é ,appb.27123 Page 764 Thursday, November 18, 2004 12:49 PM

*

APPENDIX B
Apache Perl Modules

Many third-party modules have been written to extend mod_perl’s core functional-
ity. They may be distributed with the mod_perl source code, or they may be avail-
able from CPAN. In this chapter we will attempt to group these modules based on
their functionality. Some modules will be discussed in depth, but others will be
touched on only briefly.

Since most of these modules are continually evolving, the moment this book is pub-
lished much of the information in it will be out of date. For this reason, you should
refer to the modules’ manpages when you start using them; that’s where you will
find the most up-to-date documentation.

We will consider modules in the following groups:
Development

Modules used mainly during the development process
Debugging

Modules that assist in code debugging

Control and monitoring
Modules to help you monitor the production server and take care of any prob-
lems as soon as they appear

Server configuration
Modules used in server configuration

Authentication
Modules used to facilitate authentication

Authorization
Modules used to facilitate authorization

Access
Modules used during the access-verification phase

Type handlers
Modules used as PerlTypeHandlers

764

%

ﬁ

*@%

é ,appb.27123 Page 765 Thursday, November 18, 2004 12:49 PM

*

Trans handlers
Modules used as PerlTransHandlers

Fixup Handlers
Modules used as PerlFixupHandlers

Generic content-generation phase
Generic modules that assist during the content-generation phase

Application-specific content generation phase
Non—general-purpose content generators

Database
Database-specific modules

Toolkits and framework for content generation and other phases
Mostly large toolkits and frameworks built on top of mod_perl

Output filters and layering
Modules that filter output from the content generation stage

Logging-phase handlers
Modules that assist during the logging stage

Core Apache
Modules that interface with core mod_perl

Miscellaneous
Modules that don’t fit into any of the above categories

Development-Stage Modules

The following modules are mainly useful during the code-development cycle. Some
of them can also be useful in the production environment.

Apache::Reload—Automatically Reload Changed Modules

Apache: :Reload is used to make specific modules reload themselves when they have
changed. It’s also very useful for mod_perl module development.

Covered in Chapter 6.

Available from CPAN. See the module manpage for more information.

Apache::PerlVINC—Allow Module Versioning in
<Location> and <VirtualHost> blocks

This module makes it possible to have different @INC values for different
<VirtualHost>s, <Location>s, and equivalent configuration blocks.

Development-Stage Modules | 765

%

-t

.

é ,appb.27123 Page 766 Thursday, November 18, 2004 12:49 PM

Suppose two versions of Apache: :Status are being hacked on the same server. In this
configuration:

PerlModule Apache::Per1VINC

<Location /status-dev/perl>

SetHandler perl-script

PerlHandler Apache: :Status

Per1INC /home/httpd/dev/1ib

PerlFixupHandler Apache::PerlVINC

PerlVersion Apache/Status.pm
</Location>

<Location /status/perl>

SetHandler perl-script

PerlHandler Apache: :Status

Per1INC /home/httpd/prod/1ib

PerlFixupHandler Apache::PerlVINC

PerlVersion Apache/Status.pm
</Location>

Apache: :Per1VINC is loaded and then two different locations are specified for the
same handler Apache::Status, whose development version resides in /home/httpd/
dev/lib and production version in /home/httpd/prod/lib.

If a request for /status/perl is issued (the latter configuration section), the fixup han-
dler will internally do:

delete $INC{"Apache/Status.pm"};

unshift @INC, "/home/httpd/prod/lib";

require Apache::Status;
which will load the production version of the module, which will in turn be used to
process the request.

If on the other hand the request is for /status-dev/perl (the former configuration sec-
tion), a different path (/home/httpd/dev/lib) will be prepended to @INC:

delete $INC{"Apache/Status.pm"};

unshift @INC, "/home/httpd/dev/1ib";

require Apache::Status;
It’s important to be aware that a changed @INC is effective only inside the <Location>
block or a similar configuration directive. Apache::PerlVINC subclasses the
PerlRequire directive, marking the file to be reloaded by the fixup handler, using the
value of Perl1INC for @INC. That’s local to the fixup handler, so you won’t actually see
@INC changed in your script.

Additionally, modules with different versions can be unloaded at the end of the
request, using the PerlCleanupHandler:

766 | AppendixB: Apache Perl Modules

4~ ~4]e

é ,appb.27123 Page 767 Thursday, November 18, 2004 12:49 PM

*

<Location /status/perl>

SetHandler perl-script
PerlHandler Apache: :Status
PerlINC /home/httpd/prod/1ib

PerlFixupHandler Apache::Per1VINC

PerlCleanupHandler Apache::Per1VINC

PerlVersion Apache/Status.pm
</Location>

Also note that PerlVersion affects things differently depending on where it is placed.
If it is placed inside a <Location> or a similar block section, the files will be reloaded
only on requests to that location. If it is placed in a server section, all requests to the
server or virtual hosts will have these files reloaded.

As you can guess, this module slows down the response time because it reloads some
modules on a per-request basis. Hence, this module should be used only in a devel-
opment environment, not in production.

If you need to do the same in production, a few techniques are suggested in
Chapter 4.

Available from CPAN. See the module manpage for more information.

Apache::DProf—Hook Devel::DProf into mod_ perl
Covered in Chapter 9.

Available from CPAN. See the module manpage for more information.

Apache::SmallProf—Hook Devel::SmallProf into mod_ perl
Covered in Chapter 9.

Available from CPAN. See the module manpage for more information.

Apache::FakeRequest—Fake Request Object for Debugging
Covered in Chapter 21.

Available from CPAN. See the module manpage for more information.

Apache::test—Facilitate Testing of Apache::* Modules

This module helps authors of Apache::* modules write test suites that can query a
running Apache server with mod_perl and their modules loaded into it. Its function-
ality is generally separated into: (a) methods that go in a Makefile.PL file to config-
ure, start, and stop the server; and (b) methods that go into one of the test scripts to
make HTTP queries and manage the results.

Development-Stage Modules | 767

%

-t

.

é ,appb.27123 Page 768 Thursday, November 18, 2004 12:49 PM

*

Supplied with the mod_perl distribution. See the module manpage for more
information.

Modules to Aid Debugging

The following modules are used mainly when something is not working properly and
needs to be debugged. Unless your bug is very hard to reproduce and the production
environment is required to reproduce the conditions that will trigger the bug, these
modules should not be used in production.

Apache::DB—Hooks for the Interactive Perl Debugger
Allows developers to interactively debug mod_perl.
Covered in Chapter 9.

Available from CPAN. See the module manpage for more information.

Apache::Debug—Utilities for Debugging Embedded Perl
Code

Covered in Chapter 21.

Supplied with the mod_perl distribution. See the module manpage for more informa-
tion.

Apache::Debuginfo—Send Debug Information to Client

Available from CPAN. See the module manpage for more information.

Apache::Leak—Maodule for Tracking Memory Leaks in
mod_ perl Code

Covered in Chapter 14.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::Peek—A Data Debugging Tool for the XS
Programmer

Covered in Chapter 10.

Available from CPAN. See the module manpage for more information.

768 | AppendixB: Apache Perl Modules

%

-t

.

é ,appb.27123 Page 769 Thursday, November 18, 2004 12:49 PM

*

Apache::Symbol—Avoid the Mandatory ‘Subroutine
Redefined’ Warning

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::Symdump—Symbol Table Snapshots
Covered in Chapter 21.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Control and Monitoring Modules

Apache::Watchdog::RunAway—Hanging Processes Monitor
and Terminator

Covered in Chapter 5.

Available from CPAN. See the module manpage for more information.

Apache::\VMonitor—Visual System and Apache Server
Monitor

Covered in Chapter 5.

Available from CPAN. See the module manpage for more information.

Apache::SizeLimit—Limit Apache httpd Processes

This module allows you to kill off Apache processes if they grow too large or if they
share too little of their memory. It’s similar to Apache: :GTopLimit.

Covered in Chapter 14.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::GTopLimit—Limit Apache httpd Processes

This module allows you to kill off Apache processes if they grow too large or if they
share too little of their memory. It’s similar to Apache: :Sizelimit.

Control and Monitoring Modules | 769

%

-t

.

é ,appb.27123 Page 770 Thursday, November 18, 2004 12:49 PM

*

Covered in Chapter 14.

Available from CPAN. See the module manpage for more information.

Apache::TimedRedirect—Redirect URLs for a Given Time
Period

Apache: :TimedRedirect is a mod_perl TransHandler module that allows the configura-
tion of a timed redirect. In other words, if a user enters a web site and the URI
matches a regex and it is within a certain time period she will be redirected some-
where else.

This was first created to politely redirect visitors away from database-driven sections
of a web site while the databases were being refreshed.

Available from CPAN. See the module manpage for more information.

Apache::Resource—Limit Resources Used by httpd Children

Apache: :Resource uses the BSD::Resource module, which uses the C function
setrlimit() to set limits on system resources such as memory and CPU usage.

Covered in Chapter 5.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::Status—Embedded Interpreter Status Information

The Apache: :Status module provides various information about the status of the Perl
interpreter embedded in the server.

Covered in Chapter 21.

Available from CPAN. See the module manpage for more information.

Server Configuration Modules

Apache::ModuleConfig—Interface to Configuration API

Supplied with the mod_perl distribution. See the module manpage for more
information.

770 | AppendixB: Apache Perl Modules

%

-t

.

é ,appb.27123 Page 771 Thursday, November 18, 2004 12:49 PM

*

Apache::PerlSections—Utilities for Working with <Perl>
Sections

Apache: :PerlSections configures Apache entirely in Perl.
Covered in Chapter 4.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::httpd_conf—Generate an httpd.conf File

The Apache: :httpd_conf module will generate a tiny httpd.conf file, which pulls itself
back in via a <Perls section. Any additional arguments passed to the write() method
will be added to the generated httpd.conf file and will override those defaults set in
the <Perl> section. This module is handy mostly for starting httpd servers to test
mod_perl scripts and modules.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::src—Methods for Locating and Parsing Bits of
Apache Source Code

This module provides methods for locating and parsing bits of Apache source code.
For example:

my $src = Apache::src->new;
my $v = $src->httpd version;

returns the server version. And:

my $dir = $src->dir;
-d $dir or die "can't stat $dir $!\n";

returns the top level directory where source files are located and then tests whether it
can read it.

The main() method will return the location of httpd.h:
-e join "/", $src->main, "httpd.h" or die "can't stat httpd.h\n";
Other methods are available from this module.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Server Configuration Modules | 771

-t

.

é ,appb.27123 Page 772 Thursday, November 18, 2004 12:49 PM

Apache::ConfigFile—Parse an Apache-Style httpd.conf
Configuration File

This module parses httpd.conf, or any compatible configuration file, and provides
methods for accessing the values from the parsed file.

Available from CPAN. See the module manpage for more information.

Authentication-Phase Modules

The following modules make it easier to handle the authentication phase:

AuthenCache Cache authentication credentials

AuthCookie Authentication and authorization via cookies
AuthDigest Authentication and authorization via digest scheme
AuthenDBI Authenticate via Perl's DBI

AuthenIMAP Authentication via an IMAP server

AuthenPasswdSrv External authentication server
AuthenPasswd Authenticate against /etc/passwd

AuthLDAP LDAP authentication module
AuthPerLDAP LDAP authentication module (PerLDAP)
AuthenNIS NIS authentication

AuthNISPlus NIS Plus authentication/authorization
AuthenSmb Authenticate against an NT server
AuthenURL Authenticate via another URL

DBILogin Authenticate to backend database
PHLogin Authenticate via a PH database

All available from CPAN. See the module manpages for more information.

Authorization-Phase Modules

The following modules make it easier to handle the authorization phase:

AuthCookie Authentication and authorization via cookies
AuthzDBI Group authorization via Perl's DBI

AuthzNIS NIS authorization

AuthzPasswd Authorize against /etc/passwd

All available from CPAN. See the module manpages for more information.

Access-Phase Modules

The following modules are used during the access request phase:

AccessLimitNum Limit user access by the number of requests
RobotLimit Limit the access of robots

Available from CPAN. See the module manpages for more information.

772 | AppendixB: Apache Perl Modules

4~ ~4]e

é ,appb.27123 Page 773 Thursday, November 18, 2004 12:49 PM

*

Stonehenge::Throttle—Limit Bandwith Consumption by IP
Address
http://www.stonehenge.com/merlyn/LinuxMag/col17.html

The source code to Stonehenge::Throttle is available from http://www.stonehenge.
com/merlyn/LinuxMag/col17 listing.txt.

Type Handlers

Apache::MimeXML—maod_ perl Mime Encoding Sniffer for
XML Files

This module is an XML content-type sniffer. It reads the encoding attribute in the
XML declaration and returns an appropriate content-type heading. If no encoding
declaration is found it returns utf-8 or utf-16, depending on the specific encoding.

Available from CPAN. See the module manpage for more information.

Apache::MIMEMapper—Associates File Extensions with
PerlHandlers

Apache: :MIMEMapper extends the core AddHandler directive to allow you to dispatch
different PerlHandlers based on the file extension of the requested resource.

Available from CPAN. See the module manpage for more information.
Trans Handlers

Apache::AddHostPath—Adds Some or All of the Hostname
and Port to the URI

This module transforms the requested URI based on the hostname and port number
from the HTTP request header. It allows you to manage an arbitrary number of
domains and subdomains all pointing to the same document root but for which you
want a combination of shared and distinct files.

Essentially the module implements Apache’s URI-translation phase by attempting to
use some or all of the URL hostname and port number as the base of the URI. It sim-
ply does file and directory existence tests on a series of URIs (from most-specific to
least-specific) and sets the URI to the most specific match.

TransHandlers | 773

-t

.

é ,appb.27123 Page 774 Thursday, November 18, 2004 12:49 PM

*

For example, if the request is:

URL: http://www.example.org:8080/index.html
URI: /index.html

Apache: :AddHostPath would go through the following list of possible paths and set
the new URI based on the first match that passes a -f or -d existence test:

$docRoot/org/example/www/8080/index.html
$docRoot/org/example/www/index. html
$docRoot/org/example/index.html
$docRoot/org/index.html
$docRoot/index.html

Available from CPAN. See the module manpage for more information.

Apache::ProxyPass—implement ProxyPass in Perl

This module implements the Apache mod_proxy module in Perl. Based on Apache::
ProxyPassThru.

Available from CPAN. See the module manpage for more information.

Apache::ProxyPassThru—Skeleton for Vanilla Proxy

This module uses libwww-perl as its web client, feeding the response back into the
Apache API request_rec structure. PerlHandler will be invoked only if the request is
a proxy request; otherwise, your normal server configuration will handle the request.

If used with the Apache::DumpHeaders module it lets you view the headers from
another site you are accessing.

Available from CPAN. See the module manpage for more information.

Apache::Throttle—Speed-Based Content Negotiation

Apache: :Throttle is a package designed to allow Apache web servers to negotiate
content based on the speed of the connection. Its primary purpose is to transpar-
ently send smaller (lower resolution/quality) images to users with slow Internet con-
nections, but it can also be used for many other purposes.

Available from CPAN. See the module manpage for more information.

Apache::TransLDAP—Trans Handler Example

This module is an example of how you can create a trans handler. This particular
example translates from a user’s virtual directory on the server to the labeledURI
attribute for the given user.

Available from CPAN. See the module manpage for more information.

774 | AppendixB: Apache Perl Modules

%

ﬁ

*@%

é ,appb.27123 Page 775 Thursday, November 18, 2004 12:49 PM

*

Fixup Handlers

Apache::RefererBlock—Block Request Based Upon
“Referer” Header

Apache: :RefererBlock will examine each request. If the MIME type of the requested
file is one of those listed in RefBlockMimeTypes, it will check the request’s Referer
header. If the referrer starts with one of the strings listed in RefBlockAllowed, access is
granted. Otherwise, if there’s a RefBlockRedirect directive for the referrer, a redirect
is issued. If not, a “Forbidden” (403) error is returned.

Available from CPAN. See the module manpage for more information.

Apache::Usertrack—Emulate the mod_usertrack Apache
Module
As of this writing no documentation is available.

Available from CPAN.

Generic Content-Generation Modules

These modules extend mod_perl functionality during the content-generation phase.
Some of them can also be used during earlier phases.

Apache::Registry and Apache::PerlRun

These two modules allow mod_cgi Perl scripts to run unaltered under mod_perl.
They are covered throughout the book, mainly in Chapters 6 and 13.

See also the related Apache: :RegistryNG and Apache: :RegistryBB modules.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::RegistryNG—Apache::Registry New Generation

Apache: :RegistryNG is almost the same as Apache: :Registry, except that it uses file-
names instead of URIs for namespaces. It also uses an object-oriented interface.

PerlModule Apache::RegistryNG
<Location /perl>

SetHandler perl-script

PerlHandler Apache::RegistryNG->handler
</Location>

The usage is just the same as Apache: :Registry.

Generic Content-Generation Modules | 775

%

-t

.

é ,appb.27123 Page 776 Thursday, November 18, 2004 12:49 PM

*

Apache: :RegistryNG inherits from Apache::PerlRun, but the handler() is overriden.
Apart from the handler(), the rest of Apache: :PerlRun contains all the functionality
of Apache: :Registry, broken down into several subclassable methods. These meth-
ods are used by Apache::RegistryNG to implement the exact same functionality as
Apache: :Registry, using the Apache: :PerlRun methods.

There is no compelling reason to use Apache::RegistryNG over Apache::Registry,
unless you want to add to or change the functionality of the existing Registry.pm.
For example, Apache::RegistryBB is another subclass that skips the stat() call,
Option +ExecCGI, and other checks performed by Apache: :Registry on each request.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::RegistryBB—Apache::Registry Bare Bones

This works just like Apache: :Registry, but it does not test the x bit (-x file test for
executable mode), compiles the file only once (no stat() call is made for each
request), skips the OPT_EXECCGI checks, and does not chdir() into the script’s parent
directory. It uses the object-oriented interface.

Configuration:

PerIModule Apache::RegistryBB
<Location /perl>

SetHandler perl-script

PerlHandler Apache::RegistryBB->handler
</Location>

The usage is just the same as Apache: :Registry.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::Request (libapreq)—Generic Apache Request
Library
This package contains modules for manipulating client request data via the Apache
API with Perl and C. Functionality includes:
* Parsing application/x-www-form-urlencoded data
* Parsing multipart/form data
* Parsing HTTP cookies
The Perl modules are simply a thin XS layer on top of libapreq, making them a lighter

and faster alternative to CGI.pm and CGI::Cookie. See the Apache::Request and
Apache: : Cookie documentation for more details and eg/perl/ for examples.

776 | AppendixB: Apache Perl Modules

%

ﬁ

*@%

é ,appb.27123 Page 777 Thursday, November 18, 2004 12:49 PM

*

Apache: :Request and libapreq are tied tightly to the Apache API, to which there is no
access in a process running under mod_cgi.

This module is mentioned in Chapters 6 and 13.

Available from CPAN. See the module manpage for more information.

Apache::Dispatch—Call PerlHandlers with the Ease of
Registry Scripts

Apache: :Dispatch translates $r->uri into a class and method and runs it as a
PerlHandler. Basically, this allows you to call PerlHandlers as you would Registry
scripts, without having to load your httpd.conf file with a lot of <Location > tags.

Available from CPAN. See the module manpage for more information.

Application-Specific Content-Generation
Modules

Apache::Autolndex—Perl Replacement for the
mod_autoindex and mod_ dir Apache Modules

This module can completely replace the mod_dir and mod_autoindex standard
directory-handling modules shipped with Apache.

Available from CPAN. See the module manpage for more information.

Apache::WAP::Autoindex—WAP Demonstration Module

This is a simple module to demonstrate the use of CGI::WML to create a WML (wire-
less) file browser using mod_perl. It was written to accompany an article in the Perl
Journal (Issue 20).

Available from CPAN. See the module manpage for more information.

Apache::WAP::MailPeek—Demonstrate Use of WML
Delivery

This is a simple module to demonstrate the use of delivery of WML with mod_perl.
[t was written to accompany an article in the Perl Journal (Issue number 20).

Available from CPAN. See the module manpage for more information.

Application-Specific Content-Generation Modules | 777

%

-t

.

é ,appb.27123 Page 778 Thursday, November 18, 2004 12:49 PM

*

.

Apache::Archive—Expose Archive Files Through the Apache
Web Server

Apache: :Archive is a mod_perl extension that allows the Apache HTTP server to
expose .tar and .tar.gz archives on the fly. When a client requests such an archive
file, the server will return a page displaying information about the file that allows the
user to view or download individual files from within the archive.

Available from CPAN. See the module manpage for more information.

Apache::Gateway—Implement a Gateway

The Apache::Gateway module implements a gateway using LWP with assorted
optional features. From the HTTP/1.1 draft, a gateway is:

[a] server which acts as an intermediary for some other server.
Unlike a proxy, a gateway receives requests as if it were the origin
server for the requested resource; the requesting client may not be
aware that it is communicating with a gateway.

Features:

* Standard gateway features implemented using LWP
* Automatic failover with mirrored instances

* Multiplexing

* Pattern-dependent gatewaying

* FTP directory gatewaying

* Timestamp correction

Available from CPAN. See the module manpage for more information.

Apache::NNTPGateway—NNTP Interface for a mod_perl-
Enabled Apache Web Server.

Available from CPAN. See the module manpage for more information.

Apache::PrettyPerl—Syntax Highlighting for Perl Files

An Apache mod_perl PerlHandler that outputs color syntax-highlighted Perl files in
the client’s browser.

Available from CPAN. See the module manpage for more information.

Apache::PrettyText—Reformat .txt Files for Client Display
Dynamically formats .txt files so they look nicer in the client’s browser.

Available from CPAN. See the module manpage for more information.

778 | AppendixB: Apache Perl Modules

%

-t

.

é ,appb.27123 Page 779 Thursday, November 18, 2004 12:49 PM

Apache::RandomLocation—Random File Display

Given a list of locations in ConfigFile, this module will instruct the browser to redi-
rect to one of them. The locations in ConfigFile are listed one per line, with lines
beginning with # being ignored. How the redirection is handled depends on the vari-
able Type.

Available from CPAN. See the module manpage for more information.

Apache::Stage—Manage a Staging Directory

A staging directory is a place where the author of an HTML document checks the
look and feel of the document before it’s uploaded to the final location. A staging
place doesn’t need to be a separate server or a mirror of the “real” tree, or even a tree

of symbolic links. A sparse directory tree that holds nothing but the staged files will
do.

Apache: :Stage implements a staging directory that needs a minimum of space. By
default, the path for the per-user staging directory is hardcoded as:

/STAGE/any-user-name

The code respects proper internal and external redirects for any documents that are
not in the staging directory tree. This means that all graphics are displayed as they
will be when the staged files have been published. The following table provides an
example structure:

Location Redirect-to Comment

/STAGE/u1/ / Homepage. Internal Redirect.

/STAGE/u2/dir1 /dir1/ Really /diri/index.html

/STAGE/u3/dir2 /dir2/ Directory has no index.html
Options Indexes is off, thus
"Forbidden"

/STAGE/u4/dir2/foo /dir2/foo Internal redirect.

/STAGE/u5/bar - Exists really, no redirect
necessary

/STAGE/u6 - Fails unless location exists

The entries described in SYNOPSIS in access.conf or an equivalent place define the
name of the staging directory, the name of an internal location that catches the
exception when a document is not in the staging directory, and the regular expres-
sion that transforms the staging URI into the corresponding public URI.

With this setup only ErrorDocuments 403 and 404 will be served by Apache: :Stage. If
you need coexistence with different ErrorDocument handlers, you will either have to
disable them for /STAGE or integrate the code of Apache::Stage into an if/else
branch based on the path.

Available from CPAN. See the module manpage for more information.

Application-Specific Content-Generation Modules | 779

- ad

é ,appb.27123 Page 780 Thursday, November 18, 2004 12:49 PM

*

Apache::Roaming—A mod_ perl Handler for Roaming
Profiles

With Apache: :Roaming you can use your Apache web server as a Netscape Roaming
Access server. This allows users to store Netscape Communicator 4.5+ preferences,
bookmarks, address books, cookies, etc., on the server so that they can use (and
update) the same settings from any Netscape Communicator 4.5+ browser that can
access the server.

Available from CPAN. See the module manpage for more information.

Apache::Backhand—Write mod_backhand Functions
in Perl

Apache: :Backhand ties mod_perl together with mod_backhand, in two major ways.
First, the Apache::Backhand module itself provides access to the global and shared
state information provided by mod_backhand (most notably server stats). Second,
the byPerl C function (which is not part of the Apache: :Backhand module but is dis-
tributed with it) allows you to write candidacy functions in Perl.

Available from CPAN. See the module manpage for more information.

Database Modules

Apache::DBl—Initiate a Persistent Database Connection
Covered in Chapter 20.

Available from CPAN. See the module manpage for more information.

Apache::0WA—-Oracle’s PL/SQL Web Toolkit for Apache

This module makes it possible to run scripts written using Oracle’s PL/SQL Web
Toolkit under Apache.

Available from CPAN. See the module manpage for more information.

Apache::Sybase::CTlib—~Persistent CTlib Connection
Management for Apache

Available from CPAN. See the module manpage for more information.

780 | AppendixB: Apache Perl Modules

%

-t

.

é ,appb.27123 Page 781 Thursday, November 18, 2004 12:49 PM

*

Toolkits and Frameworks for Content-
Generation and Other Phases

Apache::ASP—Active Server Pages for Apache with
mod_perl

Apache: :ASP provides an Active Server Pages port to the Apache web server with Perl
scripting only and enables developing of dynamic web applications with session
management and embedded Perl code. There are also many powerful extensions,
including XML taglibs, XSLT rendering, and new events not originally part of the
ASP APIL.

Available from CPAN. See the module manpage for more information.

Apache::AxKit—XML Toolkit for mod_ perl

AxKit is a suite of tools for the Apache httpd server running mod_perl. It provides
developers with extremely flexible options for delivering XML to all kinds of brows-
ers, from hand-held systems to Braille readers to ordinary browsers. All this can be
achieved using nothing but W3C standards, although the plug-in architecture pro-
vides the hooks for developers to write their own stylesheet systems, should they so
desire. Two non-W3C stylesheet systems are included as examples.

The toolkit provides intelligent caching, which ensures that if any parameters in the
display of the XML file change, the cache is overwritten. The toolkit also provides
hooks for DOM-based stylesheets to cascade. This allows (for example) the initial
stylesheet to provide menu items and a table of contents, while the final stylesheet
formats the finished file to the desired look. It’s also possible to provide multiple lan-
guage support this way.

AxKit and its documentation are available from http://www.axkit.org/.

HTML::Embperl—Embed Perl into HTML

Embperl gives you the power to embed Perl code in your HTML documents and the
ability to build your web site out of small, reusable objects in an object-oriented
style. You can also take advantage of all the standard Perl modules (including DBI for
database access) and use their functionality to easily include their output in your web

pages.
Embperl has several features that are especially useful for creating HTML, including

dynamic tables, form-field processing, URL escaping/unescaping, session handling,
and more.

Toolkits and Frameworks for Content-Generation and Other Phases | 781

%

-t

.

é ,appb.27123 Page 782 Thursday, November 18, 2004 12:49 PM

*

.

Embperl is a server-side tool, which means that it’s browser-independent. It can run
in various ways: under mod_perl, as a CGI script, or offline.

For database access, there is a module called DBIx::Recordset that works well with
Embperl and simplifies creating web pages with database content.

Available from CPAN. See the module manpage for more information.

Apache::EmbperlChain—Process Embedded Perlin HTML in
the OutputChain

Uses Apache: :OutputChain to filter the output of content generators through Apache: :
Embperl.

Available from CPAN. See the module manpage for more information.

Apache::ePerl—Embedded Perl 5 Language

ePerl interprets an ASCII file that contains Perl program statements by replacing any
Perl code it finds with the result of evaluating that code (which may be chunks of
HTML, or could be nothing) and passing through the plain ASCII text untouched. It
can be used in various ways: as a standalone Unix filter or as an integrated Perl mod-
ule for general file-generation tasks and as a powerful web-server scripting language
for dynamic HTML page programming.

Available from CPAN. See the module manpage for more information.

Apache::iNcom—E-Commerce Framework

Apache: :iNcom is an e-commerce framework. It is not a ready-to-run merchant sys-
tem. It integrates the different components needed for e-commerce into a coherent
whole.

The primary design goals of the framework are flexibility and security. Most mer-
chant systems will make assumptions about the structure of your catalog data and
your customer data, or about how your order process works. Most also impose
severe restrictions on how the programmer will interface with your electronic cata-
log. These are precisely the kinds of constraints that Apache::iNcom is designed to
avoid.

Apache: : iNcom provides the following infrastructure:
* Session management
* Cart management
* Input validation

* Order management

782 | AppendixB: Apache Perl Modules

ﬁ

*@%

é ,appb.27123 Page 783 Thursday, November 18, 2004 12:49 PM

*

* User management

* Easy database access

* Internationalization

* Error handling
Most of the base functionality of Apache: :iNcom is realized by using standard well-
known modules such as DBI for generic SQL database access, HTML: :Embperl for

dynamic page generation, Apache::Session for session management, mod_perl for
Apache integration, and Locale: :Maketext for localization.

Here are its assumptions:

* Datais held in a SQL database that supports transactions.
* The user interface is presented using HTML.

* Sessions are managed through cookies.

Available from CPAN. See the module manpage for more information.

Apache::Mason—Perl-Based Web Site Development and

Delivery System

Apache: :Mason allows web pages and sites to be constructed from shared, reusable
building blocks called components. Components contain a mixture of Perl and
HTML and can call each other and pass values back and forth like subroutines.
Components increase modularity and eliminate repetitive work: common design ele-
ments (headers, footers, menus, logos) can be extracted into their own components,
so that they need be changed only once to affect the whole site.

Other Mason features include powerful filtering and templating facilities, an HTML/
data-caching model, and a web-based site-previewing utility.

Available from CPAN and http://www.masonhq.com/. See the module manpage for
more information.

Apache::PageKit—Web Applications Framework

Apache: :PageKit is a web applications framework that is based on mod_perl. This
framework is distinguished from others (such as Embperl and Mason) by providing a
clear separation of programming, content, and presentation. It does this by imple-
menting a Model/View/Content/Controller (MVCC) design paradigm:

* Model is implemented by user-supplied Perl classes

* View is a set of HTML templates

* Content is a set of XML files

* Controller is PageKit

Toolkits and Frameworks for Content-Generation and Other Phases | 783

%

ﬁ

*@%

é ,appb.27123 Page 784 Thursday, November 18, 2004 12:49 PM

*

This allows programmers, designers, and content editors to work independently,
using clean, well-defined interfaces.

Apache: :PageKit provides the following features:

* Component-based architecture
* Language localization

* Session management

* Input validation

* Sticky HTML forms

* Authentication

* Co-branding

* Automatic dispatching of URIs

* Easy error handling

Available from CPAN. See the module manpage for more information.

Template Toolkit—Template Processing System

The Template Toolkit is a collection of modules that implements a fast, flexible,
powerful, and extensible template processing system. It was originally designed for
generating dynamic web content, but it can be used equally well for processing any
other kind of text-based documents (HTML, XML, POD, PostScript, LaTeX, etc.).

It can be used as a standalone Perl module or embedded within an Apache/mod_perl
server for generating highly configurable dynamic web content. A number of Perl
scripts are also provided that can greatly simplify the process of creating and manag-
ing static web content and other offline document systems.

The Apache: :Template module provides a simple mod_perl interface to the Template
Toolkit.

Available from CPAN. It’s covered in Appendix D and at http://tt2.org/.
Output Filters and Layering Modules

Apache::OutputChain—Chain Stacked Perl Handlers

Apache: :OutputChain was written to explore the possibilities of stacked handlers in
mod_perl. It ties STDOUT to an object that catches the output and makes it easy to
build a chain of modules that work on the output data stream.

Examples of modules that are built using this idea are Apache::SSIChain, Apache::
GzipChain, and Apache: :EmbperlChain—the first processes the SSIs in the stream, the
second compresses the output on the fly, and the last provides Embperl processing.

784 | AppendixB: Apache Perl Modules

*@%

4~ 4

é ,appb.27123 Page 785 Thursday, November 18, 2004 12:49 PM

The syntax is like this:

<Files *.html>
SetHandler perl-script
PerlHandler Apache::OutputChain Apache::SSIChain Apache::PassHtml
</Files>
The modules are listed in reverse order of their execution—here the Apache::
PassHtml module simply collects a file’s content and sends it to STDOUT, and then it’s
processed by Apache::SSIChain, which sends its output to STDOUT again. Then it’s
processed by Apache: :OutputChain, which finally sends the result to the browser.

An alternative to this approach is Apache: :Filter, which has a more natural forward
configuration order and is easier to interface with other modules.

Apache: :OutputChain works with Apache: :Registry as well. For example:

Alias /foo /home/httpd/perl/foo
<Location /foo>
SetHandler "perl-script”
Options +ExecCGI
PerlHandler Apache::OutputChain Apache::GzipChain Apache::Registry
</Location>
It’s really a regular Apache::Registry setup, except for the added modules in the
PerlHandler line.

Available from CPAN. See the module manpage for more information.

Apache::Clean—mod_ perl Interface Into HTML::Clean

Apache: :Clean uses HTML: :Clean to tidy up large, messy HTML, saving bandwidth. It
is particularly useful with Apache: :Compress for maximum size reduction.

Available from CPAN. See the module manpage for more information.

Apache::Filter—Alter the Output of Previous Handlers

In the following configuration:

<Files ~ "*\.fltr">
SetHandler perl-script
PerlSetVar Filter On
PerlHandler Filteri Filter2 Filter3
</Files>
each of the handlers Filter1, Filter2, and Filter3 will make a call to $r->filter
input (), which will return a file handle. For Filteri, the file handle points to the
requested file. For Filter2, the file handle contains whatever Filteri wrote to
STDOUT. For Filter3, it contains whatever Filter2 wrote to STDOUT. The output of
Filter3 goes directly to the browser.

Available from CPAN. See the module manpage for more information.

Output Filters and Layering Modules | 785

- ad

é ,appb.27123 Page 786 Thursday, November 18, 2004 12:49 PM

Apache::GzipChain—Compress HTML (or Anything) in the
OutputChain

Covered in Chapter 13.

Available from CPAN. See the module manpage for more information.

Apache::PassFile—Send File via OutputChain

See Apache: :GzipChain. It’s a part of the same package as Apache: :GzipChain.

Apache::Gzip—Auto-Compress Web Files with gzip
Similar to Apache: :GzipChain but works with Apache: :Filter.

This configuration:

PerlModule Apache::Filter
<Files ~ "*\.html">
SetHandler perl-script
PerlSetVar Filter On
PerlHandler Apache::Gzip
</Files>

will send all the *html files compressed if the client accepts the compressed input.

And this one:

PerlModule Apache::Filter
Alias /home/http/perl /perl
<Location /perl>
SetHandler perl-script
PerlSetVar Filter On
PerlHandler Apache::RegistryFilter Apache::Gzip
</Location>

will compess the output of the Apache: :Registry scripts. Note that you should use
Apache: :RegistryFilter instead of Apache: :Registry for this to work.

You can use as many filters as you want:

PerlModule Apache::Filter
<Files ~ "*\.fltr">

SetHandler perl-script

PerlSetVar Filter On

PerlHandler Filter1 Filter2 Apache::Gzip
</Files>

You can test that it works by either looking at the size of the response in the access.log
file or by telnet:
panic% telnet localhost 8000

Trying 127.0.0.1
Connected to 127.0.0.1

786 | AppendixB: Apache Perl Modules

- ad

é ,appb.27123 Page 787 Thursday, November 18, 2004 12:49 PM

*

Escape character is '"]'.
GET /perl/test.pl HTTP 1.1
Accept-Encoding: gzip
User-Agent: Mozilla

You will get the data compressed if it’s configured correctly.

Apache::Compress—Auto-Compress Web Files with gzip

This module lets you send the content of an HTTP response as gzip-compressed
data. Certain browsers (e.g., Netscape and IE) can request content compression via
the Content-Encoding header. This can speed things up if you’re sending large files to
your users through slow connections.

Browsers that don’t request gzipped data will receive uncompressed data.

This module is compatibile with Apache: :Filter, so you can compress the output of
other content generators.

Available from CPAN. See the module manpage for more information.

Apache::Layer—Layer Content Tree Over One or More
Others

This module is designed to allow multiple content trees to be layered on top of each
other within the Apache server.

Available from CPAN. See the module manpage for more information.

Apache::Sandwich—Layered Document (Sandwich) Maker

The Apache: :Sandwich module allows you to add per-directory custom “header” and
“footer” content to a given URL Works only with GET requests. Output of combined
parts is forced to text/html. The handler for the sandwiched document is specified by
the SandwichHandler configuration variable. If it is not set, default-handler is used.

The basic concept is that the concatenation of the header and footer parts with the
sandwiched file in between constitutes a complete valid HTML document.

Available from CPAN. See the module manpage for more information.

Apache::SimpleReplace—Simple Template Framework

Apache: :SimpleReplace provides a simple way to insert content within an established
template for uniform content delivery. While the end result is similar to Apache::
Sandwich, Apache: :SimpleReplace offers two main advantages:

* It does not use separate header and footer files, easing the pain of maintaining
syntactically correct HTML in separate files.

Output Filters and Layering Modules | 787

%

ﬁ

*@%

é ,appb.27123 Page 788 Thursday, November 18, 2004 12:49 PM

*

.

* Itis Apache::Filter aware, so it can both accept content from other content han-
dlers and pass its changes on to others later in the chain.

Available from CPAN. See the module manpage for more information.

Apache::SSI—Implement Server-Side Includes in Perl

Apache: :SSI implements the functionality of mod_include for handling server-parsed
HTML documents. It runs under Apache’s mod_perl.

There are two main reasons you might want to use this module: you can subclass it
to implement your own custom SSI directives, and you can parse the output of other
mod_perl handlers or send the SSI output through another handler (use Apache::
Filter to do this).

Available from CPAN. See the module manpage for more information.

Logging-Phase Handlers

Apache::RedirectLogFix—Correct Status While Logging

Because of the way mod_perl handles redirects, the status code is not properly
logged. The Apache: :RedirectLogFix module works around this bug until mod_perl
can deal with this. All you have to do is to enable it in the httpd.conf file.

PerllLogHandler Apache::RedirectlLogFix

For example, you will have to use it when doing:
$r->status(304);

and do some manual header sending, like this:

$r->status(304);
$r->send_http header();

Available from the mod_perl distribution. See the module manpage for more
information.

Apache::DBILogConfig—Logs Access Information in a DBI
Database

This module replicates the functionality of the standard Apache module mod_log_
config but logs information in a DBI-compatible database instead of a file.

Available from CPAN. See the module manpage for more information.

788 | AppendixB: Apache Perl Modules

%

-t

.

é ,appb.27123 Page 789 Thursday, November 18, 2004 12:49 PM

*

Apache::DBILogger—Tracks What's Being Transferred in a
DBI Database

This module tracks what’s being transferred by the Apache web server in SQL data-
base (everything with a DBI/DBD driver). This allows you to get statistics (of almost
everything) without having to parse the log files (as with the Apache::Traffic mod-
ule, but using a “real” database, and with a lot more logged information).

After installation, follow the instructions in the synopsis and restart the server. The
statistics are then available in the database.

Available from CPAN. See the module manpage for more information.

Apache::DumpHeaders—Watch HTTP Transaction via
Headers

This module is used to watch an HTTP transaction, looking at the client and server
headers. With Apache: :ProxyPassThru configured, you can watch your browser talk
to any server, not just the one that is using this module.

Available from CPAN. See the module manpage for more information.

Apache::Traffic—Track Hits and Bytes Transferred on a Per-
User Basis

This module tracks the total number of hits and bytes transferred per day by the
Apache web server, on a per-user basis. This allows for real-time statistics without
having to parse the log files.

After installation, add this to your server’s httpd.conf file:
PerllogHandler Apache::Traffic

and restart the server. The statistics will then be available through the traffic script,
which is included in the distribution.

Available from CPAN. See the module manpage for more information.

Core Apache Modules

Apache::Module—Interface to Apache C Module Structures

This module provides an interface to the list of Apache modules configured with
your httpd server and their module * structures.

Available from CPAN. See the module manpage for more information.

Core Apache Modules | 789

%

-t

.

é ,appb.27123 Page 790 Thursday, November 18, 2004 12:49 PM

*

Apache::ShowRequest—Show Phases and Module
Participation

Part of the Apache: :Module package. This module allows you to see the all phases of
the request and what modules are participating in each of the phases.

Available from CPAN. See the module manpage for more information.

Apache::SubProcess—Interface to Apache Subprocess API

The output of system(), exec(), and open(PIPE," |program") calls will not be sent to
the browser unless your Perl interpreter was configured with sfio.

One workaround is to use backticks:
print “command here’;

But a cleaner solution is provided by the Apache: : SubProcess module. It overrides the
exec() and system() calls with calls that work correctly under mod_perl.

Let’s look at a few examples. This example overrides the built-in system() function
and sends the output to the browser:
use Apache::SubProcess quw(system);

my $r = shift;
$r->send_http_header('text/plain');

system "/bin/echo hi there";

This example overrides the built-in exec() function and sends the output to the
browser. As you can guess, the print statement after the exec() call will never be
executed.

use Apache::SubProcess qu(exec);

my $r = shift;
$r->send_http header('text/plain');

exec "/usr/bin/cal";

print "NOT REACHED\n";

The env() function sets an environment variable that can be seen by the main pro-
cess and subprocesses, then it executes the /bin/env program via call exec(). The
main code spawns a process, and tells it to execute the env() function. This call
returns an output file handle from the spawned child process. Finally, it takes the
output generated by the child process and sends it to the browser via send fd(),
which expects the file handle as an argument:

use Apache::SubProcess ();

my $r = shift;
$r->send_http_header('text/plain');

790 | AppendixB: Apache Perl Modules

*@%

4~ 4

é ,appb.27123 Page 791 Thursday, November 18, 2004 12:49 PM

my $efh = $r->spawn_child(\&env);
$r->send_fd($efh);

sub env {
my $fh = shift;
$fh->subprocess_env(HELLO => 'world');
$fh->filename("/bin/env");
$th->call exec;

}

This example is very similar to the previous example, but it shows how you can pass
arguments to the external process. It passes the string to print as a banner via a sub-
process:

use Apache::SubProcess ();
my $r = shift;
$r->send_http header('text/plain');

my $th = $r->spawn_child(\8&banner);
$r->send fd($fh);

sub banner {
my $fh = shift;
/usr/games/banner on many Unices
$th->filename("/usr/bin/banner");
$fh->args("-wa0+Hello%20World");
$th->call _exec;

}

The last example shows how you can have full access to the STDIN, STDOUT, and
STDERR streams of the spawned subprocess, so that you can pipe data to a program
and send its output to the browser:

use Apache: :SubProcess ();
my $r = shift;
$r->send_http header('text/plain');

use vars qw($string);

$string = "hello world";

my($out, $in, $err) = $r->spawn_child(\&echo);
print $out $string;

$r->send fd($in);

sub echo {
my $th = shift;
$fh->subprocess_env(CONTENT_LENGTH => length $string);
$fth->filename("/tmp/pecho”);
$th->call exec;

}

The echo() function is similar to the earlier example’s env(') function. /tmp/pecho is
as follows:
#!/usr/bin/perl

read STDIN, $buf, $ENV{CONTENT LENGTH};
print "STDIN: '$buf' ($ENV{CONTENT LENGTH})\n";

Core Apache Modules | 791

4~ ~4]e

é ,appb.27123 Page 792 Thursday, November 18, 2004 12:49 PM

*

.

In the last example, a string is defined as a global variable, so its length could be cal-
culated in the echo(') function. The subprocess reads from STDIN, to which the main
process writes the string (“hello world”). It reads only the number of bytes specified
by the CONTENT_LENGTH environment variable. Finally, the external program prints the
data that it read to STDOUT, and the main program intercepts it and sends it to the cli-
ent’s socket (i.e., to the browser).

This module is also discussed in Chapter 10.

Available from CPAN. See the module manpage for more information.

Apache::Connection—Interface to the Apache conn_rec
Data Structure

This module provides the Perl interface to the conn_rec data structure, which
includes various records unique to each connection, such as the state of a connec-
tion, server and base server records, child number, etc. See include/httpd.h for a com-
plete description of this data structure.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::Constants—Constants Defined in httpd.h

Server constants (0K, DENIED, NOT_FOUND, etc.) used by Apache modules are defined in
httpd.h and other header files. This module gives Perl access to those constants.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::ExtUtils—Utilities for Apache C/Perl Glue

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::File—Advanced Functions for Manipulating Files
on the Server Side

Apache::File does two things. First, it provides an object-oriented interface to file
handles, similar to Perl’s standard I0::File class. While the Apache::File module
does not provide all the functionality of I0::File, its methods are approximately
twice as fast as the equivalent I0::File methods. Secondly, when you use Apache::
File, it adds to the Apache class several new methods that provide support for han-
dling files under the HTTP/1.1 protocol.

792 | AppendixB: Apache Perl Modules

%

-t

.

é ,appb.27123 Page 793 Thursday, November 18, 2004 12:49 PM

*

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::Log—Interface to Apache Logging

The Apache::Log module provides an interface to Apache’s ap log error() and
ap_log rerror() routines.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::LogFile—Interface to Apache’s Logging Routines

The PerllogFile directive from this package can be used to hook a Perl file handle to
a piped logger or to a file open for appending. If the first character of the filename is
a “|”, the file handle is opened as a pipe to the given program. The file or program
can be relative to the ServerRoot.

So if httpd.conf contains these settings:

PerIModule Apache::LogFile
PerllLogFile |perl/mylogger.pl My::Logger

in your code you can log to the My: : Logger file handle:
print My::Logger "a message to the Log"
and it’ll be piped through the perl/mylogger.pl script.

Available from CPAN. See the module manpage for more information.

Apache::Scoreboard—Perl Interface to Apache’s
scoreboard.h

Apache keeps track of server activity in a structure known as the scoreboard. There is
a slot in the scoreboard for each child server, containing information such as status,
access count, bytes served, and CPU time. This information is also used by mod_sta-
tus to provide server statistics in a human-readable form.

Available from CPAN. See the module manpage for more information.

Apache::Server—Perl Interface to the Apache server_rec
Struct

The Apache::Server class contains information about the server’s configuration.
Using this class it’s possible to retrieve any data set in httpd.conf and <Perl> sections.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Core Apache Modules | 793

%

-t

.

é ,appb.27123 Page 794 Thursday, November 18, 2004 12:49 PM

*

.

Apache::Table—Perl Interface to the Apache Table Struct

This module provides tied interfaces to Apache data structures. By using it you can
add, merge, and clear entries in headers_in, headers_out, err_headers_out, notes, dir_
config, and subprocess_env.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::URI—URI Component Parsing and Unparsing

This module provides an interface to the Apache util uri module and the uri_
components structure. The available methods are: parsed uri(), parse(), unparse(),
scheme (), hostinfo(), user(), password(), hostname(), port(), path(), rpath(),
query(), and fragment().

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::Util—Perl Interface to Apache C Utility Functions

This module provides a Perl interface to some of the C utility functions available in
Apache. The same functionality is avaliable in libwww-perl, but the C versions are
faster: escape_html(), escape uri(), unescape uri(), unescape uri_info(),
parsedate(), ht time(), size string(), and validate password().

Supplied with the mod_perl distribution. See the module manpage for more
information.

Other Miscellaneous Modules

Apache::Session—Maintain Session State Across HTTP
Requests

This module provides mod_perl with a mechanism for storing persistent user data in
a global hash, which is independent of the underlying storage mechanism. Currently
it supports storage in standard files, DBM files, or a relational database using DBI.
Read the manpage of the mechanism you want to use for a complete reference.

Apache: :Session provides persistence to a data structure. The data structure has an
ID number, and you can retrieve it by using the ID number. In the case of Apache,
you would store the ID number in a cookie or the URL to associate it with one
browser, but how you handle the ID is completely up to you. The flow of things is
generally:

794 | AppendixB: Apache Perl Modules

%

-t

.

é ,appb.27123 Page 795 Thursday, November 18, 2004 12:49 PM

Tie a session to Apache::Session.
Get the ID number.
Store the ID number in a cookie.
End of Request 1.

(time passes)

Get the cookie.

Restore your hash using the ID number in the cookie.
Use whatever data you put in the hash.

End of Request 2.

Using Apache: :Session is easy: simply tie a hash to the session object, put any data
structure into the hash, and the data you put in automatically persists until the next
invocation. Example B-1 is an example that uses cookies to track the user’s session.

Example B-1. session.pl

pull in the required packages
use Apache::Session::MySOL;
use Apache;

use strict;

read in the cookie if this is an old session
my $r = Apache->request;

my $cookie = $r->header in('Cookie');

$cookie =~ s/SESSION ID=(\w+)/$1/;

create a session object based on the cookie we got from the
browser, or a new session if we got no cookie
my %session;
eval {
tie %session, 'Apache::Session::MySQL', $cookie,
{DataSource => 'dbi:mysqgl:sessions’,
UserName => $db_user,
Password => $db_pass,
LockDataSource => 'dbi:mysql:sessions’,
LockUserName => $db_user,
LockPassword => $db pass,

};
};
if (s@) {
could be a database problem
die "Couldn't tie session: $@";
}

might be a new session, so let’s give them their cookie back
my $session _cookie = "SESSION ID=$session{ session id};";
$r->header out("Set-Cookie" => $session cookie);

Other Miscellaneous Modules | 795

é ,appb.27123 Page 796 Thursday, November 18, 2004 12:49 PM

*

After %session is tied, you can put anything but file handles and code references into
$session{ session_id};, and it will still be there when the user invokes the next
page.

It is possible to write an Apache authentication handler using Apache: :Session. You
can put your authentication token into the session. When a user invokes a page, you
open his session, check to see if he has a valid token, and authenticate or forbid
based on that.

An alternative to Apache::Session is Apache::ASP, which has session-tracking abili-
ties. HTML: :Embperl hooks into Apache: :Session for you.

Available from CPAN. See the module manpage for more information.

Apache::RequestNotes—Easy, Consistent Access to Cookie
and Form Data Across Each Request Phase

Apache: :RequestNotes provides a simple interface allowing all phases of the request
cycle access to cookie or form input parameters in a consistent manner. Behind the

scenes, it uses libapreq (Apache::Request) functions to parse request data and puts
references to the data in pnotes().

Once the request is past the PerlInitHandler phase, all other phases can have access
to form input and cookie data without parsing it themselves. This relieves some
strain, especially when the GET or POST data is required by numerous handlers along
the way.

Available from CPAN. See the module manpage for more information.

Apache::Cookie—HTTP Cookies Class

The Apache: :Cookie module is a Perl interface to the cookie routines in libapreq. The
interface is based on the CGI::Cookie module.

Available from CPAN. See the module manpage for more information.

Apache::lcon—Look Up Icon Images

This module rips out the icon guts of mod_autoindex and provides a Perl interface
for looking up icon images. The motivation is to piggy-back the existing AddIcon and
related directives for mapping file extensions and names to icons, while keeping
things as small and fast as mod_autoindex does.

Available from CPAN. See the module manpage for more information.

796 | AppendixB: Apache Perl Modules

*@%

4~ 4

é ,appb.27123 Page 797 Thursday, November 18, 2004 12:49 PM

*

Apache::Include—Utilities for mod_perl/mod_include
Integration

The Apache: : Include module provides a handler, making it simple to include Apache: :
Registry scripts with the mod_include Perl directive.

Apache: :Registry scripts can also be used in mod_include-parsed documents using a
virtual include.

The virtual() method may be called to include the output of a given URI in your
Perl scripts. For example:

use Apache::Include ();
print "Content-type: text/html\n\n";

print "before include\n";

my $uri = "/perl/env.pl”;

Apache: :Include->virtual($uri);

print "after include\n";
The output of the perl CGI script located at /perl/env.pl will be inserted between the
“before include” and “after include” strings and printed to the client.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::Language—Perl Transparent Language Support
for Apache Modules and mod_ perl Scripts

The goal of this module is to provide a simple way for mod_perl module writers to
include support for multiple language requests.

An Apache: :Language object acts like a language-aware hash. It stores key/language/
value triplets. Using the Accept-Language header field sent by the web client, it can
choose the most appropriate language for the client. Its usage is transparent to the
client.

Available from CPAN. See the module manpage for more information.

Apache::Mmap—~Perl Interface to the mmap(2) System Call

The Apache: :Mnap module lets you use mmap to map in a file as a Perl variable rather
than reading the file into dynamically allocated memory. It works only if your OS
supports Unix or POSIX.1b mmap (). Apache: :Mmap can be used just like Mmap under
mod_perl.

Available from CPAN. See the module manpage for more information.

Other Miscellaneous Modules | 797

-t

.

é ,appb.27123 Page 798 Thursday, November 18, 2004 12:49 PM

*

Apache::GD::Graph—Generate Graphs in an Apache
Handler

The primary purpose of this module is to provide a very easy-to-use, lightweight, and
fast charting capability for static pages, dynamic pages, and CGI scripts, with the
chart-creation process abstracted and placed on any server.

Available from CPAN. See the module manpage for more information.

Apache::Motd—Provide motd (Message of the Day)
Functionality to a Web Server

This module provides an alternative and more efficient method of notifying your web
users of potential downtime or problems affecting your web server and web services.

Available from CPAN. See the module manpage for more information.

Apache::ParseLog—Object-Oriented Perl Extension for
Parsing Apache Log Files

Apache: :Parselog provides an easy way to parse the Apache log files, using object-
oriented constructs. The module is flexible, and the data it generates can be used for
your own applications (CGI scripts, simple text-only report generators, feeding an
RDBMS, data for Perl/Tk-based GUI applications, etc.).

Available from CPAN. See the module manpage for more information.

Apache::RegistryLoader—Compile Apache::Registry Scripts
at Server Startup
Covered in Chapter 13.

Supplied with the mod_perl distribution. See the module manpage for more
information.

Apache::SIG—Override Apache Signal Handlers with Perl’s
Signal Handlers

Covered in Chapter 6.

Supplied with the mod_perl distribution. See the module manpage for more
information.

798 | AppendixB: Apache Perl Modules

%

-t

.

é ,appb.27123 Page 799 Thursday, November 18, 2004 12:49 PM

*

Apache::-TempFile—Allocate Temporary Filenames for the
Duration of a Request

This module provides unique paths for temporary files and ensures that they are
removed when the current request is completed.

Available from CPAN. See the module manpage for more information.

Xmms—~Perl Interface to the xmms Media Player

A collection of Perl interfaces for the xmms media player. Includes a module that
allows you to control xmms from the browser. mod_perl generates a page with an
index of available MP3 files and control buttons. You click on the links and xmms
plays the files for you.

Available from CPAN. See the module manpage for more information.

Module::Use—Log and Load Used Perl Modules

Module: :Use records the modules used over the course of the Perl interpreter’s life-
time. If the logging module is able, the old logs are read and frequently used mod-
ules are loaded automatically.

For example, if configured as:

<Perl>
use Module::Use (Counting, Logger => "Debug");
</Perl>

PerlChildExitHandler Module::Use

it will record the used modules only when the child exists, logging everything (debug
level).

Other Miscellaneous Modules | 799

-t

.

