
CSA215: Data Compression Techniques University of Bahrain
Course Coordinator: Mr. Basel Bani-Ismail College of Applied Studies

1

The Data Compression Book
By Mark Nelson and Jean-loup Gailly

Chapter 1
Introduction to Data Compression

The primary purpose of this book is to explain various data-compression techniques.
Data compression seeks to reduce the number of bits used to store or transmit
information. It encompasses a wide variety of software and hardware compression
techniques which can be so unlike one another that they have little in common except that
they compress data. The LZW algorithm used in the Compuserve GIF specification, for
example, has virtually nothing in common with the CCITT G.721 specification used to
compress digitized voice over phone lines.

This book will not take a comprehensive look at every variety of data compression. The
field has grown in the last 25 years to a point where this is simply not possible. What this
book will cover are the various types of data compression commonly used on personal
and midsized computers, including compression of binary programs, data, sound, and
graphics.

Furthermore, this book will either ignore or only lightly cover data-compression
techniques that rely on hardware for practical use or that require hardware applications.
Many of today’s voice-compression schemes were designed for the worldwide fixed
bandwidth digital telecommunications networks. These compression schemes are
intellectually interesting, but they require a specific type of hardware tuned to the fixed
bandwidth of the communications channel. Different algorithms that don’t have to meet
this requirement are used to compress digitized voice on a PC, and these algorithms
generally offer better performance.

Some of the most interesting areas in data compression today, however, do concern
compression techniques just becoming possible with new and more powerful hardware.
Lossy image compression, like that used in multimedia systems, for example, can now be
implemented on standard desktop platforms. This book will cover practical ways to both
experiment with and implement some of the algorithms used in these techniques.

CSA215: Data Compression Techniques University of Bahrain
Course Coordinator: Mr. Basel Bani-Ismail College of Applied Studies

2

Chapter 2
The Data-Compression Lexicon, with a History

Like any other scientific or engineering discipline, data compression has a vocabulary
that at first seem overwhelmingly strange to an outsider. Terms like Lempel-Ziv
compression, arithmetic coding, and statistical modeling get tossed around with reckless
abandon.

While the list of buzzwords is long enough to merit a glossary, mastering them is not as
daunting a project as it may first seem. With a bit of study and a few notes, any
programmer should hold his or her own at a cocktail-party argument over data
compression techniques.

The Two Kingdoms

Data-compression techniques can be divided into two major families; lossy and lossless.
Lossy data compression concedes a certain loss of accuracy in exchange for greatly
increased compression. Lossy compression proves effective when applied to graphics
images and digitized voice. By their very nature, these digitized representations of analog
phenomena are not perfect to begin with, so the idea of output and input not matching
exactly is a little more acceptable. Most lossy compression techniques can be adjusted to
different quality levels, gaining higher accuracy in exchange for less effective
compression. Until recently, lossy compression has been primarily implemented using
dedicated hardware. In the past few years, powerful lossy-compression programs have
been moved to desktop CPUs, but even so the field is still dominated by hardware
implementations.

Lossless compression consists of those techniques guaranteed to generate an exact
duplicate of the input data stream after a compress/expand cycle. This is the type of
compression used when storing database records, spreadsheets, or word processing files.
In these applications, the loss of even a single bit could be catastrophic. Most techniques
discussed in this book will be lossless.

Data Compression = Modeling + Coding

In general, data compression consists of taking a stream of symbols and transforming
them into codes. If the compression is effective, the resulting stream of codes will be
smaller than the original symbols. The decision to output a certain code for a certain
symbol or set of symbols is based on a model. The model is simply a collection of data
and rules used to process input symbols and determine which code(s) to output. A
program uses the model to accurately define the probabilities for each symbol and the
coder to produce an appropriate code based on those probabilities.

CSA215: Data Compression Techniques University of Bahrain
Course Coordinator: Mr. Basel Bani-Ismail College of Applied Studies

3

Modeling and coding are two distinctly different things. People frequently use the term
coding to refer to the entire data-compression process instead of just a single component
of that process. You will hear the phrases “Huffman coding” or “Run-Length Encoding,”
for example, to describe a data-compression technique, when in fact they are just coding
methods used in conjunction with a model to compress data.

Using the example of Huffman coding, a breakdown of the compression process looks
something like this:

Figure 2.1 A Statistical Model with a Huffman Encoder.

In the case of Huffman coding, the actual output of the encoder is determined by a set of
probabilities. When using this type of coding, a symbol that has a very high probability of
occurrence generates a code with very few bits. A symbol with a low probability
generates a code with a larger number of bits.

We think of the model and the program’s coding process as different because of the
countless ways to model data, all of which can use the same coding process to produce
their output. A simple program using Huffman coding, for example, would use a model
that gave the raw probability of each symbol occurring anywhere in the input stream. A
more sophisticated program might calculate the probability based on the last 10 symbols
in the input stream. Even though both programs use Huffman coding to produce their
output, their compression ratios would probably be radically different.

So when the topic of coding methods comes up at your next cocktail party, be alert for
statements like “Huffman coding in general doesn’t produce very good compression
ratios.” This would be your perfect opportunity to respond with “That’s like saying
Converse sneakers don’t go very fast. I always thought the leg power of the runner had a
lot to do with it.” If the conversation has already dropped to the point where you are
discussing data compression, this might even go over as a real demonstration of wit.

The Dawn Age

Data compression is perhaps the fundamental expression of Information Theory.
Information Theory is a branch of mathematics that had its genesis in the late 1940s
with the work of Claude Shannon at Bell Labs. It concerns itself with various questions
about information, including different ways of storing and communicating messages.

CSA215: Data Compression Techniques University of Bahrain
Course Coordinator: Mr. Basel Bani-Ismail College of Applied Studies

4

Data compression enters into the field of Information Theory because of its concern with
redundancy. Redundant information in a message takes extra bit to encode, and if we can
get rid of that extra information, we will have reduced the size of the message.

Information Theory uses the term entropy as a measure of how much information is
encoded in a message. The word entropy was borrowed from thermodynamics, and it has
a similar meaning. The higher the entropy of a message, the more information it contains.
The entropy of a symbol is defined as the negative logarithm of its probability. To
determine the information content of a message in bits, we express the entropy using the
base 2 logarithm:

Number of bits = - Log base 2 (probability)

The entropy of an entire message is simply the sum of the entropy of all individual
symbols.

Entropy fits with data compression in its determination of how many bits of information
are actually present in a message. If the probability of the character ‘e’ appearing in this
manuscript is 1/16, for example, the information content of the character is 4 bits. So the
character string “eeeee” has a total content of 20 bits. If we are using standard 8-bit
ASCII characters to encode this message, we are actually using 40 bits. The difference
between the 20 bits of entropy and the 40 bits used to encode the message is where the
potential for data compression arises.

One important fact to note about entropy is that, unlike the thermodynamic measure of
entropy, we can use no absolute number for the information content of a given message.
The problem is that when we calculate entropy, we use a number that gives us the
probability of a given symbol. The probability figure we use is actually the probability
for a given model, not an absolute number. If we change the model, the probability will
change with it.

How probabilities change can be seen clearly when using different orders with a
statistical model. A statistical model tracks the probability of a symbol based on what
symbols appeared previously in the input stream. The order of the model determines how
many previous symbols are taken into account. An order-0 model, for example, won’t
look at previous characters. An order-1 model looks at the one previous character, and so
on.

The different order models can yield drastically different probabilities for a character.
The letter ‘u’ under an order-0 model, for example, may have only a 1 percent probability
of occurrence. But under an order-1 model, if the previous character was ‘q,’ the ‘u’ may
have a 95 percent probability.

This seemingly unstable notion of a character’s probability proves troublesome for many
people. They prefer that a character have a fixed “true” probability that told what the
chances of its “really” occurring are. Claude Shannon attempted to determine the true
information content of the English language with a “party game” experiment. He would

CSA215: Data Compression Techniques University of Bahrain
Course Coordinator: Mr. Basel Bani-Ismail College of Applied Studies

5

uncover a message concealed from his audience a single character at a time. The
audience guessed what the next character would be, one guess at a time, until they got it
right. Shannon could then determine the entropy of the message as a whole by taking the
logarithm of the guess count. Other researchers have done more experiments using
similar techniques.

While these experiments are useful, they don’t circumvent the notion that a symbol’s
probability depends on the model. The difference with these experiments is that the
model is the one kept inside the human brain. This may be one of the best models
available, but it is still a model, not an absolute truth.

In order to compress data well, we need to select models that predict symbols with high
probabilities. A symbol that has a high probability has a low information content and will
need fewer bits to encode. Once the model is producing high probabilities, the next step
is to encode the symbols using an appropriate number of bits.

Coding

Once Information Theory had advanced to where the number of bits of information in a
symbol could be determined, the next step was to develop new methods for encoding
information. To compress data, we need to encode symbols with exactly the number of
bits of information the symbol contains. If the character ‘e’ only gives us four bits of
information, then it should be coded with exactly four bits. If ‘x’ contains twelve bits, it
should be coded with twelve bits.

By encoding characters using EBCDIC or ASCII, we clearly aren’t going to be very
close to an optimum method. Since every character is encoded using the same number of
bits, we introduce lots of error in both directions, with most of the codes in a message
being too long and some being too short.

Solving this coding problem in a reasonable manner was one of the first problems tackled
by practitioners of Information Theory. Two approaches that worked well were
Shannon- Fano coding and Huffman coding—two different ways of generating
variable-length codes when given a probability table for a given set of symbols.

Huffman coding, named for its inventor D.A. Huffman, achieves the minimum amount of
redundancy possible in a fixed set of variable-length codes. This doesn’t mean that
Huffman coding is an optimal coding method. It means that it provides the best
approximation for coding symbols when using fixed-width codes.

The problem with Huffman or Shannon-Fano coding is that they use an integral
number of bits in each code. If the entropy of a given character is 2.5 bits, the Huffman
code for that character must be either 2 or 3 bits, not 2.5. Because of this, Huffman
coding can’t be considered an optimal coding method, but it is the best approximation
that uses fixed codes with an integral number of bits. Here is a sample of Huffman codes:

CSA215: Data Compression Techniques University of Bahrain
Course Coordinator: Mr. Basel Bani-Ismail College of Applied Studies

6

An Improvement

Though Huffman coding is inefficient due to using an integral number of bits per code, it
is relatively easy to implement and very economical for both coding and decoding.
Huffman first published his paper on coding in 1952, and it instantly became the most
cited paper in Information Theory. It probably still is. Huffman’s original work spawned
numerous minor variations, and it dominated the coding world till the early 1980s.

As the cost of CPU cycles went down, new possibilities for more efficient coding
techniques emerged. One in particular, arithmetic coding, is a viable successor to
Huffman coding.

Arithmetic coding is somewhat more complicated in both concept and implementation
than standard variable-width codes. It does not produce a single code for each symbol.
Instead, it produces a code for an entire message. Each symbol added to the message
incrementally modifies the output code. This is an improvement because the net effect of
each input symbol on the output code can be a fractional number of bits instead of an
integral number. So if the entropy for character ‘e’ is 2.5 bits, it is possible to add exactly
2.5 bits to the output code.

An example of why this can be more effective is shown in the following table, the
analysis of an imaginary message. In it, Huffman coding would yield a total message
length of 89 bits, but arithmetic coding would approach the true information content
of the message, or 83.56 bits. The difference in the two messages works out to
approximately 6 percent. Here are some sample message probabilities:

CSA215: Data Compression Techniques University of Bahrain
Course Coordinator: Mr. Basel Bani-Ismail College of Applied Studies

7

The problem with Huffman coding in the above message is that it can’t create codes
with the exact information content required. In most cases it is a little above or a little
below, leading to deviations from the optimum. But arithmetic coding gets to within a
fraction of a percent of the actual information content, resulting in more accurate coding.

Arithmetic coding requires more CPU power than was available until recently. Even now
it will generally suffer from a significant speed disadvantage when compared to older
coding methods. But the gains from switching to this method are significant enough to
ensure that arithmetic coding will be the coding method of choice when the cost of
storing or sending information is high enough.

Modeling

If we use an automotive metaphor for data compression, coding would be the wheels, but
modeling would be the engine. Regardless of the efficiency of the coder, if it doesn’t
have a model feeding it good probabilities, it won’t compress data.

Lossless data compression is generally implemented using one of two different types of
modeling: statistical or dictionary-based. Statistical modeling reads in and encodes a
single symbol at a time using the probability of that character’s appearance. Dictionary
based modeling uses a single code to replace strings of symbols. In dictionary-based
modeling, the coding problem is reduced in significance, leaving the model supremely
important.

Statistical Modeling

The simplest forms of statistical modeling use a static table of probabilities. In the earliest
days of information theory, the CPU cost of analyzing data and building a Huffman tree
was considered significant, so it wasn’t frequently performed. Instead, representative
blocks of data were analyzed once, giving a table of character-frequency counts. Huffman
encoding/decoding trees were then built and stored. Compression programs had access to
this static model and would compress data using it.

CSA215: Data Compression Techniques University of Bahrain
Course Coordinator: Mr. Basel Bani-Ismail College of Applied Studies

8

But using a universal static model has limitations. If an input stream doesn’t match well
with the previously accumulated statistics, the compression ratio will be degraded—
possibly to the point where the output stream becomes larger than the input stream. The
next obvious enhancement is to build a statistics table for every unique input
stream.

Building a static Huffman table for each file to be compressed has its advantages. The
table is uniquely adapted to that particular file, so it should give better compression than a
universal table. But there is additional overhead since the table (or the statistics used to
build the table) has to be passed to the decoder ahead of the compressed code stream.

For an order-0 compression table, the actual statistics used to create the table may take up
as little as 256 bytes—not a very large amount of overhead. But trying to achieve better
compression through use of a higher order table will make the statistics that need to be
passed to the decoder grow at an alarming rate. Just moving to an order 1 model can
boost the statistics table from 256 to 65,536 bytes. Though compression ratios will
undoubtedly improve when moving to order-1, the overhead of passing the statistics table
will probably wipe out any gains.

For this reason, compression research in the last 10 years has concentrated on adaptive
models. When using an adaptive model, data does not have to be scanned once before
coding in order to generate statistics. Instead, the statistics are continually modified as
new characters are read in and coded. The general flow of a program using an adaptive
model looks something like that shown in Figures 2.2 and 2.3.

Figure 2.2 General Adaptive Compression.

CSA215: Data Compression Techniques University of Bahrain
Course Coordinator: Mr. Basel Bani-Ismail College of Applied Studies

9

Figure 2.3 General Adaptive Decompression.

The important point in making this system work is that the box labeled “Update Model”
has to work exactly the same way for both the compression and decompression programs.
After each character (or group of characters) is read in, it is encoded or decoded. Only
after the encoding or decoding is complete can the model be updated to take into account
the most recent symbol or group of symbols.

One problem with adaptive models is that they start knowing essentially nothing about
the data. So when the program first starts, it doesn’t do a very good job of compression.
Most adaptive algorithms tend to adjust quickly to the data stream and will begin turning
in respectable compression ratios after only a few thousand bytes. Likewise, it doesn’t
take long for the compression-ratio curve to flatten out so that reading in more data
doesn’t improve the compression ratio.

One advantage that adaptive models have over static models is the ability to adapt to
local conditions. When compressing executable files, for example, the character of the
input data may change drastically as the program file changes from binary program code
to binary data. A well-written adaptive program will weight the most recent data higher
than old data, so it will modify its statistics to better suit changed data.

Dictionary Schemes

Statistical models generally encode a single symbol at a time— reading it in, calculating
a probability, then outputting a single code. A dictionary-based compression scheme uses
a different concept. It reads in input data and looks for groups of symbols that appear in a
dictionary. If a string match is found, a pointer or index into the dictionary can be output
instead of the code for the symbol. The longer the match, the better the compression
ratio.

This method of encoding changes the focus of dictionary compression. Simple coding
methods are generally used, and the focus of the program is on the modeling. In LZW
compression, for example, simple codes of uniform width are used for all substitutions.

CSA215: Data Compression Techniques University of Bahrain
Course Coordinator: Mr. Basel Bani-Ismail College of Applied Studies

10

A static dictionary is used like the list of references in an academic paper. Through the
text of a paper, the author may simply substitute a number that points to a list of
references instead of writing out the full title of a referenced work. The dictionary is
static because it is built up and transmitted with the text of work—the reader does not
have to build it on the fly. The first time I see a number in the text like this—[2]—I know
it points to the static dictionary.

The problem with a static dictionary is identical to the problem the user of a statistical
model faces: The dictionary needs to be transmitted along with the text, resulting in a
certain amount of overhead added to the compressed text. An adaptive dictionary scheme
helps avoid this problem.

Mentally, we are used to a type of adaptive dictionary when performing acronym
replacements in technical literature. The standard way to use this adaptive dictionary is to
spell out the acronym, then put its abbreviated substitution in parentheses. So the first
time I mention the Massachusetts Institute of Technology (MIT), I define both the
dictionary string and its substitution. From then on, referring to MIT in the text should
automatically invoke a mental substitution.

Ziv and Lempel

Until 1980, most general-compression schemes used statistical modeling. But in 1977
and 1978, Jacob Ziv and Abraham Lempel described a pair of compression methods
using an adaptive dictionary. These two algorithms sparked a flood of new techniques
that used dictionary-based methods to achieve impressive new compression ratios.

LZ77

The first compression algorithm described by Ziv and Lempel is commonly referred to as
LZ77. It is relatively simple. The dictionary consists of all the strings in a window into
the previously read input stream. A file-compression program, for example, could use a
4K-byte window as a dictionary. While new groups of symbols are being read in, the
algorithm looks for matches with strings found in the previous 4K bytes of data already
read in. Any matches are encoded as pointers sent to the output stream.

LZ77 and its variants make attractive compression algorithms. Maintaining the model is
simple; encoding the output is simple; and programs that work very quickly can be
written using LZ77. Popular programs such as PKZIP and LHarc use variants of the
LZ77 algorithm, and they have proven very popular.

CSA215: Data Compression Techniques University of Bahrain
Course Coordinator: Mr. Basel Bani-Ismail College of Applied Studies

11

LZ78

The LZ78 program takes a different approach to building and maintaining the dictionary.
Instead of having a limited-size window into the preceding text, LZ78 builds its
dictionary out of all of the previously seen symbols in the input text. But instead of
having carte blanche access to all the symbol strings in the preceding text, a dictionary of
strings is built a single character at a time. The first time the string “Mark” is seen, for
example, the string “Ma” is added to the dictionary. The next time, “Mar” is added. If
“Mark” is seen again, it is added to the dictionary.

This incremental procedure works very well at isolating frequently used strings and
adding them to the table. Unlike LZ77 methods, strings in LZ78 can be extremely long,
which allows for high-compression ratios. LZ78 was the first of the two Ziv-Lempel
algorithms to achieve popular success, due to the LZW adaptation by Terry Welch, which
forms the core of the UNIX compress program.

Lossy Compression

Until recently, lossy compression has been primarily performed on special-purpose
hardware. The advent of inexpensive Digital Signal Processor (DSP) chips began lossy
compression’s move off the circuit board and onto the desktop. CPU prices have now
dropped to where it is becoming practical to perform lossy compression on general
purpose desktop PCs.

Lossy compression is fundamentally different from lossless compression in one respect:
it accepts a slight loss of data to facilitate compression. Lossy compression is generally
done on analog data stored digitally, with the primary applications being graphics and
sound files.

This type of compression frequently makes two passes. A first pass over the data
performs a high-level, signal-processing function. This frequently consists of
transforming the data into the frequency domain, using algorithms similar to the
wellknown Fast Fourier Transform (FFT). Once the data has been transformed, it is
“smoothed,” rounding off high and low points. Loss of signal occurs here. Finally, the
frequency points are compressed using conventional lossless techniques.

The smoothing function that operates on the frequency-domain data generally has a
“quality factor” built into it that determines just how much smoothing occurs. The more
the data is massaged, the greater the signal loss—and more compression will occur.

In the small systems world, a tremendous amount of work is being done on graphical
image compression, both for still and moving pictures. The International Standards
Organization (ISO) and the Consultive Committee for International Telegraph and
Telephone (CCITT) have banded together to form two committees: The
JointPhotographic Experts Group (JPEG) and the Moving Pictures Expert Group

CSA215: Data Compression Techniques University of Bahrain
Course Coordinator: Mr. Basel Bani-Ismail College of Applied Studies

12

(MPEG). The JPEG committee has published its compression standard, and many
vendors are now shipping hardware and software that are JPEG compliant. The MPEG
committee completed an intial moving picture compression standard, and is finalizing a
second, MPEG-II.

The JPEG standard uses the Discrete Cosine Transform (DCT) algorithm to convert a
graphics image to the frequency domain. The DCT algorithm has been used for graphics
transforms for many years, so efficient implementations are readily available. JPEG
specifies a quality factor of 0 to 100, and it lets the compressor determine what factor to
select.

Using the JPEG algorithm on images can result in dramatic compression ratios. With
little or no degradation, compression ratios of 90–95 percent are routine. Accepting minor
degradation achieves ratios as high as 98–99 percent.

Software implementations of the JPEG and MPEG algorithms are still struggling to
achieve real-time performance. Most multimedia development software that uses this
type of compression still depends on the use of a coprocessor board to make the
compression take place in a reasonable amount of time. We are probably only a few years
away from software-only real-time compression capabilities.

