
INTERNATIONAL COMPUTER SCIENCE INSTITUTE I1947 Center St. � Suite 600 � Berkeley, California 94704-1198 � (510) 643-9153 � FAX (510) 643-7684
Sather 1.0 TutorialMichael Philippsen�phlipp@ icsi.berkeley.eduTR-94-062Version 0.1, December 1994AbstractThis document provides basic information on how to obtain your copy of the Sather 1.0system and gives several pointers to articles discussing Sather 1.0 in more detail.We thoroughly describe the implementation of a basic chess program. By carefullyreading this document and the discussed example program, you will learn enoughabout Sather 1.0 to start programming in Sather 1.0 yourself. This document isintended for programmers familiar with object oriented languages such as Ei�el orC++. General information on object oriented programming can be found in [5].The main features of Sather 1.0 are explained in detail: we cover the di�erencebetween subtyping and implementation inheritance and explain the implementationand usage of iters. Moreover, the example program introduces all the class elements(constants, shared and object attributes, routines and iters) are introduced. Moststatements and most expressions are also discussed. Where appropriate, the usage ofsome basic features which are provided by the Sather 1.0 libraries are demonstrated.The Tutorial is completed by showing how an external class can be used to interfaceto a C program.�On leave from Department of Computer Science, University of Karlsruhe, Germany

Contents1 About Sather 1.0 11.1 Where can I �nd Sather? : 11.2 Where can I read about Sather? : 11.3 Related Work: Sather-K : 21.4 Planned Changes to this Tutorial : 22 Sather Tutorial Chess 32.1 Hello World Program : 32.2 Getting Started : 42.3 Class Hierarchy of Sather Tutorial Chess : 43 Class Main 53.1 Routine main : 63.2 Routine setup : 74 Type $CHESS DISPLAY and Related Classes 114.1 Type $CHESS DISPLAY : 114.2 Class CHESS DISPLAY : 124.3 Class ASCII DISPLAY : 144.4 Class X DISPLAY : 164.5 External Class XCW : 174.6 Class DEFAULT : 185 Type $PLAYER and Related Classes 205.1 $PLAYER : 205.2 Class PLAYER : 205.3 Class HUMAN PLAYER : 215.4 Class MINMAX : 216 Class MOVE 257 Class POS 288 Class BOARD 389 Type $PIECE and Related Classes 489.1 Type $PIECE : 489.2 Class PIECE : 489.3 Class BISHOP : 499.4 Class ROOK : 509.5 Class QUEEN : 519.6 Class KNIGHT : 519.7 Class PAWN : 529.8 Class KING : 5410 Suggested Execises 57References 58ii

1 About Sather 1.0Sather is an object oriented language which aims to be simple, e�cient, safe, and non-proprietary.One way of placing it in the \space of languages" is to say that it aims to be as e�cient as C, C++,or Fortran, as elegant and safe as Ei�el or CLU, and support higher-order functions and iterationabstraction as well as Common Lisp, Scheme, or Smalltalk.Sather has parameterized classes, object-oriented dispatch, statically-checked strong (contravari-ant) typing, separate implementation and type inheritance, multiple inheritance, garbage collection,iteration abstraction, higher-order routines and iters, exception handling, assertions, preconditions,postconditions, and class invariants. Sather programs can be compiled into portable C code andcan e�ciently link with C object �les. Sather has a very unrestrictive license which allows its use inproprietary projects but encourages contribution to the public library.1.1 Where can I �nd Sather?Information on Sather can be found on the Mosaic page http://www.icsi.berkeley.edu/Sather.From that page, you can reach various documents related to Sather. There also is a list of frequentlyasked questions. Another source of information is the newsgroup comp.lang.sather that is devotedto discussion of Sather related issues.There is a Sather mailing list maintained at the International Computer Science Institute (ICSI).Since the formation of the newsgroup, this list is primarily used for announcements. To be addedto or deleted from the Sather list, send a message to sather-request@icsi.berkeley.edu.If you have problems with Sather or if you want to discuss Sather related questions that arenot of general interest, mail to sather-bugs@icsi.berkeley.edu. This is also where to send bugreports and suggestions for improvements.The current ICSI Sather 1.0 compiler, the manual, this tutorial, and the Sather FAQ can beobtained by anonymous ftp fromftp.icsi.berkeley.edu /pub/satherThe distribution �le is called Sather-1.0.*.tar.Z. The wildcard is to be replaced by the numberof the latest release. At the time this tutorial was written three sites have mirrored the Satherdistribution:ftp.sterling.com /programming/languages/satherftp.uni-muenster.de /pub/languages/sathermaekong.ohm.york.ac.uk /pub/csp1.2 Where can I read about Sather?There are various papers on Sather 1.0, on earlier versions, primarily on Sather 0.5 which is somewhatdi�erent, and on pSather which is a parallel extension of Sather.Most of the papers listed here are directly available from the Mosaic page mentioned above.Others can be retrieved via anonymous ftp from ftp.icsi.berkeley.eduunder /pub/techreports.As a last resort, hardcopies may be ordered for a small fee. Send mail to info@icsi.berkeley.edufor more information.The current language speci�cation is published in [10]. This document can be found next to thecode on the ftp server mentioned above. Obviously the �le is called manual.ps.Sather's general design and the di�erences from Ei�el have been presented in [6, 7, 8, 9]. Thetype system is presented in depth in [13]. Moreover, ICSI technical papers report on other speci�cissues, see [2, 4, 11, 13]. 1

Sather has been analyzed from an external point of view. Comments and comparisons can befound in [1, 3, 12].1.3 Related Work: Sather-KAlthough we know a lot about Sather-K, which is being developed in Karlsruhe, Germany, it is notyet available online. Future versions of this Technical Report, which can be accessed from anonymousftp will have some more details.1.4 Planned Changes to this TutorialCurrently Sather Tutorial Chess does not use the �le I/O libraries of Sather 1.0. Since it takes sometime to get used to these libraries, the Tutorial de�nitively should explain them.Hence, later versions of this Technical Report, which can be accessed from anonymous ftp willbe extended in that respect. We will either introduce a way to save the current state of a game andresume at a later program invocation. Or we will supply a library of standard openings and use thatinformation when generating automatic moves.

2

2 Sather Tutorial ChessSather Tutorial Chess is not an expert chess program. In fact, it is quite easy to win against thecomputer. Moreover, the implementation is very ine�cient in certain parts of the code. The idea isto simply provide a context for demonstrating and explaining various features of Sather and not toshow a world class chess program.To make the best use of this tutorial, the Sather 1.0 system should be properly installed and thefollowing �les should be available online:hello.sa This �le contains is the standard Hello World program. It does not belong to SatherTutorial Chess but is included as an initial exercise.Make�le This is the Make�le for Sather Tutorial Chess.SChess.sa This is the main Sather �le.XInterf.sa This is an additional Sather �le. Although the code could have been in SChess.sa, it iskept in a separate �le for explanatory reasons.DefaultA.sa If your system is not running the X11 window system, this �le is used for compilationand linking.DefaultX.sa Otherwise, this �le is used instead.XCW.c This C �le provides the interface to the X11 window system. If you do not use X11, theMake�le will detect this and generate an executable that does not depend on or use XCW.c.bitmaps This directory has bitmaps for all the chess pieces which are used in XCW.c.2.1 Hello World ProgramThe �le hello.sa is the standard Hello World program. Sather programs usually have �le nameswith the extension .sa. To compile it, simply enter cs hello.sa. The command for invoking thecompiler is easy to remember, since cs stands for \Compile Sather". After successful compilationyou can execute it by entering a.out. If the current directory is not in your search path, enter./a.out.Only proceed after having successfully compiled and executed the Hello World program. Ifsomething went wrong, check your installation of the Sather 1.0 system. The �le Doc/Installationmight be helpful for diagnosing problems. 1-- This is the standard Hello World program 2-- implemented in Sather 1.0 3class MAIN is 4main is 5#OUT + "Hello Worldnn"; 6end; 7end;The �rst two lines of the �le are comments. Comments start with two minus signs. The commentcannot be explicitly closed, they end at the end of the line. The class MAIN has a special purposein Sather. Unless altered by compiler
ags, the routine main of MAIN is started when a compiledSather program is invoked by the user. In main there is only one statement. This statement isresponsible for several things: At �rst #OUT creates a new object of class OUT. Class OUT is a3

basic class provided by Sather. In the implementation of class OUT which can be found in thelibrary �le Library/out.sa there are several routines that can be invoked on an object of that class.One of these routines has the signatureplus(s:STR);Make sure that you look at the library �le Library/out.sa and �nd the routine used in the HelloWorld program. It is necessary for using the Sather 1.0 system that you are familiar with the librariesand the routines provided by them. The routine plus takes one string argument and \adds" thisargument to the object before returning the modi�ed object. In line 5 of the program the routineplus is called implicitly, by the operator + which itself is syntactic sugar for the call of plus.In Sather 1.0 a string is enclosed in double quotes ("). Similar to C, \n stands for the carriagereturn/line feed.2.2 Getting StartedThe other �les mentioned above are needed for Sather Tutorial Chess. They could be derivedfrom this document by extracting and concatenating the code segments explained in the remainder.Unless otherwise noted, the code segments go to the �le SChess.sa.For the presentation, code segments are numbered on the right of the code. Numbering isrestarted with line 1 either when a new Sather code �le is started or with the beginning of a newsection.You can create an executable Sather Tutorial Chess program by invoking the compiler. This isdone by staring the execution of the Make�le:makeThe Make�le �nds out whether your system runs then X Windows. Depending on the result, theappropriate Sather code �les are compiled and linked together. The executable is calledSChessAfter invoking Sather Tutorial Chess, you are the white player. The computer is responsible for themoves of black. Later, in section 3.2 we will show how this default behavior can be changed.2.3 Class Hierarchy of Sather Tutorial ChessLet us �rst discuss the basic design decisions that led to our implementation of Sather Tutorial Chess.The central object is the board. The board knows about its state, which is { roughly speaking { theset of pieces, and is capable of applying moves to itself. Moves and pieces are other types of objects.A \moves" knows about the piece that is moved and knows both the starting and the �nal positionof the move. Pieces and moves use position objects to represent the position on the board.Besides those objects that are used for representing and handling the chess game, there areseveral helper objects that are necessary for interfacing with the user. For both players there isa player object. This player objects hides the origin of a move from the chess engine. The playerobject is asked to return a move. This call is either forwarded to the user or to the searching strategyof the computer player. Hence, the same chess engine can be used for all four possible pairings ofhuman and automatic players.Another object is used for handling the display of the chess board. If required, this interface canask the user to enter a move in standard chess notation. The implementation provides both a plainASCII interface and an interface to the X Window system.The description will start with the class MAIN which contains the basic loop of the game. Insection 4 we discuss the display objects. After that, section 5 deals with the players. Then theother classes are presented in the following order: move in section 6, position in section 7, board insection 8 and �nally pieces in section 9. 4

3 Class MainThe class MAIN has a special purpose in Sather. Unless altered by compiler
ags, the routine mainof MAIN is started when a compiled Sather program is invoked by the user. Class names must bein capital letters.Although it is possible, it is unusual to create objects of class MAIN. Therefore, attributes shouldbe declared shared. Shared attributes of a class exist and can be accessed even if no objects arecreated. Above that, shared attributes are globally accessible by all objects of a given type.Here we declare shared variables that can hold pointers to the chess board, the display object,and to the players. The variable board can hold an object of type BOARD, which is speci�ed by theimplementation of class BOARD, see section 8 for details. The other four variables can hold objectsof the abstract type $CHESS DISPLAY or $PLAYER, respectively. These objects can be created byclasses that are explicitly declared to be subtypes of the abstract types. The di�erence betweenclasses and abstract types that is visible here by the use of the $ symbol in the type identi�ers andwill be explained in more detail in section 4. 1class MAIN is 2shared board : BOARD; 3shared display : $CHESS DISPLAY; 4shared white, black, player : $PLAYER;This is a good point to introduce Sather's ubiquitous basic data types. Upon declaration of basictypes, these are initialized automatically.� BOOL de�nes value objects which represent boolean values. The initial value is false.� CHAR de�nes value objects which represent characters. The initial value is '\0'.� STR de�nes reference objects which represent strings.� INT de�nes value objects which represent machine-dependent integers. The size is implemen-tation dependent but must be at least 32 bits. The two's complement representation is used torepresent negative values. Bit operations are supported in addition to numerical operations.� INTI de�nes reference objects which represent in�nite precision integers.� FLT, FLTD, FLTX, and FLTDX de�ne value objects which represent
oating point values ac-cording to the single, double, extended, and double extended representations de�ned by theIEEE-754-1985 standard.� FLTI de�nes reference objects which represent arbitrary precision
oating point objects.� The parameterized type ARRAYfTg de�nes general purpose array objects of type T. For ex-ample, ARRAYfSTRg represents an array whose elements are strings of type STR.� TUP names a set of parameterized value types called \tuples", one for each number of param-eters. Each has as many attributes as parameters and they are named \t1", \t2", etc. Each isdeclared by the type of the corresponding parameter (e.g. TUPfINT,FLTg has attributes t1:INTand t2:FLT). It de�nes a create routine with an argument corresponding to each attribute.There are more basic data types. Since these are irrelevant for this Tutorial, the interested readeris referred to the manual [10].Sather distinguishes between reference objects and value objects. (Other types of objects arenot mentioned in this tutorial.) Experienced C programmers immediately catch the di�erence when5

told about the internal representation: Value types are C structs and reference types are pointersto structs.1 Because of that di�erence, reference objects can be referred to from more than onevariable. Value objects can not. The basic types mentioned above (except arrays) are value classes.Reference objects must be explicitly allocated with new. Variables have the value void until anobject is assigned to them. Void for reference objects is similar to a void pointer in C. Void for valueobjects means that a prede�ned value is assigned (0 for INT*, \0 for CHAR, false for BOOL, 0.0 forFLT*). Accessing a void value object will always work. Accessing a void reference object usuallywill be a fatal error.There are some more di�erences between value types and reference types but they are beyondthe scope of this tutorial2.3.1 Routine mainThe routine main of MAIN is started when Sather Tutorial Chess is invoked. Similar to C, theparameter args returns the command line which is used to invoke the program. If main is declaredwithout parameters, the command line and any arguments are ignored. Since the routine main isdeclared to return an integer, this will specify the exit code of the programwhen it �nishes execution.If main is declared without return parameter, no exit code will be returned. 5main(args:ARRAYfSTRg):INT is 6if ~setup(args) then -- ~ is the boolean NOT 7-- If the given command line arguments are not acceptable, setup 8-- returns false. Then the program terminates and returns -1. 9return -1; 10end;After invocation, the routine setup analyzes the given command line arguments. It returns true ifthe given parameters are acceptable and false otherwise. If acceptable, setup has some side e�ects:it creates objects for the players, for display, and for board. Later on these objects are accessiblevia the variables declared in lines 2{4.If setup had returned true, the board, the display, and the players have been created whenexecution reaches line 11 where the game starts. The game is essentially a loop (lines 11{32) inwhich the current player is asked to enter/generate a move. The result is then assigned to theimplicitly declared local variable move (line 12). The type of move is derived from the return typeof player.getmove because of \::=". The type could also have been speci�ed explicitly as follows:move : MOVE := player.getmove(board);Another way could be to declare the variable �rst and then assign in a second statement:move : MOVE;move := player.getmove(board);The scope of move is de�ned by the surrounding block, i.e., the loop statement.Later we will �nd out that player.getmove is a dispatched call. But let's skip this for now.1Furthermore, you are not allowed to have pointers directly to �elds of structs.2Some other di�erence are named here because of completeness:� Value type must inherit from AVALfTg instead of AREFfTg.� The writer routine takes di�erent forms for reference and value types. For reference types, it takes a singleargument whose type is the attribute's type and has no return value. Its e�ect is to modify the object bysetting the value of the attribute. For value types, it takes a single argument whose type is the attribute's type,and returns a copy of the object with the attribute set to the speci�ed new value, and whose type is the type ofthe object. This di�erence arises because it is not possible to modify value objects once they are constructed.Study the complex number library in �le Library/cpx.sa.6

The loop is terminated if the move is a quit. The test occurs in line 13 in the until! expression,which is a call to a special iter: each time until! is called, the given boolean expression is evaluated.If false, until! \quits" which breaks the immediately surrounding loop, i.e., terminates the game.If the program
ow reaches the statement after until! the latter did not terminate the loop. Sincesome move has been returned from player.getmove it must be checked and applied to the board. Thisis done in line 14 by the routine check n apply move which returns false if the move could not beapplied properly.After application of the move to the board in line 15, the display object is called to update theview of the board.Later we will �nd out that the calls to display.update in line 15, to display.king check() in line 25,to display.invalid move in line 30, and to display.close in line 35 all are dispatched calls. But again,let's skip this for now. 11loop 12move ::= player.getmove(board); 13until!(move.isquit); 14if board.check n apply move(move) then 15display.update(board.str); 16-- Set player to the next player 17if board.white to play then 18player := white; 19else 20player := black; 21end; 22-- Find out whether the king of the current player is in 23-- check. If so, have the display talk about the situation. 24if board.my king isin check then 25display.king check(board.white to play); 26end 27else 28-- The move was invalid. Display this. By not changing 29-- the current player, the same player is asked to try again. 30display.invalid move; 31end; 32end; -- of loop 33-- The game is over, since the current player issued a "quit-move". 34-- Close the display. 35display.close; 36return 0; 37end;3.2 Routine setupThis setup routine gets the command line arguments and returns a BOOL. The return value of setupis true, i� the parameters have been acceptable.To start Sather Tutorial Chess use:SChess [<white> <black>] [<Displ>]<white> can be either H for Human Playeror C for Computer Player7

<black> dito<Displ> can be either X for X Interfaceor A for ASCII TerminalThe default behavior is SChess H C XThe type of the args parameter, ARRAYfSTRg, is an instantiation of the parameterized basic typeARRAYfTg. The source code can be found in �le Library/array.sa. An c of type ARRAYfTg storeselements of type T. If c is not void, the �rst element can be accessed by c[0]. c.size returns thenumber of elements stored in the array. c[c.size-1] accesses the last element. 38setup(args:ARRAYfSTRg):BOOL is 39-- set defaults 40ret : BOOL := true; -- the default is that the parameters are ok 41p ::= #ARRAYfCHARg(2); 42p[0] := 'H'; -- default: human player 43p[1] := 'C'; -- default: computer player 44d : CHAR := 'X'; -- type of displayFirst of all, setup creates a few variables that will hold the result of the evaluation of the commandline arguments. A novelty is in line 41, where p is declared to be a character array and space isallocated for it. The array is created and initialized by calling the create routine of the class ARRAY.The # symbols is syntactic sugar for calls of create routines. If the create routine need additionalarguments, they must be supplied behind the # symbol. Here the array has two characters whichcan be accessed as p[0] and p[1].In the following code segment, the arguments get processed in a loop (lines 47{65). The �rstargument, args[0] is left out, since this contains the name of the running program. Here, looptermination is implemented in line 47 by the use of the iter upto! which is declared in the INTlibrary. (The INT class is implemented in the �le Library/int.sa.) The iter upto! returns an integervalue each time it is called. Here the �rst call will return 1, the argument speci�es the upper bound.In the second call upto! will return 2, then 3, : : : , and �nally args.size-1. The next call will quitthe iter and terminate the immediately surrounding loop, i.e., program execution will continue inline 72.For analysis of single parameters we use routines, provided by the STR class. The string class,which is implemented in the �le Library/str.sa o�ers a routine char(int) that returns the characterwith the speci�ed number. Since strings are arrays of characters, the �rst character of a string canbe accessed by char(0). The character class which is implemented in the �le Library/char.sa hasroutines upper and lower that return an upper case or lower case version of the character they arecalled upon. The routine head(k) returns the �rst k characters of a string. 45if args.size > 1 and args.size <= 4 then 46player cnt : INT := 0; 47loop i::=1.upto!(args.size-1); 48if args[i].size >= 4 and args[i].head(4).lower="help" then 49ret := false; 50end; 51tmp : CHAR := args[i].char(0).upper; 52case tmp 53when 'A', 'X' then -- ASCII- or X-Display if available 54d := tmp; 55when 'H', 'C' then -- Human or Computer player 56if player cnt < 2 then 8

57p[player cnt] := tmp; 58player cnt := player cnt + 1; 59else 60ret := false; 61end; 62else 63ret := false; 64end; 65end; -- of loop 66elsif args.size /= 1 then -- not equal 67-- The parameters are not acceptable. 68ret := false; 69else 70-- use defaults. The else could have been omitted. 71end;Boolean expressions are evaluated with short-circuit semantics. For an and this means that thesecond operand is only evaluated if the �rst operand was true. For an or the second operand isevaluated if the �rst one was false. Lines 45 and 48 are good examples.Sather's case statement (lines 52{64) is used for processing the command line parameters otherthan \help". The variable tmp is evaluated and depending on the result, the �rst matching whenbranch is taken. Note, that multiple expressions can be given for comparison in each branch.Depending on the analysis of the command line arguments either all global objects needed forthe chess program are created in lines 79{88 or the user is informed about the correct parametersyntax in lines 90{96. The Output class OUT is de�ned in �le Library/out.sa. The idea of usingthe class is to create an output object and \add" the things that should be output to this object.The plus is overloaded so that all basic types can be output in this fashion. As usual, \n indicatesa carriage return/line feed. 72if ret then 73display := DEFAULT::display(d); -- Creates Display object. Described below. 74board := #BOARD; 75if p[0] = 'H' then 76-- An object of type HUMAN is created. In contrast to BOARD, 77-- this object has a special create routine, that needs an argument. 78white := #HUMAN(board.white to play); 79else 80white := #MINMAX(board.white to play); 81end; 82if p[1] = 'H' then 83black := #HUMAN(~board.white to play); 84else 85black := #MINMAX(~board.white to play); 86end; 87-- the first player is White 88player := white; 89else 90#OUT+"To start Sather Tutorial Chess use: nn"; 91#OUT+"args[0] [<white> <black>] [<Displ>]nn"; 92#OUT+" <white> can be either H for Human Playernn";9

93#OUT+" or C for Computer Playernn"; 94#OUT+" <black> ditonn"; 95#OUT+" <Displ> can be either X for X Interfacenn"; 96#OUT+" or A for ASCII Terminalnn"; 97end; 98-- Since setup has a return parameter, a result 99-- has to be returned to the caller. 100return ret; 101end; -- of setup 102end; -- of class MAIN

10

4 Type $CHESS DISPLAY and Related Classes4.1 Type $CHESS DISPLAYSather di�erentiates between concrete types and abstract types. In Sather each object has a uniqueconcrete type that determines the operations that may be performed on it. Classes de�ne concretetypes and give implementations for the operations. Abstract types however, only specify a set ofoperations without providing an implementation. This set of operations is called the interface of thetype. An abstract type corresponds to a set of concrete types which obey that interface.$CHESS DISPLAY is an abstract type. Names of abstract types must be in capital letters. Theleading $ di�erentiates abstract from concrete types.In the body of the type declaration (lines 2{14), the operations are given without any implemen-tation. Formal parameters must have names. However, since these are not used, the names serveonly documentary purposes.For example, consider the case where you want to have a simple integer variable in all concretetypes/classes that are subtypes of an abstract type. An integer attribute a has two implicit routines,a reader which has the signature a:INT and a writer with the signature a(new value:INT). Since theabstract type hides implementation details from the interface, one has to put both signatures inthe body of the type. This gives room for changing the implementation of a in the classes. (In theabstract type below, there are however no attributes.) 1type $CHESS DISPLAY is 2-- Display the state of the board 3redraw(board:ARRAYfCHARg); 4update(board:ARRAYfCHARg); 5showmove(text:STR); 6-- Inform player about certain conditions 7invalid move; 8thinking(white to move:BOOL); 9king check(white to move:BOOL); 10-- Interact with the player 11getmove(white to move:BOOL):MOVE; 12ask pawn xchg:CHAR; 13-- Close 14close; 15end; -- of abstract type $CHESS DISPLAYThe string interface (ARRAYfCHARg) to board needs some explanation: The board is representedby 64 characters. Each character speci�es the piece on a particular position of the board.' ' no piece 'P' Pawn'B' Bishop 'Q' Queen'K' King 'R' Rook'N' KnightCapital characters represent white pieces, small characters stand for black pieces. The �rst characterin board speci�es board position \a1", the last \h8".All concrete classes that are subtype of $CHESS DISPLAY must at least have all the aboveroutines (or implicitly declared routines.) 11

4.2 Class CHESS DISPLAYThis is a concrete type or class which is a subtype of $CHESS DISPLAY. The subtype relation isexpressed by the < symbol in line 16. This concrete class however will not be used to instantiateobjects, i.e., there will be no objects of type CHESS DISPLAY. The main purpose of this class is todeclare attributes and routines that are common to other classes of type $CHESS DISPLAY, whichinclude the implementation of this class. Hence, whereas $CHESS DISPLAY is used to express thesubtype relation, the class CHESS DISPLAY is used for code inheritance.The �rst two routines are included unchanged in ASCII DISPLAY and replaced in X DISPLAY.A create routine has to be provided if objects of that concrete type are created. SAME denotesthe type of the class in which it appears. As explained in ASCII DISPLAY below, it is a good ideato return SAME instead of CHESS DISPLAY, if the create routine is meant to be included.The expression new is used in line 18 to allocate space for (reference) objects (and may onlyappear in reference classes.) New returns a (reference) object of type SAME. All attributes andarray elements are initialized to void. 16class CHESS DISPLAY < $CHESS DISPLAY is 17create:SAME is 18return new; 19end; 20update(board:ARRAYfCHARg) is 21redraw(board); 22end;The following two routines do not provide a basic implementation. However, for consistency with theinterface required by $CHESS DISPLAY, they have to exist. When the code of class CHESS DISPLAYis included, special implementations of redraw and getmove must be provided that replace the dum-mies given here.To make sure that these implementations of redraw and getmove are not called erroneously, anexception is raised by the raise statement (lines 24 and 27). Since redraw does not have a returnparameter, the body of the routine could have been empty. In getmove either a return or a raiseis required because getmove has a return parameter. 23redraw(board:ARRAYfCHARg) is 24raise "INTERFACE: invalid call to redrawnn"; 25end; 26getmove(white to move:BOOL):MOVE is 27raise "INTERFACE: invalid call to getmovenn"; 28end;The following four routines provide code that is meant to be included unchanged in other imple-mentations of classes that are subtypes of $CHESS DISPLAY. Each of the four routines makes useof a private routine showtext which is not completely coded here. Classes that include the imple-mentation of CHESS DISPLAY must provide complete implementations of showtext. 29invalid move is 30text : STR; 31text := "ERROR: Invalid move....try again"; 32showtext(text); 33end; 12

34thinking(white to move:BOOL) is 35text : STR; 36if white to move then 37text := "White"; 38else 39text := "Black"; 40end; 41text := text + " is thinking ... please wait ..."; 42showtext(text); 43end; -- of thinking 44king check(white to move:BOOL) is 45text : STR; 46if white to move then 47text := "--> White"; 48else 49text := "--> Black"; 50end; 51text := text + " is in check!"; 52showtext(text); 53end; -- of king check 54showmove(text:STR) is 55showtext(text); 56end;A routine declared private can only be called from code that is in the same class as the routine.57private showtext(text:STR) is 58-- Optional protection against implementation errors 59raise "INTERFACE: invalid call to showtextnn"; 60end;The following routine ask pawn xchg is included in both ASCII DISPLAY and X DISPLAY withoutchange. The loop (line 64{72) is not terminated by means of an iter. Instead, the termination isdone by the return statement in line 69.In line 66 is an example of user input. The class IN is speci�ed in the �le Library/in.sa. Amongothers, IN provides a routine get str that accepts a string input from the use via the standard I/O-device. Calls like CLASS::<routine> do not refer to a particular object of the class but call theroutine on a void object. 61ask pawn xchg:CHAR is 62newpiece : STR; 63ret : CHAR; 64loop 65#OUT+"Do you prefer a QUEEN or a KNIGHT?nn"; 66newpiece := IN::get str.upper; 67ret := newpiece.char(0); 68if ret = 'Q' or ret = 'K' then 69return ret; 70end; 71#OUT+"Please enter QUEEN or KNIGHT.nn"13

72end; 73end; -- of ask pawn xchg 74-- The following routine is included unchanged in ASCII DISPLAY 75-- and replaced in X DISPLAY. 76close is 77end; 78end; -- of CHESS DISPLAY4.3 Class ASCII DISPLAYThis concrete class is a subtype of $CHESS DISPLAY. It provides an implementation for at least thesignatures given in the speci�cation of $CHESS DISPLAY.ASCII DISPLAY inherits the implementation of class CHESS DISPLAY by the include statement.The include statement is semantically equivalent to the following editor operation: replace theinclude statement by the implementation code of the included class. (Includes have to be resolvedrecursively.)Without code duplication, ASCII DISPLAY inherits the implementation of the following routines,at the include statement.create:SAMEredraw(board:ARRAYfCHARg) --> is replaced belowupdate(board:ARRAYfCHARg)getmove(white to move:BOOL):MOVE --> is replaced belowinvalid movethinking(white to move:BOOL)king check(white to move:BOOL)showmove(text:STR)private showtext --> is replaced belowask pawn xchg:CHARcloseOnly the routines marked with \{>" are replaced by a speci�c implementation. To make the ideaof textual inclusion even more understandable consider the included version of create.create:SAME;Although originally written in CHESS DISPLAY, the routine create does not return an object oftype CHESS DISPLAY after being included in ASCII DISPLAY. Instead, create returns an object oftype ASCII DISPLAY. 79class ASCII DISPLAY < $CHESS DISPLAY is 80include CHESS DISPLAY;Redrawing the board on the ASCII DISPLAY is an excellent example of two nested loops, both ofwhich are governed by iters (lines 88{91 and lines 87{89).The iter downto! in line 85 is another iter from the INT class, which can be found in �le Li-brary/int.sa. As expected, 7.downto(0) iteratively returns the integer value 7, 6, 5, ..., 0 and withthe next call terminates the surrounding loop, i.e., the loop from line 85 to line 91.The iter step! in line 87 is just another iter the INT class provides. Beginning at the integerit is called upon, it will return as many integers as indicated by its �rst argument. The di�erencebetween two subsequent return values is given by the second argument. If step! is called for theninth time, it will quit and immediately terminate the surrounding loop (line 87{89). Note, that forthe two nested loops, only the innermost loop is terminated.14

81redraw(board:ARRAYfCHARg) is 82#OUT+"The current board: (small characters = black pieces)nn"; 83#OUT+" a b c d e f g h nn"; 84#OUT+" ------------------------nn"; 85loop i::=7.downto!(0); 86#OUT+(i+1)+"j"; 87loop j::=(8�i).step!(8,1); 88#OUT+" "+board[j]+" " 89end; 90#OUT+"j"+(i+1)+"nn"; 91end; 92#OUT+" ------------------------nn"; 93#OUT+" a b c d e f g h nn"; 94end; -- of redrawThe following OUT::
ush in line 106 tells the OUT class, that all characters that are bu�ered shouldbe output immediately. Normally, the bu�er is only
ushed, if a \n is seen in the character stream.95getmove(white to move:BOOL):MOVE is 96move : MOVE; 97move str : STR; 98loop 99#OUT+"Please enter a move for"; 100if white to move then 101#OUT+" white: "; 102else 103#OUT+" black: "; 104end; 105#OUT+"(e.g. d2-d3 or help) "; 106OUT::
ush; 107move str := IN::get str.lower; 108-- The string class provides a routine head(x), which returns the first 109-- x characters of a string. 110if move str.size >= 4 and move str.head(4) = "help" then 111#OUT+"Valid moves are:nn"; 112#OUT+" ordinary move: d2-d3nn"; 113#OUT+" king castle : o-onn"; 114#OUT+" queen castle : o-o-onn"; 115#OUT+" quit : quitnn"; 116else 117move := #MOVE(move str, white to move); 118-- If the create routine of MOVE could not correctly deal with 119-- the given move str move.isok returns false. If a move turns 120-- out not to be quit or ok, the player is asked to try again. 121until! (move.isquit or move.isok); 122#OUT+"ERROR: Invalid syntax....try againnn"; 123end; 124end; 125return move; 15

126end; -- of getmove 127private showtext(text:STR) is 128#OUT+text+"nn"; 129end; 130end; -- of ASCII DISPLAY4.4 Class X DISPLAYThe following code is kept in a separate Sather code �le (XInterf.sa). There the class X DISPLAY isimplemented. The implementation is in a di�erent �le, to show how spreading of source code acrossseveral �les works in Sather.This concrete class is a subtype of $CHESS DISPLAY. It provides an implementation for at leastthe signatures given in the speci�cation of $CHESS DISPLAY.Due to the include statement, X DISPLAY inherits the implementation of CHESS DISPLAY inthen same way as ASCII DISPLAY has done before. Without code duplication, X DISPLAY now hascreate:SAME --> is replaced belowredraw(board:ARRAYfCHARg) -->� is replaced belowupdate(board:ARRAYfCHARg) --> is replaced belowgetmove(white to move:BOOL):MOVE -->� is replaced belowinvalid movethinking(white to move:BOOL)king check(white to move:BOOL)showmove(text:STR)private showtext -->� is replaced belowask pawn xchg:CHARclose --> is replaced belowOnly the routines marked with \{>" are replaced by a speci�c implementation. The arrows markedwith * indicate those routines that have been replaced in the ASCII DISPLAY explained above.The implementation of X DISPLAY makes heavy use of the external Chess Window (XCW)implementation. The Sather compiler is informed about the existence of the external routines in theexternal class XCW which is explained on page 17. 1class X DISPLAY < $CHESS DISPLAY is 2include CHESS DISPLAY; 3create:SAME is 4XCW::OpenCW("Sather Tutorial Chess"); 5return new; 6end; 7redraw(board:ARRAYfCHARg) is 8XCW::RedrawCW(board); 9end; 10update(board:ARRAYfCHARg) is 11XCW::UpdateCW(board); 12end; 13showmove(text:STR) is 14XCW::ShowMoveCW(text); 15end; 16private showtext(text:STR) is 17XCW::TextCW(text); 18end; 16

19close is 20XCW::CloseCW; 21end;The implementation of getmove is slightly more complicated. The external Chess Window imple-mentation has a routine called GetMoveInCW. This routine has an array of characters as formalparameter. This array is kept in the variable move chars. To pass the result to the create routineof class MOVE in line 36, it must be converted into a string. The latter is stored in the variablemove str.Several library routines are helpful here. In line 35 routine to val of class ARRAYfTg is used toset each array element to the given value. The loop in lines 39{41 iteratively adds characters ofmove char to the string variable move str. The iter elt! returns all array elements in order and quitsat the end of the array, hence terminating the loop. Note, how elegantly both loop control and workcan be combined by use of iters. 22getmove(white to move:BOOL):MOVE is 23text : STR; 24text := "Please move a"; 25if white to move then 26text := text+" white" 27else 28text := text+" black"; 29end; 30text := text+" piece."; 31XCW::TextCW(text); 32move chars ::= #ARRAYfCHARg(5); -- create a character array with 5 chars. 33move str ::= #STR; -- create a string. 34move : MOVE; 35move chars.to val(' '); -- set all 5 chars to ' ' 36XCW::GetMoveInCW(move chars); 37-- Construct string out of char array. The iter elt! returns all 5 38-- characters of move chars, then quits and terminates the loop. 39loop 40move str := move str+move chars.elt!; 41end; 42-- Since XCW::GetMoveInCW is guaranteed to return only 43-- syntactically correct moves, no further plausibility tests 44-- are required. 45move := #MOVE(move str.lower,white to move); 46return move; 47end; -- of getmove 48end; -- of X DISPLAY4.5 External Class XCWXCW provides an X Window interface for chess. The corresponding C code can be found in XCW.c.The routines are used by the implementation of X DISPLAY.17

In this external class de�nition the interface to routines of XCW.c are speci�ed. The mainpurpose of this class is to tell the Sather compiler the names and parameters of routines that canbe called. The syntax for a call is XCW::<routine call>. 49external class XCW is 50OpenCW(title:STR); 51RedrawCW(board:ARRAYfCHARg); 52UpdateCW(board:ARRAYfCHARg); 53GetMoveInCW(move:ARRAYfCHARg); 54ShowMoveCW(move:STR); 55TextCW(text:STR); 56CloseCW; 57end;Each external class is typically associated with an object �le compiled from a language like C orFortran. External classes do not support subtyping, implementation inheritance, or overloading.External classes bodies consist of a list of routine de�nitions. Routines with no body specify theinterface for Sather code to call external code. Routines with a body specify the interface for externalcode to call Sather code.Each routine name without a body may only appear once in any external class and the corre-sponding external object �le must provide a conforming function de�nition. Sather code may callthese external routines using a class call expression of the form EXT CLASS::ext rout(5). Externalcode may refer to an external routine with a body by concatenating the class name, an underscore,and the routine name (e.g., EXT CLASS sather rout).Only a restricted set of types are allowed for the arguments and return values of these calls. Thebuilt-in value types BOOL, CHAR, INT, FLT, FLTD, FLTX, and FLTDX are allowed anywhere and oneach machine have the format supported by the C compiler used to compile Sather for that machine.Moreover, arrays of the above basic types (except BOOL) can be passed as routine parameters.When a Sather program calls such a routine, the external routine is passed a pointer into just thearray portion of the object. The external routine may modify the contents of this array portion,but must not store the pointer. There is no guarantee that the pointer will remain valid after theexternal routine returns.4.6 Class DEFAULTOne of the design decisions of Sather Tutorial Chess has been to provide both an ASCII interface andan interface to the X Window system. To represent that in the code, there are two implementationsof a class called DEFAULT. The �rst implementation which is in the �le DefaultX.sa, can handleboth an interface to X and to the ASCII terminal: 1class DEFAULT is 2display(d:CHAR):$CHESS DISPLAY is 3ret : $CHESS DISPLAY; 4if d = 'X' then 5-- Create an object of type X DISPLAY and return it. 6-- To be more specific: # is a short-hand for a call to 7-- the the routine create of type that follows the #. 8ret := #X DISPLAY; 9else 10ret := #ASCII DISPLAY; 11end; 12return ret; 18

13end; 14end;Depending on the value of d either an object of type X DISPLAY or of type ASCII DISPLAY isreturned to the caller. The call can be found in line 73 of the setup routine of class MAIN, seepage 9.If X is not available, the following implementation which is kept in Sather code �le DefaultA.sa,is used instead: 1class DEFAULT is 2display(d:CHAR):$CHESS DISPLAY is 3ret : $CHESS DISPLAY; 4-- Since X is not available, create ASCII-Interface only. 5ret := #ASCII DISPLAY; 6return ret; 7end; 8end;The value of d is ignored here. In either case, an ASCII display is created and returned to the caller.Since no reference to class X DISPLAY is in the code, the Sather compiler ignores any implementationof that class. The Make�le makes the dependencies visible.

19

5 Type $PLAYER and Related Classes5.1 $PLAYERSimilar to the situation between the abstract type $CHESS DISPLAY and the classes ASCII DISPLAYand X DISPLAY, the players are organized with subtyping and include as well. The abstract type$PLAYER speci�es the common interface. 1type $PLAYER is 2getmove(b:BOARD):MOVE; 3ask pawn xchg:CHAR; 4end;5.2 Class PLAYERThis is a class of type $PLAYER, which will not be used to instantiate. There will be no objects oftype PLAYER. The main purpose of this class is to declare attributes and routines that are commonto other classes of type $PLAYER, which include the implementation of this class.The routine getmove does not provide a basic implementation. However, for consistency with theinterface required by $PLAYER, a dummy implementationmust be given. The routine ask pawn xchgprovides a default implementation. 5class PLAYER < $PLAYER is 6attr iswhite:BOOL; 7create(iswhite:BOOL):SAME is 8ret : SAME := new; 9ret.iswhite := iswhite; 10return ret; 11end; 12getmove(b:BOARD):MOVE is 13raise "PLAYER:invalid call to getmovenn"; 14end; 15ask pawn xchg:CHAR is 16return 'Q'; 17end; 18end; -- of class PLAYERThis is a good place to look at the list of available class elements. We have already encounteredroutine de�nitions and include statements. Iter de�nitions are similar to routine de�nitions. Allclass elements can be declared private. Private elements can only be accessed from within theimplementation of the class. Per default, class elements are public. It is worthwhile to take a closerlook at the other class elements:const Constant attributes are accessible by all objects in a class and may not be assigned to.Constant attributes are initialized. They are accessible even if no object of the class is created.shared Shared attributes are variables that are directly accessible to all objects of a given type.They are accessible even if no object of the class is created. When only a single sharedattribute is de�ned by a clause, it may be provided with an initializing expression which must20

be a constant expression. If no initialization is given, shared variables are initialized to thedefault.attr Attributes are connected with objects. Each object of a class has an individual set of attributevariables which re
ect the state of the object. Attributes are only accessible when an objecthas been created.5.3 Class HUMAN PLAYERA human player will enter his move via the interface. This is coded in the routine getmove thatreplaces the inherited dummy implementation.If a human player has the chance to exchange one of his pawns with a queen or a knight, thehuman player will enter his decision via the interface in routine ask pawn xchg. 19class HUMAN < $PLAYER is 20include PLAYER; 21getmove(b:BOARD):MOVE is 22return MAIN::display.getmove(iswhite); 23end; 24ask pawn xchg:CHAR is 25MAIN::display.update(MAIN::board.str); 26return MAIN::display.ask pawn xchg; 27end; 28end; -- of class HUMAN5.4 Class MINMAXThe automatic player is represented by the class MINMAX. The class is called MINMAX, since thestrategy for determining a move is based on a minmax search.We de�ne a couple of constants �rst. The boolean constants max and min are later on used todetermine whether the minmax search is at a max- or at a min-level. The constant max depth givesthe maximal depth of the search tree. If max depth is 3, then (1) all potential next moves, (2) allreactions of the opponent player and (3) all potential future reactions to these are considered.The best moves of phase (1) are gathered in a dynamically sized list of type FLIST, as de�nedin the library �le Library/
ist.sa. FLIST will store all moves that will eventually result in the sameboard evaluation on level (3).The random number generator declared in line 35 is used to select an arbitrary move fromthe list. MS RANDOM GEN is a class that is de�ned in the Sather Libraries. You �nd it in the �leLibrary/rnd.sa The random number object is created and initialized in the create routine in line 40.29class MINMAX < $PLAYER is 30include PLAYER; 31const max : BOOL := true; 32const min : BOOL := ~max; 33const max depth : INT := 3; 34attr bestmoves : FLISTfMOVEg; 35shared rnd : MS RANDOM GEN; 36create(iswhite:BOOL):SAME is 37ret ::= new; 38ret.iswhite := iswhite; 21

39ret.bestmoves := #FLISTfMOVEg; 40rnd := #MS RANDOM GEN; 41rnd.init(4711); 42return ret; 43end;The getmove routine at �rst tells the viewing user that it is \thinking" (line 46). Then it uses theroutine minmax, which is described below, to �nd the best move. There might be more than onemove that is considered to be \best". The list bestmoves stores all of these. If there are no availablemoves, i.e., if the list of bestmoves is empty, then the player is mate { the game is over. This ischecked in line 54.Otherwise the random number generator returns a value in [0; 1). This is multiplied by the sizeof the list of available best moves. Before multiplication, size, which is an integer value, is cast to beof type FLTD. The product is rounded to the
oor and then cast into an integer value by the routineint. The result is then used to index into the list of possible best moves.Before returning the move to the caller, it is displayed in line 61. 44getmove(board:BOARD):MOVE is 45ret : MOVE; 46MAIN::display.thinking(board.white to play); 47if board.white to play then 48-- minmax returns a value, that is nor needed. However, Sather does 49-- require to use the return value somehow. 50dummy ::= minmax(board,max,max depth); 51else 52dummy ::= minmax(board,min,max depth); 53end; 54if bestmoves.size = 0 then 55return #MOVE("quit",board.white to play); 56else 57ret := bestmoves[(bestmoves.size.
td � rnd.get).
oor.int]; 58bestmoves.clear; 59text : STR; 60text := ret.from.str + "-" + ret.to.str; 61MAIN::display.showmove(text); 62return ret; 63end; 64end; -- of getmoveThe private routine minmax returns a
oating point value, FLT. FLT is speci�ed in the library classFLT. See �le Library/
t.sa for details.The body of minmax has a good example of nested iter calls: The �rst loop (lines 74{103)considers all pieces on the board of my color. The inner loop (lines 75{102) then for each of thesepieces considers target positions of potential moves. (It is explained later on, what an ordinary moveis. Just ignore this
ag for the time being.)The move created in line 77 is guaranteed to be correct, i.e., the piece is of the correct color andthe target position is correct with respect to the basic movement rules of chess. The only conditionthat is not guaranteed to hold is whether the own king is exposed to be in check after the piece ismoved. This is checked in apply move with own check test. See line 79.22

After a move has been applied successfully, we either consider the possible reactions recursively(line 83), or evaluate the value of the board in line 81.The depth-�rst search requires backtracking. This is done in line 100 by calling board.unapply move.65private minmax(board:BOARD,minmax:BOOL,depth:INT):FLT is 66move : MOVE; 67val,bv : FLT; 68pos : POS; 69if minmax = max then 70val := -1000.0; 71else 72val := 1000.0; 73end; 74loop piece::=board.my piece!; 75loop 76pos :=piece.move!(board,PIECE::ordinary); 77move := #MOVE(piece,pos); 78move.piece := piece; 79if board.apply move with own check test(move) then 80if depth = 1 then 81bv := board.board value; 82else 83bv := minmax(board,~minmax,depth - 1); 84end; 85-- If this move really is better than previous ones, 86-- the list of best moves found so far is erased. 87if depth = max depth and ((minmax = max and bv > val) 88or (minmax = min and bv < val)) 89then 90bestmoves.clear; 91end; 92-- If this move is not worse than previous ones, the move 93-- is added to the list of best moves found so far. 94if depth = max depth and ((minmax = max and bv >= val) 95or (minmax = min and bv <= val)) 96then 97val := bv; 98bestmoves := bestmoves.push(move); 99end; 100board.unapply move; 101end; 102end; 103end; 104return val; 105end; -- of minmax 106end; -- of class MINMAXThe following remark will be completely understandable only after the type $PIECE and the concretesubtypes have been presented in section 9. For reasons of completeness note that line 76 is adispatched iter call. Depending on the concrete type of the piece:$PIECE a di�erent iter is called.23

In Sather 1.0.2 dispatched iters are not implemented. The typecase statement can be used toimplement the intended behavior:typecase piecewhen PAWN then pos:=piece.move!(board,PIECE::ordinary);when ROOK then pos:=piece.move!(board,PIECE::ordinary);when KNIGHT then pos:=piece.move!(board,PIECE::ordinary);when BISHOP then pos:=piece.move!(board,PIECE::ordinary);when KING then pos:=piece.move!(board,PIECE::ordinary);when QUEEN then pos:=piece.move!(board,PIECE::ordinary);elseend;

24

6 Class MOVEA move, i.e., an object of class MOVE stores several facts. First of all there are the from and theto position which are objects of class POS. The move knows about it being a castle move. Castlemoves have from and to positions that refer to the movement of the king.During the process of analyzing a move, further information is gathered and stored in the moveobject. This information is necessary to later on un-do a move. The attribute piece stores a pointerto the piece that is moved by a move. If the move kills an opponent piece, that piece can be reachedby the attribute kills. The fact whether the kings have moved belongs to the status of the board. Amove of a king might change that status. To preserve the fact that a particular move has changedthat status, the king chg
ag has been introduced. Another
ag for un-doing moves is pawn chg. Ifa pawn reaches the base line of the opponent, the pawn can be exchanged to a knight or a queen.The pawn chg
ag indicates such an exchange. Although a board knows about the last move, theprevious move is kept in the move object. 1class MOVE is 2attr from, to : POS; 3attr isk castle : BOOL; 4attr isq castle : BOOL; 5attr isquit : BOOL; 6attr piece : $PIECE; 7attr kills : $PIECE; 8attr king chg : BOOL; 9attr pawn chg : BOOL; 10attr prev move : MOVE;The MOVE class o�ers two create routines and is thus a good example of overloading. The �rstversion of the create routine, accepts a move in standard chess notation, e.g. \a2-a3". For this versionof create it does not matter, whether the board actually has a piece on the from position since thisis checked later on. In contrast to the �rst version of the create routine, the second version dealswith an existing $PIECE object. Since a piece has an actual position, only the destination positionis required as parameter.This code of the create routine is written rather fail safe. The given string is checked forconforming syntax. If there is an error, the from and to position of the move object remain void.The �rst branch of the if{elsif cascade handles the q-castle (lines 21{28). The second branchhandles the k-castle (lines 29{36) Then the \quit" case is considered. The fourth case (lines 39{47)and �fth case (lines 48{57) both deal with ordinary moves: They check for syntax \<p1>-<p2>"and test whether p1 and p2 refer to existing positions of the board. The string class o�ers a substringroutine which has two parameters. It is used for example in line 40. The �rst argument refers tothe starting position of the substring, the second argument speci�es the number of characters to bereturned. The di�erence between the fourth and the �fth case is that in the latter the the separating\-" can be omitted so that \<p1><p2>" is accepted. 11create(move:STR, white to move:BOOL):SAME is 12ret ::= new; 13ret.isk castle := false; 14ret.isq castle := false; 15ret.isquit := false; 16ret.piece := void; 17ret.kills := void; 25

18ret.king chg := false; 19ret.pawn chg := false; 20if void(move) then return ret; end; 21if move.size >= 5 and move.head(5) = "o-o-o" then 22ret.from := #POS; ret.to := #POS; 23ret.isq castle := true; 24if white to move then 25ret.from.pos := "e1"; ret.to.pos := "c1"; 26else 27ret.from.pos := "e8"; ret.to.pos := "c8"; 28end; 29elsif move.size >= 3 and move.head(3) = "o-o" then 30ret.from := #POS; ret.to := #POS; 31ret.isk castle := true; 32if white to move then 33ret.from.pos := "e1"; ret.to.pos := "g1"; 34else 35ret.from.pos := "e8"; ret.to.pos := "g8"; 36end; 37elsif move.size >= 4 and move.head(4) = "quit" then 38ret.isquit := true; 39elsif move.size >= 5 then 40str from ::= move.substring(0,2); 41if POS::check pos(str from) then 42ret.from := #POS; ret.from.pos := str from; 43end; 44str to ::= move.substring(3,2); 45if POS::check pos(str to) then 46ret.to := #POS; ret.to.pos := str to; 47end; 48elsif move.size >=4 then 49str from ::= move.substring(0,2); 50if POS::check pos(str from) then 51ret.from := #POS; ret.from.pos := str from; 52end; 53str to ::= move.substring(2,2); 54if POS::check pos(str to) then 55ret.to := #POS; ret.to.pos := str to; 56end; 57end; 58return ret; 59end; -- of first version of createThe routine create is overloaded in class MOVE, i.e., there are two routines called create thatare distinguished by their list of formal parameters and/or return parameter. Whereas the createroutine given above expects a string and a boolean value as parameters, the second create routineexpects a piece and a (target) position. 26

60create(piece:$PIECE, to:POS):SAME is 61ret ::= new; 62ret.isk castle := false; 63ret.isq castle := false; 64ret.isquit := false; 65ret.from := #POS; 66ret.from.pos := piece.position.str; 67ret.to := #POS; 68ret.to.pos := to.str; 69ret.piece := void; 70ret.kills := void; 71ret.king chg := false; 72ret.pawn chg := false; 73if piece.isking then 74if piece.iswhite then 75if piece.position = "e1" and to = "c1" then 76ret.isq castle := true; 77end; 78if piece.position = "e1" and to = "g1" then 79ret.isk castle := true; 80end; 81else 82if piece.position = "e8" and to = "c8" then 83ret.isq castle := true; 84end; 85if piece.position = "e8" and to = "g8" then 86ret.isk castle := true; 87end; 88end; 89end; 90return ret; 91end; -- of second version of create 92isok:BOOL is 93return ~void(from) and ~void(to); 94end; 95end; -- of class MOVE
27

7 Class POSThe main secret of class POS is the internal addressing scheme for a chess board. From outside,board positions are addressed in standard chess notation, e.g., the position in the lower left corneris called \a1". Internally, POS numbers the positions row-wise from 0 to 63 which eases addressingcomputations. The correspondence is shown in the following tables:External addressing scheme:column 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' rowa8 b8 c8 d8 e8 f8 g8 h8 '8'a7 b7 c7 d7 e7 f7 g7 h7 '7'a6 b6 c6 d6 e6 f6 g6 h6 '6'a5 b5 c5 d5 e5 f5 g5 h5 '5'a4 b4 c4 d4 e4 f4 g4 h4 '4'a3 b3 c3 d3 e3 f3 g3 h3 '3'a2 b2 c2 d2 e2 f2 g2 h2 '2'a1 b1 c1 d1 e1 f1 g1 h1 '1'Internal addressing scheme:column 0 1 2 3 4 5 6 7 row56 57 58 59 60 61 62 63 748 49 50 51 52 53 54 55 640 41 42 43 44 45 46 47 532 33 34 35 36 37 38 39 424 25 26 27 28 29 30 31 316 17 18 19 20 21 22 23 28 9 10 11 12 13 14 15 10 1 2 3 4 5 6 7 0POS is capable of returning all board positions which are reachable from an POS object's position bymoves in various directions. The way! iter is used for this purpose. Possible directions are vertical,horizontal, diagonal, knight jumps and so on.POS is declared to be a subtype of $IS EQfPOSg. The $IS EQ type is speci�ed in the library �leLibrary/abstract.sa. The essential meaning of this subtype declaration is that POS is required to o�era routine with the signature is eq(x:SAME):BOOL. The existence of this routine is checked duringcompilation. The analogous situation holds for $STR. This abstract type requires the existence of aroutine str:STR that prints out a reasonable string representation of the object.In lines 2{4 is an example of a rather weird form of constant declaration. All together 12 integerconstants are declared. The �rst one (knight) is assigned the value 1, the next one (diag up right) isset to 2 and so on. This form of constant declaration only works for integers and requires that thereis no type identi�er INT. Bothknight:INT:=1, ...and knight := 'a', ...result in errors at compile time.The internal address of a position is stored in the private attribute absolute declared in line 8. 1class POS < $IS EQfPOSg, $STR is 2const knight := 1, diag up right, diag up left, diag dn right, diag dn left, 3horizontal right, horizontal left, vertical up, vertical dn,28

4north two, south two, ring; 5-- The correct funtionality relies on the fact that diag up right to 6-- vertical dn are in that order. The implementation of $PIECE::move! may 7-- depend on it. 8private attr absolute : INT; 9create:SAME is 10return new; 11end;The following routines are used to handle \internal" addresses of board positions. 12private pos(position:INT) is -- write routine 13absolute := position; 14end; 15pos:INT is -- reader routine 16return absolute; 17end; 18private row(p:POS):INT is 19return (p.pos/8); 20end; 21private column(p:POS):INT is 22return (p.pos%8); 23end;The following routines represent the \external" addressing scheme.We discuss the routine check pos �rst. The routine digit value, which is implemented in theCHAR library class (see �le Library/char.sa for details) returns the value of a character. For example'7'.digit value=7. Note, that '\0'.int=0 and '7'.int /= 7.The routine pos in line 39 is a good example for overloading. For dealing with the internaladdressing scheme, there is already a routine called pos in line 12. That routine takes an INT as itsparameter. In contrast: the following routine, accepts a STR parameter. The compiler determines,depending on the arguments which are present at a call, which of these routines has to be called.Because of this mechanism, there cannot be two routines that have the same parameters and aredi�erent in their return types. If such a pair would be allowed, the compiler could not �gure outfor example which type an attribute with an implicit type declaration (e.g. A::routine) is meant tohave.Routine pos is the �rst occurrence of a pre condition in this tutorial, see line 40. The precondition is a boolean expression that is checked on each call of the routine. If it is evaluated totrue, the routine gets executed. Otherwise, it is a fatal error. Analogously, a post condition couldhave been declared. Note, that pre conditions are not checked by default. Checking can be invokedwith the compiler
ag -pre <classes> A frequent source of syntx error is that there may not be asemicolon behind a pre-condition because it is part of the header. 24check pos(position:STR):BOOL is 25str : STR := position.lower; 26if str.size /= 2 then 27return false; 28end; 29row : INT := str.char(1).digit value - 1; 30if row < 0 or row > 7 then 29

31return false; 32end; 33col : CHAR := str.char(0); 34if col < 'a' or col > 'h' then 35return false; 36end; 37return true; 38end; -- of check pos 39pos(position:STR) -- overloaded writer routine 40pre check pos(position) 41is 42str : STR := position.lower; 43row : INT := str.char(1).digit value - 1; 44col : CHAR := str.char(0); 45case col 46when 'a' then absolute := 0; 47when 'b' then absolute := 1; 48when 'c' then absolute := 2; 49when 'd' then absolute := 3; 50when 'e' then absolute := 4; 51when 'f' then absolute := 5; 52when 'g' then absolute := 6; 53when 'h' then absolute := 7; 54end; 55absolute := absolute + 8 � row; 56end; -- of pos(STR) 57str:STR is 58ret ::= #STR; 59ret := ret + column; 60ret := ret + row; 61return ret; 62end;The routine row in line 63 is overloaded as well. The compiler can di�erentiate between row(INT):INTof line 18 and row:CHAR because of the di�erent number of parameters.In the statement in line 64 the result of the computation is an integer value. The library classINT o�ers two ways to convert integers into characters. The di�erence is best shown by means ofan example. Consider the integer value 0. The conversion done by digit char returns the character'0'. The other conversion is done by a routine called char which has the result that 0.char = '\0'.The routine str(POS) is used internally to map an internal address, which might be di�erentfrom self, to standard chess notation. 63row:CHAR is 64return ((absolute/8) + 1).digit char; 65end; 66column:CHAR is 67col ::= absolute%8; 68case col 69when 0 then return 'a'; 70when 1 then return 'b'; 30

71when 2 then return 'c'; 72when 3 then return 'd'; 73when 4 then return 'e'; 74when 5 then return 'f'; 75when 6 then return 'g'; 76when 7 then return 'h'; 77end; 78end; 79private str(pos:INT):STR is 80ret ::= #STR; 81col ::= pos % 8; 82row ::= (pos / 8) + 1; 83case col 84when 0 then ret := "a"; 85when 1 then ret := "b"; 86when 2 then ret := "c"; 87when 3 then ret := "d"; 88when 4 then ret := "e"; 89when 5 then ret := "f"; 90when 6 then ret := "g"; 91when 7 then ret := "h"; 92end; 93ret := ret + row; 94return ret; 95end; -- of str(INT)The following routines return neighboring addresses in standard chess notation. If there is no existingneighboring position for a given direction, the current address is returned. 96east:STR is 97ret ::= absolute + 1; 98if ret/8 /= absolute/8 then ret := absolute; end; 99return str(ret); 100end; 101west:STR is 102ret ::= absolute - 1; 103if ret/8 /= absolute/8 then ret := absolute; end; 104return str(ret); 105end; 106north:STR is 107ret ::= absolute + 8; 108if ret > 63 then ret := absolute; end; 109return str(ret); 110end; 111south:STR is 112ret ::= absolute - 8; 113if ret < 0 then ret := absolute; end; 114return str(ret); 115end; 31

In addition to routines that return the address of neighboring positions in horizontal and verticaldirections, there are four routines for neighboring positions on the diagonal axes. 116northeast:STR is 117err : BOOL := false; 118ret ::= absolute + 8; 119if ret > 63 then ret := absolute; err := true; end; 120if ~err then 121ret := absolute + 1; 122if ret/8 /= absolute/8 then ret := absolute; err := true; end; 123end; 124if ~err then 125ret := absolute + 9; 126end; 127return str(ret); 128end; 129northwest:STR is 130err : BOOL := false; 131ret ::= absolute + 8; 132if ret > 63 then ret := absolute; err := true; end; 133if ~err then 134ret := absolute - 1; 135if ret/8 /= absolute/8 then ret := absolute; err := true; end; 136end; 137if ~err then 138ret := absolute + 7; 139end; 140return str(ret); 141end; 142southeast:STR is 143err : BOOL := false; 144ret ::= absolute - 8; 145if ret < 0 then ret := absolute; err := true; end; 146if ~err then 147ret := absolute + 1; 148if ret/8 /= absolute/8 then ret := absolute; err := true; end; 149end; 150if ~err then 151ret := absolute - 7; 152end; 153return str(ret); 154end; 155southwest:STR is 156err : BOOL := false; 157ret ::= absolute - 8; 158if ret < 0 then ret := absolute; err := true; end; 159if ~err then 160ret := absolute - 1; 161if ret/8 /= absolute/8 then ret := absolute; err := true; end; 162end; 163if ~err then 32

164ret := absolute - 9; 165end; 166return str(ret); 167end;Here are some equality tests. The �rst one is required because POS has been declared to be a subtypeof $IS EQfPOSg. The Sather compiler considers a boolean expression p=q to be syntactic sugar forthe routine call p.is eq(q). Analogously, p/=q is taken to be p.is neq(q). If these expressions arefound somewhere in the code, the corresponding routine has to be provided. 168is eq(p:SAME):BOOL is 169return (absolute = p.pos); 170end; 171is neq(p:STR):BOOL is 172return ~is eq(p); 173end; 174is eq(p:STR):BOOL is 175tmp ::= #POS; 176tmp.pos := p; 177return is eq(tmp); 178end;The iter way! returns all reachable positions on an otherwise empty board in the speci�ed direction.Since this is the �rst occurrence of an iter declaration, some explanations are appropriate. Itersare declared similar to routines. The di�erence is that their name has to end with an exclamationpoint \!". Iters may only be called from within loop statements.For each textual iter call, en execution state is maintained. When a loop is entered, the executionstate of all iter calls is initialized. When an iter is called for the �rst time, the expressions for selfand for each argument are evaluated3.When the iter is called, it executes the statements in its body in order. If it executes a yieldstatement, control and a value are returned to the caller. Subsequent calls to the iter resumeexecution with the statement following the yield statement. If an iter executes a quit statement orreaches the end of its body, control passes immediately to the end of the innermost enclosing loopstatement in the caller and no value is returned from the iter.The code in lines 180{183 is evaluated only at the time of the �rst invocation. If there are twodi�erent textual calls of way!, each one has a separate state and each will execute these code linesat the �rst invocation.In line 182 the starting position of the stepping is initialized. Note that this assignment is actuallya call of the private routine pos(INT). The compiler considers this expression to be equivalent tostepped.pos(absolute).The loop in lines 184{348 is the main part of the iter. From inside the loop potential positionsare returned to the caller. If no more positions are available, then a \quit" ends this loop, ends theiter and ends the loop surrounding the call to the iter.Since most branches of the case statement are similar only the �rst case (lines 186{198) isexplained in some detail. Later we will point out the di�erences of the branches for knight, pawn,and king moves. From the current position which is kept in stepped, the northeast neighbor is3An exception are arguments which have a trailing exclamation mark themselves. These are evaluated for everycall of the iter. But since this kind of argument is not used in Sather Tutorial Chess, the reader is referred to theSather Manual [10] for further discussion. 33

checked. If this position is still on the board it is returned to the caller. This is done in line 192 bythe yield statement.After the caller has processed the new position, the next call to the iter will resume after line 192.The status is still available, i.e., stepped keeps the position, which has been returned previously. Sincethe only statement of the loop is this case, the iter will next re-execute the case and automaticallyre-enter this branch. (Note, the direction is not re-evaluated and remains unchanged.)If the end of the board has been reached by moving into the northeast direction, the iter cannotreturn further valid position. Hence, the iter quits in the else branch (line 194 or 196). It does notreturn any position, and immediately terminates the loop in the caller. 179way!(direction:INT):POS is 180ret, stepped : POS; 181stepped := #POS; 182stepped.pos := absolute; -- starting position 183count : INT := 0; 184loop 185case direction 186when diag up right then 187if stepped.column < 'h' then 188if stepped.row < '8' then 189stepped.pos := stepped.northeast; 190ret := #POS; 191ret.pos := stepped.pos; 192yield ret; 193else 194quit; 195end; 196else 197quit; 198end; 199when diag up left then 200if stepped.column > 'a' then 201if stepped.row > '1' then 202stepped.pos := stepped.southwest; 203ret := #POS; 204ret.pos := stepped.pos; 205yield ret; 206else 207quit; 208end; 209else 210quit; 211end; 212when diag dn right then 213if stepped.column < 'h' then 214if stepped.row > '1' then 215stepped.pos := stepped.southeast; 216ret := #POS; 217ret.pos := stepped.pos; 218yield ret; 219else 34

220quit; 221end; 222else 223quit; 224end; 225when diag dn left then 226if stepped.column > 'a' then 227if stepped.row < '8' then 228stepped.pos := stepped.northwest; 229ret := #POS; 230ret.pos := stepped.pos; 231yield ret; 232else 233quit; 234end; 235else 236quit; 237end; 238when vertical up then 239if stepped.row < '8' then 240stepped.pos := stepped.north; 241ret := #POS; 242ret.pos := stepped.pos; 243yield ret; 244else 245quit; 246end; 247when vertical dn then 248if stepped.row > '1' then 249stepped.pos := stepped.south; 250ret := #POS; 251ret.pos := stepped.pos; 252yield ret; 253else 254quit; 255end; 256when horizontal right then 257if stepped.column < 'h' then 258stepped.pos := stepped.east; 259ret := #POS; 260ret.pos := stepped.pos; 261yield ret; 262else 263quit; 264end; 265when horizontal left then 266if stepped.column > 'a' then 267stepped.pos := stepped.west; 268ret := #POS; 269ret.pos := stepped.pos; 270yield ret; 35

271else 272quit; 273end; -- way! will be continued ...The branch of the case statement that computes the new position of a knight in lines 274{296 issomewhat di�erent. Instead of using a current position (called stepped), the new positions are alwayscomputed relative to the starting position.A white pawn (case north two, lines 297{307) may move one or to steps to the north dependingon the staring row. A black pawn (case south two, lines 308{318) may move one or to steps to thesouth depending on the staring row. A king (case ring, lines 319{342) can reach all 8 positions onthe ring around his staring position. 274when knight then 275ret := #POS; 276case count 277when 0 then ret.pos := absolute + 6; 278when 1 then ret.pos := absolute - 6; 279when 2 then ret.pos := absolute + 10; 280when 3 then ret.pos := absolute - 10; 281when 4 then ret.pos := absolute + 15; 282when 5 then ret.pos := absolute - 15; 283when 6 then ret.pos := absolute + 17; 284when 7 then ret.pos := absolute - 17; 285else 286quit; 287end; 288count := count + 1; 289if ret.pos <= 63 and ret.pos >= 0 290and column(ret) <= column(self) + 2 291and column(self) - 2 <= column(ret) 292and row(ret) <= row(self) + 2 293and row(self) - 2 <= row(ret) 294then 295yield ret; 296end; 297when north two then 298if count < 2 and stepped /= stepped.north then 299stepped.pos := stepped.north; 300ret := #POS; 301ret.pos := stepped.pos; 302count := count + 1; 303yield ret; 304if row /= '2' then quit; end; 305else 306quit; 307end; 308when south two then 309if count < 2 and stepped /= stepped.south then 310stepped.pos := stepped.south; 311ret := #POS; 36

312ret.pos := stepped.pos; 313count := count + 1; 314yield ret; 315if row /= '7' then quit; end; 316else 317quit; 318end; 319when ring then 320ret := #POS; 321case count 322when 0 then ret.pos := north; 323when 1 then ret.pos := south; 324when 2 then ret.pos := east; 325when 3 then ret.pos := west; 326when 4 then ret.pos := northeast; 327when 5 then ret.pos := northwest; 328when 6 then ret.pos := southeast; 329when 7 then ret.pos := southwest; 330else 331quit; 332end; 333count := count + 1; 334if ret.pos <= 63 and ret.pos >= 0 335and ret.pos /= absolute 336and column(ret) <= column(self) + 1 337and column(self) - 1 <= column(ret) 338and row(ret) <= row(self) + 1 339and row(self) - 1 <= row(ret) 340then 341yield ret; 342end; 343else 344-- The else case was put in for reasons of 345-- fail safe program development. 346raise "POS:way! invalid casenn"; 347end; -- of case 348end; -- of loop 349end; -- of way! 350end; -- of class POS
37

8 Class BOARDThe two array whitexpieces and blackpieces store the pieces in the game. A piece is an object oftype $PIECE which is explained below. Since both arrays are private, it is a secret of the boardimplementation in which way pieces are stored.The board stores information about which color is to play (white to play) and about the lastmove (last move). Moreover, the board knows whether the white or black king has been moved.This information is necessary, because castle moves are only allowed if the king has not been movedbefore. 1class BOARD is 2private attr whitepieces : ARRAYf$PIECEg; 3private attr blackpieces : ARRAYf$PIECEg; 4attr white to play : BOOL; 5attr last move : MOVE; 6attr white K moved : BOOL; 7attr black K moved : BOOL; 8create:SAME is 9ret::=new; 10ret.set up; 11return ret; 12end;The private routine set up initializes the board. 16 white and 16 black pieces are placed onto theboard, the �rst player is set to be white, both kings have not moved. 13private set up is 14position ::= #POS; 15white to play := true; 16-- set up white pieces 17whitepieces := #(16); 18position.pos := "a2"; 19loop i::=0.upto!(7); 20whitepieces[i] := #PAWN(position,PIECE::white); 21position.pos := position.east; 22end; 23position.pos := "a1"; whitepieces[8] := #ROOK(position,PIECE::white); 24position.pos := "b1"; whitepieces[9] := #KNIGHT(position,PIECE::white); 25position.pos := "c1"; whitepieces[10] := #BISHOP(position,PIECE::white); 26position.pos := "d1"; whitepieces[11] := #QUEEN(position,PIECE::white); 27position.pos := "e1"; whitepieces[12] := #KING(position,PIECE::white); 28position.pos := "f1"; whitepieces[13] := #BISHOP(position,PIECE::white); 29position.pos := "g1"; whitepieces[14] := #KNIGHT(position,PIECE::white); 30position.pos := "h1"; whitepieces[15] := #ROOK(position,PIECE::white); 31-- set up black pieces 32blackpieces := #(16); 33position.pos := "a7"; 34loop i::=0.upto!(7); 35blackpieces[i] := #PAWN(position,PIECE::black); 36position.pos := position.east; 38

37end; 38position.pos := "a8"; blackpieces[8] := #ROOK(position,PIECE::black); 39position.pos := "b8"; blackpieces[9] := #KNIGHT(position,PIECE::black); 40position.pos := "c8"; blackpieces[10] := #BISHOP(position,PIECE::black); 41position.pos := "d8"; blackpieces[11] := #QUEEN(position,PIECE::black); 42position.pos := "e8"; blackpieces[12] := #KING(position,PIECE::black); 43position.pos := "f8"; blackpieces[13] := #BISHOP(position,PIECE::black); 44position.pos := "g8"; blackpieces[14] := #KNIGHT(position,PIECE::black); 45position.pos := "h8"; blackpieces[15] := #ROOK(position,PIECE::black); 46white K moved := false; 47black K moved := false; 48last move := void; 49MAIN::display.redraw(self.str); 50end;Several iters are needed to return all pieces on the board that ful�ll a certain condition.The �rst iter whitepiece! returns all white pieces, which are still alive. For this purpose, itmakes use of the iter elt! in line 52. The iter is provided by the ARRAY library class (see �leLibrary/array.sa). If elt! yields an element, this element is yield to the caller if it ful�lls the conditions.However, if elt! quits, this loop is terminated as well, no element is returned to the caller. 51private whitepiece!:$PIECE is 52loop p ::= whitepieces.elt!; 53if ~void(p) and p.alive then yield p; end; 54end; 55end; 56private blackpiece!:$PIECE is 57loop 58p ::= blackpieces.elt!; 59if ~void(p) and p.alive then yield p; end; 60end; 61end;The nesting depth of iters can be increased even further, as shown in my piece below: Withinwhitepiece! the iter elt! is used. An element found by elt! is returned via whitepiece! and thenreturned to the caller of my piece!. Similarly, a quit of elt!, induces a quit of whitepiece!, which inturn results in a quit of my piece!. The latter terminates the loop, that must surround every call ofmy piece! in the caller. 62my piece!:$PIECE is 63if white to play then 64loop 65yield whitepiece!; 66end; 67else 68loop 69yield blackpiece!; 70end; 71end; 72end; 39

73private opp piece!:$PIECE is 74if white to play then 75loop 76yield blackpiece!; 77end; 78else 79loop 80yield whitepiece!; 81end; 82end; 83end; 84piece!:$PIECE is 85loop 86yield whitepiece!; 87end; 88loop 89yield blackpiece!; 90end; 91end;One of the secrets of the BOARD implementation is the way pieces are stored. For internal purposesit is necessary, to �nd out at which position of the arrays a particular piece is stored.In the private routine index we use a post condition. To assure that the piece p is (dead oralive) on board we test whether the return value result is set appropriately, i.e., whether result isbetween 0 and 15 upon return. Note, that there may not be a semicolon behind a post condition.The conditions get checked before the routine returns. To access the value that will be returned,Sather provides the prede�ned results expression. The type of results is determined by the resulttype of the routine. If checking is desired, it has to be activated with the compiler flag -post<classes>.The loop (line 97{104) is an excellent example of a loop that is controlled by multiple iters. The�rst two iters are de�ned in the ARRAY library class. The iter ind! (line 98) returns the existingindexes of array. As explained above, elt! (line 99) returns the corresponding array elements. For eachiteration of the loop the following condition holds: whitepieces[i] = q. Both iters can be expected toyield the same number of times. If the end of the array is encountered, the call to ind! will terminatethe loop; elt! will not be called.However, if the desired piece is found, it is not necessary, to continue the search. To terminatethe loop immediately, the prede�ned iter break! is called in line 102, which will always execute aquit statement.The same search is implemented di�erently in the else branch (line 106). Here we use the libraryroutine index of provided in the ARRAY class. (See �le Library/array.sa for details.) 92private index(p:$PIECE):INT 93post result.is bet(0,15) 94is 95ret : INT := -1; 96if p.iswhite then 97loop 98i::= whitepieces.ind!; 99q::= whitepieces.elt!; 100if p.position = q.position then 40

101ret := i; 102break!; 103end; 104end; -- of loop 105else 106ret := blackpieces.index of(p); 107end; 108return ret; 109end; -- private indexTo check whether there is a piece on a given position of the board the following routines are provided:110has piece(pos:POS):BOOL is 111ret : BOOL := false; 112loop p::=piece!; 113if p.position = pos then ret := true; end; 114end; 115return ret; 116end; 117has white piece(pos:POS):BOOL is 118ret : BOOL := false; 119loop p::=whitepiece!; 120if p.position = pos then ret := true; end; 121end; 122return ret; 123end; 124has black piece(pos:POS):BOOL is 125ret : BOOL := false; 126loop p::=blackpiece!; 127if p.position = pos then ret := true; end; 128end; 129return ret; 130end; 131has my piece(pos:POS):BOOL is 132if white to play then 133return has white piece(pos); 134else 135return has black piece(pos); 136end; 137end;The following two routines return a pointer to a piece at a given position of the board. The routinecomes in two versions. The latter can process POS arguments by reducing them to STR parameterswhich are then processed by the �rst version. 138piece(str:STR):$PIECE is 139ret : $PIECE; 140position ::= #POS; 141position.pos := str; 142loop p::=piece!; 41

143if p.position = position then ret := p; end; 144end; 145return ret; 146end; 147piece(p:POS):$PIECE is 148return piece(p.str); 149end;For interface purposes, a board can represent the status of all pieces in an ASCII representation.The character array is used to transmit the board situation to the ASCII DISPLAY and via theX DISPLAY to the external class XCW. 150str:ARRAYfCHARg is 151ret::=#ARRAYfCHARg(65); 152loop 153ret[0.upto!(63)] := ' '; 154end; 155ret[64] := 'n0'; 156loop p::=self.whitepiece!; 157if ~void(p) and p.alive then 158ret[p.position.pos] := p.�g; 159end; 160end; 161loop p::=self.blackpiece!; 162if ~void(p) and p.alive then 163ret[p.position.pos] := p.�g.lower; 164end; 165end; 166return ret; 167end;After these helper routines and iters have been implemented, the central routines are presented.The routine pos in check tests whether a given position could be reached in the next move by theopponent.In this routine there is again a good example of nested iter calls: The �rst loop (line 172{179)considers all pieces of the opponent player. The inner loop (line 173{178) then for each of thesepieces considers target positions of potential moves. (Is is explained later on, what a move is if the
ag for check test is set. Just ignore the
ag for the time being.)The call piece.move!() in line 174is a dispatched iter. See page 24 for an alternative implemen-tation that works with earlier releases of the Sather 1.0 compiler. 168pos in check(p:POS):BOOL is 169ret : BOOL; 170pos : POS; 171ret := false; 172loop piece::=opp piece!; 173loop 174pos :=piece.move!(self, PIECE::for check test); 175if p=pos then 176ret := true; 42

177break!; 178end; 179end; 180if ret then break!; end; 181end; 182return ret; 183end; -- of pos in checkThe routine my king isin check returns true if the king of the current color (white to play) is in check.After an otherwise valid move of a piece, the own king is not allowed to be exposed and to be incheck. 184my king isin check:BOOL is 185piece : $PIECE; 186loop 187piece := my piece!; 188until!(piece.isking); 189end; 190return pos in check(piece.position); 191end; -- of my king isin checkBoolean expressions are evaluated with a short-circuit semantics. For an and this means that thesecond operand is only evaluated if the �rst operand was true. For an or the second operand isevaluated only if the �rst one was false. In routine check n apply move we make use of this to ensurethat a move is applied to a board only if it is valid.Routine move valid so far checks whether a given move is valid with respect to the current stateof the board. The only circumstance which is not checked is whether the move would expose theown king to be in check. 192check n apply move(move:MOVE):BOOL is 193return (move valid so far(move) and apply move with own check test(move)); 194end; -- of check n apply move 195private move valid so far(move:MOVE):BOOL 196pre ~move.isquit 197is 198ret : BOOL := false; 199-- A valid move must start at a position where one of my pieces is.... 200if has my piece(move.from) then 201p::=piece(move.from); 202-- ... and it must be a valid move with respect to the mobility of the 203-- piece at the current state of the board. 204if p.valid move(move.to,self) then 205ret := true; 206-- Since the move seems to be valid, the moving piece is stored 207-- in the move object. That eases future access to the moving piece 208-- and allows for un-doing of moves. 209move.piece := p; 210end; 211end; 212return ret; 43

213end; -- of move valifThe move is applied to the board in routine apply move with own check test. The routine returnsfalse, and leaves the state of the board unchanged, if an otherwise valid move would expose the ownking to be in check.First of all in lines 221-241 it is checked whether the move would kill an opponent piece. Thenormal circumstances for this are that the moving piece moves to a position that is occupied by anopponent piece. Chess has one special rule due to which a piece can be killed without moving to itsformer position. It is called an \en passant" move. This special case can only occur if two pawnsare involved. My pawn can kill an opponent pawn that sits immediately east or west of my pawn,if the other pawn has done an initial double move in the immediately preceding move. (That's whythe last move is considered to be part of the state of a board.). If these conditions hold, my pawncan move diagonal so that his new position is \behind" the opponent pawn.Special action is required in case of castle moves. A castle move works as follows. If the kingand a rook both are in their initial positions, if there is no piece in between them, if the king hasnot been moved in the game, and if the two positions next to the king in the direction toward therook are not in check, then the king moves two positions towards the rook and then the rook jumpsover the king and is put immediately next to the king. A castle move is a k-castle, if the king movesto the rook whose initial position is closer. Otherwise it is called q-castle, because due to the initialqueen position, the distance to the rook is larger. Chess only allows castle moves, if the king has notbeen moved earlier in the game. The board keeps track of king moves in the two
ags white K movedand black K moved. To enable un-doing of moves, a move knows whether it causes a change of aK moved
ag. See lines 254{268 for the K moved
ags and lines 269{286 for the implementation ofcastle moves.Another special rule in chess allows to exchange a pawn against a queen or a knight when itreaches the base line of the opponent. Theoretically, a player could have 9 queens. This rule isimplemented in lines 254{268. 214apply move with own check test(move:MOVE):BOOL 215pre ~move.isquit and move valid so far(move) and ~void(move.piece) 216is 217ret : BOOL := true; -- Will be false if the move is invalid due to 218-- exposure of own "king in chess" 219p:$PIECE:=move.piece; -- to be moved 220r:$PIECE; -- may be killed 221-- Case 1: Kill with normal move 222r := piece(move.to); -- If it exists, it can only be opponent piece. 223-- Otherwise the move would not be valid. 224-- Case 2: En Passant. 225if void(r) and ~void(last move) and p.ispawn 226and ~void(last move.piece) and last move.piece.ispawn 227and (last move.to = p.position.east 228or last move.to = p.position.west) 229then 230if (p.iswhite and white to play 231and p.position.row = '5' and last move.from.row = '7') 232or (~p.iswhite and ~white to play 233and p.position.row = '4' and last move.from.row = '2') 234then 235r := last move.piece; 44

236end; 237end; 238if ~void(r) then 239move.kills := r; 240r.alive := false; 241end; 242p.update position(move.to); 243-- Deal with king moves. 244if p.isking then 245if white to play and ~white K moved then 246white K moved := true; 247move.king chg := true; 248end; 249if ~white to play and ~black K moved then 250black K moved := true; 251move.king chg := true; 252end; 253end; 254-- Deal with pawn exchange. 255if (p.ispawn and p.iswhite and white to play and p.position.row='8') 256or (p.ispawn and ~p.iswhite and ~white to play and p.position.row='1') 257then 258case MAIN::player.ask pawn xchg 259when 'Q' then 260whitepieces[index(p)] := #QUEEN(p.position,PIECE::white); 261when 'K' then 262whitepieces[index(p)] := #KNIGHT(p.position,PIECE::white); 263else 264-- Do it fails safe. 265raise "BOARD:apply move:pawn exchange invalid case entrynn" 266end; 267move.pawn chg := true; 268end; 269-- Deal with castles. 270if move.isq castle then 271if white to play then 272rook ::= piece("a1"); 273rook.update position("d1"); 274else 275rook ::= piece("a8"); 276rook.update position("d8"); 277end; 278elsif move.isk castle then 279if white to play then 280rook ::= piece("h1"); 281rook.update position("f1"); 282else 283rook ::= piece("h8"); 284rook.update position("f8"); 285end; 286end; 45

287move.prev move := last move; 288last move := move; 289-- Check whether my king is in check after application of the move 290if my king isin check then 291-- Although otherwise correct this is an invalid move. 292-- The original state of the board is reconstructed by calling 293-- unapply move. 294ret := false; 295unapply move; 296end; 297white to play := ~white to play; 298return ret; 299end; -- of apply moveThe routine unapply move uses the information that is stored in last move to replay the move, i.e.,restore the board to the state it had before the application of that move. It depends on the factthat last move is a valid move except that the king might be in check afterwards. 300unapply move is 301-- Restore killed opponent piece 302if ~void(last move.kills) then 303last move.kills.alive := true; 304end; 305-- Restore pawn exchange 306if last move.pawn chg then 307newpiece ::= piece(last move.piece.position); 308whitepieces[index(newpiece)] := last move.piece; 309end; 310-- Restore move 311last move.piece.update position(last move.from); 312if last move.king chg then 313if white to play then 314white K moved := false; 315else 316black K moved := false; 317end; 318end; 319-- Restore castle 320if last move.isq castle then 321if white to play then 322rook ::= piece("d1"); 323rook.update position("a1"); 324else 325rook ::= piece("d8"); 326rook.update position("a8"); 327end; 328elsif last move.isk castle then 329if white to play then 330rook ::= piece("f1"); 331rook.update position("h1"); 46

332else 333rook ::= piece("f8"); 334rook.update position("h8"); 335end; 336end; 337last move := last move.prev move; 338white to play := ~white to play; 339end; -- of unapply moveFor the automatic player, there must be a way to assign a worth to a board. This is done as follows.Compute the sum of the worths of all white pieces on the board. Similar, compute the worth of allblack pieces. The value of the board is the ratio of the two values.The routine board value returns a
oating point value, FLT, which is speci�ed in the FLT library.(See �le Library/
t.sa for details.)More complex evaluation functions are known and can be used to replace the simple functionboard value. For example, the degree of freedom the pieces have in their movement is an interestingaspect that might be considered in the evaluation function. 340board value:FLT is 341white value : INT := 0; 342black value : INT := 0; 343loop p::= whitepiece!; 344white value := white value + p.worth; 345end; 346loop p::= blackpiece!; 347black value := black value + p.worth; 348end; 349return white value.
t/black value.
t; 350end; -- of board value 351end; -- of class BOARD
47

9 Type $PIECE and Related ClassesFor the pieces the same structure of abstract and concrete types is used that has been used beforefor players and displays. The abstract type $PIECE speci�es the common interface. The concretetype or class PIECE is not used to create objects, but provides common implementations that areinherited by the real pieces (i.e., by classes PAWN, ROOK, KNIGHT, BISHOP, QUEEN, and KING).9.1 Type $PIECE 1type $PIECE is 2alive:BOOL; 3alive(set:BOOL); 4worth:INT; 5iswhite:BOOL; 6position:POS; 7valid move(to:POS,board:BOARD):BOOL; 8update position(position:POS); 9update position(position:STR); 10move!(b:BOARD,to piece:BOOL):POS; 11�g:CHAR; 12ispawn : BOOL; 13isrook : BOOL; 14isking : BOOL; 15end; -- of type $PIECE9.2 Class PIECE 16class PIECE < $PIECE is 17-- General constants that are used throughout the descendants of $PIECE 18const white : BOOL := true; 19const black : BOOL := ~white; 20const ordinary : BOOL := false; 21const for check test : BOOL := true; -- alters behavior of move! 22-- Attributes that are specific to a PIECE 23attr alive : BOOL; 24attr iswhite : BOOL; 25attr position : POS; 26-- Constants that are specific to a PIECE 27const worth : INT := 0; 28const �g : CHAR := ' '; 29const ispawn : BOOL := false; 30const isking : BOOL := false; 31const isrook : BOOL := false; 32create(pos:POS,iswhite:BOOL):SAME is 33ret ::= new; 34ret.position := #POS; 35ret.position.pos := pos.str; 36ret.iswhite := iswhite; 48

37ret.alive := true; 38return ret; 39end; 40private same color(b:BOARD,p:POS):BOOL 41pre b.has piece(p) 42is 43white piece on pos :BOOL:= b.has white piece(p); 44if (iswhite and white piece on pos) 45or (~iswhite and ~white piece on pos) then 46return true; 47else 48return false; 49end; 50end;The following routine valid move checks whether a given move is valid for a given board situationThis is done as follows. For the from position, all valid moves are generated by calling the iter move!in line 53. It is then checked, whether the given move is in the returned set of valid moves. 51valid move(to:POS,board:BOARD):BOOL is 52ret : BOOL := false; 53loop valid to::=move!(board,ordinary); 54if to=valid to then ret:=true; break!; end; 55end; 56return ret; 57end; 58update position(p:POS) is 59position.pos:=p.str; 60end; 61update position(pos:STR) is 62position.pos:=pos; 63end; 64move!(b:BOARD,mode:BOOL):POS is 65raise "PIECE:dummy code (move!) called"; 66end; 67end; -- of class PIECE9.3 Class BISHOPFirst, constants are rede�ned that have values which di�er from those given in the PIECE imple-mentation. The iter move! returns all valid moves given a board with other pieces. The outerloop (lines 75{86) will check the following directions: diag up right, diag up left, diag dn right, anddiag dn left. In the inner loop (lines 76{85) all positions are computed a piece could reach in adirection set by the outer loop. A position returned by way! in line 76 is valid as long as there is noother piece occupying that position.If there is another piece on the position returned by way! this cannot be a piece of the samecolor. However, for a check-test, the occupied position is checked by the moving piece.49

68class BISHOP < $PIECE is 69include PIECE; 70-- Constants that are different from PIECE implementation: 71const worth : INT := 3; 72const �g : CHAR := 'B'; 73move!(b:BOARD,mode:BOOL):POS is 74to : POS; 75loop direction::=POS::diag up right.upto!(POS::diag dn left); 76loop to:=position.way!(direction); 77if ~b.has piece(to) then 78yield to; 79elsif same color(b,to) and mode=ordinary then 80break!; 81else 82yield to; 83break! 84end; 85end; 86end; 87end; -- of move! 88end; -- of class BISHOP9.4 Class ROOKThe implementation of class ROOK is very similar to the code of BISHOP. 89class ROOK < $PIECE is 90include PIECE; 91-- Constants that are different from PIECE implementation: 92const worth : INT := 5; 93const �g : CHAR := 'R'; 94const isrook : BOOL := true; 95move!(b:BOARD,mode:BOOL):POS is 96-- returns all valid moves given a board with other pieces 97to : POS; 98-- This loop will check the following directions: 99-- horizontal right, horizontal left, vertical up, vertical dn 100loop direction::=POS::horizontal right.upto!(POS::vertical dn); 101loop to:=position.way!(direction); 102if ~b.has piece(to) then 103yield to; 104elsif same color(b,to) and mode=ordinary then break!; 105else 106yield to; 107break! 108end; 109end; 110end; 111end; -- of move! 50

112end; -- of class ROOK9.5 Class QUEENThe implementation of class QUEEN is very similar to the code of BISHOP. 113class QUEEN < $PIECE is 114include PIECE; 115-- Constants that are different from PIECE implementation: 116const worth : INT := 9; 117const �g : CHAR := 'Q'; 118move!(b:BOARD,mode:BOOL):POS is 119-- returns all valid moves given a board with other pieces 120to : POS; 121-- This loop will check the following directions: 122-- diag up right, diag up left, diag dn right, diag dn left 123-- horizontal right, horizontal left, vertical up, vertical dn 124-- It is a combination of rook and bishop. 125loop direction::=POS::diag up right.upto!(POS::vertical dn); 126loop to:=position.way!(direction); 127if ~b.has piece(to) then 128yield to; 129elsif same color(b,to) and mode = ordinary then break!; 130else 131yield to; 132break! 133end; 134end; 135end; 136end; -- of move! 137end; -- of class QUEEN9.6 Class KNIGHTThe body of the loop is slightly di�erent to the one used for ROOK, BISHOP and QUEEN. Above,the inner loop terminated as soon as a position was encountered that was blocked by another piece.For KNIGHT (and later on for KING) all potential position have to be considered. 138class KNIGHT < $PIECE is 139include PIECE; 140-- Constants that are different from PIECE implementation: 141const worth : INT := 3; 142const �g : CHAR := 'N'; 143move!(b:BOARD,mode:BOOL):POS is 144-- returns all valid moves given a board with other pieces 145to : POS; 146loop to:=position.way!(POS::knight); 147if b.has piece(to) and same color(b,to) and mode = ordinary then51

148-- skip this move 149else 150yield to; 151end; 152end; 153end; -- of move! 154end; -- of class KNIGHT9.7 Class PAWNThe iter move! is di�erent for the pawns: In ordinary mode, straight moves, diagonal moves and\en passant" moves must be considered. In check test mode, straight moves are irrelevant. Theimplementation ofmove! is divided in two sections by an if statement. In the then branch (line 164{215) the potential moves of white pawns are computed. The else branch (lines 216{267) is devotedto the black pawns. 155class PAWN < $PIECE is 156include PIECE; 157-- Constants that are different from PIECE implementation: 158const worth : INT := 1; 159const �g : CHAR := 'P'; 160const ispawn : BOOL := true; 161move!(b:BOARD,mode:BOOL):POS is 162-- returns all valid moves given a board with other pieces 163to : POS; 164if iswhite then 165if mode = ordinary then 166-- vertical steps 167loop to:=position.way!(POS::north two); 168if b.has piece(to) then -- position and continued way blocked 169break!; 170end; 171yield to; 172end; 173end; 174-- diag up 175if position.column < 'h' then 176to:=#POS; 177to.pos := position.northeast; 178if mode = for check test then 179yield to; 180else 181if b.has black piece(to) then 182yield to; 183end; 184end; 185end; 186-- diag dn 187if position.column > 'a' then 188to:=#POS; 52

189to.pos := position.northwest; 190if mode = for check test then 191yield to; 192else 193if b.has black piece(to) then 194yield to; 195end; 196end; 197end; 198-- en passant 199if position.row = '5' 200and ~void(b.last move) 201and b.last move.from.row = '7' 202and (b.last move.to = position.east 203or b.last move.to = position.west) 204and ~void(b.last move.piece) and b.last move.piece.ispawn 205then 206if mode = for check test then 207yield b.last move.to; 208else 209to := #POS; 210to.pos := b.last move.to.north; 211yield to; 212end; 213end; 214-- no more moves; 215quit; 216else -- i.e. if isblack 217if mode = ordinary then 218-- vertical steps 219loop to:=position.way!(POS::south two); 220if b.has piece(to) then -- position and continued way blocked 221break!; 222end; 223yield to; 224end; 225end; 226-- diag up 227if position.column > 'a' then 228to:=#POS; 229to.pos := position.southwest; 230if mode = for check test then 231yield to; 232else 233if b.has white piece(to) then 234yield to; 235end; 236end; 237end; 238-- diag dn 239if position.column< 'h' then 53

240to:=#POS; 241to.pos := position.southeast; 242if mode = for check test then 243yield to; 244else 245if b.has white piece(to) then 246yield to; 247end; 248end; 249end; 250-- en passant 251if position.row = '4' 252and ~void(b.last move) 253and b.last move.from.row = '2' 254and (b.last move.to = position.east 255or b.last move.to = position.west) 256and ~void(b.last move.piece) and b.last move.piece.ispawn 257then 258if mode = for check test then 259yield b.last move.to; 260else 261to := #POS; 262to.pos := b.last move.to.south; 263yield to; 264end; 265end; 266quit; 267end; 268end; -- of move! 269end; -- of class PAWN9.8 Class KINGIn the iter move! of the KING up to 8 neighboring positions have to be analyzed. As usual, this isdone by using the way! iter provided by the POS class. Furthermore, the king might be able to do acastle move. If the preconditions of castle moves are ful�lled, the new position of the king is yield.Castle moves are analyzed separately for the white king in lines 290{321 and for the black king inlines 322{352. 270class KING < $PIECE is 271include PIECE; 272-- Constants that are different from PIECE implementation: 273const worth : INT := 100; -- compared to the worth of other pieces 274-- the king has an infinite worth 275const �g : CHAR := 'K'; 276const isking : BOOL := true; 277move!(b:BOARD,mode:BOOL):POS is 278-- returns all valid moves given a board with other pieces 279to : POS; 280loop to:=position.way!(POS::ring); 54

281if b.has piece(to) and same color(b,to) and mode = ordinary then 282-- skip this move 283else 284if mode = for check test or ~b.pos in check(to) then 285yield to; 286end; 287end; 288end; 289-- castle moves 290spot1, spot2, spot3, rook : $PIECE; 291if b.white to play and ~b.white K moved and position = "e1" then 292-- q-castle 293spot1:= b.piece("d1"); spot2:= b.piece("c1"); spot3:= b.piece("b1"); 294rook := b.piece("a1"); 295if ~void(rook) and rook.isrook and rook.alive 296and void(spot1) and void(spot2) and void(spot3) 297then 298to := #POS; 299to.pos := "d1"; 300if ~b.pos in check(to) then 301to.pos := "c1"; 302if ~b.pos in check(to) then 303yield to; 304end; 305end; 306end; 307-- k-castle 308spot1:= b.piece("f1"); spot2:= b.piece("g1"); rook := b.piece("h1"); 309if ~void(rook) and rook.isrook and rook.alive 310and void(spot1) and void(spot2) 311then 312to := #POS; 313to.pos := "f1"; 314if ~b.pos in check(to) then 315to.pos := "g1"; 316if ~b.pos in check(to) then 317yield to; 318end; 319end; 320end; 321end; -- castle moves of white king 322if ~b.white to play and ~b.black K moved and position = "e8" then 323-- q-castle 324spot1:= b.piece("d8"); spot2:= b.piece("c8"); spot3:= b.piece("b8"); 325rook := b.piece("a8"); 326if ~void(rook) and rook.isrook and rook.alive 327and void(spot1) and void(spot2) and void(spot3) 328then 329to := #POS; 330to.pos := "d8"; 331if ~b.pos in check(to) then 55

332to.pos := "c8"; 333if ~b.pos in check(to) then 334yield to; 335end; 336end; 337end; 338-- k-castle 339spot1:= b.piece("f8"); spot2:= b.piece("g8"); rook := b.piece("h8"); 340if ~void(rook) and rook.isrook and rook.alive 341and void(spot1) and void(spot2) 342then 343to := #POS; 344to.pos := "f8"; 345if ~b.pos in check(to) then 346to.pos := "g8"; 347if ~b.pos in check(to) then 348yield to; 349end; 350end; 351end; 352end; -- castle move of black king 353end; -- of move! 354end; -- of class KING

56

10 Suggested Execises� Extend Sather Tutorial Chess to print out all moves of the game in standard chess notationafter the game is over.� If the user decides to have a computer player, the random number generator always is initializedwith the same seed. Extend Sather Tutorial Chess to ask the user for his name. Then fromthis name compute a seed to initialize the random number generator.� Introduce a new subtype of $PLAYER that inherits the implementation of MINMAX. Call thisclass ALPHABETA and implement an Alpha-Beta-Search to improve the expertise of the auto-matic player. You might want to change the routine setup of MAIN to create an ALPHABETAplayer instead of a MINMAX player.� Change POS to be a value class. Instead of having the internal addressing scheme thatnumbers the positions of the board from 0 to 63 in variable absolute, the positions should berepresented with two integers, one for the row number and the other for the number of thecolumn. Obviously, nearly all routines in POS have to be changed to re
ect that choice. Otherthan that the code is relatively independent of the implementation of POS. There might besome problems when POS objects are tested to be void. Furthermore, the routine is the onlyplace outside of board.str that knows about the internal addressing used in POS. Note, thatthe new internal addressing eases the complexity of the computation of neighboring elementsslightly. Instead of divisions and modulo operations, a routine is o� board could be used todeal with all the necessary plausibility testing.� See section 1.4 for further suggestions.

57

References[1] Robert Henderson and Benjamin Zorn. A comparison of object-oriented programming in fourmodern languages. Technical Report CU-CS-641-93, University of Colerado, Boulder, July1993.[2] Chu-Cheow Lim and A. Stolcke. Sather language design and performance evaluation. TechnicalReport TR-91-034, International Computer Science Institute, Berkeley, May 1991.[3] Scott Milton and Heinz W. Schmidt. Dynamic dispatch in object-oriented languages. Techni-cal Report TR-CS-94-02, CSIRO { Division of Information Technology, Canberra, Australia,January 1992.[4] Stephan Murer, Stephen Omohundro, and Clemens Szyperski. Sather Iters: Object-orientediteration abstraction. Technical Report TR-93-045, International Computer Science Institute,Berkeley, August 1993.[5] Object-Orientation FAQ. http://iamwww.unibe.ch/ scg/OOinfo/FAQ.[6] Stephen M. Omohundro. The di�erences between Sather and Ei�el. Ei�el Outlook, 1(1):12{14,April 1991.[7] Stephen M. Omohundro. Sather's design. Ei�el Outlook, 1(3):20{21, August 1991.[8] Stephen M. Omohundro. Sather provides nonproprietary access to object-oriented program-ming. Computer in Physics, 6(5):444{449, September 1992.[9] Stephen M. Omohundro. The Sather programming language. Dr. Dobb's Journal, 18(11):42{48,October 1993.[10] Stephen M. Omohundro. The Sather 1.0 speci�cation. Technical Report TR-in preparation,International Computer Science Institute, Berkeley, 1994.[11] Stephen M. Omohundro and Chu-Cheow Lim. The Sather language and libraries. TechnicalReport TR-92-017, International Computer Science Institute, Berkeley, March 1992.[12] Heinz W. Schmidt and Stephen M. Omohundro. CLOS, Ei�el, and Sather: A comparison. InAndreas Paepcke, editor, Object-Oriented Programming: The CLOS Perspective, pages 181{213.MIT Press Cambridge, Massachusetts, London, England, 1993. Available as ICSI TR-91-047.[13] Clemens Szyperski, Stephen Omohundro, and Stephan Murer. Engineering a programminglanguage: The type and class system of Sather. In Jurg Gutknecht, editor, Programming Lan-guages and System Architectures, pages 208{227. Springer Verlag, Lecture Notes in ComputerScience 782, November 1993. Available as technical report ICSI TR-93-064.
58

