

 1

TU Muenchen

Hauptseminar / WS2001/02

 Database Hall of Fame

David Maier

Object-Oriented Database Theory
An Introduction

&

Indexing in OODBS

Prepared by: Ming-Ju Lee

Supervisor: Andreas Gruenhagen

 2

Content

1 INTRODUCTION... 3
1.1 David Maier... 3
1.2 Overview... 3

2 OBJECT-ORIENTED DATABASES... 4
2.1 Motivation ... 4
2.2 Concept & Features .. 4

2.2.1 Mandatory features of object-oriented systems.. 5
2.2.2 Mandatory features of database systems... 5

2.3 Making OOPL a Database... 6
2.3.1 Object data modeling.. 6
2.3.2 Persistence of objects .. 8

2.4 GemStone... 8
2.4.1 Architecture .. 8
2.4.2 Object model .. 9

2.4.2.1 Classes.. 9
2.4.2.2 Objects .. 9
2.4.2.3 Messages .. 9
2.4.2.4 Methods... 10

2.4.3 Collection classes... 10
2.5 Comparisons of OODBS & RDBS ... 10

2.5.1 Correspondence between OODBS and RDBS... 10
2.5.2 Comparison .. 11

3 INDEXING IN OODBS .. 12
3.1 The basics of indexing .. 12
3.2 Indexing in an OODBMS... 12

3.2.1 Design consideration .. 12
3.2.1.1 Index on classes.. 12
3.2.1.2 Indexing over type hierarchy.. 12
3.2.1.3 Uni-directional or bi-directional index... 13

3.2.2 Indexing implementation � in GemStone.. 13
3.2.2.1 Path expression... 13
3.2.2.2 Index kinds... 14
3.2.2.3 Index on paths ... 14

3.2.3 Index maintenance ... 15
3.2.3.1 Creation ... 15
3.2.3.2 Removal ... 17
3.2.3.3 Object modification .. 18
3.2.3.4 Indexed Lookups ... 18

3.3 Summary .. 19

4 CONCLUSION & OUTLOOK.. 20

5 BIBLIOGRAPHY... 21

 3

1 Introduction

1.1 David Maier

Dr. David Maier, born on 2 June 1953 in Eugene, Oregon, is
a professor of Computer Science and Engineering at Oregon
Graduate Institute of Science & Technology since 1988. His
holds a B.A. in Mathematics and Computer Science from the
University of Oregon (Honors College, 1974) and a Ph.D. in
Electrical Engineering and Computer Science by Princeton
University (1978).

He has been chairman of the program committee of the
ACM International Conference on the Management of Data,
and served on the committees for the ACM Symposium on
Principles of Database Systems and the first conference on
Object-Oriented Programming Systems, Languages and
Applications. He also served as an associate editor of ACM
Transactions on Database Systems. Dr. Maier has consulted
with Tektronix, Inc., Servio Corporation, the Microelectronics
and Computer Technology Corporation (MCC), Digital
Equipment Corporation, Altair, Honeywell, Texas Instruments, IBM, Microsoft, Informix,
Oracle, NCR, and Object Design, as well as several governmental agencies. He is a
founding member of the Data-Intensive Systems Center (DISC), a joint project of OGI and
Portland State University. He is the author of books on relational databases, logic
programming and object-oriented databases, as well as papers in database theory, object-
oriented technology and scientific databases. He received the Presidential Young
Investigator Award from the National Science Foundation in 1984. He is also an ACM Fellow.

During his consultancy time (1983-1989) at Servio Logic Corporation, GemStone, an object-
oriented database management system, was developed and entered the market as the first
commercial product in 1987.

For his contributions in objects and databases, David Maier was awarded the 1997 SIGMOD
Innovations Award.

1.2 Overview

There are two main parts in this paper; the next chapter gives an introduction of Object-
oriented database concepts and overview of GemStone. Chapter three discusses the issues
and an approach of indexing in OODBS.

 4

Object-Oriented Database
DBMS

persistence

storage
management

concurrency

recovery

querying

Object-Oriented System

complex objects

object identity

encapsulation

types & classes

class hierarchy

overriding &
overloading

computational
completeness

extensibility

+

2 Object-Oriented Databases

2.1 Motivation

The relational model is the basis of many commercial relational DBMS products (e.g., DB2,
Informix, Oracle, Sybase) and the structured query language (SQL) is a widely accepted
standard for both retrieving and updating data.

The basic relational model is simple and mainly views data as tables of rows and columns.
The types of data that can be stored in a table are basic types such as integer, string, and
decimal.

Relational DBMSs have been extremely successful in the market. However, the traditional
RDBMSs are not suitable for applications with complex data structures or new data types for
large, unstructured objects, such as CAD/CAM, Geographic information systems, multimedia
databases, imaging and graphics. The RDBMSs typically do not allow users to extend the
type system by adding new data types. They also only support first-normal-form relations in
which the type of every column must be atomic, i.e., no sets, lists, or tables are allowed
inside a column.

Due to the new needs in database systems, a number of researches for OODBMS have
begun in the early 80�s.

2.2 Concept & Features

While a relational database system has a clear specification given by Codd, no such
specification existed for object-oriented database systems even when there were already
products in the market. A consideration of the features of both object-oriented systems and
database management systems has lead to a definition of an object-oriented database,
which was presented at the First International Conference on Deductive, and Object-oriented
Databases in the form of a manifesto in 1989. This 'manifesto' distinguishes between the
mandatory, optional and open features of an object-oriented database.

The mandatory features, which must be present if the system is to be considered (in the

Figure 1 OODB feathues

 5

opinion of the manifesto authors) to be an object-oriented database, are defined in the
following two paragraphs. The first part describes features of object-oriented system, as the
second part features of database system.
2.2.1 Mandatory features of object-oriented systems
Support for complex objects
A complex object mechanism allows an object to contain attributes that can themselves be
objects. In other words, the schema of an object is not in first-normal-form. Examples of
attributes that can comprise a complex object include lists, bags, and embedded objects.
Object identity
Every instance in the database has a unique identifier (OID), which is a property of an object
that distinguishes it from all other objects and remains for the lifetime of the object. In
object-oriented systems, an object has an existence (identity) independent of its value.
Encapsulation
Object-oriented models enforce encapsulation and information hiding. This means, the state
of objects can be manipulated and read only by invoking operations that are specified within
the type definition and made visible through the public clause.
In an object-oriented database system encapsulation is achieved if only the operations are
visible to the programmer and both the data and the implementation are hidden.
Support for types or classes
��Type: in an object-oriented system, summarizes the common features of a set of objects

with the same characteristics. In programming languages types can be used at
compilation time to check the correctness of programs.

��Class: The concept is similar to type but associated with run-time execution. The term
class refers to a collection of all objects with the same internal structure (attributes) and
methods. These objects are called instances of the class.

��Both of these two features can be used to group similar objects together, but it is normal
for a system to support either classes or types and not both.

Class or type hierarchies
Any subclass or subtype will inherit attributes and methods from its superclass or supertype.
Overriding, Overloading and Late Binding
��Overloading: A class modifies an existing method, by using the same name, but with a

different list, or type, of parameters.
��Overriding: The implementation of the operation will depend on the type of the object it is

applied to.
��Late binding: The implementation code cannot be referenced until run-time.
Computational Completeness
SQL does not have the full power of a conventional programming language. Languages such
as Pascal or C are said to be computationally complete because they can exploit the full
capabilities of a computer. SQL is only relationally complete, that is, it has the full power of
relational algebra. Whilst any SQL code could be rewritten as a C++ program, not all C++
programs could be rewritten in SQL.

For this reason most relational database applications involve the use of SQL embedded
within a conventional programming language. The problem with this approach is that whilst
SQL deals with sets of records, programming languages tend to work on a record at a time
basis. This difficulty is known as the impedance mismatch. Object-oriented databases
attempt to provide a seamless join between program and database and hence overcome the
impedance mismatch. To make this possible the data manipulation language of an
object-oriented database should be computationally complete.
2.2.2 Mandatory features of database systems
A database is a collection of data that is organized so that its contents can easily be
accessed, managed, and updated. Thus, a database system contains the five following
features:

 6

Persistence
As in a conventional database, data must remain after the process that created it has
terminated. For this purpose data has to be stored permanently on secondary storage.
Secondary Storage Management
Traditional databases employ techniques, which manage secondary storage in order to
improve the performance of the system. These are usually invisible to the user of the system.
Concurrency
The system should provide a concurrency mechanism, which is similar to the concurrency
mechanisms in conventional databases.
Recovery
The system should provide a recovery mechanism similar to recovery mechanisms in
conventional databases.
Ad hoc query facility
The database should provide a high-level, efficient, application independent query facility.
This needs not necessarily be a query language but could instead, be some type of graphical
interface.

The above criteria are perhaps the most complete attempt so far to define the features of an
object-oriented database in 1989. Further attempts to define an OODBS standard were
made variables of researchers. One of them is a group called Object Data Management
Group (ODMG). They have worked on an OODBS standard for the industry. The recent
release is ODMG-2 in1997.

2.3 Making OOPL a Database

Basically, an OODBMS is an object database that provides DBMS capabilities to objects that
have been created using an object-oriented programming language (OOPL). The basic
principle is to add persistence to objects and to make objects persistent. Consequently
application programmers who use OODBMSs typically write programs in a native OOPL
such as Java, C++ or Smalltalk, and the language has some kind of Persistent class,
Database class, Database Interface, or Database API that provides DBMS functionality as,
effectively, an extension of the OOPL.

Object-oriented DBMSs, however, go much beyond simply adding persistence to any one
object-oriented programming language. This is because, historically, many object-oriented
DBMSs were built to serve the market for computer-aided design/computer-aided
manufacturing (CAD/CAM) applications in which features like fast navigational access,
versions, and long transactions are extremely important. Object-oriented DBMSs, therefore,
support advanced object-oriented database applications with features like support for
persistent objects from more than one programming language, distribution of data, advanced
transaction models, versions, schema evolution, and dynamic generation of new types.

The following subsection describes object data modeling and the persistency concept in
OODB.

2.3.1 Object data modeling
An object consists of three parts: structure (attribute, and relationship to other objects like
aggregation, and association), behavior (a set of operations) and characteristic of types
(generalization/serialization). An object is similar to an entity in ER model; therefore we
begin with an example to demonstrate the structure and relationship.

 7

name: Name
authorNo: Int

Author

name: String
registerNo: Int

Publisher

title: String
ISDN: Int

Book

age: Int

FictionBook

style: String

ArtBook

name: String

Chapter

publishedBy

writtenBy

composedOf

1..* 1

1 1

The structure of an object Book is defined as following:

class Book {

title: String;
ISDN: Int;
publishedBy: Publisher inverse publish;
writtenBy: Author inverse write;
chapterSet: Set<Chapter>;

}

class Author {

name: String;
authorNo: Int;
write: Book inverse writtenBy;

}

Attributes are like the fields in a relational model. However in the Book example we have,
for attributes publishedBy and writtenBy, complex types Publisher and Author,
which are also objects. Attributes with complex objects, in RDNS, are usually other tables
linked by keys to the employee table.

Relationships: publish and writtenBy are associations with I:N and 1:1 relationship;
composed_of is an aggregation (a Book is composed of chapters). The 1:N relationship is
usually realized as attributes through complex types and at the behavioral level. For
example,

class Publisher {

…
publish: Set<Book> inverse publishedBy;
…

Method insert(Book book){
publish.add(book);

}

Figure 2 Book example

 8

Generalization/Serialization is the is_a relationship, which is supported in OODB through
class hierarchy. An ArtBook is a Book, therefore the ArtBook class is a subclass of Book
class. A subclass inherits all the attribute and method of its superclass.

class ArtBook extends Book {
 style: String;
}

Message: means by which objects communicate, and it is a request from one object to
another to execute one of its methods. For example:

Publisher_object.insert (”Rose”, 123,…)
 i.e. request to execute the insert method on a Publisher object)

Method: defines the behavior of an object. Methods can be used

� to change state by modifying its attribute values
� to query the value of selected attributes

The method that responds to the message example is the method insert defined in the
Publisher class.

2.3.2 Persistence of objects
 Persistence, as mentioned before, means that certain program components �survive� the
termination of the program. Thus these components have to be stored permanently on
secondary storage.

Typically, persistence or non-persistence is specified at object creation time. There are two
possible ways to make an object persistent:

(1) explicitly call built-in function persistence � certain objects are persistent
(2) automatically make object of persistent types persistent � all objects are

persistent

There are several object-oriented DBMSs in the market (e.g., Gemstone, Objectivity/DB,
ObjectStore, Ontos, O2, Itasca, Matisse). These products all support an object-oriented data
model. Specifically, they allow the user to create a new class with attributes and methods,
have the class inherit attributes and methods from superclasses, create instances of the
class each with a unique object identifier, retrieve the instances either individually or
collectively and load and run methods.

Most of these OODBs support a unified programming language and database language.
That is, one language (e.g., C++ or Smalltalk) in which to do both general-purpose
programming and database management.

2.4 GemStone

The GemStone data management system, developed at Servio Logic, was one of the first
and simplest commercial OODBMS products. It is based on Smalltalk, with very few
extensions. GemStone merges object-oriented language concepts with those of database
systems. And provides an object-oriented database language called OPAL which is used for
data definition, data manipulation and general computation.

2.4.1 Architecture
The GemStone system exhibits client/server architecture, and is distributed over two
processes: the Gem and the Stone processes. The Stone process, running on the server,

 9

 Network Software

 GEM Process GEM Process

STONE Process

VMS File I/O

Database

LANVAX

delivers the data management capabilities performing disk I/O, concurrency control, recovery
and authorization.

Stone uses unique object id called object-oriented pointers (OOPs) to refer to objects, and an
object table to map an OOP to a physical location. The Gem process runs either on the
server or on a client. It comprises compilation facilities, browsing capabilities, and user
authentication.

2.4.2 Object model
The GemStone object model is very closely related to the Smalltalk-80 model.
The three principal concepts of the GemStone model and language are object, message,
and class. All the objects in GemStone are made persistent.
2.4.2.1 Classes
Every GemStone object is an instance of exactly one class. Objects with the same internal
structure and methods are grouped together into a class and are called instances if the class.
2.4.2.2 Objects
An object is a chunk of private memory with a public interface. Internally, most objects are
divided into fields called instance variables. Each instance variable can hold a value, which is
another object. Objects communicate with other objects by passing messages. Object is the
root of all super/subclass hierarchy.
2.4.2.3 Messages
In GemStone, all actions are invoked by message passing. Messages are requests for the
receiving object to change its state or return a result. The set of messages an object
responds to is called protocol (its �public interface�). An object may be inspected or changed
only through its protocol. The basic form of all message expressions is <receiver>
<message>. The <receiver> part is an identifier or expression denoting an object that
receives and interprets the message. The <message> part gives the selector of the message
and possible arguments to the message.

Figure 3 GemStone Architecture

 10

Object

SequenceableColletion

Collection

Bag (NSC)

String Array Set

method

sender
message

receiver

o1 o2
selector

2.4.2.4 Methods
The methods are the concrete implementations that can be invoked by a message sent to an
instance. An object can only responds to a message if it contains a method with a selector
that matches the message format. Methods are provided to query and manipulate the
internal structure.

2.4.3 Collection classes
In GemStone, a class defines the structure of its instances, but rarely keeps track of all the
instances. Instead, collection objects � Arrays, Bags, sets � can store groups of instances �
not necessarily of the same type � in indexable or anonymous storage slots. GemStone
provides built-in support for managing collections of objects by the pre-defined Collection
class and its subclasses.
��Array: like String, is a subclass of Collection�s subclass SequenceableColletion.
��Bags and Sets: are non-sequenceable Collections, in which instance variables are

anonymous. They do not maintain any order on their elements. The difference between a
Bag and a Set is that the instances of Bag may contain the same object several times,
whereas a Set contains an element just once � even though it might have been inserted
several times

2.5 Comparisons of OODBS & RDBS

2.5.1 Correspondence between OODBS and RDBS
To have an idea about OODBS, the table shows the correspondence between object-
oriented and relational database systems:

Figure 5 Class hierarchy of Collection classes

Figure 4 Message passing in GemStone

 11

OODBS RDBS

object tuple
instance variable column, attribute
class hierarchy database scheme (is-a relation)
collection class relation
OID key
message procedure call
method procedure body
The correspondence between object-oriented and relational database systems

Note that this correspondence table is only an approximate equivalence. The properties in
OODBS are actually not applicable in RDBS and vice versa.
2.5.2 Comparison
Although there are great advantages of using an OODBMS over an RDBMS, some
disadvantages do exist. The following table shows the advantages and disadvantages using
OODBS over RDBS.

Advantage Disadvantage
��Complex objects & relations
��Class hierarchy
��No impedance mismatch
��No primary keys
��One data model
��High performance on certain tasks
��Less programming effort because of

inheritance, re-use and extensibility of
code

��Schema change (creating, updating�) is
non trivial, it involves a system wide
recompile.

��Lack of agreed upon standard
��Lack of universal query language
��Lack of Ad-Hoc query
��Language dependence: tied to a specific

language
��Don�t support a lot of concurrent users

Advantages and disadvantages using OODBS over RDBS

Because of the existing disadvantages of using OODBS, the approach of ORDBMS has
become popular. In the future, it is likely that we will see the continued presence of OODBMS
that address the needs of specialized market and the continued prominence of ORDBMSs
that address the needs of traditional commercial markets.

The following chapter specifies the indexing design issues and its implementation in
GemStone.

 12

3 Indexing in OODBS

3.1 The basics of indexing

Indexes are essential components in database systems to speed up the evaluation of
queries. To evaluate a query without an index structure, the system needs to check through
the whole file to look for the desired tuple. In RBDS, indexes are especially useful when the
user wishes to select a small subset of a relation�s tuples based on the value of a specific
attribute. In this case, the system looks up the desired attribute value in the index (stored in
B-trees, or hash tables) and then retrieve the page(s) that contains the desired tuples. Using
index for searching influences the performance of producing the result but not the result
itself.

Indexing in OODBS is a lot more complicated than in RBDS. One difference between objects
and relational tuples is that objects are not flat. Therefore one should be able to index on
instance variables that are nested several levels deep in an object to be indexed.

Indexing for OODBS is first proposed for the GemStone data model. It is a generalization of
an indexing technique for path expressions.

3.2 Indexing in an OODBMS

The basic need for complex structure is to efficiently select from a collection whose members
meeting a selection criterion. All the objects that either contain given object, or contain an
object equal to a given object have to be found.
3.2.1 Design consideration
Because of the nested and hierarchical structure of objects, it is more complicated to apply
indexing on OOBDS. Several questions have to be answered to proceed the design. In this
section, some essential issues will be discussed due to the features of objects; in next
section, we will see how GemStone deals with these issues and how it implements indexing
in its system.
3.2.1.1 Index on classes
Authorization problems occur if indexing on classes. For example, a user may have access
to a Student object but is prohibited to the instance variable courseHistory. Allowing a
user to build an index on Students could allow him to access some unauthorized
information. On the other hand, if a user is prohibited to access one or some of the instances
of a class, how should indexes be built in this class? For example, a professor may have
access to Students that attend his lectures, but not other Students. To authorize access
to certain student objects is complicated if indexing is applied on the Student class.

An alternative is to apply index on collections, and only add desired members to a collection;
but then each object must be able to reference a number of indexes to support update, as an
object may be contained in several collections
3.2.1.2 Indexing over type hierarchy
The authorization issue is also raised here when all objects of an indexed object�s
subclasses are also indexed. The evaluation of a query over superclass objects will retrieve
also objects of its subclass. For example, the Manager class is a subclass of the Employee
class. By applying index on Employee including Manager, a user who is prohibited to
access the Manager instances can get the attribute of a manager through querying on the
Employee.

 13

However, if indexing on superclass and its subclasses individually, the evaluation of a query
over the class hierarchy involves a lookup in several index structures and a union of the
results.
3.2.1.3 Uni-directional or bi-directional index
Uni-directional index is a one-way reference from one object to another, as bi-directional
index does two-way links. Two-way links have the advantage of supporting both forward and
backward queries, whereas one-way link supports only one of them. Two-way link is however
problematic, as an object may be the value of an instance variable in several objects. For
example, the same Publisher instance can fill the publishedBy variable of many Book
objects.
Here is an example of forward and back ward queries: book.price is a path,

1. Find Books whose price are less than 100 (backward query)

2. Find the price of the Book id5 (forward query)

3.2.2 Indexing implementation � in GemStone
In Gemstone, indexes are attached to NSCs (and only to NSCs), and only when proper
typing exists for the path being indexed. Proper typing means that the variables of the last
element in the path hold comparable values.

This is a middle ground solution for the problem whether to index on classes or on collection.
That is to maintain a single index (per instance variable) per class, but only link members of
selected collections to that index. This way, there can be different collections for differently
authorized groups; also if a user is prohibited to some attribute of a class, the index on these
paths that link to these attributes can�t be attached to this collection.

The use of collection also solves the authorization problem of indexing on class hierarchy.
Objects of subclasses can be included in their superclass collection depending on who is
authorized to that collection.

As for the question of uni-directional or bi-directional index, GemStone chose the simpler
way, and only support the backward query.
3.2.2.1 Path expression
To apply index on links, the path expression needs to be defined. A path expression (or
simply a path) is a variable name followed by a sequence of zero or more instance variable
names called links. The variable name appearing in a path is called the path prefix; the
sequence of links, the path suffix. The value of a path expression A.L1.L2.Ln is
defined as follows:

1. If n=0, then the value of the path expression is the value of A.

2. If n>0, then if the value of A.L1.L2.Ln-1 is nil or undefined, the value of the
path expression is undefined. Otherwise, the path expression�s value is that of
instance variable Ln in the value of A.L1.L2.Ln .

A path suffix S is defined with respect to a path prefix P if the value of P.S is defined.

This definition distinguishes nil and undefined of the value of a path. If the value of
A.L1.L2.Ln-1 is defined, and the value of Ln is nil, then the path A.L1.L2.Ln
leads to a value nil. Whereas in the case of Ln being undefined, the path cannot be fully
traversed. Following is a valid path expression example:

 14

Dictionary Entry

indexComponentPath

offsetPath

length classKind Index kind

Index Component

comp
Kind

numberOf
NextComp

IntoAn
NSC

nextComponents

offsetsOfNextComponents

bTree
Root

P ≡ Book.author.name.last

 Author

Name

 String

3.2.2.2 Index kinds
There are two kinds of indexes supported: identity and equality indexes.
��Identity index: identity indexes support only the search operators == (identical to) and ~~

(not identical to). Since the identity of an object is independent of its class, the class kind
of the final link of a path (only the final link) may be unknown.

��Equality index: equality indexes support the search operators =, ~=, <, <=, > and >=.
Paths for equality indexes must lead to a Boolean, Character, DateTime, Float,
Fraction, Integer, Number, String or subclasses thereof.

For Boolean, Character and SmallInteger as class-kinds, there is no distinction
between equality and identity indexes, as the order of OOPs is the same as the order of
values for these classes.
3.2.2.3 Index on paths
Indexes on paths are implemented by a sequence of index components, one for each link in
the path suffix. Every NSC object has a named instance variable, NSCDict. If there is no
index into an NSC, then the value of NSCDict is nil; otherwise, the value of NSCDict is the
OOP of an index dictionary. An index dictionary contains the OOPs of one or more dictionary
entries.
��Dictionary entry:

- Index kind: identity or equality index
- Class kind is only significant for equality indexes, and stores the class-kind of the

indexed path
- Length stores the length the path suffix.
- OffsetPath contains an offset representation of the path suffix.
- IndexComponentPath contains an OOP of the index component for each instance

variable in the path suffix.

��Index component: All index components are implemented using B+-trees.

- BTreeRoot contains the OOP of the root of the B+-tree of the component.
- CompKind defines the ordering of keys in the component�s B-tree. For all the

components but the last component, the ordering is defined on the OOPs of key
values. For the last component of an identity index, the ordering is also on the OOPs
of key values. For the last component of an equality index, the ordering of key values
is determined by the class-kind of the indexed path.

 15

Book

BookBag

name: Name
authorNo: Int

Author

last: String
first: String

Name

title: String
writtenBy:
Author

Book

Class Name:
first, last: String;
�.
 End;

Class Author:
name: Name
authorNo: Int
 �.
End;

Class Book:
 title: String;
 writtenBy: Author;
 �.
End;

Class BookBag:
Bag Of BookClass;

Figure 6 Example for indexing

- IntoAnNSC: �true� for the first component of the path, which is indexed directly into an
NSC.

- OffsetsOfNextComponent: store the offset for, and OOP of, the index component for
the next link in each indexed path that shares the component.

- NextComponent: Parallel array to the offsetsOfNextComponents. We shall refer to
the elements of the next-component.

3.2.3 Index maintenance
Every object in GemStone that participates in an index is tagged with a dependency list.
The object dependency list contains a pair of values consisting of the OOP of the index
component and the instance variable name for the component (actually the offset of the
instance variable within the object).

To demonstrate index maintenance, we use the Book example again. BookBag is an NSC
collection class, which contains Book object. Figure 3 shows its structure.

3.2.3.1 Creation
Figure 7 shows the dictionary structure for a BookBag object with no extant indexes after an
equality index on title has been created.

The first index component�s B-tree will have an entry for every element of the indexed NSC
other than nil and will contain exactly one entry for each unique (by identity) non-nil author
value of an element of the NSC.

Figure 8 shows the dictionary structures after an identity index on author.authorNo has
been added. The first index component�s B-tree will have an entry for every element of the
indexed NSC other than nil. The second component will contain exactly one entry for each
unique (by identity) non-nil author value of an element of the NSC. Figure 9 shows an
identity index on author.name.last.

 16

NSC�s
Dictionary

Dictionary
entry

Index
Components

��Number of entry =1

��Index kind = equality index
��Length of the path suffix = 1
��1. offsetPath entry = 1 (title

values of may be found at
offset 1 within author values)

��B-tree contains unique author
values

� nil

� nil

1

1StringEQ

�

�

String 0T

nil

nil

� nil 1

Figure 7

BookBag createEqualityIndexOn: ‘title’

nil � 2

� nil
� nil

1

1 String EQ

�

�

String 0 T

nil

nil

�nil

�2 nil2

2Int ID

�
�

Int 0F

nil
nil

nil
nil

�
�

OOP 1T
2

BookBag createIdentityIndexOn: ‘author.authorNo’

Figure 8

Both of these indexes share the component that indexes from author values to elements of
the NSCs. The creation of the index on author.name.last does not require updating the
B-tree of this component. This component now has three next components.

 17

� nil

� nil

1

1String EQ

�

�

String 0 T

nil

nil

 nil � 3

� nil

�2 nil

2

2Int ID

nil

nil11

�

�

OOP 3T

2

�

�

Int 0F

nil

nil

nil

nil

�

� 1 1 2

3String ID

nil

nil �

�

OOP 1F

1

nil

nil �

�

String 0F

BookBag createEqualityIndexOn: ‘author.name.last’

Figure 9

3.2.3.2 Removal
Consider removing the index on author.authorNo from the dictionary structure of the
figure 10. Since the first index component is used by another indexed path, only the second
index component should be deleted. In deleting the component, the entry that refers to the
component must be removed from the dependency list of every object that appears as a
value in the component's B-tree. Since the component is an identity component of class-kind
Int, the dependency list entry that refers to the component must be removed from every
object that next-component. The resulting dictionary structure is shown in Figure 7.

 18

nil

nil �

�

OOP 1F

1

� nil

� nil

1

1String EQ

�

�

String 0 T

nil

nil

nil �nil 2

nil

nil 1

�

�

OOP 2T

1

nil

nil

�

� 1 12

3 String ID

nil

nil �

�

String 0F

Remove Identity index on: author.authorNo

Figure 10

3.2.3.3 Object modification
When the value of an object at a given offset is modified, then a deletion followed by an
insertion is made for each index component that is dependent upon the value of the object
stored at that offset. When the component is not the first component of an
indexComponentPath (when intoAnNSC is false), the deletion of single entry followed by
the insertion of a single entry for each dependent component will do. (Note that an index
component can't be a first component for one path and non-first for another.) If the
dependent component references an NSC, then every occurrence of the object, old value
pair in the component's B-tree must be deleted. If n occurrences are deleted then n
occurrences of the object, new value pair are inserted. The propagation of these insertions
and deletions is handled in the same manner as described for NSC insertion and deletion.
When a byte object with a non-nil dependency list is modified each index component on its
dependency list is modified. Each entry in a dependent component's B-tree with a key value
identical to the byte object is deleted from the B-tree. After the modification, each of the
deleted entries is reinserted.
3.2.3.4 Indexed Lookups
The evaluation of an indexed lookup begins with a B-tree lookup in the last index component
of the indexed path�s index component path. If the indexed path is of length one, then the
lookup is complete. Otherwise, the following sequence is repeated n-1 times for an indexed
path of length n. Sort the result of the previous B-tree lookup by OOP. Using the sorted list of
OOPs. Perform a lookup on the B-tree of the previous index component for the preceding
link in the path.

Consider the evaluation of the term B.author.name.last = ‘Jones’.

 19

BookBag select: {B| (B.author.name.last = ‘Jones’)}

Using the B-tree from the third component of the indexed path, all those names with a last
value of �Jones� are found. These name values are then sorted by OOP.

[name.last]

OOP_name String
oop3 �Becker�
oop4 �Jones�
oop2 �Jones�
oop5 �Maier�
oop1 �Wood�

By performing an incremental search of the B-tree of the second component, using the
sorted list of name values as lookup keys, the elements of Author whose name values have
a last value of �Jones� are found. Again the author values are stored by the OOP in a
sorted list. List

[author.name]

OOP_author OOP_name
oop12 oop1
oop14 oop2
oop15 oop3
oop11 oop4
oop13 oop5

Do the same as the step before, search the B-tree of the first component, using the sorted
list of author values as lookup keys, the elements of Book whose author�s name values
have a last value of �Jones� are found.

[book.author]

OOP_book OOP_author
Oop39 oop11
Oop35 Oop12
Oop34 Oop13
Oop36 Oop14
Oop37 Oop15

3.3 Summary

GemStone supports only indexing over the entire path and prohibits set-valued attributes. It
can only do backward queries. Since GemStone was the first commercial product in the
market, its indexing technique might not seem to be optimal, but invokes further researches
and improvement in this area. One example is the work by Alfons Kemper and Guido
Moerkotte. They have developed Associative Access Support (ASR) for OODBMS based on
Maier�s approach with more extensions and with support for set-valued attributes, also for bi-
directional queries.

B+

List_OOP_name: (oop2, oop4)

List_OOP_author: (oop11, oop14)

Found books List_OOP_book: (oop35, oop36)

B+

B+

 20

4 Conclusion & Outlook
The OODBMS contains extensive concepts, which makes it a lot more complicated
comparing with the RDBS. This paper gives an introduction of OODBMS concepts and
discusses the indexing issues in OODBMS.

The first chapter gives an overview about David Maier, who received the 1997 SIGMOD
Innovations Award for his distributions in objects and databases. The indexing
implementation in chapter three was one of his works. Chapter two describes the mandatory
features of OODBS based on the paper `The Object-Oriented Database Manifesto`, in which
David Maier has participated; it also talks about the basics of object modelling, an overview
of GemStone and the comparisons of OODBs and RDBS. Chapter three specifies in one of
the areas of OODBMS, indexing. It includes the issues and eventually an implementation
approach of indexing in OODBMS.

The Future of the OODBMS
The market for OODBMS is growing fast, but is still dwarfed by the market for relational and
object-relational databases. In 1995, the market for OODBMS drew $100 million. It is
predicted to grow to $430 million by 1997 and $600 million by 2000. (In contrast, it is
predicted that the market for ORDBMS will grow to $1 billion by 2000). The test will be time.
In ten years, if object-oriented programming becomes the most commonly used model of
programming, and if the identified limitations of the OODBMS are overcome, then we can
probably anticipate that the OODBMS will be more widely used.

 21

5 Bibliography
��Atkinson, Malcolm et al,

The Object-Oriented Database Manifesto.
 In Proceeding of the First International Conference on Deductive and Object-Oriented
 Databases, pages 223-240, Kyoto, Japan, December 1989
��D. Maier and J. Stein,

Development and implementation of an object-oriented DBMS.
In Research Directions in Object-Oriented Programming, B. D. Shriver, P. Wegner,
editors, MIT Press, 1987. Also in Readings in Object-Oriented Database Systems, S.
Zdonik and D. Maier, editors, Morgan Kaufmann, 1990.

��D. Maier and J. Stein,
Indexing in an object-oriented DBMS.
In Proceeding of the International workshop on Object-Oriented Databases, pages 171-
182, Pacific Grove, CA, September 1986

��Alfons Kemper and Guido Moerkotte,
Object-Oriented Database Management, 1994

��David Maier�s home page: www.cse.ogi.edu/~maier

