

Professional
Microsoft® Smartphone

Programming

Baijian Yang
Pei Zheng

Lionel M. Ni

01_762935 ffirs.qxp 11/20/06 7:48 AM Page iii

01_762935 ffirs.qxp 11/20/06 7:48 AM Page ii

Professional
Microsoft® Smartphone

Programming

01_762935 ffirs.qxp 11/20/06 7:48 AM Page i

01_762935 ffirs.qxp 11/20/06 7:48 AM Page ii

Professional
Microsoft® Smartphone

Programming

Baijian Yang
Pei Zheng

Lionel M. Ni

01_762935 ffirs.qxp 11/20/06 7:48 AM Page iii

Professional Microsoft® Smartphone Programming
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-471-76293-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QX/RS/QW/IN

Library of Congress Cataloging-in-Publication Data:

Yang, Baijian, 1972–
Microsoft smartphone programming / Baijian Yang, Pei Zheng, Lionel Ni.

p. cm.
Includes index.
ISBN-13: 978-0-471-76293-5 (paper/website)
ISBN-10: 0-471-76293-8 (paper/website)

1. Cellular telephones—Computer programs. 2. Pocket computers—Computer programs. 3. Microsoft .NET Frame-
work. I. Zheng, Pei, 1972– II. Ni, Lionel M. III. Title.

TK6570.M6Y37 2006
621.3845—dc22

2006033469

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN-
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WAR-
RANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUIT-
ABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE
FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY
HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Microsoft is a registered trademark of Microsoft Corporation in the
United States and/or other countries. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

01_762935 ffirs.qxp 11/20/06 7:48 AM Page iv

www.wiley.com

About the Authors
Baijian Yang is an assistant professor in the Computer Technology program at Ball State University.
He became a Microsoft Certified Systems Engineer (MCSE) in 1998 and was one of the core software
designers/developers for etang.com. He received his Ph.D. in Computer Science from Michigan State
University in 2002. He is now engaged in research and development in the area of wireless networks and
distributed systems.

Pei Zheng received his Ph.D. in Computer Science from Michigan State University in 2003. He joined
Microsoft as a software engineer in 2005. Before that he was an assistant professor of Computer Science
at Arcadia University, and a member of the technical staff at Bell Laboratories, Lucent Technologies.
His research interests include distributed systems, network simulation and emulation, and mobile
computing.

Lionel M. Ni is Chair Professor, Head of the Computer Science and Engineering Department, and
Director of the Digital Life Research Center at the Hong Kong University of Science and Technology. Dr.
Ni earned his Ph.D. in electrical and computer engineering from Purdue University in 1980. He has been
involved in many projects related to wireless technologies, 2.5G/3G cellular phones, and embedded sys-
tems. He is co-author of the book Interconnection Networks: An Engineering Approach (Morgan Kaufmann,
2002), and Smart Phone and Next Generation Mobile Computing (Morgan Kaufmann, 2006).

01_762935 ffirs.qxp 11/20/06 7:48 AM Page v

01_762935 ffirs.qxp 11/20/06 7:48 AM Page vi

Credits
Senior Acquisitions Editor
Jim Minatel

Development Editor
John Sleeva

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Graphics and Production Specialists
Carrie A. Foster
Brooke Graczyk
Denny Hager
Barbara Moore
Rashell Smith
Alicia B. South

Quality Control Technicians
Laura Albert
Brian H. Walls

Project Coordinator
Erin Smith

Proofreading
Techbooks

Indexing
Infodex Indexing Services, Inc.

01_762935 ffirs.qxp 11/20/06 7:48 AM Page vii

To my wife, Chen Wen

—Baijian Yang

To my wife, Ning Liu, for her understanding, professional support,
and encouragement

—Pei Zheng

To my dear children, Elaine and Wayland

—Lionel M. Ni

01_762935 ffirs.qxp 11/20/06 7:48 AM Page viii

Acknowledgments

Writing this book required a great deal of effort that went beyond our initial expectations. We would
first like to thank our family members, without whose support and encouragement we simply could not
finish this book.

We also would like to thank the folks at Wiley. Senior Acquisitions Editor Jim Minatel helped us shape
our proposal and provided us with professional help at every stage of the project. Thank you very much,
Jim, for believing in us and pushing to keep the project on the right track. Development Editor John
Sleeva provided us with tons of valuable comments and suggestions, including insightful technical feed-
back as well as general writing and formatting guidance. Thank you very much, John, for your extensive
professional support and your dedication to keeping the project on a tight schedule. Thanks, also, to
Production Editor Bill Barton and Copy Editor Luann Rouff for thoroughly checking and fixing the
details of the book, including grammar, format, and layout. Our appreciation also extends to other mem-
bers of the Wiley team for your hardworking and consistent contributions to the book.

Our special thanks go to Ya-Qin Zhang, the Vice President of Microsoft Corporation. It was his vision
and passion in mobile computing that initiated our book project. Besides his inspirations to our work,
Ya-Qin has also offered many helps to the book and directed our technical questions to the fellows at
Microsoft. We would also like to thank Yong Rui at Microsoft Research for reviewing our work and pro-
viding constructive professional opinions.

01_762935 ffirs.qxp 11/20/06 7:48 AM Page ix

x

01_762935 ffirs.qxp 11/20/06 7:48 AM Page x

Contents

Acknowledgments ix
Foreword xix
Introduction xxi

Part I: Smartphone and .NET 1

Chapter 1: Introduction to Microsoft Smartphone 3

What Is a Smartphone? 3
Smartphone Applications and Services 4

Mobile Commerce 5
Mobile Enterprise 5
Mobile Data Service and Entertainment 6

Challenges of Smartphone Application Development 6
Introducing Microsoft Windows Mobile 7

Windows Mobile 5.0 7
Microsoft Smartphone from a User’s Perspective 8
Summary 10

Chapter 2: .NET Compact Framework Fundamentals 11

Introducing the Microsoft .NET Framework 11
The Common Language Runtime 12
.NET Framework Class Libraries 13
Visual Studio 2005 14

Introducing the .NET Compact Framework 15
CLR of the .NET Compact Framework 15
.NET Compact Framework Class Libraries 15
Platform Invoke 16

Smartphone Development Tools 17
.NET Compact Framework Type System 18

Types 19
Attributes and Reflection 21
Generics 21
Exception Handling 21

02_762935 ftoc.qxp 11/20/06 7:48 AM Page xi

xii

Contents

A Quick Review of C# 22
Value Types 23
Reference Types 24
Operators 25
string and object 26
Classes and Interfaces 28
Polymorphism 32
Arrays and Collections 33

Summary 35

Part II: Smartphone Application Development 37

Chapter 3: Developing Your First Smartphone Application 39

Required Tools 39
Visual Studio 2005 40
Windows Mobile 5.0 SDK for Smartphone 41
Smartphone Device Emulator 41
ActiveSync 42
All-In-One Package 43

Building Your First Smartphone Application 43
Creating a Smartphone Project 43
Adding Code to the Form 49
Project Files 51

Testing and Debugging Applications 52
Packaging and Deploying Applications 56

Packaging Applications 56
Signing Applications 59
Delivering and Installing Applications 61

Summary 62

Chapter 4: User Interface and Input 63

UI Design with Forms and Controls 63
Supported Controls 64
Control Behaviors 65

Smartphone UI Design 85
Soft Keys 86
The Home and Back Keys 86
General UI Flow of Smartphone Applications 87
Creating an Application with Multiple Forms 88

02_762935 ftoc.qxp 11/20/06 7:48 AM Page xii

xiii

Contents

Keyboard Input and Input Mode 96
Input Mode 96
Soft Key Functionality 101

Additional UI Considerations 102
Auto-Save 102
DPI and QVGA Issues 102
Performance 103

Summary 103

Chapter 5: Data Storage and File I/O 105

Overview of Smartphone Data Storage 105
The System.IO Namespace 107
Creating a File Directory Browser 113
Implementing a Memo Application 120
Summary 129

Chapter 6: Data Access with SQL Server Mobile 131

ADO.NET Overview 132
Microsoft SQL Server 2005 Mobile Edition 134

SQL Server Mobile Architecture 135
Installing SQL Server Mobile 136

Setting Up the SQL Server Mobile Server Environment 138
Installing SQL Server Mobile Tools 138
Creating a Database and Tables from SQL Server 2005 138
Creating a Publication 142
Configuring Web Synchronization 145
Creating a SQL Server Mobile Database 147
Creating Subscriptions in SQL Server Mobile 148

Writing SQL Server Mobile Applications 151
A Simple Application with the DataGrid Control 151
The SqlServerCe Namespace 157

Summary 163

Chapter 7: Networking 165

An Overview of Smartphone Networking 165
Emulator Networking 166
Web Access 167

The HttpWebRequest and HttpWebResponse Classes 168
Creating HTTP Request 169

02_762935 ftoc.qxp 11/20/06 7:48 AM Page xiii

xiv

Contents

TCP Servers and Clients 176
The IPEndPoint Class 176
The IPAddress and IPHostEntry Classes 176
Network and Host Byte Order Conversion 177
The TcpListener and TcpClient Classes 178
An Example of TcpListener and TcpClient 180

Network Sockets 187
TCP Sockets 188
UDP Sockets 196
Nonblocking Mode and Asynchronous Methods 198

Summary 199

Chapter 8: E-mail, SMS, and PIM Data 201

Pocket Outlook Object Model (POOM) 201
The WindowsMobile.PocketOutlook Namespace 203
Creating E-mail Applications with Managed APIs 205

Creating a Simple E-mail Application 208
Creating an E-mail Application with Attachments 210

Accessing PIM Data 216
Using SMS 220
Summary 226

Chapter 9: XML and Web Services 227

Overview of XML and Web Services 227
XML Support in .NET Compact Framework 229
XML Syntax 229
An XML Example: Customizing the Home Screen 231
XML Schema 233

XML-Related Classes 234
XmlDocument and XmlTextReader 235
XmlNodeReader and DataSet 240
An XML Processing Sample Application 242

Building a Smartphone XML Web Service Application 248
Adding a Web Reference 248
Consuming Web Services 249

Summary 253

Chapter 10: Platform Invoke 255

Managed and Unmanaged Code 255
Building Unmanaged DLLs 257

02_762935 ftoc.qxp 11/20/06 7:48 AM Page xiv

xv

Contents

Using P/Invoke in the .NET Compact Framework 260
Declaring and Calling an Unmanaged Code Function 261
Error Handling 262
Marshaling Data 263
An Example of a P/Invoke Application 271

Optimizing P/Invoke Performance 278
Summary 279

Chapter 11: Exception Handling and Debugging 281

Exceptions and Exception Handling 281
Exceptions 282
The try...catch Statement 282
The finally Statement 283
The throw Statement 285
Exception Stack Trace 286
The Exception Class 288
The SystemException Class 289
The ApplicationException Class 290
Best Practices of Exception Handling 292

Debugging in Visual Studio 2005 293
Debugging Windows 293
Debugging Setting 294
Deploying and Debugging in Visual Studio 294
Defining Symbols 294
Limitations of Debugging 295

Multithreaded Debugging 296
Managed Threads 296
Race Condition 298
Deadlock 300

Summary 304

Part III: Advanced Topics 305

Chapter 12: Device and Application Security 307

Mobile Threats 307
Glossary of Terms 309

Digital Signatures, Certificates, and Application Signing 309
Privileged and Unprivileged Applications and Certificate Stores 310

02_762935 ftoc.qxp 11/20/06 7:48 AM Page xv

xvi

Contents

Trusted and Normal Applications 310
Security Policies and Roles 311

Windows Mobile 5.0 Security Models 312
Certificate Management in Windows Mobile 5.0 314

Obtaining Certificates 314
Signing Applications with Certificates 315
Managing Certificates 319

Security Policies 322
An Example Code 325
Perimeter Security 330

Physical Access Control 330
Antivirus Considerations 331

Summary 332

Chapter 13: Data and Communication Security 333

Data Protection 334
Data Encryption 334
Database Encryption and Password Protection 341

Securing Communication Channels 346
Network Authentication 346
Secure Sockets Layer (SSL) 347
Virtual Private Networks 350
Wi-Fi 353

Securing Web Services with SOAP Headers 353
Server Side 354
Client Side 360

Summary 362

Chapter 14: Globalization and Localization 363

Globalization and Localization Support 363
Culture 364

The CultureInfo Class 365
Developing a World-Ready Application 366

Creating Localized Resources 366
A Sample Application with a Localized Satellite Assembly 370

Localizing Data 377
Dates, Time, and Calendars 377
Numbers and Currency 379
Strings 381

02_762935 ftoc.qxp 11/20/06 7:48 AM Page xvi

xvii

Contents

Best Practices 382
Summary 383

Chapter 15: Graphics 385

.NET Compact Framework Graphics 386
The Graphics Class 386

Creating a Graphics Object 387
The Color, Pen, and Brush Objects 387
Vector Graphics 389
Drawing Text 397
Working with Fonts 399

Drawing Images 400
Drawing Bitmaps 402
Embedded Resources 408

Summary 409

Chapter 16: Performance 411

General Principles 411
Using .NET Compact Framework Performance Counters 412
CLR Performance 417

Garbage Collection 417
Call Overhead 418
Math 423
Reflection 423
Generics 423

Class Library Guidelines 424
BCL Collections 424
StringBuilder versus String 426
Regular Expression 427

XML and Data Access 428
XMLReader and XMLWriter 428
XML Schema 428
XML Serialization 429
Data Access 429

Windows Forms 430
Form Loading Performance 430
Form Layout 431
BeginUpdate and EndUpdate 433

Summary 434

02_762935 ftoc.qxp 11/20/06 7:48 AM Page xvii

xviii

Contents

Appendix A: New Features in .NET Compact Framework 2.0 437

Appendix B: A Glance at the .NET Compact Framework 2.0 Class Library 441

Appendix C: The Smartphone Bootstrapping Process 459

Index 465

02_762935 ftoc.qxp 11/20/06 7:48 AM Page xviii

Foreword

Computing has been continuously advancing for half a century. In the early stages, mainframes and
mini-computers drove the revolution, where they realized the computing transition from analog to digi-
tal. Then, in the 1980s and 90s, the personal computer (PC) became the dominant force, where its open
framework enabled the widespread integration of desktop computing into people’s work and play. The
third computing wave came in the mid 1990s and continues to evolve today. A key feature of this wave
is the integration of computing, communication, and storage technologies. Cellular phones are at the
center of this wave. It is fair to say that a cellular phone is the most ubiquitous personal gadget ever
devised: For the first time, a single device, less than the size of a wallet, captures the whole spectrum
of one’s daily activities.

This book is about smartphones. To be precise, smartphone is an overloaded word. From a customer’s
point of view, a smartphone is a “smart” phone—an electronic handheld device that integrates the func-
tionality of a mobile phone, personal digital assistant (PDA), or other information appliance. A key fea-
ture of a smartphone is that additional native applications can be installed on it. For the content of
this book, Smartphone is the software platform running on the physical smartphones. Here the notion
of “software platform” refers to an integrated computing environment that consists of an operating sys-
tem, the .NET runtime environment, a set of applications, and related application development tools.
Microsoft began its foray into the mobile software platform about a decade ago, and has recently picked
up the pace significantly. The Microsoft .NET Compact Framework and Microsoft Smartphone platform
have demonstrated strong potential in commanding a significant share of the mobile OS market. In 2005,
Windows Mobile held the number one worldwide volume share of the PDA market, had 40 device
makers and 68 mobile operators in 48 countries, 640,000 developers worldwide, and more than 18,000
applications. Microsoft’s strategy with Windows Mobile is to make it a powerful and open platform;
emphasize the integration between devices, PCs, servers, and the Web; and build a rich ecosystem that
inspires innovation.

The book is unique in several ways. First, although a few books address the Microsoft .NET Compact
Framework or Windows Mobile, they discuss these two topics in isolation. This is the first book dedi-
cated to Smartphone software development with sufficient programming details. Second, this book tar-
gets a wide audience. On the one hand, it covers the basics of Windows Mobile and the .NET Compact
Framework, so it is a good textbook for students in school. On the other hand, it has an entire part on
advanced topics, which is valuable to both veteran practitioners and experienced developers. Last but
not least, it offers a good mix of both the authors’ experience and expertise. Professor Yang and Dr.
Zheng are two of the most passionate young researchers in the field, with a lot of hands-on experience.
Professor Ni is a veteran in wireless technologies, 2.5G/3G cellular phones, and embedded systems. This
combination of energy, hands-on experience, and long-term vision ensure that the book is of highest
quality.

I continue to be pleasantly surprised by how powerful smartphones become. I call a smartphone a
C3 device, because it seamlessly combines the functions of communication (voice call, e-mail, and IM),
computing (entertainment and location-based services), and control (a universal remote control and

03_762935 flast.qxp 11/20/06 7:49 AM Page xix

xx

Foreword

micropayment). As wireless technologies—e.g., 3G cellular systems, wireless LANs, Bluetooth, WiMAX,
and Ultra-Wideband—continue to mature, I am confident that in the near future we will enjoy the power
of mobile computing anywhere, anytime, and on any devices.

Ya-Qin Zhang, Ph.D.
Corporate Vice President
Microsoft Corporation
Beijing

03_762935 flast.qxp 11/20/06 7:49 AM Page xx

Introduction

The smartphone segment of the worldwide mobile wireless industry is growing rapidly, largely due to
the strong demand for converged mobile devices from enterprises and consumers. ABI Research predicts
that smartphone sales worldwide will reach 150 million by 2008. Many enterprises are considering
deploying mobile applications, and many consumers want a converged device for both communication
and computing. Both of these markets have created enormous opportunities for mobile application
design and development, and the migration of desktop applications to mobile devices, with enabling
and powerful programming tools on a variety of mobile software platforms.

Microsoft began its quest for mobile markets over a decade ago but was not able to draw much of the
attention until recently, partly due to its powerful developing tools for its mobile operating system. The
Microsoft .NET Compact Framework and Microsoft Smartphone platform have demonstrated a strong
potential to realize a significant share of the mobile operating system market. In 2005, sales of Windows
Mobile–powered devices grew by 40 percent. As a result, both the end-user community and the devel-
oper community of Microsoft Smartphone have grown significantly. The upcoming Windows Mobile 6.0,
which is estimated to be shipped in 2007, will surely further boost Microsoft Smartphone software
development.

Although you can find some books that address the Microsoft .NET Compact Framework or Windows
Mobile, they tend to focus on Pocket PC devices or a general discussion of .NET Compact Framework
programming. Moreover, none of them is dedicated to Microsoft Smartphone software development
with sufficient programming details. The MSDN website and some online resources do provide in-depth
articles about mobile programming, but the documents are not systematically organized, making it diffi-
cult for developers to efficiently use them. It was our intention to provide the first comprehensive book
dedicated to Smartphone programming.

The major goals of this book are as follows:

❑ To help you understand the software design guidelines for Smartphone devices

❑ To demonstrate how to develop, debug, and deploy Smartphone applications with Microsoft
Visual Studio 2005 in C#

❑ To discuss security and performance issues in Smartphone programming

❑ To provide you with essential programming skills that you can apply when the next version of
Smartphone, the .NET Compact Framework, and Visual Studio are released

Who This Book Is For
As a detailed reference to Microsoft Smartphone programming with the Microsoft .NET Compact
Framework, the core audience for this book includes software architects and developers working in the
area of mobile application development with intermediate programming skills in C/C++ or C#, and pro-
fessionals seeking a thorough overview of the Microsoft Smartphone software development platform.

03_762935 flast.qxp 11/20/06 7:49 AM Page xxi

xxii

Introduction

Students (assuming some C/C++ or C# programming experience) who would like to gain some experi-
ence with Microsoft Windows Mobile programming will also find this book valuable. Experienced
developers familiar with the .NET framework and C# can skim or skip the first three introductory chap-
ters and jump to Chapter 4.

What This Book Covers
This book is a comprehensive guide to Microsoft Smartphone programming with the Microsoft .NET
Compact Framework. It provides in-depth coverage of key architectural concepts, application design
guidelines, and programming techniques for Microsoft Smartphone software developers, and includes
extensive hands-on examples and code listings. Visual Studio 2005 and the .NET Compact Framework
2.0 are used as the underlying programming environment (although a number of chapters touch on
issues in the .NET Compact Framework 1.0, Smartphone 2002, and Smartphone 2003.

How This Book Is Structured
The topics covered in the book can be divided into three categories:

Part I, “Smartphone and .NET,” presents an overview of the Microsoft Smartphone platform from a
software developer’s perspective. It also covers the .NET Compact Framework, the Smartphone pro-
gramming environment, and a quick get-started guide to Microsoft Smartphone programming.

Part II, “Smartphone Application Development,” discusses Microsoft Smartphone–related application
design and programming in the domains of the .NET Compact Framework (managed code). Each topic
starts out with a brief overview of key concepts and tasks covered in the chapter, followed by a detailed
discussion of the programming framework and classes available in Windows Mobile and the
Smartphone SDK.

Part III, “Advanced Topics,” covers application development topics such as security, globalization and
localization, graphics, and performance considerations.

What You Need to Use This Book
Because this book focuses heavily on Smartphone programming with Visual Studio 2005, it is expected
that readers have this tool installed on a desktop computer running Windows XP or Windows Vista. In
addition, it would be better if a Windows Smartphone device were available for developing and testing.
However, if that is not available, readers can simply use the Smartphone Emulator that comes with
Visual Studio 2005.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

03_762935 flast.qxp 11/20/06 7:49 AM Page xxii

xxiii

Introduction

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight new terms and important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl+A.

❑ We show filenames, URLs, and code-related terms within the text like so: persistence
.properties

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists) and click the Download Code link on the book’s details page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-471-76293-5.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book’s details page, click the Book Errata link. On this page you can view all

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

03_762935 flast.qxp 11/20/06 7:49 AM Page xxiii

xxiv

Introduction

errata that has been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Fill in the required information to join as well as any optional information you wish to provide
and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

03_762935 flast.qxp 11/20/06 7:49 AM Page xxiv

Part I

Smartphone and .NET

Chapter 1: Introduction to Microsoft Smartphone

Chapter 2: .NET Compact Framework Fundamentals

04_762935 pt01.qxp 11/20/06 7:50 AM Page 1

04_762935 pt01.qxp 11/20/06 7:50 AM Page 2

Introduction to
Microsoft Smartphone

Mobile computing is everywhere today. The number of cell phones, PDAs, and other handheld
mobile devices has exceeded the number of computers in the world. The Yankee Group estimates
that there are approximately 1.8 billion mobile devices in use worldwide, used for a variety of
tasks, including the still predominant voice communication, text messaging, web surfing, e-mail,
gaming, and so on. As wireless technologies such as 3G cellular systems, wireless LANs,
Bluetooth, WiMAX, and Ultra-Wideband continue to mature, empowering those mobile devices
and the network infrastructure, we soon will be able to enjoy the power of mobile computing any-
where, anytime, and on any devices.

What will ultimately cause this vision to materialize are new mobile applications and services
built on the pervasive computing infrastructure, along with a set of software platforms and pro-
gramming tools. Motivated by this vision, we decided to write a book on one of the most powerful
software platforms for mobile computing: the Microsoft Smartphone. This chapter begins with a
brief introduction to smartphones and the challenges of developing smartphone applications.
Then we introduce Microsoft Windows Mobile and some related technologies. Readers will likely
find this section informative, as it clarifies some terms and concepts pertinent to Microsoft
Smartphone.

What Is a Smartphone?
The worldwide mobile wireless industry is quickly moving from traditional, voice-based cellular
phone services to combined voice and data services, as a result of increasing demand for mobile
data access and the deployment of high-speed wireless data services utilizing a variety of wireless
technologies. For example, 2.5G/3G wireless services are being rolled out and used by a rapidly
growing number of subscribers, and the number of WiFi hotspots and residential wireless LANs
continues to grow substantially. The trend is clear: Cell phones, PDAs, and portable consumer

05_762935 ch01.qxp 11/20/06 7:50 AM Page 3

electronic devices will likely merge into a single, handheld device as a universal personal communicator
and computing platform (generally called a smartphone). Indeed, the market has seen a dramatic increase
in smartphone sales when compared to the fairly slow growth of PDA sales worldwide.

Generally, a smartphone is a powerful, multi-function cell phone that incorporates a number of PDA
functionality, such as a personal scheduler, calendar, and address book, as well as the ability to access
Internet services and applications using either a keypad or a stylus. In addition to making a call from a
smartphone, users can surf the web, check e-mail, create documents, play online games, update sched-
ules, or access an enterprise network via a virtual private network (VPN). Wireless Internet access is
enabled by means of cellular wireless networks — such as GSM/GPRS, CDMA, CDMA2000, or
WCDMA, among others.

Bill Gates, Chairman and then Chief Software Architect of Microsoft, introduced his vision for the smart-
phone at the 2004 Mobile Developer Conference:

The pocket devices, phone and PDA, really the trend is to have the best of both together. The phone is no
longer just a voice-only device; more and more it has that rich, color screen. A PDA is no longer a dis-
connected device; more and more it’s got the ability to make calls and connect up to wireless data net-
works. In many cases that will be both the wide area data networks, 2 1⁄2 G or 3G networks, but also
increasingly you’ll have WiFi connectivity built into the device as well. So it will be able to connect up
to whichever network is available, whichever one provides the best bandwidth and economics there.

An increasing number of high-end cell phones and smartphones are equipped with powerful mobile
processors (such as ARM processors), 64–128MB memory, 256–512MB flash storage, and even 2–4GB
hard drives. Examples include the Motorola Q, SPV C600, and O2 XDA II. Some smartphones are PDA-
based with handwritten recognition or a tiny keyboard, and phone functions as add-on features, such as
Palm Xplore and Palm Treo. In fact, cell phone manufacturers and PDA manufacturers have different
views regarding the future of smartphone devices. Unsurprisingly, each camp believes their device will
prevail, with add-on functionality of devices from the other side. As wireless technologies and the mobile
market continue to evolve, it is still too early to tell which approach will finally win. Nevertheless, one
thing is certain: They both need reliable, high-performance, low-power consumption operating systems
and software to leverage the wireless services.

Microsoft Smartphone refers to Microsoft’s platform for next-generation cell phones — basically a soft-
ware architecture with Windows CE as the operating system, plus a rich set of applications such as
Pocket Internet Explorer and Pocket Outlook and powerful software development tools such as .NET
Compact Framework and Visual Studio 2005. (We use Smartphone to refer to Microsoft Smartphone
throughout this book and smartphone to refer to general multifunction cell phones.)

This book focuses on software development issues and practices on smartphones running Microsoft
Windows Mobile software. There are, of course, other software development solutions. For example,
Palm Inc., also provides a software development kit (SDK) for Palm OS smartphones, and you can find
an SDK and supporting tools for Symbian OS, another popular cell phone operating system.

Smartphone Applications and Services
With the vision of mobile convergence supporting communication and computing on a single set of
hardware components, mobile wireless network operators, cell phone manufactures, and independent

4

Chapter 1

05_762935 ch01.qxp 11/20/06 7:50 AM Page 4

software vendors are working together to create new applications and services with the hope of taking a
lead position in the next wave of mobile computing. These services and applications essentially leverage
the increasingly high computing capability supplied by the cell phone and the flexible, high-speed wire-
less connectivity to offer an efficient, reliable, and rich experience to the end user. This section summa-
rizes the potential services and applications in this domain.

Mobile Commerce
This category includes mobile banking, location-based business information service and shopping assis-
tance, mobile advertising, and mobile payment, among other services. Japan and Korea already offer
widespread mobile payment applications that enable consumers to make purchases at a convenience
store by waving the cell phone past a reading device. Numerous startup companies in the United States
are developing applications that enable credit card payments to be verified, parking fees to be paid at
the meter, and social networking. Industries involved in this category include banks, credit card compa-
nies, retail stores, stock trading agencies, and online businesses.

Mobile Enterprise
Services and applications in this category are concerned with mobile worker assistance such as real-time
job scheduling, route planning, package delivery updates, mobile collaboration and communication, and
mobile business transaction. Moreover, enterprise resource planning (ERP) applications and supply
chain management (SCM) systems can be extended to support mobile access and onsite processing. In
addition to mobile enterprise, law enforcement, educational, and healthcare organizations may also uti-
lize these services and solutions to improve productivity and reduce costs.

5

Introduction to Microsoft Smartphone

Other Mobile Software Platforms
Symbian OS is developed by Symbian, a company supported by several cell phone
manufacturers, including Nokia, Ericsson, Sony Ericsson, and Samsung. Originally
based on the EPOC operating system, Symbian OS defines several UI reference models
for different types of devices. Symbian OS uses EPOC C++, a pure object-oriented lan-
guage, as the supporting programming language for both system services implementa-
tions and APIs. It also allows Java applications for mobile devices (Java 2 Micro
Edition, J2ME, applications) to run on top of a small Java runtime environment. The
Symbian Developer website (www.symbian.com/developer) provides numerous
technical documents for Symbian OS, SDKs, and sample code, as well as information
on Symbian OS development and the Symbian developer community.

Palm OS, developed by Palm Inc., is a preemptive, multitasking operating system for
Palm PDAs and cell phones. Palm OS supports both the ARM and Motorola 68000
architectures. Developers can choose a programming language from C, C++, Visual
Basic, or Java, although C is most widely used for Palm OS software development.
Interested readers can visit the Palm OS developer site (www.palmsource.com/
developers) for more technical details. Palm OS application development is facili-
tated by the Palm OS 68K and Protein SDKs and some commercial developer suites.
A developer suite is an integrated software tool that enables developers to create both
ARM-native and Palm OS Protein-powered applications for Palm OS Cobalt and 68K
applications.

05_762935 ch01.qxp 11/20/06 7:50 AM Page 5

Mobile Data Service and Entertainment
This category includes real-time, location-based navigation assistance coupled with traffic data access,
mobile gaming, rich media services, and so on. Mapping and GPS-based navigation services are increas-
ingly being integrated into general-purpose smartphone platforms. Mobile television services have been
available in the United States and some Asian countries; online music download services (such as
Apple’s iTunes service) are available on some high-end smartphones; mass media companies, music and
movie companies, online gaming service providers, and of course the consumer, will be involved in this
category of services and applications.

Needless to say, the aforementioned summary is by no means exhaustive; however, it is indicative of the
broad range of new services and applications with tremendous potential for businesses. Indeed, the
enormous opportunity of next-generation mobile computing has created myriad services and applica-
tions that will likely continue to mature and succeed in the foreseeable future. What all these services
and applications share is a reliance on software running on smartphones to reach the end user. To this
end, software designers and developers have to be aware of the challenges and obstacles involved in
smartphone-based application development.

Challenges of Smartphone
Application Development

The application design paradigm for smartphones not only differs largely from that of desktop applica-
tions, it also has some inherent requirements that separate it from application development on common
mobile devices. First, the hardware constraints of a smartphone, such as processor speed, persistent stor-
age capacity, battery, and wireless connection, significantly affect the application design principles.
Second, the input method of a smartphone, either a telephone keypad with additional navigation keys
or a soft keyboard, forces application developers to pay more attention to the GUI of a smartphone
application than that of desktop applications. Third, the cost of wireless data service remains a major
factor for mass adoption of Smartphone technology, as it is still quite high compared with the cost of
landline Internet services. Moreover, the application must be easily ported to various hardware plat-
forms using different processor architectures and peripherals. Following are the salient factors to con-
sider while developing applications for smartphones:

❑ Efficient storage and adaptive networking. Despite the advancements in mobile embedded
and wireless technologies, smartphones usually have neither a large memory capacity nor a reli-
able, high bandwidth wireless connection. It is crucial, therefore, to make better use of precious
local storage for high performance. The networking functionality of a smartphone must be able
to adapt to the comparatively low bandwidth and high drop rate of wireless links. Finally,
remote data access must be able to function in disconnected mode. For a more detailed discus-
sion of data access on a smartphone, see Chapters 5 and 6.

❑ Simple and user-friendly GUI. Because entering characters on a smartphone is not as easy as
typing on a PC keyboard (although some teenagers will disagree), a program’s GUI has to deal
with most of the input by using graphical components. Due to a smartphone’s relatively small
screen, the layout of these components on a window, as well as the grouping of components
into different windows, has to been designed carefully. For example, you generally should elim-
inate horizontal scrolling for a smartphone application. GUI design is discussed in more detail
in Chapter 4.

6

Chapter 1

05_762935 ch01.qxp 11/20/06 7:50 AM Page 6

❑ Lightweight computation and power management. A smartphone is not designed for CPU-
intensive applications; instead, most CPU-intensive computation should be done on the server
side, which is typically much more powerful than a mobile processor, of an application when-
ever possible, enabling the client side on a smartphone to run faster. This creates a scenario for
peer-to-peer mobile applications, whereby mobile nodes essentially serve each other without
relying on a central server. Web services is a good example of offloading computation to the
server. Chapter 9, “XML and Web Services,” provides more details about accessing web services
on a smartphone. Power management is also crucial to increasing battery life. Smartphone oper-
ating systems must be able to put the device into power-save state whenever possible (subject to
a user’s configuration) to save battery power.

❑ High security. In a sense, a smartphone can be viewed as another form of personal identifica-
tion, with sensitive data stored and transmitted over the air. There have been a number of cell
phone–related security hacks utilizing various vulnerabilities of cell applications. As the smart-
phone evolves to function not only as a telephone but also as a credit card or ID card, the com-
promise of a cell phone will result in serious problems. Low-overhead authentication and
authorization must be enforced for critical smartphone applications. Chapter 12, “Device and
Application Security,” and Chapter 13, “Data and Communication Security,” cover smartphone
security issues.

Introducing Microsoft Windows Mobile
To facilitate the design and development of smartphone applications, hardware manufactures and soft-
ware vendors have teamed up to provide powerful programming tools for smartphone developers. One
of the solutions is Microsoft’s Windows Mobile, a unified platform specifically designed to enable devel-
opers to leverage Windows desktop programming experiences for mobile application design and devel-
opment targeting both smartphones and PDAs. Because of the innovative .NET Compact Framework
and bundled programming tools, Microsoft Windows Mobile for Smartphone has gained a sizable
amount of popularity among software developers worldwide.

Windows Mobile is Microsoft’s software platform for Pocket PCs (PDAs running Microsoft’s software
platforms) and Smartphones (smartphones running Microsoft’s software platform). Here the notion of
“software platform” refers to an integrated computing environment that consists of an operating system,
the .NET runtime environment, a set of applications, and related application development tools. The
concepts of “Pocket PC” and “Smartphone” are also commonly referred to as software platforms target-
ing PDAs and smartphones, respectively.

Windows Mobile 5.0
The latest version of Microsoft Windows Mobile is Windows Mobile 5.0. Windows Mobile consists of a
tailored Windows CE operating system; the Microsoft .NET Compact Framework (the runtime and the
class libraries); a set of tools and APIs for native code development; a device software emulator; and for
developers, an IDE (Integrated Development Environment) component for Visual Studio 2005.

Windows Mobile 5.0 is based on the Windows CE .NET 5.0 operating system. As part of the Smartphone
offering, Microsoft also provides the Smartphone 2005 SDK for ISVs (independent software vendors).
Developers can use the Smartphone SDK in conjunction with Visual Studio 2005, the flagship program-
ming environment tool from Microsoft, for .NET Compact Framework–based managed code application

7

Introduction to Microsoft Smartphone

05_762935 ch01.qxp 11/20/06 7:50 AM Page 7

development. The Smartphone SDK also allows C or C++ unmanaged application programming utiliz-
ing Win32 APIs using Microsoft embedded Visual C++ (eVC). The next version of Windows Mobile is
called Windows Mobile 6.0 and code named Photon.

Windows Mobile 5.0 unifies application development for Smartphones and Pocket PCs by providing the
same Win32 APIs and a set of development tools. Unlike the previous version of Windows Mobile,
Windows Mobile 2003, which does not allow developers to use SQL Server CE in Smartphone applica-
tions, now both Pocket PC and Smartphone platforms can take advantage of the same set of common
data services provided by SQL Server 2005 Mobile Edition, the next release of SQL Server CE. In addi-
tion, both platforms share the same security model and the same common application installer. The uni-
fication of these two platforms reflects Microsoft’s mobile platform strategy in response to the imminent
convergence of these two types of mobile devices.

In addition, Windows Mobile 5.0 provides a new set of standardized WinCE APIs, including multimedia
APIs supporting Windows Media 10 Mobile, Direct 3D Mobile APIs, new GPS APIs, DirectDraw APIs,
and camera APIs. These APIs essentially extend the functionality of a Windows Mobile device and offer
an improved user experience. On the managed application environment side, Windows Mobile 5.0
comes with .NET Compact Framework 2.0 and provides a set of .NET managed APIs for messaging and
telephony, which are not available in .NET 1.0 and 1.1. Chapter 2 discusses the .NET Compact
Framework in detail.

Application development on Windows Mobile 5.0 can further take advantage of the latest release of
Microsoft’s flagship IDE, Visual Studio 2005. The software emulator in Visual Studio 2005 has been
rewritten to eliminate the gap between emulation and physical device deployment. In addition, both
managed and unmanaged code can be developed within the same Visual Studio 2005 environment. No
eVC is needed anymore. Additionally, Visual Studio 2005 includes a number of improvements in the
form designer and deployment tools, as well as common programming and debugging support. This
book uses Visual Studio 2005 as the application development platform, so you will see screenshots taken
from it and code developed using a set of smart device tools integrated into Visual Studio 2005.

Microsoft Smartphone from
a User’s Perspective

The market for cell phone operating systems is highly segmented. Many cell phones run operating systems
other than Microsoft Smartphone; indeed, Microsoft is relatively new to the cell phone platform market.
The stronghold in this market is Symbian OS, which is funded and supported by cell phone makers such as
Nokia, Sony Ericsson, Siemens, and others. Palm is historically strong in the PDA market. For people with
a background in those types of platforms, it is necessary to present a quick tour into Microsoft Smartphone.
Those of you who have used a Smartphone device for some time can feel free to skip this section.

To a typical user, a Smartphone is a much more powerful cell phone. It provides many more types of
applications, and the user interface is more sophisticated than a traditional cell phone. Like most other
cell phones, a Microsoft Smartphone actually refers to a combination of the handset and its running
applications. The aesthetic design of a smartphone handset may vary significantly, but the principle user
interface — how a user interacts with the device — is almost the same across different devices from dif-
ferent manufacturers. Let’s take a look at the Smartphone emulator, a software tool that helps developers
quickly develop and test Smartphone applications without using a physical device. Details about the
Smartphone emulator can be found in Chapter 3.

8

Chapter 1

05_762935 ch01.qxp 11/20/06 7:50 AM Page 8

Figure 1-1 depicts a common layout of a Smartphone device. Although color doesn’t appear in these
screenshots, a color screen at the top and the number keys at the bottom are the most common elements.
What separates a Smartphone from a PDA are the software keys. Notice the two soft keys (left and right)
directly below the screen. These correspond to the menu bar and commands at the bottom of the screen.
Depending on how applications define the functions of the menu bar, these soft keys may perform spe-
cific tasks. Also note the five-way (up, down, left, right, and “Select”) navigation pad and the four fixed
function keys: Call, Home, Hang Up, and Back. Pressing the Call key will bring you to the phone call
screen, where you can enter a phone number. After you enter a phone number, pressing the Call key
again will initiate the call. The Hang Up key, of course, is used when you want to end a call. The Home
key always takes you to the home screen shown in this figure, and the Back key enables you to go back
to the previous screen. At the home screen, pressing any number key will automatically bring you to the
phone call screen.

Figure 1-1

Call key

Home key

Earpiece volume buttons

Left soft key

Right soft key

Record button

Back key

Hang-up keyNavigation pad

9

Introduction to Microsoft Smartphone

05_762935 ch01.qxp 11/20/06 7:50 AM Page 9

A Smartphone usually has a power button, a record button (for voice recording), and two volume con-
trol buttons. Some Smartphones have a built-in camera, so there will be another button for it (some have
a high-quality digital camera, such as Nokia N90, which features a Carl Zeiss lens, 2-megapixel resolu-
tion, and a 20x zoom).

The first-generation Smartphone applications are mostly clones of desktop Windows applications,
enabling users familiar with those desktop applications to avoid learning a new one. Typical
Smartphone applications are Pocket Outlook, calendar, contacts, Pocket Word, Pocket Excel, Windows
Media Player, MSN messenger, games, and some accessories. The second-generation Smartphone appli-
cations are exclusively designed to leverage the advantages of mobility and ubiquitous wireless access.
In the next several years we will see a whole new set of applications that utilize real-time location infor-
mation in conjunction with always-on wireless data access.

Overall, the design of a Smartphone aims to take advantage of a user’s prior experience with Windows
desktop systems. After all, a Smartphone is a small computer running a stripped-down version of the
Windows operating system. This greatly helps users familiar with Palm or Symbian cell phones because
the learning curve is largely eliminated.

Summary
This chapter introduced the concept of the smartphone and the trend of convergence in the mobile com-
puting and communication domain. As a converged mobile device, smartphone, in conjunction with
supporting new mobile wireless services and applications, will gain widespread popularity worldwide
in the foreseeable future. Microsoft Windows Mobile is a software platform that enables fast, efficient,
and feature-rich application development for Smartphone devices. Many smartphone and cell phone
manufacturers (including Palm, which traditionally uses Palm OS on their PDAs and smartphones) have
started to use Windows Mobile as the underlying software platform on their products, largely because
users can leverage their knowledge of Windows desktop systems in using a Smartphone.

Beginning with the next chapter, our discussion moves to the technical foundations of Windows Mobile.
We will focus on the core components of the .NET Compact Framework, as well as the class libraries and
type systems of .NET. In addition, a primer on the C# programming language will be provided.

10

Chapter 1

05_762935 ch01.qxp 11/20/06 7:50 AM Page 10

.NET Compact Framework
Fundamentals

The last chapter described Microsoft’s commitment to smart device application development with
the general Windows Mobile platform. As cell phones and smartphones continue to proliferate in
people’s daily lives, it is quite natural to think of a smartphone as a computing platform that sup-
ports mobility and wireless access on-the-go. Windows Mobile-based Smartphone application
development can be divided into two categories: managed code, which runs on top of the .NET
Compact Framework, and unmanaged code (also known as native code), which executes directly on
top of the underlying operating system.

Microsoft’s decision to incorporate Smartphone into the general .NET infrastructure can be seen as
a strategy to promote Windows Mobile technology. With the .NET Compact Framework and sup-
porting programming tools, developers can choose any .NET programming languages to write
secure and high-quality code targeting mobile devices. This chapter discusses the .NET Compact
Framework, and one of the .NET languages, C#. The following topics are discussed in this chapter:

❑ An overview of the .NET Framework and the .NET Compact Framework

❑ The components of the .NET Compact Framework

❑ A quick review of C#

Introducing the Microsoft
.NET Framework

Before introducing the .NET Compact Framework, we’ll first look at its “full” version, the Microsoft
.NET Framework, which is key to Microsoft’s .NET technology. In a more general sense, .NET rep-
resents Microsoft’s software architecture, which provides the capability to quickly build, deploy,

06_762935 ch02.qxp 11/20/06 7:50 AM Page 11

manage, and use feature-rich, security-enhanced software solutions. Both the .Net Framework and the
.Net Compact Framework are implementations of the CLI (common language infrastructure). As an
ECMA (European Computer Manufacturer’s Association) specification (#335), the CLI defines platform-
independent, unified runtime support for programs written in different languages. The CLI is composed
of a file format, a common type system (CTS), an extensible metadata system, a common intermediate lan-
guage specification, and a base class library. ECMA #334 defines the C# language specification submitted
by Microsoft.

Microsoft provides another shared source implementation of CLI, code-named Rotor, that runs on
Windows XP, FreeBSD, and Mac OS X. You can download Rotor from www.microsoft.com/downloads/
details.aspx?FamilyId=3A1C93FA-7462-47D0-8E56-8DD34C6292F0&displaylang=en.

In addition to the .NET Framework, the .NET Compact Framework, and Rotor, are non-Microsoft .NET
Framework implementations, such as the Mono project (www.mono-project.com) and the DotGNU
project (www.dotgnu.org). These projects represent efforts at enabling .NET applications to run on Unix
and Linux.

At of the heart of the .NET Framework and the .NET Compact Framework is the CLR (common lan-
guage runtimes), which enables .NET applications to execute in a type-safe and secure environment.
Note that the .NET Compact Framework is not a tailored version of the .NET Framework to Windows
Mobile. It is built independently, but like the .NET Framework it exports similar interfaces in the form of
class libraries. In most cases, the frameworks are shipped within the operating systems, or they can be
deployed onto target systems.

For developers, the .NET Framework refers to a software platform for managed code development and
execution. The latest version at the time of this writing is 2.0. Major components of the .NET Framework
include the following:

❑ Common language runtime (CLR), in which managed code is JIT (just-in-time) compiled and
executed

❑ .NET Framework class libraries, including a set of language-independent classes

❑ .NET tools and application development tools

The Common Language Runtime
The CLR is a software virtual machine similar to a Java Virtual Machine (JVM). It is a layer between the
operating system and the managed code, providing services such as the following:

❑ Process and thread scheduling

❑ Memory management (including garbage collection)

❑ Type safety

❑ Code security

❑ Cross-language integration

❑ Cross-language exception handling

❑ Enhanced security

12

Chapter 2

06_762935 ch02.qxp 11/20/06 7:50 AM Page 12

❑ Versioning and deployment support

❑ Component interaction

❑ Debugging and profiling

Note that the notion of runtime implies anything related to a programming execution environment,
which may consist of class libraries, a class loader, an interpreter, a JIT compiler, and so on. The runtime
environment provided by .NET is the CLR; therefore, the CLR is the core of the .NET Framework. Any
.NET language code will be executed within the CLR, rather than directly by the underlying operating
system.

The CLR provides a set of compilers that compile managed source code into intermediate code called
MSIL (Microsoft Intermediate Language). MSIL defines a set of platform-independent instructions. The com-
pilers also generate metadata that describes types in the MSIL code, security-related data, and versioning
data. MSIL code and the metadata are linked into an assembly, which could be a dynamic link library
(DLL), an executable (EXE), or a binary module. An assembly will be loaded by a class loader at runtime,
checked for type safety, JIT compiled into native code, and then sent to the processor for execution.

Application Domain
The CLR executes a .NET application within an application domain. An application domain hosting an
application is under the control of the CLR. Application creation and termination in an application
domain impose much less overhead than processes. The CLR ensures type-safe checking for applications
in an application domain, and forbids any inter-application domain direct access (which can be done
only via remoting or networking services). The CLR can run multiple application domains within a sin-
gle process. The CLR itself is loaded and initialized by a special process called the CLR host. When the
CLR is initialized within a process, a default application domain is created.

Common Type System
The term type refers to a class within the context of the .NET CLR. A type contains data fields, methods,
properties, and events (see the section “.NET Compact Framework” for details). A fundamental building
block of the .NET programming paradigm is the common type system (CTS), which defines a set of stan-
dard types that are common to any .NET language. Because different .NET language compilers must
produce intermediate code that conforms to the CTS, managed code can interoperate across languages.
Moreover, multiple source files in .NET-compliant languages can be compiled into the same assembly.

.NET Languages
Each .NET-compliant language requires a compiler to produce a program’s MSIL code. Microsoft has
provided these compilers for C#, Visual Basic .NET, J#, JScript, and managed C++. In addition, some
other programming languages have been ported to .NET, including Cobol, Fortran, Caml, LISP, and Perl.
You can find a complete list of .NET-compliant languages at www.gotdotnet.com/team/lang.

.NET Framework Class Libraries
.NET Framework class libraries provide more than 2,000 classes, interfaces, and value types organized
into numerous namespaces. These classes enable developers to perform almost anything related to desk-
top standalone applications and network applications. These namespaces include the following:

13

.NET Compact Framework Fundamentals

06_762935 ch02.qxp 11/20/06 7:50 AM Page 13

❑ Base classes in the System namespace that implement strings, arrays, collections, math func-
tions, time, values types, type conversion, events, event handlers, and so on

❑ Language compilation and code-generation control classes in the Microsoft.* namespaces,
such as Microsoft.CSharp, Microsoft.VisualBasic

❑ Data access classes in the System.Data namespace that implement database access across mul-
tiple data providers

❑ Networking classes in the System.Net namespace that provide programming interfaces for
network protocols, including a managed Winsock implementation

❑ Remoting classes in the System.Runtime.Remoting namespace that enable objects to interop-
erate with each other across application domains on the same machine or on remote machines

❑ Web services and web application classes in the System.XML namespace that provide XML
web service support for distributed applications in a heterogeneous computing environment
and HTTP application control

❑ Security classes in the System.Security namespace, including cryptographic classes and sup-
port for the .NET security system, such as policies, permissions, and so on

❑ UI classes in the System.Windows.Forms and System.Web.UI namespaces for Windows
desktop UI applications and web applications

❑ I/O classes in the System.IO namespace that implement asynchronous and synchronous I/O
functionality

❑ Threading classes in the System.Threading namespace that provide multithreading program-
ming interface and thread synchronization classes, such as Mutex, Monitor, Interlocked, and
so on

A similar namespace family for the .NET Compact Framework is presented later in the chapter.

Visual Studio 2005
Visual Studio 2005 is the major multi-language IDE (Integrated Development Environment) for
Windows applications. Both managed and unmanaged code of Windows desktop applications can be
developed using Visual Studio 2005. It allows managed and unmanaged Pocket PC and Smartphone
application programming targeting Windows Mobile devices. With the .NET Framework on their target
systems or devices, developers can use a single set of .NET Framework classes in different languages,
with the same naming and calling convention, and similar syntax. In particular, mobile application
developers can leverage their experience and programming techniques obtained from smart client appli-
cation development with Visual Studio 2005, and the only difference is the class libraries: They will work
with a subset of the desktop .NET Framework class libraries. Visual Studio 2005 (and the previous ver-
sion, Visual Studio .NET) is the key element for rapid and high-performance .NET application develop-
ment, testing, and deployment over various systems and devices.

Prior to Visual Studio 2005, developers had to use Visual eMbedded C++ for unmanaged C++ develop-
ment for Windows Mobile devices.

You will see a step-by-step example of creating Smartphone applications in Visual Studio 2005 in the
next chapter.

14

Chapter 2

06_762935 ch02.qxp 11/20/06 7:50 AM Page 14

Introducing the .NET Compact Framework
The .NET Compact Framework represents the materialization of .NET for software platforms on mobile
devices. Many developers believe the .NET Compact Framework to be a subset of the “full” version of
the .NET Framework. This is only partially correct. Although the .NET Compact Framework maintains
a high-level of consistency with the desktop framework, it has been heavily optimized for resource-
constraint mobile devices, which usually have limited computing power and memory, and are battery
powered; and it has added new classes that are unique to mobile application development. Resource-
constrained devices require the operating system and applications to perform efficiently due to such fac-
tors such as CPU power, memory size, battery power, screen size, input methods, and so on, that may
not be a problem for desktop application development at all. The .NET Compact Framework has been
available on a number of Windows Mobile platforms, including Smartphone 2003, Pocket PC 2002,
Pocket PC 2003, and Windows Mobile 5.0.

CLR of the .NET Compact Framework
The CLR of the .NET Compact Framework is built from the ground up, following the same rationale as
the CLR of the .NET Framework. C# or Visual Basic.NET code is compiled into MSIL code that conforms
to the CLI specification. The MSIL code, in turn, can be JIT-compiled into native machine code for the
processor of the mobile device by the CLR. Type safety and memory management are done by the CLR
as well. You may already realize that memory management of the .NET Compact Framework posed sig-
nificant challenges to Microsoft’s .NET Compact Framework team, because highly efficient memory
management is of paramount importance to system and application performance. A Windows Mobile
device usually has 32MB to 64MB of memory (flash or RAM). Thus, the footprint of the .NET Compact
Framework and any .NET applications running on top of it must be small in memory, while at the same
time the .NET Framework must provide support for a large number of classes (but not the entire list of
.NET Framework classes) tailored for Windows Mobile applications.

.NET Compact Framework Class Libraries
The .NET Compact Framework class libraries are composed of a subset of the desktop .NET Framework
classes, plus some new classes designed especially for mobile device applications and services. To
reduce the CLR’s size, some classes or functionality of classes in the .NET Framework are dropped.
Figure 2-1 shows a comparison between .NET Framework classes and .NET Compact Framework
classes. Notice the shaded components available only in the .NET Framework.

.NET Compact Framework libraries create a consistent namespace hierarchy similar to that of .NET
Framework classes. Developers familiar with desktop Windows .NET application development can
leverage their experience with .NET Framework classes to build .NET Compact Framework–based
applications. There are, however, remarkable differences between some of the widely used classes in
these two frameworks. For example, some events, methods, and properties in Windows Forms, some
controls such as RichTextBox and CheckListBox, drag and drop operations, and .NET Remoting are not
supported in the .NET Compact Framework. You will see how they differ for a specific functionality in
the following chapters.

15

.NET Compact Framework Fundamentals

06_762935 ch02.qxp 11/20/06 7:50 AM Page 15

Figure 2-1

Platform Invoke
Both the .NET Framework and the .NET Compact Framework provide a way to access unmanaged code
in native Win32 DLLs: Platform Invoke, or P/Invoke. In the case of the .NET Compact Framework,
P/Invoke allows managed code to call methods in Windows CE native DLLs. P/Invoke performs mar-
shalling of data types between the CLR and the underlying native runtime environment. Another major
use of P/Invoke is to access COM objects from within a managed application. The .NET Compact
Framework does not allow COM interop directly, but you can circumvent this by using P/Invoke to call
a DLL wrapper of the COM object you want to access. P/Invoke is provided in the System.Runtime
.InteropServices namespace.

There has been some confusion about the .NET Compact Framework and another Microsoft mobile
application development technology called ASP.NET Mobile Controls. Keep in mind that the former
technology is for developing applications running on mobile devices that have the .NET Compact
Framework installed, whereas the latter technology is for developing web applications on the web

System.Web

Description

Services

System.Data

System

Protocols

Discovery

Interop Services

Runtime

Serialization

Remoting

Design

UI

Web Controls

Html Controls

Configuration

Caching

Session State

Security

Design

ADO

SQL Types

SQL

System Xml

XPath

XSLT
Serialization

System.WinForms

Design Component Model

System Drawing

Imaging

Drawing2D

Text

Printing

Configuration

.NET Framework only
(Not supported on .NET CF) Supported on .NET CF

Collections

Net

IO

Globalization

Diagnostics

Resources

Reflection

Service Process

Security

Threading

Text

16

Chapter 2

06_762935 ch02.qxp 11/20/06 7:50 AM Page 16

server side (presumably Microsoft Internet Information Server), which has the .NET Framework full ver-
sion installed, and it does not require mobile client devices to have the .NET Compact Framework. Most
of the content of this book is devoted to software development for Smartphone devices with the .NET
Compact Framework installed.

For a more detailed discussion of Platform Invoke, see Chapter 10, “Platform Invoke.”

Smartphone Development Tools
If you are new to mobile software development, then you probably don’t need to know the previous ver-
sions of software development tools provided by Microsoft. Because of the latest release of Visual Studio
2005, you can simply unify your work on a single IDE tool: Visual Studio .NET with Smartphone Device
Programmability (SDP), using C# and Visual Basic .NET for managed code development, and C++ for
native code development.

Prior to the release of Visual Studio 2005, two other tools were used by Smartphone application developers:

❑ Microsoft eMbedded Visual C++ 4.0 (for native code development)

❑ Microsoft eMbedded Visual Basic (for managed code development)

Although these tools were replaced by the built-in components of Visual Studio 2005, they can be used
for application development for Windows Mobile 2002 and 2003 for Smartphone, and Windows Mobile
2003 for Smartphone and Pocket PC. Smartphone developers should be aware that Windows Mobile for
Smartphone 2002 (also known as Smartphone 2002) does not support the .NET Compact Framework.
Thus, you cannot use Visual Studio .NET with SDP for Smartphone 2002 software development.

Visual Studio 2005 with SDP
Smartphone application development has been integrated with Microsoft’s unified IDE, Visual Studio
.NET, in an effort to offer a universal software environment that supports both desktop and mobile
.NET-based application development. It can be used to develop, debug, test, and deploy .NET Compact
Framework–based Smartphone applications. In fact, the .NET Compact Framework, including the CLR
and class libraries, can be directly accessed from within Visual Studio .NET. The Smartphone SDK pro-
vides further help for Smartphone application development. The latest Smartphone SDK, Windows
Mobile 5.0 for Smartphone SDK, consists of a number of code samples, useful tools, sample security con-
figuration files, emulator updates, and documentation. Very often a Smartphone developer needs to
have both Visual Studio .NET and the latest Smartphone SDK installed on a development computer.

Unlike desktop application development, programming for a Smartphone device requires some specific
procedures:

❑ You must choose a target platform when you create a project in Visual Studio .NET for
Smartphone application development. At the time of this writing, the available Smartphone
platforms supported by Visual Studio 2005 include Smartphone 2003 and Windows Mobile 5.0
for Smartphone.

❑ You don’t need to have a physical Smartphone mobile device (a smartphone with Microsoft
Smartphone 2003 or later versions) to develop applications for the target Smartphone platform.

17

.NET Compact Framework Fundamentals

06_762935 ch02.qxp 11/20/06 7:50 AM Page 17

Instead, you can use the software emulator of the target platform to test your application. An
emulator is a software execution environment within a Windows process that is used to debug
programs targeting the emulated platform. As a real Windows CE operating system tailored for
the Smartphone platform, the Smartphone emulator can directly execute the same instruction
set of the target platform’s processor.

❑ You can connect a Smartphone device to the development desktop system by using either a
USB, Ethernet, or serial port. Visual Studio .NET can detect the device via a program called
ActiveSync, and deploy your application to the device. An interesting feature of Visual Studio
.NET with Smartphone SDK is remote debugging, which enables you to debug code running on
your mobile device from within the Visual Studio .NET environment.

❑ Online help (within the IDE) for Smartphone application development has been integrated into
Visual Studio .NET’s help system, so at any time you can access filtered help pages from the
Help menu or press F1 for instant help in the current context.

Visual Studio .NET (with built-in Smart Device Programmability) enables you to leverage your .NET
desktop Windows application development knowledge and programming skills for mobile software
development. The .NET Compact Framework class libraries are mostly compatible with the full version
of the .NET Framework, which makes it considerably easy to port your applications from the desktop to
mobile devices.

Microsoft eMbedded Visual C++
During the non-.NET years, the typical way to develop mobile applications for Microsoft Windows CE
operating systems was to use eMbedded Visual Tools, including eMbedded Visual Basic and eMbedded
Visual C++. It is strongly suggested that developers who are familiar with eMbedded Visual Basic move
to Visual Basic .NET on Visual Studio for .NET Compact Framework–based application development.
For eMbedded Visual C++ developers, however, there are still some cases for which native C++ code is
preferred to managed .NET code, such as small footprint device drivers and mobile games.

eMbedded Visual C++ is a standalone programming tool that combines the compiler, emulators of
mobile devices, and IDE supporting tools. Smartphone software development with eMbedded Visual
C++ is similar to the traditional Windows desktop software development with Visual C++. You are free
to use the Win32 API for Windows CE, MFC (Microsoft Foundation Classes) library for Windows CE,
ATL (Active Template Library) for Windows CE, and whatever libraries are specific to the Smartphone
platform. eMbedded Visual C++ also provides an emulator of the Smartphone platform to assist in
debugging native C++ applications.

.NET Compact Framework Type System
.NET languages such as Visual C# and Visual Basic are based on the same type system as the .NET
Compact Framework and use the same class library. Thus, developers familiar with one .NET language
(and therefore the .NET Compact Framework type system) can easily move to another .NET language.

Every class in the .NET Compact Framework, including those with built-in value types, is directly or
indirectly inherited from the System.Object class. Only single inheritance is allowed in the .NET
Framework and .NET Compact Framework; a class cannot have more than one base classes. Any user-
defined classes are inherited from the System.Object class if no base class is explicitly specified.

18

Chapter 2

06_762935 ch02.qxp 11/20/06 7:50 AM Page 18

Types
There are two kinds of objects in the .NET Compact Framework: built-in value types and reference types. A
value type is a primitive data type that holds only values. They are actually structures allocated on the
stack. Reference types are instances of classes and must be created using the new keyword. They are allo-
cated on the heap and are subject to garbage collection. Reference types are understandably larger than
value types because they encapsulate more data. On 32-bit systems, every object has a header of 8 bytes.
The smallest object, an object of System.Object, is 12 bytes. Reference types are completely object-
oriented, meaning that you can leverage encapsulation, inheritance, and polymorphism to develop your
own types. If a reference type must be submitted, a value type can be “boxed” into a reference type,
either explicitly or implicitly, by creating a reference type allocated on the heap and copying the value of
the value type to the reference type. For example, an integer value type needs to be “boxed” in order to
be placed into an ArrayList object.

Data Types
Table 2-1 summarizes the numeric types in the .NET Compact Framework. Note that for simplicity, an
alias is often used for each built-in data type. For example, in C#, you can use int for the System.Int32
type in the .NET Compact Framework. The decimal type has a greater precision but a smaller range than
floating-point types and is used primarily for financial and monetary calculations.

Table 2-1 .NET Compact Framework Numeric Data Types

.NET CF Type
(In System Number
Namespace) of Bytes C# Keyword VB Keyword Description

Boolean 1 bool Boolean True or false

Sbyte 1 byte Byte A single byte

Char 2 char Char Unicode character

Int16 2 short Short Signed 2-byte integer

UInt16 2 ushort - Unsigned 2-byte integer

Int32 4 int Integer Signed 4-byte integer

UInt32 4 uint - Unsigned 4-byte integer

Int64 8 long Long Signed 8-byte integer

UInt64 8 ulong - Unsigned 8-byte integer

Single 4 float Single 4-byte single-precision
floating number

Double 8 double Double 8-byte double-precision
floating number

Decimal 16 decimal Decimal Greater precision but
smaller range than
double

19

.NET Compact Framework Fundamentals

06_762935 ch02.qxp 11/20/06 7:50 AM Page 19

Class Objects
Like C++ or Java, the .NET Framework and the .NET Compact Framework provide object-oriented
design patterns centered around the concept of the class. You build applications by creating objects or
instances of a class and by using their members to realize your programming logic. The new keyword is
used to create an object, which will call one of the constructors of the class. Thanks to garbage collection,
you don’t need to explicitly delete the object when your code no longer references the object. The
garbage collector will automatically detect unreferenced objects, delete them, and free up memory. In
other words, in the .NET Framework and the .NET Compact Framework, no destructors are needed for
a class.

However, there might be some cases for which you need to do something before an object is garbage col-
lected. In this case, the .NET Framework and the .NET Compact Framework provide a way to inject
some code in the form of a finalizer. You can put code that does resource cleanup into the finalizer to
ensure that the object’s resource will be released when the object is terminated by the garbage collector.
Note that the finalization of an object is not deterministic: It is up to the garbage collector to decide when
to finalize those unreferenced objects. Internally, the garbage collector does not delete objects that have
the finalizer method overridden. Instead, these objects are added to a list called the finalization queue. A
runtime thread will thus call the finalizer of these objects and drain the queue. The next time the garbage
collector runs, these objects are eventually terminated and their memory is released. Unlike the
Dispose() method, which is provided for developers to explicitly perform some cleanup tasks, the
finalizer is called by the garbage collector. Here is an example of using a finalizer:

class MyClass
{
MyClass() //A constructor
{...}
~MyClass() //Finalizer
{

//Some clean-up operations to perform before the object is garbage-collected
}
}
...
//In a method of another class
void Do()
{
//To create an instance of the class
MyClass obj = new MyClass();
//Use the object
...

} //When object gets out of scope of the method, it will be put into the
finalization queue and a runtime thread will run its finalizer

In the preceding code example, the MyClass class has a finalizer method called ~MyClass() that can
contain some cleanup code for the object. This ensures that the garbage collector will perform tasks in
the finalizer before the object is terminated.

20

Chapter 2

06_762935 ch02.qxp 11/20/06 7:50 AM Page 20

Attributes and Reflection
Attributes are part of the metadata of your code. You can add metadata for classes, methods, properties,
events, and so on, directly into your code. It is like annotation for your program. Readers familiar with
Java should notice that attributes are similar to the general-purpose annotation in Java 5.0.

To add an attribute to your class, simply add the attribute’s name enclosed within a pair of square brack-
ets in front of the class definition, as follows:

[serializable] public class Myclass {...}

You can also define your own type of attributes by deriving a class from System.Attribute.

Both the .NET Framework and the .NET Compact Framework provide reflection — a feature that allows
your code to inspect an assembly at runtime. You can get type information from an assembly and call
methods of those types. Recall that every object has a header. Reflection allows your program to access
object headers. Reflection APIs are organized into the System.Reflection namespace.

Generics
The .NET Compact Framework 2.0 and later support parametric polymorphism using generics. (So does
Java 5.0, but .NET 2.0 is superior to Java in this regard, a topic beyond the scope of this book.) Generics,
much like templates in C++ and generics in Java, enable to you generate container class objects with
arbitrary types you’ve provided. For example, you can use generics such as Stack and Queue in the
Generic collection System.Collections.Generic to manage your own types, or you can write your
generic class. A unique feature of .NET generics is that it is not just a compilation time concept like a
C++ template; instead, it encompasses runtime type checking, reflection, and debugging.

To create an instance of a generic Stack object that holds a MyObj type in C#, you can do the following:

System.Collections.Generic.Stack<MyObj> myObjStack = new
System.Collections.Generic.Stack<MyObj) ();

Subsequent operations of the stack myObjStack are the same as using other collection objects.

Exception Handling
Exceptions are runtime errors that need to be handled to avoid program crashes. The .NET Framework
and the .NET Compact Framework provide a built-in mechanism to handle exceptions using the well-
known try...catch...finally semantics. As with exceptions in C++ and Java, an exception is a
facility to catch potential runtime errors and transfer control to a specific error-handling block: the
catch block. A try block can be associated with multiple catch blocks, each processing a specified
exception. The finally block encloses cleanup operations that must be performed for any error-
handling process defined in preceding catch blocks. The following code snippet shows the basic
structure of try...catch...finally:

21

.NET Compact Framework Fundamentals

06_762935 ch02.qxp 11/20/06 7:50 AM Page 21

try
{
//Statements that can cause exception, such as I/O operations

}
catch(ExceptionType1 x) //
{
//Statements to handle exception type 1

}
catch(ExceptionType2 x) //
{
//Statements to handle exception type 2

}
finally
{
//Clean up

}

The preceding code uses two catch blocks for a try block. In addition, there is a finally block that
will be executed regardless of which catch block is executed. Each try block deals with a specific type
of exception.

In addition to the exceptions that the CLR generates, you can also explicitly throw an exception using the
throw statement. You can even rethrow an exception your catch block caught to other code, as follows:

try
{
...

}
catch(FileNotFoundException e) //Catch a file-not-found exception
{
Console.WriteLine(“[File Not Found] {0}”, e);

//Creates a new FileNotFoundException with additional information and throws it
throw new FileNotFoundException(“[File Not Found. Check its path”,e);

}

In the preceding example, the catch block catches FileNotFoundException, displays a message in the
console, and rethrows the exception with more information.

For a more detailed discussion of exception handling, see Chapter 11, “Exception Handling and
Debugging.”

A Quick Review of C#
If you have experience with C++ or Java, then C# should not be problematic. As an object-oriented pro-
gramming language, C# uses classes to encapsulate data and operations of a specific entity. A C# pro-
gram must contain at least one class, and programs that can be directly executed by the CLR must have a
Main method as the entry point for the class loader of the CLR. C# syntax largely follows C++ and Java,
with some enhancements described in this section.

22

Chapter 2

06_762935 ch02.qxp 11/20/06 7:50 AM Page 22

Value Types
A variable is of a specific data type. The data types shown previously in Table 2-1 list the data types of
C#. You can initialize a value type by assigning a value of that type to the variable, as shown here:

bool isVisited = true;
uint studentID = 41292922;
int myAge = 24;
float interestRate = 0.056;
char partyLine = ‘D’;

Conversions between value types in C# are similar to other programming languages. For example, an
integer can be cast onto a long, and vice versa. Precision may be changed when casting a “wide” type
(such as a long) to a “narrow” type (such as an int), in which case an explicit conversion is needed. If
the number being converted is too large to fit into a small type, some data will be lost without being
noticed. A better way to perform such potentially dangerous conversions is to use the System.Convert
class, as shown in the following example:

uint myTotal;
ushort myNumber;
...
myTotal = myNumber; //implicit Implicit cast

byte = mySmallNumber;
mySmallNumber = (byte) myNumber; // Explicit conversion is required. Data loss is
possible in this case. For example, if myNumber is larger than the maximum of a
byte type

double dBigNumber = 123.45;
try {

int iSmallInt = System.Convert.ToInt32(dBigNumber);
}
catch (System.OverflowException) {

System.Console.WriteLine(“Overflow in double to int conversion. Double is
too big!”;
}

The System.Convert class will throw an OverflowException exception when it detects data loss dur-
ing a type conversion. Therefore, when you use the Convert methods, you should always check
whether an OverflowException is raised.

To convert a string to a number, simply use the numeric type’s Parse static method. A static method is a
method that you can call directly without creating an object of the class. To convert a number to a string,
simply use the ToString() method of the numeric type. The following shows how to convert a string to
a number:

string s1 = “123”;
int x = int.Parse(s);

The following is an example of converting a number to a string:

int y = 321;
string s2 = y.ToString();

23

.NET Compact Framework Fundamentals

06_762935 ch02.qxp 11/20/06 7:50 AM Page 23

There are two other data types: enum and struct. enum is the keyword that declares a set of named con-
stants. The default type of these constants is integer. By default, the first constant has a value of 0, the
second has a value of 1, and so on. Here is an example of an enum type:

enum employeeStatus {fulltime = 1, part-time, contractor, retired};
int i = EmployeeStatus.fulltime; //Access an enumerator

The enumerator list of employeeStatus starts from 1, rather than 0.

A struct is like a class but it is not a reference type but a value type, meaning it contains the value
itself, not a reference to the data. As with any other value type, if you assign a struct variable to
another struct, the second one will have a copy of the first one’s data. For a reference type, however, an
assignment between two reference types will result in assignment of the reference, rather than the object
being referenced. A C# struct can have constructors, fields, methods, properties, indexers, operators,
events, and nested types. It is used primarily to hold lightweight objects. The following is an example of
a struct:

public struct Telephone
{

private uint phoneNumber;
private string userName;
public Telephone(uint n, string s)
{

phoneNumber = n;
userName = s;

}
}

In this example, a Telephone struct is defined. It has two private data members and a constructor.

Reference Types
A variable of a reference type contains the reference to the actual data. Reference variables are also
known as objects or instances. Assignments of reference variables of the same type, such as a=b, does not
copy the data object of b to a. Instead, a will reference to the data object of b. This effect is sometimes
called shallow copy.

The following are commonly used reference types:

❑ Objects of classes

❑ Interfaces, events, and delegates (explained below)

❑ Objects of Windows system components such as threads, graphic objects, and so on

❑ Collections such as arrays, stacks, queues, and so on

❑ Strings

❑ Boxed value types

24

Chapter 2

06_762935 ch02.qxp 11/20/06 7:50 AM Page 24

Operators
An expression is composed of variables, literals, and operators. Literals can be any string literal or a
number literal. Operators in C# are similar to those in C++ and Java; the same associativity and prece-
dence rules apply. For operators of the same precedence, the associativity rule dictates the following:

❑ The assignment operators are right associative — that is, computation is performed from
right to left.

❑ All binary operators are left associative.

Table 2-2 shows the operator precedence table.

Table 2-2 C# Operator Precedence

Category Operators

Primary x.y
f(x)
a[x]
x++
x--
new
typeof
checked
unchecked

Unary (applied to one operand) +
-
!
~
--x
(T)x

Multiplicative *
/
%

Additive +
-

Shift <<
>>

Relational and type testing <
>
<=
>=
is
as

Equality ==
!=

Table continued on following page

25

.NET Compact Framework Fundamentals

06_762935 ch02.qxp 11/20/06 7:50 AM Page 25

Category Operators

Logical AND (bitwise) &

Logical XOR (bitwise) ^

Logical OR (bitwise) |

Conditional AND &&

Conditional OR ||

Conditional Ternary ?:

Assignment =
*=
/=
%=
+=
-=
<<=
>>=
&=
^=
|=

A few operators need some introduction. The typeof operator is used to obtain a System.Type object
of a type you specified, as shown in the following example:

System.Type t = typeof(MyClass); //Here MyClass is the name of the class

You may be wondering how to get the type of an object at runtime. Use the GetType() method of the
object. Every type supports this method.

The checked and unchecked operators are used to control the overflow-checking context for integer-
type arithmetic operations and conversions. If checked is applied to an expression, and the arithmetic
operation produces a value that is out of the range of a destination type, an exception will be raised. If
the expression is marked as unchecked, the result will be truncated.

string and object
C# has two built-in reference types: object and string. The object reference type is an alias of the
System.Object type in the .NET Compact Framework, whereas string is an alias of System.String.
The following code provides some examples of string variables:

string productName = “Windows Mobile for Smartphone”; //Create a literal string
referenced by productName
string filePath = @”c:\windows\system32\”; //Use this form to avoid escaping
sequence

26

Chapter 2

06_762935 ch02.qxp 11/20/06 7:50 AM Page 26

In the preceding example, two strings are defined. The second one is using the @ form to avoid escaping
sequence.

Literal strings are stored as UTF-16 Unicode characters on the runtime heap. The CLR ensures that por-
tion of a literal string may be shared by other string objects. As the example shows, the easiest way to
create a string object is to assign a literal string to the object. The System.Object class has a
ToString() method that any other classes can override to return a string object that provides meaning-
ful information about the underlying object.

Another way to associate strings to a string object is to use a string resource, which can be added into an
Assembly Resource File. Literal strings defined in an Assembly Resource File are saved in UTF-8 code.
The .NET Compact Framework provides a System.Resources namespace for resource file access.

The string type supports common string operations such as searching a character or a substring, string
concatenation, comparisons, and so on. Note that a string object is not mutable in that the sequence of
characters referenced by the string object cannot be modified; you can’t remove a character from the
sequence or append a new character to it. When you use the ToUpper and ToLower methods to switch
between lowercase and uppercase, respectively, the original string is not changed at all; instead, a new
string is generated from the resulting conversion, whereas the original string stays intact and can be ref-
erenced by other objects or collected as garbage later. You can explicitly let a string object reference
another literal string. This design rationale of immutable string objects simplifies multithreading appli-
cations that have multiple threads accessing the same string object — a read-only object is obviously easy
to share. The downside, of course, is the new string allocation on the runtime heap while references are
changed. In the following example, first a string object productName is created for the literal string
“Windows Mobile for Smartphone”. Then a new literal string is allocated and referenced by
productName. The original literal string stays on the heap and does not change at all until next garbage
collection.

string productName = “Windows Mobile for Smartphone”; //Create a literal string
referenced by productName
string productName = “Windows CE”; //”Windows CE” is allocated and is referenced by
productName now

To have full control over a sequence string in your program, you need to use the System.Text
.StringBuilder class, which provides methods such as Append(), Insert(), and Remove() for
manipulating the string. The following are examples of some common string operations:

Using System.Text;
...
StringBuilder sb = new StringBuilder();
sb.append(“abcde”); //Append a string to the current string
sb.insert(2,”xyz”); //The first parameter is the position for insertion. Now the
string is “abxyzcde”
sb.remove(4,2); //The first parameter is the starting index, and the second
parameter is the length of string to be removed. Now the string is “abxyde”

The preceding code shows examples of using the append() method, the insert() method, and the
remove() method of the StringBuilder class. All these methods have several overloaded forms. The
MSDN documentation provides a detailed introduction to each of these methods.

27

.NET Compact Framework Fundamentals

06_762935 ch02.qxp 11/20/06 7:50 AM Page 27

Classes and Interfaces
Any class, interface, event, and delegate is a reference type. A class type is declared using the keyword
class. A class can contain fields, methods, properties, indexers, delegates, or other classes (see Table 2-3).

Table 2-3 Class Members

Class Member Description

Fields Data members of a class

Methods An operation of a class (similar to member functions in C++)

Properties Get and/or set a private field of a class using dot (.) notation (see the
example below)

Indexers Provide an array index notation to access a collection of a class (see
example below)

Delegates Provide a way to pass a method to other code (similar to function
pointers in C and C++)

The following code is an example of these class members (except delegates):

// Code of class fields, properties, etc.
using System;

namespace ClassDemo1
{

struct StudentDataEntry
{

public uint studentID;
public string studentName;
public StudentDataEntry(uint id, string name)
{

studentID = id;
studentName = name;

}
}
class Group
{

private StudentDataEntry[] studentData = new StudentDataEntry[4];
private uint groupID;

/*constructor. studentData has at most 4 elements*/
public Group(uint assignedGroupID, StudentDataEntry[] inputData)
{

groupID = assignedGroupID;
int i = 0;
foreach(StudentDataEntry d in inputData)
{

studentData[i++] = d;

28

Chapter 2

06_762935 ch02.qxp 11/20/06 7:50 AM Page 28

}
}
/*GroupID Property*/
public uint GroupID
{

get
{

return groupID;
}
set
{

groupID = value;
}

}

/*indexer*/
public StudentDataEntry this[int index]
{

get
{

return studentData[index];
}
set
{

studentData[index] = value;
}

}
static void Main(string[] args)
{

StudentDataEntry[] inputStudentData = new StudentDataEntry[4];
inputStudentData[0] = new StudentDataEntry(19, “John”);
inputStudentData[1] = new StudentDataEntry(23, “Joe”);
inputStudentData[2] = new StudentDataEntry(56, “Kevin”);
inputStudentData[3] = new StudentDataEntry(71, “Rachel”);

// Create a Group class object
Group g = new Group(1, inputStudentData);
Console.WriteLine(“Group ID: {0}”, g.GroupID); // Test GroupID property

“Get”
g.GroupID = 100; //test Test GroupID property “Set”
Console.WriteLine(“Group ID: {0}”, g.GroupID);
Console.WriteLine(“Student data index: 2: {0} {1}”, g[2].studentID,

g[2].studentName);

}
}

}

This example defines a StudentDataEntry struct and a Group class in the ClassDemo1 namespace. The
Group class has a property of GroupID and an indexer to access the studentData array in the class. The
static Main() method is the entry point of the program.

29

.NET Compact Framework Fundamentals

06_762935 ch02.qxp 11/20/06 7:50 AM Page 29

Parameter Passing
Parameter passing of value types in C# is call-by-value — that is, the value of a variable the caller submits
as parameter is passed to the method, in which a local copy of the parameter is created on the call stack.
Thus, any change to the local copy will not influence the variable the caller uses.

Parameter passing of reference types in C# is call-by-reference — that is, the reference type itself is passed
to the method. Thus, any changes made to the referenced object will be reflected in the caller. For exam-
ple, a reference to an array object can be passed to a method that directly modifies the array. In fact, this
is also done in a call-by-value manner: The reference itself is copied to the method’s stack space.

Another facility C# provides for passing multiple values to a method is the ref keyword. Using the ref
keyword, you can force a value type to be passed call-by-reference, just like a reference type. In the follow-
ing example, notice that the method returns nothing (void), but two parameters, sum and diff, are speci-
fied as ref parameters. Therefore, the computation results can be returned using these two parameters:

public void SumAndDifference(int x, int y, ref int sum, ref int diff)
{

sum = x+y;
diff = x >= y ? x-y : y-x;

}

//to To use the method
int Sum =0;
int Diff = 0;
SumAndDifference(5, 8, ref Sum, ref Diff);

You can also use the out keyword to replace the ref keyword so that you don’t need to initialize the ref-
erence parameters in the caller method.

Delegates and Events
In the C# programming paradigm, it is always necessary to be able to allow callback functions that will be
called when a specific event occurs. The event can be a GUI event, a timer timeout, I/O completion, and so
on. A delegate in C# is a facility to enable type-safe callback functions. You can specify a method using the
delegate keyword. Then the method will be encapsulated into a delegate type derived from System
.Delegate. When you want to create an object of the delegate type you declared, you must use the new
keyword just as you would when creating any other class objects. In the .NET Compact Framework, dele-
gates are often used to handle events. An event is a member of a class that can be used to inform a client of
the object that the state of the object has changed. An event delegate can be connected with the event to call
a predefined event handler method. The following example shows how to combine an event with a dele-
gate. First, a delegate is declared, which encapsulates an event handler that accepts an object that raises the
event and the event object:

public delegate void EventHandler(Object sender, EventArgs e);

Then the event handler is defined within a class:

public class Notification
{

...
DoNotification(Object sender, EventArgs e) { ...} // Notice the same signature

as the delegate
}

30

Chapter 2

06_762935 ch02.qxp 11/20/06 7:50 AM Page 30

The next step is to bind the event handler to the delegate:

Notification nObj = new Notification();
EventHandler handler = new EventHandler(nObj.DoNotification);

Finally, you can use the delegate as shown in the following example. The class has a public event mem-
ber and a method to raise the event. The actual event handling is passed to the event delegate, which in
turn delegates to an event handler bound to it (nObj.DoNotification() method):

public class A
{
public event EventHandler MyEvent;
protected virtual void OnMyEvent (EventArgs e)

{
if(MyEvent!=null)

MyEvent(this, e)
}
}

This example doesn’t define any specific data for the event; instead, it uses a plain System.EventArgs
event. You certainly can define an event class that is derived from EventArgs, and let it carry some data
to the handlers.

Interfaces
Because C# does not allow multiple inheritance, you cannot derive your class from more than one base
class. However, you can derive your class from multiple interfaces and/or a single base class. An interface
is a contract between the interface designer and the developer who will write a class that implements the
interface. It specifies which methods, events, indexers, or properties need to be implemented in that class.
An interface itself does not implement those things. In the following example, ClassA is derived from
BaseClass and two interfaces, Interface1 and Interface2; thus, ClassA must implement all mem-
bers specified in those two interfaces:

class ClassA: BaseClass, Interface1, Interface2
{

//Class members
}

Member Accessibility
A C# class uses the following five modifiers to specify the accessibility of class fields and methods:

❑ public—public modifiers are open to everyone.

❑ protected—protected fields and methods can be accessed from within the class and any
derived classes.

❑ private—private fields and methods are available only to the underlying class. By default,
class members are private.

❑ internal—internal fields and methods are available only to the underlying assembly. This
is the default access level.

❑ internal protected—internal protected fields and methods can be accessed from
within the assembly and derived classes outside the assembly.

31

.NET Compact Framework Fundamentals

06_762935 ch02.qxp 11/20/06 7:50 AM Page 31

Class Accessibility
A class can also have an access modifier, such as public and internal. The public modifier makes the
class available to everyone, whereas the internal modifier makes the class available only within the
underlying assembly. The default class access modifier is internal. Note that the member access modi-
fiers are restricted by the class modifiers. For example:

internal class A
{

public uint num;
......

}

The data field num will still be internal because the class modifier is applied first.

Polymorphism
As an object-oriented language, C# implements a special polymorphism mechanism. You can specify a
method in a base class by using the virtual keyword, making it a virtual function to be overridden in a
derived class. Virtual functions or methods are not bound to an object at compilation time, as with most
method calls; rather, the binding is done at runtime, depending on the actual object. In the derived class,
the method that overrides the base class’s virtual method must be specified with the override keyword.

If this dynamic binding is not needed, you don’t want to put virtual in front of the method in the base
class. Then, in your derived class, if you write a method that has the same signature as the one in ques-
tion in the base class, the C# compiler will issue a warning, requesting you to clarify whether you want
the method “overriding” or “hiding.” To use your new method in the derived class, you need to use the
new keyword to hide a derived method in the derived class.

In the following example, a base class A has a virtual method called do(), and its derived class B has an
overridden method called do(). Class A has another method, a nonvirtual method called do2(). In class
B, a method of the same signature is provided, which hides do2() derived from A. The method do2()
will be statically bound at compilation time. Notice that in the new do2(), you can call the derived
do2() using the keyword base:

class A {
virtual public void do() {Console.Println(“In A’s do method.”);}
public void do2() {Console.Println(“In A’s do2 method.”);}

}
class B : A {

override public void do() {Console.Println(“In B’s do method.”);}
new void do2() { base.do2();Console.Println(“In B’s do2 method.”);}

}
...
A a;
B b = new B();

a=b; // This is fine because class B is derived from class A
a.do(); // B’s do() will be called because the binding is resolved at run time
a.do2(); // A’s do2 will be called because do2() is statically bound at compilation
time
Console.Println(“----”);

A a2 = new A();

32

Chapter 2

06_762935 ch02.qxp 11/20/06 7:50 AM Page 32

A2.do(); // Call A’s do
A2.do2(); // Call A’s do2

Console.Println(“----”);
b.do(); // Call B’s do
b.do2(); // B’s do2

The output of the preceding code is as follows:

In B’s do method.
In A’s do2 method.

In A’s do method.
In A’s do2 method.

In B’s do method.
In A’s do2 method.
In B’s do2 method.

Arrays and Collections
An array is a collection of elements of the same type. The System.Array class is the abstract base class
for all arrays. The element type of an array can be any value type or reference type, even an array type.
An array can be one-dimensional or of multiple dimensions. When creating an array, you either specify
the size of the array explicitly or initialize the array element using an initialization list. Array elements
are garbage-collected when no references to them exist. Setting an array object to null will force the
garbage collector to reclaim the memory allocated to it.

Because arrays are derived from System.Array, they can use the following members defined in the
Array class:

❑ The Sort() static method sorts a one-dimensional array in place (i.e., without requiring extra
storage).

❑ The BinarySearch() method searches for a specific element in a sorted array.

❑ The Length property stores the number of elements currently in the array.

❑ The IndexOf() static method searches for a specific element and returns its index.

❑ The CreateInstance() method creates an array containing items of the specified System
.Type with a given length, with indexing. Although the Array class is an abstract base class (an
abstract class is a class that cannot be initiated), it provides this method to construct an array of
specified element types.

The following code shows two different ways to initialize an array, and the use of CreateInstance()
method:

using System.Array;
...
int[] myIntArray1 = { 1, 2, 3, 4, 5 };
int[] myIntArray2 = new int[3] { 1, 2, 3 };
Array.sort(myIntArray1); //sort Sort myIntArray1
foreach (int i in myIntArray1)

33

.NET Compact Framework Fundamentals

06_762935 ch02.qxp 11/20/06 7:50 AM Page 33

{ //access Access each element in myIntArray1
myIntArray1[i] *= 3;

}
Array.CreateInstance(typeof(uint), 5); // Create an array of 5 uint integers

The preceding example also demonstrates using an array indexer to access array elements. The foreach
construct is quite handy to iterate through all array elements.

Aside from the Array construct, the .NET Compact Framework provides the following set of collection
classes and interfaces in the System.Collections namespace:

❑ ArrayList— A linked list whose size is dynamically changed as needed. The ArrayList class
implements the IList interface.

❑ BitArray— An array of bit values, either true or false.

❑ Hashtable— A hash table providing key-value mapping. Keys and values are both objects.

❑ Queue— A first-in-first-out (FIFO) collection of objects. The capacity of the queue is automatically
increased when more objects are added.

❑ SortedList— A sorted collection of key-value pairs, which can be accessed using indexers
(like an array) or keys (like a hash table).

❑ Stack— A last-in-first-out (LIFO) collection of objects. The capacity of the stack is increased
automatically when more objects are pushed onto the stack.

❑ Comparer and CaseInsensitiveComparer— Two classes implement the IComparer interface.

Collection interfaces include the following:

❑ ICollection— A general interface for all collection classes. The ICollection interface speci-
fies properties such as count and isSynchronized, and the CopyTo() method.

❑ IList— An interface for a collection of objects that can be accessed using an index. The IList
interfaces specifies methods such as Add(), Insert(), Remove(), RemoveAt(), and
Contains(). Classes that implement IList include Array, ArrayList, and a number of GUI
control classes.

❑ IComparer— An interface specifying only a Compare() method. Classes implementing
IComparer include Comparer, CaseInsenstiveComparer, and KeysConverter.

❑ IDictionary— An interface representing a collection of key-value pairs. Classes implementing
IDictionary include Hashtable and SortedList.

❑ IEnumerable— An interface specifying a GetEnumerator() method over a collection of
objects. Classes implementing IEnumerable include Array, ArrayList, BitArray,
Hashtable, Stack, Queue, and SortedList.

❑ IEnumerator— An enumerator interface used in conjunction with the IEnumerable interface.
The IEnumerator interface specifies the methods MoveNext() and Reset(), and a property of
Current. Classes implementing IEnumerator include CharEnumerator, DBEnumerator, and
MessageEnumerator.

34

Chapter 2

06_762935 ch02.qxp 11/20/06 7:50 AM Page 34

Summary
This chapter discussed the core of managed Smartphone application development: the .NET Compact
Framework. The .Net Compact Framework enables developers to utilize a rich set of unified classes and
facilities to develop type-safe and high-performance mobile applications across different hardware and
operating systems.

After reading this chapter, it is assumed that you understand the .NET Compact Framework type system
and the rationale of language-independent programming on the CLR. You should also be familiar with a
set of Smartphone development tools. In addition, you should become familiar with C#. If you are a
developer working on C, C++, or Java, you will find C# is quite easy to learn.

In the next chapter, you will start to build your first Smartphone application. After learning how to set
up your Smartphone application development environment, you will use Visual Studio .NET to write a
simple application. You will also learn how to test, debug, package, and deploy a Smartphone applica-
tion with the emulator or a Smartphone device.

35

.NET Compact Framework Fundamentals

06_762935 ch02.qxp 11/20/06 7:50 AM Page 35

06_762935 ch02.qxp 11/20/06 7:50 AM Page 36

Part II

Smartphone Application
Development

Chapter 3: Developing Your First Smartphone Application

Chapter 4: User Interface and Input

Chapter 5: Data Storage and File I/O

Chapter 6: Data Access with SQL Server Mobile

Chapter 7: Networking

Chapter 8: E-Mail, SMS, and PIM Data

Chapter 9: XML and Web Services

Chapter 10: Platform Invoke

Chapter 11: Exception Handling and Debugging

07_762935 pt02.qxp 11/20/06 7:53 AM Page 37

07_762935 pt02.qxp 11/20/06 7:53 AM Page 38

Developing Your First
Smartphone Application

The previous chapter talked about the core of the Microsoft Smartphone platform, the .NET
Compact Framework and the C# programming language, which lay the foundation for managed
Microsoft Smartphone application development. In this chapter, you will start to get hands-on
experience with the Smartphone development environment, mainly using Visual Studio (2005 or
.NET), the Windows Mobile 5.0 SDK, and some supporting tools. The chapter will walk you
through the development, testing, debugging, and deployment of your first Smartphone applica-
tion. Specifically, the chapter discusses Visual Studio’s support of Smartphone security models and
policies. This chapter is intended to give you a quick overview of the basic development stages of
a Smartphone application. Topics covered in this chapter include the following:

❑ An introduction to Visual Studio

❑ Creating a simple Smartphone application

❑ Testing and debugging a Smartphone application

❑ Packaging and deploying a Smartphone application

Required Tools
To get started with Smartphone software development, you need to have a set of tools installed on
your development computer. These tools form a basic Smartphone application development envi-
ronment. The development computer must be running Windows Server 2003, Windows XP, or
Windows Vista.

08_762935 ch03.qxp 11/20/06 7:54 AM Page 39

The download URLs provided in this section may change as Microsoft updates its website. For up-to-
date links and tools, you can visit the Windows Mobile section at Mobile Developer Center at
http://msdn.microsoft.com/mobility/windowsmobile/. You will always find links to the
latest tools and technical articles there.

Visual Studio 2005
Visual Studio 2005 (code-named Whidbey while in development) is Microsoft’s latest integrated develop-
ment environment (IDE) for both desktop and device application development. The previous version of
Visual Studio, Visual Studio .NET 2003, can also be used for application development targeting
Windows Mobile 2003 devices. Both Visual Studio versions enable you to program, debug, test, and
deploy an application targeting Windows Mobile devices. If you have don’t the release version of Visual
Studio 2005, you can download a trial version from http://msdn.microsoft.com/vstudio/. Note
that the free Visual Studio Express Edition does not support application development with the .NET
Compact Framework for Windows Mobile devices. You need to use Standard Edition, Professional
Edition, or Team System for Smartphone application development.

Developers who are familiar with earlier versions of Visual Studio will find the 2005 version quite easy
to get along with. For example, you will still see windows such as the control toolbox window, Solution
Explorer window, and output window. The Form Designer enables you to drag and drop controls onto a
form. The Class Designer simplifies class design by providing a list of toolbars for classes, interfaces,
abstract class, struct, delegates, inheritance, and so on. Object Browser in Visual Studio enables develop-
ers to quickly browse objects and their members.

In addition to general IDE improvements such as code snippets, revision marks, refactoring, and so on,
there are some new features that a Smartphone developer should know about:

❑ .NET Framework 2.0 and .NET Compact Framework 2.0. The new versions of both frameworks
have been enhanced with new functionality and performance.

❑ Native code development is supported. Developers do not need to resort to eMbedded Visual
C++ for native code development anymore.

❑ MSBuild. MSBuild is the new XML-based build system for managed application development.
The build process is comprised of a number of atomic units of language-independent build
tasks that developers can customize, augment, or even redefine. MSBuild is also a core compo-
nent of the .NET Framework redistributable. Projects created in Visual Studio 2005 are now in
MSBuild format (an XML file).

❑ The new Device Emulator. This is described in an upcoming section.

❑ .NET Remote tools, including the following:

❑ Remote File Viewer — To browse and transfer files to a device or an emulator

❑ Remote Heap Walker — To view memory usage on a device or an emulator

❑ Remote Process Viewer — To view process information on a device or an emulator

❑ Remote Registry Editor — To edit the registry of a device or an emulator

❑ Remote Zoom In — To zoom in on a remote display on a local computer

❑ Remote Spy — To view messages a window on a device receives

40

Chapter 3

08_762935 ch03.qxp 11/20/06 7:54 AM Page 40

The MSDN library is also a must-have component that enables you to access online help while you pro-
gram, test, and debug your application.

Windows Mobile 5.0 SDK for Smartphone
The Windows Mobile 5.0 SDK for Smartphone includes the Smartphone emulators (which are also in Visual
Studio 2005), some command-lines tools, help files, header files, and libraries for native code development.
The SDK also provides a set of sample configuration files and digital certificates for day-to-day application
development with a physical device. You can download the SDK from www.microsoft.com/downloads/
details.aspx?familyid=DC6C00CB-738A-4B97-8910-5CD29AB5F8D9&displaylang=en.

You can download optional tools for special-purpose Smartphone development from Microsoft’s website.
This includes localized emulator images for the Windows Mobile–based Smartphone in various languages,
such as Spanish, French, Italian, Chinese, and so on. In addition, there is a popular application frame-
work — namely, Smart Device Framework — developed by the open-source community OpenNETCF.org
(www.opennetcf.org). The Smart Device Framework provides a rich extension to .NET Compact
Framework libraries, offering a number of classes and controls.

Smartphone Device Emulator
Visual Studio 2005 comes with a new device emulator called Microsoft Device Emulator, which is a completely
rewritten version of the Smart Device software emulator. Previously, the device emulator for Pocket PC and
Smartphone was a Windows CE operating system image running in a virtual x86 emulation environment.
However, in the mobile and embedded world, many devices use other processors, such as ARM, MIPS, and
SH4. Among all these processors, including x86, ARM is far and away the market leader. In fact, ARM is not
a single processor but a processor architecture designed by a British company called Acorn, which licenses
the architecture to processor manufacturers such as Intel and Texas Instruments. The gap between an x86-
based emulator and an ARM-based mobile device turns out to be a serious limitation of the Smartphone and
Pocket PC programming support in Visual Studio .NET 2003. Even when an application is tested within an
emulation environment of the x86 architecture, it may not function well on other processors. In addition,
developers have to compile the application first for the x86 in order to debug it in the emulator, and then
again for ARM or other processors to test it on a physical mobile device.

The new emulator in Visual Studio 2005, as shown in Figure 3-1, solves the problem. Now the emulator
itself is a Windows Mobile operating system for a targeting processor (ARM), running within a Microsoft
Virtual PC environment. (Virtual PC is a virtual machine technology that enables a guest operating system
to run on top of another operating system.) Your application will be directly compiled against the ARM-
based Windows Mobile operating system, thereby eliminating the gap between the x86 and target proces-
sor architecture. Here is a list of features that the new emulator offers:

❑ Run code compiled for ARM processors, rather than x86 processors. The emulator executes
true ARM instructions. Because the underlying Windows Mobile operating system is exactly the
same OS running on a physical device, developers can run the same binaries on the emulator
and the physical device.

❑ Support synchronizing with ActiveSync. ActiveSync is a tool that can synchronize a device
with a computer. Now, with the new emulator, you can establish a partnership between your
computer and the emulator. A Device Emulator Manager tool is provided to work like a “cra-
dle” for a physical device so that synchronization can be performed.

41

Developing Your First Smartphone Application

08_762935 ch03.qxp 11/20/06 7:54 AM Page 41

❑ Configurable screen resolution and flexible display orientation. You can easily rotate the
emulator screen, zoom the display, and change the skin of the emulator.

❑ Storage card emulation and serial port emulation. You can share a folder on your development
computer that will appear as a storage card to the emulator.

❑ With appropriate images, the emulator supports Windows CE device emulation, Smartphone
device emulation, and Pocket PC device emulation. Figure 3-2 shows the Device Emulator
Manager, which lists all available emulator images.

ActiveSync
You need to have Microsoft ActiveSync to connect your Smartphone device to your Windows PC.
ActiveSync acts as the gateway between your PC and your Windows Mobile device so that you can eas-
ily transfer files or synchronize application data such as e-mail, a calendar, and so on. For Smartphone
development, ActiveSync is needed by Visual Studio to transfer data between the development PC and
the device or the emulator. You can download ActiveSync from www.microsoft.com/windows
mobile/activesync/default.mspx.

Figure 3-1

42

Chapter 3

08_762935 ch03.qxp 11/20/06 7:54 AM Page 42

Figure 3-2

All-In-One Package
All the required tools for Smartphone application development can be purchased as an all-in-one pack-
age in a DVD, the Windows Mobile 5.0 Developer Resource Kit. You pay only the shipping and handling
fee. It includes a 90-day trial version of Visual Studio 2005 Professional Edition, Windows Mobile 5.0
SDKs for Pocket PC and Smartphone, ActiveSync 4.1, .NET Compact Framework 2.0, localized emulator
images and other useful developer tools, SQL Server 2005 Mobile Edition, plus developer resources such
as links to technical whitepapers and webcasts, WeFly247-50 sample applications, hands-on labs and
videos, and partnering opportunities. You can also download a subset of the package from http://
msdn.microsoft.com/mobility/windowsmobile/howto/resourcekit/. The downloadable pack-
age does not include the trial version of Visual Studio 2005 or some emulator images.

Building Your First Smartphone Application
Now it’s time to start building your first Smartphone application. You will create a Smartphone project,
which is a collection of source code files, resource files, and other files. You will use the Form Designer to
design your first Smartphone application, and then add some code to the form and test it on an emulator.

Creating a Smartphone Project
After you install the required tools listed in the previous section, you can start programming your very
first Smartphone project. To begin, launch Visual Studio 2005 from the Start menu, and then create a new
Smart Device project by clicking New➪Project. You will see the project wizard. Here you can choose
from four types of targeting platforms, as described in Table 3-1.

43

Developing Your First Smartphone Application

08_762935 ch03.qxp 11/20/06 7:54 AM Page 43

Table 3-1 Smart Device Projects in Visual Studio 2005

Targeting Platform Description

Pocket PC 2003 Windows Pocket PC PDAs running Windows Mobile for
Pocket PC 2003

Smartphone 2003 Cell phones and Smartphones running Windows Mobile for
Smartphone 2003

Windows CE 5.0 Handheld PCs and embedded devices running Windows
CE 5.0

Windows Mobile 5.0 Smartphone Cell phones and Smartphones running Windows Mobile 5.0
for Smartphone. This is the latest version of the Smartphone
platform.

Choose Windows Mobile 5.0 Smartphone in order to try Windows Mobile 5.0 for Smartphone applica-
tion development (see Figure 3-3).

Figure 3-3

From the right side of this dialog box, choose a template for your application. A template is a framework
consisting of the necessary source code files, resource files, and properly configured project references and
properties. As shown in Figure 3-3, for a Smartphone application, you can choose from Device Application,
Class Library, Control Library, Console Application, Empty Project, Device Application (1.0), Class Library
(1.0), Console Application (1.0), and Empty Project (1.0). The version number 1.0 refers to .NET Compact
Framework 1.0. For backward compatibility, Windows Mobile 5.0 for Smartphone supports .NET Compact
Framework 1.0. You will build your first .NET Compact Framework 2.0 Smartphone application with has a
simple GUI using forms, so choose Device Application. Rename the project to FirstSmartphoneApp.
Optionally, you can select a directory in which to save the project. Finally, click OK. Visual Studio 2005 will
create the framework of the application for you.

44

Chapter 3

08_762935 ch03.qxp 11/20/06 7:54 AM Page 44

Figure 3-4 shows the Visual Studio main window when the project generation is complete. Visual Studio
2005 will put your project into a solution, which is simply a collection of projects, one of which is desig-
nated as the “Startup” project. Note that you may see a slightly different layout of windows if you have a
specific IDE workspace configuration. (For example, the Solution Explorer windows may appear on the
left side of the window.) The Form Designer shows an image of a conceptual Smartphone with Form1
loaded into its screen. The form appears to be empty; no controls have been placed onto it. However, there
is already a control named “mainMenu1” at the bottom of the form. Usually, all forms in Smartphone
applications should have a Main Menu control for soft keys immediately under the screen of a Smartphone.
The automatically generated project now has only two files: Form1.cs and Program.cs. Form1.cs is the
GUI interface with which a Smartphone user will interact, whereas Program.cs is the place where the
.NET Compact Framework will find the main entry point and load the application.

Now, let’s bring up the properties window of the form, and make some modifications to the form. Move
the cursor onto the design window of Form1 (the window titled “form1.cs [Design]”, where you see the
form on a Smartphone image), and click the right mouse button. Then click the Properties context menu.
Every project, as well as every file in the project, has a properties page where you can change the config-
uration of the underlying project. A properties page is also available for every single control on a form.

Figure 3-4

45

Developing Your First Smartphone Application

08_762935 ch03.qxp 11/20/06 7:54 AM Page 45

Figure 3-5 shows the Properties window of the form. It looks exactly like the regular properties window
you probably have seen while developing desktop Windows applications. However, the .NET Compact
Framework form controls don’t have all those properties for controls in the full .NET Framework library.
For example, the Tab Index property, which is available in a form in the .NET Framework, does not
appear in the list of the Properties window here. The Design section of the Properties page lists some
interesting mobile-related properties, such as Name, FormFactor, Locked, and Skin. The Name property
refers to the form name (that is, the object name used in your program). The FormFactor property spec-
ifies the platform’s display capability in terms of screen resolution, including 176 × 220 (the default for
Windows Mobile 5.0) and 240 × 320 (also known as QVGA, or Quarter Video Graphics Array). The
Locked property indicates whether the form or control can be moved or resized. Usually you will lock
the form or control. Use the Skin property to indicate whether you want to see the phone image in the
Form Designer. You can view all the properties in alphabetical order by clicking the second small icon,
AZ, at the top of the window.

Now let’s modify the Text property of the form to be My First App, which will appear as the title of the
form on the title bar. It is strongly suggested that the form text be very short, because the title bar cannot
contain too many letters.

Figure 3-5

46

Chapter 3

08_762935 ch03.qxp 11/20/06 7:54 AM Page 46

The next step is to add some controls to the form. First close or dock the Properties window of the form,
and bring up the control toolbox. You are going to add the following five controls to the form:

❑ A label with the text “Employee Name”

❑ A label with the text “Department”

❑ A text box

❑ A combo box

❑ A checkbox with the text “Contractor”

To add a control to the form, simply drag and drop the icon of the control from the control toolbox win-
dow onto the form.

In Visual Studio .NET 2003, the order in which you add these controls to the form must be the reverse
of the tab order because the control-adding code generated by the Form Designer in Visual Studio .NET
2003 follows a stacking pattern; that is, the last control dropped onto the form will be the first control
added in the code, and the order in which the controls are added to the form is the tab order. This limita-
tion has been removed in Visual Studio 2005.

For the two Label controls and the CheckBox control, only the Text property will be modified. The
TextBox control has a default value of the Text property, which you must delete so that you can have an
empty text box when the form shows up on the screen of an emulator or a device. The ComboBox also
control requires some attention. You need to populate the list of items in its drop-down list. To do this,
bring up its Properties window, find Items, and click the small button on the right. Then enter the follow-
ing strings into the String Collection Editor window, one per each line: IT, Human Resource, Marketing,
and Product Dev. Use the Align tool (Tools➪Align) to align your controls. After that, modify the Text
property of the main menu control to be OK. Feel free to adjust the size of these controls by dragging the
border handles on the frame. The form with the newly added controls is shown in Figure 3-6.

So far you have added some controls to the automatically generated Windows form; you have not
entered any code. Even without a single line of code, this application can be compiled without generat-
ing any errors or warnings.

To build the application, click Build Solution in the Project menu, and the project will be compiled and
linked. You can view the build information in the Build Output window at the bottom of the workspace.
Now click Debug➪Start Without Debugging and a window will appear, prompting you to choose a
device or a Smartphone emulator from a list of emulators or devices. Select the Windows Mobile 5.0
Smartphone emulator and click OK. A window with a Smartphone image will then appear; and, after a
short delay for emulator initialization, you will see the application running in the emulator, as shown in
Figure 3-7. Note that the initial focus is on the text box, where you can enter text for Employee Name. To
move to the next tabbed control, click the down arrow button on the keypad of the emulator. The combo
box is not really a “combo”; instead, it should be named “spin box,” as it can only be spun horizontally,
unlike a typical drop-down list used in a desktop ComboBox control. At any time, you can always click
the soft key located right below the OK button.

47

Developing Your First Smartphone Application

08_762935 ch03.qxp 11/20/06 7:54 AM Page 47

Figure 3-6

Figure 3-7

What happens when you select Start Without Debugging? Visual Studio 2005 performs the following
steps behind the scenes:

1. It connects to the physical device or the emulator you selected.

2. As needed, it downloads the .NET Compact Framework onto the device or the emulator.

3. It copies the project files to the device or the emulator. The files are .NET assemblies, along with
digital certificates or other security provisioning files (see “Signing Applications” later in this
chapter).

4. It launches the application on the device or the emulator.

48

Chapter 3

08_762935 ch03.qxp 11/20/06 7:54 AM Page 48

Because you did not add any exit code to close the application, there is no way to terminate it in the
emulator. Thus, if you want to run it again, you have to perform a soft reset on the emulator or device.

As you might have noticed, Smartphone application development does not look very different from
desktop application development; you place controls on a form and adjust their properties. Other than
the particular UI characteristics of some controls (such as the horizontal spin box), you can leverage your
desktop development experience for Smartphone development. In fact, there is a difference between
these two programming paradigms; and although you are using the .NET Compact Framework rather
than the .NET Framework, Visual Studio 2005 does a good job of making this divergence largely trans-
parent to developers, ensuring a consistent programming experience.

Adding Code to the Form
The next step is to add some code to the form. We want to display a message box after a user enters
some information and clicks the OK button. The message box will contain text for the employee’s name,
the department, and the employee’s status.

Go back to the Form Designer and double-click OK at the bottom-left corner of the form. You are now in
the event handler of menuItem1_Click() in the design view of the form, as shown in Figure 3-8. You will
enter some code to display a message box with the information a user just entered in the aforementioned
controls.

Figure 3-8

49

Developing Your First Smartphone Application

08_762935 ch03.qxp 11/20/06 7:54 AM Page 49

Enter the following code into the event handler menuItem1_Click():

string status;
if(this.checkBox1.Checked)
status = “contractor”;
else
status = “permanent employee”;

MessageBox.Show(“You are “ + textBox1.Text +
“, working at “ + this.comboBox1.SelectedItem +
“ as a “ + status,
this.Text,
MessageBoxButtons.OK,
MessageBoxIcon.Exclamation,
MessageBoxDefaultButton.Button1
);

Application.Exit();

Don’t worry about the classes and methods used here; they will be discussed extensively in later chap-
ters. For now, simply run the program by selecting Debug➪Start Without Debugging. Once the main
form appears in the emulator, enter a name (John Doe), select a department (Product Dev), check the
Contractor checkbox, and then click OK. You will see the screen shown in Figure 3-9. Congratulations!
You have successfully finished your first Smartphone application.

Figure 3-9

50

Chapter 3

08_762935 ch03.qxp 11/20/06 7:54 AM Page 50

When testing an application in the emulator, use the mouse to click the navigation keypad to move
between controls, and click the soft keys (directly below OK) to launch the corresponding operation (OK
in our example). The preceding example added a statement to exit the application once the message box
has been displayed. Therefore, when the message box appears on the screen, clicking the OK soft key will
terminate the application.

Project Files
You may wonder which files have been automatically generated by Visual Studio 2005 so far; you did
not specify any filenames yet. In fact, Visual Studio 2005 has created a number of files for the
FirstSmartphoneApp project. Knowing the details of these files will be crucial for further development.
Admittedly, there is no big difference between the project files of a Smartphone project and those of a
regular C# project, so feel free to skip this section if you are familiar with programming C# in Visual
Studio.

When you use the project wizard to create a project, you have the option to create a solution for the pro-
ject as well. Table 3-2 explains the files generated by Visual Studio 2005 for the FirstSmartphoneApp pro-
ject (the only project in the solution).

Table 3-2 FirstSmartphoneApp Files

Filename Directory Description

SolutionName.sln Solution folder A plain-text solution file that lists all the
projects in the solution and the configu-
ration of the target platforms

ProjectName.csproj and Project folder An XML project file (C# project) that
ProjectName.csproj.user describes the project’s configurations

and all the information needed by
MSBuild, the Visual Studio 2005’s built-
in compiler

Source files (.cs files) Project folder Program.cs has the main() method;
Forms files are partial classes derived
from System.Windows.Forms.Form.

Form designer files Project folder Files that contain automatically
(FormName.designer.cs) generated code in a partial class and

will be combined with user’s form code

Resource file of a form Project folder An XML file describing resources
(FormName.resx) defined in the form

Assemblies (ProjectName.exe) Project folder\bin\ These are files generated and
and program debug database debug used under the configuration of
file (ProjectName.pdb) generated “Debug”
in “Debug” mode

Table continued on following page

51

Developing Your First Smartphone Application

08_762935 ch03.qxp 11/20/06 7:54 AM Page 51

Filename Directory Description

Assemblies (ProjectName.exe) Project folder\bin These are files generated and used
and a program debug database \Release under the configuration of “Release”.
file (ProjectName.pdb) generated The Release version is production code
in “Release” mode optimized for performance.

Assemblies, program debug Project folder\ Intermediate object-code files, including
database files, resource files, obj\Debug assemblies
Property resource files, etc. and Project

folder\obj\
Release

AssemblyInfo.cs Project folder\ A C# file containing attributes of the
Properties assembly

Resources.Designer.cs Project folder\ A strongly typed resource C# class
Properties automatically generated by Visual

Studio 2005

Resources.resx Project folder\ A .NET-managed resource file (XML)
Properties that aggregates form resource files

Only the form files and Program.cs file are directly exposed to you; the other files are generated and
managed by Visual Studio 2005; you don’t even need to know where they are physically located.

Note that the form class is composed of two “partial” classes located in two different files: one you can
directly modify for event handling and business logic, etc., and one describing GUI components of the
form generated by the Form Designer, which you don’t and should not modify directly in most cases.
The feature of “partial” class is introduced in .NET Framework 2.0 and .NET Compact Framework 2.0.

If you choose to create a strong name key file (.snk file; explained below), it will appear in the project file
list in the Solution Explorer. If you want to generate a package for your project that can be deployed to a
device, you must add a Smart Device CAB project to your solution. The details of application packaging
and deployment are discussed later in this chapter.

Testing and Debugging Applications
The process for testing and debugging a Smartphone application is similar to the process for a desktop
.NET application. When testing with the emulator, you are free to add breakpoints to your code, step
into or over the code, add watches for variables and expressions, or view call stacks and local variables
when the program pauses at the breakpoint.

To begin, move your cursor to the line of MessageBox.show(), right-click to bring up the context menu,
and then click Insert Breakpoint. (Alternatively, you can press F9 to create a breakpoint.) Next, select
Debug➪Start from the main menu. When the main form appears on the emulator or your device, enter
the name (John Doe) again, select a department (Product Dev), check the Contractor checkbox, and then
click OK. You will see the program pause before displaying the message box, as shown in Figure 3-10.

52

Chapter 3

08_762935 ch03.qxp 11/20/06 7:54 AM Page 52

At this point, if you move the mouse onto some variables, such as status, you will see a small pop-up
window with the value of the variable. You can run step by step (line by line of your source code) to
debug your program, or select Debug➪Continue from the main menu to run to the next breakpoint (if
any) or to the end of the program.

Figure 3-11 shows the Debug menu of Visual Studio 2005 after you start debugging an application. These
operations can be divided into three categories: debug control, exception, and breakpoint configuration.
Debug control enables you to choose what to do when a certain breakpoint has been reached or a moni-
tored exception occurs. Table 3-3 lists the debug controls you can apply.

Figure 3-10

Figure 3-11 53

Developing Your First Smartphone Application

08_762935 ch03.qxp 11/20/06 7:54 AM Page 53

Table 3-3 Debug Controls

Debug Control Keyboard Shortcut Description

Continue F5 Continues to run the program until another
breakpoint is reached or the program termi-
nates.

Break All Ctrl+Alt+Break Breaks the running application.

Stop Debugging Shift+F5 Exits from the program immediately without
executing the remaining part of the program.

Detach All Disconnects the debugger from a program
that you have attached to or launched from
the debugger. The program is still running
but it is not attached to the debugger, and
thus cannot be debugged.

Terminate All Terminates all programs attached to the
debugger.

Restart Ctrl+Shift+F5 Restarts the program from the beginning
from within the debugger.

Attach to Process Attaches a running program to the debugger
so that it can be debugged within the IDE.

Exceptions Ctrl+D, E Defines breaks on certain exceptions.

Step Into F11 Debugs line by line into a function call.

Step Over F10 Debugs line by line but treats a function call
as a single entity.

Step Out Shift+F11 Gets out of the current function call and
returns to its caller.

Quick Watch Ctrl+Alt+Q Brings up a window in which you can evalu-
ate a variable or an expression (but not a
method call).

Toggle Breakpoint F9 Disables or enables a breakpoint.

New Breakpoint Creates a new breakpoint that breaks at a
function.

Delete All Breakpoints Ctrl+Shift+F9 Deletes all breakpoints.

Disable All Breakpoints Temporarily disables all breakpoints (they
are not deleted).

Aside from these debugging controls, you can also drag the execution point to change execution sequence
of statements when the program pauses at a breakpoint, as shown in Figure 3-12. This is useful when you
want to test a specific code path that a regular run does not go through.

54

Chapter 3

08_762935 ch03.qxp 11/20/06 7:54 AM Page 54

Figure 3-12

The Exceptions command enables you to specify which exceptions to monitor while debugging a pro-
gram. The program will pause at the throw code of the specified exception so that you can quickly iden-
tify which part of the code raises the exception. This feature is indispensable because when an exception
occurs, you want to see the context in which the exception is raised, rather than the place it was caught.
With this feature, you probably must add numerous breakpoints to the catch blocks. You can also
define your own exception class and monitor it while executing the program.

Breakpoint configuration enables you to set new breakpoints and delete or disable existing breakpoints.
When a program pauses at a breakpoint, the IDE presents a number of windows. You can view auto
variables in the Auto window, local variables in the Local window, watches in the Watch window, call
stacks in the Call Stack windows, and threads in the Threads window. Auto variables are variables that
have been accessed recently while the program is being executed and debugged. Local variables are tem-
porary variables used in a method. Watched variables are variables or expressions you want to monitor as
a program executes. You can also use the Immediate window to obtain the value of a variable or an
expression, or to evaluate a method call. The Call Stack window shows the current call stack, including
every method call’s parameter type and line number. The Thread window shows a running thread’s ID,
priority, status, and execution location (which method it is executing). These debugging information
windows collectively give you a comprehensive view of the runtime information of a program.

Up to version 2005, Visual Studio does not support the Edit and Continue feature for .NET Compact
Framework applications, including Smartphone and Pocket PC applications. The Edit and Continue
feature, which is available for .NET Framework applications, enables you to edit the program in a
debugging session. The changed program will be automatically recompiled and linked, and you can con-
tinue to debug the updated program from where it was.

Debugging a project running on a Smartphone device is also supported by Visual Studio 2005. In fact,
you may not see big differences between debugging an application on a Smartphone emulator and on a
real Smartphone device, except that you must specify the Smartphone device connected to the develop-
ment computer via ActiveSync as the deployment device, rather than the emulator.

It is worth noting that debugging on a Smartphone device implies that code is running on the device’s
processor, not the desktop system’s processor.

Device debuggers include the following limitations:

❑ Function or method evaluation is not supported in the native device debugger (the debugger
for native code, rather than managed code). The feature is available for managed code device
debugging using the managed device debugger.

❑ The Edit and Continue feature is not supported on either device debugger (native or managed).

❑ For applications with a mix of managed code and native code, two different instances of Visual
Studio are needed: one for the native device debugger and another for the managed debugger.

55

Developing Your First Smartphone Application

08_762935 ch03.qxp 11/20/06 7:54 AM Page 55

As you can see, using Visual Studio 2005 with Windows Mobile 5.0 SDK, you can effectively leverage
your desktop application design skills and techniques on Visual Studio 2005 for Smartphone application
development. This is one of the most important advantages of .NET Compact Framework–based
Smartphone software development using Visual Studio 2005.

Packaging and Deploying Applications
After debugging and testing an application on a real Smartphone device, you may deploy the applica-
tion on a user’s device. There are three stages in the entire deployment procedure:

1. Package the application using a Visual Studio 2005 Smart Device CAB project.

2. Deliver the package to a user’s device via a web server, an ActiveSync copy, an e-mail attach-
ment, or a storage card.

3. Install the package onto the device.

The following section focuses on the first stage, packaging the application, as this is a core functionality
of Smart Device application support in Visual Studio 2005. You will notice the significance of application
security in the domain of Smartphone application development. We then briefly introduce several meth-
ods for delivering and installing packages.

Packaging Applications
To package a Smartphone application, you must add a Smart Device CAB (cabinet) project to your
Visual Studio 2005 solution. From the main menu, select File➪Add➪New Project. In the Other Project
Types category, select Setup and Deployment, and then choose Smart Device CAB Project (not CAB
Project) from the Visual Studio installed templates, as shown in Figure 3-13. A folder with the name of
the Smart Device CAB project will be generated under the solution directory. The IDE also presents you
with a File System Editor window that shows the filesystem entries you can create on a target device. A
CAB file is a type of compressed executable archive file that can contain your application assemblies
(EXEs and DLLs), dependencies such as DLLs, resources, help files, and so on, as well as any files related
to application security. Most important, an INF (information) file will be generated to describe the desti-
nation directory of each installation file on a target device, versions of Windows Mobile for Smartphone
on which the application is intended to run, and versions of required .NET Compact Frameworks.

To link the Smart Device CAB project with the FirstSmartphoneApp project, first click Application
Folder in the File System Editor window. Then, from the Visual Studio main menu, select
Action➪Add➪Project Output, choose the FirstSmartphoneApp project in the Add Project Output Group
dialog box, and choose Primary Output from a list of packaging options; thus, only assembly files will
be packaged. You can also right-click Application Folder in the File System Editor window to link the
Smart Device CAB project with your application project, as shown in Figure 3-14.

56

Chapter 3

08_762935 ch03.qxp 11/20/06 7:54 AM Page 56

Figure 3-13

Figure 3-14

Once you add the application project to the Smart Device CAB project, you may choose to add a registry
entry to a target device as part of the application’s installation. In fact, many software products for
Windows will create some registry keys for saving configuration settings. To add a registry key for your
company named CoolMobile, open the Registry Editor by selecting View➪Editors in the main menu.
Then, in the Registry Editor window, browse to HKEY_CURRENT_USER\SOFTWARE\%Manufacturer%
and add a new key with a string value of CoolMobile. Now you are ready to build the Smart Device
CAB project. This will generate either a Debug folder or a Release folder in the Smart Device CAB proj-
ect folder, depending on the active configuration of the project. In addition, three files are created in the
Smart Device CAB project folder:

57

Developing Your First Smartphone Application

08_762935 ch03.qxp 11/20/06 7:54 AM Page 57

❑ A CAB file (CABProjectName.cab)

❑ An INF file (CABProjectName.inf)

❑ A Cab Wizard log file (CabWiz.log) that contains logging information about the packaging process

The following code shows an example of the INF file. When the package is installed on a Windows PC,
the information in the INF file will be used.

[Version]
Signature=”$Windows NT$”
Provider=”Default Company Name”
CESignature=”$Windows CE$”

[CEStrings]
AppName=”FirstSmartphoneAppCAB”
InstallDir=%CE1%\%AppName%

[Strings]
Manufacturer=”Default Company Name”

[CEDevice]
VersionMin=4.0
VersionMax=5.99

[DefaultInstall]
CEShortcuts=Shortcuts
AddReg=RegKeys
CopyFiles=Files.Common1

[SourceDisksNames]
1=,”Common1”,,”C:\ProfessionalSmartphoneCode\FirstSmartphoneApp\FirstSmartphoneApp\
obj\Debug\”

[SourceDisksFiles]
“FirstSmartphoneApp.exe”=1

[DestinationDirs]
Shortcuts=0,%CE2%\Start Menu
Files.Common1=0,”%InstallDir%”

[Files.Common1]
“FirstSmartphoneApp.exe”,”FirstSmartphoneApp.exe”,,0

[Shortcuts]

[RegKeys]
“HKCU”,”Software\%Manufacturer%\CoolMobile”,””,”0x00000000”,”
“HKLM”,”Software\%Manufacturer%”,””,”0x00000000”,”

If you want to deploy your application onto the end user’s device without using Visual Studio 2005, you
must manually write an INF file, and then use the command-line tool CabWizSP.exe to generate the
CAB file. As shown in the preceding code, an INF file is made up of a number of sections, beginning
with a string enclosed in a pair of square brackets ([]). The following sections are required:

58

Chapter 3

08_762935 ch03.qxp 11/20/06 7:54 AM Page 58

❑ Version— The application provider’s name and the application’s version

❑ CEStrings— Some system strings

❑ CEDevice— The target platform

❑ DefaultInstall— Sections that define the installation

❑ SourceDisksNames— The path of the source files

❑ SourceDisksFiles— The source files

❑ DestinationDirs— The destination directory on the device

If the application must modify the device registry, a RegKeys section is also needed (see the RegKeys
section in the preceding INF file where CoolMobile is added).

Signing Applications
Any Smartphone CAB files, application executables, and libraries must be digitally signed before being
deployed to a user’s device. The privileges of both signed and unsigned applications are restricted by
the device’s security policy. The reason for application signing is to ensure application security.
Otherwise, how can you trust an application published on the Internet? Signing solves this problem.

❑ You can ensure that the program code comes from the entity it claims.

❑ You can ensure that no one has tampered with the program code.

The security technology behind digital signing is quite sophisticated and is discussed thoroughly in
Chapter 12. Here you just need to know that in Visual Studio 2005, you can sign your applications or
packages using digital certificates. During the development stage of a Smartphone application, you prob-
ably won’t want to bother with getting a certificate from the cryptographic service providers (CSP). The
Windows Mobile 5.0 SDK provides two sample certificates for day-to-day development: SDKSample
PrivDeveloper.cer and SDKSampleUnprivDeveloper.cer, each packaged with three other related
files. SDKSamplePrivDeveloper.cer is a sample of a privileged certificate, which is used to enable the
underlying application to run in Privileged mode, in which any APIs can be called. Unprivileged certifi-
cates such as the second sample certificate are used to verify applications running in Unprivileged mode,
which only allows limited access to APIs.

You need to install the SDK sample certificate onto your development computer and your device; other-
wise, you will not be able to use the sample certificate in Visual Studio 2005. To install a sample certifi-
cate, on your development computer, browse to the directory of the Windows Mobile SDK (by default,
Program Files\WinCE tools\WCE500\Windows Mobile 5.0 Smartphone SDK\Tools).
Then double-click the pfx file of each certificate. To install the certificate onto a device or an emulator,
you need to use the tool Rapiconfig with the XML provisioning file SDKCerts.xml in the same direc-
tory. The command is rapiconfig –p SDKCerts.xml.

Digital certificates are saved in certificate stores on a Smartphone device.

Smartphone Security Model and Security Policies
Windows Mobile for Smartphone supports two types of security models: one-tier security and two-tier
security. The one-tier model dictates that signed applications with a certificate are generally trusted, can
run on the device, and have privileged access to the device (Privileged mode). For unsigned applications,

59

Developing Your First Smartphone Application

08_762935 ch03.qxp 11/20/06 7:54 AM Page 59

the device’s security policies will be checked to determine two things: 1) whether it can run on the device,
with or without prompting the user; 2) if it can run, then in which mode (Privileged or Unprivileged).

The two-tier model further differentiates the access levels of signed applications. Unlike the one-tier
model, not all signed applications can run in Privileged mode. Only those signed applications with a
certificate chain that maps to a root certificate in the privileged store can run in Privileged mode. Signed
applications with a certificate chain that maps to a root certificate in the unprivileged store can only run
in Unprivileged mode; thus, they have only limited access to device resources and system APIs.

All security policies can be defined in a security policy provisioning XML file and copied to the device
for security policy configuration. For development and testing purposes, the Windows Mobile SDK pro-
vides a number of XML files for device security configuration, including OneTierLocked.xml,
OneTirePrompt.xml, SecurityOff.xml, TwoTeirLocked.xml, and TwoTierPrompt.xml, in the
directory Program Files\Windows CE Tools\wce500\Windows Mobile 5.0 Smartphone
SDK\Tools\Securityconfiguration. These files can be used to generate corresponding cpf (CAB
Provisioning Format) files, which are compressed and signed using two command-line tools: make-
cab.exe and Cabsigner.exe. Each of these files contains numerous policy settings you can modify.
For details about setting security policies, see Chapter 12.

Project Signing and Assembly Signing
After you have installed the certificates onto your development computer, you will be able to use them
in Visual Studio 2005. It is recommended that a Smartphone application should have its assemblies (if it
is a managed project), EXEs, DLLs, CABs, and MUI (Multilingual User Interface) files signed before they
are delivered to the end user.

To sign the application files in a project, open the project’s Properties page (Project➪(project name)
Properties), click the Devices page, and then check the Authenticode Signature box. If you have already
selected some certificates for the project, you should see them in the text box below the checkbox.
Otherwise, click Select Certificate and choose the certificates you installed on your development com-
puter. Figure 3-15 shows the details of the two sample certificates, SDKSamplePrivDeveloper.cer and
SDKSampleUnprivDeveloper.cer. You can also import, export, or remove installed certificates by
clicking the Manage Certificates button. The selected certificate will appear on the Devices tab of the
Properties page.

Figure 3-15

60

Chapter 3

08_762935 ch03.qxp 11/20/06 7:54 AM Page 60

On the same Devices tab, you may also specify whether the selected certificate will be added to the tar-
get device, a procedure known as provisioning. After that, when you build your project, the application
files will be signed using the selected certificate. CAB files can also be signed by changing the Smart
Device CAB project properties.

A single assembly file can also be signed using a strong name key file. A key file contains a public key
and the corresponding private key. A strong name consists of the assembly’s identity, a public key, and a
digital signature. To generate a strong name for an assembly, you must choose a key file. In Visual Studio
2005, you can create a key file in the project’s Properties page (in the Signing page). Alternatively, you
can use the command-line tool sn.exe (in Program Files\Microsoft Visual Studio 8\SDK\
v2.0\Bin directory) to create a key file. Once you create a key file in Visual Studio 2005, it will
appear in the file list of Solution Explorer.

Delivering and Installing Applications
You can deliver an application package to a user’s Smartphone device in a number of ways, including
ActiveSync, a web download, an e-mail attachment, Service Indication (SI) SMS (Short Messaging Service)
or Service Loading (SL) SMS, or storage cards. The SMS methods for application package delivery take
advantage of commonly used text messaging services to send a download URL as a text message to a user.
Visual Studio 2005 does not provide a simple solution to application delivery. It is up to the developer or
the mobile network operator to select which method to use. The following is a summary of these methods:

❑ ActiveSync. A user’s Smartphone can be connected (docked in a cradle) to a desktop computer
via a USB or serial port. Once a partnership relationship is established via the ActiveSync pro-
gram, the Smartphone can synchronize e-mail, contacts, calendars, pictures, and so on with the
desktop computer. Usually an application’s CAB file is further packaged using an installation
setup tool such as InstallShield. To transfer the setup package of an application to the
Smartphone, a user needs to run a setup program of the application on a desktop computer,
which performs some compatibility checking and copies the CAB file to the Smartphone device.

❑ Web download. Users can use the Pocket Internet Explorer on the Smartphone to visit a website
and download the application. The URL of the site can be obtained from e-mails SMS, or other
means.

❑ E-mail attachment. Mobile network operators can send an e-mail to users with an attachment of
the application. When a user opens the attachment, the application is installed on the device.

❑ Service Indication (SI) and Service Loading (SL) messages. Mobile network operators can
send these special SMSs to users, which contain a link to an application download website.

❑ Storage cards. The CAB file can be put onto a storage card such as a CompactFlash card or a
MultiMedia Card (MMC). When these cards are inserted into a Smartphone, the application
package will be installed automatically, provided that there is an Autorun file and that the
device’s security allows you to run it.

Regardless of which method is used for application delivery, internally the application installation pro-
cedure always starts with an on-device program called wceload.exe. Once a user clicks the down-
loaded package on a Smartphone, wceload.exe will be launched automatically. It checks the package
being loaded on the device against the security polices and determines whether the package can be
installed or whether the user needs to be prompted for the installation.

61

Developing Your First Smartphone Application

08_762935 ch03.qxp 11/20/06 7:54 AM Page 61

Summary
This chapter demonstrated how you can use Visual Studio 2005 in association with the Windows Mobile
5.0 SDK to develop a simple Smartphone application in a Smart Device project. The Visual Studio IDE
provides an easy-to-use Form Designer that enables you to drag and drop .NET Compact Framework
windows form controls. Event handling of these controls is similar to desktop Windows form applica-
tion development. The debugging features have been made available to Smart Device development
using either a Smartphone emulator or a Smartphone device. Moreover, the packaging and deployment
of a Smartphone application in Visual Studio 2005 has been enhanced with Authenticode signing for
CAB files and individual assemblies.

You now have a general overview of managed Smartphone application development using Visual
Studio 2005. This concludes the first part of “Smartphone and .NET.” Beginning with the next chapter,
we will move on to Part II “Smartphone Application Development,” which discusses a number of
Smartphone development topics, including UI handling, data storage and file I/O, data access with SQL
Server Mobile, networking, e-mail and messaging, XML and web services, Platform Invoke, and error
handling and debugging.

62

Chapter 3

08_762935 ch03.qxp 11/20/06 7:54 AM Page 62

User Interface and Input

In the previous chapter, you learned how to write, debug, and deploy a simple Smartphone pro-
gram using Visual Studio 2005. You might think that developing a Smartphone application differs
little from coding a PDA application or even a desktop program. Well, it depends on how you look
at it. On the surface, all you have to do is drag a control to the form, modify the control’s proper-
ties, and then add classes, methods, and events — a procedure familiar to veteran Windows pro-
grammers. Sooner or later, however, you will reach a point where conventional programming
techniques do not apply directly to the Smartphone platform. For example, some controls are not
supported, and there is no keyboard, mouse, or stylus for user input. You then have to examine
what is available in the Windows Mobile 5.0 SDK and find a solution to work around any awk-
ward situations.

This chapter discusses the following:

❑ Controls in the Smartphone SDK and their impact on UI design

❑ Smartphone UI design

❑ A detailed explanation of user input

❑ UI-related topics such as auto-save mode, DPI, and performance

UI Design with Forms and Controls
The term forms refers to the windows of .NET-based applications. The responsibilities of forms
include displaying information and receiving user input through events. To create a Smartphone
form in Visual Studio 2005, choose the New Project Wizard and then choose the C# application
type. The template you are going to use is Device Application. The Form Designer in Visual Studio
2005 enables you to add controls to the form simply by dragging them from the toolbox and drop-
ping them on the forms at design time.

09_762935 ch04.qxp 11/20/06 7:54 AM Page 63

Supported Controls
When a Windows Mobile–based Smartphone device application project is open in Visual Studio 2005, a
simple way to see the available controls is to examine the Toolbox window in the Visual Studio IDE, as
shown in Figure 4-1. If for any reason the Toolbox window is not shown on the IDE, you can open it by
clicking View➪Toolbox from Visual Studio 2005.

Figure 4-1

A number of popular controls are not available in the Smartphone SDK, such as Buttons, ListBox, and
OpenFileDialog, which could be a little inconvenient for programmers. However, don’t assume by look-
ing at the Toolbox that these are all the controls Visual Studio 2005 provides. You can also use the Project
menu to add other controls, including Form, MessageBox, and Cursor. In addition, compared to
Smartphone 2003, Windows Mobile 5.0 supports four more controls: LinkLabel, BindingSource,
DateTimePicker, and WebBrowser. To avoid any confusion, Table 4-1 lists all the supported controls in
Windows Mobile 5.0.

64

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 64

Table 4-1 Controls in Windows Mobile 5.0-based Smartphone

Control Shown in Toolbox Supported in Smartphone 2003

BindingSource

CheckBox ✓ ✓

ComboBox ✓ ✓

Cursor ✓

DataGrid ✓

DateTimePicker ✓

Form ✓

HScrollBar ✓ ✓

ImageList ✓ ✓

Label ✓ ✓

LinkLabel ✓

Panel ✓ ✓

Menu ✓ ✓

MessageBox ✓

(with 1 or 2 buttons only)

PictureBox ✓ ✓

ProgressBar ✓ ✓

Screen ✓

TextBox ✓ ✓

Timer ✓ ✓

VScrollBar ✓ ✓

WebBrowser ✓

For detailed information about the controls in the .NET Compact Framework 2.0, visit the Microsoft
MSDN website at http://msdn2.microsoft.com/en-us/library/hf2k718k.aspx.

Control Behaviors
Even though Windows Mobile 5.0 controls inherit their properties, methods, and events (PME) from the
.NET System.Windows.Forms.Control class, not all the PMEs defined in the base class are implemented
because of the limited computing power and memory space available to the Smartphone devices. For
example, the Maximum and Minimize buttons of a form are not supported in the Smartphone SDK,
which makes sense for Smartphone devices because the size of the screen is small and pointing devices
are not available to manipulate the windows.

65

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 65

Conversely, Windows Mobile 5.0 for Smartphone supports more control features than its predecessors.
Tab order and auto scroll, which are missing in Smartphone 2003, are now available in Windows Mobile
5.0 for Smartphone. Windows Mobile 5.0 also introduces new features that enable applications to change
screen orientations.

Tab Order
Two important properties, TabStop and TabIndex, are not supported prior to Windows Mobile–based
Smartphone forms. That means you cannot change the tab order during design time and runtime.
Technically, tab order does not exist in Smartphone applications because there is no Tab key on
Smartphone devices. However, when users navigate the different controls using the navigation keys,
such as up arrow key and down arrow key, there should be a way to determine the order in which con-
trols gain focus. In this book, this order is denoted as tab order.

You can set the tab order when you design the Smartphone forms. An intuitive way to do so is to choose
View➪Tab Order from Visual Studio 2005. Note, however, that the Tab Order option is enabled only
when the active window is the Form Designer.

For example, you can start a new Windows Mobile–based Smartphone device application by choosing
File➪New➪Project. Then, in the Form Designer, add three text boxes to the form by dragging and drop-
ping three TextBox controls from the Toolbox to the form. By selecting View➪Tab Order, you can see that
three TextBox controls are marked with numbers in the tab order editor, as shown in Figure 4-2.

Figure 4-2

66

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 66

The numbers you see in the tab order editor are the values of the TabIndex properties of those three
TextBox controls. In Figure 4-2, the TabIndex property of textBox1 is value 0, which is the smallest
among all three controls. It means that at runtime textBox1 will be the first to receive focus, followed
by textBox2 and textBox3.

To change the tab order, simply click the numbers in the tab order editor. For example, if you click the
number 1 on the left side of textBox2, then the TabIndex of textBox2 is changed to value 2. It is then
changed to value 0 in the next click. If you click again, the value will be changed back to value 1.

Alternatively, you can change the value of the TabIndex property from the Properties window by click-
ing View➪Properties Window or by pressing Ctrl+W+P. Figure 4-3 shows the properties of textBox2,
and you can set the value of the TabIndex property from there.

Figure 4-3

What if all the controls in a form have the same TabIndex? What determines which control gets the
focus first and which control gets the focus last? For a Windows Mobile–based Smartphone, it depends
on how the control is added to the form’s control collections.

67

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 67

Continue from the previous example and change the TabIndex value of all three text box controls to 0.
Then choose View➪Solution Explorer. Next, expand the Form1.cs from the Solution Explorer and right-
click Form1.designer.cs, which is the code automatically generated by the Form Designer, and choose
View Code. Note that part of the code may be hidden in the Visual Studio IDE; you need to click the plus
(+) sign on the left of the Windows Form Designer–generated code to expand the code and make it visi-
ble, as indicated in Figure 4-4.

Figure 4-4

When you examine the code at the bottom of the InitializeComponent() function, you find the
following:

...
this.Controls.Add(this.textBox3);
this.Controls.Add(this.textBox2);
this.Controls.Add(this.textBox1);
...

If you build the sample code by pressing F6 and then press Ctrl+F5 to start the application, then you will
notice that at run time textBox3 is the first to receive the focus. If you press the down arrow key, then
textBox2 is the next to get focus, and textBox1 is the last to get focus. Indeed, when controls have the
same TabIndex value, the tab order is exactly the same as the order in which they are added to the con-
trol collections, which is this.Controls in the example.

68

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 68

Note that by default, the From Designer in Visual Studio adds controls to the control collection in
reverse order. In the preceding example, textBox1 is the first added to the form from Form Designer,
but it is the last added to the control collection of the form. That explains why in Smartphone 2003, in
which TabIndex is not supported, the tab order is the reverse of the order in which you add controls to
the form from the Form Designer.

You can change the tab order of controls that have the same TabIndex values (or do not have Tab
Index values as in Smartphone 2003) by reordering them in the InitializeComponent() function.
For instance, if the TabIndex properties of those three TextBox controls are all 0, the following code in
the InitializeComponent() function will make textBox2 receive focus first, and textBox1 receive
focus last:

...
this.Controls.Add(this.textBox2);
this.Controls.Add(this.textBox3);
this.Controls.Add(this.textBox1);
...

Auto Scroll
Prior to Windows Mobile 5.0, Smartphone forms do not have the AutoScroll property. As a result,
when the size of a form is bigger than the screen, the out-of-area controls are never displayed, regardless
of how a user navigates the form. The AutoScroll property is now supported in Windows Mobile 5.0
Smartphone, albeit with a minor problem: If a control on the top of the form does not receive cursor
focus — for example, a Label control — it will not show up on the screen again after it is navigated out of
the screen.

To verify this problem, start a new Smartphone device application. Then, from the Properties window,
change the size of the form to (176, 320) and make sure that the AutoScroll property is enabled (see
Figure 4-5). Now add four Label controls and four TextBox controls to the form. From the Properties
window, set the Location properties of those four labels to (0, 0), (0, 80), (0, 160), and (0, 240), respec-
tively. Then set the Location properties of the four text boxes to (0, 40), (0, 120), (0, 200), and (0, 280),
respectively. The Location property sets or gets the coordinates of the coordinates of the upper-left cor-
ner of the control. Figure 4-6 shows this simple UI interface.

Figure 4-5

69

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 69

Now you are ready to test the default auto scroll behavior. Press F6 to build the solution and press
Ctrl+F5 to launch the application. The form is displayed nicely when the program starts and label1 is
on the top of the screen, followed by the textBox1. However, when you navigate the form to textBox4
by pressing the down arrow key, and then navigate back to textBox1 by pressing the up arrow key,
label1 is now missing and textBox1 appears on the top, as indicated in Figure 4-7.

This is a problem because a Label control is usually needed right before a TextBox control to give users
hints as to what to input. In addition, because there are no pointing devices in Smartphone to move the
scroll bar, once label1 is navigated out of the screen users cannot get it back on the screen by pressing
the navigation keys. This means that users may not be able to recall what textBox1 refers to. As an
example, imagine that the Text property of label1 is a question like 1+1 = ?, and users are supposed to
input their answers in textBox1. If label1 is missing, how could users check their answers?

Figure 4-6

Figure 4-7

70

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 70

Because the auto scroll feature is not perfect on Windows Mobile 5.0, and it is missing on Smartphone
2003, we are going to present a solution that works on both platforms.

The idea is to add a Panel control and a VScrollBar control to the form and have the Panel contain all the
other controls, such as Labels and TextBoxes. Whenever a control gets focus, change the value property
of the VScrollBar and the Top property of the Panel accordingly to ensure that the active controls appear
in the display area. For example, suppose a Panel control has a height of 320 pixels and the viewable
area of a Smartphone device has a height of 180 pixels; if the Top property of the Panel is 0, the area of
the Panel from 0 to 180 will be displayed. If the Top property of the Panel becomes –100, the area dis-
played on the screen will be from 100 to 280.

Start a new Smartphone device application from Visual Studio 2005 by choosing File➪New➪Project, and
name the project FormScroll. Then click the Form1.cs[Design] tab design UI. On the Properties window,
change the AutoScroll property of Form1 to false and set the Size property to (176, 320). Next,
add a VScrollbar control vScrollbar1 to Form1. You don’t need to set any properties of vScrollbar1
at this point. You can adjust the settings later in your code so that settings can be applied during the
application initialization process. Then add a Panel control Panel1 to Form1. Set the AutoScroll prop-
erty of Panel1 to false, the Location property to (0,0), and the Size property to (176,320). Then
add four pairs of Labels and Textboxes to Panel1 and set the Location properties of the Labels and
Textboxes the same way you did in the previous example. The resulting UI is very similar to what is
shown in Figure 4-6. The difference is that whereas Labels and Textboxes are added directly to Form1 in
the previous example, they are now nested in Panel1, and Panel1 is directly contained in Form1.
Another difference is that a VScrollbar control is added to the UI.

From the Solution Explorer (choose View➪Solution Explorer), right-click Form1.cs and choose View
Code. You can now set the necessary properties of vScrollBar1 in the Form1 constructor, as follows:

public Form1()
{

InitializeComponent();

//Set the initial size, position, and value of VScrollbar1
this.vScrollBar1.Height = this.ClientSize.Height;
this.vScrollBar1.Left = this.Width - vScrollBar1.Width;
this.vScrollBar1.Minimum = 0;
this.vScrollBar1.Maximum = this.panel1.Height - this.ClientSize.Height + 5;
this.vScrollBar1.Value = 0;

}

The preceding code makes the Height of vScrollbar1 the same as the ClientSize of a form. By
doing so, your application will behave correctly on both regular Smartphone devices and QVGA-
enabled devices (QVGA stands for Quarter VGA and has an image size of 240 × 320 pixels). The code
also defines the Maximum property of vScrollBar1 as the height difference of panel1 and ClientSize
plus 5. Therefore, when the screen scrolls, the Top property of panel1 can be calculated as the Value
property of vScrollBar1 multiplied by -1.

71

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 71

Assuming the height of the ClientSize of Form1 is 180 pixels, the preceding code enables the Value of
vScrollbar1 to change from 0 to 145. Therefore, the Top of panel1 can go from 0 to –145, which
means you can move panel1 up by 145 pixels to show the area of panel1 from the height of 145 pixel
to the height of 325 pixel. An extra 5 pixels are added here to provide a bit of room.

When users press the navigation keys and move the focus to the next control, the desired behavior is
that the Textbox that receives the cursor focus and its preceding description Label are both displayed on
the screen. To this end, you need to know the positions of the Label and Textbox, and the current scroll
position. If the desirable display area is outside the current scroll position, change the Top of Panel1 to
cause panel1 to move according. If the desirable display area is inside the current scroll position, simply
do nothing.

Assuming topCtrl represents the Label and bottomCtrl represents the Textbox, the following code
inside the function SetPos() can find the desirable display area:

//Set the position of vScrollbar1 and panel1
private void SetPos(Control topCtrl, Control bottomCtrl)
{

//Get the desired displaying area
int top = topCtrl.Top;
int bottom = bottomCtrl.Bottom;

...
}

For example, the Location of label3 is (0,160), the Location of textBox3 is (0,200), and the Size
of textBox3 is (172,22). If you pass label3 and textBox3 to SetPos(), top will be 160, and bottom
will be 222 (which is 200+22). This indicates you need to ensure that the area of panel1 from 160 to
222 appears on the screen.

The current scroll position, or the top of current viewable area, is indicated by the Value property of
vScrollbar1. You can find the viewable area by using the following code:

//Get current viewable area
int screenTop = this.vScrollBar1.Value;
int screenBottom = ScreenTop + this.ClientSize.Height;

If the desirable display area falls within the current scroll position, then pos should be less than
screenTop, and bottom should be less than screenBottom. For instance, if the current scroll position is
100, then the viewing area is from 100 to 280. In order to display label3 and textBox3, which is from
160 to 222, you do not have to do anything because 100 is less than 160, and 222 is less than 280. The
following code illustrates how to the handle this situation:

//If the bounds are within current view, do nothing
if (screenTop < top && bottom < screenBottom) return;

If screenTop is less than top, the viewing area is below the desirable display area, and the screen needs
to be scrolled up. The can be done by setting the Top of panel1 to the value of top multiplied by –1 as
follows:

//If the bounds are above view, scroll up
if (top < screenTop)

72

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 72

{
this.vScrollBar1.Value = top;
this.panel1.Top = -this.vScrollBar1.Value;
return;

}

Assuming the height of the desirable viewing area is less than the height of the ClientSize of Form1,
the only case left is when the desirable viewing area is below the view. The following code shows how to
scroll down:

//The bounds are below view, scroll down
this.vScrollBar1.Value = bottom - this.ClientSize.Height + 5;
this.panel1.Top = -this.vScrollBar1.Value;
return;

Putting the previous example code together, you now have a SetPos() function that can adjust panel1
to ensure that the two controls topCtrl and bottomCtrl are both displayed on the screen:

//Set the position of VScroll bar and Panel
private void SetPos(Control topCtrl, Control bottomCtrl)
{

//Get the desired displaying area
int top = topCtrl.Top;
int bottom =bottomCtrl.Bottom;

//Get current viewable area
int screenTop = this.vScrollBar1.Value;
int screenBottom = screenTop + this.ClientSize.Height;

//If the bounds are within current view, do nothing
if (screenTop < top && bottom < screenBottom) return;

//If the bounds are above view, scroll up
if (top < screenTop)
{

this.vScrollBar1.Value = top;
this.panel1.Top = -this.vScrollBar1.Value;
return;

}

//The bounds are below view, scroll down
this.vScrollBar1.Value = bottom - this.ClientSize.Height + 5;
this.panel1.Top = -this.vScrollBar1.Value;
return;

}

The next thing you need to consider is when to call this SetPos() method. At runtime, when the cursor
moves into a control, the Windows Mobile–based Smartphone operating system will raise a GotFocus
event. Therefore, a good place to call the SetPos() method is inside the GotFocus event handler.

73

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 73

The following steps describe how to create a GetFocus event handler for textBox1 in Visual Studio
2005:

1. Make the Form Designer the current active window by clicking the Form1.cs[design] tab in
Visual Studio 2005.

2. From the drop-down list of the Properties window, choose textBox1 and click the Events button,
as illustrated in Figure 4-8.

3. Double-click the GotFocus event (see Figure 4-9). Visual Studio 2005 will automatically create a
textBox1_GotFocus() event handler.

Figure 4-8

The code generated by Visual Studio 2005 is separated in two files. In the Form1.designer.cs file, the
following code is added in the InitializeComponent() method:

this.textBox1.GotFocus += new System.EventHandler(this.textBox1_GotFocus);

The preceding code means the event this.textBox1.GotFoucs is registered to the system event dele-
gate System.EventHanlder, which links the event to the event handler this.textBox1_GotFocus.

74

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 74

Figure 4-9

In the file Form1.cs, the event handler is automatically generated and defined as follows:

private void textBox1_GotFocus(object sender, EventArgs e)
{
}

The parameter sender represents the source of the event, and parameter e is an instance of EventArgs,
which can be used to contain event data. For the sample application, when textBox1 receives the cursor
focus, you need to simply call the SetPos() method and pass label1 and textBox1 as the two argu-
ments. The following code illustrates the event handler when textBox1 gets the focus:

private void textBox1_GotFocus(object sender, EventArgs e)
{

SetPos(label1,textBox1);
}

Following the same approach, add GotFocus event handlers for textBox2, textBox3, and textBox4,
respectively.

The following is the complete code of Form1.cs:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;

75

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 75

using System.Text;
using System.Windows.Forms;

namespace FormScroll
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();

//Set the initial size, position, and value of VScrollbar1
this.vScrollBar1.Height = this.ClientSize.Height;
this.vScrollBar1.Left = this.Width - vScrollBar1.Width;
this.vScrollBar1.Minimum = 0;
this.vScrollBar1.Maximum = this.panel1.Height - this.ClientSize.Height

+ 5;
this.vScrollBar1.Value = 0;

}

//Set the position of VScrollbar and Panel
private void SetPos(object topCtrl, object bottomCtrl)
{

//Get the desired displaying area
int top = topCtrl.Top;
int bottom =bottomCtrl.Bottom;

//Get the current viewable area
int screenTop = this.vScrollBar1.Value;
int screenBottom = screenTop + this.ClientSize.Height;

//If the bounds are within current view, do nothing
if (screenTop < top && bottom < screenBottom) return;

//If the bounds are above view, scroll up
if (top < screenTop)
{

this.vScrollBar1.Value = top;
this.panel1.Top = -this.vScrollBar1.Value;
return;

}

//If the bounds are below view, scroll down
this.vScrollBar1.Value = bottom - this.ClientSize.Height + 5;
this.panel1.Top = -this.vScrollBar1.Value;
return;

}

//Scroll for textBox1
private void textBox1_GotFocus(object sender, EventArgs e)
{

SetPos(label1, textBox1);
}

//Scroll for textBox2

76

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 76

private void textBox2_GotFocus(object sender, EventArgs e)
{

SetPos(label2, textBox2);
}

//Scroll for textBox3
private void textBox3_GotFocus(object sender, EventArgs e)
{

SetPos(label3, textBox3);
}

//Scroll for textBox4
private void textBox4_GotFocus(object sender, EventArgs e)
{

SetPos(label4, textBox4);
}

}
}

Now build the application by pressing F6, and then start the application by pressing Ctrl+F5. The scroll
bar is now positioned in the correct place when you scroll down to the bottom of the form and then up
to textBox1 again, as displayed in Figure 4-10.

Figure 4-10

In the .NET Compact Framework, controls that have user interaction can receive focus. In Smartphone
applications, the following controls can receive focus:

❑ CheckBox

❑ ComboBox

❑ Form

❑ ListView

❑ TextBox

❑ TreeView

For a Smartphone application, the first form you created is the first focusable control in Controls
.Collection. However, the form is not the first control to receive focus because a form is a container

77

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 77

control and the .NET Compact Framework will recursively search for focusable controls inside a
container until one is found. A control with its Enabled property set to false will not be considered in
this process.

The vertical scroll bar in this example is not as useful as it could be in .NET desktop editions or PDA
applications because users are not likely to be able to manipulate the scroll bar directly from Smartphone
devices. We added this control in the example mainly for two reasons. First, it is consistent with the UI
style of Windows applications. Second, it indicates to users that the form is longer than the length of the
screen.

Menus
The MainMenu control is also available in the .NET Compact Framework to enable you to easily create
menus for your mobile applications. As you may have noticed, you can add only two menu items at the
top level, which is largely due to the small display size of Smartphone devices. All other features look
very similar to their full .NET counterparts.

By default, a MainMenu control is automatically added to your project when you create a new
Smartphone device application in Visual Studio 2005. You can then add MenuItem controls from the top-
left of the menu, as shown in Figure 4-11.

Figure 4-11

Historically, Smartphone devices didn’t support submenus to the top-left menu and supported up to
two levels of submenus to the top-right menu. Even though such restrictions no longer apply in
Windows Mobile 5.0, we believe it is still a good idea to add submenus only to the top-right menu so

78

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 78

that the menu style is consistent with Smartphone devices prior to Windows Mobile 5.0. Therefore, we
recommend that you create the top-left menu first, followed by the top-right menu, and then stack sub-
menu items to the top-right menu.

For Smartphone applications, submenu items are numbered based on the order in which they are added
to the parent MenuItem control. For instance, from the Form Designer, if you add three MenuItem con-
trols (R1, R2, and R3) to the top-right menu, the numbers 1, 2, and 3 are automatically assigned to them,
as shown in Figure 4-12.

At runtime, users can select a menu item by first clicking the right soft key followed by clicking the navi-
gation keys to pick a specific menu item. Alternately, users can simply use the number to the left of a
submenu item to invoke it. For example, if users want to choose menu item R2, they can simply press 2
on the keypad.

The number assigned to a menu item serves as a shortcut key. This is different from how a shortcut key
is constructed in the full .NET Framework, in which menu items are never numbered. To create a short-
cut key for a menu item in the full .NET Framework, put an ampersand (&) to the left of the shortcut key
from the Form Designer. For example, if the Caption of a menu item is &Write, then the menu item will
be presented as Write during runtime and can be invoked when users press the W key. For Smartphone
applications, it is still possible to use the & symbol to create a shortcut key for a menu item, but it is not
practical to use and is unnecessary.

Just like other controls in the .NET Compact Framework, a MenuItem control can be added to the form
during design time as well as runtime. The next example illustrates some basic operations related to the
menu operation in a Smartphone application.

Figure 4-12

79

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 79

Start a new Windows Mobile 5.0–based device application and name the project menuBehavior. From
the Form Designer, add two Labels to the form and rename them lbCntTitle and lbCnt, respectively. Set
the Location of lbCntTitle to (0,40), Size to (80,22), and the Text to ‘Counter =’. Then set the
Location of lbCnt to (90,40), Size to (80,22), and the Text to an empty string. Next, add menu items
to the main menu. Table 4-2 lists the order in which MenuItems are added to the form and summarizes
the settings of each MenuItem added to the example application.

Table 4-2 MenuItems in the menuBehavior Example

Name Parent Text

mnuDone mainMenu1 Done

mnuOptions mainMenu1 Options

mnuR1 mnuOptions R1

mnuR2 mnuOptions Counter

mnuSep mnuOptions -

mnuR3 mnuOptions R3

mnuR4 mnuOptions Remove R5

mnuR5 mnuOptions R5

mnuCntInc mnuR2 Inc

mnuCntDec mnuR2 Dec

Figure 14-13 presents the graphic layout of the UI and menu items.

If you examine the code generated by Visual Studio 2005 in the file Form1.Designer.cs, then you will
see that the hierarchy of the menu items is achieved by adding each menu item to the MenuItems collec-
tion of its parent. For example, mnuCntInc and its parents and grandparents are constructed as follows:

...

this.mainMenu1.MenuItems.Add(this.mnuOptions);
...
this.mnuOptions.MenuItems.Add(this.mnuR2);
...
this.mnuR2.MenuItems.Add(this.mnuCntInc);

As you can see, the top-right menu mnuOptions is added to mainMenu1, and it contains mnuR2, which
in turn contains mnuCntInc.

In the example, the function of mnuSep is to create a separator between menu items. This is easily
achieved by setting the Text property of mnuSep to -. Next, you will learn how to dynamically change
menu items at runtime. For example, when users select mnuR4, mnuR5 is removed and mnuR4 will there-
fore be disabled.

80

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 80

Figure 4-13

From the Form Designer, click mnuOptions to show the MenuItems directly attached to it. Then double-
click mnuR4. Visual Studio 2005 will then automatically generate a stub of the event handler in the file
Form1.cs for mnuR4 when it is chosen at runtime:

private void mnuR4_Click(object sender, EventArgs e)
{

}

Visual Studio 2005 will also register an event handler to the System.EventHandler in the
InitializeComponent method in the file Form1.Designer.cs:

this.mnuR4.Click += new System.EventHandler(this.mnuR4_Click);

To delete a MenuItem control at runtime, first remove it from the MenuItems collection of its parent, and
then call the Dispose() method to release the resources. To disable a menu item, you can simply set the
Enabled property to false. The following code shows the event handler for the Click event of mnuR4:

private void mnuR4_Click(object sender, EventArgs e)
{

this.mnuOptions.MenuItems.Remove(this.mnuR5);
this.mnuR5.Dispose();
this.mnuR4.Enabled = false;

}

81

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 81

The sample code also displays the value of an integer counter on the screen. This can be achieved by
passing the string representation of the counter to the Text property of lbCnt, as follows:

private int counter;

public Form1()
{

InitializeComponent();

//Reset counter and send the string representation to the text of lbCnt
this.counter = 0;
this.lbCnt.Text = counter.ToString();

}

When mnuCntInc is selected, the counter will be increased by one. To do so, double-click the mnuCntInc
from the Form Designer to create an event handler to respond to the Click event of mnuCntInc. In the
event handler, increase the value of the counter and pass the information to lbCnt, as follows:

//Increase counter by one
private void mnuCntInc_Click(object sender, EventArgs e)
{

this.counter++;
this.lbCnt.Text = this.counter.ToString();

}

Then add an event handler for mnuCntDec by double-clicking mnuCntDec from the Form Designer.
Inside the event handler, decrease the value of counter by one:

//Decrease counter by one
private void mnuCntDec_Click(object sender, EventArgs e)
{

this.counter--;
this.lbCnt.Text = this.counter.ToString();

}

Finally, an event handler is necessary to terminate the application when users press mnuDone. Double-
click mnuDone from the Form Designer and add the following line to the click event handler of
mnuDone to quit the application:

Application.Exit();

The following shows the full listing of the code in the file Form1.cs:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace menu

82

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 82

{
public partial class Form1 : Form
{

private int counter;

public Form1()
{

InitializeComponent();

//Reset counter and send the string representation to the text of lbCnt
this.counter = 0;
this.lbCnt.Text = counter.ToString();

}

//Remove MenuItem mnuR5
private void mnuR4_Click(object sender, EventArgs e)
{

this.mnuOptions.MenuItems.Remove(this.mnuR5);
this.mnuR5.Dispose();
this.mnuR4.Enabled = false;

}

//Terminate the application
private void mnuDone_Click(object sender, EventArgs e)
{

Application.Exit();
}

//Increase counter by one
private void mnuCntInc_Click(object sender, EventArgs e)
{

this.counter++;
this.lbCnt.Text = this.counter.ToString();

}

//Decrease counter by one
private void mnuCntDec_Click(object sender, EventArgs e)
{

this.counter--;
this.lbCnt.Text = this.counter.ToString();

}

}
}

Build the sample application by pressing F6, and then launch it by pressing Ctrl+F5. Figure 4-14 shows
the menu items when a user presses the right soft key.

After Remove R5 is selected, R5 disappears from the menu list and Remove R5 is grayed out, which indicates
the menu item is disabled. Figure 4-15 illustrates how the menu looks after users choose Remove R5.

83

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 83

Figure 4-14

Focus Behavior for ListView, TreeView, and Panel
The nature of a Smartphone device’s small screen size determines how you want to use container con-
trols such as ListView, TreeView, and Panel. In full .NET applications, you can resize those controls as
you like and use tab keys to navigate in and out of them. Things are a little different for Smartphone
applications. The ListView, TreeView, and Panel controls are expected to expand to fill the entire screen,
and users can use tab keys to navigate the child controls inside those containers, but not between those
container controls.

To make a container control expand to the size of the form, set the Bounds property of that control to the
ClientRectangle property of the form, as follows:

listView1.Bounds = this.ClientRectangle;

84

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 84

Figure 4-15

Smartphone UI Design
You need to consider several issues when designing a UI. A user-friendly UI is simple, clear, and consis-
tent, and is normally optimized for performance. This section first introduces several Smartphone-
specific issues that affect UI design. A typical UI flow for a Smartphone application is then explained,
followed by a multi-form sample application to illustrate how this can be achieved programmatically.

Microsoft provides detailed design guidelines on MSDN. It is not our intention to illustrate all the UI
details in this book. For further information, please refer to the website at http://msdn.microsoft
.com/library/default.asp?url=/library/en-us/uiguidesp/html/SPUser_
Interface_Guidelines_SKLK.asp.

85

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 85

Soft Keys
The Smartphone-specific features that most affect the UI design are likely the two soft keys: The top-
level menu items are invoked only by the pressing the soft keys. As a direct result, a MessageBox control
for Smartphone applications supports only two buttons; there are simply no additional soft keys to
respond to a third button.

For instance, the following code will create a message box with three buttons (Yes, No, and Cancel) in
the full .NET Framework and the Windows Mobile 5.0–based Pocket PC:

MessageBox.Show (“Do you really want to quit?”, “Important”,
MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Question,
MessageBoxDefaultButton.Button1);

In a Windows Mobile 5.0–based Smartphone, even though the preceding code can still pass the compile
and build stages, an error indicating that the value is out of the range will be thrown during runtime.

The fact that a Smartphone has only two soft keys also dictates that only two top-level menus are sup-
ported.

The following are the UI design guidelines for the soft keys:

❑ The left soft key:

❑ Should always display the most likely user task

❑ Normally is the Done soft key that closes the window

❑ The right soft key:

❑ Is blank if it is not needed

❑ Should display the second most likely user task if there is no menu

❑ Displays the Menu soft key when there is a menu

The Home and Back Keys
Besides the soft keys, two other keys are special in Smartphone devices: Home and Back. As its name
implies, the Home key returns users to the Home screen from anywhere at any time. The Back key per-
forms different functions depending on the state of the application. It is generally designed to return
users to the previous screen, with the following exceptions:

❑ Applications use a hierarchical structure with regard to the Back key. For example, if a user nav-
igates to a child form from a main form, pressing the Back key should take the user back to the
parent form before quitting the application.

❑ The Back key performs a global back function, navigating out of the current application.

❑ When a user visits one screen several times in one session, only one instance of the screen is
saved. Duplicates should be removed from the back stack.

86

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 86

❑ If a menu is open, the Back key should close the menu.

❑ Pressing the Back key in an edit control performs a backspace. For text boxes on edit screens
with one or more lines, pressing and holding the Back key clears an entire box. For full-screen
edits, pressing and holding the Back key performs repeated backspaces.

❑ Pressing the Back key when viewing a message box closes the message box and cancels the
action.

General UI Flow of Smartphone Applications
A Smartphone application may require more than one form. How, then, do different forms relate to each
other, and how does UI flow from one form to another form? A good example that demonstrates UI flow
is the Smartphone native Contacts application.

As shown in Figure 4-16, the Contacts program begins with a list of all the contacts, which is referred to
as list view.

Figure 4-16

When users select an item, detailed information will be shown on the next screen, which is referred to as
card view. For example, in Figure 4-17, when a contact is selected, detailed information about that contact
is displayed, such as a picture, a work phone number, an e-mail address, a work address, and other
information.

Figure 4-17

87

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 87

From the card view, users can also choose the edit option from the menu to further edit the detailed
information of a contact. Figure 4-18 shows the edit view for the Contacts program.

Figure 4-18

Depending on the needs of an application, you do not have to design the list view, card view, and edit
view. For instance, the list view can go directly to the edit view without showing the card view. It is also
possible for an application to start from a card view and flow to an edit view.

Creating an Application with Multiple Forms
One of the questions you may have at this point is how to programmatically control the UI flow from
one view to another view. In the next example, you will learn how to add more forms to an application
and how to the control the flow of the forms.

The example is a fairly simply one. When users click the left soft key, a second form with a combo box
will appear to enable users to modify certain data. When users finish editing and press the Done key, the
selected item will be printed on the first form and the second form will be closed. Of course, using two
forms for this simple application is overkill, but the concept presented in this application is important.

Start a new Windows Mobile 5.0 Smartphone application and name it MultiForm. Add two labels to the
main form Form1 and rename the Labels lbTitle and lbSname, respectively. Change the Text property
of lbTitle to ‘Main: Chose a School’, and clear the Text property of lbSname. Then add a top-left
menu item to Form1 and rename the menu item to mnuDone. Next, add a top-right menu item to Form1
and rename it mnuEdit. Figure 4-19 shows the simple UI of main form Form1.

To add a new form in Visual Studio 2005, choose Project➪Add Windows Form. Name the new form
subForm and add a combo box named comboBox1. Then add a MenuItem mnuDone to the top-left of the
menu and a MenuItem mnuCancel to the top-right of the menu, as shown in Figure 4-20.

You can edit the items in a combo box during design time. From the Properties window, choose
comboBox1 from the drop-down list and then go to the Items property and click the ellipsis (...) button
(see Figure 4-21). This will open the String Collection Editor for comboBox1. Figure 4-22 shows four pub-
lic universities in Indiana added to the Items collection of comboBox1.

88

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 88

Figure 4-19

Figure 4-20

89

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 89

Figure 4-21

Figure 4-22

Because subForm will become a child form of Form1, you need to add a property in the subForm class to
track its parent form:

//Add a parentForm property to refer to the parent form
private Form1 parentForm;

The parentForm info can be passed through the subForm constructor:

90

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 90

//Set the parentForm property from constructor
public subForm(Form1 parentForm)
{

InitializeComponent();
this.parentForm = parentForm;
this.Size = new System.Drawing.Size(parentForm.Size.Width,

parentForm.Size.Height);
...

}

Also in the constructor of subForm, you can set the initial value for the combo box. The following code
will mark the first item in the Items collection as the selected item and set the focus to comboBox1:

//Set the initial value of ComboBox1
comboBox1.SelectedIndex = 0;
comboBox1.Focus();

On Form1, add an event handler to the mnuEdit click event so that the second form will be created and
shown on the screen:

//Show child form
private void mnuEdit_Click(object sender, EventArgs e)
{

//Show waiting cursor
Cursor.Current = Cursors.WaitCursor;

//Create a new subForm and show it
subForm subform1 = new subForm(this);
subform1.ShowDialog();

}

In this example, the transformation from Form1 to subForm is similar to switching from card view to
edit view. Two methods are available in the Forms class to display a form: ShowDialog() and Show().
In the example, subForm1.ShowDialog() is called so the statements following showDialog()will not
be executed until after the form is shown, used, and closed. This is termed a modal dialog in Windows
programming. If you use subForm1.Show() in this implementation, then the execution of the state-
ments after the Show() method proceed even as the form is being displayed, which is known as modeless
dialog. The preceding code also changed the style of the cursor to waiting style. This serves as a cue for
users that some operations are happening in the background.

Once the child form subForm is called and is to be loaded, you will need to hide the parent form and
change the type of cursor to normal. This can be achieved from the Load event hander of subForm:

private void subForm_Load(object sender, EventArgs e)
{

this.parentForm.Hide();
Cursor.Current = Cursors.Default;

}

91

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 91

How do you pass the results back to the parent form? One solution is to add a public setter method in
the parent form so that you can modify the properties of certain controls. In the example presented here,
declare a method SetLbSname in the Form1 class, as follows:

public void SetLb_SName (String name) {
this.lbSname.Text = name;

}

Before the child form is closed, you should change the Text value of lbSname and show the parent
form. The best place to do so is in the click event handler of the mnuDone menu item in the subForm
class:

private void mnuDone_Click(object sender, EventArgs e)
{

//Set the label text in parent form
String SName = (String) this.comboBox1.SelectedItem;
this.parentForm.setLbSname(SName);

//Show parent form and close current form
this.parentForm.Show();
this.Close();

}

If users decide to quit the subForm without choosing a name from the combo box, you can simply close
the form and show the parent form, as follows:

//Close out the edit windows and bring the parent window back to screen
private void mnuCancel_Click(object sender, EventArgs e)
{

//Show parent form and close current form
this.parentForm.Show();
this.Close();

}

Of course, you should also add an event handler to respond to the click event of mnuDone to terminate
the application. Then you are ready to test this simple application with two forms.

The following is the full code for Form1.cs and subForm.cs:

Form1.cs (parent form)

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace MultiForm

92

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 92

{
public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

// Add this public method so the child form
// can change the text value of Lb_Sname
public void setLbSname (String name) {

this.lbSname.Text = name;
}

//Show child form
private void mnuEdit_Click(object sender, EventArgs e)
{

//Show waiting cursor
Cursor.Current = Cursors.WaitCursor;

//Create a new subForm and show it
subForm subform1 = new subForm(this);
subform1.ShowDialog();

}

//Close the application
private void mnuCancel_Click(object sender, EventArgs e)
{

Application.Exit();
}

}
}

subForm.cs (child form)

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace MultiForm
{

public partial class subForm : Form
{

//Add a parentForm property to refer the parent form
private Form1 parentForm;

//Set the parentForm property from constructor

93

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 93

public subForm(Form1 parentForm)
{

InitializeComponent();
this.parentForm = parentForm;
this.Size = new System.Drawing.Size(176, 180);

//Set the initial value of ComboBox1
comboBox1.SelectedIndex = 0;
comboBox1.Focus();

}

private void mnuDone_Click(object sender, EventArgs e)
{

//Set the label text in parent form
String SName = (String) this.comboBox1.SelectedItem;
this.parentForm.setLbSname(SName);

//Show parent form and close current form
this.parentForm.Show();
this.Close();

}

//When called up, hide the parent form
//and change the cursor type to default
private void subForm_Load(object sender, EventArgs e)
{

this.parentForm.Hide();
Cursor.Current = Cursors.Default;

}
//Close the current window and bring the parent window back to screen
private void mnuCancel_Click(object sender, EventArgs e)
{

//Show parent form and close current form
this.parentForm.Show();
this.Close();

}

}
}

After MultiForm is compiled and built, it can be deployed to a Smartphone device or an emulator.
Figure 4-23 shows the initial UI when the application is just loaded.

When users press the right soft key, the subForm will be displayed on the screen, as shown in Figure 4-24.

If users pick the first item (Ball State) from the combo box and then choose the child form by pressing
the left soft key, the parent form will be displayed with the name of the school set to Ball State, as illus-
trated in Figure 4-25.

94

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 94

Figure 4-23

Figure 4-24 95

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 95

Figure 4-25

Keyboard Input and Input Mode
In the previous section you learned how to design a UI for Smartphone applications. One important
aspect of dealing with the UI is responding to user input. This section discusses how to handle keyboard
input in the .NET Compact Framework.

Input Mode
Unlike a PC’s keyboard, a Smartphone device typically has only a number pad and a few other function
keys. For Smartphone applications requiring user input, this is a little awkward. The most popular solu-
tion to this problem is to use the multi-tap function. For example, when a user presses the 2 key repeat-
edly, the letters A, B, C and the number 2 will cycle around until either the user clicks the forward
navigation key or a short timeout occurs.

Another way to handle user input is by using predictive text technologies, such as T9, also known as
ambiguous word input. In T9 input mode, to get a word “Hello,” users can directly punch in the corre-
sponding numbers one at a time (4, 3, 5, 5, 6), whereas the conventional multi-tap input would require a
user to press the 4 key twice, the 3 key twice, the 5 key three times, and then another 5 key three times,
followed by the 6 key three times. The T9 input, however, does not guarantee that the key combinations

96

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 96

result in the desired word. If this is the case, users will have to select the word from a list. Nonetheless, it
can save users a lot of time sending text messages. It should be noted, however, that the T9 input
method is not supported on many models of Smartphone devices on today’s market, nor does it work
on Smartphone 2003 and Windows Mobile 5.0 emulators.

The default input behavior for a Smartphone device application uses mixed alphabetic characters and
numeric characters. This is not desirable for some applications, however. For example, for a TextBox that
expects users to input a zip code, it is more efficient to take the user input directly as a numeric number.
For a TextBox that expects users to input names, it is probably better to take input as an alphabetic
string.

Fortunately, the Windows CE .NET provides a number of APIs that enable you to call into the native code
to change the way input is interpreted at runtime. Windows Mobile 5.0 also introduces a set of managed
code to enable you to change the input method on-the-fly. This chapter describes how to change the input
method using managed code. Chapter 10 describes how to use the native Windows CE APIs in your
application.

The Microsoft.WindowsCE.Forms namespace provides a number of managed classes for program-
ming device applications using the .NET Compact Framework. The InputMode enumeration supports
the following input modes:

❑ AlphaABC— The conventional multi-tap input mode

❑ AlphaCurrent— A mix of AlphaABC and AlphaT9, which can be switched by pressing the star
(*) key

❑ AlphaT9— The T9 predictive input mode

❑ Default— The user’s preferred input mode, which is usually the user’s last input mode selection

❑ Numeric— The mode that accepts numeric characters only

The InputModeEditor class in the Microsoft.WindowsCE.Forms namespace has an important static
method, SetInputMode(), which can set the input mode for a TextBox control. For example, the follow-
ing code sets the input mode of a textBox1 to T9:

InputModeEditor.SetInputMode (textBox1, InputMode.AlphaT9);

In the next example, you will learn how to preset an input mode for a TextBox control and how to
change the input mode during runtime.

Start a new Windows Mobile device application for Smartphone, and name the project myInputMode.
From the Solution Explorer, right-click Form1.cs and rename the file to myInputMode.cs. Then, from
the Designer Window, change the name of Form1 to FmInputMode and set the Text of the form to
Input Form.

Add a Label named lbPhoneNo, a TextBox named txtPhoneNo, another Label named lbComments, and
another TextBox named txtComments to FmInputMode. The Text of lbPhoneNo is Phone Number, and
the Text of lbComments is Comments. Next, add a menu item mnuQuit to the top-left menu, and add
another menu item mnuInputMode to the top-right menu. Add three menu items —mnuNumeric,
mnuText, and mnuT9— to mnuInputMode. Figure 4-26 shows the UI of this application.

97

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 97

Figure 4-26

Because txtPhoneNo expects users to input numeric characters, it makes sense to change the input
mode to InputMode.Numeric when the application starts. Note, however, that the Microsoft
.WindowsCE.Forms namespace is not part of the .NET Compact Framework, so you must add a refer-
ence to the namespace in your project. Click Project➪Add Reference, and then from the .NET tab choose
Microsoft.WindowsCE.Forms and click OK (see Figure 4-27). Add the following line in your code in
order to use the InputMode class:

using Microsoft.WindowsCE.Forms;

You can preset the input mode of txtPhoneNo in the constructor of FmInputMode() as follows:

public FmInputMode()
{

InitializeComponent();
//Preset the input mode of txtPhoneNo to Numeric
InputModeEditor.SetInputMode(txtPhoneNo, InputMode.Numeric);

}

For txtComments, users may want to pick their most convenient input method to type in the message,
and they may need to change the input mode from time to time by clicking one of the three input modes
from the right menu.

98

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 98

Figure 4-27

If you define the click event handler of mnuT9 to change the current TextBox control to T9 input mode,
you need to first determine which control currently has the cursor focus. The following code implements
a getFocusedCtrl() method that will loop through all the controls in a control collection and return
the one that has focus (or return null if no control has focus):

// Find the focused control in current form
private Control getFocusedCtrl(Form form)
{

foreach (Control c in form.Controls)
{

if (c.Focused) return c;
}
//Return null if no control is focused
return null;

}

After implementing the getFocused() method, you can now call this method in the click event han-
dlers for mnuNumeric, mnuText, and mnuT9. For example, from the Form Designer, you can double-click
mnuText to get the click event handler registered. The following code shows that the input mode of the
current focused control will be set to InputMode.Text:

private void mnuText_Click(object sender, EventArgs e)
{

//Set the input mode of txtComments to T9
Control curCtrl = getFocusedCtrl(this);
if (curCtrl == null) curCtrl = txtComments;

InputModeEditor.SetInputMode(curCtrl, InputMode.AlphaABC);

}

99

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 99

If a focused control cannot be found, then the sample application will change the input mode for
txtComments. Apply the same approach to the click event of mnuNumeric and mnuT9. In addition, add a
click event hander for mnuQuit to terminate the application by calling Application.Exit().

Following is the complete code of myInputMode.cs:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

using Microsoft.WindowsCE.Forms;

namespace myInputMode
{

public partial class FmInputMode : Form
{

public FmInputMode()
{

InitializeComponent();
//Preset the input mode of txtPhoneNo to Numeric
InputModeEditor.SetInputMode(txtPhoneNo, InputMode.Numeric);

}

// Find the focused control in current form
private Control getFocusedCtrl(Form form)
{

foreach (Control c in form.Controls)
{

if (c.Focused) return c;
}
//Return null if no control is focused
return null;

}

private void mnuQuit_Click(object sender, EventArgs e)
{

Application.Exit();
}

private void mnuT9_Click(object sender, EventArgs e)
{

//Set the input mode of txtComments to T9
Control curCtrl = getFocusedCtrl(this);
if (curCtrl == null) curCtrl = txtComments;

InputModeEditor.SetInputMode(curCtrl, InputMode.AlphaT9);
}

private void mnuText_Click(object sender, EventArgs e)
{

100

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 100

//Set the input mode of txtComments to T9
Control curCtrl = getFocusedCtrl(this);
if (curCtrl == null) curCtrl = txtComments;

InputModeEditor.SetInputMode(curCtrl, InputMode.AlphaABC);

}

private void mnuNumeric_Click(object sender, EventArgs e)
{

//Set the input mode of txtComments to T9
Control curCtrl = getFocusedCtrl(this);
if (curCtrl == null) curCtrl = txtComments;

InputModeEditor.SetInputMode(curCtrl, InputMode.Numeric
);

}

}
}

Soft Key Functionality
Typically, Smartphone applications use two soft keys to pop up menu items, but you may want to pro-
vide your own implementations to respond to those two keys. This is particularly true for gaming appli-
cations. Note that the customized soft key function works only when there is no MainMenu control in
the form.

For example, you can start a new Smartphone device application and delete the auto-generated
mainMenu1 from Form1. Add the following line to the constructor of Form1 to register a KeyDown event:

this.KeyDown += new System.Windows.Forms.KeyEventHandler(this.Form1_KeyDown);

The stub of the event handler is as follows:

private void Form1_KeyDown(object sender, KeyEventArgs e)
{

}

When a key is pressed, the information of the key is passed to the event handler through
KeyEventArgs. For example, if the KeyCode equals System.Windows.Forms.Keys.F1, it means the
left soft key is pressed. Similarly, when the right soft key is pressed, the KeyCode equals
System.Windows.Forms.Keys.F2.

The following code will display a message box that indicates which soft key is pressed:

private void Form1_KeyDown(object sender, KeyEventArgs e)
{

101

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 101

if ((e.KeyCode == System.Windows.Forms.Keys.F1))
{

// Soft Key 1
MessageBox.Show(“The left soft key is hit”);

}
if ((e.KeyCode == System.Windows.Forms.Keys.F2))
{

// Soft Key 2
MessageBox.Show(“The right soft key is hit”);

}

}

To find out more about the Keys enumeration in the .NET Compact Framework, visit the MSDN website
at http://msdn2.microsoft.com/en-us/library/system.windows.forms.keys.aspx.

Additional UI Considerations
Now that you have learned the fundamentals of UI design and key input, this section introduces some
additional factors you should consider when developing Smartphone applications.

Auto-Save
Microsoft Windows Smartphones normally don’t follow the desktop computer model of the File➪Save
or Save As commands. Instead, the devices normally work in a so-called auto-save mode in which data is
saved as soon as the user enters it.

If a user mistakenly changes any data, an Edit➪Undo command is available on a per-control basis. For
PIM or other database items, an Undo command is supported to the extent that the view can be reverted
to the way it was when it was last opened. In the case of file-based applications, until the user closes the
file, the Undo stack remains. This enables users to select the Save As command at any time to keep their
original documents intact and to keep any changes made since the files were last opened.

Sometimes auto-save is not desirable. Consider an application that enables users to change the operating
system settings or configuration of the network or system. In the middle of operations, users may want
to cancel changes and roll back to previous settings. You should provide a Cancel menu to enable users
to call off any changes.

DPI and QVGA Issues
Traditionally, Smartphone devices have a resolution of 176 × 220 pixels and a DPI (dots per inch) value
of 96. With the advances of display technology, QVGA (Quarter VGA) mode is now available in newer
Smartphone devices whose screen can hold 240 × 320 pixels. Some Smartphone devices can now even
support VGA mode, which has a resolution of 640 × 480 pixels. This change will surely bring sharper
text on the screen and present more detailed images. However, it requires you to consider whether your
application is targeting only conventional Smartphone device platforms. For Windows Mobile 5.0
Smartphones, an additional AutoScaleMode property is available for the Windows Forms class. You can
set this property to DPI mode so that applications designed for regular Smartphone devices can still be
displayed nicely on a higher-resolution device.

102

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 102

Performance
Developers have tested a number of scenarios to determine how to improve the performance of loading
a form. Their findings suggest reducing the number of method calls and creating controls using the top-
down technique.

For example, when setting the Location and the Size of a TextBox control, you can certainly use code
as follows:

this.textBox1.Location = new Point(10, 20);
this.textBox1.Size = new Size(100, 22);

However, the preceding will not be as efficient as using one method call:

this.textBox1.Bounds = new Rectangle(10, 20, 100, 22);

Initializing the controls using the top-down technique means creating the parent control first and then
the child control. In addition, instead of adding the child controls to the parent control, set the Parent
property of a child control to its parent. For instance, the following code is generated automatically by
Form Designer when you add a Panel to the form and a Textbox to the Panel:

// Before optimization
Panel panel1 = new Panel();
TextBox textBox1 = new TextBox();
textBox1.Text = “My Text”;
panel1.Controls.Add(this.textBox1);
// Add the Panel to the Form’s control collection
this.Controls.Add(panel1);

Optimizing this code snippet using the top-down technique results in the following snippet:

// After optimization
// Create a new panel and TextBox control
Panel panel1 = new Panel();
TextBox textBox1 = new TextBox();
// Parent the Panel to the current Form
this.panel1.Parent = this;
// Parent the TextBox to the Panel
this.textBox1.Parent=this.panel1;
// Set the Text property of the TextBox control
textBox1.Text = “My Text”;

Summary
This chapter introduced various controls and their behaviors, followed by guidelines for UI design. Also
presented were issues related to input. As you can see from reading this chapter, the controls available in
the Smartphone .NET platform are a trimmed-down version of the .NET Compact Framework. It is very
important to understand how those constraints change the way you program on thin-client mobile
devices.

103

User Interface and Input

09_762935 ch04.qxp 11/20/06 7:54 AM Page 103

You should always design a simple UI that follows the Smartphone conventions. It is highly recom-
mended that you go through the native Smartphone applications carefully to familiarize yourself with
its design philosophies.

In the next chapter, you will learn how to access local data and get information about local files and
directories.

104

Chapter 4

09_762935 ch04.qxp 11/20/06 7:54 AM Page 104

Data Storage and File I/O

Unlike desktop PCs, for which battery life is not an issue, Smartphone devices prefer hardware
and software designs that consume less power. The constraints that led to the data storage archi-
tecture of the Smartphone devices are fundamentally different from that of PCs. This chapter
examines how data is stored in a Windows Mobile Smartphone device. You will also learn how the
unique Windows Mobile filesystem can affect you when writing a program that accesses local
data.

A good understanding of the I/O classes defined in the System.IO namespace is extremely
important for a Smartphone programmer because knowing how to access local data is the founda-
tion for accessing data from a database, over a network, and through web services.

This chapter includes the following:

❑ An overview of Smartphone data storage

❑ System.IO classes

❑ A sample file and directory browser application

❑ A sample memo application

Accessing external files — specifically, retrieving data from an SQL Server database — is dis-
cussed in Chapter 6; and accessing an XML file, whether internal or external, is presented in
Chapter 9.

Overview of Smartphone Data Storage
Data storage is an area where battery-powered mobile devices differ significantly from their desk-
top peers. It is not suitable to save data on power-consuming, rotating media, such as hard drives.
As a result, mobile devices rely primarily on ROM, RAM, and removable Flash memory to store
data. The size of the data storage has to be small, and the access speed is expected to be fast.

10_762935 ch05.qxp 11/20/06 7:55 AM Page 105

Prior to Windows Mobile 5.0, a typical Pocket PC device put the operating system, protected file storage,
some device drivers, and application updates on ROM, and split RAM in two portions: program memory
and the object store. Program memory provides space for applications to load and run, which is pretty
much the same way that RAM is used in desktop operating systems. The object store includes a filesys-
tem, the system registry, and property databases. For example, a user’s personal information, data
(including e-mail, calendars, and contacts), and user-installed software all reside in a portion of RAM.
Figure 5-1 shows how data is allocated in a RAM-based filesystem.

Figure 5-1

The advantage of a RAM-based filesystem is obvious: fast access. This is particularly true when most of
the operating is handled over a network. RAM, however, is volatile in nature. Retaining the data saved
on RAM requires a constant power supply, which is why a backup battery is still powering the RAM
after you turn off a PDA. Normally, the more RAM you have installed on a mobile device, the more
power it will consume to retain the information stored in RAM. If both the main battery and the backup
battery are drained, you are out of luck: All the applications installed on RAM and all the data saved on
RAM are gone. To avoid such a devastating situation, the industry recommends a “72-hour rule,” which
mandates that a Pocket PC device must be able to preserve data for at least 72 hours after the critical bat-
tery level is reached. The 72-hour rule enables users to recharge the device without losing data.

Smartphone devices, conversely, take a different approach and are designed to work with persistent
storage-based filesystems. The concept of the object store is non-existent in the context of a Smartphone
device. By adopting a persistent storage architecture, Smartphone devices, therefore, require less RAM,
and less RAM entails a lower cost and less power consumption. Figure 5-2 shows how data is allocated
in a persistent storage-based filesystem.

Figure 5-2

RAM

Program memory

ROM

Operating system

User info
User-installed
 applications
User data
System registry

ROM

Operating system
Protected file storage

Drivers

RAM

Program memory

Object store
– User info
– User-installed
 applications
– System registry
– Property store

106

Chapter 5

10_762935 ch05.qxp 11/20/06 7:55 AM Page 106

There is, of course, no free lunch. Using persistent storage filesystems results in slower access speed; it
takes more than ten times longer to access Flash ROM than it does to access RAM, and the storage per-
formance heavily affects the entire system’s performance. Windows Mobile 5.0 optimized storage perfor-
mance by buffering a block of data before writing it back to persistent storage. Software developers
should also try to minimize any negative impacts your application may have on the entire system. The
following are the best-practice guidelines:

❑ Minimize the size of your application.

❑ Minimize the amount of persisted data your application requires.

❑ Minimize the frequency of altering data.

❑ Minimize any writing to the registry.

❑ Minimize polling and always try to use an event-driven design, if possible.

Note that beginning with Windows Mobile 5.0, Pocket PCs a persistent storage filesystem is preferred
even though a RAM-based filesystem is still supported. Another thing worth noting is that Windows
Mobile adopts a unified directory view, which eliminates the drive letter in the traditional Windows direc-
tory structure. All the files, regardless of whether they are saved in RAM, ROM, or a storage card, have a
centralized logical view, with the root of the directory beginning with the backslash (\).

Although mobile devices store data differently from desktop PCs, accessing Smartphone data program-
matically still has a lot in common with accessing data in a desktop environment. The following section
discusses which classes are supported and how to access local files in the Windows Mobile 5.0
Smartphone platform.

The System.IO Namespace
The System.IO namespace contains classes that are essential for accessing local files. Logically, the
classes can be grouped into the following three categories:

❑ File-manipulation

❑ Byte-level I/O

❑ Higher-level I/O

File-Manipulation Classes
A number of classes have been defined and implemented in the System.IO namespace to interact with
the filesystem. These classes enable you to manipulate files and directories, such as creating, deleting,
copying, and moving files.

In the .NET Compact Framework, two classes are available for accessing information pertaining to direc-
tories: Directory and DirectoryInfo. Likewise, the File and FileInfo classes can be used to access
file-based information.

The Directory and File classes are static classes, which means you do not need to create an instance to
use them. For example, if you need to create a new file called myfile1, you can simply call the
Create() method of the File class, as follows:

107

Data Storage and File I/O

10_762935 ch05.qxp 11/20/06 7:55 AM Page 107

File.Create(“myfile1”)

Static classes such as Directory and File are particularly useful if you want to perform some quick
directory-related operations.

The info classes FileInfo and DirectoryInfo provide similar functions to the File and Directory
classes; however, they are not static classes. To create a new file named myfile1 using the FileInfo
class, you must first create an instance of FileInfo and then call the Create() method:

FileInfo myFileInfo = new FileInfo (“myfile1”);
myfileInfo.Create();

Another difference between the nonstatic and the static file/directory classes is the level and format of
the information they return. For instance, the following examples demonstrate how to search for all the
.txt files in the My Documents folder using the Directory and DirectoryInfo classes, respectively:

//Search *.txt file with Directory class
string[] fileList = Directory.GetFiles(@”\My Documents”, “*.txt”);

//Search *.txt file with DirectoryInfo class
DirectoryInfo myDirInfo = new DirectoryInfo(@”\My Documents”);
FileInfo[] fInfoList = myDirInfo.GetFiles(“*.txt”);

As you can see, the Directory class needs to take both the path name and search pattern, whereas the
DirectoryInfo class requires only the search pattern because the path name is already known to the
myDirInfo object when you create it. When the Directory class finishes searching, it returns an array
of strings, whereas the DirectoryInfo class returns an array of FileInfo objects.

The @ symbol indicates that the strings will be escaped. This is handy when you are dealing with path
names. Without the @ symbol, you have to use a string such as “\\My documents\\subfolder”
rather than @”\My Documents\subfolder”.

Byte-Level I/O Classes
The Stream class is the base class of System.IO objects and is the foundation of all file access I/O
classes. It provides a basic data transfer capability: moving bytes from one data unit to another, indepen-
dent of data storage media. It includes methods such as Read() and Write() to perform I/O syn-
chronously, and it includes asynchronous I/O methods, such as BeginRead() and BeginWrite(). The
Stream class is designed as an abstract class (or interface) in the .NET Compact Framework, which
means the base class only defines the functionalities, without really doing the actual work. You can per-
form the actual I/O tasks by using the derived FileStream class and MemoryStream class. The
FileStream class supports stream access to physical files, whereas the derived MemoryStream class
allows stream operations on physical memory.

The following is a typical procedure to access a physical file with the FileStream class:

1. Create a FileStream object and specify the filename and FileMode. The FileMode enumera-
tion is a parameter to indicate whether to open a file or to create a file. The four common
FileMode values are as follows:

108

Chapter 5

10_762935 ch05.qxp 11/20/06 7:55 AM Page 108

❑ FileMode.Open— Opens an existing file. If the file does not exist, a System.IO
.FileNotFoundException is thrown.

❑ FileMode.Create— Creates a new file. If the file already exists, it overwrites the
existing file.

❑ FileMode.OpenOrCreate — Opens a file if the file exists; otherwise, a new file will
be created.

❑ FileMode.Append— Opens or creates a file in the same way as FileMode
.OpenOrCreate. Then it seeks the end of the file to read or to write.

2. Optionally, specify file access mode and file sharing mode. The FileAccess enumeration param-
eter has three values: Read, Write, and ReadWrite. Specifying this optional parameter can make
your program safer. For instance, if you set the FileAccess enumeration to Read, an opened file
stream can avoid accidental writing operations. Note that not every combination of FileMode
parameter and FileAccess parameter is valid. For example, it is not applicable to create a new
file with FileMode.Create and set the FileAccess to Read. An ArgumentException will be
thrown because creating a file requires either FileAccess.Write or FileAccess.ReadWrite .
The FileShare enumeration denotes how others can open the file. The typical enumeration val-
ues are FileShare.Read, FileShare.Write, FileShare.ReadWrite, and FileShare.None.

3. Read or write file with the Read(), ReadByte(), Write() or WriteByte() methods.

4. Close the file stream with the Close() method.

The following code snippet opens an existing file myfile1 in the root directory and reads the first 100
bytes into the integer array buff[]:

using System.IO;
using System.Windows.Forms;
...

try
{

//Create a filestream fsRead with Open mode and Read access
FileStream fsRead = new FileStream(@”\myfile1”, FileMode.Open,

FileAccess.Read);

//Create the integer array buff[]
int[] buff = new int[100];

//Read the first 100 bytes from the fsRead to buff[]
for (int i = 0; i < 100; i++)

buff[i] = fsRead.ReadByte();

//close the filestream fsRead
fsRead.Close();

}

//Error handling:
catch (IOException e)
{

//Show the error information.
MessageBox.Show(“I/O Error: “ + e.ToString());

}

109

Data Storage and File I/O

10_762935 ch05.qxp 11/20/06 7:55 AM Page 109

When you are dealing with file I/O, it is always recommended to put the file I/O access call inside the
try...catch block so that you can catch the file I/O-related exceptions and write your own error-
handling functions. For more information about error handling, refer to Chapter 11.

Writing data using the FileStream class is very similar to reading data from the file stream. The follow-
ing code illustrates how to write ASCII-coded data into a FileStream object fsWrite. The example
writes the lowercase letters a through z to file myfile2 with the integer value of each letter’s ASCII
code:

using System.IO;
using System.Windows.Forms;
...

try
{

//Create a filestream fsWrite with Write access, and Share Read mode
FileStream fsWrite = new FileStream (@”\myfile2”,

FileMode.Create, FileAccess.Write, FileShare.Read);

// Write to the stream with ascii value of each letter
for (int i = 0; i < 26; i++)

fsWrite.WriteByte((byte) (‘a’+i));

//Close the filestream fsWrite
fsWrite.Close();

}
//Error handling:
catch (IOException e)
{

//Show the error information
MessageBox.Show(“I/O Error: “ + e.ToString());

}

Byte-level I/O classes provide access to data stored in various storage media in a byte-oriented fashion.
If you are interested in reading or writing data in a form other than the native byte format (such as num-
ber, strings, or text with specific coding), you should familiarize yourself with the higher-level I/O
classes.

Higher-Level I/O Classes
The higher-level I/O components include a variety of reader/writer objects to perform data-specific I/O
operations. This is achieved by wrapping the higher-level I/O classes around the basic byte-level classes.

Two major reader/writer classes can be found in the System.IO namespace: BinaryReader and
BinaryWriter and TextReader and TextWriter.

As their names imply, the BinaryReader and BinaryWriter classes read or write data in binary for-
mat, respectively. To use them correctly, you need to call the data type–specific methods for either read-
ing or writing. For example, if you want to read a string from a stream using a BinaryReader object,
use the ReadString() method instead of the Read() method. The BinaryReader and BinaryWriter

110

Chapter 5

10_762935 ch05.qxp 11/20/06 7:55 AM Page 110

classes also enable you to specify how the data is encoded. This can be done by specifying the optional
Encoding enumeration type in the System.Text namespace. The following example shows how to
read the first string from file myfile1 using the default system encoding:

using System.IO;
using System.Windows.Forms;
using System.Text;
...

try
{

//Create a filestream fsRead with Open mode and Read access
FileStream fsRead = new FileStream(@”\myfile1”, FileMode.Open,

FileAccess.Read);

//Create a new BinaryReader bReader from fsRead
//using the system default decoding
BinaryReader bReader = new BinaryReader(fsRead, Encoding.Default);

//Read the first string in the file to string str
string str = bReader.ReadString();

//Close the filestream fsRead
fsRead.Close();

}

//Error handling:
catch (IOException e)
{

//Show the error information
MessageBox.Show(“I/O Error: “ + e.ToString());

}

You can see from this example that the BinaryReader class and the BinaryWriter class rely on the
lower-level I/O classes to actually open or create the file. Once the file is opened or created, these two
classes provide a number ways for programmers to read and write data using the desired data types,
such as string, double, short, long, etc.

The System.IO namespace also provides the TextReader and TextWriter classes, which enable you
to read or write text characters from/to a stream, respectively. In the .NET Compact Framework, both
TextReader and TextWriter are abstract classes. For that reason, you should use the derived
StreamReader and StreamWriter classes and the derived StringReader and StringWriter classes
to access the data in Stream objects. The StreamReader and StreamWriter classes can read and write
a number of data types, respectively, and support a variety of encoding methods. StringReader and
StringWriter objects, conversely, support only read and write in string format, which is defined in the
StringBuilder class from the System.Text namespace.

You can create a StreamReader or StreamWriter object either from an opened file stream or directly from
the name of the file. The following code snippet reads the first line from file \myfile1 to a string str:

111

Data Storage and File I/O

10_762935 ch05.qxp 11/20/06 7:55 AM Page 111

streamReader sReader = new StreamReader (@”\myfile1”);
string str = sReader.ReadLine();

A Summary of I/O Classes
Table 5-1 summarizes the commonly used the I/O class in the System.IO namespace of the .NET
Compact Framework.

Table 5-1 Common Classes in the System.IO Namespace

Class Description

BinaryReader Reads data from an I/O stream as binary values in a specific
coding.

BinaryWriter Writes data to an I/O stream as binary values in a
specific coding.

Directory Exposes static methods for directory-related operations.
Cannot be inherited.

DirectoryInfo Exposes instance methods for directory-related
operations. Cannot be inherited.

File Exposes static methods for file-related operations. Cannot be
inherited.

FileInfo Exposes instance methods for file-related operations.
Cannot be inherited.

FileStream Provides a stream around a file. Supports both synchronous
and asynchronous read and write operations.

FileStreamInfo The base abstract class of FileInfo and Directory info
classes.

IOException The exceptions that are raised when I/O errors occur.

MemoryStream Creates a stream around a block of memory.

Path Exposes static methods to retrieve the path information of
files or directories.

Stream Provides a generic view of a sequence of bytes. This abstract
class is the base class of the FileStream class and the
MemoryStream class.

StreamReader Implements a TextReader class for reading characters from
a stream in a specific coding.

StreamWriter Implements a TextWriter class for writing characters to a
stream in a specific coding.

StringReader Implements a TextReader class to read from a string.

112

Chapter 5

10_762935 ch05.qxp 11/20/06 7:55 AM Page 112

Class Description

StringWriter Implements a TextWriter class to write to a string.

TextReader Represents a generic reader that reads a sequence of charac-
ters. It is the base class of the StreamReader class and the
StringReader class.

TextWriter Represents a generic writer that writes a sequence of charac-
ters. It is the base class of the StreamWriter class and the
StringWriter class.

The System.IO namespace in the .NET Compact Framework supports a subset of the classes and struc-
tures in the full .NET Framework. The following classes and structures are currently not supported in
the .NET Compact Framework. In addition, file attributes, such as Hidden, Archive, and Read-Only,
are not supported in the .NET Compact Framework. Therefore, methods such as GetAttributes are
also not supported.

❑ BufferedStream class

❑ ErrorEventArgs class

❑ FileLoadExceptions class

❑ FileSystemEventArgs class

❑ FileSystemWatcher class

❑ InternalBufferOverflowException class

❑ IODescriptionAttribute class

❑ RenamedEventArgs class

❑ WaitforChangedResult structure

Creating a File Directory Browser
Unlike the Windows Mobile 5.0 Pocket PC SDK, the Smartphone SDK does not support the File Open or
Directory Open dialog functions, nor is a file explorer shipped to any mobile devices running Microsoft
Smartphone. This is probably because Smartphone devices have limited computing power and a fairly
small amount of physical memory.

This section describes how to write a file and directory browser application that works more like a file
explorer in a desktop PC.

Start a new Windows Mobile Smartphone device application and name the project dirBrowse. The UI
design is relatively straightforward. First, rename the form to BrowseFm and change the caption of the
form to View Directory. Then drag and drop a TreeView control to the form and make it occupy the
entire client area. Then add a menu item Quit to the left soft key, as illustrated in Figure 5-3.

113

Data Storage and File I/O

10_762935 ch05.qxp 11/20/06 7:55 AM Page 113

Figure 5-3

To make it more user-friendly, you can add an ImageList control that contains icons to represent differ-
ent items, such as opened folders, closed folders, and so on. An ImageList control can contain images in
different formats, including bitmaps, cursors, icons, JPEGs, and GIFs. The ImageList control provides a
single repository for other windows controls — specifically, the ListView and TreeView controls on
Windows Mobile Smartphone.

On the Form design window, drag and drop an ImageList control from the Toolbox to the form and use
the default name imageList1. From the Properties Windows, select imageList1 and click the Images
button, as shown in Figure 5-4. The ImageCollection Collection Editor window appears. Click the Add
button and add the icon images you would like to use in your project. In the example application, six
images are added to represent the mobile device, the storage card, a closed folder, an open folder, an exe-
cutable file, and a text file. Figure 5-5 illustrates the screen after six icon images are added. Click the OK
button and close ImageCollection Collection Editor.

114

Chapter 5

10_762935 ch05.qxp 11/20/06 7:55 AM Page 114

Figure 5-4

Figure 5-5

115

Data Storage and File I/O

10_762935 ch05.qxp 11/20/06 7:55 AM Page 115

To traverse all the directories and files in a Smartphone system, it is better to write a recursive method to
list all the directories and files for a given directory. To begin, the following is a method that lists all the
files for a given directory:

private void GetAllFiles(DirectoryInfo curDir, TreeNode curNodes)
{

//Get all the files in current directory
try
{

foreach (FileInfo fi in curDir.GetFiles())
{

TreeNode tnFile = new TreeNode(fi.Name);

//Set icons for executable files
if (fi.Name.EndsWith(“exe”) || fi.Name.EndsWith(“dll”))
{

tnFile.ImageIndex = 4;
tnFile.SelectedImageIndex = 4;

}
//Set icons for non-executable files
else
{

tnFile.ImageIndex = 5;
tnFile.SelectedImageIndex = 5;

}
//Add the file to current treenode
curNodes.Nodes.Add(tnFile);

}
}
catch
{

//Do nothing if there are no files
return;

}

}

The GetAllFiles() method in the preceding example will find the files in a given directory curDir
and add all the files to the tree node curNodes. This can be achieved by simply calling the GetFiles()
method of the DirectoryInfo class and then looping through the returned directoryInfo array, cre-
ating new tree nodes with the names of the files, and finally adding the nodes to the given tree node.

It’s easy to figure out how to list files in a given directory, but how do you list all the directories and sub-
directories for a given path? A typical solution is to write a recursive function, which is a method that
calls itself. For example, if we name the traverse function GetAllDirs(), it will call the GetAllDirs()
method in the function body and pass the current subdirectory as the new parameter, as shown in the
following code:

private void GetAllDirs(string DirName, TreeNode curNodes)
{

DirectoryInfo curDir = new DirectoryInfo(DirName);

try
{

foreach (DirectoryInfo di in curDir.GetDirectories())

116

Chapter 5

10_762935 ch05.qxp 11/20/06 7:55 AM Page 116

{
TreeNode tnDir = new TreeNode(di.Name);

...

//Add current directory to
curNodes.Nodes.Add(tnDir);

//Recursively retrieving directories
GetAllDirs(di.FullName, tnDir);

}
//Get files in current directories
GetAllFiles(curDir, curNodes);

}
catch
{

//Do nothing if there are no more directories
return;

}
}

As shown in the preceding example, for a given directory DirName, a new instance of DirectoryInfo
CurDir is first created. Then all the subdirectories of CurDir can be obtained by calling the
GetDirectories() method. Each subdirectory is added to the TreeView at the appropriate place and
then a new search for the directories of each individual subdirectory is started by recursively calling the
GetAllDirs() method.

The Windows Smartphone adopts the unified filesystem and eliminates the drive letter. This feature
enables you to easily list all the directories and files in your Smartphone system, whether in RAM, ROM,
or persistent storage, by passing the root of the filesystem \ to the GetAllDirs() method. However,
how do you know whether a document is saved on a storage card, rather than the built-in ROM?

One way to determine whether a directory is on a storage card is to examine the Directory attribute bit
and the Temporary attribute bit of a given file. For example, you can first define a storage card attribute
attrStorageCard as follows:

static FileAttributes attrStorageCard =
FileAttributes.Directory | FileAttributes.Temporary;

For any given directory, you can get its attributes by calling the Attributes function of the
DirectoryInfo class. If both attribute bits are set, it will be a directory on a storage card; otherwise, it is
not. The following code uses the bitwise and operation to determine whether a directory is stored on a
storage card:

If ((di.Attributes & attrStorageCard) == attrSotrageCard)
MessageBox.Show(“This folder is saved on a storage card”);

The following is the complete code of the file directory browser example:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

117

Data Storage and File I/O

10_762935 ch05.qxp 11/20/06 7:55 AM Page 117

using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.IO;

namespace dirBrowse
{

public partial class BrowseFm : Form
{

static FileAttributes attrStorageCard =
FileAttributes.Directory | FileAttributes.Temporary;

public BrowseFm()
{

InitializeComponent();
}

private void BrowseFm_Load(object sender, EventArgs e)
{

//Create the root node of the TreeView
treeView1.ImageList = this.imageList1;
TreeNode rootNode = new TreeNode();

rootNode.ImageIndex = 0;
rootNode.SelectedImageIndex = 0;
treeView1.Nodes.Add(rootNode);

//Retrieve all the directories and files
GetAllDirs(@”\”, treeView1.Nodes[0]);
treeView1.Nodes[0].Expand(); //Expand first layer

}

private void GetAllFiles(DirectoryInfo curDir, TreeNode curNodes)
{

//Get all the files in current directory
try
{

foreach (FileInfo fi in curDir.GetFiles())
{

TreeNode tnFile = new TreeNode(fi.Name);

//Set icons for executable files
if (fi.Name.EndsWith(“exe”) || fi.Name.EndsWith(“dll”))
{

tnFile.ImageIndex = 4;
tnFile.SelectedImageIndex = 4;

}
//Set icons for non-executable files
else
{

tnFile.ImageIndex = 5;
tnFile.SelectedImageIndex = 5;

}
//Add the file to current treenode
curNodes.Nodes.Add(tnFile);

118

Chapter 5

10_762935 ch05.qxp 11/20/06 7:55 AM Page 118

}
}
catch
{

//Do nothing if there are no files
return;

}

}

private void GetAllDirs(string DirName, TreeNode curNodes)
{

DirectoryInfo curDir = new DirectoryInfo(DirName);

try
{

foreach (DirectoryInfo di in curDir.GetDirectories())
{

TreeNode tnDir = new TreeNode(di.Name);

//Not a storage card
if ((di.Attributes & attrStorageCard) != attrStorageCard)
{

tnDir.ImageIndex = 2;
tnDir.SelectedImageIndex = 3;

}
else //Storage Card
{

tnDir.ImageIndex = 1;
tnDir.SelectedImageIndex = 1;

}
//Add current directory to
curNodes.Nodes.Add(tnDir);

//Recursively retrieving directories
//String fullPath = di.Parent + @”\” + di.Name;
//GetAllDirs(fullPath, tnDir);
GetAllDirs(di.FullName, tnDir);

}
//Get files in current directories
GetAllFiles(curDir, curNodes);

}
catch
{

//Do nothing if there are no more directories
return;

}
}

}
//Close the application
private void menuItem1_Click(object sender, EventArgs e)
{

this.Close();
}

}

119

Data Storage and File I/O

10_762935 ch05.qxp 11/20/06 7:55 AM Page 119

In the form initialized, a new TreeNode object, rootNode, is created. The root node will use the first image
in imageList1 for its icon, which represents the root a Smartphone. The rootNode object is then added to
the control treeView1. Then the root of the filesystem and the head node of the treeView1 control are
passed to the GetAllDirs() methods, which recursively list all the directories and files and add them to
the corresponding tree nodes. Figure 5-6 demonstrates the runtime result of the sample program.

Figure 5-6

Implementing a Memo Application
The directory browsing example in the previous section illustrated how to use the DirectoryInfo and
FileInfo classes to list all the directories and files, respectively. In this section, you learn how to read and
write data from and to local files, as well as how to load and unload a control dynamically at runtime.

For this example, consider implementing a memo application that enables you to save memos into local
files. The memo application should also give users the option to create, edit, and delete a memo. You can
save all the memos to a single file with certain delimiters to separate each memo, or you can simply use
one single text file for one memo.

For the user interface, there is not much to design because you have no clue how many memos are cur-
rently saved at design time. You should, however, provide menu items to enable users to perform opera-
tions such as creating, deleting, saving, and quitting memos. At runtime, you will need to read files to
controls such as Textbox and display the information to users.

120

Chapter 5

10_762935 ch05.qxp 11/20/06 7:55 AM Page 120

From Visual Studio 2005, create a new Windows Mobile Smartphone Device application. Name the proj-
ect Memo and rename the name of the form from the default form1 to memoForm. Add a menuItem object
to the left soft key and change the text to Save and Quit. Add another menuItem object Options to the
right left key, and then add three submenu items to the Options menu item. Figure 5-7 shows the UI at
design time.

Figure 5-7

You may notice that there is no Edit menu item in the design. There is a reason for that. If you are going
to use a TextBox control with the multiline property enabled to present the memo information, a
built-in edit window enables you to view and edit the text of a memo in a full window.

After finishing the design of the user interface, you need to determine how to organize the data, how to
access files dynamically, and how to respond to operations that a user will perform.

To make things easier, you can save the memo files to a fixed directory, such as \My Documents\Memos, and
name the files numerically, such as 1.txt, 2.txt, and so on. How do you dynamically maintain the memo
files? A simple solution could be to maintain an array of TextBox objects, with each TextBox object corre-
sponding to a memo file. This way, it is also very easy to respond to user operations. When a memo is cre-
ated, changed, or deleted, you do not have to save the changes right away. Instead, updated information is
saved in RAM, and you can wait until users select the Save and Quit button to write data back to the files.

To dynamically display the TextBox objects in the self-defined ArrayList object, you first go through the
ArrayList with the help of the IEumerator object. You then add each TextBox object to the Controls
list of the form. After that, you can mark the Location and Size properties of each control so that it can
be correctly positioned on the screen. The last thing, however, is to call the Show() method of the form to
bring up all the controls on the window:

121

Data Storage and File I/O

10_762935 ch05.qxp 11/20/06 7:55 AM Page 121

int i = 0;
IEnumerator tbEnum = tbList.GetEnumerator();

while (tbEnum.MoveNext())
{

this.aTxtbox = (TextBox)tbEnum.Current;

//Dynamically create a textbox and display it
//Height 1/10 client height, full width
this.Controls.Add(aTxtbox);
this.aTxtbox.Location = new System.Drawing.Point(0, 22 * i);
this.aTxtbox.Size = new System.Drawing.Size(ClientSize.Width, 22);
this.aTxtbox.Multiline = true;
i++;

}

this.aTxtbox.Focus();
//Refresh display
this.BackColor = System.Drawing.Color.White;
this.ResumeLayout(true);
this.Show();
this.Refresh();

Another thing worth noting is how to delete a memo. When users select from the Delete menu, they
expect the currently focused TextBox control to be deleted. You can achieve this by looping through the
controls in the current form to search for the TextBox control that is currently focused. Once the focused
control is found, you can remove it from both the Controls list and the ArrayList object, as follows:

//Find the focused textbox
foreach (Control c in this.Controls)
{

if (c.Focused && (c is TextBox))
{
string content = “Are you sure you want to delete memo content: \n” +

c.Text;
string title = “Delete Confirmation”;

DialogResult dr = MessageBox.Show(content, title, MessageBoxButtons.OKCancel,
MessageBoxIcon.Question, MessageBoxDefaultButton.Button2);

//To delete control c in this.forms and from tblist
if (dr == DialogResult.OK)
{

this.tbList.Remove((TextBox)c);
this.Controls.Remove((TextBox)c);
...

}
}

Figures 5-8 through 5-10 illustrate some of the resulting screenshots when we run the application. There
were three text files — namely, 1.txt, 2.txt, and 3.txt— in the \My Document\Memos directory. The
contents of each file were New Year Resolution, IP Phone, and XBOX 360, respectively, as indicated in
Figure 5-8. Moving the arrow can change which TextBox object has the focus. When the first control
has focus, pressing the Okay key provides access to the Edit window of this TextBox object, as shown in
Figure 5-9. Figure 5-10 shows the confirmation dialog that appears when a user tries to delete the XBOX
360 memo, which happened to be the focused control when the Delete menu item was selected.

122

Chapter 5

10_762935 ch05.qxp 11/20/06 7:55 AM Page 122

Figure 5-8

Figure 5-9 123

Data Storage and File I/O

10_762935 ch05.qxp 11/20/06 7:55 AM Page 123

Figure 5-10

The following is the complete code of the memo example:

// Memos will be stored at “\My Documents\Memos”
// Files are named numerically

using System;
using System.IO;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace Memo
{

public partial class memoForm : Form
{

static private string pathName = @”\My Documents\Memos”;
static private string txtExtension = “.txt”;
static private string extFiler = “*.txt”;
private System.Windows.Forms.TextBox aTxtbox;

124

Chapter 5

10_762935 ch05.qxp 11/20/06 7:55 AM Page 124

private ArrayList tbList;

public memoForm()
{

InitializeComponent();
tbList = new ArrayList();

//Create the memo directory if it does not exist
CheckDirectory();

//Read files to textbox array list
readFile2TbList();

//Read files to textboxes and add them to the ListView
DisplayMemo();

}

private void CheckDirectory()
{

//Check if the directory exists
try
{

if (Directory.Exists(pathName)) return;
Directory.CreateDirectory(pathName);

}
catch (Exception e)
{

MessageBox.Show(e.ToString());
}

}

//Read the textfile to tbList
//Return false if no files are found or there are errors
private bool readFile2TbList()
{

try
{

DirectoryInfo di = new DirectoryInfo(pathName);
FileInfo[] fis = di.GetFiles(extFiler);

if (fis.Length == 0) return false;

foreach (FileInfo fi in fis)
{

this.aTxtbox = new TextBox();
this.aTxtbox.Name = fi.Name;

//Open, read, and close the file
StreamReader sReader =

new StreamReader(
new FileStream(fi.FullName, FileMode.Open));

this.aTxtbox.Text = sReader.ReadToEnd();
sReader.Close();

//Add aTxtbox to tbList

125

Data Storage and File I/O

10_762935 ch05.qxp 11/20/06 7:55 AM Page 125

this.tbList.Add((TextBox)aTxtbox);
}
return true;

}
catch (Exception e)
{

MessageBox.Show(e.ToString());
return false;

}
}

//Display items in textbox array list in the form
private void DisplayMemo()
{

//Display no memo message when no items are in tblist
if (this.tbList.Count == 0)
{

MessageBox.Show(“There are no memos”);
//Disable “Delete” menu
this.muItemDel.Enabled = false;
return;

}

int i = 0;
IEnumerator tbEnum = tbList.GetEnumerator();

while (tbEnum.MoveNext())
{

this.aTxtbox = (TextBox)tbEnum.Current;

//Dynamically create a textbox and display it
//Height 1/10 client height, full width
this.Controls.Add(aTxtbox);
this.aTxtbox.Location = new System.Drawing.Point(0, 22 * i);
this.aTxtbox.Size = new System.Drawing.Size(ClientSize.Width, 22);
this.aTxtbox.Multiline = true;
i++;

}

this.aTxtbox.Focus();
//Refresh display
this.BackColor = System.Drawing.Color.White;
this.ResumeLayout(true);
this.Show();
this.Refresh();

}

//Save and close
private void muItemSaveEx_Click(object sender, EventArgs e)
{

try
{

//Delete all previous files first
DirectoryInfo di = new DirectoryInfo(pathName);
foreach (FileInfo fi in di.GetFiles(extFiler)) {

126

Chapter 5

10_762935 ch05.qxp 11/20/06 7:55 AM Page 126

fi.Delete();
}

int i = 0;
IEnumerator tbEnum = tbList.GetEnumerator();

while (tbEnum.MoveNext()) {
string fileName = pathName + @”\” + i.ToString() +

txtExtension;
i++;

//Open, write, and close the file
StreamWriter sWriter =

new StreamWriter(
new FileStream(fileName, FileMode.OpenOrCreate));

this.aTxtbox = (TextBox)tbEnum.Current;
sWriter.Write(aTxtbox.Text);
sWriter.Close();

}

}
catch (Exception eQuit)
{

MessageBox.Show(eQuit.ToString());
}
this.Close();

}

//Add new files
private void muItemNew_Click(object sender, EventArgs e)
{

//Create a new textbox and add it to the listview
this.aTxtbox = new System.Windows.Forms.TextBox();
int num = tbList.Count;
this.aTxtbox.Name = num.ToString()+txtExtension;

this.tbList.Add((TextBox) aTxtbox);
this.Controls.Add(aTxtbox);

this.aTxtbox.Location = new System.Drawing.Point(0,22*num);
this.aTxtbox.Size = new System.Drawing.Size(ClientSize.Width,20);
this.aTxtbox.Multiline = true;

this.aTxtbox.Focus();
this.muItemDel.Enabled = true;

}

//Exit without saving
private void muItemExt_Click(object sender, EventArgs e)
{

this.Close();
}

//Delete the textbox with the current focus

127

Data Storage and File I/O

10_762935 ch05.qxp 11/20/06 7:55 AM Page 127

private void muItemDel_Click(object sender, EventArgs e)
{

//Find the focused textbox
foreach (Control c in this.Controls)
{

if (c.Focused && (c is TextBox))
{

string content = “Are you sure you want to delete memo content:
\n” + c.Text;

string title = “Delete Confirmation”;

DialogResult dr = MessageBox.Show(content, title,
MessageBoxButtons.OKCancel,

MessageBoxIcon.Question, MessageBoxDefaultButton.Button2);

//To delete control c in this.forms and from tblist
if (dr == DialogResult.OK)
{

this.tbList.Remove((TextBox)c);
this.Controls.Remove((TextBox)c);

//Display it again
DisplayMemo();
return;

}

//Not confirmed, return
return;

}
}
//No focused textbox found
MessageBox.Show(“No memo is selected to delete\n Please try again”);
return;

}
}

}

During the initialization phase of the application, a new ArrayList object tbList is created that serves
as a container for all the memos currently stored on the device. This application assumes that all memos
are saved in the directory \My Documents\Memos\. If this directory does not exist, simply create it. A
new TextBox control will be created for each text file in the memo directory, and then this newly created
TextBox object is added to the tbList. Then the DisplayMemo() method is called to show all the
memos. The content of each memo is copied to the text property of a TextBox control.

The muItemNew_Click() method handles the event when the menu item New is selected. This can eas-
ily be done by adding a new TextBox control to the ArrayList object tbList and carefully positioning
the TextBox control on the screen. The muItemDel_Click() method removes the currently focused
TextBox object from the tbList.

When users select the Save and Quit menu item, the application first deletes all the text files in the
memo directory and the content of each TextBox control is written back sequentially as a text file. The
application simply does nothing when users select the Quit w/t Save menu item.

128

Chapter 5

10_762935 ch05.qxp 11/20/06 7:55 AM Page 128

Summary
In this chapter, you have learned the data storage structure of Window Mobile 5.0, especially the
Smartphone edition. Persistent storage increases the battery life but may reduce overall system perfor-
mance dramatically. Smartphone developers should always follow the best-practice guidelines to mini-
mize the negative impact that this kind of storage has on mobile devices.

Accessing data locally basically involves using the classes provided in the System.IO namespace.
FileInfo and DirectoryInfo are two classes you can use to perform file-related operations, such as
copying, moving, creating, and deleting. Alternatively, you can use the static File and Directory
classes to manipulate files and directories.

To read and write files in the basic byte format, use the FileStream class; otherwise, use StreamReader
and StreamWriter. The BinaryReader and BinaryWriter are often used to access data in a specific
encoding.

Dealing with file and directory operations is error prone. It is suggested that you catch exceptions with
the try...catch statement. Even though the .NET Compact Framework supports a majority of the
classes defined in the full .NET Framework, readers should be aware of unsupported classes and func-
tions. This chapter emphasizes local file access; you are going to learn how to access data from a
database in the next chapter.

129

Data Storage and File I/O

10_762935 ch05.qxp 11/20/06 7:55 AM Page 129

10_762935 ch05.qxp 11/20/06 7:55 AM Page 130

Data Access with SQL
Server Mobile

In the previous chapter you learned how to access data locally through the filesystem. This chapter
deals with accessing relational data, whether it is saved locally or remotely on a database server.
Knowing how to access relational data from a Smartphone is one of the fundamental skills that a
programmer must grasp in today’s data-driven world.

This chapter describes the architecture of SQL Server Mobile and provides step-by-step directions
for installing and configuring the development, client, and server environments. Because SQL
Server Mobile is installed locally on a smart device, it is ideal for Smartphone devices that are not
always connected to the database. Two examples at the end of this chapter demonstrate how to
programmatically access data, update data, and synchronize the data between the Microsoft SQL
Server Mobile device and the Microsoft SQL Server via web services.

A good understanding of this chapter will also help you understand XML. In Chapters 13 and 14,
you will learn how to enhance security when retrieving data from the database.

This chapter discusses the following topics:

❑ An overview of ADO.NET

❑ SQL Server Mobile architecture

❑ Installing SQL Server Mobile

❑ Creating databases and tables

❑ Creating publications

❑ Creating subscriptions

❑ A sample application with the DataGrid control

11_762935 ch06.qxp 11/20/06 7:56 AM Page 131

ADO.NET Overview
Simply put, ADO.NET is a set of managed classes in the System.Data namespace that are used to
manipulate relational data. In the architecture of ADO.NET, a layer that can talk to various database sys-
tems is termed the data provider. The .NET Framework provides a variety of data providers, each han-
dling one specific database. For instance, the .NET Framework data provider for SQL Server provides a
means to easily connect and access data in a SQL Server 7.0 database, whereas the .NET Framework data
provider for OLE DB supports accessing data in a SQL Server 6.5 or earlier database. Note that some
data providers in the full ADO.NET, such as for Oracle and MySQL, are not supported in the .NET
Compact Framework. The database systems that currently have their corresponding data providers
implemented in the .NET Compact Framework are as follows:

❑ Microsoft SQL Server (version 7.0, 2000 and later)

❑ Microsoft SQL Server Mobile edition and its predecessor, Microsoft SQL CE

❑ IBM DB2 and DB Everywhere

❑ SyBase SQL

❑ Pocket Access

The ADO.NET classes provide two distinctive ways to access a database: connected mode and discon-
nected mode. In connected mode, applications access and update data directly via an open connection to
the database. In disconnected mode, ADO.NET provides a DataSet class to cache data in memory.
Applications can then access and manipulate data in memory without the open connections to the
database. Because DataSet objects are independent of data sources, you can use DataSet objects to
retrieve and access the data set from multiple data sources.

If you are not sure whether to use connected mode or disconnected mode to access the database, the fol-
lowing guidelines will help you make your decision:

❑ Use connected mode if

❑ Your application requires forward-only and read-only data access

❑ You want to free up more memory to other applications

❑ Use disconnected mode if

❑ Your application interacts with remote data from XML web services

❑ Your application interacts with multiple data sources

❑ You want to free up the database connections to other applications

To connect and retrieve data in connected mode, first create a connection to the data source and then use
a SQL command to directly retrieve the data. The following code snippet illustrates how to access the
students table from a local SQL Server 2000 database MyCourses:

using System;
using System.Data;
using System.Data.SqlClient;
...

SqlConnection dbConn = new SqlConnection(“Data Source=localhost;

132

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 132

Integrated Security = SSPI; Inital Catalog=myCourses”);
dbConn.Open();

SqlCommand sqlCmd = dbConn.CreateCommand();
sqlCmd.CommandText = “SELECT studentID, lastName FROM students”;

sqlDataReader stuReader = sqlCmd.ExecuteReader();

while (stuReader.Read())
{

Console.WriteLine(“{0}\t{1}”, stuReader.GetInt32(0),
stuReader.GetString(1));

}

stuReader.Close();
dbConn.Close();

...

In the preceding code, a SQL connection is first created by specifying the connection string and invoking
the Open() method of the SqlConnection class. Then a SqlCommand object is instantiated to retrieve
records in the studentID field and the lastName field from the table students. The results of the
query are executed by the ExecuteReader() method of the SqlCommand class and are passed to a
sqlDataReader object. By iterating the sqlDataReader object with the Read() method, data can be
retrieved row by row.

To retrieve the data in disconnected mode, a typical approach is to use a DataAdapater object to
retrieve data from a data source and then populate the data to a DataSet object, which can hold multi-
ple data tables in memory. The following code snippet demonstrates how to perform the same function
in disconnected mode:

using System;
using System.Data;
using System.Data.SqlClient;
...

SqlConnection dbConn = new SqlConnection(“Data Source=localhost; Integrated
Security = SSPI; Inital Catalog=myCourses”);

string qStr = “SELECT studentID, lastName FROM students”;
SqlDataAdapter stuAdapter = new SqlDataAdapter(qStr, dbConn);

DataSet stuSet = new DataSet();
stuAdapter.Fill(stuSet, “students”);

for (int i=0; i<=stuSet.Tables[“students”].Rows.Count-1; i++)
{

int ID = System.Convert.ToInt32(
stuSet.Tables[“students”].Rows[i][“studentID”]);

string name = stuSet.Tables[“students”].Rows[i][“lastName”].ToString();
System.Console.WriteLine(“{0}\t{1}”, ID, name);

}

In the preceding example, a SqlConnection object is first created. However, you do not need to maintain
an open connection to the database by calling the open() method. Rather, a sqlDataApapter object is

133

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 133

created with the same SQL query command string and the same database connection string. When the
SqlAdapater.Fill() method is executed, an implicit connection to the database is established and the
data in the table is populated to the DataSet object. Once the Fill() operation is finished, it closes the
connection to the database. You can then access each column of the data from the in-memory data set by
stating the name of the table, the index of the row, and the name of the column.

This section only briefly introduces ADO.NET programming. For mobile devices, accessing a conven-
tional database using either connected mode or disconnected mode may not be applicable because
mobile devices do not have sufficient system memory and are not connected to the database servers all
the time. In the following sections, you will learn how to access and manipulate data in a database that
is designed for Windows Mobile devices.

Microsoft SQL Server 2005 Mobile Edition
The Microsoft SQL Server 2005 Mobile Edition (or, simply, SQL Server Mobile) is a lightweight database
designed specifically for smart devices such as Smartphones, Pocket PCs, and Tablet PCs. Like its prede-
cessor SQL Server CE, SQL Server Mobile is a trimmed-down version of Microsoft’s desktop database. It
allows faster and easier data access while disconnected, and synchronizes the data between mobile
devices and desktop SQL servers while connected. In addition to enhanced reliability and performance,
SQL Server Mobile adds a number of notable features, as summarized in Table 6-1.

Table 6-1 New Features of SQL Server Mobile

Feature SQL Server CE SQL Server Mobile

Multi-user support No (single user only) Yes

Multi-subscription No. You need to create a separate Yes
support subscriptiondatabase for each

subscription.

Column-level tracking No. The minimum synchronization Yes. With both column- and
unit is a single row. row-level tracking, the minimum

synchronization unit is a cell.

Auto reuse empty pages No Yes. The auto-shrink feature
will reuse the empty pages,
thereby saving storage space.

Integration with Visual No Yes
Studio 2005 and SQL
Server 2005

134

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 134

Note that SQL Server Mobile changed the database file format, so if you have a database file created
with SQL Server CE, you will need to upgrade the database file from the command-line utility that SQL
Server Mobile provides. By default, this upgrade utility is located at C:\Program Files\Microsoft
Visual Studio 8\SmartDevices\SDK\SQL Server\Mobie\v3.0\wce500\[processor]\
upgrade.exe .

Assume the old database is oldDB.sdf located in the oldDir folder with a password of oldPass. To
upgrade it to newDB.sdf in the newDir folder with the password newPass, use the following command:

Upgrade.exe /s “oldDir\oldDB” /sp “oldPass” /d “newDir\newDB.sdf” /dp “newPass”

SQL Server Mobile Architecture
In a nutshell, SQL Server Mobile is a relational database that operates on a tiny runtime. As shown in
Figure 6-1, the SQL Server Mobile architecture includes a development environment, a client environ-
ment, and a server environment.

Figure 6-1

The development environment, of course, is where you develop your applications. For SQL Server Mobile
applications, only Visual Studio 2005 is supported as the development environment. The managed code
you develop relies on the ADO.NET layer in the .NET Compact Framework to call into SQL Server
Mobile. If you have to develop your application using unmanaged code, you can get access to SQL
Server through an OLE database provider.

Development
Environment

Visual Studio 2005

Managed Code

ADO.NET

SQL Server Mobile

Client
Environment

Smart Device

ApplicationDeploy

SQL Server Mobile
Client Agent

SQL Server Mobile

T Y
5 6

R
4

E
3

W
2

Q
1

G
=

F
-

D
+

S
/

A
*

V
?

C
)

X
(

Z
$

NUM CAP

B
!

P
0O

9I
8U

7

M
.

N
,

L
@K "J 'H

:

SYMBOL SPACE

5:14 PM

MESSAGES

DEL

Server
Environment

IIS Server

SQL Server Mobile
Client Agent

HTTP

SQL Server

ActiveSync

135

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/29/06 3:24 PM Page 135

The client environment is the smart device. Typically, SQL Server Mobile is preinstalled on a Windows
Mobile 5 device and emulator. When you deploy your application to the device, the corresponding SQL
Server Mobile databases are also copied to the mobile device as files in .sdf format. The Smartphone
user can then simply access the local copy of the database for regular data manipulations. A connection
to the servers is required when users need to synchronize their local databases with the copies stored on
the database servers.

The server environment includes a Microsoft Internet Information Services (IIS) server, SQL Server Mobile
Server Agent, and SQL Server. An IIS server is required in the server environment because the SQL
Server Mobile Server Agent listens to the requests from the SQL Server Mobile Client Agent via HTTP
requests. The SQL Server Mobile Client Agent can make such HTTP requests through either WiFi net-
works or by the ActiveSync connections. The desktop version of SQL Server in the server environment
enables users to replicate and synchronize data between SQL Server Mobile databases and SQL Server
databases, which in turn offers full functionality to manage and analyze data.

At the time of writing, Microsoft has announced SQL Server Everywhere Edition, which is very similar
to SQL Server Mobile but it can be deployed not only to smart devices and Tablet PCs, but also to desk-
top computers and servers.

Installing SQL Server Mobile
This subsection walks you through the procedures for installing the development environment, the
client environment, and the server environment to make SQL Server Mobile functioning correctly.

System Requirements
Before installing SQL Server Mobile, you should determine whether your system meets the hardware
and software prerequisites, as shown in Table 6-2. Note that the required components vary depending
on your SQL Server Mobile device.

Table 6-2 SQL Server Mobile System Requirements

Environment Requirements

Development Microsoft Visual Studio 2005
environment

One of the following operating systems:

Microsoft Windows Server 2003, Windows XP Media Center Edition, Win-
dows XP Professional, Windows XP Tablet PC Edition, Windows 2000
Professional SP4 or later versions, or Windows 2000 Server SP4 or later
versions

Microsoft Internet Explorer 6.0 or later to access SQL Server Mobile Books
Online

Microsoft ActiveSync 4.0 or later to debug and deploy applications

136

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 136

Environment Requirements

Client environment Any device that runs Microsoft Windows CE 5.0, Microsoft Windows XP
Tablet PC Edition, Windows Mobile 2003 Software for Pocket PC, or
Windows Mobile 5.0

2 to 3MB storage space

Server environment Microsoft SQL Server 2000 SP3a or later

SQL Server 2005: Intel or compatible Pentium 600 megahertz (MHz) or
greater processor required (1 GHz or greater recommended), 256MB RAM
minimum (512MB RAM or more recommended), 250MB hard disk space.

IIS 5.0 or later versions: Supported on 32-bit Windows Server 2003, 32-bit
Windows XP, and Windows 2000 SP4; 120MB of available disk space on the
server.

Microsoft ActiveSync 4.0 or later versions are required to use Management
Studio to manage SQL Server Mobile databases on connected devices.

Microsoft Internet Explorer 6.0 or later

Microsoft Outlook 98 or later is required for synchronization of e-mail, cal-
endar, contacts, tasks, and notes to the desktop or portable computer (Out-
look 2003 recommended).

Installing the Development Environment
If you have already installed SQL Server 2005, you don’t have to do anything. SQL Server Mobile files
are already installed on the development computer. A number of classes in the System.Data
.SqlServerCe namespace are available in the development environment to enable you to create
databases and tables and to manipulate data in the databases.

If the developing tool is Visual C++ for Devices or Embedded C++, you need to include the
SsceOleDB.h, ca_mergex30.h, and Ssceerr30.h files in your projects. These header files and libraries
provide APIs to access SQL Server Mobile through OLE DB connections.

Installing the Server Environment
A typical setting for the server environment enables data exchange between SQL Server and SQL Server
Mobile. You need to install IIS, SQL Server 2005/2000 with Replication Components, and SQL Server
Mobile Server Tools. If the IIS server and SQL Server are on different computers, make sure the SQL
Server Mobile Server Tools are installed on the one that runs IIS.

137

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 137

Installing the Client Environment
As mentioned earlier, SQL Server Mobile is well integrated with Visual Studio 2005. When you deploy a
managed application that interacts with SQL Server Mobile, Visual Studio will determine whether the
software and components needed to run applications are installed on the device. If not, those compo-
nents will be installed automatically to the smart device. By default, the installation path is \Windows on
the device. You can use SQL Server Management Studio in SQL Server to manage the SQL Server Mobile
databases.

Things are little different if you need to deploy a native application. You need to manually copy SQL
Server Mobile to the device. You may also want to copy the SQL Server Mobile Query Analyzer, which is
a graphical management tool to manage SQL Server Mobile databases.

Setting Up the SQL Server Mobile
Server Environment

In this section you will learn how to create and synchronize a SQL Server Mobile database. The process
describes the most common scenario whereby a desktop version of SQL Server is running in the back-
ground and SQL Server Mobile is running on mobile devices. The synchronization between the two is
made available through a web interface.

To begin, you need to install SQL Server Mobile Server Tools, which include the SQL Server Mobile
Server Agent, the SQL Server Mobile Replication Provider, and the Configure Web Synchronization
Wizard. This section assumes that you have already installed SQL Server 2005.

Installing SQL Server Mobile Tools
By default, Microsoft SQL Server Mobile Server Tools is not installed in SQL Server 2005. Navigate to
C:\Program Files\Microsoft SQL Server\90\Tools\Binn\VSShell\Common7\IDE and find the
setup program sqlce30setupen.msi.

Double-click the program to open the SQL Server 2005 Mobile Server Tools Setup Wizard. You can easily
finish installing the tool; the settings are self-explanatory. The only thing to note here is to make sure that
the Synchronize with SQL Server 2005 option is checked.

Creating a Database and Tables from SQL Server 2005
In the next step, you are going to create a database and a table from SQL Server.

First, from the machine on which SQL Server is installed, click Start➪Program➪Microsoft SQL Server
2005 and open SQL Server Management Studio. The Connect to Server Wizard appears, as indicated in
Figure 6-2. Choose Database Engine as the server type and fill in the appropriate server name and
authentication method of the server. When you are done, click the Connect button to connect to the SQL
Server.

138

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 138

Figure 6-2

Once the SQL Server is connected, you can create a new database. Right-click the Databases icon from
Object Explorer in SQL Server Management Studio and choose New Database (see Figure 6-3). In the
resulting New Database window, shown in Figure 6-4, name the database MyDB1.

Figure 6-3

139

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 139

Figure 6-4

Next, create a simple StuGrades table in the MyDB1 database by right-clicking the MyDB1 icon from
Object Explorer in SQL Server Management Studio and choosing New Table. In the Table designer of
SQL Server Management Studio, add StudentID and Grade as the Column names. The data type of
StudentID is bigint and does not allow nulls, whereas the data type of Grade is smallint and can take
nulls, as indicated in Figure 6-5.

Once the table is created, it appears in the Object Explorer window, as shown in Figure 6-6.

The table is created, but it is currently empty. In SQL Server Management Studio, you can add rows to a
table in a SQL Server database. Right-click the table you want to edit and choose Open Table (see Figure 6-7).

140

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 140

Figure 6-5

Figure 6-6

141

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 141

Figure 6-7

Randomly add entries to the table, as shown in Figure 6-8.

Figure 6-8

Now you have a simple database that contains a simple table, ready for action. In reality, the SQL Server
database could be huge, and you certainly want the data stored in SQL Server to be easily replicated to a
SQL Server Mobile database. To do that, you need to create a publication in a SQL Server database and
then subscribe to this publication from the SQL Server Mobile database.

Creating a Publication
Before you create a publication, first ensure that SQL Server Agent, which appears in the bottom of the
Object Explorer (see Figure 6-9), is currently running. If not, start it.

142

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 142

Figure 6-9

Expand the Replication folder from the Object Explorer and then launch the New Publication Wizard by
right-clicking the Local Publication icon and choosing New Publication, as shown in Figure 6-10.

Figure 6-10

143

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 143

Four types of publications are available in SQL Server: Snapshot Publication, Transactional publication,
Transactional publication with updatable subscriptions, and Merge publication. For SQL Server Mobile,
Merge publication is the only supported way to synchronize with SQL Server. In Merge publication,
both publisher and subscribers can update data independently. Changes are merged periodically.
Choose Merge publication (see Figure 6-11) and don’t forget to include SQL Server 2005 Mobile Edition
in the Subscriber Types window (see Figure 6-12).

Figure 6-11

Figure 6-12
144

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 144

Next you will be prompted to choose which tables to publish. Check StuGrades from the Tables object,
as shown in Figure 6-13.

Figure 6-13

Configuring Web Synchronization
As you can see from the SQL Server Mobile architecture, synchronization between a smart device and a
SQL server is handled by HTTP. That means you need to configure the web synchronization components
of a published article. To do so, right-click the MyDB1 publication in Object Explorer and choose
Configure Web Synchronization, as shown in Figure 6-14.

In the Synchronization wizard, add a new virtual directory to the default website, as shown in Figure 6-15.

SQL Server Mobile requires snapshot files to create a merge publication. By default, these snapshot files
are located in the folder C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\repldata.
You should share this folder and specify its UNC path name in the Snapshot Share Access window. The
syntax for UNC naming is \\ComputerName\ShareName. In this example, the folder has a shared name
of MyDB1 and a machine name of Spirit; therefore, the UNC path is \\spirit\MyDB1, as shown in
Figure 6-16.

145

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 145

Figure 6-14

Figure 6-15

146

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 146

Figure 6-16

Creating a SQL Server Mobile Database
Now that the SQL server is set up and correctly configured, it is time to create and set up the SQL Server
Mobile database.

Creating a SQL Server Mobile database is fairly simple using SQL Server Management Studio. From the
Object Explorer, click Connect and choose SQL Server Mobile, as illustrated in Figure 6-17. When the
Connect to Server window appears, click the drop-down list of Database files and choose <New
Database>. You can then specify the name and location of the SQL Server Mobile database in the Create
New SQL Server 2005 Mobile Edition Database dialog, as shown in Figure 6-18.

147

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 147

Figure 6-17

Figure 6-18

Creating Subscriptions in SQL Server Mobile
The last step to set up the server environment is to enable the SQL Server Mobile database to subscribe
to the publications from SQL Server. To begin, run the New Subscriptions Wizard and select Find SQL
Server Publisher, as shown in Figure 6-19 and Figure 6-20, respectively.

148

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 148

Figure 6-19

Figure 6-20

149

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 149

During this process, you need to provide a URL to the SQL Server Mobile virtual directory located on
the web server. The path name is typically http://webserver_name/virutal_directoryname/
sqlcesa30.dll. In our example, the URL is http://spirit/MyDB1/sqlcesa30.dll. If you are not
sure whether the URL is correct, simply try it in Internet Explorer. If you can read SQL Server Mobile
Server Agent 3.0, as shown in Figure 6-21, the URL is correct.

Figure 6-21

After you successfully finish the subscription, you will notice that the StuGrades table is now available
in the SQL Server Mobile database, as shown in Figure 6-22.

Figure 6-22

No graphical tools are available in Management Studio to enable you to read the rows in the SQL Server
Mobile StuGrade table, but you can always use an SQL command to populate the data from the table.
For example, the simple Select SQL statement enables you to compare the replicated table with the one
you input manually. And, yes, they are the same, as you can tell from Figure 6-23.

150

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 150

Figure 6-23

Writing SQL Server Mobile Applications
Programming SQL Server Mobile with Visual Studio 2005 is a relatively simple task. Indeed, you do not
even have to write a single line of code to be able to retrieve data from a table. The following sections
describe how to do just that.

A Simple Application with the DataGrid Control
A straightforward way to develop a SQL Server Mobile application is to add connections to the database
and make those tables the data source for controls such as the DataGrid.

In the following example, you will be able to navigate the MyDB1 table that is replicated in the previous
section.

151

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 151

First, create a new connection to the database. In Visual Studio 2005, click View➪Server Explorer to
bring up the Server Explorer window. In the Server Explorer window, right-click Data Connections and
choose Add Connection, as shown in Figure 6-24.

When the Add Connection dialog window appears (as shown in Figure 6-25), change the data source to
SQL Server Mobile and specify the name of the database.

Figure 6-24

Figure 6-25

152

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 152

Now you will be able to see the table from the Server Explorer (see Figure 6-26). You can also use those
tables or databases as the data source in your application.

The next step is to create a new Smartphone project. You can simply drag the DataGrid control to the
form and specify the data source of the DataGrid control. As shown in Figure 6-27, from the Properties
window of dataGrid1, click the DataSource drop-down list and then click Add Project Data Source to
bring up the Data Source Configuration Wizard. Choose Database, as shown in Figure 6-28, and then
specify the data connection that the application uses. In the example, the data connection is a SQL Server
Mobile database MyDB1, shown in Figure 6-29.

Figure 6-26

Figure 6-27

153

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 153

Figure 6-28

Figure 6-29

You are then asked if you would like to copy the database file to your Smartphone project, as shown in
Figure 6-30. Because SQL Server Mobile uses the local data file, click Yes in the dialog box. As shown in
Figure 6-31, the Data Source Configuration Wizard will ask you to pick the database objects that you
wanted included in the in-memory data set.

154

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 154

Figure 6-30

Figure 6-31

After data sources are added to the DataGrid control, the column names show up in the Form Designer.
The simple UI of this example is shown in Figure 6-32.

Now just simply compile and deploy the application. Figure 6-33 shows that all the rows in table
stuGrade are populated to the Data Grid control, and users can navigate the data with the navigation
key from the Smartphone. Although it might not be what you expected to see, the DataGrid control
works just fine even though you didn’t write a single line of code.

In the next two examples, you will learn about some classes in the SqlServerCe namespace that enable
you to create a database and tables and synchronize data.

155

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 155

Figure 6-32

Figure 6-33156

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 156

The SqlServerCe Namespace
The SqlServerCe namespace enables you to use SQL commands to manipulate data and manage the
SQL Server Mobile database. To use APIs in this namespace, don’t forget to add a reference. In Visual
studio 2005, click Project➪Add reference and choose System.Data.SqlServerCe, as shown in Figure 6-34.

Figure 6-34

Recall from our earlier discussion that GUI tools are used to create a database and tables and to add
rows. These steps can also be performed with the help of the SqlServerCe namespace.

To create a SQL Server Mobile database, use the CreateDatabase() method of the SqlCeEngine class.
This operation requires a connection string to indicate the location of the database. The following code
snippet demonstrates how to create a MyDB2.sdf database in the My Documents folder:

private string StrConn = @”Data Source=My Documents\MyDB2.sdf”;
private void addDB()
{

SqlCeEngine ceEngine = new SqlCeEngine();
ceEngine.LocalConnectionString = StrConn;
try
{

ceEngine.CreateDatabase();
}
catch (SqlCeException sqlEx)
{

MessageBox.Show(sqlEx.ToString());
}

}

Accessing relational data may cause exceptions to be raised. The best practice is to always put the
database operation in a try...catch block.

157

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 157

The following example shows how to programmatically create a connection to a SQL Server Mobile
database:

private string StrConn = @”Data Source=My Documents\MyDB2.sdf”;
SqlCeConnection ceConn = new SqlCeConnection();
ceConn.ConnectionString = StrConn;
ceConn.Open();

A SqlCeConnection object is first created with a connection string pointing to the location of the
database. The open() method is called to establish the database connection.

A simple solution to access and update data in SQL Server Mobile is to use the SqlCeCommand class. For
example, the following SQL statement will create a stuGrades table that has two columns, studentID and
Grade, where studentID is the primary key of the table:

CREATE TABLE StuGrades
(StudentID bigint not null CONSTRAINT PKStuGrades PRIMARY KEY ,
Grade smallint)

The preceding SQL statement can be passed as a string to construct a SqlCeCommand object. Then the
ExecuteNonQuery() method is called to create the table, as follows:

SqlCeCommand ceCmd = new SqlCeCommand();
ceCmd.Connection = ceConn;

string sqlCmd = new string (
“CREATE TABLE StuGrades” +
“(StudentID bigint not null” +
“ CONSTRAINT PKStuGrades PRIMARY KEY , “ +
“ Grade smallint)”
);

ceCmd.CommandText = sqlCmd;
ceCmd.ExecuteNonQuery();

Add data rows to a table using a similar approach. The following code snippet will add a grade of 98 to
student ID 1:

SqlCeConnection ceConn = new SqlCeConnection();
SqlCeCommand ceCmd = new SqlCeCommand();
ceConn.ConnectionString = StrConn;

ceConn.Open();
ceCmd.Connection = ceConn;

ceCmd.CommandText = “INSERT StuGrades” +
“ (StudentID, Grade)” +
“ VALUES(1,98)”;

ceCmd.ExecuteNonQuery();

The following code shows the full listing of the code that simulated what you practiced in the previous
section:

158

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 158

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Data.SqlServerCe;

namespace DBapp2
{

public partial class Form1 : Form
{

private string StrPath = @”My Documents\MyDB2.sdf”;
private string StrConn = @”Data Source=My Documents\MyDB2.sdf”;

public Form1()
{

InitializeComponent();
addDB();
addTable();
addRows();

}

private void addDB()
{

SqlCeEngine ceEngine = new SqlCeEngine();
ceEngine.LocalConnectionString = StrConn;
try
{

ceEngine.CreateDatabase();
}
catch (SqlCeException sqlEx)
{

MessageBox.Show(sqlEx.ToString());
}

}

private void addTable()
{

SqlCeConnection ceConn = new SqlCeConnection();
SqlCeCommand ceCmd = new SqlCeCommand();
ceConn.ConnectionString = StrConn;

ceConn.Open();
ceCmd.Connection = ceConn;

string sqlCmd = new string (
“CREATE TABLE StuGrades” +
“(StudentID bigint not null” +
“ CONSTRAINT PKStuGrades PRIMARY KEY , “ +
“ Grade smallint)”
);

ceCmd.CommandText = sqlCmd;

159

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 159

ceCmd.ExecuteNonQuery();

ceConn.Close();
}

private void addRows()
{

SqlCeConnection ceConn = new SqlCeConnection();
SqlCeCommand ceCmd = new SqlCeCommand();
ceConn.ConnectionString = StrConn;

ceConn.Open();
ceCmd.Connection = ceConn;

ceCmd.CommandText = “INSERT StuGrades” +
“ (StudentID, Grade)” +
“ VALUES(1,98)”;

ceCmd.ExecuteNonQuery();

ceCmd.CommandText = “INSERT StuGrades” +
“ (StudentID, Grade)” +
“ VALUES(2,76)”;

ceCmd.ExecuteNonQuery();

ceCmd.CommandText = “INSERT StuGrades” +
“ (StudentID, Grade)” +
“ VALUES(3,52)”;

ceCmd.ExecuteNonQuery();

ceCmd.CommandText = “INSERT StuGrades” +
“ (StudentID, Grade)” +
“ VALUES(4,86)”;

ceCmd.ExecuteNonQuery();

ceCmd.CommandText = “INSERT StuGrades” +
“ (StudentID, Grade)” +
“ VALUES(5,79)”;

ceCmd.ExecuteNonQuery();

ceCmd.CommandText = “INSERT StuGrades” +
“ (StudentID, Grade)” +
“ VALUES(6,91)”;

ceCmd.ExecuteNonQuery();

ceConn.Close();
}

}
}

Everything in the example is straightforward except the path of the SQL Server Mobile database file. You
should use the local path of the smart devices, rather than the development computer or the SQL
servers.

160

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 160

Similarly, you can perform web synchronization by specifying the parameters of the publishers and sub-
scribers, as follows:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Data.SqlServerCe;

namespace DBapp3
{

public partial class Form1 : Form
{

private string strPath = @”\Program Files\VS_SQLMobile\MyDB1.sdf”;
private string strConn = @”Data Source=\Program Files\VS_SQLMobile\MyDB1.sdf”;

public Form1()
{

InitializeComponent();
updateArow();
webSync();

}

private void updateArow()
{

SqlCeConnection ceConn = new SqlCeConnection();
SqlCeCommand ceCmd = new SqlCeCommand();
ceConn.Open();
ceCmd.Connection = ceConn;

ceCmd.CommandText = “UPDATE StuGrades” +
“SET grade = 84” +
“WHERE StudentID = 4”;

ceCmd.ExecuteNonQuery;
ceConn.Close();

}

private void webSync()
{

SqlCeReplication repl = new SqlCeReplication();

repl.InternetUrl = @”http://192.168.0.88/MyDB1/sqlcesa30.dll”;
repl.Publisher = @”spirit”;
repl.PublisherDatabase = @”MyDB1”;
repl.PublisherSecurityMode = SecurityType.NTAuthentication;
repl.PublisherLogin = @”administrator”;
repl.PublisherPassword = @”password”;
repl.Publication = @”MyDB1”;
repl.Subscriber = @”MyDB1”;

repl.SubscriberConnectionString = “Data Source=” + strPath;

try

161

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 161

{
repl.Synchronize();

}
catch (SqlCeException sqlEx)

{
MessageBox.Show(sqlEx.ToString());

}
}

}

The updateArow() function in the preceding example changes the grade to 84 for the student who has
an ID of 4. This is accomplished by first establishing a SqlCeConnection and then executing a
SqlCeCommand object, as follows:

private void updateArow()
{

SqlCeConnection ceConn = new SqlCeConnection();
SqlCeCommand ceCmd = new SqlCeCommand();
ceConn.Open();
ceCmd.Connection = ceConn;

ceCmd.CommandText = “UPDATE StuGrades” +
“SET grade = 84” +
“WHERE StudentID = 4”;

ceCmd.ExecuteNonQuery;
ceConn.Close();

}

To synchronize data through the web, you must instantiate a SqlCeReplication object. In addition,
you need to correctly set many properties of the SqlCeReplication object. In the following WebSync()
function, the URL of the web service is set to http://192.168.0.88/MyDB1/sqlcesa30.dll, and the
Publisher, Subscriber, PublisherLogin, PublisherPassword, and subscriberConnection
String are all needed to perform a web synchronization:

private void webSync()
{

SqlCeReplication repl = new SqlCeReplication();

repl.InternetUrl = @”http://192.168.0.88/MyDB1/sqlcesa30.dll”;
repl.Publisher = @”spirit”;
repl.PublisherDatabase = @”MyDB1”;
repl.PublisherSecurityMode = SecurityType.NTAuthentication;
repl.PublisherLogin = @”administrator”;
repl.PublisherPassword = @”password”;
repl.Publication = @”MyDB1”;
repl.Subscriber = @”MyDB1”;

repl.SubscriberConnectionString = “Data Source=” + strPath;

try
{

162

Chapter 6

11_762935 ch06.qxp 11/20/06 7:56 AM Page 162

repl.Synchronize();
}
catch (SqlCeException sqlEx)

{
MessageBox.Show(sqlEx.ToString());

}

An IP address is used in the example instead of the computer name of the IIS server. This is because the
Smartphone emulator may have trouble resolving computer names and therefore may not be able to
connect the IIS server even though everything else is correct.

Summary
This chapter introduced two different ways to access a database in ADO.NET. The connected mode
requires open connections all the time, whereas the disconnected mode provides an in-memory data set
to cache the data from the database; therefore, it is not relying on an open connection. Usually, the
DataReader class is used in connected mode and the DataSet class is instantiated in disconnected
mode.

A Smartphone is characterized by a relatively slow processor and limited RAM, and there is no guaran-
tee it is connected to the server or the Internet at all times. It therefore makes sense to have a slim version
of the database stored on the smart device and a full-powered version of the database server running on
a desktop. Replication is needed to ensure that both databases are on the same page.

To set up a programming environment for SQL Server Mobile–related applications, you should install
and set up the client environment, the server environment, and the development environment.
Programmatically accessing SQL Server Mobile data is pretty straightforward; it usually requires a
database connection and a valid SQL statement.

In the next chapter, you will learn how to access data or an application through a variety of networks.

163

Data Access with SQL Server Mobile

11_762935 ch06.qxp 11/20/06 7:56 AM Page 163

11_762935 ch06.qxp 11/20/06 7:56 AM Page 164

Networking

This chapter introduces you to one of the most exciting parts of Smartphone software develop-
ment: networking! We start with an overview of the networking support in the .NET Compact
Framework for Smartphone and then introduce topics ranging from application layer web access
to TCP clients and sockets.

Be aware that due to the resource-constrained nature of Smartphones, networking applications
should be carefully designed so that they don’t consume too much memory and CPU cycles, espe-
cially when multiple threads and sockets are used in the application. You should not use low-level
networking classes such as sockets unless you absolutely need them.

The following topics are discussed in this chapter:

❑ HTTP-based web access, including synchronous and asynchronous access

❑ TCP servers and TCP clients, and related IP endpoint classes

❑ TCP sockets and UDP sockets

An Overview of Smartphone Networking
Depending on your choice of application development environment, you will likely be able to use
a largely different set of classes. For C# or Visual Basic applications targeting the Microsoft .NET
Compact Framework, the exposed managed classes in the .NET Compact Framework library
essentially enable fast and type-safe application development. For C++ applications targeting the
underlying operating system, more direct control over the networking layers and the wireless con-
nections are available in the form of the C++ API. Table 7-1 lists networking-related classes in the
.Net Compact Framework.

12_762935 ch07.qxp 11/20/06 7:56 AM Page 165

Table 7-1 .NET Compact Framework Networking Classes

Namespace Classes Description

System.Net Dns For identifying network endpoints
IPEndPoint
IPAddress
IPHostEntry
IrDAEndPoint

System.Net HttpWebRequest For building and processing HTTP-
HttpWebResponse related requests and responses

System.Net WebRequest For building web-based pluggable
WebResponse protocol implementations

System.Net.Sockets IrDAClient For traditional stream- and datagram-
IrDAListener based communication
Socket
TcpClient
TcpListener
UdpClient

The Socket class in the System.Net.Sockets namespace allows transport-layer and IP-layer commu-
nication with respect to different types of sockets. TcpListener, TcpClient, and Udpclient each
implement a specific type of transport-layer socket.

Web and HTTP classes are for the application layer on top of the transport layer, TCP. The Dns class
implements basic domain name resolution functionality; IPAddress and IPEndPoint represent the IP
address and IP endpoint (IP address and a port number), respectively. IPHostEntry is a helper class for
the Dns class, providing domain name-to-IP address mapping. IrDA classes, including IrDAEndpoint,
IrDAClient , and IrDAClient, implement IrDA connection functionality.

As part of the networking capability, XML web services are so important that a separate chapter is
devoted to them. Please refer to Chapter 9 for more details.

The .NET Compact Framework, at the time of writing, does not support Bluetooth networking.
However, as more and more smart phones are equipped with Bluetooth and possibly other wireless
technologies, it is fairly reasonable to expect support for those technologies in .NET Compact
Framework for Smartphone application development.

Win32 APIs to control Bluetooth are available in the Smartphone SDK.

Emulator Networking
The Smartphone emulator implements the complete network stack of a Smartphone operating system.
Hence, it can access the network through its hosting desktop computer via ActiveSync if the desktop
computer is connected to an Ethernet or wireless LAN. In this case, the hosting computer works as a
transparent network proxy for the emulator. No configuration is needed on the emulator. Essentially, the

166

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 166

emulator comes with an emulated NE2000 PCMCIA network card that can be bound to a physical net-
work card on the development machine. If you want to have a network totally contained within the
desktop computer, you choose Hosts-only in the emulator configuration. If the development computer
has no network connection or does not have a physical network card, you must install a Microsoft
Loopback Adaptor via Add/Remove Hardware in the Control Panel of the desktop computer for the
hosts-only network.

It your development computer has been configured to use a web proxy, you need to set the same proxy on
the emulator. To do this, select Settings➪Connections➪Proxy, and then add the proxy:port to the list.

To check whether the Smartphone can access the network, open Visual Studio 2005 and run the emulator
manager and cradle it. When the emulator appears, select the icon for Internet Explorer Mobile from the
top menu and visit one of the default Favorite websites.

Figure 7-1 shows the Smartphone emulator running Internet Explorer Mobile accessing the MSN Mobile
website. The network connection is made through the hosting desktop computer.

Figure 7-1

Once you have confirmed that the Smartphone emulator is able to connect to the network, you are ready
to explore the networking facilities provided by the .NET Compact Framework.

Web Access
The WebRequest and WebResponse classes are abstract classes that implement basic web access func-
tionality, including HTTP web requests and responses, and local filesystem access using Uniform
Resource Identifiers (file://). The classes that implement these two types of web access are as follows:

❑ HttpWebRequest (derived from WebRequest) and HttpWebResponse (derived from
WebResponse) — For typical HTTP web access to a website

❑ FileWebRequest (derived from WebRequest) and FileWebResponse (derived from
WebResponse) — For local filesystem access via a web interface

The two web request types support both synchronous access using GetResponse() and Get
RequestStream() and asynchronous access using BeginGetResponse()/EndGetResponseStream()
and BeginGetRequestStream()/EndGetRequestStream().

167

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 167

The HttpWebRequest and HttpWebResponse Classes
The HttpWebRequest class enables you to specify security credentials and a web proxy, and a timeout
value for a request. This class is useful when you need to specify some settings for web access. Table 7-2
describes the class’s properties.

Table 7-2 HttpWebRequest Properties

Properties Description Example

Credentials Authentication information NetworkCredential
of the requester; can be either myCredentials = new Network
a NetworkCredential Credential(username,passwd);
instance or a Credential
Cache instance myCredentials.domain = domain;

MyWebRequest.Credential =
myCredentials;

ContentType HTTP header Content-Type MyRequest.ContentType = “text/
html”;

ContentLength HTTP header Content-Length; string data = “data to be
-1 if the request does not upload uploaded”;
data

ASCIIEncoding ascii = new
ASCIIEncoding();

Byte[] encodedBytes = ascii
.GetBytes(data);

MyWebRequest.ContentLength =
encodedBytes.Length;

Method The method of the HTTP request; MyWebRequest.Method = “POST”;
the default is Get

Proxy The web proxy to be used for the WebProxy myProxy = new
request; the default is Global WebProxy(“http://myproxy:
ProxySelection.Select(); 8000”);

MyWebRequest.Proxy = myProxy;

Timeout The timeout value of the request, MyWebRequest.Timeout = 5000;
in milliseconds; the default is
100 seconds

ProtocolVersion The HTTP version of the request; myWebRequest.ProtocolVersion=
only 1.0 and 1.1 are allowed HttpVersion.Version10;

168

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 168

In addition, the HttpWebRequest and HttpWebResponse classes have a Headers property of a
WebHeaderCollection type that, along with the properties in Table 7-2, make up the headers for the
request. A WebHeaderCollection type is a list of name-value pairs of the protocol headers.

HttpWebResponse also has a ContentLength property indicating the total length of the response data,
but not all web servers support this HTTP header while generating a response.

After you consume the response data, be sure to release the resource of StreamReader and the
WebResponse by calling their Close() methods.

Creating HTTP Request
To create a specific web request, you can call the static method Create() of the WebRequest class with
a URI (universal resource identifier), such as an HTTP address in the form of http://company.com/
page.html or a file address in the form of file://computer_name/folder/filename. The Create()
method will return an instance of the HTTPWebRequest class or a FileWebRequest class. Then you can
use either synchronous or asynchronous methods to send the request. Once you have the WebResponse
instance, you can obtain the stream of the WebResponse instance and read and write the stream using a
StreamReader object. The following sections provide examples of both synchronous access and asyn-
chronous access.

Synchronous Access
Synchronous access means that when the application sends the request to a remote server, it blocks until
a response is received or a timeout occurs. Synchronous access is generally simpler to program than
asynchronous access. To retrieve a web page from a web server synchronously, you create a WebRequest
object with a certain URL, and then call the GetResponse() method of the object. This method returns a
WebResponse object. Then, using a StreamReader object, you can read the response stream by calling
the GetResponseStream() method of the WebResponse object. The following example demonstrates
this procedure:

//Create an HTTP web request with an HTTP URL. Note that the HttpWebRequest
instance is a WebRequest class instance because HttpWebRequest is a descendant
class of WebRequest
WebRequest myWebRequest = WebRequest.Create(http://www.msn.com);

//Send the request; here we use the default timeout value of the system
WebResponse myWebResponse = MyWebRequest.GetResponse();

//Create a StreamReader to access the data. The second parameter is the encoding of
the response stream. For Unicode text, use System.Text.UnicodeEncoding.
StreamReader myStreamReader = new
StreamReader(myWebResponse.GetResponseStream(),Encoding.ASCII);

//Now we can read the stream
Char[] buffer = new Char[1024];
Int count = myStreamReader.Read(buffer, 0, 1024);
While(count >)

169

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 169

count = myStreamReader.Read(buffer, 0, 1024);

...//Use the data here
myStreamReader.Close();
myWebResponse.Close();
......

The call to GetResponse() will block the calling thread until the response is received or a timeout
occurs. After a WebResponse object is instantiated, you can use a StreamReader object to read the data
in the response according to an encoding scheme such as ASCII or Unicode.

Asynchronous Access
In the case of asynchronous access, a call to send requests does not block the calling thread. This means
the calling thread can continue to do something else. Once a response is ready to be picked up, a call-
back method is invoked to process the response. Asynchronous access essentially enables applications
to perform tasks concurrently while waiting for a response. Therefore, it should be used for better
performance if responses are often slow. Asynchronous web access is slightly more complicated than
synchronous access. You need to specify a callback method as one of the parameters in the BeginGet
Response() method. The call to BeginGetResponse() will return immediately. The .NET runtime
creates a separate thread that executes the callback method. The callback method should call EndGet
Response(), which will block the calling thread until a response arrives. Then a WebResponse object
associated with this asynchronous call operation is returned. Another object needed for asynchronous
access is a user-defined state object that distinguishes the request from other requests.

In the following example, as in the synchronous access case, a WebRequest object is created with a speci-
fied URL. Note that a RequestState object is used to pass the WebRequest object and WebResponse
object to the callback method. Here you have the freedom to define whatever class will do the job. Then
the BeginGetResponse() method of the WebRequest object is called with two parameters: a delegate
that points to the callback method (listed below) and the RequestState object:

WebRequest myWebRequest = WebRequest.Create(“http://google.com”);
myRequestState = new RequestState(); //Assuming we have defined a RequestState
class that contains a WebRequest property and a WebResponse property
myRequestState.request = myWebRequest;
//Get request asynchronous result
//The first parameter is an AsyncCallBack delegate to be called when this operation
is over
//The second parameter is user-defined object that distinguishes this request
IAsyncResult asyncResult = (IAsyncResult)myWebRequest.BeginGetResponse(

new AsyncCallback(MyCallback), myRequestState);
....

The following snippet is the corresponding callback method:

private void MyCallback(IAsyncResult ar)
{
myRequestState = (RequestState)ar.AsyncState; //Get the state object
WebRequest webRequest = myRequestState.request; //Get the WebRequest object of

this call

myRequestState.response = webRequest.EndGetResponse(ar); //Complete the
asynchronous call, return the response

170

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 170

Stream responseStream = myRequestState.response.GetResponseStream(); //Ready to
read
...
}

The advantage of the asynchronous access method is that your main thread does not need to wait until
the HTTP response arrives, which may take from hundreds of milliseconds to even a few seconds,
depending on many factors on the Internet. You can perform a GUI update or other tasks while waiting
for the response. Note that you can also read the stream asynchronously.

While using the WebRequest and WebResponse classes, you might want to check whether a
WebException or NotSupportedException exception has been raised while accessing object proper-
ties and methods. You need to add a try...catch block for the GetResponse() and
BeginGetResponse() methods to catch those exceptions.

An Example of Web Access
The form class (shown in Figure 7-2) demonstrates both synchronous and asynchronous access to a web
page. The form has a left softkey menu bar (Connect!) and right softkey menu bar (Exit). In addition, a
combo box right above the left softkey menu bar enables the user to select Sync or Async for the desired
web access method. The web response is displayed in a text box. When a user selects a method on the
combo box and selects the Connect menu bar, the corresponding operation will be performed and raw
page text will be displayed on the screen. A progress bar next to the combo box is used to indicate that
the operation is in progress (although it does not strictly follow the exact progress).

The following code shows the method of the Connect menu bar. Depending on the value of the combo
box cbxConnectMethod, either an asynchronous or a synchronous connection will be established:

private void menuItem1_Click(object sender, EventArgs e)
{

progressBar1.Value = 0;
if (cbxConnectMethod.SelectedIndex == 1) AsyncGet();
else SyncGet();
return;

}

The following example code shows the asynchronous connection method. A callback method named
MyCallback() will be called (in a thread other than the main UI thread) when a response is received.
Access to the data stream of the established connection is also done asynchronously — a MyRead
Callback() callback method is called when specified amount of data is read into the buffer:

private void AsyncGet()
{

try
{

WebRequest myWebRequest =
WebRequest.Create(“http://www.yahoo.com”);

myWebRequest.Proxy = GlobalProxySelection.GetEmptyWebProxy();

myRequestState = new RequestState();

171

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 171

myRequestState.request = myWebRequest;

IAsyncResult asyncResult =
(IAsyncResult)myWebRequest.BeginGetResponse(

new AsyncCallback(MyCallback), myRequestState);

}
catch (WebException e)
{

MessageBox.Show(e.ToString());
}
catch (Exception e)
{

MessageBox.Show(e.ToString());
}

}

The following are two callback methods used for asynchronously processing the web response and read-
ing the response stream. The response stream is displayed in the TextBox txtContent.

private void MyCallback(IAsyncResult ar)
{

try
{

myRequestState = (RequestState)ar.AsyncState;
WebRequest webRequest = myRequestState.request;

myRequestState.response = webRequest.EndGetResponse(ar); //To check
the operation status, get the response object

Stream responseStream =
myRequestState.response.GetResponseStream();

myRequestState.responseStream = responseStream;

//Start to read the stream asynchronously into the buffer
IAsyncResult asynchronousResultRead =

responseStream.BeginRead(myRequestState.bufferRead,
0, RequestState.BUFFER_SIZE, new AsyncCallback(MyReadCallBack),

myRequestState);

}
catch (WebException e)
{

MessageBox.Show(e.ToString());
}
catch (Exception e)
{

MessageBox.Show(e.ToString());

}
}
private void MyReadCallBack(IAsyncResult ar)
{

172

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 172

try
{

myRequestState = (RequestState)ar.AsyncState;
Stream responseStream = myRequestState.responseStream;
int read = responseStream.EndRead(ar);
//Read the contents of the HTML page and then print to the console
if (read > 0)
{

myRequestState.requestData.Append(
Encoding.ASCII.GetString(myRequestState.bufferRead, 0, read));

txtContent.Invoke(new EventHandler(this.UpdateUI));
IAsyncResult asynchronousResult = responseStream.BeginRead(

myRequestState.bufferRead, 0, RequestState.BUFFER_SIZE, new
AsyncCallback(MyReadCallBack),

myRequestState);
}
else
{

//Close everything
myRequestState.bFinished = true;
txtContent.Invoke(new EventHandler(this.UpdateUI));

responseStream.Close();
myRequestState.response.Close();

}
}
catch (WebException e)
{

MessageBox.Show(e.ToString());
}
catch (Exception e)
{

MessageBox.Show(e.ToString());
}

}

The progress bar and the text box on the form need to be updated every time the asynchronous MyRead
Callback() method is called. The UpdateUI() method performs this task and will be called by the UI
control’s Invoke() method via an EventHandler delegate:

public void UpdateUI(object sender, EventArgs e)
{

if (myRequestState.bFinished)
{

progressBar1.Value = 100;
return;

}

txtContent.Text = myRequestState.requestData.ToString();

173

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 173

//Here we do a trick: we don’t update the progress bar according to the
real progress

if (progressBar1.Value < 80) progressBar1.Value += 20;
else progressBar1.Value = 100;
//long uiFinished = myRequestState.requestData.Length * 100 /

myRequestState.lTotalResponseLength;
//Why the content-length is -1?
//progressBar1.Value = (int)uiFinished; //Set the progress bar

}

The synchronous connection method will be blocked at the GetResponse) call until a response is
received. Access to the stream is also done synchronously:

private void SyncGet()
{

WebResponse webResponse = null;
Stream dataStream = null;
StreamReader dataReader = null;
try
{

WebRequest req = WebRequest.Create(“http://www.google.com”);

progressBar1.Value = 10; //Do the trick

//Because the URI indicates the HTTP protocol, the WebResponse
object is actually an HTTPWebResponse object

webResponse = req.GetResponse();

//Get the result from the response using a Stream object
dataStream = webResponse.GetResponseStream();
dataReader = new StreamReader(dataStream);
string str = dataReader.ReadToEnd();

progressBar1.Value = 100;

//Set the text to the response string
txtContent.Text = str;

}
catch (WebException webEx)
{

//If somehow a connection cannot be made, show
//the exception string
MessageBox.Show(webEx.ToString());

}
finally
{

//Always close the objects
if (webResponse != null)
{

dataReader.Close();
dataStream.Close();
webResponse.Close();

174

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 174

}
}

}

A data object is needed to manage an asynchronous I/O state. The object is needed when WebRequest
.BeginGetResponse() and Stream.BeginRead() are called. In this example, we define a Request
State class (shown below) to manage parameters and track request and response objects:

public class RequestState
{

//This class stores the state of the request
public const int BUFFER_SIZE = 1024;

public long lTotalResponseLength;
public bool bFinished = false;

public StringBuilder requestData; //Web response
public byte[] bufferRead; //The buffer
public WebRequest request; //Associating WebRequest
public WebResponse response; //Associating WebResponse
public Stream responseStream;

public RequestState()
{

bufferRead = new byte[BUFFER_SIZE];
requestData = new StringBuilder(“”);
request = null;
responseStream = null;
lTotalResponseLength = 0;

}
}

Figure 7-2 shows the display of both access methods.

Figure 7-2

The WebClient class that encapsulates web-based common file download and upload operations in the
.NET Framework is not available in the .NET Compact Framework.

175

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 175

TCP Servers and Clients
The TcpListener class in the System.Net.Sockets namespace provides a basic implementation of a
TCP server that works in blocking synchronous mode, meaning the calling thread will be blocked while
waiting for incoming TCP client requests. Once a TcpListener is created and started, you can check
whether there is any incoming TCP client request. Conversely, if you want to implement a TCP client,
you can use the TcpClient class or the Socket class (explained below).

The IPEndPoint Class
For TCP and UDP connections working on the transport layer of the TCP/IP stack, the two sides are
identified by an IP endpoint, a composite data structure consisting of an IP address and a port number.
For example, an HTTP web server usually runs an IP address of the hosting machine at port 80. The
IPEndPoint class implements an IP endpoint.

The IPAddress and IPHostEntry Classes
The .NET Compact Framework uses an IPEndPoint class to encapsulate properties and methods of an
IP endpoint. To construct an IPEndPoint object, you need an IPAddress object (which can be obtained
from an IPHostEntry object) and a port number. The procedure is as follows:

1. Use Dns.GetHostEntry() with a domain name to obtain an IPHostEntry object that contains
IP addresses of the given domain name.

2. Use an IPAddress array to get all the IPAddress objects from the IPHostEntry object.

3. Use one of the IPAddress objects (there may be just one) obtained from Step 2 and a port num-
ber to build the IPEndPoint object.

You can also create an IPEndPoint from a SocketAddress object (explained below). The following
code snippet shows a number of ways:

IPAddress ipadr = IPAddress.Parse(“66.102.7.147”); //Get the IP address from a
dotted-quad IP addresses
IPEndPoint ipe = new IPEndPoint (ipadr, 80); //Create an IP endpoint

IPHostEntry addresses = Dns.GetHostEntry(“www.msn.com”);
IPAddress[] ipadrs = addresses.AddressList;
IPAddress ipadr = ipadrs[0]; //Get the first element of the address array
IPEndPoint ipe = IPEndPoint (ipadr, 80);

IPEndPoint clonedIPEndPoint = (IPEndPoint) ipe.Create(socketAddress); //Assuming
socketAddress is a SocketAddress object

The IPAddress object provides several public static fields for well-known IP addresses for both Ipv4
and Ipv6:

❑ IPAddress.Any— 0.0.0.0

❑ IPAddress.Broadcast— 255.255.255.255

176

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 176

❑ IPAddress.Loopback— 127.0.0.1

❑ IPAddress.None— 255.255.255.255

❑ IPAddress.IPv6Any— 0:0:0:0:0:0:0:0 (::)

❑ IPAddress.IPv6Loopback— 0:0:0:0:0:0:0:1 (::1)

❑ IPAddress.IPv6None— 0:0:0:0:0:0:0:0 (::0)

You can convert an IPAddress object into a byte array, representing the 4 bytes of an IPv4 address or the
6 bytes of an IPv6 address, as follows:

Byte[] ipbytes = IPAddress.GetAddressBytes();
//To obtain a dotted-quad value of an IPAddress object
ipr.ToString();

Network and Host Byte Order Conversion
A common task in network application development is converting data into network byte order before
sending it to the network, as computers on the network may have a different architecture: either big-
endian such as Sun Sparc processors on which high-order bytes are stored at low-memory addresses, or
little-endian such as Intel x86 processors on which high-order bytes are stored at high-memory
addresses. For example, an integer of 4 bytes — byte 3, byte 2, byte 1, byte 0 — is stored in memory as
follows:

❑ Big-endian:

❑ Base address — Byte 3

❑ Base address + 1 — Byte 2

❑ Base address +2 — Byte 1

❑ Base address +3 — Byte 0

❑ Little-endian:

❑ Base address — Byte 0

❑ Base address + 1 — Byte 1

❑ Base address +2 — Byte 2

❑ Base address +3 — Byte 3

Computer networks are historically big-endian, so little-endian computers, including most PCs, must
perform the byte order conversion for network communication. Both IP header data and payload data
must be converted before a packet is generated. You probably have used Windows socket functions such
as htons(), htonl(), ntohs(), and ntohl() to convert short and long values between the host byte
order, which is little-endian, and the network byte order, which is big-endian. If the computer is big-
endian, these functions will simply return the parameters. In the .NET Compact Framework, these can
be done using IPAddress.HostToNetworkOrder() and IPAddress.NetworkToHostOrder(). These
static methods can perform conversion for short (Int16), int (Int32), and long (Int64) values:

177

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 177

short x = 256; //x is 0x0100 in hexadecimal on an Intel computer
short networked_x = IPAddress.HostToNetworkOrder(x); //network_x is 0x0001
short y = IPAddress.NetworkToHostOrder(networked_x); //y is 0x0100, the same as x

The TcpListener and TcpClient Classes
The TcpListener and TcpClient classes can be used to build a simple TCP-based network application
with a pluggable protocol that does not require fine-grain controls, such as online chat room and instant
messaging applications. Smartphone applications are likely to use TcpClient rather than TcpListener
because in most cases the Smartphone application acts as a client to access services on a remote server,
not the other way around. However, if you are building a peer-to-peer application that acts as both a
client and a server to communicate with applications on other devices, then a TcpListener is needed to
wait, accept, and process incoming requests.

There are two ways to create a TcpListener object. One method is to use an IPAddress object and a
port number; the other method is to use an IPEndPoint object as the only parameter. The following
shows an example of using IPAddress to create a TcpListener object:

IPAddress localAddress = IPAddress.Parse(“127.0.0.1”); //IP address
Int port = 4400; //Port number
TCPListener tcpServer = new TCPListener(localAddress, port); //The TCP server will
listen at port 4400

The following is an example of using IPEndPoint to create a TcpListener object:

//Another way to create a TcpListener object
IPEndPoint ipe = new IPEndPoint(localAddress, port);
TCPListener tcpServer = new TCPListener(ipe);

Once the TcpListener is started, it is ready to accept incoming TCP connection requests, which will be
queued while waiting for the server to process. You can use the AcceptTcpClient() method or the
AcceptSocket() method to accept an incoming request by dequeueing a connection request from the
queue. Note that both of these methods will block until a pending connection request is present.

The AcceptTcpClient() method will return a TcpClient object, whereas the AcceptSocket()
method will return a Socket object. Generally, you would use a Socket object if you want to have fine-
grain control over the TCP connection. Conversely, if you just want to send and receive data over the
connection and don’t want to bother with the low-level details of the socket, use the TcpClient object
instead.

Then a NetworkStream object can be obtained for reading and writing. The Read() method of the
NetworkStream class will block until data is available:

Public int Read(byte[] buffer, int offset, int size);

Then the read operation will read as much data as is available, up to the number of bytes specified by
the size parameter. The Read() method returns the number of bytes being read. If the other side closes
the connection and all data has been read, the method returns 0 immediately. You can use the
DataAvailable property of the NetworkStream class to avoid the blocking; before a read operation,
check to see whether DataAvailable is true or false.

178

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 178

The following code shows how a connection is handled. The AcceptTcpClient() call blocks until a
connection request arrives. You can use the Pending() method to determine whether there are connec-
tion requests:

tcpServer.Start();
TcpClient tcpClient = tcpServer.AcceptTcpClient(); //The call blocks until a
connection request arrives
NetworkStream ns = tcpClient.GetStream();

//Now we can read and write the network stream
//Write an encoded data to the network stream
string hello = “Hello From Server”;
byte[] data = System.Text.Encoding.ASCII.GetBytes(hello);
ns.Write(data, 0, data.Length);

//Read from the network stream
byte[] buffer = new byte[1024];
//Read all data until the other side closes the connection
while((size = ns.Read(buffer, 0, buffer.Length)!=0) {
//Use the received data
string message = System.Text.Encoding.ASCII.GetString(buffer, 0, size);
...

}
ns.Close();
tcpClient.Close();
...
tcpServer.stop(); //Stop the server when needed

As with many other network classes, the TcpListener and TcpClient methods throw a System
.Net.Sockets.SocketException.

To avoid the blocking calls, you can use a method called Pending() of the TcpListener class to check
whether there are queued incoming connection requests. If so, the connection request can be processed;
otherwise, the server code can do something else or wait for some specified time and poll again:

if(tcpServer.isPending())
{
TcpClient tcpClient = tcpServer.AcceptTcpClient();
NetworkStream ns = tcpClient.GetStream();
...

}
else
{
//Do something else

}

A frequently used pattern for network servers is to create a thread for each incoming connection request;
thus, the main thread of the server code does not need to block while processing a connection request.
The following example shows a portion of the TCP server code. Each incoming connection request will
be processed in a WorkerThreadProc() method of a user-defined ThreadWithState object named
worker:

179

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 179

try
{
//Create the TcpListener object at port 4400
IPAddress ipaddr = IPAddress.Parse(“127.0.0.1”);
IPEndPoint ipe = new IPEndPoint(ipaddr, 4400);
tcpServer = new TcpListener(ipe);
tcpServer.Start();
while (true)
{
//Once we see an incoming message, process it in another thread
//leaving the current server thread for other incoming messages
if (tcpServer.Pending())
{
ThreadWithState worker = new ThreadWithState(myForm);
Thread t = new Thread(new ThreadStart(worker.WorkerThreadProc));
t.Start();

}
Thread.Sleep(200);

}
}
catch (SocketException ex)
{
MessageBox.Show(ex.ToString());

}

An Example of TcpListener and TcpClient
This section presents a simple ping-pong application using TcpListener and TcpClient. This section
shows only part of the code; to read all the code for this example, download the sample project from the
book’s website (the TCPDemo project under Chapter 7). The protocol works as follows:

1. The server starts and waits at port 4400.

2. A client starts and connects to port 4400 of the given server address.

3. The server accepts the client and sends the message “Ping From Server.”

4. The client receives the ping message and replies with the pong message “Pong From Client.”

5. The client closes the connection to the server.

The TCP Client
As shown in Figure 7-3, the UI of the client is quite simple. A label is used to display the server’s mes-
sage. Two soft key menu bars, Start Client and Exit, are used to initiate a TcpClient and connect to the
server, and to exit the application, respectively. All the major work is done when the Start Client menu
bar is clicked. Once it starts to receive messages from the server, the client always checks whether the
ping message is present, as it is an indication the client can close the connection and start to send a pong
message.

180

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 180

Figure 7-3

The TCP client code uses a hard-coded IP address, 192.168.0.188, to specify the TCP server IP
address. When you run the code, change this to the IP address of the machine that you will use to run
the TCP server application, which is a desktop application:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.IO;

using System.Net;
using System.Net.Sockets;

namespace TCPDemo
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}

private void menuItem1_Click(object sender, EventArgs e)
{

TcpClient myClient = null;
NetworkStream ns = null;
try
{

int buffer_len = 1024;
int size = 0;
byte[] buffer = new byte[buffer_len];
byte[] res = System.Text.Encoding.ASCII.GetBytes(“Pong From

Client\r\n”);
int res_len = res.Length;

//Get an IPEndpoint object of the remote TcpListener server

181

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 181

//Assuming we know the IP address and port number of the server
IPAddress ipaddr = IPAddress.Parse(“192.168.0.188”);

//Alternatively, you can use Dns.Resolve() if you know the domain
name of the server

//IPAddress ipaddr = Dns.Resolve(“www.contoso.com”).AddressList[0];
IPEndPoint ipe = new IPEndPoint(ipaddr, 4400);

myClient = new TcpClient();
myClient.Connect(ipe);
ns = myClient.GetStream();
//Read server’s “Ping” message
while ((size = ns.Read(buffer, 0, buffer_len)) > 0)
{

string response = Encoding.ASCII.GetString(buffer, 0, size);
string newText = lblContent.Text + response;
lblContent.Text = newText;
//Once receiving “Ping From Server”, break the read and send a

reply
if (newText.IndexOf(“Ping From Server”) >= 0) break;

}
ns.Write(res, 0, res_len);

}
catch (SocketException ex)
{

MessageBox.Show(ex.ToString());
}
catch (IOException ex)
{

MessageBox.Show(ex.ToString());
}
finally
{

ns.Close();
myClient.Close();

}
}

private void menuItem2_Click(object sender, EventArgs e)
{

Application.Exit();

}
}

}

The TCP Server
The TCP server is a desktop application running on the .NET Framework. It also has a UI to display the
messages from all clients. Two buttons are added: Start/Stop Server and Exit. The first enables the user
to start and stop the TCP server. Once the server is started, you will see only Stop Server on the button.
Clicking the Exit button will terminate the application. The main thread is the UI thread handling the
form. The TCP server’s operations, including creating the TcpListener object, starting the server, and

182

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 182

listening for a connection request, are performed in another thread. Once a connection request arrives, a
third thread (called a worker thread) is created to handle this specific request. Many worker threads can
be serving connection requests simultaneously. Figure 7-4 depicts the three types of threads used in the
TCP server.

Figure 7-4

The basic construction of a thread is to create a ThreadStart delegate that refers to a method. Then the
method will be executed in the thread when the Invoke() method of the Thread class is called. The fol-
lowing code shows an example:

using System.Threading;
...
class Worker
{
ThreadProc()
{
...
}

}
ThreadStart myDelegate = new ThreadStart(WorkerClass.ThreadProc);
Thread myThread = Thread(myDelegate);
MyThread.Start(); //The new thread starts to run the ThreadProc() method
//Continue to do something in the main thread

This scheme enables you to create threads for different tasks and to control each thread’s priority.
However, you have to manage the thread state, and handle wait/sleep events for each of them. A simple
way to create multiple threads that are mainly in wait state and do work briefly is to use ThreadPool. A
ThreadPool manages a pool of worker threads that have been optimized for system performance. This
enables developers to focus on application tasks rather than thread scheduling. One of the advantages of
using ThreadPool is that a ThreadPool object takes into account the systemwide states in addition to
the process that owns the ThreadPool object. One process can have only one ThreadPool, which pro-
vides 25 threads by default. Because the ThreadPool class is an abstract class, you cannot create an
instance of it directly. To request a specific method to be handled by a thread in the ThreadPool, use the
ThreadPool.QueueUserWorkItem() method. The parameter to this method is a WaitCallBack dele-
gate pointing to the callback method you want to run:

UI Thread

TCP Server Thread

Worker Thread

Worker Thread

183

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 183

using System.Threading;
//Assuming a ThreadProc method is created in the class
//A WaitCallback delegate is needed
WaitCallback waitDelegate = new WaitCallback(ThreadProc);
ThreadPool.QueueUserWorkItem(waitCallback);

The callback method ThreadProc() will be called when a thread pool thread is available. There is no
need for a “Start()” method. To pass data to the callback method, you can create a data object (defined
yourself) and pass it to the QueueUserWorkItem() method:

Note that the server thread and the worker threads need to update the UI. You can do this by calling the
Invoke() method of the main form, using an InvokeDelegate object as the parameter:

//To update the UI in a worker thread, assuming an InvokeMethod is defined to
modify content of the controls on the form “myForm”
myForm.Invoke(new InvokeDelegate(InvokeMethod));

Figure 7-5 shows the TCP server form. In this case, the server has serviced two connection requests.

Figure 7-5

The Start/Stop Server routine in the form class starts or stops the TcpListener, depending on the cur-
rent status of the server. This routine is executed in the main UI thread. Once connected to a TcpClient
object, the server will send a Ping From Server message to the client; and the client will reply with a
Pong From Client message. The server’s worker thread will process the reply message:

private void button1_Click(object sender, EventArgs e)
{

if (button1.Text == “Start Server”) //Start the TcpListener server
{

button1.Text = “Stop Server”;
//Create the TcpListener object at port 4400
IPAddress ipaddr = IPAddress.Parse(“127.0.0.1”);
IPEndPoint ipe = new IPEndPoint(ipaddr, 4400);
myServer = new TcpListener(ipe);

184

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 184

myServer.Start();
//Start a server thread to process incoming messages
//It will block current UI thread
ThreadWithState server = new ThreadWithState(this);
Thread t = new Thread(new ThreadStart(server.ThreadProc));
t.Start();

}
else //Stop the server
{

myServer.Stop();
button1.Text = “Start Server”;

}
}

The form class also has a public method, UpdateLog(), for UI updates. It will be called by the server’s
worker thread to update the text box on the UI:

//This allows the worker thread to update the UI
public void UpdateLog(string data)
{

txtLog.Text += data;
}

The tasks of the server thread and worker thread are defined in the ThreadWithState class. It uses a
private field, myForm, to refer to the main Windows form class in the underlying namespace of this proj-
ect. Its ThreadProc() method is associated with the server thread that creates a worker thread that
executes WorkerThreadProc() whenever a request arrives. The worker thread does the real job by
obtaining the client stream, writing into it and reading from it. In addition, to enable the two threads to
update the UI, a delegate named InvokeDelegate is used, which is mapped to the InvokeMethod()
that will be run in the context of the main UI thread:

public class ThreadWithState
{

private MyForm myForm;
private string data = null;
private delegate void InvokeDelegate(); //We can update the text log

control using Control.Invoke()
//The constructor obtains the state information
public ThreadWithState(MyForm form)
{

myForm = form;
}

public void ThreadProc()
{

try
{

while (true)
{

if (myForm.myServer.Pending())
{

ThreadWithState worker = new ThreadWithState(myForm);

185

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 185

Thread t = new Thread(new
ThreadStart(worker.WorkerThreadProc));

t.Start();
}
Thread.Sleep(200);

}
}
catch (SocketException ex)
{

MessageBox.Show(ex.ToString());
}

}

private void WorkerThreadProc()
{

TcpClient client = null;
NetworkStream ns = null;
try
{

int size = 0;
int buffer_len = 1024;
byte[] buffer = new byte[buffer_len];

//Message to the client
string hello = “Ping From Server\r\n”;
byte[] res = System.Text.Encoding.ASCII.GetBytes(hello);
int res_len = res.Length;

//The server blocks here, waiting for a client
client = myForm.myServer.AcceptTcpClient();
//Here comes a client
ns = client.GetStream();
//Send our “Ping” message
ns.Write(res, 0, res_len);
//Receive “Pong” message from the client
while ((size = ns.Read(buffer, 0, buffer_len)) > 0)
{

data += System.Text.Encoding.ASCII.GetString(buffer, 0, size);
}

//Update UI using the delegate method
myForm.Invoke(new InvokeDelegate(InvokeMethod));

}
catch (SocketException ex)
{

MessageBox.Show(ex.ToString());
}
catch (IOException ex)
{

MessageBox.Show(ex.ToString());
}
finally
{

ns.Close();
client.Close();

186

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 186

}
}

//This method will run in the context of the UI thread
//Don’t place network processing code here because it will block UI update
private void InvokeMethod()
{

myForm.UpdateLog(“Connected to a client\r\n”);
myForm.UpdateLog(data);

}

}
}

This example doesn’t use an additional UI update thread in the TcpClient because its operations are
not sophisticated; you don’t need to update the UI while waiting for the server’s response. If you have
some more controls on the UI and would allow the user to access the controls while the TcpClient
blocks for the server’s response, you need to place the TcpClient-related tasks into a thread other than
the main UI thread (the form thread).

Network Sockets
The TcpListener class does not provide all the socket-level functionality, such as socket options, socket
polling, and selection. If a pluggable protocol requires more flexible control over network connections
on the socket level, a TcpListener does not suffice. For this purpose, you can use the System.Net
.Sockets.Socket class, which implements the Berkeley socket interface. TcpListener and TcpClient
are actually wrappers of a Socket class.

Unlike the TcpListener and TcpClient classes, which support only TCP, a Socket class can be associ-
ated with a list of protocol types defined in the Socket.ProtocolType enumeration. Some of the proto-
cols that may be used for Smartphone application development are TCP, UDP, IP, IPv6, ICMP, and Raw.
The Raw protocol type enables you to implement your own network layer protocols.

The Socket class provides both synchronous and asynchronous data transfer between two communica-
tion endpoints. Synchronous methods such as Send(), SendTo(), Receive(), and ReceiveFrom()
have their asynchronous counterparts: BeginSend() and EndSend(), BeginSendTo() and
EndSendTo(), BeginReceive() and EndReceive(), and BeginReceiveFrom() and
EndReceiveFrom().

The constructor of a Socket object requires three parameters:

public Socket(
AddressFamily addressFamily,
SocketType socketType,
ProtocolType protocolType);

AddressFamily indicates the address for the socket. Frequently used address families for Smartphone
development are AddressFamily.InterNetwork, AddressFamily.InterNetworkV6, and Address
Family.Irda.

187

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 187

SocketType could be one of the following widely used socket types: Dgram for UDP-based connection-
less, unreliable communication; Stream for TCP-based, connection-oriented, reliable, and duplex com-
munication; and Raw for protocol implementations that require the developer to handle IP headers. In
addition, the .NET Compact Framework supports two extended socket types: Rdm for connectionless but
reliable and in-order message delivery, and Seqpacket for connection-oriented and in-order message
delivery. Note that Steam socket types do not guarantee in-order delivery of messages.

As you can see, some socket types implicitly specify a ProtocolType. For example, a SocketType of
Stream indicates a ProtocolType of Tcp. Conversely, a SocketType of Dgram requires a ProtocolType
of Udp. If you pass an incompatible SocketType and ProtocolType, a SocketException will be raised.

The following examples create a TCP socket, a UDP socket, and a Raw socket that is used to implement
ICMP, respectively:

Socket serverSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tcp);
Socket serverSocket = new Socket(AddressFamily.InterNetwork, SocketType.Dgram,
ProtocolType.Udp);
Socket serverSocket = new Socket(AddressFamily.InterNetwork, SocketType.Raw,
ProtocolType.Icmp);

TCP Sockets
Once created, a TCP server socket can be bound to a specific IP address and a port number. Then the
server socket can start to listen at a local port using the Listen() method, and accept incoming connec-
tion requests using the Accept() method. The Accept() method returns a Socket object that you can
further use to send or receive data. A TCP socket can directly connect to a remote TCP server that is
listening.

TCP Server Sockets
The following example demonstrates the common procedure for creating a TCP server socket:

//Assuming an IPEndPoint object ipe is created
//Create the socket
Socket serverSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream,
ProtocolType.Tcp);
//Bind to a local endpoint
ServerSocket.Bind(ipe);
//Start to listen; this method does not block
ServerSocket.Listen(queueLength); //queueLength specifies the number of
connections that can be queued
//The server socket blocks waiting for an incoming request
Socket oneConn = serverSocket.Accept();

The Accept() method will block the calling thread until a connection request is received. Then a second
Socket object, oneConn in this example, is created. The initial socket object will continue to queue
incoming connection requests. Sending and receiving data over the connected socket is very similar to
common I/O operations, with one exception: a SocketFlags parameter can be used to control how the
data is sent over the socket. The following are two examples of the overloaded methods:

188

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 188

public int Send(byte[] buffer, SocketFlags flags);
public int Receive(byte[] buffer, SocketFlags flags);

The Send() operation does not send data to the network; it actually copies data from your buffer to the
system’s protocol stack buffer. Similarly, the Receive() operation does not directly pick up data from
the network interface; instead, it retrieves data from the protocol stack buffer to the user’s buffer. In both
cases, it is the underlying system’s task to eventually send data to the network.

The SocketFlags parameter can be a combination of several items of the SocketFlags enumeration,
including SocketFlags.None, SocketFlags.DontRoute, SocketFlags.OutOfBand, and so on.

The following sample code shows how to send and receive data synchronously over a connected socket
oneConn. When the data transfer is over, you need to shut down the socket first, and then close it.
The Socket.Shutdown() method will ensure that all data has been sent and received. The Socket
.Shutdown() method needs a parameter to indicate whether to disable sending, receiving, or both.
Then the Socket.Close() method can be called to release all resources used by the socket.

try{

Byte[] message = Encoding.ASCII.GetBytes(“Hello!”);
Byte[] buffer = new byte[1024];
OneConn.Send(message, SocketFlags.None);
OneConn.Receive(buffer, SocketFlags.None);
...
}
catch (SocketExcpetion ex)
{...
}
finally
{
oneConn.Shutdown(SocketShutdown.Both); //Shut down the connection first to

ensure all data has been sent
oneConn.Close(); //After shutting down the socket, close it

}

The .NET Framework has an additional method, Disconnect(), in the System.Net.Sockets
.Socket class, which disconnects the socket and provides an option for the developer to specify
whether the endpoint of the socket can be reused. The Socket class of the .NET Compact Framework
does not have this method.

In the previous section, you saw code for a desktop Windows TCP server application. Now let’s examine a
console-based TCP server also running on desktop Windows. This example is in the TCPConsoleServer
project of Chapter 7. The underlying class ServerSocket defines a field of the server socket and three
methods: StartServer(), ProcessConnection(), and ShutdownServer(). The StartServer()
method creates a server socket object that binds to a local address and port 4400 (you can choose any port
as long as it is not used by other programs), and then calls Socket.Accept() waiting for incoming con-
nections. When a connection request arrives (from desktop TCP software such as telnet or a Smartphone
TCP client, introduced below), a new thread will be created to handle this connection, denoted by a socket
object returned by the Accept() method. The ProcessConnection() method first sends a ping message.
Then, for each message it receives through the underlying socket, it replies with a pong message. This

189

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 189

sequence will continue until the other side shuts down the connection. If the client forcibly closes the con-
nection, a SocketException with an error code of 10054 (connection reset by peer) will be raised. The
ProcessConnection() method does not handle this exception because it is considered a normal case; the
socket will be shut down and closed without presenting any error message to the user. If, however, another
SocketException occurs, the user will see a warning message.

using System;
using System.Collections.Generic;
using System.Text;

using System.Net.Sockets;
using System.Net;
using System.IO;
using System.Threading;

namespace TCPConsoleServer
{

class ServerSocket
{

Socket serverSocket = null;
private void StartServer()
{

Console.WriteLine(“=============”);
Console.WriteLine(“TCP server @ “ + IPAddress.Any + “:port 4400”);
Console.WriteLine(“=============”);
Socket serverSocket = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);
serverSocket.Bind(new IPEndPoint(IPAddress.Any, 4400));
serverSocket.Listen(30);
while (true)
{

Socket oneSocket = serverSocket.Accept();
ThreadPool.QueueUserWorkItem(new

WaitCallback(ProcessConnection),oneSocket);
}

}
private void ProcessConnection(object o)
{

Socket oneSocket = (Socket)o;
byte[] buf = new byte[1024];
byte[] message = Encoding.ASCII.GetBytes(“Ping From Server”);
try
{

String remoteEnd = oneSocket.RemoteEndPoint.ToString();
Console.WriteLine(“Got a Client from {0}”, remoteEnd);
/*
Console.WriteLine(“SO_REUSEADDRESS:” + oneSocket.GetSocketOption(

SocketOptionLevel.Socket, SocketOptionName.ReuseAddress));
Console.WriteLine(“This application will timeout if Send does not

return within “ +
oneSocket.GetSocketOption(SocketOptionLevel.Socket,

SocketOptionName.SendTimeout));
*/

190

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 190

oneSocket.Send(message);
Console.WriteLine(“Send Ping to {0}”, remoteEnd);
int size = 0;
do
{

size = oneSocket.Receive(buf, 1024, SocketFlags.None);
if (size > 0)
{

Console.WriteLine(“\r\nReceived from {0}”, remoteEnd);
String tmp = Encoding.ASCII.GetString(buf, 0, size);
Console.Write(tmp);
//Check to see if a line of message is received
if(tmp.IndexOf(“\r\n”) >= 0)

oneSocket.Send(message); //Send “Ping” for each
received message

}
} while (size > 0);
Console.WriteLine();

}
catch (SocketException sockEx)
{

//Skip the exception that was raised when a client forcibly closes
the socket

if(sockEx.ErrorCode != 10054)
Console.WriteLine(“\r\nException Code: {0} : {1}”,

sockEx.ErrorCode,
sockEx.Message);

}
catch (IOException ioEx)
{

Console.WriteLine(ioEx.Message);
}
finally
{

oneSocket.Shutdown(SocketShutdown.Both);
oneSocket.Close();

}

}
private void ShutdownServer()
{

if (serverSocket.Connected)
{

serverSocket.Shutdown(SocketShutdown.Both);
serverSocket.Disconnect(true); //Close the server socket and allow

reuse of the port
}

}
static void Main(string[] args)
{

ServerSocket myServer = new ServerSocket();
myServer.StartServer();

}
}

}

191

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 191

Figure 7-6 shows an example of the output of the TCP console server.

Figure 7-6

TCP Client Sockets
A TCP client socket does not listen at a port. Once created, you need to call the Connect() method to
connect an endpoint. After that, you can use Send() and Receive() for data transfer, as shown in the
TCP server socket. The following code snippet shows a TCP client that is connected to a remote endpoint
and receives data:

//Assuming an IPEndPoint ipe has been created
mySock = new Socket(AddressFamily.InterNetwork,

SocketType.Stream, ProtocolType.Tcp);
mySock.Connect(ipe);
try
{

byte[] buf = new byte[1024];
int size = 0;
do
{

size = mySock.Receive(buf, 1024, SocketFlags.None);
if (size > 0)
{

//Consume received data
}

} while (size > 0);
}
catch (SocketException sockEx)
{

...}

For a Smartphone application with a GUI, it is common to place the data reception code of a socket into
a separate thread other than the main UI thread. This can be done using a ThreadPool. Sending data
from the socket is often triggered by some controls on the UI. For example, when a user selects some
local data and clicks a button, the click event handler of the button will start the Send operation.

192

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 192

The following is an example of a TCP socket client that communicates with the aforementioned TCP
console server. As shown in the first screen of Figure 7-7, the main UI features a windows form contain-
ing a text box showing the message log and two menu items, Send a Msg and Connection. The
Connection menu item has two submenu items, Connect and Exit. Note that in the .NET Compact
Framework, only the right menu of a windows form can have submenus. When the program starts, the
Send a Msg menu item is temporarily disabled. Users must first select Connection➪Connect to make a
connection to a predefined server. Once connected, they can start to send a message by clicking Send a
Msg. A new form will show on the screen (the second screen in Figure 7-7). Here users can enter a mes-
sage and send it to the server by clicking Send! Then the main form will show up again, and the message
log will be updated to show the user’s sent messages and the messages from the server (the third screen
in Figure 7-7).

Figure 7-7

The fields and the constructor of the SocketClient class are shown in the following code. The call has a
Socket member of mySock and two string members of ReceivedMessage and SendMessage. The dele-
gate member of the class is used by a socket thread that runs ReceiveProc()to update the UI control in
the context of the main UI thread through Control.Invoke():

public partial class SocketClient : Form
{

Socket mySock = null;
string ReceivedMessage = null;
string SendMessage = null;
private delegate void InvokeDelegate();

public SocketClient()
{

InitializeComponent();
mnuSendMessage.Enabled = false;

}
...

The Connect menu item event handler and the Connect() routine together make a connection to the
server. They are shown as follows. The Connect() method further uses a ThreadPool for the socket
ReceiveProc() method:

193

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 193

private void mnuConnect_Click(object sender, EventArgs e)
{

if (mySock!=null && mySock.Connected)
{

//Disconnect the socket
mySock.Shutdown(SocketShutdown.Both);
mySock.Close();
mnuConnect.Text = “Connect”;

}
else
{

mnuConnect.Text = “Disconnect”;
Connect();

}
}

private void Connect()
{

IPEndPoint ipe = new IPEndPoint(IPAddress.Parse(“192.168.0.188”),4400);
mySock = new Socket(AddressFamily.InterNetwork,

SocketType.Stream, ProtocolType.Tcp);
mySock.Connect(ipe);
if (mySock.Connected)
{

mnuSendMessage.Enabled = true;
ThreadPool.QueueUserWorkItem(new WaitCallback(ReceiveProc));

}
else
{

MessageBox.Show(“Cannot connect to server.”);
mnuConnect.Text = “Connect”;

}
}

The ReceiveProc() method performs a blocking Socket.Receive() that continuously reads a fixed
length of bytes into a buffer. As long as some data has been received in an iteration, the method will loop
for the next Socket.Receive() call. If no data is available (in the protocol stack buffer), then the
Socket.Receive() call will block. In some cases the other side closes the connection gracefully (i.e.,
outstanding data is sent successfully), and then Socket.Receive() returns 0, which will terminate the
loop:

private void ReceiveProc(Object stateInfo)
{

try
{

byte[] buf = new byte[1024];
int size = 0;
do
{

size = mySock.Receive(buf, 1024, SocketFlags.None);
if (size > 0)
{

194

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 194

ReceivedMessage = Encoding.ASCII.GetString(buf, 0, size);
//Update the UI
this.Invoke(new InvokeDelegate(InvokeMethod));

}

} while (size > 0);
}
catch (SocketException sockEx)
{

//Skip the exception that was raised when we close the socket while
still receiving

if(sockEx.ErrorCode != 10004)
MessageBox.Show(sockEx.ErrorCode.ToString() + “:” +

sockEx.Message);
}

}

private void InvokeMethod()
{

txtLog.Text += “\r\nThe Server said: “ + ReceivedMessage;
}

The SocketClient form must provide a method for the SendMessage form to update the message log
from within the SendMessage form. In addition, when a user clicks the Exit submenu, the ongoing
socket will be shut down for both sending and receiving, and then closed:

public void UpdateSendLog(String myMessage)
{

SendMessage = myMessage;
txtLog.Text += “\r\nI said: “ + SendMessage;

}
private void mnuExit_Click(object sender, EventArgs e)
{

try
{

if (mySock != null)
{

if (mySock.Connected)
{

mySock.Shutdown(SocketShutdown.Both);
mySock.Close();

}
}

}
catch (SocketException sockEx)
{

MessageBox.Show(sockEx.ErrorCode.ToString() + “:” +
sockEx.Message);

}

Application.Exit();
}

195

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 195

The SendForm class implements a separate Windows form that enables the user to enter a message and send
it out by selecting the Send! menu. Because when the SendForm is created it has been initialized with the
already established socket, the SendForm class does not create any new Socket object. The Socket.Send()
method blocks until all the data the user entered in the text box txtMessage has been sent:

namespace SocketClient
{

public partial class SendForm : Form
{

Socket mySocket = null;
Form returnForm = null;

public SendForm(Socket mainSocket, Form caller)
{

InitializeComponent();
mySocket = mainSocket;
returnForm = caller;

}

private void menuItem1_Click(object sender, EventArgs e)
{

try
{

mySocket.Send(Encoding.ASCII.GetBytes(txtMessage.Text+”\r\n”));
SocketClient parentForm = (SocketClient)returnForm;
parentForm.UpdateSendLog(txtMessage.Text);

}
catch (SocketException sockEx)
{

MessageBox.Show(“Cannot send message: “, sockEx.Message);
}
this.Close();
returnForm.Show();

}

private void menuItem2_Click(object sender, EventArgs e)
{

this.Close();
returnForm.Show();

}
}

}

You can test the TCP server and TCP client locally on the same machine. You need to run the server first
in Visual Studio or from the command line, and then launch the client on the emulator or a Smartphone
using Visual Studio.

UDP Sockets
So far this chapter has used TCP sockets in all the examples to show how to leverage the networking
classes in the .NET Compact Framework to build Smartphone applications. Now let’s look at the facility
for another popular type of transport: UDP.

196

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 196

Because UDP is a connectionless protocol, you don’t need to establish a connection before sending and
receiving data. Thus, no Socket.Connect() call is needed, saving some round-trip time between two
hosts. Unlike TCP, UDP does not provide a stream of unlimited length for endpoints. It is most often
used to send small packets. UDP is generally not reliable because it does not provide any acknowledg-
ment and retransmission mechanism; UDP packets may get lost silently without being noticed, which
may require the application layer to deal with the problem.

To create a UDP socket, you need to specify SocketType as Dgram and ProtocolType as Udp. Then you
can call SendTo() or ReceiveFrom() to send and receive data, respectively. You must pass the end-
point to SendTo() as the destination. For ReceiveFrom(), simply create an endpoint object, and pass it
to the ReceiveFrom() method by reference (using ref). The ReceiveFrom() method will capture the
remote endpoint into the object. This is useful when you don’t know who will be sending data to your
UDP endpoint. Both SendTo() and ReceiveFrom() will block (in the default blocking mode) until data
is sent or data is available. Note that for ReceiveFrom() used in UDP, the first queued datagram
received will be saved into the application buffer buf. If the datagram is too large to fit into the buffer,
extra data will be lost.

The following is an example of a UDP client sending packets to a UDP server:

IPHostEntry hostEntry = Dns.Resolve(Dns.GetHostName(“time.mycompany.com”));
IPEndPoint endPoint = new IPEndPoint(hostEntry.AddressList[0],123);

//The remoteEnd object is used to save the sender’s end point
IPEndPoint sender = new IPEndPoint(IPAddress.Any, 0);
IPEndPoint remoteEnd = (IPEndPoint)sender;

Socket mySocket = new Socket(IPAddress.AddressFamily,
SocketType.Dgram,
ProtocolType.Udp);

byte[] msg = Encoding.ASCII.GetBytes(“message to the server”);
byte[] buf = new byte[1024];
mySocket.SendTo(msg, 0, msg.Length, SocketFlags.None, endPoint); //Send data
mySocket.ReceiveFrom(buf, ref remoteEnd); //Receive data
s.Close();

A UDP server does not listen at a port for connection. However, it does need to bind to a local endpoint
before calling the ReceiveFrom():

IPHostEntry hostEntry = Dns.Resolve(Dns.GetHostName(“time.mycompany.com”));
IPEndPoint endPoint = new IPEndPoint(hostEntry.AddressList[0],123);

Socket mySocket = new Socket(IPAddress.AddressFamily,
SocketType.Dgram,
ProtocolType.Udp);

//Create an end point object to store remote end point in the ReceiveFrom() call
IPEndPoint sender = new IPEndPoint(IPAddress.Any, 0);

197

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 197

IPEndPoint remoteEnd = (IPEndPoint)sender;

s.Bind(endPoint); //Bind to local end point

byte[] buf = new Byte[1024];

s.ReceiveFrom(msg, ref remoteEnd); //Receive from anyone
s.Close();

Nonblocking Mode and Asynchronous Methods
In the .NET Compact Framework, a socket can be in either blocking mode or nonblocking mode. The
mode setting of a socket will affect the way a socket works. A socket is in blocking mode by default,
meaning that Connect(), Accept(), Send(), SendTo(), Receive(), and ReceiveFrom() will block
the calling thread until the call succeeds. Blocking mode has no effect on asynchronous operations such
as BeginSend() and EndSend(), BeginReceive() and EndReceive(), and so on. Note that if no data
is available for reading, then the Receive() and ReceiveFrom() methods will block until data is avail-
able or TCP times out. The Send() method and SendTo() method will block until all data in the buffer
is sent.

Nonblocking mode will make synchronous methods such as Send() and Receive() return immedi-
ately, in which case either it completes successfully or an exception is raised. In nonblocking mode, to
check whether a specific operation is finished, you have to poll the socket. Asynchronous socket meth-
ods such as BeginConnect()/EndConnect(), BeginSend()/EndSend(), and BeginReceive()/
EndReceive() are intrinsically nonblocking calls and do not require socket polling. The “Begin” calls
will return immediately, and the corresponding callback methods are executed in a separate thread
and will block on the “End” calls. Under the hood, these operations are implemented using Win32 I/O
completion ports, a system mechanism to use a pool of kernel threads to process asynchronous I/O
requests. You can consider asynchronous socket operations as a combination of threading and syn-
chronous operations.

The following code snippet is an example of an asynchronous send using BeginSend() and
EndSend(). The BeginSend() call requires a state object as the last parameter, which is used in the
AsyncCallback method MyAsyncSend. We obtain the underlying socket from the IAsyncResult
object. Of course, you can define your own socket state class to carry more information.

//In the message send routine
byte[] toSend = Encoding.ASCII.GetBytes(txtMessage.Text+”\r\n”);
mySocket.BeginSend(Encoding.ASCII.GetBytes(txtMessage.Text + “\r\n”),

0, toSend.Length, SocketFlags.None,
new AsyncCallback(MyAsyncSend), mySocket);

...
//The async send call back
private void MyAsyncSend(IAsyncResult ar)
{
Socket theSocket = (Socket)ar.AsyncState;
theSocket.EndSend(ar);
...

}

198

Chapter 7

12_762935 ch07.qxp 11/20/06 7:56 AM Page 198

If you are in nonblocking mode and no data is available in the protocol stack buffer, the Receive
method will complete immediately and throw a SocketException. You can use the Available prop-
erty to determine whether data is available for reading. In nonblocking mode, the send operations
may not send all the data in the buffer; thus, your application must check to see whether a resend is
necessary.

Smartphones are usually used to access some backend services on the Internet or an enterprise network.
Thus, a Smartphone network application is most likely a socket client instead of a server because it
merely connects and consumes a service, rather than provide a service. For low-volume traffic applica-
tions, the default blocking mode and synchronous operations within a single thread seem a good choice.
For high-volume traffic applications, asynchronous operations (thus nonblocking) in association with
asynchronous callbacks will generally lead to better performance. In both cases, the rule of thumb is that
the GUI thread should not block on socket calls.

Summary
This chapter described the networking support in .NET Compact Framework for Smartphone applica-
tion development. Our focus is clearly on the HTTP networking facility (web access) and socket classes,
as they are the most widely used networking software construct. In conjunction with the introduction to
the System.Net and System.Net.Sockets namespaces, you have gained some experience in multi-
threading for supporting responsive GUI and asynchronous socket operations. The chapter also dis-
cusses general design guidelines of using sockets, TCP clients, and TCP servers for Smartphone
networking applications.

The following chapter covers Smartphone messaging, including e-mail and SMS. You will also learn
how to leverage the .NET Compact Framework for Smartphone to develop applications accessing per-
sonal information management (PIM) data.

199

Networking

12_762935 ch07.qxp 11/20/06 7:56 AM Page 199

12_762935 ch07.qxp 11/20/06 7:56 AM Page 200

E-mail, SMS, and PIM Data

The ability to manage your e-mail, calendar, and tasks on-the-go is a must in today’s dynamic
business environment. The Outlook Mobile application that ships with Windows Mobile
Smartphone provides the applets that enable you to manage your e-mail, text messages, and per-
sonal information manager (PIM) data. In this chapter, you will learn how to interact with those
components in your application.

The chapter begins with an introduction to the Pocket Outlook Object Model (POOM), which pro-
vides a number of native APIs to programmatically access Pocket Outlook objects with unman-
aged code. The attention then turns to using the Microsoft.WindowsMobile.PocketOutlook
namespace in C#, which can be conceived of as the managed code implementation of the POOM.
Note that the Microsoft.WindowsMobile.PocketOutlook namespace is currently available
only in Windows Mobile 5.0 and is not supported in Smartphone 2002 and Smartphone 2003.

This chapter covers the following topics:

❑ An introduction to POOM and using POOM with C++

❑ The Microsoft.WindowsMobile.PocketOutlook namespace

❑ Writing e-mail applications with managed APIs

❑ Managing PIM data with managed APIs

❑ Writing text messaging applications with managed APIs

Pocket Outlook Object Model (POOM)
Microsoft provides a series of APIs for developers to access Microsoft Outlook from Windows CE-
based devices. The classes of those APIs are termed Pocket Outlook Object Model (POOM). In a
nutshell, POOM is a subset of the Outlook object model available on the desktop.

13_762935 ch08.qxp 11/20/06 8:24 AM Page 201

The goal of POOM is to provide a means for developers to manipulate e-mail and PIM data, such as con-
tacts, calendars, and tasks data.

Traditionally, POOM offers a family of COM-based APIs in native format. For C# or VB.NET developers,
it means you will have to use P/Invoke, or even switch to C++ to be able to utilize those Windows
native APIs.

The steps to access data in Outlook Mobile are as follows:

1. Establish a POOM session.

2. Create a reference to PIM item folders.

3. Retrieve the PIM item from the Pocket Outlook database.

4. Close the POOM session.

To establish a POOM session using C++, perform the following steps:

1. Declare an IPOutlookApp interface object by initializing an IPOutlookApp pointer. For
instance, the following code creates an empty IPOutlookApp pointer pMyPoomApp:

IPOutlookApp *pMyPoomApp = NULL;

2. Initialize the COM using the CoInitializeEx API:

CoInitializeEx(Null,0);

3. Create an Application COM object with the CoCreateInstance API:

CoCreateInstance(CLSID_Application, NULL, CLSCTX_INPROC_SERVER,
IID_IUnknown, (void **) &pUnknown);

4. Link the Application COM object to the IPOutlookApp interface object with the
QueryInterface method:

pUnknown->QueryInterface(IID_IPoutlookApp, (void **) &pMyPoomApp);

5. Log on to the Pocket Outlook COM server using the Logon() method:

pMyPoomApp->Logon(NULL);

After you complete these steps, an Outlook Mobile session pMyPoomApp is established. You can then cre-
ate a PIM item and retrieve the data from the corresponding Outlook Mobile data store.

The PIM data is organized into different folders in POOM. The default folders are defined in the
OlDefaultFolders enumeration, as follows:

enum OlDefaultFolders {
olFolderCalendar = 9, //Default Calendar folder
olFolderContacts = 10, //Default Contacts folder
olFolderTasks = 13, //Default Tasks folder
olFolderCities = 101, //Default Cities folder
olFolderInfrared = 102, //Default Infrared folder

};

202

Chapter 8

13_762935 ch08.qxp 11/20/06 8:24 AM Page 202

To access the PIM information, simply get the folder that contains the information you want. For instance,
if you are interested in finding out the items in the Tasks folder, you can use the GetDefaultFolder()
method of the IPOutlookApp interface to retrieve the olFolderTasks folder, as follows:

IFolder *pFolder;
pMyPoomApp->GetDefaultFolder(olFolderTasks, &pFolder);

Now that you have the Tasks folder, you can retrieve the items in the default Tasks folder by calling the
get_Items() method of the IFolder interface. First, however, you need to declare a generic PIM item
collection, as shown in the following sample code:

IPOutlookItemCollection *pGenericItems;
pFolder->get_Items(&pGenericItems)

In POOM, a task item is defined as an ITask object and is stored in the default Tasks folder, which is
exposed by the pGenericItems object. You can then manipulate task items by accessing the pGenericItems
object. For example, the following code lists all the task items:

//Declare a reference to ITask object
ITask *pTask;

//Get the total items in the Tasks folder
int len;
pGenericItems->get_Count(&len);

//Go through the items in the Tasks folder with a for loop
for (int i =0 ; i < len; i++) {

//Retrieve a Task item
pGenericItems->Item(i, &pTask);

}

As you can see, accessing PIM data using native POOM APIs is not difficult, although the process is a lit-
tle complicated. It also requires a developer to be familiar with C++ and Win32 API programming. The
good news is that a number of managed POOM APIs are shipped with the Windows Mobile 5.0 SDK
that greatly simplify your code and make your program easier to manage and understand.

This book focuses on managed code. You will learn how to use those new APIs in the following sections.
Note, however, that the managed APIs that ship with Windows Mobile 5.0 do not apply to previous plat-
forms and do not include all the functionality provided by POOM. For example, if you are writing a pro-
gram for a device running Windows Mobile Smartphone 2003, or if your application needs access to the
Infrared folder, which currently cannot be accessed through managed APIs, you will have to stick to the
POOM native APIs.

The WindowsMobile.PocketOutlook
Namespace

One of the greatest features introduced in Windows Mobile 5.0 is the Microsoft.WindowsMobile
.PocketOutlook namespace, which provides similar functions to POOM but in managed code. This
section summarizes what the namespace offers and how to use those managed APIs.

203

E-mail, SMS, and PIM Data

13_762935 ch08.qxp 11/20/06 8:24 AM Page 203

Note that the Microsoft.WindowsMobile.PocketOutlook namespace is not part of the .NET
Compact Framework. Therefore, you first need to add the reference to your application. To add a refer-
ence in a solution or project in Visual Studio 2005, click Project➪Add Reference. In the .NET tab of the
Add Reference dialog box, choose Microsoft.WindowsMobile.PocketOutlook, as shown in Figure 8-1.

Figure 8-1

The process of using the managed APIs in Microsoft.WindowsMobile.PocketOutlook is much sim-
pler than using the native POOM APIs, as illustrated here:

1. Create a new Outlook session:

OutlookSession aSession = new OutlookSession();

2. Access the PIM object. Once an Outlook session is created, it exposes five properties to enable
you to send e-mail, SMS messages, and PIM data:

❑ Appointments

❑ Contacts

❑ Tasks

❑ EmailAccounts

❑ SmsAccount

EmailAccounts and SmsAccount contain the accounts saved on the Outlook Mobile applet. You
will need those accounts to send e-mail and to send/retrieve text messages. The Appointments,
Contacts, and Tasks properties enable you to access those PIM folders. For example, the follow-
ing code will list all the tasks in the Tasks folder of Outlook Mobile and print the task subject using
the static Show() method of the MessageBox class:

TaskCollection taskItems = aSession.Tasks.Items;
foreach (Task t in taskItems) {

Messagebox.Show(t.subject);
}

204

Chapter 8

13_762935 ch08.qxp 11/20/06 8:24 AM Page 204

3. Release the Outlook session. Before closing your application, remember to release the resources
by calling the Dispose()method. This is necessary because the Microsoft.WindowsMobile
.PocketOutlook namespace is not part of the .NET Compact Framework; thus, the resources
cannot be collected by the garbage collector.

aSession.Dispose();

The managed APIs in the Microsoft.WindowsMobile.PocketOutlook namespace are easy to use.
You will learn the details for sending e-mail, accessing PIM data, and using text messaging in the next
three sections.

Creating E-mail Applications
with Managed APIs

The Outlook Mobile application that ships with Windows Mobile devices can manage both e-mail and
text messages. From the home screen of a mobile device, users can click Start➪Messaging➪Outlook
E-mail to enter the Outlook E-mail mobile application.

Users can create a new e-mail message by pressing the left soft key. If users are starting from scratch and
no e-mail accounts are associated with this application, they will need to add e-mail accounts by clicking
the right soft key and choosing Options➪New Account, as indicated in Figure 8-2 and Figure 8-3.

Figure 8-2

205

E-mail, SMS, and PIM Data

13_762935 ch08.qxp 11/20/06 8:24 AM Page 205

Figure 8-3

This will bring up the E-mail Setup wizard, which enables users to configure their name, e-mail address,
e-mail server address, and other e-mail options. In Figure 8-4, an e-mail account IMAP4 is set up with
the e-mail address byang@bsu.edu.

Once the e-mail accounts are configured, Outlook Mobile is ready to send and retrieve e-mail.

To write an e-mail application, you should start by establishing an Outlook Mobile session, as follows:

OutlookSession aSession = new OutlookSession();

The three basic elements of an e-mail application — the sender, the recipient, and the message — are all
defined in the Microsoft.WindowsMobile.PocketOutlook namespace. They are the EmailAccount
class, the Recipient class, and the EmailMessage class, respectively.

The EmailAccounts property of an OutlookSession class is defined as a collection of the EmailAccount
object. It contains all the e-mail accounts users have configured with the Outlook Mobile application. A
particular e-mail account can be identified either by index or by its name. For example, to use the second
e-mail account of the EmailAccounts property, you can declare an EmailAccount object as follows:

EmailAccount anEmailAcct = aSession.EmailAccounts[1];

206

Chapter 8

13_762935 ch08.qxp 11/20/06 8:24 AM Page 206

Figure 8-4

Alternatively, if you know the name of the e-mail account, you can refer to that account by name. The
following code declares an EmailAccount object anEmailAcct, which refers to the account name
IMAP4 in the Outlook Mobile application:

EmailAccount anEmailAcct = aSession.EmailAccounts[“IMAP4”];

The Recipient class has two properties: Address and Name. You can create a new recipient object by
passing the receiver’s name and e-mail address to the recipient constructor, as follows:

Recipient recv = new Recipient(“FirtName LastName”, “FLastName@somewhere.com”);

The EmailMessage class is the key managed API in an e-mail application. It exposes eight properties for
constructing an e-mail message: To, CC, Bcc, Attachments, Subject, Sensitivity, Importance, and
BodyText. Of course, you don’t have to use all of them to compose a new message. Just as you would
write an e-mail message in Outlook Mobile, you can simply fill those properties with the desired informa-
tion. For example, the following code creates a simple EmailMessage object that says hello to our readers:

EmailMessage mesg = new EmailMessage();

mesg.To.Add(recv);
mesg.Subject = “Hello”;
mesg.BodyText = “Dear readers, we hope you enjoy learning Smartphone programming”;

207

E-mail, SMS, and PIM Data

13_762935 ch08.qxp 11/20/06 8:24 AM Page 207

The last action is to send the e-mail out by calling the Send() method of the EmailAccount class, as
follows:

anEmailAcct.Send(mesg);

Depending on how the network and Outlook Mobile are configured on the device, the e-mail may be sent
out directly or users may have to wait until the synchronization is completed when the device is cradled.

Creating a Simple E-mail Application
The following simple e-mail application includes all the aforementioned pieces. It will send a simple
e-mail message to the editor of this book, Mr. John Sleeva.

Start a new Windows Mobile 5.0 device application in Visual Studio 2005, and name the project email1.
Figure 8-5 illustrates the simple UI. It contains only two menu items: The left soft key triggers the quit
event and the right soft key sends the e-mail.

Figure 8-5

Before you actually do the coding, don’t forget to add a reference to the Microsoft.WindowsMobile
.PocketOutlook namespace; otherwise, the following using statement will not even pass the compile:

using Microsoft.WindowsMobile.PocketOutlook;

Note also that you should always call the Dispose() method when you terminate the Outlook session.
Failure to do so may cause errors when you launch the application again.

208

Chapter 8

13_762935 ch08.qxp 11/20/06 8:24 AM Page 208

The following is the full listing of the sample code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
//Don’t forget to add a reference to Microsoft.WindowsMobile.PocketOutlook
using Microsoft.WindowsMobile.PocketOutlook;

namespace email1
{

public partial class Form1 : Form
{

//Declare an OutlookSession object aSession
OutlookSession aSession;

public Form1()
{

InitializeComponent();

//Create a Pocket Outlook session
aSession = new OutlookSession();

}

// When the left soft key is pressed, quit the application
private void menuItem1_Click(object sender, EventArgs e)

{
//Release the Pocket Outlook session
aSession.Dispose();

Application.Exit();
}

//When the right soft key is pressed, compose and send out email message

private void menuItem2_Click(object sender, EventArgs e)
{

//Assumes an account called IMAP4 exists
//Use email account IMAP4 as the sender
EmailAccount myAcct = aSession.EmailAccounts[“IMAP4”];

//Create a new EmailMessage object
EmailMessage mesg = new EmailMessage();

//Compose the body text of this email message
mesg.BodyText = “John, thanks a lot. We really appreciate it! “;

//Create a new recipient with name and email address
Recipient recv = new Recipient(“John Sleeva”, “JSleeva@wiley.com”);

//Add the recipient to the To field of the message

209

E-mail, SMS, and PIM Data

13_762935 ch08.qxp 11/20/06 8:24 AM Page 209

mesg.To.Add(recv);

//Send the message
myAcct.Send(mesg);

//Inform users the operation is finished
MessageBox.Show(“Done!”, “Notice”);

//Disable the send menu;
this.menuItem2.Enabled = false;

}
}

}

In the preceding example, an OutlookSession object, aSession, is declared as a property of the Form1
class. aSession is instantiated when a Form1 object is constructed. The right soft key click handler
menuItem2_click() creates the e-mail message and recipient and chooses the e-mail account IMAP4 as
the sender. After the Send() method is called, a MessageBox.Show() is called to inform users that the
action is performed. As mentioned earlier, this e-mail message may not be delivered directly. It really
depends on how users have configured their Outlook Mobile applications. One thing you do not want
users to do is to send the same e-mail message repeatedly by pressing the right soft key. Therefore, the
last line of the menuItem2_click()function disables the Send menu item to avoid duplicated e-mail
messages.

Creating an E-mail Application with Attachments
The sample application email1 illustrated how to send an e-mail message from an application, but
everything is hard-coded and it is not user friendly: Users don’t get to see the message and cannot even
modify it. What if users want to send an e-mail attachment? Furthermore, what about displaying a
graphic user interface that actually enables users to review and edit a message?

Adding an attachment to an e-mail message is not difficult to implement because the EmailMessage
class has an Attachments property. For instance, to attach a file myFile1 to an EmailMessage object
myMessage, first create a new Attachment object, attFile, from myFile1, and then insert the attach-
ment to the myMessage.Attachments by calling its Add() method:

//Create a new attachment where myFile1 is the filename
Attachment attFile = new Attachment (myFile1);

//MyMessage is an EmailMessage object
myMessage.Attachments.Add (attFile);

Although adding an attachment to an e-mail message is rather straightforward, dealing with filenames
can be tricky. To avoid potential human errors with the name of the file, it is suggested that you let users
select the file from a folder, rather than key in the name of the file. For example, if the attachment is an
image file, you can use a SelectPictureDialog object to pick the picture file.

SelectPictureDialog is a class in the new Microsoft.WindowsMobile.Forms namespace that ships
with Windows Mobile 5.0. Like the Microsoft.WindowsMobile.PocketOutlook namespace, the
Microsoft.WindowsMobile.Forms namespace is one of the new features in Windows Mobile 5.0 and

210

Chapter 8

13_762935 ch08.qxp 11/20/06 8:24 AM Page 210

is not part of the .NET Compact Framework. As a result, when using the classes in this namespace, you
need to add the reference to your project or solution file.

The following code snippet demonstrates how to use a SelectPictureDialog object to retrieve the
filename of a picture file:

using Microsoft.WindowsMobile.Forms;
...

SelectPictureDialog picDlg = new SelectPictureDialog();
picDlg.InitialDirectory = @”\Images”;

DialogResult result = picDlg.ShowDialog();

if (result == DialogResult.OK)
{

MessageBox.Show(picDlg.FileName,”Information”);
}

In the preceding code, a SelectPictureDialog object, picDlg, is first created. Then the directory dis-
played in the Select a Picture dialog box is set to \Images by specifying the InitialDirectory prop-
erty. The execution result of the Select a Picture dialog is passed to a DialogResult object. If the user
selects a picture, the DialogResult is equal to DialogResult.OK. The filename of the selected the pic-
ture can be retrieved by getting the FileName property of the Select a Picture dialog box.

How do you construct a user-friendly e-mail application user interface? You can certainly design your
own form, but a better solution would be to use the MessagingApplication class in the Microsoft
.WindowsMobile.PocketOutlook namespace.

The MessagingApplication class provides automation of the messaging application’s user interface.
The key function of this class is the static DisplayComposeForm() method, which is overloaded and
can be used to display an e-mail message form as well as an SMS message form. A typical way to
display an e-mail compose form is to pass an EmailAccount object and an EmailMessage object to the
DisPlayComposeForm() method, as follows:

//mesg is an instance of EmailMessage class
//myEmail is a reference to one of the email accounts
MessagingApplication.DisplayCompseForm (myEmail, mesg);

With the help of the Select a Picture dialog box and the MessagingApplication class, you can create an
enhanced version of an e-mail application. This application can enable users to select an image as an
e-mail attachment and will display the compose form on the screen.

Start a new Windows Mobile Smartphone application project and name it email2. Add references
to both the Microsoft.WindowsMobile.Forms namespace and the Microsoft.WindowsMobile
.PocketOutlook namespace. Then use the same code from application email1, except for the click
event handler of menuItem2.

When users click the Send menu, you need to first create a new Select a Picture dialog box. After the user
selects the picture, construct a new message and pass the filename of the picture to the e-mail message
attachment and display the compose form.

211

E-mail, SMS, and PIM Data

13_762935 ch08.qxp 11/20/06 8:24 AM Page 211

The following example shows the complete code of application email2:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

//Need to add references to the following two namespaces
using Microsoft.WindowsMobile.Forms;
using Microsoft.WindowsMobile.PocketOutlook;

namespace email2
{

public partial class Form1 : Form
{

OutlookSession aSession;

public Form1()
{

InitializeComponent();
aSession = new OutlookSession();

}

// When the left soft key is pressed, quit the application
private void menuItem1_Click(object sender, EventArgs e)
{

//Release the Mobile Outlook session
aSession.Dispose();

Application.Exit();
}

//When the right soft key is pressed, compose and send out email message
private void menuItem2_Click(object sender, EventArgs e)
{

//Create a new Select Picture dialog box
SelectPictureDialog picDlg = new SelectPictureDialog();
picDlg.InitialDirectory = @”\Images”;

//Do not forward a Digital Rights Management protected file
picDlg.ShowForwardLockedContent = false;

//Get the dialog result
DialogResult result = picDlg.ShowDialog();

//After the user selects a picture
if (result == DialogResult.OK)
{

//Create a new email message
EmailMessage mesg = new EmailMessage();
mesg.Subject = “Email with Picture Attachment”;

212

Chapter 8

13_762935 ch08.qxp 11/20/06 8:24 AM Page 212

mesg.BodyText = “Open the attachment. It is not a virus. “;
//Create and add a new recipient
Recipient resv = new Recipient(“John Doe”,”JDoe@somewhere.com”);
mesg.To.Add(resv);

//Add the picture to the attachment
Attachment picture = new Attachment(picDlg.FileName);
mesg.Attachments.Add(picture);

//Use the default email account
EmailAccount myEmail = aSession.EmailAccounts[0];

//Display the email compose form
MessagingApplication.DisplayComposeForm(myEmail, mesg);

}
}

}
}

After you compile and run the application, a Select a Picture dialog box appears after users click the
right soft key, as shown in Figure 8-6. Assuming the Waterfall.jpg file is selected, the e-mail compose
form then appears, as illustrated in Figure 8-7.

Figure 8-6

213

E-mail, SMS, and PIM Data

13_762935 ch08.qxp 11/20/06 8:24 AM Page 213

Figure 8-7

Note that this is a compose box. Users can still edit the distribution list, the topic of the message, and the
body text. Moreover, as displayed in Figure 8-8, the menu options of the compose form give users addi-
tional options, such as adding recipients and other attachments.

When users choose the Send menu item, the e-mail message is placed in the outbox of the Outlook
Mobile application. To verify the results, from the home screen of the Smartphone device, click Start➪
Messaging➪Outlook Email➪Menul➪Folders, You will see a new message is added to the Outbox folder.
Click the Outbox folder to further review the summarized information of the e-mail message. The
screenshots of Outlook’s E-mail Outbox folder are displayed in Figure 8-9 and Figure 8-10.

214

Chapter 8

13_762935 ch08.qxp 11/20/06 8:24 AM Page 214

Figure 8-8

Figure 8-9

215

E-mail, SMS, and PIM Data

13_762935 ch08.qxp 11/20/06 8:24 AM Page 215

Figure 8-10

Accessing PIM Data
Users are interested primarily in three major types of PIM data: appointments, contacts, and tasks. This
section describes a simple application that can populate a ListView control with all the appointments in
the calendar application.

Create a new Windows Mobile 5.0 Smartphone application and name it GetCalendar. On the Form
Designer, change the name of the form to MyCalendar. Then drag and drop a ListView control onto the
MyCalendar form, and rename the ListView control CalView.

When using a ListView control in Smartphone, you should always keep in mind that the viewable area
is fairly small, so it is not a good practice to add too many columns. In the example, two columns will
be shown on the screen: date and subject. Because the default behavior of a ListView control displays
only one column in large icons, you need to change the default view property of a ListView control to
Details, as demonstrated in Figure 8-11.

Next, you need to edit each column’s header. Click Columns in the property editor and add date and
subject columns in the ColumnHeader Collection Editor window, as shown in Figure 8-12.

216

Chapter 8

13_762935 ch08.qxp 11/20/06 8:24 AM Page 216

Figure 8-11

Figure 8-12

217

E-mail, SMS, and PIM Data

13_762935 ch08.qxp 11/20/06 8:24 AM Page 217

After finishing the design of the ListView control, you can make some changes to the user interface to
make it friendlier, if not more appealing. In Figure 8-13, a Quit menu item is added on the left side and a
Menu menu item is added to the right.

To make it simple, the application will display all the events in the calendar book whenever the
MyCalender form is loaded. This requires adding an event handler to the form’s onload event. The fol-
lowing code illustrates how to export the events to the GetCalendar application:

...
Using Microsoft.WindowsMobile.PocketOutlook;
...

private void MyCalendar_Load(object sender, EventArgs e)
{

//Establish a new Outlook session
OutlookSession CalSess = new OutlookSession();

//Get the collection of appointments by calling outlookSession.Appointments.Items
AppointmentCollection CalCol = CalSess.Appointments.Items;

//Add each appointment to the ListView
foreach (Appointment apt in CalCol)

{
//Create one new ListView object for each appointment

ListViewItem aLVItem = new ListViewItem();

//Make the appointment date the text property of this ListView
aLVItem.Text = apt.Start.Date.ToString();

//Make other appointment property as the subitem of this ListView
aLVItem.SubItems.Add(apt.Subject);

//You can also add a field for the appointment location
//aLVItem.SubItems.Add(apt.Location);

//Add ListViewItem to the ListView
CalView.Items.Add(aLVItem);

}
}

This code first creates a new OutlookSession object and then retrieves the collection of the
Appointment objects. In the for loop, a new ListViewItem is created for every Appointment object.
The start date property of an Appointment object is passed to the Text property of the ListViewItem,
and the subject property of the Appointment object is added to the SubItems of the ListViewItem
object. By doing so, the start date will be the first column of a ListViewItem and the subject will be
the second column of the ListViewItem. At the end of the for loop, simply add the ListViewItem
object to the Items member of the ListView, which corresponds to adding a new row to the ListView
control.

Figure 8-14 shows a sample runtime result. The three events listed in the figure are exactly the same
appointments stored on the Windows Mobile 5.0 device emulator using the calendar program (choose
Start➪Calendar). Of course, when you test the code on your device or emulator, you won’t be able to see
anything if the Calendar application does not contain any appointments.

218

Chapter 8

13_762935 ch08.qxp 11/20/06 8:24 AM Page 218

Figure 8-13

If a user has kept many events in her or his calendar, especially some recurring events such as weekly
meetings and birthdays, the sample code will easily use up the memory resources and provide a long list
of information that may or may not be useful. Or, in another case, if a user is trying to search all the
appointments he or she has with a certain customer, it will be desirable to get a set of appointments with
certain properties.

The PimItemCollection class in the PocketOutlook namespace, which is the base class of the
Appointment, Contact, and Task collection, offers a Restrict method that enables users to search
items in a collection. For example, the following code will pull out only those appointments with the
Categories property set to wrox:

string query = “[Categories] == wrox”;
AppointmentCollection wroxAppt = aOutlookSession.Appointment.Items.restrict(query);

219

E-mail, SMS, and PIM Data

13_762935 ch08.qxp 11/20/06 8:24 AM Page 219

Figure 8-14

There are two things to pay attention to when using the Restrict function. First, you need to put the
name of the property in brackets. Second, the Restrict method requires a value in order for the field of
the searching property to work. This is tricky when you use the <> evaluator. For example, suppose you
wanted to retrieve appointments that are not located at Ball Sate University. You can certainly use a
query string such as the following:

string query = “[Location] <> Ball State University”

This search will not select those appointments with an empty location field even though their locations
are not set to Ball State University.

Using SMS
Text messaging is no doubt one of the hottest mobile applications. It can be used to keep in touch with
your buddies and to vote for your favorite American Idol contestants. There are also some applications
that can destroy a lost mobile device by sending out specially coded text messages.

The Microsoft.WindowsMobile.PocketOutlook namespace makes SMS programming a simple and
easy process.

220

Chapter 8

13_762935 ch08.qxp 11/20/06 8:24 AM Page 220

To send a message, you need to create an instance of the SmsMessage class. Then you can specify the
recipient and the message, very similar to sending an e-mail message. The following snippet of code
will send a text message to the phone number 1-866-436-5702 and vote for the number 2 contestant of
American Idol:

OutlookSession aSession = new OutlookSession();
SmsMessage sendMsg = new SmsMessage(“18664365702”, “Vote to Idol #2”);
aSession.SmsAccount.Send(sendMsg);
aSession.Dispose();

As illustrated in the preceding code, you still need to start by creating a new OutlookSession object.
You can then construct a new SMS message by feeding the recipient’s phone number and the message to
the constructor of the SmsMessage class directly:

SmsMessage sendMsg = new SmsMessage(“18664365702”, “Vote to Idol #2”);

Alternatively, you can construct each component of the SmsMessage one at a time, as follows:

SmsMessage sendMsg = new SmsMessage();
Recipient recv = new Recipient(“18664365702”);
sendMsg.Body = “Vote to Idol #2”;
sendMsg.To.Add (recv);

The Send() method of the SmsAccount class is responsible for delivering the SMS message. In POOM,
each Outlook session can have more than one e-mail account, but only one SMS message account.
It makes sense because the address of a SMS account is usually the telephone number, and each
Smartphone device has one unique phone number. Therefore, in SMS applications, you do not have to
specify which account you are going to use, as you do in e-mail applications. Rather, use the default
SmsAccount object of the OutlookSession object.

If you want users to see the SMS message compose form, call the static DisplayComposeform()
method of the MessagingApplication class:

MessagingApplication.DisplayComposeForm(sendMsg)

The Microsoft.WindowsMobile.PocketOutlook namespace also provides a MessageInterceptor
class that enables you to intercept a text message. To receive a text message, you must create a new
instance of the MessageInterceptor object and register an event handler to handle the event when a
new text message is received. The following code demonstrates how this can be done:

//Create a new instance of SMS interceptor when form is loaded
private void Form1_Load(object sender, EventArgs e)
{

msginterceptor = new MessageInterceptor();
msginterceptor.InterceptionAction = InterceptionAction.NotifyAndDelete;
msginterceptor.MessageReceived += new

MessageInterceptorEventHandler(msginterceptor_MessageReceived);

}

//Handling received message

221

E-mail, SMS, and PIM Data

13_762935 ch08.qxp 11/20/06 8:24 AM Page 221

void msginterceptor_MessageReceived(object sender,
MessageInterceptorEventArgs e)

{
SmsMessage smsMsg = (SmsMessage)e.Message;
string fullText = “Message From: “+smsMsg.From.Name;
fullText += (“ at “+ smsMsg.Received.TimeOfDay.ToString());
fullText += (“ and the message is: “+smsMsg.Body);
MessageBox.Show(fullText, “New Text Message !”);

}

In the Form1_Load()method, a new MessageInterceptor is created and the InterceptionAction
is defined as NotifyAndDelete, which means the text message received will not be saved to the
inbox folder of the Outlook Mobile text messaging application. Then the method msginterceptor_
MessageReceived is registered as the event handler when SMS messages are received.

In the event handler, the event argument e is cast to the SmsMessage type. Information such as the name
of the sender, the received time, and the body text can then be retrieved from the SmsMessage objects.

The following example demonstrates how to write an application that can send and receive text mes-
sages. Start a new Windows Mobile Smartphone device application and name the project sms1. Add the
Microsoft.WindowsMobile.PocketOutlook namespace to the project, and then add two menu items
to the form, Send and Quit, as shown in Figure 8-15. When a user presses the Send button, the applica-
tion can display an SMS compose form with pre-composed information filled in.

Figure 8-15

222

Chapter 8

13_762935 ch08.qxp 11/20/06 8:24 AM Page 222

Following is the full code of this simple application:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using Microsoft.WindowsMobile.PocketOutlook;
using Microsoft.WindowsMobile.PocketOutlook.MessageInterception;

namespace SMS1
{

public partial class Form1 : Form
{

private MessageInterceptor msginterceptor;
private OutlookSession aSession;

public Form1()
{

InitializeComponent();
aSession = new OutlookSession();

//Create a new instance of SMS interceptor
msginterceptor = new MessageInterceptor();
msginterceptor.InterceptionAction = InterceptionAction.NotifyAndDelete;
msginterceptor.MessageReceived += new

MessageInterceptorEventHandler(msginterceptor_MessageReceived);

}

//Handling received message.
void msginterceptor_MessageReceived(object sender,

MessageInterceptorEventArgs e)
{

SmsMessage smsMsg = (SmsMessage)e.Message;
string fullText = “Message From: “+smsMsg.From.Name;
fullText += (“ at “+ smsMsg.Received.TimeOfDay.ToString());
fullText += (“ and the message is: “+smsMsg.Body);
MessageBox.Show(fullText, “New Text Message !”);

}

//When Send button is hit
private void menuItem1_Click(object sender, EventArgs e)
{

SmsMessage sendMsg = new SmsMessage(“14250010001”, “Send to myself.”);
//Display the compose form
MessagingApplication.DisplayComposeForm(sendMsg);

}

private void menuItem2_Click(object sender, EventArgs e)
{

aSession.Dispose();

223

E-mail, SMS, and PIM Data

13_762935 ch08.qxp 11/20/06 8:24 AM Page 223

Application.Exit();
}

}
}

A MessageInterceptor object and an OutlookSession object are added to the Form1 class. During
the initialization process of Form1, create a new OutlookSession object and a new instance of the
MessageInterceptor object, and then register the MessageReceived event handler.

A simple way to verify the MessageReceived event handler is to send an SMS message to the device
itself. On Windows Mobile device emulators, such as Smartphone device emulator and Pocket PC phone
edition emulator, use the number 1-425-001-0001.

Now you can test this application. However, when you build the application, you may get an error mes-
sage, as shown in Figure 8-16.

You can fix this by adding a reference to the Microsoft.WindowsMobile namespace to your project.

The screenshots of the runtime results are captured in Figure 8-17 and Figure 8-18, respectively.

Figure 8-16

224

Chapter 8

13_762935 ch08.qxp 11/20/06 8:24 AM Page 224

Figure 8-17

Figure 8-18

225

E-mail, SMS, and PIM Data

13_762935 ch08.qxp 11/20/06 8:24 AM Page 225

Summary
In this chapter, you have learned about how to program using the managed APIs provided in the new
Microsoft.WindowsMobile.PocketOutlook namespace. As the name implies, it is a feature provided
for Windows Mobile 5.0 devices and it is not part of the .NET Compact Framework. Before using those
APIs, don’t forget to add the references to your project.

Building an e-mail application, an SMS messaging application, and a PIM-data-related application
starts with the instantiation of a new OutlookSession class. You can then access the Outlook Mobile
Appointments folder, Contacts folder, and Tasks folder and manage that PIM data. To send an e-mail
message or SMS message in your application, you need to first create an EmailMessage object or a
SmsMessage object and fill in the related information, such as a recipient list, a subject, body text, and
so on. Then you call the EmailAccount.Send()method or the SmsAccount.Send()method to deliver
the message. If you want to display a user-friendly compose form before sending out the message, use
the static DisplayComposeForm() method of the MessagingApplication class. The Microsoft
.WindowsMobile.PocketOutlook.MessageInterception namespace enables you to write your
own event handler when a message is received.

Compared to the unmanaged POOM APIs, the Microsoft.WindowsMobile.PocketOutlook names-
pace makes your programming job a lot easier and safer. We strongly recommend that you use those
managed APIs unless you are writing applications for a previous Windows Mobile Smartphone, or the
particular functions are currently not available (such as infrared) in a managed manner.

This chapter focuses on PIM data management and communications through e-mail and text messages.
The next chapter expands the horizon to popular client/server applications: XML and web services.

226

Chapter 8

13_762935 ch08.qxp 11/20/06 8:24 AM Page 226

XML and Web Services

XML and web services are used in a wide range of desktop applications that exchange data with
each other. Smartphone applications can also take advantage of these powerful network communi-
cation mechanisms to enable users to access real-time data from a smartphone device. This chapter
introduces the XML support in the .NET Compact Framework, especially the classes and types
that encapsulate an XML document and data set’s XML functionality. You will also learn about
Visual Studio .NET’s basic support for creating applications that access web services. This chapter
presents everything you need to know to get started building your own XML-based network data
applications and web service client applications.

The chapter covers the following topics:

❑ XML syntax and XML Schema syntax

❑ How to use the .NET Compact Framework’s XML classes to read and write XML docu-
ments

❑ How to use Visual Studio to create applications that access a web service

Overview of XML and Web Services
eXtensible Markup Language (XML) is a W3C-recommended, general-purpose markup language
capable of representing structured data with user-defined tags. Unlike HTML, which emphasizes
displaying data on a web page, XML solves the problem of generating, exchanging, and interpret-
ing text-based data between two applications. In this section, you will see that XML is frequently
used as the underlying language for different purposes.

The W3C published two format standards: XML 1.1 (February 2004) and XSD 1.0 (May 2001). XSD
(XML Schema Definition) describes the schema of data such as element types, relationships, con-
straints, and so on. XSD itself is an XML file that can be used to validate data contained in the cor-
responding XML data file.

14_762935 ch09.qxp 11/20/06 7:57 AM Page 227

A web service is a software system that enables machine-to-machine, text-based communication on the
Internet and within an enterprise computing environment. The advantage of a web service over other
communication methods such as RPC is that the two endpoints are largely independent of each other
and the text messages being exchanged over HTTP conform to a standard called SOAP. A SOAP mes-
sage is formatted as an XML file as well. A web service client sends to the web service provider some
SOAP messages that contain specific requests. The web service provider receives the SOAP messages,
interprets them, generates the corresponding result, wraps the result into some SOAP messages, and
then sends them back to the client. Of course, the web service client must know what kind of “services”
the web service can provide so that it can generate valid requests. Such a service description of a web
service is described in a language named Web Services Description Language (WSDL).

Several online companies offer web services as a way to expand their business by providing a platform
for business partners and independent software vendors. These services are usually free within the limit
of some volume of requests. For example, the Google web service that enables anybody to invoke
Google web searching and other Google services is free as long as the client generates fewer than 1,000
requests per day. To facilitate web service client programming, web service providers often provide an
SDK that includes some examples and class libraries.

Table 9-1 lists some well-known web services.

Table 9-1 Well-Known Web Services

Web Service Description Link Cost

Amazon Web A set of web services that www.amazon.com/aws/ Some web services are
Services provides access to product free, whereas others

information, pricing, are pay-as-you-go or
e-commerce transactions, require a subscription.
etc.

eBay Access to eBay’s http://developer Free
Developers marketplace to obtain .ebay.com
Program item information, manage

sales, conduct order and
purchasing transactions,
etc.

Google Web Includes Google SOAP www.google.com/apis Free for the first 1,000
APIs Search API for accessing queries per day per

Google search services www.google.com/ application
and Google Maps API for apis/maps
searching and displaying
Google maps

MSN Search Web search service http://msdn Free for the first
.microsoft.com/ 10,000 queries per day
msn/msnsearch/ per machine

228

Chapter 9

14_762935 ch09.qxp 11/20/06 7:57 AM Page 228

Web Service Description Link Cost

Yahoo! A set of web services for http://developer Rate limited on a daily
Developer building mapping .yahoo.net basis per machine
Network applications, widget

galleries, music plug-ins,
search applications, and
Flickr (web-based social
networking) services

XML Support in .NET Compact Framework
XML support in the .NET Compact Framework 2.0 can be described in the following categories:

❑ Web service client support (in combination with Visual Studio .NET)

❑ The XmlDocument class implements the W3C Document Object Model (DOM) for creating and
processing XML documents. According to the World Wide Web Consortium (W3C), the Document
Object Model is a platform- and language-neutral interface that enables programs and scripts to
dynamically access and update the content, structure, and style of documents.

❑ XmlSchema and XmlSchemaCollection classes

According to MSDN, the following standards are supported by the .NET Compact Framework:

❑ XML 1.0 (including DTD support)

❑ XML namespaces (both stream-level and DOM)

❑ XSD schemas

❑ XPath expressions (XPath 1.0) for querying and navigating an XML document

❑ DOM Level 1 Core

❑ DOM Level 2 Core

The core XML classes are in the System.Xml and SystemXml.Schema namespaces. In addition, XML
serialization is in the System.Xml.Serialization namespace, and XPath support (which is a structure
query format specifying a set of XML elements) is provided in the System.Xml.XPath namespace.

Due to the memory constraints of mobile devices, not all classes in the System.Xml namespace in the
.NET Framework are supported in the .NET Compact Framework. For example, the XmlDataDocument
class, which extends the XmlDocument class to support structured data storage and retrieval, is not
available in the .NET Compact Framework.

XML Syntax
This section uses a sample XML file, simple.home.xml, to introduce XML syntax. This XML file is a
standard Windows Mobile home screen definition file on a Smartphone device. You can find the XML
file under \Application Data\Home on the device emulator.

229

XML and Web Services

14_762935 ch09.qxp 11/20/06 7:57 AM Page 229

<?xml version=”1.0”?>
<home>

<author>Microsoft Corporation</author>
<contacturl>http://www.microsoft.com/</contacturl>
<title>Windows Simple</title>
<title lang=”0x0409”>Windows Simple</title>
<title lang=”0x0407”>Windows minimal</title>
<title lang=”0x0c0a”>Windows sencillo</title>
<title lang=”0x040c”>Windows simple</title>
<title lang=”0x0410”>Windows semplice</title>
<title lang=”0x0816”>Windows simples</title>
<title lang=”0x0416”>Windows simples</title>
<title lang=”0x0809”>Windows Simple</title>
<title lang=”0x0406”>Windows simple</title>
<title lang=”0x0413”>Windows eenvoudig</title>
<title lang=”0x041d”>Windows enkel</title>
<title lang=”0x0414”>Windows - enkelt</title>
<title lang=”0x040b”>Windows Simple</title>
<title lang=”0x040e”>Windows egyszer_</title>
<title lang=”0x0405”>Windows jednoduchá</title>
<title lang=”0x0418”>Windows simplu</title>
<title lang=”0x041b”>Windows jednoduché</title>
<title lang=”0x0415”>Prosty - Windows</title>

<version>1.0</version>
<default target-width=”240” target-height=”320” font-face=”Segoe Condensed”

font-size=”19” padding-left=”5” padding-right=”5” bgcolor=”transparent”
fgcolor=”COLOR_HOMETEXT” padding-top=”3”>

</default>
<background bgimage=”\windows\WindowsMobile.jpg” valign=”bottom”

bgcolor=”COLOR_TRAYGRADLEFT” />
<scheme>

<color name=”COLOR_TRAYGRADLEFT” value=”#2E97E3” />
<color name=”COLOR_HOMEHIGHLIGHT” value=”#50A5E5” />

</scheme>
<plugin clsid=”{837FC251-FE69-43ad-84E0-EBCEDEBA0884}” name=”iconbar”

height=”27”>
<iconbar fgcolor=”COLOR_TRAYTEXT”/>
<background gradient=”title” bgcolor=”COLOR_TRAYGRADLEFT” b-border-

color=”COLOR_WINDOWFRAME”/>
</plugin>
<plugin clsid=”{E09043DF-510E-4841-B652-388316977A7A}” name=”carrier”

height=”27”>
<label font-weight=”bold”>

<text><carrier/></text>
</label>

</plugin>
<plugin clsid=”{44FA0F8C-082F-42b4-BE49-82559F23D5D4}” name=”clock”

height=”55”>
<time font-size=”27”/>
<date font-size=”27” halign=”right”/>

</plugin>
<plugin clsid=”{4824B576-EFFE-45cf-BAE9-649B930CD244}” name=”owner”

height=”164”>
<label font-size=”33” valign=”bottom”>

230

Chapter 9

14_762935 ch09.qxp 11/20/06 7:57 AM Page 230

<text><name/></text>
</label>

</plugin>
</home>

The structure of the preceding sample XML file is quite clear: A top-level home element (known as the
root element) contains a number of sub-elements: author, contacturl, title, version, default,
background, scheme, and various plug-ins. The first line of the sample XML file is an optional decla-
ration indicating the XML version. The following can be seen as a single root element (also known
as a document element), which may contain nested elements. An element starts with a tag in the form
of <name> and ends with </name>. An element can recursively contain a number of sub-elements,
thus forming a tree of elements. Between these two tags is the element’s content, which can be text or
some sub-elements. An element can also be empty. The following example code shows valid elements.
<!--comment --> is used to wrap comments, which will not be parsed. An empty element can be fur-
ther simplified as <name/>.

<BookTitle>Professional Microsoft Smartphone Programming</BookTitle>
<BookTitle></BookTitle> <!--empty element-->
<BookTitle/> <!--empty element-->

A variation of the start tag <name> is that it may contain attributes (name-value pairs) in the form of
<name attribute1=”value1” attribute2=”value2” ...>. Attribute values must be quoted using
single or double quotes. No two elements can overlap — that is, they can only be in parallel or one must
contain the other. For example, the following is a valid element that contains two sub-elements:

<Windows Mobile Devices>
<Smartphone>Windows Mobile on smartphone</Smartphone>
<Pocket PC> Windows Mobile on PDA</Pocket PC>

</Windows Mobile Devices>

The following, however, is not a valid element:

<Windows Mobile Devices>
<Smartphone>Windows Mobile on Smartphone
<Pocket PC> Windows Mobile on PDA</Smartphone></Pocket PC>

</Windows Mobile Devices>

Like HTML, XML syntax does not care about indention and carriage returns; the XML parser will simply
skip them. They are used only for better code formatting.

Some elements, in turn, have sub-elements. For example, a plug-in element may have sub-elements such
as time and date, which can have further sub-elements. This flexible, recursive, tree-like structure makes
it easy to describe structured data.

An XML Example: Customizing the Home Screen
This section walks through the sample XML file, simple.home.xml, to illustrate how to modify it to cus-
tomize a Windows Mobile home screen. A Smartphone’s home screen is defined in an XML document. A
cell phone running Windows Mobile comes with several home screens: Windows Default, Windows

231

XML and Web Services

14_762935 ch09.qxp 11/20/06 7:57 AM Page 231

Basic, Windows Simple, MSN Default, Large Font, and a carrier-customized home screen. Their XML files
reside in the following directory \Storage\Application Data\Home. To change home screens, select
Start➪Setting➪Home Screen.

On the Smartphone emulator, the preceding sample XML file defines the home screen shown in Figure
9-1. The configuration of the screen includes the default font format and screen layout, the background
image, a scheme that defines the color and gradient for the entire device, several plug-ins for the icon
bar on the top, carrier information (“Fake Network” on the emulator), the clock, and the owner’s name.

Figure 9-1

Each home screen plug-in uses a unique class ID. For example, the following plug-in is copied from
pocketmsn.home.xml in the same directory as simple.home.xml:

<plugin clsid=”{865A354A-4A96-4687-B001-C155DC0DBE76}” name=”calendar”
height=”50”>

<background>
<format state=”selected” bgcolor=”COLOR_HOMEHIGHLIGHT”/>

</background>
<label h=”22”>

<text><subject/></text>
</label>
<label h=”22” y=”23”>

<text><time/> <location/></text>
</label>

</plugin>

This plug-in specifies the display of the subject, time, and location of the next appointment, the
label’s height (the h attribute) and vertical position (the y attribute), as well as the plug-in’s clsid, name,
and height. By adding this plug-in to the Windows simple home screen XML (simply include this piece
of code as a sub-element to the <home> element), the next appointment will show on the home screen. If
the owner information exceeds the screen, reduce its height attribute to a smaller value (such as 50).
Figure 9-2 shows the modified Windows Simple home screen.

232

Chapter 9

14_762935 ch09.qxp 11/20/06 7:57 AM Page 232

Figure 9-2

XML Schema
An XML schema is used to describe valid elements and attributes for an XML document. Thus, an XML
schema document can be used to validate an XML document so that different parties can agree on an
XML data structure while exchanging XML data documents. A schema not only defines a list of elements
and attributes that can appear in the XML document, it also defines the number and order of sub-
elements, data types of elements or attributes, and default and fixed values for elements and attributes.
An XML schema can be embedded into the XML document or saved into a separated XML file with the
.xsd filename extension.

As an XML document, an XML schema document has a root element, <schema>, an example of which
follows:

<xs:schema xmlns=”” xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”book”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Title” Type=”xs:string”>
<xs:element name=”Price” Type=”xs:string”>
<xs:element name=”Author” Type=”xs:string”>
<xs:element name=”PublicationDate” type=”xs:date”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

The xmlns attribute can define a default namespace that applies to elements with no prefixes, and some
number of namespaces that apply to the element with that specific namespace. A namespace defines a
set of valid element names and data types. In the preceding example, xmlns=”” specifies the default
namespace (which is empty); the attribute xmlns:xs=http://www.w3.org/2001/XMLSchema specifies
the namespace with prefix “xs” (including the schema element itself). The xs namespace defines valid
names and types, such as element, schema, string, that correspond to XML element entries, XML

233

XML and Web Services

14_762935 ch09.qxp 11/20/06 7:57 AM Page 233

schema entries, and strings in an XML file, respectively. Simple types include element, attribute, and
restriction for defining a data range or a list of valid values for elements with specific characteristics.
Complex data types can contain other elements or attributes. For example, the preceding example
defines a complex type for a sequence of elements. Valid data types include xs:string, xs:decimal,
xs:integer, xs:boolean, xs:date, and xs:time.

For more information about XML schema data types, see the official W3C document at www.w3.org/
TR/xmlschema-2/. You can also find a good tutorial at http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnxml/html/XMLSchemaComplex.asp.

XML schema can be embedded into an XML file. In fact, different elements in an XML file can specify
different XML schemas. These are generally called inline schemas. The following code demonstrates using
an inline schema in an XML file. Schema “foo” is used to validate the EmployeeName element:

<?xml version=”1.0” encoding=”utf-8” ?>
<root>
<SomeElement>
<someContent/>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

targetNamespace=”foo”>
<xsd:element name=”EmployeeName” type=”xsd:string”/>

</xsd:schema>
</SomeElement>
<f:EmployeeName xmlns:f=”foo”>
... this will be validated with schema “foo” ...

</f:EmployeeName>
</root>

By default, the System.XML namespace is able to process inline schemas. To enable them, you need to
set the ProcessInlineSchema flag:

XmlReaderSettings Xmlsettings = new XmlReaderSettings();
Xmlsettings.ValidationFlags |= XmlSchemaValidationFlags.ProcessInlineSchema;
XmlReader valReader = XmlReader.Create(@”MyXML.xml”, Xmlsettings);

With an XML schema, an application can validate an XML data stream or an XML document, ensuring
that the data is in good form and can be further used. As you will see in the following section, the .NET
Compact Framework has implemented this kind of functionality in some classes.

XML-Related Classes
This section describes how to use .NET Compact Framework classes to read and write XML files, as well
as how to exchange XML-based data over the web. Table 9-2 shows a list of XML-related classes. To use
any of the XML-related classes in the .NET Compact Framework, you must import the System.XML
namespace to your class, as shown here:

using System.XML;

234

Chapter 9

14_762935 ch09.qxp 11/20/06 7:57 AM Page 234

Because of the loose syntax rules of XML regarding white space, order of attributes or elements, and so
on, it is difficult to generate the same digital signature of two files that indeed contain the same piece of
data. There must be a way to normalize the lexical form of an XML document. The W3C defines canon-
ical XML, which is a normalized lexical form for XML that removes allowed variations and imposes
strict rules for the uniform representation of a specific piece of data. .NET Framework classes such as
XmlTextReader and XmlTextWriter perform this canonicalization while reading and writing a
raw XML document.

Table 9-2 XML Classes in .Net Compact Framework

Classes Description

XmlReader An abstract class that provides fast, forward-only, read-only access to an XML
document stream.

XmlTextReader The canonical XmlReader implementation for fine-grained, text-based XML
processing.

XmlNodeReader A public class that provides node navigation across an in-memory XML DOM
tree or subtree. A node represents a single object in an XML DOT tree.

XmlWriter An abstract class that provides an interface for generating an XML document
stream.

XmlTextWriter The canonical XmlWriter implementation.

XmlNodeWriter A public class that produces an in-memory DOM tree. The DOM is an
in-memory (cache) tree representation of an XML document.

XmlDocument The .NET Compact Framework’s DOM implementation that models an XML
DOM tree.

The following sections describe how to use these classes to process an XML document stream. The dis-
cussion centers around the following tasks:

❑ Reading and writing XML elements to and from an XML document stream

❑ Transforming XML DOM data into a relational data structure

XmlDocument and XmlTextReader
The XmlDocument class is used to load an XML file into memory. The XML file is parsed such that a tree
representation is created in memory. Just call the Load() method with the XML filename (and its path)
and you are ready to explore the XML file.

The constructor of the XmlDocument class does not need any parameters. After creating an
XmlDocument object, you can call either Load() or LoadXML() to read an XML file. The Load() method
is overloaded with the following four variances:

❑ void Load(Stream)— Loads the XML document from a System.IO.Stream object, a
System.IO.NetworkStream object, or a System.IO.FileStream object.

❑ void Load(String)— Loads the XML document from a URL or a filename.

235

XML and Web Services

14_762935 ch09.qxp 11/20/06 7:57 AM Page 235

❑ void Load(TextReader)— Loads the XML document from a System.IO.TextReader object,
a System.IO.StreamReader object, or a System.IO.StringReader object.

❑ void Load(XmlReader)— Loads the XML document from a System.Xml.XmlReader object.
An XmlReader object is a forward-only, read-only scanner for an XML document. Note that
XmlReader is an abstract class, so you have to use one of its subclasses for the read operation:
XmlTextReader, XmlValidationReader, or XmlNodeReader. The XmlTextReader class is the
fastest way to read an XML file, but it does not perform any schema validation. You can use the
XmlValidationReader class to validate XML data against an XML schema document. It has a
Schemas property that you can use for XmlSchemaCollection objects. The next section covers
XmlNodeReader.

The following code snippets shows some examples of the Load() method:

Using System.Xml;

XmlDocument xmldoc = new XmlDocument();
// The following method reads an XML file specified in a filename
xmldoc.Load(@”\My Documents\sales.xml”);
// The following shows an example of using XmlTextReader in XmlDocument.Load()
XmlTextReader xmlRdr = new XmlTextReader(@”\Storage Card\books.xml”);
xmlRdr.WhiteSpaceHandling = WhiteSpaceHandling.None; // Don’t read white spaces
xdoc.Load(xmlRdr);

The XmlTextReader class provides fine-grained control over the read operation. Like file I/O,
XmlTextReader maintains the position of the current node, which can be a comment block, a processing
instruction, an element, a sub-element, and so on.

The Read() method will read the next node from the file, which could be any type of tags. The order
in which nodes are read from an XML document is depth first. When you proceed to a sub-element,
XmlTextReader will update the “depth” of the current node.

You can use its MoveToContent() method to skip any non-data elements. At the beginning of a read
operation, a call to MoveToContent() will move the current node to the root node of the XML file.

You can also use the Skip() method to skip all subnodes of the current node. You can use the
HasAttributes property to determine whether the current node has one or more attributes. If the
HasAttributes property is true, you can use a for loop to call MoveToAttribute(), and read each
attribute value using the Name and Value properties:

public void DisplayAttributes(XmlReader reader)
{
if (reader.HasAttributes)
{
Console.WriteLine(“Attributes of <” + reader.Name + “>”);
for (int i = 0; i < reader.AttributeCount; i++)
{
reader.MoveToAttribute(i);
//Consume current node: reader.Name and reader.Value

}

236

Chapter 9

14_762935 ch09.qxp 11/20/06 7:57 AM Page 236

reader.MoveToElement(); //Moves the reader back to the element node
}

}

Now let’s take a look at a complete example. Suppose you want to display all the entities in an XML doc-
ument. The following is the books.xml file that can be downloaded along with sample code from the
book’s website:

<?xml version=’1.0’?>
<!-- Some of Wrox books in the book database -->
<bookstore>
<book Section=”XML” PublicationDate=”2004” ISBN=”0-7645-7077-3”>
<title>Beginning XML, 3rd Edition</title>
<author>
<first-name>David</first-name>
<last-name>Hunter</last-name>

</author>
<price>39.99</price>

</book>
<book Section=”Java” PublicationDate=”2004” ISBN=”0-7645-6874-4”>
<title>Ivor Horton’s Beginning Java 2, JDK 5 Edition</title>
<author>
<first-name>Ivor</first-name>
<last-name>Horton</last-name>

</author>
<price>49.99</price>

</book>
<book Section=”Database” PublicationDate=”2005” ISBN=”0-7645-7950-9”>
<title>Beginning MySQL</title>
<author>
<first-name>Robert</first-name>
<last-name>Sheldon</last-name>

</author>
<author>
<first-name>Geoff</first-name>
<last-name>Moes</last-name>

</author>
<price>39.99</price>

</book>
</bookstore>

This XML file describes three books. Each book element has three sub-elements: title, author, and
price. Because a book may have more than one author, a book element may have more than one author
sub-element. In addition, a book element has three attributes: Section, PublicationDate, and ISBN.

The following code shows an example of using XmlTextReader to navigate the books.xml file. The
example writes the output to a text file. The StreamWriter object is created as the output specifier. The
first parameter of the StreamWriter constructor we used is the filename, whereas the second is a
Boolean value indicating whether the data will be appended to the file. Then an XmlTextReader object
is created. In the main while loop, the reader keeps reading from the XML document and formats the
output according to the type of each node. Although this sample XML file does not contain many non-
element nodes, the following sample code uses a single switch-case statement to define how to pro-
cess each possible type of node found in an XML document:

237

XML and Web Services

14_762935 ch09.qxp 11/20/06 7:57 AM Page 237

XmlTextReader reader = null;
StreamWriter writer = new StreamWriter(@”\Storage

Card\output.txt”,false);

try
{

reader = new XmlTextReader(@”\Storage Card\books.xml”);

while (reader.Read())
{

switch (reader.NodeType)
{

case XmlNodeType.XmlDeclaration:
FormatOutput(writer, reader, “XmlDeclaration”);
break;

case XmlNodeType.ProcessingInstruction:
FormatOutput(writer, reader, “ProcessingInstruction”);
break;

case XmlNodeType.DocumentType:
FormatOutput(writer, reader, “DocumentType”);
break;

case XmlNodeType.Comment:
FormatOutput(writer, reader, “Comment”);
break;

case XmlNodeType.Element:
FormatOutput(writer, reader, “Element”);
break;

case XmlNodeType.Text:
FormatOutput(writer, reader, “Text”);
break;

case XmlNodeType.Whitespace:
break;

}
}

}
catch (XmlException xmlEx)
{

writer.WriteLine(xmlEx.Message);
}
reader.Close();
writer.Close();

The following code shows the FormatOutput() method in the Form1 class (which is part of the
XmlDemo sample project). We want to show all the attributes of an element, so this method has a while
loop to print all the attribute names and attributed values. Another notable aspect of this method is that
it uses the XmlReader::depth property to determine the number of tabs to be printed before the con-
tent of a node. This makes the output look like a tree, with proper indentation for sub-elements:

private static void FormatOutput(StreamWriter writer, XmlReader reader,
String nodeType)

{
for (int i = 0; i < reader.Depth; i++)
{

writer.Write(‘\t’);

238

Chapter 9

14_762935 ch09.qxp 11/20/06 7:57 AM Page 238

}
if(reader.Name != String.Empty)

writer.WriteLine(reader.Prefix + nodeType + “<” + reader.Name + “>:
“ + reader.Value);

else
writer.WriteLine(reader.Prefix + nodeType + “: “ + reader.Value);

// Display the attributes values for the current node
while (reader.MoveToNextAttribute())
{

for (int i = 0; i < reader.Depth; i++)
writer.Write(“\t”);

writer.WriteLine(“Attribute: “ + reader.Name + “ = “ +
reader.Value);

}

}

The following shows the output file (output.txt):

XmlDeclaration<xml>: version=’1.0’
Attribute: version = 1.0
Comment: Some of Wrox books in the book database
Element<bookstore>:

Element<book>:
Attribute: Section = XML
Attribute: publicationdate = 2004
Attribute: ISBN = 0-7645-7077-3
Element<title>:

Text: Beginning XML, 3rd Edition
Element<author>:

Element<first-name>:
Text: David

Element<last-name>:
Text: Hunter

Element<price>:
Text: 39.99

Element<book>:
Attribute: Section = Java
Attribute: publicationdate = 2004
Attribute: ISBN = 0-7645-6874-4
Element<title>:

Text: Ivor Horton’s Beginning Java 2, JDK 5 Edition
Element<author>:

Element<first-name>:
Text: Ivor

Element<last-name>:
Text: Horton

Element<price>:
Text: 49.99

Element<book>:
Attribute: Section = Database
Attribute: publicationdate = 2005
Attribute: ISBN = 0-7645-7950-9
Element<title>:

239

XML and Web Services

14_762935 ch09.qxp 11/20/06 7:57 AM Page 239

Text: Beginning MySQL
Element<author>:

Element<first-name>:
Text: Robert

Element<last-name>:
Text: Sheldon

Element<author>:
Element<first-name>:

Text: Geoff
Element<last-name>:

Text: Moes
Element<price>:

Text: 39.99

The XmlDocument class has another method, LoadXml(), which will load an XML string (not the XML
filename).

The Load()and LoadXml() methods will throw an XmlException if an error occurs while loading an
XML file. The errors may be caused by XML syntax error.

Sometimes you want to query an XML document with a specific string. In this case, you don’t need to
manually navigate the entire XML document (e.g., an XmlDocument object); rather, you can use the
SelectNode() method or SelectSingleNode() method of an XMLNode object. You can simply pass a
string expression that represents an XPath into the underlying XML document.

The following example uses an XPath expression to query the XmlDocument object. The XPath expres-
sion actually specifies a set of books that has an author with a last name of “Sheldon”:

XmlDocument doc = new XmlDocument();
doc.Load(“book.xml”);
XmlNodeList nodeList;
XmlNode root = doc.DocumentElement;

nodeList=root.SelectNodes(“/BookStore/Book[author/last-name=’Sheldon’]”);
foreach (XmlNode book in nodeList)
{
//Access each book using the “book” object

}

XmlNodeReader and DataSet
In many cases, you will want to extract data from an XML file and convert it into a relational data struc-
ture. That way you can take advantage of the rich support for the relational data structure of ADO.NET
in the .NET Compact Framework to simplify XML data handling. This is often done using the DataSet
class in the System.Data namespace.

A DataSet represents an in-memory cache of a relational database. You can fill a DataSet with data
from a local relational database, an XML stream, or an XML document. Furthermore, you can merge

240

Chapter 9

14_762935 ch09.qxp 11/20/06 7:57 AM Page 240

XML data with existing data in a DataSet. The DataSet class also provides methods to write the data
into an XML stream or document, and can even generate XML schema for the data. For more informa-
tion about the DataSet class, see Chapter 6.

To load XML data into a DataSet, use the ReadXml() method. Like the LoadXml() method of the
XmlDocument class, the ReadXml() method of the DataSet class has been overloaded. It can accept a
single parameter of a Stream object of the specified file, a String object of the filename, a TextReader
object, an XmlReader object, or a combination of these three objects and an object of an enum type
XmlReadMode. The XmlReadMode object determines the mode used to read the XML stream or docu-
ment. Valid XmlReadMode types include Auto, DiffGram, Fragment, IgnoreSchema, InferSchema,
InferTypedSchema, and ReadSchema. Usually, setting the XmlReadMode to Auto will suffice, as it will
perform the most appropriate action with respect to the data being read. However, if the application
encounters performance problems with this method, you might want to look into other options of the
read mode for optimization. For example, if schema-based validation is not a big concern, you can use
IgnoreSchema to skip inline schema in the XML document.

The following code uses the DataSet class with XML data as input:

DataSet ds = new DataSet();
ds.ReadXml(new StreamReader(@”\Storage Card\books.xml”), XmlReadMode.Auto);

This DataSet is filled with data from the books.xml file on the storage card of a Smartphone device.
Note that the first argument of the ReadXml method can be the filename (@”\Storage Card\books
.xml”) without using the StreamReader construct. Alternatively, you can use the XmlNodeReader
class with a DataSet while calling ReadXml().XmlNodeReader is a subclass of XmlReader. It can read
XmlNode type, which can be, for example, an XmlDocument object or an XmlAttribute object. Note that
an XmlTextReader object does not read the XmlNode type.

The following example uses DataSet with XmlDocument and XmlNodeReader:

XmlDocument doc = new XmlDocument();
try
{

doc.Load(@”\Storage Card\books.xml”);
}
catch (XmlException ex)
{

MessageBox.Show(ex.Message);
return;

}
XmlNodeReader reader = new XmlNodeReader(doc);
DataSet ds = new DataSet();
ds.ReadXml(reader);

One advantage of using DataSet with XML is that a DataSet is able to infer the XML from the XML
data. In many cases, the XML data will be placed into multiple tables represented by a DataTable col-
lection in the DataSet object.

A DataSet (or a DataTable) can also dump data to an XML format using the WriteXml() method. The
first parameter of this method is the output specifier, which can be a stream or a filename. The second
parameter is the XmlWriteMode. Following are the three modes:

241

XML and Web Services

14_762935 ch09.qxp 11/20/06 7:57 AM Page 241

❑ IgnoreSchema— Default value, no schema will be written.

❑ WriteSchema— Writes the relational structure as inline XML schema. To write the XML schema
only, use the WriteXmlSchema() method.

❑ DiffGram— An XML format used to describe the difference between data after some update.

For example, the following line shows a DataSet object saved into an XML document with inline schema:

MyDataSet.WriteXML(@”\My Documents\results.xml”, XmlWriteMode.WriteSchema);

Specifically, some of the DataTable’s WriteXml() overloaded methods require the third parameter, a
Boolean value indicating whether the current table’s descendant tables will be saved.

An XML Processing Sample Application
This section uses a sample application to illustrate the usage of these classes. We employ a DataGrid
object to display a DataTable in a DataSet. The DataGrid object has a DataSource property for the
DataTable with which it is associated. For example, suppose dg is a DataGrid object and ds is a
DataSet that has three tables. To associate the first table in the DataSet object with the DataGrid
object, you can simply use the DataSource property of the DataGrid object, as follows:

// Display the table
dg.DataSource = ds.DataTables[0];

// Display the table in a special view (sorted by the Name column ascending)
ds.DataTables[0].DefaultView.Sort(“Name DSC”);
dg.DataSource = ds.DataTable[0].DefaultView;

The sample application reads the XML file books.xml from the directory \Storage Card\ and dis-
plays the data in the form of two tables using a DataGrid object. We intentionally use an XML file that
cannot be placed into a single DataTable. Why use two tables instead of one? Because a book may have
multiple authors that may not be placed into a single table along with other unique book properties such
as title and price. Therefore, author information is placed into a separate table that has a foreign key rela-
tionship with the other major table.

To allow the Smartphone Emulator to access a faked storage card, you must put your files into a direc-
tory on your development machine that runs the Smartphone emulator, and configure the emulator to
access the shared folder. On the Smartphone emulator, select File➪Configure, and then enter the path to
the shared folder (see Figure 9-3).

The data contained in the books.xml document is obvious: three books as elements, each with two
attributes (PublicationDate and ISBN) and some sub-elements. Each book element has a price sub-
element. The first two book elements have an author sub-element, whereas the last book element has
two authors. The sample program uses XmlNodeReader with a DataSet to load the XML document. A
DataGrid object is used to display table data. In addition, three menu items are created: View Record,
View Author Table, and View Book Table. If the View Record menu item is selected, a message box con-
taining the current data record in the selected table will appear on the screen.

242

Chapter 9

14_762935 ch09.qxp 11/20/06 7:57 AM Page 242

Figure 9-3

When the program starts to run and the XML file is read, the DataSet object contains two DataTable
objects: one containing all book information except author names, and the other storing author names
only. Initially, the first one (ds.DataTable[0]) will be displayed.

The main form class, which is derived from the System.Windows.Forms.Form class, has four data
fields, as follows:

DataTable dt1 = null;
DataTable dt2 = null;
DataSet ds = null;
int CurrentTable = 0;

Two DataTable objects and a DataSet object are used to store and process XML data read from the
XML file. The CurrentTable variable indicates which table (the major table or the author table) is about
to be displayed.

The following private method will be called in the form’s Load (in this case, Form1_Load()) method:

private void LoadData()
{

XmlDocument doc = new XmlDocument();
try
{

doc.Load(@”\Storage Card\books.xml”);
}
catch (XmlException ex)
{

MessageBox.Show(ex.Message);
return;

}

243

XML and Web Services

14_762935 ch09.qxp 11/20/06 7:57 AM Page 243

XmlNodeReader reader = new XmlNodeReader(doc);
DataSet ds = new DataSet();
ds.ReadXml(reader);
reader.Close();
dt1 = ds.Tables[0];
dt2 = ds.Tables[1];

booksData.DataSource = ds.Tables[0].DefaultView;
CurrentTable = 0;
label1.Text = “Book Table:”;

}

private void Form1_Load(object sender, EventArgs e)
{

LoadData();
}

Note that we don’t have an XML schema for this document; rather, the DataSet class can infer the
schema from this document. The result is a set of two tables: one table includes the Section column, the
publicationdate column, the ISBN column, the title column, and an ID column identifying the book. The
other table consists of two columns: an ID column and an Author column, with the third book including
two records for the two authors.

When the form is loaded, the DataGrid control looks like Figure 9-4.

Figure 9-4

Each book has an ID starting from 0. Users can use the navigation pad to move around in the data grid.
At any time, they can select the Select Data menu at the bottom of the screen, and then select View
Record to display the current record. The following code shows the event handler for the menu item
View Record:

private void DisplayDataRow(int bookIndex)
{

String line = String.Empty;
DataTable dt = CurrentTable == 0 ? dt1 : dt2;

244

Chapter 9

14_762935 ch09.qxp 11/20/06 7:57 AM Page 244

DataRow dr = dt.Rows[bookIndex];

int col = 0;
foreach (Object value in dr.ItemArray)
{

line += (dt.Columns[col].ColumnName + “: “ +
value.ToString()+”\r\n”);

col++;
}
MessageBox.Show(line);

}

private void menuItem3_Click(object sender, EventArgs e)
{

int bookIndex = booksData.CurrentRowIndex;
DisplayDataRow(bookIndex);

}

An example of the record screen is shown in Figure 9-5.

Figure 9-5

If the View Author Table menu item is selected (➪Select Data ➪View Author Table), the DataGrid con-
trol will switch to the other data table in the data set. The following code snippet shows the tabling
switch operation when a user selects either View Author Table or View Book Table. The SwitchTable()
method handles both cases.

private void SwitchTable()
{

if (CurrentTable == 0)
{

booksData.DataSource = dt2.DefaultView;
CurrentTable = 1;
label1.Text = “Author Table:”;

}
else
{

245

XML and Web Services

14_762935 ch09.qxp 11/20/06 7:57 AM Page 245

booksData.DataSource = dt1.DefaultView;
CurrentTable = 0;
label1.Text = “Book Table:”;

}
}

private void menuItem5_Click(object sender, EventArgs e)
{

SwitchTable();
}

private void menuItem4_Click(object sender, EventArgs e)
{

SwitchTable();
}

An example of this author table screen is shown in Figure 9-6. Note that the third book (ID #2) has two
records in the table.

Figure 9-6

When a user selects Exit, the data in the data set is exported as two separate XML documents to the
folder on the storage card. This is done by calling the WriteXml()and WriteXmlSchema() methods of
the DataSet class:

private void menuItem1_Click(object sender, EventArgs e)
{

ds.WriteXml(@”\Storage Card\bookstore.xml”,XmlWriteMode.WriteSchema);
ds.WriteXmlSchema(@”\Storage Card\bookstore.xsd”);
Application.Exit();

}

Here we use XmlWriteMode.WriteSchema as the second parameter of WriteXml(), indicating that the
schema of the data table will be saved along with the same XML document. The WriteSchema()
method requires only an output specifier (a filename in the example).

246

Chapter 9

14_762935 ch09.qxp 11/20/06 7:57 AM Page 246

The following example code shows the output XML document BookStore.xml. The first part of this docu-
ment is a schema section, followed by the book data as shown in the original XML data file books.xml:

<?xml version=”1.0” standalone=”yes”?>
<bookstore>
<xs:schema id=”bookstore” xmlns=”” xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>
<xs:element name=”bookstore” msdata:IsDataSet=”true”

msdata:UseCurrentLocale=”true”>
<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element name=”book”>
<xs:complexType>
<xs:sequence>
<xs:element name=”title” type=”xs:string” minOccurs=”0”

msdata:Ordinal=”0” />
<xs:element name=”price” type=”xs:string” minOccurs=”0”

msdata:Ordinal=”2” />
<xs:element name=”author” minOccurs=”0” maxOccurs=”unbounded”>
<xs:complexType>
<xs:sequence>
<xs:element name=”first-name” type=”xs:string” minOccurs=”0” />
<xs:element name=”last-name” type=”xs:string” minOccurs=”0” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name=”Section” type=”xs:string” />
<xs:attribute name=”publicationdate” type=”xs:string” />
<xs:attribute name=”ISBN” type=”xs:string” />

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:schema>
<book Section=”XML” publicationdate=”2004” ISBN=”0-7645-7077-3”>
<title>Beginning XML, 3rd Edition</title>
<price>39.99</price>
<author>
<first-name>David</first-name>
<last-name>Hunter</last-name>

</author>
</book>
<book Section=”Java” publicationdate=”2004” ISBN=”0-7645-6874-4”>
<title>Ivor Horton’s Beginning Java 2, JDK 5 Edition</title>
<price>49.99</price>
<author>
<first-name>Ivor</first-name>
<last-name>Horton</last-name>

</author>
</book>
<book Section=”Database” publicationdate=”2005” ISBN=”0-7645-7950-9”>
<title>Beginning MySQL</title>
<price>39.99</price>

247

XML and Web Services

14_762935 ch09.qxp 11/20/06 7:57 AM Page 247

<first-name>Robert</first-name>
<last-name>Sheldon</last-name>

</author>
<author>
<first-name>Geoff</first-name>
<last-name>Moes</last-name>

</author>
</book>

</bookstore>

This sample program demonstrates how to combine a data set with XML classes to handle structured
data. The XML document used by the program is a local file on the storage card. If the data is on a
remote site, you must have a way to transport the data, as well as its schema, across the network. A
solution would be to use an XML web service. Recall that the XmlDocument and XmlNodeReader/
XmlNOdeWriter classes both support reading and writing an XML stream. You can use these classes to
write another layer of wrapper classes that may provide even a simplified interface to other developers —
they don’t even have to know the underlying XML data exchange and scheme inference; instead, the
web service may just provide some web reference classes that work as regular assembly classes. That
way, developers can focus on taking advantage of the service, rather than details about how to consume
the service. These web reference classes are usually packaged in a web service SDK. The following sec-
tion describes how to use the MSN Search SDK to build a Smartphone application.

Building a Smartphone XML
Web Service Application

A Microsoft Smartphone application can access web services on the Internet using the .NET Compact
Framework’s web service support. Visual Studio .NET provides an easy way to add a web reference
to your Smart Device project so that classes in the project can directly use the exposed classes and con-
sume the web service. The web service can be either a common web service provided by sites such as
MSN.com, Amazon.com, or Google.com, or a web service within an enterprise network.

Adding a Web Reference
Just as you would add a reference to an assembly in a Smart Device project, you need to add a reference
to the web service exposed by an Internet site so that the interface exposed by the service is made avail-
able in the project. For example, the MSN Search web service API reference is exposed at http://
soap.search.msn.com/webservices.asmx?wsdl.

An HTTP request sent to this URL will generate a WSDL file for the API and return it to the client. This
piece of information includes web service classes, data types, and any public properties, methods,
parameters, return types, and so on. Other web service APIs (such as Google API) do not use this web-
based WSDL provision; instead, along with the SDK, they provide a WSDL file that essentially contains
the same type of information as the web-based method. Communication is performed via SOAP, an
XML-based mechanism for exchanging typed information.

248

Chapter 9

14_762935 ch09.qxp 11/20/06 7:57 AM Page 248

To add a web reference to your Visual Studio project, select Project➪Add Web Reference. In the resulting
Add Web Reference screen, enter the URL to the web service you want to invoke (see Figure 9-7). The
URL actually points to a WSDL file, such as http://soap.search.msn.com/webservices.asmx?wsdl
or http://api.google.com/GoogleSearch.wsdl. You can view the actual data of the WSDL file by
entering the appropriate URL in your web browser.

Figure 9-7

Just as you add an assembly reference to your project, adding a web reference will add a namespace to
your project. In the case of adding MSN Services, the namespace com.msn.search.soap contains the
following classes: Location, MSN Search Service, Result, SearchRequest, SearchResponse,
SourceRequest, SourceResponse, and so on.

Another required step before developing your web service client is to obtain an application ID from
the service provider. The application ID uniquely identifies an application, not the developer. In the
case of the MSN Search web service, you can register your application and get the application ID at
http://search.msn.com/developer.

Consuming Web Services
After adding the web reference, you can start to program your Smart Device project in Visual Studio just
like any other smartphone application that uses a reference to some assembly. Depending on how the
web service is exposed (as described in its WSDL file), simply follow the process of creating some class
objects, and then invoke specific methods to consume a web service on the web. After that it’s just a
matter of data exchange between your application and the web service provider. Your application may
simply need to retrieve some data from the web service provider, such as obtaining a map for a given
address, or your application may want to perform some transactions using a web service.

249

XML and Web Services

14_762935 ch09.qxp 11/20/06 7:57 AM Page 249

The following code snippet is the core to launching the MSN Search web service. First an
MSNSearchService object is created. Its Search() method will eventually be called to invoke the service.
Before that, however, you have the option to indicate what sources (e.g., web, online advertisements, spell
checker, etc.) will be searched. For example, you can send a string to the web service and it will tell you
which word you spelled wrong. You can also send your query and obtain online advertisements about that
query. The sources are defined in the SourceRequest.SourceType enum type.

In addition, you can use SourceRequest to specify what fields are needed in the search results. You can
also specify some attributes of your search request, such as the culture information (en-us for English, etc.),
application ID (required for each web service application), and the query string in a SearchRequest
object. The SearchRequest object has a Request property, which is an array of some different types
of SourceRequest objects. The SearchRequest object is passed to the Search() method of the
MSNSearchService object. The following code shows how to use these classes to perform a search
operation:

MSNSearchService s = new MSNSearchService();
//If your development computer is behind a web proxy, use the

MSNSearchService.Proxy
//Property to indicate this
WebProxy proxy = new WebProxy(“192.168.1.100:8080”);
s.Proxy = proxy;

SearchRequest searchRequest = new SearchRequest();

//Create a SourceRequest to indicate what fields of search results
are needed

SourceRequest[] sr = new SourceRequest[1];

sr[0] = new SourceRequest();
sr[0].Source = SourceType.Web;

// To return all fields, use the following
//sr.ResultFields = ResultFieldMask.All;

// To return the Title and URL fields of search results:
sr[0].ResultFields = ResultFieldMask.Title | ResultFieldMask.Url;

// Set required CultureInfo string to “en-US”
searchRequest.CultureInfo = “en-US”;
searchRequest.Query = textBox1.Text;
searchRequest.AppID = “D4EC1031F772A8BD3BBDDA26E11B3A6ABCD597F6”;
searchRequest.Requests = sr;

SearchResponse searchResponse = s.Search(searchRequest);

The search() method returns a SearchResponse object, which contains a collection of SourceResponse
objects. Each SourceResponse object corresponds to a SourceRequest object associated with the
SearchRequest. For example, if there are two SourceRequest objects of type Web and Spelling,
respectively, there will be two SourceResponse objects for each of them. By iterating the result set of
these SourceResponse objects, you can obtain every search result. The following code shows how to
obtain the search result using the SourceResponse object:

250

Chapter 9

14_762935 ch09.qxp 11/20/06 7:57 AM Page 250

foreach (SourceResponse sourceResponse in searchResponse.Responses)
{

Result[] sourceResults = sourceResponse.Results;
foreach (Result sourceResult in sourceResults)

{
//Result is formatted into some fields such as

sourceResult.Url, sourceResult.Title, etc.
}

}

Figures 9-8 and 9-9 show a simple Smartphone application that takes advantage of the MSN Search web
service. Two forms are created: The first, shown in Figure 9-8, contains an input box and a Search button;
the second, shown in Figure 9-9, displays the search results. The source request specifies the type of Web,
meaning that only a web search is performed. For each result, its title and URL are shown on the second
form. Note that both of these settings can be easily modified with the SourceRequest objects.

Figure 9-8

Figure 9-9

251

XML and Web Services

14_762935 ch09.qxp 11/20/06 7:57 AM Page 251

The search result form does not have any static controls. Instead, when the Search button on the first
form is selected, the form is loaded with the search result, appearing as some dynamically generated
controls. Each result item’s title is used to populate a Label control, and each URL is used to populate
a LinkLabel control. The number of controls depends on how many search result items are returned,
which is determined by the value of the Count field of the SourceRequest object you passed to the
SearchRequest object. The default value of Count is 10.

The following code snippet shows the ShowResults() method that displays search results (the
searchResponse object, which is a member of the form class):

void ShowResults()
{

int cnt = 1;
int left = 10;
int top = 10;
this.SuspendLayout();
foreach (SourceResponse sourceResponse in searchResponse.Responses)
{

Result[] sourceResults = sourceResponse.Results;
foreach (Result sourceResult in sourceResults)
{

Label l = new Label();
l.Width = this.Width - 10;
l.Text = cnt + “. “ + sourceResult.Title + “ “ +

sourceResult.Description;
l.Left = left;
l.Top = top;
LinkLabel ll = new LinkLabel();
ll.Text = sourceResult.Url;
ll.Left = left;
ll.Top = top + 25;
ll.Width = this.Width - 10;
this.Controls.Add(l);
ll.Click += new EventHandler(ll_LinkClicked);

this.Controls.Add(ll);

cnt++;
top += 50;

}
}
this.ResumeLayout();

}

The outer foreach loop iterates through each SourceResponse object corresponding to each
SourceRequest object, whereas the inner foreach loop obtains each search result within that
SourceResponse object. The search result data is obtained by looking at the data fields of Result
objects.

252

Chapter 9

14_762935 ch09.qxp 11/20/06 7:57 AM Page 252

Summary
XML Web services have become a primary vehicle for exchanging data on the Internet. A number of
Internet service companies provide web services that enable anyone to access their database and the
software platform. This has been a clear trend in online business, as many individual developers and
companies are utilizing these web services for their enterprises. It is important to understand that
many of these web services are also exposed to mobile applications so that users can access these ser-
vices on the go.

The .NET Compact Framework contains a handful of classes for XML document, schema, and node nav-
igation. In addition, you can use data classes such as DataSet and DataTable to parse XML data as a
relational data structure, thereby enabling an application to easily retrieve, process, and exchange XML
data with other online applications.

The next chapter explains how to build customized components using managed and unmanaged APIs,
and how to invoke Win32 APIs directly from within managed applications. These features greatly
extend application capability and provide you with more programming options.

253

XML and Web Services

14_762935 ch09.qxp 11/20/06 7:57 AM Page 253

14_762935 ch09.qxp 11/20/06 7:57 AM Page 254

Platform Invoke

This chapter covers Platform Invoke (P/Invoke), which enables you to call unmanaged libraries
from managed code. With P/Invoke, you do not have to rewrite your unmanaged code and pack-
age it into a managed fashion. You can also import functions from the Windows CE library files,
which are written in unmanaged code.

Specifically, this chapter discusses the following:

❑ The differences between managed code and unmanaged code

❑ How to use Platform Invoke (P/Invoke) in the .NET Compact Framework

❑ How to marshal data in P/Invoke

❑ How to optimize P/Invoke performance

Managed and Unmanaged Code
In .NET, managed code is normally written with C#, Microsoft Visual Basic .NET, or other com-
mon language infrastructure (CLI) languages. Managed code is compiled to Intermediate
Language (IL), rather than the operating system–specific assembly so that it can be executed by
the common language runtime (CLR). One advantage of IL is that it can run on any operating sys-
tem that supports the .NET Framework. Managed code also enjoys the core services provided by
the .NET Framework, such as memory management, error exceptions, and security information.
Therefore, it is much easier to write a well-behaved application with managed code.

Managed code organizes data in a managed fashion, which is referred to “managed data” in some
literature. A typical feature of managed data is that the memory heap will be automatically allo-
cated and de-allocated by the garbage collection process of the .NET runtime.

15_762935 ch10.qxp 11/20/06 7:57 AM Page 255

Code written and running for a non-.NET environment is considered unmanaged code. It is normally
compiled to an operating system–specific assembly and is executed directly by the operating system.
Unmanaged code runs outside of the CLR and cannot take advantage of managed data. As a result,
when writing unmanaged code, developers have to explicitly call the de-allocator function or destructor
method to de-reference the data and return allocated memory space back to the operating system.
Typical programming languages that are geared toward unmanaged code include C and C++. Note
however, you can write managed C++ with the help of its managed extension for C++.

Table 10-1 summarizes the differences between managed code and unmanaged code.

Table 10-1 Managed Code vs. Unmanaged Code

Managed Code Unmanaged Code

Portability Executable files do not contain The executable files contain
processor-specific code, which is to processor-specific code.
be compiled on demand by JIT.

Memory Memory is managed by the .NET Each program has to explicitly
runtime. allocate and free memory.

Safety Features such as array boundary Each program has to implement its
protection prevent memory overwrites. boundary protection features.

As you can see, managed code is often considered portable: .NET executables run on any platform that
supports the CLR. It is also safe compared to unmanaged code in that implicit pointers and automatic
memory management eliminate memory leaks, and array boundary protection prevents memory over-
writes. If you have the luxury of choice for your software development, it is always highly recommended
to go with managed code for the following reasons:

❑ Managed code has better memory management. As mentioned earlier, the .NET Compact
Framework allocates and de-allocates memory automatically for managed code (whereas for
unmanaged code, you have to clean up memory explicitly in your code). For example, to create a
bitmap by calling the Win32 function CreateBitmap, you must later call on the DeleteObject
function; otherwise, a portion of memory will not be freed by the application, resulting in mem-
ory leaks. For mobile devices that usually have only 32MB or 64MB RAM, memory leaks would
cause the system to slow down or even crash very soon.

❑ .Managed code has better portability. A managed application is more portable because it has
fewer dependencies on platform-specific libraries, such as Win32 libraries. For example, if you
write managed code that runs on the .NET Compact Framework, your application can be ported
to non-Windows CE/Mobile devices as long as the .NET Compact Framework is installed on
those devices.

❑ Managed code is safer to run. The CLR will examine the IL code and determine whether it is
safe. Unsafe code may be prevented from execution if the security settings of a mobile device
block it.

❑ Managed code has better reusability. You can easily reuse managed code because it is immedi-
ately available in Visual Studio 2005 by adding a reference to the Solution Explorer and the
appropriate namespace reference. To expose an unmanaged function in managed code, how-
ever, you have to go through complex procedures before you can even use the function.

256

Chapter 10

15_762935 ch10.qxp 11/20/06 7:57 AM Page 256

In short, we recommend writing functions in a managed manner. However, in some cases you may have
to write your code in an unmanaged manner due to concerns such as performance constraints. In addi-
tion, despite a variety of managed functions that are supported in the .NET Compact Framework, you
may run into situations where a function you need is not in the .NET Compact Framework but is avail-
able in a Win32 DLL.

In both cases, you need to call into unmanaged code from your managed program. The .NET Compact
Framework has an interoperability layer that allows managed code to call into Windows DLLs or inter-
act with COM objects. This layer, termed P/Invoke, essentially connects the managed code with unman-
aged code.

In the next section you will learn more about unmanaged code, especially unmanaged DLL, in order to
gain a better understanding of P/Invoke.

Building Unmanaged DLLs
Microsoft eMbedded Visual C++ enables you to write your own DLLs for mobile devices using C++.
Before introducing P/Invoke, it’s worth taking a brief look at how to build your own unmanaged DLLs.
To start a new Windows CE DLL project in Microsoft eMbedded Visual C++, click File➪New➪Projects➪

WCE Dynamic-Link Library, as shown in Figure 10-1. Because neither IL nor the JIT compiler is available
for unmanaged code, you need to specify the processor type to build one DLL for each platform. For
Smartphone applications, you may also want to build a DLL for an Intel X86 CPU so that it can be exe-
cuted on a Smartphone emulator from your PC.

Figure 10-1

Note some complications, however. The C++ overload feature is great for developers because several
functions can share a single name with different parameters, but when a source code file is compiled to
an object file, each one of the overloaded functions should have a unique identifier. This is done by the

257

Platform Invoke

15_762935 ch10.qxp 11/20/06 7:57 AM Page 257

compilers using a technique called name mangling. However, each compiler follows different conventions
to mark the overloaded name. To ensure that the DLL functions can be exported correctly, you can use
the Dumpbin utility to display the function names from the compiler’s point of view.

By default, the 32-bit version of the Dumpbin.exe utility is stored at C:\Program Files\Microsoft
Visual Studio 8\VC\Bin (assuming Visual Studio 2005 is installed; the Dumpbin utility is also available
in Visual Studio 2002 and 2003). To run this program, however, you need to either specify the PATH in the
environment variable or use the fully qualified filename to run the program from the command line.

To add an environment variable in Windows, right-click My Computer and choose Properties. On the
Advanced tab, click the Environment Variables button (see Figure 10-2). You can then select the Path
variable from the System Variables list and add the corresponding path to the Path variable, as shown
in Figure 10-3.

Figure 10-2

Another way to set the environment variables is to run the vsvars32.bat batch file shipped with
Visual Studio 2005. The default location of this batch file is C:\Program Files\Microsoft Visual
Studio 8\Common7\Tools.

258

Chapter 10

15_762935 ch10.qxp 11/20/06 7:57 AM Page 258

Figure 10-3

The Dumpbin utility reveals how the Visual Basic or Visual C# compiler sees a DLL. For example, if you
want to find out the external names of the “coredll” library, you can use the following command:

C:\Program Files\Microsoft Visual Studio 8\VC\Bin>dumpbin /EXPORTS “C:\Program
Files\Windows CE Tools\wce500\Windows Mobile 5.0 SmartphoneSDK\Lib\ARMV4I\ coredll.
lib” | more

Figures 10-4 and 10-5 show the first and last page of the library information, respectively.

Figure 10-4

259

Platform Invoke

15_762935 ch10.qxp 11/20/06 7:57 AM Page 259

Figure 10-5

In short, the Dumpbin utility helps programmers export functions from a DLL using the correct name
used by the compiler.

Using P/Invoke in the .NET Compact
Framework

The P/Invoke functions and attributes are located in the System.Runtime.InteropServices name-
space. Basically, you perform P/Invoke on the .NET Compact Framework just as you would on the full
.NET Framework. However, the .NET Compact Framework supports only one-quarter of the P/Invoke
functions available in the full .NET Framework. In addition, the following features are unique in the
.NET Compact Framework environment:

❑ Calling convention — The full .NET Framework supports three calling conventions, such as
Cdecl, StdCall, and ThisCall. Each calling convention mandates who cleans the stack and how
the arguments are passed. You can change the calling convention by setting the value of the
CallingConvention property of the DllImport attribute. For example, the following directive
can set the calling convention to Cdecl:

[DllImport(“coredll.dll”, CallingConvention=CallingConvention.Cdecl)]

In the .NET Compact Framework, however, only the Winapi value is supported in the
CallingConvention enumeration. Note that the Winapi value is not an actual calling conven-
tion; rather, it refers to the default platform convention. On Windows CE .NET, Winapi is
referred to Cdecl, whereas on the full .NET Framework it defaults to the StdCall convention.

260

Chapter 10

15_762935 ch10.qxp 11/20/06 7:57 AM Page 260

❑ Character coding — The character set encoding on the full .NET Framework can be set to ANSI,
Unicode, or Auto through the CharSet property in the DLLImport attribute. If CharSet is not
specified, then the default encoding is ANSI on the full .NET Framework. The .NET Compact
Framework, however, supports only Unicode encoding. As a result, if a DLL function takes an
ANSI string, then you need to convert the encoding before calling. You can perform this conver-
sion by calling the GetBytes() method of the ASCIIEncoding class, as follows:

using System.Text;

...

//Unicode string
String unicodeStr = “The value of Pi (\u03a0) is 3.14159265.”;

//A new instance of ASCIIEncoding
ASCIIEncoding ascii = new ASCIIEncoding();

//Convert the unicode string to an ASCII encoded byte array
Byte[] ByteArray = ascii.GetBytes(unicodeString);

...

❑ Unidirection — The full .NET Framework supports callbacks through delegates. This allows a
DLL function to call managed code at the address of the delegate. Such a callback feature is
missing in the .NET Compact Framework. Nonetheless, parameters can be passed to a DLL
function by value or by reference, thereby enabling data to be returned to the .NET Compact
Framework application.

❑ Exceptions — The .NET Compact Framework throws different exceptions while errors occur. If the
function cannot be found, then the .NET Compact Framework throws a MissingMethodException
exception, whereas the full .NET Framework throws an EntryPointNotFoundException excep-
tion. If a function is declared incorrectly, a NotSupportedException will be thrown on the .NET
Compact Framework, rather than the ExecutionEngineException on the full .NET Framework.

❑ Windows messages — In the .NET Framework, the Handle (hWnd) property of the Form class
can be exposed so that you can pass the handle to a window or a function. You can also override
the DEfWndProc() method to customize the processing of messages sent by the operating sys-
tem. The .NET Compact Framework does not support either of these members. It does, how-
ever, support the MessageWindow and Message classes in the Microsoft.WindowsCE.Forms
namespace. You can use the SendMessage() and PostMessage() methods of the
MessageWindow class to send messages to other windows.

To call the unmanaged code (such as Win32 APIs) from managed code, you must first declare an unman-
aged code function.

Declaring and Calling an Unmanaged Code Function
A P/Invoke declaration exports a function from a DLL. The declaration is like a regular function declara-
tion in the sense that it has a return type, takes zero or more parameters, and should be made inside a
class. Conversely, a P/Invoke declaration requires three additional elements: the DllImport attribute,

261

Platform Invoke

15_762935 ch10.qxp 11/20/06 7:57 AM Page 261

the static keyword, and the extern keyword. For example, to determine whether a key is up or down,
you can export the GetAsyncKeyState() function from the coredll.dll, as follows:

using System.Runtime.InteropServices;
...
[DLLImport(“coredll.dll”)]
public static extern short GetAsyncKeyState (int nKey)

As you can see, the extern keyword is necessary in the declaration because it indicates that the function’s
body is not within the current assembly. The compiler should look for that external function from the
coredll.dll specified in DLLImport attributes. The function is declared as static because it is a class
method. The coredll.dll is stored on every Windows Mobile–based Smartphone device. It exposes
many Windows CE APIs to the programmers, and functions like kernel32.dll and user32.dll on a
desktop PC. If you need to call a DLL that is not yet stored on the mobile devices, you need to copy the
DLL file to the device as well when you deploy your code.

Calling an unmanaged code function is the same as calling a managed code function. In C#, you can call
the GetAsyncKeyState function as follows:

int i = 2;
short nkeyState = GetAsyncKeyState(i);

Usually, you can easily export a function from unmanaged code using the approach mentioned above.
However, the signature of the exporting function might conflict with other functions or even reserved
keywords in your managed code. An easy workaround is to use the EntryPoint property of the
DLLImport attribute to import the function from the DLL and then rename it in the declaration. The fol-
lowing snippet of code exports the GetAsyncKeyState function from the Coredll.dll and makes it
appear as GetMyKeyState in the managed code:

using System.Runtime.InteropServices;
...
[DLLImport(“coredll.dll”, EntryPoint=”GetAsyncKeyState”)]
public static extern short GetMyKeyState (int nKey)
...
int i = 2;
short nkeyState = GetMyKeyState(i);

Error Handling
The DLLs and the functions imported from the DLLs are loaded during runtime, not at compile time. The
compiler is therefore not able to check the existence of the DLL, nor can it locate the entry point. To make
your application more robust, it is highly suggested that you catch the exceptions with a try...catch
block whenever you make calls to unmanaged code. For example, the following code will catch the
MissingMethodException when calling the native GetAsyncKeyState() functions:

try
{

GetAsyncKeyState(i);
}
catch (MissingMethodException e)
{

262

Chapter 10

15_762935 ch10.qxp 11/20/06 7:57 AM Page 262

MessageBox.Show(“MissingMethodException for GetAsyncKeyState:” + e.toString()
);
}

Usually, the NotSupportedException indicates a mismatch between the declaration and the actual def-
inition of the DLL function. You need to check the declaration to make certain it indeed matches the
function it calls. In the case of MissingMethodException, it could be one of the following reasons:

❑ The DLL being called using P/Invoke does not exist, cannot be located, or is corrupted.

❑ The DLL being called is dependent on other DLLs, which are missing.

❑ The name of the function is incorrect.

❑ The parameters passed to the functions are wrong.

Another technique that can help you with the debugging and error handling of P/Invoke is to turn on the
SetLastError property (which is set to false by default). This will cause the CLR to call the Windows
CE GetLastError function and cache the returned error value. By doing so, the error value will not
be overridden by other functions, and you can then safely retrieve the error information by using the
Marshal.GetLastWin32Error method. In the following code snippet, SetLastError is set to true
when importing the GetAsyncKeyStateAPI to the managed code. After making an invalid call to the
API, the error code can be retrieved and printed on the screen:

using System.Runtime.InteropServices;
using System.Windows.Forms
...

[DLLImport(“coredll.dll”, EntryPoint=”GetAsyncKeyState”, SetLastError=ture)]
Extern public static extern short GetMyKeyState (int nKey)
...

//Make an invalid call
short nkeyState = GetMyKeyState (987654321);

int lastError = Marshal.GetLastWin32Error();
string errMesg =”The error message is “+Convert.toString(lastError);

MessageBox.Show(errMesg);

Marshaling Data
When calling unmanaged libraries from managed code, you have to be careful about parameter passing.
As mentioned previously, unmanaged libraries can only access unmanaged data, whereas managed
code accesses managed data by default. The process of converting between managed data and unman-
aged data is known as marshaling. For simple data types or objects, marshaling is automatically handled
in the .NET Framework. For complex data types, you can use the Marshal class to copy managed data
to an unmanaged memory space or copy unmanaged data to a managed memory space.

Marshaling an object is also known as serializing an object (or deflating an object), and unmarshaling
an object is known as deserializing an object (or inflating an object).

263

Platform Invoke

15_762935 ch10.qxp 11/20/06 7:57 AM Page 263

Marshaling Value Types
Passing parameters by values is normally easy because value types usually take only a few bytes of
memory space and can be pushed and popped on the stack. Another category of data types known as
blittable types refers to those data types that have the same sizes and data representations in both man-
aged code and unmanaged code. Because blittable types have the identical internal “look,” marshaling
those blittable types requires only a simple memory block copy.

Most of the value types defined in the .NET Compact Framework are blittable types, as illustrated in
Table 10-2.

Table 10-2 Common .NET Compact Framework Blittable Value Types

.NET Compact
Framework Type C# Keyword Native C/C++ Keyword Size (bits)

System.Byte byte unsigned char 8

System.SByte Sbyte signed char 8

System.Int16 short short 16

System.UInt16 ushort unsigned short 16

System.Int32 int int 32

System.Char char WCHAR (wchar_t) 16

Because marshaling blittable value types is automatically handled by the .NET Compact Framework,
you can simply marshal those blittable value types as if you were passing parameters to managed code.

For example, the following C/C++ function takes two integers and calculates the sum:

EXTERN_C
__declspec(dllexport)
int IntAdd2(int x, int y)
{

return (x+y);
}

If this function is compiled and built into the library MarshalTypeDll.dll, it can then be declared and
called from managed code. The following C# code calculates the sum of 10 and 6 and displays the result
in a message box:

using System.Runtime.InteropServices;
...
[DllImport(“MarshalTypeDll.dll”)]
extern static int IntAdd2(int a, int b);
...
int sum = IntAdd2(10, 6);
MessageBox.Show(String.Format(“Sum is {0}”, sum));

264

Chapter 10

15_762935 ch10.qxp 11/20/06 7:57 AM Page 264

In the full .NET Framework, long types (64-bit integer) and floating-point types (float and
double) can be passed by value and marshaled into unmanaged code. In the .NET Compact Framework,
however, this is no longer true. You should pass them by reference in order to pass those values into
unmanaged code.

Besides passing value types by value, the .NET Compact Framework also supports passing value types
by reference. When parameters are passed by reference, the pointer to the data, rather than the data
itself, is passed to the unmanaged code.

The C# language offers two ways to pass value types by reference. The out parameters are used only to
pass back a value from a function. The ref parameters can be used to pass a value to a function and to
retrieve a value from a function, but you must assign a value to a ref parameter before using it.

The following C/C++ function takes two double numbers, calculates the arithmetic mean, and stores
the result to a third double parameter. All the double parameters in this example are passed by refer-
ence through pointers:

EXTERN_C
__declspec(dllexport)
void DoubleMean2(double *x, double *y, double *mean)
{

*mean = (*x + *y) / 2.0;
}

Again, assuming the function is complied and built in the library MarshalTypeDll.dll, it can be
accessed from managed code, as follows:

[DllImport(“MarshalTypeDll.dll”)]
extern static void DoubleMean2(

ref double a,
ref double b,
out double mean);

...
double a = 10.0;
double b = 6.0;
double mean;
DoubleMean2(ref a, ref b, out mean);
MessageBox.Show(

String.Format(“Mean is {0}”, mean)
);

Another thing you need to consider is the constants. Traditionally, constants are defined as macros in
C/C++. For example, the following code defines the numeric value of each date:

#define SUNDAY 0
#define MONDAY 1
#define TUESDAY 2
#define WEDNESDAY 3
#define THURSDAY 4
#define FRIDAY 5
#define SATURDAY 6

265

Platform Invoke

15_762935 ch10.qxp 11/20/06 7:57 AM Page 265

When translating those constants in managed code, use the const keyword, as follows:

const int SUNDAY = 0;
const int MONDAY = 1;
const int TUESDAY = 2;
const int WEDNESDAY = 3;
const int THURSDAY = 4;
const int FRIDAY = 5;
const int SATURDAY = 6;

Alternately, you can simply define the constant values as an enumerated type, as follows:

enum Dates : int
{

SUNDAY = 0,
MONDAY = 1,
TUESDAY = 2,
WEDNESDAY = 3,
THURSDAY = 4,
FRIDAY = 5,
SATURDAY = 6,

}

Marshaling Reference Types
Generally, reference types are more complex to process because the CLR memory management system
may store data differently from C and C++. In addition, the CLR may move data around in a way that is
transparent for the managed code but not for C and C++.

Next, you will learn how to marshal reference types, such as arrays, strings, structures, and classes.

Passing Arrays
Arrays are stored as a contiguous space in memory in C/C++. When marshaling an array from managed
code to unmanaged code, the .NET Compact Network can map all the elements to a format that is con-
sistent with the C/C++ representation. The following example demonstrates how this can be done. The
C function MeanArray can calculate the arithmetic mean of an array of positive integers:

EXTERN_C
__declspec(dllexport)
void int MeanArray(int *pItem, int len)
{

if (len < 1)
return -1; // Empty

int Sum = 0;

for (int i= 0; i < len; i++)
Sum += pItem[i];

return Sum / len;
}

266

Chapter 10

15_762935 ch10.qxp 11/20/06 7:57 AM Page 266

Assuming the function is again compiled and built in MarshalTypeDll.dll, you can call this function
with P/Invoke as follows:

[DllImport(“MarshalTypeDll.dll”)]
extern static int MeanArray(int[] pItem, int len);

...

int[] stuScores = new int[] { 78, 85, 51, 92, 81, 96, 65};
int mean = MeanArray(stuScores, stuScores.Length);
MessageBox.Show(

String.Format(“The class average of final exam is {0}”, mean)
);
...

Passing String Variables
You can use both the System.String and System.Text.StringBuilder classes to pass data to
Unicode character arrays in the native code. The marshaling runtime of the .NET Compact Framework
will append a null terminating character (\0) to the end of a Unicode character array so that the result-
ing array conforms to the C string format.

The string keyword in C# is an alias of the System.String class. The data type of each Unicode
character is System.Char in the .NET Compact Framework, which is equivalent to the WCHAR (or
wchar_t,) data type in C/C++ (refer to Table 10-2).

In the .NET Compact Framework, the System.String objects are immutable by design, which means
they cannot be changed at runtime. If the content of a string needs to be changed, such as appending
a few characters to an existing string, the .NET runtime will return a new object to hold the content of
the new string. As a result, you should not pass a String object to unmanaged code that will modify
the string.

The StringBuilder class in the System.Text namespace represents a mutable array of Unicode char-
acters. You can therefore marshal a StringBuilder object to the unmanaged code if the string will be
modified. When creating a new instance of the StringBuilder object, the best practice is to specify the
maximum number of characters it can hold. You can do this by specifying the Capacity property in the
StringBuilder constructor. Note that you need to ensure that the Capacity property is sufficient to
hold all possible results.

For example, the following unmanaged function StrConcat concatenates pStr1 and pStr2, and passes
the resulting string to pStr3:

EXTERN_C __declspec(dllexport)
void StrConcat(WCHAR * pStr1, WCHAR * pStr2, WCHAR * pStr3)
{

size_t len1 = wcslen(pStr1);
size_t len2 = wcslen(PStr2);
size_t k;

for (k = 0; k < len1; k++)
{

267

Platform Invoke

15_762935 ch10.qxp 11/20/06 7:57 AM Page 267

pStr3[k] = pStr1[k];
}

for (k = 0; k < len2; k++)
{

pStr3[len1+k] = pStr2[k];
}

pStr3[len1+len2] = ‘\0’;
}

If the preceding unmanaged code is compiled and built in MarshalTypeDll.dll, the following managed
code shows how to P/Invoke the StrConcat function:

[DllImport(“MarshalTypeDll.dll”)]
extern static void StrConcat(string inStr1, string inStr2, StringBuilder outStr);
...

string inStr1 = “Happy “;
string inStr2 = “Smartphone Programming”;

StringBuilder outStr = new StringBuilder(inStr1.Length + inStr2.Length);

StrConcat(inStr1, inStr2, outStr);
MessageBox.Show(

String.Format(“The concatenated string is: ‘{0}’”, outStr)
);

...

Note that in this example, you can also use the StringBuilder objects to pass the first two parameters,
but you cannot pass the third parameter as a String object because the unmanaged code will modify
the data it contains.

Note also that even though you can use either StringBuilder objects or String objects to pass the
first two parameters, using two String objects is recommended because the unmanaged code is not
supposed to modify the first two parameters; passing two immutable String objects is safer.

Passing Structures and Classes with Blittable Fields
If all the fields in a structure or a class are blittable, the .NET Compact Framework can automatically
marshal the structure or the class by sequentially laying out the fields in memory in the same order as
they appear in the unmanaged code.

Consider a structure in C/C++ that defines a point by x and y coordinates, and a function to calculate
the distance between two points:

struct Point
{

double x;
double y;

};

EXTERN_C

268

Chapter 10

15_762935 ch10.qxp 11/20/06 7:57 AM Page 268

__declspec(dllexport)
void GetDistance (Point * p1, Point * p2, double * pDist)
{

double dx = p1->x - p2->x;
double dy = p1->y - p2->y;
*pDist = sqrt(dx*dx + dy*dy);

}

To call the unmanaged GetDistance() function from the managed code, first declare the managed ver-
sion of the Point structure in your C# code, as follows:

public struct Point
{

public double x;
public double y;
public Point (double x, double y)
{

this.x = x;
this.y = y;

}
};

Assuming the unmanaged function is in the MarshalTypeDll.dll library, the following example
shows how to P/Invoke the function from your managed code:

...
[DllImport(“MarshalTypeDll.dll”)]
extern static void GetDistance (

ref Point p1,
ref Point p2,
out double dist);

...

double result;

Point point1 = new Point(0.0, 0.0);
Point point2 = new Point(8.0, 6.0);

GetDistance (ref point1, ref point2, out result);
MessageBox.Show(

String.Format(“Distance is {0}”, resultDistance)
);

...

The StructLayout attribute in the .NET Compact Framework 2.0 enables you to specify the physical
layout of the data fields of a structure or a class. The layout options are defined in the LayoutKind enu-
meration, which supports the following three options:

❑ Auto — The runtime automatically choose the layout in unmanaged memory. This is the default
setting when LayoutKind is specified.

269

Platform Invoke

15_762935 ch10.qxp 11/20/06 7:57 AM Page 269

❑ Explicit — You can explicitly set the position for each member of an object by using the
FieldOffset attribute. For example, the unmanaged memory space for the X and Y members
starts from byte 0 and byte 4, respectively:

[StructLayout(LayoutKind.Explicit)]
public struct IntPoint
{

[FieldOffset(0)] public int X;
[FieldOffset(4)] public int Y;

}

❑ Sequential — The members of an object will be laid out sequentially in unmanaged memory
according to the order in which they appear in the structure or class declaration.

In the GetDistance example, you can also specify the structure layout as sequential as follows:

[StructLayout(LayoutKind.Sequential)]
public struct Point
{

public double x;
public double y;
public Point (double x, double y)
{

this.x = x;
this.y = y;

}
};

Setting the layout to sequential is optional in this example, because data members X and Y are both
blittable. The .NET Compact Framework runtime can correctly handle the marshaling without the help
of the StructLayout attribute.

Passing Structures and Classes with Non-Blittable Fields
Prior to version 2.0, the .NET Compact Framework has very limited support to marshal complex struc-
tures or classes that contain non-blittable data members. As a result, marshaling some complex struc-
tures or classes is simply impossible. The .NET Compact Framework 2.0 now supports the MarshalAs
attribute, which enables you to indicate how to marshal complex data between managed code and
unmanaged code.

To identify the format of the unmanaged data, you can use the MarshalAs attribute followed by the
UnmanagedType enumeration. For example, the following C# code can pass a string variable as a two-
byte null-terminated Unicode character array to unmanaged code:

Void PInvokeAnCFunction ([MarshalAs(UnmanagedType.LPWStr)] string s);

Table 10-3 lists several common members in the UnmanagedType enumeration.

Refer to MSDN online at http://msdn2.microsoft.com/en-us/library/system.runtime
.interopservices.unmanagedtype.aspx to get a full list of the members.

270

Chapter 10

15_762935 ch10.qxp 11/20/06 7:57 AM Page 270

Table 10-3 Common Members in the UnmanagedType Enumeration

Name Size (Bytes) Description

AnsiBStr 1 An ANSI character string

Bool 4 A Boolean type (Win32 BOOL type)

ByValArray N/A An array of value type data

ByValTstr N/A An array of characters

I1 1 Signed integer

I2 2 Signed integer

I4 4 Signed integer

LPStr 1 Null-terminated ANSI character string

LPWStr 2 Null-terminated Unicode character string

The MarshalAs attribute makes it possible to marshal a complex structure or a class. For example, the
following C structure ComplexStruct contains an integer array, a character array, and a pointer to a
string:

struct ComplexStruct
{

int intAry[10];
char charAry[80];
WCHAR *pStr;

};

This next bit of code illustrates how to define this structure in C#:

struct ComplexStruct
{

[MarshalAs(UnmanagedType.ByValArray, sizeConst=10)] int[] intAry;
[MarshalAs(UnmanagedType.ByValTStr, sizeConst=80)] string str1;
[marshalAs(UnmanagedType.LPWStr)] string str2;

};

Note that when using ByValArray or ByValTStr, you must set sizeConst to indicate how many ele-
ments are in the array.

An Example of a P/Invoke Application
Chapter 4 described how to change the text input mode by using the InputMethod and InputModeEditor
classes in the Microsoft.WindowsCE.Form namespace. This chapter presents an alternative solution:
calling the Win32 APIs with P/Invoke. By walking through this example, you will learn how to leverage
the native APIs in your managed Smartphone device applications.

271

Platform Invoke

15_762935 ch10.qxp 11/20/06 7:57 AM Page 271

To change the input mode in native code, use the SendMessage() API, which can send various mes-
sages to a window or windows. The signature of this function is as follows:

LRESULT SendMessage(
HWND hWnd,
UINT Msg,
WPARAM wParam,
LPARAM lParam

);

The SendMessage() function takes four parameters. The hWnd parameter is the handle to the window
that will receive the message Msg. The wParam and the lParam parameters provide additional message-
specific information.

To set the input mode, the Msg parameter must be EM_SETINPUTMODE, which is defined as 0x00DE in
winuserm.h in the Include\Armv4i directory of the Windows Mobile 5.0 SDK. You also need to indi-
cate which input mode is in the lParam parameter. Following are the supported input modes and their
numeric values:

❑ EIM_SPELL—0, specifies the Spell input mode (also called multi-tap)

❑ EIM_AMBIG—1, specifies the Ambiguous input mode (also called T9)

❑ EIM_NUMBERS—2, specifies the Numbers input mode

❑ EIM_TEXT—3, specifies the user preferred input mode, which is the user’s last Spell or
Ambiguous selection

To set the input mode for a TextBox control, the handle of the Textbox must be passed to the hWnd in the
SendMessage()function. The approach in this example to get the handle is to call the Win32 native API
GetFocus(), which returns the window handle of the currently focused control.

After going through the related native Win32 APIs, you are ready to build a Smartphone device applica-
tion that can change the input mode calling the Win32 APIs using P/Invoke.

Start a new Smartphone device application by choosing File➪New➪Project in Visual Studio 2005, and
name the project InputMode. From Solution Explorer, rename the default Form1.cs to InputMode.cs
by right-clicking Form1.cs and choosing Rename. Then make the Form Designer the currently active
window by pressing Shift+F7. From the Properties window, set both the name property and the text
property of the form to InputForm.

Next, add controls to the form and set their properties as described in Table 10-4.

Table 10-4 Controls in the InputMode Sample Application

Name Type Text Location Size Add To

lbName Label Input Last Name 0,0 152,22 InputForm

txtName TextBox 0,25 152,22 InputForm

lbPhone Label Input Phone Number 0,60 152,22 InputForm

272

Chapter 10

15_762935 ch10.qxp 11/20/06 7:57 AM Page 272

Name Type Text Location Size Add To

txtPhone TextBox 0,85 152,22 InputForm

lbNotes Label Input Comments 0,120 152,22 InputForm

txtComment TextBox 0,145 152,22 InputForm

mnuDone MenuItem Done mainMenu1

mnuInputMode MenuItem Input Mode mainMenu1

mnuSpell MenuItem Spell mnuInputMode

mnuT9 MenuItem T9 mnuInputMode

mnuNumber MenuItem Number mnuInputMode

mnuText MenuItem Text mnuInputMode

Figure 10-6 shows the UI interface.

Figure 10-6

To call the native code, first include the System.Runtime.InteropServices namespace, as follows:

using System.Runtime.InteropServices;

273

Platform Invoke

15_762935 ch10.qxp 11/20/06 7:57 AM Page 273

Both the GetFocus() function and the SendMessage() function are located in coredll.dll and can
be imported to C# code as follows:

[DllImport(“coredll.dll”, EntryPoint = “GetFocus”)]
public static extern IntPtr GetFocus();

[DllImport(“coredll.dll”, EntryPoint = “SendMessage”)]
public static extern int SendMessage(IntPtr hWnd, uint Message, uint wParam,

uint lParam);

Next, define the Text input mode constant so that it can be used by the SendMessage() function to set
the input mode for a Textbox. The following code defines related constants:

//Define text mode constant
public const uint EM_SETINPUTMODE = 0xDE;

public const uint EIM_SPELL = 0; //Multi-tap
public const uint EIM_AMBIG = 1; //T9
public const uint EIM_NUMBERS = 2; //Number
public const uint EIM_TEXT = 3; //Text

Because there are three TextBox controls on the form, it makes sense to add a method for changing the
input mode:

//Set the input mode of ctrl to MODE
private void SetInputMode(Control ctrl, uint MODE)
{
...

ctrl.Focus();
IntPtr hWnd = GetFocus();
SendMessage(hWnd, EM_SETINPUTMODE, 0, MODE);

...
}

As shown above, the SetInputMode() method first sets the focus of the form to Control ctrl. Then
the window handle of ctrl can be retrieved from the GetFocus function imported earlier. Next, call the
Win32 API SendMessage and set the input mode of ctrl to MODE.

Having defined the SetInputMode() method, there are two ways you can use it. First, during the initial-
ization process, you can call this method and set the TextBox controls to an appropriate input mode. For
instance, TextBox txtPhone expects users to input numbers. You can set the input mode of txtPhone
to EIM_NUMBERS when the form is loaded. The following code pre-sets the input mode of txtName to
EIM_SPELL, txtPhone to EIM_NUMBERS, and txtComment to EIM_TEXT:

//Preset input modes of each TextBox
SetInputMode(txtName, EIM_SPELL);
SetInputMode(txtPhone, EIM_NUMBERS);
SetInputMode(txtComment, EIM_TEXT);

Second, you can add event handlers for those input mode menu items. For example, when users select
T9 mode, set the currently focused control to T9 Input mode. To find out which control is currently
focused, check the Focused property of each control in the form, as follows:

274

Chapter 10

15_762935 ch10.qxp 11/20/06 7:57 AM Page 274

// Find the focused control in current form
private Control getFocusedCtrl(Form form)
{

foreach (Control c in form.Controls)
{

if (c.Focused) return c;
}
//Return null if no control is focused
return null;

}

Following is the event handler when the menu item mnuT9 is clicked:

//Set input mode to T9
private void mnuT9_Click(object sender, EventArgs e)
{

Control fc = getFocusedCtrl(this);

//Set input mode to current focused control
if (fc != null) SetInputMode(fc,EIM_AMBIG);

//Set input mode to TextBox Tb_name if no control is currently focused
else SetInputMode(txtName,EIM_AMBIG);

}

In the preceding click event handler, when the currently focused control cannot be found, it uses the
txtComment as a fallback control and sets the input mode for txtComment.

Add similar click event handlers for mnuName, mnuPhone, and mnuText. Also add a click event hander to
mnuDone to close the application when the left soft key is pressed.

Following is the full listing of the code in InputForm.cs:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

using System.Runtime.InteropServices;

namespace InputMode
{

public partial class InputForm : Form
{

//Import native GetFocus API
[DllImport(“coredll.dll”, EntryPoint = “GetFocus”)]
public static extern IntPtr GetFocus();

//Import native SendMessage API

275

Platform Invoke

15_762935 ch10.qxp 11/20/06 7:57 AM Page 275

[DllImport(“coredll.dll”, EntryPoint = “SendMessage”)]
public static extern int SendMessage(IntPtr hWnd, uint Message, uint

wParam, uint lParam);

//Define text mode constant
public const uint EM_SETINPUTMODE = 0xDE;
public const uint EIM_SPELL = 0; //Multi-tap
public const uint EIM_AMBIG = 1; //T9
public const uint EIM_NUMBERS = 2; //Number
public const uint EIM_TEXT = 3; //Text

//Set the input mode of ctrl to MODE
private void SetInputMode(Control ctrl, uint MODE)
{

//Set the focus, obtain the window handler, and then set the mode
try
{

ctrl.Focus();
IntPtr hWnd = GetFocus();
SendMessage(hWnd, EM_SETINPUTMODE, 0, MODE);

}
catch (MissingMethodException e)
{

MessageBox.Show(“Error: “ + e.ToString());
}

}

public InputForm()
{

InitializeComponent();

//Preset input modes of each TextBox
SetInputMode(txtComment, EIM_TEXT);
SetInputMode(txtPhone, EIM_NUMBERS);
SetInputMode(txtName, EIM_SPELL);

}

// Find the focused control in current form
private Control getFocusedCtrl(Form form)
{

foreach (Control c in form.Controls)
{

if (c.Focused) return c;
}
//Return null if no control is focused
return null;

}

//Set input mode to spell (Multi-tap)
private void mnuSpell_Click(object sender, EventArgs e)
{

Control fc = getFocusedCtrl(this);

//Set input mode to current focused control

276

Chapter 10

15_762935 ch10.qxp 11/20/06 7:57 AM Page 276

if (fc != null) SetInputMode(fc, EIM_SPELL);

//Set input mode to TextBox Tb_name if no control is currently focused
else SetInputMode(txtName, EIM_SPELL);

}

//Set input mode to T9
private void mnuT9_Click(object sender, EventArgs e)
{

Control fc = getFocusedCtrl(this);

//Set input mode to current focused control
if (fc != null) SetInputMode(fc,EIM_AMBIG);

//Set input mode to TextBox Tb_name if no control is currently focused
else SetInputMode(txtName,EIM_AMBIG);

}

//Set input mode to Numeric
private void mnuNumber_Click(object sender, EventArgs e)
{

Control fc = getFocusedCtrl(this);

//Set input mode to current focused control
if (fc != null) SetInputMode(fc,EIM_NUMBERS);
//Set input mode to TextBox Tb_name if no control is currently focused

else SetInputMode(txtName,EIM_NUMBERS);

}

//Set input mode to Text
private void mnuText_Click(object sender, EventArgs e)
{

Control fc = getFocusedCtrl(this);
//Set input mode to current focused control
if (fc != null) SetInputMode(fc,EIM_TEXT);
else SetInputMode(txtName,EIM_TEXT);

}

//
private void mnuDone_Click(object sender, EventArgs e)
{

this.Close();
}

}
}

This application demonstrates how you can use P/Invoke native APIs in your managed code. You can
apply the same approach when writing your own P/Invoke applications.

277

Platform Invoke

15_762935 ch10.qxp 11/20/06 7:57 AM Page 277

Optimizing P/Invoke Performance
In many situations, exporting native Windows CE APIs through P/Invoke certainly makes a developer’s
life a lot easier. You should realize, however, that you are sacrificing performance for the convenience.
As some reports have pointed out, calling and executing unmanaged DLLs from the .NET Compact
Framework can be more than five times slower than executing a managed implementation. This is really
not a big deal on a powerful PC running the full .NET Framework, but the penalty may be significant for
mobile devices such as Smartphone. Naturally, you may wonder where the overhead comes from and
how to minimize the negative impact.

The performance penalties mainly come from two sources. The first overhead is marshaling managed
data to unmanaged data. Obviously, the more parameters you need to pass to unmanaged code, the
more computational time and memory will be consumed. In addition, non-blittable marshaling will cer-
tainly affect the performance much more than blittable marshaling where data representations are the
same. The second extra cost is due to .NET runtime management. As discussed earlier in this chapter,
managed data is under the control of the .NET runtime. Processes such as garbage collection are always
monitoring this data. When calling native APIs from managed code, however, the .NET Compact
Framework first has to unregister that data from garbage collection so that unmanaged data will not be
controlled by the garbage collection process. Once the unmanaged code finishes execution, the .NET
runtime needs to reclaim the data as managed data so that it can be governed by the runtime environ-
ment. This extra process cost appears to be nontrivial as well.

Now that you know why P/Invoke adversely affects performance, let’s look at what you can do to limit
the penalties as much as possible.

The first technique results from the fact that non-blittable marshaling is much more complex than blit-
table marshaling. If you have a choice, always choose blittable marshaling when performing interop
calls. The next thing you should consider when optimizing P/Invoke performance is to group those calls
to bigger trunks. This is because each interop call has a fixed cost. By cutting the number of interop calls,
it is highly likely to reduce the time spend on interop management.

Specifically, when calling from managed code to unmanaged code, keep in mind the following guide-
lines suggested by the Microsoft .NET Compact Framework 2.0 team:

❑ P/Invoke calls are normally handled more quickly when the parameters are basic blittable types
or simple types. This includes the following:

❑ All blittable value types except the long type, which has a size of 64 bits and is more
efficient to pass by reference, rather than by value

❑ Simple data types such as String and Array, which are not blittable but which the
.NET Compact Framework can marshal pretty quickly

❑ struct or class types that contain only blittable or simple data types

❑ Using in and out attributes for arguments can speed up the marshaling process.

❑ Marshal.Prelink and Marshal.PrelinkAll can be used in the .NET Compact Framework 2.0
to provide earlier initialization of the native functions when the application first starts. Therefore,
users probably will wait longer for applications to launch but they can enjoy a faster response
once the application is loaded.

278

Chapter 10

15_762935 ch10.qxp 11/20/06 7:57 AM Page 278

Summary
The .NET Compact Framework supports a subset of P/Invoke services available in the full .NET
Framework. This feature enables you to call in to the old-fashioned yet still convenient Win32 system
libraries. You can also use the P/Invoke service to interact with other unmanaged libraries you have
manually created.

The typical steps to perform P/Invoke are as follows:

1. Import the DLL that contains the native APIs by using the DllImport attributes. This requires
the inclusion of the System.Runtime.InteropServices namespace.

2. Declare the calling function in your managed code.

3. Call the native APIs using the format defined in your managed code.

Blittable data types have the same size and memory representations in both managed code and unman-
aged code. You can simply pass them by value without any problems. Complex data types such as
arrays and strings can be passed by reference. For structure and class types, the LayoutKind attribute
and the MarshalAs attribute can be used to indicate how each data field is mapped to the unmanaged
memory.

Calling into native APIs using P/Invoke may incur performance penalty and is therefore recommended
only as a last resort. In the next chapter you will learn how to handle errors and how to debug in
Smartphone applications.

279

Platform Invoke

15_762935 ch10.qxp 11/20/06 7:57 AM Page 279

15_762935 ch10.qxp 11/20/06 7:57 AM Page 280

Exception Handling and
Debugging

This chapter is about dealing with exceptional conditions in your code and discovering problems
in your code. The .NET Compact Framework offers a number of exception classes that are used by
other classes when an error occurs. Applications can choose to handle some of these exceptions
programmatically, leaving others to the .NET Compact Framework CLR. Applications can also
define their own exception types for specific abnormal cases. The proper use of exception handling
can enhance the robustness of your application.

Debugging a Smartphone application enables you to trace into the code at runtime and discover
an application’s unexpected behaviors. Visual Studio 2005 can debug managed applications run-
ning on the emulator or on a Smartphone device. Depending on the debugging setting of the
application, you can perform source-code-level debugging or assembly-level debugging. The
debugger provides a set of windows for viewing and controlling objects and threads.

Topics covered in this chapter include the following:

❑ Exception and exception handling constructs in C#, and exception classes in the .Net
Compact Framework

❑ Debugging support in Visual Studio 2005

❑ Best practices for exception handling and application debugging

Exceptions and Exception Handling
Exceptions are errors that occur while an application executes. Hardware-based exceptions such as
page faults can be handled by computer hardware. Software-based exceptions are handled either
by the application or by the default exception handling mechanism of the runtime environment or
the operating system.

16_762935 ch11.qxp 11/20/06 7:58 AM Page 281

Exceptions
The purpose of exception handling can be summarized as follows:

❑ Exception handling enables applications to proceed in an expected fashion; application develop-
ers should take into account potential exceptions pertaining to the program flow, and handle
them proactively. Leaving these exceptions to the runtime or the operating system is not a sug-
gested approach as it often breaks the program logic and even crashes the application.

❑ Exception handling enables applications to define their own exceptions as a way to facilitate
special situations in program flow. Applications can throw exceptions at desired places and
catch them wherever needed.

❑ Unlike return code, exceptions are never ignored — either the application or the .NET Compact
Framework runtime will catch the exception.

From the standpoint of the application, there are handled exceptions and unhandled exceptions. As the
name implies, exceptions that are handled by the application are known as handled exceptions, whereas
those left to the runtime or the operating system are known as unhandled exceptions. Therefore, it is criti-
cal to identify which exceptions should be handled by the application. Usually, application developers
can obtain this information from the runtime framework. In the .NET Compact Framework, many
classes have built-in support for exceptions. For example, the System.Xml.XmlReader::Read()
method will throw a System.Xml.XmlException when an error occurs while parsing an XML data
stream. Applications using this method should capture this exception and notify the caller of this
method via error code.

The try...catch Statement
When an exception occurs, an exception handler defined by the application or the system will be called.
The basic construct of exception handling in C# is as follows:

try
{

// Statement that may throw exceptions
}
catch(ExceptionType e)
{

// This catch block will handle only the indicated exception type
}

You can associate zero or more catch blocks with a try block. A catch block can handle a specified
type of exception. When you need to handle multiple types of exceptions, the catch blocks should start
from specific exception types and proceed to more general types. An exception type filter must be placed
before its base exception type filter. Thus, once an exception occurs, it will go through the filters (the
catch blocks). In addition, a catch block can have no argument, meaning that it will catch all excep-
tions that come through the catch block filters. However, only one exception can be placed into a single
catch block.

Exceptions are handled according to the call stack of functions, meaning that an exception will unwind
the call stack until a handler for that type of exception is found. If an exception falls through the list of

282

Chapter 11

16_762935 ch11.qxp 11/20/06 7:58 AM Page 282

catch blocks, the .NET Compact Framework runtime will catch it and handle it using some built-in
default handlers. In this case, we call these exceptions unhandled because the application code relies on
the runtime to handle them.

Here is an example of I/O exception handling when a file is created on the device:

StreamWriter sw = null;
try
{

sw = new StreamWriter(@”\Storage Card\output.log”, false);
}
catch (DirectoryNotFoundException e)
{

// The file path is incorrect
}
catch (IOException e)
{

// IO exception such as failure to create the file
}

The MSDN documentation states that the constructor of StreamWriter used in this example
(StreamWriter::StreamWriter(string path, bool append)) may throw one of the following
seven exceptions:

❑ UnauthorizedAccessException

❑ ArgumentException

❑ ArgumentNullException

❑ DirectoryNotFoundException

❑ IOException

❑ PathTooLongException

❑ SecurityException

Depending on the setting of the file to be written, the caller may need to catch one or more exceptions.
In this example, you are concerned with the case in which the file path specified does not exist, leaving
all other I/O-related exceptions to the IOException filter. In fact, DirectoryNotFoundException is
a subclass of IOException, which is also a base class of several other exception classes, including
FileNotFoundException and PathTooLongException.

The finally Statement
In some cases, even when an exception occurs and has been handled in a catch block, there may still be
some clean-up code that needs to be executed after the catch block is executed. Although you can, of
course, put this part of clean-up code in every catch block, it would be more efficient to have another
code block that will be always executed, no matter what exceptions occurred and are being handled. In
C#, this block is the finally block. Here is an (incorrect!) example of using finally for the preceding
example:

283

Exception Handling and Debugging

16_762935 ch11.qxp 11/20/06 7:58 AM Page 283

try
{

sw = new StreamWriter(@”\Storage Card\output.txt”, false);
sr = new StreamReader(@”\Storage Card\input.txt”);
string line = sr.ReadLine();
while (line != null)
{

sw.WriteLine(line);
line = sr.ReadLine();

}
}
catch (DirectoryNotFoundException e)
{

// The file path is incorrect
Console.WriteLine(e.Message);

}
catch (IOException e)
{

// IO exception such as failure to create the file
Console.WriteLine(e.Message);

}
finally
{

sw.Close();
sr.Close();

}

The try blocks contain calls to the constructors of StreamReader and StreamWriter, as well as the
call to StreamReader::ReadLine(). The catch blocks catch DirectoryNotFoundException and
IOException. Finally, the finally block simply closes the previously created StreamReader and
StreamWriter objects. The problem with this finally block is that if any one of the two objects
threw an exception, regardless of whether it has been handled or not, the Close() call will throw a
NullReferenceException because the object is not initialized properly. For example, if any of the file
paths specified in the two constructor calls do not exist, you will hit the NullReferenceException
in the finally block. The solution to this problem is to determine whether the object is null before
closing it:

finally
{

if(sw != null)
sw.Close();

if(sr != null)
sr.Close();

}

The earlier example code uses a Console.WriteLine() call in the catch blocks. When developing
Smartphone applications, you can use this method to output some debugging information in the Output
window of Visual Studio 2005 in debug mode.

284

Chapter 11

16_762935 ch11.qxp 11/20/06 7:58 AM Page 284

The throw Statement
You can explicitly throw an exception in your code as an indication of an error to other parts of the pro-
gram. You can also rethrow an exception in your catch block and let the outer catch block catch it.
Here is an example of using the throw statement:

static void Main(string[] args)
{

try
{

FileCopy();
}
catch (IOException e)
{

// This line will catch the re-thrown DirectoryNotFoundException
Console.WriteLine(e.Message);

}
}

static void FileCopy()
{

try
{

sw = new StreamWriter(@”\Storage Card\output.txt”, false);

// We intentionally put a non-existent file path
sr = new StreamReader(@”\Storage Card1\input.txt”);
string line = sr.ReadLine();
while (line != null)
{

sw.WriteLine(line);
line = sr.ReadLine();

}
}
catch (DirectoryNotFoundException e)
{

// The file path is incorrect
Console.WriteLine(e.Message);
throw new DirectoryNotFoundException(“Re-throw: “ + e.Message);

}
catch (IOException e)
{

// IO exception such as failure to create the file
Console.WriteLine(e.Message);

}
finally
{

if (sw != null)
sw.Close();

if (sr != null)
sr.Close();

}

}

285

Exception Handling and Debugging

16_762935 ch11.qxp 11/20/06 7:58 AM Page 285

The rethrown DirectoryNotFoundException will be caught by the catch block in the Main()
method. The purpose of doing this “rethrowing” is that the method FileCopy() may need to indicate
to the caller when a specific exception occurs. Aside from using a return value, you can use throw to
easily pass the exception information to the caller, rather than use a defined method return value. This
way, you can separate common program flow (which will return normally) from abnormal code paths
in which exceptions may occur and be handled and rethrown if needed.

Exception Stack Trace
As stated earlier, exceptions are handled by unwinding the function stack call. If an exception is not han-
dled in the current function or method, it will be passed to the caller of this method, and so on, until a
handler for this exception catches it. Once the exception is handled, the program will continue to execute
from that point. A handler can rethrow the exception it is dealing with, or it can throw a different one
that wraps the underlying exception. Such a technique is called exception chaining or exception wrapping.
It is the responsibility of the caller of the current method to handle these exceptions; it is impossible for
a managed application to handle all possible exceptions. A good practice is to handle those exceptions
that are most likely to occur, leaving other exceptions to the .NET runtime.

All exception classes derived from System.IO.Exception have a StackTrace property containing the
stack trace. More details of these classes are discussed in the next section.

The following example shows three different scenarios when an exception is handled along with the func-
tion call stack. The code is part of a Smartphone console application. Although the Console::WriteLine()
call does not output anything, you can still see a message regarding unhandled exceptions on the emulator
or target device:

class ClassA
{

public static void MethodA(int i)
{

if (i == 0)
throw new DivideByZeroException(“DivideByZeroException in

MethodA()”);
else if (i == 1)

throw new FileNotFoundException(“FileNotFoundException in
MethodA()”);

else
throw new NullReferenceException(“NullReferenceException in

MethodA()”);
}

}
class ClassB
{

public static void MethodB(int i)
{

try
{

ClassA.MethodA(i);
}
catch (FileNotFoundException e)

286

Chapter 11

16_762935 ch11.qxp 11/20/06 7:58 AM Page 286

{
Console.WriteLine(e.StackTrace);
Console.WriteLine(e.Message);
throw new IOException();

}

}
}
class ClassC
{

public static void MethodC()
{

try
{

// Depending on the parameter passed to the following call, an
exception will be thrown

// If the parameter is 0, MethodA throws DivideByZeroException,
which is un-handled in this program

// If the pamameter is 1, MethodA throws FileNotFoundException,
which is handled in MethodB(). MethodB() re-throws IOException, which is handled in
MethodC()

// Otherwise, MethodA throws NullReferenceException, which is
handled in MethodC()

ClassB.MethodB(0);
}
catch (IOException e)
{

Console.WriteLine(e.StackTrace);
Console.WriteLine(e.Message);

}
catch (NullReferenceException e)
{

Console.WriteLine(e.StackTrace);
Console.WriteLine(e.Message);

}
}

}

In this example, ClassC::MethodC() calls ClassB:MethodB(), which in turn calls ClassA::MethodA().
Depending on the parameter passed to ClassA::MethodA(), three exceptions may be thrown and han-
dled or unhandled:

❑ DividedByZeroException— The code does not handle this exception; thus, the .NET CLR
will handle this exception after popping up a message box called Exception Assistant (shown in
Figure 11-1) in debug mode. If the application is run without debugging, you will see a message
on the emulator, as shown in Figure 11-2. Note that the name of the application executable is
ExceptionHandling.exe.

❑ FileNotFoundException—ClassB::MethodB() handles this exception and then throws an
IOException, which is handled in ClassC::MethodC().

❑ NullReferenceException— This exception is handled in ClassC:MethodC().

287

Exception Handling and Debugging

16_762935 ch11.qxp 11/20/06 7:58 AM Page 287

By default, if an exception handler is available, the code will not break when the exception is thrown.
However, if you want to break whenever a type of exception occurs, choose Debug➪Options, and then
specify an exception from the Category list or add your own user-defined exception to the list.

Figure 11-1

Figure 11-2

The Exception Class
Now let’s look at the base exception class, System.Exception. All other exception classes are derived
from this class, including user-defined exceptions. In fact, in C#, you can throw any object derived from
the System.Object class as an exception. However, it is a good practice to always throw an exception
object that inherited from System.Exception, as it has defined almost all the necessary properties and
methods. Subclasses do not need to provide any additional properties and methods.

Table 11-1 lists the most commonly used properties of the System.Exception class in the .NET Compact
Framework. The second column shows whether the property has a Get accessor, a Set accessor, or both.

288

Chapter 11

16_762935 ch11.qxp 11/20/06 7:58 AM Page 288

Table 11-1 System.Exception Properties

Property Accessor Description

Message Get A string that describes the exception. Subclasses can
override this property.

StackTrace Get A string representation of the call stack when the cur-
rent exception was thrown. Subclasses can override
this property.

InnerException Get An Exception instance that was wrapped in the cur-
rent exception. This is used in exception chaining
when an exception is thrown along with a reference to
an earlier exception (passed in the constructor).

HResult Get/Set A 32-bit value that uniquely identifies an exception.

Table 11-2 lists two frequently used methods in System.Exception in the .NET Compact Framework.

Table 11-2 System.Exception Methods

Method Return Type Description

GetBaseException() Exception The root cause of the current exception in an excep-
tion chain. For all the exceptions on the exception
chain, there is only one base exception: the first excep-
tion whose base exception is null.

ToString() String Returns a string representation of the current excep-
tion that may include the name of the class that
throws the exception, the Message property, the
return value of ToString() of the inner exception,
and the result of calling Environment.StackTrace,
which represents the current stack trace. Subclasses
can override this method.

Applications are not likely to use System.Exception directly; rather, either some specific exception
types or user-defined exceptions are used to cover possible program errors. The following section intro-
duces the exception hierarchy.

The SystemException Class
The System.SystemException class is thrown by the .NET CLR when unhandled exceptions occur in
the application. These exceptions are mainly runtime check errors. Applications do not need to catch a
SystemException; instead, only derived classes of SystemException need to be caught. Table 11-3
lists the classes derived from SystemException.

289

Exception Handling and Debugging

16_762935 ch11.qxp 11/20/06 7:58 AM Page 289

Table 11-3 Classes Derived from SystemException

Class Description

System.AccessViolationException Thrown when a protected memory address is being
accessed.

System.ArgumentException Thrown when at least one parameter of a method
is invalid. This exception class further extends to
System.ArgumentNullException and
System.ArgumentOutOfRangeException.

System.ArithmeticException Thrown when an application contains arithmetic
errors, such as divided by zero (DividedByZero
Exception), number overflow (Overflow
Exception), or floating number infinity
(NotFiniteNumberException).

System.IndexOutofRangeException When an index used to access an array is out of the
range.

System.IOException The base class for I/O exceptions. Classes derived
from IOException include DirectoryNot
FoundException, EndOfStreamException,
FileNotFoundException, FileLoadException,
and PathTooLongException.

System.NotImplementedException Thrown when a request method is not implemented.

System.NotSupportedException Thrown when a request method does not exist.

System.NullReferenceException Thrown when a null object is being accessed.

System.OutOfMemoryException Thrown when the runtime is running out of memory.

System.Security.SecurityException Thrown when a security error occurs.

System.Xml.XmlException Thrown when an XML processing error occurs.

The ApplicationException Class
ApplicationException is the base class of all user-defined exceptions. Like SystemException,
ApplicationException is derived from the Exception class but does not add any new functionality. It
is used to distinguish system exceptions thrown by the .NET CLR from those defined by the application.

In most cases, a user-defined exception derived from Exception or ApplicationException does not
need to add any new functionality. It is recommended that your user-defined exception class should
simply override the constructors that call the base constructors. However, it is also possible to add some
additional information to the exception. It is also suggested that your user-defined exception should be
named with the word “Exception.” The following code is an example of a user-defined exception:

class InvalidZipCodeException : ApplicationException
{

public InvalidZipCodeException()

290

Chapter 11

16_762935 ch11.qxp 11/20/06 7:58 AM Page 290

{

}
public InvalidZipCodeException(string message) : base(message)
{

}
public InvalidZipCodeException(string message, Exception inner)

: base(message, inner)
{
}
public override string ToString()
{

return “InvalidZipException: “ + this.Message + this.StackTrace;
}

}

The InvalidZipCodeException defines the following three constructors:

❑ A default constructor

❑ A constructor taking a string to be added to the Message property of the class

❑ Another constructor taking a string for the Message property and an inner exception for the
InnerException property

The default constructor is added because we want to create an InvalidZipCodeException without
using any parameter. The other two constructors simply call the corresponding base class (Application
Exception) methods. In addition, we override the ToString() method just to demonstrate that we can
add some meaningful information when the method is called.

To use InvalidZipCodeException, throw an instance of it at the appropriate place. For instance, the
following example uses a simple character-by-character check to verify whether a string indeed contains
a zip code:

Note that this example can certainly use a return code rather than an exception to notify the caller of
any invalid zip code. The intent is to demonstrate how a user-defined exception can be used.

public static bool ProcessZipCodeInput(string zip)
{

char[] zipCode = zip.ToCharArray();
if (zip.Length != 5)

throw new InvalidZipCodeException();
foreach (char x in zipCode)
{

if (!(x >= ‘0’ && x <= ‘9’))
{

// One of the three constructors of the user-defined exception
class may be used

throw new InvalidZipCodeException(“User-defined exception:
Invalid zip Code. “, new ArgumentException());

}
}
return true;

}

291

Exception Handling and Debugging

16_762935 ch11.qxp 11/20/06 7:58 AM Page 291

When throwing a user-defined exception, you have the option to use one of the available constructors. In
the preceding example code, you can use either the default constructor, or the one that accepts a string
parameter (User-defined exception: Invalid Zip Code), or the one that accepts the string
parameter and an exception instance (new ArgumentException()). For example, the following two
throw calls can also be used in the preceding example:

//throw new InvalidZipCodeException();
//throw new InvalidZipCodeException(“User-defined exception:

Invalid Zip Code. “);

Any code that calls ProcessZipCodeInput() should be put into a try-catch block. For example, if a
string “239d3” is passed to the ProcessZipCodeInput() method, an exception will be thrown and
should be handled:

try
{

ProcessZipCodeInput(“239d3”);
}
catch (InvalidZipCodeException e)
{

Console.WriteLine(e.ToString());
}

Best Practices of Exception Handling
As shown in the sample code discussed so far, exception handling can act as a method for execution
event notification across method/function calls. Note the following issues regarding when, where, and
how to use exception handling to improve the robustness of an application:

❑ Exceptions vs. condition checking. Some errors can be discovered by checking whether the
variable truly holds the expected value or by checking the return value of a method. Without
using exceptions, the code can simply return some error code in the case of a specific type of
error. The key is to determine whether this kind of error occurs quite rarely in the code path. On
the one hand, if the error is indeed exceptional, using exceptions is recommended because you
won’t waste CPU cycles on that condition-checking code in normal cases. On the other hand, if
the error is almost certain to occur every time in the current method, you may prefer condition
checking to exception handling because the latter usually results in significant overhead of stack
unwinding and exception creation and deletion.

❑ Exceptions vs. return error code. A method that may incur some error can either return a spe-
cific error code or raise some exception. The general guideline is to return a common error code
(for example, null for an object, -1 for an integer, false for a Boolean) when a common error
occurs, or define your return codes for your application logic, but throw an exception when an
unusual, critical error occurs.

❑ Exception classes vs. user-defined exception classes. Use the .NET Compact Framework’s
exception classes for all general exceptions. Write your user-defined exception classes only for a
special error in your application. For example, if the application requires numeric input follow-
ing a pattern, then a user-defined exception can be created for invalid input that does not con-
form to the pattern.

292

Chapter 11

16_762935 ch11.qxp 11/20/06 7:58 AM Page 292

Debugging in Visual Studio 2005
Chapter 3 talked briefly about debugging Smartphone applications. This section first describes the
debugging features in Visual Studio 2005, and then we turn to some advanced topics regarding debug-
ging support in the .NET Compact Framework.

Debugging Windows
Basic debugging functions supported by Visual Studio 2005 include the following: place breakpoints (F9
to toggle the breakpoint), step into (F11), step over (F10), or step out of the code (Shift+F11), and attach
to a process on a device or the emulator. In addition, you can use a handful of debug windows to view
and change variables, and to evaluate expressions and function calls.

The following debugging windows are listed under Debug➪Windows:

❑ Immediate window — You can enter an expression or a statement to inspect or change its value.
Two modes are supported in the immediate window. The first is command mode, in which you
can enter a Visual Studio command prefixed by a > character. For example, to open the com-
mands window, enter >cmd. The other mode is immediate mode, in which you can enter a vari-
able or a statement. To evaluate an expression, prefix the expression with a ? (such as ? 3+5).

❑ Watch windows — These windows enable you to enter and edit a variable, object, or expression,
which will be evaluated automatically while debugging. The display of an object enables you to
quickly view the properties and fields.

❑ Locals window — This window automatically displays local variables and objects. You can
change the values as well.

❑ Autos window — This window automatically displays local variables, objects, and expressions
of the current line and preceding lines. You can change the values as well.

❑ Call stack window — This window displays the method call stack, including all methods,
parameters, and return values.

❑ Modules window–This window lists loaded modules.

❑ Process window — This window lists currently running processes in the debugger.

❑ Threads window — This window lists all the threads of the application.

❑ Breakpoint window — This window lists all breakpoints. You can set conditional breakpoints
and configure a macro or print a message for a breakpoint.

Visual Studio 2005 debugger’s “Attach to process” support is disabled by default for
processes running on the emulator or Smartphone devices. To enable this feature,
add the following DWORD key to the registry of the device or the emulator:

HKLM\Software\Microsoft\.NetCompactFramework\Managed
Debugger\AttachEnabled = 1

You can use the WinCE Remote Registry Editor (in Visual Studio Remote Tools of
the Visual Studio 2005) to do this.

293

Exception Handling and Debugging

16_762935 ch11.qxp 11/20/06 7:58 AM Page 293

In addition, when you hover the mouse over the variable or object while the code breaks at a statement
or an exception, you will see the DataTip window, which enables you to inspect and change complex
data types. You can even expand properties or fields, which themselves are other types.

Note that managed code based on the .NET Compact Framework does not support disassembly debugging.

Debugging Setting
The C# compiler (csc.exe) supports a /debug option, which you can set to one of the following two values:

❑ full— This setting allows source code debugging when the program is run in a debugger and
when a debugger is attached to the running program. This is the default setting for a project’s
“Debug” configuration.

❑ pdbonly— This setting allows source code debugging when the program is run in a debugger
but only enables assembly-level debugging when a debugger is attached. This is the default set-
ting for a project’s “Release” configuration.

To change this setting in Visual Studio 2005, go to Project➪Project Properties➪Build➪Advanced➪Debug
Info. On the command line, you can also use /debug+ or /debug to get the same result as /debug:full.
Conversely, /debug- will disable debugging, just as /debug is not included in the compiler options. The
following line is an example of using /debug:full for the file MyExample.cs:

csc /debug:full MyExample.cs

Using /debug:full will have some impact on the performance of the program because the JIT code size
will increase and the .NET Compact Framework CLR will take longer time to JIT-compile the MSIL code.
The programmatic way to control these settings is to use System.Diagnostics.DebuggableAttribute
in your code.

A related compiler option is /optimize (or /o), which specifies whether to optimize the code for better
performance. Usually, code under debugging should not use this option. The same setting in Visual
Studio 2005 is available under Project➪Project Properties➪Debug.

Deploying and Debugging in Visual Studio
In Chapter 3, you learned how to deploy your Smartphone application onto a device or an emulator.
Basically, select Project➪Project Properties➪Device and select the device from the Target device box. Or, if
you have the Device toolbar selected, you can directly select the device there. After this step, debugging
an application running on the device or the emulator can be as easy as debugging a desktop application:
You will be able to perform source code debugging, put breakpoint in the code, and so on. Of course, the
user’s input must be done on the device or the emulator, but anything else is done on your development
PC. See Chapter 3 for a detailed discussion of the device debugging features in Visual Studio.

Defining Symbols
Sometimes conditional compilation is needed to quickly separate code for debugging purposes from
release code. The common way to do this is to use a conditional check on a symbol, as shown in the fol-
lowing example:

294

Chapter 11

16_762935 ch11.qxp 11/20/06 7:58 AM Page 294

#ifdef DEBUG
// Some debug code goes here
#endif

This piece of code checks whether the DEBUG symbol is defined either in your code (#define DEBUG) or
on the compiler command line (csc /define:DEBUG MyExample.cs). If so, statements following
ifdef will be compiled. Otherwise, the compiler will skip the ifdef-endif enclosed code. You can set
the DEBUG symbol as a compiler option with /define:DEBUG. The code segment can be placed any-
where in the code.

Another symbol that is often used for debugging and tracing is TRACE. The compiler option is /define:
TRACE. In fact, you can define whatever symbols you like using /define: (or /d:), followed by your
symbol on the compiler command line. Note that in C#, you can’t assign a value to a defined symbol.
Multiple symbols can be defined and separated by commas. In Visual Studio 2005, these settings are
found under Project➪Project Properties➪Build.

Limitations of Debugging
Despite the powerful functionality of Smartphone application debugging, it has the following limita-
tions (as of the .NET Compact Framework 2.0 and Visual Studio 2005):

❑ Just-My-Code debugging is not supported. Just-My-Code debugging is a feature that, once
enabled, allows the programmer to see only the user code while debugging; library class meth-
ods and system code will not be displayed. The debugger will search for symbols files to deter-
mine whether a piece of code is “My Code.” If symbols for the code exist, it is considered “My
Code.” This feature is not available for .NET Compact Framework debugging.

❑ Edit-and-Continue is not supported. In the .NET Framework application development, you can
edit the code and continue to run in a debugging session, thus saving the time for recompila-
tion. This feature is not supported in .NET Compact Framework debugging.

❑ The next statement is not supported. You cannot set the instruction point when debugging
.NET Compact Framework applications.

295

Exception Handling and Debugging

AppVerifier
Microsoft provides another free tool, called AppVerifier for Windows Mobile 5.0, that
you can use to test Smartphone applications against common native coding mistakes
such as memory leaks, handle leaks, GDI resource leaks, and some heap corruptions.
For managed code debugging, it is also useful for testing problems in intensive I/O
applications that may stem from the .NET Compact Framework CLR.

For more information about AppVerifier for Windows Mobile, visit www.microsoft
.com/downloads/details.aspx?FamilyId=D275348A-D937-4D88-AE25-28702
C78748D&displaylang=en or search for “Application Verifier Tool for Windows
Mobile” at download.Microsoft.com.

16_762935 ch11.qxp 11/20/06 7:58 AM Page 295

Multithreaded Debugging
Applications can have multiple threads to perform different tasks in parallel and in sync. The .NET
Compact Framework has done a good job encapsulating multithreading details into many classes such
that you don’t need to create threads yourself. For example, the BeginInvoke() method of a Control
internally uses the ThreadPool thread to perform the specified task asynchronously. The BeginRead()
and BeingWrite() methods of the Stream class are two other examples of multithreading in the .NET
Compact Framework.

There are still cases where you need to create and manage multiple threads in a Smartphone application.
For instance, for an application that retrieves web pages from the Internet and caches them locally, net-
work access, local file access, and UI updates can be performed with three threads simultaneously; thus,
one will not block others. A major debugging topic involves multiple threads running concurrently and
interoperating with each other. Common issues in multithreaded applications include race condition (the
execution of multiple threads depending on the timing of events), deadlock (two threads waiting for each
other to release a resource), and access violations (a thread accessing a resource that has been released).
AV (access violation) can be fairly easy to detect, as the .NET Compact Framework runtime will throw
exceptions in these cases. For the other two problems of concurrency, you need the debugger to help.

Managed Threads
A managed thread in the .NET Compact Framework CLR is not directly mapped to an operating system
thread. The CLR may schedule some managed threads using a single operating system thread. A managed
thread may be migrated from one operating system thread to another, but to application developers this is
completely transparent. If you have debugged applications that use multiple operating system threads in
Visual Studio .NET, you will find that debugging managed multithreaded applications is very similar.
Before discussing the details, let’s go over the threading support in the .NET Compact Framework.

To create a managed thread, use System.Threading.Thread. You need to define a thread procedure
and pass it to the constructor of the Thread object. Table 11-4 lists some notable properties and methods
of the Thread class.

Table 11-4 Thread Class Members

Member Description

Thread::Start() Starts the thread.

Thread::Abort() Terminates the thread. This method will throw a ThreadAbort
Exception.

Thread::Join() Blocks the calling thread until the thread being joined terminates.

Thread.CurrentThread Returns the current running thread.

Thread.Sleep() Put the current thread into sleep.

Thread::ManagedThreadId Returns the unique thread ID.

Thread::Name Gets or sets a thread name. Once set, Name cannot be changed.

296

Chapter 11

16_762935 ch11.qxp 11/20/06 7:58 AM Page 296

Member Description

Thread::Priority Gets or sets thread priority, which is one of the values defined in
the ThreadPriority enumeration.

Thread::IsBackground Gets or sets a value indicating whether the thread is a back-
ground thread. This setting determines whether the process can
terminate. A process cannot terminate until all its foreground
threads terminate. Once all the foreground threads have termi-
nated, the CLR terminates the process and stops all background
threads of the process.

The following code snippet shows how to create and start a thread:

Thread newThread = new Thread(ThreadProc);
// Set the Name property of the new thread
newThread.Name = “A new thread other than the main thread”;
newThread.Start();

...
// Thread procedure
private static void ThreadProc()
{

// Current thread’s Name
string name = Thread.CurrentThread.Name;
// Sleep for 1 second
Thread.Sleep(1000);

}

As shown in this example, in the .NET Compact Framework 2.0, you can pass the method name for the
new thread to the constructor of a Thread object. You can certainly also use the “old” scheme — that is,
pass a new ThreadStart delegate that is created with the thread method to the constructor:

Thread newThread = new Thread(new ThreadStart(ThreadProc));

If the thread method is fairly simple, you can put it inline in the constructor call, as follows:

Thread newThread = new Thread(delegate()
{
// ThreadProc statements
}

);

The .NET Compact Framework CLR provides another facility for multithreaded applications: the thread
pool. The thread pool consists of a set of worker threads (background threads) managed by the CLR for each
application. You can post asynchronous I/O tasks and short callbacks to the thread pool using the Thread
Pool.QueueUserWorkerItem() method or the ThreadPool.RegisterWaitForSingleObject()
method. That way, you don’t need to create and manage a new thread yourself. The disadvantage of using
a thread pool worker thread is that the tasks can’t take too long to finish. Otherwise, the thread pool may
become fully occupied and can’t accommodate new worker thread requests. In addition, you can’t change a
thread pool thread’s priority, and they are all background threads.

297

Exception Handling and Debugging

16_762935 ch11.qxp 11/20/06 7:58 AM Page 297

Race Condition
Multiple threads may need to change the same object. If the code that accesses the object is not properly
protected, you will see garbled object data. This is often called a race condition. The code block that modi-
fies the shared object is called a critical section. Applications must ensure that at any given time there is
only one thread in the critical section.

Critical sections can be protected by a lock. Only a thread that acquires the lock can enter the critical sec-
tion. Other threads waiting for the lock will be blocked. The locking mechanism is implemented as a
lock construct in C# that is built on top of the Monitor class in the .NET Compact Framework. If there
are multiple resources to protect, a mutex can be used for each resource. A mutex is a named synchro-
nization object that provides exclusive access to a resource. Once a System.Threading.Mutex object is
created, a thread can call WaitOne() to obtain the mutex, and any other threads calling WaitOne() will
be blocked. A thread should call ReleaseMutex() when it finishes the access.

You can use the lock construct of C# as follows:

lock(lockObject)
{

// Enter critical section
.....
}

The lockObject can be a simple object type. It is suggested that this object should be a private member
of the class. Locking on a public type may lead to deadlock because other code may also lock this type.

The following RaceCondition class demonstrates a first-come-first-take procedure of a number of
work items. The class manages a private variable numItems that can be changed by the public method
TakeWorkItem(). In the TakeWorkItem() method, we check to see if the number of items are greater
than zero. If so, the method will let the underlying thread sleep for some random time to simulate the
time for that work item. After the sleep, it will check the number of work items again. If multiple threads
are executing in this method, there will be a chance that when the thread comes out of sleep, the number
of work items have already be decremented by another thread. An exception is thrown when a thread
wakes up and identifies zero or a negative number of work items.

class RaceCondition
{

private Object myLock = new object();
private int numItems = 0;
Random r = new Random();

public RaceCondition(int items)
{

numItems = items;
}
public void TakeWorkItem()
{

if (numItems > 0)
{

// There are still work items; so take one.
Thread.Sleep(r.Next(100,1000));

298

Chapter 11

16_762935 ch11.qxp 11/20/06 7:58 AM Page 298

if(numItems <= 0)
throw new ApplicationException(“Race condition: negative number

of items!”);
numItems--;

}
else if (numItems == 0)
{
}
else
{

throw new ApplicationException(“Race condition: negative number of
items!”);

}
}

}

You can test the race condition situation in the preceding class by simply creating a RaceCondition
object with x work items and then creating more than x threads that execute the RaceCondition::
TakeWorkItem() class:

RaceCondition rc = new RaceCondition(sw,5); // 5 work items
Thread[] workers = new Thread[10]; // 10 workers
for (int i = 0; i < 10; i++)
{

Thread t = new Thread(rc.TakeWorkItem);
workers[i] = t;
workers[i].Start();

}

The unhandled ApplicationException will be raised when a thread sees zero or a negative number of
work items. When the application breaks, you can see all the currently running threads in the Threads
window. You can view each thread’s current statement by switching to that thread.

Note that you will not see all ten threads because some of the earlier ones are already finished when the
exception is raised.

A lock is applied to protect the TakeWorkItem() method. This guarantees that only one thread can
enter the critical section (i.e., to change the numItems variable). Therefore, no thread will see zero or a
negative number of work items once they have entered the critical section:

lock (myLock)
{

if (numItems > 0)
{

// There are still work items; so take one.
Thread.Sleep(r.Next(100, 1000));
if (numItems <= 0)

throw new ApplicationException(“Race condition: negative
number of items!”);

numItems--;
}
else if (numItems == 0)

299

Exception Handling and Debugging

16_762935 ch11.qxp 11/20/06 7:58 AM Page 299

{
}
else
{

throw new ApplicationException(“Race condition: negative number
of items!”);

}
}

Deadlock
A mutex guarantees mutually exclusive access to a resource. You have to be cautious, however, when
using a mutex for thread synchronization. Deadlock can occur if two or more threads are holding some
resource and waiting for others to unlock other resources, and all resources can’t be shared among
threads. Because no thread can preempt other threads to forcibly obtain a requested resource, these
threads end up in a cyclical wait state.

The following code shows an example of deadlock — the famous philosopher’s dinner problem. In this
simplified scenario, three philosophers, John, Jack, and Joe, are sitting around a table in the middle of
which is a bowl of spaghetti. As illustrated in Figure 11-3, the table has been set with a number of forks
equal to the number of philosophers. Eating the spaghetti requires two forks, however, so a philosopher
must pick up both the fork to his left and the fork to his right. If each philosopher takes the fork to his
left and then waits for the fork on his right to become available, nothing can happen; therefore, deadlock
occurs.

Figure 11-3

class Deadlock
{

private StreamWriter sw = new StreamWriter(@”\Storage
Card\Philosopher.txt”);

Mutex[] forks = new Mutex[3];
public void Dinner()
{

// Create three forks (mutex)
for(int i = 0 ; i < 3; i ++)
{

forks[i] = new Mutex();

John

Joe

Fork 2Fork 0

Jack
Fork 1

300

Chapter 11

16_762935 ch11.qxp 11/20/06 7:58 AM Page 300

}
// Tell the philosopher which forks to grab
// Philosopher John = new Philosopher(sw, forks[2], forks[0]);
// Solution to the deadlock problem: let the philosopher try the

smaller fork ID first
Philosopher John = new Philosopher(sw, forks[0], forks[2]);
Philosopher Jack = new Philosopher(sw, forks[0], forks[1]);
Philosopher Joe = new Philosopher(sw, forks[1], forks[2]);

Thread t1 = new Thread(John.Eat);
t1.Name = “John”;
Thread t2 = new Thread(Jack.Eat);
t2.Name = “Jack”;
Thread t3 = new Thread(Joe.Eat);
t3.Name = “Joe”;

t1.Start();
t2.Start();
t3.Start();

t1.Join();
t2.Join();
t3.Join();
sw.WriteLine(“Main thread exits.\n”);
sw.Close();

}

}
class Philosopher
{

private StreamWriter sw = null;
private Mutex lfork; // First fork to grab
private Mutex rfork; // Second fork to grab
public Philosopher(StreamWriter logfile, Mutex fork_left, Mutex fork_right)
{

sw = logfile;

lfork = fork_left;
rfork = fork_right;

}

public void Eat()
{

lfork.WaitOne();
Log(Thread.CurrentThread.Name + “\t acquired “ + lfork.GetHashCode());
Thread.Sleep(1000);
rfork.WaitOne();
Log(Thread.CurrentThread.Name + “\t acquired “ + rfork.GetHashCode());
// The philosopher starts to eat
Log(Thread.CurrentThread.Name + “\t is eating”);
rfork.ReleaseMutex();
lfork.ReleaseMutex();

}
private void Log(string s)

301

Exception Handling and Debugging

16_762935 ch11.qxp 11/20/06 7:58 AM Page 301

{
sw.WriteLine(s);

}
}

Each philosopher is represented by a Philosopher object. The Dinner() method of the Deadlock class
creates three mutexes for three forks. The Eat() method in the Philosopher class waits for the lfork
mutex and then the rfork mutex that represents the two forks for a philosopher. Note that the philoso-
pher always tries to grab the fork on the left. Thus, the assignment of lfork and rfork for each thread
is done according to the seating layout. For example, John’s lfork is Fork #2, and his rfork is Fork #0.
A named thread is created for each Philosopher object to run the Eat() method. The main thread,
which executes the Dinner() method, will wait for all the philosopher threads to finish. This is
achieved by using the Thead::Join() method, which makes the calling thread wait for the complete-
ness of the thread object.

We add the Thread.Sleep() call in the Eat() method to produce the deadlock scenario in which all
three threads have sufficient time to complete the lfork.WaitOne() call and are waiting at the
rfork.WaitOne() call. Without this instrumental trick, we may never see deadlock happen because
the thread can quickly obtain two mutexes and finish very rapidly.

When deadlock occurs, you have to use the debugger to break the application (Debug➪Break All) if the
program runs within Visual Studio 2005. If the program was launched on the device or on the emulator,
you can attach the debugger to the process (after the registry key AttachEnabled is enabled; see the
previous section for details) and then break the process. Figure 11-4 shows the Attach to Process dialog
box that appears when you select Debug➪Attach to Process. The application to attach is named
Chap11Threading, the process of the running assembly on the emulator. If the program is deadlocked,
you need to break the application by selecting Debug➪Break All.

Figure 11-4

302

Chapter 11

16_762935 ch11.qxp 11/20/06 7:58 AM Page 302

Then you can use the Threads window (Debug➪Windows➪Threads) to view the threads information, as
shown in Figure 11-5. Four threads are currently running at the time we break the application: the main
thread and the other three “philosopher” threads (created by the main thread). Each thread has an ID
property and a Name property. The “philosopher” threads have been named with the philosopher’s
name. Right-click a thread and choose “Switch to thread” to see in the code window at which statement
the thread is executing. Referring to the preceding code, in this example you can see that each thread
waits at the same statement, rfork.WaitOne(), when you switch to each thread.

Figure 11-5

One solution to the philosopher’s dinner problem is to force the philosophers to always try the fork with
a smaller number first. As shown in Figure 11-3, we know that John sits between Fork #2 and Fork #0,
Jack sits between Fork #0 and Fork #1, and Joe sits between Fork #1 and Fork #2. Therefore, John always
tries Fork #0 first; Jack tries Fork #0 first, and Joe tries Fork #1 first. By doing this, either John or Jack will
be able to acquire Fork #0 but not both — one of them must wait on the first mutex he tried and wait for
the other to finish, and other philosophers do not wait for him because he has no acquired mutex. Thus,
the cyclic waiting condition of deadlock does not hold anymore. The change to the code is quite simple:
just exchange the lfork and rfork mutex assignments for John, as the others’ assignments are already
following the “smaller mutex ID first” rule:

// Philosopher John = new Philosopher(sw, forks[2], forks[0]);
// Solution to the deadlock problem: let the philosopher try the

smaller fork ID first
Philosopher John = new Philosopher(sw, forks[0], forks[2]);
Philosopher Jack = new Philosopher(sw, forks[0], forks[1]);
Philosopher Joe = new Philosopher(sw, forks[1], forks[2]);

The deadlock will not occur after this change. A sample output (in the file philosopher.txt on the
storage card if a Smartphone is used or in the shared folder on the desktop machine if the Smartphone
emulator is used) is shown in the following code. The hash codes of the three mutexes are 878385
(between John and Jack), 878386 (between Jack and Joe), and 878387 (between John and Joe). In this
run, the eating sequence is Joe, John, and Jack. Depending on the timing, the eating sequence may vary
over multiple runs.

Joe acquired 878386
John acquired 878385
Joe acquired 878387
Joe is eating

303

Exception Handling and Debugging

16_762935 ch11.qxp 11/20/06 7:58 AM Page 303

John acquired 878387
John is eating
Jack acquired 878385
Jack acquired 878386
Jack is eating
Main thread exits.

Summary
A good computer program should perform as expected even under abnormal circumstances. In
many cases, a developer’s focus is on the “perfect” case where the major logic is being implemented.
Understandably, many exceptional cases and errors may be completely ignored. This can be dangerous
because programs can perform erroneously or crash when errors are not handled properly.

The .NET runtime provides a number of exceptions that will be raised when errors occur. As a Smartphone
application developer, you need to identify the most likely exceptions in the code path and handle them
programmatically. The basic programming language construct of exception handling — the try-catch
block — can be easily embedded into exception-prone code. Unhandled exceptions will be taken care of by
the .NET runtime. You should be aware of the overhead of stack unwinding when an exception is hunting
for a handler.

As you know, when a program does not perform as it should, you can use the powerful Visual Studio
debugger to dig into the execution of the code and pinpoint the problem. The debugger has been fully
integrated with the Smartphone emulator and the device so that you can debug managed Windows
Mobile code in the desktop Visual Studio 2005 environment. This chapter also covered multithreaded
application debugging — including some cool features that the debugger offers to view thread execution
status and control threads. Along with the discussion of multithreaded debugging, you were also intro-
duced to key concepts such as race condition and deadlocks, as well as C#’s threading support.

304

Chapter 11

16_762935 ch11.qxp 11/20/06 7:58 AM Page 304

Part III

Advanced Topics

Chapter 12: Device and Application Security

Chapter 13: Data and Communication Security

Chapter 14: Globalization and Localization

Chapter 15: Graphics

Chapter 16: Performance

17_762935 pt03.qxp 11/20/06 7:58 AM Page 305

17_762935 pt03.qxp 11/20/06 7:58 AM Page 306

Device and Application
Security

This chapter and Chapter13 introduce the security features and security model in Windows
Mobile 5.0. For software developers, it is not good enough simply to develop an application with-
out considering security-related issues. Indeed, writing secure code and enhancing program secu-
rity is not a bonus but a business requirement.

The security discussions presented in these two chapters apply to different type of applications
you have learned so far: file I/O, database, networking, e-mail, etc. Although the topic of security
is introduced later than those topics, it does not mean you should develop your application first
and deal with security later. Research shows that the later you add security to your software
development cycle, the more it will cost you.

This chapter discusses the following topics:

❑ Recent security threats and trends for mobile devices

❑ Security features supported in Windows Mobile 5.0

❑ Managing certificates and configuring security policy settings

❑ Enhancing device and application security in Windows Mobile 5.0 programmatically

Mobile Threats
The first mobile threat, Cabir.A, appeared in 2004 and soon spread to many countries. It was
downloaded by many customers via Bluetooth. The virus was still in a primitive form when com-
pared with its desktop counterparts. It wasn’t long, however, before the threats grew. According to
the reports released by McAfee, the number of viruses targeting Symbian OS as of 2006 increased
to 120. And since the beginning of 2006, that number has increased by another 30 percent. To add

18_762935 ch12.qxp 11/20/06 7:59 AM Page 307

some drama to the stories of mobile threats, a celebrity’s Sidekick II cell phone was hacked in early 2005.
Some private pictures taken with the phone’s camera were stolen and posted on the web. If you think it
won’t happen to you because you aren’t a celebrity, think again. Those hackers actually got inside the
servers that save customers’ private data, such as calendars, contacts, and pictures. They were capable
of stealing any sensitive data from more than millions of customers! According to Mercer Management
Consulting Research, the worm outbreaks on mobile devices in 2005 could infect 30 percent of the popu-
lation. Not surprisingly, half of the mobile users surveyed in Japan would change service providers just
to get better security.

The consequences of mobile threats are not negligible. In addition to end users suffering from lost privacy,
they may be unable to communicate properly, especially in emergency situations. For a corporation, the
threats are even more severe. When sensitive data is stolen, not only does a corporation lose its intellec-
tual property, it also hurts the company’s business reputation, devastates consumer confidences, and may
incur severe financial crises.

It is time to face the brutal truth: Mobile devices are more prone to security threats than their desktop
counterparts. Following are several contributing factors that make mobile devices more vulnerable:

❑ Weak user authentication. Most mobile devices do not require an interactive logon process. If
some are equipped with Power-on-Password protection, the authentication is normally handled
locally.

❑ No security filesystem. Most mobile operating systems currently do not include many security
features in their file systems. You cannot audit which user accessed what file at what time. To
make things even worse, some mobile OSs do not fully support advanced encryption, such as
128-bit DES and AES.

❑ No role-based access control. The design philosophy underlying a mobile device assumes a
single-user scenario. Role-based access control is missing in many mobile devices. As a result,
a user session cannot be established.

❑ Lacking secured communications. Mobile devices rely heavily on wireless communication
technologies, such as CDMA, GSM, WiFi, InfraRed, and Bluetooth. Most of these wireless com-
munication channels are not secure and are subject to eavesdropping.

❑ Easily stolen or lost. Mobile devices are portable, small, and lightweight, and it makes no sense
to lock such a device in a room where physical access is strictly prohibited. If a device somehow
falls into the wrong hands, all the sensitive data saved on that device is stolen as well.

Microsoft .NET Compact Framework 2.0 has beefed up its support for security, but it still has several key
limitations. First, the .NET Compact Framework assumes an open platform and grants full trust to all
code. Second, the .NET Compact Framework does not support Code Access Security (CAS), Microsoft’s
solution for restricting the operations an application can execute if the application is not signed with
trusted certificates. You will learn more about certificates and trust in the next section. Finally, the .NET
Compact Framework does not provide role-based security; therefore, you cannot use the security per-
mission objects that are available in the full .NET Framework.

Dealing with mobile threats is not an easy task. Generally, you should apply not only software-based solu-
tions, such as a security policy, encryption, and so on, but also some hardware-based security solutions,
such as a biometric device that can authenticate users during the power-on phase. More important, you
should inform end users about the threats and educate them about how to better defend themselves.

308

Chapter 12

18_762935 ch12.qxp 11/20/06 7:59 AM Page 308

Glossary of Terms
Microsoft has defined a number of terms to describe the device and application security features in
Windows Mobile 5.0 development and deployment. Having a good understanding of terms will greatly
help you to develop and ship Smartphone applications with enhanced security.

Digital Signatures, Certificates, and Application Signing
When you package and deploy your application, it is critical to assure your users that the code dis-
tributed to them indeed came from you and has not been tampered with after it was published. The
industry-standard solution to this problem is to include developers’ information into the code. The
information you want to add to the code must be able to identify you. This code, termed a digital signa-
ture, can be created using a public-key algorithm. The process of adding a digital signature to your code
is called application signing.

In public-key cryptography, an entity (a person, computer, mobile device, etc.) has two keys: a public
key, which is publicly available to everyone, and a private key, which is known only to the owner. Well-
known PKI (public key infrastructure) encryption algorithms ensure that if some data in a message is
encrypted using one of the two keys, only the entity holding the other key can decrypt it. Thus, the pub-
lic-key pair can be used to check message authentication and integrity . The operation of signing uses
one’s private key to encrypt a hash code of the data, commonly known as message digest, produced by a
one-way hash function. The signature and the original data are sent to the receiver, who will basically
perform the same operations: use the hash algorithm (agreed on beforehand) to produce a hash code of
the received data, use the sender’s public key to decrypt the digital signature, and compare the result
with the hash code just generated. If they match, then the data is indeed from the sender and has not
been tampered with.

Note, however, a problem with the aforementioned scenario: How can the receiver obtain the genuine
public key of the sender? In addition, how does the receiver map a public key to the correct identity?
Most important, how can this entire procedure be automated so that it can be done completely transpar-
ently to a user (so that a user will not need to access some website to download a public key)? Digital cer-
tificates are designed to solve this problem. A generally trusted certification authority verifies the identity
of an entity and issues a digital certificate as proof so that others can trust the certified entity. A digital
certificate contains the public key of the entity, its identity, the expiration time, and the hashing algo-
rithms used.. A digital certificate can be transferred along with the signed data or via other means, and
is also signed using the CA’s private key. After verifying the certificate using the CA’s public key, the
receiver of the data can retrieve the sender’s public key from the certificate, which is guaranteed to
belong to the sender.

Certificates are usually verified not with one single CA, but with a hierarchy of CAs that are chained to a
root CA. Certificate verification is performed along the chain toward the root CAs. A software provider
or an individual can obtain and purchase an SPC (Software Publishing Certificate) from one or more
CAs in order to make its products trusted by users.

In short, a certificate is a certified digital signature. If you publish an application without signing it, that
application is considered to be an unsigned application.

309

Device and Application Security

18_762935 ch12.qxp 11/20/06 7:59 AM Page 309

Privileged and Unprivileged Applications and
Certificate Stores

Certificates saved on Smartphone devices are organized into certificate stores, the two most important
of which are the privileged certificate store and the unprivileged certificate store. If an application is signed
with a certificate that is saved in the privileged store, it is categorized as a privileged application. Conversely,
if you sign an application with a certificate from an unprivileged certificate store, the application is
referred to as an unprivileged application.

Note that a privileged certificate is not fundamentally different from an unprivileged certificate. The only
difference is that the privileged certificate is saved in the privileged certificate store, whereas the unprivi-
leged certificate is kept in the unprivileged certificate store. In addition, if an application is signed with a
certificate that is not in either the privileged certificate store or the unprivileged store, then Windows
Mobile 5.0 treats it as an unsigned application.

In addition to the privileged and unprivileged certificate stores, there are four other certificate stores.
Table 12-1 summarizes all six certificate stores on Windows Mobile 5.0 devices.

Table 12-1 Certificate Stores

Certificate Store Description

Privileged Execution Privileged certificates are saved in this store.
Trust Authorities

Unprivileged Execution Unprivileged certificates are saved in this store.
Trust Authorities

SPC Contains Software Publishing Certificates (SPCs) for signing cab-
inet files.

Root Contains root certificates and appears in the Certificates applet
of a Windows Mobile 5.0 Smartphone as “Root”.

CA Contains certificates obtained from other certificate authorities.

MY Stores certificates for an end user’s personal use, and appears in
the Certificates applet of a Windows Mobile 5.0 Smartphone as
“Personal”.

Trusted and Normal Applications
At runtime, trusted applications in Windows Mobile 5.0 can write all the registry keys and call all the sys-
tem APIs. Conversely, normal applications, also termed untrusted applications, are barred from accessing
certain system APIs and are not allowed to write certain registry keys. Those restricted registry keys and
their subkeys are listed as follows:

HKEY_CURRENT_USER\Security
HKEY_LOCAL_MACHINE\Comm
HKEY_LOCAL_MACHINE\Drivers

310

Chapter 12

18_762935 ch12.qxp 11/20/06 7:59 AM Page 310

HKEY_LOCAL_MACHINE\HARDWARE
HKEY_LOCAL_MACHINE\Init
HKEY_LOCAL_MACHINE\Loader
HKEY_LOCAL_MACHINE\Security
HKEY_LOCAL_MACHINE\Services
HKEY_LOCAL_MACHINE\SYSTEM
HKEY_LOCAL_MACHINE\WDMDrivers

Generally speaking, APIs that need to access filesystem security, database security, and user authentication
are all barred from accessing it when run from normal applications. For a full list of protected system APIs,
refer to the Windows Mobile 5.0 SDK document or MSDN.

“Privileged application” and “unprivileged application” are the terms used to describe what type of cer-
tificates are used to sign the application, whereas “trusted applications” and “normal applications” are
characterized by what they can do during runtime.

Security Policies and Roles
Windows Mobile 5.0 has defined a number of security policy settings that enable you to specify how
security is enforced on a Smartphone device. For example, if you want to prohibit an unsigned applica-
tion from running on a Smartphone device, you can assign a value of 0 to the Unsigned Application
Policy setting.

Of course, you don’t want everyone to be able to modify those security policy settings. In Windows
Mobile 5.0, security roles are defined to determine what security policy settings and what Smartphone
resources one can access. Security role is a logical term to categorize how physical users are related to the
device. Table 12-2 lists some common security roles in Windows Mobile 5.0 for Smartphone.

Table 12-2 Common Security Roles

Role Decimal Value Description

SECROLE_NONE 0 The message is not assigned by any security role.

SECROLE_OEM 2 OEM role. By default, this security role cannot
change security settings.

SECROLE_OPERATOR 4 Mobile operator role.

SECROLE_MANAGER 8 Manager role. It is the highest level of all the
security roles and can access all the security
settings.

SECROLE_USER_AUTH 16 User authenticated role. It is assigned to the
PIN-signed WAP push message and Remote
API (RAPI).

SECROLE_USER_UNAUTH 64 User unauthenticated role. It is assigned to the
unsigned WAP push message.

SECROLE_OPERATOR_TPS 128 Trusted provisioning server role. It is assigned
to WAP messages that come from an authenti-
cated push initiator.

311

Device and Application Security

18_762935 ch12.qxp 11/20/06 7:59 AM Page 311

Security policies in Windows Mobile 5.0 include the policy ID, the policy value, and the required secu-
rity role. For instance, the policy ID of the Unsigned Application Policy is 4102. This policy is associated
with SECROLE_MANAGER, which means only the manager role can modify this setting through an
OTA message. The default value of this policy is 1, which indicates that unsigned applications are
allowed to run on the device. Any value other than 1 is treated the same as 0 and will prohibit unsigned
applications from running on the device.

For more information, refer to the “Security Policies” section.

Windows Mobile 5.0 Security Models
Two security models are available for Windows Mobile 5.0 Smartphone devices: a one-tier model and a
two-tier model. Both models are also available in earlier platforms such as Smartphone 2002 and 2003. A
Smartphone device is pre-built with either one of the security models and you cannot “flash” a one-tier
device to a two-tier device.

The one-tier security model determines whether a Windows Mobile application is allowed to run by
examining the certificates of the application and the device policy settings. Figure 12-1 illustrates the
flowchart of this process.

Figure 12-1

In the one-tier model, an application can run as long as it is signed with a certificate. For unsigned appli-
cations, the SECPOLICY_UNSIGNEDAPPS security policy setting is consulted to determine whether the
application is allowed to run. If the policy permits unsigned applications to run, another policy setting,
SECPOLICY_UNSIGNEDPROMPT, will determine whether to prompt users. For one-tier devices, appli-
cations always run in privileged mode, which means applications have full access to the devices, includ-
ing restricted APIs and protected registry settings.

Mobile application

RunSigned?

SECPOLICY_UNSIGNEDAPPS==0?

NoNo

YesYes

Do not runYesYes

Prompt user
whether to run

Run without
prompting user

YesYesSECPOLICY_UNSIGNEDPROMT==1?

NoNo

NoNo

312

Chapter 12

18_762935 ch12.qxp 11/20/06 7:59 AM Page 312

The two-tier security model introduces the normal execution mode into the system. This process is illus-
trated in Figure 12-2. An application is first checked to determine whether it is signed with a privileged
certificate. It is considered a trusted application and can run in privileged mode only if the application is
signed with a privileged certificate. Likewise, an application can run in normal mode if the application is
signed with an unprivileged certificate. If an application is not signed, the two-tier security model goes
through the same process as the one-tier model: It checks the security policy settings and determines
both whether it is allowed to run and whether users are prompted before execution.

Figure 12-2

The security model and security policy settings together determine how applications are executed on a
Smartphone device. Common configurations are as follows:

❑ Security-Off. By turning off corresponding security policies, an application is not required to
have a certificate to run on a Smartphone device. You can use this setting to determine whether
the security settings conflict with your application. In practice, the Security-Off configuration is
not recommended because an attacker can easily hack into your device and take control of it.

❑ One-Tier-Prompt. In One-Tier Prompt mode, users are prompted whether to execute an unsigned
application. Users have the power to say no if they suspect some applications are fishy. This cer-
tainly reduces the chances of being hacked by unidentified or unknown applications. In addition,
many Windows Mobile software vendors are reluctant to sign their applications, either for mar-
keting purposes or simply because they do not want to spend the extra time and money. With the
One-Tier Prompt setting, users can still install and run these applications with ease.

Mobile application

Run PrivilegedSigned?
Privileged

certificate?

SECPOLICY_UNSIGNEDAPPS==0?

NoNo

YesYesYesYes

Do not runYesYes

Prompt to
normal run

Run in
normal mode

Run in normal
mode w/o

prompt

YesYesSECPOLICY_UNSIGNEDPROMT==1?

NoNo

NoNo

NoNo

313

Device and Application Security

18_762935 ch12.qxp 11/20/06 7:59 AM Page 313

❑ Two-Tier-Prompt. As with One-Tier Prompt mode, users have control over unsigned applica-
tions. Unlike One-Tier Prompt mode, however, those unsigned applications can be executed
only in normal mode and therefore have no access to privileged APIs and protected registry
settings. Two-Tier Prompt mode is an ideal security configuration for Smartphone devices for
personal use because of the compromise between software compatibility and security.

❑ Third-Party-Signed. This mode enforces strong security policies. Applications must be signed
with a valid certificate in order to run. This configuration prevents Smartphone devices from
being attacked by anonymous applications and enables computer forensic investigations. It is
safer than the Two-Tier Prompt mode, although users may have trouble with certificates and
might be unable to operate certain applications properly.

❑ Locked. As the name suggested, the Locked configuration will prevent any third-party applica-
tions from installing. Such configurations normally target Smartphone devices for special indus-
trial or business purposes in which software updates and system maintenance can be obtained
only through device vendors.

Certificate Management in Windows
Mobile 5.0

Both the one-tier and two-tier models require that applications be checked to determine whether they
have been signed with valid certificates. This section describes where to obtain certificates, how to sign
the applications, and how to manage those certificates.

Obtaining Certificates
So, how do you obtain certificates? For day-to-day development, you do not need to make any pur-
chases; the Windows Mobile 5.0 SDK provides several sample certificate keys. Typically, they are stored
in the folder C:\Progam Files\Windows CE Tools\wce500\Windows Mobile 5.0 Smartphone
SDK\Tools. The SDKSamplePrivDeveloper.pfx certificate is particularly useful. By signing an appli-
cation with this certificate, you can run the application in privileged mode, which means you can access
all the system APIs and restricted registry settings.

Note that you should not ship those test-only certificates to end users. Be sure to remove those certificates
from the certificate store.

How, then, to obtain certificates that can deploy your applications to Smartphone devices? You can cer-
tainly pay and obtain the certificates from various Certificates Authorities, such as GeoTrust or VeriSign.
However, we have noticed many developers complaining that such certificates are either not recognized
or not valid on certain devices.

To avoid any possible troubles this may incur, it is probably better to obtain certificates through Microsoft’s
Mobile2Market program (http://msdn.microsoft.com/mobility/windowsmobile/partners/
mobile2market/default.aspx). Mobile2Market partners provide certificate authority specifically for
Windows Mobile devices. In addition to obtaining certificates to sign your application, if you are willing to
pay more, your application logo can be certified. This is not required to deploy your application but may be

314

Chapter 12

18_762935 ch12.qxp 11/20/06 7:59 AM Page 314

advantageous for marketing purposes. (Note that we are not necessarily advocating the Mobile2Market
program; we just want you to be aware that getting the proper certificates can be a tricky process. You
should certainly research whether the certificates can be deployed to the targeted Smartphone devices
beforehand.)

Signing Applications with Certificates
There are two ways you can sign Windows Mobile Smartphone applications. The first way is to sign
your application during the development phase through the Visual Studio 2005 IDE. First, select Project
from the main menu, open the Properties of your current project, and click the Devices tab (see Figure
12-3). Then check the “Sign the project output with this certificate” option, which will enable the Select
Certificate button. Click the Select Certificate button and then choose the desired certificates from the
resulting dialog box. If your certificates are not present, you can click the Manage Certificates button to
search for a certificate, as shown in Figure 12-4. The Manage Certificates window enables you to view
detailed information about existing certificates.

Figure 12-3

315

Device and Application Security

18_762935 ch12.qxp 11/20/06 7:59 AM Page 315

Figure 12-4

You can also import a certificate into the certificate stores on your PC, as shown in Figure 12-5.

Figure 12-5

Click the Import button and select the certificates you wanted to sign. During this process, you may need
to type in the password of the certificates. Generally, certificates purchased from a vendor are password
protected. For certificates exported from the certificate stores or created using tools such as MakeCert.exe,
you have the option to make them more secure with password protection, or easy to use without pass-
word protection. The Certificate Import Wizard, shown in Figure 12-6, asks you where to store the certifi-
cates. In most cases, you can simply let the wizard find a proper place for you automatically.

316

Chapter 12

18_762935 ch12.qxp 11/20/06 7:59 AM Page 316

Figure 12-6

Once the certificate is imported, the Manage Certificates window will reappear with a new certificate
shown in the window (see Figure 12-7). Now close the Manage Certificates window. The Select Certificate
window appears again. This time, a certificate is available in the selection list to enable you to sign your
application (see Figure 12-8).

Figure 12-7

317

Device and Application Security

18_762935 ch12.qxp 11/20/06 7:59 AM Page 317

Figure 12-8

Once you have selected the certificate to sign your application, detailed information about the certificate
is shown in the project’s properties window, as shown in Figure 12-9. Note that the drop-down list on
the bottom of the Devices tab enables you to specify how the certificate is provisioned to the device. The
three options are as follows:

❑ Do not provision the device.

❑ Add the certificate to the privileged store.

❑ Add the certificate to the unprivileged store.

Figure 12-9

318

Chapter 12

18_762935 ch12.qxp 11/20/06 7:59 AM Page 318

After selecting the certificate, you can leave the rest to Microsoft Visual Studio 2005; your application
will be signed automatically during the build process.

Alternatively, you can sign your cabinet files with the .NET Compact Framework command utility
Signtool. In Visual Studio 2005, by default, this tool can be found in both the common7\tools\bin
directory and the SDK\v2.0\Bin directory of your Visual Studio 2005 folder. Note that you need to sign
all the binary executable files. The typical syntax for using this command is as follows:

Signtool sign /f SDKSamplePrivDeveloper.pfx *.exe *.dll

After signing the binaries, you can build your cabinet file with these signed executable files and then
sign the cabinet file again with the Signtool command, as follows:

Signtool sign /f SDKSamplePrivDeveloper.pfx sampleCabfile.cab

This command signs the cabinet file sampleCabfile.cab with the certificate SDKSamplePrivDeveloper.pfx.

Regardless of which tool you use to sign your application, you should always pick .pfx certificates
rather than .cer certificates to sign your application. This is because in PKI architecture, files are signed
with the private key and decrypted with the public key. The .pfx certificates contain both private and
public key rings, whereas .cer certificates have only public keys. The differences between cer certifi-
cates and pfx certificates can be further illustrated by examining how they are created.

Visual Studio 2005 comes with two tools to help you create your own test certificate. MakeCert.exe is
the application to use to create your public key and private key and save them separately to two files.
The following command will create a private key and a public key for the common name MyOrg (the pri-
vate key is saved as MyPrivKey.pvk, whereas the public key is stored as MyPubKey.cer):

MakeCert –sv MyPrivKey.pvk –n “CN=MyOrg” MyPubKey.cer

When the .pvk file and the .cer certificate are both available, you can create a .pfxfile. The tool that
enables this conversion is Pvk2pfx.exe in Visual studio 2005. The following command creates the
.pfx certificate MyPfx.pfx from both the private key file MyPrivKey.pvk and the public key file
MyPubKey.cer. The .pfx certificate Mypfx.pfx is also going to be protected by a password MyPass.

Pvk2pfx –pvk MyPrivKey.pvk –spc MyPubKey.cer –pfx MyPfx.pfx –PO MyPass

Managing Certificates
Most Windows Mobile 5.0 Smartphone devices also come with an applet that enables you to view the
certificates. If you click Start➪Settings➪Security➪Choose Certificates, you can see two certificate stores,
Personal and Root, as indicated in Figure 12-10. The Personal certificate store is the same as the MY cer-
tificate stores listed in Table 12-1.

The detailed information about a certificate, such as who issued it and when it expires, is also displayed
on the screen, as shown in Figure 12-11.

319

Device and Application Security

18_762935 ch12.qxp 11/20/06 7:59 AM Page 319

Figure 12-10

Figure 12-11

320

Chapter 12

18_762935 ch12.qxp 11/20/06 7:59 AM Page 320

This applet allows you to view certificates from two certificate stores only; it is not capable of installing
or removing any certificates. You will need third-party tools to manage certificates of all certificate
stores. In most of situations, these third-party applications need to be signed with privileged certificates.

Certificates can be loaded to or removed from Windows Mobile Smartphone in an XML-formatted docu-
ment known as an XML provisioning file. For example, assuming the security role you obtained is suffi-
cient to add a certificate to the privileged certificate store, the corresponding XML snippet is as follows:

<wap-provisioningdoc>
<characteristic type=”CertificateStore”>

<characteristic type=”Privileged Execution Trust Authorities”>
<characteristic type=”{hash of certificate}”>

<parm name=”EncodedCertificate” value=”{encoded hash of certificate}”/>
</characteristic>

</characteristic>
</characteristic>

</wap-provisioningdoc>

In the preceding example, the XML file begins with <wap-provisioningdoc>, which indicates that the
file is an XML device provisioning file. The first characteristic determines the configuration is about
the certificate stores. The next characteristic indicates the configuration of the privileged certificate
store, which is a subnode of the certificate store. Then a new certificate can be added to the privileged
store by feeding the hash of the certificate and the encoded hash of the certificate.

To remove a certificate from a certificate store, you simply add nocharacteristic to the XML provi-
sioning file. For example, the following XML code will remove a certificate from the SPC store based on
the hash of that certificate:

<wap-provisioningdoc>
<characteristic type=”CertificateStore”>

<characteristic type=”SPC”>
<nocharacteristic
type=”{hash of certificate}”/>

</characteristic>
</characteristic>

</wap-provisioningdoc>

Once the XML provisioning file is ready, you need to consider how to deliver it to the device. A typical
method is to use RapiConfig and ActiveSync, as follows:

1. Cradle the targeting Smartphone device to a desktop.

2. Establish an ActiveSync connection to the desktop.

3. Launch the command-line window from the desktop and change the directory to the Tools
folder of Windows Mobile 5.0 SDK.

4. Use the RapiConfig tool to deliver the file, as shown in the following example:

rapiconfig <provisioning.xml>

Note that if you are delivering the provisioning XML file through a CAB Provisioning Format (CPF) file,
you must name the XML file _setup.xml.

321

Device and Application Security

18_762935 ch12.qxp 11/20/06 7:59 AM Page 321

Security Policies
Each security policy has a policy ID and a default value, and requires a security role in order to be modi-
fied. For example, the unsigned application policy is identified by its policy ID 4102. If the value is 1,
then unsigned applications are allowed to run on the device; otherwise, if the value is not 1, which will
be treated as 0, then unsigned applications are not allowed to run on the device. This policy is associated
with security role SECROLE_MANAGER, which means only those who have manager role authority
can change the value of this policy.

Table 12-3 summarizes the common security policies, default values, and corresponding security roles.

Table 12-3 Security Policies on Windows Mobile–-Based Smartphones

Policy Policy Description Role Required to
Setting ID Modify Policy

Auto Run 2 Indicates whether applications stored on SECROLE_
Policy a Multimedia Card (MMC) are allowed to MANAGER

run automatically when the card is inserted
into the device

0 means allow
1 means restricted

The default value is not defined.

Grant 4119 Grants the system administrative SECROLE_
Manager privileges held by SECROLE_MANAGER MANAGER
Policy to other security roles

Possible values are:

SECROLE_USER_AUTH
SECROLE_NONE
OPERATOS_TPS

The default value is OPERATOS_TPS.

Grant User 4120 Grants privileges held by SECROLE_ SECROLE_
Authenticated USER_AUTH to other security roles USER_AUTH
Policy

Possible values are:

SECROLE_USER_AUTH
SECROLE_USER_UNAUTH

The default value is SECROLE_
USER_AUTH.

322

Chapter 12

18_762935 ch12.qxp 11/20/06 7:59 AM Page 322

Policy Policy Description Role Required to
Setting ID Modify Policy

Message 4105 Specifies the maximum number of times SECROLE_
Authentication a user is allowed to try when authenticating MANAGER
Retry Number with a WAP PIN-signed message
Policy

Possible values are from 1 to 256.

The default value is 3.

Privileged 4123 Specifies whether a device is a one-tier SECROLE_
Applications device or a two-tier device MANAGER
Policy

Possible values are 0 and 1

0 indicates a two-tier device
1 indicates a one-tier device

Any value other than 1 is treated as 0.

The default value is 0.

RAPI Policy 4097 Describes how Remote API (RAPI) SECROLE_
through ActiveSync is handled. Possible MANAGER
values are 0, 1, or 2.

0 indicates that the ActiveSync service is
shut down and therefore rejects RAPI.

1 indicates full access. RAPI calls can go
through ActiveSync without restrictions.

2 indicates that access to ActiveSync is
available to the User Authenticated
security role.

The default value is 2.

Service 4109 Indicates whether a Smartphone accepts SI SECROLE_
Indication messages, which are sent to the device to MANAGER
(SI) Policy notify users of service updates, new services,

and provisioning services

Service Loading 4108 Determines what security roles are allowed SECROLE_
(SL) Message to download new services or provision XML MANAGER
Policy to the device

The default value is SECROLE_PPG_
TRUSTED.

Table continued on following page

323

Device and Application Security

18_762935 ch12.qxp 11/20/06 7:59 AM Page 323

Policy Policy Description Role Required to
Setting ID Modify Policy

Trusted WAP 4121 Indicates the level of permissions required SECROLE_
Proxy Policy to create, modify, or delete a trusted proxy MANAGER

The default value is SECROLE_OPERATOR |
SECROLE_OPERATOR_TPS |
SECROLE_MANAGER.

Unsigned 4102 Indicates whether unsigned applications SECROLE_
Applications are allowed to run on a Windows MANAGER
Policy Mobile–based device

0 indicates that unsigned applications are
not allowed to run.

1 indicates that unsigned applications are
allowed to run.
Any value other than 1 is treated as 0.

The default value is 2

Unsigned 4101 Indicates whether unsigned .cab files can be SECROLE_
CABS Policy installed on the device MANAGER

0 means no unsigned .cab files can be installed.

The default value is SECROLE_USER_AUTH,
which indicates that unsigned .cab files will
be installed if the security role is
SECROLE_USER_AUTH.

Unsigned 4122 Indicates whether a user is prompted to SECROLE_
Prompt Policy accept unsigned applications MANAGER

0 means the user will be prompted.
1 means the user will not be prompted.
Any value other than 1 is treated as 0.

The default value is 0.

Before configuring security policy settings, it is recommended that you first query the current settings.
Then you can make the appropriate changes based on your needs. Both querying and configuring
require you to compose an XML provisioning file. The following is an example of a query XML file:

<wap-provisioningdoc>
<characteristic type=”SecurityPolicy”>

<!-- query security ID 4122 -->
<parm-query name=”4122”/>

</characteristic>
</wap-provisioningdoc>

324

Chapter 12

18_762935 ch12.qxp 11/20/06 7:59 AM Page 324

This XML snippet will query the current value of policy ID 4122, the unsigned prompt policy.

Similarly, the following XML snippet sets the unsigned application policy value to 1:

<wap-provisioningdoc>
<characteristic type=”SecurityPolicy”>

<!-- Allow unsigned apps to run -->
<parm name=”4102” value=”1” />

</characteristic>
</wap-provisioningdoc>

The next bit of XML code will remove policy ID 4109 from the policy settings:

<wap-provisioningdoc>
<characteristic type=”SecurityPolicy”>

<noparm name=”4109”/>
</characteristic>

</wap-provisioningdoc>

An Example Code
This section puts together what you’ve learned so far and presents you with an example application. You
will learn how to sign an application and use APIs in the Microsoft.WindowsMobile.Configuration
namespace.

The Microsoft.WindowsMobile.Configuration namespace is one of the new namespaces that is
introduced in Windows Mobile 5.0. It currently has only one ConfigurationManage class, which
enables you to load the configuration XML file to Windows Mobile devices. The key method of this class
is ProcessConfiguration, which sends the configuration XML file to the device for processing. The
syntax of this method is as follows:

Public static XmlDocument ProcessConfiguration (XmlDocument configDoc, bool
metadata);

configDoc is the provisioning XML configuration document. If metadata is true, the method returns
not only the original device configuration XML file, but also the processing errors in XML format. If
metadata is false, only the original device configuration XML file is returned.

Note that by default the Microsoft.WindowsMobile.Configuration namespace is not visible to
Windows Mobile 5.0 device applications. You need to add a reference to the namespace in your project.
To add a reference in Visual Studio 2005, click Project➪Add Reference, and select Microsoft.
WindowsMobile.Configuration from the .NET tab.

The function of the sample code is to inform users which security configuration is currently used in a
Smartphone device — that is, Security-Off, One-Tier-Prompt, Two-Tier-Prompt, Third-Party-Signed, or
Locked.

Because the application touches some restricted registry settings, it needs to be signed with a privileged
certificate. For testing purpose, you can use the privileged certificate SDKSamplePrivDeveloper.pfx,

325

Device and Application Security

18_762935 ch12.qxp 11/20/06 7:59 AM Page 325

which comes with the SDK. The path of this certificate is usually Program Files\Windows CE Tools\
wce500\Windows Mobile 5.0 Smartphone SDK\Tools.

When importing this certificate (following the steps described earlier in the section “Signing Applications
with Certificates”), you are prompted to enter a password. For the sample certificates, just use the empty
password and click Next, as shown in Figure 12-12.

Figure 12-12

To begin, an XML provisioning file is needed to query the values of Unsigned Application Policy,
Unsigned Prompt Policy, and Privileged Applications Policy. Their corresponding policy IDs are 4102,
4122, and 4123, respectively. The following XML code illustrates how to perform the query:

<wap-provisioningdoc>
<characteristic type=”SecurityPolicy”>
<parm-query name=”4102”/>
<parm-query name=”4122”/>
<parm-query name=”4123”/>

</characteristic>
</wap-provisioningdoc>”;

To perform the same query in your program, a typical solution is to feed the content of the XML provi-
sioning file to a string and construct an XmlDocument object from the string. The following code snippet
shows how this can be done with C#:

XmlDocument xmlConf = new XmlDocument();

string strQuery = “<wap-provisioningdoc><characteristic
type=\”SecurityPolicy\”>” +

“<parm-query name=\”4102\”/><parm-query name=\”4122\”/><parm-query
name=\”4123\”/>”+

326

Chapter 12

18_762935 ch12.qxp 11/20/06 7:59 AM Page 326

“</characteristic></wap-provisioningdoc>”;

xmlConf.LoadXml(strQuery);

After the provisioning XmlDocument xmlconf is created, you can feed it to the ProcessConfiguration()
method of the ConfigurationManager class to process the query, as follows:

//Retrieve security settings
XmlDocument xmlRslt =

ConfigurationManager.ProcessConfiguration(xmlConf, false);

Once the query results are returned, you can parse the resulting XML document and retrieve the value of
each policy ID. Based on the values of policy IDs, the security configurations can be mapped out, as indi-
cated in Table 12-4.

Table 12-4 Security Configurations and Related Security Policies

Unsigned Unsigned Privileged
Application Prompt Application
Policy (4102) Policy (4122) Policy (4123)

Two-Tier Model with Prompt On 1 0 0

Two-Tier Model with Prompt Off 1 1 0

Third-Party-Signed or Locked 0 1 0

One-Tier Model with Prompt On 1 0 1

One-Tier Model with Prompt Off 1 1 1

Following is the code for this example application:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

using System.Xml;
//Need to add reference: Microsoft.WindowsMobile.Configuration
using Microsoft.WindowsMobile.Configuration;

namespace ShowSecSettings
{

public partial class Form1 : Form
{

public Form1()
{

327

Device and Application Security

18_762935 ch12.qxp 11/20/06 7:59 AM Page 327

InitializeComponent();
}

// Read the security configuration
private void Form1_Load(object sender, EventArgs e)
{

XmlDocument xmlConf = new XmlDocument();

// Generate an XML query string
// Policy ID 4102: Unsigned Applications Policy
// Policy ID 4122: Unsigned Prompt Policy
// Policy ID 4123: Privileged Applications Policy

string strQuery = “<wap-provisioningdoc><characteristic
type=\”SecurityPolicy\”>” +

“<parm-query name=\”4102\”/><parm-query name=\”4122\”/><parm-query
name=\”4123\”/>”+

“</characteristic></wap-provisioningdoc>”;
xmlConf.LoadXml(strQuery);

//Retrieve security settings
XmlDocument xmlRslt =

ConfigurationManager.ProcessConfiguration(xmlConf, false);

XmlNodeList settingList = xmlRslt.FirstChild.FirstChild.ChildNodes;
int unsigned =

Convert.ToInt32(settingList[0].Attributes[“value”].Value);
int prompt =

Convert.ToInt32(settingList[1].Attributes[“value”].Value);
int tier =

Convert.ToInt32(settingList[2].Attributes[“value”].Value);

string settingMsg = “not one of those predefined configurations”;

switch (tier) {
case 0:

if (unsigned == 1 && prompt == 0)
{

settingMsg = “Two Tier with Prompt on”;
}
else if (unsigned == 1 && prompt == 1)
{

settingMsg = “Two Tier with prompt off”;
}
else if (unsigned == 0 && prompt == 1)
{

settingMsg = “Third Party Signed or Locked”;
}
break;

case 1:
if (unsigned == 1 && prompt == 0)
{

settingMsg = “One Tier with Prompt on”;

328

Chapter 12

18_762935 ch12.qxp 11/20/06 7:59 AM Page 328

}
else if (unsigned == 1 && prompt == 1)
{

settingMsg = “One Tier with Prompt off”;
}
break;

default:
break;

}

MessageBox.Show(“The current security setting is “ + settingMsg + “.”);
}

private void menuItem1_Click(object sender, EventArgs e)
{

Application.Exit();
}

}
}

Figure 12-13 shows the running result of this example application.

Figure 12-13

329

Device and Application Security

18_762935 ch12.qxp 11/20/06 7:59 AM Page 329

Perimeter Security
Perimeter security controls who and what application can access a mobile device, either physically or
through remote access via ActiveSync or an over-the-air (OTA) message. This section briefly discusses
several key features that can be used to enhance perimeter security.

Physical Access Control
Physical access control is a puzzle in the mobile community. There is really no guaranteed physical pol-
icy that can prevent an intruder from accessing the device, unless you are not using it. Therefore, a better
approach is to find ways to prevent intruders from accessing the information saved on your device or
spreading malicious programs on your device.

Passwords are one popular solution. They are easy to implement and can successfully block amateur
intruders. On mobile devices, there are several different passwords or PINs.

Power-on-Password (POP) protection is a security feature that can prevent unauthorized users from
accessing mobile devices. However, this feature is not available on a Windows Mobile–based Smartphone
because it does not really help much with security. How could you receive phone calls if the device
remained at the powered-off stage? Conversely, if it is left powered on all the time, then an unauthorized
user can easily access all the applications and data without the need to input a password.

A more realistic security feature is to turn on the Phone Lock feature, which will lock the device when it
is not in use after a certain amount of time. Users are then prompted to input the password to unlock
the device. To turn on the Device Lock feature on a Windows Mobile–based Smartphone, click Start➪
Settings➪Security➪Enable Phone Lock. You can set the phone lock timer with your password, as shown
in Figure 12-14.

Note that Phone Lock is not Keypad Lock. Keypad Lock is enforced to prevent making calls in case buttons
are accidentally pressed. It should not be considered a security feature because it is very easy to bypass.

SIM PIN protection requires a user to key in the correct PIN to unlock the SIM card. A SIM (subscriber
identity module) card serves as an ID card in GSM cell phones. A user’s personal information, phone
number, and contacts are all kept on this tiny, rectangular card. An obvious advantage of using a SIM
card is that a user’s phone number is not restricted to a certain device. Because a SIM card contains pri-
vate information, a PIN is required to access the information stored on the card. To further enhance the
access security of a SIM card, many mobile service providers also enable the SIM PIN lockout policy. For
instance, if the wrong PIN is keyed in three times in a row, the SIM card is temporarily locked. A user
will need to call the service provider to get the code to unlock the SIM card. Continuing to try a PIN on
a temporarily locked SIM card may cause the card to be permanently disabled. This lockout feature can
prevent private information from being stolen through brute-force attacks.

Finally, biometrics is another way to protect who can access the device. For example, some mobile devices
provide a fingerprint scanner. A user is authenticated only if his or her fingerprints match the record saved
on the device. Fingerprints, if implemented correctly, can be safer than passwords or PINs because they are
unique from person to person and users do not have to remember passwords. However, some reports indi-
cate that current fingerprinting scanners are far from being secure. One Japanese researcher has claimed he
can hack a thumb scanner in less an hour with materials costing only $10. Similar implementation failures
also occur in other biometric systems, such as face and voice recognition systems and iris scanners.

330

Chapter 12

18_762935 ch12.qxp 11/20/06 7:59 AM Page 330

Figure 12-14

Antivirus Considerations
As previously mentioned, the number of mobile viruses is increasing at a dramatic rate. If possible,
third-party antivirus applications, such as BullGuard Mobile Anti-virus (www.bullguard.com/mobile),
Airscanner (www.airscanner.com), or McAfee VirusScan Mobile (www.mcafee.com) should be
installed to protect your device.

In the Windows Mobile 5.0 security architecture, the two-tier security model greatly helps protect mobile
devices from being infected by viruses or malicious code, because those applications are unlikely to be
signed with privileged certificates. However, viruses are still able to get into your mobile devices
through other channels, such as an external storage card and Remote API through ActiveSync.

Viruses and malicious code saved on an external card, such as MMC or a flash card, if executed, can
copy themselves to the system memory of the device. To reduce mobile threats from external storage,
you can leverage the Auto Run security policy and set the policy value so that the executables on an
external card are not allowed to launch by themselves.

As indicated in Table 12-3, the Auto Run Policy has an ID of 2, and the default value is not defined. This
could be a security hole for a mobile device. You can set the value of this policy to 1, which disallows an
application on an external devices from running automatically. The following is a sample XML provi-
sioning document:

331

Device and Application Security

18_762935 ch12.qxp 11/20/06 7:59 AM Page 331

<wap-provisioningdoc>
<characteristic type=”SecurityPolicy”>

<!-- Allow auto run -->
<parm name=”2” value=”1” />

</characteristic>
</wap-provisioningdoc>

Remote APIs (RAPI) allow applications to launch from the desktop but are executed on mobile devices
through Microsoft ActiveSync connections. The RAPI security policy defined in Windows Mobile 5.0 can
help you restrict the access from RAPI. As listed in Table 12-3, the policy ID of the RAPI security policy
is 4097. If the value of the RAPI security policy is set to 0, RAPI is working in closed mode and all RAPIs
are disabled and access to ActiveSync is disabled. If the value is set to 1, the RAPI is working in open
mode and full access is granted to RAPI calls and access to ActiveSync. This is not a recommended set-
ting because intruders can upload unsigned DLL files to the mobile device and invoke them to run in
privileged mode. The default setting is 2, which causes RAPI to work in restricted mode, whereby only
signed applications can be uploaded to the device.

Summary
In this chapter, you have learned about two types of security models in Windows Mobile–based
Smartphone devices: the one-tier model and the two-tier model. In the one-tier model, an unsigned
application has the potential to access all system APIs and registry keys, posing a severe security threat.
In the two-tier model, however, only applications signed with privileged certificates can access protected
system APIs and restricted registry keys. This helps protect the device better because if an unsigned
application is allowed to run, it can only run as normal mode and would cause less damage to the
device and operating system.

Security policies are a set of policy settings that can customize the security behavior of a mobile device.
Developers can code an XML provisioning file to query or change the security settings. The XML file
can be uploaded to the device through ActiveSync. Alternatively, you can use the methods of the
ConfigurationManager class in the Microsoft.WindowsMobile.Configuration namespace to
query and update system settings. Changing security policies often requires the manager security role.
For developers, it means your application must be signed with a privileged certificate to change the
security policy settings.

A number of technologies can help protect perimeter security, such as various passwords and PINs, Phone
Lock, and biometric recognition systems. Developers should be aware of the security attacks coming from
storage cards and RAPI through ActiveSync. To better protect perimeter security, you should disable the
Auto Run policy of a storage card and set the RAPI policy to restricted mode.

The security features discussed in this chapter mainly target device security and application security.
Applying the technique you have learned in this chapter, mobile devices are less likely to be hit by
viruses or malicious code, and your applications are more likely to be accepted by end users.

In next chapter, you will learn how to enhance data and communications security to prevent sensitive
data from being lost or stolen.

332

Chapter 12

18_762935 ch12.qxp 11/20/06 7:59 AM Page 332

Data and Communication
Security

Chapter 12 described various methods to secure Smartphone devices and applications using appli-
cation signing and policy settings. Those security measures, however, are simply not enough to
prevent data theft via eavesdropping. You should certainly apply other security techniques to pro-
tect sensitive data.

This chapter introduces several key methods to protect local data stored in Smartphone devices
and to protect the data exchange between Smartphone devices and servers. Encryption is widely
used to protect sensitive data. If data saved on your local device is encrypted, intruders will have
a hard time decoding the message even if they physically possess your device. In addition to data
encryption, you should secure your communication channel so that hackers cannot simply listen
in and figure out what information you are trying to communicate with your corporate servers.
Even if hackers could intercept a message, you want to make sure that the message is so scrambled
that it is completely beyond their comprehension.

In this chapter, you will learn the following:

❑ How to encrypt and decrypt messages with the classes offered in the System.Security
.Cryptography namespace

❑ How to write an application that talks to an encrypted SQL Server Mobile database with
password protection

❑ How to apply secured communication technologies such as SSL and VPNs to enhance the
data communication channel

❑ How to secure XML Web services with user authentication

19_762935 ch13.qxp 11/20/06 7:59 AM Page 333

Data Protection
This section includes two major parts. “Data Encryption” introduces how to encrypt data and save it to
a local file, and “Database Encryption and Password Protection” describes how to secure data stored in a
SQL Server Mobile database.

Data Encryption
Unlike the desktop filesystems, such as NTFS, for which users can easily set up file permissions and
access control lists (ACLs) to help protect files, the Windows Mobile filesystem does not provide the
same function because it is geared more toward single-user usage. To prevent data theft on Windows
Mobile devices, data encryption provides a vital and practical safeguard.

The .NET Framework supports a number of encryption classes in the System.Security.Cryptography
namespace. Fortunately, those classes are also available in the Compact Framework 2.0. For applications
targeted at .NET Compact Framework version 1.1 or earlier, you will need to call the Windows CE
CryptoAPI via P/Invoke. For example, the CryptCreateHash() function in Windows CE can be used
to initiate the hashing of a data stream; the prototype of the function is as follows:

BOOL CRYPTFUNC CryptCreateHash(
HCRYPTROV hProv,
ALG_ID Algid,
HCRYPTKEY hkey,
DWORD dwFlags,
HCRYPTHASH *phHash

);

The following code shows how to declare this function in C# using P/Invoke:

[DllImport(“crypt32.dll”)]
public static extern bool CryptCreatHash(
ulong hProv,
uin Algid,
ulong hKey,
uint dwFlags,
ref ulong phHash,

};

Of course, another way to implement file and data encryption is via hardware encryption. For example,
Cisco offers storage cards that have built-in hardware encryption. Encrypting and decrypting data
through different chips at the hardware level is actually a very popular solution because it doesn’t con-
sume much of the computing power. In addition, developers do not need to redo their work to make the
application capable of encryption. However, this does not mean that hardware encryption is superior to
software solutions. You may want to pick software encryption due to its lower cost.

The System.Security.Cryptography namespace provides three major cryptography algorithms:

❑ Symmetric — Symmetric encryption algorithms use the same key to encrypt and decrypt data.
Table 13-1 summarizes four symmetric algorithms that are supported in the .NET Compact
Framework 2.0.

334

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 334

❑ Asymmetric — Asymmetric algorithms normally require a set of keys: a public key and a pri-
vate key, which only the user knows. Messages encrypted via the public key can be decrypted
with the corresponding private key, and vice versa. Asymmetric algorithms, such as Rivest,
Shamir, and Adleman (RSA) and Digital Signature Algorithm (DSA), are the essential building
blocks for secure communications over a network. Note that asymmetric encryption usually is
more computationally demanding than symmetric encryption.

❑ Hashing — Hashing is the process of mapping information to a fixed-length binary string. A
typical application of hashing is the certificate discussed in Chapter 12. Unlike symmetric and
asymmetric encryption, hashing functions such as MD5 and SHA1 do not really help to hide
information; rather, they are used to maintain data integrity.

Table 13-1 Symmetric Algorithms in .NET Compact Framework 2.0

Algorithm Default Key Size Default Implementation Class

DES 64 DESCryptoServiceProvider

RC2 128 RC2CyptoServiceProvider

RinjinDael 256 RijinDAelManaged

TripleDES 192 TripleDESCryptoServicProvider

The following example uses the symmetric encryption methods offered in the System.Security
.Cryptography namespace. The sample application first encrypts a string and saves it as a text file
locally on a Smartphone device. The encrypted file can be opened for reading with or without decryp-
tion. Of course, the string is comprehensible only when the proper decryption method is present.

To begin, start a new Smartphone device project from Visual Studio 2005 and name the project dataEncrypt.
In the Form Designer, add a menu item named mnuQuit to the left soft key and set the Text property
of this menu item to Quit. Add another menu item named mnuOptions to the right soft key with the
Text value set to Options. Then add two submenu items to mnuOptions: mnuRead, with the Text
value ‘Read Cipher’, and mnuDecrypt, with the Text value Decrypt. Figure 13-1 shows the UI of this
application.

Two major functions of the sample application are encrypting a clear-text file and decrypting an
encrypted file. To encrypt a file, you need to create a new instance of a cryptography algorithm. Then
you can instantiate an object of the CryptoStream class, which links the data stream with the encryp-
tion algorithm. The following snippet shows how a string is encrypted using the default Rijndael
encryption algorithm, which is also known as the Advanced Encryption Standard (AES):

using System.Security.Cryptography;
...

private int bLen;
private Encoding defEncode = Encoding.Default;
private string filename = “SimpleEnc.txt”;

//Creates the default Rijndael encryption algorithm
private SymmetricAlgorithm sAlg = SymmetricAlgorithm.Create();

void EncryptText(string text)

335

Data and Communication Security

19_762935 ch13.qxp 11/20/06 7:59 AM Page 335

{
//Convert strings to byte array
Byte[] buff = new Byte[1024];

buff = defEncode.GetBytes(text);
bLen = buff.Length;

//Write the byte array to file SimpleEnc.txt
FileStream fo = new FileStream(filename, FileMode.OpenOrCreate);
CryptoStream encStream = new CryptoStream(fo, sAlg.CreateEncryptor(),

CryptoStreamMode.Write);
encStream.Write(buff,0,bLen);

//Close stream
encStream.Close();
fo.Close();

}

Figure 13-1

In the preceding example, a symmetric algorithm object sAlg is created by calling the Symmetric
Algorithm.Create() method, which uses the default Rijndael algorithm. When linking the data I/O
stream to the CryptoStream, you need to create an Encryptor object by calling the CreateEncryptor()
method. For the Rijndael algorithm, you can create a unique Encryptor by setting the key value and
initialization vector (IV). If the key value and the IV are missing, a random number will be used to

336

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 336

generate a new encryptor. In the sample code, a CryptoStream object, encStream, is created to write to
a file output stream fo with a Rijndael encryptor:

CryptoStream encStream = new CryptoStream(fo, sAlg.CreateEncryptor(),
CryptoStreamMode.Write);

The CryptoStream class can read and write data in the form of byte arrays. A quick way to convert a
text string to a binary array is by calling the GetBytes() methods of the Encoding class. In the sample
code, a reference to the default system code is first created:

private Encoding defEncode = Encoding.Default;

A string text (assuming it occupies less than 1,024 bytes) can then be converted to a byte array as follows:

Byte[] buff = new Byte[1024];
buff = defEncode.GetBytes(text);

Similarity, you can use the GetString() method to convert a byte array to a string. For example, the
following code will convert the first 10 bytes of the byte array buff to a string str:

string str = Encoding.Default.GetString(buff,0,10);

When decrypting the data, a decryptor is needed to link the CryptoStream with the data stream.
Usually, you should feed the same key value and IV value you used in encryption to create this decryp-
tor. Because the key and IV are not specified during the encryption process, you don’t have to pass those
two when creating a new decryptor. The encryption process with CryptoStream is illustrated in the fol-
lowing code:

//Open a new file input stream
FileStream fi = new FileStream(filename, FileMode.Open, FileAccess.Read);

//Link the file input stream to the CryptoStream
CryptoStream decStream = new CryptoStream(fi, sAlg.CreateDecryptor(),

CryptoStreamMode.Read);

//Read data to a byte array
Byte[] buff = new Byte[1024];
decStream.Read(buff, 0, bLen);

//Convert the byte array to a string value
string decText = defEncode.GetString(buff, 0, bLen);

//Close both streams
decStream.Close();
fi.Close();

In the sample application, the encryption process takes place when the form is loaded. When the menu
item mnuRead is pressed, the encrypted data file will be read without decryption, which consequently
displays garbled text on the screen. When the menu item mnuDecrypt is pressed, the encrypted file will
be decrypted and displayed. The following code shows the entire sample application:

337

Data and Communication Security

19_762935 ch13.qxp 11/20/06 7:59 AM Page 337

using System;
using System.Data;
using System.Text;
using System.Windows.Forms;
using System.IO;
using System.Security.Cryptography;

namespace DataEncrypt
{

public partial class Form1 : Form
{

private int bLen;
private string filename = “SimpleEnc.txt”;
private Encoding defEncode = Encoding.Default;

//Creates the default Rijndael encryption algorithm
private SymmetricAlgorithm sAlg = SymmetricAlgorithm.Create();

public Form1()
{

InitializeComponent();

//Encrypt “Guess Who I am” and save it as SimpleEnc.txt.
string clearText = “Guess Who I am”;
EncryptText(clearText);

}

private void mnuQuit_Click(object sender, EventArgs e)
{

Application.Exit();
}

void EncryptText(string text)
{

//Convert strings to byte array
Byte[] buff = new Byte[1024];

buff = defEncode.GetBytes(text);
bLen = buff.Length;

//Write the byte array to file SimpleEnc.txt
FileStream fo = new FileStream(filename, FileMode.OpenOrCreate);
CryptoStream encStream = new CryptoStream(fo, sAlg.CreateEncryptor(),

CryptoStreamMode.Write);
encStream.Write(buff,0,bLen);

//Close stream
encStream.Close();

338

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 338

fo.Close();

}

//Read text without decryption
private void mnuRead_Click(object sender, EventArgs e)
{

FileStream fi = new FileStream(filename,FileMode.Open,FileAccess.Read);

Byte[] buff = new Byte[1024];
fi.Read(buff, 0, bLen);

string text = defEncode.GetString(buff, 0, bLen);

fi.Close();

MessageBox.Show(“The message is: “ + text);

}

//Decrypt the message and show it on screen
private void mnuDecrypt_Click(object sender, EventArgs e)
{

FileStream fi = new FileStream(filename, FileMode.Open,
FileAccess.Read);

CryptoStream decStream = new CryptoStream(fi, sAlg.CreateDecryptor(),
CryptoStreamMode.Read);

Byte[] buff = new Byte[1024];
decStream.Read(buff, 0, bLen);

string decText = defEncode.GetString(buff, 0, bLen);

MessageBox.Show(“The message is: “ + decText);

decStream.Close();
fi.Close();

}
}

}

Figures 13-2 and 13-3 display the running results of the sample application, respectively.

339

Data and Communication Security

19_762935 ch13.qxp 11/20/06 7:59 AM Page 339

Figure 13-2

Using other symmetric algorithms in your application is very similar to the preceding example. For
instance, if you prefer to use less complex DES encryption for faster computation, you can specify the
algorithm name when creating a new SymmetricAlgorithm object, as follows:

SymmetricAlgorithm DESAlg = SymmetricAlgorithm.Create(“DES”);

You can then create the corresponding encryptor or decryptor object by calling the CreateEncryptor()or
CreateDecryptor() method, respectively.

340

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 340

Figure 13-3

Database Encryption and Password Protection
Many Smartphone-based applications interact frequently with data saved in databases, such as SQL
Server Mobile. Securing data saved in those databases is obviously very important, especially when the
databases are shared at the enterprise level and contain confidential data.

Fortunately, Microsoft SQL Server 2005 Mobile Edition offers two techniques that can help you protect
data saved in the database: password protection and data encryption.

Password protection in SQL Server Mobile has the following features:

❑ Passwords cannot be recovered. If a password is lost, the data saved in the database is inaccessi-
ble. As a software developer, you may want to design your application so that data can be
regenerated when a password is forgotten. For example, allowing data synchronization between
SQL Server Mobile and SQL Server may help to keep the risks to a minimum.

❑ The strength of the protection is determined by the length of the password, which can be up to
40 characters long. Strong passwords, which include a combination of letters, numbers, and spe-
cial characters, are encouraged.

341

Data and Communication Security

19_762935 ch13.qxp 11/20/06 7:59 AM Page 341

❑ Password and encryption settings for a SQL Server Mobile database cannot be changed unless the
database is compacted. Note that compacting a database is usually done to compress unused
space and check data inconsistency. In addition, the password for the original database is required.

To create a password-protected SQL Server database, you need to specify the password property of the
connection string. The following connection string would be used to create a MyDB007 database with the
password MyPassword:

Data Source=\My Documents\MyDB007.sdf; password= MyPassword

In addition to requiring a password, you can set the data encryption option, which will encrypt data
using the symmetric RC4 algorithm with the key value generated from the MD5 hash value of the pass-
word. The encryption option is available to a SQL Server Mobile database only when it is password-
protected. To programmatically set this option, simply turn on the encrypt database option in the
connection string, as follows:

Data Source=\My Documents\SecDB.sdf; password= MyPassword; encrypt database = TRUE

A sample application is provided here to demonstrate how it works. In the UI design page, a textbox
object is added to the form to accept a user’s password. Options are then added to the menu to create and
access a secure database. Figure 13-4 illustrates the UI of this simple application. Note that you need to
add a reference to System.Data.SqlServerCe. In Visual Studio 2005, choose Project➪Add Reference,
and then select System.Data.SqlServerCe.

Figure 13-4

342

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 342

Because txtPasswdInput is used as a password input box, you should set the PasswordChar property
so that whatever the user types in will not be printed on the screen:

txtPasswdInput.PasswordChar=’*’;

To create the secure database, you first define a connection string secConn, which contains the password
and enables the encrypt database option. You then create a new data engine, ceEngine, with the
security-enabled connection string secConn. A secured database can then be created by calling the
CreateDatabase() method of ceEngine:

string secConn = @”Data Source=\My Documents\SecDB.sdf;password=”
+ txtPasswdInput.Text+”; encrypt database = TRUE”;

SqlCeEngine ceEngine = new SqlCeEngine (secConn);

ceEngine.CreateDatabase();

Similarly, when accessing a password-protected database with encryptions on, the connection string
should include both the password and the encryption option. A secured SQL Server Mobile connection
SqlCeConnection ceConn can then be created with the connection string, as shown here:

string secConn = @”Data Source=\My Documents\SecDB.sdf;password=”
+txtPasswdInput.Text+”; encrypt database = TRUE”;

SqlCeConnection ceConn = new SqlCeConnection(secConn);
ceConn.Open();

In the sample application, we would like to determine whether the connection to a secured SQL Server
Mobile database is indeed established. This can be tested by performing a SQL query. Because there is no
data in the sample database, a SQL statement to create a table is used. If the user inputs the right pass-
word, the table will be created. Otherwise, error information will be shown on the screen.

Following is the full code listing:

using System;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

//Add reference first then...
using System.Data.SqlServerCe;

namespace SecDB
{

public partial class Form1 : Form
{

private string StrPath = @”\My Documents\SecDB.sdf”;

public Form1()
{

InitializeComponent();

343

Data and Communication Security

19_762935 ch13.qxp 11/20/06 7:59 AM Page 343

txtPasswdInput.PasswordChar=’*’;
txtPasswdInput.Text = “”;

}

//Create a secure DB
private void mnuCreate_Click(object sender, EventArgs e) {

string secConn = @”Data Source=\My Documents\SecDB.sdf;password=”
+ txtPasswdInput.Text+”; encrypt database = TRUE”;

SqlCeEngine ceEngine = new SqlCeEngine (secConn);

try {
ceEngine.CreateDatabase();
MessageBox.Show(“Password protected ‘SecDB’ is created with

Encryption on”);

mnuCreate.Enabled = false;
txtPasswdInput.Text = “”;

ceEngine.Dispose();
}
catch (SqlCeException seqErr)
{

MessageBox.Show(seqErr.ToString());
}

}

//Access the secure DB
private void mnuAccess_Click(object sender, EventArgs e) {

string secConn = @”Data Source=\My Documents\SecDB.sdf;password=”
+txtPasswdInput.Text+”; encrypt database = TRUE”;

try {
SqlCeConnection ceConn = new SqlCeConnection(secConn);
ceConn.Open();

SqlCeCommand ceCmd = new SqlCeCommand();
ceCmd.Connection = ceConn;
string sqlCmd = @”CREATE TABLE StuGrades (StudentID bigint, Grade

smallint)”;

ceCmd.CommandText = sqlCmd;
ceCmd.ExecuteNonQuery();

ceConn.Close();
MessageBox.Show(“Table StuGrades Created”);

}
catch (SqlCeException sqlEx)
{

MessageBox.Show(sqlEx.ToString());

344

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 344

}

}

private void mnuQuit_Click(object sender, EventArgs e)
{

Application.Exit();
}

}
}

Because accessing a database is normally error prone, it is always a good practice to put the database-
related operations in the try block and handle possible exceptions in the catch block.

Figures 13-5 and 13-6 show the running results of the application.

The preceding example demonstrates how to protect a database with a password and encryption. Note
that the application is expected to run only once because you don’t want to create the same database or
table repeatedly.

Figure 13-5

345

Data and Communication Security

19_762935 ch13.qxp 11/20/06 7:59 AM Page 345

Figure 13-6

Securing Communication Channels
The thin-client nature of Smartphone devices means that they are constantly talking to various servers
to access information. When passing sensitive data over a network, especially a wireless network, it is
extremely important to secure the communication at both ends.

Network Authentication
Network authentication should be applied before a user can access any information. The .NET Compact
Framework 2.0 supports both the Microsoft NTLM and Kerberos authentication protocols.

Microsoft NTLM, or Windows NT LAN Manager, is a network authentication protocol based on challenge
and response. The server stores a user’s password in an encrypted format. The client machine initiates the
authentication process with a negotiate message, and then the server sends a challenge message that con-
tains the message type, the security signature, and the negotiation type. The client then encrypts the chal-
lenge message with the user’s password, typically using the DES algorithm. The encrypted message is then
sent out to the server as the response message. The same algorithm is applied on the server side. The result
is then compared to the response from the client. If they match, the authentication is successful. An advan-
tage of NTLM is that the user’s password is not sent over the network during the authentication process.

346

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 346

Kerberos involves a much more complicated process, but it offers a more secured communication chan-
nel. Because of its better security, it will be picked during the authentication negotiation process when
both NTLM and Kerberos are supported. NTLM is mainly used in Microsoft’s early products, such as
Windows NT 4.0.

The System.Net.NetworkCredential class can create credentials to authenticate the user with the
most secure method supported by the server. The code to generate the network credential is as follows:

using System.Net;
...

NetworkCredential myCredentials =
new NetworkCredential(“myUserName”, “MyPasswd”, “myDomainName”);

You can then use the generated credentials to secure network applications that require user authentica-
tion, such as web services.

Note that the NetworkCredential class is not available on the .NET Compact Framework 1.0 and 1.1.
You need to install the .NET Compact Framework 2.0 to leverage this service for network authentication.

Secure Sockets Layer (SSL)
Secure Sockets Layer (SSL) is the industry standard for secure web communications. It is used widely
in today’s e-communication to transmit sensitive information, such as credit card numbers and online
banking, over the Internet.

Essentially, SSL is the technology that involves encrypting and decrypting messages between a web
browser and the web server. SSL does not prevent hackers from eavesdropping, but the encrypted
message makes it much harder for hackers to access the message.

Typically, message communication in SSL proceeds as follows:

1. The client initiates SSL communication, such as an HTTPS request.

2. The client starts an SSL session with a unique public key that is created for the client’s web
browser.

3. The message is encrypted with the server’s public key and sent to the web server.

4. The web server decrypts the information with its private key, which is kept secret; no one else
has the knowledge of this private key.

This process is considered fairly secure because each SSL session generates a unique public key that a
hacker is unlikely to guess. The message is encrypted with the server’s public key, which (in theory),
only the web server itself is able to decrypt.

The length of the key in SSL communication is either 40-bit or 128-bit. The longer the key length, the
harder it is to crack the message.

To enable SSL communication, you need to install certificates on the server side. Certificates can be
obtained from different certificate authorities, such as VeriSign and GeoTrust. The certificate application

347

Data and Communication Security

19_762935 ch13.qxp 11/20/06 7:59 AM Page 347

process is normally pretty straightforward and requires a certificate signing request (CSR) file. On an IIS
Server, the steps to generate the CSR file are as follows:

1. Select Start➪Run, and type compmgmt.msc to launch the Computer Management console.

2. On the left panel, expand the Services and Applications and then expand Internet Information
Services.

3. Expand Web Sites, right-click Default Web Site, and then choose Properties (see Figure 13-7).

4. Select the Directory Security tab in the Default Web Site Properties window and click the Server
Certificate button (see Figure 13-8).

5. Choose “Create a new certificate” from the IIS Certificate Wizard (see Figure 13-9) and input the
required information, such as country, website name, and the name of the certificate file.

Figure 13-7

348

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 348

Figure 13-8

Figure 13-9

When going through the wizard, you need to provide organizational information, geography informa-
tion, and so on. Remember that the common name has to be the DNS name or NetBIOS name (normally
the computer name) of the web server, as illustrated in Figure 13-10.

349

Data and Communication Security

19_762935 ch13.qxp 11/20/06 7:59 AM Page 349

Figure 13-10

You can use the CSR file created by the wizard to request the certificate from your CA. Once the request
is granted, follow the certificate authority’s instructions to install the certificate on the web server.

Most of the work to set up and enable SSL communication is on the server side. If the web server is cor-
rectly installed and protected with SSL, you simply specify an HTTPS request on the client side.

For example, the following code will start an SSL-enabled HTTPS request with a SSL-enabled web server
named mySecureServer.Com:

using System.Net;
...

WebRequest webReq = WebRequest.Create(“https://mySecureServer.com”);

Likewise, if you want to protect SQL Server Mobile database replication, use https in the InternetURL
property:

using System.Data.SqlServerCe;
...
repl = new SqlCeReplication();
repl.InternetUrl = “https://spirit/sqlmobile/sqlcesa30.dll”;
...

Virtual Private Networks
A virtual private network (VPN) is a common network mechanism to provide secure end-to-end network
connections. The idea is to first negotiate and set up a network tunnel between the two communication
nodes. Usually, a VPN server also connects to a RADIUS server, allowing only authorized users to have
the permissions to establish such tunnels. The data is then encrypted before it is transmitted over the net-
work. Then it will be decrypted on the receiver side. Compared to a dedicated private leased line, a VPN
is preferred by many companies because of its low cost.

350

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 350

Consider a corporate network without the support VPN. As shown in Figure 13-11, a remote user needs
to dial up the corporate Remote Access Server (RAS) to get access the servers. This could be very pricey
if users are trying to make a data connection through long-distance calls. Similar problems also exist on
the remote offices and mobile users.

Figure 13-11

With a VPN, however, users do not need to directly dial to the corporate headquarters. A remote user
can simply dial into the local access server and rely on the local ISPs to package the data and route the
data through a “tunnel” to the remote servers. Of course, you need to pay for the tunnel services offered
by the ISPs, but it is typically less than half of what you pay for leased lines or long-distance phone calls.
Three major tunneling protocols are supported via the Internet:

❑ IP Security (IPSec) — Developed by the Internet Engineering Task Force (IETF), this protocol
operates at the network layer and can be implemented independent of application layer.

❑ Point-to-point Tunneling Protocol (PPTP) — This is the protocol developed by Microsoft,
3Come, and Ascent Communications. It works at the data link layer and is preferred for
Microsoft Windows–based network traffic.

❑ Layer 2 Tunneling Protocol (L2TP) — This is the implementation of Cisco, which combines
their previously proposed Layer 2 Forwarding with PPTP. It offers more flexibility than PPTP,
but need supports from the underlying network devices, such as routers and switches.

Server 1

Server 3

Server 2

Firewall

Corporate Headquarters

The Internet

Remote Office

Mobile User

Remote User

VPN
Gateway

VPN
Tunnel

VPN
Tunnel

VPN
Tunnel

VPN
Server

351

Data and Communication Security

19_762935 ch13.qxp 11/29/06 3:26 PM Page 351

The advantages of a VPN include reduced cost, effective use of bandwidth, enhanced scalability, and
enhanced connectivity. With added-on services, it also offers better security than conventional Internet
protocols. The drawback of a VPN is also obvious: It is highly dependent on the Internet and lacks inter-
operability of devices and protocols.

The .NET Compact Framework 2.0 supports PPTP, L2TP, and IPSec (as opposed to the .NET Compact
Framework 1, which supports only PPTP).

To set up a VPN connection on a Smartphone device, perform the following steps:

1. Choose Start➪Settings➪Connections➪VPN.

2. Click the Menu button and choose Add from the popup menu.

3. In the Add VPN screen, shown in Figure 13-12, enter a description for your VPN.

Figure 13-12

Besides setting up the VPN connection correctly at the Smartphone end, you should also make sure that
the VPN server is running properly at the other end and that the VPN technology is supported by the
underlying networks. Data communication using a VPN is highly recommended for Smartphone appli-
cations to enhance communication security.

352

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 352

Wi-Fi
The IEEE 802.11 wireless network, also known as Wi-Fi, is operating at the unlicensed 2.4 GHz band. The
nature of radio waves enables it to travel through walls, and therefore makes the indoor and outdoor
wireless communication fairly convenient. However, it also imposes a severe network security threat
because messages are broadcasted over the air between client and base station. Anyone with a proper
device can intercept and tamper with the message.

In 1999, Wired Equivalent Privacy (WEP) was proposed and implemented on Wi-Fi networks. It uses a
shared secret key and RC4 algorithm with a key length of 40 bits. Researchers later identified the security
flaws of WEP and it is no longer considered secure. The extension of WEP — namely, WEP2 — addresses
some of the early concerns and increases the key size to 128 bits. However, for network experts, WEP2 is
also flawed and can only be categorized as a weak security protocol.

If you have a choice, don’t use WEP. Instead, you should use protocols defined in IEEE802.11i, such
as Wi-Fi Protected Access (WPA), Extensible Authentication Protocol (EAP), or Protected Extensible
Authentication Protocol (PEAP).

Securing Web Services with SOAP Headers
When deploying web services, one way to implement security is to enforce user authentication from the
web server. The Microsoft Internet Information Services (IIS) server provides the following four options
for user authentication:

❑ Anonymous access — No authentication is required to access the web resources.

❑ Basic authentication — A user is authenticated by sending his or her username and password
to the web server over the network in clear text. This is not a recommended authentication
method. It exists simply as a fallback authentication protocol if a more secured authentication
protocol is not supported.

❑ Digest authentication for Windows domain servers — This option is enabled if the IIS server is
a member server of a Windows domain. A user’s password is not sent over the network in this
authentication process; rather, the MD5 hash value of the password, termed a digest, is transmit-
ted through the network and compared with the digest stored in the domain controller.

❑ Integrated Windows authentication — This uses the NTLM authentication protocol and
requires a Windows user account on the machine on which the IIS server is installed.

To change the authentication method for an IIS server, launch the IIS service management console by
clicking Start➪Settings➪Control Panel➪Administrative Settings➪Internet Information Services. On the
left panel, expand the name of the IIS server, followed by Web Sites. Right-click Default Web Site and
choose Properties. In the Directory Security tab, click the Edit button in Anonymous access and user
authentication control. An Authentication Methods window will appear, as shown in Figure 3-13.

353

Data and Communication Security

19_762935 ch13.qxp 11/20/06 7:59 AM Page 353

Figure 13-13

Because different web servers have different ways to handle user authentication, it makes sense to
authenticate a user without relying on a particular platform or version of the web server. One approach
is to customize authentication by using SOAP headers in a XML web service. Note that you should set
the user authentication to allow anonymous user logins.

Using a custom SOAP header alone is not a secured solution because usernames and passwords are
transmitted over the Internet as clear text. You should apply this approach only in a secured communi-
cation channel, such as SSL or a VPN.

In the following two subsections, you are going to learn how to build and publish an ASP.NET web ser-
vice on the server side and how to connect to the web service from the client side.

Server Side
Following are the major steps to perform to create a web service with an authentication SOAP header on
the server side:

1. Create a new website from Visual Studio 2005 with ASP.NET web services.

2. Write a simple web service function that can authenticate a user using the SOAP header.

3. Build and publish the website.

4. Test the web service.

To create a new website from Visual Studio 2005, click File➪New➪Web Site, as shown in Figure 13-14.

354

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 354

Figure 13-14

The New Web Site dialog will appear, as shown in Figure 13-15. Select the ASP.NET Web Service template.

Figure 13-15

355

Data and Communication Security

19_762935 ch13.qxp 11/20/06 7:59 AM Page 355

To write an ASP.NET web services application that requires a SOAP header, you need to create a SOAP
header class that inherits and customizes the System.Web.Services.Protocols.SoapHeader class.
The following code snippet defines a SoapAuthenHeader class that inherits the SoapHeader class and
has two public properties: username and password:

using System.Web.Services.Protocols;
...
public class SoapAuthenHeader : SoapHeader
{

public string username;
public string password;

}

Then in the web method, you must declare that a SoapHeader object is required using directives. For
example, the following directive requires a SoapAuthenHeader object userAuthen. Setting the
SoapHeaderDirection enumeration to In means the header is sent from the client to the server:

public SoapAuthenHeader UserAuthen;

[WebMethod (Description=”A simple web service authentication via Soap Header”)]
[SoapHeader(“UserAuthen”,Direction=SoapHeaderDirection.In)]

A simple user authentication method can then be written. In the following snippet, the SimpleAuthen()
method will return a string indicating that authentication is successful if the username property is Test
and the password property is Yes:

public string SimpleAuthen() {
if (UserAuthen == null)

return “Sorry, you need to provide username and password to access this web
service”;

if (UserAuthen.username == “Test” && UserAuthen.password == “Yes”)
{

return “Congratulations, you are authenticated via Soap Header extension!”;
}
else

return “Sorry, your username and password are incorrect. Please try again”;
}

The code for the server-side web service is as follows:

using System;
using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;

public class SoapAuthenHeader : SoapHeader
{

public string username;
public string password;

}

356

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 356

[WebService(Namespace = “http://192.168.0.88/webServices”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

public class Service : System.Web.Services.WebService
{

public SoapAuthenHeader UserAuthen;
public Service () {

//Uncomment the following line if using designed components
//InitializeComponent();

}

[WebMethod (Description=”A simple web service authentication via Soap Header”)]
[SoapHeader(“UserAuthen”,Direction=SoapHeaderDirection.In)]
public string SimpleAuthen() {

if (UserAuthen == null)
return “Sorry, you need to provide username and password to access this

web service”;

if (UserAuthen.username == “Test” && UserAuthen.password == “Yes”)
{

return “Congratulations, you are authenticated via Soap Header
extension!”;

}
else

return “Sorry, your username and password are incorrect. Please try
again”;

}

}

You can then build the website by choosing Build➪Build Web Site. After the website is built, it is
ready to be published. Choose Build➪Publish Web Site, as shown in Figure 13-16. You will then be
asked where to publish the web service. Choose the WebServices folder in Local IIS, as indicated in
Figure 13-17.

357

Data and Communication Security

19_762935 ch13.qxp 11/20/06 7:59 AM Page 357

Figure 13-16

Figure 13-17358

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 358

The next window, Publish Web Site (shown in Figure 13-18), enables you to configure a number of fea-
tures. In our example, you can simply use the default setting and click OK.

Figure 13-18

As shown in Figure 13-19, the web service can be launched from the web browser by entering the correct
URL. In our example, the IP address of the server is 192.168.0.88. The virtual directory of the web service
is WebServices. Therefore, the URL is http://192.168.0.88/webServices/service.asmx.

Figure 13-19

359

Data and Communication Security

19_762935 ch13.qxp 11/20/06 7:59 AM Page 359

Client Side
On the client side, you need to create a new instance of the SoapAuthenHeader class defined in the
web service and pass the username and password to this SoapAuthenHeader object. Then, pass this
SoapAuthenHeader object as the SoapAuthenHeaderValue property of the Service class.

First, create a new Windows Mobile 5 device application for Smartphone, name the project wsAuthClient,
and then add the web service created on the server side by choosing Project➪Add Web Reference.

In the preceding example, the web reference is named spirit, which happens to be the name of the IIS
server. Obviously, you should name the web reference anything you like, as long as it is meaningful to
your code.

From the Form Designer, add two text boxes and two labels to the form. Name the first text box
txtNameInput and the second text box txtPasswdInput. These will be used to pass the username and
password to the SOAP header. Add a menu item to the left soft key and name it mnuQuit with the Text
property set to Quit. Next, add another menu item to the right soft key and name it mnuConnect with
the Text property set to Connect. Figure 13-20 shows the user interface of the sample application.

Figure 13-20

After a user inputs the username and password and clicks the Connect menu, a new web proxy is created
by calling the Service() method of the web reference:

//Create a new web proxy
spirit.Service ws = new spirit.Service();

360

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 360

Now create a new SOAP header, AuthHeader, and pass the Text properties of both text boxes to the
SOAP header, as follows:

spirit.SoapAuthenHeader AuthHeader = new spirit.SoapAuthenHeader();

AuthHeader.username = txtNameInput.Text;
AuthHeader.password = txtPasswdInput.Text;

Next, pass the SOAP header to the web proxy ws and call the SimpleAuthen() method of ws. This will
call the web services stored on the IIS server spirit:

ws.SoapAuthenHeaderValue = AuthHeader;
string resp = ws.SimpleAuthen();

Following is the full listing of the code:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace wsAuthClient
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();

}

private void mnuQuit_Click(object sender, EventArgs e)
{

Application.Exit();
}

//Connect to the web service
private void mnuConnect_Click(object sender, EventArgs e)
{

//Create a new web proxy
spirit.Service ws = new spirit.Service();
spirit.SoapAuthenHeader AuthHeader = new spirit.SoapAuthenHeader();

AuthHeader.username = txtNameInput.Text;
AuthHeader.password = txtPasswdInput.Text;

ws.SoapAuthenHeaderValue = AuthHeader;

string resp = ws.SimpleAuthen();

361

Data and Communication Security

19_762935 ch13.qxp 11/20/06 7:59 AM Page 361

MessageBox.Show(resp);

}
}

}

Note that the preceding code works only if the client side can connect to the IIS server through the net-
work. From our experiences, we have found that using the IP address of the server that provides the web
service has a better chance of success than using the computer name or DNS name of the web server.

Summary
In this chapter you learned how to encrypt data and files with the classes in the System.Security
.Cryptography namespace, and how to enable password protection and data encryption in a SQL
Server Mobile database. For mobile devices with limited computer power and RAM, you should cau-
tiously pick the encryption algorithms without sacrificing too much performance.

Various techniques to secure the communication channel were discussed in this chapter. We recommend
that you apply SSL and a VPN in your application to prevent potential data leaks. The bottom line is,
you do not want intruders to hack into your communication with ease and steal the confidential infor-
mation, whether it is corporate or personal.

User authentication certainly can help you enhance security, but most of the authentication methods are
highly correlated with the hardware or software platform used. The custom SOAP header is a hardware-
and software-independent approach to implementing user authentication. You are encouraged to apply
this approach only in a secured communication channel to avoid the theft of usernames and passwords.

362

Chapter 13

19_762935 ch13.qxp 11/20/06 7:59 AM Page 362

Globalization and
Localization

Advances in information technologies increasingly enable the international community to become
connected. As a result, you are likely to need to develop an application that can be used by people
around the world, who speak different languages and come from different cultural backgrounds.
Indeed, many U.S.-based Fortune 500 corporations have offices not only in North America but also
in Europe, Asia, and beyond. Instead of developing one application for one specific region, it makes
more sense to design and implement a “world-ready” application that can be easily localized. The
advantages are obvious: a fast and cost-effective development cycle, because you don’t need to
start from scratch when transforming English-based user interfaces to German- or Chinese-based
interfaces.

In this chapter, you will learn about the fundamental techniques available in Windows Mobile 5.0
to support world-ready applications, including the following:

❑ An overview of globalization and localization concepts

❑ Developing a culture-aware application

❑ Localizing data

❑ Best practices

Globalization and Localization Support
In this book, the term globalization describes an application that is not bound to one particular
culture and can be used in multiple geographic locations. In the .NET Compact Framework 2.0,
globalization is achieved by saving information in neutral data formats and storing a separate set
of resource files for each targeted culture or region.

20_762935 ch14.qxp 11/20/06 7:59 AM Page 363

The term localization refers to the process that customizes the user interface, text, and date format of an
application to a targeted culture. Typical tasks of localization include translating strings into different
natural languages, resizing UI elements, and redrawing images.

To gain a better appreciation of the .NET Compact Framework’s support for globalization and localiza-
tion, you need a solid understanding of three concepts: cultures, satellite assemblies, and localized data.

Culture
When talking about cultures in the context of software development and engineering, the focus is on
language, calendar, and data formats. In RFC 1766, a hierarchical protocol is defined to distinguish
each different culture. In the .NET Compact Framework, a culture name has two parts: a neutral culture
that defines the language being used and an optional subculture that defines a geographic location. For
instance, “es” refers to Spanish, and whereas “es-PE” represents Spanish in Peru, “es-MX” represents
Spanish in Mexico, and “es-ES” means Spanish in Spain. Having a subculture in the culture name is
necessary because language itself is not sufficient to distinguish different cultures. Another obvious
example is currency. People from different countries or regions may speak the same language but use a
different currency. For example, Table 14-1 lists several culture names, locale IDs (LCIDs), and language
code pages for both English and Chinese. (For a full list of the table, please refer to the home page of
Microsoft’s Global Developer Center at www.microsoft.com/globaldev/default.mspx.)

Table 14-1 Information of CulturesLocalized Cultural Codes

ANSI OEM
LCID (HEX) Culture Name Locale Code Page Code Page

0x0004 zh-CHS Chinese (Simplified) 936 936

0x0404 zh-TW Chinese (Taiwan) 950 950

0x0804 zh-CN Chinese (People’s Republic of China) 936 936

0x0C04 zh-HK Chinese (Hong Kong) 950 950

0x1004 zh-SG Chinese (Singapore) 936 936

0x1404 zh-MO Chinese (Macao) 950 950

0x7c04 zh-CHT Chinese (Traditional) 950 950

0x0009 en English 1252 850

0x0309 en-ZW English (Zimbabwe) 1252 437

0x0409 en-US English (United States) 1252 437

0x0809 en-GB English (United Kingdom) 1252 850

0x0c09 en-AU English (Australia) 1252 850

0x1009 en-CA English (Canada) 1252 850

0x1409 en-NZ English (New Zealand) 1252 850

364

Chapter 14

20_762935 ch14.qxp 11/20/06 7:59 AM Page 364

You can see that the cultures are organized first by the language and then by the geographical regions.
In addition to its name, each culture has a unique locale ID (LCID). Microsoft assigned LCIDs so that cul-
tures with the same language always have the same endings. For example, the LCIDs of Chinese-speaking
cultures end with 0x04, whereas the LCIDs of English-speaking cultures end with 0x09. Two sets of code
pages are used in the .NET Compact Framework. The ANSI code page is used for applications using a
GUI, and the OEM code page is used for applications using a character-based interface.

On a Smartphone device with Windows Mobile support, users can change cultures by selecting Start➪
Settings➪More➪Regional Settings. If the operating system has additional language support, users can
further change their default language on the device.

The CultureInfo Class
To retrieve and set cultures on Windows Mobile devices, the .NET Framework provides the CultureInfo
class, which is defined in the System.Globalization namespace. Two static properties, CurrentCulture
and CurrentUICulture, are available to get and set the current culture information. In most cases,
CurrentCulture and CurrentUICulture are identical. The two methods return different results only
when users have installed Multilingual Language Interface (MUI) and chosen a language that is different
from the locale. For example, a British software developer assigned to the Germany branch for systems
integration will probably need to install the German MUI on the PC. In this situation, the Current
Culture property is still English while the CurrentUICulture property is set to Germany.

The .NET Compact Framework supports only a subset of the CultureInfo class, and the CurrentCulture
property is set to read-only, implying that you are not supposed to change the culture for each different
process or thread. The philosophy behind this is simple: Mobile devices are normally used by a single
user, who probably prefers to stick to one common default setting.

The following code snippet shows how to use the CultureInfo class to retrieve the current culture
settings:

Using System.Globalization;

CultureInfo curCulture = CultureInfo.CurrentCulture;

string cultureName = “Name: “+curCulture.Name+”\t Locale”+curCulture.EnglishName;
MessageBox.show(cultureName);

Because the CurrentCulture property is read-only in the .NET Compact Framework, you cannot sim-
ply assign a value to CurrentCulture and hope that you can change the culture settings. Instead, you
should create a new instance of the CultureInfo class with the desired culture.

The CultureInfo class constructor supports four overloads:

❑ Public CultureInfo (int culture)

❑ Public CultureInfo (string name)

❑ Public CultureInfo (int culture , bool useUserOverride)

❑ Public CultureInfo (string name, bool useUserOverride)

365

Globalization and Localization

20_762935 ch14.qxp 11/20/06 7:59 AM Page 365

The first two constructors will change the culture settings once a new CultureInfo object is instanti-
ated. Sometimes, however, you do not want a newly created CultureInfo object conflicting with your
system’s default culture settings. If that is the case, use either of the last two constructors and set the
Boolean parameters to false. Note that if you create an instance of CultureInfo that represents a
culture unsupported by the .NET Compact Framework or the device’s operating system, then an
ArgumentException will be thrown.

The following sample code will create a new CultureInfo instance and change the culture settings to
English (United Kingdom), regardless of the previous culture setting:

Using System.Globalization;

CultureInfo newCulture = new CultureInfo(“en-GB”);

Developing a World-Ready Application
In this section you will learn how to develop a world-ready application by using C#’s resource editors
and managers.

When developing a world-ready application, you want to construct it so that it can be easily adapted
to different cultures without reinventing and redesigning the whole thing. In the .NET Compact
Framework, this is achieved by having a single globalized code base to deal with the logical flow and
other common tasks. Then, each culture-specific dynamic linked library (DLL) will be loaded during
runtime so that the application can display localized, culture-specific content.

Figure 14-1 illustrates the approach. An application named MuiApp has a single code base MuiApp.exe
and common resources libraries, all saved in an application folder named MuiAppDir. Three satellite
assemblies are created and saved into three different folders, each corresponding to one culture setting.

Intuitively, you can identify the modules on the left as the globalized modules, whereas the modules on
the right are the localized modules.

Creating Localized Resources
Culture-specific satellite assemblies can be created as embedded resources so that the operating system
runtime can determine which resources file to load based on the culture setting. Three formats are
accepted when you create a resource file: You can write a text file or an XML file, or you can compile a
binary resource file directly. The text file has a .txt extension, the XML file has an extension of .resx,
and the binary file has an extension of .resource. Note that only binary resource files can be embedded
during runtime. However, because binary files are too hard to read, maintain, and debug, it is highly rec-
ommended that you edit the resource file using the XML format.

366

Chapter 14

20_762935 ch14.qxp 11/20/06 7:59 AM Page 366

Figure 14-1

To create a culture-specific satellite assembly, an XML-formatted resource file needs to be compiled to
the binary format and then linked to the application. Prior to Visual Studio 2005, you needed command-
line tools to compile and link a resource file. The .NET-based utility to compile an XML-formatted
resource file is resgen.exe, which converts .txt files and .resx files to binary .resources files. For
example, the following command converts the XML-formatted resource file App1.Resources.resx to
the binary-formatted resource file App1.Resources.resources:

RESGEN.EXE App1.Resources.resx App1.Resources.resources

After compiling a resource file to binary format, you need to link the resource file to the assembly. Prior
to Visual Studio 2005, a .NET-based tool assembly linker, Al.exe, was typically used to achieve this. A
sample use of this command is as follows:

AL.EXE /t: library
/out:Resources.resources.dll
/link:Resources.resources

Application Folder

\MuiAppDir

MuiApp.exe

Common
Resources.dll

Satellite Assembly
Culture-Specific Folders

MuiApp.Resources.dll\fr-FR

MuiApp.Resources.dll\es

MuiApp.Resources.dll\zh-CHS

367

Globalization and Localization

20_762935 ch14.qxp 11/29/06 3:27 PM Page 367

Alternatively, you could use the resource editors for C# provided to you as sample applications in Visual
Studio .NET 2003. With the release of Visual Studio 2005, a resource editor is integrated into the IDE,
streamlining and simplifying the process of creating an XML-formatted resources file: You can visually
edit an XML-formatted resources file and Visual Studio 2005 will automatically compile the file to a
binary .resx file and link the binary-formatted resources file to the application.

To add a new resource file to a project, right-click the project from Solution Explorer, and then choose
Add➪New Item (see Figure 14-2).

Figure 14-2

When the Add New Item wizard appears, choose Resources File and name the .resx resources file to
whatever you feel is appropriate — for example, Resource1.resx, as shown in Figure 14-3. After the
resources file is added to the project, you can double-click the file to edit it. The resources editor in
Visual Studio 2005 currently enables you to edit strings and to add or remove strings, images, or other
objects. Figure 14-4 shows a resources file named Resources.resx that contains two strings. The string
value of Caption is Regional Settings and the string value of WelcomStr is Welcome to Windows
Mobile 5.0!.

368

Chapter 14

20_762935 ch14.qxp 11/20/06 7:59 AM Page 368

Figure 14-3

Figure 14-4

Now that you know how to add a resources file to a C# project, the next section describes how to use this
resources file for localization purposes.

369

Globalization and Localization

20_762935 ch14.qxp 11/20/06 7:59 AM Page 369

A Sample Application with a Localized Satellite Assembly
In this section you will create a sample world-ready application that uses the localized satellite assem-
blies. The function of this application is straightforward: When a user changes the culture preferences,
the UI will display a welcome message in the language the user specified. To highlight the programming
techniques, this sample application will enable the user to switch between English and Chinese.

Start a new Windows Mobile 5.0 Smartphone device application from Visual Studio 2005 and name the
project MUIWelcome. Rename the default Form1 to MUIForm and change the caption of the form to
Welcome. Add two Label controls, label1 and label2, to MUIForm. Then add to MUIForm a ComboBox
control comboBox1 and a menu item menuiItem1 with the caption Quit (see Figure 14-5).

Figure 14-5

label1 is used to display the welcome message, and label2 serves as the caption to the comboBox1.
From the Properties window of comboBox1, add en-US and en-CN to the Items collection so that at run-
time a user can use comboBox1 to choose the language settings for the user interface of the sample appli-
cation. To make the Text values of both label1 and label2 culture specific, this application separates
Chinese culture content from the main code and compiles it to a separate resources file.

370

Chapter 14

20_762935 ch14.qxp 11/20/06 7:59 AM Page 370

When creating a culture-specific resources file, be sure to use the following naming convention:

<resourcename>.<culturename>.resx

For example, in the sample code, the Chinese resources file is named as Resources.zh-CN.resx. The
English resources file, which is the fallback resources file that uses the default ‘en-US’ culture in this
application, is named as Resources.resx. By following the resources file-naming convention, the .NET
Compact Framework runtime can successfully link the compiled resources binary files; otherwise, the
runtime will complain that the resources file cannot be located.

Two strings are created in the project resources file Resources.resx. Caption is the English-language
representation of the label2 text, and WelcomeStr is the English-language welcome message. You
then need to create the corresponding Chinese presentation in Resources.zh-CN.resx, as shown in
Figure 14-6.

Figure 14-6

Note that the names of the two strings are identical in both resources files. If your application has a good
deal of culture-specific content, it is error prone and inefficient to create a new resources file from scratch.
A better approach is to work on one resources file first, and then copy and paste it as another resources
file. This shortcut is particularly useful if you are building several culture-specific satellite assemblies.

371

Globalization and Localization

20_762935 ch14.qxp 11/20/06 7:59 AM Page 371

As shown in Figure 14-7, once the resources files are created and compiled, a corresponding culture-
specific MUIWelcome.resources.dll file is created in the zh-CN folder.

Figure 14-7

Now the resources file is available to the .NET runtime, but how do you access the strings defined in the
resources file from your code? You need to use the ResourceManager class in the System.Resources
namespace. A ResourceManager object can access culture-specific images using the GetObject()
method, or access culture-specific strings using the GetString() method. The following code example
demonstrates how to access those strings:

private void displayLabel(CultureInfo culture)
{

//Create a new instance of ResourceManager
ResourceManager Rm =

new ResourceManager(“MUIWelcome.Properties.Resources”,
this.GetType().Assembly);

//Set the value of the string to the entries in corresponding resources file
this.label1.Text = Rm.GetString(“WelcomeStr”, culture);
this.label2.Text = Rm.GetString(“Caption”, culture);

}

The displayLabel() function changes the Text property of both label1 and label2 to culture-
related content. To begin, instantiate a ResourceManager object. You need to specify the location of
the resources file. Referring back to Figure 14-7, the Resources.zh-CN.resx file is located under the
Properties of the MUIWelcome project, which is why the location of the resources file should be speci-
fied as MUIWelcome.Properties.Resources.

When a user selects a different language setting from comboBox1, a SelectedValueChanged event is
raised. In the event handler, you can create a new CultureInfo object based on user’s selection and
pass this CultureInfo object as the displayLabel() function, as shown in the following code:

372

Chapter 14

20_762935 ch14.qxp 11/20/06 7:59 AM Page 372

//Display the screen using the language a user specifies
private void comboBox1_SelectedValueChanged(object sender, EventArgs e)
{

//Declare a CultureInfo variable
CultureInfo selectedCulture;

switch (this.comboBox1.SelectedIndex)
{

//Change the language to “en-US” if it is selected
case 0:

selectedCulture = new CultureInfo(“en-US”);
break;

//Change the language to “zh-CN” if it is selected
case 1:

selectedCulture = new CultureInfo(“zh-CN”);
break;

//Always use “en-US” as the fallback language
default:

selectedCulture = new CultureInfo(“en-US”);
break;

}

//Change labels accordingly
displayLabel(selectedCulture);

}

Following is the full code listing:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

//Need resources and globalization
using System.Resources;
using System.Globalization;

namespace MUIWelcome
{

public partial class MUIForm : Form
{

public MUIForm()
{

InitializeComponent();

//Get current culture info
CultureInfo curCulture = CultureInfo.CurrentCulture;

//Display label in current language (culture)

373

Globalization and Localization

20_762935 ch14.qxp 11/20/06 7:59 AM Page 373

displayLabel(curCulture);

}

private void displayLabel(CultureInfo culture)
{

//Create a new instance of ResourceManager
ResourceManager Rm =

new ResourceManager(“MUIWelcome.Properties.Resources”,
this.GetType().Assembly);

//Set the value of the string to the entries in corresponding resource
file

this.label1.Text = Rm.GetString(“WelcomeStr”, culture);
this.label2.Text = Rm.GetString(“Caption”, culture);

}

//Quit application
private void menuItem1_Click(object sender, EventArgs e)
{

if (MessageBox.Show (“Really want to Quit?”,”Confirmation”,
MessageBoxButtons.OKCancel, MessageBoxIcon.Question,
MessageBoxDefaultButton.Button2) == DialogResult.OK)

this.Close();
}

//Display the screen using the language a user specifies
private void comboBox1_SelectedValueChanged(object sender, EventArgs e)
{

//Declare a CultureInfo variable
CultureInfo selectedCulture;

switch (this.comboBox1.SelectedIndex)
{

//Change the language to “en-US” if it is selected
case 0:

selectedCulture = new CultureInfo(“en-US”);
break;

//Change the language to “zh-CN” if it is selected
case 1:

selectedCulture = new CultureInfo(“zh-CN”);
break;

//Always use “en-US” as the fallback language
default:

selectedCulture = new CultureInfo(“en-US”);
break;

}

374

Chapter 14

20_762935 ch14.qxp 11/20/06 7:59 AM Page 374

//Change labels accordingly
displayLabel(selectedCulture);

}
}

}

Figure 14-8a illustrates the execution results of this application when zh-CHS is selected from the
regional setting. And Figure 14-8b shows the language changes to English when en-US is selected.

Figure 14-8

Some additional issues are worth mentioning. You do not need to add culture-specific resources for the
texts of the buttons on a MessageBox control. For example, in the sample application, when a user
presses the left soft key to quit, a message box will appear and ask for confirmation. If the user set the
language to English, the texts of the two buttons are shown in English (see Figure 14-9a); otherwise,
the texts are automatically displayed in Chinese (see Figure 14-9b).

375

Globalization and Localization

20_762935 ch14.qxp 11/20/06 7:59 AM Page 375

Figure 14-9

The second issue is regarding the fallback process of resources file retrieval. As you can imagine, if you
need to add support for more than one culture, you need to create one resources file for each culture.
Problems may occur, however, if the resource loader is expecting a resources file but it cannot be found
anywhere. Suppose, for example, that you have created a resources file for a neutral culture such as es
(Spanish). In your program, however, the CurrentCulture property is set to es-MX, which does not have
a corresponding resources file in your project. How does the .NET Compact Framework handle this situa-
tion? Fortunately, it is smart enough to first fall back to the neutral culture name. In this case, when es-MX
is not found, it will try to load a resources file marked es. If it cannot locate the es resources file, the .NET
Compact Framework will use the default culture resources specified in the project assembly file as the
last resort. In Visual Studio 2005, the fallback culture is not specified by default. Rather, it uses an empty
string, which indicates a LCID of 0x007F and is associated with English. In C#, the name of the assembly
file is AssemblyInfo.cs, which can be found in the Properties folder of the project in the Solution
Explorer. However, it is safer to specify your default resources language in the assembly information file.
For example, adding the following line in the AssemblyInfo.cs file will guarantee that the .NET
Compact Framework falls back to using general English:

[assembly: System.Resources.NeutralResourcesLanguage(“en”)]

Finally, what if you are trying to retrieve an image from the resources rather than a string? You can
achieve this by calling the GetObject() method of the ResourceManager class. For instance, if you

376

Chapter 14

20_762935 ch14.qxp 11/20/06 7:59 AM Page 376

have created a .bmp image file named myIcon in your resources file, then you can pass this image file to
a PictureBox object aPicbox, as follows:

Windows.Forms.PictureBox aPicbox;
aPicbox.image = (image) Rm.GetObject(“myIcon”,culture);

Localizing Data
Another very important step in globalizing your application concerns with how data is stored and repre-
sented to the end users. In most cases, this can be taken care of by setting the CurrentCulture property
of the CultureInfo class. You should be aware, however, of the pitfalls when you localize data, as
described in the following subsections.

Dates, Time, and Calendars
For a globalized application, it is important to keep in mind that the world has many different time
zones. Caution should be taken to avoid time discrepancies when synchronizing the data. For example,
suppose user A in the U.S. Pacific time zone just uploaded data to the server. A few minutes later, user B
in the U.S. Eastern time (3 hours later) tries to synchronize with the server. If the date and time are not
handled properly, user B may either override the data entry with outdated entries or retrieve the wrong
timestamps. Of course, a solution could be to synchronize the data based on the server’s time, rather
than the client’s local time. However, what if you have more than one server located in more than one
time zone? The best practice is always to save the value of the date and time to Greenwich Mean Time
(GMT), also termed as Coordinated Universal Time (UTC), on the server side and translate them to local
time when the mobile devices retrieve the data.

In the .NET Framework, the DateTime class provides a pair of functions to help you solve the problem.
The ToUniversalTime() method will translate the local time to the GMT time; conversely, the
ToLocalTime() method will translate the GMT time to your local time.

In addition to the time zone issue, different cultures normally have different formats for dates. For exam-
ple, July 4, 2006, is expressed as 04/07/06 in British culture, while it is 07/04/06 in American culture.

To help eliminate the confusion, the DateTime structure in the .NET Framework offers a number of dif-
ferent formats to display the date and time. The most commonly used methods are as follows:

❑ ToString()

❑ ToShortDateString()

❑ ToShortTimeString()

❑ ToLongDateString()

❑ ToLongTimeString()

You can simply call one of these methods to display the date in the format specified by CurrentCulture.
If you want to display the date in a format other than CurrentCulture, you can use the overloaded

377

Globalization and Localization

20_762935 ch14.qxp 11/20/06 7:59 AM Page 377

ToString() method while indicating your desired date format. For example, the following code snippet
will display the long date pattern in the fr-CA format:

DateTime today = DateTime.Now;
CultureInfo FrenchCA = new CultureInfo(“fr-CA”);
string msg = today.ToString(FrenchCA.DateTimeFormat.LongDatePattern);
MessageBox.Show(msg);

Similarly, you can use the Parse() method of the DateTime class to create a DateTime object from a
string.

The following sample code demonstrates how date and time can be stored and retrieved in a persistent
manner without being subjected to time zone and cultural differences:

//Save date and time to a culture invariant string with Universal time
private void SaveTime () {

//Convert local time to GMT
DateTime uniTime = DateTime.Now.ToUniversalTime();

//Save the value with culture invariant format
string TimeStr = uniTime.ToString(CultureInfo.InvariantCulture);

//Write data to a file
StreamWriter aWriter = new StreamWriter(“myData.txt”);
aWriter.WriteLine(TimeStr);
aWriter.Close();

}

//Load culture invariant Universal date and time and translate them to local time
with local format
private DateTime LoadTime () {

//Read data from the file
streamReader aReader = new StreamReader(“myData.txt”);
string TimeStr = aReader.ReadLine();
aReader.Close();

//Create DateTime object by parsing the string
DateTime uniTime = DateTime.Parse(TimeStr,CultureInfo.InvariantCluture);

//Convert time from universal to GMT and return
return uniTime.ToLocalTime();

}

You may also want to familiarize yourself with the Calendar class in the System.Globalization
namespace. A Calendar object represents time in divisions, such as weeks, months and years. Even
though the .NET Framework offers a variety of culture-specific calendars, only the following five are
available on Windows Mobile for Smartphone:

❑ GregorianCalendar

❑ JapaneseCalendar

378

Chapter 14

20_762935 ch14.qxp 11/20/06 7:59 AM Page 378

❑ ThaiBuddhistCalendar

❑ KoreanCalendar

❑ TaiwanCalendar

As an aside, it’s a pity that the EastAsianLunisolarCalendar abstract class is not implemented in the
.NET Compact Framework because many older people in Asia are still celebrating their birthdays based
on the East Asian lunar calendar, rather than the Gregorian calendar.

To use a culture-specific calendar, you need to first create a new instance of the calendar. A variety of
methods are available to display the culture-specific calendars. The following code snippet demonstrates
how to interpret current date and time in the Korean calendar:

using System;
using System.Globalization;
...

//Create an instance of the KoreanCalendar class
KoreanCalender Kcal = new KoreanCalendar();

//Get current date and time
DateTime DtNow = DateTime.Now();

//Display current Korean era
Console.WriteLine(“Era: {0}”, Kcal.GetEra(DtNow));

//Display current Korean year
Console.WriteLine(“Year: {0}”, Kcal.GetYear(DtNow));

//Display current Korean month
Console.WriteLine(“Month: {0}”, Kcal.GetMonth(DtNow));

...

Numbers and Currency
The ways to represent numeric data also differ across cultures. For example, in the United States “one
million” is written as 1,000,000, whereas in China it is denoted as 100,0000.

To support different number formats, the CultureInfo class exposes a NumberFormat property that
enables you to represent data consistent with a particular culture. By default, when you call the ToString
method of number types, such as System.Int32, System.Double and System.Decimal, the numeric
format is determined by the NumberFormat property of the current culture. If you want to display data
in a different culture, you can simply create a new object of the CultureInfo class and call the over-
loaded ToString() method. The following code snippet shows how to format data for an Italian
(Switzerland) culture (Italian-speaking Switzerland):

Cultureinfo sw = new CultureInfo (“it-CH”);
double aNumber = 1234567.89;
string swFormat = aNumber.ToString(sw);

379

Globalization and Localization

20_762935 ch14.qxp 11/20/06 7:59 AM Page 379

The signature of the ToString() method in this example is as follows:

System.Double.ToString(System.IFormatProvider)

The IFormatProvider interface provides developers with a means to control the formatting of an
object, and the CultureInfo class is one of the derived types of this IFormatProvider interface.

If you want to fully customize the numeric format for any reason, you can also feed the format string
code to the ToString() method. Table 14-2 summarizes the major format strings in the .NET Compact
Framework.

For a more detailed description of format strings, please refer to the MSDN website at http://msdn
.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpcon
NumericFormatStrings.asp.

Table 14-2 Main Format Strings

Format Specifier Name Description

C or c Currency Converts the number to a string that represents a currency
amount. By default, use the currency of the current culture.

D or d Decimal Converts an integer to a string of decimal digits (0–9).

E or e Scientific Converts a number to a string of digits in exponential format.

F or f Fixed-point Converts a number to a string of digits with a fixed number
of decimal places.

G or g General Converts a number to a string of digits in general format,
which is the most compact of either fixed-point format or
scientific format.

N or n Number Converts a number to a string of digits with thousand sepa-
rators inserted between each group of three digits.

X or x Hexadecimal Converts a number to a string of hexadecimal digits (0–9, a–f).

The following code snippet illustrates how to use format strings to present a double type number in a
different format:

using System;
...

int MyDouble = 98765.4321;

Console.WriteLine(MyDouble.ToString(“C”));
Console.WriteLine(MyDouble.ToString(“E”));
Console.WriteLine(MyDouble.ToString(“F”));
Console.WriteLine(MyDouble.ToString(“G”));
Console.WriteLine(MyDouble.ToString(“N”));

...

380

Chapter 14

20_762935 ch14.qxp 11/20/06 7:59 AM Page 380

The preceding code generates the following strings to the console:

$98,765.43
9.876543E+004
98765.43
98765.4321
98,765.43

Automatic formatting also works for currency value. You can apply the same technique to display a
currency value for an individual culture. However, the currency format will not handle the currency
exchange rate appropriately. For example, a currency value of 234.18 is represented as “$234.18” in the
en-US culture. This same value is shown as £234.18 if you force the string to be formatted for en-GG cul-
ture. Therefore, if you want to convert a value of currency from one culture to another, then you need to
convert the value in addition to changing the formats. To ensure the correctness of this conversion, of
course, you need access to the current exchange rate.

Another thing you should be aware of is the euro currency. The .NET Compact Framework assigns the
symbol € (Euro) as the default currency for countries that have adopted the euro as their currency unit.
It conflicts with the default currency settings of the operating system that runs the .NET Compact
Framework, which is set to the national currency.

Strings
For an application that may contain more than one language, character encoding is an important issue you
should never overlook. The .NET Compact Framework supports various character encodings, such as
Unicode, UTF8, UTF7, and ASCII. By default, the .NET Compact Framework stores data with Unicode
encoding. Therefore, if characters are always saved and represented with Unicode, you won’t run into
any hassles. However, to read external data that is not encoded in Unicode, you have to convert the
encoding properly to avoid invalid translations.

The .NET Compact Framework provides the Encoding class in the System.Text namespace to enable
the easy conversion of encoding. In the following example, assume a string is encoded as GB2312, with
a code page 936. Your task is to convert this string into Unicode. This is how you can do it:

//Assume you get a byte array from method ‘readFromSomewhere()’
//Also assume it is encoded as GB2312
byte[] GB2312Ary = readFromSomewhere();

//Get an encoding for GB2312 (code page 936)
Encoding GB2312Enc = Encoding.GetEncoding (936);

//Convert the GB2312Ary to UnicodeAry with Encoding.Convert
byte[] UnicodeAry = Encoding.Convert(GB2312Enc, Encoding.Unicode, GB2312Ary);

The key function here is the Encoding.Convert() method, which takes three parameters: source
encoding (GB2312Enc), target encoding (Encoding.Unicode), and source byte array (GB2312Ary).
Although Unicode is defined as a property of the Encoding class, GB2312 encoding needs to be gener-
ated separately; hence, the GetEncoding (code page) method is called before the Convert()
method.

381

Globalization and Localization

20_762935 ch14.qxp 11/20/06 7:59 AM Page 381

If later you need to retrieve the Unicode text and convert it to a GB2312 string, you can convert the
Unicode byte array back to a GB2312 byte array and call the overloaded string constructor with the
desired encoding, as follows:

String GB2312Str = new string(GB2312Ary, 0, GB2312Ary.length-1, GB2312Enc)

In addition to the character encoding issue, comparing string values in a different culture could return
quite different results. This difference, however, if it correctly reflects the cultural difference, is consid-
ered a feature, not a bug. As a developer, you should preserve this cultural difference so that the string
comparison results make more sense to end users.

By default, the Compare() method of the String class will compare a pair of strings in the context of
the current culture. If you need to compare two strings according to a particular culture, you can use
the overloaded string Compare() method and specify the culture name in the argument lists when you
make the function call. The signature of this function is as follows:

public static int Compare(string strA, string strB, bool ignoreCase,
System.Globalization.CultureInfo culture)

The default culture-aware string comparison is great, but be aware that there is no guarantee that a
database such as SQL Server can do the same thing for you. When your application is dealing with
database-related data access, the best practice is to sort the data in your .NET Compact Framework
application, rather than use a SQL statement to return a sorted list of data. For example, you can retrieve
an unsorted list of data from a database to an ArrayList object. Then call the Sort() method of
ArrayList to get a culture-aware sorted list.

Best Practices
Following are the best practices we recommend to develop a world-ready Smartphone application:

❑ Make your application culture-friendly — Displaying information for a particular culture cor-
rectly is good, but not necessarily good enough. As a visionary developer, you should always
try to avoid pitfalls that may cause political or religious difficulties simply because you picked
the wrong word.

❑ Consider font and screen size when designing the UI — You should realize that the size of the
letters, characters, and symbols in other languages could differ from your own. The same is
true for screen sizes of mobile devices. For example, a line of a message that fits the 176-pixels-
wide English version of a Smartphone may require more pixels when displayed on a Chinese
version of the device. You are encouraged to leave enough space between visual components on
a user interface and always remember to test and run the application on the real devices with
different cultures.

❑ Consider text directions when designing the UI — Remember that text in some languages goes
from right to left or vertically from top to bottom. When designing a culture-aware UI, take text
direction into consideration.

382

Chapter 14

20_762935 ch14.qxp 11/20/06 7:59 AM Page 382

❑ Separate the content from the UI — This is particularly true if you are going to patch your
world-ready applications with resources files targeted at a number of cultures.

❑ Redraw the screen when necessary — When switching from one culture to another culture, call-
ing the methods in the System.Drawing namespace to display the texts on the screen can avoid
possible UI distortions.

Summary
When building an application that can be easily adapted to another locality, not only are the development
costs saved, but the production cycle process is simplified, which in turn helps you grab the international
market quicker than your competitors. Even though you have to spend extra time and plan carefully in
advance, developing a culture-aware application is certainly a wise investment that can return tangible
profits.

This chapter discussed the concepts and practices of world-ready applications in the .NET Compact
Framework, including the following highlights:

❑ The best practice to develop a world-ready application is to create localized satellite assemblies,
one for each culture.

❑ The CultureInfo class in the System.Globalization namespace can be used to make an
application culture-aware and enable it to present data in a culture-related format.

❑ The Calendar class in the System.Globalization namespace can be used to display calendar
information other than the general Gregorian calendar.

❑ The Encoding class in the System.Text namespace can be used to convert character encoding.

In the next chapter, you will learn how to draw graphics on a Smartphone.

383

Globalization and Localization

20_762935 ch14.qxp 11/20/06 7:59 AM Page 383

20_762935 ch14.qxp 11/20/06 7:59 AM Page 384

Graphics

In computer programming, graphics refers to the software platform facility and programming lan-
guage construct that enable the display and control of objects such as lines, curves, two- and three-
dimensional shapes, surfaces, text, and images. Many Smartphone applications use graphics
heavily to enrich the user experience. Although controls can be used most of the time, in some
cases the application must directly draw the entities.

Managed Smartphone applications can take advantage of GDI+ in the .NET Compact Framework
for graphics-related tasks. The System.Drawing and System.Drawing.Text namespaces consist
of a number of classes for vectors, text, images, and a set of common graphics components. This
chapter discusses these classes as well as some graphics terminology in Windows GDI+, such as
clipping, double-buffering, and embedded resource. Granted, we can’t cover every aspect of this
broad area, but we identify the most frequently used classes and enumerations, with the intention
of making your further exploration easier. Also included in this chapter are numerous examples.

The following topics are discussed in this chapter:

❑ The System.Drawing.Graphics class

❑ Working with vector graphics

❑ Drawing text and using fonts

❑ Manipulating and drawing images

Note that the graphics discussed in this chapter are all two-dimensional. For 3D graphics,
Windows Mobile 5.0 provides Mobile Direct 3D — a set of native APIs to control and render 3D
graphics on Windows Mobile devices. There is also managed Mobile D3D support in the .NET
Compact Framework for Windows Mobile 5.0 and later, Pocket PC, and Smartphone. Because
programming 3D graphics requires a solid knowledge of 3D-related terminology and concepts,
this topic is beyond the scope of this book. Interested readers should look into the two namespaces
for details: Microsoft.WindowsMobile.DirectX and Microsoft.WindowsMobile
.DirectX.Direct3D.

21_762935 ch15.qxp 11/20/06 8:00 AM Page 385

.NET Compact Framework Graphics
Developers of desktop graphics applications on Windows are familiar with the functions in the GDI
library (gdi.dll). Starting with Windows XP and Windows Server 2003, Microsoft introduced GDI+,
which is a new 2D graphics environment with advanced features supporting complex 2D graphics com-
position and manipulation, and intrinsic support for JPEG and PNG formats. In the .NET Framework,
the managed GDI+ graphics library is gdiplus.dll. On Windows CE (thus Windows Mobile), the core
graphics functions for native code are wrapped in a library called coredl.dll. The .NET Compact
Framework provides a very compact managed library called system.drawing.dll, which includes
two namespaces: System.Drawing and System.Drawing.Text.

The System.Drawing namespace contains the following four types of classes:

❑ Graphics classes for outputting on display surfaces such as a screen or an image

❑ Text and font classes for creating and displaying text

❑ Vector classes for creating and displaying lines, rectangles, ellipses, etc.

❑ Image classes for creating and displaying bitmaps and gif images

You should not use System.Drawing classes in a desktop Windows service or an ASP.NET service, as
they are primarily designed for graphic user-interface applications, not services.

Although basic font functionality is implemented in a number of classes in the System.Drawing name-
space, the System.Drawing.Text namespace provides three enhanced font collection classes and an
enumeration: The FontCollection class provides a base class for installed and private font collections;
the InstalledFontCollection class represents the fonts installed on the system; the PrivateFont
Collection class represents a collection of font families provided by applications (private font collec-
tions); and the GenericFontFamilies enumeration specifies a list of three font families: Monospace,
SansSerif, and Serif.

Unless absolutely necessary, you should use controls rather than output directly on the display surface.
Graphics can be very complicated to handle and error prone to code. Hence, if there is no special need (such
as performance concerns and a unique GUI), we suggest using a control to display graphical components.

The Graphics Class
The System.Drawing.Graphics class, the core class for .NET graphics, encapsulates a display surface
for graphical output. Any instance of a Graphics class has a context that defines the target surface of the
output. You can use the Graphics class to do the following:

❑ Create color, pens, and brushes

❑ Draw lines, rectangles, ellipses, polygons, etc.

❑ Draw text

Note that the Graphics class cannot be inherited.

Before discussing each category, we first introduce the methods of obtaining a Graphics object.

386

Chapter 15

21_762935 ch15.qxp 11/20/06 8:00 AM Page 386

Creating a Graphics Object
One way to create a Graphics object is to use the CreateGraphics() method of a control or form. This
will return a reference to the Graphics instance of the drawing surface associated with the control or the
form. For example, in your main form class (a class derived from System.Windows.Forms.Form class),
generated automatically by Visual Studio when you create a Smartphone project, you can do the follow-
ing to obtain a Graphics reference:

Graphics g = this.CreateGraphics();
// Do the drawing here
....
g.Dispose();

The Graphics::Dispose() method is used to release all resources used by the object.

Another way to create a Graphics object is to use the PaintEventArgs parameter of a control or a
form’s Paint event. A Paint event is generated whenever the control or the form is redrawn. For exam-
ple, when a form pops up another form, and that second form is later closed, the original form (and its
controls) will be redrawn and the Paint event will be fired. When a form is redrawn, the Paint event
handler of every control on the form will also be called to redraw the controls automatically. As a result,
you don’t need to redraw the controls. However, everything that needs to be done in addition to redraw-
ing controls for proper window drawing should be put into the Paint event handler. To trigger the Paint
event in a method, use the Control::Invalidate() method. You can invalidate the entire control or a
specific rectangle. Either way, a Paint event will be sent to the control. In the following example, when-
ever the form is redrawn, the event handler Form_Paint() will be called:

private void Form1_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;
// Do the drawing here
...
g.Dispose();

}

The third way to create a Graphics object is to use the Graphics.FromImage() method. Simply pass
an instance of a class that is derived from the Image class, and you will obtain a Graphics object repre-
senting that image. The following is an example:

Bitmap newImage = new Bitmap(16, 16);
Graphics gBitmap = Graphics.FromImage(newImage);

Creating a Graphics object is expensive in terms of performance. A general guideline is to try to reduce
the number of Graphics objects created in your application. If possible, you may create a single
Graphics object and use it whenever you need to draw something on the screen or on an image.

The Color, Pen, and Brush Objects
A Color structure represents an ARGB (alpha, red, green, and blue) color, with alpha as the trans-
parency value. It has a number of static properties that define a set of named colors. For example,

387

Graphics

21_762935 ch15.qxp 11/20/06 8:00 AM Page 387

System.Drawing.Color.LightBlue returns a Color object for the system-defined light-blue color.
There are more than 140 named colors defined in the Color structure.

ARGB is sometimes referred to as RGBA; the last datum is the alpha value.

You can also create your own Color object by specifying ARGB values in the static Color.FromArgb()
method. The alpha value and each of the RGB values are 8 bits each. The following two lines create two
Color objects that share the same ARGB value (A=FF, Red=16, Green=32, Blue=48):

Color colorA = Color.FromArgb(0xFF102030);
Color colorB = Color.FromArgb(16, 32, 48);

Note that in the first line of the preceding example, the default alpha value is 0xFF, which specifies fully
opaque. Even if you use 32-bit integers for each of the RGB values, only the lowest 8 bits will be used to
construct the Color object. You can use Color::ToArgb() to get the 32-bit integer value of ARGB:

int blue = Color.Blue.ToArgb();

Another way to obtain a Color object is by using a SystemColors enumeration such as SystemColors
.WindowText or SystemColors.Menu. These are Color objects that the system is currently using to dis-
play windows elements.

A Pen object represents the attributes of a pen that will be used for drawing. You can specify the color
of a Pen, its line width (a float value), and the line style (either Solid or Dash defined in the System
.Drawing.Drawing2D.DashStyle enumeration of the .NET Compact Framework). There are other
properties in the Pen class of the .NET Framework, but these three are the only properties supported in
the .NET Compact Framework.

The following example creates a Pen object:

Pen penBlue = new Pen(Color.Blue);
penBlue.DashStyle = System.Drawing.Drawing2D.DashStyle.Dash;
penBlue.Width = 2.0F;

A Pen object is used to create a Brush object (as shown below) and in common drawing methods of the
Graphics class.

A Brush object is used to fill a shape with a selected color. In the .NET Framework, you can also specify
a pattern when creating a Brush object, but this is not available in the .NET Compact Framework. To
create a Brush object with a specific color, use the SolidBrush class, as follows:

Brush bshYellow = new SolidBrush(Color.Yellow);

Of course, you can specify a system color defined in the SystemColors enumeration, or create an ARGB
color on-the-fly and use it for the SolidBrush.

Once a Brush object is created, you can use it in “fill” methods of the Graphics class, including
FillRectangle(), FillEllipse(), FillPolygon(), and FillRegion().

388

Chapter 15

21_762935 ch15.qxp 11/20/06 8:00 AM Page 388

Vector Graphics
Compared with the full .NET Framework, the .NET Compact Framework supports only a limited num-
ber of vector graphics methods in the System.Drawing.Graphics class. For DrawXXX methods (where
XXX represents the shape), a Pen object is needed; for those FillXXX() methods, a Brush object is
required.

Many classes and enumerations in the .NET Framework System.Drawing.Drawing2D namespace
are not available in the .NET Compact Framework. In fact, in the .NET Compact Framework, there are
only two enumerations, DashStyle (for line style) and CombineMode (for region clipping mode) in
the System.Drawing.Drawing2D namespace.

Before we talk about the vector graphics methods in the Graphics class, we need to introduce two
related terms: region and clip. Other graphics-related terms, such as rectangle, polygon, and ellipse,
are self-explanatory.

Region
A region describes an area of the display surface. In the .NET Framework, a region can be any shape that
is defined by a series of points; it can also be a region obtained from a rectangle. In the .NET Compact
Framework, however, you can create a region only from a rectangle, meaning you don’t have the flexi-
bility to create customized shape regions.

The Graphics class has a method to fill a region with a specified Brush object. When a Region object is
not needed anymore, the Region::Dispose() method should be called to release the resource of the
Region object.

Another useful method is Region::IsVisible(), which accepts a Point structure, a Rectangle struc-
ture, or a coordinates pair. You can use this method to determine whether a point or a rectangle is con-
tained in the region. In the following example, the IsVisible() method is used to determine whether a
rectangle is in the region:

// Create a region
Rectangle regionRect = new Rectangle(0, 0, 100, 100);
Region myRegion = new Region(regionRect);

RectangleF myRect = new RectangleF(10, 10, 20, 20);

// Determine the rectangle is contained in the region.
bool contained = myRegion.IsVisible(myRect);

The Region class provides five different ways to perform operations with two regions. The parameters
passed to these methods are either a Region object or a Rectangle object.

❑ Intersect operations update the region with the intersection with the specified rectangle or
region.

❑ Union operations combine two regions or rectangles.

❑ Xor operations update the region with a union of two regions minus the intersection.

389

Graphics

21_762935 ch15.qxp 11/20/06 8:00 AM Page 389

❑ Complement operations simply update the region to the portion of the specified rectangle or
region.

❑ Exclude operations update the region to the portion of its interior that does not intersect with
the specified region or rectangle.

The following code snippet demonstrates how to perform region operations: Two rectangles, recA and
recB, which partially intersect, are created and drawn on the screen. A Region object reg is created
from recA. Then we perform one of the five region operations:

private void Form1_Paint(object sender, PaintEventArgs e)
{

Graphics g = e.Graphics;

// Rectangle A
Rectangle recA = new Rectangle(40, 40, 100, 100);
g.DrawRectangle(new Pen(Color.Red), recA);

// Rectangle B
Rectangle recB = new Rectangle(60, 60, 140, 140);
g.DrawRectangle(new Pen(Color.Black), recB);

// Region reg is created from Rectangle A
Region reg = new Region(recA);

// Demo the region operations; Here five region operations can be used
reg.Exclude(recB);

// Fill the region
g.FillRegion(new SolidBrush(Color.LightSkyBlue), reg);

// Release resource
reg.Dispose();
g.Dispose();

}

Figure 15-1 illustrates the region operations with five screenshots of the preceding code on a drawing
pane, each corresponding to a region operation method. A simple logical expression is used to explain
the operations: A and B are the two entities (representing Rectangle A and Rectangle B, respectively).
The operations are A.Intersect(B), A.Union(B), A.Xor(B), A.Complement(B), and A.Exclude(B).
The expressions in the parentheses of the screenshot description define the set of points in the result
region. AND generates points in both A and B (intersect); OR generates points in either A or B, or both
(union); and – excludes some specified set of points.

390

Chapter 15

21_762935 ch15.qxp 11/20/06 8:00 AM Page 390

Figure 15-1

Intersect (A AND B) Union (A OR B)

Xor (A OR B) – (A AND B)

Exclude (A – (A AND B)

Complement (B – (A AND B)

391

Graphics

21_762935 ch15.qxp 11/20/06 8:00 AM Page 391

Clipping
The clip region is the area within which you can draw. You can set the clip region so that all subsequent
drawing will be restricted within it. To do this, set the Clip property of the Graphics object. For exam-
ple, the following code sets the clip region of the current form or control to a rectangle defined by the
Region object reg:

Graphics g = CreateGraphics();
Region reg = new Region(new Rectangle(50,50,180,180));
g.Clip = reg;

You can always obtain the clip region using the same property:

Region reg2 = g.Clip;
RectangleF clipRect = reg2.GetBounds(g);
// Then we can obtain the region’s location and size
int x = clipRect.Left;
...

The preceding code creates a Region object reg2 and associates it with the clip region of the Graphics
object g. Then we use the Region::GetBounds() method to get the detailed coordinates and size data of
the region. The RectangleF structure is almost the same as the Rectangle structure, except that the coor-
dinates and size values are float numbers. You can also use the Region object (in this example, reg2) to
further clip the region area using the region operation methods discussed earlier. If you just want to obtain
the rectangle bound of the region area, there is a quicker way to do that: use the Graphics::ClipBounds
property:

RectangleF rf = g.ClipBounds;

The following example shows an ellipse on a clipped region in a form. Because the clip region is set to a
rectangle and the circle’s top-left portion is outside the rectangle, only the portion of the circle falling
into the clipped region will be drawn:

private void Clipping()
{

Graphics g = CreateGraphics();
RectangleF rf0 = g.ClipBounds;

Region reg = new Region(new Rectangle(50,50,150,150));
g.FillRegion(new SolidBrush(Color.DarkGray), reg);

g.Clip = reg;
g.FillEllipse(new SolidBrush(Color.Gold),20,20,100,100);
/*RectangleF rf = g.ClipBounds;
Region reg2 = g.Clip;
RectangleF clipRect = reg2.GetBounds(g);*/

reg.Dispose();
g.Dispose();

}

392

Chapter 15

21_762935 ch15.qxp 11/20/06 8:00 AM Page 392

Figure 15-2 shows the screenshot of the clip region of the form. The gray rectangle is the clipped region
that does not cover the whole circle. As a result, only a portion of the circle is drawn.

Figure 15-2

Vector Methods
Common drawing tasks are implemented as a set of drawing methods in the Graphics class. Table 15-1
lists the vector–related methods in the System.Drawing.Graphics class.

Table 15-1 System.Drawing.Graphics Vector-Related Methods

Method Parameters Description

DrawLine() A Pen object and a coordinates pair Using a pen, draws a line
between the two points

DrawLines() A Pen object and an array of Point Using a pen, draws a series of
structures lines that connect those points

in the array

DrawEllipse() A Pen object and a bounding Using a pen, draws an ellipse
Rectangle object of the ellipse, or bounded by the rectangle

A Pen object and a bounding rectangle
specified by a coordinates pair for the
top-left corner vertex, width, and height

DrawPolygon() A Pen object and an array of Point Using a pen, draws a polygon
structures defined by the point array

DrawRectangle() A Pen object and a Rectangle Using a pen, draws a rectangle
structure, or

A Pen object, a coordinates pair,
width, and height

Table continued on following page

393

Graphics

21_762935 ch15.qxp 11/20/06 8:00 AM Page 393

Method Parameters Description

FillEllipse() A Brush object and a bounding Using a brush, fills the interior
Rectangle object of the ellipse, or of an ellipse defined by the

rectangle
A Brush object and a bounding rectangle
specified by a coordinates pair for the
top-left corner vertex, width, and height

FillPolygon() A Brush object and an array of Point Using a brush, fills the interior
structures of a polygon defined by the

point array

FillRectangle() A Brush object and a Rectangle Using a brush, fills the interior
structure, or of a rectangle

A Brush object, a coordinates pair,
width, and height

FillRegion() A Brush object and a Region object Using a brush, fills the region

The coordinates origin used in a display screen is at the top-left corner. The X axis runs from left to right,
and the Y axis runs from top to bottom. To get the size of the drawing area, use the ClientSize prop-
erty of the form or control, which is a Size structure containing the width and height of the drawing
area of the form or control. If a form has a scroll bar, borders, or a menu bar, the ClientSize will be the
bounds of the form/control minus these nondrawing areas.

//In an instance method of a Form
Size controlSize = this.ClientSize();

The following example draws a grid on the screen by calling the DrawLine()and FillRegion() meth-
ods. The grid looks like the board used in the popular game Go, with 19 × 19 lines. We also draw two
small circles, one black and one white, at two special locations on the board.

The main Form class has three fields to define some variables used in the DrawGrid() method (listed
below): a Point structure of the location of the grid, the line spacing value, and the number of lines.
The grid has 19 horizontal lines and 19 vertical lines, all evenly separated by 10 points:

private Point pntOrigin;
private int lineSpacing = 10;
private int lineCnt = 19;

The following code is the DrawGrid() method used to draw the grid in a form. The location of the grid
was determined in the DrawGrid() method based on the size of the ClientSize of the form — we want
to place the grid in the middle of the screen.

The Pen object used to draw the lines is a blue path with a width of 2 and a dash style of System.Drawing
.Drawing2D.DashStyle.Solid. The brush used to paint the background of the grid is solid yellow:

394

Chapter 15

21_762935 ch15.qxp 11/20/06 8:00 AM Page 394

private void DrawGrid()
{

Graphics g = this.CreateGraphics();

// Get the client area size of the form
Size szeClient = this.ClientSize;

// Calculate the origin of the lines
pntOrigin = new Point((szeClient.Width - 18 * lineSpacing) / 2,

(szeClient.Width - 18 * lineSpacing) / 2);

// First, we paint the background
Brush bshYellow = new SolidBrush(Color.Yellow);
Rectangle recDrawArea = new Rectangle(pntOrigin.X - 10,

pntOrigin.Y - 10,
(lineCnt - 1)* lineSpacing + 20,
(lineCnt - 1)* lineSpacing + 20);

Region rgnDraw = new Region(recDrawArea);

g.FillRegion(bshYellow, rgnDraw);

int x1, y1; // Line’s starting point
Pen penBlue = new Pen(Color.Blue);
penBlue.DashStyle = System.Drawing.Drawing2D.DashStyle.Solid;
penBlue.Width = 2.0F;

// Draw a grid on the screen
int i = 0;

// Draw horizontal lines
int lineLength = (lineCnt - 1) * lineSpacing;
for (i = 0, x1 = pntOrigin.X, y1 = pntOrigin.Y; i < lineCnt; i++)
{

g.DrawLine(penBlue, x1, y1, x1 + lineLength, y1);
y1 += lineSpacing;

}

// Draw vertical lines
for (i = 0, x1 = pntOrigin.X, y1 = pntOrigin.Y; i < lineCnt; i++)
{

g.DrawLine(penBlue, x1, y1, x1, y1 + lineLength);
x1 += lineSpacing;

}
rgnDraw.Dispose();
g.Dispose();

}

The two small circles are drawn in the following method. Here we use one of the overloaded Graphics::
DrawEllipse() methods that requires a Pen object, a coordinates pair identifying the top-left vertex of
the bounded rectangle of the ellipse, and the width and height of the rectangle. The size of the rectangle
(actually a square) is two-thirds of the lineSpacing. Then we call the Graphics::FillEllipse()

395

Graphics

21_762935 ch15.qxp 11/20/06 8:00 AM Page 395

method to paint the interior of the circle. Note that the bounding rectangle of each circle (whose diame-
ter is 2/3 of the line spacing) must be placed right above the crossing of the two grid lines. Thus, the
rectangle’s top-left vertex should be dotSize/2 to the left and top of the grid crossing, as shown in
Figure 15-3.

Figure 15-3

private void DrawElipse()
{

Graphics g = CreateGraphics();
Pen penBlack = new Pen(Color.Black);
int dotSize = lineSpacing * 2 / 3;

// Draw the first ‘black’ dot
g.DrawEllipse(penBlack,

pntOrigin.X + 4 * lineSpacing - dotSize / 2,
pntOrigin.Y + 4 * lineSpacing - dotSize / 2,
lineSpacing / 2,
lineSpacing / 2);

Brush bshBlack = new SolidBrush(Color.Black);
g.FillEllipse(bshBlack,

pntOrigin.X + 4 * lineSpacing - dotSize / 2,
pntOrigin.Y + 4 * lineSpacing - dotSize / 2,
lineSpacing / 2,
lineSpacing / 2);

// Draw the second ‘white’ dot
g.DrawEllipse(penBlack,

pntOrigin.X + 15 * lineSpacing - dotSize / 2,
pntOrigin.Y + 15 * lineSpacing - dotSize / 2,
lineSpacing / 2,
lineSpacing / 2);

Brush bshWhite = new SolidBrush(Color.White);

2/3 D

D = lineSpacing

396

Chapter 15

21_762935 ch15.qxp 11/20/06 8:00 AM Page 396

g.FillEllipse(bshWhite,
pntOrigin.X + 15 * lineSpacing - dotSize / 2,
pntOrigin.Y + 15 * lineSpacing - dotSize / 2,
lineSpacing / 2,
lineSpacing / 2);

g.Dispose();
}

Figure 15-4 shows the grid on the Smartphone emulator.

Figure 15-4

Drawing Text
You can draw text on a form or a control by using one of the overloaded Graphics::DrawString()
methods. However, you might not achieve the best visual result if the string stretches too long or is
badly aligned. Regardless of which overloaded DrawString() method you use, you always need to
pass a String, a Font, and a Brush. In addition, you may pass a RectangleF structure as the bounding
rectangle for the string box. Another setting you can use to draw text is a StringFormat object that
specifies line alignment on the horizontal plane, text alignment on the vertical plane, and some format
flags controlling text clipping and wrapping against the bounding rectangle.

Graphics::DrawString()
Every Window form and control has a default font. Unless you want to use a special font for the text,
you may simply use the form or control’s Font property. The following code snippet is an example of
using the Font property of the form to draw a text string at a specific place:

g.DrawString(“.NET Compact Framework rocks!”,
Font,
new SolidBrush(Color.Blue),
60,
60);

397

Graphics

21_762935 ch15.qxp 11/20/06 8:00 AM Page 397

Normally, before calling the DrawString() method, you should first call Graphics::MeasureString()
to obtain a RectangleF structure of the bounding text box that can be passed to DrawString(). The
underlying reason is that when a string in a font is measured, some extra spacing and overhanging glyphs
will be added to the result. With this piece of information, you can use the DrawString() method to
finely control the string display by placing the text at the appropriate location or adjusting the alignment.
The following is an example of using the MeasureString() method to obtain the size of the text:

// Measure string size first
SizeF szeText = g.MeasureString(“.NET Compact Framework rocks!”, Font);
g.DrawRectangle(new Pen(Color.Black),

0,
0,
(int)szeText.Width,
(int)szeText.Height);

g.DrawString(“.NET Compact Framework rocks!”,
Font,
new SolidBrush(Color.Blue),
0,
0);

To place your text string into a rectangular box, you must pass a Rectangle object to DrawString():

RectangleF rct = new RectangleF(30F, 30F, 200F, 100F);
g.DrawString(“Smartphone Application rocks!”,

Font,
new SolidBrush(Color.Red),
rct);

If the rectangle is not wide enough to hold the string, then the text will wrap around to the next line if
there is sufficient space. If no space is available, the text string will be truncated. The text is left-aligned
and top-aligned by default. If you want to change the formatting, use a StringFormat object and pass it
to DrawString():

RectangleF rct = new RectangleF(0, 30F, 200, 60);
StringFormat strFmt = new StringFormat();
// Text will be put at the bottom of the Rectangle
strFmt.LineAlignment = StringAlignment.Far;
// Text will be put in the middle on a horizontal line
strFmt.Alignment = StringAlignment.Center;
g.DrawString(“ Mobile “,

Font,
new SolidBrush(Color.Black),
rct,
strFmt);

The StringFormat::Alignment property determines how the text is aligned horizontally, and the
StringFormat::LineAlignment property specifies the vertical position of the text in a rectangle. Both
of these properties get the value from the StringAlignment enumeration, where StringAlignment::
Center means “in the middle,” StringAlignment::Near means “close to the beginning of a text,” and
StringAlignment::Far means “to the other side of the beginning.” In a left-to-right writing system
such as English, “near” refers to left-aligned and top-aligned.

398

Chapter 15

21_762935 ch15.qxp 11/20/06 8:00 AM Page 398

Working with Fonts
The preceding examples use a form’s Font property to write text. Alternatively, you can create a
System.Drawing.Font object by specifying a font name string, font size, and font style, chosen from
the FontStyle enumeration, as shown in the following example:

Font fntArial = new Font(“Arial”, 14, FontStyle.Bold | FontStyle.Underline);

Another way to create a Font object is by specifying a System.Drawing.FontFamily, which represents
a generic font type from which several fonts may be derived, as shown in the following example. The
code also uses StringFormat objects to format the text within a RectangleF box. Note that the second
StringFormat object, strFmt2, has a NoClip setting with its FormatFlags property. This specifies that
if the text can’t be displayed within the rectangle (recF2 in the example), then it will continue outside
the bounding box. To clearly illustrate these settings in StringFormat, the bounding boxes for the two
strings are displayed as well.

Font fntMono = new
Font(FontFamily.GenericMonospace,10,FontStyle.Italic);

RectangleF rctF = new RectangleF(0F, 100F, 200F, 40F);
RectangleF rctF2 = new RectangleF(0F, 150F, 40F, 60F);
g.DrawRectangle(new Pen(Color.Black), (int)rctF.Left,

(int)rctF.Top,(int)rctF.Width,(int)rctF.Height);
g.DrawRectangle(new Pen(Color.Red), (int)rctF2.Left, (int)rctF2.Top,

(int)rctF2.Width, (int)rctF2.Height);

g.DrawString(“Smartphone Application rocks!”,
fntMono,
new SolidBrush(Color.Red),
rctF);

// Create a StringFormat object for text display settings
StringFormat strFmt2 = new StringFormat();
// Align center
strFmt2.Alignment = StringAlignment.Near;
// Align bottom
strFmt2.LineAlignment = StringAlignment.Center;
// Set “No clipping” for the text
strFmt2.FormatFlags = StringFormatFlags.NoClip;

// Draw the string with the StringFormat object
g.DrawString(“Mobile rocks!”,

fntArial,
new SolidBrush(Color.Red),
rctF2,
strFmt2
);

Figure 15-5 shows the display of these two text strings with different formatting. The first is top- and
left-aligned by default because no StringFormat is applied, and the other is center- and left-aligned
without clipping.

399

Graphics

21_762935 ch15.qxp 11/20/06 8:00 AM Page 399

Figure 15-5

As you can see from the example, drawing text in the .NET Compact Framework for Windows Smartphone
typically involves creating a number of graphics objects, such as Pen, Brush, Font, RectangleF, Region,
and so on. Generally, to get better performance while a user interacts with the GUI, you need to create these
objects before the user interaction starts, rather than create them on-the-fly while handling control events.
For example, if a black pen will be used many times in your application, you can just create it once during
application startup and use it whenever needed. In addition, using the form or control’s Font property to
draw text may lead to slower drawing performance, especially when many text strings are drawn. In this
case, a Font object should be created before the GUI is loaded to the screen.

Drawing Images
You can draw images directly on the display surface or onto an Image object. If you only want to display
an image with a format of bitmap (bmp), jpeg (jpg), png, gif, or icon (ico), simply use an image control
(for example, a PictureBox). In addition, you can use an ImageList control to display images in a
ListView control or a TreeView control. You can add images manually at design time on the ImageList
control’s properties page; you can also do this programmatically in the code (by adding a dynamically
created image to the ImageList).

The following example shows how to use an ImageList control in a ListView control. We drag and
drop these two controls to a Windows form, and manually add three 16 ×16 images (png files) to the
ImageList. Then, when the form is shown, we generate the fourth image and add it to the ImageList.
The ListView control is then populated with four text strings and is associated with the ImageList.
After setting the ListView’s View property to SmallIcon, we show the ListView.

private void Form3_Paint(object sender, PaintEventArgs e)
{

Bitmap newImage = new Bitmap(16, 16);
Graphics gBitmap = Graphics.FromImage(newImage);
gBitmap.Clear(Color.Red);
gBitmap.DrawLine(new Pen(Color.White, 2.0F), 8, 0, 8, 16);

400

Chapter 15

21_762935 ch15.qxp 11/20/06 8:00 AM Page 400

imgList.Images.Add(newImage);

// Draw the four images first
Graphics g = CreateGraphics();
g.DrawImage(imgList.Images[0], 0, 0);
g.DrawImage(imgList.Images[1], 20, 0);
g.DrawImage(imgList.Images[2], 40, 0);
g.DrawImage(imgList.Images[3], 60, 0);

// Another way to use the ImageList: associate each image with an item
in ListView

for (int i = 0; i < 4; i++)
{

ListViewItem lstItem = new ListViewItem(“Test “ + i);
lstItem.ImageIndex = i;
listView1.Items.Add(lstItem);

}

listView1.SmallImageList = imgList;
listView1.View = View.SmallIcon;
listView1.Show();
g.Dispose();
gBitmap.Dispose();

}

While reading the preceding code, you can safely skip the beginning part of it, as we discuss the bitmap
creation and drawing functions shortly. Pay attention to the lines that relate to the ListView control
listView1. To add items onto the ListView control, use a ListViewItem object, which is constructed
with a text string and is associated with an index to the ImageList associated with the ListView. Note
that a ListView has four types of views —SmallIcon, LargeIcon, List, and Details— each corre-
sponding to a standard Windows list method. The images in our ImageList are used as small icons in
the ListView accompanying the list items when View.SmallIcon is enabled. Figure 15-6 shows the
ListView control with four list items and four small images.

Figure 15-6

401

Graphics

21_762935 ch15.qxp 11/20/06 8:00 AM Page 401

There might be other scenarios in which you want to have direct control over what is displayed in order
to create some special visual effects. In these cases, you need to use the Bitmap class and the Graphics::
DrawImage() method to display the image.

Drawing Bitmaps
The System.Drawing.Bitmap class is derived from the System.Drawing.Image class. To create a
Bitmap class, use one of the five constructors with different parameters. You can create a Bitmap object
based on an existing Image instance, a data stream (for an embedded resource; explained later), or an
image filename. Or, you can create an empty bitmap with a specific size, and a pixel format as enumer-
ated in System.Drawing.Imaging.PixelFormat. PixFormat defines the number of bits used for
RGB, respectively. Following are the available PixFormat values for the .NET Compact Framework;
there are more for the .Net Framework:

❑ Format16bppRgb555: 16 bits per pixel, with 5 bits each for red, green, and blue; the remaining
one bit is not used

❑ Format16bppRgb565: 16 bits per pixel, with 5 bits for red, 6 bits for green, and 5 bits for blue

❑ Format24bppRgb: 24 bits per pixel, with 8 bits each for red, green, and blue

❑ Format32bppRgb: 32 bits per pixel, with 8 bits each for red, green, and blue; the remaining
8 bits are not used

The following are some examples of creating Bitmap objects:

Bitmap b1 = new Bitmap(@”\Storage Card\wind.jpg”);
Bitmap b2 = new Bitmap(100, 100,

System.Drawing.Imaging.PixelFormat.Format16bppRgb555);
Bitmap b3 = new Bitmap(b1);

Graphics g = CreateGraphics();

// Draw an image
g.DrawImage(b3,0, 0);

// Dispose images to release resource
b1.Dispose();
b2.Dispose();
b3.Dispose();

In these examples, Bitmap b3 is created from Bitmap b1, which in turn is loaded from a jpeg file at
the specified path. Then b3 will be displayed on the screen using one of the overloaded methods,
Graphics::DrawImage(). The parameters in this call are the Image instance (b3) and a coordinates
pair specifying where the image will be displayed.

Drawing on a Bitmap
As mentioned earlier in this chapter, the Graphics object can be created with an Image object by calling
the Graphic::FromImage() method. For example, after creating an empty Bitmap object, you can
obtain a Graphics object from the Bitmap and use it to draw vectors and text onto the Bitmap, just as
you would draw on a display surface:

402

Chapter 15

21_762935 ch15.qxp 11/20/06 8:00 AM Page 402

// Create a bitmap image
int size = 60;
Bitmap bmp = new Bitmap(size, size,

System.Drawing.Imaging.PixelFormat.Format16bppRgb555);

Graphics g = Graphics.FromImage(bmp);

// Draw onto the bitmap
Pen penWhite = new Pen(Color.White, 2.0F);
g.Clear(Color.DarkBlue);
g.DrawLine(penWhite,0, 5, size, 5);
g.DrawLine(penWhite, 0, 10, size, 10);
g.DrawLine(penWhite, 5, 0, 5, size);
g.DrawLine(penWhite, 10, 0, 10, size);
g.DrawEllipse(new Pen(Color.Yellow, 2.0F), 15, 15, 40, 40);

// Draw the bitmap on screen
Graphics gScreen = CreateGraphics();

// Display the image at its original size
gScreen.DrawImage(bmp, 0, 0);
// Rectangle of the original bitmap
Rectangle rct0 = new Rectangle(

0,
0,
bmp.Width,
bmp.Height);

// Enlarge rectangle for the bitmap to fit in
Rectangle rct1 = new Rectangle(

bmp.Width + 5,
bmp.Height + 5,
bmp.Width * 2,
bmp.Height * 2);

// Display the bitmap, but enlarged
gScreen.DrawImage(bmp, rct1, rct0, GraphicsUnit.Pixel);
g.Dispose();

The preceding example demonstrates a technique called double buffering, which draws the image in
memory on an off-screen Graphics object, and then displays the prepared image from memory to the
screen (commonly known as blitting). This can significantly reduce display flickering and is widely using
in desktop graphics applications. In the code, a Graphics object is created from the Bitmap instance.
The g.Clear(Color.DarkBlue) call clears the background of the bitmap with a selected color. Four
lines are drawn on it, two horizontal and two vertical, and then a circle is drawn. To draw the bitmap on
the screen, a different Graphics object is created. The bitmap is drawn twice on the screen: the first time
at the origin (0, 0) at its original size (bmp.Width, bmpHeight), and the second time at another place
(bmp.Width + 5, bmp.Height – 5) at doubled its original size.

The first Graphics::DrawImage call

gScreen.DrawImage(bmp, 0, 0);

passes three parameters:

403

Graphics

21_762935 ch15.qxp 11/20/06 8:00 AM Page 403

❑ The Bitmap instance (bmp)

❑ A coordinates pair specifying the place to draw the image (0, 0)

Thus, this method is used to draw the entire image at a specified location.

The second Graphics::DrawImage() call

gScreen.DrawImage(bmp, rct1, rct0, GraphicsUnit.Pixel);

passes four parameters:

❑ The image instance (bmp).

❑ The bounding rectangle in which the image or a portion of the image will be drawn (rct1).

❑ A rectangle representing the portion of the original image to be drawn (rct0).

❑ The GraphicsUnit value (GraphicsUnit.Pixel) indicating the unit of measure. Only
GraphicsUnit.Pixel is supported in the .NET Compact Framework.

Thus, this call draws the specified portion of the image at the specified location and with the specified
size. In our example, we drew the entire bitmap and doubled its size. Figure 15-7 shows the screen dis-
play of the emulator.

Figure 15-7

There are similar overloaded methods of Graphics::DrawImage() that require a different signature
but essentially do the same thing. One of the overloaded DrawImage()methods accepts a parameter of
a System.Drawing.Imaging.ImageAttributes object that controls color transparency. You need to
define a color key that consists of a high key value and a low key value; any color that has each of its
three components (red, green, blue) falling into the corresponding range between the low key and high
key is made transparent. You can use the SetColorKey() method of the ImageAttributes object to
define a color key.

404

Chapter 15

21_762935 ch15.qxp 11/20/06 8:00 AM Page 404

In the .NET Compact Framework, the ImageAttributes::SetColorKey(Color lowKey,
Color highKey) method can accept only a single color key, meaning that both the low key and the
high key must be the same. However, in the .NET Framework, the two keys can be different, specifying a
color key range.

If the image has a matching color, that color will not be drawn. The overloaded DrawImage() method
using ImageAttributes has seven parameters: the Image object, a Rectangle object specifying the target
rectangle for the image, X and Y coordinates, width and height that collectively specify a rectangle relative
to the source image that will be drawn, GraphicsUnit, and an ImageAttributes object. The following is
an example of using this method. The bitmap is drawn in the rectangle destRct. The bitmap’s dark-blue
color will not be drawn, as it matches the color key defined in the ImageAttributes imgAttr object
imgAttr:

Rectangle destRct = new Rectangle(bmp.Width, 0, bmp.Width, bmp.Height);
System.Drawing.Imaging.ImageAttributes imgAttr = new

System.Drawing.Imaging.ImageAttributes();

// Set the transparent color key; both high key and low key must be the same
imgAttr.SetColorKey(Color.DarkBlue, Color.DarkBlue);
gScreen.DrawImage(bmp,

destRct,
0,
0,
bmp.Width ,
bmp.Height,
System.Drawing.GraphicsUnit.Pixel,
imgAttr);

Manipulating a Bitmap
A bitmap is a series of pixels. Graphics entities drawn on the image are eventually saved pixel by pixel,
each taking a color value that can be 16 bits or 32 bits, as defined in System.Drawing.Imaging
.PixelFormat. The Bitmap class provides the GetPixel() and SetPixelI() methods to control each
pixel in the bitmap. GetPixel(int x, int y) returns a Color object at Pixel (x, y) on the bitmap,
whereas the SetPixel(int x, int y, Color c) method sets the color of Pixel (x, y) to Color c.

The following sample program demonstrates using GetPixel(), SetPixel(), and a timer to create some
animation on an image file. The idea is to create a bitmap with a background color (Color.SeaGreen),
and then randomly draw some pixels onto the bitmap. It the pixel selected has a color of the background,
draw a different color for it; otherwise, draw the pixel with the background color. We use a timer that fires
every 500 milliseconds; each time, a DrawPixels() method will be called and 100 randomly selected pix-
els on the bitmap will be drawn. The Enter button on the navigation pad can enable and disable the timer,
thus pausing and restarting the animation. When the program runs, at first you will see more and more
red dots show up on the green background. While the number of red dots continues to increase, the color
of the display will gradually stabilize and there will be roughly the same number of dots of each color.
Overall, the bitmap looks like many blinking dots on a green background.

The following is the complete form class:

using System;
using System.Collections.Generic;

405

Graphics

21_762935 ch15.qxp 11/20/06 8:00 AM Page 405

using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace Chap15Graphics
{

public partial class Form4 : Form
{

// Random number generator
private Random r = null;
// Timer for drawing
Timer timer = new Timer();
bool firstDraw = true;

// The bitmap object for drawing
Bitmap bmp = null;

public Form4()
{

InitializeComponent();
r = new Random();
// Timer fires every 500 milliseconds
timer.Interval = 500;
// Timer’s event handler
timer.Tick += new EventHandler(DrawPixels);

}
private void DrawPixels(object sender, System.EventArgs e)
{

for (int i = 0; i < 100; i++)
{

// Randomly select a pixel
// x and y are both with the range of [0,200)
int x = r.Next(200);
int y = r.Next(200);
Color c1 = bmp.GetPixel(x, y);

// Toggle the color of the pixel
if (c1 == Color.SeaGreen)

bmp.SetPixel(x, y, Color.Red);
else

bmp.SetPixel(x, y, Color.SeaGreen);
}
// Draw the image. Is there a light-weight way to do this?
Graphics g = CreateGraphics();
g.DrawImage(bmp, 0, 0);
g.Dispose();

}
private void Form4_Paint(object sender, PaintEventArgs e)
{

if (firstDraw)

406

Chapter 15

21_762935 ch15.qxp 11/20/06 8:00 AM Page 406

{
// Create a Bitmap
bmp = new Bitmap(200, 200,

System.Drawing.Imaging.PixelFormat.Format24bppRgb);

// Draw a background for this Bitmap
Graphics g = Graphics.FromImage(bmp);
g.Clear(Color.SeaGreen);

Graphics gScreen = e.Graphics;
gScreen.DrawImage(bmp, 0, 0);
gScreen.Dispose();
g.Dispose();

firstDraw = false;
// Enable the timer
timer.Enabled = true;

}

}

private void Form4_KeyDown(object sender, KeyEventArgs e)
{

if ((e.KeyCode == System.Windows.Forms.Keys.Left))
{

// Left
Application.Exit();

}
if ((e.KeyCode == System.Windows.Forms.Keys.Enter))
{

// Enter
if (timer.Enabled)

timer.Enabled = false;
else

timer.Enabled = true;
}

}
}

}

The class has a private member of the Random object, which is used to obtain random coordinates within
the range of the bitmap size. The Random object is initialized in the constructor of the class. Together
with the Random object, a System.Windows.Forms.Timer object (not to be confused with System
.Timers.Timer or System.Threading.Timer) is initialized in the class constructor. The timer’s inter-
val (timer.Interval property) is set to 500 milliseconds. In fact, due to the runtime overhead, a timer
will need to take many milliseconds to fire, even if you can set this Interval property to 1 millisecond.
An EventHandler delegate is created to pass the timer procedure, DrawPixels(), to the Timer object
via the Timer::Tick event. The form’s OnPaint event handler draws the bitmap with a background
color and starts the timer. When the timer expires, the DrawPixels() method is called by the main UI
thread and 100 randomly pixels are drawn. Note that we don’t need to reset the timer’s interval; the
timer will keep going until it is disabled.

407

Graphics

21_762935 ch15.qxp 11/20/06 8:00 AM Page 407

Be cautious when you use a timer in graphics applications. If the timer fires too frequently and the timer
procedure takes quite long to complete (for example, the timer interval in the preceding example is
changed to 50 milliseconds) , the system’s performance may be significantly degraded, as the time proce-
dure may take many CPU cycles, resulting in higher CPU usage. Therefore, a short thread procedure is
always preferred. In addition, if possible, use asynchronous methods in the timer procedure so that some
tasks are being done in another thread and the main UI thread is unblocked.

Saving a Bitmap to a File
You can save an in-memory Bitmap object into a file or a stream using the Bitmap::Save() method.
You need to specify a filename or a Stream object, and a System.Drawing.Imaging.ImageFormat
instance. The ImageFormat enumeration consists of four values —Bmp, Jpeg, Gif, and Png— each cor-
responding to an image format. Here is an example of using Bitmap::Save():

bmp.Save(@”Storage Card\MyImage.png”,
System.Drawing.Imaging.ImageFormat.Png);

Embedded Resources
You can make an image file available to your application by including it in your Visual Studio 2005 pro-
ject. A general guideline for this practice is to make such an image an “embedded resource” that is built
into the assembly as a binary stream. Doing so will eliminate the risk of users accidentally deleting the
separated image files that come with the assembly.

To add an image file to the project, select Project➪Add Existing Items, and then select the file you want
to add. Once the file appears in the Solution Explorer, open its properties page and change the Build
Action option from Content to Embedded Resource, as shown in Figure 15-8. The Content setting means
that the image file, like HTML files in a web application project, will be part of the output group down-
loaded to the client during deployment.

Figure 15-8

408

Chapter 15

21_762935 ch15.qxp 11/20/06 8:00 AM Page 408

If the image file is named a.bmp and the project’s namespace is MyApp, the embedded resource will be
named MyApp.a.bmp (case-sensitive). This information is stored in the assembly’s manifest. You can use
the GetManifestResourceStream() method in the System.Reflection.Assembly class to retrieve
the embedded resource as a binary stream object, as follows:

// Display a bitmap resource
System.Reflection.Assembly asse =

System.Reflection.Assembly.GetExecutingAssembly();
Stream stream = null;
try
{

stream = asse.GetManifestResourceStream(“Chap15Graphics.Coffee
Bean.bmp”);

Bitmap resBmp = new Bitmap(stream);
gScreen.DrawImage(resBmp, 10, 10);

}
catch (System.IO.FileNotFoundException e)
{

MessageBox.Show(e.Message);
}

In this example, the application’s namespace is Chap15Graphics and the image file is named Coffee
Bean.bmp. Thus, the embedded stream is being retrieved as Chap15Graphics.Coffee Bean.bmp by
the GetManifestResourceStream(). A Bitmap object is created with the returned Stream object.

Summary
If your Smartphone application needs to have direct control over the display surface for drawing, you need
to use graphics in the .NET Compact Framework. You can obtain a Graphics object from the current form
or the control, or from an Image object. With this Graphics object, you can start to draw graphical entities
using specified pens and brushes, or draw formatted text. Usually, you can choose one of the multiple
overloaded methods for one task, as demonstrated by the examples in this chapter. For example, to display
an image, you can specify the source image, the target location, and optionally the bounded rectangle of
the destination image, a portion of the source image, and the color key setting. This enables you to select
the most appropriate method to use, rather than use a big, complex method that does everything.

We want to emphasize that while developing graphics applications for Smartphone, you must keep one
thing in mind: performance. This is extremely critical for managed applications, which tend to be slower
than native code. A rule of thumb is to make use of off-screen buffers to minimize direct screen drawing
and reduce the number of Graphics objects in your application.

409

Graphics

21_762935 ch15.qxp 11/20/06 8:00 AM Page 409

21_762935 ch15.qxp 11/20/06 8:00 AM Page 410

Performance

A user’s experience with a Smartphone application is determined largely by the application’s per-
formance. Consider an on-the-go salesperson launching a Smartphone application to access an
enterprise database via a wireless data network. If the application runs very slowly or the UI is
virtually unresponsive during a transaction, the salesperson would look for a new application. A
Smartphone application must be able to run fast enough to be adopted by users.

Improving the performance of a Smartphone application is sometimes quite challenging. You need
to have a basic understanding of the .NET Compact Framework, the CLR, garbage collection, and
so on. Choosing which class or method to use for a specific topic is also vital in many cases. The
GUI’s performance is probably the most important aspect of application performance. As a devel-
oper, you must ask yourself: What are the general guidelines to improving application perfor-
mance? What are the best practices for specific tasks? (Note that you have already read about some
performance-related issues in previous chapters.) This chapter answers those questions. It presents
a collective overview of various performance topics, including the following:

❑ General performance principles

❑ .NET Compact Framework performance counters

❑ CLR factors

❑ Class library guidelines

❑ XML data

❑ Windows forms

General Principles
As discussed in previous chapters, programming for Smartphone means you have to work with
resource-constrained devices: memory, processor, form factor, power, network bandwidth, and so

22_762935 ch16.qxp 11/20/06 8:00 AM Page 411

on. Smartphone application performance tuning is somewhat more challenging than on desktop
computers, as developers have to explore quite a few factors. For managed applications, the highly
optimized CLR relieves application code from directly interacting with the operating system. Still, devel-
opers must carefully select appropriate .NET Compact Framework classes and apply correct coding
techniques.

The following are some general guidelines for Smartphone application developers:

❑ Design with performance in mind at the very beginning of the development process. Don’t
follow the pattern of “work first, performance second,” because for Smartphone application
development, as well as all device application development, performance is often a sophisti-
cated issue with many factors (device capability, power, form factor, operating system, runtime,
the application, etc.). Usually, there is no handy tool for performance investigation as there is on
desktop platforms. Be aware of the overhead of method calls and object memory consumption
when you write code, and make design trade-offs for better performance.

❑ Use fewer managed objects, GUI objects, less code, and short code path. Objects take time to
create and initiate, and consume memory, which, in turn, leads to more frequent garbage collec-
tion. On mobile devices, a small code footprint is already preferred, so try to reduce your code
size as much as possible.

❑ Multithread your code to achieve better GUI performance. Users perceive performance in the
GUI’s responsiveness. Arrange your code with multiple threads to unblock the UI update so
that the UI reacts to user input in a timely manner. Use threads that work in the background to
perform data access and computation, and use asynchronous I/O whenever possible. Finally,
use the double-buffering technique (explained in Chapter 15) to manipulate and display
bitmaps.

Using .NET Compact Framework
Performance Counters

To enable performance counters on a Smartphone device, use the Windows CE remote registry editor (a
Visual Studio 2005 tool) to add the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETCompactFramework\PerfMonitor

Under this key, add a DWORD entry named Counters with a value of 1.

After adding the Counters key, you can run your program on the device or the emulator. A perfor-
mance statistics file will be created under the root directory of the device. The file’s name is the program
you deployed onto the device, with a .stat extension. It is a plaintext file in a simple table format, each
row describing a specific performance counter. Table 16-1 shows an example of this .stat file.

412

Chapter 16

22_762935 ch16.qxp 11/20/06 8:00 AM Page 412

Table 16-1 .NET Compact Framework Performance Counters

Last
Counter Total Datum N Mean Min Max

Total Program Run Time (ms) 385252 – – – – –

App Domains Created 1 – – – – –

App Domains Unloaded 1 – – – – –

Assemblies Loaded 5 – – – – –

Classes Loaded 321 – – – – –

Methods Loaded 716 – – – – –

Closed Types Loaded 0 – – – – –

Closed Types Loaded per 0 0 0 0 0 0
Definition

Open Types Loaded 1 – – – – –

Closed Methods Loaded 0 – – – – –

Closed Methods Loaded per 0 0 0 0 0 0
Definition

Open Methods Loaded 0 – – – – –

Threads in Thread Pool – 0 2 0 0 1

Pending Timers – 0 2 0 0 1

Scheduled Timers 1 – – – – –

Timers Delayed by Thread 0 – – – – –
Pool Limit

Work Items Queued 1 – – – – –

Uncontested Monitor.Enter 9 – – – – –
Calls

Contested Monitor.Enter 0 – – – – –
Calls

Peak Bytes Allocated 2862248 – – – – –
(native + managed)

Managed Objects Allocated 150733 – – – – –

Managed Bytes Allocated 5005609844 28 150733 33208 8 200064

Managed String Objects 50158 – – – – –
Allocated

Bytes of String Objects 5002566140 – – – – –
Allocated

Table continued on following page

413

Performance

22_762935 ch16.qxp 11/20/06 8:00 AM Page 413

Last
Counter Total Datum N Mean Min Max

Garbage Collections (GC) 4636 – – – – –

Bytes Collected by GC 5019204248 486468 4636 1082658 486468 1222824

Managed Bytes in Use – 6208 4636 135325 6208 214084
After GC

Total Bytes in Use After GC – 296056 4636 1577820 296056 1656704

GC Compactions 0 – – – – –

Code Pitchings 1 – – – – –

Calls to GC.Collect 0 – – – – –

GC Latency Time (ms) 142496 24 4636 30 0 66

Pinned Objects 0 – – – – –

Objects Moved by Compactor 81 – – – – –

Objects Not Moved by 55 – – – – –
Compactor

Objects Finalized 8 – – – – –

Boxed Value Types 14 – – – – –

Process Heap – 360 617 7559 72 16240

Short Term Heap – 0 1286 965 0 24944

JIT Heap – 0 1572 50813 0 119912

App Domain Heap – 0 4122 102829 0 156080

GC Heap – 0 67326 1880365 0 2588672

Native Bytes JITed 134220 168 440 305 80 5540

Methods JITed 440 – – – – –

Bytes Pitched 110104 112 409 269 0 5540

Methods Pitched 409 – – – – –

Method Pitch Latency 11 11 1 11 11 11
Time (ms)

Exceptions Thrown 0 – – – – –

Platform Invoke Calls 0 – – – – –

COM Calls Using a vtable 0 – – – – –

COM Calls Using IDispatch 0 – – – – –

Complex Marshaling 0 – – – – –

414

Chapter 16

22_762935 ch16.qxp 11/20/06 8:00 AM Page 414

Last
Counter Total Datum N Mean Min Max

Runtime Callable Wrappers 0 – – – – –

Socket Bytes Sent 0 – – – – –

Socket Bytes Received 0 – – – – –

Controls Created 3 – – – – –

Brushes Created 2 – – – – –

Pens Created 0 – – – – –

Bitmaps Created 0 – – – – –

Regions Created 0 – – – – –

Fonts Created 1 – – – – –

Graphics Created 0 – – – – –
(FromImage)

Graphics Created 0 – –
(CreateGraphics)

Each performance counter has several fields, as follows:

Counter Field Description

Total A summation of all data items of this counter

Last datum The last data item

N The total number of data items

Mean The mean of the data items

Min The minimum of data items

Max The maximum of data items

Not all of the performance counters have all the six field values; some fields may not be meaningful for
them. For example, the Total Bytes in Use counter does not have the Total value:

Last
Counter Total Datum N Mean Min Max

Total Bytes In Use After GC – 296056 4636 1577820 296056 1656704

415

Performance

22_762935 ch16.qxp 11/20/06 8:00 AM Page 415

You can see that for this performance counter, the last piece of data is 296056 bytes, which is the amount of
bytes after last garbage collection. There are 4636 data items available for this counter. The mean value of
this counter is 1577820, and the minimum and maximum are 296056 and 1656704, respectively. The total
value of this performance is not listed because it is apparently not useful for performance diagnostics.

The performance counters can be divided into the following four categories, according to the order in
which they appear in the stat file:

❑ Loader counters — A set of counters collected in the CLR’s assembly loader, including the total
program runtime in milliseconds, the number of application domain created, the number of
applications unloaded, the number of assemblies loaded, the number of classes loaded, and so
on. These counters give a summary of the program.

❑ Generics counters — A set of counters for generic types, including the number of closed types
and the number of open types loaded across all application domains, the maximum number of
unique generic types created for a given definition across all application domains, the number
of closed methods loaded and maximum number of unique generic methods for a given defini-
tion, and so on. If your program uses generics, these counters can tell you the summation of
each type of generic type.

❑ Threads counters — A set of counters for threads and timers, including the number of threads
in the thread pool, the number of running timers, the number of scheduled timers, the number
of work item queued, and so on. These counters are mainly useful for programs using multiple
threads and the thread pool.

❑ Garbage collection — A set of counters for garbage collection operation, including peak bytes
allocated, managed objects allocated, unused managed objects allocated, managed bytes and
unused managed bytes allocated, the number of managed string objects allocated, the number
of bytes of string objects allocated, the number of times the garbage collector has run, the num-
ber of bytes the garbage collector collected, the number of times the garbage collector com-
pacted the heap, the number of boxed valued types, and so on. To make use of these counters,
you need to understand how garbage collection works in the .NET Compact Framework.

❑ Memory usage — A set of counters for memory usage, including heap size for the CLR, the JIT
compiler, the CLR’s application domain, and the garbage collector. Smartphones generally are
memory-constrained mobile devices. These counters, along with the garbage collection coun-
ters, are major performance counters you should look into to improve program performance.
We discuss garbage collection and memory management in more detail in the next section.

❑ JIT compilation — A set of counters for JIT operations, including the number of native bytes
and native methods generated by the compiler and the number of bytes and methods generated
by the JIT compiler that have been discarded (also as known as pitched).

❑ Exceptions — The number of managed exceptions thrown while the program is running. This
counter can be used to verify that managed exceptions have been thrown and handled.

❑ Interop — A set of counters for P/Invoke and COM Interop operations, including the number
of P/Invoke classes, the number of COM calls, and so on. These counters are mainly for debug-
ging performance issues of native code interoperability from within a managed Smartphone
application.

❑ Networking — A set of counters for networking performance: the number of bytes sent via
sockets and the number of bytes received via sockets.

416

Chapter 16

22_762935 ch16.qxp 11/20/06 8:00 AM Page 416

❑ GUI-related — A set of counters for Windows Forms controls and various graphics objects,
including the number of controls created and the number of graphics objects created (graphics
handles, pens, brushed, bitmaps, fonts, etc.). For GUI-rich applications, these counters can give
you some insight into the performance of graphics and Windows Forms.

CLR Performance
Understanding how the CLR operates with respect to system and application performance is vital to
developing fast Smartphone applications. Although the CLR itself can be very complex, here we focus
on those issues pertaining to a developer’s concerns regarding application performance. This section
introduces some best practices corresponding to the CLR:

❑ Garbage collection

❑ Call overhead

❑ Math

❑ Reflection

❑ Generics

Garbage Collection
A managed application in the CLR has a per-process 32MB virtual address space. Each application has a
garbage collection (GC) heap located in the virtual address space for managed objects. The GC heap con-
sists of a number of 64KB segments that are allocated from system memory. As more managed objects
are allocated, the GC heap will grow on a segment basis but will not go beyond 1MB. According to the
.NET Compact Framework team of Microsoft, garbage collection is triggered when one of the following
conditions is met:

❑ 1MB of managed objects have been allocated in the per-process GC heap

❑ An application is moved to the background

❑ An application receives the WM_HIBERNATE message from the operating system

❑ A failure of memory allocation occurs

❑ An application explicitly calls GC.Collect()

Whenever one of these conditions is satisfied, the running thread at that exact point in time will run the
garbage collection code.

The first thing it will do is bring all threads in the process to a state in which they are not running any
managed code or unmanaged portion of the CLR. All managed objects allocated in the GC heap are
examined: Those still being referenced (they are descended from what are called live roots, meaning that
they are still in use in current scope) are marked.

Next, unmarked objects are freed (but that segment of the GC heap may not be returned to the operating
system because the GC heap itself may cache those segments as long as the 1MB limit is not reached)
except those that have a finalizer defined, which will be put into a finalization queue. Two optional steps

417

Performance

22_762935 ch16.qxp 11/20/06 8:00 AM Page 417

may happen: If the GC heap is quite fragmented, it may be compacted at this point. The CLR caches
some JITed code in memory such that it does not need to JIT compile it every time. When memory con-
sumption is in pressure and some allocation has failed, the JITed code cache will be freed, or pitched.

Then, all threads in the process resume while a dedicated thread is running in the background to drain
the finalization queue.

In addition to the managed object the application created explicitly using the new keyword, the CLR
may implicitly create many managed objects for the application. Remember that boxing of value types
(encapsulating value types within a object) will create a managed object. Various String object opera-
tions may end up creating a new String object.

It is generally not a good idea to force garbage collection by calling GC.Collect(), as the CLR will trig-
ger that automatically at the appropriate time. Depending on the number of objects the application and
the CLR allocated, garbage collection may slow down the performance of the application and the sys-
tem. Technically, because garbage collection is a dynamic procedure closely related to memory usage
over time, there is very little chance that calling GC.Collect() will absolutely improve performance by
freeing up memory.

Call Overhead
Method calls are very common in any application. Considering the fact that Smartphones are resource-
constrained, you need to make smart choices when it comes to choosing what types of methods to
implement for a specific task. Table 16-2 lists the five types of function calls in managed application
development on Smartphone.

Table 16-2 Managed Application Function Calls

Performance
Call Type Description (Ratio to Native Calls)

Native calls Windows API calls 1

Instance method Managed code that calls an object’s instance
calls and static calls method or static method, which are both 2–3

bound at compilation time

Virtual calls Managed code that calls a virtual method that 3–5
requires dynamic binding

P/Invoke calls Managed code that calls native functions 10–15
exported in a windows DLL

COM calls Managed code that calls an interface method 10–15
of a COM object

P/Invoke Calls and COM Calls
As you can see from Table 16-2, calling from managed code into native code is quite expensive due to
the overhead of marshaling. If possible, avoid using Platform Invoke calls and COM calls (collectively
known as interop calls), as they are dramatically slower than managed instance calls. If you do need to

418

Chapter 16

22_762935 ch16.qxp 11/20/06 8:00 AM Page 418

use them, you may want to maximize the amount of work in each such call. In addition, use those types
that can be easily marshaled as parameters. For example, data types such as integer, byte, and string do not
require any transformation across the managed and unmanaged boundary, as their representation is the
same in both domains. Arrays, structs that contain only these “blittable” data types (except strings), and
pointers or references (ref) to them, are also marshaled quickly. Table 16-3 lists the blittable data types. Note
that even if System.String is a blittable type, it is not blittable within a struct or a class object.

Table 16-3 Blittable Data Types

.NET Compact Framework Type C# Type

System.Byte sbyte

System.Int16 short

System.Uint16 ushort

System.Int32 int

System.Int64 long (only for “ref”)

System.Uint64 ulong

System.IntPtr * (unsafe)

System.Char char

System.String string

System.Boolean bool

You may also consider using Marshall.Prelink() and Marshall.PrelinkAll() to force JIT compi-
lation of the interop stubs in your managed code so that when they are called the application is directly
executing native code. The following is an example of using Marshall.Prelink() with the P/Invoke
call GetDiskFreeSpaceEx():

public static void TestPInvoke()
{

string dir = @”\Windows”;
UInt64 freeByteAvail, totalBytes, totalFreeBytes;
int retVal;

int start = Environment.TickCount;
int end;
//
// Call the Win32 API with specified directory name
//
retVal = GetDiskFreeSpaceEx(

dir,
out freeByteAvail,
out totalBytes,
out totalFreeBytes

);
end = Environment.TickCount;
Debug.WriteLine(“P/Invoke time (ms): “ + (end - start));

419

Performance

22_762935 ch16.qxp 11/20/06 8:00 AM Page 419

if (retVal != 0)
{

//
// Print P/Invoke call result
//
Debug.WriteLine(“Free Bytes Available: “ + freeByteAvail

+ “ Total Bytes: “ + totalBytes
+ “ Total FreeBytes: “ + totalFreeBytes

);
}

}

In the calling method, we pre-link the TestPInvoke(). You need to add System.Runtime
.InteropServices and System.Reflection to the imported namespace list. The Type.GetType()
call specifies the fully qualified name BCLTest.Program, where BCLTest is the namespace of this
assembly and Program is the class name:

Type t = Type.GetType(“BCLTest.Program”);
MethodInfo m = t.GetMethod(“TestPInvoke”);
Marshal.Prelink(m);
TestPInvoke();

A test run shows that with Marshall.Prelink(), the P/Invoke call can be as much as two times faster
than the same call without Prelink. On the other hand, Prelink introduces some overhead when the
program is loaded — this is just another example of balancing design preferences and end users’ per-
ceived performance.

Virtual Calls
Virtual calls are comparatively slower than other managed calls. Virtual calls are interpreted by the .NET
Compact Framework; no vtable (a table of method pointers in the class) is built during JIT compilation
for virtual calls (in an effort to reduce the working set). This means when calling a virtual call, the com-
pact CLR walks the class hierarchy to locate the requested method. Conversely, for instance method
calls, the compact CLR builds a fixed vtable for all instance method calls in the class. In addition,
whereas the CLR may optimize instance method calls by inlining some of them, virtual calls are never
inlined.

Consider the following classes:

class Fruit
{

internal virtual void Peel()
{

Type t = this.GetType();
Debug.WriteLine(t.Name + “ peels ...”);

}
}
class Apple : Fruit
{

internal override void Peel()
{

420

Chapter 16

22_762935 ch16.qxp 11/20/06 8:00 AM Page 420

Type t = this.GetType();
Debug.WriteLine(t.Name + “ peels ...”);

}
}
class BigApple : Apple
{

internal override void Peel()
{

Type t = this.GetType();
Debug.WriteLine(t.Name + “ peels ...”);

}
internal void Peel2()
{

Type t = this.GetType();
Debug.WriteLine(t.Name + “ peels (instance method)...”);

}
}

This is a simple class hierarchy: Fruit➪Apple➪BigApple. Both the Apple and BigApple classes override
the virtual method Peel() derived from its superclass. The BigApple class also has an instance method
Peel(). We use these classes to explore the cost of virtual calls. Here is the test code:

public static void PeelAFruit(Fruit f)
{

f.Peel();
}

public static void TestVirtualCall()
{

BigApple bigApple = new BigApple();
int start = Environment.TickCount;
int end = 0;
//
// Virtual call from a BigApple object
//
PeelAFruit(bigApple);
end = Environment.TickCount;
Debug.WriteLine(“Virtual call 1 (ms): “ + (end - start));

//
// Instance method call from a BigApple object
//
start = Environment.TickCount;
bigApple.Peel2();
end = Environment.TickCount;
Debug.WriteLine(“Instance call (ms): “ + (end - start));

//
// Virtual call from an Apple object
//
Apple apple = new Apple();
start = Environment.TickCount;
PeelAFruit(apple);
end = Environment.TickCount;

421

Performance

22_762935 ch16.qxp 11/20/06 8:00 AM Page 421

Debug.WriteLine(“Virtual call 2 (ms): “ + (end - start));

//
// Virtual call from a Fruit object
//
Fruit fruit = new Fruit();
start = Environment.TickCount;
PeelAFruit(fruit);
end = Environment.TickCount;
Debug.WriteLine(“Virtual call 3 (ms): “ + (end - start));

}

The test code creates three objects: BigApple, Apple, and Fruit. For each of them, the static method
PeelAFruit() is called, which essentially makes a virtual call to the virtual Peel() method of each
individual class. The following shows the IL (Intermediate Language) code of the PeelAFruit()
method:

.method public hidebysig static void PeelAFruit(class BCLTest.Fruit f) cil managed
{
// Code size 9 (0x9)
.maxstack 8
IL_0000: nop
IL_0001: ldarg.0
IL_0002: callvirt instance void BCLTest.Fruit::Peel()
IL_0007: nop
IL_0008: ret

} // End of method Program::PeelAFruit

Notice the callvirt on line IL_0002. The first time the code is JIT compiled, this instruction tells the
CLR to work through the class hierarchy to find the proper method depending on runtime information
of the object passed to the PeelAFruit method. Without applying any optimization to the code, we can
run this simple test to get a general idea of virtual performance. Here is a sample output of the test code:

BigApple peels ...
Virtual call 1 (ms): 543
BigApple peels (instance method)...
Instance call (ms): 94
Apple peels ...
Virtual call 2 (ms): 137
Fruit peels ...
Virtual call 3 (ms): 98

As shown in the result, BigApple’s virtual call is the slowest (543 milliseconds), whereas Apple’s is the
second slowest (137 milliseconds). You can make two interesting observations from this result. First, the
more steps the callvirt takes through the class hierarchy from the base class, the longer time it takes to
find and run that corresponding virtual method. Second, the instance method call is notably faster than
the virtual call (refer to the BigApple calls). In addition, the virtual call to the base class virtual method
performs as fast as an instance method call.

The “callvirt” instruction does not necessarily mean that it is a virtual call during runtime. In some
cases, the JIT compiler can determine the proper method during compilation. For example, when a vir-
tual method is sealed, it will not be bound during runtime anymore.

422

Chapter 16

22_762935 ch16.qxp 11/20/06 8:00 AM Page 422

In short, virtual calls should generally be avoided whenever possible. If you do need to use virtual calls
in a class design, try to reduce the number of virtual calls and perform more tasks in a single virtual call
to amortize the overhead.

Math
Math operations in the .NET Compact Framework perform well with 32-bit integers and floating-point
values — almost the same as native math operations. But 64-bit integer operations are 5 to 10 times
slower than native 64-bit integer operations, mainly due to the code importing and morphing during JIT
compilation.

Reflection
Reflection operations can be very expensive. You want to use reflection only when you really need to.
The cost of reflection comes from type information retrieval from manifest, type comparison, and type
member access. Because reflection also enables you to instantiate types and load assemblies at runtime,
those operations can be significantly slower (10 to 100 times) than in JIT-compiled regular assembly. This
is clearly a design trade-off you must consider. For performance-sensitive applications or time-critical
code paths, reflection should not be used.

Generics
Generics are the support for the runtime parameter polymorphism supported in the .NET Compact
Framework 2.0 and later. Using generic collections, you can avoid the overhead of boxing/unboxing
value types in a collection object. Thus, using generic collections turns out to be faster than using non-
generic collections. The following code snippet shows a quick benchmarking of running sort() with a
generic collection object. For comparison, the code uses an ArrayList to store the same number of inte-
gers and does a sort() with the ArrayList object:

static void TestGenerics()
{

int start, end;
List<int> lStr = new List<int>();
for (int i = 0; i < 100000; i++)
{

lStr.Add(i);
}
start = Environment.TickCount;
lStr.Sort();
end = Environment.TickCount;
Debug.WriteLine(“Generic List sort (ms): “ + (end - start));

}
static void TestArrayList()
{

int start, end;
ArrayList aList = new ArrayList();
for (int i = 0; i < 100000; i++)
{

aList.Add(i);
}
start = Environment.TickCount;

423

Performance

22_762935 ch16.qxp 11/20/06 8:00 AM Page 423

aList.Sort();
end = Environment.TickCount;
Debug.WriteLine(“ArrayList sort (ms): “ + (end - start));

}

The results show that on average, using a generic list is about six to seven times faster than using an
ArrayList object. The disadvantage of using generics is code size, as the .NET Compact Framework
implements generics in a way (known as JIT code specialization) that may result in a large JIT code size.

Class Library Guidelines
We have already covered some of these guidelines in previous chapters. Here we want to discuss some
general rules and guidelines using the BCL (Base Class Library).

BCL Collections
System.Collections classes — such as ArrayList, Hashtable, Queue, and Stack— always require
value types to be boxed before they can be added to the collection. Conversely, unboxing will be per-
formed while retrieving those objects from the collection. If you have a large number of value types to be
managed in a collection object, performance of this procedure may suffer due to the boxing/unboxing
overhead. To see how this overhead looks, here’s a simple test program. It compares the time it takes for
an ArrayList to box and store 10000 int types with the time it takes a raw array:

public static void TestCollection()
{

int item_cnt = 10000;
int start = Environment.TickCount;
int end = 0;

ArrayList aList = new ArrayList(item_cnt);
for (int i = 0; i < item_cnt; i++)
{

// Boxing i into an object
aList.Add(i);

}
end = Environment.TickCount;
Debug.WriteLine(“ArrayList delay (ms): “ + (end - start));

//
// For comparison, we use a raw int array
//
start = Environment.TickCount;
int[] aRawArray = new int[item_cnt];
for (int i = 0; i < item_cnt; i++)
{

aRawArray[i] = i;
}
end = Environment.TickCount;
Debug.WriteLine(“Raw array delay (ms): “ + (end - start));

}

424

Chapter 16

22_762935 ch16.qxp 11/20/06 8:00 AM Page 424

For this simple test, using a raw int array takes only less than half of the time of using ArrayList—
every integer to be added to the ArrayList will be boxed, which means a managed object has to be cre-
ated. Therefore, if you want to store a fixed number of value types and do not intend to take advantage
of the functionality provided by a System.Collections class, such as searching, sorting, and so on,
you do not use to have a Collection object.

Pre-sizing a Collection object is another good practice when you know the number of items that will
be placed into the Collection object. If you don’t specify an initial capacity, the default capacity will be
used. While you are adding items into the collection, once the Collection object’s capacity is full, it
will be resized (usually doubled), and mostly likely a new Collection object will be created, with
every existing item copied to the new Collection object. This is a significant overhead that should be
avoided if possible.

foreach()
foreach() offers an easy way to iterate through a Collection object, but keep in mind it is compiled
into a number of virtual calls (callvirt in IL language) to System.Collections.IEnumerator::
get_Enumerator, get_Current()and move_Next(). Because virtual calls are heavier than common
instance method calls, you may not want to use them when the collection is huge. The following code
snippet demonstrates foreach() overhead:

public static void TestForeach()
{

ArrayList aList = new ArrayList();
for (int i = 0; i < 1000; i++)
{

aList.Add(“String “ + i);
}
int start = Environment.TickCount;
int end = 0;
foreach (String s in aList)
{

s.ToLower();
}
end = Environment.TickCount;
Debug.WriteLine(“foreach delay (ms): “ + (end - start));

//
// For comparison, we use indexer to access each item
//
start = Environment.TickCount;
for (int i = 0; i < 1000; i++)
{

String s = (String)aList[i];
s.ToLower();

}
end = Environment.TickCount;
Debug.WriteLine(“indexer delay (ms): “ + (end - start));

}

The code uses both foreach() and an indexer to access each of the 1000 String objects in the
ArrayList. Test runs shows that using an indexer takes only about half the time it takes to use
foreach()— roughly 210 milliseconds for foreach() and 100 milliseconds for the indexer.

425

Performance

22_762935 ch16.qxp 11/20/06 8:00 AM Page 425

StringBuilder versus String
Both String and StringBuilder can be used to handle strings. If the program uses only a few string
objects, it probably doesn’t matter which class you use. (Actually, using String would be better because
the String object initializes faster than StringBuilder). However, if you are creating many String
objects, you need to think about it.

Use the String class for strings that do not change; otherwise, use StringBuilder.

Specifically, if you are performing multiple string concatenation operations, definitely use StringBuilder
rather than String. If you use String, a new object will be created each time string addition (+) is per-
formed. On the other hand, StringBulider will use a single object for concatenation. The following code
snippet illustrates the difference. Two label objects, label1 and label2, are used to display the elapse
times of using String and StringBuilder.

static void TestString()
{

DateTime start, end;
//
// Using String class
//
start = DateTime.Now;
String strTest = “This is a test string”;
Debug.WriteLine(“Start time : “ + start);
for (int i = 0; i < 5000; i++)
{

strTest += “ i”;
// Another way to concat strings
//strTest = String.Concat(strTest, i);

}
end = DateTime.Now;
Debug.WriteLine(“End time : “ + end);
Debug.WriteLine(“String elapse time (ms): “ +

(end - start).TotalMilliseconds);
Debug.WriteLine(“elapse time (ms)” + (end - start).TotalMilliseconds);

//
// Using StringBuilder class
//
start = DateTime.Now;
Debug.WriteLine(“Start time : “ + start);
StringBuilder strbTest = new StringBuilder(“This is a test string”);
for (int j = 0; j < 5000; j++)
{

strbTest.Append(“j”);
}
end = DateTime.Now;
Debug.WriteLine(“End time : “ + end);
Debug.WriteLine(“StringBuilder elapse time (ms): “ +

(end - start).TotalMilliseconds);
}

426

Chapter 16

22_762935 ch16.qxp 11/20/06 8:00 AM Page 426

This code uses String and StringBuilder for the same task: concatenating strings 5000 times. Both
strings are initialized with the same string literal: “This is a test string”. We measure the elapsed time in
both cases. Here is the result of one run on a Smartphone emulator:

❑ String elapse time: 4 milliseconds

❑ StringBuilder elapse time: 2 milliseconds

As you can see, using StringBuilder for a large number of string concatenations is much faster than
using String. Using String.Concat() instead of the addition operator of String yields similar
results. By turning on performance counters (see below), you can obtain more detailed information about
managed string objects. The following example shows the result of using the selected performance coun-
ters introduced early in this chapter to compare String and StringBuilder performance.

Using only String for the concatenation:

Managed String Objects Allocated 5125

Bytes of String Objects Allocated 50232832

Garbage Collections (GC) 53

Using only StringBuilder for the concatenation:

Managed String Objects Allocated 134

Bytes of String Objects Allocated 35580

Garbage Collections (GC) 0

In the first case, there are more than 5000 String objects allocated, and the garbage collector has run 53
times. The overhead of creating and garbage-collecting those String objects is probably the leading
cause of poor performance. When using StringBuilder, only 134 String objects are created, and
because not too much heap space has been taken, the garbage collection does not even run.

Note that the preceding sample code uses Debug.Writeln() to display text strings in the console.
The Debug class is in the System.Diagnostics namespace. In fact, you can build a console project
for Windows Mobile Smartphone devices and use Debug.Writeln() to output debug information to
standard output. (If you debug the program in Visual Studio, standard output can be viewed in the out-
put window.)

Regular Expression
By default, regular expressions in the .NET Compact Framework are interpreted at runtime. However,
the regular expression class RegEx provides the option to compile the pattern defined in the RegEx
object on-the-fly. Internally, during runtime, the regular expression engine first parses the regular
expression into some code, which is then transformed into IL code using reflection. This is actually a
technique to trade runtime speed for startup speed. Because the regular expression is first compiled into
IL code when the program starts, it runs faster than it does when being interpreted. You can specify the
compilation mode of RegEx by using RegexOptions.Compiled, as shown in the following code:

427

Performance

22_762935 ch16.qxp 11/20/06 8:00 AM Page 427

Regex r = new Regex(“re*”,RegexOptions.Compiled);

or

Regex.Match(“test string”, @”(d*)abc”, RegexOptions.Compiled);

Use the compilation mode if you have a small number of RegEx objects that will be used repeatedly in
the program. This way you can take advantage of the runtime speed improvement with moderate
startup overhead. On the other hand, if you are more concerned with the startup speed of your applica-
tion or you have many RegEx objects, you should not use the compilation mode.

The .NET Framework features a third operation mode — precompilation — in which regular expression
parsing is performed when you compile the source code into IL code. The precompiled RegEx is put into
a separate assembly. Other than the initial load time of this assembly, there is no overhead of RegEx
interpretation and runtime compilation. However, this feature is not supported in the .NET Compact
Framework.

XML and Data Access
As you’ll recall from the brief discussion about XML parsing performance in Chapter 9, XMLDocument is
a heavyweight object — that is, it builds a tree of untyped objects. Type information is stored as a string
object, which is then used for conversion into appropriate managed types. Not surprisingly, in the .NET
Compact Framework 1.0, the general guideline is to use XmlTextReader and XmlTextWriter, both of
which take less memory than XmlDocument. XmlTextReader does not hold all XML data; rather, it
employs a pull model of forward-only data retrieval, meaning data is read only portion by portion, like
a sliding window.

XMLReader and XMLWriter
In .NET Compact Framework 2.0 and later, combining the XmlReader class and the XmlReaderSettings
class provides a better way of reading XML data. Similarly, the XmlWriter class and the XmlWriter
Settings class will do the same thing for writing XML data. You don’t need to create XmlTexter
Reader or XmlTextWriter yourself; as long as you set the desired settings in an XmlReaderSetting
or XmlWriterSetting object, and associate them with the XmlReader or XmlWriter object, an opti-
mized XmlReader or XmlWriter object will be generated and ready for use.

XML Schema
A frequently asked question is whether to use XML schema. The answer (as always) is: it depends.
Be aware of the validation overhead incurred when you use a schema against an XML document. For
example, using XmlReader and XmlReaderSettings with schema validation is two to three times
slower than using XmlTextReader. Therefore, in general, whenever possible do not use XML schema
for XML parsing. You may consider using a schema document when you want to load an XML docu-
ment instance into a DataSet or there is no other way except a schema document to validate data in an
XML document.

428

Chapter 16

22_762935 ch16.qxp 11/20/06 8:00 AM Page 428

XML Serialization
You can use the XMLSerializer class to serialize and deserialize objects to and from an XML document.
XMLSerializer will serialize the metadata of your object — an expensive operation. As a result, you
should create only one instance for a single type.

Choosing XML as the vehicle for data serialization is not suggested for Smartphone application develop-
ment with respect to performance. Although XML has been widely used as a standard data structuring
format on desktop applications, the generation, transferring, parsing, and validation of XML data is
sometimes too heavy for mobile devices. Unless you need to provide a standard data structure of your
application to other programs (for example, you build a web service that exports data), it would be wise
to serialize data into a custom binary stream, and compress it if needed.

Data Access
Depending on the amount of data to be stored locally, you can access local data using either XML or a SQL
Server Mobile in-proc database. If the amount of data is small — for example, less than 200–300KB — using
an XML file to store it is sufficient; otherwise, use a SQL Server Mobile database. By using a SQL Server
Mobile database, you can achieve high performance with a very small footprint. Note that you should
query data with DataReader. When writing a SQL statement, consider completely bypassing the query
processor and using the TableDirect command type, which provides a faster index search. In both cases,
try to avoid using DataSet; it adds too much memory overhead.

In the following example, the SQL comment has been set to TableDirect mode, and the IndexName
property is set to the index name idxId on the table. No query process is involved in this procedure.
A SqlDataReader object is used for the SQL command. You can, of course, use other data reader
objects.

SqlCeConnection conn = new SqlCeConnection(@”Data Source=\EmployeeInfoDB.sdf”);
Conn.Open();
SqlCeCommand cmd = new SqlCeCommand(“EmployeeInfo”, conn);
cmd.CommandType = CommandType.TableDirect;
cmd.IndexName = “idxId”;
SqlCeDataReader sr = cmd.ExecuteReader();
While (sr.Read())
{
...

}

For remote data access, you generally want to cache the data locally using SQL Server Mobile replica-
tion. Frequent network-based data access is still considered quite expensive and should be avoided as
much as possible. Whenever possible, reduce the amount of data transferred over the air. For example,
always use DiffGrams (see Chapter 9 for details about this setting) to perform incremental data updates
to DataSets, or apply some compression to the data being transferred. As mentioned earlier, using XML
Web services to pass data is suggested only when the amount of transactional data is small or there is no
other open interface.

429

Performance

22_762935 ch16.qxp 11/20/06 8:00 AM Page 429

Windows Forms
A basic goal of Windows forms in a Smartphone application is to reduce the loading time. In the form’s
initialization method (usually InitializeComponent() if the form is created using Form Designer in
Visual Studio), reduce the number of method calls if possible. In addition, do not populate data within
the form’s Load() and Show() methods. Instead, pre-populate data or do it asynchronously.

Form Loading Performance
The first thing to do to improve form loading performance is to minimize the work you have to perform
in the Load event. Put those heavy tasks into a background thread so that they don’t block the loading
process of the form. The .NET Framework has a BackgroundWorker class to help you achieve this goal.
Simply place those heavy jobs into a BackgroundWorker component that will be performed in a worker
thread, enabling the main thread that is loading the form to continue. In addition, when that worker
thread is finished, the main thread can be notified. Unfortunately, the .NET Compact Framework does
not support this class, but you can get around this by using a Threadpool thread.

In the following example, when the form is being loaded, frequent updating of the text box control on
the form occurs. If we perform this update in the form’s Load event, the form will not be loaded during
that time. A test run using the following commented code indicates that it takes more than four seconds
to finish the Load event. To quickly display the form and enable the user to see the update progress, we
use a Threadpool thread by calling ThreadPool.QueueUserWorkItem():

private void Form2_Load(object sender, EventArgs e)
{

//
// Hide the ListView for now but other controls can be displayed
//
int start = Environment.TickCount;
int end = 0;

//
// If we do the 1000-time update here, the form will not be loaded
// while we are doing this
//
/*
for (int num = 0; num < 1000; num++)
{

textBox1.Text = num.ToString();
}
*/

//
// Instead, we can launch another thread to do this
//
ThreadPool.QueueUserWorkItem(new WaitCallback(SomeSlowWork));

end = Environment.TickCount;
Debug.WriteLine(“List-populating time (ms) “ + (end - start));

}

430

Chapter 16

22_762935 ch16.qxp 11/20/06 8:00 AM Page 430

The worker thread in the Threadpool will pick up a WaitCallback method, SomeSlowWork, and run
it. It will update the TextBox control using Control::BeginInvoke(), which asynchronously updates
the control’s Text property:

private void SomeSlowWork(object o)
{

int start = Environment.TickCount;
int end = 0;
int count = 1000;

for (int i = 0; i < count; i ++)
{

if (textBox1.InvokeRequired)
{

object[] args = new object[1];
args[0] = i;
textBox1.BeginInvoke(new AddNumHandler(AddNum),args);

}
else
{

textBox1.Text = i.ToString();
}

}
end = Environment.TickCount;
Debug.WriteLine(“Work-thread list-populating time (ms) “

+ (end - start));
}
private void AddNum(int num)
{

textBox1.Text = num.ToString();
}

Now, with this change, the form’s Load event is handled much faster. A test runs shows only 138 mil-
liseconds, and the worker thread’s update takes about 1500 milliseconds, which is much shorter than
four seconds if we do the update in the Load event in the same thread.

The example uses a worker thread to do some work and update a control on the form. If some of the
data processing has nothing to do with controls on the form, you may also launch a separate thread to
do that task, while quickly displaying the form to the user. Although this example uses a Threadpool
thread, other options include creating your own thread and managing it or using AsyncCallBack
delegate.

Form Layout
If you have ever taken a look at the following code generated by the Form Designer of Visual Studio,
you may have noticed two System.Windows.Forms.Form method calls, SuspendLayout()and
ResumeLayout(), in the Form’s InitializeComponent() method.

When the Form object is created, the constructor calls the InitializeComponent() method. In this
method, right before the controls are set up and positioned on the form, this.SuspendLayout() is called
to temporarily suspend layout logic. When the positioning is done, this.ResumeLayout(false) is called
to resume layout logic. This way, the layout engine does not need to deal with the layout event of each

431

Performance

22_762935 ch16.qxp 11/20/06 8:00 AM Page 431

control addition. The false parameter of the this.ResumeLayout() call in InitializeComponent()
indicates there is no need to execute pending layout requests. This is expected because the controls are
already positioned and it is unnecessary to adjust the layout of them at this point.

The following is an example:

#region Windows Form Designer generated code

// <summary>
// Required method for Designer support - do not modify
// the contents of this method with the code editor.
// </summary>
private void InitializeComponent()
{

this.mainMenu1 = new System.Windows.Forms.MainMenu();
this.menuItem1 = new System.Windows.Forms.MenuItem();
this.treeView1 = new System.Windows.Forms.TreeView();
this.SuspendLayout();
//
// mainMenu1
//
this.mainMenu1.MenuItems.Add(this.menuItem1);
this.mainMenu1.MenuItems.Add(this.menuItem2);
//
// menuItem1
//
this.menuItem1.Text = “Exit”;
this.menuItem1.Click += new System.EventHandler(this.menuItem1_Click);
//
// treeView1
//
this.treeView1.Location = new System.Drawing.Point(0, 16);
this.treeView1.Name = “treeView1”;
this.treeView1.Size = new System.Drawing.Size(176, 161);
this.treeView1.TabIndex = 0;

//
// Form1
//
this.AutoScaleDimensions = new System.Drawing.SizeF(96F, 96F);
this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Dpi;
this.ClientSize = new System.Drawing.Size(176, 180);
this.Controls.Add(this.treeView1);
this.KeyPreview = true;
this.Menu = this.mainMenu1;
this.Name = “Form1”;
this.Text = “Form1”;
this.KeyDown += new System.Windows.Forms.KeyEventHandler(this

.Form1_KeyDown);
this.Load += new System.EventHandler(this.Form1_Load);
this.ResumeLayout(false);

}

#endregion

432

Chapter 16

22_762935 ch16.qxp 11/20/06 8:00 AM Page 432

Following this auto-generated code, it is suggested that if a form has a number of controls, or the form
will adjust the size or position of its controls at runtime, you may use these two methods to suppress
those layout events. The more controls that need to be repositioned, the better performance you can get
with this trick.

BeginUpdate and EndUpdate
You can utilize the BeginUpdate() and EndUpdate() methods of the TreeView and ListView control
classes to achieve better performance. The BeginUpdate() method stops repainting the control, and
the EndUpdate() method resumes repainting. You should use the methods around the node update
task of the control — for example, if you already have a TreeView control with many nodes displayed
on the screen and you want to update the TreeNode collection or part of it. You should call TreeView::
BeginUpdate() first, and then do the update. Once the update is complete, call TreeView::
EndUpdate() to refresh the control. This way the screen will not keep refreshing while you update
TreeNodes in the TreeView control.

If the TreeView control does not have many TreeNodes displayed, you will not benefit from using
this technique because repainting the TreeView control does not take too much time anyway.

The following methods demonstrate how to use this trick when reading a directory tree into a TreeView
control named treeView1. A test run of this code (within a Windows form application on the emulator)
shows that without using the trick, it takes 1622 milliseconds to clear and reload the entire collection,
whereas with the trick it only takes 962 milliseconds to finish the update:

void TestTreeViewLoad(bool bTrick)
{

int start = Environment.TickCount;
int end = 0;

//
// Use the BeginUpdate/EndUpdate trick or not?
//
if(bTrick)

treeView1.BeginUpdate();

treeView1.Nodes.Clear();

//
// Root node
//
TreeNode tn = new TreeNode(@”\Windows”);
treeView1.Nodes.Add(tn);
DirectoryInfo rootDir = new DirectoryInfo(@”\Windows”);

//
// Update the TreeView control with the directory tree
//
UpdateTreeView(tn, rootDir);
if(bTrick)

treeView1.EndUpdate();

end = Environment.TickCount;

433

Performance

22_762935 ch16.qxp 11/20/06 8:00 AM Page 433

Debug.WriteLine(“Treeview load time (ms): “ + (end - start));
}

//
// Recursively update tree view
//
private void UpdateTreeView(TreeNode tn, DirectoryInfo dir)
{

//
// Display folder names; Recursively call the method
//
foreach (DirectoryInfo di in dir.GetDirectories())
{

TreeNode tn2 = new TreeNode(di.Name);
tn.Nodes.Add(tn2);
UpdateTreeView(tn2, di);

}

//
// Display file names
//
foreach (FileInfo fi in dir.GetFiles())
{

TreeNode tn3 = new TreeNode(fi.Name);
tn.Nodes.Add(tn3);

}
}

The bTrick parameter of the TestTreeViewLoad() method dictates whether BeginUpdate() and
EndUpdate() will be used. Before this call, the TreeView control already has a long list of the folders
and files displayed. Thus, using this trick will make a difference in the amount of time it takes for the
TreeView control to update the entire node list. The UpdateTreeView() is recursively called to enu-
merate all files and folders under the specified root directory, which is “\Windows” in this case. In fact,
the TreeView control class already uses this trick. When you call the AddRange() method with the
Nodes collection of a TreeView control, it internally calls BeginUpdate() and EndUpdate() before and
after an array of TreeNodes is added into the Nodes collection.

Summary
This chapter is dedicated to performance issues of managed applications on a Smartphone. Although we
have talked about application performance along with selected topics in previous chapters, the general
guidelines to performance-centric application design and programming can only be covered after indi-
vidual topics are all covered.

Although this is the last chapter, developers should not consider performance as the last step in develop-
ing a Smartphone application. Instead, the word “performance” should be kept in mind throughout the
entire application development process.

434

Chapter 16

22_762935 ch16.qxp 11/20/06 8:00 AM Page 434

In the design stage, when choosing a technique or approach to a problem, among all of the options per-
formance should be considered along with other metrics, such as portability, ease of maintenance, and
development cost. Due to the intrinsic nature of mobile applications, performance is especially crucial to
save power and time, and to improve the user’s experience.

Developers should also keep performance in mind while implementing classes, the GUI, or data access.
Sometimes, choosing a proper class or a more suitable method can make a big difference. To this end, the
chapter has discussed how to choose XML classes, BCL guidelines, suggested data access approaches,
and more. To take better advantage of the .NET Compact Framework, developers need to understand
how it works internally and the various overhead associated with the CLR.

For developers who intend to dig further into performance issues, Microsoft provides .NET Compact
Framework performance counters, along with tools to view these counters. The chapter outlines these
counters and describes a sample performance counter file.

To summarize, application performance is indeed a sophisticated topic encompassing operating system
issues, runtime issues, programming languages issues, and hardware issues. Understandably, one chap-
ter can only touch on these topics from the standpoint of a Smartphone developer. As you delve into this
broad area, you will surely learn more from your practice.

435

Performance

22_762935 ch16.qxp 11/20/06 8:00 AM Page 435

22_762935 ch16.qxp 11/20/06 8:00 AM Page 436

New Features in .NET
Compact Framework 2.0

.NET Compact Framework 2.0 expands the support for classes in the full .NET Framework. It also
introduces new features and improves a number of existing features. .NET Compact Framework
2.0 also provides significant performance improvements; many operations in the .NET Compact
Framework 2.0 runtime are approximately twice as fast as the same operations executed in the
.NET Compact Framework 1.0.

This appendix summarizes the key new features you will find in the .NET Compact Framework 2.0.

❑ Application domains — Application domains are supported to provide isolation between
applications in runtime environments.

❑ Assemblies — A feature of C#, friend assemblies enable you to access another assembly’s
internal members.

❑ CAB file installation — CAB files can be installed not only to system ROM, but also to a
storage card (from .NET CF 2.0 SP1).

❑ Cryptographic support — The following new cryptographic features are now supported:

❑ X.509 certificates

❑ MD5 and SHA1 hashing

❑ RC2, RC4, DES, and 3DES symmetric key encryption

❑ RSA and DSA asymmetric key encryption

❑ DirectX and Direct3D support — Managed DirectX and Direct3D classes are now sup-
ported (requires the Windows Mobile 5.0 SDK).

❑ Generics — The generics feature in C# and Visual Basic is supported.

❑ Globalization — Additional encodings are supported.

23_762935 appa.qxp 11/20/06 8:00 AM Page 437

❑ Graphics — The following new features have been added:

❑ Images can be saved using the System.Drawing.Image.Save() method.

❑ The LockBits() method is added to access bitmap data.

❑ Bitmap serialization (including JPG images) is supported.

❑ ClearType fonts are supported.

❑ The Pen class is supported to draw lines and curves with different width, color, and style.

❑ The QVGA display is supported on Smartphone 2003 and later.

❑ Interoperability — The following features are supported to enhance interoperability:

❑ Native code interoperability — Additional data types are supported, such as arrays,
strings, and structures. In addition, data marshaling in platform invoke is enhanced.

❑ COM interoperability — The runtime callable wrapper (RCW) enables calling from man-
aged applications into COM objects, and the COM callable wrapper (CCW) supports
callbacks from native code to managed code.

❑ Keyboard events — The controls can receive KeyUp, KeyDown, and KeyPress events. In addi-
tion, the new KeyPreview property can be set to send the keyboard events before it is sent to
the focused control.

❑ Layout management — The following new features are now available to simplify the process of
creating and managing user interfaces:

❑ Automatic scaling — Enables a container control to be automatically adjusted to a differ-
ent screen resolution by setting the AutoScaleMode property to AutoScaleMode.Dpi

❑ Control anchoring — Defines the distance from one or more edges of a control to its par-
ent window and automatically resizes the control when the parent window is resized

❑ Control docking — Positions the control against the edge of the parent control and auto-
matically resizes the control when the parent window is resized

❑ DipX and DipY properties — Indicates the number of horizontal and vertical dots per inch

❑ Logical layout control — Enables you to temporarily suppress multiple layout change
events while adjusting multiple control attributes by calling the new SuspendLayout()
and ResumeLayout() methods

❑ Message queuing — The core functionality of the Windows CE MSMQ component, which
enables an application to communicate with other applications across a network when they are
offline, is supported.

❑ Networking — The following new features have been added:

❑ Support for the CredentialCache class, which stores multiple credentials for multiple
Internet resources

❑ Support for IPV6, the next-generation IP protocol

❑ Support for Kerberos, Negotiate, NTLM, and SOAP 1.2

❑ Partial classes — Partial classes are supported (requires Visual Studio 2005).

❑ Registry keys — The RegistryKey class is added to set the registry keys.

438

Appendix A

23_762935 appa.qxp 11/20/06 8:00 AM Page 438

❑ Remote Performance Monitor — Remote Performance Monitor enables you to debug and
tune the performance of Windows Mobile applications (available from .NET Compact
Framework 2.0 SP1).

❑ Serial ports — Up to four serials ports are supported in both Windows Mobile devices and
Visual Studio 2005 emulators.

❑ SQL Server Mobile — SQL Server 2005 Mobile Edition replaces SQL Server CE and substantially
improves performance and enhances reliability. The enhanced features are as follows:

❑ Supports multiple subscriptions and multi-user synchronization

❑ Supports column-level tracking

❑ Optimizes the storage engine for a mobile architecture with shared memory pool

❑ Reuses the empty pages to save storage space

❑ Provides an updatable, scrollable cursor to access a SQL Server Mobile database with
the new SqlCeResultSet class

❑ Supports data binding to the DataGrid class (new in Smartphone)

❑ Threads support — Threads support is enhanced and is more in line with the Threads class in
the full .NET Framework. The asynchronous execution of a delegate of a control thread is sup-
ported with the new Control.BeginInvoke() and Control.EndInvoke() methods.

❑ WindowsCE Forms controls — The following controls in the Mirosoft.WindowsCE.Forms
namespace are supported from .NET Compact Framework 2.0:

❑ DocumentList — Displays and manages documents in a consistent manner (Pocket PC
only)

❑ HardwareButton — Enables users to override the functionality of hardware buttons
(Pocket PC only)

❑ InputModeEditor — Enables users to specify input methods, such as text mode or numer-
ical mode (requires Smartphone 2003 or later)

❑ LogFont — Defines the logical characteristics of a font for creating special text effects,
such as rotated text

❑ MessageWindow — Enhances the capability to send and receive windows-based messages
with the newly introduced Text property

❑ MobileDevice — Provides access to the Hibernate event

❑ Notification — Displays and responds to user notifications

❑ SystemSettings — Adds a new ScreenOrientation property to support different screen
orientations (Pocket PC only)

❑ Windows Forms controls — The following controls in the System.Windows.Forms namespace
are supported from .NET Compact Framework 2.0:

❑ DataTimePicker — Enables users to select a date and a time with a specified format

❑ LinkLabel — Supports and displays hypertext links in a Label control

❑ MonthCalendar — Enables users to select a date using the graphical monthly calendar

439

New Features in .NET Compact Framework 2.0

23_762935 appa.qxp 11/20/06 8:00 AM Page 439

❑ PictureBox — Displays an image

❑ ProgressBar — Displays a progress bar

❑ ScrollableControl — Provides a base class for controls that support the auto-scrolling feature

❑ TabControl — Manages a set of tabbed pages

❑ UserControl — Defines an empty control that can be used to create other controls

❑ WebBrowser — Enables users to navigate web pages inside a form

❑ XML support — XML support is enhanced with the following new classes:

❑ The XmlSerializer class serializes and de-serializes objects into and from XML docu-
ments, which controls how objects are encoded in XML.

❑ The classes in the System.Xml.XPath namespace support navigating and editing XML
information items using the XQuery 1.0 and XPath 2.0 data model.

❑ The classes in the System.Xml.XSchema namespace support XML schema definition
language (XSD) schemas.

440

Appendix A

23_762935 appa.qxp 11/20/06 8:00 AM Page 440

A Glance at the .NET
Compact Framework 2.0

Class Library

The following is a complete list of the namespaces in the .NET Compact Framework 2.0. Key
classes discussed in the book are outlined in each namespace. In addition, a number of classes not
mentioned in the book but important to Smartphone development are described. The module
(DLL file) of each namespace is listed as well.

Microsoft.VisualBasic
❑ Module: microsoft.visualBasic.dll

❑ Description: Contains classes and enums that support the Visual Basic runtime

❑ Key types:

❑ Collection— Provides an ordered set of items

❑ Conversion— Provides number and format conversion procedures

Microsoft.VisualBasic.CompilerServices
❑ Module: microsoft.visualbasic.dll

❑ Description: Contains internal use types that support the Visual Basic compiler

24_762935 appb.qxp 11/20/06 8:01 AM Page 441

❑ Key types:

❑ ProjectData— Provides helpers for the Visual Basic Err object

❑ Operators— Provides late-bound math operators, such as AddObject and
CompareObject, which the Visual Basic compiler uses internally

Microsoft.WindowsCE.Forms
❑ Module: microsoft.windowsce.forms.dll

❑ Description: Contains classes that are available only for programming applications with the
.NET Compact Framework

❑ Key types:

❑ InputPanel— Provides the soft input panel (SIP) for every Windows Form on
Windows CE devices

❑ Message— Provides a wrapper structure for Windows-based messages

❑ MessageWindow— Provides the functionality to send and receive Windows-based
messages

System
❑ Module: mscorlib.dll

❑ Description: Contains fundamental classes and base classes that define commonly used value
and reference data types, events and event handlers, interfaces, attributes, and processing
exceptions

❑ Key types:

❑ AppDomain— Represents an application domain, which is an isolated environment
within a process that an application can execute

❑ ApplicationException— Represents a non-fatal application exception

❑ Array— Provides general array functionality, including creation, manipulation, and
sorting. Limited capability compared with the .NET Framework.

❑ AsyncCallback— Provides a delegate that represents a callback method to be called in
a separate thread when an asynchronous operations is completed

❑ Boolean— Contains a structure that represents a Boolean value

❑ Byte— Contains a structure that represents a byte value

❑ Char— Contains a structure that represents a char value

❑ Console— Represents the standard input, output, and error streams for console appli-
cations. This class can also be used in Smartphone applications for debugging purposes,
as the standard output and error streams will be directed to the output window in
Visual Studio.

442

Appendix B

24_762935 appb.qxp 11/20/06 8:01 AM Page 442

❑ Convert— Contains procedures for data type conversions

❑ DateTime— Contains a structure for a time instance

❑ DayOfWeek— Specifies the day of the week

❑ Decimal— Contains a structure that represents a decimal number

❑ Delegate— Contains the base class for delegate types

❑ Double— Contains a structure that represents a double number

❑ Environment— Provides basic information about the platform

❑ EventHandler— Provides a delegate that handles an event that has no event data. If
your event does generate data, you must 1) supply your own custom event data type
and 2) either create a delegate whereby the type of the second parameter is your custom
type, or use the generic EventHandler delegate class and substitute your custom type
for the generic type parameter.

❑ Exception— Provides general exceptions

❑ GC— Controls the garbage collector

❑ Guid— Contains a structure that represents a GUID

❑ IAsyncResult— Contains an interface that represents the status of an asynchronous
operation

❑ Int16— Contains a 16-bit signed integer

❑ Int32— Contains a 32-bit signed integer

❑ Int64— Contains a 64-bit signed integer

❑ IntPtr— Contains a pointer used to perform P/Invoke or interop

❑ Math— Provides common math functionality

❑ Object— Contains the generic object

❑ Random— Provides a pseudo random number generator

❑ Single— Represents a single-precision floating-point number

❑ StackOverflowException— Provides an exception that is thrown when the execution
stack overflows because it contains too many nested method calls, such as in a deep
recursion

❑ String— Provides string creation and manipulation

❑ Type— Provides basic support for System.Reflection functionality and is the primary
way to access metadata

❑ UInt16— Contains an unsigned 16-bit number

❑ UInt32— Contains an unsigned 32-bit number

❑ UInt64— Contains an unsigned 64-bit number

443

A Glance at the .NET Compact Framework 2.0 Class Library

24_762935 appb.qxp 11/20/06 8:01 AM Page 443

System.Collections
❑ Module: mscorlib.dll

❑ Description: Contains classes and interfaces that define collection objects such as ArrayList,
BitArray, Queue, HashTable, and so on

❑ Key types:

❑ ArrayList— Provides an array implementation. The array size is managed
automatically.

❑ BitArray— Manages a compact array of bit values

❑ Hashtable— Implements a hash table

❑ Queue— Implements a queue

❑ Stack— Implements a stack

System.Collections.Generic
❑ Module: mscorlib.dll

❑ Description: Contains interfaces and classes that define generic collections

❑ Key types:

❑ List— Provides a generic equivalent of the System.Collection.ArrayList class

❑ Queue— Provides a generic equivalent of the System.Collections.Queue class

❑ Stack— Provides a generic equivalent of the System.Collections.Stack class

System.Collections.ObjectModel
❑ Module: mscorlib.dll

❑ Description: Contains classes that can be used as collections in the object model of a reusable
library

❑ Key types:

❑ Collection— Provides a base class for the generic collection

❑ KeyedCollection— Provides the abstract base class for a collection whose keys are
embedded in the values

System.Collections.Specialized
❑ Module: system.dll

❑ Description: Contains specialized and strongly typed collection objects

444

Appendix B

24_762935 appb.qxp 11/20/06 8:01 AM Page 444

❑ Key types:

❑ BitVector32— Contains a vector of Boolean values and 32-bit integers

❑ ListDictionary— Implements an IDictionary interface using a singly linked list

❑ NameValueCollection— Represents a collection of associated string keys and string
values that can be accessed with either the key or the index

❑ StringCollection— Represents a collection of strings

❑ StringDictionary— Implements a hash table with strongly typed strings as keys and
values

System.ComponentModel
❑ Module: system.dll

❑ Description: Contains classes that are used to implement the runtime and design-time behavior
of components and controls

❑ Key types:

❑ Component — Provides the base implementation for the IComponent interface

❑ IContainer — Provides functionality for containers

System.Configuration.Assemblies
❑ Module: mscorlib.dll

❑ Description: Contains two classes that are used to configure an assembly —
AssemblyHashAlgorithm and AssemblyVersionCompatibility.

❑ Key types:

❑ AssemblyHashAlgorithm— Specifies all the hash algorithms used for hashing files
and generating strong names

❑ AssemblyVersionCompatibility— Defines the different types of assembly version
compatibility

System.Data
❑ Module: system.data.dll

❑ Description: Contains classes for common typed data access

❑ Key types:

❑ DataColumn— Represents a column in a DataTable

❑ DataColumnChangeEventHandler— Provides an event handler when a DataColumn
is changed

445

A Glance at the .NET Compact Framework 2.0 Class Library

24_762935 appb.qxp 11/20/06 8:01 AM Page 445

❑ DataColumnCollection— Represents a collection of DataColumn objects in a
DataTable

❑ DataRelation— Represents a parent-child relation between two DataTable objects

❑ DataRow— Represents a row in a DataTable

❑ DataRowChangeEventHandler— Provides an event handler when a DataRow is changed

❑ DataRowCollection— Provides a collection of DataRow objects in a DataTable

❑ DataRowView— Represents a customized view of a data row

❑ DataSet— Represents an in-memory cache of data sets that may contain multiple
DataTable objects.

❑ DataTable— Represents a data table

❑ DataTableCollection— Represents a collection of DataTable objects

❑ DataView— Represents a customized view of a DataTable for sorting, filtering,
searching, editing, and navigation

❑ SqlDbType— Specifies SQL Server–specific data types of a field or property, for use in a
SqlParameter

❑ StatementType— Defines types of SQL statements such as Delete, Insert, Select,
Update, or Batch

❑ XmlReadMode— Defines enums of various XML read modes

❑ XmlWriteMode— Defines enums of various XML write modes

System.Data.Common
❑ Module: system.data.common.dll

❑ Description: Contains types that are shared by .NET data providers

❑ Key types:

❑ DataAdapter— Represents a set of SQL commands and a databases connection for a
DataSet

❑ DbCommand— Represents a SQL statement or stored procedure

❑ DbConnection— Represents a connection to a database

❑ DbDataReader— Provides read-only, forward-only access to a data source

System.Data.SqlClient
❑ Module: system.data.sqlclient.dll

❑ Description: Contains classes for accessing SQL Server

446

Appendix B

24_762935 appb.qxp 11/20/06 8:01 AM Page 446

❑ Key types:

❑ SqlCommand— Represents a Transact-SQL statement or stored procedure to execute
against a SQL Server database

❑ SqlCommandBuilder— Used to automatically generate Transact-SQL statements for
single-table updates if you set the SelectCommand property of the SqlDataAdapter

❑ SqlConnection— Represents an open connection to a SQL Server database

❑ SqlDataAdapter— Represents a set of data commands and a database connection,
which are used to fill the DataSet and update a SQL Server database

❑ SqlDataReader— Provides a way of reading a forward-only stream of rows from a
SQL Server database

❑ SqlTransaction— Represents a Transact-SQL transaction to be made in a SQL Server
database

System.Data.SqlServerCe
❑ Module: system.data.sqlserverce.dll

❑ Description: Contains the .NET Data provider for SQL Server Mobile

❑ Key types:

❑ SqlCeCommand— Represents a SQL command issued to the SQL Server Mobile
database. No batch command support.

❑ SqlCeCommandBuilder— Provides a means of automatically generating single-table
commands used to reconcile changes made to a DataSet

❑ SqlCeConnection— Represents an open connection to the database

❑ SqlCeDataAdapter— Represents a set of data commands and a database connection
that are used to fill the DataSet and update the data source

❑ SqlCeRemoteDataAccess— Provides remote data access

❑ SqlCeTransaction— Represents a SQL transaction

System.Data.SqlTypes
❑ Module: system.data.common.dll

❑ Description: Contains structures of native SQL Server data types

❑ Key types:

❑ SqlBytes— Represents a reference type of a buffer or a stream.

❑ SqlInt32— Represents a 32-bit numeric value

❑ SqlInt64— Represents a 64-bit numeric value

447

A Glance at the .NET Compact Framework 2.0 Class Library

24_762935 appb.qxp 11/20/06 8:01 AM Page 447

❑ SqlMoney— Represents a concurrency value

❑ SqlSingle— Represents a floating-point number

❑ SqlString— Represents a variable-length stream of characters

System.Diagnostics
❑ Module: mscorlib.dll

❑ Description: Contains classes for accessing traces and debuggers

❑ Key types:

❑ Debug— Provides a set of methods and properties that help debug your code

❑ Debugger— Provides interaction with a debugger

❑ Trace— Provides a set of methods and properties that help you trace the execution of
your code

System.Drawing
❑ Module: system.drawing.dll

❑ Description: Contains types for basic GDI+ functionality

❑ Key types:

❑ Bitmap— Encapsulates a GDI+ bitmap

❑ Brush— Encapsulates a GDI+ brush

❑ Color— Represents an ARGB color

❑ Font— Defines a font

❑ FontFamily— Defines a group of typefaces sharing a similar basic design and certain
variations in styles

❑ Graphics— Represents a drawing surface

❑ Pen— Represents a GUI+ pen

❑ Point— Defines a point on a two-dimensional plane

❑ Rectangle— Stores a set of four integers that represent the location and size of a
rectangle

❑ RectangleF— Defines a rectangle of four floating-point numbers

❑ Region— Describes the interior of a graphics shape composed of rectangles and paths

448

Appendix B

24_762935 appb.qxp 11/20/06 8:01 AM Page 448

System.Drawing.Drawing2D
❑ Module: system.drawing.dll

❑ Description: Contains the CombineMode enumerations.

❑ Key types:

❑ CombineMode— Specifies how to combine various clipping regions

System.Drawing.Imaging
❑ Module: system.drawing.dll

❑ Description: Contains classes that provide advanced GDI+ imaging functionality

❑ Key types:

❑ ImageAttributes— Controls how image colors are rendered

System.Drawing.Text
❑ Module: system.drawing.dll

❑ Description: Provides advanced GDI+ typography functionality

❑ Key types:

❑ FontCollection— Provides a base class for font collections

❑ InstalledFontCollection— Represents the fonts installed on the system

System.Globalization
❑ Module: mscorlib.dll

❑ Description: Contains classes that define culture-related information, including language,
country/region, calendars in use, format patterns for dates, currency, and numbers, and the
sort order for strings

❑ Key types:

❑ CultureInfo— Provides information about a specific locale

❑ DateTimeStypes— Defines various date and time styles

❑ NumberFormatInfo— Defines how numeric values are formatted and displayed

449

A Glance at the .NET Compact Framework 2.0 Class Library

24_762935 appb.qxp 11/20/06 8:01 AM Page 449

System.IO
❑ Module: mscorlib.dll

❑ Description: Contains types that enable file and stream I/O

❑ Key types:

❑ Directory— Exposes static methods for creating, moving, and enumerating through
directories and subdirectories

❑ DirectoryInfo— Exposes instance methods for creating, moving, and enumerating
through directories and subdirectories

❑ File— Provides methods for creating, copying, deleting, moving, and opening files,
and aids in the creation of FileStream objects

❑ FileStream— Represents a stream for a file

❑ IOException— Represents an exception that is thrown when an I/O error occurs.

❑ StreamReader— Implements a TextReader that reads characters from a byte stream
in a particular encoding

❑ StreamWriter— Implements a TextWriter that writes characters from a byte stream
in a particular encoding

❑ TextReader— Represents a reader that can read a sequential series of characters

❑ TextWriter— Represents a writer that can write a sequential series of characters

System.IO.Ports
❑ Module: system.dll

❑ Description: Contains classes for controlling serial ports

❑ Key types:

❑ SerialPort— Represents a serial port resource

❑ SerialDataReceivedEventHandler— Represents the method that handles events of
data reception of a serial port

System.Messaging
❑ Module: system.messaging.dll

❑ Description: Provides classes that enable you to connect to, monitor, and administer message
queues on the network, and to send, receive, or peek messages (reads a message but does not
remove it from the queue)

450

Appendix B

24_762935 appb.qxp 11/20/06 8:01 AM Page 450

❑ Key types:

❑ Message— Provides access to the properties needed to define a message queuing
message

❑ MessageQueue— Provides access to a message queue

❑ ReceiveCompletedEventHandler— Represents a method to handle events of a mes-
sage queue

System.Net
❑ Module: system.dll

❑ Description: Contains a set of classes that implement generic network protocol programming
interfaces

❑ Key types:

❑ Dns— Provides simple DNS functionality

❑ HttpWebRequest— Provides HTTP-specific implementation of the WebRequest class

❑ HttpWebResponse— Provides HTTP-specific implementation of the WebResponse class

❑ IPAddress— Encapsulates an IP address (both IPv4 and IPv6)

❑ IPEndPoint— Contains a combination of an IP address and a port number

❑ SocketAddress— Stores serialized information of an endpoint

❑ WebException— Provides an exception that is thrown when a web access error occurs

❑ WebProxy— Encapsulates a web proxy setting for the WebRequest class

❑ WebRequest— Provides basic functionality of a generic web request

❑ WebResponse— Provides basic functionality of a generic web response

System.Net.Sockets
❑ Module: system.dll

❑ Description: Contains a managed implementation of the Windows Sockets (Winsock) interface

❑ Key types:

❑ AddressFamily— Specifies a standard addressing scheme

❑ NetworkStream— Provides a stream object for network data access

❑ SelectMode— Defines the polling modes for the Socket.Poll method

❑ Socket— Implements a Berkeley socket interface

❑ SocketException— Provides an exception that is thrown when a socket error occurs

❑ TcpClient— Implements a TCP client

451

A Glance at the .NET Compact Framework 2.0 Class Library

24_762935 appb.qxp 11/20/06 8:01 AM Page 451

❑ TcpListener— Implements a TCP server

❑ UdpClient— Implements a UDP client

System.Reflection
❑ Module: mscorlib.dll

❑ Description: Contains types that retrieve information about assemblies, modules, members,
parameters, and other entities in managed code

❑ Key types:

❑ Assembly— Provides the functionality of an assembly

❑ Module— Performs reflection of a module

System.Resources
❑ Module: mscorlib.dll

❑ Description: Contains types that enable developers to create, store, and manage various cul-
ture-specific resources used in an application

❑ Key types:

❑ ResourceManager— Provides convenient access to culture-specific resources at
runtime

❑ ResourceReader— Enumerates .resources files and streams, reading sequential
resource name and value pairs

System.Runtime.CompilerServices
❑ Module: mscorlib.dll

❑ Description: Contains types for compiler writers using managed code to control the runtime
behavior of the CLR

❑ Key types:

❑ DateTimeConstantAttribute— Persists an 8-byte DataTime constant

❑ DecimalConstantAttribute— Stores a decimal constant in metadata

System.Runtime.InteropServices
❑ Module: mscorlib.dll

❑ Description: Contains types that implement support for COM interop and PInvoke services

452

Appendix B

24_762935 appb.qxp 11/20/06 8:01 AM Page 452

❑ Key types:

❑ GCHandle— Provides a handle to the managed object pool for interop applications

❑ Marshal— Provides a collection of methods for allocating unmanaged memory, copy-
ing unmanaged memory blocks, and converting managed types to unmanaged types,
as well as other miscellaneous methods used when interacting with unmanaged code

System.Security
❑ Module: mscorlib.dll

❑ Description: Contains two exception classes related to system security

❑ Key types:

❑ SecurityException— Provides an exception for security errors

❑ VerificationException— Provides an exception for verification errors

System.Security.Cryptography
.X509Certificates

❑ Module: mscorlib.dll

❑ Description: Contains the CLR implementation of Authenticode X.509 v.3 certificates

❑ Key types:

❑ X509Certificate— Implements Authenticode X.509 v.3 certificates

System.Security.Policy
❑ Module: mscorlib.dll

❑ Description: Contains the Evidence class, which defines the set of information that constitutes
input to security policy decisions

System.Text
❑ Module: mscorlib.dll

❑ Description: Contains classes representing ASCII, Unicode, UTF-7, and UTF-8 character
encodings

453

A Glance at the .NET Compact Framework 2.0 Class Library

24_762935 appb.qxp 11/20/06 8:01 AM Page 453

❑ Key types:

❑ ASCIIEncoding— Represents ASCII encoding

❑ Decoder— Implements a decoder

❑ Encoder— Implements an encoder

❑ Encoding— Represents a specific encoding

❑ StringBuilder— Represents a mutable string of characters

❑ UnicodeEncoding— Represents Unicode encoding

❑ UTF8Encoding— Represents a UTF-8 encoding of Unicode characters

❑ UTF7Encoding— Represents a UTF-7 encoding of Unicode characters

❑ UTF32Encoding— Represents a UTF-32 encoding of Unicode characters

System.Text.RegularExpressions
❑ Module: system.dll

❑ Description: Contains classes that provide access to the .NET Compact Framework regular
expression engine

❑ Key types:

❑ Match— Represents the result from a single regular expression match

❑ Regex— Represents an immutable regular expression

System.Threading
❑ Module: mscorlib.dll

❑ Description: Contains types that provide threading support, including thread synchronization
and access to the system thread pool

❑ Key types:

❑ AutoResetEvent— Provides an event used to notify a waiting thread for synchroniza-
tion. The event automatically returns to the non-signaled state when a waiting thread is
released

❑ Interlocked— Provides atomic operations for variables that are shared by multiple
threads

❑ ManualResetEvent— Provides an event used to notify one or more waiting threads.
Once it has been signaled, ManualResetEvent remains signaled until it is manually reset

❑ Monitor— Implements a monitor for thread synchronization. The Monitor class con-
trols access to objects by granting a lock for an object to a single thread

❑ Mutex— Implements a mutually exclusive access primitive

454

Appendix B

24_762935 appb.qxp 11/20/06 8:01 AM Page 454

❑ Thread— Implements threading functionality such as creating and controlling a thread,
setting its priority, etc.

❑ ThreadPool— Provides access to the system thread pool that can be used to perform
work items

❑ ThreadStart— Provides a delegate for the thread procedure

❑ WaitCallback— Represents a callback method to be executed by a thread pool thread

❑ WaitHandle— Contains a basic class for synchronization types

System.Web.Services
❑ Module: system.web.services.dll

❑ Description: Contains supporting classes to access XML web services

❑ Key types:

❑ WebMethodAttribute— Provides support for creating web services methods

❑ WebServiceBindingAttribute— Provides support for specifying binding parameters

System.Web.Services.Description
❑ Module: system.web.services.dll

❑ Description: Contains the SoapBindingUse enumeration, which specifies whether the message
parts are encoded as abstract type definitions or concrete schema definitions

System.Web.Services.Protocols
❑ Module: system.web.services.dll

❑ Description: Contains classes that define the protocols used to transmit data across the wire
during the communication between XML Web services clients and XML Web services

❑ Key types:

❑ SoapClientMessage— Represents the data in a SOAP request sent or a SOAP
response received by an XML Web services client

❑ SoapMessage— Represents the data in a SOAP request or response

System.Windows.Forms
❑ Module: system.windows.forms.dll

❑ Description: Contains a set of Windows Forms components for GUI applications

455

A Glance at the .NET Compact Framework 2.0 Class Library

24_762935 appb.qxp 11/20/06 8:01 AM Page 455

❑ Key types:

❑ Application— Provides static methods and properties to manage an application

❑ Button— Provides a Windows Button control

❑ CheckBox— Provides a Windows CheckBox control

❑ ComboBox— Provides a Windows ComboBox control

❑ Control— Provides a base control class

❑ DataGrid— Provides a control for displaying ADO.NET data

❑ Form— Represents a window or dialog box

❑ HScrollBar— Provides a Windows HScrollBar control

❑ ImageList— Provides methods to manage a collection of images

❑ Label— Provides a Windows Label control

❑ ListBox— Provides a Windows ListBox control

❑ ListControl— Provides a common control for implementing ListBox and ComboBox
controls

❑ ListView— Provides a Windows ListView control

❑ MainMenu— Represents the menu structure of a form

❑ MenuItem— Represents a single menu item

❑ MessageBox— Provides a Windows MessageBox control

❑ Panel— Windows panel used to group controls

❑ PictureBox— Provides a Windows PictureBox control

❑ RadioButton— Provides a Windows RadioButton control

❑ Screen— Represents a display device

❑ ScrollBar— Provides a Windows ScrollBar control

❑ StatusBar— Provides a Windows StatusBar control

❑ TabControl— Provides a control for displaying tab pages

❑ TextBox— Provides a Windows TextBox control

❑ Timer— Implements a timer that raises an event at user-defined intervals

❑ ToolBar— Provides a Windows ToolBar control

❑ TreeView— Provides a Windows TreeView control that displays a hierarchical collec-
tion of labeled items, each represented by a TreeNode

❑ VScrollBar— Provides a Windows VScrollBar control

456

Appendix B

24_762935 appb.qxp 11/20/06 8:01 AM Page 456

System.Xml
❑ Module: system.xml.dll

❑ Description: Contains classes and interfaces that provide support for standards-based XML
processing

❑ Key types:

❑ XmlDocument— Encapsulates an in-memory XML document or stream

❑ XmlNode— Represents a single XML node in an XML document or stream

❑ XmlNodeReader— Represents a stream reader that provides fast, non-cached forward-
only access to XML data

❑ XmlReader— Provides a base class for XmlNodeReader and XmlTextReader

❑ XmlTextReader— Represents a stream reader that provides fast, non-cached, forward-
only access to XML data

❑ XmlTextWriter— Represents a stream writer that provides a fast, non-cached, forward-
only way of generating XML streams or files

❑ XmlWriter— Provides a base class for XmlTextWriter

System.Xml.Schema
❑ Module: system.xml.dll

❑ Description: Contains classes that provide standards-based support for XSD (XML Schema
Definition) schemas

❑ Key types:

❑ XmlSchema— Provides an in-memory representation of an XML Schema

❑ XmlSchemaAttributes— Represents the attribute element from the XML Schema

❑ XmlSchemaXPath— Represents the W3C schema selector element

System.Xml.Serialization
❑ Module: system.xml.dll

❑ Description: Contains classes that are used to serialize any objects into XML format documents
or streams

❑ Key types:

❑ XmlAttributes— Represents a collection of XML attribute objects that control serial-
ization and deserialization

❑ XmlElementAttributes— Represents a collection of XML element objects that control
serialization and deserialization

457

A Glance at the .NET Compact Framework 2.0 Class Library

24_762935 appb.qxp 11/20/06 8:01 AM Page 457

❑ XmlSerializer— Provides the basic functionality to serialize and deserialize
objects into and from XML documents, along with related attribute classes, such as
XmlElementAttributes and XmlAttributes

System.Xml.XPath
❑ Module: system.xml.dll

❑ Description: Contains support for the XQuery 1.0 and XPath 2.0 data models

❑ Key types:

❑ XPathItem— Represents an item in the XQuery 1.0 and XPath 2.0 data models

❑ XPathException— Provides the exception thrown when an error occurs while
processing an XPath expression

458

Appendix B

24_762935 appb.qxp 11/20/06 8:01 AM Page 458

The Smartphone
Bootstrapping Process

For a newly deployed Windows Mobile–based Smartphone, one of the first tasks to perform is the
bootstrap procedure. Without the bootstrap process, an unconfigured Smartphone can make only
voice calls but not data calls. The bootstrap process will do the following:

❑ Provision the device with data connectivity and enable direct data communication to the
Internet or via proxies

❑ Configure Service Indication (SI) and Service Loading (SL)

❑ Enable the device to accept over-the-air (OTA) configurations from a list of trusted IP
addresses

❑ Configure the device security model and policy settings

The bootstrap process can be initiated by one of the following methods:

❑ Controls on the Smartphone’s UI

❑ Remote API and ActiveSync when the Smartphone is cradled

❑ An OTA Wireless Access Protocol (WAP) push mechanism

❑ The ROM configuration XML file

Bootstrapping from the User Interface
Bootstrapping from the UI is always available as the last resort to provision a Smartphone device.
Using this method, however, the configurable settings are limited to the available controls on the
user interface.

25_762935 appc.qxp 11/20/06 8:01 AM Page 459

What Can Be Set
❑ WAP (Wireless Application Protocol) settings

❑ HTTP proxy settings

❑ PPP (Point-to-Point Protocol) and GPRS (General Packet Radio Services) settings

❑ Synchronization and e-mail settings

How to Bootstrap from the User Interface
❑ To configure data connections, such as WAP proxy, HTTP proxy, SOCK proxy, dial-up connections,

GPRS settings, and VPN connections, select Settings➪Data Connections.

❑ To configure the Accessibility, Profiles, Home Screen, Power, Telephony, Sounds, and Security
controls, go to Settings, and then select the specific settings.

❑ To configure e-mail, select Inbox/SMS➪Menu➪Options➪Email Setup.

❑ To configure synchronization settings, select ActiveSync➪Menu➪Options.

❑ To configure Internet Explorer Mobile, open the Internet Explorer Mobile application, and then
select Menu➪Options.

Bootstrapping Using Remote
API and ActiveSync

Remote API (RAPI) enables a desktop-based application to communicate with a Smartphone device
via ActiveSync, a software application running on both the PC and the Smartphone device for data
exchange. If a Smartphone device is cradled to a desktop PC, it can be bootstrapped from the desktop
configuration tools using RAPI.

What Can Be Set
❑ WAP settings

❑ HTTP proxy settings

❑ PPP and GPRS settings

❑ Synchronization and e-mail settings

❑ Corporative-specific settings

❑ Mobile operator–specific settings

How to Bootstrap with the RapiConfig Tool
You can use the RapiConfig tool to feed the provisioning XML to the Configuration Manager on a
Windows Mobile–based Smartphone device. The Configuration Manager passes the configuration
request to the Configuration Service Provider (CSP) to facilitate the bootstrap process.

460

Appendix C

25_762935 appc.qxp 11/20/06 8:01 AM Page 460

To provision the device with RapiConfig, perform the following steps:

1. Cradle the device to the PC and establish an ActiveSync connection.

2. Launch the command window on the PC and change the working directory to the Tools folder
of the Windows Mobile Smartphone SDK. The default location is c:\Program Files\Windows
CE Tools\wce500\Windows Mobile 5.0 Smartphone SDK\Tools.

3. Run the RapiConfig command. For example, the following command will bootstrap the device
with the provisioning file myProv.xml:

RapiConfig.exe <provisioning.xml>

Note that bootstrapping a Windows Mobile–based device using RAPI is disabled by default. To enable
bootstrapping with RAPI, MANAGER privileges must be granted to the SECROLE_USER_AUTH role.

A Sample XML File
Assume a corporation needs to bootstrap Smartphone devices and set the e-mail connection to use a
predefined network connection to enhance security. The following XML file can be used and signed to
bootstrap Smartphone devices:

<wap-provisioningdoc>
<characteristic type=”SecurityPolicy”>
</characteristic>

<characteristic type=”EMAIL2”>
<parm name=”CONNECTIONID”
value=”{A1182988-0D73-439e-87AD-2A5B369F808B}”/>
<characteristic type=”SMTP”>

<parm name=”PXADDR” value=”MyOrg”/>
<parm name=”NAME” value=”MyOrg”/>
<parm name=”REPLYADDR” value=”john@myorg.com”/>

</characteristic>

<characteristic type=”POP3”>
<parm name=”PXADDR” value=”MyOrg2”/>
<parm name=”AUTHNAME” value=”john”/>
<parm name=”AUTHSECRET” value=”john123”/>
<parm name=”DOMAIN” value=”MyOrg”/>

</characteristic>

</characteristic>
</wap-provisioningdoc>

In the preceding example, the outgoing e-mail account SMTP and incoming e-mail account POP3 are
grouped under the EMAIL2 node, which encapsulates the characteristics of all e-mail accounts. The
CONNECTIONID parameter specified right beneath the EMAIL2 characteristic dictates the network connec-
tion ID that will be used for e-mail communication. The SMTP characteristic defines the outgoing e-mail
server as MyOrg; the display name is Myorg, and the replay e-mail address is john@myorg.com. The
POP3 characteristic defines the name of the outgoing e-mail server as MyOrg2, the username as john, the
password as john123, and the name of the domain as MyOrg.

461

The Smartphone Bootstrapping Process

25_762935 appc.qxp 11/20/06 8:01 AM Page 461

BootStrapping Using the Over-the-Air
(OTA) WAP Push Method

Windows Mobile–based Smartphone devices can be bootstrapped with the over-the-air (OTA) Wireless
Application Protocol (WAP) push mechanism. OTA bootstrapping is particularly useful for network
operators because a device does not need to be preconfigured when it is manufactured. Rather, a
Smartphone device can be bootstrapped at the point of sale.

Note that by default, OTA bootstrapping is disabled. To enable OTA bootstrapping, the OPERATOR
security role must be added to the Wireless Access Protocol (WAP) Signed Message Policy and Grant
Manager Policy.

What Can Be Set
❑ WAP settings

❑ HTTP proxy settings

❑ PPP and GPRS settings

❑ Synchronization and e-mail settings

❑ Corporate-specific settings

❑ Mobile operator–specific settings

How to Bootstrap with the OTA WAP Push
To bootstrap a Smartphone device with the OTA WAP push mechanism, perform the following steps:

1. Define the configuration data that is required for the bootstrap process. This may include Trusted
Provisioning Server, PPP settings, security policy, corporate certificates, and the WAP Gateway.

2. Generate an XML provisioning file with UTF-8 encoding and compress the message into WAP
Binary XML (WBXML) format.

3. Sign the message with a network PIN and a user PIN.

4. Send the XML file in a WAP push message to the Push Proxy Gateway (PPG).

When the message arrives at the device, it is intercepted by the SMS router and passed to the WAP stack.
It is then directed to the authentication UI, where the user and the message are authenticated with the
user’s PIN. The Configuration Manager passes the message to the bootstrap Configuration Service
Provider (CSP), and the bootstrap message is decompressed and executed.

Bootstrapping Using a ROM
Configuration XML File

The Windows Mobile ROM is divided into a number of discrete regions to isolate different types of appli-
cations and configuration settings. The OPERATOR region is owned by the mobile operator and contains

462

Appendix C

25_762935 appc.qxp 11/20/06 8:01 AM Page 462

all mobile operator customization files. The XML provisioning file can be pre-burned to the OPERATOR
region to provision the device during the bootstrap process. Microsoft also provides a default provisioning
XML file in the MICROSOFT ROM region to dictate default settings for Microsoft applications.

What Can Be Set
❑ WAP settings

❑ HTTP proxy settings

❑ PPP and GPRS settings

❑ Synchronization and e-mail settings

❑ Corporate-specific settings

❑ Mobile operator–specific settings

❑ Any settings that are supported

How to Bootstrap from a ROM Configuration File
When a Smartphone device is cold booted, it is provisioned with the XML provisioning files stored in
the ROM. The name of the XML provisioning file in the OPERATOR region is .provxml, and the XML
provisioning file in the MICROSOFT region is mxip_SMARTFON_1.provxml. The characteristics of boot-
strapping from a ROM configuration file are as follows:

❑ Only the manufacturer can burn the UTF-8 encoded .provxml XML file to the OPERATOR
ROM region.

❑ The Microsoft Provisioning file, mxip_SMARTFON_1.provxml, is also burned to the Microsoft
ROM region during the manufacturing process. It defines the following:

❑ Default network and mapping table entries

❑ Default Microsoft Internet Explorer Mobile favorites

❑ The preconfigured settings burned in the ROM can be reconfigured by the network operator if
ROM updating is supported.

The Default XML Provisioning File Format
The following code illustrates how the favorite settings of Internet Explorer Mobile are configured in the
mxip_SMARTFON_1.provxml provisioning file, which is burned to the MICROSOFT ROM region:

<wap-provisioningdoc>
<characteristic type=”BrowserFavorite”>

<characteristic type=”Smartphone”>
<parm name=”URL”
value=”http://go.microsoft.com/fwlink/?LinkId=5980”/>

</characteristic>
<characteristic type=”MSN Mobile”>

<parm name=”URL” value=”http://mobile.msn.com/pocketpc”/>
</characteristic>

463

The Smartphone Bootstrapping Process

25_762935 appc.qxp 11/20/06 8:01 AM Page 463

<characteristic type=”WindowsMedia.com”>
<parm name=”URL”
value=”http://windowsmedia.com/redir/smartphone.asp”/>

</characteristic>
<characteristic type=”Smartphone Web Guide”>

<parm name=”URL”
value=”http://go.microsoft.com/fwlink/?LinkId=6956”/>

</characteristic>
<characteristic type=”Smartphone How To”>

<parm name=”URL”
value=”http://go.microsoft.com/fwlink/?LinkId=6946”/>

</characteristic>
</characteristic>

...

</wap-provisioningdoc>

Bootstrap Security
The bootstrap process is vital to a Window Mobile–based Smartphone because it provides configuration
data to the Smartphone device. The following are security features that can be leveraged to enhance
security during the bootstrap progress:

❑ Security policy settings can be used to define levels of security and to determine whether
Smartphone devices are configurable over-the-air (OTA).

❑ Smartphone devices rely on a PIN-based mechanism and/or a signed .cab file to secure
provisioning.

❑ For an OTA WAP push bootstrap, the message is signed with a network PIN known only by the
mobile operator and the device. For example, for Global System for Mobile Communications
(GSM), this PIN is the International Mobile Subscriber Identity (IMSI) number from the device’s
Subscriber Identity Module (SIM) card.

❑ Using a .cab file for bootstrapping a corporate device over the air, the .cab file is signed with a
private key from the corporate certificate.

❑ A Trusted Provisioning Server (TPS) can be defined so that a mobile device will only accept the
provisioning message from the TPS. A trusted Push Proxy Gateway can also be defined to allow
TPS to provide continuous provisioning. The following XML code describes how to define a
TPS. In the example, TPS is set to the URL www.mytursted.com, and the proxy ID is set to
myProxy. (The parameter CONTEXT-ALLOW currently accepts a value of 0 only.)

<wap-provisioningdoc>
<characteristic type=”BOOTSTRAP”>

<parm name=”NAME” value=”my Trusted TPS” />
<parm name=”PROVURL” value=”http://www.mytursted.com” />
<parm name=”PROXY-ID” value=”myProxy” />
<parm name=”CONTEXT-ALLOW” value=”0” />

</characteristic>
</wap-provisioningdoc>

464

Appendix C

25_762935 appc.qxp 11/20/06 8:01 AM Page 464

In
de

x

Index

SYMBOLS
& (ampersand), shortcut indicator, 79
@ (at symbol), escape character, 108

A
Abort() method, 296
Accept() method, 198–199
AcceptSocket() method, 178–187
AcceptTcpClient() method, 178–187
AccessViolationException, 290
ActiveSync

bootstrapping, 460–461
delivering applications, 61
description, 42–43

adaptive networking, 6
Address property, 207–208
ADO.NET, 132–134
Alignment property, 398
AlphaABC input mode, 97
AlphaCurrent input mode, 97
AlphaT9 input mode, 97
Amazon Web Services, 228
ambiguous word input, 96–97
ampersand (&), shortcut indicator, 79
anonymous access, 353–354
antivirus measures, 331–332
Append() method, 27

application development
See also development tools
See also managed code
See also .Net Compact Framework
See also .Net Framework
See also unmanaged code
ActiveSync deployment, 61
adaptive networking, 6
automatic variables, 55
breakpoint configuration, 55
building applications, 47
CAB files, 56
challenges of, 6–7
choosing a platform, 17
connecting Smartphone devices, 18
creating projects, 43–49
debugging, 52–56
deploying applications, 61
deployment, 61
digital signatures, 59–61
e-mail attachment deployment, 61
Exceptions command, 55
form code, 49–51
form controls, 47
installing applications, 61
lightweight computation, 7
local variables, 55
online help, 18
packaging applications, 56–59

26_762935 bindex.qxp 11/20/06 8:01 AM Page 465

application development (continued)

physical device emulation, 17–18
power management, 7
project files, 51
Properties window, 46
required procedures, 17–18
security, 7
security model, 59–60
security policies, 59–60
SI (Service Indication) messages, 61
signing applications, 59–61
SL (Service Loading) messages, 61
solutions, 45
stacking controls, 47
starting without debugging, 48–49
storage card deployment, 61
storage efficiency, 6
tab order, controls, 47
templates, 44
testing, 52–56
user-friendly GUI, 6
watched variables, 55
web download deployment, 61

application domains, 13, 437
application signing, 309
ApplicationException, 290–292
appointments. See PIM data.
AppVerifier tool, 295
ArgumentException, 290
arithmetic error exception, 290
ArithmeticException, 290
Array class, 33–34
ArrayList class, 34
arrays

C#, 33–34
out of range exception, 290
passing, 266–267

ASP.NET Mobile Controls, 16–17
assemblies, new features, 437
Assemblies namespace, 445
asymmetric cryptography, 335
asynchronous methods, 198–199
asynchronous web access, 170–171
at symbol (@), escape character, 108

“Attach to process” support, 293
attachments, filenames for, 210–211
Attachments property, 210–216
attributes, .Net Compact Framework, 21
authentication

information, getting, 168
network, 346–347
web services, 353–354
Windows domain servers, 353–354

Auto Run Policy, 322
automatic scroll, 69–78
automatic variables, 55
autos window, 293
auto-save mode, 102
AutoScaleMode property, 102
AutoScroll property, 69–78

B
Back key, 9, 86–87
BackgroundWorker class, 430–431
base classes, .Net Framework, 14
BCL collections, performance, 424–425
BeginGetRequestStream() method,

167–175
BeginGetResponse() method, 167–175
BeginReceive() method, 198–199
BeginSend() method, 198–199
BeginUpdate() method, 433–434
big-endian byte order, 177–178
BinaryReader class, 110–112
BinarySearch() method, 33–34
BinaryWriter class, 110–112
biometrics, 330
BitArray class, 34
bitmaps, drawing, 402–408
blittable data types, 264–266, 419
blittable fields, passing, 268–270
blitting, 403
blocking mode, 198–199
bootstrapping, 459–464
breakpoint configuration, 55
breakpoint window, 293

466

application development (continued)

26_762935 bindex.qxp 11/20/06 8:01 AM Page 466

breakpoints, 293
browsing files and directories, 113–120
Brush objects, 387–388
byte order conversion, 177–178

C
C#. See also .Net Compact Framework, type

system.
Array class, 33–34
ArrayList class, 34
arrays, 33–34
BinarySearch() method, 33–34
BitArray class, 34
CaseInsensitiveComparer class, 34
casting data types, 23
checked operator, 26
classes, 28–32
collections, 33–34
Collections namespace, 34
Comparer class, 34
converting values, 23
copying data, 24
CreateInstance() method, 33–34
data loss during conversion, 23
enum data types, 24
GetType() method, 26
Hashtable class, 34
ICollection interface, 34
IComparer interface, 34
IDictionary interface, 34
IEnumerable interface, 34
IEnumerator interface, 34
IList interface, 34
IndexOf() method, 33–34
initializing values, 23
Length property, 33–34
object reference type, 26–27
operators, 25–26
OverflowException exception, 23
polymorphism, 32–33
Queue class, 34
reference types, 24

shallow copy, 24
Sort() method, 33–34
SortedList class, 34
Stack class, 34
static methods, 23
strings, 23–27
struct data types, 24
System.Convert class, 23
typeof operator, 26
unchecked operator, 26
value types, 23–24
virtual keyword, 32–33

CAB files, 56, 437
Cabir.A virus, 307–308
CABS Policy, 324
calendars, localization, 377–379. See also

PIM data.
Call key, 9
call overhead, performance, 418–423
call stack window, 293
call-by-reference, 30
call-by-value, 30
calling conventions, P/Invoke, 260
card view, 87–88
CAS (Code Access Security), 308
case conversion, 27
CaseInsensitiveComparer class, 34
casting data types, 23
certificate stores, 310
certificates
definition, 309
loading, 321
MakeCert.exe tool, 319
managing, 319–321
obtaining, 314–315
Pvk2pfx.exe tool, 319
removing, 321
signing, 315–319
signtool utility, 319
System.Security.Cryptography.X509Certifi-

cates namespace, 453
viewing, 321
XML provisioning file, 321

chaining exceptions, 286

467

chaining exceptions

In
de

x

26_762935 bindex.qxp 11/20/06 8:01 AM Page 467

character coding, P/Invoke, 261
character encoding, localization, 381–382
checked operator, 26
class libraries

.Net Compact Framework, 15–16

.Net Framework, 13–14
performance, 424–428

class objects, 20
classes. See also C#, classes; interfaces;

namespaces.
accessibility, 32
Array, 33–34
ArrayList, 34
BackgroundWorker, 430–431
base, 14
BinaryReader, 110–112
BinaryWriter, 110–112
BitArray, 34
CaseInsensitiveComparer, 34
code-generation control, 14
Comparer, 34
CultureInfo, 365–366
CurrentCulture, 365–366
CurrentUICulture, 365–366
data access, 14
DataSet, 240–242
Directory, 107–108, 112
DirectoryInfo
directory-related operations, 107–108,

112
memo application, 120–128
EmailAccount, 206–208
EmailMessage, 206–208
Encoding, 381–382
Exception, 288–289
File, 107–108, 112
FileInfo
file-related operations, 107–108, 112
memo application, 120–128
FileStream, 108–110, 112
FileStreamInfo, 112
FontCollection, 386
GenericFontFamilies, 386
Graphics, 386

Hashtable, 34
HttpWebRequest, 168–169
HttpWebResponse, 168–169
InputModeEditor, 97
InstalledFontCollection, 386
I/O, 14
IOException, 112
IPAddress, 176–177
IPEndPont, 176
IPHostEntry, 176–177
language compilation, 14
MemoryStream, 108–110, 112
MessageInterceptor, 221–224
MessagingApplication, 211–216
networking, 14
OutlookSession, 204–212, 218–224
passing, 268–270, 270–271
Path, 112
PimItemCollection, 219–220
PrivateFontCollection, 386
Queue, 34
Recipient, 206–208
Regex, 427–428
Region, 389–391
remoting, 14
security, 14
SmsMessage, 221–225
Socket, 187–188
SortedList, 34
Stack, 34
Stream, 108–110, 112
StreamReader, 111–112
StreamWriter, 111–112
String, 426–427
StringBuilder, 27, 267–268, 426–427
StringReader, 112
StringWriter, 113
System.Convert, 23
SystemException, 288–289
System.Object, 18
TcpClient, 178–187
TcpListener, 178–187
TextReader, 110–112, 113
TextWriter, 110–112, 113

468

character coding, P/Invoke

26_762935 bindex.qxp 11/20/06 8:01 AM Page 468

threading, 14
UI, 14
web application, 14
web services, 14
WebRequest, 167–175
WebResponse, 167–175
XmlDocument, 235–240
XmlNodeReader, 235, 240–242
XmlNodeWriter, 235
XmlReader, 235, 428
XMLSerializer, 429
XmlTextReader, 235–240
XmlTextWriter, 235
XmlWriter, 235, 428

CLI (common language infrastructure), 12
client environment, SQL Server 2005

Mobile, 136. See also TCP servers and
clients.

clipping, 392–393
CLR (Common Language Runtime). See also

performance, CLR.
application domain, 13
CTS (common type system), 13
.Net Compact Framework, 15
.Net languages, 13
services provided, 12–13

CLR host, 13
Code Access Security (CAS), 308
code-generation control classes, 14
collections
iterating through, performance, 425
overview, 33–34
System.Collections namespace, 443
System.Collections.Generic namespace,

443
System.Collections.ObjectModel

namespace, 443
System.Collections.Specialized namespace,

443–444
Collections namespace, 34, 443
Collections.Generic namespace, 443
Collections.ObjectModel namespace, 443
Collections.Specialized namespace,

443–444

Color objects, 387–388
color transparency, 404
COM calls, performance, 418–420
COM interop, 16
command mode, 293
commerce, smartphone uses for, 5
common language infrastructure (CLI), 12
Common Language Runtime (CLR). See CLR

(Common Language Runtime).
Common namespace, 446
common type system (CTS), 13
communication security. See security,

communications.
Comparer class, 34
comparing strings, 27
compilers, .Net Framework, 13
CompilerServices namespace, 452
ComponentModel namespace, 445
concatenating strings, 27
condition checking versus exceptions, 292
Configuration.Assemblies namespace, 445
Connect() method, 192–196, 198–199
connected mode, 132–133
consuming web services, 249–252
contacts. See PIM data.
ContentLength property, 168
ContentType property, 168
controls, hardware

Back key, 86–87
Home key, 86–87
Microsoft design guidelines, 85
soft keys, 86, 101–102

controls, software
automatic scroll, 69–78
available, list of, 64–65
focus behavior, 74–78, 84–85
ListView, 84–85
MainMenu, 78–84
menus, 78–84
Panel, 84–85
repainting, performance, 433–434
submenus, 78–79
tab order, 66–69
TreeView, 84–85

469

controls, software

In
de

x

26_762935 bindex.qxp 11/20/06 8:01 AM Page 469

Convert class, 23
Convert() method, 381–382
converting strings to numbers, 23
converting values, C#, 23
Coordinated Universal Time (UTC), 377
copying
data, C#, 24
directories, 107–108
files, 107–108

counters, performance, 412–417
Create() method
File class, 107–108
files, creating, 107–108
web requests, creating, 169
WebRequest class, 169
CreateGraphics() method, 387
CreateInstance() method, 33–34
creating
databases, 138–142, 147–148, 157–158
directories, 107–108
e-mail applications
with attachments, 210–216
with managed APIs, 205–208
simple version, 208–210

files, 107–108
Graphics objects, 387
menus, 78–84
projects, 43–49
publications, 142–145
subscriptions, 148–151
tables, 138–142
threads, 297
web requests
asynchronous access, 170–171
Create() method, 169
example, 171–175
overview, 169
synchronous access, 169–170

Credentials property, 168
critical sections, 298
cryptography, 334–335, 437. See also

encryption.
Cryptography.X509Certificates namespace,

453
CTS (common type system), 13

cultural influences. See globalization;
localization.

culture codes, 364–365
CultureInfo class, 365–366
currency, localization, 379–381
CurrentCulture class, 365–366
CurrentThread() method, 296
CurrentUICulture class, 365–366

D
data. See also security, data.
access classes, 14
encryption, 334–341
loss during conversion, 23
providers, 132
service, smartphone uses for, 6

Data namespace, 445–446
data storage
object store, 106
overview, 105–107
persistent storage filesystems, 106–107
program memory, 106
RAM-based filesystems, 106
unified directory view, 107

data types. See also .Net Compact
Framework, type system.

blittable, 264–266
.Net Compact Framework, 19
.Net Framework, 13
XML, 234

data types, C#. See also .Net Compact
Framework, type system.

casting, 23
enum, 24
GetType() method, 26
object reference type, 26–27
reference types, 24
struct data types, 24
typeof operator, 26
value types, 23–24

databases
creating, 138–142, 147–148, 157–158
encryption, 341–346

470

Convert class

26_762935 bindex.qxp 11/20/06 8:01 AM Page 470

databases, relational data. See also SQL
Server 2005 Mobile.

ADO.NET, 132–134
connected mode, 132–133
converting from XML, 240–242
data providers, 132
disconnected mode, 132, 133–134

Data.Common namespace, 446
DataGrid control, example, 148–151
DataSet class, 240–242
Data.SqlClient namespace, 446–447
Data.SqlServerCe namespace, 447
Data.SqlTypes namespace, 447–448
dates, localization, 377–379
deadlock, 300–304
/debug option, C#, 294
debugging
auto variables, 55
breakpoint configuration, 54
controls, 54
description, 52–56
Edit and Continue feature, 55
limitations, 55–56
local variables, 55
selecting exceptions to monitor, 55
starting without, 48–49
System.Diagnostics namespace, 448
watched variables, 55

debugging, with Visual Studio 2005
AppVerifier tool, 295
“Attach to process” support, 293
autos window, 293
breakpoint window, 293
breakpoints, 293
call stack window, 293
command mode, 293
/debug option, C#, 294
Edit-and-Continue, 295
expressions, entering, 293
immediate mode, 293
immediate window, 293
Just-My-Code debugging, 295
limitations, 295
loaded modules, listing, 293
locals window, 293

method call stack, displaying, 293
modules window, 293
multithreaded
Abort() method, 296
background threads, 297
blocking a calling thread, 296
creating a thread, 297
critical sections, 298
current thread, returning, 296
current thread, sleeping, 296
CurrentThread() method, 296
deadlock, 300–304
IsBackground() method, 297
Join() method, 296
locks, 298–300
managed threads, 296–297
ManagedThreadId() method, 296
Name() method, 296
overview, 296
Priority() method, 297
race conditions, 298–300
Sleep() method, 296
Start() method, 296
starting a thread, 296–297
terminating a thread, 296
thread ID, returning, 296
thread names, getting/setting, 296
thread pool, 297
thread priority, 297

next statement, 295
objects, displaying, 293
process window, 293
running processes, listing, 293
settings, 294
statements, entering, 293
symbols, defining, 294–295
threads, listing, 293
threads window, 293
variables, displaying, 293
viewing properties and fields, 293
watch windows, 293
windows, 293–294

Default input mode, 97
delegate keyword, 30–31
delegates, 30–31

471

delegates

In
de

x

26_762935 bindex.qxp 11/20/06 8:01 AM Page 471

deleting files and directories, 107–108
delivering applications. See deploying

applications.
deploying applications, 61
depth-first node reading, 236
Description namespace, 455
developing applications. See application

development.
development environment, 135, 136
development tools. See also .Net Compact

Framework; .Net Framework.
ActiveSync, 18, 42–43
all-in-one package, 18
AppVerifier, 295
bootstrapping, 460–461
certificates, 319
debugging, with Visual Studio 2005, 295
Device Emulator, 41–42
eMbedded C++, 17, 18
eMbedded Visual Basic, 17
MakeCert.exe, 319
MSBuild, 40
.Net Remote, 40
Pvk2pfx.exe, 319
RapiConfig tool, 460–461
signtool, 319
SQL Server 2005 Mobile, 138
Visual Studio 2005, 17–18, 40–41
Windows Mobile 5.0, 7–8, 41

Device Emulator, 41–42
Diagnostics namespace, 448
DiffGram mode, 242
digest authentication, 353–354
digital signatures, 59–61, 309
Direct3D support, 437
directories. See also DirectoryInfo

class.
browsing, 113–120
copying, 107–108
creating, 107–108
getting information about, 107–108
moving, 107–108
Directory class, 107–108, 112
DirectoryInfo class
directory-related operations, 107–108, 112
memo application, 120–128

DirectX support, 437
disconnected mode, 132, 133–134
DisplayComposeForm() method,

211–216
document elements, 231
DotGNU project, 12
double buffering, 403
DrawEllipse() method, 393–397
DrawGrid() method, 394–397
drawing. See also graphics.

bitmaps, 402–408
ellipses, 393–397
grids, 394–397
images, 400–408
lines, 387–388, 393–397
polygons, 393–397
rectangles, 393–397
shapes, 393–397
strings, 397–398
text, 397–398

Drawing namespace, 448
Drawing2D namespace, 449
Drawing.Imaging namespace, 449
Drawing.Text namespace, 449
DrawLine() method, 393–397
DrawLines() method, 393–397
DrawPolygon() method, 393–397
DrawRectangle() method, 393–397
DrawString() methods, 397–398
Dumpbin.exe utility, 258–260

E
Earpiece volume, 9
eBay Developers Program, 228
Edit-and-Continue, 295
ellipses, drawing, 393–397
e-mail
deploying applications with, 61
SMS, 220–225
text messaging, 220–225

e-mail applications
accounts, 206–208
Address property, 207–208
Attachments property, 210–216

472

deleting files and directories

26_762935 bindex.qxp 11/20/06 8:01 AM Page 472

creating
with attachments, 210–216
with managed APIs, 205–208
simple version, 208–210
DisplayComposeForm() method,

211–216
EmailAccount class, 206–208
EmailMessage class, 206–208
filenames for attachments, 210–211
messages, 207–208
MessagingApplication class, 211–216
Name property, 207–208
OutlookSession class, 204–212,

218–224
POOM (Pocket Outlook Object Model),

202–203
receiving messages, 206–208
Recipient class, 206–208
Send() method
EmailAccount class, 208
SmsAccount class, 221–225

sending messages, 208
WindowsMobile.PocketOutlook namespace,

203–205
EmailAccount class, 206–208
EmailMessage class, 206–208
eMbedded C++, 17, 18
embedded graphics resources, 408–409
eMbedded Visual Basic, 17
emulator networking, 166–167
Encoding class, 381–382
encryption
asymmetric cryptography, 335
cryptography algorithms, 334–335
data, 334–341
databases, 341–346
example, 335–341
hardware, 334
hashing cryptography, 335
symmetric cryptography, 334
EndGetRequestStream() method,

167–175
EndGetResponseStream() method,

167–175
EndReceive() method, 198–199

EndSend() method, 198–199
EndUpdate() method, 433–434
enterprise, smartphone uses for, 5
entertainment, smartphone uses for, 6
enum data types, 24
environment variables, Windows, 258–260
error handling. See also exception handling;

exceptions.
MissingMethodException, 263
NotSupportedException, 263
P/Invoke, 262–263

events, C#, 30–31
Exception class, 288–289
exception classes versus user-defined

exception classes, 292
exception handling. See also error handling.
accessing protected memory, 290
AccessViolationException, 290
ApplicationException, 290–292
ArgumentException, 290
arithmetic errors, 290
ArithmeticException, 290
array, out of range, 290
base class, 288–289
best practices, 292
Exception class, 288–289
finally statement, 283–284
GetBaseException() method, 289
HResult property, 289
IndexOutofRangeException, 290
InnerException property, 289
input/output, 290
invalid method parameter, 290
IOException, 290
Message property, 289
.Net Compact Framework, 21–22
NotImplementedException, 290
NotSupportedException, 290
null object access, 290
NullReferenceException, 290
out of memory, 290
OutOfMemoryException, 290
purpose of, 282
request method does not exist, 290
request method not implemented, 290

473

exception handling

In
de

x

26_762935 bindex.qxp 11/20/06 8:01 AM Page 473

exception handling (continued)
security errors, 290
SecurityException, 290
StackTrace property, 289
SystemException class, 288–289
throw statement, 285–286
ToString() method, 289
try...catch block, 110
try...catch statement, 282–283
XML processing errors, 290
XmlException, 290

exception stack trace, 286–288
exceptions. See also error handling.
chaining, 286
versus condition checking, 292
converting to strings, 289
definition, 282
handled, 282
P/Invoke, 261
versus return code error, 292
root cause, 289
unhandled, 282, 289–290
wrapping, 286

Exceptions command, 55
exceptions counters, 416
exporting DLL functions, 261–262
expressions, entering in debugger, 293
eXtensible Markup Language (XML). See

XML (eXtensible Markup Language).
extern keyword, 262

F
fields, viewing, 293
File class, 107–108, 112
file manipulation classes, 107–108
FileInfo class
file-related operations, 107–108, 112
memo application, 120–128

filenames for attachments, 210–211
files. See also FileInfo class.
accessing, 108–110
attaching to e-mail, 210–211
browsing, 113–120

copying, 107–108
creating, 107–108
moving, 107–108
reading and writing, 108–112
FileStream class, 108–110, 112
FileStreamInfo class, 112
filesystems, security, 308
FillEllipse() method, 394–397
FillPolygon() method, 394–397
FillRectangles() method, 394–397
FillRegion() method, 394–397
fills, 394–397
finalization queue, 20
finalizer, 20
finally statement, 283–284
focus behavior, 74–78, 84–85
FontCollection class, 386
fonts, 399–400
foreach() method, 425
fork dinner problem, 300
FormatOutput() method, 238–240
formatting XML output, 238–240
forms. See also performance, forms.
code, 49–51
controls, 47
drawing grids on, 394–397
Microsoft.WindowsCE.Forms namespace,

442
multiple, 88–96
performance, 103
System.Windows.Forms namespace,

455–456
Windows Forms control, new features,

439–440
WindowsCE Forms control, new features, 439

Forms namespace, 455–456
FromImage() method, 387, 402–403

G
garbage collection
counters, 416
.Net Compact Framework, 20
performance, 417–418

474

exception handling (continued)

26_762935 bindex.qxp 11/20/06 8:01 AM Page 474

Gates, Bill, 4
Generic namespace, 443
GenericFontFamilies class, 386
generics
counters, 416
.Net Compact Framework, 21
new features, 437
performance, 423–424
GetBaseException() method, 289
GetFocus event handler, 74
GetLastError property, 263
GetPixel() method, 405–408
GetRequestStream() method, 167–175
GetResponse() method, 167–175
GetType() method, 26
globalization. See also localization.
cultural influences, 364–366
culture codes, 364–365
CultureInfo class, 365–366
CurrentCulture class, 365–366
CurrentUICulture class, 365–366
definition, 363
MUI (Multilingual Language Interface),

365–366
new features, 437
world-ready applications
localized resources, 366–369
localized satellite assembly, 370–377
sample, 370–377

Globalization namespace, 449
GMT (Greenwich Mean Time), 377
Google Web APIs, 228
Grant Manager Policy, 322
Grant User Authenticated Policy, 322
graphics
new features, 438
System.Drawing namespace, 448
System.Drawing.Drawing2D namespace,

449
System.Drawing.Imaging namespace, 449
System.Drawing.Text namespace, 449
text
System.Text namespace, 453
System.Text.RegularExpressions

namespace, 454

graphics, .Net Compact Framework
Alignment property, 398
blitting, 403
Brush objects, 387–388
clipping, 392–393
Color objects, 387–388
color transparency, 404
CreateGraphics() method, 387
double buffering, 403
DrawEllipse() method, 393–397
DrawGrid() method, 394–397
drawing
bitmaps, 402–408
images, 400–408
lines, 387–388
shapes, 393–397
text, 397–398
DrawLine() method, 393–397
DrawLines() method, 393–397
DrawPolygon() method, 393–397
DrawRectangle() method, 393–397
DrawString() methods, 397–398
embedded resources, 408–409
FillEllipse() method, 394–397
FillPolygon() method, 394–397
FillRectangles() method, 394–397
FillRegion() method, 394–397
fills, 394–397
FontCollection class, 386
fonts, 399–400
FromImage() method, 387, 402–403
GenericFontFamilies class, 386
GetPixel() method, 405–408
Graphics class, 386
Graphics objects, creating, 387
grids on forms, 394–397
InstalledFontCollection class, 386
IsInvisible() method, 389
LineAlignment property, 398
MeasureString() method, 398
PaintEventArgs control, 387
painting, 387–388
Pen objects, 387–388
PrivateFontCollection class, 386
Region class, 389–391

475

graphics, .Net Compact Framework

In
de

x

26_762935 bindex.qxp 11/20/06 8:01 AM Page 475

graphics, .Net Compact Framework
(continued)

regions, 389–391
releasing resources, 387
SetPixel() method, 405–408
text alignment, 398
text wrap, 398
types of classes, 386
vector graphics, 389–397
vector methods, 393–397
Graphics class, 386
Graphics objects, creating, 387
Greenwich Mean Time (GMT), 377
grids, drawing, 394–397
GUI-related counters, 417

H
handled exceptions, 282
Hang-up key, 9
hardware
controls
Back key, 86–87
Home key, 86–87
Microsoft design guidelines, 85
soft keys, 86, 101–102

encryption, 334
hash codes, 309
hashing cryptography, 335
Hashtable class, 34
Home key, 9, 86–87
HResult property, 289
HTTP version, getting, 168
HttpWebRequest class, 168–169
HttpWebResponse class, 168–169

I
ICollection interface, 34
IComparer interface, 34
IDictionary interface, 34
IEnumerable interface, 34
IEnumerator interface, 34

IgnoreSchema mode, 242
IIS (Internet Information Services), 136,

353–354
IList interface, 34
images, drawing, 400–408. See also graphics.
Imaging namespace, 449
immediate mode, 293
immediate window, 293
IndexOf() method, 33–34
IndexOutofRangeException, 290
inheritance, multiple, 31
InitializeComponent() method,

431–433
initializing values, 23
inline schemas, 234
InnerException property, 289
input mode, 96–101
InputMode enumeration, 97
InputModeEditor class, 97
input/output. See also I/O classes;

System.IO namespace.
exceptions, 290
file access, 108–110
System.IO namespace, 450
System.IO.Ports namespace, 450
text, 110–112
Insert() method, 27
InstalledFontCollection class, 386
installing
applications, 61
SQL Server 2005 Mobile
client environment, 137, 138
development environment, 137
server environment, 137
system requirements, 136–137

instances. See reference types.
Integrated Windows authentication,

353–354
interfaces. See also classes.
C#, 31
ICollection, 34
IComparer, 34
IDictionary, 34
IEnumerable, 34
IEnumerator, 34
IList, 34

476

graphics, .Net Compact Framework (continued)

26_762935 bindex.qxp 11/20/06 8:01 AM Page 476

internal modifier, 31
internal protected modifier, 31
Internet Information Services (IIS), 136,

353–354
interop counters, 416
interoperability, new features, 438
InteropServices namespace, 452–453
I/O. See input/output; System.IO

namespace.
I/O classes

byte-level, 108–110
higher-level, 110–112
.Net Framework, 14
IOException, 290
IOException class, 112
IO.Ports namespace, 450
IP endpoints, 176–177
IPAddress class, 176–177
IPEndPont class, 176
IPHostEntry class, 176–177
IPSec (IP Security), 351
IsBackground() method, 297
IsInvisible() method, 389

J
JIT compilation counters, 416
Join() method, 296
Just-My-Code debugging, 295

K
Kerberos, 347
keyboard events, new features, 438
keyboard input. See user input.

L
L2TP (Layer 2 Tunneling Protocol), 351
language compilation classes, 14
layout management, new features, 438

Length property, 33–34
lightweight computation, 7
LineAlignment property, 398
lines, drawing, 387–388, 393–397
list view, 87–88
ListView, 84–85
literal strings, 27
little-endian byte order, 177–178
Load() method, 235–240
loaded modules, listing, 293
loader counters, 416
loading XML files, 235–240
LoadXml() method, 240
local variables, 55
localization. See also globalization.
best practices, 382–383
calendars, 377–379
character encoding, 381–382
Convert() method, 381–382
cultural influences, 364–366
culture codes, 364–365
CultureInfo class, 365–366
currency, 379–381
CurrentCulture class, 365–366
CurrentUICulture class, 365–366
dates, 377–379
definition, 363–364
Encoding class, 381–382
GMT (Greenwich Mean Time), 377
MUI (Multilingual Language Interface),

365–366
numbers, 379–381
strings, 381–382
time, 377–379
time zones, 377–379
UTC (Coordinated Universal Time), 377
world-ready applications
localized resources, 366–369
localized satellite assembly, 370–377
sample, 370–377

locals window, 293
Locked setting, 314
locks, 298–300
loss, 308

477

loss

In
de

x

26_762935 bindex.qxp 11/20/06 8:01 AM Page 477

M
mail. See e-mail.
MainMenu control, 78–84
managed code

converting to unmanaged, 263–271
definition, 11
exporting functions from, 262
memory management, 256
portability, 256
reusability, 256
versus unmanaged, 255–257

managed DLLs, 257–260
ManagedThreadId() method, 296
MarshalAs attribute, 270–271
marshaling data

arrays, passing, 266–267
blittable fields, passing, 268–270
blittable types, 264–266
classes, passing, 268–270, 270–271
data fields, physical layout, 269–270
definition, 263
MarshalAs attribute, 270–271
non-blittable fields, passing, 270–271
out parameter, 265–266
passing by reference, 265–266
ref parameter, 265–266
reference types, 266–268
string keyword, 267–268
string variables, passing, 267–268
StringBuilder class, 267–268
structures, passing, 268–270, 270–271
UnmanagedType enumeration, 270–271
value types, 264–266

math operations, performance, 423
MeasureString() method, 398
member accessibility, C# classes, 31
members, C# classes, 28–29
memo application, 120–128
memory

out of memory exception, 290
usage counters, 416
MemoryStream class, 108–110, 112
MenuItem controls, 78–84

menus
creating, 78–84
MainMenu control, 78–84
MenuItem controls, 78–84
shortcut keys, 78–79
submenus, 78–79

Merge publication, 144–145
Message Authentication Retry Number

Policy, 323
message digests, 309
Message property, 289
message queuing, new features, 438
MessageInterceptor class, 221–224
messages, e-mail. See e-mail.
Messaging namespace, 450–451
MessagingApplication class, 211–216
method call stack, displaying, 293
Method property, 168
methods
Abort(), 296
Accept(), 198–199
AcceptSocket(), 178–187
AcceptTcpClient(), 178–187
Append(), 27
asynchronous, 198–199
BeginGetRequestStream(), 167–175
BeginGetResponse(), 167–175
BeginReceive(), 198–199
BeginSend(), 198–199
BeginUpdate(), 433–434
BinarySearch(), 33–34
call stack, displaying, 293
Connect(), 192–196, 198–199
Convert(), 381–382
Create()
File class, 107–108
files, creating, 107–108
web requests, creating, 169
WebRequest class, 169
CreateGraphics(), 387
CreateInstance(), 33–34
CurrentThread(), 296
DisplayComposeForm(), 211–216
DrawEllipse(), 393–397

478

mail

26_762935 bindex.qxp 11/20/06 8:01 AM Page 478

DrawGrid(), 394–397
DrawLine(), 393–397
DrawLines(), 393–397
DrawPolygon(), 393–397
DrawRectangle(), 393–397
EndGetRequestStream(), 167–175
EndGetResponseStream(), 167–175
EndReceive(), 198–199
EndSend(), 198–199
EndUpdate(), 433–434
FillEllipse(), 394–397
FillPolygon(), 394–397
FillRectangles(), 394–397
FillRegion(), 394–397
foreach(), 425
FormatOutput(), 238–240
FromImage(), 387, 402–403
GetBaseException(), 289
GetPixel(), 405–408
GetRequestStream(), 167–175
GetResponse(), 167–175
GetType(), 26
IndexOf(), 33–34
InitializeComponent(), 431–433
Insert(), 27
invalid parameter exception, 290
IsBackground(), 297
IsInvisible(), 389
Join(), 296
Load(), 235–240
LoadXml(), 240
ManagedThreadId(), 296
MeasureString(), 398
MoveToAttribute(), 236–237
MoveToContent(), 236–240
Name(), 296
Pending(), 179–187
Prelink(), 419–420
PrelinkAll(), 419–420
Priority(), 297
ProcessConnection(), 189–192
Read(), 178–187, 236–240
ReadXml(), 241–242
Receive(), 189–196, 198–199
ReceiveFrom(), 198–199

Remove(), 27
request method does not exist, 290
request method not implemented, 290
Restrict(), 219–220
ResumeLayout(), 431–433
SelectNode(), 240
SelectSingleNode(), 240
Send()
EmailAccount class, 208
sending e-mail, 208
SmsAccount class, 221–225
sockets, blocking mode, 198–199
TCP client sockets, 192–196
TCP server sockets, 189–192

SendTo(), 198–199
SetPixel(), 405–408
ShowResults(), 252
ShutDownServer(), 189–192
Skip(), 236–237
Sleep(), 296
Sort(), 33–34
Start(), 296
StartServer(), 189–192
static, C#, 23
SuspendLayout(), 431–433
ToLower(), 27
ToString(), 23, 27, 289
ToUpper(), 27
WorkerThreadProc(), 179–187

Microsoft SQL Server 2005 Mobile Edition.
See SQL Server 2005 Mobile.

Microsoft Windows. See Windows.
Microsoft.VisualBasic namespace, 441
Microsoft.VisualBasic.CompilerServices

namespace, 441–442
Microsoft.WindowsCE.Forms namespace,

442
MissingMethodException, 263
mobile devices

memory size, 15
software emulation, 17–18

modal dialog, 91
modeless dialog, 91
modules window, 293
Mono project, 12

479

Mono project

In
de

x

26_762935 bindex.qxp 11/20/06 8:01 AM Page 479

MoveToAttribute() method, 236–237
MoveToContent() method, 236–240
moving files and directories, 107–108
MSBuild, 40
MSIL (Microsoft Intermediate Language), 13
MSN Search, 228
MUI (Multilingual Language Interface),

365–366
multiple inheritance, C# classes, 31
multi-tap function, 96–101
multithreaded debugging
Abort() method, 296
background threads, 297
blocking a calling thread, 296
creating a thread, 297
critical sections, 298
current thread, returning, 296
current thread, sleeping, 296
CurrentThread() method, 296
deadlock, 300–304
IsBackground() method, 297
Join() method, 296
locks, 298–300
managed threads, 296–297
ManagedThreadId() method, 296
Name() method, 296
overview, 296
Priority() method, 297
race conditions, 298–300
Sleep() method, 296
Start() method, 296
starting a thread, 296–297
terminating a thread, 296
thread ID, returning, 296
thread names, getting/setting, 296
thread pool, 297
thread priority, 297

N
name mangling, 258
Name() method, 296
Name property, 207–208

namespaces. See also classes; .Net
Compact Framework, class library.

Microsoft.VisualBasic, 441
Microsoft.VisualBasic.CompilerServices,

441–442
Microsoft.WindowsCE.Forms, 442
SqlServerCe, 157–163
System, 442–443
System.IO
BinaryReader class, 110–112
BinaryWriter class, 110–112
byte-level I/O classes, 108–110
classes, summary of, 112–113
classes, unsupported, 113
description, 450
Directory class, 107–108, 112
DirectoryInfo class, 107–108, 112
file access, 108–110
File class, 107–108, 112
file manipulation classes, 107–108
FileInfo class, 107–108, 112
FileStream class, 108–110, 112
FileStreamInfo class, 112
higher-level I/O classes, 110–112
IOException class, 112
MemoryStream class, 108–110, 112
Path class, 112
static classes, 107
Stream class, 108–110, 112
StreamReader class, 111–112
StreamWriter class, 111–112
StringReader class, 112
StringWriter class, 113
structures, unsupported, 113
TextReader class, 110–112, 113
TextWriter class, 110–112, 113
WindowsMobile.PocketOutlook,

203–205
native code. See unmanaged code.
.Net Compact Framework. See also

graphics, .Net Compact Framework.
ASP.NET Mobile Controls, 16–17
class libraries, 15–16
CLR (Common Language Runtime), 15

480

MoveToAttribute() method

26_762935 bindex.qxp 11/20/06 8:01 AM Page 480

COM interop, 16
counters, 412–417
limitations, 308
P/Invoke, 16–17
security limitations, 308
support for XML, 229
unmanaged code, accessing, 16–17

.Net Compact Framework, class library
Microsoft.VisualBasic, 441
Microsoft.VisualBasic.CompilerServices,

441–442
Microsoft.WindowsCE.Forms, 442
System, 442–443
System.Collections, 443
System.Collections.Generic, 443
System.Collections.ObjectModel, 443
System.Collections.Specialized, 443–444
System.ComponentModel, 445
System.Configuration.Assemblies, 445
System.Data, 445–446
System.Data.Common, 446
System.Data.SqlClient, 446–447
System.Data.SqlServerCe, 447
System.Data.SqlTypes, 447–448
System.Diagnostics, 448
System.Drawing, 448
System.Drawing.Drawing2D, 449
System.Drawing.Imaging, 449
System.Drawing.Text, 449
System.Globalization, 449
System.IO, 450
System.IO.Ports, 450
System.Messaging, 450–451
System.Net, 451
System.Net.Sockets, 451–452
System.Reflection, 452
System.Resources, 452
System.Runtime.CompilerServices, 452
System.Runtime.InteropServices, 452–453
System.Security, 453
System.Security.Cryptography.X509Certifi-

cates, 453
System.Security.Policy, 453
System.Text, 453
System.Text.RegularExpressions, 454

System.Threading, 454–455
System.Web.Services, 455
System.Web.Services.Description, 455
System.Windows.Forms, 455–456

.Net Compact Framework, new features
application domains, 437
assemblies, 437
CAB file installation, 437
cryptography, 437
Direct3D support, 437
DirectX support, 437
forms, 439–440
generics, 437
globalization, 437
graphics, 438
interoperability, 438
keyboard events, 438
layout management, 438
message queuing, 438
networking, 438
partial classes, 438
Registry keys, 438
Remote Performance Monitor, 439
serial ports, 439
SQL Server Mobile, 439
threads support, 439
Windows Forms control, 439–440
WindowsCE Forms control, 439
WindowsCE Forms control, new features,

439
XML support, 439–440

.Net Compact Framework, type system. See
also C#.

attributes, 21
class objects, 20
data types, 19
exception handling, 21–22
finalization queue, 20
finalizer, 20
garbage collection, 20
generics, 21
numeric data types, 19
parametric polymorphism, 21
reference type objects, 19
reflection, 21

481

.Net Compact Framework, type system

In
de

x

26_762935 bindex.qxp 11/20/06 8:01 AM Page 481

.Net Compact Framework, type system
(continued)

runtime inspection, 21
System.Object class, 18
types of objects, 19–20
value type objects, 19

.Net Framework
application domain, 13
base classes, 14
class libraries, 13–14
CLI (common language infrastructure), 12
CLR (Common Language Runtime), 12–13
CLR host, 13
code-generation control classes, 14
compilers, 13
components, 12
CTS (common type system), 13
data access classes, 14
DotGNU project, 12
enabling for Linux, 12
introduction, 11–12
I/O classes, 14
language compilation classes, 14
Mono project, 12
MSIL (Microsoft Intermediate Language), 13
.Net languages, 13
networking classes, 14
remoting classes, 14
Rotor, 12
runtime, 13
security classes, 14
threading classes, 14
type, 13
UI classes, 14
virtual machine, 12–13
Visual Studio 2005, 14
web application classes, 14
web services classes, 14

.Net languages, 13
Net namespace, 451
.Net Remote tools, 40
Net.Sockets namespace, 451–452
network authentication, 346–347

networking
authentication information, getting, 168
BeginGetRequestStream() method,

167–175
BeginGetResponse() method,

167–175
classes, 14
ContentLength property, 168
ContentType property, 168
counters, 416
Credentials property, 168
emulator, 166–167
EndGetRequestStream() method,

167–175
EndGetResponseStream() method,

167–175
GetRequestStream() method,

167–175
GetResponse() method, 167–175
HTTP version, getting, 168
HttpWebRequest class, 168–169
HttpWebResponse class, 168–169
Method property, 168
new features, 438
overview, 165–166
ProtocolVersion property, 168
Proxy property, 168
smartphone access, checking, 167
sockets
Accept() method, 198–199
asynchronous methods, 198–199
BeginReceive() method, 198–199
BeginSend() method, 198–199
blocking mode, 198–199
Connect() method, 192–196, 198–199
EndReceive() method, 198–199
EndSend() method, 198–199
nonblocking mode, 198–199
overview, 187–188
ProcessConnection() method,

189–192
Receive() method, 189–196, 198–199
ReceiveFrom() method, 198–199

482

.Net Compact Framework, type system (continued)

26_762935 bindex.qxp 11/20/06 8:01 AM Page 482

Send() method, 189–196, 198–199
SendTo() method, 198–199
ShutDownServer() method, 189–192
Socket class, 187–188
StartServer() method, 189–192
TCP client, 192–196
TCP server, 188–192
UDP, 196–198

System.Net namespace, 451
System.Net.Sockets namespace, 451–452
TCP servers and clients
AcceptSocket() method, 178–187
AcceptTcpClient() method,

178–187
big-endian byte order, 177–178
byte order conversion, 177–178
IP endpoints, 176–177
IPAddress class, 176–177
IPEndPont class, 176
IPHostEntry class, 176–177
little-endian byte order, 177–178
Pending() method, 179–187
Read() method, 178–187
TCP client, 180–182
TCP server, 182–187
TcpClient class, 178–187
TcpListener class, 178–187
WorkerThreadProc() method,

179–187
Timeout property, 168
timeout value, 168
web proxy, 168
web requests, creating
asynchronous access, 170–171
Create() method, 169
example, 171–175
overview, 169
synchronous access, 169–170
WebRequest class, 167–175
WebResponse class, 167–175
new keyword, 30–31
next statement, 295
non-blittable fields, passing, 270–271
nonblocking mode, 198–199
normal applications, 310–311

NotImplementedException, 290
NotSupportedException, 263, 290
NotSupportedException error handler,

263
NTLM (NT LAN Manager), 346–347
null object exception, 290
NullReferenceException, 290
numbers, localization, 379–381
numeric data types, 19
Numeric input mode, 97

O
Object class, 18
object reference type, 26–27
object store, 106
ObjectModel namespace, 443
objects. See also reference types.
displaying, 293
types of, 19–20

one-tiered security, 312
One-Tier-Prompt setting, 313
online help, 18
operating systems
Palm OS (Palm Inc.), 6
for Pocket PCs, 7–8
Symbian OS (Symbian), 6
Windows Mobile 5.0, 7–8

operators, C#, 25–26
out parameter, 265–266
Outlook API. See POOM (Pocket Outlook

Object Model).
OutlookSession class, 204–212,

218–224
OutOfMemoryException, 290
OverflowException exception, 23
over-the-air WAP push bootstrapping, 462

P
packaging applications, 56–59
PaintEventArgs control, 387

483

PaintEventArgs control

In
de

x

26_762935 bindex.qxp 11/20/06 8:01 AM Page 483

painting, 387–388
Palm OS (Palm Inc.), 6
Panel control, 84–85
parameter passing, C# classes, 30
parametric polymorphism, 21
partial classes, new features, 438
passing
arrays, 266–267
blittable fields, 268–270
classes, 268–270, 270–271
multiple values, C# classes, 30
non-blittable fields, 270–271
parameters, C# classes, 30
by reference, 265–266
string variables, 267–268
structures, 268–270, 270–271

passwords, 330, 341–346
Path class, 112
Pen objects, 387–388
Pending() method, 179–187
performance
counters, 412–417
exceptions counters, 416
forms loading, 103
garbage collection counters, 416
general principles, 411–412
generics counters, 416
GUI-related counters, 417
interop counters, 416
JIT compilation counters, 416
loader counters, 416
memory usage counters, 416
.Net Compact Framework counters,

412–417
networking counters, 416
P/Invoke, 278
threads counters, 416

performance, CLR
BCL collections, 424–425
blittable data types, 419
call overhead, 418–423
class libraries, 424–428
COM calls, 418–420
foreach() method, 425

garbage collection, 417–418
generics, 423–424
iterating through collections, 425
math operations, 423
P/Invoke calls, 418–420
polymorphism, 423–424
Prelink() method, 419–420
PrelinkAll() method, 419–420
reflection operations, 423
Regex class, 427–428
regular expressions, 427–428
String class, 426–427
string handling, 426–427
StringBuilder class, 426–427
virtual calls, 420–423

performance, forms
BackgroundWorker class, 430–431
BeginUpdate() method, 433–434
EndUpdate() method, 433–434
InitializeComponent() method,

431–433
layout, 431–433
loading, 430–431
prepopulating data, 430–431
repainting controls, 433–434
ResumeLayout() method, 431–433
SuspendLayout() method, 431–433

performance, XML data access
local data, 429
reading XML data, 428
remote data, 429
writing XML data, 428
XML schema, 428
XML serialization, 429
XmlReader class, 428
XMLSerializer class, 429
XmlWriter class, 428

persistent storage filesystems, 106–107
philosopher’s dinner problem, 300
Phone Lock feature, 330
physical access protection, 330
pictures. See graphics.
PIM data, 216–220. See also POOM (Pocket

Outlook Object Model).

484

painting

26_762935 bindex.qxp 11/20/06 8:01 AM Page 484

PimItemCollection class, 219–220
PINs, 330
P/Invoke
calls, performance, 418–420
Dumpbin.exe utility, 258–260
environment variables, Windows, 258–260
managed DLLs, 257–260
name mangling, 258

P/Invoke, managed code
converting to unmanaged, 263–271. See

also marshaling.
exporting functions from, 262
memory management, 256
portability, 256
reusability, 256
versus unmanaged, 255–257

P/Invoke, .Net Compact Framework
calling conventions, 260
character coding, 261
error handling, 262–263
example application, 271–277
exceptions, 261
exporting DLL functions, 261–262
extern keyword, 262
GetLastError property, 263
marshaling data
arrays, passing, 266–267
blittable fields, passing, 268–270
blittable types, 264–266
classes, passing, 268–270, 270–271
data fields, physical layout, 269–270
definition, 263
MarshalAs attribute, 270–271
non-blittable fields, passing, 270–271
out parameter, 265–266
passing by reference, 265–266
ref parameter, 265–266
reference types, 266–268
string keyword, 267–268
string variables, passing, 267–268
StringBuilder class, 267–268
structures, passing, 268–270, 270–271
UnmanagedType enumeration, 270–271
value types, 264–266

MissingMethodException, 263
NotSupportedException, 263
overview, 16–17
performance optimization, 278
SetLastError property, 263
static keyword, 262
unidirection, 261
unmanaged code functions, 261–262
Windows messages, 261

PKI (public key infrastructure), 309
Platform Invoke. See P/Invoke.
platforms. See operating systems.
Pocket PCs, operating system, 7–8
Policy namespace, 453
polygons, drawing, 393–397
polymorphism
C#, 32–33
performance, 423–424

POOM (Pocket Outlook Object Model),
202–203

POP (Power-On-Password), 330
Ports namespace, 450
power management, 7
PPTP (Point-to-Point Tunneling Protocol),

351
Prelink() method, 419–420
PrelinkAll() method, 419–420
Priority() method, 297
private keys, 309
private modifier, 31
PrivateFontCollection class, 386
privileged applications, 310
Privileged Applications Policy, 323
process window, 293
ProcessConnection() method,

189–192
processes, listing, 293
program memory, 106
programs, writing. See application

development.
project files, 51
projects, creating, 43–49
properties, viewing, 293. See also specific

properties.

485

properties, viewing

In
de

x

26_762935 bindex.qxp 11/20/06 8:01 AM Page 485

Properties window, 46
protected memory exception, 290
protected modifier, 31
ProtocolVersion property, 168
Proxy property, 168
public key infrastructure (PKI), 309
public keys, 309
public modifier, 31
public-key encryption, 309

Q
Queue class, 34
QVGA issues, 102

R
race conditions, 298–300
RAM-based filesystems, 106
RAPI Policy, 323
RapiConfig tool, 460–461
Read() method, 178–187, 236–240
reading. See also forms; user input; user

interface.
files, 108–112
XML data. performance, 428
ReadXml() method, 241–242
Receive() method, 189–196, 198–199
ReceiveFrom() method, 198–199
Recipient class, 206–208
Record button, 9
rectangles, drawing, 393–397
ref keyword, 30
ref parameter, 265–266
reference type objects, 19
reference types, 24, 266–268
reflection

.Net Compact Framework, 21
performance, 423
System.Reflection namespace, 452

Reflection namespace, 452

Regex class, 427–428
Region class, 389–391
regions, 389–391
Registry keys, new features, 438
regular expressions, performance, 427–428
RegularExpressions namespace, 454
relational data. See also databases; SQL

Server 2005 Mobile.
ADO.NET, 132–134
connected mode, 132–133
converting from XML, 240–242
data providers, 132
disconnected mode, 132, 133–134

remote API, bootstrapping, 460–461
Remote Performance Monitor, new features,

439
remoting classes, 14
Remove() method, 27
request method does not exist, 290
request method not implemented, 290
resolution issues, 102
Resources namespace, 452
Restrict() method, 219–220
ResumeLayout() method, 431–433
return code error versus exceptions, 292
role-based access control, 308
roles, security, 311–312
ROM configuration XML file, bootstrapping,

462–464
root elements, 231, 233
Rotor, 12
runtime, 13
runtime inspection, 21
Runtime.CompilerServices namespace, 452
Runtime.InteropServices namespace,

452–453

S
Save As command, 102
schedules. See PIM data.
schema. See XML schema.

486

Properties window

26_762935 bindex.qxp 11/20/06 8:01 AM Page 486

scroll, automatic, 69–78
searching
arrays, 33–34
binary searches, 33–34
BinarySearch() method, 33–34
MSN Search, 228
strings, 27

Secure Sockets Layer (SSL), 347–350
secured communications, 308
security
antivirus measures, 331–332
application development, 7
application signing, 309
biometrics, 330
bootstrapping, 464
Cabir.A virus, 307–308
CAS (Code Access Security), 308
certificate stores, 310
certificates, 309
classes, 14
device perimeter, 330–332
digital signatures, 309
errors, 290
hash codes, 309
loss, 308
message digests, 309
mobile threats, 307–308
models, 59–60, 312–314
.Net Compact Framework limitations, 308
normal applications, 310–311
passwords, 330
Phone Lock feature, 330
physical access, 330
PINs, 330
PKI (public key infrastructure), 309
POP (Power-On-Password), 330
private keys, 309
privileged applications, 310
public keys, 309
public-key encryption, 309
role-based access control, 308
roles, 311–312
secured communications, 308
security filesystems, 308

SIM (subscriber identity module), 330
Symbian operating system, 307–308
System.Security namespace, 453
System.Security.Cryptography.X509Certifi-

cates namespace, 453
System.Security.Policy namespace, 453
theft, 308
trusted applications, 310–311
unprivileged applications, 310
unsigned applications, 309
untrusted applications, 310–311
user authentication, 308
vulnerability factors, 308

security, communications
IPSec (IP Security), 351
Kerberos, 347
L2TP (Layer 2 Tunneling Protocol), 351
network authentication, 346–347
NTLM (NT LAN Manager), 346–347
PPTP (Point-to-Point Tunneling Protocol), 351
SSL (Secure Sockets Layer), 347–350
tunneling protocols, 351–352
VPNs (Virtual Private Networks), 350–352
web communication, 347–350
web services
anonymous access, 353–354
authentication, Windows domain servers,

353–354
client side, 360–362
digest authentication, 353–354
IIS (Internet Information Services), 353–354
Integrated Windows authentication,

353–354
server side, 354–359
user authentication, 353–354

WEP (Wired Equivalent Privacy), 353
WiFi, 353

security, data
encryption
asymmetric cryptography, 335
cryptography algorithms, 334–335
data, 334–341
databases, 341–346
example, 335–341

487

security, data

In
de

x

26_762935 bindex.qxp 11/20/06 8:01 AM Page 487

security, data (continued)
hardware, 334
hashing cryptography, 335
symmetric cryptography, 334

password protection, 341–346
security, policies
Auto Run, 322
CABS, 324
Grant Manager, 322
Grant User Authenticated, 322
Message Authentication Retry Number, 323
Privileged Applications, 323
RAPI, 323
sample code, 325–329
settings, 311–312
SI (Service Indication), 323
signing applications, 59–60
SL (Service Loading), 323
Trusted WAP Proxy, 324
Unsigned Applications, 324
Unsigned Prompt, 324

security, Windows Mobile 5.0
certificates
loading, 321
MakeCert.exe tool, 319
managing, 319–321
obtaining, 314–315
Pvk2pfx.exe tool, 319
removing, 321
signing, 315–319
signtool utility, 319
viewing, 321
XML provisioning file, 321

common Smartphone configurations,
313–314

Locked setting, 314
one-tiered security, 312
One-Tier-Prompt setting, 313
security model, 312–314
Security-Off setting, 313
Third-Party-Signed setting, 314
two-tiered security, 313
Two-Tier-Prompt setting, 314

Security namespace, 453

Security.Cryptography.X509Certificates
namespace, 453

SecurityException, 290
Security-Off setting, 313
Security.Policy namespace, 453
SelectNode() method, 240
SelectSingleNode() method, 240
Send() method
EmailAccount class, 208
sending e-mail, 208
SmsAccount class, 221–225
sockets, blocking mode, 198–199
TCP client sockets, 192–196
TCP server sockets, 189–192

SendTo() method, 198–199
serial ports, new features, 439
server environment, 136
SetLastError property, 263
SetPixel() method, 405–408
shallow copy, C#, 24
shapes, drawing, 393–397
shortcut keys, menu items, 78–79
ShowResults() method, 252
ShutDownServer() method, 189–192
SI (Service Indication) messages, 61
SI (Service Indication) Policy, 323
signing applications, 59–61
SIM (subscriber identity module), 330
Skip() method, 236–237
SL (Service Loading) messages, 61
SL (Service Loading) Policy, 323
Sleep() method, 296
Smartphone
connecting to PCs. See ActiveSync.
definition, 3–4
phone controls, 8–10
phone illustration, 9
user interface, 8–10

smartphones
definition, 4
network access, checking, 167
software platforms, 5

smartphones, mobile uses for
commerce, 5
data service, 6

488

security, data (continued)

26_762935 bindex.qxp 11/20/06 8:01 AM Page 488

enterprise, 5
entertainment, 6

SMS, 220–225
SmsMessage class, 221–225
Snapshot publication, 144–145
SOAP standard, 228
Socket class, 187–188
sockets
Accept() method, 198–199
asynchronous methods, 198–199
BeginReceive() method, 198–199
BeginSend() method, 198–199
blocking mode, 198–199
Connect() method, 192–196, 198–199
EndReceive() method, 198–199
EndSend() method, 198–199
nonblocking mode, 198–199
overview, 187–188
ProcessConnection() method,

189–192
Receive() method, 189–196, 198–199
ReceiveFrom() method, 198–199
Send() method, 189–196, 198–199
SendTo() method, 198–199
ShutDownServer() method, 189–192
Socket class, 187–188
SSL (Secure Sockets Layer), 347–350
StartServer() method, 189–192
TCP client, 192–196
TCP server, 188–192
UDP, 196–198

soft keys, 9, 86, 101–102
software development. See application

development.
solutions, 45
Sort() method, 33–34
SortedList class, 34
spaghetti dinner problem, 300
Specialized namespace, 443–444
SQL Server 2005 Mobile
applications
databases, creating, 157–158
DataGrid control, example, 148–151
SqlServerCe namespace, 157–163

tables, adding rows, 158–160
web synchronization, 161–163

architecture, 135–136
client environment, 136
definition, 134
development environment, 135, 136
IIS (Internet Information Services), 136
installing. See also relational data.
client environment, 137, 138
development environment, 137
server environment, 137
system requirements, 136–137

new features, 134–135, 439
server environment, 136
setting up
databases, creating, 138–142, 147–148
publications, creating, 142–145
subscriptions, creating, 148–151
tables, creating, 138–142
tools, 138
web synchronization, configuring, 145–147

System.Data.SqlClient namespace,
446–447

System.Data.SqlServerCe namespace, 447
System.Data.SqlTypes namespace,

447–448
SqlClient namespace, 446–447
SqlServerCe namespace, 157–163, 447
SqlTypes namespace, 447–448
SSL (Secure Sockets Layer), 347–350
Stack class, 34
stacking controls, 47
StackTrace property, 289
Start() method, 296
StartServer() method, 189–192
static classes, 107
static keyword, 262
static methods, C#, 23
storage cards, deploying applications, 61
storage efficiency, 6
Stream class, 108–110, 112
StreamReader class, 111–112
StreamWriter class, 111–112
String class, 426–427

489

String class

In
de

x

26_762935 bindex.qxp 11/20/06 8:01 AM Page 489

string handling, performance, 426–427
string keyword, 267–268
string operations. See C#, strings.
string reference type, 26–27
string variables, 26–27, 267–268
StringBuilder class, 27, 267–268,

426–427
StringReader class, 112
strings
drawing, 397–398
localization, 381–382
StringWriter class, 113
struct data types, 24
structures
passing, 268–270, 270–271
unsupported, 113

submenus, 78–79
subscriber identity module (SIM), 330
SuspendLayout() method, 431–433
Symbian OS (Symbian), 6, 307–308
symmetric cryptography, 334
synchronous web access, 169–170
System namespace, 442–443
System.Collections namespace, 34, 443
System.Collections.Generic namespace,

443
System.Collections.ObjectModel

namespace, 443
System.Collections.Specialized namespace,

443–444
System.ComponentModel namespace, 445
System.Configuration.Assemblies

namespace, 445
System.Convert class, 23
System.Data namespace, 445–446
System.Data.Common namespace, 446
System.Data.SqlClient namespace,

446–447
System.Data.SqlServerCe namespace, 447
System.Data.SqlTypes namespace, 447–448
System.Diagnostics namespace, 448
System.Drawing namespace, 448
System.Drawing.Drawing2D namespace,

449

System.Drawing.Imaging namespace, 449
System.Drawing.Text namespace, 449
SystemException class, 288–289
System.Globalization namespace, 449
System.IO namespace
BinaryReader class, 110–112
BinaryWriter class, 110–112
byte-level I/O classes, 108–110
classes, summary of, 112–113
classes, unsupported, 113
description, 450
Directory class, 107–108, 112
DirectoryInfo class, 107–108, 112
file access, 108–110
File class, 107–108, 112
file manipulation classes, 107–108
FileInfo class, 107–108, 112
FileStream class, 108–110, 112
FileStreamInfo class, 112
higher-level I/O classes, 110–112
IOException class, 112
MemoryStream class, 108–110, 112
Path class, 112
static classes, 107
Stream class, 108–110, 112
StreamReader class, 111–112
StreamWriter class, 111–112
StringReader class, 112
StringWriter class, 113
structures, unsupported, 113
TextReader class, 110–112, 113
TextWriter class, 110–112, 113

System.IO.Ports namespace, 450
System.Messaging namespace, 450–451
System.Net namespace, 451
System.Net.Sockets namespace, 451–452
System.Object class, 18
System.Reflection namespace, 452
System.Resources namespace, 452
System.Runtime.CompilerServices

namespace, 452
System.Runtime.InteropServices

namespace, 452–453
System.Security namespace, 453

490

string handling, performance

26_762935 bindex.qxp 11/20/06 8:01 AM Page 490

System.Security.Cryptography.X509Certifi-
cates namespace, 453

System.Security.Policy namespace, 453
System.Text namespace, 453
System.Text.RegularExpressions

namespace, 454
System.Threading namespace, 454–455
System.Web.Services namespace, 455
System.Web.Services.Description

namespace, 455
System.Windows.Forms namespace,

455–456
System.XML namespace, importing,

234–235

T
T9 input mode, 97–97
tab order, controls, 47, 66–69
TabIndex property, 66–69
tables
adding rows, 158–160
creating, 138–142
TabStop property, 66–69
tasks. See PIM data.
TCP servers and clients
AcceptSocket() method, 178–187
AcceptTcpClient() method, 178–187
big-endian byte order, 177–178
byte order conversion, 177–178
IP endpoints, 176–177
IPAddress class, 176–177
IPEndPont class, 176
IPHostEntry class, 176–177
little-endian byte order, 177–178
Pending() method, 179–187
Read() method, 178–187
TCP client, 180–182
TCP server, 182–187
TcpClient class, 178–187
TcpListener class, 178–187
WorkerThreadProc() method,

179–187

TcpClient class, 178–187
TcpListener class, 178–187
templates, 44
testing applications, 52–56
text

alignment, 398
drawing, 397–398
wrap, 398

text messaging. See SMS.
Text namespace, 449, 453
TextReader class, 110–112, 113
Text.RegularExpressions namespace, 454
TextWriter class, 110–112, 113
theft, 308
Third-Party-Signed setting, 314
threading classes, 14
Threading namespace, 454–455
threads
counters, 416
debugging. See multithreaded debugging.
new features, 439
System.Threading namespace, 454–455
throw statement, 285–286
time, localization, 377–379
time zones, localization, 377–379
Timeout property, 168
timeout value, 168
ToLower() method, 27
tools. See development tools.
ToString() method, 23, 27, 289
ToUpper() method, 27
Transactional publication, 144–145
TreeView control, 84–85
trusted applications, 310–311
Trusted WAP Proxy Policy, 324
try...catch statement, 282–283
tunneling protocols, 351–352
two-tiered security, 313
Two-Tier-Prompt setting, 314
typeof operator, 26
type-safe callback functions, 30–31

491

type-safe callback functions

In
de

x

26_762935 bindex.qxp 11/20/06 8:01 AM Page 491

U
UDP, 196–198
UI. See user interface.
UI classes, 14
unchecked operator, 26
Undo command, 102
unhandled exceptions, 282, 289–290
unified directory view, 107
unmanaged code

accessing, 16–17
converting to managed, 263–271. See also

marshaling.
definition, 11
UnmanagedType enumeration, 270–271
unprivileged applications, 310
unsigned applications, 309
Unsigned Applications Policy, 324
Unsigned Prompt Policy, 324
untrusted applications, 310–311
usability. See also user interface.
phone controls, 8–10
user-friendly GUI, 6

user authentication, 308
user input. See also controls; forms; user

interface.
AlphaABC mode, 97
AlphaCurrent mode, 97
AlphaT9 mode, 97
ambiguous word input, 96–97
default behavior, 97
Default mode, 97
input mode, 96–101
multi-tap function, 96–101
Numeric mode, 97
T9 mode, 96–101

user interface
See also controls
See also forms
See also usability
See also user input
application flow, 87–88
auto-save mode, 102
card view, 87–88
list view, 87–88
modal dialog, 91

modeless dialog, 91
multiple forms, 88–96
performance, 103
QVGA issues, 102
resolution issues, 102

UTC (Coordinated Universal Time), 377

V
validating XML, 233–234
value type objects, 19
value types, C#, 23–24
variables, displaying, 293
vector graphics, 389–397
vector methods, 393–397
virtual calls, performance, 420–423
virtual keyword, 32–33
Visual Basic, namespaces, 441–442
Visual Studio 2005. See also debugging,

with Visual Studio 2005.
application development, 40–41
development tools, 17–18
Edit and Continue feature, 55
overview, 14

VPNs (Virtual Private Networks), 350–352

W
watch windows, 293
watched variables, 55
web
communication security, 347–350
deploying applications from, 61
synchronization, 145–147, 161–163

web application classes, 14
web proxy, 168
web references, adding to web services,

248–249
web requests, creating
asynchronous access, 170–171
Create() method, 169
example, 171–175
overview, 169
synchronous access, 169–170

492

UDP

26_762935 bindex.qxp 11/20/06 8:01 AM Page 492

web services. See also security, web services;
XML (eXtensible Markup Language).

adding a web reference, 248–249
advantages of, 228
Amazon Web Services, 228
anonymous access, 353–354
authentication, Windows domain servers,

353–354
classes, 14
client side, 360–362
consuming, 249–252
definition, 228
digest authentication, 353–354
eBay Developers Program, 228
Google Web APIs, 228
IIS (Internet Information Services), 353–354
Integrated Windows authentication,

353–354
list of, 228–229
MSN Search, 228
server side, 354–359
ShowResults() method, 252
SOAP standard, 228
System.Web.Services namespace, 455
System.Web.Services.Description

namespace, 455
user authentication, 353–354
WSDL (Web Services Description Language),

228
Yahoo! Developer Network, 229
WebRequest class, 167–175
WebResponse class, 167–175
Web.Services namespace, 455
Web.Services.Description namespace, 455
WEP (Wired Equivalent Privacy), 353
Whidbey. See Visual Studio 2005.
WiFi, 353
windows, debugging, 293–294
Windows Forms control, new features,

439–440
Windows Mobile 5.0

See also .Net Compact Framework
See also .Net Framework
See also security, Windows Mobile 5.0

overview, 7–8
Smartphone SDK, 41

WindowsCE Forms control, new features,
439

Windows.Forms namespace, 455–456
WindowsMobile.PocketOutlook namespace,

203–205
WorkerThreadProc() method, 179–187
world-ready applications. See globalization;

localization.
wrapping exceptions, 286
WriteSchema mode, 242
writing

files, 108–112
programs. See application development.
XML data, performance, 428

WSDL (Web Services Description
Language), 228

X
XML (eXtensible Markup Language). See
also performance, XML data access; web
services.

attribute values, reading, 236–237
converting to relational data, 240–242
current node, moving to root node, 236–240
data types, 234
depth-first node reading, 236
DiffGram mode, 242
document elements, 231
dumping data to, 241–242
examples, 231–233, 242–248
format standards, 227, 229
FormatOutput() method, 238–240
formatting output, 238–240
IgnoreSchema mode, 242
inline schemas, 234
Load() method, 235–240
loading files, 235–240
LoadXml() method, 240
MoveToAttribute() method, 236–237
MoveToContent() method, 236–240

493

XML

In
de

x

26_762935 bindex.qxp 11/20/06 8:01 AM Page 493

XML (continued)
.Net Compact Framework support, 229
new features, 439–440
non-data elements, skipping, 236–237
processing error exceptions, 290
querying strings, 240
Read() method, 236–240
ReadXml() method, 241–242
related classes
DataSet, 240–242
summary of, 235
System.XML namespace, importing,

234–235
XmlDocument, 235–240
XmlNodeReader, 235, 240–242
XmlNodeWriter, 235
XmlReader, 235
XmlTextReader, 235–240
XmlTextWriter, 235
XmlWriter, 235

root elements, 231, 233
schema, 233–234
SelectNode() method, 240
SelectSingleNode() method, 240
serialization, performance, 429
Skip() method, 236–237
strings, loading, 240
subnodes, skipping, 236–237
syntax, 229–231
System.Xml namespace, 457

System.Xml.Schema namespace, 457
System.Xml.Serialization namespace,

457–458
System.Xml.Xpath namespace, 457–458
validating, 233–234
WriteSchema mode, 242

XML namespace, importing, 234–235
XML schema
IgnoreSchema mode, 242
inline schemas, 234
overview, 233–234
performance, 428
System.Xml.Schema namespace, 457
WriteSchema mode, 242
XmlDocument class, 235–240
XmlException, 290
XmlNodeReader class, 235, 240–242
XmlNodeWriter class, 235
XmlReader class, 235, 428
XMLSerializer class, 429
XmlTextReader class, 235–240
XmlTextWriter class, 235
XmlWriter class, 235, 428

Y
Yahoo! Developer Network, 229

494

XML (continued)

26_762935 bindex.qxp 11/20/06 8:01 AM Page 494

Get more Wrox

Programmer to ProgrammerTM

at Wrox.com!
Special Deals
Take advantage of special offers
every month

Free Chapter Excerpts
Be the first to preview chapters from
the latest Wrox publications

Unlimited Access. . .
. . . to over 70 of our books in the
Wrox Reference Library. (see more
details on-line)

Forums, Forums, Forums
Take an active role in online
discussions with fellow programmers

Meet Wrox Authors!
Read running commentaries from authors on their programming experiences
and whatever else they want to talk about

Join the community!

Sign-up for our free monthly newsletter at

newsletter.wrox.com

BROWSE BOOKS P2P FORUM FREE NEWSLETTER ABOUT WROX

Browse Books

.NET
SQL Server
Java

XML
Visual Basic
C#/C++

27_762935 bob.qxp 11/29/06 3:33 PM Page 503

27_762935 bob.qxp 11/29/06 3:33 PM Page 504

	Professional Microsoft Smartphone Programming
	About the Authors
	Credits
	Acknowledgments
	Contents
	Foreword
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Part I: Smartphone and .NET
	Chapter 1: Introduction to Microsoft Smartphone
	What Is a Smartphone?
	Smartphone Applications and Services
	Challenges of Smartphone Application Development
	Introducing Microsoft Windows Mobile
	Microsoft Smartphone from a User’s Perspective
	Summary

	Chapter 2: .NET Compact Framework Fundamentals
	Introducing the Microsoft .NET Framework
	Introducing the .NET Compact Framework
	Smartphone Development Tools
	.NET Compact Framework Type System
	A Quick Review of C#
	Summary

	Part II: Smartphone Application Development
	Chapter 3: Developing Your First Smartphone Application
	Required Tools
	Building Your First Smartphone Application
	Testing and Debugging Applications
	Packaging and Deploying Applications
	Summary

	Chapter 4: User Interface and Input
	UI Design with Forms and Controls
	Smartphone UI Design
	Keyboard Input and Input Mode
	Additional UI Considerations
	Summary

	Chapter 5: Data Storage and File I/O
	Overview of Smartphone Data Storage
	The System. IO Namespace
	Creating a File Directory Browser
	Implementing a Memo Application
	Summary

	Chapter 6: Data Access with SQL Server Mobile
	ADO.NET Overview
	Microsoft SQL Server 2005 Mobile Edition
	Setting Up the SQL Server Mobile Server Environment
	Writing SQL Server Mobile Applications
	Summary

	Chapter 7: Networking
	An Overview of Smartphone Networking
	Emulator Networking
	Web Access
	TCP Servers and Clients
	Network Sockets
	Summary

	Chapter 8: E-mail, SMS, and PIM Data
	Pocket Outlook Object Model (POOM)
	The WindowsMobile. PocketOutlook Namespace
	Creating E-mail Applications with Managed APIs
	Accessing PIM Data
	Using SMS
	Summary

	Chapter 9: XML and Web Services
	Overview of XML and Web Services
	XML-Related Classes
	Building a Smartphone XML Web Service Application
	Summary

	Chapter 10: Platform Invoke
	Managed and Unmanaged Code
	Building Unmanaged DLLs
	Using P/Invoke in the .NET Compact Framework
	Optimizing P/Invoke Performance
	Summary

	Chapter 11: Exception Handling and Debugging
	Exceptions and Exception Handling
	Debugging in Visual Studio 2005
	Multithreaded Debugging
	Summary

	Part III: Advanced Topics
	Chapter 12: Device and Application Security
	Mobile Threats
	Glossary of Terms
	Windows Mobile 5.0 Security Models
	Certificate Management in Windows Mobile 5.0
	Security Policies
	An Example Code
	Perimeter Security
	Summary

	Chapter 13: Data and Communication Security
	Data Protection
	Securing Communication Channels
	Securing Web Services with SOAP Headers
	Summary

	Chapter 14: Globalization and Localization
	Globalization and Localization Support
	Culture
	Developing a World-Ready Application
	Localizing Data
	Best Practices
	Summary

	Chapter 15: Graphics
	.NET Compact Framework Graphics
	The Graphics Class
	Drawing Images
	Summary

	Chapter 16: Performance
	General Principles
	Using .NET Compact Framework Performance Counters
	CLR Performance
	Class Library Guidelines
	XML and Data Access
	Windows Forms
	Summary

	Appendix A: New Features in .NET Compact Framework 2.0
	Appendix B: A Glance at the .NET Compact Framework 2.0 Class Library
	Microsoft.VisualBasic
	Microsoft.VisualBasic.CompilerServices
	Microsoft.WindowsCE.Forms
	System
	System.Collections
	System.Collections.Generic
	System.Collections.ObjectModel
	System.Collections.Specialized
	System.ComponentModel
	System.Configuration.Assemblies
	System.Data
	System.Data.Common
	System.Data.SqlClient
	System.Data.SqlServerCe
	System.Data.SqlTypes
	System.Diagnostics
	System.Drawing
	System.Drawing.Drawing2D
	System.Drawing.Imaging
	System.Drawing.Text
	System.Globalization
	System.IO
	System.IO.Ports
	System.Messaging
	System.Net
	System.Net.Sockets
	System.Reflection
	System.Resources
	System.Runtime.CompilerServices
	System.Runtime.InteropServices
	System.Security
	System.Security.Cryptography.X509Certificates
	System.Security.Policy
	System.Text
	System.Text.RegularExpressions
	System.Threading
	System.Web.Services
	System.Web.Services.Description
	System.Web.Services.Protocols
	System.Windows.Forms
	System.Xml
	System.Xml.Schema
	System.Xml.Serialization
	System.Xml.XPath

	Appendix C: The Smartphone Bootstrapping Process
	Bootstrapping from the User Interface
	Bootstrapping Using Remote API and ActiveSync
	BootStrapping Using the Over-the-Air (OTA) WAP Push Method
	Bootstrapping Using a ROM Configuration XML File
	Bootstrap Security

	Index

