Congestion Control, Traffic Management and QoS (Lecture 4)

Scribed by Matt Fichman

Congestion Avoidance and Control (V. Jacobson and M. J. Karels)

Summary

In this paper, the author retrospectively outlines seven algorithms used to improve TCP and prevent congestive network collapse.  Specifically, the techniques are better RTT variance estimation, exponential retransmit timer backoff, slow start, aggressive receiver ACK policy, dynamic window sizing during congestion, clamped retransmit backoff, and fast retransmit.  The author explains that the reasoning behind many of these algorithms is the concept of “packet conservation,” which states that new packets should not enter the network until old ones have left.  Three cases are given for the failure of packet conservation:  1) when the connection never reaches equilibrium, 2) when the sender injects packets before older packets have left the network, and 3) when equilibrium can’t be reached due to limited resources.

Problem 1 above is solved by the slow start mechanism, which doubles the window size with each received ACK until a timeout occurs.  This exponential increase quickly brings the window size close to the maximum size for the connection.

Problems 2 and 3 begin to be solved through the congestion avoidance mechanism of TCP, which uses packet loss to signal congestion.   When ACKs are received, additive increase in the window size is used to make sure the connection reaches equilibrium.  When packets are dropped, a multiplicative decrease is used to act as a damping effect and to ensure that senders do not overwhelm the network.

Opinion

I feel that this paper is a prime example of TCP’s evolution through tinkering.  TCP was not designed all at once; rather, small improvements were made to fix TCP’s behavior under certain conditions.  For example, multiplicative window decrease and exponential retransmit backoff were employed to fight the rising cascade of packets that can occur during congestive collapse.  Likewise, the “slow start” was added to TCP so that the sender could quickly probe for the bandwidth of the bottleneck link.  I believe that many of these improvements only became necessary as TCP began to be used more frequently under a variety of network conditions, and therefore it would have been very difficult to directly design a protocol like TCP.

Overview of Issues with TCP (Nandita Dukkipati)

Summary

This paper begins with a general description of TCP and explains its use in the congestion control of networks.  Several flavors of the TCP protocol are described, including Tahoe, Reno, NewReno, and SACK.  Using this as background, the author launches into a list of problems with TCP, including: 1) additive increase takes too long to reach the maximum bandwidth on high bandwidth links, 2) on high-bandwidth links, loss probability must be very low to maintain a high throughput, 3) TCP does not perform under lossy conditions due to its use of dropped packets as a congestion indicator, 4) TCP does not share links fairly when the RTTs of flows are of different magnitudes, 5) slow starts makes short flows last artificially long, and 6) TCP always fills available buffers, which increases latency.

From these problems, a wish list of properties for a good congestion control algorithm is given.   Properties include processor-like sharing of link capacity, stability, low buffer occupancy for low latency, efficiency for long haul links (which TCP already provides), and little to no per-flow/per-packet computation.

Opinion

I think that this reading nicely summarizes the overarching issues of congestion control.  It outlines clearly where TCP succeeds and fails in congestion control, and hints at suggestions for improvement.  I also felt that RCP and the eXplicit Control Protocol (a TCP alternative described in the reading) could provide more control than TCP currently does.  However, they seem to violate the end-to-end argument by advocating more packet-processing inside routers.  I feel that the relative simplicity of IP routers today is the reason for their wide adoption, and that the more expensive network equipment needed to implement RCP and eXplicit could adversely limit their deployment.

What Really Happens with TCP (Guido Appenzeller)

Summary

This reading analyzes in detail the characteristics of a single flow through a buffered router.   It attempts to determine the reason behind the router buffer sizing metric on bottleneck links (given as the RTT times the link capacity).  Furthermore, the reading explains the situation that occurs with under- and over-buffered routers.  In essence, the router must be large enough to absorb the window size fluctuation characteristic of TCP’s “sawtooth” while at the same time remaining small enough to keep latency down.

With an undersized buffer, the bottleneck link falls below 100% utilization during TCP’s multiplicative decrease.  This happens because the buffer empties while the sender waits for the number of outstanding packets to drop below the window size.

With an oversized buffer, the sender will fill the buffer to capacity, and following the multiplicative decrease, the buffer will not completely empty.   This causes an increase in the queuing delay at the router.  It causes TCP to operate at the wrong send-rate; i.e., the oversized buffer is not a good indicator of the proper send rate.

The analysis in this paper was done by accounting for packets in one of three states: in transit, queued, and dropped.

Opinion

I believe that this reading makes good intuitive sense.  It also provides the reader with a reliable explanation for the effects of buffer sizing.  It makes a good argument against over-buffering, which can increase latency to the point that interactive applications (like video conferencing and voice communications) become impossible.  It was also interesting to read the survey of previous work at the end of the chapter, which included work related to the more complex case of multiple flows.  I also feel that this reading is accurate in this depiction, because many TCP connections are made through a bottleneck link to ISP’s first router (in a residential area) and share the link with very few other connections.

Class Discussion

The class began with the realization that TCP’s challenge is to provide good congestion control with only subtle hints (such as dropped packets and RTT).  We discussed the fact that under certain conditions TCP fails, despite all the progress that has been made in improving TCP.  Examples discussed were poor TCP implementations, and BitTorrent applications, which game the TCP protocol by opening many parallel TCP links to gain an unfair share of the bandwidth.

We observed the fact that many overlapping TCP connections – each individually a sawtooth – result in “white noise” in terms of network load, which seems to make Random Early Detection (RED) unnecessary.  In other words, routers seem to already drop packets randomly as congestion increases.

We discussed the fact that TCP varies wildly across platforms (Linux, Windows, etc.), the fact that many different flavors exist, and the many TCP tuning options.

In class it was made clear that the sending rate is dependent upon the RTT and the window size, as R = W/RTT = W/(Q/C + Tprop), where Q is the queue size and C is the link capacity.  Thus there are three ways to throttle the send rate of a TCP connection: 1) decrease the window size, 2) increase the RTT (by delaying ACKs, for example), and 3) increase the queue length.

Finally, after discussing all the papers, it was state that TCP was not “designed”: it was “patched” over time with different algorithms to deal with different network conditions.  This, perhaps, is the reason for the many different TCP flavors and tuning parameters.

