
WWW Applications for an Internet Integrated Service Architecture

T. V. Do, B. Kálmán, Cs. Király, Zs. Mihály, Zs. Molnár, Zs. Pándi

Department of Telecommunications
Technical University of Budapest

Fax: +36 1 4633263
Email: do@hit.bme.hu, s8659pan@ural2.hszk.bme.hu

Pázmány Péter sétány 1/D, Budapest, Hungary

Abstract

The IP protocol suite based Internet provides a
number of useful telecommunication services, therefore
every day the number of hosts connected to Internet
grows at an unprecedented rate. However, the Internet
itself does not guarantee any Quality of Service (QoS) for
user flows, which prevents the provision of good quality
for applications over wide area. This fact leads to the
development of the Integrated Service Architecture
(based on the use of the Resource Reservation Protocol-
RSVP) and recently the Differentiated Service
Architecture. At present a vast number of vendors
provide RSVP capable routers to build an IP Integrated
Service network, therefore the acceptance of the Internet
Integrated Service concept strongly depends on
applications which are capable to request QoS.

This paper presents a solution to incorporate the
RSVP protocol into the architecture of existing WWW
applications, which are the most popular ones on
Internet today. The proposed architecture is flexible
enough to be applied with any Web browser and the Web
server as well. The first software version of the proposed
architecture has been released.

Keywords: WWW, proxy, IntServ, QoS, RSVP

1. Introduction

The IP protocol suite based Internet provides a
number of useful telecommunication services, therefore
every day the number of hosts connected to Internet
grows at an unprecedented rate. However, the Internet
itself does not guarantee any Quality of Service (QoS) for
user flows, which prevents the provision of good quality
for applications over wide area. This fact leads to the
development of the Integrated Service Architecture
(based on the use of the Resource Reservation Protocol —
RSVP) and recently the Differentiated Service
Architecture [1,2]. The Integrated Service Architecture

defines several service classes that, if supported by the
routers traversed by a data flow, can provide the data
flow with certain QoS commitments. The level of QoS
provided by these enhanced QoS classes is programmable
on a per-flow basis according to requests from the end
applications. These requests can be passed to the routers
by network management procedures or, more commonly,
using a reservation protocol such as RSVP which was
designed to enable the senders, receivers, and routers of
communication sessions (either multicast or unicast) to
communicate with each other in order to set up the
necessary router state to support the services [1].

At present a vast number of vendors provide
RSVP capable routers to build an IP Integrated Service
network, therefore the acceptance of the Internet
Integrated Service concept strongly depends on
applications which are capable to request QoS.

This paper presents a solution to incorporate the
RSVP protocol into the architecture of existing WWW
applications. The motivation for choosing Web is that
Web based applications (downloading file using the
HTTP protocol, playing audio or video streams) belong to
the category of the most widely used applications on the
Internet today. The proposed architecture consists of a
forwarding proxy, a QoS console and a QoS broker with
an RSVP daemon. Moreover it is general enough to be
used with different Web browsers and Web servers as
well.

The paper is organised as follows. Section 2
describes a proposed system architecture. Section 3
provides further details on the QoS console. A
forwarding proxy is discussed in Section 4. Section 5
describes the functionality of the QoS broker. Section 6
provides a conclusion of this paper.

2. System architecture

2.1 Elements of the architecture

When something new is integrated into an
existing architecture, it is important to introduce the
fewest possible modifications of the existing elements.
Therefore an architecture for an integrated Web
application is proposed in Figure 1. The system
architecture for serving QoS requests consists of the
following entities:

• Proxy: The architecture is based on the fundamental
fact of the HTTP protocol specification [3], which
enables one or more intermediaries to be present in
the request/response chain. The most common form
of an intermediary is a proxy. A proxy is a
forwarding agent, receiving requests for a URL in its
absolute form, rewriting all or part of the message,
and forwarding the reformatted request toward the
server identified by the URL. The proxy module
translates requests coming from a Web browser,
accepts and interprets user commands from the QoS
console to communicate with an RSVP daemon
about the QoS settings and to inform the QoS broker
on the requirements of the user.

BROKER

BROWSER
(WEB

C L I E N T)

Q o S
CONSOLE

WEB
S E R V E R

PROXY

RSVP
DAEMON

RSVP
DAEMON

Q o S
SERVER

C L I E N T S I D E S E R V E R S I D E

T C P T C P

T C P

T C P

Figure 1

• The QoS console is a JAVA applet for controlling
the settings of a flowspec on the client side. This
module provides the graphical interface for the user
to specify the flowspec (service class, Tspec and
Rspec). The flowspec parameter will be transmitted
to the proxy. Moreover, all the information of living
TCP connections between the proxy and Web server
will be displayed, therefore the QoS console also

provides the opportunity to monitor and control
connections between the proxy and the Web server.

• The RSVP daemon is responsible for directing the
routers to satisfy the user’s requirements with the use
of RSVP. In this proposal we use the RSVP daemon
implementation from the USC Information Science
Institute [4].

• The QoS broker module communicates with the
proxy about the user requirements and communicates
with the RSVP daemon on the server side to direct it
to start creating QoS sessions. This module runs on
the same machine as the Web server program
(although it can be placed in a host on the same LAN
as the Web server is situated on). The proxy will
open a TCP connection to the QoS broker (the port
number is well-known for the QoS manager) and
send all the necessary data. The responsibility of the
QoS broker is to communicate with the RSVP
daemon in order to generate the PATH message. The
rationale behind the QoS broker is that the RSVP
specification is receiver-oriented and it requires the
sender to submit the PATH message [2].

Since QoS guarantee is often required between the
ingress and egress router along a path, any host in the
local LAN of the client can locate the proxy and any host
in the local LAN of the Web server can locate the broker.
If the browser and the proxy did not run in the same
machine, a problem related to the identification of the
user should be discussed and solved. In the first version
of our implementation, this problem is not considered.

2.2 QoS request

The procedure for QoS Web requests is
processed as follows:

1. The user configures his or her Web browser with the
IP address of the proxy host and the port number of
the proxy.

2. Then he or she starts a Web browser and downloads
a JAVA applet (the JAVA applet will start a QoS
console) which can be used for configuring flowspec
settings.

3. He or she then starts browsing the Web.

4. Upon the HTTP request of the user agent, the
browser sends an URL to the proxy. Then the proxy
opens a TCP connection to the Web server. The
proxy informs the QoS console about the connection
and the user can assign a predefined flowspec for the
TCP connection opened by the browser. The JAVA
console sends the assigned flowspec to the proxy.

Then, the proxy sends the flowspec, the proxy IP
address and port number, the server IP address and
port number to the QoS broker through the new TCP
connection between the proxy and the QoS broker.
Next, the QoS manager communicates with the
RSVP daemon to request QoS for the TCP
connection between the proxy and the Web server.

5. If the downloading of the document ends, the Web
server application will close the TCP connection.
The user can also interrupt the downloading: the
result is the same. The proxy clears the data about
this connection from its database, informs the JAVA
applet (to refresh its window), and also informs the
client-side RSVP daemon. The RSVP daemon then
tears down the path needed for the QoS request.

3. The QoS console (JAVA applet)

The QoS console provides a GUI in order to
inform the user on what is happening in the background
by making all the important events visible. Moreover, it
provides controlling opportunity for the user. It should be
absolutely user-friendly and foolproof. To make it more
useful it should be platform independent, too. The JAVA
language was an obvious selection for the implemen-
tation, because we can fulfill all the requirements by
using JAVA.

The JAVA applet opens a TCP connection to the
host it has just been downloaded from (thus no security
violations in the browser should occur). After the mutual
identification the console is going to be a passive
“display” until the user interacts somehow (see Figure 2).

Figure 2

Its task is to maintain a list of the active TCP
connections of the browser (members of this list are
records consisting of an URL and a client-side port

number) according to the data obtained from the proxy. It
accepts two kinds of updating messages: one for
signaling when a new connection is opened and one for
signaling when an old one is closed. The console is
always listening to the connection to the proxy and it
displays the data about the connections until it stops.

The user may interact with the QoS console in
two cases. He or she either modifies the current QoS
parameters or makes a QoS request using them.

The first case is much simpler, because the
reactions do not involve other parts of the proxy. In this
case the console shows a parameter-window, where the
settings can be altered (see Figure 3). These settings are
stored until the console stops, even though the parameter-
window is closed. In other words: there is always a
current QoS parameter set, which can be displayed and
altered by calling the parameter-window. To make the
setting of the parameters easier the console offers
parameter presets. If the parameter-window bothers the
user, it can be hidden after the first use, but it is also
capable of refining the parameters before each new
request as more experienced users might need it.

Figure 3

In the second case the user makes a request. The
console then becomes active; it forwards the current QoS
parameter settings to the proxy together with the data
about the selected connection. Its client-side port number
identifies the connection. Then the console goes back to
the passive state again. If a message arrives from the
proxy concerning the result of the request, the console
will notify the user about it. The console accepts two

more kinds of messages: one for signaling a successful
request and one for describing the error occurred.

There are some other things to take care of. The
console should handle the situation when the proxy closes
the TCP connection between itself and the console. It
should also recognize if it is the second instance running
on the same host (the proxy will tell the console, if it
finds a record in its database containing the same client
host address). Last, but not least the console should be as
robust as it can. The user and even the proxy should not
make it run abnormally in any case.

4. Functional blocks of a Web QoS proxy

 CPMESG

 DBSMESG

MODIFIED PROXY

CLIENT

RIP:RP

MSGQ1

SERVER

HTTP
SERVER

HTTP
BROWSER

QOS
CONSOLE

BROKER

DBS QoS MANAGERS

MSGQ2

DATABASE DATABASE

COPIERS

UIP:UP SIP:SP

RSVP
DAEMON

RSVP
DAEMON

Figure 4

To simplify the explanation we assume that the
proxy runs on the same machine as the browser, and the
browser is properly configured for using our proxy. Thus
the necessary communications between the proxy, the
browser and the console will happen inside the client
machine. Of course our proposal also allows the proxy to
be situated on another machine (e.g. a local server).

In what follows we describe the working
mechanism of the inner parts of the proxy in details. The
main task of the proxy is to listen to a well-known port
and to create a child process (called copier in the model)
for each TCP/IP connection opened by the browser. After
it is born, the copier sends a CPMESG to the message
queue called MSGQ1. (This queue is maintained by the
linux kernel, and is written only by the copiers and the
QoS managers.) The process called DBS (our DataBase
Server) reads the queue, and stores the content of the
CPMESG into its own database. The proxy does nothing
interesting (the TCP/IP packets pass through the copier
process) until the user starts our QoS console, indicating

that he or she wants to request some kind of QoS for an
active TCP/IP connection.

The QoS console will establish a TCP/IP
connection with the proxy (through a port number, which
is considered to be well-known for the QoS console).
This connection remains open until the QoS console
closes it, or the proxy detects that the QoS console has
died. The proxy handles this connection with another
child process, called the QoS manager. After a QoS
manager is born, it sends a QoSMMESG to MSGQ1 to
ask the DBS to send the details of the active TCP/IP
connections of the browser that runs on the same
machine as the console. (This is necessary, however in
the beginning the proxy will run on the same machine as
the browser.) The DBS uses MSGQ2 to send data to the
QoS managers about TCP/IP connections (DBSMESG).
It also uses DBSSIG to tell the QoS manager that it
should read MSGQ2 and test if it is still alive at the same
time. As we can see, the identification of the users is
done by their IP addresses: only one QoS console (on the
client side) and one QoS manager process (in the proxy)
runs for each IP address.

The task of the QoS manager is to represent the
console inside the proxy: to inform the QoS console and
to execute its commands.

The QoS console shows the list of the active
TCP/IP connections to the user, and allows him or her to
select an active connection (identified by the URL and
the client-side port number, called User Port) and request
QoS for it. The console sends the QoS details to the QoS
manager, and waits for possible error messages. The QoS
manager seeks in its database for the details of the
appropriate connection, and then establishes a TCP/IP
connection with the server-side broker. This small
process does nothing but reads the parameters of the
client-side QoS request through this connection, and
makes the server-side RSVP-daemon start sending
PATH_MSGs. Thus the sender-side part of the RSVP
session is initialized, and the rest is done on the client
side. This involves sending RSVP RESV_MSGs when
the path is ready for the RSVP session, and the necessary
initialization is done by the QoS manager via the RSVP
daemon. Finally, if everything goes well, the selected
TCP/IP connection gets the QoS, that was requested by
the user.

The intercommunication messages used between
the proxy and the other components of the system (the
QoS console and the broker) are in ASCII format. All
other messages that are used between inner components
of the proxy are in binary format.

4.1 Copiers

The task of the copier is to manage HTTP
requests of Web browsers, forwarding them to the
respective Web servers. Thus the copier has access to all
parameters needed for an RSVP session: i.e. to those of
HTTP requests and of the TCP connection between the
proxy and the Web server. The copier sends the required
parameters to the DBS.

 The copier consists of the following compo-
nents:

• copier parent: it waits for TCP connections on the
pre-defined port. When a Web browser initiates a
connection, it creates a new copier child process for
managing that connection. Then it waits for the next
connection.

• copier child: each copier child manages one single
TCP connection between a Web browser and the
proxy. It communicates through three channels:

• TCP connection from Web browser: for
HTTP/1.0 persistent connections and for
HTTP/1.1 several requests are allowed on a
single TCP connection. Those requests can refer
to several Web servers.

• TCP connection to Web server: the copier opens
this connection to the Web server requested.
When a new request arrives for the same server,
the TCP connection remains open. This is very
useful for RSVP, as no new session has then to
be initiated. If the request is for a new Web
server, the old TCP connection is closed and a
new one is opened.

• Message queue towards the DBS (MSGQ1).

The copier child works as follows: when started,
the copier gets the client side TCP connection from the
parent, and waits for data. It processes the first line of the
request that contains the URL including the name of the
Web server. Then it tries to open a TCP connection to the
Web server. If it fails, the browser is notified, and the
copier child terminates. If successful, the URL and the
parameters of the proxy — Web server connection are
sent to the DBS in a CCREATED message. Then the
copier sequentially processes the lines of the request
header, and sends them with necessary modifications to
the Web server. If the request contains a body as well, it
is also sent.

The copier child then receives and processes the
response, and forwards it to the Web browser. In case a
HTTP/1.0 connection is non-persistent, it sends a CDIED

message to the DBS, and immediately terminates. For
HTTP/1.1 or a HTTP/1.0 persistent connection, copier
child waits for further requests and/or responses. There
are three possibilities:

1. A CURL message is sent to the DBS if a new
response arrives.

2. A CDIED message is sent, when a request to a
different Web server arrives. The TCP connection to
the old server is closed, and the new one is opened.
Then a CCREATED message is sent with the
parameters of the new connection.

3. A CIDLE message is sent in any other case.

The copier child may terminate either because of
time-out or when the browser closes the TCP connection.

4.2 DBS

The tasks of the DBS are administering the
system components and managing the communication
between them. It has to maintain a database about all the
important data. Due to this, when a QoS manager is
created, it will know about all the previously opened but
still existing TCP connections of the user it is assigned
to.

The DBS watches the first message queue
(MSGQ1). When a valid message is received, the DBS
processes it. In any other case the message is dropped.

When updating the database, the DBS first of all
finds the record where it has to modify, insert or remove.
The key is the user IP address in commands sent by the
QoS manager, and user IP address and user port together
in commands sent by the copier. If the record does not
exist, or it already exists in case of an insert command,
the message is semantically wrong. The DBS drops it and
waits for the next message. The QCREATED (QoS
manager created) is a special command. If a QoS
manager already exists with the specified IP address, the
DBS has to kill the new QoS manager immediately.

If the command was a TCP state command from
a copier, the DBS has to check if there is a QoS manager
interested in the changes. The modified record belongs to
a user. If the user’s main record has the field “QoS
manager” filled, the DBS has to notify that QoS manager
about the changes.

If the command was a QCREATED (QoS
manager created) command, the DBS has to send all the
URLs belonging to the user whose user IP address is
specified in the command. The DBS formats the message
and puts it into the second message queue (MSGQ2).
Then it sends a signal to the QoS manager meaning that

there is a message waiting for it. The DBS can’t send a
message, while the destination QoS manager has unread
messages in the queue, in order to avoid congestion.
Semaphores help with solving the problem.

If the destination is died due to an internal error,
the DBS has to remove the message from the queue and
update the database, as in case of a QDIED (QoS
manager died) command.

4.3 QoS managers

The QoS manager handles exactly one user’s QoS
requests. Its other role is to provide the user the list of
active TCP connections opened by the browser via the
proxy. For each console exactly one QoS manager is
created.

Communication with the DBS

When a QoS manager starts, it informs the DBS
about itself. From now on, the DBS will send information
about the TCP connections concerning this QoS
manager. If more then one QoS manager is invoked from
the same IP address, the DBS will kill the superfluous
ones. Those should exit without sending a death
notification message to the DBS. The messages sent to
the DBS are QCREATED, and QDIED. In the other
direction, the DBS sends DNEWURL and DDELURL.
These messages mean the start and the termination of a
download process, respectively. The status of the TCP
connections is traced using these messages.

Communication with the console

A new QoS manager is spawned, whenever a
TCP connection is opened to the Proxy on a special port
(which is “well known” for the QoS console). The newly
created QoS manager first checks, whether it is really
talking to console. This is done by sending and expecting
a greeting message. Having received anything else, it
closes the connection, and exits immediately. The console
is informed about duplicated QoS manager invocation
and signal-caused termination by sending the appropriate
messages. The URL state information is sent in textual
form containing the ephemeral port number, the URL
and the type of the state change. The console can send
QoS requests. These are also in textual form, containing
the port number of connection and the actual QoS
parameters. The console is also informed when an RSVP
event indicates the success or failure of one of its
requests.

Communication with the RSVP daemon and broker

The QoS manager communicates with the RSVP
Daemon via the RSVP API calls [4]. At each QoS request

it probes, whether there is a broker at the remote end. If
there is, it creates a new RAPI session, and configures the
broker for setting up the other end of RSVP session. The
latter is done by sending all the necessary data (such as
IP addresses and port numbers, TSpec, etc.) to the proper
broker.

5. The QoS broker

The server side requires a small program that
interacts in the building of the channel with the requested
QoS parameters. This small program, namely the broker,
is completely independent from the Web server;
nevertheless it acts as a server. The role of the broker is
to help „remote controlling” and it does nothing on its
own.

The broker should be listening to its „well-
known” port until someone tries to connect to this port.
Then after an identification it should get all the necessary
data (the requested QoS parameters, the server-side port
number of the http connection, the client-side IP and port
number, etc.) from this „control” connection. With these
data the broker is capable of making the first steps in
order to build up a channel with the requested QoS
(according to the RSVP protocol specification these steps
must be made on the sender side [2]). These steps are
made with the help of the RSVP daemon. There is at
most one „control” connection for each channel with QoS
request.

6. Conclusion

This paper describes the proposal for integrating
RSVP into the existing WWW architecture, therefore it
provides the use of existing Web applications in the
Integrated Service Architecture. The proposal is general
enough to be used with any Web browsers and Web
servers without modifying their code. The
implementation of the proposal has been started. At the
present the first version of the code is released.

ACKNOWLEDGEMENTS

This work was supported in part by the
European Commission under the AC310 ELISA project.
The authors are solely responsible for the content of this
paper.

REFERENCES

[1] P. White. RSVP and Integrated Services in the
Internet: a Tutorial. IEEE Communications. Magazine.
May 1997.
[2] Braden et al. Resource Reservation Protocol (RSVP).
IETF RFC 2205. September 1997.

[3] HTTP 1.1 specification. Internet RFC 2068.
[4] R. Braden, D. Hoffman. RSVP RAPI Version 5 draft-
ietf-rsvp-rapi-00.ps. June 1997.

