FUSE Ajax Tutorial

LogicBlaze

FUSE Ajax Tutorial

This is a tutorial for a real world example of a stock portfolio publisher using Ajax and Apache
ActiveMQ (AMQ). This demonstration uses features of Ajax to show multiple interactive
components on the same Web page. The components in this case are a live portfolio and chat

room.

© Copyright 2006 LogicBlaze, Inc.™. All rights reserved. The contents of this publication are protected by
U.S. copyright law and international treaties. Unauthorized reproduction of this publication or any portion

of it is strictly prohibited.

- FUSE FUSE Ajax Tutorial

1. Introduction

This demo uses the example of a Stock Portfolio to demonstrate the use of Ajax and Apache
ActiveMQ and to show how to integrate them.

Ajax (short for Asynchronous JavaScript and XML) is an approach to web application programming
involving many technologies. Web applications require many time-consuming page reloads after
calling the server. The purpose of Ajax is to minimize page reloads by sending only the necessary
data to the server instead of sending the entire page. Inside Ajax one can use XHTML and CSS for
standards-based presentation, dynamic display and interaction. The Document Object Model, XML
and XSLT conduct the data exchange and manipulation. Then we use XMLHttpRequest for
asynchronous data retrieval. Lastly we use JavaScript to bind everything together. The result is a Web
application that provides almost instant feedback from the back-end with no downtime from page
reloads without having to use proprietary technologies.

Apache ActiveMQ supports Ajax using the same basis as the REST connector for Apache ActiveMQ.
The REST connector allows any Web capable device to send or receive messages over JMS. Please
refer to the Introduction to the Apache ActiveMQ document for more information on Apache ActiveMQ.

Ajax and LogicBlaze FUSE's SOA go hand in hand. In the LogicBlaze SOA model business services
can be exposed through XML web services. Ajax clients are excellent consumers for these services.

2. Running the Demo

The Ajax demo is preinstalled and ready to run as part of the LogicBlaze FUSE distribution. To run the
demo follow the instructions in Running the Demo below.

To run the demo:
1. Start LogicBlaze FUSE per the LogicBlaze FUSE Getting Started Guide
2. Inabrowser,gotohttp://localhost:8080/ajax-demo.

3. When the page opens you will notice you have two links. Click on both of them. The links will
automatically open in a new window.

4. Inthe LogicBlaze FUSE Portfolio Publisher window you will see a list of stocks. Feel free to
select or deselect as many stocks as you wish. We suggest leaving a few checked for the sake
of the example.

<-FUSE

FUSE Ajax Tutorial

5.

Fuse Portfolio Publisher

Update period: |2

IBMW
BEAS
MSFT
AMAT
ASML
DELL
ORCL
SIRI
YHOO
EBAY
PVX
SLAB
SUNW

In the Ajax Demo window you will see your Portfolio.

LogicBlaze

Portfolios
| Porttolios || Pertormance & value || Positions || Gains & Losses || Risk |

QUOTES SEARCH Pen | LoG OFF
@ @ E::ﬁr Emt ;

March 15, 2006 3:54 AM ET

* tenis | » Trans fer Money |)_. Bill Pay | @ Help

AccountWatch List:| DA “ | Croate / Edif List

EXPORT TO EXCEL" -5
Stoch hal D ot Price
BID OFFER

[=] I B IBMW Stock -

[#] BEAS LNy BEAS Stock 4

SUNW L SUNW Stock

[+] msFT [THcEn MSFT Stock -

Add to Watch List: | holding:

DULA 11,5134 000 HWasdaqg 2,295 50 +0.00 S&P 500 1257 48 «0.00

Enter 8 symbols and quantity holding. Fisass add *.o” o the &nd of pption symbols.

[Porifolics and Watchlists ane not official records. For example, these will nol be reporied to the IRS. They should be used only as a tool bo assist you with
your financial management. Always refer io your statements andior trade confirmations for o complete and accurate record of your securties

Wigws | Guick | Customze

- 100

- 3525 -
1500

- 100 -

ADD SYMBOLS TO LIST |

Stock Chat:

Usemame: |Elvis

Statemeant of Financisl Condition | About B{M INSunance Cussomar Amnuntg EETMENt | F'IWIB Statemant Business I.'.onhm.ll_at Plan
Omline Seourity | 3 | Abpui il

& LogicBlaze Al rights resaned

<-FUSE

FUSE Ajax Tutorial

Portfolio

- To add a stock to your portfolio, type in any stock name (names are case sensitive) listed in your

Portfolio Publisher window into the "Add to Watch List" field. Type in a number to the"holding"
field. Click "Add Symbols to List" to add the information from the field to your Portfolio.

To subtract a stock from your portfolio simply uncheck the check box from next to the stock's
symbol.

Stock Chat

Type in a user name in the Username field. "Elvis" has been pre-entered for your convenience.

To join a chat room for a stock click on the face icon in the chat column that is associated to the
stock that you wish to chat about. Your name will appear in the “Members” column. You will
receive an error message if you fail to add a username.

Type in a message in the “Chat” field and click "Send" to send message. You will receive an
error message if you fail to type a message.

Click "Leave" to leave room.

Now that you have your Portfolio set up click the "Submit" button in your "Portfolio Publisher"
window.

Watch your portfolio change based the rate established by your "Update Period" field.

Navigate into the LogicBlaze FUSE Console and scroll down to the "Topics" Portal to see details.
For instructions on the console please see the LogicBlaze FUSE Console Guide.

The other links located on your Portfolio page are there to show you what you can do. They are
not functioning links.

¥-FUSE FUSE Ajax Tutorial

2.1. How the Ajax Demo Works

This section traces the Ajax demonstration emphasizing the value of the architecture used.
The portfolio - time emphasis

This demo will trace the path of a message in accordance to the figure. After reading this section you
will better understand the principals of Ajax and messaging in Apache ActiveMQ.

B~
_l

CLIENT

Portfolio (Browser)

User Interaction

.-f

Client-Side Processing

T 1
.'ll

TIME \ /

SERVER | /

Server-Side Processing Server-Side Processing

— Jetty Web Server ———» :|

1. When a user joins a room inside the portfolio, a message is sent from the user's interface to the
Ajax engine. Please visit the Sending Messages section for more information.

2. The Ajax engine takes the JavaScript call and makes the appropriate HTTP requests. The HTTP
transport takes the request to the Jetty web server. Please refer to the MessageListenerServiet
portion of this document for more information.

3. The Jetty Web server sends the information requested back to the Ajax engine in the form of
XML. Please visit the Receiving Messages and Polls section for more information.

4. The XML is sent back to the user interface in the form of HTML data for the user's browser to
display the results of the call made in step one.

¥-FUSE FUSE Ajax Tutorial

2.2. The Portfolio — Messaging Emphasis

This section is a detailed look at the stock portfolio and how it messages.

Client Server

1 Lls.er\
- — publlsherhtn-l 2|nterfaca

setty

;4*
@D @) /

\ xﬂ“a\
1 ey

1. Openhttp://localhost:8080/Ajax-demo and open the two links main.html (the
portfolio) and publisher.html (the publisher). In the main.html file notice there is a chat
section and a stock table. For data to appear in the stock table or messages to appear in the
chat window messages must be sent and received.

2. Inside publisher.html select the stocks that match the ones listed in our portfolio's stock table

by checking the appropriate check boxes. By clicking "Submit" the
PortfolioPublisherServlet is called. This file is a Java class that creates numbers for the

checked stocks the data using random number generation functionality.

The location of the PortfolioPublisherServlet is mapped by the web.xml located in the
WEB-INF directory. The web . xml file contains the mapping of servlets.

3. The Ajax features are provided on the client side by the amg. js script. This script depends on
the behaviour.js and prototype. js script. All of these scripts are loaded to the
main.html by the default. js as follows.

<script type="text/javascript" src="/context/js/default.]js"></script>

Including these scripts results in the creation of a JavaScript object called AMQ, which provides
the API the ability to send messages and to subscribe to channels and topics.

- FUSE FUSE Ajax Tutorial

4. As the user interacts with the main.html requests are created and take the form of JavaScript
that calls on the Ajax layer. An example of this is sending messages when joining or leaving a
room. The following from the chat. js file shows this:

amg.sendMessage (room. chatMembership, "<message type='join' from='" +
room. username + "'/>");

and
amg.sendMessage (room. chatMembership, "<message type='leave' from='" +
room. username + "'/>");

The destination for these messages is room: chatMembership and the message is to join or
leave the room.

These two functions are available to us through the functionality of the Ajax layer. The calls go
out to the messagelistenerServlet. From the messagelListenerServlet they go to the
AMQ Message Broker.

See Sending a Message and Message Listener Servlet sections for more information.

5. Messages come back from the AMQ Message Broker and the JavaScript in chat.js and
portfolio.js are used to display back to the user the contents of the messages.

For example, to add a row to the stock table or join a chat room you have to register a listener to
be able to receive the information that is being sent out by others.

This following line of code in portfolio.js adds a listener for each new stock row a user
creates:

amg.addListener ('stocks', 'topic://STOCKS.' + stock, portfolio. quote);

This following line of code in chat.js checks for new messages in the chat:

amg.addListener ('chat', room. chatMembership, room. chat);

When you register listeners you must send a message subscription request to the server as a
POST like any other message but as type listen. To learn more about receiving messages please
refer to the Receiving Messages and Polls section of this document.

¥-FUSE FUSE Ajax Tutorial

2.3. How to Message in LogicBlaze FUSE

This section will cover the information you need to know to successfully message in LogicBlaze FUSE
using the Apache AcitveMQ messaging capabilities.

Message Listener Servlet

The Ajax features of AMQ are handled on the server side by the Messagel.istenerServlet. This
servlet is responsible for tracking the existing clients (using a Ht tpSession) and for creating the
AMQ and javax.jms objects required by the client to send and receive messages (for example,
Destination, MessageConsumer, MessageAvailableListener). This servlet should be
mapped to /AMQ/* in the Web application context serving the Ajax client (this can be changed, but
the client JavaScript amg.uri field needs to be updated to match.)

<servlet>
<servlet-name>MessagelistenerServlet</servlet-name>
<servlet-class>org.apache.activemg.web.MessageListenerServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

Sending Messages
To send a JMS message from the JavaScript client is done by calling the method:

amg.sendMessage (myDestination, myMessage) ;

where myDestination is the URL string address of the destination (for example,
topic://MY.NAME or channel://MY.NAME) and myMessage is any well formed XML or plain
text encoded as XML content.

When a message is sent from the client it is encoded as the content of a POST request, using the
prototype API for XmlHttpRequest. The AMQ object may combine several sendMessage calls into a
single POST if it can do so without adding additional delays (see “polls” below).

When the MessagelListenerServlet receives a POST, the messages are decoded as
application/x-www-form-urlencoded parameters with their type (in this case send as
opposed to listen or unlisten - see below) and destination. If a destination channel or topic do not exist,
it is created. The message is sent to the destination as a TextMessage.

https://svn.apache.org/repos/asf/incubator/activemq/trunk/activemq-web/src/main/java/org/apache/activemq/web/MessageListenerServlet.java
http://jibbering.com/2002/4/httprequest.html
http://prototype.conio.net/

- FUSE FUSE Ajax Tutorial

Receiving Messages

To receive messages, the client must define a message handling function and register it with the AMQ
object. For example:

var myHandler =

{

rcvMessage: function (message)

{

alert ("received "+message);
}
}:

amg.addListener (myId,myDestination,myHandler.rcvMessage) ;

where myId is a string identifier that can be used for a later call to amg.removeHandler(myId) and
myDestination is a URL string address of the destination (e.g. topic://MY.NAME or
channel://MY.NAME). When a message is received, a call back to the myHandler.rcvMessage
function passes the message to your handling code.

When a client registers a listener, a message subscription request is sent from the client to the server
in a POST in the same way as a message, but with a type of listen. When the
MessageListenerServlet receives a listen message, it creates a
MessageAvailableConsumer and registers a Listener on it.

Polls

When a Listener created by the MessagelistenerServlet is called to indicate that a message is
available, due to the limitations of the HTTP client-server model, it is not possible to send that
message directly to the Ajax client. Instead the client must perform a special type of Poll for
messages. Polling normally means periodically making a request to see if there are messages
available and there is a trade off: either the poll frequency is high and excessive load is generated
when the system is idle; or the frequency is low and the latency for detecting new messages is high.

To avoid the load vs. latency trade-off, AMQ uses a waiting poll mechanism. As soon as the amq.js
script is loaded, the client begins polling the server for available messages. A poll request can be sent
as a GET request or as a POST if there are other messages ready to be delivered from the client to
the server. When the MessagelListenerServlet receives a poll it:

1. If the poll request is a POST, all send, listen and unlisten messages are processed

2. If there are no messages available for the client on any of the subscribed channels or topic, the
servlet suspends the request handling until:
-« AMessageAvailableConsumer Listener is called to indicate that a message is now
available; or

A timeout expires (normally around 30 seconds, which is less than all common TCP/IP, proxy
and browser timeouts).

3. AHTTP response is returned to the client containing all available messages encapsulated as
text/xml.

10

- FUSE FUSE Ajax Tutorial

When the amg.j s JavaScript receives the response to the poll, it processes all the messages by
passing them to the registered handler functions. Once it has processed all the messages, it
immediately sends another poll to the server.

Thus the idle state of the AMQ Ajax feature is a poll request "parked" in the server, waiting for
messages to be sent to the client. Periodically this "parked" request is refreshed by a timeout that
prevents any TCP/IP, proxy or browser timeout closing the connection. The server is thus able to
asynchronously send a message to the client by waking up the "parked" request and allowing the
response to be sent.

The client is able to asynchronously send a message to the server by creating (or using an existing)
second connection to the server. However, during the processing of the poll response, normal client
message sending is suspended, so that all messages to be sent are queued and sent as a single
POST with the poll that will be sent (with no delay) at the end of the processing. This ensures that only
two connections are required between client and server (the normal for most browsers).

Threadless Waiting

The waiting poll described above is implemented using the Jetty 6 Continuation mechanism. This
allows the thread associated with the request to be released during the wait, so that the container
does not need to have a thread per client (which may be a large number). If another servlet container
is used, the Continuation mechanism falls back to use a wait and the thread is not released.

3. Additional Resources

ActiveMQ Web site: http://activemq.org

Article explaining Ajax: http://www.adaptivepath.com/publications/essays/archives/000385.php
Article about Ajax and SOA: http://www.xml.com/Ipt/a/2005/10/05/ajax-web-20-soa.html

Web sites on Ajax: http://www.ajaxinfo.com, http://www.ajaxian.com

11

http://www.ajaxian.com/
http://www.ajaxinfo.com/
http://www.xml.com/lpt/a/2005/10/05/ajax-web-20-soa.html
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://activemq.org/
http://docs.codehaus.org/display/JETTY/Continuations

	1.Introduction
	2.Running the Demo
	2.1.How the Ajax Demo Works
	The portfolio - time emphasis

	2.2.The Portfolio – Messaging Emphasis
	2.3.How to Message in LogicBlaze FUSE
	Message Listener Servlet
	Sending Messages
	Receiving Messages
	Polls
	Threadless Waiting

	3.Additional Resources

