INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 e Berkeley, California 94704-1198 e (510) 643-9153 @ FAX (510) 643-7684

Sather 1.0 Tutorial

Michael Philippsen*
phlipp @icsi.berkeley.edu

TR-94-062

Version 0.1, December 1994

Abstract

This document provides basic information on how to obtain your copy of the Sather 1.0
system and gives several pointers to articles discussing Sather 1.0 in more detail.

We thoroughly describe the implementation of a basic chess program. By carefully
reading this document and the discussed example program, you will learn enough
about Sather 1.0 to start programming in Sather 1.0 yourself. This document is
intended for programmers familiar with object oriented languages such as Fiffel or
C++. General information on object oriented programming can be found in [5].

The main features of Sather 1.0 are explained in detail: we cover the difference
between subtyping and implementation inheritance and explain the implementation
and usage of iters. Moreover, the example program introduces all the class elements
(constants, shared and object attributes, routines and iters) are introduced. Most
statements and most expressions are also discussed. Where appropriate, the usage of
some basic features which are provided by the Sather 1.0 libraries are demonstrated.
The Tutorial is completed by showing how an external class can be used to interface
to a C program.

*On leave from Department of Computer Science, University of Karlsruhe, Germany

Contents

1 About Sather 1.0
1.1 Where can I find Sather?
1.2 Where can I read about Sather?
1.3 Related Work: Sather-K

1.4 Planned Changes to this Tutorial

Sather Tutorial Chess

2.1 Hello World Program
2.2 Getting Startedo
2.3 Class Hierarchy of Sather Tutorial Chess

Class Main

3.1 Routinemain
3.2 Routinesetup

Type $CHESS DISPLAY and Related Classes

4.1 Type SCHESS_DISPLAY
4.2 Class CHESS_DISPLAY
4.3 Class ASCII_DISPLAY
4.4 Class X_DISPLAY
4.5 External Class XCW
4.6 Class DEFAULT

Type $PLAYER and Related Classes

5.1 SPLAYER
5.2 Class PLAYER
5.3 Class HUMAN_PLAYER
54 Class MINMAX

Class MOVE
Class POS
Class BOARD

Type $PIECE and Related Classes

9.1 TypeS$PIECE
9.2 Class PIECE
9.3 Class BISHOP
9.4 Class ROOK
95 Class QUEEN
9.6 Class KNIGHT
9.7 Class PAWN
98 Class KING

10 Suggested Execises

References

i

N DN — — =

o o W

[orRNS

11
11
12
14
16
17
18

20
20
20
21
21

25

28

1 About Sather 1.0

Sather is an object oriented language which aims to be simple, efficient, safe, and non-proprietary.
One way of placing it in the “space of languages” is to say that it aims to be as efficient as C, C++,
or Fortran, as elegant and safe as Eiffel or CLU, and support higher-order functions and iteration
abstraction as well as Common Lisp, Scheme, or Smalltalk.

Sather has parameterized classes, object-oriented dispatch, statically-checked strong (contravari-
ant) typing, separate implementation and type inheritance, multiple inheritance, garbage collection,
iteration abstraction, higher-order routines and iters, exception handling, assertions, preconditions,
postconditions, and class invariants. Sather programs can be compiled into portable C code and
can efficiently link with C object files. Sather has a very unrestrictive license which allows its use in
proprietary projects but encourages contribution to the public library.

1.1 Where can I find Sather?

Information on Sather can be found on the Mosaic page http://www.icsi.berkeley.edu/Sather.
From that page, you can reach various documents related to Sather. There also is a list of frequently
asked questions. Another source of information is the newsgroup comp.lang.sather that is devoted
to discussion of Sather related issues.

There is a Sather mailing list maintained at the International Computer Science Institute (ICSI).
Since the formation of the newsgroup, this list is primarily used for announcements. To be added
to or deleted from the Sather list, send a message to sather-request@icsi.berkeley.edu.

If you have problems with Sather or if you want to discuss Sather related questions that are
not of general interest, mail to sather-bugs@icsi.berkeley.edu. This is also where to send bug
reports and suggestions for improvements.

The current ICSI Sather 1.0 compiler, the manual, this tutorial, and the Sather FAQ can be
obtained by anonymous ftp from

ftp.icsi.berkeley.edu /pub/sather

The distribution file 1s called Sather-1.0.*.tar.Z. The wildcard is to be replaced by the number
of the latest release. At the time this tutorial was written three sites have mirrored the Sather
distribution:

ftp.sterling.com /programming/languages/sather
ftp.uni-muenster.de /pub/languages/sather
maekong.ohm.york.ac.uk /pub/csp

1.2 Where can I read about Sather?

There are various papers on Sather 1.0, on earlier versions, primarily on Sather 0.5 which is somewhat
different, and on pSather which is a parallel extension of Sather.

Most of the papers listed here are directly available from the Mosaic page mentioned above.
Others can be retrieved via anonymous ftp from ftp.icsi.berkeley.eduunder /pub/techreports.
As a last resort, hardcopies may be ordered for a small fee. Send mail to info@icsi.berkeley.edu
for more information.

The current language specification is published in [10]. This document can be found next to the
code on the ftp server mentioned above. Obviously the file i1s called manual.ps.

Sather’s general design and the differences from Eiffel have been presented in [6, 7, 8, 9]. The
type system is presented in depth in [13]. Moreover, ICSI technical papers report on other specific
issues, see [2, 4, 11, 13].

Sather has been analyzed from an external point of view. Comments and comparisons can be
found in [1, 3, 12].

1.3 Related Work: Sather-K

Although we know a lot about Sather-K, which is being developed in Karlsruhe, Germany, it is not
yet available online. Future versions of this Technical Report, which can be accessed from anonymous
ftp will have some more details.

1.4 Planned Changes to this Tutorial

Currently Sather Tutorial Chess does not use the file I/O libraries of Sather 1.0. Since it takes some
time to get used to these libraries, the Tutorial definitively should explain them.

Hence, later versions of this Technical Report, which can be accessed from anonymous ftp will
be extended in that respect. We will either introduce a way to save the current state of a game and
resume at a later program invocation. Or we will supply a library of standard openings and use that
information when generating automatic moves.

2 Sather Tutorial Chess

Sather Tutorial Chess is not an expert chess program. In fact, it is quite easy to win against the
computer. Moreover, the implementation is very inefficient in certain parts of the code. The idea is
to simply provide a context for demonstrating and explaining various features of Sather and not to
show a world class chess program.

To make the best use of this tutorial, the Sather 1.0 system should be properly installed and the
following files should be available online:

hello.sa This file contains is the standard Hello World program. It does not belong to Sather
Tutorial Chess but is included as an initial exercise.

Makefile This is the Makefile for Sather Tutorial Chess.
SChess.sa This is the main Sather file.

XInterf.sa This is an additional Sather file. Although the code could have been in SChess.sa, it is
kept in a separate file for explanatory reasons.

Default A.sa If your system is not running the X11 window system, this file is used for compilation
and linking.

DefaultX.sa Otherwise, this file is used instead.

XCW.c This C file provides the interface to the X11 window system. If you do not use X11, the
Makefile will detect this and generate an executable that does not depend on or use XCW.c.

bitmaps This directory has bitmaps for all the chess pieces which are used in XCW.c.

2.1 Hello World Program

The file hello.sa is the standard Hello World program. Sather programs usually have file names
with the extension .sa. To compile it, simply enter ¢cs hello.sa. The command for invoking the
compiler is easy to remember, since cs stands for “Compile Sather”. After successful compilation
you can execute it by entering a.out. If the current directory is not in your search path, enter
./a.out.

Only proceed after having successfully compiled and executed the Hello World program. If
something went wrong, check your installation of the Sather 1.0 system. The file Doc/Installation
might be helpful for diagnosing problems.

-- This 1s the standard Hello World program
- implemented in Sather 1.0
class MAIN is
main is
#0OUT + "Hello World\n";
end;
end;

g0 Ul A W oK =

The first two lines of the file are comments. Comments start with two minus signs. The comment
cannot be explicitly closed, they end at the end of the line. The class MAIN has a special purpose
in Sather. Unless altered by compiler flags, the routine main of MAIN is started when a compiled
Sather program is invoked by the user. In main there is only one statement. This statement is
responsible for several things: At first #£0UT creates a new object of class QUT. Class OUT is a

basic class provided by Sather. In the implementation of class OQUT which can be found in the
library file Library/out.sa there are several routines that can be invoked on an object of that class.
One of these routines has the signature
plus(s:STR);

Make sure that you look at the library file Library/out.sa and find the routine used in the Hello
World program. It is necessary for using the Sather 1.0 system that you are familiar with the libraries
and the routines provided by them. The routine plus takes one string argument and “adds” this
argument to the object before returning the modified object. In line 5 of the program the routine
plus is called implicitly, by the operator + which itself is syntactic sugar for the call of plus.

In Sather 1.0 a string is enclosed in double quotes ("). Similar to C, \n stands for the carriage
return/line feed.

2.2 Getting Started

The other files mentioned above are needed for Sather Tutorial Chess. They could be derived
from this document by extracting and concatenating the code segments explained in the remainder.
Unless otherwise noted, the code segments go to the file SChess.sa.

For the presentation, code segments are numbered on the right of the code. Numbering is
restarted with line 1 either when a new Sather code file is started or with the beginning of a new
section.

You can create an executable Sather Tutorial Chess program by invoking the compiler. This is
done by staring the execution of the Makefile:

make

The Makefile finds out whether your system runs then X Windows. Depending on the result, the
appropriate Sather code files are compiled and linked together. The executable is called

SChess

After invoking Sather Tutorial Chess, you are the white player. The computer is responsible for the
moves of black. Later, in section 3.2 we will show how this default behavior can be changed.

2.3 Class Hierarchy of Sather Tutorial Chess

Let us first discuss the basic design decisions that led to our implementation of Sather Tutorial Chess.
The central object is the board. The board knows about its state, which i1s — roughly speaking — the
set of preces, and 1s capable of applying moves to itself. Moves and pieces are other types of objects.
A “moves” knows about the piece that is moved and knows both the starting and the final position
of the move. Pieces and moves use position objects to represent the position on the board.

Besides those objects that are used for representing and handling the chess game, there are
several helper objects that are necessary for interfacing with the user. For both players there is
a player object. This player objects hides the origin of a move from the chess engine. The player
object is asked to return a move. This call is either forwarded to the user or to the searching strategy
of the computer player. Hence, the same chess engine can be used for all four possible pairings of
human and automatic players.

Another object 1s used for handling the display of the chess board. If required, this interface can
ask the user to enter a move in standard chess notation. The implementation provides both a plain
ASCIT interface and an interface to the X Window system.

The description will start with the class MAIN which contains the basic loop of the game. In
section 4 we discuss the display objects. After that, section 5 deals with the players. Then the
other classes are presented in the following order: move in section 6, position in section 7, board in
section 8 and finally pieces in section 9.

3 Class Main

The class MAIN has a special purpose in Sather. Unless altered by compiler flags, the routine main
of MAIN is started when a compiled Sather program is invoked by the user. Class names must be
in capital letters.

Although it 1s possible, it is unusual to create objects of class MAIN. Therefore, attributes should
be declared shared. Shared attributes of a class exist and can be accessed even if no objects are
created. Above that, shared attributes are globally accessible by all objects of a given type.

Here we declare shared variables that can hold pointers to the chess board, the display object,
and to the players. The variable board can hold an object of type BOARD, which is specified by the
implementation of class BOARD, see section 8 for details. The other four variables can hold objects
of the abstract type $CHESS_DISPLAY or $PLAYER, respectively. These objects can be created by
classes that are explicitly declared to be subtypes of the abstract types. The difference between
classes and abstract types that is visible here by the use of the $ symbol in the type identifiers and
will be explained in more detail in section 4.

class MAIN is
shared board : BOARD;
shared display : $SCHESS_DISPLAY;
shared white, black, player : $PLAYER;

W N =

This is a good point to introduce Sather’s ubiquitous basic data types. Upon declaration of basic
types, these are initialized automatically.

e BOOL defines value objects which represent boolean values. The initial value is false.
e CHAR defines value objects which represent characters. The initial value is "\0’.
e STR defines reference objects which represent strings.

o INT defines value objects which represent machine-dependent integers. The size is implemen-
tation dependent but must be at least 32 bits. The two’s complement representation is used to
represent negative values. Bit operations are supported in addition to numerical operations.

o INTI defines reference objects which represent infinite precision integers.

e FLT, FLTD, FLTX, and FLTDX define value objects which represent floating point values ac-
cording to the single, double, extended, and double extended representations defined by the
IEEE-754-1985 standard.

o FLTI defines reference objects which represent arbitrary precision floating point objects.

e The parameterized type ARRAY{T} defines general purpose array objects of type T. For ex-
ample; ARRAY{STR} represents an array whose elements are strings of type STR.

e TUP names a set of parameterized value types called “tuples”, one for each number of param-
eters. Each has as many attributes as parameters and they are named “t1”, “t2”, etc. Each is
declared by the type of the corresponding parameter (e.g. TUP{INT,FLT} has attributes t1:INT
and t2:FLT). Tt defines a create routine with an argument corresponding to each attribute.

There are more basic data types. Since these are irrelevant for this Tutorial, the interested reader
is referred to the manual [10].

Sather distinguishes between reference objects and value objects. (Other types of objects are
not mentioned in this tutorial.) Experienced C programmers immediately catch the difference when

told about the internal representation: Value types are C structs and reference types are pointers
to structs.! Because of that difference, reference objects can be referred to from more than one
variable. Value objects can not. The basic types mentioned above (except arrays) are value classes.
Reference objects must be explicitly allocated with new. Variables have the value void until an
object is assigned to them. Void for reference objects is similar to a void pointer in C. Void for value
objects means that a predefined value is assigned (0 for INT*, \0 for CHAR, false for BOOL, 0.0 for
FLT*). Accessing a void value object will always work. Accessing a void reference object usually
will be a fatal error.

There are some more differences between value types and reference types but they are beyond
the scope of this tutorial?.

3.1 Routine main

The routine main of MAIN is started when Sather Tutorial Chess is invoked. Similar to C, the
parameter args returns the command line which is used to invoke the program. If main is declared
without parameters, the command line and any arguments are ignored. Since the routine main is
declared to return an integer, this will specify the exit code of the program when it finishes execution.
If main is declared without return parameter, no exit code will be returned.

main(args: ARRAY{STR}):INT is 5
if “setup(args) then -- " is the boolean NOT 6
-~ If the given command line arguments are not acceptable, setup 7

-~ returns false. Then the program terminates and returns -1. 8
return -1; 9
end; 10

After invocation, the routine setup analyzes the given command line arguments. It returns true if
the given parameters are acceptable and false otherwise. If acceptable; setup has some side effects:
it creates objects for the players, for display, and for board. Later on these objects are accessible
via the variables declared in lines 2—4.

If setup had returned true, the board, the display, and the players have been created when
execution reaches line 11 where the game starts. The game is essentially a loop (lines 11-32) in
which the current player is asked to enter/generate a move. The result is then assigned to the
implicitly declared local variable move (line 12). The type of move is derived from the return type
of player.getmove because of “::=”. The type could also have been specified explicitly as follows:

move : MOVE := player.getmove(board);
Another way could be to declare the variable first and then assign in a second statement:
move : MOVE;
move := player.getmove(board);
The scope of move is defined by the surrounding block, i.e., the loop statement.
Later we will find out that player.getmove 1s a dispatched call. But let’s skip this for now.

1 Furthermore, you are not allowed to have pointers directly to fields of structs.
2Some other difference are named here because of completeness:

e Value type must inherit from AVAL{T} instead of AREF{T}.

e The writer routine takes different forms for reference and value types. For reference types, it takes a single
argument whose type is the attribute’s type and has no return value. Its effect is to modify the object by
setting the value of the attribute. For value types, it takes a single argument whose type is the attribute’s type,
and returns a copy of the object with the attribute set to the specified new value, and whose type is the type of
the object. This difference arises because it is not possible to modify value objects once they are constructed.
Study the complex number library in file Library/cpx.sa.

The loop is terminated if the move is a quit. The test occurs in line 13 in the until! expression,
which is a call to a special iter: each time until! is called, the given boolean expression is evaluated.
If false, until! “quits” which breaks the immediately surrounding loop, i.e., terminates the game.

If the program flow reaches the statement after until! the latter did not terminate the loop. Since
some move has been returned from player.getmove it must be checked and applied to the board. This
is done in line 14 by the routine check_n_apply_move which returns false if the move could not be
applied properly.

After application of the move to the board in line 15, the display object 1s called to update the
view of the board.

Later we will find out that the calls to display.update in line 15, to display.king_check() in line 25,
to display.invalid_move in line 30, and to display.close in line 35 all are dispatched calls. But again,
let’s skip this for now.

loop 11
move ;.= player.getmove(board); 12
until!(move.isquit); 13
if board.check_n_apply_move(move) then 14

display.update(board.str); 15
-- Set player to the next player 16
if board.white_to_play then 17
player := white; 18
else 19
player := black; 20
end; 21
-~ Find out whether the king of the current player is in 22
-- check. If so, have the display talk about the situation. 23
if board.my king_isin_check then 24
display.king_check(board.white_to_play); 25
end 26
else 27
-- The move was invalid. Display this. By not changing 28
-- the current player, the same player is asked to try again. 29
display.invalid_move; 30
end; 31

end; - of loop 32

-- The game s over, since the current player issued a ”quit-move”. 33

-- Close the display. 34

display.close; 35

return 0; 36

end; 37

3.2 Routine setup

This setup routine gets the command line arguments and returns a BOOL. The return value of setup
is true, 1ff the parameters have been acceptable.
To start Sather Tutorial Chess use:

SChess [<white> <black>] [<Displ>]
<white> can be either H for Human Player
or C for Computer Player

<black> dito
<Displ> can be either X for X Interface
or A for ASCII Terminal
The default behavior is SChess H C X

The type of the args parameter, ARRAY{STR}, is an instantiation of the parameterized basic type
ARRAY{T}. The source code can be found in file Library/array.sa. An ¢ of type ARRAY{T} stores
elements of type T. If ¢ is not void, the first element can be accessed by ¢[0]. c.size returns the
number of elements stored in the array. c[c.size-1] accesses the last element.

setup(args:ARRAY{STR}):BOOL is 38
-~ set defaults 39
ret : BOOL := true; - the default is that the parameters are ok 40
p = #ARRAY{CHAR}(2); 41
p[0] := "H’; - default: human player 42
p[1] := 'C’; - default: computer player 43
d : CHAR :="X". - type of display 44

First of all, setup creates a few variables that will hold the result of the evaluation of the command
line arguments. A novelty is in line 41, where p is declared to be a character array and space is
allocated for it. The array is created and initialized by calling the create routine of the class ARRAY.
The #£ symbols is syntactic sugar for calls of create routines. If the create routine need additional
arguments, they must be supplied behind the # symbol. Here the array has two characters which
can be accessed as p[0] and p[1].

In the following code segment, the arguments get processed in a loop (lines 47-65). The first
argument, args[0] is left out, since this contains the name of the running program. Here, loop
termination is implemented in line 47 by the use of the iter upto! which is declared in the INT
library. (The INT class is implemented in the file Library/int.sa.) The iter upto! returns an integer
value each time it is called. Here the first call will return 1, the argument specifies the upper bound.
In the second call upto! will return 2, then 3, ..., and finally args.size-1. The next call will quit
the iter and terminate the immediately surrounding loop, i.e., program execution will continue in
line 72.

For analysis of single parameters we use routines, provided by the STR class. The string class,
which is implemented in the file Library/str.sa offers a routine char(int) that returns the character
with the specified number. Since strings are arrays of characters, the first character of a string can
be accessed by char(0). The character class which is implemented in the file Library/char.sa has
routines upper and lower that return an upper case or lower case version of the character they are
called upon. The routine head(k) returns the first k characters of a string.

if args.size > 1 and args.size <= 4 then 45
player_ent : INT := 0; 46
loop i::=1.upto!(args.size-1); 47

if args[i].size >= 4 and args[i].head(4).lower="help" then 48
ret ;= false; 49
end; 50
tmp : CHAR := args[i].char(0).upper; 51
case tmp 52
when 'A’, 'X' then -- ASCII- or X-Display if available 53
d = tmp; 54
when 'H’, 'C’ then - Human or Computer player 55
if player_cnt < 2 then 56

p[player_cnt] := tmp; 57

player_cnt := player_cnt + 1; 58

else 59

ret ;= false; 60

end; 61
else 62
ret ;= false; 63
end; 64
end; - of loop 65
elsif args.size /= 1 then -- nol equal 66
-- The parameters are not acceptable. 67
ret := false; 68
else 69
- use defaults. The else could have been omitted. 70
end; 71

Boolean expressions are evaluated with short-circuit semantics. For an and this means that the
second operand 1s only evaluated if the first operand was true. For an or the second operand is
evaluated if the first one was false. Lines 45 and 48 are good examples.

Sather’s case statement (lines 52-64) is used for processing the command line parameters other
than “help”. The variable tmp is evaluated and depending on the result, the first matching when
branch is taken. Note, that multiple expressions can be given for comparison in each branch.

Depending on the analysis of the command line arguments either all global objects needed for
the chess program are created in lines 79-88 or the user is informed about the correct parameter
syntax in lines 90-96. The Output class OUT is defined in file Library/out.sa. The idea of using
the class is to create an output object and “add” the things that should be output to this object.
The plus is overloaded so that all basic types can be output in this fashion. As usual, \n indicates
a carriage return/line feed.

if ret then 72
display := DEFAULT ::display(d); -- Creates Display object. Described below. 73
board := #BOARD:; 74
if p[0] = 'H’ then 75

- An object of type HUMAN 1is created. In contrast to BOARD, 76
-~ this object has a special create routine, that needs an argument. 77
white = #HUMAN(board.white_to_play); 78
else 79
white = #MINMAX(board.white_to_play); 80
end; 81
if p[1] = 'H’ then 82
black := #HUMAN("board.white_to_play); 83
else 84
black := #MINMAX("board.white_to_play); 85
end; 36
- the first player 1s White 87
player := white; 88

else 89
#0UT+"To start Sather Tutorial Chess use: \n"; 90
#OUT+"args[0] [<white> <black>] [<Displ>]1\n"; 91
#0OUT+" <white> can be either H for Human Player\n"; 92

#0OUT+" or C for Computer Player\n"; 93

#0OUT+" <black> dito\n"; 94
#0OUT+" <Displ> can be either X for X Interface\n"; 95
#0OUT+" or A for ASCII Terminal\n"; 96
end; 97

-- Since setup has a return parameter, a result 98

- has to be returned to the caller. 99
return ret; 100
end; -- of setup 101
end; - of class MAIN 102

10

4 Type $SCHESS_DISPLAY and Related Classes

4.1 Type SCHESS_DISPLAY

Sather differentiates between concrete types and abstract types. In Sather each object has a unique
concrete type that determines the operations that may be performed on it. Classes define concrete
types and give implementations for the operations. Abstract types however, only specify a set of
operations without providing an implementation. This set of operations is called the interface of the
type. An abstract type corresponds to a set of concrete types which obey that interface.

$CHESS_DISPLAY is an abstract type. Names of abstract types must be in capital letters. The
leading $ differentiates abstract from concrete types.

In the body of the type declaration (lines 2-14), the operations are given without any implemen-
tation. Formal parameters must have names. However, since these are not used, the names serve
only documentary purposes.

For example, consider the case where you want to have a simple integer variable in all concrete
types/classes that are subtypes of an abstract type. An integer attribute a has two implicit routines,
a reader which has the signature a:INT and a writer with the signature a(new_value:INT). Since the
abstract type hides implementation details from the interface, one has to put both signatures in
the body of the type. This gives room for changing the implementation of a in the classes. (In the
abstract type below, there are however no attributes.)

type $CHESS_DISPLAY is 1
-- Display the state of the board 2
redraw(board: ARRAY{CHAR}); 3
update(board:ARRAY{CHAR}); 4
showmove(text:STR); 5
-~ Inform player about certain conditions 6
invalid_move; 7
thinking(white_to_move:BOOL); 8
king_check(white_to_move:BOOL); 9
-- Interact with the player 10
getmove(white_to_move:BOOL):MOVE; 11
ask_pawn_xchg:CHAR; 12
-~ Close 13
close; 14

end; - of abstract type SCHESS_DISPLAY 15

The string interface (ARRAY{CHAR}) to board needs some explanation: The board is represented
by 64 characters. Fach character specifies the piece on a particular position of the board.

>7 no piece | 'P7 Pawn

'B’ Bishop Q> Queen
'K’ King 'R’ Rook
‘N’ Knight

Capital characters represent white pieces, small characters stand for black pieces. The first character
in board specifies board position “al”, the last “h8”.

All concrete classes that are subtype of $CHESS_DISPLAY must at least have all the above
routines (or implicitly declared routines.)

11

4.2 Class CHESS_DISPLAY

This is a concrete type or class which is a subtype of $CHESS_DISPLAY. The subtype relation is
expressed by the < symbol in line 16. This concrete class however will not be used to instantiate
objects, i.e., there will be no objects of type CHESS_DISPLAY. The main purpose of this class is to
declare attributes and routines that are common to other classes of type $CHESS_DISPLAY, which
include the implementation of this class. Hence, whereas $CHESS_DISPLAY is used to express the
subtype relation, the class CHESS_DISPLAY is used for code inheritance.

The first two routines are included unchanged in ASCII_DISPLAY and replaced in X_DISPLAY.

A create routine has to be provided if objects of that concrete type are created. SAME denotes
the type of the class in which it appears. As explained in ASCIILDISPLAY below, it is a good idea
to return SAME instead of CHESS_DISPLAY, if the create routine is meant to be included.

The expression new is used in line 18 to allocate space for (reference) objects (and may only
appear in reference classes.) New returns a (reference) object of type SAME. All attributes and
array elements are initialized to void.

class CHESS_DISPLAY < $CHESS_DISPLAY is 16
create:SAME is 17
return new; 18
end; 19
update(board:ARRAY{CHAR}) is 20
redraw(board); 21
end; 22

The following two routines do not provide a basic implementation. However, for consistency with the
interface required by $CHESS_DISPLAY, they have to exist. When the code of class CHESS_DISPLAY
is included, special implementations of redraw and getmove must be provided that replace the dum-
mies given here.

To make sure that these implementations of redraw and getmove are not called erroneously, an
exception is raised by the raise statement (lines 24 and 27). Since redraw does not have a return
parameter, the body of the routine could have been empty. In getmove either a return or a raise
is required because getmove has a return parameter.

redraw(board:ARRAY{CHAR}) is 23
raise "INTERFACE: invalid call to redraw\n"; 24
end; 25
getmove(white_to_move:BOOL):MOVE is 26
raise "INTERFACE: invalid call to getmove\n"; 27
end; 28

The following four routines provide code that is meant to be included unchanged in other imple-
mentations of classes that are subtypes of $CHESS_DISPLAY. Each of the four routines makes use
of a private routine showtext which is not completely coded here. Classes that include the imple-
mentation of CHESS_DISPLAY must provide complete implementations of showtext.

invalid_move is 29
text : STR; 30
text := "ERROR: Invalid move....try again'; 31
showtext(text); 32

end; 33

12

thinking(white_to_move:BOOL) is 34

text : STR; 35
if white_to_move then 36
text ;= "White"; 37
else 38
text ;= "Black"; 39
end; 40
text := text + " is thinking ... please wait ...'"; 41
showtext(text); 42
end; - of thinking 43
king_check(white_to_move:BOOL) is 44
text : STR; 45
if white_to_move then 46
text := "--> White"; 47
else 48
text := "--> Black"; 49
end; 50
text ;= text + " 1is in check!"; 51
showtext(text); 52
end; - of king_check 53
showmove(text:STR) is 54
showtext(text); 55
end; 56

A routine declared private can only be called from code that is in the same class as the routine.

private showtext(text:STR) is 57
-- Optional protection against implementation errors 58
raise "INTERFACE: invalid call to showtext\n"; 59

end; 60

The following routine ask_pawn_xchg is included in both ASCII_DISPLAY and X_DISPLAY without
change. The loop (line 64-72) is not terminated by means of an iter. Instead, the termination is
done by the return statement in line 69.

In line 66 is an example of user input. The class IN is specified in the file Library/in.sa. Among
others, IN provides a routine get_str that accepts a string input from the use via the standard 1/0-
device. Calls like CLASS::<routine> do not refer to a particular object of the class but call the
routine on a void object.

ask_pawn_xchg:CHAR is 61
newpiece : STR; 62
ret : CHAR; 63
loop 64

#0UT+"Do you prefer a QUEEN or a KNIGHT?\n"; 65
newpiece = IN::get_str.upper; 66
ret := newpiece.char(0); 67
if ret = 'Q or ret = 'K’ then 68

return ret; 69
end; 70
#0OUT+"Please enter QUEEN or KNIGHT.\n" 71

13

end; 72

end; - of ask_pawn_zchg 73
- The following routine is included unchanged in ASCII_DISPLAY 74
-- and replaced in X_DISPLAY. 75
close is 76
end; 77
end; - of CHESS_DISPLAY 78

4.3 Class ASCII_DISPLAY

This concrete class is a subtype of $CHESS_DISPLAY. It provides an implementation for at least the
signatures given in the specification of $CHESS_DISPLAY.

ASCII_DISPLAY inherits the implementation of class CHESS_DISPLAY by the include statement.
The include statement is semantically equivalent to the following editor operation: replace the
include statement by the implementation code of the included class. (Includes have to be resolved
recursively.)

Without code duplication, ASCIILDISPLAY inherits the implementation of the following routines,
at the include statement.

create:SAME

redraw(board: ARRAY{CHAR}) --> is replaced below

update(board:ARRAY{CHAR})

getmove(white_to_move:BOOL):MOVE --> is replaced below

invalid_move

thinking(white_to_move:BOOL)

king_check(white_to_move:BOOL)

showmove(text:STR)

private showtext --> is replaced below

ask_pawn_xchg:CHAR

close
Only the routines marked with “—>” are replaced by a specific implementation. To make the idea
of textual inclusion even more understandable consider the included version of create.

create:SAME:;
Although originally written in CHESS_DISPLAY, the routine create does not return an object of
type CHESS_DISPLAY after being included in ASCII_LDISPLAY. Instead, create returns an object of
type ASCII_DISPLAY.

class ASCII_DISPLAY < $CHESS_DISPLAY is 79
include CHESS_DISPLAY; 80

Redrawing the board on the ASCII.DISPLAY is an excellent example of two nested loops, both of
which are governed by iters (lines 88-91 and lines 87-89).

The iter downto! in line 85 is another iter from the INT class, which can be found in file Li-
brary/int.sa. As expected, 7.downto(0) iteratively returns the integer value 7, 6, 5, ..., 0 and with
the next call terminates the surrounding loop, i.e., the loop from line 85 to line 91.

The iter step! in line 87 is just another iter the INT class provides. Beginning at the integer
it is called upon, it will return as many integers as indicated by its first argument. The difference
between two subsequent return values i1s given by the second argument. If step! is called for the
ninth time, it will quit and immediately terminate the surrounding loop (line 87-89). Note, that for
the two nested loops, only the innermost loop is terminated.

14

redraw(board:ARRAY{CHAR}) is

#0OUT+"The current board: (small characters = black pieces)\n";
#0UT+" a b ¢ d e £ g h\n"
#OUTH" - \n";
loop i::=7.downto!(0);

#OUTH(+1)+"|";

loop j::=(8xi).step!(8,1);

#0OUT+" "+4board[j]+"

end;

#OUTH"|"+(i+1)+"\n";
end;
#OUTH" - \n";
#0UT+" a b ¢ d e £ g h\n"

end; -- of redraw

81
82
83
84
85
86
87
88
89
90
91
92
93
94

The following OUT::flush in line 106 tells the OUT class, that all characters that are buffered should

be output immediately. Normally, the buffer is only flushed, if a \n is seen in the character stream.

getmove(white_to_move:BOOL):MOVE is

move : MOVE;
move_str : STR;
loop

#0OUT+"Please enter a move for";
if white_to_move then

#0OUT+" white: ";

else
#0OUT+" black: ";
end;
#OUT+" (e.g. d2-d3 or help) ";
OUT::flush;
move_str := IN::get_str.lower;

-- The string class provides a routine head(x), which returns the first
- x characters of a string.
if move_str.size >= 4 and move_str.head(4) = "help" then
#0UT+"Valid moves are:\n";
#0UT+" ordinary move: d2-d3\n";
#OUT4+" king castle : o-o\n";
#0UT+" queen castle : o-o-o\n";
#OUT+" quit : quit\n";
else
move := #MOVE(move_str, white_to_move);
- If the create routine of MOVE could not correctly deal with
- the given move_str move.isok returns false. If a move turns
-- out not to be quit or ok, the player is asked to try again.
until! (move.isquit or move.isok);
#OUT+"ERROR: Invalid syntax....try again\n";
end;
end;
return move;

15

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

end; - of getmove 126

private showtext(text:STR) is 127
#OUT+text+"\n"; 128
end; 129
end; - of ASCII_DISPLAY 130

4.4 Class X_DISPLAY

The following code is kept in a separate Sather code file (XInterf.sa). There the class X_DISPLAY is
implemented. The implementation is in a different file, to show how spreading of source code across
several files works in Sather.
This concrete class is a subtype of $CHESS_DISPLAY. It provides an implementation for at least
the signatures given in the specification of $CHESS_DISPLAY.
Due to the include statement, X_DISPLAY inherits the implementation of CHESS_DISPLAY in
then same way as ASCII_LDISPLAY has done before. Without code duplication, X_DISPLAY now has
create:SAME --> is replaced below
redraw(board: ARRAY{CHAR}) -->x is replaced below
update(board: ARRAY{CHAR}) --> is replaced below
getmove(white_to_move:BOOL):MOVE -->x is replaced below
invalid_move
thinking(white_to_move:BOOL)
king_check(white_to_move:BOOL)
showmove(text:STR)
private showtext --># is replaced below
ask_pawn_xchg:CHAR
close --> s replaced below
Only the routines marked with “—>” are replaced by a specific implementation. The arrows marked
with * indicate those routines that have been replaced in the ASCII_LDISPLAY explained above.
The implementation of X_DISPLAY makes heavy use of the external Chess Window (XCW)
implementation. The Sather compiler is informed about the existence of the external routines in the
external class XCW which is explained on page 17.

class X_DISPLAY < $CHESS_DISPLAY is 1
include CHESS_DISPLAY; 2
create:SAME is 3

XCW::OpenCW("Sather Tutorial Chess"); 4
return new; 5
end; 6
redraw(board:ARRAY{CHAR}) is 7
XCW::RedrawCW(board); 8
end; 9
update(board:ARRAY{CHAR}) is 10
XCW::UpdateCW(board); 11
end; 12
showmove(text:STR) is 13
XCW::ShowMoveCW(text); 14
end; 15
private showtext(text:STR) is 16
XCW:: TextCW(text); 17
end; 18

16

close is 19
XCW::CloseCW; 20
end; 21

The implementation of getmove is slightly more complicated. The external Chess Window imple-
mentation has a routine called GetMovelnCW. This routine has an array of characters as formal
parameter. This array i1s kept in the variable move_chars. To pass the result to the create routine
of class MOVE in line 36, it must be converted into a string. The latter is stored in the variable
move_str.

Several library routines are helpful here. In line 35 routine to_val of class ARRAY{T} is used to
set each array element to the given value. The loop in lines 39-41 iteratively adds characters of
move_char to the string variable move_str. The iter elt! returns all array elements in order and quits
at the end of the array, hence terminating the loop. Note, how elegantly both loop control and work
can be combined by use of iters.

getmove(white_to_move:BOOL):MOVE is 22
text : STR; 23
text ;= "Please move a"; 24
if white_to_move then 25

text := text+” white" 26
else 27
text ;= text+" black"; 28
end; 29
text .= text4+" piece."; 30
XCW:: TextCW(text); 31
move_chars ::= #ARRAY{CHAR}(5); -- create a character array with 5 chars. 32
move_str 1= #STR; -- create a string. 33
move : MOVE; 34
move_chars.to_val(’ '); - set all § chars to "’ 35
XCW::GetMovelnCW(move_chars); 36
- Construct string out of char array. The iter elt! returns all 5 37
-- characters of move_chars, then quits and terminates the loop. 38
loop 39
move_str ;= move_str4+move_chars.elt!; 40
end; 41
- Since XCW::GetMovelnCW 1is guaranteed to return only 42
-- syntactically correct moves, no further plausibility tests 43
-- are required. 44
move := #MOVE(move_str.lower,white_to_move); 45
return move; 46
end; - of getmove 47
end; - of X_DISPLAY 48

4.5 External Class XCW

XCW provides an X Window interface for chess. The corresponding C code can be found in XCW .c.
The routines are used by the implementation of X_DISPLAY.

17

In this external class definition the interface to routines of XCW.c are specified. The main
purpose of this class is to tell the Sather compiler the names and parameters of routines that can
be called. The syntax for a call is XCW::<routine_call>.

external class XCW is 49
OpenCW(title:STR); 50
RedrawCW(board: ARRAY{CHAR}); 51
UpdateCW(board:ARRAY{CHAR}); 52
GetMovelnCW(move:ARRAY{CHAR}); 53
ShowMoveCW(move:STR); 54
TextCW(text:STR); 55
CloseCW; 56

end; 57

Each external class is typically associated with an object file compiled from a language like C or
Fortran. External classes do not support subtyping, implementation inheritance, or overloading.
External classes bodies consist of a list of routine definitions. Routines with no body specify the
interface for Sather code to call external code. Routines with a body specify the interface for external
code to call Sather code.

Each routine name without a body may only appear once in any external class and the corre-
sponding external object file must provide a conforming function definition. Sather code may call
these external routines using a class call expression of the form EXT_CLASS: ext_rout(5). External
code may refer to an external routine with a body by concatenating the class name, an underscore,
and the routine name (e.g., EXT_CLASS_ sather_rout).

Only a restricted set of types are allowed for the arguments and return values of these calls. The
built-in value types BOOL, CHAR, INT, FLT, FLTD, FLTX, and FLTDX are allowed anywhere and on
each machine have the format supported by the C compiler used to compile Sather for that machine.

Moreover, arrays of the above basic types (except BOOL) can be passed as routine parameters.
When a Sather program calls such a routine, the external routine is passed a pointer into just the
array portion of the object. The external routine may modify the contents of this array portion,
but must not store the pointer. There is no guarantee that the pointer will remain valid after the
external routine returns.

4.6 Class DEFAULT

One of the design decisions of Sather Tutorial Chess has been to provide both an ASCII interface and
an interface to the X Window system. To represent that in the code, there are two implementations
of a class called DEFAULT. The first implementation which is in the file DefaultX.sa, can handle
both an interface to X and to the ASCII terminal:

class DEFAULT is 1
display(d:CHAR):$CHESS_DISPLAY is 2
ret : $CHESS_DISPLAY; 3
if d = 'X' then 4
-- Create an object of type X_DISPLAY and return it. 5

- To be more specific: # is a short-hand for a call to 6

-- the the routine create of type that follows the #. 7
ret .= #X_DISPLAY; 8
else 9
ret .= #ASCIILDISPLAY; 10
end; 11
return ret; 12

18

end; 13
end; 14

Depending on the value of d either an object of type X_DISPLAY or of type ASCIILDISPLAY is
returned to the caller. The call can be found in line 73 of the setup routine of class MAIN, see
page 9.

If X is not available, the following implementation which is kept in Sather code file DefaultA .sa,
1s used instead:

class DEFAULT is
display(d:CHAR):$CHESS_DISPLAY is
ret : $CHESS_DISPLAY;
-- Since X is not available, create ASCII-Interface only.
ret := #ASCIILDISPLAY;
return ret;
end;
end;

W 1 O Ak W N~

The value of d 1s ignored here. In either case, an ASCII display is created and returned to the caller.
Since no reference to class X_.DISPLAY is in the code, the Sather compiler ignores any implementation
of that class. The Makefile makes the dependencies visible.

19

5 Type SPLAYER and Related Classes

5.1 SPLAYER

Similar to the situation between the abstract type $CHESS_DISPLAY and the classes ASCII_DISPLAY
and X_DISPLAY, the players are organized with subtyping and include as well. The abstract type
$PLAYER specifies the common interface.

type SPLAYER is
getmove(b:BOARD):MOVE;
ask_pawn_xchg:CHAR;

end;

W N =

5.2 Class PLAYER

This is a class of type $PLAYER, which will not be used to instantiate. There will be no objects of
type PLAYER. The main purpose of this class is to declare attributes and routines that are common
to other classes of type $PLAYER, which include the implementation of this class.

The routine getmove does not provide a basic implementation. However, for consistency with the
interface required by $PLAYER, a dummy implementation must be given. The routine ask_pawn_xchg
provides a default implementation.

class PLAYER < $PLAYER is 5
attr iswhite:BOOL; 6
create(iswhite: BOOL):SAME is 7

ret : SAME := new; 8
ret.iswhite := iswhite; 9
return ret; 10
end; 11
getmove(b:BOARD):MOVE is 12
raise "PLAYER:invalid call to getmove\n"; 13
end; 14
ask_pawn_xchg:CHAR is 15
return 'Q’"; 16
end; 17
end; - of class PLAYER 18

This 18 a good place to look at the list of available class elements. We have already encountered
routine definitions and include statements. Iter definitions are similar to routine definitions. All
class elements can be declared private. Private elements can only be accessed from within the
implementation of the class. Per default, class elements are public. It is worthwhile to take a closer
look at the other class elements:

const Constant attributes are accessible by all objects in a class and may not be assigned to.
Constant attributes are initialized. They are accessible even if no object of the class is created.

shared Shared attributes are variables that are directly accessible to all objects of a given type.
They are accessible even if no object of the class 1s created. When only a single shared
attribute is defined by a clause, it may be provided with an initializing expression which must

20

be a constant expression. If no initialization is given, shared variables are initialized to the
default.

attr Attributes are connected with objects. Each object of a class has an individual set of attribute
variables which reflect the state of the object. Attributes are only accessible when an object
has been created.

5.3 Class HUMAN_PLAYER

A human player will enter his move via the interface. This is coded in the routine getmove that
replaces the inherited dummy implementation.

If a human player has the chance to exchange one of his pawns with a queen or a knight, the
human player will enter his decision via the interface in routine ask_pawn_xchg.

class HUMAN < $PLAYER is 19
include PLAYER; 20
getmove(b:BOARD):MOVE is 21

return MAIN::display.getmove(iswhite); 22
end; 23
ask_pawn_xchg:CHAR is 24

MAIN::display.update(MAIN::board.str); 25

return MAIN::display.ask_pawn_xchg; 26
end; 27

end; - of class HUMAN 28

5.4 Class MINMAX

The automatic player is represented by the class MINMAX. The class is called MINMAX, since the
strategy for determining a move is based on a minmax search.

We define a couple of constants first. The boolean constants max and min are later on used to
determine whether the minmax search is at a max- or at a min-level. The constant max_depth gives
the maximal depth of the search tree. If max_depth is 3, then (1) all potential next moves, (2) all
reactions of the opponent player and (3) all potential future reactions to these are considered.

The best moves of phase (1) are gathered in a dynamically sized list of type FLIST, as defined
in the library file Library/flist.sa. FLIST will store all moves that will eventually result in the same
board evaluation on level (3).

The random number generator declared in line 35 is used to select an arbitrary move from
the list. MS_LRANDOM_GEN is a class that is defined in the Sather Libraries. You find it in the file

Library/rnd.sa The random number object is created and initialized in the create routine in line 40.

class MINMAX < $PLAYER is 29
include PLAYER; 30
const max : BOOL := true; 31
const min : BOOL := "max; 32
const max_depth : INT := 3; 33
attr bestmoves : FLIST{MOVE}; 34
shared rnd : MS_RANDOM_GEN; 35
create(iswhite: BOOL):SAME is 36

ret ::= new; 37
ret.iswhite := iswhite; 38

21

ret.bestmoves := #FLIST{MOVE}, 39

rnd := #MS_RANDOM_GEN; 40
rnd.init(4711); 41
return ret; 42
end; 43

The getmove routine at first tells the viewing user that it is “thinking” (line 46). Then it uses the
routine minmax, which is described below, to find the best move. There might be more than one
move that is considered to be “best”. The list bestmoves stores all of these. If there are no available
moves, i.e., if the list of bestmoves is empty, then the player is mate — the game is over. This is
checked in line 54.

Otherwise the random number generator returns a value in [0, 1). This is multiplied by the size
of the list of available best moves. Before multiplication, size, which is an integer value, is cast to be
of type FLTD. The product is rounded to the floor and then cast into an integer value by the routine
int. The result 1s then used to index into the list of possible best moves.

Before returning the move to the caller, it is displayed in line 61.

getmove(board:BOARD):MOVE is 44
ret : MOVE; 45
MAIN::display.thinking(board.white_to_play); 46
if board.white_to_play then 47

- munmaz returns a value, that is nor needed. However, Sather does 48
-- require to use the return value somehow. 49
dummy ::= minmax(board,max,max_depth); 50
else 51
dummy ::= minmax(board,min,max_depth); 52
end; 53
if bestmoves.size = 0 then 54
return #MOVE(" quit", board. white_to_play); 55
else 56
ret := bestmoves[(bestmoves.size fltd * rnd.get).floor.int]; 57
bestmoves.clear; 58
text : STR; 59
text := ret.from.str + " =" + ret.to.str; 60
MAIN::display.showmove(text); 61
return ret; 62
end; 63
end; - of getmove 64

The private routine minmax returns a floating point value, FLT. FLT is specified in the library class
FLT. See file Library/flt.sa for details.

The body of minmax has a good example of nested iter calls: The first loop (lines 74-103)
considers all pieces on the board of my color. The inner loop (lines 75-102) then for each of these
pieces considers target positions of potential moves. (It is explained later on, what an ordinary move
is. Just ignore this flag for the time being.)

The move created in line 77 is guaranteed to be correct, i.e., the piece 1s of the correct color and
the target position is correct with respect to the basic movement rules of chess. The only condition
that is not guaranteed to hold is whether the own king is exposed to be in check after the piece is
moved. This is checked in apply_move_with_own_check_test. See line 79.

22

After a move has been applied successfully, we either consider the possible reactions recursively
(line 83), or evaluate the value of the board in line 81.
The depth-first search requires backtracking. This is done in line 100 by calling board.unapply_move.

private minmax(board:BOARD,minmax:BOOL,depth:INT):FLT is 65
move : MOVE; 66
val,bv : FLT; 67
pos : POS; 68
if minmax = max then 69

val := -1000.0; 70
else 71
val := 1000.0; 72
end; 73
loop piece::=board.my_piece!; 74
loop 75
pos :=piece.movel(board,PIECE::ordinary); 76
move := #MOVE(piece,pos); 77
move.piece := piece; 78

if board.apply_move_with_own_check_test(move) then 79

if depth = 1 then 80

bv := board.board_value; 81

else 82

bv := minmax(board,"minmax,depth - 1); 83

end; 84

-- If this move really is better than previous ones, 85

-~ the list of best moves found so far is erased. 86

if depth = max_depth and ((minmax = max and bv > val) 87

or (minmax = min and bv < val)) 88

then 89
bestmoves.clear; 90

end; 91

-- If this move is not worse than previous ones, the move 92

-~ 15 added to the list of best moves found so far. 93

if depth = max_depth and ((minmax = max and bv >= val) 94

or (minmax = min and bv <= val)) 95

then 96

val := bv; 97
bestmoves := bestmoves.push(move); 98

end; 99
board.unapply_move; 100
end; 101
end; 102
end; 103
return val; 104
end; - of minmazx 105
end; - of class MINMAX 106

The following remark will be completely understandable only after the type $PIECE and the concrete
subtypes have been presented in section 9. For reasons of completeness note that line 76 is a
dispatched iter call. Depending on the concrete type of the piece:$PIECE a different iter is called.

23

In Sather 1.0.2 dispatched iters are not implemented. The typecase statement can be used to
implement the intended behavior:

typecase piece

when PAWN then pos:=piece.move!(board,PIECE::ordinary);
when ROOK then pos:=piece.move!(board,PIECE::ordinary);
when KNIGHT then pos:=piece.move!(board,PIECE::ordinary);
when BISHOP then pos:=piece.move!(board,PIECE: ordinary);
when KING then pos:=piece.move!(board,PIECE::ordinary);

when QUEEN then pos:=piece.move!(board,PIECE::ordinary);
else

end;

24

6 Class MOVE

A move, i.e., an object of class MOVE stores several facts. First of all there are the from and the
to position which are objects of class POS. The move knows about it being a castle move. Castle
moves have from and to positions that refer to the movement of the king.

During the process of analyzing a move, further information is gathered and stored in the move
object. This information is necessary to later on un-do a move. The attribute piece stores a pointer
to the piece that is moved by a move. If the move kills an opponent piece, that piece can be reached
by the attribute kills. The fact whether the kings have moved belongs to the status of the board. A
move of a king might change that status. To preserve the fact that a particular move has changed
that status, the king_chg flag has been introduced. Another flag for un-doing moves is pawn_chg. If
a pawn reaches the base line of the opponent, the pawn can be exchanged to a knight or a queen.
The pawn_chg flag indicates such an exchange. Although a board knows about the last move, the
previous move 1s kept in the move object.

class MOVE 1s

attr from, to : POS;
attr isk_castle : BOOL;
attr isq_castle : BOOL;
attr isquit : BOOL;
attr piece : SPIECE;
attr kills : SPIECE;
attr king_chg : BOOL;
attr pawn_chg : BOOL;
attr prev_move : MOVE;

© W N O Uk W N -

—
o

The MOVE class offers two create routines and is thus a good example of overloading. The first
version of the create routine, accepts a move in standard chess notation, e.g. “a2-a3”. For this version
of create it does not matter, whether the board actually has a piece on the from position since this
is checked later on. In contrast to the first version of the create routine, the second version deals
with an existing $PIECE object. Since a piece has an actual position, only the destination position
1s required as parameter.

This code of the create routine is written rather fail safe. The given string i1s checked for
conforming syntax. If there is an error, the from and to position of the move object remain void.

The first branch of the if-elsif cascade handles the g-castle (lines 21-28). The second branch
handles the k-castle (lines 29-36) Then the “quit” case is considered. The fourth case (lines 39-47)
and fifth case (lines 48-57) both deal with ordinary moves: They check for syntax “<pl>-<p2>”
and test whether pl and p2 refer to existing positions of the board. The string class offers a substring
routine which has two parameters. It is used for example in line 40. The first argument refers to
the starting position of the substring, the second argument specifies the number of characters to be
returned. The difference between the fourth and the fifth case is that in the latter the the separating
“” can be omitted so that “<pl><p2>" is accepted.

create(move:STR, white_to_move:BOOL):SAME is 11
ret ::= new; 12
ret.isk_castle := false; 13
ret.isq_castle := false; 14
ret.isquit := false; 15
ret.piece := void,; 16
ret kills := void; 17

25

ret.king_chg := false;

ret.pawn_chg := false;

if void(move) then return ret; end;

if move.size >= 5 and move.head(5) = "o-0-0" then
ret.from := #POS; ret.to := #POS;
ret.isq_castle := true;
if white_to_move then

ret.from.pos := "el"; ret.to.pos := "c1";
else

ret.from.pos := " e8"; ret.to.pos := "c8";
end;

elsif move.size >= 3 and move.head(3) = "o-o" then
ret.from := #POS; ret.to := #POS;

ret.isk_castle := true;
if white_to_move then

ret.from.pos := "el"; ret.to.pos := "gl1";
else
ret.from.pos := " e8"; ret.to.pos := "g8";
end;
elsif move.size >= 4 and move.head(4) = "quit" then
ret.isquit = true;

elsif move.size >= 5 then
str_from ::= move.substring(0,2);
if POS::check_pos(str_from) then
ret.from .= #POS; ret.from.pos := str_from;
end;
str_to ::= move.substring(3,2);
if POS::check_pos(str_to) then
ret.to := #POS; ret.to.pos := str_to;
end;
elsif move.size >=4 then
str_from ::= move.substring(0,2);
if POS::check_pos(str_from) then
ret.from .= #POS; ret.from.pos := str_from;
end;
str_to ::= move.substring(2,2);
if POS::check_pos(str_to) then
ret.to := #POS; ret.to.pos := str_to;
end;
end;
return ret;
end; -~ of first version of create

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

The routine create is overloaded in class MOVE, i.e., there are two routines called create that
are distinguished by their list of formal parameters and/or return parameter. Whereas the create
routine given above expects a string and a boolean value as parameters, the second create routine

expects a piece and a (target) position.

26

create(piece:SPIECE, to:POS):SAME is

ret ::= new;
ret.isk_castle := false;
ret.isq_castle := false;

ret.isquit = false;

ret.from = #POS;
ret.from.pos .= piece.position str;
ret.to = #POS;

ret.to.pos = to.str;

ret.piece = void;

ret kills = void;

ret.king_chg := false;
ret.pawn_chg := false;

if piece.isking then
if piece.iswhite then

if piece.position = "e1" and to =
ret.isq_castle := true;
end;
if piece.position = "e1" and to =
ret.isk_castle := true;
end;
else
if piece.position = "e8" and to =
ret.isq_castle := true;
end;
if piece.position = "e8" and to =
ret.isk_castle := true;
end;
end;
end;

return ret;
end; - of second version of create
isok:BOOL 1is

return “void(from) and ~void(to);
end;

end; - of class MOVE

"c1" then
"g1" then
"¢8" then
"g8" then

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

27

7 Class POS

The main secret of class POS is the internal addressing scheme for a chess board. From outside,
board positions are addressed in standard chess notation, e.g., the position in the lower left corner
is called “al”. Internally, POS numbers the positions row-wise from 0 to 63 which eases addressing
computations. The correspondence is shown in the following tables:

External addressing scheme:

| column || ‘a’ | b’ | | d | e | T g’ | h’ || row |
a8 | b8 | ¢8 | d8 | e8 | 8 | g8 | h8 || &’
av | b7 | 7 | d7 | e7 | £7 | g7 | h7 || 7
ab | b6 | c6 | d6 | e6 | £6 | g6 | h6 || 6’
ab | bd | ch | d5 |eb | 5 | gh | hd || 5
ad | bd | c4 | dd |ed | f4 | g4 | hd | 4
a3 | b3 | e3 | d3 |e3 |13 | g3 | h3 | ¥
a2 | b2 | c2 | d2 |e2 | 2 | g2 | h2 | 2
al | bl | cl |dl |el |fl | gl | hl |’

Internal addressing scheme:

|cohnnn|| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7||row |
56 | b7 | B8 | b9 | 60 | 61 | 62 | 63 || 7
48 | 49 | 50 | b1 | 52 | B3 | b4 | b5 || 6
40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 || b
32133134 (35|36 (373839 4
24 125 |26 | 27 | 28 2930|311 3
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 || 2
8 9110 |11 (12|13 |14 |15 | 1
0 1 2 3 4 5 6 71 0

POS is capable of returning all board positions which are reachable from an POS object’s position by
moves in various directions. The way! iter is used for this purpose. Possible directions are vertical,
horizontal, diagonal, knight jumps and so on.

POS is declared to be a subtype of $IS_LEQ{POS}. The $IS_EQ type is specified in the library file
Library/abstract.sa. The essential meaning of this subtype declaration is that POS is required to offer
a routine with the signature is_eq(x:SAME):BOOL. The existence of this routine is checked during
compilation. The analogous situation holds for $STR. This abstract type requires the existence of a
routine str:STR that prints out a reasonable string representation of the object.

In lines 24 is an example of a rather weird form of constant declaration. All together 12 integer
constants are declared. The first one (knight) is assigned the value 1, the next one (diag_up_right) is
set to 2 and so on. This form of constant declaration only works for integers and requires that there
is no type identifier INT. Both

knight:INT:=1, ...
and
knight .= 'a’, ...
result in errors at compile time.
The internal address of a position is stored in the private attribute absolute declared in line 8.

class POS < $IS_.EQ{POS}, $STR is 1
const knight := 1, diag_up_right, diag_up_left, diag_dn_right, diag_dn_left,
horizontal_right, horizontal_left, vertical_up, vertical_dn,

28

north_two, south_two, ring; 4

-- The correct funtionality relies on the fact that diag_up_right to 5
- vertical_dn are in that order. The implementation of $PIECE::move! may 6
-~ depend on 1t. 7
private attr absolute : INT;]
create:SAME is 9
return new; 10
end; 11

The following routines are used to handle “internal” addresses of board positions.

private pos(position:INT) is -- write routine 12
absolute := position; 13
end; 14
pos:INT is - reader routine 15
return absolute; 16
end; 17
private row(p:POS):INT is 18
return (p.pos/8); 19
end; 20
private column(p:POS):INT is 21
return (p.pos%8); 22
end; 23

The following routines represent the “external” addressing scheme.

We discuss the routine check_pos first. The routine digit_value, which 1s implemented in the
CHAR library class (see file Library/char.sa for details) returns the value of a character. For example
7' digit_value=7. Note, that "\0".int=0 and '7".int /= 7.

The routine pos in line 39 is a good example for overloading. For dealing with the internal
addressing scheme, there is already a routine called pos in line 12. That routine takes an INT as its
parameter. In contrast: the following routine, accepts a STR parameter. The compiler determines,
depending on the arguments which are present at a call, which of these routines has to be called.

Because of this mechanism, there cannot be two routines that have the same parameters and are
different in their return types. If such a pair would be allowed, the compiler could not figure out
for example which type an attribute with an implicit type declaration (e.g. A::routine) is meant to
have.

Routine pos is the first occurrence of a pre condition in this tutorial, see line 40. The pre
condition is a boolean expression that is checked on each call of the routine. If it is evaluated to
true, the routine gets executed. Otherwise, it is a fatal error. Analogously, a post condition could
have been declared. Note, that pre conditions are not checked by default. Checking can be invoked
with the compiler flag -pre <classes> A frequent source of syntx error is that there may not be a
semicolon behind a pre-condition because it is part of the header.

check_pos(position:STR):BOOL is 24
str : STR := position.lower; 25
if str.size /= 2 then 26

return false; 27
end; 28
row : INT := str.char(1).digit_value - 1, 29
if row < 0 or row > 7 then 30

29

return false;

end;

col : CHAR := str.char(0);

if col < 'a’ or col > 'h’ then
return false;

end;

return true;

end; - of check_pos

pos(position:STR) -- overloaded writer routine
pre check_pos(position)
is

str : STR := position.lower;

row : INT := str.char(1).digit_value - 1,
col : CHAR := str.char(0);

case col

0 .

when 'a’ then absolute :

when 'b’ then absolute :

when ‘¢’ then absolute :

when 'd’ then absolute :

when ‘e’ then absolute :

2
4
when 'f' then absolute := 5

1
3
when 'g' then absolute := 6;
when 'h’ then absolute .= 7

'

end;

absolute := absolute 4+ 8 * row;
end; - of pos(STR)
str:STR 1s

ret ::= #STR;

ret := ret 4+ column;

ret := ret + row;

return ret;
end;

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

The routine row in line 63 is overloaded as well. The compiler can differentiate between row(INT):INT

of line 18 and row:CHAR because of the different number of parameters.

In the statement in line 64 the result of the computation is an integer value. The library class
INT offers two ways to convert integers into characters. The difference is best shown by means of
an example. Consider the integer value 0. The conversion done by digit_char returns the character

’0’. The other conversion is done by a routine called char which has the result that 0.char = "\0".

The routine str(POS) is used internally to map an internal address, which might be different

from self, to standard chess notation.

row:CHAR 1s
return ((absolute/8) + 1).digit_char;
end;
column:CHAR 1s
col ::= absolute%38;
case col
when 0 then return 'a’;
when 1 then return 'b’;

30

63
64
65
66
67
68
69
70

when 2 then return 'c¢’; 71
when 3 then return 'd’; 72
when 4 then return 'e’; 73
when 5 then return 'f'; 74
when 6 then return 'g’; 75
when 7 then return 'h'; 76
end; 77
end; 78
private str(pos:INT):STR is 79
ret ::= #STR; 80
col := pos % 8: 81
row .= (pos / 8) + 1; 82
case col 83
when 0 then ret .= "a'"; 84
when 1 then ret .= "b"; 85
when 2 then ret .= "c¢"; 36
when 3 then ret :="4d";]7
when 4 then ret .= "e'"; 88
when b then ret .= "f"; 89
when 6 then ret :="g"; 90
when 7 then ret .= "h"; 91
end; 92
ret := ret + row; 93
return ret; 94
end; -- of str(INT) 95

The following routines return neighboring addresses in standard chess notation. If there is no existing
neighboring position for a given direction, the current address is returned.

east:STR is 96
ret ::= absolute + 1; 97
if ret/8 /= absolute/8 then ret := absolute; end; 98
return str(ret); 99

end; 100

west:STR 1s 101
ret ::= absolute - 1; 102
if ret/8 /= absolute/8 then ret := absolute; end; 103
return str(ret); 104

end; 105

north:STR is 106
ret ::= absolute + 8; 107
if ret > 63 then ret := absolute; end; 108
return str(ret); 109

end; 110

south:STR is 111
ret ::= absolute - 8; 112
if ret < 0 then ret := absolute; end; 113
return str(ret); 114

end; 115

31

In addition to routines that return the address of neighboring positions in horizontal and vertical
directions, there are four routines for neighboring positions on the diagonal axes.

northeast:STR is 116
err : BOOL := false; 117
ret ::= absolute + 8; 118
if ret > 63 then ret := absolute; err := true; end; 119
if “err then 120

ret := absolute + 1; 121
if ret/8 /= absolute/8 then ret := absolute; err := true; end; 122
end; 123
if “err then 124
ret := absolute 4+ 9; 125
end; 126
return str(ret); 127

end; 128

northwest:STR is 129
err : BOOL := false; 130
ret ::= absolute + 8; 131
if ret > 63 then ret := absolute; err := true; end; 132
if “err then 133

ret := absolute - 1; 134
if ret/8 /= absolute/8 then ret := absolute; err := true; end; 135
end; 136
if “err then 137
ret := absolute + 7; 138
end; 139
return str(ret); 140

end; 141

southeast:STR 1s 142
err : BOOL := false; 143
ret ::= absolute - 8; 144
if ret < 0 then ret := absolute; err := true; end; 145
if “err then 146

ret := absolute + 1; 147
if ret/8 /= absolute/8 then ret := absolute; err := true; end; 148
end; 149
if “err then 150
ret := absolute - 7; 151
end; 152
return str(ret); 153

end; 154

southwest:STR 1s 155
err : BOOL := false; 156
ret ::= absolute - 8; 157
if ret < 0 then ret := absolute; err := true; end; 158
if “err then 159

ret := absolute - 1; 160
if ret/8 /= absolute/8 then ret := absolute; err := true; end; 161
end; 162
if “err then 163

32

ret := absolute - 9; 164

end; 165
return str(ret); 166
end; 167

Here are some equality tests. The first one is required because POS has been declared to be a subtype
of $IS_LEQ{POS}. The Sather compiler considers a boolean expression p=q to be syntactic sugar for
the routine call p.is_eq(q). Analogously, p/=q is taken to be p.is_neq(q). If these expressions are
found somewhere in the code, the corresponding routine has to be provided.

is_eq(p:SAME).BOOL is 168
return (absolute = p.pos); 169
end; 170
is_neq(p:STR):BOOL is 171
return “is_eq(p); 172
end; 173
is_eq(p:STR):BOOL is 174
tmp 1= #POS; 175
tmp.pos ;= p; 176
return is_eq(tmp); 177
end; 178

The iter way! returns all reachable positions on an otherwise empty board in the specified direction.

Since this is the first occurrence of an iter declaration, some explanations are appropriate. Iters
are declared similar to routines. The difference is that their name has to end with an exclamation
point “!”. Iters may only be called from within loop statements.

For each textual iter call, en execution state is maintained. When a loop is entered, the execution
state of all iter calls is initialized. When an iter 1s called for the first time, the expressions for self
and for each argument are evaluated?.

When the iter is called, it executes the statements in its body in order. If it executes a yield
statement, control and a value are returned to the caller. Subsequent calls to the iter resume
execution with the statement following the yield statement. If an iter executes a quit statement or
reaches the end of its body, control passes immediately to the end of the innermost enclosing loop
statement in the caller and no value is returned from the iter.

The code in lines 180-183 is evaluated only at the time of the first invocation. If there are two
different textual calls of way!, each one has a separate state and each will execute these code lines
at the first invocation.

In line 182 the starting position of the stepping is initialized. Note that this assignment is actually
a call of the private routine pos(INT). The compiler considers this expression to be equivalent to
stepped.pos(absolute).

The loop in lines 184-348 is the main part of the iter. From inside the loop potential positions
are returned to the caller. If no more positions are available, then a “quit” ends this loop, ends the
iter and ends the loop surrounding the call to the iter.

Since most branches of the case statement are similar only the first case (lines 186-198) is
explained in some detail. Later we will point out the differences of the branches for knight, pawn,
and king moves. From the current position which is kept in stepped, the northeast neighbor is

3 An exception are arguments which have a trailing exclamation mark themselves. These are evaluated for every
call of the iter. But since this kind of argument is not used in Sather Tutorial Chess, the reader is referred to the
Sather Manual [10] for further discussion.

33

checked. If this position is still on the board it is returned to the caller. This is done in line 192 by
the yield statement.

After the caller has processed the new position, the next call to the iter will resume after line 192.
The status is still available, i.e., stepped keeps the position, which has been returned previously. Since
the only statement of the loop is this case, the iter will next re-execute the case and automatically
re-enter this branch. (Note, the direction is not re-evaluated and remains unchanged.)

If the end of the board has been reached by moving into the northeast direction, the iter cannot
return further valid position. Hence, the iter quits in the else branch (line 194 or 196). It does not
return any position, and immediately terminates the loop in the caller.

way!(direction:INT):POS is 179
ret, stepped : POS; 180
stepped := #POS; 181
stepped.pos := absolute, -- starting position 182
count : INT := 0; 183
loop 184

case direction 185
when diag_up_right then 186
if stepped.column < 'h’ then 187
if stepped.row < '8 then 188
stepped.pos := stepped.northeast; 189

ret := #POS; 190
ret.pos := stepped.pos; 191
yield ret; 192
else 193
quit; 194
end; 195
else 196
quit; 197
end; 198
when diag_up_left then 199
if stepped.column > 'a’ then 200
if stepped.row > 1" then 201
stepped.pos := stepped.southwest; 202

ret := #POS; 203
ret.pos := stepped.pos; 204
yield ret; 205
else 206
quit; 207
end; 208
else 209
quit; 210
end; 211
when diag_dn_right then 212
if stepped.column < 'h’ then 213
if stepped.row > 1" then 214
stepped.pos := stepped.southeast; 215

ret := #POS; 216
ret.pos := stepped.pos; 217
yield ret; 218
else 219

34

quit;

end;

else
quit;

end;

when diag_dn_left then

if stepped.column > 'a’ then

if stepped.row < '8 then

stepped.pos := stepped.northwest;

ret := #POS;
ret.pos := stepped.pos;
yield ret;
else
quit;
end;
else
quit;
end;
when vertical_up then
if stepped.row < '8" then
stepped.pos := stepped.north;
ret := #POS;
ret.pos := stepped.pos;
yield ret;
else
quit;
end;
when vertical_dn then
if stepped.row > "1’ then
stepped.pos := stepped.south;
ret := #POS;
ret.pos := stepped.pos;
yield ret;
else
quit;
end;
when horizontal_right then
if stepped.column < 'h’ then
stepped.pos := stepped.east;
ret := #POS;
ret.pos := stepped.pos;
yield ret;
else
quit;
end;
when horizontal_left then
if stepped.column > 'a’ then
stepped.pos := stepped.west;
ret := #POS;
ret.pos := stepped.pos;
yield ret;

35

227

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

260
261
262
263
264
265
266
267
268
269
270

else 271
quit; 272
end; — way! will be continued ... 273

The branch of the case statement that computes the new position of a knight in lines 274-296 is
somewhat different. Instead of using a current position (called stepped), the new positions are always
computed relative to the starting position.

A white pawn (case north_two, lines 297-307) may move one or to steps to the north depending
on the staring row. A black pawn (case south_two, lines 308-318) may move one or to steps to the
south depending on the staring row. A king (case ring, lines 319-342) can reach all 8 positions on
the ring around his staring position.

when knight then 274
ret .= #POS; 275
case count 276

when 0 then ret.pos := absolute + 6; 277
when 1 then ret.pos := absolute - 6; 278
when 2 then ret.pos := absolute + 10; 279
when 3 then ret.pos := absolute - 10; 280
when 4 then ret.pos := absolute + 15; 281
when 5 then ret.pos := absolute - 1b; 282
when 6 then ret.pos := absolute + 17, 283
when 7 then ret.pos := absolute - 17; 284
else 285
quit; 286
end; 287
count := count + 1; 288
if ret.pos <= 63 and ret.pos >= 0 289
and column(ret) <= column(self) + 2 290
and column(self) - 2 <= column(ret) 291
and row(ret) <= row(self) + 2 292
and row(self) - 2 <= row(ret) 293
then 294
yield ret; 295
end; 296

when north_two then 297

if count < 2 and stepped /= stepped.north then 298
stepped.pos := stepped.north; 299
ret := #POS; 300
ret.pos := stepped.pos; 301
count := count + 1; 302
yield ret; 303
if row /= '2' then quit; end; 304

else 305
quit; 306

end; 307

when south_two then 308
if count < 2 and stepped /= stepped.south then 309

stepped.pos := stepped.south; 310
ret := #POS; 311

36

ret.pos := stepped.pos;

count := count + 1;
yield ret;
if row /= '7" then quit; end;
else
quit;
end;
when ring then
ret .= #POS;

case count
when 0 then ret.pos := north;

when 1 then ret.pos := south;
when 2 then ret.pos := east;
when 3 then ret.pos := west;
when 4 then ret.pos := northeast;
when 5 then ret.pos := northwest;
when 6 then ret.pos := southeast;

when 7 then ret.pos := southwest;
else
quit;
end;
count := count + 1;
if ret.pos <= 63 and ret.pos >= 0
and ret.pos /= absolute
and column(ret) <= column(self) + 1
and column(self) - 1 <= column(ret)
and row(ret) <= row(self) + 1
and row(self) - 1 <= row(ret)
then
yield ret;
end;
else
-- The else case was put in for reasons of
- fail safe program development.
raise "P0S:way! invalid case\n";
end; - of case
end; - of loop
end; — of way!
end; - of class POS

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

37

8 Class BOARD

The two array whitexpieces and blackpieces store the pieces in the game. A piece is an object of
type $PIECE which is explained below. Since both arrays are private, it is a secret of the board
implementation in which way pieces are stored.

The board stores information about which color is to play (white_to_play) and about the last
move (last_-move). Moreover, the board knows whether the white or black king has been moved.
This information is necessary, because castle moves are only allowed if the king has not been moved

before.

class BOARD is

private attr whitepieces : ARRAY{$PIECE};

private attr blackpieces : ARRAY{$PIECE};
attr white_to_play : BOOL;

attr last_move

attr white_K_moved : BOOL;

attr black_LK_moved : BOOL;

create:SAME is

ret.;:=new;

ret.set_up;

return ret;
end;

: MOVE;

© 0 NN O R W N~

= =
(SR

The private routine set_up initializes the board. 16 white and 16 black pieces are placed onto the
board, the first player is set to be white, both kings have not moved.

private set_up is

position ::= #POS;

white_to_play := true;

-~ set up white pieces
whitepieces := #(16);

position.pos 1= "a2";

loop i::=0.upto!(7);
whitepieces[i] := #PAWN(position, PIECE::white);

position.pos := position.east;
end;
position.pos .= "al"; whitepieces[8] := #ROOK(position,PIECE::white);
position.pos := "b1"; whitepieces[9] := #KNIGHT(position,PIECE::white);
position.pos := " c1"; whitepieces[10] := #BISHOP(position, PIECE::white);
position.pos .= "d1"; whitepieces[11] := #QUEEN(position,PIECE::white);
position.pos .= "e1"; whitepieces[12] := #KING(position, PIECE::white);
position.pos := "f1"; whitepieces[13] := #BISHOP(position, PIECE::white);
position.pos .= "g1"; whitepieces[14] := #KNIGHT(position,PIECE::white);
position.pos := "h1"; whitepieces[15] := #ROOK(position,PIECE::white);

-- set up black pieces
blackpieces := #(16);

position.pos 1= "aT7";

loop i::=0.upto!(7);
blackpieces[i] := #PAWN(position, PIECE::black);

position.pos := position.east;

38

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

end; 37

position.pos := "a8"; blackpieces[8] := #ROOK(position, PIECE::black); 38
position.pos := "b8"; blackpieces[9] := #KNIGHT(position,PIECE::black); 39
position.pos := " ¢8"; blackpieces[10] := #BISHOP(position,PIECE::black); 40
position.pos .= "d8"; blackpieces[11] := #QUEEN(position, PIECE::black); 41
position.pos := " e8"; blackpieces[12] := #KING(position,PIECE::black); 42
position.pos .= "£8"; blackpieces[13] := #BISHOP(position,PIECE::black); 43
position.pos := " g8"; blackpieces[14] := #KNIGHT(position,PIECE::black); 44
position.pos := "h8"; blackpieces[15] := #ROOK(position, PIECE::black); 45
white_K_moved := false; 46
black_K_moved := false; 47
last_move := void; 48
MAIN::display.redraw(self str); 49
end; 50

Several iters are needed to return all pieces on the board that fulfill a certain condition.

The first iter whitepiece! returns all white pieces, which are still alive. For this purpose, it
makes use of the iter elt! in line 52. The iter is provided by the ARRAY library class (see file
Library/array.sa). If elt! yields an element, this element is yield to the caller if it fulfills the conditions.
However, if elt! quits, this loop is terminated as well, no element is returned to the caller.

private whitepiece!:$PIECE is 51
loop p ::= whitepieces.elt!; 52
if “void(p) and p.alive then yield p; end; 53
end; 54
end; 55
private blackpiece!:$PIECE is 56
loop 57
p ::= blackpieces.elt!; 58

if “void(p) and p.alive then yield p; end; 59
end; 60
end; 61

The nesting depth of iters can be increased even further, as shown in my_piece below: Within
whitepiece! the iter elt! is used. An element found by elt! is returned via whitepiece! and then
returned to the caller of my_piece!l. Similarly, a quit of elt!, induces a quit of whitepiece!, which in
turn results in a quit of my_piece!. The latter terminates the loop, that must surround every call of
my_piece! in the caller.

my_piece:$PIECE 1is 62
if white_to_play then 63
loop 64
yield whitepiece!; 65
end; 66
else 67
loop 68
yield blackpiece!; 69
end; 70
end; 71
end; 72

39

private opp_piece!:$PIECE is 73

if white_to_play then 74
loop 75
yield blackpiece!; 76
end; 77
else 78
loop 79
yield whitepiece!; 80
end; 81
end;]2
end; 83
piece!:$PIECE is 84
loop 85
yield whitepiece!; 86
end;]7
loop 88
yield blackpiece!; 89
end; 90
end; 91

One of the secrets of the BOARD implementation is the way pieces are stored. For internal purposes
it 1s necessary, to find out at which position of the arrays a particular piece is stored.

In the private routine index we use a post condition. To assure that the piece p is (dead or
alive) on board we test whether the return value result is set appropriately, i.e., whether result is
between 0 and 15 upon return. Note, that there may not be a semicolon behind a post condition.
The conditions get checked before the routine returns. To access the value that will be returned,
Sather provides the predefined results expression. The type of results is determined by the result
type of the routine. If checking is desired, it has to be activated with the compiler flag -post
<classes>.

The loop (line 97-104) is an excellent example of a loop that is controlled by multiple iters. The
first two iters are defined in the ARRAY library class. The iter ind! (line 98) returns the existing
indexes of array. Asexplained above, elt! (line 99) returns the corresponding array elements. For each
iteration of the loop the following condition holds: whitepieces[i] = q. Both iters can be expected to
yield the same number of times. If the end of the array is encountered, the call to ind! will terminate
the loop; elt! will not be called.

However, if the desired piece is found, it is not necessary, to continue the search. To terminate
the loop immediately, the predefined iter break! is called in line 102, which will always execute a
quit statement.

The same search is implemented differently in the else branch (line 106). Here we use the library
routine index_of provided in the ARRAY class. (See file Library/array.sa for details.)

private index(p:$PIECE):INT 92
post result.is bet(0,15) 93
is 94
ret : INT = -1; 95
if p.iswhite then 96
loop 97
i::= whitepieces.ind!; 98
q::= whitepieces.elt!; 99

if p.position = q.position then 100

40

ret .= 1i; 101

break!: 102

end; 103
end; - of loop 104
else 105
ret := blackpieces.index_of(p); 106
end; 107
return ret; 108
end; - private index 109

To check whether there is a piece on a given position of the board the following routines are provided:

has_piece(pos:POS):BOOL is 110
ret : BOOL := false; 111
loop p::=piece!; 112
if p.position = pos then ret := true; end; 113
end; 114
return ret; 115
end; 116
has_white_piece(pos:POS):BOOL is 117
ret : BOOL := false; 118
loop p::=whitepiece!; 119
if p.position = pos then ret := true; end; 120
end; 121
return ret; 122
end; 123
has_black_piece(pos:POS):BOOL is 124
ret : BOOL := false; 125
loop p::=blackpiece!; 126
if p.position = pos then ret := true; end; 127
end; 128
return ret; 129
end; 130
has_my_piece(pos:POS):BOOL is 131
if white_to_play then 132
return has_white_piece(pos); 133
else 134
return has_black_piece(pos); 135
end; 136

end; 137

The following two routines return a pointer to a piece at a given position of the board. The routine
comes in two versions. The latter can process POS arguments by reducing them to STR parameters
which are then processed by the first version.

piece(str:STR):$PIECE is 138
ret : SPIECE; 139
position ::= #POS; 140
position.pos := str; 141
loop p::=piece!; 142

41

if p.position = position then ret := p; end; 143

end; 144
return ret; 145
end; 146
piece(p:POS):$PIECE is 147
return piece(p.str); 148
end; 149

For interface purposes, a board can represent the status of all pieces in an ASCII representation.
The character array is used to transmit the board situation to the ASCII_.DISPLAY and via the
X_DISPLAY to the external class XCW.

str:ARRAY{CHAR} is 150
ret::=#ARRAY{CHAR}(65); 151
loop 152

ret[0.upto!(63)] := " ; 153
end; 154
ret[64] := '\0"; 155
loop p::=self .whitepiece!; 156

if “void(p) and p.alive then 157

ret[p.position.pos] := p.fig; 158

end; 159
end; 160
loop p::=self .blackpiece!; 161

if “void(p) and p.alive then 162

ret[p.position.pos] := p.fig.lower; 163

end; 164
end; 165
return ret; 166

end; 167

After these helper routines and iters have been implemented, the central routines are presented.
The routine pos_in_check tests whether a given position could be reached in the next move by the
opponent.

In this routine there is again a good example of nested iter calls: The first loop (line 172-179)
considers all pieces of the opponent player. The inner loop (line 173-178) then for each of these
pieces considers target positions of potential moves. (Is is explained later on, what a move is if the
flag for_check_test is set. Just ignore the flag for the time being.)

The call piece.move!() in line 174is a dispatched iter. See page 24 for an alternative implemen-
tation that works with earlier releases of the Sather 1.0 compiler.

pos_in_check(p:POS):BOOL is 168
ret : BOOL; 169
pos : POS; 170
ret ;= false; 171
loop piece::=opp_piece!; 172

loop 173
pos :=piece.move!(self, PIECE::for_check_test); 174
if p=pos then 175

ret := true; 176

42

break!: 177

end; 178
end; 179

if ret then break!: end; 180
end; 181
return ret; 182
end; - of pos_in_check 183

The routine my_king_isin_check returns true if the king of the current color (white_to_play) is in check.
After an otherwise valid move of a piece, the own king is not allowed to be exposed and to be in

check.

my king_isin_check:BOOL is 184
piece : $PIECE; 185
loop 186
piece := my_piece!; 187
until!(piece.isking); 188
end; 189
return pos_in_check(piece.position); 190

end; - of my_king_isin_check 191

Boolean expressions are evaluated with a short-circuit semantics. For an and this means that the
second operand 1s only evaluated if the first operand was true. For an or the second operand is
evaluated only if the first one was false. In routine check_n_apply_move we make use of this to ensure
that a move is applied to a board only if it 1s valid.

Routine move_valid_so_far checks whether a given move is valid with respect to the current state
of the board. The only circumstance which is not checked is whether the move would expose the
own king to be in check.

check_n_apply_move(move:MOVE):BOOL is 192
return (move_valid_so_far(move) and apply_move_with_own_check_test(move)); 193
end; - of check_n_apply_move 194
private move_valid_so_far(move:MOVE):BOOL 195
pre “move.isquit 196
is 197
ret : BOOL := false; 198
-- A wvalid move must start at a position where one of my pieces is.... 199
if has_my_piece(move.from) then 200
p.:=piece(move.from); 201

- ... and it must be a valid move with respect to the mobility of the 202

-- piece at the current state of the board. 203

if p.valid_move(move.to,self) then 204
ret ;.= true; 205

-- Swnce the move seems to be valid, the moving piece is stored 206

-- in the move object. That ecases future access to the moving piece 207

- and allows for un-doing of mowves. 208
move.piece 1= p; 209
end; 210
end; 211
return ret; 212

43

end; - of move_valif 213

The move is applied to the board in routine apply_move_with_own_check_test. The routine returns
false, and leaves the state of the board unchanged, if an otherwise valid move would expose the own
king to be in check.

First of all in lines 221-241 it 1s checked whether the move would kill an opponent piece. The
normal circumstances for this are that the moving piece moves to a position that is occupied by an
opponent piece. Chess has one special rule due to which a piece can be killed without moving to its
former position. It 1s called an “en passant” move. This special case can only occur if two pawns
are involved. My pawn can kill an opponent pawn that sits immediately east or west of my pawn,
if the other pawn has done an initial double move in the immediately preceding move. (That’s why
the last move is considered to be part of the state of a board.). If these conditions hold, my pawn
can move diagonal so that his new position is “behind” the opponent pawn.

Special action is required in case of castle moves. A castle move works as follows. If the king
and a rook both are in their initial positions, if there is no piece in between them, if the king has
not been moved in the game, and if the two positions next to the king in the direction toward the
rook are not in check, then the king moves two positions towards the rook and then the rook jumps
over the king and is put immediately next to the king. A castle move is a k-castle, if the king moves
to the rook whose initial position is closer. Otherwise it 1s called g-castle, because due to the initial
queen position, the distance to the rook is larger. Chess only allows castle moves, if the king has not
been moved earlier in the game. The board keeps track of king moves in the two flags white_K_moved
and black_K_moved. To enable un-doing of moves, a move knows whether it causes a change of a
K_moved flag. See lines 254-268 for the K_moved flags and lines 269-286 for the implementation of
castle moves.

Another special rule in chess allows to exchange a pawn against a queen or a knight when it
reaches the base line of the opponent. Theoretically, a player could have 9 queens. This rule is
implemented in lines 254-268.

apply_move_with_own_check_test(move:MOVE):BOOL 214
pre “move.isquit and move_valid_so_far(move) and “void(move.piece) 215
is 216
ret : BOOL := true; - Wil be false if the move is invalid due to 217
-- exposure of own "king in chess” 218
p:$PIECE:=move.piece; -- to be moved 219
r:$SPIECE; — may be killed 220
- Case 1: Kl with normal move 221
r .= piece(move.to); -- If it exists, it can only be opponent piece. 222
-- Otherwise the move would not be valid. 223

-- Case 2: En Passant. 224
if void(r) and “void(last_move) and p.ispawn 225
and “void(last_-move.piece) and last_move.piece.ispawn 226
and (last_move.to = p.position.east 227

or last_move.to = p.position.west) 228

then 229
if (p.iswhite and white_to_play 230
and p.position.row = '5" and last_move.from.row = '7’) 231

or (“p.iswhite and “white_to_play 232

and p.position.row = '4" and last_move.from.row = '2’) 233

then 234

r := last_move.piece; 235

44

end;
end;
if “void(r) then
move.kills ;= r;
r.alive := false;
end;
p.update_position(move.to);
-- Deal with king moves.
if p.isking then
if white_to_play and “"white_K_moved then
white_K_moved := true;
move.king_chg := true;

end;
if “white_to_play and “black_K_moved then
black_K_moved := true;
move.king_chg := true;
end;
end;

-- Deal with pawn exchange.
if (p.ispawn and p.iswhite and white_to_play and p.position.row='8")
or (p.ispawn and “p.iswhite and “white_to_play and p.position.row="1")
then
case MAIN::player.ask_pawn_xchg
when 'Q then
whitepieces[index(p)] := #QUEEN(p.position, PIECE::white);
when 'K’ then
whitepieces[index(p)] := #KNIGHT(p.position, PIECE::white);
else
-- Do 1t fails safe.
raise "BOARD:apply move:pawn exchange invalid case entry\n"
end;
move.pawn_chg = true;
end;
- Deal with castles.
if move.isq_castle then
if white_to_play then
rook ::= piece("a1");
rook.update_position("d1");
else
rook ::= piece("a8");
rook.update_position(" d8");
end;
elsif move.isk_castle then
if white_to_play then
rook ::= piece("h1");
rook.update_position(" £1");
else
rook ::= piece("h8");
rook.update_position(" £8");
end;
end;

45

236
237
238
239
240
241
242
243
244
245
246
247
248
249

257

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

move.prev_move = |ast_move; 287

last_move := move; 288
- Check whether my king is in check after application of the move 289
if my_king_isin_check then 290
- Although otherwise correct this is an invalid move. 291
-- The original state of the board is reconstructed by calling 292
- unapply_mowve. 293
ret := false; 204
unapply_move; 295
end; 296
white_to_play := “white_to_play; 297
return ret; 298
end; - of apply_move 299

The routine unapply_move uses the information that is stored in last_move to replay the move, 1.e.,
restore the board to the state it had before the application of that move. It depends on the fact
that last_move is a valid move except that the king might be in check afterwards.

unapply_move is 300
-- Restore killed opponent piece 301
if “void(last_move kills) then 302

last_move. kills.alive := true; 303
end; 304
-~ Restore pawn exchange 305
if last_move.pawn_chg then 306

newpiece ::= piece(last_move.piece.position); 307

whitepieces[index(newpiece)] := last_move.piece; 308
end; 309
-- Restore move 310
last_move.piece.update_position(last_move.from); 311
if last_move king_chg then 312

if white_to_play then 313

white_K_moved := false; 314
else 315
black_K_moved := false; 316

end; 317
end; 318
-- Restore castle 319
if last_move.isq_castle then 320

if white_to_play then 321

rook ::= piece("d1"); 322
rook.update_position("a1"); 323
else 324
rook ::= piece("d8"); 325
rook.update_position(" a8"); 326

end; 327
elsif last_move.isk_castle then 328

if white_to_play then 329

rook ::= piece("£1"); 330
rook.update_position("h1"); 331

46

else 332

rook ::= piece(" £8"); 333
rook.update_position("h8"); 334
end; 335
end; 336
last_move := last_move.prev_move; 337
white_to_play := “white_to_play; 338
end; - of unapply_move 339

For the automatic player, there must be a way to assign a worth to a board. This i1s done as follows.
Compute the sum of the worths of all white pieces on the board. Similar, compute the worth of all
black pieces. The value of the board is the ratio of the two values.

The routine board_value returns a floating point value, FLT, which is specified in the FLT library.
(See file Library/flt.sa for details.)

More complex evaluation functions are known and can be used to replace the simple function
board_value. For example, the degree of freedom the pieces have in their movement i1s an interesting
aspect that might be considered in the evaluation function.

board_value:FLT is 340
white_value : INT := 0; 341
black_value : INT := 0; 342
loop p::= whitepiece!; 343

white_value := white_value + p.worth; 344
end; 345
loop p::= blackpiece!; 346

black_value := black_value + p.worth; 347
end; 348
return white_value flt/black_value flt; 349

end; - of board_value 350

end; - of class BOARD 351

47

9 Type $PIECE and Related Classes

For the pieces the same structure of abstract and concrete types is used that has been used before
for players and displays. The abstract type $PIECE specifies the common interface. The concrete
type or class PIECE is nof used to create objects, but provides common implementations that are

inherited by the real pieces (i.e., by classes PAWN, ROOK, KNIGHT, BISHOP, QUEEN, and KING).

9.1 Type $SPIECE

type $PIECE is 1
alive:BOOL; 2
alive(set:BOOL); 3
worth:INT; 4
iswhite:BOOL; 5
position:POS; 6
valid_move(to:POS,board:BOARD):BOOL; 7
update_position(position:POS); 8
update_position(position:STR); 9
move!(b:BOARD,to_piece:BOOL):POS; 10
fig: CHAR; 11
ispawn : BOOL; 12
isrook : BOOL; 13
isking : BOOL; 14

end; - of type $PIECE 15

9.2 Class PIECE

class PIECE < $PIECE is 16
- General constants that are used throughout the descendants of SPIECE 17
const white : BOOL := true; 18
const black : BOOL := “white; 19
const ordinary : BOOL := false; 20
const for_check_test : BOOL := true; - alters behavior of move! 21
-- Attributes that are specific to a PIECE 22
attr alive : BOOL; 23
attr iswhite : BOOL; 24
attr position : POS; 25
-- Constants that are specific to a PIECE 26
const worth : INT := 0; 27
const fig : CHAR := " ’; 28
const ispawn : BOOL := false; 29
const isking : BOOL := false; 30
const isrook : BOOL := false; 31
create(pos:POS iswhite:BOOL):SAME is 32

ret ::= new; 33
ret.position := #POS; 34
ret.position.pos := pos.str; 35
ret.iswhite := iswhite; 36

48

ret.alive ;= true; 37

return ret; 38
end; 39
private same_color(b:BOARD,p:POS):BOOL 40
pre b.has_piece(p) 41
is 42

white_piece_on_pos :BOOL:= b.has_white_piece(p); 43

if (iswhite and white_piece_on_pos) 44

or (“iswhite and “white_piece_on_pos) then 45
return true; 46
else 47
return false; 48

end; 49

end; 50

The following routine valid_move checks whether a given move is valid for a given board situation
This is done as follows. For the from position, all valid moves are generated by calling the iter move!
in line 53. Tt is then checked, whether the given move is in the returned set of valid moves.

valid_move(to:POS,board:BOARD):BOOL is 51
ret : BOOL := false; 52
loop valid_to::=move!(board,ordinary); 53

if to=valid_to then ret:=true; break!: end; 54
end; 55
return ret; 56

end; 57

update_position(p:POS) is 58
position.pos:=p.str; 59

end; 60

update_position(pos:STR) is 61
position.pos:=pos; 62

end; 63

move!(b:BOARD,mode:BOOL):POS is 64
raise "PIECE:dummy code (move!) called"; 65

end; 66

end; - of class PIECE 67

9.3 Class BISHOP

First, constants are redefined that have values which differ from those given in the PIECE imple-
mentation. The iter move! returns all valid moves given a board with other pieces. The outer
loop (lines 75-86) will check the following directions: diag_up_right, diag_up_left, diag_dn_right, and
diag_dn_left. In the inner loop (lines 76-85) all positions are computed a piece could reach in a
direction set by the outer loop. A position returned by way! in line 76 is valid as long as there is no
other piece occupying that position.

If there is another piece on the position returned by way! this cannot be a piece of the same
color. However, for a check-test, the occupied position is checked by the moving piece.

49

class BISHOP < $PIECE is 68

include PIECE; 69
-- Constants that are different from PIECE implementation: 70
const worth : INT := 3; 71
const fig : CHAR := 'B’; 72
move!(b:BOARD,mode:BOOL):POS is 73
to : POS; 74
loop direction::=POS::diag_up_right.upto!(POS::diag_dn_left); 75
loop to:=position.way!(direction); 76

if “b.has_piece(to) then 77
yield to; 78

elsif same_color(b,to) and mode=ordinary then 79
break!: 30

else 81
yield to; 82
break! 83

end; 84
end; 85
end; 36
end; - of move! 87
end; - of class BISHOP 88

9.4 Class ROOK
The implementation of class ROOK is very similar to the code of BISHOP.

class ROOK < $PIECE is 89
include PIECE; 90
-- Constants that are different from PIECE implementation: 91
const worth : INT :=b; 92
const fig : CHAR := 'R"; 93
const isrook : BOOL := true; 94
move!(b:BOARD,mode:BOOL):POS is 95

- returns all valid moves given a board with other picces 96
to : POS; 97
- This loop will check the following directions: 98
-~ horizontal_right, horizontal left, vertical_up, vertical_dn 99
loop direction::=POS::horizontal_right.upto!(POS::vertical _dn); 100
loop to:=position.way!(direction); 101
if “b.has_piece(to) then 102
yield to; 103
elsif same_color(b,to) and mode=ordinary then break!; 104
else 105
yield to; 106
break! 107
end; 108
end; 109
end; 110
end; - of move! 111

50

end; - of class ROOK 112

9.5 Class QUEEN
The implementation of class QUEEN is very similar to the code of BISHOP.

class QUEEN < $PIECE is 113
include PIECE; 114
-- Constants that are different from PIECE implementation: 115
const worth : INT = 9; 116
const fig : CHAR :='Q’; 117
move!(b:BOARD,mode:BOOL):POS is 118

- returns all valid moves given a board with other picces 119
to : POS; 120
- This loop will check the following directions: 121
-~ diag_up_right, diag_up_left, diag_dn_right, diag_dn_left 122
-~ horizontal_right, horizontal left, vertical_up, vertical_dn 123
-~ It is a combination of rook and bishop. 124
loop direction::=POS::diag_up_right.upto!(POS::vertical_dn); 125
loop to:=position.way!(direction); 126

if “b.has_piece(to) then 127
yield to; 128

elsif same_color(b,to) and mode = ordinary then break!; 129
else 130
yield to; 131
break! 132

end; 133
end; 134
end; 135
end; - of move! 136
end; - of class QUEEN 137

9.6 Class KNIGHT
The body of the loop is slightly different to the one used for ROOK, BISHOP and QUEEN. Above,

the inner loop terminated as soon as a position was encountered that was blocked by another piece.
For KNIGHT (and later on for KING) all potential position have to be considered.

class KNIGHT < $PIECE is 138
include PIECE; 139
-- Constants that are different from PIECE implementation: 140
const worth : INT := 3; 141
const fig : CHAR := 'N’; 142
move!(b:BOARD,mode:BOOL):POS is 143

- returns all valid moves given a board with other picces 144
to : POS; 145
loop to:=position.way!(POS::knight); 146

if b.has_piece(to) and same_color(b,to) and mode = ordinary then 147

51

-~ skip this move 148

else 149
yield to; 150

end; 151
end; 152
end; - of move! 153
end; - of class KNIGHT 154

9.7 Class PAWN

The iter move! is different for the pawns: In ordinary mode, straight moves, diagonal moves and
“en passant” moves must be considered. In check_test mode, straight moves are irrelevant. The
implementation of move! is divided in two sections by an if statement. In the then branch (line 164-
215) the potential moves of white pawns are computed. The else branch (lines 216-267) is devoted
to the black pawns.

class PAWN < $PIECE is 155
include PIECE; 156
-- Constants that are different from PIECE implementation: 157
const worth ; INT = 1; 158
const fig : CHAR := 'P"; 159
const ispawn : BOOL := true; 160
move!(b:BOARD,mode:BOOL):POS is 161

- returns all valid moves given a board with other picces 162
to : POS; 163
if iswhite then 164
if mode = ordinary then 165
-- vertical steps 166
loop to:=position.way!(POS::north_two); 167

if b.has_piece(to) then -- position and continued way blocked 168
break!: 169

end; 170
yield to; 171
end; 172
end; 173
-~ diag_up 174
if position.column < 'h’ then 175
to:=#POS; 176
to.pos := position.northeast; 177

if mode = for_check_test then 178
yield to; 179
else 180

if b.has_black_piece(to) then 181
yield to; 182

end; 183
end; 184
end; 185
- diag_dn 186
if position.column > 'a’ then 187
to:=#POS; 188

52

to.pos := position.northwest;
if mode = for_check_test then
yield to;
else
if b.has_black_piece(to) then
yield to;
end;
end;
end;
-- en passani
if position.row = '5’
and “void(b.last_move)
and b.last_move.from.row = '7’
and (b.last_move.to = position.east
or b.last_move.to = position.west)
and “void(b.last_move.piece) and b.last_move.piece.ispawn
then
if mode = for_check_test then
yield b.last_move.to;
else
to := #POS;
to.pos := b.last_move.to.north;
yield to;
end;
end;
-- MO Mmore moves;
quit;
else - i.e. if isblack
if mode = ordinary then
-- vertical steps
loop to:=position.way!(POS::south_two);
if b.has_piece(to) then -- position and continued way blocked
break!:
end;
yield to;
end;
end;
-~ diag_up
if position.column > 'a’ then
to:=#POS;
to.pos := position.southwest;
if mode = for_check_test then
yield to;
else
if b.has_white_piece(to) then
yield to;
end;
end;
end;
- diag_dn
if position.column< 'h’ then

53

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

217

230
231
232
233
234
235
236
237
238
239

to:=#POS;
to.pos := position.southeast;
if mode = for_check_test then
yield to;
else
if b.has_white_piece(to) then
yield to;
end;
end;
end;
-- en passani
if position.row = '4’
and “void(b.last_move)
and b.last_move.from.row = '2’
and (b.last_move.to = position.east
or b.last_move.to = position.west)

and “void(b.last_move.piece) and b.last_move.piece.ispawn

then
if mode = for_check_test then
yield b.last_move.to;
else
to := #POS;
to.pos := b.last_move.to.south;
yield to;
end;
end;
quit;
end;
end; - of move!

end; - of class PAWN

240
241
242
243
244
245
246
247
248
249

260
261
262
263
264
265
266
267
268
269

9.8 Class KING

In the iter move! of the KING up to 8 neighboring positions have to be analyzed. As usual, this is
done by using the way! iter provided by the POS class. Furthermore, the king might be able to do a
castle move. If the preconditions of castle moves are fulfilled, the new position of the king is yield.
Castle moves are analyzed separately for the white king in lines 290-321 and for the black king in

lines 322-352.

class KING < $PIECE is
include PIECE;

-- Constants that are different from PIECE implementation:
const worth : INT := 100; -- compared to the worth of other pieces
-- the king has an infinite worth

const fig : CHAR := 'K’;
const isking : BOOL := true;
move!(b:BOARD,mode:BOOL):POS is
- returns all valid moves given a board with other picces
to : POS;
loop to:=position.way!(POS::ring);

54

270
271
272
273
274
275
276
277
278
279
280

if b.has_piece(to) and same_color(b,to) and mode = ordinary then
-~ skip this move
else
if mode = for_check_test or “b.pos_in_check(to) then
yield to;
end;
end;
end;
-~ castle moves
spotl, spot2, spot3, rook : $PIECE;
if b.white_to_play and “b.white_K_moved and position = "e1'" then
-~ g-castle
spotl:= b.piece("d1"); spot2:= b.piece(” c1"); spot3:= b.piece("b1");
rook := b.piece("a1");
if “void(rook) and rook.isrook and rook.alive
and void(spotl) and void(spot2) and void(spot3)
then
to := #POS;
to.pos := "d1";
if “b.pos_in_check(to) then
to.pos := "c1";
if “b.pos_in_check(to) then
yield to;
end;
end;
end;
- k-castle
spotl:= b.piece("£1"); spot2:= b.piece(" g1"); rook := b.piece("h1");
if “void(rook) and rook.isrook and rook.alive
and void(spotl) and void(spot2)
then
to := #POS;
to.pos := "f1";
if “b.pos_in_check(to) then
to.pos :="g1";
if “b.pos_in_check(to) then
yield to;
end;
end;
end;
end; - castle moves of white king
if "b.white_to_play and “b.black_K_moved and position = "e8" then
-~ g-castle
spotl:= b.piece("d8"); spot2:= b.piece(” c8"); spot3:= b.piece(" b8");
rook := b.piece(" a8");
if “void(rook) and rook.isrook and rook.alive
and void(spotl) and void(spot2) and void(spot3)
then
to := #POS;
to.pos := "d8";
if “b.pos_in_check(to) then

99

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

to.pos := "¢c8";
if “b.pos_in_check(to) then
yield to;
end;
end;
end;
- k-castle

spotl:= b.piece("£8"); spot2:= b.piece(" g8"); rook := b.piece("h8");
if “void(rook) and rook.isrook and rook.alive
and void(spotl) and void(spot2)

then
to := #POS;
to.pos := "£8";
if “b.pos_in_check(to) then
to.pos :="g8";
if “b.pos_in_check(to) then
yield to;
end;
end;
end;
end; - castle move of black king
end; - of move!

end; - of class KING

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

56

10

Suggested Execises

Extend Sather Tutorial Chess to print out all moves of the game in standard chess notation
after the game is over.

If the user decides to have a computer player, the random number generator always is initialized
with the same seed. Extend Sather Tutorial Chess to ask the user for his name. Then from
this name compute a seed to initialize the random number generator.

Introduce a new subtype of $PLAYER that inherits the implementation of MINMAX. Call this
class ALPHABETA and implement an Alpha-Beta-Search to improve the expertise of the auto-
matic player. You might want to change the routine setup of MAIN to create an ALPHABETA
player instead of a MINMAX player.

Change POS to be a value class. Instead of having the internal addressing scheme that
numbers the positions of the board from 0 to 63 in variable absolute, the positions should be
represented with two integers, one for the row number and the other for the number of the
column. Obviously, nearly all routines in POS have to be changed to reflect that choice. Other
than that the code is relatively independent of the implementation of POS. There might be
some problems when POS objects are tested to be void. Furthermore, the routine is the only
place outside of board.str that knows about the internal addressing used in POS. Note, that
the new internal addressing eases the complexity of the computation of neighboring elements
slightly. Instead of divisions and modulo operations, a routine is_off_board could be used to
deal with all the necessary plausibility testing.

See section 1.4 for further suggestions.

57

References

[1] Robert Henderson and Benjamin Zorn. A comparison of object-oriented programming in four
modern languages. Technical Report CU-CS-641-93, University of Colerado, Boulder, July
1993.

[2] Chu-Cheow Lim and A. Stolcke. Sather language design and performance evaluation. Technical
Report TR-91-034, International Computer Science Institute, Berkeley, May 1991.

[3] Scott Milton and Heinz W. Schmidt. Dynamic dispatch in object-oriented languages. Techni-
cal Report TR-CS-94-02, CSIRO — Division of Information Technology, Canberra, Australia,
January 1992.

[4] Stephan Murer, Stephen Omohundro, and Clemens Szyperski. Sather Tters: Object-oriented
iteration abstraction. Technical Report TR-93-045, International Computer Science Institute,
Berkeley, August 1993.

[5] Object-Orientation FAQ. http://iamwww.unibe.ch/ scg/OOinfo/FAQ.

[6] Stephen M. Omohundro. The differences between Sather and Eiffel. Fiffel Outlook, 1(1):12-14,
April 1991.

[7] Stephen M. Omohundro. Sather’s design. Fiffel Outlook, 1(3):20-21, August 1991.

[8] Stephen M. Omohundro. Sather provides nonproprietary access to object-oriented program-
ming. Computer in Physics, 6(5):444-449, September 1992.

[9] Stephen M. Omohundro. The Sather programming language. Dr. Dobb’s Journal, 18(11):42-48,
October 1993.

[10] Stephen M. Omohundro. The Sather 1.0 specification. Technical Report TR~in preparation,
International Computer Science Institute, Berkeley, 1994.

[11] Stephen M. Omohundro and Chu-Cheow Lim. The Sather language and libraries. Technical
Report TR-92-017, International Computer Science Institute, Berkeley, March 1992.

[12] Heinz W. Schmidt and Stephen M. Omohundro. CLOS, Eiffel, and Sather: A comparison. In
Andreas Paepcke, editor, Object-Oriented Programmang: The CLOS Perspective, pages 181-213.
MIT Press Cambridge, Massachusetts, London, England, 1993. Available as ICSI TR-91-047.

[13] Clemens Szyperski, Stephen Omohundro, and Stephan Murer. Engineering a programming
language: The type and class system of Sather. In Jurg Gutknecht, editor, Programming Lan-
guages and System Architectures, pages 208-227. Springer Verlag, Lecture Notes in Computer
Science 782, November 1993. Available as technical report ICSI TR-93-064.

58

