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INTRODUCTION TO DATA COMMUNICATION

Pierre A. Humblett

PREFACE. These lecture notes are intended as an introduction to
the problem of transmitting digital data on analog channels subject
to noise and distortion. Modulation, detection and coding theories
are reviewed to the extent they apply directly to practical sys-
tems. Some non classical problems that arise when a channel is
shared by many users are also treated.

I. INTRODUCTION.

The purpose of these notes is to discuss the problem of reliably transmit-

ting digital information on analog circuits, like telephone lines, which are

subject to noise and various kinds of distortions.

The need to do this efficiently arose first for defense in the 1950's and

grew to the point where commerce and- ndustry are almost as dependent on ef-

ficient and reliable digital communication as they are on voice communication.

At the outset engineers had all the essential theoretical ingredients at

hand: classical detection theory, Nyquist's work on characterizing waveshapes

allowing independent transmissions of a sequence of digits, and Shannon's infor-

mation theory. It shows the existence of a maximum rate at which information

can be transmitted as reliably as desired, provided one is willing to build

complex encoders and decoders.

Sections 2, 3 and 4 will give a brief review of these theories, and out-

line how they are actually implemented.

With the recent advent of computer networks, where data is typically gen-

erated in a bursty fashion, it makes economical sense to share communication

channels between different "streams" of traffic. Thus a method must be found

to decide what stream can use the channel at a given time, and addressing infor-

mation must also be transmitted on the channel. This leads to new problems

that will be described in Section 5.

2. DETECTION THEORY.

The transformation of digital data into a form suitable for transmission
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on an analog channel is done in a device called a modulator. The reverse op-

eration is done by a demodulator. The two devices are usually combined into a

single one, called a "modem".

In its most idealized form a modem takes in a group of n binary digits,

with values denoted i, i = 1,2 ,...2n, and produces in turn one of the wave-

forms si(t), i = 1,2,...2n, that is transmitted on a channel.

A simple characterization of the channel is as a linear time invariant

filter (introducting deterministic distortion) with impulse response h(t),

followed by a source of additive noise n(t). For convenience n(t) will be

modelled as a 0 mean stationary Gaussian process with correlation function

k(t).
We will denote the convolution of si and h by s, and the channel output

by r(t) (r(t) - si(t) + n(t), for some i). Si(f), Si(f),H(f) and K(f) will

denote corresponding Fourier transforms. Note that K(f) is real and non neg-

ative, as k(t) is a correlation function.

The demodulator receives r(t), and must produce an estimate of i.

The modern view of this problem is in terms of "signal space": the space

S of functions spanned by the s (t). Assuming that f 2li(f) 2/K(f) df is

finite for all i, we can make S a Hilbert space by defining the inner product

<x(t), y(t)> = f X(f)Y*(f)/K(f) df, where x and y are in S, and X(f) and

Y(f) are their Fourier transforms. *.denotes comnplex conjugate.

By using Gram Schmidt's orthonormalization procedure one can find an

orthonormal basis for S and display the waveforms si(t) as points in a finite

dimensional space of dimension D, typically smaller than 2N s will denote

the jth coordinate of si (t).

The demodulator processes the received waveform r(t). It can find its

projection on S (r. denotes its jth coordinate). Elementary computations

reveal that, thanks to the choice of innerproduct, the component of r(t)

perpendicular to S is independent of i and (ri,r2,...,rD) and is thus irrel-

evant to the decision process.

Other elementary calculations show that, conditional on i being transmit-

ted, the r.'s are independent Gaussian random variables with unit variance and
-i Jmean s..

At this point the demodulator has all the statistical knowledge required

to make a decision, which need only be based.on the rj's. In particular if

all the i's are equally likely and minimum probability of error decoding is

desired, one should decide i maximizing the conditional probability density

of (rl,r 2,.. ,rD) given 1i, i.e. decide i such that

D i 2
(r 2 2 (1)

j=1l
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is minimum

so that the demodulator essential-
ly performs mi-nimum di'mstance decodlingg. --

The resulting probability of error can be shown to depend only on the

distances 11si-sj 1l 2 between signals at the channel output, i.e. on

I Isi(f)-sJ(f)l 2 JH(f)l2/K(f)df,

leading to the obvious conclusion that the signals si(t) should differ at
frequencies where H(f) is large (i.e. in the channel passband).

K(f) is often assumed to be constant in that band, so that the innerprod-
uct <x,y> is simply the usual innerproduct

f x(t)y(t) dt.

The previous channel model is not accurate. Non linear and time varying
distortions occur and noise is not always Gaussian. Nonetheless modems typi-
cally exhibit the structure just derived: first "filtering" elements and
samplers compute the projection of the received waveform. They are followed
in turn by a non linear decision device that chooses the signal closest to the

received waveform.

The signal space S has usually 1 or 2 dimensions, the basis functions
being of the form x(t) cos(27wft) and x(t) sin(2Twft), where x(t) has a Fourier
transform confined to the low frequencies. The usual telephone lines have a
passband between 300 and 3000 Hz, so that fc is typically 1650 or 1800 Hz. n
is 2, 3, 4, or 6 depending on whether data is transmitted at 2400, 4800, 9600
or 14400 bits per second.

3. TRANSMISSION OF SEQUENCES

The number N of binary digits that must be transmitted by the modem is
usually very large so that there is an enormous (2N) number of waveforms, and
the theory developed in the previous section cannot be implemented without
more structure being added.

The sequence of N binary digits is usually parsed in groups of n (with
values 1,2,...2n). If the kth group. has value m(k) = i then the waveform
si(t-kT) is transmitted (this is just the waveform si(t) delayed by kT). The
received waveform is the sum of the waveforms corresponding to each group plus

the noise thus it has the form

N-n

r(t) := s m(k) (t-kT) + n(t).
k=O

To generate the most likely sequence the demodulator must find the values
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m(O), m(l),..., m(N--) minimizing (1). This operation can be rewritten as

maximizing

N-n

X (<r(t),s m(k)(t-kT)> - 1 (k) (t-kT)112 - < m ( (t-kT),sm (k t-kT)>)
k=O k'<k (2)

n 2n
The only quantities depending on r(t) in this formula are the N 2" in-

nerproducts <r(t), si(t-kT)>.. For k fixed the demodulator can either eval-

uate them directly, or first compute the components of r(t) in the space span-

ned by the s'(t-kT).

Maximizing (2) would be easy if <si(t-JT), sJ(t)> were O for all i,j

and z / O, i.e. if there were no "intersymbol interference". In that case

each m(k) can be decoded independently of the others.

As observed by Nyquist, this condition is met if, for all i,j,

oSi(f + )Si (f + o)/K(f + ,

-is inpenendent of f.

Waveforms are usually designed to (approximately) satisfy this condition,

as the task of the demodulator is then simplified. However it becomes increas-

ingly hard to meet when the passband of the channel is close to 2T, asis the

case in high performance modems, or when the channel response H(f) is not

known a priori.

If <si(t-kiT), sJ(t)> is negligible for jkl >L then an elegant algo-

rithm is available to maximize (2). It is a form of dynamic programming known

to communication engineers as Viterbi's algorithm.

It rests on the observation that the maximum of the first K+1 terms in

the outer sum of (2), over all sequences with m(O), m(l),...m(k-L) arbitrary

and m(k-L+l),..m(K) given, can be expressed in terms of the maximum of the

first K terms over all sequences with m(O), m(l),...m(K-L-I) arbitrary and

m(K-L),...m(K-l) given. Thus by iterating on K one can find the sequence maxi-
N 2(L+l)n This ismizing (2) after an amount of computation proportional to 2 This is

much less than expected, but is still too large to be commonly used.

The technique that is usually chosen to combat intersymbol interference

is called "linear equalization". It is a heuristic method most easily ex-

plained when the si(t) form a one dimensional signal set, i.e. si(t) = ai s(t).

In that case the demodulator computes r(k) = <r(t), s(t-kT)>. Instead

of processing the r(k) to maximize expression (2), the r(k) are passed through

a time invariant linear digital filter with coefficients c(Q) to yield the

sequence r'(k), where

r'(k) = C r(k-Q) c(Z)
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This is readily implementable by using high speed digital logic. The goal is

to choose the c(k) to minimize the mean square error

E(r'(k) - am(k))2

and then to decide m(k), such that am(k) is closest to r'(k). If one defines

C(e) = I c(Q) e- j2 TZe

1(O) = : (t), s(t-ZT > e- j2 iA

then the mean square error can be expressed as

f dO (E(am(k))2 I c(0)D(e)-11 2 + I C(O)1 2 $(0))
0

if one assumes that the am(k) are zero mean and linearly independent. The

first term expresses the effect of intersymbol interference while the second

term is due to noise. It is readily found that the optimum C(e) is

E(am(k))2

E(am (k))2 () + 1

which yields a mean square error equal to

1 m(k) 2
fd E(am )2 (3)
0 E(am(k))2 &(e) + 1

Note that c(G), and thus C(O), are constant if Nyquist's criterion is met. I-n

that case only c(O) is non zero. As can also be observed from (3) this tech-

nique yields good results as long as ~(O) does not have nulls. Fortunately

this is the case on channels used for commercial data transmission.

A similar minimization can be done when c(°) is restricted to have only

finitely many non zero coefficients. It yields a system of linear equations

that the filter coefficients must satisfy.

The previous theory is interesting as it allows to quantify the mean

square error, but at first sight it does not appear to be practically useful:

it assumes that the channel response'h(t) is known. If this were the case,

we might as well design s(t) to avoid intersymbol interference altogether.

What makes it important, in fact what makes high data rate transmissions

over telephone channels possible, is the discovery in the 1960's that the

filter coefficients c( 9) can be adjusted by the demodulator itself to compen-

-sate for the effects of the channel response. This is called "adaptive

equal ization".

The basic observation is that the partial derivative of the mean square

error with respect to c(Z) is equal to the expected value of the product
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2(r'(k)_ am(k)) r(k-Z). r' and r can be measured. am(k) is either known a

priori if a training sequence is sent by the modulator, or can be estimated if
the filter coefficients are already such that the probability of error is
small. The demodulator can thus estimate a descent direction and update the
filter coefficients while data is being transmitted., thus continously adjust-
ing for variations in the channel response

Techniques for adaptive equalization and the study of their rate of con-

vergence and steady state performances are still active topics of research,
specially for channels that are rapidly varying or for which ¢(e) has nulls.
The previous discussion constitutes only an introduction to the subject.

4. ERROR DETECTING CODES.

Shannon. proved the surprising result that information can reliably be
transmitted on a channel up to a maximum rate, called the channel capacity.
At rates above capacity reliable communication is impossible, but an arbi-
trarily small probability of error can be achieved at rates below capacity,
provided one is willing to jointly encode and decode large numbers of infor-

mation bits. This requires complex and expensive equipment.
Shannon's theory has had little practical effects on commercial communi-

cation systems in that error correcting codes are little used. This is due to
two reasons. First, the relationships between signal and noise powers, and
data rate and channel bandwidth are such that the probability of error cannot
be reduced easily by error correcting codes. Secondly, channels are typically
two way. This property does not increase capacity but makes it simple to
achieve reliability by using error detecting codes and requesting data re-

transmissions when errors are detected. The situation is just the opposite
on-the deep space channel; space probes make successful use of error correct-
ing codes.

We will spend the rest of this section examining the fundamentals of the

theory of error-detecting codes.
Error detecting codes are usually implemented as polynomial codes, also

known as cyclic redundancy codes. The operations described below are extremely

easy to implement using digital logic.
A block of N binary digits that is to be protected by L check bits is

viewed as a polynomial M(x) of degree N+L-1 on the finite field with two ele-
ments. The N high order coefficients are the data bits themselves, the L.low

order coefficients being zero.
Both the transmitter and receiver agree on a generator polynomial G(x) of

degree L. The transmitter computes the remainder R(x) of the division of M(x)

by G(x) and transmits the N+L coefficients of M(x)-R(x).
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The receiver just checks that the received polynomial is divisible by

G(x). If it is, no error is assumed to have occurred and the N high order co-

efficients are retained as data bits. If it is not, then the receiver requests

a retransmission of the block. Insuring that blocks are never lost or dupli-

cated requires non trivial protocols between transmitter and receiver. They

are beyond the scope of these notes.

We now turn our attention to the kinds of errors that are detected by

these codes. An error pattern can also be viewed as a polynomial E(x) of

degree N+L-1. It will be detected unless it is divisible by G(x).

Bursts of k errors, k < L (including single errors) will always be de-

tected as they have E(x) = xi(x) = xi(xk + ... + 1), where i is the order of the

lowest order coefficient in error. Such an E(x) is not divisible by G(x) if

G(x) contains an x° term;

Similarly if G(1) is zero then all patterns of odd numbers of errors will

be detected as they have E(1) equal to one.

Finally all patterns of two errors will be detected if xi+l is not divis-

ible by G(x), i < N+L-1. This will be the case if G(x) contains a primitive

polynomial of degree k, with 2k-1 < N+L. (An irreducible polynomial of degree'

k is primitive over the modulo 2 field if and only if it divides xn-1 for no n

less than 2k-1. Primitive polynomials exist of all degrees.)

Generator polynomials used in practice have the three properties just

mentioned; they are the product of a primitive polynomial of degree L-1 and

(x+l).

Another view to look at the problem is to observe that when many errors

occur (and modems often make large numbers of errors when they make any) there

is about a chance in 2L that the error polynomial will be divisible by G(x).

Older international communication standards specify generator polynomials

of degree 16, so that a block hit by a large number of errors has about a

chance in 65000 to be accepted as correct. This is too high in many applica-

tions, and more recent standards specify L equal to 32.

5. MULTI-USER SYSTEMS.

Users of data communication networks are often bursty; they may be silent

most of the time! For that reason it makes economical sense to share communi-

cation lines between many streams of traffic. Together with each piece of

data it is then necessary to send address information specifying to what stream

the data belongs. This is the essential justification for the use of packet

switched networks.

We introduce two new problems that occur in such systems. They are some-

what imprecise, and whatever is known about their solution does not have enough
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structure to be concisely presented in these notes.

First the amount of overhead information carried in packets is far from

negligible. It can dwarf the amount of data! The presence of this overhead

loads the lines and causes undesirable delays.

How much of this overhead is necessary has not been properly quantified.

In the simplest case imagine a group of sources.with known data generation

statistics. They are connected to a single transmitter and there are some

buffers between the sources and the transmitter where data can be stored.

Whenever the line is idle the transmitter can select a source and trans-

mit data contained in its buffer, together with addressing information. The

transmitter faces two related questions: should data be transmitted at all,

and if so, from what source? Also, how should the fact that data is being

transmitted and the source identity be communicated' to the receiver?

This-formulation lacks-an optimality criterion. Reasonable candidates

would be to minimize the expected number of overhead bits, or to minimize the

expected delay suffered by the data.

Solutions to these questions are not easy, although attempts have been

made by using queueing and information theories [7] [8]. Some understanding

of the tradeoffs involved is possible. Consider the policy known as synchro-

nous time division multiplexing, where the transmitter divides time in equal

slots and scans all the buffers cyclically, transmitting data from a source

only during its assigned slots. No explicit address information is communi-

cated to the receiver, but the system causes unnecessarily long delays when

'there are many sources and traffic is light. Data waits for its slot to come,

while typically empty slots are being transmitted!

At the other extreme data could be sent in first come first served order,

each being prefixed with the explicit address of its source (essentially form-

ing packets). This scheme results in small 'delays in light traffic, but can

be terrible in heavy traffic due to the effects of the addressing overhead.

From these examples it is clear that overhead information can be traded

off for delay. This was pointed out in [7]. Further studies [8] have shown

that protocols of the first type should be used when the number M of sources

is much smaller than the expected number of bits N waiting in buffers. When

M is much smaller than N the second type of protocol is excellent. What'to do

in the intermediate region is not clear.

Let us now in'troduce a second problem that has generated much excitement

recently. It is known as the ALOHA channel problem, having originated in

Hawaii. Again there are M sources producing data and sharing a communication

channel. The novelty is that no single device can observe the state of all

the buffers. Rather the sources can transmit whenever they wish and can also
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observe the outcomes of all transmissions. These may be "idle" if no one.

transmits, "success", or "collision" if more than one source transmit. All

collided messages must be retransmitted. This is a fair model of some radio

and cable communication systems that are now in use.

The challenge is to design a way to use feedback information to maximize

the rate at which successes occur, while keeping the delay small.

The most successful algorithms [9], [10], [ll]are of the "binary split-

ting" type. A group of sources is allowed to transmit. If a "collision"

occurs the group is split in two, each subgroup being allowed to transmit in

turn. The process is repeated until all. collisions have been resolved.

The excitement has come from the observation that this type of algorithm

can achieve success rates in the vicinity of .5 while keeping the delay bounded

no matter the number of sources M. Larger rates of success are possible but

then the delay is not bounded as M increases.

This threshold effect is reminiscent of the concept of channel capacity,

and much effort has been spent using a variety of techniques to characterize

it. 'The threshold is known to be between .48 and .59 (see [12] and [13] and

references therein).
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