All of 
the switches for the functionality are found on the Configurator screen, as
described previously.

This screen allows us to set up the current peer to use a combination of the TCP
and HTTP protocols. If the peer is to be a rendezvous or router, then more than
likely the peer is directly connected to the Internet through a dedicated or dial-
up connection. Restrictions to the flow of information don’t exist, which is why
this peer is a good candidate to have special functionality. Remember that peers
behind firewalls or peers that have a NAT IP address will use a router peer that
must have unrestricted access to the network. For a rendezvous peer, you will
want to have as many protocols available for message passing as possible. 

The TCP and HTTP checkboxes should be enabled. Notice the use of different
ports since the protocols will need to have independent paths for passing data.
The Configurator will pick the current IP address of the computer it is being
executed on. If you have multiple IP addresses assigned to a box, enable the
Manual checkbox, and an IP address will appear automatically in the edit line.
In this way, a different IP address can be specified for both the HTTP and IP
protocols.

Building a Router/Rendezvous Peer 329



Once the protocol ports and options are set, click on the Rendezvous/Router
tab to display the screen shown previously in Figure 17.7. This tab contains two
important checkboxes:

■■ Act As A Rendezvous

■■ Act As A Gateway (both TCP and HTTP must be enabled)

If you want the peer to act as a rendezvous, simply check the Act As A Ren-
dezvous checkbox. In order to be an effective rendezvous peer, it should have
other rendezvous peers to communicate with. At the bottom of the screen, you
see a button called Download Gateways And Rendezvous Lists. When you click
this button, a dialog box will appear that allows you to enter three URLs. The
URLs are hard-coded into the dialog box for each new release of the JXTA Java
reference implementation. If different URLs are available (usually found on the
mailing lists for JXTA), you should enter them. It is the goal of the JXTA project
to keep these URLs static and not change them, so the hard-coded values
should work correctly. 

Once you’ve entered the URLs, click the Load button to contact the network
machines and download a list of rendezvous and router peers. These lists will
allow the current rendezvous peer to have other peers to pass information and
advertisements to.

If you want the peer to act as a gateway/router, click the button at the bottom
of the screen. Notice the note associated with the checkbox for a gateway: To
be a gateway, you must have both the TCP and HTTP protocol checkboxes
enabled on the Advanced tab. Now your peers that have NAT addresses or that
are behind your firewall can use the router peer to gain access to the broader
JXTA network.

Summary

In this chapter, we showed you a number of different network configurations
using both peers in the clear and peers that are behind firewalls or that use 
NAT addresses. We presented the code for building simple rendezvous and
router peers along with the options for allowing all the peers to communicate
effectively. 

In the next chapter, we look at how low-level communication services can be
used to send data from one peer to another without relying on a pipe for the
communication channel. This enables you to build your own communication
protocol, if needed.

C h a p t e r  17 Configuring NAT and Firewall Peers330



In the first part of this book, we discussed the many protocols that make up
the JXTA specification, including the endpoint service and its associated
protocols. The endpoint service enables a JXTA peer to exchange data using

an established transport protocol, such as TCP/IP or HTTP. The endpoint ser-
vice can be expanded to include other transport mechanisms, such as Blue-
tooth for wireless communication.

One of the fundamental components of the endpoint service is the endpoint
itself. In the case of TCP/IP, an endpoint consists of a peer’s IP address and port
number. In most situations, two peers will exchange information by using a
pipe that hides all the communication details. One of these hidden details
involves the routing of a message from one peer to another when the peers
aren’t on the same network. The Java reference implementation allows devel-
opers to bypass the use of pipes and built-in routing if they wish, and commu-
nicate directly with peers at a lower level. In this chapter, low-level com-
munication channels will be built between peers using the endpoint service in
the Java Reference Implementation.

The Endpoint Service

The endpoint service is the mechanism used for building communication chan-
nels between peers. Pipes will use the endpoint service implemented as part of
the Peer Endpoint Protocol to logically connect any two peers. If we don’t want
to utilize the features of a pipe, we can use the endpoint service directly. A peer

Using Endpoints for Low-Level
Communication

C H A P T E R18

331



can use the service to build its own networks and to set up a specific topology,
if necessary. For example, we could design an application that has individual
peers communicating in a tree with a single root node propagating information
to a second level, and have each level send data to another level. 

Although it is not expected that traditional P2P systems will need to use this
low-level communication—pipes provide almost all of the necessary function-
ality—it is good to know about the service. We could use the endpoint service
instead of a pipe, for example, if the specification of a system requires that all
communication occur between two peers only. Because a pipe might route
information using intermediary peers, the endpoint service can be used instead
to enable communication directly from one peer to another.

To illustrate how to use the endpoint service, let’s consider an example. We
build two peers. One peer, the receiving peer, will launch itself into the JXTA
network and display all of the current endpoints associated with the peer. The
other peer will be a sender; it will accept the endpoint of a peer, and use it to
build a communication channel through which data will be sent.

All peers are started with several different endpoints, depending on how they
were configured when first executed. As you recall, the Configurator, which
executes when a peer is first run, includes the option of allowing both TCP/IP
and HTTP communication. Each of these communication types will build an
endpoint on the peer. Listener objects can be built and attached to the end-
points to process incoming data through the endpoint service based on a spe-
cific service name and parameter value. When data comes through the
endpoints, the service name and parameter value are checked by the code to
determine whether a listener is available to process the incoming data.

To help with the assignment of endpoints, the receiving peer, when executed,
displays on its GUI all of the endpoints and their associated IDs available for
this peer. A sending peer uses these IDs for the communication hookup. In Fig-
ure 18.1, the receiving peer is started and shows three different endpoints avail-
able for use. The endpoints defined on the receiving peer shown in Figure 18.1
are

■■ A secure endpoint using TLS transport

■■ A TCP/IP endpoint

■■ An endpoint defined using a JXTA ID

The code in Listing 18.1 registers a listener to determine whether any messages
arrive on the endpoints that should be processed. The listener is designed to
monitor messages based on an endpoint service name and parameter value.
These two values are strings concatenated together and sent with all messages
to a peer. Once the listener has been set up, the peer can continue with other

C h a p t e r  18 U s i n g  E n d p o i n t s  f o r  L ow - Le v e l  C o m m u n i c a t i o n332



tasks because the listener will be triggered asynchronously when an appropri-
ate message is received. 

When the listener is triggered, the listener method will receive both the source
and destination addresses of the communication, as well as a message object.
The string associated with the message can be extracted and processed. We can
be sure that the message is appropriate for the peer because it was sent using a
specific service name and parameter value. 

As Figure 18.2 shows, the sending peer has two buttons on its GUI with a text
area between them. The button at the top is designed to send a message to an
endpoint directly. When a user clicks that button, a dialog box will appear,
prompting the user to enter an endpoint address to be used for communication.
The system will build a connection to that address, and send a test message
using a service name and parameter value known to exist on the receiving peer. 

The user clicks the bottom button to send a message using propagation and the
service name and parameter value. The user does not enter a specific endpoint
in this case because the system will send the message to allowed peers, and
only those who recognize the service name and parameter value will process
the information.

Endpoint Service 333

Figure 18.1 The receiving peer shows three endpoints..

Figure 18.2 The sending peer has two buttons.



Figure 18.3 shows what happens when a user clicks the top button on the send-
ing peer. The endpoint used for our example is the TCP endpoint defined on the
receiving peer. If the user clicks the Send Data button at the bottom, a message
will be sent using propagation to all peers that can be contacted using the end-
point service of the host peer. The result of clicking the bottom button is shown
in Figure 18.4.

Code for the Endpoint Receiving Peer

Listing 18.1 contains the code necessary to execute a peer that creates an end-
point handler capable of receiving messages addressed to a specific service
name and parameter. The service name and parameter are simple strings used
to create unique channels of communication using a single endpoint service. 

C h a p t e r  18 U s i n g  E n d p o i n t s  f o r  L ow - Le v e l  C o m m u n i c a t i o n334

Figure 18.3 The receiving peer’s view of a message sent directly.

Figure 18.4 The receiving peer’s view of a message sent using propagation. 

Line 1: import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

Listing 18.1 Endpoint receiving code. (continues)



The Code for the Endpoint Receiving Peer 335

import net.jxta.document.*;

import net.jxta.peergroup.*;

import net.jxta.exception.*;

import net.jxta.impl.peergroup.*;

line 10: import net.jxta.id.*;

import net.jxta.discovery.*;

import net.jxta.pipe.*;

import net.jxta.protocol.*;

import net.jxta.platform.*;

import net.jxta.endpoint.*; 

import java.util.Enumeration;

public class receiving extends JFrame {

Line 20:    static PeerGroup netPeerGroup = null;

private DiscoveryService myDiscoveryService = null;

private EndpointService myEndpointService = null;

private JTextArea displayArea;

public static void main(String args[]) {

receiving myapp = new receiving();

myapp.addWindowListener (

new WindowAdapter() {

Line 30:            public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

myapp.run();

}

public receiving() { 

super("Receiving");

Line 40:

Container c = getContentPane();

displayArea = new JTextArea();

c.add (new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(300,150);

show();

launchJXTA();

Line 50:      getServices();

}

public void run() {

Listing 18.1 Endpoint receiving code. (continues)



C h a p t e r  18 U s i n g  E n d p o i n t s  f o r  L ow - Le v e l  C o m m u n i c a t i o n336

EndpointListener objectEndpointListener = 

new EndpointListener() {

public void processIncomingMessage(Message message, 

EndpointAddress source, EndpointAddress destination)

{

displayArea.append("Message source = " + source + ", 

destination = " + destination + "\n");

displayArea.append("Message = " + 

message.getString("MessageText"));

Line 60:        }

};

EndpointProtocol tempInst = null;

Enumeration currentProtocols = 

myEndpointService.getEndpointProtocols();

while (currentProtocols.hasMoreElements())

{

tempInst = (EndpointProtocol)

currentProtocols.nextElement();

displayArea.append("Endpoint address: " + 

tempInst.getPublicAddress().toString() + "\n");

}

Line 70:      myEndpointService.addListener(

"tempServiceName"+"tempParams",

objectEndpointListener);

}

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA 

Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

Line 80:          e.printStackTrace();

System.exit(1);

}

}

private void getServices() {

displayArea.append("Obtaining Services....\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

myEndpointService = netPeerGroup.getEndpointService();

}

}

Listing 18.1 Endpoint receiving code. (continued)



The code consists of a GUI with a single display text area. When the application
begins, the peer will connect to the default JXTA peer group and obtain a local
object representing the peer group’s endpoint service (on line 87).

Lines 55 through 61 define an Endpoint listener anonymous inner class and
associated object. For this listener, the only method needed is processIncom-
ingMessage(). The method accepts the message that has been sent to this peer,
the address of the source peer, and the address of the destination. For our
example, the string associated with the message is pulled out in line 59 and dis-
played in the GUI. The endpoint addresses are also displayed. 

Lines 63 through 69 run through all of the endpoint addresses available on the
current peer. This step is necessary so that the user can type one of the
addresses into the dialog box of the client. The getEndpointProtocols() method
associated with the endpoint service returns an Enumeration object consisting
of elements for each of the addresses. 

Line 71 calls the addListener() method of the endpoint service to associate the
listener object previously built with a specific handler name. The handler name
is made through a concatenation of the serviceName and the serviceParam val-
ues. In our case, sample strings are used. The remote or client peer will need to
address messages to this handler name specifically.

Once the various methods are called, the peer will enter its run() method and
begin the execution of the application event loop. A remote peer or peers can
address messages to the peer and cause the listener to trigger.

Code for the Endpoint Sending Peer

As you read this chapter, you will quickly realize that using the endpoint service
and related functionality isn’t the best way to communicate because the client
needs to know specific information about the server. In this case, the sending
peer needs to know an exact endpoint address to begin communicating with
the receiving peer.

The code in Listing 18.2 builds a peer with a GUI containing a text area and two
buttons. Just as the receiving peer did, the sending peer connects to the JXTA
network and allocates an endpoint service to begin the communication process
with the server.

Code for the Endpoint Sending Peer 337

Line 1: import java.io.*;

import java.awt.*;

import java.awt.event.*;

Listing 18.2 Endpoint sending code. (continues)



C h a p t e r  18 U s i n g  E n d p o i n t s  f o r  L ow - Le v e l  C o m m u n i c a t i o n338

import javax.swing.*;

import java.net.MalformedURLException;

import java.net.URL;

import java.util.Enumeration;

import net.jxta.document.*;

Line 10: import net.jxta.peergroup.*;

import net.jxta.exception.*;

import net.jxta.impl.peergroup.*;

import net.jxta.id.*;

import net.jxta.discovery.*;

import net.jxta.pipe.*;

import net.jxta.protocol.*;

import net.jxta.endpoint.*;

public class sending extends JFrame {

Line 20:

static  PeerGroup           netPeerGroup = null;

private DiscoveryService      myDiscoveryService = null;

private EndpointService   myEndpointService = null;

private JTextArea           displayArea;

private JButton             sendButton;

private JButton          sendButton2;

private final static      MimeMediaType XMLMIMETYPE = 

new MimeMediaType("text/xml"); 

Line 30:    public static void main(String args[]) {

sending myapp = new sending();

myapp.addWindowListener (

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

}

);

Line 40:        myapp.run();

}

public sending() { 

super("Sending");

Container c = getContentPane();

sendButton = new JButton("Send Data");

Listing 18.2 Endpoint sending code. (continues)



Code for the Endpoint Sending Peer 339

Line 50:      sendButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

sendData();

}

}

);

c.add(sendButton, BorderLayout.NORTH);

sendButton2 = new JButton("Send Data");

Line 60:      sendButton2.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

sendData2();

}

}

);

c.add(sendButton2, BorderLayout.SOUTH);

displayArea = new JTextArea();

Line 70:      c.add(new JScrollPane(displayArea), 

BorderLayout.CENTER);

setSize(300,150);

show();

launchJXTA();

getServices();

}

public void run() {

Line 80:      displayArea.append("Click on Button to send 

data...\n");

}

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA 

Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

e.printStackTrace();

Line 90:            System.exit(1);

}

}

Listing 18.2 Endpoint sending code. (continues)



C h a p t e r  18 U s i n g  E n d p o i n t s  f o r  L ow - Le v e l  C o m m u n i c a t i o n340

private void getServices() {

displayArea.append("Getting Services...\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

myEndpointService = netPeerGroup.getEndpointService();

}

Line 100:    private void sendData() {

String toAddress = JOptionPane.showInputDialog("Enter 

Address to Send String:");

EndpointAddress endpointAddress = 

myEndpointService.newEndpointAddress(toAddress);

endpointAddress.setServiceName("tempServiceName");

endpointAddress.setServiceParameter("tempParams");

if (myEndpointService.ping(endpointAddress)) {

Message message = myEndpointService.newMessage();

Line 110:        message.setString("MessageText", "Just a 

String");

try {

EndpointMessenger messenger = 

myEndpointService.getMessenger(endpointAddress);

messenger.sendMessage(message);

} catch (IOException e) {

System.out.println("Error sending to endpoint");

}

} else {

displayArea.append("No Endpoint Available\n");

Line 120:      }

}

private void sendData2() {

Message message = myEndpointService.newMessage();

message.setString("MessageText", "Just a propagated 

string");

try {

myEndpointService.propagate(message, "tempServiceName", 

"tempParams");

} catch (IOException e) {

Line 130:            System.out.println("Error sending to 

endpoint");

}

}

}

Listing 18.2 Endpoint sending code. (continued)



Each button has a listener method associated with it, so the only work to be
performed after joining the JXTA network is to display a message to the user to
click a button and enter the application event loop. Clicking the top button cre-
ates a direct connection between the sending and receiving peers, and sends a
message. Users wishing to use the propagate() method of the endpoint service
to send a message should click the bottom button.

Lines 100 through 121 implement the functionality for the top button. When the
user clicks the button, a dialog box is created (see line 102) to receive an end-
point address from the user. The user enters one of the endpoint addresses
listed by the receiving peer. As mentioned earlier, all messages sent with the
endpoint service are addressed to a specific handler created through the con-
catenation of the serviceName and serviceParam strings. On line 104, an End-
pointAddress object is created using the address entered by the user. Lines 105
and 106 set the serviceName and serviceParm values of the endpoint address.

On line 108, the ping() method is used to ensure that the remote peer is avail-
able to receive a message. This is very important; the system will be unable to
build a connection without the server available. Line 109 creates a message
object to hold the information being sent to the server, and line 110 attaches a
string to the object.

Lines 112 through 117 attempt to build a connection between the peers and
send the message. The connection is built when the getMessenger() method is
called on line 113. The method will do all of the dirty work associated with
building the connection to the remote peer based on the protocol of the end-
point address passed to the method. Once the messenger is successfully instan-
tiated, the message is sent.

Lines 123 through 133 implement the functionality of the second button. The
code begins by instantiating a message object and populating it with a string.
Next, the propagate() method is called, and passes the message to be sent on
the JXTA network and the serviceName and serviceParm strings. Notice that no
endpoint address is passed to the method; the system will send the message to
all available peers on the network. Once peers have implemented the tempSer-
viceNametempParams handler, they will process the message.

Summary

The endpoint service provides a low-level communication mechanism that can
be used to bypass the JXTA pipes. By using this service, an application can
bypass the default JXTA topology and build its own by manually sending mes-
sages. When using endpoints, a sending peer needs to know specific informa-
tion about an endpoint on the remote peer, and listener objects are used to
catch messages sent to peer handlers. 

Summary 341



In the next chapter, we put to use all of the knowledge you gained from this
chapter. We build a framework and sample application that allows algorithms
to be passed to remote peers in an effort to build a comprehensive distributed
system.

C h a p t e r  18 U s i n g  E n d p o i n t s  f o r  L ow - Le v e l  C o m m u n i c a t i o n342



One of the most popular uses for peer-to-peer applications in recent years
has been to solve complex computational problems. Applications such
as distributed.net and SETI use the idle CPU cycles of thousands of

computers connected to the Internet in order to break encryption codes and
find signs of intelligent life in outer space. The underlying foundation for this
type of application is parallel processing—breaking a large problem into
smaller pieces, distributing those pieces to an array of processors, and then
combining the small solutions to solve the larger problem. Parallel machines
are very expensive to build and maintain, so why not take advantage of smaller
existing machines?

In this chapter, we build a generic distributed computational framework capa-
ble of utilizing the idle CPU cycles of any Internet computer that the peer is
installed on. This framework can be easily extended with your own computa-
tional code. To accomplish this, we need to build the following components:

Computation code—The code that will be executed by the remote peers

Master peer—A peer that remote peers can contact to obtain the computa-
tion code as well as data to work with using the code

Worker peer—A peer that resides on multiple remote computers, requests
work, solves it, and sends the results back to the master peer

Conclusion peer—An optional peer that can be contacted to return results
from the computations

Building a Generic Framework for
Distributed Computing

C H A P T E R19

343



In this chapter, we discuss the first three components of the framework. The
fourth component, the conclusion peer, is a good follow-up project to try on
your own—its functionality has been incorporated into the master peer for this
application. The master peer is responsible for accepting messages from the
worker peers. The messages have two functions: to request code and data to
work on and to deliver the results from the computation. As long as the master
has data available, it will provide that information upon request.

The worker peer requests work as well as data from the master. In our example,
the worker receives an object for the actual computation, and the necessary
data is embedded in the object. The worker calls an appropriate method of the
object and returns the results.

The computation code component is a class used to build objects for computa-
tion. This component follows a framework necessary for serialization and
reconstruction on the worker peer. To show how the computational objects 
can be used to execute real problems, the Mandelbrot algorithm is used as an
example.

Master Code

The master code for our generic distributed computation framework provides
functionality for the following:

■■ Launching into the JXTA network

■■ Building an input pipe to receive work requests

■■ Building and instantiating work objects

■■ Gathering work results

The master peer will advertise a pipe for receiving work and result requests.
The peer expects to receive a JXTA message with the type element defined. If
the type element has a value of results, the message will also contain an ele-
ment called results. This element could contain a value, a string, or a serialized
object—it all depends on the complexity of the results.

If the type element has any other value, the master will assume that the remote
peer is looking for new work. In this case, the message from the worker peer
should contain an element called pipe that contains an input pipe advertise-
ment for the worker. The worker will receive the work from the master over
this pipe. The return message from the master will contain the element work.
The content of the element consists of a serialized work class object, which we
discuss later in this chapter. 

C h a p t e r  19 Building a Generic Framework for Distributed Computing344



The master peer is designed in the same fashion as other JXTA peers in this
book. The most important part of the code is the listener for the input pipe. List-
ing 19.1 contains the code for the master.

Master Code 345

Line 1: import java.awt.*;

import java.io.*;

import java.util.Enumeration;

import net.jxta.document.*;

import net.jxta.peergroup.*;

import net.jxta.exception.*;

import net.jxta.impl.peergroup.*;

import net.jxta.id.*;

import net.jxta.discovery.*;

Line 10: import net.jxta.pipe.*;

import net.jxta.protocol.*;

import net.jxta.platform.*;

import java.net.MalformedURLException;

import java.net.URL;

import net.jxta.endpoint.Message;

public class master {

static  PeerGroup           netPeerGroup = null;

private DiscoveryService      myDiscoveryService = null;

Line 20:   private PipeService              myPipeService = null;

private PipeAdvertisement    myDBPipeAdvertisement = null;

private InputPipe            myPipe = null;

private OutputPipe          myOutputPipe = null;

private final static      MimeMediaType XMLMIMETYPE = 

new MimeMediaType("text/xml");

private Queue   resultsQueue = new Queue();

private int x=150, 

y=0;

Line 30:   private int resolution = 300;

private double xmin = -2.25,

xmax = 0.75,

ymin = -1.5,

ymax = 1.5,

xgap = (xmax - xmin) / (double)resolution,

ygap = (ymax - ymin) / (double)resolution;

public master() {

launchJXTA();

Listing 19.1 Master peer code.  (continues)



C h a p t e r  19 Building a Generic Framework for Distributed Computing346

Line 40:      getServices();

buildAndPublishInputPipe();

}

static public void main(String[] args) {

new master();

}

private void launchJXTA() {

Line 50:     try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

e.printStackTrace();

System.exit(1);

}

}

private void getServices() {

Line 60:      myDiscoveryService = 

netPeerGroup.getDiscoveryService();

myPipeService = netPeerGroup.getPipeService();

}

private void buildAndPublishInputPipe() {

PipeAdvertisement aPipeAdv = null;

try { 

FileInputStream is = 

new FileInputStream("inputpipe.adv");

aPipeAdv = (PipeAdvertisement)AdvertisementFactory.

newAdvertisement(new MimeMediaType("text/xml"), is);

Line 70:      } catch (Exception e) {

System.out.println("failed to read/parse pipe 

advertisement");

e.printStackTrace();

System.exit(-1);

}

try {

myDiscoveryService.publish(aPipeAdv,

DiscoveryService.ADV);

myDiscoveryService.remotePublish(aPipeAdv,

DiscoveryService.ADV);

} catch (Exception e) {

e.printStackTrace();

Listing 19.1 Master peer code.  (continues)



Master Code 347

Line 80:         System.exit(-1);

}

createInputPipe(aPipeAdv);

}

private void createInputPipe(PipeAdvertisement 

myPipeAdvertisement) {

PipeMsgListener myService1Listener = new PipeMsgListener() {

public void pipeMsgEvent(PipeMsgEvent event) {

Message myMessage = null;

Line 90:          Integer intValue = null;

try {

myMessage = event.getMessage();

if (myMessage.getString("type").equals("results")) {

valueContainer result = new

valueContainer(Integer.parseInt(

myMessage.getString("result")),

Integer.parseInt(

myMessage.getString("x")),

Integer.parseInt(

myMessage.getString("y")));

synchronized (resultsQueue) {

resultsQueue.queueValue(result);

Line 100:              }

System.out.println("From worker and queued: " + 

result.getResults() + " X:= " + result.getX() + " 

Y:= " + result.getY());

} else {

createOutputPipe(myMessage.getString("pipe"));

work tempWork = new work(x, y, xmin, ymin, xgap, ygap);

if ((y++) == resolution) {

if ((x++) == resolution) {

System.exit(0);

}

Line 110:                y=0;

}

Message tempMessage =

myPipeService.createMessage();

ByteArrayOutputStream myStream = 

(ByteArrayOutputStream) new 

ByteArrayOutputStream();

ObjectOutputStream s = new 

ObjectOutputStream(myStream);

s.writeObject(tempWork);

Listing 19.1 Master peer code.  (continues)



C h a p t e r  19 Building a Generic Framework for Distributed Computing348

tempMessage.setString("work", myStream.toString());

myOutputPipe.send(tempMessage);

Line 120:            }

return;

} catch (Exception ee) {

ee.printStackTrace();

return;

}

}

};

try {

Line 130:        myPipe = myPipeService.createInputPipe(

myPipeAdvertisement, myService1Listener);

System.out.println("Input Pipe Created");

} catch (Exception e) {

e.printStackTrace();

System.exit(-1);

}

}

private void createOutputPipe(String 

myPipeAdvertisementString) {

PipeAdvertisement myOutputPipeAdvertisement = null;

Line 140:      try {

myOutputPipeAdvertisement = (PipeAdvertisement) 

AdvertisementFactory.newAdvertisement(XMLMIMETYPE, new

ByteArrayInputStream(

myPipeAdvertisementString.getBytes()));

} catch (Exception e) {

System.out.println("Error creating output Pipe");

e.printStackTrace();

System.exit(-1);

}

myOutputPipe = null; 

try {

Line 150:        myOutputPipe = myPipeService.createOutputPipe(

myOutputPipeAdvertisement, 100000);

} catch (Exception e) {

System.exit(-1);

}

}

}

Listing 19.1 Master peer code. (continued)



The input pipe listener is defined in lines 88 through 128. The code begins by
checking the value contained in the message’s type element. If the value is
results, the framework code pulls the value for the elements results, x, and y;
converts them to integers; encapsulates them into an object called valueCon-
tainer; and queues the object for later processing. Another thread should exe-
cute on the master peer to pull values from the queue and process them.

We would have to modify our code if more than one integer had to be returned
as a result. It is still a good idea to have a queue in place to receive the results
in the event they cannot be processed quickly enough.

The master next instantiates a new object based on the work class (defined
later in the chapter). This class expects to have data provided to the object for
processing through its constructor. Once the object is fully initialized, it is seri-
alized into an ObjectOutputStream using the writeObject() method. The
ObjectOutputStream is fed into a ByteArrayOutputStream. Finally, the work
object is put into a String and placed in the work element of the message being
sent to the worker peer.

Worker Code

The worker in the framework has two primary responsibilities: to request work
and to return results to the master peer. Work is requested through an output
pipe, which the worker peer discovers and then connects with. The worker will
send a message with a type element having a value of work. Also included in the
message is an advertisement for a pipe the worker has created to receive the
work message from the master. Both the pipe and the advertisement are cre-
ated dynamically when the worker peer is executed. Listing 19.2 contains the
code for the worker peer.

Worker Code 349

Line 1: import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.util.Enumeration;

import net.jxta.document.*;

import net.jxta.peergroup.*;

import net.jxta.exception.PeerGroupException;

import net.jxta.impl.peergroup.Platform;

Line 10: import net.jxta.impl.peergroup.GenericPeerGroup;

import net.jxta.id.*;

Listing 19.2 Worker peer code. (continues)



C h a p t e r  19 Building a Generic Framework for Distributed Computing350

import net.jxta.discovery.*;

import net.jxta.pipe.*;

import net.jxta.protocol.*;

import java.net.MalformedURLException;

import java.net.URL;

import net.jxta.endpoint.Message;

public class worker{

Line 20:

static  PeerGroup           netPeerGroup = null;

private DiscoveryService      myDiscoveryService = null;

private PipeService      myPipeService = null;

private PipeAdvertisement myPipeAdvertisement = null,

myInputPipeAdvertisement = null;

private OutputPipe           myOutputPipe;

private InputPipe          myInputPipe;

private JTextArea           displayArea;

private boolean             notDone;

Line 30:    private final static      MimeMediaType XMLMIMETYPE = 

new MimeMediaType("text/xml"); 

public static void main(String args[]) {

worker myapp = new worker();

}

public worker() { 

launchJXTA();

getServices();

createInputPipe();

Line 40:      findAdvertisement("Name", "JXTA:RequestInput");

run();

}

public void run() {

while (myOutputPipe == null) {

try { Thread.sleep(300); } catch(Exception e) {}

}

while (true) {

getWork();

Line 50:        while (notDone) {

try {Thread.sleep(5);} catch(Exception e){}

}

}

}

private void launchJXTA() {

System.out.println("Launching Peer into JXTA Network...\n");

Listing 19.2 Worker peer code. (continues)



Worker Code 351

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

Line 60:        } catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

e.printStackTrace();

System.exit(1);

}

}

private void getServices() {

System.out.println("Getting Services...\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

Line 70:      myPipeService = netPeerGroup.getPipeService();

}

private void createInputPipe() {

System.out.println("Creating Input Pipe....\n");

myInputPipeAdvertisement = 

(PipeAdvertisement)AdvertisementFactory.

newAdvertisement(PipeAdvertisement.

getAdvertisementType());

myInputPipeAdvertisement.setName("JXTA:valueGet");

myInputPipeAdvertisement.setType("JxtaUnicast");

myInputPipeAdvertisement.setPipeID((ID)

net.jxta.id.IDFactory.newPipeID(

netPeerGroup.getPeerGroupID()));

Line 80:

PipeMsgListener myService1Listener = new PipeMsgListener() {

public void pipeMsgEvent(PipeMsgEvent event) {

Message myMessage = null;

try {

myMessage = event.getMessage();

String myMessageContent;

StringBufferInputStream myStream = 

(StringBufferInputStream) new 

StringBufferInputStream(myMessage.getString(

"work"));

Line 90:            ObjectInputStream s = new 

ObjectInputStream(myStream);

Object tempWork = s.readObject();

((work)tempWork).run();

sendResults(((work)tempWork).getResult(),

Listing 19.2 Worker peer code. (continues)



C h a p t e r  19 Building a Generic Framework for Distributed Computing352

((work)tempWork).getX(), ((work)tempWork).getY());

notDone = false;

return;

} catch (Exception ee) {

ee.printStackTrace();

Line 100:              return;

}

}

};

try {

myInputPipe = myPipeService.createInputPipe(

myInputPipeAdvertisement, myService1Listener);

} catch (Exception e) {

System.out.println("Error creating Input Pipe");

e.printStackTrace();

Line 110:          System.exit(-1);

}

}

private void findAdvertisement(String searchKey, String 

searchValue) {

Enumeration myLocalEnum = null;

System.out.println("Trying to find advertisement...\n");

try {

myLocalEnum = myDiscoveryService.getLocalAdvertisements(

DiscoveryService.ADV, searchKey, searchValue);

Line 120:

if ((myLocalEnum != null) && 

myLocalEnum.hasMoreElements()) {

System.out.println("Found Local Advertisement...\n");

myPipeAdvertisement =

(PipeAdvertisement)myLocalEnum.nextElement();

createOutputPipe(myPipeAdvertisement);

}

else {

DiscoveryListener myDiscoveryListener = new 

DiscoveryListener() { 

public void discoveryEvent(DiscoveryEvent e) { 

Enumeration enum;

Line 130:              String str;

System.out.println("Found Remote 

Advertisement...\n");

DiscoveryResponseMsg myMessage = e.getResponse();

Listing 19.2 Worker peer code. (continues)



Worker Code 353

enum = myMessage.getResponses();

str = (String)enum.nextElement();

try {

myPipeAdvertisement = (PipeAdvertisement) 

AdvertisementFactory.newAdvertisement(

XMLMIMETYPE, new 

ByteArrayInputStream(str.getBytes()));

createOutputPipe(myPipeAdvertisement);

Line 140:              } catch(Exception ee) {

ee.printStackTrace();

System.exit(-1);

}

}

};

System.out.println("Launching Remote Discovery 

Service...\n");

myDiscoveryService.getRemoteAdvertisements(null,

DiscoveryService.ADV, searchKey, searchValue, 1, 

myDiscoveryListener);

}

Line 150:      } catch (Exception e) {

System.out.println("Error during advertisement 

search");

System.exit(-1);

}

}

private void createOutputPipe(PipeAdvertisement 

myPipeAdvertisement) {

myOutputPipe = null; 

try {

myOutputPipe = myPipeService.createOutputPipe(

myPipeAdvertisement, 100000);

System.out.println("Output Pipe Created...\n");

Line 160:      } catch (Exception e) {

System.out.println("Unable to create output pipe");

System.exit(-1);

}

}

private void getWork() {

ByteArrayOutputStream myStream = (ByteArrayOutputStream) 

new ByteArrayOutputStream();

StructuredTextDocument paramDoc = (StructuredTextDocument)

myInputPipeAdvertisement.getDocument(new

Listing 19.2 Worker peer code. (continues)



C h a p t e r  19 Building a Generic Framework for Distributed Computing354

MimeMediaType("text/xml"));

try {

Line 170:        paramDoc.sendToStream(myStream);

} catch (Exception e) {

System.out.println("Unable to print output pipe");

e.printStackTrace();

System.exit(-1);

}

Message msg = myPipeService.createMessage();

msg.setString("type", "work");

msg.setString("pipe", myStream.toString());

Line 180:

try {

notDone = true;

myOutputPipe.send(msg);

} catch (Exception e) {

System.out.println("Unable to print output pipe");

e.printStackTrace();

System.exit(-1);

}

}

Line 190:

private void sendResults(int result, int x, int y) {

Message msg = myPipeService.createMessage();

msg.setString("type", "results");

msg.setString("result", ""+result);

msg.setString("x", ""+x);

msg.setString("y", ""+y);

try {

myOutputPipe.send(msg);

} catch (Exception e) {

Line 200:          System.out.println("Unable to print output 

pipe");

e.printStackTrace();

System.exit(-1);

}

}

}

Listing 19.2 Worker peer code. (continued)

In the following sections, we discuss the two important parts of the worker
peer: setup and work.



Setup
The setup of the worker peer is found in lines 37 through 41. Once the peer has
been launched into the JXTA network, it will attempt to find and connect to the
pipe advertised by the master peer. Before the connection is made to the pipe,
no additional activity can occur on the worker. Within the run() method, the
code uses a loop and the sleep() method to wait until the myOutputPipe vari-
able has a value other than null. When the variable has an instantiated object
associated with it, the worker will attempt to obtain and execute while there is
work available. The code is designed to execute one piece of work at a time.
This is accomplished by checking for a variable called notDone. If notDone is
true, this indicates that the object sent from the master is still executing and
that another one should not be obtained.

Work
The worker peer obtains work by calling the getWork() method, which is
defined in lines 166 through 189. In this method, the peer sends a message to the
master that has a type element with the value work and a pipe element that con-
tains the pipe advertisement of the input pipe to the peer. The master will use
the pipe to send the work to the worker peer. With the message sent to the mas-
ter, the variable notDone is set to true, causing the loop in the run() method to
execute, and preventing the system from requesting another piece of work. 

The work is received by the listener for the worker peer’s input pipe (defined in
lines 83 through 103). When a message is received from the master, the worker
peer extracts the string from the work element and converts it back into a Java
object using an ObjectInputStream and the readObject() method. The instanti-
ated and reincarnated object is executed by calling the run() method. Calling
this method should cause the object to perform calculations on values provided
to the object by the master. The run() method should block until it has popu-
lated the appropriate result attributes of the work object.

When control returns from the run() method, a call is made to the
sendResults() method defined in lines 191 through 204. This method builds a
message with the type, results, x, and y elements. The type element holds a
value of results to let the master peer know that it is receiving results from a
peer, and that the other elements hold the actual results.

The current framework returns just three results to the master. We must mod-
ify the sendResults() method if more than these integers have to be provided to
the master peer. A further enhancement might be the inclusion of a result class,

Worker Code 355



which the worker peer could populate and send to the master. If the result class
was defined appropriately, the work class we discuss next might be able to pop-
ulate it generically, thus allowing the peer to instantiate the result and send it.

Computational Code

The distributed computation framework requires a class that can be distributed
to idle and willing machines on the Internet. The class designed for this distrib-
uted is called work, and Listing 19.3 contains the code for it.

The work class is very basic, and can be expanded as needed for a specific
application such as distributed.net or SETI. The class is designed to be instan-
tiated into an object; the object is then initialized and sent to a worker peer in a
JXTA message. The worker peer receives the object and executes the run()
method. The results from the work object are packaged into a JXTA message
and sent to a master peer that gathers all the results. (The master peer’s input
pipe could have been sent in the original message with the work object or hard-
coded into an idle peer’s code.)

The process of sending the instantiated work object to a worker peer sounds
simple, but there are a few things to keep in mind. First, the work class must
implement the Java Serializable interface. In order to implement the interface,
the text “implements Serializable” must be found after the class’s definition
line. If there are no special requirements for serialization of the class, no addi-
tional work has to occur in order for the Java system to be able to serialize an
object of the class. 

With the basic serialization code in place, the system will be able to serialize the
work object using the code described in Listing 19.1 and put it into a JXTA mes-
sage. When the worker peer receives the object and converts it back into a nor-
mal Java object, the Java runtime will throw an exception. The exception will
state that the objects have different version IDs (which are assigned when the
Java class is compiled). Because the work class file will be compiled in both the
master and worker peer classes, the objects will have different version IDs. For-
tunately, there is a workaround. 

You will notice in the work class code a statement called

static final long serialVersionUID = 152024149877783929L; 

This code tells the Java compiler to use a specific version ID when compiling
and using the class. Both the master and worker peers will have the same class
code using the same version ID, and no exception will be thrown when the
object is reincarnated on the worker peer.

C h a p t e r  19 Building a Generic Framework for Distributed Computing356



For our example, the Mandelbrot algorithm is executed, and each peer is
responsible for calculating a single point. Obviously, this consumes quite a bit
of network traffic. A more realistic work object would require much more in
the way of computation. The work is performed in lines 42 through 64, which
define the doMandel() method. The values needed in the algorithm can be
found in the object’s private variables. All of the variables were set when the
work object was instantiated by the master peer.

Computational Code 357

Line 1: import java.io.*;

public class work implements Serializable {

private int result;

private int i;

private int j;

private double xmin; 

private double ymin;

private double xgap;

Line 10:      private double ygap;

static final long serialVersionUID = 152024149877783929L;

public work() {

}

public void run() {

result = doMandel();

}

Line 20:

public work(int inx, int iny, double inxmin, double inymin, 

double inxgap, double inygap) {

i = inx;

j = iny;

xmin = inxmin;

ymin = inymin;

xgap = inxgap;

ygap = inygap;

}

Line 30:      public int getX() {

return i;

}

public int getY() {

return j;

Listing 19.3 Distributed work class. (continues)



C h a p t e r  19 Building a Generic Framework for Distributed Computing358

}

public int getResult() {

return result;

Line 40:      }

private int doMandel() {

double x, y, sx2;

double rad;

int count;

double savex, savey; 

x = xmin + (double)(i) * xgap;

y = ymin + (double)(j) * ygap;

savex = x;

Line 50:       savey = y;

rad = 0.0;

count = 0;

while ((rad < 5.0) && (count < 1000)){

sx2 = x;

x = x * x - y * y + savex;

y = 2.0 * sx2 * y + savey;

rad = x * x + y * y;

count++;

}

Line 60:       if (rad >= 5.0)

return count % 256;

else

return 0;

}

}

Listing 19.3 Distributed work class. (continued)

Summary

In this chapter, we discussed a framework for allowing computations to be dis-
tributed to JXTA peers executing on the network. The framework allows an
entire object based on a work class to be distributed, and encapsulates the
computations necessary to solve a problem. As mentioned at the beginning of
the chapter, you could add a conclusion component to the system that acts as a
repository for results from the computations and works to produce a report or
some other type of output.

In the next chapter, we continue the theme of developing JXTA applications by
examining the development of a storage system. Our storage system uses
encryption and multiple peers to provide fault tolerance. 



In this chapter, we bring together many of the features of JXTA to build an
encrypted and highly available storage system (EHASS). This system
accepts for safekeeping data in the form of images. The EHASS stores the

images in one or more databases, and makes those images available for
retrieval through a GUI client application. 

System Architecture

The EHASS is based on a three-tier architecture, as shown in Figure 20.1. The
four main components of the architecture are

databasePeer—This peer is responsible for all database access and con-
trol. Data is received by the peer and placed in one database associated
with the peer. Depending on needs, the database can be either on the same
node as the peer or on a different one.

businessPeer—This peer is responsible for acting as a buffer between the
databasePeer and the gatheringPeer. The peer simply receives a packet and
forwards it to the databasePeer, but additional logic could be incorporated.

gatheringPeer—This peer is responsible for gathering any data that needs
to be saved in the EHASS and forwarding that data to a businessPeer. The
peer could be a spider that looks at web sites for data, as described later in
this chapter, or an application that parses e-mail, for example.

Building an Encrypted, Highly
Available Storage System

C H A P T E R20

359



clientPeer—This peer is responsible for requesting an image from the
database to be displayed. The clientPeer will typically be a GUI-based appli-
cation that a person will use to request data from the data. The peer will
interact with a businessPeer, which will in turn attempt to communicate
with a databasePeer.

C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System360

GUI clientPeer

businessPeer   

gatheringPeer

databasePeer databasePeer

mySQL
database

mySQL
database

JDBC

unicastSecure
Pipe for data
TO database

bidirectional
 Pipe for query

and result

bidirectional
 Pipe for query

and result

unicastSecure
Pipe for data
TO database

unicastSecure
Pipe for data
TO database

JDBC

businessPeer

Figure 20.1 The basic architecture of an EHASS.

As you can see, this system is designed to be expandable in several different
ways. First, multiple databasePeers can be in the system at one time. Each 
of the databasePeers will be discovered as needed by the businessPeers. 
Using more than one databasePeer ensures that all data stored in the EHASS
will be replicated and highly available. Second, multiple businessPeers can be



instantiated to handle the specific needs of a clientPeer or to provide redun-
dancy. Finally, the gatheringPeers in the system are unlimited—all that is
required is that a JXTA interface be built into the user. The JXTA system han-
dles locating a businessPeer and the actual transport of the data.

Our Example
For the purposes of explaining an EHASS, the peers in our example are
designed to handle a particular solution. The code you’ll find in the Chapter 20
directory of the download source features a system that allows image data to be
stored in a database using the EHASS. 

In the test architecture, you will find two databasePeers, one businessPeer, and
a gatheringPeer, all distributed across three different machines. The data-
basePeers are located on one machine that executes the Mandrake Linux 8.2
beta. One of the databasePeers communicates with a MySQL database execut-
ing on the same box through a JDBC connection. The other databasePeer has a
connection to another MySQL database executing on a remote Linux box run-
ning Caldera 2.3. The databasePeer connecting to the remote database doesn’t
store all data it receives—it is executed with a command-line option limiting
the category of image it should store. The idea is that the remote database is
replicating only the most important images. As you might expect, we could use
the latest MySQL version to perform database replication as well. 

The businessPeer executes on a second machine, running Windows 2000. The
businessPeer is designed to locate both of the databasePeers. The primary pur-
pose of the businessPeer is to act as the middle tier in a three-tier architecture.
The businessPeer will receive data from a gatheringPeer and store it in a data-
base. Based on the data contents, the businessPeer can decide where and how
to store the information. The businessPeer will also receive requests from a
gatheringPeer for information from the database. Again, the businessPeer
could be coded with functionality to check for authentication or other logging
purposes.

The gatheringPeer is located on a third machine, also running Windows 2000.
This gatheringPeer is a modified version of the open-source application called
WebLech. The WebLech application takes a URL, pulls all pages and images on
the site, and saves them to the local hard drive. We changed the application’s
source code to put all images into a message and ship the image to the busi-
nessPeer. The domain, path, and filename of the image are sent as well. We
could assign an optional category to provide some level of filtering at the data-
base. All of the image data is encrypted by the gatheringPeer before being sent
to the database.

System Architecture 361



The client is also a JXTA peer executing on a fourth machine in the network.
Queries are executed from the client, and the resulting images are displayed.
We tested the code for the system components on a combination of machines;
all of the components can execute solely on a Linux box, a Windows machine,
or a combination as described above.

Database Schema
The database used in our example is MySQL. A basic MySQL installation is all
you need. The database in the example is called pics; you should create it
within MySQL by using either a SQL interface to MySQL or the mysql adminis-
trator application. The steps for creating the database are as follows:

1. Launch the mysql administrator by issuing the command mysql.

2. Build a new database called pics with the command

create database pics;

3. Once the database is created, build a table with the following command:

create table main ( ID int not null auto_increment 

primary key,

name     varchar(128),

data     mediumblob,

ts       timestamp,

domain   varchar(128),

path     varchar(128),

category varchar(32),

size     int);

The same table exists on both the database machines. Because there is always
the potential to store duplicate data, the database code will execute a SELECT
query to check for the same name, domain, and path in the database. The cur-
rent code uses the username spider and the password spider to access the
MySQL database. You could change these names in both the databasePeer and
the spider peer, if necessary.

Message Schema
For this application, a specific message schema is used. The elements available
are

Filename—The name of the data to save

Data—The binary data

Domain —The domain of the source of the data

Path—The path associated with the domain and name

C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System362



Category—A category to assign the data

Size—The size of the data (or image in this case)

You can change the message to be specific to an application or more 
generalized.

Executing the System
Executing the EHASS requires only a few steps. First, execute all of the data-
basePeers in the system, and make sure the appropriate database connections
are created. Figure 20.2 shows the execution of a database connection on a
Linux box. There are a few System.out.println() methods in the peer code so
you can see what is occurring interactively. 

System Architecture 363

Figure 20.2 Execution of the databasePeer.

Once the databasePeers are fully launched, execute the businessPeers. After a
few moments, the businessPeers will discover the databasePeers in the net-
work and create output pipes to them. Figure 20.3 shows the execution of a
businessPeer. Of particular note is the output showing the businessPeer’s
attempt to find and connect with the databasePeers. 

With the businessPeers connected to the databasePeers, the gatheringPeers
can be executed. These source peers will discover the businessPeers and begin
the process of sending data to be stored in the underlying databases (some-
where in the network). The gatheringPeers will execute based on their pro-
grammed functionality—to “spider” the web or look through e-mail messages,
for example.



Figure 20.3 Execution of the businessPeer.

The gatheringPeer provided with the code for this chapter is called spider, and
it operates by pulling a URL from a file called links.dat. The format of the
links.dat file is

DatabaseTableName

URL

For example,

Main

http://www.yahoo.com

It should be noted that multiple URLs can appear in the links.dat file as needed.
Figure 20.4 shows the execution of the spider peer. This gatheringPeer will
send data to the businessPeer and ultimately to the database. 

At the same time the gatheringPeers are executing, a client can be executed to
retrieve information from the database. Figure 20.5 shows an example of sub-
mitting a query to the EHASS. Notice the list of pictures returned in the file list
at the bottom of the GUI. Figure 20.6 shows what happens when we double-
click one of the filenames. 

C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System364



Figure 20.4 The spider gatheringPeer.

System Architecture 365

Figure 20.5 A list of images requested from the database.



Figure 20.6 Displaying an image found in the database.

DatabasePeer

The databasePeer is responsible for storing data in the database. The features
of the databasePeer include:

■■ JDBC connection to an ODBC-compliant database

■■ Command-line category filtering

■■ Command-line database domain/IP selection

■■ An option for local file system saves

■■ An option for local decryption of image data

The databasePeer is executed using the Java commands found in Appendix A.
A few additional options are available. If the command line includes the –d
option followed by a domain or IP address, this domain or IP will be used to
contact a remote database. If the option is not present, the IP of 127.0.0.1 will
be used. This IP is equivalent to the localhost. The domain or IP of 127.0.0.1 is
used to build a connection string for the JDBC connection.

If the command-line option –s is used, a filter value can be assigned for the cat-
egory column of the database. The databasePeer will use the value to determine

C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System366



whether or not an image is stored in the database. If this switch does not appear
in the execution of the databasePeer or the option –s all is used, all images sent
to this databasePeer will be stored. If the value of the option is something like
–s cars, only data sent to this databasePeer will be saved in the database when
the value of the category field of a message matches.

The code for the databasePeer is shown in Listing 20.1.

DatabasePeer 367

Line 1: import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.util.*;

import net.jxta.document.*;

import net.jxta.peergroup.*;

import net.jxta.exception.*;

Line 10: import net.jxta.impl.peergroup.*;

import net.jxta.id.*;

import net.jxta.discovery.*;

import net.jxta.pipe.*;

import net.jxta.protocol.*;

import net.jxta.platform.*;

import java.net.*;

import net.jxta.endpoint.*;

import java.sql.*;

import net.jxta.impl.util.BidirectionalPipeService;

Line 20:

public class databasePeer {

static  PeerGroup netPeerGroup = null;

private DiscoveryService myDiscoveryService = null;

private PipeService myPipeService = null;

private BidirectionalPipeService myBiPipeService = null;

private BidirectionalPipeService.Pipe myQueryPipe = null;

Line 30:    private BidirectionalPipeService.AcceptPipe

incomingAcceptPipe = null;

private BidirectionalPipeService.MessageListener

myListenerService;

private InputPipe myBusinessDataSaveInputPipe = null;

private Connection conn = null;

static  String database = new String("127.0.0.1");

static  String categorySwitch = new String("all");

Listing 20.1 The databasePeer code. (continues)



C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System368

static  String DBUrl1 = "jdbc:mysql://";

static  String DBUrl2 = "/pics?user=root&password=";

Line 40:

private final static MimeMediaType XMLMIMETYPE = 

new MimeMediaType("text/xml"); 

public static void main(String args[]) {

databasePeer myapp = new databasePeer();

if (args.length > 0) {

for (int i=0;i<args.length;i++) {

if (args[i].equals("-d")) {

database = args[i+1];

break;

Line 50:         }

if (args[i].equals("-s")) {

categorySwitch = args[i+1];

break;

}

}

}

}

Line 60:    public databasePeer() {

run();

}

public void run() {

try {

Class.forName("org.gjt.mm.mysql.Driver").newInstance();

conn = 

DriverManager.getConnection(DBUrl1+database+DBUrl2);

} catch (Exception E) {

Line 70:          System.out.println("JDBC Driver error");

}

launchJXTA();

getServices();

publishDataInputPipe();

buildQueryPipe();

while (true) {

try {

Line 80:          Thread.sleep(500);

if (myQueryPipe == null) {

Listing 20.1 The databasePeer code. (continues)



DatabasePeer 369

myQueryPipe = incomingAcceptPipe.accept(

3000, myListenerService);

}

} catch(Exception e) {}

}

}

private void launchJXTA() { 

Line 90:        System.out.println("Launching Peer into JXTA 

Network...");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

e.printStackTrace();

System.exit(1);

}

}

Line 100:    private void getServices() {

System.out.println("Obtaining Discovery and Pipe 

Services....");

myDiscoveryService = netPeerGroup.getDiscoveryService();

myPipeService = netPeerGroup.getPipeService();

myBiPipeService = 

new BidirectionalPipeService(netPeerGroup);

}

private void publishDataInputPipe() {

System.out.println("Publishing Data Input Pipe....");

try {

Line 110:     PipeAdvertisement aPipeAdv =

(PipeAdvertisement)AdvertisementFactory.

newAdvertisement(PipeAdvertisement.getAdvertisementType());

aPipeAdv.setName("DSSDatabaseDataSaveInputPipe");

aPipeAdv.setType("JxtaUnicastSecure");

aPipeAdv.setPipeID((ID) net.jxta.id.IDFactory.newPipeID(

netPeerGroup.getPeerGroupID()));

myDiscoveryService.publish(aPipeAdv,

DiscoveryService.ADV);

myDiscoveryService.remotePublish(aPipeAdv,

DiscoveryService.ADV);

createInputPipe(aPipeAdv);

} catch (Exception e) {

System.out.println("Error during publish of Module 

Listing 20.1 The databasePeer code. (continues)



C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System370

Specification Advertisement");

Line 120:         e.printStackTrace();

System.exit(-1);

}

}

private void createInputPipe(PipeAdvertisement 

myPipeAdvertisement) {

System.out.println("Creating Data Input Pipe....");

PipeMsgListener myService1Listener = 

new PipeMsgListener(){

public void pipeMsgEvent(PipeMsgEvent event) {

Line 130:          Message myMessage = null;

try {

myMessage = event.getMessage();

if (myMessage.getString("filename") != null) {

System.out.println("Message Received - Checking 

database");

if (categorySwitch.equals("all") ||

categorySwitch.equals(

myMessage.getString("category"))) { 

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery("SELECT name,

domain, path FROM main WHERE name = '" + 

myMessage.getString("filename") + "' AND 

domain = '" + myMessage.getString("domain") + 

"' AND path = '" + myMessage.getString("path") 

+ "'");

Line 140:

if (!rs.next()) {

PreparedStatement pstmt = 

conn.prepareStatement("INSERT INTO main 

VALUES (null, '" + 

myMessage.getString("filename") + "',?, 

now(), '" + myMessage.getString("domain") + 

"', '" + myMessage.getString("path") + "', '" 

+ myMessage.getString("category") + "', " + 

myMessage.getString("size") + " )");

pstmt.setBytes(1, myMessage.getBytes("data"));

pstmt.execute();

int rowsUpdated = pstmt.getUpdateCount();

System.out.println("Updated " + rowsUpdated + 

"row(s)");

Listing 20.1 The databasePeer code. (continues)



DatabasePeer 371

}

}

Line 150:              return;

} else {

System.out.println("Invalid tag\n");

return;

}

} catch (Exception ee) {

ee.printStackTrace();

return;

}

}

};

Line 160:

try {

myBusinessDataSaveInputPipe = 

myPipeService.createInputPipe(myPipeAdvertisement,

myService1Listener);

} catch (Exception e) {

System.out.println("Error creating Input Pipe");

e.printStackTrace();

System.exit(-1);

}

}

Line 170:    private void buildQueryPipe() {

try {

incomingAcceptPipe = 

myBiPipeService.bind("DSSDatabaseQueryInputBiPipe");

myListenerService = 

new BidirectionalPipeService.MessageListener () {

public void messageReceived (Message msg, OutputPipe 

responsePipe) {

if (msg.getString("action").equals("QUERY")) {

System.out.println("Query Message received");

Line 180:              try {

Statement stmt = conn.createStatement();

ResultSet rs = 

stmt.executeQuery(msg.getString("SQL"));

String results = new String();

while (rs.next()) {

results = results + rs.getString("name") + 

"|";

Listing 20.1 The databasePeer code. (continues)



C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System372

}

Message sendMsg = myPipeService.createMessage();

Line 190:                sendMsg.setString("action", "QUERY");

sendMsg.setString("results", results);

responsePipe.send(sendMsg);

} catch(Exception e) {}

return;

} else {

try {

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery("SELECT data 

FROM main WHERE name = '" + 

msg.getString("name") + "'");

Line 200:                if (rs.next()) {

Message sendMsg = 

myPipeService.createMessage();

sendMsg.setString("action", "GET");

sendMsg.setBytes("result",

rs.getBytes("data"));

responsePipe.send(sendMsg);

}

} catch(Exception e) {}

return;

}

}

Line 210:         };

} catch(Exception e) {

e.printStackTrace();

System.exit(-1);

}

}

}

Listing 20.1 The databasePeer code. (continued)

The code for the databasePeer is based on the same code as the other peers in
this book, and can be broken down into four key areas: setting up, publishing a
data input pipe, publishing a query input pipe, and processing input.

DatabasePeer Connectivity
The databasePeer has several different connections to external components.
The first connection is to the storage device, which in most cases will be a data-
base. The database is required to follow the ODBC protocol. 



A second connection is a single JxtaUnicastSecure input pipe that will receive
data to be saved in the database. The name of the pipe is DSSDatabase-
DataSaveInputPipe, and it is published using a pipe advertisement to the local
and remote JXTA network. This connection is made between a businessPeer
and a databasePeer, and relies on a message with this format:

filename - string

domain - string

path - string

category - string

size - int

data - bytes

The third connection is a bidirectional pipe that will receive queries from a
client application. The name of the pipe is DSSDatabaseQueryInputBiPipe, and
it is also published using a pipe advertisement to the local and remote JXTA net-
work. This connection is made between a businessPeer and a databasePeer.
Two messages are transferred between a clientPeer and the databasePeer. The
first is a query for the names of files in the database based on a specific criteria.
The message’s elements are

action—The value of QUERY

SQL—The SQL statement passed from the client; it is assumed to be in the
form

SELECT name FROM main WHERE category = '<value>'

The results from the query are placed in a string delimited by the character |.
The entire string is placed in a message with these elements:

action—The value of QUERY

results—An element that contains the delimited string of names found in
the database

The second message used between the businessPeer and the databasePeer is
sent when the data from a single image needs to be extracted from the data-
base. The elements in this message are

action—The value of GET

name—The name of the file to pull from the database

When the data from the file is pulled from the database, it is returned in a mes-
sage with these elements:

action—The value of GET

results—Bytes from the database

DatabasePeer 373



Setup
Many of the peers in our previous examples have had a GUI to display informa-
tion produced by the peer. The architecture of the system dictates that the data-
basePeer and businessPeer execute in a minimalist way, so no GUI is attached
to the peer. Any output needed from the peer should be displayed either in the
command window or, better yet, through a series of log files. For the data-
basePeer code, the primary class is called databasePeer.

The main() method instantiates a new application object and checks on the two
possible command-line options—as you’ll recall, –d designates a domain for the
database connect, and –s designates a category string to filter image data
placed in the database. The string associated with either option is stored in a
static string variable to be used by the application object.

The constructor for the application object consists of a call to the run()
method. The run() method starts on line 64, and performs a number of opera-
tions for launching the peer. 

Line 66 gets the JDBC driver necessary for our database connection; then, the
code attempts to connect to the database specified by the combination of the
DBUrl1, database, and DBUrl2 strings. Notice that the peer will not fail if the
database connection isn’t made. If this isn’t what you want, you can add the
statement System.exit(-1); to halt the peer. 

Lines 73 and 74 should look familiar; this is where the peer is launched in the
JXTA network, and the necessary discovery and pipe services are obtained. On
line 75, a call is made to create and publish the pipe used to receive data des-
tined for the database. On line 76, the bidirectional pipe is created to receive
queries from a clientPeer. 

Finally, an infinite loop is defined to keep the databasePeer executing continu-
ously. In order to keep the CPU from executing at 100 percent, the application
will be forced to sleep for a half-second at a time. Within the infinite loop is
code that attempts to connect using the bidirectional pipe, but only if a con-
nection isn’t already assigned. In the bidirectional code, the parameters to the
accept() method found in line 82 specify the number of milliseconds to wait for
a connection and the listener to use once a connection is made. The source
code for the bidirectional pipe should allow a value of 0 for the wait time, and
it does with the anticipated result of blocking until a connection is made. How-
ever, if a value of 0 is used, the system isn’t able to obtain a connection with any
clients. This appears to be a bug in the bidirectional code. Nevertheless, the
workaround is to just call the accept() method periodically to find a connection
from a client. 

C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System374



Publishing a Data Input Pipe
One of the most important jobs of the databasePeer is to publish the pipe adver-
tisement so that businessPeers can find and connect with it. The databasePeer
advertises a pipe using an advertisement like the following:

<?xml version="1.0" encoding="UTF-8"?>

<jxta:PipeAdvertisement>

<Name>DSSDatabaseDataSaveInputPipe</Name>

<Id>urn:jxta:uuid-CE19C9353ED641B6A1

879527667BBC32699352C32E0D40579C17A7CCB7CE781C04</Id>

<Type>JxtaUnicastSecure</Type>

</jxta:PipeAdvertisement>

Because all databasePeers will be publishing a pipe, it is critical that each of the
pipe advertisements have a unique ID. For this reason, the code in lines 110
through 113 builds a pipe dynamically, and publishes it locally and remotely.
Using code to generate the pipe advertisement ensures that the databasePeers
can be distributed without worrying about a remote advertisement file that has
be updated.

The code for creating and publishing the pipe advertisement is found on lines
105 through 162. Unlike other applications we have built, the code doesn’t rely
on module class and module specification advertisements to publish the exis-
tence of a pipe, but simply publishes the pipe advertisement itself.

Publishing a Query Bidirectional Pipe
Lines 170 through 213 handle the creation of the bidirectional pipe. A bidirec-
tional pipe is a little different from the traditional JXTA pipe in that a prelimi-
nary pipe is created to listen for remote connections. Once a connection to the
listening pipe is made, a series of input and output pipes are created between
the local and remote peer. As we noted earlier, the code for accepting a con-
nection with the bidirectional pipe is found in the run() method.

Processing Input
Both the data input and query input pipes accept messages that must be
processed. For the data input pipe, the messages will contain information to be
placed in the database associated with this peer. The query input pipe will have
messages requesting information from the database. In both cases, the pro-
cessing is handled by a listener attached to the respective pipes.

DatabasePeer 375



Data Input Processing

Lines 127 through 159 establish a listener object for the data input pipe. Recall
from an earlier discussion that the data input pipe will receive a message from
a businessPeer, which contains an image to be placed in the database. Line 131
determines if anything should occur within this databasePeer. The variable cat-
egorySwitch is set when the databasePeer is executed and defaults to a value of
ALL. This means that all images received by the peer will be placed in the data-
base. You can use a command-line option to change the value to reflect a spe-
cific category to place in the database. This option allows some databases to
hold only sensitive or important data, not common data.

For logical reasons, the same image shouldn’t be placed in the database, if pos-
sible. To help facilitate keeping duplicate images out of the database, the lis-
tener code will execute a SELECT query using the name of the image, the
domain and path where the image came from, or values placed in these mes-
sage entries. The SELECT query is performed on lines 137 and 138; line 140
checks the result of the query. If the ResultSet returned from the query is empty,
the databasePeer will attempt to place the image in the database. 

The code uses a PreparedStatement to handle the insertion of binary data into
the database. On line 141, the PreparedStatement is created using most of ele-
ments in the message received from the businessPeer. Notice the use of the ? in
the statement—this is a placeholder that will receive the binary data inserted
from line 142.

Finally, the statement is executed against the database. Line 145 executes the
code against the statement to return the number of rows affected by the insert. 

Query Processing

The processing for a query message received from the bidirectional pipe is han-
dled in lines 175 through 205. There are two possible options for a message
received on the pipe: QUERY or GET. Line 177 checks the action element of the
message to determine the option needed in this specific case. Lines 178 through
194 will process a QUERY message. It is assumed that the message element
SQL contains a SELECT statement in the form

SELECT name FROM main WHERE category = 'value'

The SQL is executed against the database on line 182. Lines 185 through 187
loop through the names returned by the query. The names are placed in a string
delimited by the | character. The final string is placed in a new message under
the element results. On line 192, the message is sent down the response pipe
that was defined when this bidirectional pipe’s listener was called. 

C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System376



The processing for a GET message is handled in lines 196 through 207. A
SELECT command is created using the filename found in the name element. On
line 200, the ResultSet from the query is checked for a result. If a result is found,
the bytes are placed in a message element called result using the setBytes()
method instead of setString() because the image data consists of raw bytes and
we don’t want them to be converted to characters. Finally, the message with the
data from the query is returned to the calling peer.

BusinessPeer

The businessPeer acts as an intermediary between the databasePeer and any
potential users of the system (for example, sourcePeers and clientPeers). All of
the messages received from a user application will arrive at the businessPeer
and be forwarded to 0 or more databasePeers. 

The businessPeer in this example will transfer all messages to databasePeers
automatically. However, the underlying purpose of a businessPeer is to imple-
ment business rules of an organization. The rules are placed between the
receipt of the message and the subsequent transfer to the databasePeers. The
code for the businessPeer is shown in Listing 20.2.

Because the businessPeer will be connecting two different types of sources to
the database, there are two different pipes. The first pipe is Unicast, and trans-
fers data from a gatheringPeer to the databasePeer. Data is placed in the pipe
and ultimately stored in the database. The second pipe is a bidirectional pipe
designed to handle query requests from a clientPeer. The clientPeer will expect
a response, either as a list of names found in the database or as data from a spe-
cific image when a message is sent to the businessPeer through the bidirec-
tional pipe.

What makes the businessPeer unique is the use of code to discover remote
advertisements for both of the pipes we need to connect to from the data-
basePeer. The remote discovery is accomplished by looking for all advertise-
ments with a name value of DSS*. Obviously, this will bring in a number of
responses. For the bidirectional query pipe, only a single connection is made to
a databasePeer. It really doesn’t matter what databasePeer gets the connection.

BusinessPeer 377

Line 1: import java.io.*; 

import java.awt.*; 

import java.awt.event.*; 

import javax.swing.*;

Listing 20.2 The businessPeer Code. (continues)



C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System378

import java.util.Enumeration; 

import net.jxta.document.*; 

import net.jxta.peergroup.*; 

import net.jxta.exception.*; 

import net.jxta.impl.peergroup.*; 

Line 10: import net.jxta.id.*; 

import net.jxta.discovery.*; 

import net.jxta.pipe.*; 

import net.jxta.protocol.*; 

import net.jxta.platform.*; 

import java.net.MalformedURLException; 

import java.net.URL; 

import net.jxta.endpoint.Message;

import net.jxta.impl.util.BidirectionalPipeService;

import java.util.Hashtable;

Line 20:

public class businessPeer {

static  PeerGroup           netPeerGroup = null;

private DiscoveryService      myDiscoveryService = null;

private PipeService      myPipeService = null;

private PipeAdvertisement   myDBPipeAdvertisement = null;

private PipeAdvertisement   myPipeAdvertisement = null;

private OutputPipe myDBOutputPipe[] = new OutputPipe[10];

private int                 myDBOutputPipeCount = 0;

private InputPipe           myPipe = null;

Line 30:  private BidirectionalPipeService

myBiPipeService = null;

private BidirectionalPipeService.Pipe 

myClientQueryPipe = null;

private BidirectionalPipeService.Pipe 

myDatabaseQueryPipe = null;

private BidirectionalPipeService.AcceptPipe

incomingAcceptPipe;

private BidirectionalPipeService.MessageListener 

myListenerService;

private final static      MimeMediaType XMLMIMETYPE = 

new MimeMediaType("text/xml");

private boolean haveDatabaseDataInputPipe = false;

private boolean allowMultipleDatabase = false;

private Hashtable currentOutputAdv = new Hashtable();

Line 40:

public static void main(String args[]) {

businessPeer myapp = new businessPeer();

myapp.run();

}

Listing 20.2 The businessPeer Code. (continues)



BusinessPeer 379

public businessPeer() {

}

public void run() {

Line 50:    launchJXTA();

getServices();

buildAndPublishInputPipe();

launchRemoteDiscovery("Name", "DSS*");

while ((myDatabaseQueryPipe == null) && 

(myDBOutputPipeCount == 0))    {

findLocalAdvertisements("Name", "DSS*");

}

Line 60:    getClientPipe(); 

while (true) {

try { 

Thread.sleep(500);

if (myClientQueryPipe == null) {

myClientQueryPipe = incomingAcceptPipe.accept(10000,

myListenerService);

}

if (allowMultipleDatabase == true) {

findLocalAdvertisements("Name", "DSS*");

}

Line 70:      } catch(Exception e) {}

}

}

private void launchJXTA() {

System.out.println("Launching Business Peer into JXTA 

Network...");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

Line 80:        e.printStackTrace();

System.exit(1);

}

}

private void getServices() {

System.out.println("Getting Services...");

myDiscoveryService = netPeerGroup.getDiscoveryService();

myPipeService = netPeerGroup.getPipeService();

Listing 20.2 The businessPeer Code. (continues)



C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System380

myBiPipeService = 

new BidirectionalPipeService(netPeerGroup);

Line 90:    }

private void launchRemoteDiscovery(String searchKey, 

String searchValue) {

try {

myDiscoveryService.getRemoteAdvertisements(null,

DiscoveryService.ADV, searchKey, searchValue, 50);

} catch (Exception e) {

System.out.println("Error during remote advertisement 

discovery");

System.exit(-1);

}

}

Line 100:

private void sendData(Message aMsg) {

try {

if (myDBOutputPipeCount > 0)

for (int i=0;i<myDBOutputPipeCount;i++) {

myDBOutputPipe[i].send (aMsg);

}

} catch (Exception e) {

System.out.println("Unable to print output pipe");

Line 110:      }

}

private void buildAndPublishInputPipe() {

try {

FileInputStream is = new 

FileInputStream("businessPeerDataSaveInputPipe.adv");

PipeAdvertisement aPipeAdv =

(PipeAdvertisement)AdvertisementFactory.

newAdvertisement(new MimeMediaType("text/xml"), is);

myDiscoveryService.publish(aPipeAdv,

DiscoveryService.ADV);

myDiscoveryService.remotePublish(aPipeAdv,

DiscoveryService.ADV);

Line 120:        createInputPipe(aPipeAdv);

} catch (Exception e) {

System.out.println("Error during publish of Module 

Specification Advertisement");

e.printStackTrace();

System.exit(-1);

Listing 20.2 The businessPeer Code. (continues)



BusinessPeer 381

}

}

private void createInputPipe(PipeAdvertisement 

myPipeAdvertisement) {

Line 130:      System.out.println("Creating Input Pipe....");

PipeMsgListener myService1Listener = new PipeMsgListener()

{

public void pipeMsgEvent(PipeMsgEvent event) {

Message myMessage = null;

try {

myMessage = event.getMessage();

sendData(myMessage);

return;

} catch (Exception ee) {

ee.printStackTrace();

Line 140:            return;

}

}

};

try {

myPipe = myPipeService.createInputPipe(

myPipeAdvertisement, myService1Listener);

} catch (Exception e) {

System.out.println("Error creating Input Pipe");

e.printStackTrace();

System.exit(-1);

}

Line 150:    } 

private void findLocalAdvertisements(String searchKey, 

String searchValue) {

try {

Enumeration LocalEnum =

myDiscoveryService.getLocalAdvertisements(

DiscoveryService.ADV, searchKey, searchValue);

if (LocalEnum != null) {

while (LocalEnum.hasMoreElements()) {

PipeAdvertisement aPipeAdv = 

(PipeAdvertisement)LocalEnum.nextElement();

String pipeName = aPipeAdv.getName();

System.out.println(pipeName);

Line 160:

if ((myDatabaseQueryPipe == null) && 

(pipeName.indexOf("DSSDatabaseQueryInputBiPipe")

!= -1)) {

Listing 20.2 The businessPeer Code. (continues)



C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System382

try {

System.out.println("Trying Database Query 

Pipe");

myDatabaseQueryPipe = myBiPipeService.connect(

aPipeAdv, 10000);

System.out.println("Got Database Query Pipe");

} catch(Exception e) {

continue;

}

}

Line 170:

if (pipeName.equals("DSSDatabaseDataSaveInputPipe")) 

{

if (currentOutputAdv.containsValue(aPipeAdv) == 

false) {

try {

System.out.println("Trying Database Save 

Pipe");

myDBOutputPipe[myDBOutputPipeCount] = 

myPipeService.createOutputPipe(aPipeAdv,

10000);

currentOutputAdv.put(new

Integer(myDBOutputPipeCount), aPipeAdv);

System.out.println("Got Database Data Input 

Pipe");

} catch (Exception e) {

continue;

Line 180:                }

myDBOutputPipeCount++;

}

}

}

}

} catch(Exception e) {

}

}

Line 190:

private void getClientPipe() {

try {

incomingAcceptPipe = 

myBiPipeService.bind("DSSBusinessQueryInputBiPipe");

myListenerService = new 

BidirectionalPipeService.MessageListener () {

public void messageReceived (Message msg, OutputPipe 

responsePipe) {

Listing 20.2 The businessPeer Code. (continues)



BusinessPeer 383

try {

myDatabaseQueryPipe.getOutputPipe().send(msg);

Message aMsg = 

myDatabaseQueryPipe.getInputPipe().

poll(30000);

Line 200:                responsePipe.send(aMsg);

} catch(Exception e) {}

return;

}

};

} catch(Exception e) {}

}

}

Listing 20.2 The businessPeer Code. (continued)

Setup
In the same manner as the databasePeer, the businessPeer doesn’t have a GUI
for the display of output messages; instead, it relies on the command window
where it was launched. The application will contact the JXTA network and
obtain the necessary services. 

On line 52, a call is made to establish the data input pipe and publish a pipe
advertisement for any source peers that need to send data to the database. The
businessPeer next executes a call to a method called launchRemoteDiscov-
ery() on line 54. As we will see shortly, this method starts a remote discovery
for all advertisements with a name having a string of DSS* where * is a wild-
card.

Lines 56 through 59 make up a loop that executes until both a query pipe and a
data pipe have been established with at least one databasePeer. The call to find-
LocalAdvertisements() does all of the work in processing any advertisements
returned from the remote discovery. Recall that the remote discovery service is
responsible for finding advertisements and putting them in the local cache.

Once the pipes have been connected, the bidirectional query pipe for a client-
Peer is created on line 60. Finally, an infinite loop is entered for handling a con-
nection on the client query pipe. If there is no connection from a client querying
the database, a call is made on line 65 to listen for a connection. Only one query
connection is allowed, so the statement to accept a connection will be called
only once. Finally, a check is made to determine if multiple database connec-
tions can be created for this businessPeer. If they can, a call is made to findLo-
calAdvertisements() and additional connections are created.



Discovery
When a call is made to findLocalAdvertisements(), the code in lines 152 through
188 is called. This code is designed to be called periodically, and additional
advertisements are processed from the local cache. The code will check for
advertisements through a call on line 154 to the getLocalAdvertisements()
method of the discovery service object. This method will return all of the adver-
tisements found based on a search criterion of Name and a value of DSS*.

If advertisements are available, a loop is entered on line 157 to process those
advertisements. The first step in the process is converting the advertisement to
a PipeAdvertisement object, which occurs on line 158. The name associated
with the pipe is obtained on line 159; the name is used to determine which pipe
advertisement has been found. 

The first check comes on line 162, where the name of the advertisement is
checked against the string “DSSDatabaseQueryInputBiPipe”. This is the bidi-
rectional pipe from the database where queries can be directed from a client. If
the current pipe advertisement is for the query pipe, and the pipe hasn’t been
previously connected, an attempt is made to connect to the remote pipe. If the
attempt is successful, the connection is stored in an object, and processing con-
tinues with the next advertisement. If the attempt is not successful, the pipe
object remains null, and another connection can be created when an appropri-
ate advertisement is found. 

If the name of the pipe is DSSDatabaseDataSaveInputPipe, the code on line 171
will be executed. This code attempts to build a pipe between the businessPeer
and the databasePeer for transferring information to be placed in the database.
The code will attempt the connection, and place a successful one into an array
of output pipes. This all occurs on line 176. If the connection isn’t successful,
processing continues with the next advertisement found in the local cache.

For both of the pipes, there is the possibility that the remote peer won’t be avail-
able. The code will handle this situation by simply ignoring the error produced
when a connection fails. 

Processing Input
The third part of the businessPeer is the portion that handles the transfer of the
message from the user of the system to the databasePeer. When the input pipe
handler of the businessPeer fires, a call is made to the sendData() method. This
method is defined in lines 102 through 111. 

The code itself is quite simple. A message is received and passed to the send-
Data() method. This message is forwarded using a FOR loop to each of the out-
putPipes discovered by the peer. 

C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System384



GatheringPeers

With the databasePeer ready to put data into a database, and the businessPeers
are ready to transfer information, all that’s left is some sort of user peer to pass
information. A source application needs to implement some of the basic JXTA
functionality, including launching into the JXTA network, as well as the ability
to discover advertisements and establish a pipe connection. A gatheringPeer
called a spider is provided with the code for this chapter. The spider pulls
images from a URL and sends them to the database. The code for the spider is
based on the WebLech open-source project, but we made significant changes
for JXTA and database access. You can find all of the peers for this chapter at
www.wiley.com/books/Gradecki.

The spider application takes a URL and pulls all of the images at various depths
within the site. When the application starts, it accesses the JXTA network, and
a businessPeer advertisement is discovered. Once the advertisement is discov-
ered, an output pipe is created between the businessPeer and the spider appli-
cation. As each image is found using a URL, the image is encrypted and
packaged into a message. The code to handle this functionality is found within
a method called writeToFile():

public void writeToFile(String fileName, OutputPipe 

outPipe, int pipeCount, PipeService pipeService, String 

category, Cipher rc4)

{

byte[] encryptedData = new byte[content.length];

try {

rc4.doFinal(content, 0, content.length, 

encryptedData, 0);

} catch (Exception e) {

System.out.println("Error during encryption");

}

if (pipeCount > 0) {

Message msg = pipeService.createMessage();

findParts();

msg.setString("filename", fileName);

msg.setBytes("data", content); //encryptedData);

msg.setString("domain", domain);

msg.setString("path", path);

msg.setString("category", category);

for (int i=0;i<pipeCount;i++) {

try {

outPipe.send(msg);

} catch (Exception e) {

GatheringPeers 385



System.out.println("Unable to send data down 

pipe");

e.printStackTrace();

System.exit(-1);

}

}

}

}

The code begins by encrypting the image into an array of bytes. The doFinal()
method of the cipher is used to perform the encryption. Once the data has been
encrypted, the code checks to be sure that the application has a pipe connec-
tion to the businessPeer. 

ClientPeer

A storage system without the ability to retrieve stored information isn’t of much
use. We developed a sample clientPeer to allow images stored in the database
to be retrieved effectively. Figure 20.7 shows an example of the client applica-
tion after it queries for results and requests an image to be displayed.

C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System386

Figure 20.7 An example of a clientPeer.



The client works by discovering the bidirectional pipe advertised by a busi-
nessPeer. The user of the client will update the SQL string displayed at the top
of the GUI. When the user presses Enter, the peer will build a message with an
element called action and a value of QUERY along with the SQL statement. This
message will be delivered to the businessPeer, which will forward it to the data-
basePeer. The response will consist of the filename found in the database relat-
ing to the specified column. The user double-clicks on one of the filenames to
start the process again, but the action element will have a value of GET. The
message will be delivered to the businessPeer and then the databasePeer. The
bytes making up the image will be returned and subsequently displayed on the
GUI. Listing 20.3 contains the code for the clientPeer.

ClientPeer 387

Line 1: import java.util.*;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.net.URL;

import java.io.*;

import java.awt.*;

import java.awt.event.*;

Line 10: import java.awt.geom.AffineTransform;

import java.awt.image.BufferedImage;

import javax.swing.*;

import java.util.*;

import net.jxta.document.*;

import net.jxta.peergroup.*;

import net.jxta.exception.*;

import net.jxta.impl.peergroup.*;

import net.jxta.id.*;

import net.jxta.discovery.*;

Line 20: import net.jxta.pipe.*;

import net.jxta.protocol.*;

import java.net.MalformedURLException;

import java.net.URL;

import net.jxta.endpoint.Message;

import net.jxta.discovery.*;

import net.jxta.peer.*;

import net.jxta.impl.util.BidirectionalPipeService;

import jxta.security.publickey.*;

import jxta.security.impl.cipher.*;

Line 30: import jxta.security.impl.crypto.*;

import jxta.security.cipher.*;

public class client extends JFrame

Listing 20.3 The client code. (continues)



C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System388

{

private JTextArea  displayArea = null;

private JTextField input = null; 

private final JList fileList = new JList();

private ImageIcon icon = null;

private ImageIcon iconThumbnail = null;

Line 40:

private Vector filesFound = new Vector();

JLabel photographLabel;

private JxtaCryptoSuite  suite = null;

private Cipher rc4;

private String password = "This is the string";

private SecretKey encryptKey;

private boolean gotImage;

Line 50:    private int gettingBusinessPipe = 0;

private PeerGroup  netPeerGroup = null;

private BidirectionalPipeService myBiPipeService = null;

private BidirectionalPipeService.Pipe myBusinessQueryPipe =

null;

private DiscoveryService      myDiscoveryService = null;

private PipeService      myPipeService = null;

private PipeAdvertisement   myPipeAdvertisement = null;

private PipeAdvertisement   myInputPipeAdvertisement = null;

private OutputPipe           myOutputPipe = null;

private InputPipe          myInputPipe = null;

private Integer  pipeSemaphore = new Integer(1);

Line 60:    private final static      MimeMediaType XMLMIMETYPE 

= new MimeMediaType("text/xml"); 

public client()

{

super("client");

Container c = getContentPane();

displayArea = new JTextArea();

c.add(new JScrollPane(displayArea), BorderLayout.CENTER);

Line 70:

input = new JTextField("SELECT name FROM main WHERE 

CATEGORY = '<@@>'");

input.addActionListener (new ActionListener() {

public void actionPerformed (ActionEvent e) {

try {

Message msg = myPipeService.createMessage();

Listing 20.3 The client code. (continues)



ClientPeer 389

msg.setString("action", "QUERY");

msg.setString("SQL", input.getText());

myBusinessQueryPipe.getOutputPipe().send(msg);

Line 80:          Message aMsg = 

myBusinessQueryPipe.getInputPipe().poll(300000);

String results = aMsg.getString("results");

filesFound.clear();

int index = 0;

while (results != "") {

index = results.indexOf("|");

if (index>=0) {

filesFound.add(results.substring(0, index));

results = results.substring(index+1);

Line 90:            } else {

break;

}

}

fileList.setListData(filesFound);

} catch(Exception ee) {

ee.printStackTrace();

}

}});

c.add (input, BorderLayout.NORTH);

Line 100:

JScrollPane pane = new JScrollPane(fileList);

MouseListener mouseListener = new MouseAdapter() {

public void mouseClicked(MouseEvent e) {

if (e.getClickCount() == 2) {

int index = fileList.locationToIndex(e.getPoint());

try {

Message msg = myPipeService.createMessage();

msg.setString("action", "GET");

msg.setString("name",

(String)filesFound.get(index));

Line 110:                myBusinessQueryPipe.getOutputPipe().

send(msg);

Message aMsg = 

myBusinessQueryPipe.getInputPipe().

poll(300000);

byte[] buf = aMsg.getBytes("result");

rc4.init(encryptKey, Cipher.MODE_DECRYPT);

byte[] decryptBuf = new byte[buf.length];

rc4.doFinal(buf, 0, buf.length, decryptBuf, 0);

Listing 20.3 The client code. (continues)



C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System390

icon = new ImageIcon(decryptBuf);

createThumbnail();

Line 120:                photographLabel.setIcon(iconThumbnail);

} catch(Exception ee) {}

}

}

};

fileList.addMouseListener(mouseListener);

c.add(pane, BorderLayout.SOUTH);

photographLabel = new JLabel();

photographLabel.setHorizontalAlignment(JLabel.CENTER);

Line 130:     photographLabel.setVerticalAlignment(

JLabel.CENTER);

photographLabel.setVerticalTextPosition(JLabel.CENTER);

photographLabel.setHorizontalTextPosition(JLabel.CENTER);

c.add(photographLabel, BorderLayout.CENTER);

setSize(450,600);

show();

launchJXTA();

Line 140:     getServices();

try {

suite = new JxtaCryptoSuite(JxtaCryptoSuite.MEMBER_RC4, 

null, (byte)0, (byte)0);

rc4 = suite.getJxtaCipher();

encryptKey = (SecretKey)KeyBuilder.buildKey(

KeyBuilder.TYPE_RC4, KeyBuilder.LENGTH_RC4, false);

encryptKey.setKey(password.getBytes(), 0);

rc4.init(encryptKey, Cipher.MODE_DECRYPT);

} catch(Exception e) {

System.out.println("Trouble with security setup");

Line 150:       System.exit(-1);

}

findAdvertisement("Name", "DSSBusinessQueryInputBiPipe");

}

private void launchJXTA() {

displayArea.append("Launching Peer into JXTA 

Network...\n");

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

Listing 20.3 The client code. (continues)



ClientPeer 391

Line 160:        } catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - 

Failure");

e.printStackTrace();

System.exit(1);

}

}

private void getServices() {

displayArea.append("Getting Services...\n");

myDiscoveryService = netPeerGroup.getDiscoveryService();

Line 170:      myPipeService = netPeerGroup.getPipeService();

myBiPipeService = new 

BidirectionalPipeService(netPeerGroup);

}

private void findAdvertisement(String searchKey, String 

searchValue) {

try {

DiscoveryListener myDiscoveryListener = new 

DiscoveryListener() {

public void discoveryEvent(DiscoveryEvent e) {

Enumeration enum;

Line 180:              String str;

synchronized (pipeSemaphore){

if (myBusinessQueryPipe == null) {

System.out.println("Found Remote 

Advertisement...\n");

DiscoveryResponseMsg myMessage = 

e.getResponse();

enum = myMessage.getResponses();

while (enum.hasMoreElements()) {

str = (String)enum.nextElement();

Line 190:                    try {

PipeAdvertisement pipeAdv =

(PipeAdvertisement)

AdvertisementFactory.newAdvertisement(

XMLMIMETYPE, new 

ByteArrayInputStream(str.getBytes()));

myBusinessQueryPipe = 

myBiPipeService.connect(pipeAdv, 30000);

} catch(Exception ee) {

}

}

Listing 20.3 The client code. (continues)



C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System392

}

}

}

};

Line 200:

System.out.println("Launching Remote Discovery 

Service...\n");

myDiscoveryService.getRemoteAdvertisements(null,

DiscoveryService.ADV, searchKey, searchValue, 10, 

myDiscoveryListener);

} catch (Exception e) {

System.out.println("Error during advertisement search");

}

}

public void run() {

}

Line 210:

public static void main(String[] args){

client cli = new client();

cli.addWindowListener(

new WindowAdapter() {

public void windowClosing(WindowEvent e) {

System.exit(0);

}

Line 220:        }

);

cli.run();

}

private void createThumbnail() {

int maxDim = 350;

try {

Image inImage = icon.getImage();

double scale = (double)maxDim/(double)inImage.getHeight(null);

Line 230:            if (inImage.getWidth(null) > 

inImage.getHeight(null)) {

scale = 

(double)maxDim/(double)inImage.getWidth(null);

}

int scaledW = (int)(scale*inImage.getWidth(null));

int scaledH = (int)(scale*inImage.getHeight(null));

BufferedImage outImage = new BufferedImage(scaledW, 

Listing 20.3 The client code. (continues)



ClientPeer 393

scaledH, BufferedImage.TYPE_INT_RGB);

Line 240:            AffineTransform tx = new AffineTransform();

if (scale < 1.0d) {

tx.scale(scale, scale);

}

Graphics2D g2d = outImage.createGraphics();

g2d.drawImage(inImage, tx, null);

g2d.dispose();

iconThumbnail = new ImageIcon(outImage);

Line 250:

} catch (Exception e) {

e.printStackTrace();

}

}

}

Listing 20.3 The client code. (continued)

The code for the client can be broken down into four main areas: setup, pipe
discovery, query request, and image request.

Setup
The clientPeer is a GUI application that extends the JFrame class and has a
number of GUI components attached to it. The components include

JTextField—This component allows the input of a SQL string.

JTextArea—This component displays the location in the middle of the
GUI.

ImageIcon/JLabel—An image icon is attached to a label, also placed in the
middle of the GUI.

JList—This component is a scrollable list for holding filenames returned
from a query.

All of these components and the basic JXTA services are set up in the con-
structor (defined in lines 64 through 156) of the application class. Some of the
code in the constructor defines handlers for the JTextField and the JList; we
discuss this functionality next. 

Lines 142 and 143 put the peer into the JXTA network, and obtain the discovery
and bidirectional pipe service necessary for the functionality of the peer. Lines



145 through 154 perform the setup of the JxtaCryptoSuite needed for the
decryption of the image data returned from the database. The decryption code
begins with an instantiation of the JxtaCryptoSuite on line 146. The only param-
eter to the constructor of the class is the type of cipher needed: RC4. The con-
structor of the suite will instantiate the necessary code behind the scenes based
on the cipher specified. Line 147 extracts the cipher from the suite for use, and
line 148 builds a key for use in the data encryption. This line only builds a key
container with no passcode; the passcode for the key is assigned on line 149.
The bytes of the password variable are passed to the key through its setKey()
method. These bytes will be used in the RC4 decryption of the image data from
the database.

Finally, line 150 initializes the RC4 cipher using the key and a parameter speci-
fying the cipher to be used for decryption of data. If any of the operations fail,
the application will halt because the decryption functionality is a vital part of
the application.

The last operation for the constructor is found on line 156, where the system
attempts to find the bidirectional pipe advertisement from a businessPeer. 

Pipe Discovery
As we just explained, the last operation for the initialization of the peer is an
attempt to find a bidirectional pipe from a businessPeer. The pipe is the only
way the code can transfer a QUERY or image GET request to the database. The
code for the pipe discovery is the same used in our other peer applications,
except the peer doesn’t look in its cache for a pipe advertisement. The only rea-
son for this is to show a different way of finding advertisements. By not check-
ing the local cache, the peer has a better chance of finding a valid pipe through
which it can make a request. A remote discovery process is less likely to return
an advertisement that is stale.

The code for finding a businessPeer pipe is found in lines 178 through 209. In
most of the applications built before this chapter, the peer just tried to make a
pipe connection with the first advertisement it found. This isn’t very realistic
because a pipe advertisement might be old. The findAdvertisement() method in
the client goes about the discovery and connection processes a little differently.
On line 205, the remote discovery process is started using the name and value
of the pipes we want to discover. Notice that the second parameter to the
method now has a value of 10; this means we will allow any peer to return up to
10 different advertisements, matching our search key and value, to the discov-
ery listener code. 

The discovery listener code is defined in line 180 through 202. When a call to the
listener code occurs, the code will immediately hit a critical region of code.

C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System394



This critical region is signified by the synchronized(pipeSemaphore) statement.
If any other peers send results to the clientPeer, they will be “blocked” until the
current peer’s response messages are processed. This ensures that the code
cannot be corrupted by an asynchronous call to the listener. 

Within the critical code, the advertisements returned are processed using a
while loop. Each pipe advertisement is used in an attempt to create a pipe to a
businessPeer that published the advertisement. In some cases, the busi-
nessPeer might not be available. When this occurs, the connection attempt to
the remote pipe will fail, and the code will proceed to the next advertisement.
Once a pipe is connected to a businessPeer, all remaining advertisements will
be skipped. 

The Query Request
The client functionality begins with the user entering a category value in the
SQL at the top of the GUI. When the user presses the Enter key, the JTextField
listener code will execute on lines 74 through 99. The code starts by creating a
message to send to the businessPeer. This message includes two elements:
action and SQL. The action element contains a value of QUERY, and the SQL
element contains the actual SQL string to be processed. 

The output pipe is obtained from the bidirectional pipe on line 81, and the mes-
sage is sent to the businessPeer. Unlike other peers, the client will sit and poll
for a response from the businessPeer. The polling occurs on line 82 after the
input pipe is obtained. 

When a response is received from the businessPeer, the filenames from the
query need to be extracted from the delimited string found in the results ele-
ment. The code in lines 83 through 93 pulls all of the filenames, and places them
in a list called filesFound. The vector is fed to the JList GUI control on line 96.
The statement setListData() will have the result of placing all of the filenames
on the GUI.

The Image Request
Once all of the filenames are displayed in the list box on the GUI, a user can
double-click a filename to see the image. The code in lines 105 through 126 will
be called. The code represents a listener for the list box. When a user double-
clicks a filename, the code will determine which filename was clicked by using
a reference from the list box into the filesFound list object. The filename is
packaged into a message object and sent to the businessPeer. The businessPeer
will forward the message to the databasePeer, where the data for the image will
be extracted and placed in a response object. 

Client Peer 395



When the response object is received, the image data will be located in the
result element. Since the image data was originally put into the database in
encrypted form, the data must be decrypted. This process takes place in lines
115 through 119. The RC4 cipher is used to perform the decryption. 

Once the image is back in its original form, it will be reduced in size to fit on the
GUI. A call is made to the createThumbnail() method on line 122; this method
reduces the size of the image before it is placed on the GUI.

Summary

The encrypted and highly available storage system (EHASS) is an example of
what we can accomplish in a very short time period using the JXTA system. The
EHASS allows image data to be stored in any number of available databases
within the JXTA network, without regard to location and database type.

C h a p t e r  2 0 Building an Encrypted, Highly Available Storage System396



In this appendix, we discuss where to download the various builds of JXTA
and the steps for installing JXTA on Linux and Windows systems. We also
examine how to compile code using both the command-line Java compile

and Borland’s JBuilder IDE.

Installing JXTA

The primary web site for JXTA is www.jxta.org, where you can find all of the
system code and documentation. For information on downloading an easy-
install package, go to

http://download.jxta.org/easyinstall/install.html

and for information on downloading stable and daily builds, go to

http://www.jxta.org/project/www/download.html

Easy Install
For those of you who want to quickly install the JXTA system, go to
http://download.jxta.org/easyinstall/install.html, where numerous downloads
are available, based on the platform and whether a Virtual Machine (VM) is
needed. Table A.1 lists the available downloads.

Installing JXTA and Compiling JXTA
Applications

A P P E N D I X A

397



Table A.1 Downloads for Installing the JXTA System

PLATFORM WITH VM WITHOUT VM

Windows Available Available

Max OSX Not available Available

Solaris Available Available

Linux Available Available

Unix Not available Available

Other Not available Available

Each of these installs includes

■■ The myJXTA application

■■ JXTA libraries

■■ The JXTA shell application

There are two versions for most all of the platforms: one with the JXTA system
only, and another that includes JXTA and an appropriate copy of the Java Run-
time Environment (JRE). The VM and JRE versions both allow the applications
within the installation to execute; however, since neither package includes a
Java compiler, you won’t be able to write applications. If you plan to develop
new applications with JXTA, you’ll need to install a Java SDK, which we discuss
later in this appendix.

Installing on a Windows System
If the machine you’ll use already includes a Java system, click the Without Java
VM version; otherwise, choose the Includes Java VM version. The download
will begin when you click the appropriate link. Once the package downloads,
either click the Open option to immediately execute the file, or click Save and
place the file on your local hard drive. If you save the file to your local hard
drive, you will have to find the file and then double-click it to begin the installa-
tion process. 

Once you launch the installation program, a wizard will walk you through a
number of screens, including a license agreement and a screen that asks where
you want to place the JXTA system (in a default location or in a specific loca-
tion on your hard drive). Click Next on the various screens to install the 
program.

A p p e n d i x  A I n s t a l l i n g  J X TA  a n d  C o m p i l i n g  J X TA  A p p l i c a t i o n s398



Installing on a Linux System
The process for installing the JXTA software on a Linux system is basically the
same as for Windows. The JXTA software is contained in an installation appli-
cation. After you click on the link for the appropriate software (with or without
VM), save the file in a convenient place on your system. For the test system
used in this book, we installed the software in a directory called /usr/local/jxta,
owned by the user jxta and the users group. 

When you’ve downloaded the file, open a terminal window, and change to the
directory containing the file. Then, for the file without the VM, type

sh ./JXTAInst.bin 

to start the installation process. If you already have a Java system installed,
you’ll see an error. If this is the case, you should instead install the file with the
Java VM embedded. 

To install the file with the embedded VM, use the following command:

sh ./JXTAInst_LNX_VM.bin

Once you’ve installed the software, you’ll see a lib directory, an InstantP2P
directory, and a Shell directory.  The lib directory contains the JXTA system
JAR files, the Shell directory contains a shell application, and the InstantP2P
directory contains the myJXTA application.

JXTA Libraries
Most JXTA applications will require the following libraries to compile and exe-
cute correctly:

■■ beepcore.jar

■■ cms.jar

■■ cryptix32.jar

■■ cryptix-asn1.jar

■■ insntantp2p.jar

■■ jxta.jar

■■ jxtasecurity.jar

■■ minimalBC.jar

The easy-install files install all the necessary libraries. Developers will typically
download newer code if needed, as we discuss in the next section.

Installing JXTA 399



Stable Builds
Whether or not you chose the easy-install JXTA files, you can download the
individual JXTA JAR files directly and use them. There are two versions of the
JAR files: stable and daily. You can find the stable JAR files at

http://download.jxta.org/stablebuilds/index.html

Located on this web page are the following:

■■ Binaries:

• jxta.jar—The platform infrastructure

• jxtasecurity.jar—Security files

• jxme.zip—The J2ME JXTA implementation

• ms.jar—The Content Management System (CMS)

• jxtasearch.zip—The distributed search service

• jxtashell.zip—The command-line shell

• instantp2p.zip—The myJXTA application

• all.zip—All build binary JARs

■■ Documentation:

• jxta_doc.zip—The platform API

• jxta_refdoc—The platform reference

• security_doc.zip—The security API

• security_refdoc.zip—The security reference

• jxme_doc.zip—The JXME API

• cms_doc.zip—The CMS API

• cms_refdoc.zip-_The CMS reference

• jxtasearch_doc.zip—The search API

• shell_refdoc—The shell reference

• instantp2p_doc—The myJXTA API

• all_doc.zip—All documentation files

■■ Source code

• jxta.zip—The platform infrastructure

• jxtasecurity.zip—Security files

• jxme.zip—The J2ME JXTA implementation

• cms.zip—The Content Management System

• jxtasearch.zip—The distributed search service

A p p e n d i x  A I n s t a l l i n g  J X TA  a n d  C o m p i l i n g  J X TA  A p p l i c a t i o n s400



• jxtashell.zip—The command-line shell

• instantp2p.zip—The myJXTA application

• all.zip—All build binary JARs

You can place the binaries JAR directly in the lib directory of the installation.
Note that many of the JAR files needed to compile applications with JXTA
aren’t included in the stable build area—you’ll have to install these files by
using the easy-install application or by downloading the all*.zip file.

Daily Builds
If you want to remain on the cutting edge with the system’s developers, you can
download daily builds of the code. The builds are located at

http://download.jxta.org/nightlybuilds/index.html

The code layout is the same in this area as found in the stable build. You have
options for downloading individual JARs or the entire system. Updated docu-
mentation is also available.

Compiling the Examples

In order to compile an application using JXTA, you need to install a version of
the Java SDK. We built all of the code in this book on both Windows and Linux
using the Java SDK version 1.3.1_02. You can download the SDK for both Win-
dows and Linux from www.javasoft.com. As of this writing, Sun has released
version 1.4 of the SDK; however, we haven’t tested the applications in this book
and the JXTA platform with that version.

There are a number of different ways to compile Java applications, including
using an IDE such as JBuilder or the command-line tools provided by Sun. Our
goal is to introduce JXTA to everyone, so we rely on the command-line tools
provided with the Java SDK. In this section, we introduce the command-line
tools for both the Windows and the Linux operating systems.

Windows
The Windows test system we used to build and test the applications in this book
used JDK 1.3.1.1, installed in the c:\jdk1.3.1_02 directory. We installed the JXTA
system using the JXTAInst.exe application and placed it in the c:\program
files\jxta_demo directory.

For the compiling phase of development, the Java compiler needs to know where
to find the JAR files associated with JXTA. We created a single environment 

Compiling the Examples 401



variable called JXTALIB, and gave it the value c:\program files\jxta_demo\lib,
where the JXTA JAR files were located on our system. 

You can compile each of the applications in this book by typing the following at
the command line:

javac -d . -classpath

%JXTALIB%/jxta.jar;%JXTALIB%/log4j.jar;%JXTALIB%/beepcore.jar;

%JXTALIB%/jxtasecurity.jar;%JXTALIB%/org.mortbay.jetty.jar;

%JXTALIB%/servlet.jar;%JXTALIB%/cryptixasn1.jar;

%JXTALIB%/cryptix32.jar;%JXTALIB%/jxtaptls.jar;

%JXTALIB%/minimalBC.jar <application name>.java

The resulting class file will be located in the current directory.

Linux
The same command line will work on Linux; however, you’ll need to change the
directory where the library files are located and change the ; delimiter (semi-
colon) between the JARs to change to : (colon).

javac -d . -classpath /usr/local/jxta/lib/jxta.jar: 

/usr/local/jxta/lib/log4j.jar: /usr/local/jxta/lib

/beepcore.jar: /usr/local/jxta/lib /jxtasecurity.jar: 

/usr/local/jxta/lib/org.mortbay.jetty.jar:

/usr/local/jxta/lib/servlet.jar:/usr/local/jxta/lib/cryptixasn1

.jar:/usr/local/jxta/lib/cryptix32.jar:/usr/local/jxta/lib/jxta

ptls.jar: /usr/local/jxta/lib/minimalBC.jar 

<application name>.java

For both systems, you can create a bat and a sh file to hold the compile text so
you won’t have to type it when needed; instead, you can just type the name of
the bat or sh file.

Running the Examples

This section explains how to execute the code for both the Windows and Linux
systems.

Windows
Once you’ve compiled the application and built the appropriate class files, you
must execute the application. To do so, type the following at the command line:

java –classpath 

%JXTALIB%/jxta.jar;%JXTALIB%/log4j.jar;%JXTALIB%/beepcore.jar;

%JXTALIB%/jxtasecurity.jar;%JXTALIB%/org.mortbay.jetty.jar;

A p p e n d i x  A I n s t a l l i n g  J X TA  a n d  C o m p i l i n g  J X TA  A p p l i c a t i o n s402



%JXTALIB%/servlet.jar;%JXTALIB%/cryptix-asn1.jar;

%JXTALIB%/cryptix32.jar;%JXTALIB%/jxtaptls.jar;

%JXTALIB%/minimalBC.jar; Example1

Linux
For Linux, use the same command but replace %JXTALIB% with the path to the
installed JXTA system and replace the ; character with :.

java -classpath /usr/local/jxta/lib/jxta.jar: 

/usr/local/jxta/lib/log4j.jar: /usr/local/jxta/lib

/beepcore.jar: /usr/local/jxta/lib /jxtasecurity.jar: 

/usr/local/jxta/lib/org.mortbay.jetty.jar:

/usr/local/jxta/lib/servlet.jar:/usr/local/jxta/lib/cryptixasn1

.jar:/usr/local/jxta/lib/cryptix32.jar:/usr/local/jxta/lib/jxta

ptls.jar: /usr/local/jxta/lib/minimalBC.jar:

<application name>

JBuilder Compiling and Execution

For those of you who want to use an IDE for your Java work, the following sec-
tion offers instructions for setting up the Borland JBuilder Personal Edition for
compiling and executing JXTA applications. The current version of JBuilder
comes with the 1.3.1_B24 version of Java and is an appropriate tool for execut-
ing the various examples in this book. Once you download the package from
www.borland.com and install it, you need to apply a JXTA-specific configura-
tion.

Launch JBuilder and click Project, Default Project Properties, and then select
the Required Libraries tab, shown in Figure A.1.

JBuilder Compiling and Excution 403

Figure A.1 The Default Project Properties dialog box.



Click the Add button to open the dialog box shown in Figure A.2. This 
dialog box allows you to add libraries necessary to compile and execute 
JXTA applications. The IDE already has the normal Java libraries but not the
JXTA JARs. 

A p p e n d i x  A I n s t a l l i n g  J X TA  a n d  C o m p i l i n g  J X TA  A p p l i c a t i o n s404

Figure A.2 This dialog box lets you add libraries.

Click on the entry User Home and then click the New button to bring up the
New Library Wizard, shown in Figure A.3.

Figure A.3 The New Library Wizard.

Next, enter a name for the libraries, such as JXTA. Then, click the Add button
to open the Open Files dialog box. Browse to the lib directory where the JXTA
JAR library files are located and then click OK. You will be returned to the Add
Required Library dialog box. Click OK to continue. The JXTA JARs will now be
available for all new projects. 

Adding a New JBuilder Project
Now we will start a new JXTA application in a project. Click File, New Project
to open the New Project Wizard, shown in Figure A.4.



Figure A.4 The New Project Wizard.

Enter a name for the project, and change the location where the project will be
stored (if necessary). Click the Next button, and you’ll see a tab called Required
Libraries. Click the tab to see the JXTA entry in the list. Then, click Finish to
build the project. 

At this point, check the JBuilder documentation to see how to add files to the
project and to learn about compiling and execution. The JXTA libraries have
been added to the project, which means they will be available to the application
you are building.

JBuilder Compiling and Execution 405





This appendix consists of a comprehensive summary of the JXTA Java
Reference Implementation API. This material is not meant to replace the
Javadoc produced by the Reference Implementation but to provide a

quick reference when needed during development of applications. Each of the
major classes and interfaces are represented in this appendix. You will find a
short description of the class/interface, parent and/or derived classes, attribute
and method listings and in most cases a short code example.

Class Advertisement

The Advertisement class provides the basis for advertising all peers, peer-
groups, pipes, and other JXTA resources.

■■ Parent Class: java.lang.Object

■■ Class: net.jxta.document.Advertisement

■■ Derived Classes:

EndpointAdvertisement

ModuleClassAdvertisement

ModuleImplAdvertisement

ModuleSpecAdvertisement

PeerAdvertisement

PeerGroupAdvertisement

JXTA API

A P P E N D I XB

407



PipeAdvertisement

RdvAdvertisement

TransportAdvertisement

Field Summary
■■ protected long expiration: Absolute time at which this advertisement will

expire.

Constructor Summary
■■ Advertisement()

Method Summary
■■ java.lang.Object clone() static java.lang.String getAdvertisementType():

Returns the identifying type of this advertisement.

■■ abstract Document getDocument(MimeMediaType asMimeType): returns
Document representation o

■■ abstract ID getID(): Returns advertisement ID.

■■ long getLocalExpirationTime(): Returns advertisement expiration

Example
In the following code snippet, a Document object is created from a PipeAdver-
tisement object using the getDocument() method:

PipeAdvertisement pipeAdv;

StructuredTextDocument doc = pipeAdv.getDocument(XMLMIMETYPE);

Class AdvertisementFactory

The AdvertisementFactory class is a factory for building new advertisements.
This factory will build all of the advertisements used in JXTA.

■■ Parent Class: next.jxta.util.ClassFactory

■■ Class: net.jxta.document.AdvertisementFactory

■■ Derived Classes: None

Method Summary
■■ java.lang.Class getClassForKey(): Used by ClassFactory methods to ensure

that all keys used with the mapping are of the correct type.

A p p e n d i x  B JXTA API408



■■ java.lang.Class getClassOfInstantiators(): Used by ClassFactory methods
to ensure that all of the instance classes that register with this factory have
the correct base class.

■■ static Advertisement newAdvertisement(MimeMediaType mimetype,
java.io.InputStream stream): Constructs an instance of Advertisement

■■ static Advertisement newAdvertisement(MimeMediaType mimetype,
java.io.InputStream stream, long timeout): Constructs an instance of
Advertisement matching the type specified by the advertisementType
parameter.

■■ static Advertisement newAdvertisement(java.lang.String advertisement-
Type): Constructs an instance of Advertisement matching the type speci-
fied by the advertisementType parameter.

■■ static Advertisement newAdvertisement(java.lang.String advertisement-
Type, long timeout): Constructs an instance of Advertisement matching the
type specified by the advertisementType parameter.

■■ static Advertisement newAdvertisement(TextElement root): Constructs an
instance of Advertisement matching the type specified by the root parameter.

■■ static Advertisement newAdvertisement(TextElement root, long timeout):
Constructs an instance of Advertisement matching the type specified by
the root parameter.

■■ static Boolean registerAdvertisementInstance(java.lang.String rootType,
java.lang.Class instanceClass): Register an array of constructor for an ID
type to enable IDs of that type to be constructed.

■■ protected Boolean registerAssoc(java.lang.String className): Registers
className class with factory

Example

In the following code snippet, the AdvertisementFactory class is used to build
a new advertisement of type PeerGroup.

PeerGroupAdvertisement adv = (PeerGroupAdvertisement) 

AdvertisementFactory.newAdvertisement(PeerGroupAdvertisement.

getAdvertisementType());

Class AuthenticationCredential

The AuthenticationCredential class is a container for holding credential infor-
mation for a specific peer group. The class encapsulates the methods provided
by the peer group to handle the authentication using the credential information
within the class.

Class AuthenticationCredential 409



■■ Parent Class: java.lang.Object

■■ Class: net.jxta.document.AuthenticationCredential

■■ Derived Classes: none

Constructor Summary
■■ AuthenticationCredential(PeerGroup peergroup, java.lang.String method,

Element indentityInfo): Creates new AuthenticationCredential.

Method Summary
■■ StructuredDocument getDocument(MimeMediaType as): Writes creden-

tials into a document.

■■ Element getIdentityInfo():  Returns the StructuredDocument Element con-
taining the identity information that was originally provided when this
AuthenticationCredential was created.

■■ java.lang.String getMethod(): Returns the AuthenticationMethod that this
AuthenticationCredential will be requesting when it is provided to a Mem-
bershipService service during the Apply operation.

■■ ID getPeerGroupID(): Returns the PeerGroupID associated with this
AuthenticationCredential.

■■ ID getPeerID(): Returns the PeerID associated with this Authentication-
Credential.

■■ MembershipService getSourceService(): Always returns null because this
type of credential is not associated with a particular membership service.

Example
In the following code snippet, a new AuthenticationCredential object is created
for the group defined in the myLocalGroup object using an authentication class
called UpdatedPasswdAuthentication. The newly created AuthenticationCre-
dential object is passed to the Authenticator in the current group.

AuthenticationCredential myAuthenticationCredential = new 

AuthenticationCredential(myLocalGroup,

"UpdatedPasswdAuthentication", myCredentials);

net.jxta.membership.Authenticator myAuthenticator = 

myMembershipService.apply(myAuthenticationCredential);

A p p e n d i x  B JXTA API410



Class Codat

The Codat class is used to hold binary data in the form of an advertisement.

■■ Parent Class: java.lang.Object

■■ Class: net.jxta.codat.Codat

■■ Derived Classes: Metadata

Field Summary
■■ protected Document doc: A JXTA document that contains the data held by

this Codat.

■■ protected ID id: The ID of this Codat.

■■ protected ID metaId: The ID of a Codat to which this Codat is related.

Constructor Summary
■■ Codat(CodatID id, CodatID about, Document document): Makes a new

Codat instance from an existing Codat, with a given CodatID and a docu-
ment.

■■ Codat(PeerGroupID groupID, ID about, Document document): Makes a
new Codat with a new CodatId given a PeerGroupID and a document.

Method Summary
■■ ID getCodatID(): Returns the Codat ID associated with this Codat.

■■ Document getDocument(): Returns the document associated with this
Codat.

■■ ID getMetaID(): Returns the ID of related codats associated with this meta-
data Codat.

Example
The following snippet builds a new Codat object based in the current peer
group with a new ID and document:

Codat codat = new Codat(netPeerGroup.getPeerID(), newID, advDoc);

Class Codat 411



Class CodatID

The CodatID class represents an ID specific to a Codat.

■■ Parent Class: java.lang.id.ID

■■ Class: net.jxta.codat.CodatID

■■ Derived Classes: none

Constructor Summary
■■ CodatID()

Method Summary
■■ abstract ID getPeerGroupID(): Returns the PeerGroupID of the peer group

to which this Codat ID belongs.

■■ abstract Boolean isStatic(): Returns true if this Codat ID is associated with
a static Codat.

Example
In the following code snippet, the Codat ID of a Codat object is obtained and its
embedded PeerGroupID displayed:

CodatID codatID = codat.getCodatID();

System.out.println(codatID.getID().toString());

Interface Credential

The credential class is used to contain information that could be used as a cre-
dential for a peer group and a membership service.

Method Summary
■■ StructuredDocument getDocument(MimeMediaType as): Writes creden-

tials into a document.

■■ ID getPeerGroupID(): Returns the peerGroupID associated with this 
credential.

■■ ID getPeerID(): Returns the peerID associated with this credential.

■■ MembershipService getSourceService(): Returns the service that 
generated this credential.

A p p e n d i x  B JXTA API412



Class DiscoveryEvent

The DiscoveryEvent class is used to contain information passed from a peer
during a discovery attempt. An object of the class will be passed to a discovery
listener if defined.

■■ Parent Class: java.util.EventObject

■■ Class: net.jxta.discovery.DiscoveryEvent

■■ Derived Classes: None

Constructor Summary
■■ DiscoveryEvent(java.lang.Object source, DiscoveryResponseMsg

response, int queryid): Creates a new event.

Method Summary
■■ int getQueryID(): Returns the query ID associated with the response

returned in this event.

■■ DiscoveryResponseMsg getResponse(): Returns the response associated
with the event.

Example
In the following snippet, the DiscoveryEvent is passed to the listener object’s
callback method. The getResponse() method is used to pull advertisements
found during the discovery attempt.

DiscoveryListener myDiscoveryListener = new DiscoveryListener() { 

public void discoveryEvent(DiscoveryEvent e) { 

DiscoveryResponseMsg myMessage = e.getResponse();

Enumeration enum = myMessage.getResponses();

String str = (String)enum.nextElement();

}

};

Interface DiscoveryListener

The DiscoveryListener interface defines the method necessary to build a lis-
tener called when a discovery search is made. The listener can be defined as
either an inner class or a separate class.

Interface DiscoveryListener 413



Method Summary
■■ void discoveryEvent(DiscoveryEvent event): Returns the discoveryService

event.

Example
In the following snippet, a DiscoveryListener object is created to handle the
callback necessary when an advertisement discovery is made.

DiscoveryListener myDiscoveryListener = new DiscoveryListener() { 

public void discoveryEvent(DiscoveryEvent e) { 

DiscoveryResponseMsg myMessage = e.getResponse();

}

};

Class DiscoveryQueryMsg

The DiscoveryQueryMsg class is an internal class used to build a message sent
during a query involving the discovery service. 

■■ Parent Class: java.lang.Object

■■ Class: net.jxta.protocol.DiscoveryQueryMsg

■■ Derived Classes: None

Field Summary
■■ int type

Constructor Summary
■■ DiscoveryQueryMsg()

Method Summary
■■ static java.lang.String getAdvertisementType(): All messages have a type

(in XML, this is !doctype) that identifies the message.

■■ java.lang.String getAttr(): Returns the Attr value.

■■ int getDiscoveryType(): Gets the response type.

■■ abstract Document getDocument(MimeMediaType asMimeType): Writes an
advertisement into a document.

■■ java.lang.String getPeerAdv(): Returns the responding’s peer 
advertisement.

A p p e n d i x  B JXTA API414



■■ int getThreshold(): Gets the threshold for the number of responses.

■■ java.lang.String getValue(): Returns the value of Attr.

■■ void setAttr(java.lang.String attr): Sets the Attr.

■■ void setDiscoveryType(int type): Sets the response type, whether it’s peer
or group discovery.

■■ void setPeerAdv(java.lang.String peer): Sets the response type, whether it’s
peer or group discovery.

■■ void setThreshold(int threshold): Sets the threshold.

■■ void setValue(java.lang.String value): Sets the query.

Class DiscoveryResponseMsg

The DiscoveryResponseMsg is an internal class defined to contain information
returned from one peer to another during a discovery query.

■■ Parent Class: java.lang.Object

■■ Class: net.jxta.protocol.DiscoveryResponseMsg

■■ Derived Classes: None

Field Summary
■■ int count

■■ int type

Constructor Summary
■■ DiscoveryResponseMsg()

Method Summary
■■ static java.lang.String getAdvertisementType(): All messages have a type

(in XML, this is !doctype) that identifies the message.

■■ int getDiscoveryType(): Gets the response type.

■■ abstract Document getDocument(MimeMediaType asMimeType): Writes
advertisements into a document.

■■ java.util.Enumeration getExpirations()

■■ java.lang.String getPeerAdv(): Returns the responding’s peer 
advertisement.

Class DiscoveryResponseMsg 415



■■ java.lang.String getQueryAttr(): Returns the attributes used by the query.

■■ java.lang.String

■■ getQueryValue(): Returns the value used by the query.

■■ int getResponseCount(): Gets the response count.

■■ java.util.Enumeration getResponses(): Returns the response(s).

■■ void setDiscoveryType(int type): Sets the response type, whether it’s peer
or group discovery.

■■ void setExpirations(java.util.Vector expirations)

■■ void setPeerAdv(java.lang.String peer): Sets the response peer advertise-
ment.

■■ void setQueryAttr(java.lang.String attr): Sets the attribute used by the
query.

■■ void setQueryValue(java.lang.String value): Sets the value used by the
query.

■■ void setResponseCount(int count: Sets the response count in this message.

■■ void setResponses(java.util.Vector responses): Sets the responses to the
query.

Example
In the following snippet, a DiscoveryResponseMsg object is created from the
DiscoveryEvent object passed to the DiscoveryListener used for discovery:

DiscoveryListener myDiscoveryListener = new DiscoveryListener() { 

public void discoveryEvent(DiscoveryEvent e) { 

DiscoveryResponseMsg myMessage = e.getResponse();

Enumeration enum = myMessage.getResponses();

String str = (String)enum.nextElement();

}

};

Interface DiscoveryService 

The DiscoveryService interface defines the functionality required of code
implementing the discovery service.

Field Summary
■■ static int ADV: DiscoveryService type advertisement.

■■ static long DEFAULT_EXPIRATION: Default expiration time for 
advertisements.

A p p e n d i x  B JXTA API416



■■ static long DEFAULT_LIFETIME: Default lifetime time for advertisements.

■■ static int GROUP: default group for advertisements

■■ DiscoveryService type Group : associated peer group

■■ static int PEER : default peer

■■ DiscoveryService type Peer : associated peer

Method Summary
■■ void addDiscoveryListener(DiscoveryListener listener): Registers a discov-

ery listener to be notified for discovery events.

■■ void flushAdvertisements(java.lang.String id, int type): Flushes the stored
document.

■■ java.util.Enumeration getLocalAdvertisements(int type, java.lang.String
attribute, java.lang.String value): Retrieves the stored peer, group, and gen-
eral advertisements.

■■ int getRemoteAdvertisements(java.lang.String peerid, int type,
java.lang.String attribute, java.lang.String value, int threshold): Deprecated.

■■ void getRemoteAdvertisements(java.lang.String peerid, int type,
java.lang.String attribute, java.lang.String value, int threshold, Discov-
eryListener listener): Discovers PeerAdvertisements, GroupAdvertise-
ments and JXTA Advertisements.

■■ void publish(Advertisement advertisement, int type): Publishes an adver-
tisement with a default lifetime of DEFAULT_LIFETIME and default expi-
ration time for “others” of DEFAULT_EXPIRATION.

■■ void publish(Advertisement adv, int type, long lifetime, long lifetime-
ForOthers): Publishes an advertisement that will expire after a certain
time.

■■ void remotePublish(Advertisement adv, int type): Attempts to publish an
advertisement remotely on all configured transports; the advertisement
will carry a lifetime of the Expiration time or lifetime, whichever is
smaller.

■■ void remotePublish(Advertisement adv, int type, long lifetime): Attempts to
publish an advertisement remotely on all configured transports; the adver-
tisement will carry an expiration of lifetime.

■■ boolean removeDiscoveryListener(DiscoveryListener listener): Removes a
discovery listener.

Interface DiscoveryService 417



Example
In the following snippet, the DiscoveryService associated with a peer group is
obtained.  The getLocalAdvertisements() method is called to obtain any adver-
tisements in the local cache that match the provided search key and value.

DiscoveryService myDiscoveryService = 

netPeerGroup.getDiscoveryService();

myLocalEnum = 

myDiscoveryService.getLocalAdvertisements(DiscoveryService.

GROUP, searchKey, searchValue);

Interface Document 

The Document interface states the functionality required to be implemented
when building a document class.

Method Summary
■■ java.lang.String getFileExtension(): Returns the file extension type used by

this document.

■■ MimeMediaType getMimeType(): Returns the MIME media type of this
document per IETF RFC 2046 MIME: Media Types. JXTA does not cur-
rently support the Multipart or Message media types.

■■ java.io.InputStream getStream(): Returns a stream of bytes that represent
the content of this document.

■■ void sendToStream(java.io.OutputStream stream): Rather than returning
an InputStream like getStream(), this method sends the document to the
specified stream.

Example
The Document interface defines the basic methods of a JXTA document. In the
following snippet, a document from a PipeAdvertisement is obtained and out-
put to the screen. The StructuredTextDocument class is used, which imple-
ments a Document interface.

StructuredTextDocument doc = 

(StructuredTextDocument)pipeAdv.getDocument(XMLMIMETYPE);

doc.sendToStream(System.out);

A p p e n d i x  B JXTA API418



Interface Element 

The Element interface defines the methods required to be implemented when
building an Element class.

Method Summary
■■ void appendChild(Element element): Adds a child element to this element.

■■ java.util.Enumeration getChildren(): Returns an enumeration of the imme-
diate children of this element.

■■ java.util.Enumeration getChildren(java.lang.Object key): Returns an enu-
meration of the immediate children of this element whose names match
the specified string.

■■ java.lang.Object getKey(): Gets the name associated with an element.

■■ Element getParent(): Gets the parent element of this element.

■■ StructuredDocument getRoot(): Gets the root element of the hierarchy this
element belongs to.

■■ java.lang.Object getValue(): Gets the value (if any) associated with an 
element.

Example
An element is part of a document, usually from the standpoint of an XML docu-
ment. The following snippet obtains all of the elements from a Structured-
TextDocument.

StructuredTextDocument doc = (StructuredTextDocument)pipeAd

Enumeration elements = doc.getChildren("row");

while (elements.hasMoreElements()) {

Element element = elements.next();

}

Interface EndpointAddress

The EndpointAddress interface defines the methods necessary when building
an EndpointAddress class.

Method Summary
■■ java.lang.Object clone(): Returns a clone of this object.

■■ java.lang.String getProtocolAddress(): Returns a String that contains the
name of the protocol address embedded in the endpoint address.

Interface EndpointAddress 419



■■ java.lang.String getProtocolName(): Returns a String that contains the
name of the protocol embedded in the endpoint address.

■■ java.lang.String getServiceName(): Returns a String that contains the name
of the service name embedded in the endpoint address.

■■ java.lang.String getServiceParameter(): Returns a String that contains the
service parameter embedded in the endpoint address.

■■ void setProtocolAddress(java.lang.String address): Sets the protocol
address.

■■ void setProtocolName(java.lang.String name): Sets the protocol name.

■■ void setServiceName(java.lang.String name): Sets the service name.

■■ void setServiceParameter(java.lang.String name): Sets the service
parameter.

Example
The following code snippet builds an endpoint address for a peer in the net-
work. The endpoint address is used to ping the remote peer.

EndpointAddress endpointAddress = 

myEndpointService.newEndpointAddress(toAddress);

endpointAddress.setServiceName("tempServiceName");

endpointAddress.setServiceParameter("tempParams");

myEndpointService.ping(endpointAddress);

Class EndpointAdvertisement

The EndpointAdvertisement class is a derived class from Advertisement with
specific methods and attributes appropriate for an Endpoint.

■■ Parent Class: java.lang.document.Advertisement

■■ Class: net.jxta.protocol.EndpointAdvertisement

■■ Derived Classes: None

Constructor Summary
■■ EndpointAdvertisement()

Method Summary
■■ static java.lang.String getAdvertisementType(): Returns the advertisement

type.

A p p e n d i x  B JXTA API420



■■ java.lang.String getEndpointAddress(): Returns the endpoint address.

■■ java.lang.String getKeywords(): Returns the keywords associated with the
endpoint.

■■ java.lang.String getName(): Returns the name of the endpoint.

■■ TransportAdvertisement getTransportAdvertisement(): Returns the trans-
port advertisement associated with the endpoint.

■■ boolean isEnabled(): Tells whether specific endpoint is enabled or not.

■■ void setEnabled(Boolean enabled): Enables or disables this specific end-
point.

■■ void setEndpointAddress(java.lang.String add): Sets the endpoint address.

■■ void setKeywords(java.lang.String keywords): Sets the keywords associ-
ated with the endpoint.

■■ void setName(java.lang.String name): Sets the name of the endpoint.

■■ void setTransportAdvertisement(TransportAdvertisement transport): Sets
the transport advertisement.

Interface EndpointFilterListener

The EndpointFilterListener interface defines the methods necessary when
building an endpoint filter listener class.

Method Summary
■■ Message processIncomingMessage(Message message, EndpointAddress

srcAddr, EndpointAddress dstAddr): Invoked by the endpoint service for
each incoming message that contains a message element associated with
this endpoint filter.

Interface EndpointProtocol

The EndpointProtocol interface defines the methods necessary for implemen-
tation of an endpoint service.

Method Summary
■■ boolean allowOverLoad(): Returns true if this protocol accepts to be 

overloaded.

■■ boolean allowRouting(): Returns true if the endpoint protocol can be used
by the EndpointRouter.

Interface EndpointProtocol 421



■■ EndpointMessenger getMessenger(EndpointAddress dest): Creates and
returns an EndpointMessenger for sending messages.

■■ java.lang.String getProtocolName(): Returns a String containing the canon-
ical name of this endpoint protocol, as it appears in an endpoint address.

■■ EndpointAddress getPublicAddress(): Returns an endpoint address of the
local endpoint managed by the endpoint protocol.

■■ boolean isConnectionOriented(): Returns true if the endpoint protocol can
establish connection to the remote host (like TCP).

■■ boolean ping(EndpointAddress addr): Returns true if the target address is
reachable.

■■ void propagate(Message msg, java.lang.String serviceName,
java.lang.String serviceParams, java.lang.String prunePeer): Propagates a
message on this endpoint protocol.

Example
The following code sample obtains and displays all of the current endpoint pro-
tocols associated with the current peer:

EndpointProtocol tempInst = null;

Enumeration currentProtocols = myEndpointService.getEndpointProtocols();

while (currentProtocols.hasMoreElements()) {

tempInst = (EndpointProtocol)currentProtocols.nextElement();

System.out.println("Endpoint address: " + 

tempInst.getPublicAddress().toString() + "\n");

}

Interface EndpointService 

The EndpointService Interface defines the API for all endpoint protocols and
subsequent services. The EndpointService can be used to directly manipulate
the JXTA network topology.

Method Summary
■■ void addEndpointProtocol(EndpointProtocol proto): Installs the given

endpoint protocol in this endpoint.

■■ void addFilterListener(java.lang.String elementName, EndpointFilterLis-
tener listener, boolean incoming): Registers an incoming messages filter
listener.

■■ void addListener(java.lang.String address, EndpointListener listener): Reg-
isters an incoming messages listener.

A p p e n d i x  B JXTA API422



■■ void demux(Message msg): Handles the given incoming message by 
calling the listener specified by its destination as returned by the 
getDestAddress() method of the message.

■■ EndpointProtocol getEndpointProtocolByName(java.lang.String name):
Returns the endpoint protocol registered under the given name.

■■ java.util.Enumeration getEndpointProtocols(): Returns an enumeration of
the endpoint protocols available to this endpoint service.

■■ PeerGroup getGroup(): Returns the group to which this Endpoint
ServiceImpl is attached.

■■ EndpointMessenger getMessenger(EndpointAddress addr): Builds and
returns an EndpointMessager that may be used to send messages via this
endpoint to the given destination. 

■■ EndpointAddress newEndpointAddress(java.lang.String Uri): Builds an
endpoint address out of the given URI string.

■■ Message newMessage(): Returns a new Message object suitable for use
with this endpoint service.

■■ boolean ping(EndpointAddress addr): Verifies that the given address can
be reached.

■■ void propagate(Message srcMsg, java.lang.String serviceName,
java.lang.String serviceParam): Propagates the given message through all
the endpoint protocols that are available to this endpoint.

■■ void removeEndpointProtocol(EndpointProtocol proto): Removes the
given endpoint protocol from this endpoint service.

■■ void removeFilterListener(java.lang.String address, EndpointFilterListener
listener, boolean incoming): Removes the given listener previously regis-
tered under the given element name.

■■ boolean removeListener(java.lang.String address, EndpointListener lis-
tener): Removes the given listener previously registered under the given
address.

Example
The following snippet obtains the endpoint service associated with the current
peer group:

EndpointService  myEndpointService = 

netPeerGroup.getEndpointService();

Interface EndpointService 423



Interface GenericResolver 
■■ The GenericResolver Interface defines the API for all resolver services.

Method Summary
■■ void sendQuery(java.lang.String peerId, ResolverQueryMsg query): For ser-

vices that wish to implement a ResolverService Service, they must imple-
ment this interface. Sends query to the specified address.

■■ void sendResponse(java.lang.String destPeer, ResolverResponseMsg
response): Sends a response to a peer.

Class ID

The ID class is the superclass for all identifiers in the JXTA system.

■■ Parent Class: java.lang.Object

■■ Class: net.jxta.id.ID

■■ Derived Classes:

CodatID

ModuleClassID

ModuleSpecID

PeerGroupID

PeerID

PipeID

Field Summary
■■ static ID nullID: Returns the null ID.

■■ static java.lang.String URIEncodingName: Defines the URI scheme that we
will be using to present JXTA IDs.

■■ static java.lang.String URNNamespace: Defines the URN Namespace that
we will be using to present JXTA IDs.

Constructor Summary
■■ protected ID(): Constructor for IDs.

A p p e n d i x  B JXTA API424



Method Summary
■■ java.lang.Object clone(): Returns a clone of this object.

■■ abstract java.lang.String getIDFormat(): Returns a string identifier that
indicates which ID format is used by this ID instance.

■■ abstract java.lang.Object getUniqueValue(): Returns an object containing
the unique value of the ID.

■■ abstract java.net.URL getURL(): Returns a URI (URL in Java nomencla-
ture) representation of the ID.

■■ java.lang.String toString(): Returns a string representation of the ID.

Class IDFactory

The IDFactory class allows for the building of ID objects.

■■ Parent Class: net.jxta.util.ClassFactory

■■ Class: net.jxta.id.IDFactory

Method Summary
■■ static ID fromURL(java.net.URL source): Constructs a new ID instance

from a JXTA ID contained in a URI.

■■ protected java.util.Hashtable getAssocTable(): Used by ClassFactory meth-
ods to get the mapping of ID types to constructors.

■■ protected java.lang.Class getClassForKey(): Used by ClassFactory meth-
ods to ensure that all keys used with the mapping are of the correct type.

■■ protected java.lang.Class getClassOfInstantiators(): Used by ClassFactory
methods to ensure that all of the instance classes that register with this
factory have the correct base class.

■■ static CodatID newCodatID(PeerGroupID groupID): Creates a new
CodatID instance.

■■ static CodatID newCodatID(PeerGroupID groupID, java.io.InputStream
in): Creates a new CodatID instance.

■■ static ModuleClassID newModuleClassID(): Creates a new ModuleClassID
instance.

■■ static ModuleClassID newModuleClassID(ModuleClassID baseClass): Cre-
ates a new ModuleClassID instance.

■■ static ModuleSpecID newModuleSpecID(ModuleClassID baseClass): Cre-
ates a new ModuleClassID instance.

Class IDFactory 425



■■ static PeerGroupID newPeerGroupID(): Creates a new PeerGroupID
instance.

■■ static PeerID newPeerID(PeerGroupID groupID): Creates a new PeerID
instance.

■■ static PipeID newPipeID(PeerGroupID groupID): Creates a new PipeID
instance.

■■ static PipeID newPipeID(PeerGroupID groupID, byte[]seed): Creates a
new PipeID instance.

■■ protected boolean registerAssoc(java.lang.String className): Registers a
class with the factory from its class name.

■■ static boolean registerIDType(int type, java.lang.Class instanceClass): Reg-
isters a constructor for an ID type to enable IDs of that type to be con-
structed.

Example
The following snippet shows how to obtain a new ModuleClassID from the
IDFactory:

ModuleClassID yServiceID = IDFactory.newModuleClassID();

Interface InputPipe 

The InputPipe Interface defines the API for the reception of messages through
the Pipe Service.

Method Summary
■■ void close(): Closes the pipe.

■■ message poll(int timeout): Polls for a message from the pipe.

■■ message waitForMessage(): Waits for a message to be received.

Example
The following code snippet creates a reliable InputPipe object and polls for
possible messages:

ReliablePipeService.Pipe newPipe = 

incomingAcceptPipe.accept(30000);

Message msg = newPipe.getInputPipe().poll (30000);

A p p e n d i x  B JXTA API426



Class JxtaError

The JxtaError class is a high-level exception that can be thrown by any of the
JXTA code.

■■ Parent Class: java.lang.Error

■■ Class: net.jxta.exception.JxtaError

■■ Derived Classes: None

Field Summary
■■ None

Constructor Summary
■■ JxtaError(): Constructs a new NoResponseException with no detailed

message.

■■ JxtaError(java.lang.String msg)

Method Summary
■■ None

Class MembershipService

The Membership Service is used by individual peers to join a peer group. The
Membership Service is implemented by the peer group.

■■ Parent Class: java.lang.Object

■■ Class: net.jxta.membership.MembershipService

■■ Derived Classes: None

Constructor Summary
■■ MembershipService()

Method Summary
■■ abstract Authenticator apply(AuthenticationCredential application):

Requests the necessary credentials to join the group with which this ser-
vice is associated.

Class MembershipService 427



■■ abstract java.util.Enumeration getAuthCredentials(): Returns the current
credentials for this peer.

■■ abstract java.util.Enumeration getCurrentCredentials(): Returns the cur-
rent credentials for this peer.

■■ Service getInterface(): Returns the Service object represented by this class.

■■ java.lang.String getName(): Returns the name of the associated service.

■■ abstract Credential join(Authenticator authenticated): Joins the group by
virtue of the completed authentication provided.

■■ abstract Credential makeCredential(Element element): Given a fragment
of a StructuredDocument, reconstructs a Credential object from that frag-
ment.

■■ abstract void resign(): Leaves the group to which this service is attached.

Example
In this example, the membership service is used to join a new group:

AuthenticationCredential myAuthenticationCredential = new 

AuthenticationCredential(myLocalGroup, null, myCredentials);

MembershipService myMembershipService = 

myLocalGroup.getMembershipService();

net.jxta.membership.Authenticator myAuthenticator = 

myMembershipService.apply(myAuthenticationCredential);

authenticateMe(myAuthenticator, "username", "password");

if (!myAuthenticator.isReadyForJoin()) {

displayArea.append("Authenticator is not complete\n");

return;

}

myMembershipService.join(myAuthenticator);

displayArea.append("Group has been joined\n");

Interface Message

The Message Interface defines the API necessary for messages sent between
peers using the Endpoint and Pipe services.

A p p e n d i x  B JXTA API428



Method Summary
■■ void addElement(MessageElement add): Adds a MessageElement into the

message.

■■ java.lang.Object clone(): Creates a deep copy of the message.

■■ boolean equals(java.lang.Object o): Checks to see if two messages are
equal.

■■ byte[] getBytes(java.lang.String qname): Gets the named element from the
message, and returns the element’s byte array.

■■ EndpointAddress getDestinationAddress(): Gets the destination address
from the message.

■■ MessageElement getElement(java.lang.String name): Retrieves an element
by name from the message.

■■ MessageElementEnumeration getElements(): Returns an enumeration of
all of the elements contained in this message.

■■ StringEnumeration getNames():  Returns a StringEnumeration for all the
message element names in this message.

■■ java.util.Enumeration getNamespaces(): Returns an Enumeration of all
namespace names used in this message.

■■ EndpointAddress getSourceAddress(): Gets the source address from the
message.

■■ java.lang.String getString(java.lang.String elementName): Gets the element
from the message as a string.

■■ boolean hasElement(java.lang.String nsname): Checks for a message ele-
ment with the given name.

■■ MessageElement newMessageElement(java.lang.String name, MimeMedi-
aType type, byte[] b): Creates a new element, but doesn’t add it to the mes-
sage.

■■ MessageElement newMessageElement(java.lang.String name, MimeMedi-
aType type, byte[] b, int offset, int len): Creates a new element, but doesn’t
add it to the message.

■■ MessageElement newMessageElement(java.lang.String name, MimeMedi-
aType type, java.io.InputStream in): Creates a new MessageElement. 

■■ MessageElement newMessageElement(java.lang.String name, MimeMedi-
aType type, java.io.InputStream in, int len): Creates a new element, but
doesn’t add it to the message.

■■ boolean removeElement(MessageElement remove): Removes an element
from a message.

Interface Message 429



■■ MessageElement removeElement(java.lang.String name): Removes an ele-
ment from a message by its name.

■■ void setBytes(java.lang.String name, byte[] bytes): Creates or replaces a
MessageElement using the given namespace and name.

■■ void setBytes(java.lang.String name, byte[] bytes, int offset, int len): Cre-
ates or replaces an element, and adds it to the message.

■■ void setDestinationAddress(EndpointAddress dstAddress): Sets the desti-
nation address to the message.

■■ void setSourceAddress(EndpointAddress srcAddress): Sets the source
address to the message.

■■ void setString(java.lang.String elementName, java.lang.String s): Sets the
string to the message.

Example
In this example, a new Message object is created, and data is put into the object
and sent through an output pipe:

Message msg = myPipeService.createMessage();

msg.setString("DataTag", data);

myOutputPipe.send (msg);

Class MessageElement

The MessageElement class is an abstract class for elements within a message.

■■ Parent Class: java.lang.Object

■■ Class: net.jxta.endpoint.MessagesElement

Constructor Summary
■■ MessageElement()

Method Summary
■■ abstract java.lang.Object clone(): Makes a clone of this element.

■■ abstract boolean equals(java.lang.Object target): Compares this Mes-
sageElement against another.

■■ abstract byte[] getBytesOffset(): Returns the byte array that contains the
element data.

■■ abstract int getLength(): Returns the number of bytes used in the array
returned by getBytes().

A p p e n d i x  B JXTA API430



■■ abstract java.lang.String getName(): Returns the name of the 
MessageElement.

■■ abstract int getOffset(): Returns the offset into the array returned by 
getBytes() of where data used by this element starts.

■■ abstract java.io.InputStream getStream(): Returns a stream containing 
the element data.

■■ abstract MimeMediaType getType(): Returns the type of the 
MessageElement.

■■ static java.lang.String[] parseName(java.lang.String name): Parses a name
into its two colon-separated components.

Example
The MessageElement is an abstract class. A Message object contains a set of
MessageElements private to a message. 

The following code shows how the getElement() method of a Message object
can be used to obtain a MessageElement. The getStream() method of Mes-
sageElement is called immediately.

Message msg = newPipe.getInputPipe().poll (30000);

InputStream in2 = msg.getElement ("DataTag").getStream ();

byte[] buf = new byte[8192];

int r = in2.read (buf); 

Class MimeMediaType

The MimeMediaType class defines the type of stream used in the system.

■■ Parent Class: java.lang.Object

■■ Class: net.jxta.document.MimeMediaType

Constructor Summary
■■ MimeMediaType(java.lang.String someString): Creates a new 

MimeMediaType.

■■ MimeMediaType(java.lang.String type, java.lang.String subtype): Creates a
new type/subtype MimeMediaType.

■■ MimeMediaType(java.lang.String type, java.lang.String subtype,
java.lang.String parameters): Creates a new type/subtype MimeMediaType.

■■ MimeMediaType(java.lang.String type, java.lang.String subtype,
java.lang.String[] parameters): Creates a new type/subtype 
MimeMediaType.

Class MimeMediaType 431



Method Summary
■■ void addParameter(java.lang.String newParam): Adds a parameter to a

mime-type.

■■ java.lang.Object clone() boolean equals(java.lang.Object obj)
java.lang.String getMimeMediaType(): Gets the “root” mime-type/subtype
without any of the parameters.

■■ java.util.Enumeration getParameters(): Gets parameter values of a mime-
type.

■■ java.lang.String getSubtype(): Gets the subtype of the mime-type.

■■ java.lang.String getType(): Gets the type of the mime-type.

■■ int hashCode() boolean isExperimentalSubtype(): Checks to see if the
mime-type is for debugging.

■■ boolean isExperimentalType(): Checks to see if the mime-type is for provi-
sional.

■■ boolean isValid(): Checks to see if the mime-type is valid.

■■ void setParameters(java.lang.String[] parameters): Sets the parameter to a
mime-type.

■■ void setSubtype(java.lang.String subtype): Sets the subtype of the Mime-
MediaType.

■■ void setType(java.lang.String type): Sets the type of the MimeMediaType.

■■ java.lang.String toString()

Example
The MimeMediaType is generally used to set the type of document being passed
to a method. In the following example, a new PipeAdvertisement object is cre-
ated with bytes from a string based on an XML document. The MimeMediaType
indicates the document type.

pipeAdv = (PipeAdvertisement) AdvertisementFactory.newAdvertisement(

new MimeMediaType("text/xml"), 

new ByteArrayInputStream(str.getBytes()));

Class ModuleClassAdvertisement

The ModuleClassAdvertisement class is a specialization of the Advertisement
class, and is used for publishing a module class.

■■ Parent Class: net.jxta.document.Advertisement

■■ Class: net.jxta.protocol.ModuleClassAdvertisement

A p p e n d i x  B JXTA API432



Constructor Summary
■■ ModuleClassAdvertisement()

Method Summary
■■ java.lang.Object clone(): Clones this ModuleClassAdvertisement.

■■ tatic java.lang.String getAdvertisementType(): Returns the advertisement
type.

■■ java.lang.String getDescription(): Returns the keywords/description 
associated with this class.

■■ ID getID(): Returns a unique ID for that advertisement (for indexing 
purposes).

■■ ModuleClassID getModuleClassID(): Returns the ID of the class.

■■ java.lang.String getName(): Returns the name of the class.

■■ void setDescription(java.lang.String description): Sets the description
associated with this class.

■■ void setModuleClassID(ModuleClassID id): Sets the ID of the class.

■■ void setName(java.lang.String name): Sets the name of the class.

Example
In this code example, a new ModuleClassAdvertisement is created, populated,
and published:

ModuleClassAdvertisement myService1ModuleAdvertisement = 

(ModuleClassAdvertisement)

AdvertisementFactory.newAdvertisement(

ModuleClassAdvertisement.getAdvertisementType());

myService1ModuleAdvertisement.setName("JXTAMOD:JXTA-CH18EX3");

myService1ModuleAdvertisement.setDescription("Service 1 of Chapter 

18 example 3");

myService1ID = IDFactory.newModuleClassID();

myService1ModuleAdvertisement.setModuleClassID(myService1ID);

myDiscoveryService.publish(myService1ModuleAdvertisement,

DiscoveryService.ADV);

Class ModuleClassAdvertisement 433



Class ModuleClassID

The ModuleClassID class is used to identify a specific class module.

■■ Parent Class: net.jxta.id.ID

■■ Class: net.jxta.platform.ModuleClassID

Constructor Summary
■■ ModuleClassID()

Method Summary
■■ abstract ModuleClassID getBaseClass(): Returns a ModuleClassID of the

same base class, but with the role portion set to zero.

■■ abstract boolean isOfSameBaseClass(ModuleClassID id): Returns true if
this ModuleClassID is of the same base class as the given class.

■■ abstract boolean isOfSameBaseClass(ModuleSpecID id): Returns true if
this ModuleClassID is of the same class as the given ModuleSpecID.

Example

In this code example, a new ModuleClassID is obtained from the IDFactory
class:

ModuleClassID myService1ID = IDFactory.newModuleClassID();

Class ModuleImplAdvertisement

The ModuleImplAdvertisement is used to publish the existence of a specific
implementation of a class.

■■ Parent Class: net.jxta.document.Advertisement

■■ Class: net.jxta.protocol.ModuleImplAdvertisement

Constructor Summary
■■ ModuleImplAdvertisement()

Method Summary
■■ java.lang.Object clone(): Clones this ModuleImplAdvertisement.

■■ static java.lang.String getAdvertisementType(): Returns the advertisement
type.

A p p e n d i x  B JXTA API434



■■ java.lang.String getCode(): Returns the code; a reference to or representa-
tion of the executable code advertised by this advertisement.

■■ StructuredDocument getCompat(): Returns the module impl.

■■ java.lang.String getDescription(): Returns the description.

■■ ID getID(): Returns the unique ID of that advertisement for indexing pur-
poses.

■■ ModuleSpecID getModuleSpecID(): Returns the ID of the spec that this
implements.

■■ StructuredDocument getParam(): Returns the param element.

■■ java.lang.String getProvider(): Returns the provider.

■■ java.lang.String getUri(): Returns the URI that is a reference to or repre-
sentation of a package from which the executable code referenced by the
getCode() method may be loaded.

■■ void setCode(java.lang.String code): Sets the code.

■■ void setCompat(Element compat): Sets the module impl.

■■ void setDescription(java.lang.String description): Sets the description.

■■ void setModuleSpecID(ModuleSpecID sid): Sets the ID of the spec that is
implemented.

■■ void setParam(Element param): Sets the module param.

■■ void setProvider(java.lang.String provider): Sets the provider.

■■ void setUri(java.lang.String uri): Sets the URI.

Example
This code example builds a new ModuleImplAdvertisement based on a stream
called outputter from a parent advertisement.

ModuleImplAdvertisement myNewImplAdv = 

(ModuleImplAdvertisement)AdvertisementFactory.newAdvertisement(

XMLMIMETYPE, new ByteArrayInputStream(outputter.outputString( 

doc).getBytes()));

Class ModuleSpecAdvertisement

The ModuleSpecAdvertisement is used to publish a module specification.

■■ Parent Class: net.jxta.document.Advertisement

■■ Class: net.jxta.protocol.ModuleSpecAdvertisement

Class ModuleSpecAdvertisement 435



Constructor Summary
■■ ModuleSpecAdvertisement()

Method Summary
■■ java.lang.Object clone(): Clones this ModuleSpecAdvertisement.

■■ static java.lang.String getAdvertisementType(): Returns the advertisement
type.

■■ ModuleSpecID getAuthSpecID(): Returns the specID of an authenticator
module.

■■ java.lang.String getCreator(): Returns the creator of the module spec.

■■ java.lang.String getDescription(): Returns the keywords/description 
associated with this class

■■ ID getID(): Returns a unique ID for that advertisement for the purpose of
indexing.

■■ ModuleSpecID getModuleSpecID(): Returns the ID of the spec.

■■ java.lang.String getName(): Returns the name of the module spec.

■■ StructuredDocument getParam(): Returns the param element.

■■ PipeAdvertisement getPipeAdvertisement(): Returns the embedded pipe
advertisement, if any.

■■ ModuleSpecID getProxySpecID(): Returns the specID of a proxy module.

■■ java.lang.String getSpecURI(): Returns the URI.

■■ java.lang.String getVersion(): Returns the specification version number.

■■ void setAuthSpecID(ModuleSpecID authSpecID): Sets an authenticator
module specID.

■■ void setCreator(java.lang.String creator): Sets the creator of this module
spec.

■■ void setDescription(java.lang.String description): Sets the description
associated with this class.

■■ void setModuleSpecID(ModuleSpecID id): Sets the ID of the class.

■■ void setName(java.lang.String name): Sets the name of the module spec.

■■ void setParam(StructuredDocument param): Sets the param element.

■■ void setPipeAdvertisement(PipeAdvertisement pipeAdv): Sets an embed-
ded pipe advertisement.

■■ void setProxySpecID(ModuleSpecID proxySpecID): Sets a proxy module
specID.

A p p e n d i x  B JXTA API436



■■ void setSpecURI(java.lang.String uri): Sets the URI.

■■ void setVersion(java.lang.String version): Sets the version of the module.

Example
This code example builds a new ModuleSpecAdvertisement and populates it
with appropriate values, including a pipe advertisement:

ModuleSpecAdvertisement myModuleSpecAdvertisement =

(ModuleSpecAdvertisement) AdvertisementFactory.newAdvertisement(

ModuleSpecAdvertisement.getAdvertisementType());

myModuleSpecAdvertisement.setName("JXTASPEC:JXTA-CH19EX1");

myModuleSpecAdvertisement.setVersion("Version 1.0");

myModuleSpecAdvertisement.setCreator("gradecki.com");

myModuleSpecAdvertisement.setModuleSpecID(IDFactory.newModuleSpecID(

myService1ID));

myModuleSpecAdvertisement.setSpecURI("<http://www.jxta.org/CH19EX1>");

myModuleSpecAdvertisement.setPipeAdvertisement

(myPipeAdvertisement);

Class ModuleSpecID

The ModuleSpecID is used to identify a specific Module.

■■ Parent Class: java.jxta.id.ID

■■ Class: net.jxta.platform.ModuleSpecID

Constructor Summary
■■ ModuleSpecID()

Method Summary
■■ abstract ModuleClassID getBaseClass(): Returns a ModuleClassID of the

same base class, but with the role portion set to zero.

■■ abstract boolean isOfSameBaseClass(ModuleClassID id): Returns true if
this ModuleSpecID is of the same base class as the given class.

■■ abstract boolean isOfSameBaseClass(ModuleSpecID id): Returns true if
this ModuleSpecID is of the same base class as the given ModuleSpecID.

Example
The following code example creates a new ModuleSpecID based on a Module-
ClassID defined in the variable.myService1ID.

ModuleSpecID = IDFactory.newModuleSpecID( myService1ID)

Class ModuleSpecID 437



Interface OutputPipe

The InputPipe Interface defines the API for the sending of messages through
the Pipe Service.

Method Summary
■■ void close(): Closes the pipe.

■■ void send(Message msg): Sends a message through the pipe.

Example
The following example shows how to send a message through an output pipe:

try {

myOutputPipe.send (msg);

} catch (Exception e) {

System.out.println("Unable to print output pipe");

e.printStackTrace();

System.exit(-1);

}

Class PeerAdvertisement

The PeerAdvertisement is used to publish and hold information about a peer.

■■ Parent Class: next.jxta.document.Advertisement

■■ Class: net.jxta.protocol.PeerAdvertisement

Constructor Summary
■■ PeerAdvertisement()

Method Summary
■■ java.lang.Object clone(): Makes a safe clone of this PeerAdvertisement.

■■ static java.lang.String getAdvertisementType(): Returns the advertisement
type.

■■ java.lang.String getDebugLevel(): Returns the debugLevel.

■■ java.lang.String getDescription(): Returns the description.

■■ ID getID(): Returns a unique ID for that peer X group intersection.

■■ java.lang.String getName(): Returns the name of the peer.

A p p e n d i x  B JXTA API438



■■ PeerGroupID getPeerGroupID(): Returns the ID of the peer group this peer
advertisement is for.

■■ PeerID getPeerID(): Returns the ID of the peer.

■■ StructuredDocument getServiceParam(ID key): Returns the parameter ele-
ment that matches the given key from the service parameters table.

■■ java.util.Hashtable getServiceParams(): Returns the sets of parameters for
all services.

■■ void putServiceParam(ID key, Element param): Puts a service parameter in
the service parameters table under the given key.

■■ StructuredDocument removeServiceParam(ID key): Removes and returns
the parameter element that matches the given key from the service para-
meters table.

■■ void setDebugLevel(java.lang.String debugLevel): Sets the debugLevel.

■■ void setDescription(java.lang.String description): Sets the description.

■■ void setName(java.lang.String name): Sets the name of the peer.

■■ void setPeerGroupID(PeerGroupID gid): Returns the ID of the peer group
this peer advertisement is for.

■■ void setPeerID(PeerID pid): Sets the ID of the peer.

■■ void setServiceParams(java.util.Hashtable params): Sets the sets of para-
meters for all services.

Example
This code example shows how to obtain a peer’s PeerAdvertisement and dis-
play it to standard output:

try {

PeerAdvertisement myPeerAdv = 

(PeerAdvertisement)netPeerGroup.getPeerAdvertisement();

StructuredTextDocument myDocument = 

(StructuredTextDocument)myPeerAdv.getDocument(XMLMIMETYPE);

myDocument.sendToStream(System.out);

} catch(Exception e) {}

Interface PeerGroup 

The PeerGroup Interface defines the API necessary for all peer group to imple-
ment.

■■ net.jxta.peergroup

Interface PeerGroup 439



Constructor Summary
■■ static class PeerGroup.IdMaker: An inner class used to create static, 

well-known identifiers.

Method Summary
■■ static ModuleSpecID allPurposePeerGroupSpecID: A well-known group

specification identifier: an all-purpose peer group specification.

■■ static ModuleClassID applicationClassID: A well-known module class iden-
tifier: application.

■■ static int Both: Looks for the needed ModuleImplAdvertisement in both
this group and its parent.

■■ static long DEFAULT_EXPIRATION: Default expiration time for discov-
ered group advertisements.

■■ static long DEFAULT_LIFETIME: Default lifetime for group advertise-
ments in the publisher’s cache.

■■ static ModuleClassID discoveryClassID: A well-known module class identi-
fier: discovery service.

■■ static ModuleClassID endpointClassID: A well-known module class identi-
fier: endpoint service.

■■ static int FromParent: Looks for the needed ModuleImplAdvertisement in
the parent group of this group.

■■ static int Here: Looks for the needed ModuleImplAdvertisement in this
group.

■■ static ModuleClassID httpProtoClassID: A well-known module class identi-
fier: HTTP protocol.

■■ static ModuleClassID membershipClassID: A well-known module class
identifier: membership service.

■■ static ModuleClassID peerGroupClassID: A well-known module class iden-
tifier: peer group.

■■ static ModuleClassID peerinfoClassID: A well-known module class identi-
fier: peer info service.

■■ static ModuleClassID pipeClassID: A well-known module class identifier:
pipe service.

■■ static ModuleSpecID refDiscoverySpecID: A well-known service specifica-
tion identifier: the standard discovery.

■■ static ModuleSpecID refEndpointSpecID: A well-known service specifica-
tion identifier: the standard endpoint.

A p p e n d i x  B JXTA API440



■■ static ModuleSpecID refHttpProtoSpecID: A well-known endpoint protocol
specification identifier: the standard HTTP endpoint protocol.

■■ static ModuleSpecID refMembershipSpecID: A well-known service specifi-
cation identifier: the standard membership.

■■ static ModuleSpecID refNetPeerGroupSpecID: A well-known group specifi-
cation identifier: the NetworkPeerGroup.

■■ static ModuleSpecID refPeerinfoSpecID: A well-known service specifica-
tion identifier: the standard peer info.

■■ static ModuleSpecID refPipeSpecID: A well-known service specification
identifier: the standard pipe.

■■ static ModuleSpecID refPlatformSpecID: A well-known group specification
identifier: the platform.

■■ static ModuleSpecID refRendezvousSpecID: A well-known service specifi-
cation identifier: the standard rendezvous.

■■ static ModuleSpecID refResolverSpecID: A well-known service specifica-
tion identifier: the standard resolver.

■■ static ModuleSpecID refRouterProtoSpecID: A well-known endpoint proto-
col specification identifier: the standard router.

■■ static ModuleSpecID refShellSpecID: A well-known application: the shell.

■■ static ModuleSpecID refStartNetPeerGroupSpecID: A well-known main
application of the platform: startNetPeerGroup.

■■ static ModuleSpecID refTcpProtoSpecID: A well-known endpoint protocol
specification identifier: the standard TCP endpoint protocol.

■■ static ModuleSpecID refTlsProtoSpecID: A well-known endpoint protocol
specification identifier: the standard TLS endpoint protocol.

■■ static ModuleClassID rendezvousClassID: A well-known module class iden-
tifier: rendezvous service.

■■ static ModuleClassID resolverClassID: A well-known module class identi-
fier: resolver service.

■■ static ModuleClassID routerProtoClassID: A well-known module class
identifier: router protocol.

■■ static ModuleClassID tcpProtoClassID: A well-known module class identi-
fier: TCP protocol.

■■ static ModuleClassID tlsProtoClassID:  A well-known module class identi-
fier: tlsProtocol.

Interface PeerGroup 441



Example
This code example shows how to obtain a PeerGroup object from the NetPeer-
Group and then pull the pipe service from the peer group:

PeerGroup netPeerGroup = PeerGroupFactory.newNetPeerGroup();

PipeService pipeService = netPeerGroup.getPipeService();

Class PeerGroupAdvertisement

The PeerGroupAdvertisement is used to publish information about a peer
group.

■■ Parent Class: net.jxta.document.Advertisement

■■ Class: net.jxta.protocol.PeerGroupAdvertisement

Constructor Summary
■■ PeerGroupAdvertisement()

Method Summary
■■ java.lang.Object clone(): Clones this PeerGroupAdvertisement.

■■ static java.lang.String getAdvertisementType(): Returns the advertisement
type.

■■ java.lang.String getDescription(): Returns the description.

■■ ID getID(): Returns a unique ID for indexing purposes.

■■ ModuleSpecID getModuleSpecID(): Returns the ID of the group spec that
this uses.

■■ java.lang.String getName(): Returns the name of the group.

■■ PeerGroupID getPeerGroupID(): Returns the ID of the group.

■■ StructuredDocument getServiceParam(ID key): Returns the parameter ele-
ment that matches the given key from the service parameters table.

■■ java.util.Hashtable getServiceParams(): Returns the sets of parameters for
all services.

■■ void putServiceParam(ID key, Element param): Puts a service parameter in
the service parameters table under the given key.

■■ StructuredDocument removeServiceParam(ID key): Removes and returns
the parameter element that matches the given key from the service para-
meters table.

A p p e n d i x  B JXTA API442



■■ void setDescription(java.lang.String description): Sets the description.

■■ void setModuleSpecID(ModuleSpecID sid): Sets the ID of the group spec
that this uses.

■■ void setName(java.lang.String name): Sets the name of the group.

■■ void setPeerGroupID(PeerGroupID gid): Sets the ID of the group.

■■ void setServiceParams(java.util.Hashtable params): Sets the sets of para-
meters for all services.

Example
This code example shows how to programmatically build a new PeerGroup
Advertisement object:

PeerGroupAdvertisement groupAdvertisement = 

(PeerGroupAdvertisement)

AdvertisementFactory.newAdvertisement(

PeerGroupAdvertisement.getAdvertisementType());

groupAdvertisement.setPeerGroupID(myPeerGroupID);

groupAdvertisement.setModuleSpecID(myGroupImpl.getModuleSpecID());

groupAdvertisement.setName(myPeerGroupName);

groupAdvertisement.setDescription(myPeerGroupDescription);

displayArea.append("New Peer Group Advertisement has been 

created\n");

Class PeerGroupFactory

The PeerGroupFactory class allows use PeerGroup to be constructed.

■■ Parent Class: java.util.EventObject

■■ Class: net.jxta.peergroup.PeerGroupFactory

Constructor Summary
■■ PeerGroupFactory()

Method Summary
■■ static PeerGroup newNetPeerGroup(): Creates a default platform peer

group, from which a new NetPeerGroup is created.

■■ static PeerGroup newNetPeerGroup(PeerGroup pg): Until the concept of
NetPeerGroup is better integrated, we need something straightforward so
that applications that wish to control the start-up process can easily bring
up a NetPeerGroup like startNetPeerGroup does.

Class PeerGroupFactory 443



■■ static PeerGroup newPeerGroup(): A static method to create a new peer
group instance.

■■ static PeerGroup newPlatform():A static method to create a new peer plat-
form; the init() method is called automatically.

■■ static void setPlatformClass(java.lang.Class c): A static method to initialize
the platform peer group class.

■■ static void setStdPeerGroupClass(java.lang.Class c): A static method to ini-
tialize the std peer group class.

Example
This code obtains the NetPeerGroup using a PeerGroupFactory class:

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("Unable to create PeerGroup - Failure");

e.printStackTrace();

System.exit(1);

}

Class PeerGroupID

The PeerGroupID uniquely identifies a peer group.

■■ Parent Class: net.jxta.id.ID

■■ Class: net.jxta.peergroup.PeerGroupID

Field Summary
■■ static PeerGroupID defaultNetPeerGroupID: The well-known unique iden-

tifier of the NetPeerGroup.

■■ static PeerGroupID worldPeerGroupID: The well-known unique identifier
of the WorldPeerGroup.

Constructor Summary
■■ PeerGroupID()

Example
The following code will obtain the PeerGroupID of the NetPeerGroup:

PeerGroupID = netPeerGroup.getPeerGroupID()

A p p e n d i x  B JXTA API444



Class PeerID

The PeerID uniquely identifies a JXTA peer.

■■ Parent Class: next.jxta.id.ID

■■ Class: net.jxta.peer.PeerID

Constructor Summary
■■ PeerID()

Method Summary
■■ abstract ID getPeerGroupID(): Returns the PeerGroupID of the peer group

to which this peer ID belongs.

Example
This example snippet obtains a new peer ID using the IDFactory:

PeerID peerID = 

IDFactory.getPeerID(netPeerGroup.getPeerGroupID());

Class PeerInfoEvent

The PeerInfoEvent class is a container for all event returned from a peer info request.

■■ Parent Class: java.util.EventObject

■■ Class: net.jxta.peer.PeerInfoEvent

Constructor Summary
■■ PeerInfoEvent(java.lang.Object source, PeerInfoResponseMessage piResp,

int queryid): Creates a new event.

Method Summary
■■ PeerInfoResponseMessage getPPeerInfoResponseMessage(): Returns the

response associated with the event.

■■ int getQueryID(): Returns the query ID associated with the response
returned in this event.

Class PeerInfoEvent 445



Example
This code shows how a PeerInfoEvent is passed to an appropriate listener:

public void peerInfoResponse(PeerInfoEvent e) { 

PeerInfoAdvertisement adv = e.getPeerInfoAdvertisement(); 

displayArea.append("Total Uptime in milliseconds = " + 

adv.getUptime() + "\n");

}

Interface PeerInfoListener 

The PeerInfoListener interface defines the API that needs to be implemented by
a class wishing to receive PeerInfoEvents.

Method Summary
■■ void peerInfoResponse(PeerInfoEvent event): PeerInfoService Event

Class PeerInfoQueryMessage

The PeerInfoQueryMessage class is an abstract class defining the API for query
messages.

■■ Parent Class: java.util.EventObject

■■ Class: net.jxta.protocol.PeerInfoQueryMessage

Constructor Summary
■■ PeerInfoQueryMessage()

Method Summary
■■ abstract Document getDocument(MimeMediaType encodeAs) static

java.lang.String getMessageType(): Returns the message type.

■■ Element getRequest(): Returns the request.

■■ ID getSourcePid(): Returns the sender’s PID.

■■ ID getTargetPid(): Returns the target’s PID.

■■ void setRequest(Element request): Sets the request.

■■ void setSourcePid(ID pid): Sets the sender’s PID.

■■ void setTargetPid(ID pid): Sets the target’s PID.

A p p e n d i x  B JXTA API446



Example
The following code shows an example of a PeerInfoListener and how it can be
used in a remote peer information request:

PeerInfoListener peerInfoListener = new PeerInfoListener() {

public void peerInfoResponse(PeerInfoEvent e) { 

PeerInfoAdvertisement adv = e.getPeerInfoAdvertisement(); 

displayArea.append("Total Uptime in milliseconds = " +

adv.getUptime() + "\n");

}

};

myPeerInfoService.getRemotePeerInfo(localPeerID,

peerInfoListener);

Class PeerInfoResponseMessage

The PeerInfoResponseMessage class is an abstract class defining the API for
response messages. 

■■ Parent Class: java.lang.Object

■■ Class: net.jxta.protocol.PeerInfoResponseMessage

Constructor Summary
■■ PeerInfoResponseMessage()

Method Summary
■■ abstract Document getDocument(MimeMediaType encodeAs)

java.util.Enumeration getIncomingTrafficChannels(): Gets an enumeration
of incoming traffic channels on this peer.

■■ long getIncomingTrafficOnChannel(java.lang.String channel): Gets the
number of bytes received on the specified channel.

■■ long getLastIncomingMessageTime(): Gets the time in milliseconds since
this peer last received a message in milliseconds since the “epoch,” namely
January 1, 1970, 00:00:00 GMT.

■■ long getLastOutgoingMessageTime(): Gets the time in milliseconds since
this peer last sent a message in milliseconds since the “epoch,” namely Jan-
uary 1, 1970, 00:00:00 GMT.

■■ static java.lang.String getMessageType(): Returns the message type.

■■ java.util.Enumeration getOutgoingTrafficChannels(): Gets an enumeration
of outgoing traffic channels on this peer.

■■ long getOutgoingTrafficOnChannel(java.lang.String channel): Gets the
number of bytes sent on the specified channel.

Class PeerInfoResponseMessage 447



■■ Element getResponse(): Returns the response.

■■ ID getSourcePid(): Returns the sender’s PID.

■■ ID getTargetPid(): Returns the target’s PID.

■■ long getTimestamp(): Returns the time when this peer was last polled.

■■ long getUptime(): Returns the number of milliseconds since this peer was
started.

■■ void setIncomingTrafficElement(java.lang.String channel, long bytes): Sets
the number of bytes received on the specified channel.

■■ void setLastIncomingMessageTime(long t): Sets the time in milliseconds
since this peer last received a message in milliseconds since the “epoch,”
namely January 1, 1970, 00:00:00 GMT.

■■ void setLastOutgoingMessageTime(long t): Sets the time in milliseconds
since this peer last sent a message in milliseconds since the “epoch,”
namely January 1, 1970, 00:00:00 GMT.

■■ void setOutgoingTrafficElement(java.lang.String channel, long bytes): Sets
the number of bytes sent on the specified channel.

■■ void setResponse(Element response): Sets the request.

■■ void setSourcePid(ID pid): Sets the sender’s PID.

■■ void setTargetPid(ID pid): Sets the target’s PID.

■■ void setTimestamp(long milliseconds): Sets the time when this peer was
last polled.

■■ void setUptime(long milliseconds): Sets the number of milliseconds since
this peer was started.

Class PipeAdvertisement

The PipeAdvertisement class defines information about an input or output
pipe.

■■ Parent Class: net.jxta.document.advertisement

■■ Class: net.jxta.protocol.PipeAdvertisement

■■ Derived Classes: None

Field Summary
■■ static java.lang.String IdTag: XML tag to store the PipeID.

■■ static java.lang.String NameTag: XML tag to store the name of the pipe.

■■ static java.lang.String TypeTag: XML tag to store the pipe type.

A p p e n d i x  B JXTA API448



Constructor Summary
■■ PipeAdvertisement()

Method Summary
■■ java.lang.Object clone(): Clones this PipeAdvertisement.

■■ static java.lang.String getAdvertisementType(): Gets the pipe type.

■■ ID getID(): Gets an ID for indexing purposes.

■■ java.lang.String getName(): Gets the symbolic name associated with the
pipe.

■■ ID getPipeID(): Gets the pipe ID.

■■ java.lang.String getType(): Gets the pipe type.

■■ void setName(java.lang.String n): Sets the symbolic name associated with
the pipe.

■■ void setPipeID(ID pipeId): Sets the pipe ID.

■■ void setType(java.lang.String type): Sets the pipe type.

Example
The following code example shows building a new PipeAdvertisement object
using a flatfile on the local hard drive and publishing it:

PipeAdvertisement aPipeAdv = null;

try { 

FileInputStream is = new FileInputStream("outputpipe.adv");

aPipeAdv = (PipeAdvertisement)AdvertisementFactory.newAdvertisement(

new MimeMediaType("text/xml"), is);

} catch (Exception e) {

System.out.println("failed to read/parse pipe advertisement");

e.printStackTrace();

System.exit(-1);

}

try {

myDiscoveryService.publish(aPipeAdv, DiscoveryService.ADV);

myDiscoveryService.remotePublish(aPipeAdv, DiscoveryService.ADV);

} catch (Exception e) {

e.printStackTrace();

System.exit(-1);

}

Class PipeAdvertisement 449



Class PipeID

The PipeID class uniquely identified a pipe.

■■ Parent Class: net.jxta.id.ID

■■ Class: net.jxta.pipe.PipeID

Constructor Summary
■■ PipeID()

Method Summary
■■ abstract ID getPeerGroupID(): Returns the PeerGroupID of the peer group

to which this peer ID belongs.

Example
The following code example shows building a PipeAdvertisement programmat-
ically and obtaining a new PipeID from the IDFactory class:

displayArea.append("Creating Input Pipe....\n");

myInputPipeAdvertisement = 

(PipeAdvertisement)AdvertisementFactory.newAdvertisement(

PipeAdvertisement.getAdvertisementType());

myInputPipeAdvertisement.setName("JXTA:valueGet");

myInputPipeAdvertisement.setType("JxtaUnicast");

myInputPipeAdvertisement.setPipeID((ID)

net.jxta.id.IDFactory.newPipeID(netPeerGroup.getPeerGroupID()));

Class PipeMsgEvent

The PipeMsgEvent is a container for pipe messages received by a peer.

■■ Parent Class: java.util.EventObject

■■ Class: net.jxta.pipe.PipeMsgEvent

Constructor Summary
■■ PipeMsgEvent(java.lang.Object source, Message message): Creates a new

event.

A p p e n d i x  B JXTA API450



Method Summary
■■ Message getMessage(): Returns the message associated with the event.

Example
See the next example in PipeMsgListener

Interface PipeMsgListener

The PipeMsgListener defines the methods that must be implemented by a class
wishing to receive asynchronous pipe messages.

Method Summary
■■ void pipeMsgEvent(PipeMsgEvent event): PipeMsgEvent Event

Example
This code snippet shows a new pipe listener and the required PipeMsgLis-
tener() method:

PipeMsgListener myService1Listener = new PipeMsgListener() {

public void pipeMsgEvent(PipeMsgEvent event) {

Message myMessage = null;

try {

myMessage = event.getMessage();

String myMessageContent;

myMessageContent = myMessage.getString("DataTag");

if (myMessageContent != null) {

displayArea.append("Message received: " + myMessageContent + 

"\n");

displayArea.append("Waiting for message...\n");

return;

} else {

displayArea.append("Invalid tag\n");

return;

}

} catch (Exception ee) {

ee.printStackTrace();

return;

}

}

};

Interface PipeMsgListener 451



Interface PipeService 

The PipeService Interface defines the API that must be implemented by poten-
tial pipe services.

Field Summary
■■ static java.lang.String PropagateType: Propagated, non-secure, and unreli-

able type of pipe.

■■ static java.lang.String UnicastSecureType: Unicast and secure type of pipe.

■■ static java.lang.String UnicastType: Unicast, unreliable, and non-secure
type of pipe.

Method Summary
■■ InputPipe createInputPipe(PipeAdvertisement adv): Creates an InputPipe

from a pipe advertisement.

■■ InputPipe createInputPipe(PipeAdvertisement adv, PipeMsgListener lis-
tener): Creates an InputPipe from a pipe advertisement.

■■ Message createMessage(): Creates a new message.

■■ OutputPipe createOutputPipe(PipeAdvertisement adv, java.util.Enumera-
tion peers, long timeout): Creates an OutputPipe from the pipe advertise-
ment giving a PeerId(s) where the corresponding InputPipe is supposed to
be.

■■ OutputPipe createOutputPipe(PipeAdvertisement adv, long timeout): Cre-
ates an OutputPipe from the pipe advertisement.

■■ void createOutputPipe(PipeAdvertisement adv, OutputPipeListener lis-
tener): Registers a listener for a NetPipe.

■■ OutputPipeListener removeOutputPipeListener(java.lang.String pipeID,
OutputPipeListener listener): Removes an output pipe listener.

Example
This code snippet shows obtaining a PipeService object and creating an output
pipe:

PipeService myPipeService = netPeerGroup.getPipeService();

myPipe = myPipeService.createInputPipe(myPipeAdvertisement, 

myService1Listener);

A p p e n d i x  B JXTA API452



Interface QueryHandler 
■■ The QueryHandler Interface defines the methods to be implemented by

resolver services.

Method Summary
■■ ResolverResponseMsg processQuery(ResolverQueryMsg query): Processes

the resolver query and generates a response.

■■ void processResponse(ResolverResponseMsg response): The callback
method; when messages are received by the resolver service, it calls back
this method to deal with received responses.

Interface RendezvousListener

The RendezvousListener interface defines the methods that must be imple-
mented by a class wanting to receive rendezvous events.

Method Summary
■■ void rendezvousEvent(RendezvousEvent event): The rendezvous event

Interface RendezVousService

The RendezVousService Interface defines the API to be implemented by a
potential rendezvous service.

Method Summary
■■ void addListener(RendezvousListener listener): Adds a listener for Ren-

DezVousEvents.

■■ void addPropagateListener(java.lang.String name, EndpointListener lis-
tener): Clients of the rendezvous service can use this method to receive
raw propagation rather than crawling query/responses.

■■ void connectToRendezVous(EndpointAddress addr): Adds a peer as a new
RendezVousService point.

■■ void connectToRendezVous(PeerAdvertisement adv): Adds a peer as a new
RendezVousService point.

■■ void disconnectFromRendezVous(PeerID peerID): Removes a Ren-
dezVousService point.

Interface RendezVousService 453



■■ java.util.Enumeration getConnectedPeers(): Returns an Enumeration of
PeerIDs of the peers that are currently connected.

■■ java.util.Enumeration getConnectedRendezVous(): Returns an Enumera-
tion of the PeerIDs of all the RendezVous on which this peer is currently
connected.

■■ java.util.Enumeration getDisconnectedRendezVous(): Returns an Enumer-
ation of the PeerIDs of all the RendezVous on which this peer failed to con-
nect.

■■ boolean isConnectedToRendezVous(): Returns true if connected to a ren-
dezvous.

■■ boolean isRendezVous(): Tells whether this rendezvous service currently
acts as a “super-node”, “rendezvous”, knowledge hub, influence broker, or
whichever higher status applies to the implementation.

■■ void propagate(Message msg, java.lang.String serviceName,
java.lang.String serviceParam, int defaultTTL): Propagates a message onto
as many peers on the local network as possible.

■■ void propagateInGroup(Message msg, java.lang.String serviceName,
java.lang.String serviceParam, int defaultTTL, java.lang.String prunePeer):
Deprecated.

■■ void propagateToNeighbors(Message msg, java.lang.String serviceName,
java.lang.String serviceParam, int defaultTTL, java.lang.String prunePeer):
Deprecated.

■■ boolean removeListener(RendezvousListener listener): Removes a listener
previously added with addListener.

■■ void removePropagateListener(java.lang.String name, EndpointListener lis-
tener): Removes a listener previously added with addPropagateListener.

■■ void sendRendezVousAdv(PeerAdvertisement destPeer, PeerAdvertise-
ment rendezVous): Sends an advertisement about other RendezVous to a
given peer.

■■ RendezVousMonitor setMonitor(RendezVousMonitor monitor): Registers a
notification monitor that is called each time a RendezVous peer is not
reachable anymore.

■■ void startRendezVous(): Starts the local peer as a RendezVous peer with
the default manager.

■■ void startRendezVous(RendezVousManager monitor): Starts the local peer
as a RendezVous peer.

■■ void stopRendezVous(): Stops the RendezVous function on the local peer.

A p p e n d i x  B JXTA API454



Class ResolverResponseMsg

The ResovlerResponseMsg defines the messages used in a response message
from the resolver service.

■■ Parent Class: java.lang.Object

■■ Class: net.jxta.protocol.ResolverResponseMsg

Field Summary
■■ static int queryid

Constructor Summary
■■ ResolverResponseMsg()

Method Summary
■■ static java.lang.String getAdvertisementType(): All messages have a type

(in XML, this is !doctype), which identifies the message.

■■ java.lang.String getCredential(): Returns the credential.

■■ abstract Document getDocument(MimeMediaType asMimeType): Writes an
advertisement into a document.

■■ java.lang.String getHandlerName(): Returns the handlername.

■■ int getQueryId(): Returns the queryid value.

■■ java.lang.String getResponse(): Returns the query.

■■ void setCredential(java.lang.String cred): Sets the credential.

■■ void setHandlerName(java.lang.String name): Sets the handlername.

■■ void setQueryId(int id): Sets the query ID.

■■ void setResponse(java.lang.String response): Sets the response.

Interface ResolverService 

The ResolverService interface defines the API for classes that act as a resolver
service.

Interface ResolverService 455



Method Summary
■■ QueryHandler registerHandler(java.lang.String name, QueryHandler han-

dler): Registers a given ResolveHandler.

■■ QueryHandler unregisterHandler(java.lang.String name): Unregisters a
given ResolveHandler.

Interface StructuredDocument

The StructuredDocument interface defines the API XML-like message used
throughout the JXTA system.

Method Summary
■■ Element createElement(java.lang.Object key): Creates a new element with-

out a value.

■■ Element createElement(java.lang.Object key, java.lang.Object value): Cre-
ates a new element with a value.

Class StructuredDocumentFactory

The StructuredDocumentFactory allows for the creation of StructuredDocu-
ment objects.

■■ Parent Class: net.jxta.util.ClassFactory

■■ Class: net.jxta.document.StructuredDocumentFactory

■■ Derived Classes: None

Method Summary
■■ protected java.util.Hashtable getAssocTable(): Used by ClassFactory meth-

ods to get the mapping of MIME types to constructors.

■■ protected java.lang.Class getClassForKey(): Used by ClassFactory meth-
ods to ensure that all keys used with the mapping are of the correct type.

■■ protected java.lang.Class getClassOfInstantiators(): Used by ClassFactory
methods to ensure that all of the instantiators that are registered with this
factory have the correct interface.

■■ static java.lang.String getFileExtensionForMimeType(MimeMediaType
mimetype): Returns the preferred extension for a given mime-type.

A p p e n d i x  B JXTA API456



■■ static MimeMediaType getMimeTypeForFileExtension(java.lang.String
extension): Returns the preferred mime-type for a given file extension.

■■ static StructuredDocument newStructuredDocument(MimeMediaType
mimetype, java.io.InputStream stream): Constructs an instance of Struc-
turedDocument matching the mime-type specified by the mimetype 
parameter.

■■ static StructuredDocument newStructuredDocument(MimeMediaType
mimetype, java.lang.String doctype): Constructs an instance of Structured-
Document matching the mime-type specified by the mimetype parameter.

■■ static StructuredDocument newStructuredDocument(MimeMediaType
mimetype, java.lang.String doctype, java.lang.String value): Constructs an
instance of StructuredDocument matching the mime-type specified by the
mimetype parameter.

■■ protected boolean registerAssoc(java.lang.String className): Registers a
class with the factory from its class name.

■■ static boolean registerInstantiator(MimeMediaType mimetype, Structured-
DocumentFactory.Instantiator instantiator): Registers an instantiator
object a mime-type of documents to be constructed.

Example
The following code shows how to use the StructuredDocumentFactory to build
a new StructuredTextDocument based with a Parm element in it:

StructuredTextDocument paramDoc = 

(StructuredTextDocument)StructuredDocumentFactory.

newStructuredDocument(new MimeMediaType("text/xml"),"Parm");

Interface StructuredTextDocument 

The StructuredTextDocument interface defines an extension to the Structured-
Document allowing for String accessors.

Method Summary
■■ TextElement createElement(java.lang.String name): Creates a new element

without a value.

■■ TextElement createElement(java.lang.String name, java.lang.String value):
Creates a new element with a value.

Interface StructuredTextDocument 457



Example
See the example in StructuredDocumentFactory.

Interface TextDocument 

The TextDocument extends the Document interface and allows for text output.

Method Summary
■■ java.lang.String getFileExtension(): Returns the file extension type used by

this document.

■■ java.io.Reader getReader(): Returns a stream of characters that represent
the content of this document.

■■ void sendToWriter(java.io.Writer stream): Rather than returning an Input-
Stream, sends the document to the specified stream.

Interface TextElement 

The TextElement extends the Element interface with String accessors.

Method Summary
■■ void appendChild(TextElement element): Adds a child element to this ele-

ment.

■■ java.util.Enumeration getChildren(java.lang.String name): Returns an enu-
meration of the immediate children of this element whose names match
the specified string.

■■ java.lang.String getName(): Gets the name associated with an element.

■■ java.lang.String getTextValue(): Gets the value (if any) associated with an
element

Example
The following code shows how to obtain a TextElement from a Structured-
TextDocument:

Enumeration elements = 

myParamDoc.getChildren("jxta:PipeAdvertisement");

elements = ((TextElement) 

elements.nextElement()).getChildren();

A p p e n d i x  B JXTA API458



The JXTA community has spent considerable time coming up with addi-
tional services for use by peers in the network. This appendix provides a
glimpse of those services and their current status.

caservice
Description: Designed to provide an authority service for certificates and
signed data with the JXTA network.

URL: http://caservice.jxta.org/servlets/ProjectHome

Status: There hasn’t been much activity in the project since late 2001. Some
code is available in the CVS.

cms
Description: We discussed the Content Management System in Chapter 14.
The project’s goal is to develop a consistent mechanism for document 
sharing.

URL: http://cms.jxta.org/servlets/ProjectHome

Status: The project is very active.

Current Add-on JXTA Services

A P P E N D I X C

459



compute-power-market
Description: The Computer Power Market (CPM) project employs an eco-
nomics approach to managing computational resource consumers, and pro-
vides computations across the work in peer-to-peer computing style.

URL: http://compute-power-market.jxta.org/servlets/ProjectHome

Status: There is currently no activity in this project.

edutella
Description: A multi-staged effort to build a metadata infrastructure that
allows highly heterogeneous peers to communicate with each other. 

URL: http://edutella.jxta.org/servlets/ProjectHome

Status: This project is very active.

gisp
Description: The Global Information Sharing Protocol (GISP) is designed to
provide information sharing using a distributed index.

URL: http://gisp.jxta.org/servlets/ProjectHome

Status: Source code is available for this project.

iPeers
Description: iPeers is an effort to use artificial intelligence (AI) within the
JXTA network through Agent technology.

URL: http://ipeers.jxta.org/servlets/ProjectHome

Status: This project is currently not active.

jxrtl
Description: jxrtl is an effort to create a language within JXTA peers for dis-
tributing work across the entire network.

URL: http://jxrtl.jxta.org/servlets/ProjectHome

Status: The project has quite a few documents available, as well as some
source code for a router.

jxta-rmi
Description: This project enables applications to be developed with the
Remote Method Invocation (RMI) API of the Java SDK.

A p p e n d i x  C Current Add-on JXTA Services460



URL: http://jxta-rmi.jxta.org/servlets/ProjectHome

Status: This is an active project, with source code and constant additional
work.

jxtaspace
Description: jxtaspace is a project designed to implement distributed
shared memory between JXTA peers.

URL: http://jxtaspaces.jxta.org/servlets/ProjectHome

Status: This project is active, with both discussions and source code com-
mits to CVS.

jxtavfs
Description: jxtavfs is a project for building a virtual file system within
peers.

URL: http://jxtavfs.jxta.org/servlets/ProjectHome

Status: There hasn’t been much activity in this project since 2001.

monitoring
Description: Designed to extend the current core monitoring functionality
of the JXTA platform.

URL: http://monitoring.jxta.org/servlets/ProjectHome

Status: This is no activity in this project.

networkservice
Description: networkservice is a project to integrate JXTA and Web 
services.

URL: http://networkservices.jxta.org/servlets/ProjectHome

Status: There is little activity in this project.

presence
Description: This project provides a software layer to help with the devel-
opment of applications that need to discover and communicate with other
peers in the network.

URL: http://presence.jxta.org/servlets/ProjectHome

Status: There is activity in this project.

presence 461



replication
Description: The replication project is designed to assist in the replication
of files and data across the JXTA network.

URL: http://replication.jxta.org/servlets/ProjectHome

Status: There has been some activity in this project since early 2002.

rrs
Description: A JXTA service designed to run on rendezvous peers. The ren-
dezvous peer operator thus gains the ability to run the peer as a background
process, and remotely observe and regulate its configuration.

URL: http://rrs.jxta.org/servlets/ProjectHome

Status: The project had some discussion and activity in early 2002.

search
Description: A distributed search system designed for P2P networks and
Web sites.

URL: http://search.jxta.org/servlets/ProjectHome

Status: This is a very active project; source code and discussions are 
available.

A p p e n d i x  C Current Add-on JXTA Services462



This appendix lists the names, URLs, and descriptions of the current JXTA
projects.

allhands

An event-notification infrastructure (http://allhands.jxta.org/servlets/
ProjectHome).

brando

The beginnings of a distributed source code control application using JXTA
(http://brando.jxta.org/servlets/ProjectHome).

chattutorial

This project implements three simple chat applications
(http://chattutorial.jxta.org/servlets/ProjectHome).

chess

A networked chess game between JXTA peers
(http://chess.jxta.org/servlets/ProjectHome).

Latest JXTA Projects

A P P E N D I XD

463



configurator

A GUI configuration tool (http://configurator.jxta.org/servlets/ProjectHome).

di

Implementation of a general-purpose, fully distributed index service
(http://di.jxta.org/servlets/ProjectHome).

fuel-auction

An example of using JXTA for an auction-type system 
(http://fuel-auction.jxta.org/servlets/ProjectHome).

gasnet

A GUI and audio demo of JXTA (http://gasnet.jxta.org/servlets/ProjectHome).

gnougat

A decentralized file-caching implementation
(http://gnougat.jxta.org/servlets/ProjectHome).

gnovella

Experimental peers for document storage, retrieval, and indexing of docu-
ments using JXTA (http://gnovella.jxta.org/servlets/ProjectHome).

jnushare

A set of applications for file and message sharing
(http://jnushare.jxta.org/servlets/ProjectHome).

juxtaprose

A decentralized open discussion network
(http://juxtaprose.jxta.org/servlets/ProjectHome).

jxauction

A project for building an auction system using JXTA
(http://jxauction.jxta.org/servlets/ProjectHome).

C h a p t e r  3 Th e  J X TA  S h e l l464



jxta-httpd

A set of applications and tools for web publishing using JXTA 
(http://jxta-httpd.jxta.org/servlets/ProjectHome).

jxtaview

A graphical demonstration of the JXTA discovery mechanism
(http://jxtaview.jxta.org/servlets/ProjectHome).

parlor

A collaborative peer-to-peer space using JXTA
(http://parlor.jxta.org/servlets/ProjectHome).

radiojxta

Implementation of a system that distributes audio using JXTA 
(http://radiojxta.jxta.org/servlets/ProjectHome).

rosettachat

An IRC-like application using JXTA 
(http://rosettachat.jxta.org/servlets/ProjectHome).

rosettachat 465





The primary Web site for the JXTA platform is www.jxta.org. There, you
will find the JXTA specification and the latest information, as well as
many projects involving the system. In this appendix, we’ll take a look at

the available resources.

Mailing Lists

To keep up with the happenings of the system, you can join the following mail-
ing lists.

Discuss Mailing List
This mailing list is designed for messages that discuss the JXTA specification
and related implementations; however, the messages are generally not techni-
cal in nature. 

■■ The subscribe email is discuss-subscribe@jxta.org.

■■ The unsubscribe email is discuss-unsubscribe@jxta.org.

■■ The archive for the mailing list can be found at
http://www.jxta.org/servlets/SummarizeList?projectName=www&list-
Name=discuss.

Announce Mailing List
This mailing list is designed for announcement messages. You will generally
find messages from the JXTA group as well as projects that have new informa-
tion available.

JXTA Resources

A P P E N D I XE

467



■■ The subscribe email is announce-subscribe@jxta.org.
■■ The unsubscribe email is announce-unsubscribe@jxta.org.

■■ The archive for the mailing list can be found at www.jxta.org/servlets/
SummarizeList?projectName=www&listName=announce.

Dev Mailing List
This mailing list contains messages of the most technical nature. Developers,
JXTA team members, and project members post and exchange messages on
this list, and it is the most active of all the lists.
■■ The subscribe email is dev-subscribe@jxta.org.
■■ The unsubscribe email is dev-unsubscribe@jxta.org.
■■ The archive for the mailing list can be found at www.jxta.org/servlets/

SummarizeList?projectName=www&listName=dev.

User Mailing List
This mailing list is designed to allow users of the JXTA specification and imple-
mentation to post messages when things aren’t working quite right.
■■ The subscribe email is user-subscribe@jxta.org.
■■ The unsubscribe email is user-unsubscribe@jxta.org.
■■ The archive for the mailing list can be found at www.jxta.org/servlets/

SummarizeList?projectName=www&listName=user.

JXTA Tutorials
The JXTA Web site, which includes a complete page of tutorials, is located at
www.jxta.org/project/www/Tutorials.html. As all developers know, the more
source code you can view, the better. These tutorials deal with the basic funda-
mentals of the JXTA specification and Java implementation.

OpenP2P
The OpenP2P Web site includes a number of topics dealing with peer-to-peer
networking, and one of the specific topics is JXTA. You can find the JXTA fea-
tures at http://openp2p.com/topics/p2p/jxta/. The site includes many articles
about using JXTA as well as news about the system.

Sun.com
The original JXTA site is located at www.sun.com/p2p/. This site is updated
with news information and spotlight articles. 

A p p e n d i x  E J X TA  R e s o u r c e s468



The original implementation of the JXTA Specification was written in
Java, but shortly after its introduction, work began on implementations
for other languages. This chapter covers the most recent JXTA specifica-

tion implementations.

Java

Of course, the reference architecture for the JXTA specification, protocols, and
service is Java SE. The project home page is located at http://platform.jxta.org/
servlets/ProjectHome, and it contains the latest information on the implemen-
tation. Some of the interesting things found on this site include

Programming Resources

■■ Project Developer Guidelines 

■■ How to Build the Source 

■■ Public API Javadoc 

■■ JXTA on a Yopy 

Running JXTA 

■■ Configuration Quick Guide 

■■ Available Rendezvous Peers 

■■ How to Configure a Rendezvous 

JXTA Bindings

A P P E N D I X F

469



Protocol Documentation 

■■ JXTA Protocols Docs 

■■ Description of Binary Message Format 

■■ Description of New Adv Format 

■■ Description of Endpoint Service 

■■ Description of Propagate Service 

■■ Description of Endpoint Router Transport 

Graphical Examples 

■■ Project JXTA: Discovery Animation 

■■ Project JXTA Connection Scenarios 

Articles

■■ Project JXTA: Setting the P2P Tone 

■■ Making P2P Interoperable: The JXTA Story, by Sing Li 

■■ Making P2P Interoperable: The JXTA Command Shell, by Sing Li

Mailing Lists

■■ cvs@platform.jxta.org: A mailing list for CVS commit messages

To subscribe, send e-mail to cvs-subscribe@platform.jxta.org.

To unsubscribe, send e-mail to cvs-unsubscribe@platform.jxta.org.

■■ issues@platform.jxta.org: A mailing list for issuezilla messages.

To subscribe, send e-mail to issues-subscribe@platform.jxta.org.

To unsubscribe, send e-mail to issues-unsubscribe@platform.jxta.org.

Java ME (JXME)

Outside of the Java SE project, the JXTA project for Java ME (JXME) is very
popular. The JXME project is designed to implement the JXTA specification
based on the J2ME platform (which is intended to execute on very small
devices, such as cell phones). The project home page, at http://jxme.jxta.org,
includes a comprehensive discussion of goals, constraints, and features of 
the implementation. The project currently has code and build instructions
available.

A p p e n d i x  F J X TA  B i n d i n g s470



The mailing lists for the JXME project are:

■■ cvs@jxme.jxta.org: A mailing list for CVS commit messages.

To subscribe, send e-mail to cvs-subscribe@jxme.jxta.org.

To unsubscribe, send e-mail to cvs-unsubscribe@jxme.jxta.org

■■ discuss@jxme.jxta.org: A list for the discussion of technical issues related
to the JXTA-J2ME project.

To subscribe, send e-mail to discuss-subscribe@jxme.jxta.org.

To unsubscribe, send e-mail to discuss-unsubscribe@jxme.jxta.org.

■■ issues@jxme.jxta.org: A mailing list for issuezilla messages.

To subscribe, send e-mail to issues-subscribe@jxme.jxta.org.

To unsubscribe, send e-mail to issues-unsubscribe@jxme.jxta.org.

jxta-c

The jxta-c project is dedicated to bringing the JXTA specification and protocols
to those programmers using C and C++. The home page for the project is
http://jxta-c.jxta.org/servlets/ProjectHome. Here, you will find the latest source
code for the implementation. At this time, there is no installation for the C
implementation, and you will have to obtain source code by joining and using
CVS. As of this writing, the jxta-c project is being actively worked and a good
section of the specification has been laid out, including protocol APIs and some
service code.

Dedicated mailing lists for the jxta-c project are available as well. The primary
mailing list, called discuss, is available through the following links:

•  To subscribe, send e-mail to discuss-subscribe@jxta-c.jxta.org.

•  To unsubscribe, send e-mail to discuss-unsubscribe@jxta-c.jxta.org.

jxtaPerl

The jxtaPerl project is designed to bring the JXTA spec and protocols to users
of the Perl language. As of this writing, the members of the project are concen-
trating on the development of Perl code to handle IDs for peers, peer groups,
and codats.

The following mailing lists are currently available for the project (the majority
of the traffic in the mailing lists occurs in the CVS commit messages):

jxtaPerl 471



■■ cvs@jxtaperl.jxta.org: A mailing list for CVS commit messages.

To subscribe, send e-mail to cvs-subscribe@jxtaperl.jxta.org.

To unsubscribe, send e-mail to cvs-unsubscribe@jxtaperl.jxta.org.

■■ issues@jxtaperl.jxta.org: A mailing list for issuezilla messages.

To subscribe, send e-mail to issues-subscribe@jxtaperl.jxta.org.

To unsubscribe, send e-mail to issues-unsubscribe@jxtaperl.jxta.org.

jxtapy

The purpose of this project (http://jxtapy.jxta.org/servlets/ProjectHome) is to
develop a Python language binding of the JXTA core protocols using Jython.
The current phases of the project include:

Phase 0: Feasibility via Command Line (Completed): Interface from Jython
command line to JXTA class methods.

Phase 1: Python Script: Scripts based on the JXTA Programming Guide

Phase 2: Basics: Implementations of ID, Advertisements, and Resolver base
classes

Phase 3: Main Implementation: Implementation of core JXTA protocols

The project has two mailing lists:

■■ cvs@jxtapy.jxta.org: A mailing list for CVS commit messages.

To subscribe, send e-mail to cvs-subscribe@jxtapy.jxta.org.

To unsubscribe, send e-mail to cvs-unsubscribe@jxtapy.jxta.org.

■■ issues@jxtapy.jxta.org: A mailing list for issuezilla messages.

To subscribe, send e-mail to issues-subscribe@jxtapy.jxta.org.

To unsubscribe, send e-mail to issues-unsubscribe@jxtapy.jxta.org.

jxtaruby

The goal of the jxtaruby project (http://jxtaruby.jxta.org/servlets/ProjectHome)
is to implement the JXTA spec and protocols using Ruby. No mailing lists have
been set up for the project, and little work appears to be occurring at this time.

A p p e n d i x  F J X TA  B i n d i n g s472



pocketJXTA

The objective of the pocketJXTA project (http://pocketjxta.jxta.org/servlets/
ProjectHome) is to take the jxta-c project and extend it to a Pocket PC plat-
form. Little work has been done on this project.

The mailing lists for the project are:

■■ cvs@pocketjxta.jxta.org: A mailing list for CVS commit messages.

■■ To subscribe, send e-mail to cvs-subscribe@pocketjxta.jxta.org.

■■ To unsubscribe, send e-mail to cvs-unsubscribe@pocketjxta.jxta.org.

■■ discuss@pocketjxta.jxta.org: The pocketJXTA discussion forum.

■■ To subscribe, send e-mail to discuss-subscribe@pocketjxta.jxta.org.

■■ To unsubscribe, send e-mail to discuss-unsubscribe@pocketjxta.jxta.org.

■■ issues@pocketjxta.jxta.org: A mailing list for issuezilla messages.

■■ To subscribe, send e-mail to issues-subscribe@pocketjxta.jxta.org.

■■ To unsubscribe, send e-mail to issues-unsubscribe@pocketjxta.jxta.org.

pocketJXTA 473





JXTA and its Java implementation are excellent tools for Java developers,
but JXTA is by no means the only peer-to-peer (P2P) toolkit available.
There are many others, both open-source and commercial. Even if you

only intend to use JXTA, it could be worth your while to look at source code
from other projects—you may find inspiration or a solution to a problem you’re
facing in your own work.

IBM BabbleNet

IBM’s alphaWorks is an organization that builds and distributes new technolo-
gies, primarily for software developers. One of alphaWorks’ technologies is
BabbleNet, a decentralized, P2P program that allows users to build real-time,
on-the-fly chat network without connecting to or installing a central server. The
system is built on top of a P2P framework, which supports node-to-node com-
munications and is written in Java. 

Once you’ve installed the software, you can view the Java source used to exe-
cute BabbleNet. The documentation is minimal, and comments within the code
describe the system. Clearly, the software is in the experimental stage, but it
does give developers an idea of what can be accomplished beyond the client-
server paradigm. The BabbleNet system appears to follow an open-source
license, and you can download it at 

www.alphaworks.ibm.com/tech/babblenet?open&l=p2pt,t=gr

Other Peer-to-Peer
Implementations and Toolkits

A P P E N D I XG

475



Intel

As you might expect, Intel is also in the P2P business with its Peer-to-Peer
Accelerator Kit. The kit is designed to be used with Microsoft .NET, and gives
the platform reusable infrastructure middleware. The URL for Intel’s P2P web
site is 

http://cedar.intel.com/cgi-bin/ids.dll/topic.jsp?catCode=BYM

Microsoft .NET and P2P

Microsoft has created a web site to illustrate how the .NET framework can be
used in the development of P2P systems. The web site itself highlights some of
the features of the P2P examples:

■■ All of the P2P code is based on the .NET framework.

■■ Messages sent between peers is serialized as XML.

■■ Objects can be shared and accessed by peers.

■■ A discovery service has been implemented using .NET.

The web site includes examples for peer discovery as well as a simple chat
application. Of course, the focus of the Microsoft initiative is the web service,
and several examples illustrate building services that peers can use. The URL
for Microsoft’s .NET P2P initiative is 

www.gotdotnet.com/team/p2p/

The Peer-to-Peer Trusted Library

One of the well-known libraries is called the Peer-to-Peer Trusted Library
(PtPTL). This library is open source, and its goal is to provide innovation in the
security arena as it relates to P2P systems. The library is designed to provide
the following:

■■ Digital certificates

■■ Peer authentication

■■ Secure storage

■■ Public-key encryption 

■■ Digital signatures 

■■ Digital envelopes 

■■ Symmetric-key encryption 

A p p e n d i x  G Other Peer-to-Peer Implementations and Toolkits476



The code is designed to execute on both the Windows and Linux operating sys-
tems. Numerous examples are provided, and full API documentation is avail-
able. As a replacement to secure communication using SSL, the PtPTL provides
support for more than just client-server network topologies. Note that PtPTL is
not a P2P system or toolkit—it is designed to add trust to a P2P system. The
URL for the library is 

http://sourceforge.net/projects/ptptl

The Bluetooth P2P Toolkit

For those of you interested in the wireless market, Pocit Labs has introduced a
P2P toolkit designed specifically for the Bluetooth technology. This toolkit lets
you incorporate wireless devices, such as PDAs and cell phones, into a P2P net-
work. The software handles the foundational part of a system, including node
creation, network building and network destruction, as well as the publishing
of services that might be available on a specific peer. The system provides secu-
rity features such as authentication and access services, credentials, and secu-
rity keys. The toolkit, which is a licensed product, costs nearly $5,000, so this
kit isn’t for the average experimenter. You can find the kit at 

www.pocitlabs.com

Other Tools

A variety of other toolkits and applications are available in the P2P arena. Most
of the toolkits aren’t generic in nature, but are instead geared toward a specific
area, such as distributed computing. Other options you might explore include
the following:

Adaptinet—A commercial, Java-based distributed toolkit
(www.adaptinet.com/download/)

Buzzpad—A commercial, web-based P2P networking application
(www.buzzpad.com)

Frontier—A commercial distributed computing application
(www.parabon.com/developers/index.jsp)

Hive—A business P2P system based on JXTA
(http://alberg.com/products/hive_download.html)

Ubero—A Java-based distributed toolkit 
(www.ubero.net/memberdownload.asp)

The Anthill Project—A P2P framework
(www.cs.unibo.it/projects/anthill/download.htm)

Sun Gridware—A distributed-computing system for Linux
(www.sun.com/software/gridware/download.html)

Other Tools 477





Index

479

A
access service, 26
Adaptinet, 477
Advertisement class, 407–408
AdvertisementFactory class,

408–409
advertisements, 26–27

checking, 103–104
CMS (Content Management

Service), 244
creating, 91–92
discovering, 103, 175-176.

See also PDP
displaying, 90–91
flushing, 107–108
format of, 74–75
implementation, 27–28
local cache, 32
module class, 80–81, 163–164
module implementation, 83

creating, 179–180
elements of, 83–84
example of, 84–89

module specification, 81–83,
166

peer, 75
elements of, 76–77
example of, 77–78
Hashtable getService-

Params() 
method, 79

ID getID() method, 78
PeerGroupID getPeer-

GroupID() method, 79
String getAdvertisement-

Type() method, 78
String getDescription()

method, 78
String getName()

method, 78
StructuredDocument get-

ServiceParam(ID key)
method, 79

peer group
creating, 45, 180
elements of, 79
secure, 201–202
viewing, 155–157

PeerInfoAdvertisement,
307–308

pipe
building, 164–166
creating, 45–46
EHASS (encrypted and

highly available 
storage system), 375

elements of, 89–90
example of, 27, 90
message reception,

289–290
propagate pipes, 219
publishing

local publishing, 101–102
methods, 100–101
remote publishing,

102–103
pulling from local file 

system, 91–92
rendezvous, 146–147
searching for, 47–48
service, 164

allhands project, 463
announce mailing list, 467–468
The Anthill Project, 477
application layer, 18



I n d e x480

applications
compiling, 401–402
executing, 402–403

asynchronous listeners
adding to applications,

105–106
assigning, 107

Attr element (PDP query 
messages), 98

Auth element (module specifi-
cation advertisements), 81

authenticateMe() method, 206
authentication

JXTA security toolkit,
261–262

secure peer groups, 202–204
AuthenticationCredential class,

409–410

B
BabbleNet, 475
bandwidth, peer-to-peer appli-

cations and, 12
bidirectional pipes, 209, 225

creating connections to, 234
EHASS (encrypted and

highly available storage
system), 375

example application
discovery application,

229–234
server application,

225–229
sending data, 234
service class, 229

Bluetooth toolkit, 477
brando project, 463
broadcast protocol, 33
businessPeer (EHASS), 359

code listing, 377–383
discovery, 384
functions of, 377
processing input, 384
setup, 383

Buzzpad, 477

C
C (jxta-c project), 471
C++ (jxta-c project), 471
Cached element (PBP query

messages), 139

callbacks (pipe discovery),
211–212

caservice add-on service, 459
centralized topology, 4
chatting (myJXTA), 63–64

changing groups, 64
changing users, 64
processMessage() 

method, 64–66
chattutorial project, 463
checking advertisements,

103–104
checkPasswd() method, 275
chess project, 463
chpgrp command (JXTA 

shell), 47
cid element (CMS 

advertisements), 244
Clary, Mike, 15
classes

Advertisement, 407–408
AdvertisementFactory,

408–409
AuthenticationCredential,

409–410
Codat, 411
CodatID, 412
DiscoveryEvent, 413
DiscoveryQueryMsg,

414–415
DiscoveryResponseMsg,

415–416
EndpointAdvertisement,

420–421
ID, 424–425
IDFactory, 425–426
JxtaError, 427
MembershipService, 427–428
MessageElement, 430–431
MimeMediaType, 431–432
ModuleClassAdvertisement,

432–433
ModuleClassID, 434
ModuleImplAdvertisement,

434–435
ModuleSpecAdvertisement,

435–437
ModuleSpecID, 437
PeerAdvertisement, 438–439
PeerGroupAdvertisement,

442–443

PeerGroupFactory, 443–444
PeerGroupID, 444
PeerID, 445
PeerInfoEvent, 445–446
PeerInfoQueryMessage,

446–447
PeerInfoResponseMessage,

447–448
PipeAdvertisement, 448–449
PipeID, 450
PipeMsgEvent, 450–451
ResolverResponseMsg, 455
StructuredDocumentFac-

tory, 456–457
work, 356

clear command (JXTA shell), 52
client-server, versus 

peer-to-peer, 2–3
clientPeer (EHASS), 360

code listing, 387–393
functions of, 386–387
image request, 395–396
pipe discovery, 394–395
query request, 395
setup, 393–394

clients, defined, 2
cms add-on service, 459
CMS (Content Management 

Service)
downloading files, 251–254
initializing, 250
overview, 243–244
peer application example,

245–249
searching for files, 251–254
shared content list, 

viewing, 251
sharing content, 250–251

Codat class, 411
CodatID class, 412
Code element (module imple-

mentation advertisements),
83–84

communication peers, 320–322
Comp element (module imple-

mentation advertisements),
83–84

compiling applications
JBuilder, 403–405
Linux systems, 402
Windows systems, 401–402



Index 481

computational code (distrib-
uted computing), 356–358

compute-power-market add-on
service, 460

configurator project, 464
Content Management Service.

See CMS
content sharing

CMS (Content Management
Service)
downloading files,

251–254
searching for files,

251–254
shared content list, view-

ing, 251
sharing files, 250–251

transport security
decrypting data, 291
JxtaUnicastSecure pipes,

277–279
secure transport client

example, 291–300
secure transport server

example, 279–281
separately encrypted

data, 279–281
core layer, 17–18
createPeerGroup() method, 186
createPeerGroupID() method,

185–186
Credential element

resolver query messages, 111
resolver response messages,

113
Credential interface, 412
CRTR element (module specifi-

cation advertisements), 81

D
daily builds, 401
databasePeer (EHASS), 359

bidirectional pipes, 375
code listing, 367–372
connectivity, 372–373
data input processing, 376
executing, 366–367
features, 366
pipe advertisements, 375
query processing, 376–377
setup, 374

databases. See EHASS
Dbg element (peer advertise-

ments), 76
debugging firewall peers,

326–367
decentralized topology, 4–5, 7–8
decrypting data, 291
Desc element

module class 
advertisements, 80

module implementation
advertisements, 83–84

module specification 
advertisements, 81

peer advertisements, 76
peer group advertisements,

79
Description element (CMS

advertisements), 244
Destination element (PEP 

messages), 132
DestSName element (RVP 

messages), 146
DestSParam element (RVP 

messages), 146
dev mailing list, 468
di project, 464
direct discovery, 33–34
discovery. See also PDP

advertisements, 103
advertisements (example

application), 175–176
defined, 31–32
direct, 33–34
EHASS (encrypted and

highly available storage
system), 384

input pipes, 144
local, 32–33
peer groups, 187–191
peers

example application,
309–316

peer discovery listener,
301–307

PeerInfoAdvertisement,
307–308

pipes
callbacks, 211–212
filtering through local

cache, 212–213

propagated, 34–35
remote discovery, 43–44

discovery peers, in firewall net-
works, 324–325

discovery service, 26, 105–106.
See also PDP
asynchronous listeners

adding to applications,
105–106

assigning, 107
checking advertisements,

103–104
discovering advertisements,

103
flushing advertisements,

107–108
local queries, 96, 104
methods, 99–100
publishing advertisements

local publishing, 101–102
methods, 100–101
remote publishing,

102–103
remote queries, 96

DiscoveryEvent class, 413
DiscoveryEvent method, 106
DiscoveryListener interface,

413–414
DiscoveryQueryMsg class,

414–415
DiscoveryResponseMsg class,

415–416
DiscoveryService interface,

416–418
discuss mailing list, 467
distributed computational

engines, 10–11
distributed computing frame-

work
computational code, 356–358
master peer, 344–349
worker peer, 349–356

receiving work, 355
sending results, 355–356
setup, 355

distributed.net, 10
Document interface, 418
Dumbill, Ed, 2



I n d e x482

E
edutella add-on service, 460
EHASS (encrypted and highly

available storage system)
architecture, 359–361
businessPeer, 359

code listing, 377–383
discovery, 384
functions of, 377
processing input, 384
setup, 383

clientPeer, 360
code listing, 387–393
functions of, 386–387
image request, 395–396
pipe discovery, 394–395
query request, 395
setup, 393–394

database schema, 362
databasePeer, 359

bidirectional pipes, 375
code listing, 367–372
connectivity, 372–373
data input processing,

376
executing, 366–367
features, 366
pipe advertisements, 375
query processing,

376–377
setup, 374

executing, 363–366
functions of, 361–362
gatheringPeers, 359, 385–386
message schema, 362–363

Element interface, 419
encrypted and highly available

storage system. See EHASS
encrypting data, 258

with RC4, 260–261
with RSA, 258–260

endpoint message example,
135–136

endpoint protocols, 133–134
endpoint service, 132–133,

331–334. See also PEP
assigning endpoints, 332
endpoint receiving peer

example, 334–337

endpoint sending peer 
example, 337–341

versus pipes, 332
EndpointAddress interface,

419–420
EndpointAdvertisement class,

420–421
EndpointFilterListener inter-

face, 421
EndpointProtocol interface,

421–422
endpoints

assigning, 332
components of, 331

EndpointService interface,
422–423

env command (JXTA shell), 43
environment variables, 

displaying, 43
Ethernet, 28
example application (basic

structure)
connecting to the network,

153–154
peer group

advertisement, 180
code listing, 181–185
constructor, 185
createPeerGroup()

method, 186
createPeerGroupID()

method, 185–186
discovering, 187–191
ID, 178–179
joinGroup() method,

186–187
joining, 192
joining new group, 181
main() method, 185
module implementation

advertisement,
179–180

newGroup() method, 180
receiver peer

code listing, 170–174
finding advertisements,

175–176
getting group services,

175
GUI setup, 177

output pipe, building,
176–177

run() method, 177
sending messages, 177

secure peer group
advertisement, 201–202,

205–206
authentication, 202–204,

206
changing default imple-

mentation
advertisement,
193–194, 204–205

client code, 207
code listing, 194–201
membership service,

192–193
sender peer

application class con-
structor, 168

building, 157–158
code listing, 158–162
executing, 168
launchJXTA() method,

168
main() method, defining,

168
module class advertise-

ment, building,
163–164

module specification
advertisement, build-
ing, 166

monitoring input pipe,
167–168

peer group services,
obtaining, 162–163

pipe advertisement,
building, 164–166

receiver peer, 
building, 169

run() method, 168
structure, 152–153
viewing peer group adver-

tisements, 155–157
viewing peer group informa-

tion, 154–155
executing code

JBuilder, 403–405
Linux systems, 403
Windows systems, 402–403



Index 483

exit command (JXTA shell), 52
exportfile command (JXTA

shell), 52
exporting files, 52

F
File menu (myJXTA), 70
files

exporting, 52
importing, 52
sharing

CMS (Content 
Management Service),
250–251

transport security,
277–281

firewalls, 36, 319
communication peers,

320–322
debugging, 326–367
discovery peers, 324–325
gateway peers, 323–324
rendezvous peers, 327–330
router peers, 327–330

flushing advertisements,
107–108

ForwardRoute element (PEP
messages), 132

FPID element (peer advertise-
ments), 76

Frontier, 477
fuel-auction project, 464

G
gasnet project, 464
gateway peers, 323–324
gatheringPeers (EHASS), 359,

385–386
GenericResolver interface, 424
get command (JXTA shell), 49
getMessenger() method, 134
GID element

peer advertisements, 76
peer group 

advertisements, 79
gisp add-on service, 460
gnougat project, 464
gnovella project, 464
Gnutella, 5, 7–8
Gong, Li, 2
group chat (myJXTA), 61–62

Group menu (myJXTA), 70–71
group search functionality

(myJXTA), 71
groups command (JXTA shell),

44

H
HandlerName element

resolver query messages, 111
resolver response messages,

113
handlers, 109

building, 116–119
naming, 110–111
registering, 120

Hashtable getServiceParams()
method, 79

hierarchical topology, 3
high-level network protocols, 29
Hive, 477
HTTP, 3, 29
hub peers, 8–9
hybrid topology, 5

KaZaA, 8–9
Morpheus, 8–9
Usenet, 9–10

I
IBM BabbleNet, 475
ID class, 424–425
ID element

pipe advertisements, 89, 138
service advertisements, 165

ID getID() method, 78
IDFactory class, 425–426
IDs, 19

examples of, 20
format of, 19
generating, 21–22
Java binding, 23–24
modules, 22–23
reserved, 23
specification, 19–20

implementation advertisements,
27–28

importfile command (JXTA
shell), 52

importing files, 52
input pipes, 141

discovering, 144
monitoring, 167–168

polling for information,
142–143

InputPipe interface, 426
installing JXTA

easy install, 397–398
Linux systems, 399
Windows systems, 398

instant messaging, 10
InstantP2P. See myJXTA
Intel Peer-to-Peer Accelerator

Kit, 476
intellectual property issues,

11–12
interfaces

Credential, 412
DiscoveryListener, 413–414
DiscoveryService, 416–418
Document, 418
Element, 419
EndpointAddress, 419–420
EndpointFilterListener, 421
EndpointProtocol, 421–422
EndpointService, 422–423
GenericResolver, 424
InputPipe, 426
Message, 428–430
OutputPipe, 438
PeerGroup, 439–442
PeerInfoListener, 446
PipeMsgListener, 451
PipeService, 452
QueryHandler, 453
RendezvousListener, 453
RendezVousService, 453–454
ResolverService, 455–456
StructuredDocument, 456
StructuredTextDocument,

457–458
TextDocument, 458
TextElement, 458

iPeers add-on service, 460

J
Java ME (JXME), 470–471
Java resources, 469–470
JBuilder, 403–405
jnushare project, 464
join command (JXTA shell),

46–47
joinGroup() method, 186–187
Joy, Bill, 15



I n d e x484

juxtaprose project, 464
jxauction project, 464
JXME (Java ME), 470–471
jxrtl add-on service, 460
JXTA

application layer, 18
architecture, 17–18
daily builds, 401
goals of, 15
initial reference implementa-

tion, 17
installing

easy install, 397–398
Linux systems, 399
Windows systems, 398

libraries, 399
mailing lists

announce list, 467–468
dev list, 468
discuss list, 467
user list, 468

projects
gnougat, 464
gnovella, 464
jnushare, 464
juxtaprose, 464
jxauction, 464
jxta-c, 471
jxta-httpd, 465
jxtaPerl, 471–472
jxtapy, 472
jxtaruby, 472
jxtaview, 465
parlor, 465
pocketJXTA, 473
radiojxta, 465
rosettachat, 465

protocols, 16–17. See also

individual protocols

hierarchy, 16
stable builds, 400–401
tutorials, 468
Web site, 468

JXTA application structure,
152–153. See also example
application

jxta-c project, 471
jxta-httpd project, 465
JXTA network

connecting to, 153–154
topology, 319–320

jxta-rmi add-on service, 460–461

JXTA security toolkit, 255–256
algorithms, 257–258
authenticating data, 261–262
decrypting data, 291
encrypting data, 258

with RC4, 260–261
with RSA, 258–260

initializing, 289
keys

building, 256–257
reception, 299–300
requesting, 299
sending, 290–291

membership services
building, 264–265
checkPasswd() method,

275
code listing, 265–273
membership service class

initialization, 275
PasswdAuthenticator

constructor, 274–275
peer group, creating,

275–277
profiles, 257
signing data, 262–263
transport security

JxtaUnicastSecure pipes,
277–279

secure transport client
example, 291–300

secure transport server
example, 281–291

separately encrypted
data, 279–281

JXTA shell
commands

chpgrp, 47
clear, 52
env, 43
exit, 52
exportfile, 52
get, 49
groups, 44
importfile, 52
join, 46–47
leave, 47
man, 50–52
mkadv, 45–46
mkmsg, 49
mkpgrp, 46
mkpipe, 48

peers, 43–44
put, 49
recv, 50
search, 47–48
send, 50
Shell, 40–41
version, 52
whoami, 42
writing, 53

creating, 40–41
executing, 39–40
exiting, 52

JxtaError class, 427
jxtaPerl project, 471–472
jxtapy project, 472
jxtaruby project, 472
jxtaspace add-on service, 461
JxtaUnicastSecure pipes,

277–279
jxtavfs add-on service, 461
jxtaview project, 465
Jython (jxtapy project), 472

K
KaZaA, 5, 8–9
keys (security)

building, 256–257
public

reception, 299–300
requesting, 299
sending, 290–291

L
LastHop element (PEP mes-

sages), 132
leave command (JXTA shell), 47
Length element (CMS advertise-

ments), 244
libraries, 399
Licklider, J.C.R., 1
listeners

asynchronous
adding to applications,

105–106
assigning, 107

callbacks, 211–212
distributed computing,

344–349
PBP (Pipe Binding Proto-

col), 143



Index 485

PIP (Peer Information Proto-
col), building, 127–128

local cache, 32, 96–97
filtering advertisements

through, 212–213
flushing advertisements,

107–108
local discovery, 32–33

M
mailing lists

announce list, 467–468
dev list, 468
discuss list, 467
user list, 468

main() method, peer group 
creation (example applica-
tion), 185

man command (JXTA shell),
50–52

master peer (distributed 
computing), 344–349

MCID element (module class
advertisements), 80

membership services, 26
JXTA security toolkit

building, 264–265
checkPasswd() method,

275
code listing, 265–273
membership service class

initialization, 275
PasswdAuthenticator

constructor, 274–275
peer group, creating,

275–277
secure peer group example,

192–193, 263–264
MembershipService class,

427–428
message containers, 49
message formats, 29–30
Message interface, 428–430
MessageElement class, 430–431
MessageId element (RVP 

messages), 146
messages

accepting, 50
extracting data from, 49
propagation, 146–147
sending, 50

Microsoft .NET framework, 476
MimeMediaType class, 431–432
mkadv command (JXTA shell),

45–46
mkmsg command (JXTA shell),

49
mkpgrp command (JXTA shell),

46
mkpipe command (JXTA shell),

48
module class advertisements,

80–81, 163–164
Module Class ID, 22–23
Module Impl IDs, 23
module implementation 

advertisements, 83
creating, 179–180
elements of, 83–84
example of, 84–89

Module Spec ID, 22–23
module specification 

advertisements, 81–83, 166
ModuleClassAdvertisement

class, 432–433
ModuleClassID class, 434
ModuleImplAdvertisement

class, 434–435
modules, 22–23, 27–28
ModuleSpecAdvertisement

class, 435–437
ModuleSpecID class, 437
monitoring add-on service, 461
monitoring peers

example application,
309–316

peer discovery listener
building, 301–302
discovery code listing,

304–305
interpreting events,

302–303
local versus remote,

305–307
PeerInfoAdvertisement,

307–308
monitoring service, 26
Morpheus, 8–9
MsgType element (PBP query

messages), 139
MSID element

module implementation
advertisements, 83–84

module specification adver-
tisements, 81

peer group advertisements,
79

multicast protocol, 33
myJXTA

configuring, 56–59
downloading, 56
executing, 56
File menu, 70
functions of, 55
group chat, 61–62
Group menu, 70–71
group search functionality,

71
menu event code, 60–61
myJXTA window, 59–60
project page, 55
search functionality, 67–68
share functionality, 69
user chat, 63–64

changing groups, 64
changing users, 64
processMessage()

method, 64–66

N
Name element

CMS advertisements, 244
module class advertise-

ments, 80
module implementation

advertisements, 83–84
module specification 

advertisements, 81
peer advertisements, 76
peer group advertisements,

79
pipe advertisements, 89, 138

name element (service 
advertisements), 165

Napster, 6–7
NATs (Network Address 

Translations), 37
NbOfHop element (PEP 

messages), 132
NCP (Network Control 

Program), 1
.NET framework, 476
Net Peer Group ID, 23



I n d e x486

Network Address Translations
(NATs), 37

Network Control Program
(NCP), 1

network topologies
centralized, 4
decentralized, 4–5
hierarchical, 3
hybrid, 5
ring, 4

network transports
defined, 27
Ethernet, 28
high-level network 

protocols, 29
message formats, 29–30
TCP/IP, 28

networkservice add-on service,
461

newGroup() method, 180
NULL ID, 23

O
output pipes, 141

building (example applica-
tion), 176–177

sending messages through
(example application),
177

OutputPipe interface, 438

P
P2P. See peer-to-peer
parlor project, 465
Parm element

module implementation
advertisements, 83–84

module specification adver-
tisements, 81

Path element (RVP messages),
146

PBP (Pipe Binding Protocol), 16
Java binding, 140
overview, 137–138
pipes

advertising, 143–144
building, 143
creating, 141–142

Propagate pipes, 138
query messages, 138–139

SecureUnicast pipes, 138
Unicast pipes, 138

PDP (Peer Discovery Protocol),
16. See also discovery ser-
vice
Java binding, 99
local queries, 96
overview, 96–97
pipes, receiving information

from, 142–143
query message format, 97–98
remote queries, 96
response message format,

98–99
peer advertisements, 75

elements of, 76–77
example of, 77–78
Hashtable getServi-

ceParams() method, 79
ID getID() method, 78
PeerGroupID getPeer-

GroupID() method, 79
PeerInfoAdvertisement,

307–308
String getAdvertisement-

Type() method, 78
String getDescription()

method, 78
String getName() method, 78
StructuredDocument getSer-

viceParam(ID key)
method, 79

peer discovery listener
building, 301–302
discovery code listing,

304–305
interpreting events, 302–303
local peers versus remote

peers, 305–307
Peer Discovery Protocol. See

PDP
Peer element (PBP query mes-

sages), 139
Peer Endpoint Protocol. See

PEP
peer group advertisements, 79

elements of, 79
secure, 201–202
viewing, 155–157

peer groups, 25–26. See also

peers

advertisements, creating, 45,
180

creating, 46
code listing, 181–185
constructor, 185
createPeerGroup()

method, 186
createPeerGroupID()

method, 185–186
ID, 178–179
joinGroup() method,

186–187
joining new groups, 181
main() method, 185
module implementation

advertisements,
179–180

newGroup() method, 180
default, changing, 47
discovering, 187–191
displaying peers, 43–44
joining, 46–47, 192
leaving, 47
searching for, 44
secure

advertisements, 201–202,
205–206

authentication, 202–204,
206

changing default imple-
mentation advertise-
ment, 193–194,
204–205

code listing, 194–201
membership service,

192–193, 263–264
services, 26, 30–31, 162–163
viewing information about,

154–155
WorldPeerGroup, 18, 26

peer hubs, 8–9
Peer Information Protocol. 

See PIP
Peer Resolver Protocol. 

See PRP
peer-to-peer

bandwidth, 12
versus client-server, 2–3
defined, 2
development, 1–2
Gnutella, 7–8



intellectual property issues,
11–12

Napster, 6–7
security issues, 12
workplace policies 

regarding, 11
Peer-to-Peer Accelerator Kit,

476
peer-to-peer toolkits, 475–477
Peer-to-Peer Trusted Library

(PtPTL), 476–477
PeerAdv element (PDP query

messages), 98
PeerAdvertisement class,

438–439
PeerGroup interface, 439–442
PeerGroupAdvertisement class,

442–443
PeerGroupFactory class,

443–444
PeerGroupID class, 444
PeerGroupID getPeerGroupID()

method, 79
PeerID class, 445
PeerInfoAdvertisement,

307–308
PeerInfoEvent class, 445–446
PeerInfoListener interface, 446
PeerInfoQueryMessage class,

446–447
PeerInfoResponseMessage

class, 447–448
peers, 24. See also peer groups

businessPeer (EHASS), 359
code listing, 377–383
discovery, 384
functions of, 377
processing input, 384
setup, 383

clientPeer (EHASS), 360
code listing, 387–393
functions of, 386–387
image request, 395–396
pipe discovery, 394–395
query request, 395
setup, 393–394

communication between.
See also pipes; PRP
endpoint receiving peer

example, 334–337

endpoint sending peer
example, 337–341

endpoint service,
132–133, 331–334

network transports,
28–30

databasePeer (EHASS), 359
bidirectional pipes, 375
code listing, 367–372
connectivity, 372–373
data input processing,

376
executing, 366–367
features, 366
pipe advertisements, 375
query processing,

376–377
setup, 374

displaying, 43–44
finding

discovery code listing,
304–305

discovery listener, 
building, 301–302

interpreting listener
events, 302–303

local versus remote,
305–307

firewalls and
communication peers,

320–322
debugging, 326–367
discovery peers, 324–325
gateway peers, 323–324
rendezvous peers,

327–330
router peers, 327–330

gatheringPeers (EHASS),
359, 385–386

identity, 24
JXTA definition of, 24–25
master (distributed comput-

ing), 344–349
membership, 24
monitoring (example appli-

cation), 309–316
rendezvous, 34, 145

connecting to, 148–149
disconnecting from,

149–150
finding, 148

requesting information
about, 127–128, 307–308

services, 31
transport, 24
worker (distributed comput-

ing), 349–356
receiving work, 355
sending results, 355–356
setup, 355

peers command (JXTA shell),
43–44

PEP (Peer Endpoint Protocol),
16
endpoint protocols, 133–134
endpoint service, 132–133
Java binding, 134–136
message example, 135–136
overview, 131–132
Ping query, 132
Ping response, 132
route caches, 134
Route query, 132
Route response, 132
sending messages, 133

Perl (jxtaPerl project), 471–472
Ping query (PEP), 132
Ping response (PEP), 132
PIP (Peer Information Proto-

col), 16
Java binding, 126–127
listeners, building, 127–128
overview, 123–124
query example, 125–126
query messages, 124
requesting peer information,

127
response messages, 124–125
viewing returned informa-

tion, 128
pipe advertisements

building, 164–166
creating, 45–46
EHASS (encrypted and

highly available storage
system), 375

elements of, 89–90
example of, 27, 90, 142
format of, 138
message reception, 289–290

Pipe Binding Protocol. See PBP

Index 487



Pipe element (module specifica-
tion advertisements), 81

pipe service, 26, 140. 
See also PBP

PipeAdvertisement class,
448–449

PipeID class, 450
PipeID element (PBP query

messages), 139
PipeMsgEvent class, 450–451
pipeMsgEvent() method, 61–62
PipeMsgListener interface, 451
pipes, 30

advertising, 143–144
bidirectional, 209, 225

creating connections to,
234

example application,
225–234

sending data, 234
service class, 229

building, 143
creating, 48, 141–142
discovery

callbacks, 211–212
filtering through local

cache, 212–213
versus endpoint service, 332
input, 141

discovering, 144
monitoring, 167–168
polling for information,

142–143
JxtaUnicastSecure, 277–279
message reception, 289–290
output, 141

building (example appli-
cation), 176–177

sending messages
through (example
application), 177

propagate, 138, 209, 218–219
advertisements, 219
receiving peer code list-

ing, 222–225
sending peer code listing,

219–221
propagating, 30
publishing, 210

receiving information from,
142–143

reliable, 209, 234
receiver peer, 238–242
sender peer, 235–237

SecureUnicast, 138
Unicast, 30, 138, 209, 214

local peers, 214–215
remote peers, 216–218

UnicastSecure, 30, 209, 218
PipeService interface, 452
PKI (Public Key Infrastructure),

256–257
pocketJXTA project, 473
poll() method, 142–143
ports, 28
presence add-on service, 461
private networks

firewalls, 36
NATs (Network Address

Translations), 36
processMessage() method,

64–66
processQuery() method,

116–117
processResponse() method, 117
propagate() method, 134
propagate pipes, 138, 209,

218–219
advertisements, 219
receiving peer code listing,

222–225
sending peer code listing,

219–221
propagated discovery, 34–35
propagating pipes, 30
Prov element (module imple-

mentation advertisements),
83–84

Proxy element
module implementation

advertisements, 83–84
module specification adver-

tisements, 81
PRP (Peer Resolver Protocol),

16
handlers

building, 116–119
defined, 109
naming, 110–111
registering, 120

Java binding, 115
overview, 109–110
resolver query messages,

111–112
resolver response messages,

112–115
sending queries, 120–121

PtPTL (Peer-to-Peer Trusted
Library), 476–477

Public Key Infrastructure (PKI),
256–257

public keys
reception, 299–300
requesting, 299
sending, 290–291

publishing
advertisements

local publishing, 101–102
methods, 100–101
module class advertise-

ments, 164
module specification

advertisements, 166
remote publishing,

102–103
pipes, 210

PURI element (module imple-
mentation advertisements),
83–84

put command (JXTA shell), 49
Python (jxtapy project), 472

Q
Query element (resolver query

messages), 111
query messages

PBP (Pipe Binding Proto-
col), 138–139

PDP (Peer Discovery Proto-
col), 97–98

PIP (Peer Information Proto-
col), 124

QueryHandler interface, 453
QueryID element

resolver query messages, 111
resolver response messages,

113

I n d e x488



R
radiojxta project, 465
RC4 data encryption, 260–261
receiver peer (example 

application)
building, 169
code listing, 170–174
finding advertisements,

175–176
getting group services, 175
GUI setup, 177
output pipe

building, 176–177
sending messages

through, 177
run() method, 177

recv command (JXTA shell), 50
reliable pipes, 209, 234

receiver peer, 238–242
sender peer, 235–237

remote discovery, 43–44
rendezvous advertisements,

146–147
rendezvous peers, 34, 145

connecting to, 148–149
disconnecting from, 149–150
finding, 148
in firewall networks,

327–330
Rendezvous Protocol. See RVP
RendezvousListener interface,

453
RendezVousService interface,

453–454
replication add-on service, 462
request element (PIP query

messages), 124
resolver query messages (PRP),

111–112
resolver response messages

(PRP), 112–115
resolver service, 26. See also

PRP
registering handlers with,

120
sending queries, 120–121

ResolverResponseMsg class,
455

ResolverService interface,
455–456

Response element
PDP response messages, 99
PIP response messages, 125
resolver response messages,

113
response messages

PDP (Peer Discovery Proto-
col), 98–99

PIP (Peer Information Proto-
col), 124–125

ReverseRoute element (PEP
messages), 132

ring topology, 4
rosettachat project, 465
route caches, 134
Route query (PEP), 132
Route response (PEP), 132
router peers, in firewall net-

works, 327–330
rrs add-on service, 462
RSA data encryption, 258–260
Ruby (jxtaruby project), 472
RVP (Rendezvous Protocol), 16

Java binding, 147–148
message propagation,

146–147
overview, 145–146
rendezvous advertisements,

146–147
rendezvous peers

connecting to, 148–149
disconnecting from,

149–150
finding, 148

S
search add-on service, 462
search command (JXTA shell),

47–48
search functionality (myJXTA),

67–68
secure peer groups

advertisements, 201–202,
205–206

authentication, 202–204, 206
changing default implemen-

tation advertisement,
193–194, 204–205

code listing, 194–201
membership service,

192–193, 263–264

SecureUnicast pipes, 138
security, 12

firewalls, 36
communication peers,

320–322
discovery peers, 324–325
gateway peers, 323–324
rendezvous peers,

327–330
router peers, 327–330

JXTA security toolkit,
255–256
algorithms, 257–258
authenticating data,

261–262
decrypting data, 291
encrypting data, 258–261
keys, building, 256–257
profiles, 257
signing data, 262–263
transport security,

277–300
membership services

creating with JXTA secu-
rity toolkit, 264–277

secure peer group exam-
ple, 192–193, 263–264

send command (JXTA shell), 50
sender peer (example 

application)
application class construc-

tor, 168
building, 157–158
code listing, 158–162
executing, 168
launchJXTA() method, 168
main() method, defining, 168
module class advertisement,

building, 163–164
module specification 

advertisement, building,
166

monitoring input pipe,
167–168

peer group services, obtain-
ing, 162–163

pipe advertisement, building,
164–166

receiver peer, building, 169
run() method, 168

sendKey() method, 290–291

Index 489



sendMsg() method, 62
service advertisements, 164
services

access, 26
add-on

caservice, 459
cms, 459
compute-power-market,

460
edutella, 460
gisp, 460
iPeers, 460
jxrtl, 460
jxta-rmi, 460–461
jxtaspace, 461
jxtavfs, 461
monitoring, 461
networkservice, 461
presence, 461
replication, 462
rrs, 462
search, 462

bidirectional pipes, 229
Content Management. see

CMS
discovery, 26

local queries, 96
remote queries, 96

endpoint, 132–133, 331–334
assigning endpoints, 332
endpoint receiving peer

example, 334–337
endpoint sending peer

example, 337–341
versus pipes, 332

membership, 26, 192–193
monitoring, 26
peer, 31
peer group, 30–31, 162–163
pipe, 26, 140
resolver, 26

services layer, 18
SETI@home, 10–11
share functionality (myJXTA),

69
share() method, 250–251
sharing content

CMS (Content Management
Service)
downloading files,

251–254

searching for files,
251–254

shared content list, view-
ing, 251

sharing files, 250–251
transport security

decrypting data, 291
JxtaUnicastSecure pipes,

277–279
secure transport client

example, 291–300
secure transport server

example, 279–281
separately encrypted

data, 279–281
shell. See JXTA shell
Shell command (JXTA shell),

40–41
Shirky, Clay, 2
signing data, 262–263
Source element (PEP mes-

sages), 132
sourcePid element

PIP query messages, 124
PIP response messages, 124

SrcPeerID element (resolver
query messages), 111

SSL, 279
stable builds, 400–401
storage (EHASS)

architecture, 359–361
businessPeer, 359

code listing, 377–383
discovery, 384
functions of, 377
processing input, 384
setup, 383

clientPeer, 360
code listing, 387–393
functions of, 386–387
image request, 395–396
pipe discovery, 394–395
query request, 395
setup, 393–394

database schema, 362
databasePeer, 359

bidirectional pipes, 375
code listing, 367–372
connectivity, 372–373
data input processing,

376

executing, 366–367
features, 366
pipe advertisements, 375
query processing,

376–377
setup, 374

executing system, 363–366
functions of, 361–362
gatheringPeers, 359, 385–386
message schema, 362–363

String getAdvertisementType()
method, 78

String getDescription() method,
78

String getName() method, 78
StructuredDocument getServi-

ceParam(ID key) method, 79
StructuredDocument interface,

456
StructuredDocumentFactory

class, 456–457
StructuredTextDocument inter-

face, 457–458
Sun Gridware, 477
SURI element (module specifi-

cation advertisements), 81
Svc element

peer advertisements, 76
peer group advertisements,

79

T
targetPid element

PIP query messages, 124
PIP response messages, 124

TCP/IP, 3, 28
TextDocument interface, 458
TextElement interface, 458
Threshold element (PDP query

messages), 98
timestamp element (PIP

response messages), 124
TLS, 279
token ring topology, 4
topologies

centralized, 4
decentralized, 4–5
hierarchical, 3
hybrid, 5
JXTA network, 319–320
ring, 4

I n d e x490



traffic element (PIP response
messages), 124–125

Transport Layer Security proto-
col (TLS), 218

transport security
JxtaUnicastSecure pipes,

277–279
secure transport client

example, 291–300
secure transport server

example, 281–291
separately encrypted data,

279–281
TTL element (RVP messages),

146
tutorials (JXTA), 468
Type element

CMS advertisements, 244
PBP query messages, 139
PDP query messages, 97–98
pipe advertisements, 89, 138
service advertisements, 165

U
Ubero, 477
Unicast pipes, 30, 138, 209, 214

local peers, 214–215
remote peers, 216–218

UnicastSecure pipes, 30, 209,
218

Universal Unique Identifiers
(UUIDs), 23

uptime element (PIP response
messages), 124

URNs. See IDs
Usenet, 9–10
user mailing list, 468
UUIDs (Universal Unique Iden-

tifiers), 23

V
Value element

PDP query messages, 98
PDP response messages, 99

Vers element (module specifica-
tion advertisements), 81

version command (JXTA shell),
52

W-Z
web servers, defined, 2
whoami command (JXTA shell),

42
work class, 356
worker peer (distributed com-

puting), 349–356
receiving work, 355
sending results, 355–356
setup, 355

World Peer Group ID, 23
WorldPeerGroup, 18, 26
writing JXTA shell commands,

53

XML, 74–75

Index 491




