Linear partial differential equations of second and higher order with constant coefficients.
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DIFFERENTIAL EQUATIONS:
In mathematics, a linear differential equation is a differential equation of the form


where the differential operator L is a linear operator, y is the unknown function, and the right hand side ƒ is a given function (called the source term). The linearity condition on L rules out operations such as taking the square of the derivative of y; but permits, for example, taking the second derivative of y. Therefore a fairly general form of such an equation would be
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where D is the differential operator d/dx (i.e. Dy = y' , D2y = y",... ), and the ai are given functions. Such an equation is said to have order n, the index of the highest derivative of y that is involved. (Assuming a possibly existing coefficient an of this derivative to be non zero, it is eliminated by dividing through it. In case it can become zero, different cases must be considered separately for the analysis of the equation.)

If y is assumed to be a function of only one variable, one speaks about an ordinary differential equation, else the derivatives and their coefficients must be understood as (contracted) vectors, matrices or tensors of higher rank, and we have a (linear) partial differential equation.

The case where ƒ = 0 is called a homogeneous equation and its solutions are called complementary functions. It is particularly important to the solution of the general case, since any complementary function can be added to a solution of the inhomogeneous equation to give another solution (by a method traditionally called particular integral and complementary function). When the ai are numbers, the equation is said to have constant coefficients
Homogeneous equations with constant coefficients
The first method of solving linear ordinary differential equations with constant coefficients is due to Euler, who realized that solutions have the form ezx, for possibly-complex values of z. The exponential function is one of the few functions that keep its shape even after differentiation. In order for the sum of multiple derivatives of a function to sum up to zero, the derivatives must cancel each other out and the only way for them to do so is for the derivatives to have the same form as the initial function. Thus, to solve
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we set y = ezx, leading to

[image: image3.png]4+ Ae




Division by e zx gives the nth-order polynomial
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This equation F(z) = 0, is the "characteristic" equation considered later by Monge and Cauchy.

Formally, the terms
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of the original differential equation are replaced by zk. Solving the polynomial gives n values of z, z1, ..., zn. Substitution of any of those values for z into e zx gives a solution e zix. Since homogeneous linear differential equations obey the superposition principle, any linear combination of these functions also satisfies the differential equation.

When these roots are all distinct, we have n distinct solutions to the differential equation. It can be shown that these are linearly independent, by applying the Vandermonde determinant, and together they form a basis of the space of all solutions of the differential equation.


 

	Examples
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has the characteristic equation
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This has zeroes, i, −i, and 1 (multiplicity 2). The solution basis is then

[image: image8.png]



This corresponds to the real-valued solution basis
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The preceding gave a solution for the case when all zeros are distinct, that is, each has multiplicity 1. For the general case, if z is a (possibly complex) zero (or root) of F(z) having multiplicity m, then, for [image: image10.png]ke{0,1,...,m—1}
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is a solution of the ODE. Applying this to all roots gives a collection of n distinct and linearly independent functions, where n is the degree of F(z). As before, these functions make up a basis of the solution space.

If the coefficients Ai of the differential equation are real, then real-valued solutions are generally preferable. Since non-real roots z then come in conjugate pairs, so do their corresponding basis functions xkezx, and the desired result is obtained by replacing each pair with their real-valued linear combinations Re(y) and Im(y), where y is one of the pair.

A case that involves complex roots can be solved with the aid of Euler's formula.

 Examples
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. The characteristic equation is [image: image13.png]


which has zeroes 2+i and 2−i. Thus the solution basis {y1,y2} is [image: image14.png]


. Now y is a solution if and only if [image: image15.png]
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.

Because the coefficients are real,

· we are likely not interested in the complex solutions

· our basis elements are mutual conjugates

The linear combinations
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and 

[image: image18.png]h—-u
2

uy = Im(yy) =




will give us a real basis in {u1,u2}.

 Simple harmonic oscillator
The second order differential equation

D2y = − k2y, 

which represents a simple harmonic oscillator, can be restated as

(D2 + k2)y = 0. 

The expression in parenthesis can be factored out, yielding

(D + ik)(D − ik)y = 0, 

which has a pair of linearly independent solutions, one for

(D − ik)y = 0 

and another for

(D + ik)y = 0. 

The solutions are, respectively,

y0 = A0eikx 

and

y1 = A1e − ikx. 

These solutions provide a basis for the two-dimensional "solution space" of the second order differential equation: meaning that linear combinations of these solutions will also be solutions. In particular, the following solutions can be constructed
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and
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These last two trigonometric solutions are linearly independent, so they can serve as another basis for the solution space, yielding the following general solution:

yH = C0cos(kx) + C1sin(kx). 

Damped harmonic oscillator
Given the equation for the damped harmonic oscillator:
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the expression in parentheses can be factored out: first obtain the characteristic equation by replacing D with λ. This equation must be satisfied for all y, thus:
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Solve using the quadratic formula:
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Use these data to factor out the original differential equation:
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This implies a pair of solutions, one corresponding to
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and another to
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The solutions are, respectively,
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and
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where ω = b / 2m. From this linearly independent pair of solutions can be constructed another linearly independent pair which thus serve as a basis for the two-dimensional solution space:
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However, if |ω| < |ω0| then it is preferable to get rid of the consequential imaginaries, expressing the general solution as
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This latter solution corresponds to the underdamped case, whereas the former one corresponds to the overdamped case: the solutions for the underdamped case oscillate whereas the solutions for the overdamped case do not.

 Nonhomogeneous equation with constant coefficients
To obtain the solution to the non-homogeneous equation (sometimes called inhomogeneous equation), find a particular solution yP(x) by either the method of undetermined coefficients or the method of variation of parameters; the general solution to the linear differential equation is the sum of the general solution of the related homogeneous equation and the particular solution.

Suppose we face
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For later convenience, define the characteristic polynomial
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as in the homogeneous (f=0) case. We now seek a particular solution yp by the variation of parameters method. Let the coefficients of the linear combination be functions of x:
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Using the "operator" notation D = d / dx and a broad-minded use of notation, the ODE in question is P(D)y = f; so
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With the constraints
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the parameters commute out, with a little "dirt":
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But P(D)yj = 0, therefore
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This, with the constraints, gives a linear system in the u'j. This much can always be solved; in fact, combining Cramer's rule with the Wronskian,
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The rest is a matter of integrating u'j.
The particular solution is not unique; [image: image43.png]Up T+ C1Y1 + -~
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also satisfies the ODE for any set of constants cj.

 Example
Suppose y'' − 4y' + 5y = sin(kx). We take the solution basis found above {e(2 + i)x,e(2 − i)x}.
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Using the list of integrals of exponential functions
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And so

	[image: image60.png]Yp




	[image: image61.png]_ m (2 +4)sin(kz) + kcos(/cx))+m (i — 2) sin(kz) — kcos(kz))





	 
	[image: image62.png](5 — k%) sin(kz) + 4k cos(kz)
(3+ k2)2 + 16 ’






(Notice that u1 and u2 had factors that canceled y1 and y2; that is typical.)

For interest's sake, this ODE has a physical interpretation as a driven damped harmonic oscillator; yp represents the steady state, and c1y1 + c2y2 is the transient.

 Equation with variable coefficients
A linear ODE of order n with variable coefficients has the general form
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 Examples
A particular simple example is the Cauchy-Euler equation often used in engineering
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 First order equation
	Examples

	Solve the equation 
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with the initial condition
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Using the general solution method:
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The indefinite integral is solved to give:
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Then we can reduce to:
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where κ is 4/3 from the initial condition.


A linear ODE of order 1 with variable coefficients has the general form

Dy(x) + f(x)y(x) = g(x). 

Equations of this form can be solved by multiplying the integrating factor
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throughout to obtain
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which simplifies due to the product rule to
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which, on integrating both sides, yields
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In other words: The solution of a first-order linear ODE

y'(x) + f(x)y(x) = g(x), 

with coefficients that may or may not vary with x, is:
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where κ is the constant of integration, and
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 Examples
Consider a first order differential equation with constant coefficients:
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This equation is particularly relevant to first order systems such as RC circuits and mass-damper systems.

In this case, p(x) = b, r(x) = 1.

Hence its solution is

[image: image78.png](& /b+C) =1/b+ Ce™™,




 

COURTESY:en.wikipedia.org/wiki/Linear_differential_equation

Classification
Some linear, second-order partial differential equations can be classified as parabolic, hyperbolic or elliptic. Others such as the Euler-Tricomi equation have different types in different regions. The classification provides a guide to appropriate initial and boundary conditions, and to smoothness of the solutions.

 Equations of first order

 Equations of second order
Assuming uxy = uyx, the general second-order PDE in two independent variables has the form
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where the coefficients A, B, C etc. may depend upon x and y. This form is analogous to the equation for a conic section:
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Just as one classifies conic sections into parabolic, hyperbolic, and elliptic based on the discriminant B2 − 4AC, the same can be done for a second-order PDE at a given point.
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 : solutions of elliptic PDEs are as smooth as the coefficients allow, within the interior of the region where the equation and solutions are defined. For example, solutions of Laplace's equation are analytic within the domain where they are defined, but solutions may assume boundary values that are not smooth. The motion of a fluid at subsonic speeds can be approximated with elliptic PDEs, and the Euler-Tricomi equation is elliptic where x<0.
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 : equations that are parabolic at every point can be transformed into a form analogous to the heat equation by a change of independent variables. Solutions smooth out as the transformed time variable increases. The Euler-Tricomi equation has parabolic type on the line where x=0.
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 : hyperbolic equations retain any discontinuities of functions or derivatives in the initial data. An example is the wave equation. The motion of a fluid at supersonic speeds can be approximated with hyperbolic PDEs, and the Euler-Tricomi equation is hyperbolic where x>0.

If there are n independent variables x1, x2 , ..., xn, a general linear partial differential equation of second order has the form
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The classification depends upon the signature of the eigenvalues of the coefficient matrix.

1. Elliptic: The eigenvalues are all positive or all negative.

2. Parabolic : The eigenvalues are all positive or all negative, save one which is zero.

3. Hyperbolic: There is only one negative eigenvalue and all the rest are positive, or there is only one positive eigenvalue and all the rest are negative.

4. Ultrahyperbolic: There is more than one positive eigenvalue and more than one negative eigenvalue, and there are no zero eigenvalues. There is only limited theory for ultrahyperbolic equations (Courant and Hilbert, 1962).

Systems of first-order equations and characteristic surfaces
The classification of partial differential equations can be extended to systems of first-order equations, where the unknown u is now a vector with m components, and the coefficient matrices Aν are m by m matrices for [image: image85.png]


. The partial differential equation takes the form
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where the coefficient matrices Aν and the vector B may depend upon x and u. If a hypersurface S is given in the implicit form
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where φ has a non-zero gradient, then S is a characteristic surface for the operator L at a given point if the characteristic form vanishes:
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The geometric interpretation of this condition is as follows: if data for u are prescribed on the surface S, then it may be possible to determine the normal derivative of u on S from the differential equation. If the data on S and the differential equation determine the normal derivative of u on S, then S is non-characteristic. If the data on S and the differential equation do not determine the normal derivative of u on S, then the surface is characteristic, and the differential equation restricts the data on S: the differential equation is internal to S.

1. A first-order system Lu=0 is elliptic if no surface is characteristic for L: the values of u on S and the differential equation always determine the normal derivative of u on S.

2. A first-order system is hyperbolic at a point if there is a space-like surface S with normal ξ at that point. This means that, given any non-trivial vector η orthogonal to ξ, and a scalar multiplier λ, the equation
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has m real roots λ1, λ2, ..., λm. The system is strictly hyperbolic if these roots are always distinct. The geometrical interpretation of this condition is as follows: the characteristic form Q(ζ)=0 defines a cone (the normal cone) with homogeneous coordinates ζ. In the hyperbolic case, this cone has m sheets, and the axis ζ = λ ξ runs inside these sheets: it does not intersect any of them. But when displaced from the origin by η, this axis intersects every sheet. In the elliptic case, the normal cone has no real sheets.

 Equations of mixed type
If a PDE has coefficients which are not constant, it is possible that it will not belong to any of these categories but rather be of mixed type. A simple but important example is the Euler-Tricomi equation
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which is called elliptic-hyperbolic because it is elliptic in the region x < 0, hyperbolic in the region x > 0, and degenerate parabolic on the line x = 0.

 Analytical methods to solve PDEs
Separation of variables
 

In the method of separation of variables, one reduces a PDE to a PDE in fewer variables, which is an ODE if in one variable – these are in turn easier to solve.

This is possible for simple PDEs, which are called separable partial differential equations, and the domain is generally a rectangle (a product of intervals). Separable PDEs correspond to diagonal matrices – thinking of "the value for fixed x" as a coordinate, each coordinate can be understood separately.

This generalizes to the method of characteristics, and is also used in integral transforms.

 Method of characteristics

In special cases, one can find characteristic curves on which the equation reduces to an ODE – changing coordinates in the domain to straighten these curves allows separation of variables, and is called the method of characteristics.

More generally, one may find characteristic surfaces.

 Integral transform
An integral transform may transform the PDE to a simpler one, in particular a separable PDE. This corresponds to diagonalizing an operator.

An important example of this is Fourier analysis, which diagonalizes the heat equation using the eigenbasis of sinusoidal waves.

If the domain is finite or periodic, an infinite sum of solutions such as a Fourier series is appropriate, but an integral of solutions such as a Fourier integral is generally required for infinite domains. The solution for a point source for the heat equation given above is an example for use of a Fourier integral.

 Change of variable
Often a PDE can be reduced to a simpler form with a known solution by a suitable change of variables. For example the Black–Scholes PDE
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is reducible to the heat equation
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by the change of variables (for complete details see Solution of the Black Scholes Equation):
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 Fundamental solution

Inhomogeneous equations can often be solved (for constant coefficient PDEs, always be solved) by finding the fundamental solution (the solution for a point source), then taking the convolution with the boundary conditions to get the solution.

This is analogous in signal processing to understanding a filter by its impulse response.

 Superposition principle
Because any superposition of solutions of a linear PDE is again a solution, the particular solutions may then be combined to obtain more general solutions.

