
A Comparison of
ATM Service
Categories
Raj Jain
Raj Jain is now at
Washington University in Saint Louis Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/

The Ohio State University

• Differentiated Services

Issues

- Services: CBR, VBR, ABR (with MCR), UBR (no MCR), GFR (with MCR)
- UBR with MCR has characteristics in-between UBR and GFR
- □ VBR \Rightarrow nrt-VBR (except in voice discussion)
- Metrics: Cost/Complexity, Performance (throughput, buffering, fairness)
- Applications: Data (TCP or UDP), Voice, Differentiated Services
- Configurations: Backbone ATM, end-to-end ATM
- Note: No absolute answers. Only points for a debate. The Ohio State University
 Raj Jain

Complexity

- □ Note: Service categories are listed best first.
- □ CAC (Provisioning): UBR, CBR, ABR, GFR, VBR
- Delicing: UBR, CBR, VBR, GFR, ABR
- Meeting Service Guarantees in Switches (Resource Allocation algorithm): CBR, nrt-VBR, rt-VBR, UBR (need frame boundaries), GFR, ABR
- VC Aggregation: CBR, UBR, ABR, GFR (different frame sizes), VBR
- Queueing (# of queues for n VCs): UBR (1), CBR/VBR/ABR/GFR (n) The Ohio State University

Complexity (Cont)

Complexity of Implementation (Switch cost, NIC cost): CBR, UBR, VBR, ABR, GFR

The Ohio State University

Switch Buffering

- **CBR:** Almost no buffering
- □ ABR: Low buffering
- □ VBR/GFR/UBR: High buffering

The Ohio State University

Router or End-system Buffering

- Depends on the type of traffic
- □ UBR, GFR, VBR: Traffic immediately enters the ATM network ⇒ Low buffering
- CBR: Queues depend upon peak traffic rate and PCR
 ABR:
 - Queues in the end systems or routers
 - Ack regulation schemes can control required buffering for TCP

Use of Extra Router Buffering

- ABR/CBR: Routers can buffer when the backbone network is congested.
 Waiting is generally better than loss.
- GFR/VBR/UBR: Router does not know about network congestion. Extra memory does not help.

Bursty TCP Traffic: Bandwidth Utilization

- \Box High Utilization \Rightarrow Less idle time
- ABR: Any available bandwidth is immediately allocated
- □ GFR/UBR/VBR: Higher burstiness
 ⇒ More queues/loss and More idle times
- □ CBR: Not suited for bursty traffic

Bursty TCP Traffic - Fairness

Configuration I:

ATM backbone \Rightarrow VCs between Routers

 \Rightarrow Each VC carries multiple TCP flows

- ABR: Most losses in the router not in switches
 ⇒ Key factor is the fairness in the router
 ⇒ Proper RED can make it fair
- **CBR:** Queues in routers (as in ABR)
- □ VBR/GFR/UBR:

Not fair since most losses in ATM switches. Fair buffer allocation (FBA) can ensure fairness among VCs but not among flows in the same VC.

The Ohio State University

Bursty TCP Traffic - Fairness

Configuration II:

- ATM end-to-end \Rightarrow 1 VC per TCP flow
- □ ABR: No losses
- **CBR:** No losses
- GFR: Switches can fairly distribute losses using per-VC queueing or FBA
- ❑ UBR: Switches probably will not have separate UBR queues ⇒ Low Fairness unless FBA

Bursty UDP Data Traffic

- □ Metric: Throughput or Efficiency
- Several Client-Server transaction applications use UDP.
- $\Box \text{ Data} \Rightarrow \text{Loss Sensitive} \Rightarrow \text{Retransmission}$
- □ UDP \Rightarrow No Slow Start \Rightarrow Losses can continue \Rightarrow Losses are more expensive than in TCP
- Other conclusions are similar to TCP

Loss-tolerant UDP Traffic

- Example: Voice over IP
- □ Loss-tolerant generally implies delay sensitive
- $\Box \text{ ATM backbone} \Rightarrow \text{Aggregated flows}$
- ABR: Queues in the router. If hierarchically coded and drop preference indication in packets
 ⇒ Routers can drop the low priority packets
- CBR: Low efficiency due to traffic variability.
 But Routers can drop the low priority packets.
- GFR/VBR/UBR: Packets may enter ATM network and dropped there. CLP bit coded by drop preference.

Differentiated Services

- Details of DS are yet to be finalized.
- Currently 4 queues and 3 drop preferences (July IETF Meeting)
- □ ATM has only two drop preferences: CLP = 0 or 1
- ❑ ABR: Queues in the Router ⇒ Routers can set different thresholds for different drop preferences
- CBR: Queues in the router.
 But not as efficient as ABR for Bursty traffic.
- □ GFR/VBR/UBR: Queues in side the network
 ⇒ Can't handle more than 2 drop preferences

Differentiated Services - Priorities

- □ Four Queues: With Priority and weights
- $\Box Weights \Rightarrow Guaranteed bandwidth$
- ABR/CBR: All queues in the routers
 ⇒ Edge routers can keep multiple priority queues feeding to a single ABR VC
- □ GFR/VBR/UBR: No queues in the routers
 ⇒ Can't enforce priorities in the router
- □ GFR: Higher MCR \neq Higher Priority
 - \neq Higher share of extra bandwidth
- □ VBR: Higher SCR/PCR \neq Higher Priority The Ohio State University

- □ ABR: Key Distinction is feedback
 ⇒ Network is congestion free and maximally utilized
- ABR gives more control to edge-routers.
 Routers have more control over drop policies
- □ Other services depend more upon ATM switches ⇒ Fairness difficult to achieve if one VC contains multiple TCP flows The Ohio State University TCP flows Raj Jain

Summary (Cont)

- With ABR it is possible to make use of added buffering in the routers
- □ For Bursty Data: ABR > GFR > VBR > UBR > CBR
- Because of implementation complexity GFR may dominate in the short term
- With ABR, it is possible to implement multiple hierarchical levels of coding
 ⇒ Possible to allow multiple drop preferences
- All other classes can't handle more than two levels of drop preferences ⇒ ABR may rebound if multiple drop preferences in Differentiated Services

The Ohio State University

Summary (Cont)

Large careers need ABR to keep queues manageable in the network

The Ohio State University