
A DEVELOPMENT OF HAZARD ANALYSIS TO AID SOFTWARE DESIGN

J. A. McDermid and D. J. Pumfrey,
Dependable Computing Systems Centre,

Department of Computer Science,
University of York,

Heslington,
York YO1 5DD, U.K.

Abstract— This paper describes a technique for software
safety analysis which has been developed with the specific
aim of feeding into and guiding design development. The
method draws on techniques from the chemical industries’
Hazard and Operability (HAZOP) analysis, combining this
withwork on software failure classification to provide a struc-
tured approach to identifying the hazardous failure modes of
new software.

I. INTRODUCTION

Software safety analysis is a focus of much current re-
search, and many methods have been proposed. However,
most of these methods suffer from two problems; they are
difficult to apply at all stages of software development, and
tend to produce large, intractable sets of results from which
it is difficult to extract useful design guidance.

As part of a study to assess the capabilities of various
software safety analysis methods, we proposed the following
set of desirable properties:

1. The method should be capable of being applied at
all stages of the system lifecycle from initial design
through to validated implementation.

2. The method should not involve an excessive increase
in the work required at early stages of the design. Ide-
ally, it should allow the system designers to identify
quickly which areas of the design are most critical, and
concentrate further analysis work on those areas.

3. The analysis should help drive design development
through the comparison of alternatives and the refine-
ment of specifications.

4. It should be possible to have a high degree of confidence
that thorough application of the method will lead to
consideration of all credible failure modes.

5. The analysis should be in a form which allows the
design to be checked and approved incrementally, per-
mitting closer integration of design / implementation
and verification / validation activities.

6. The results of the analysis should be in a form which
is suitable for inclusion in a safety case.

To assess applicability to all stages of the design and im-
plementation lifecycle, we considered whether a method con-
tained features to support both inductive and deductive safety
assessment techniques — typified by Failure Modes and Ef-
fects Analysis (FMEA) and Fault Tree Analysis respectively

— and also two additional classes of analysis identified by [1].
These additional classes are descriptive and exploratory anal-
ysis, which describe the cases where the causes and effects
of failures are both known (descriptive), and both unknown
(exploratory).

At the earliest stages of design of new software, nothing is
known about its failure modes, and knowledge of the effects
of failure will generally be limited to a high level preliminary
hazard analysis. However, this is the stage at which it is
easiest and most cost effective to take measures to improve
the safety characteristics of a system, so exploratory analysis
is particularly important.

We concluded that no software safety analysis technique
proposed so far adequately addressed this requirement for
a structured exploratory analysis of the safety properties of
a completely new software system. This paper presents a
method which we are developing to support such an analysis.
Section II briefly presents the background and important
concepts of our method,which is then described in sections III
and IV, and illustrated by a small example in section V.
Conclusions and an outline of our proposed directions for
further developments of this work are presented in section VI.

II. SELECTION OF METHODS

The development of a completely new analysis technique,
with the attendant problems of convincing potential users of
its value and overcoming resistance to completely unfamiliar
procedures and notations, was considered undesirable. In-
stead, we undertook a survey of a range of safety analysis
techniques from various industries, and considered their suit-
ability for adaptation to software development.

We concluded that Hazard and Operability Studies (HA-
ZOP) [2], [3], widely used in the chemical, nuclear and food
processing industries, has features which made it an interest-
ing starting point for further work.

The HAZOP system of imaginativeanticipationof hazards
was developed to provide, for chemical plants, precisely the
type of structured analysis feeding in to the development of
a new design which we considered lacking in the software
domain. A HAZOP study attempts to identify previously
unconsidered failure modes by suggesting hypothetical faults
for review and, where necessary, this is followed by the sug-
gestion of means of overcoming identified hazards.

HAZOP has a number of features which distinguish it from
other analysis methods such as FMEA, and our work has

1



concentrated on two of these features which convey particular
benefits. These are the concept of flow-based analysis, and
the use of guide words.

Flow-based analysis means that, in the context of a chem-
ical plant, the first focus of analysis is the properties and
behaviour of the flows in the pipelines connecting the ma-
jor components (storage tanks, reactor vessels, pumps etc.)
of the plant. We concluded that this concept could usefully
and effectively be applied to software, if a suitable design
model was used, by considering information flows between
components. This approach has several potential benefits
over analyses based on consideration of the function of each
component:

� In many design methods, the interfaces between parts
of the system are defined before the component im-
plementation is finalised. A suitable analysis of these
interfaces could provide a useful input to the later stages
of design elaboration.

� The intended behaviour of an interface is likely to be
simpler both to specify and understand than that of an
active component.

� In general, the failure modes conceivable for interfaces
are more restricted than those of active components.
This may help to contain complexity and limit the size
of the results.

It is important to note that the term flow as used in this paper
is not specifically data or control flow, since both must be
considered as part of the analysis.

For each flow, a set of guide words is used to prompt con-
sideration of hypothetical failures, known as deviations, from
the intended characteristics and behaviour. If a hypothetical
failure suggested by the guide words can be shown to have
both conceivable cause(s) and hazardous consequences, it is a
meaningful failure mode, and consideration must be given to
measures which can be taken to remove its causes or limit its
effects. These guide words provide the structure of the anal-
ysis and, if suitable guide words are selected and correctly
applied, can give confidence in the coverage achieved.

A critical feature of the process industries’ HAZOP is that it
is a team activity, and great emphasis is placed on the selection
of appropriate team members. Their diversity of knowledge
and experience helps to ensure a thorough investigation of all
properties of the system, and the interdisciplinary approach
helps to prevent one person or group solving a problem in
a way which will create new problems in other areas. We
believe that a similar team approach is appropriate for soft-
ware analysis and development, but the composition of the
team will depend on the organisation performing the study,
and this paper does not address this issue.

The decision to use HAZOP as the basis for our work
favours the use of design notations which employ a structural
model of the system, i.e. one which partitions the system into
independent processes or modules and defines the interfaces
(however implemented) between them. Whilst we accept
that a structural model alone is not sufficient to fully specify

a system, and must be supported by other models (e.g. a
state-based model), it is appropriate for the first stages of
design of most systems, and can be applied from a very high
(context) level down to a relatively detailed level. Thus, even
if the method we develop is not, of itself, sufficient for a
total safety analysis of a system, it should at least be suitable
for identifying those parts of the system where other more
detailed safety analysis techniques must be used.

Although we believe the techniques we are developing
could readily be applied to a wide range of methods and
notations, it was necessary to select one notation as the basis
for our initial effort at designing a “software HAZOP”. We
selected MASCOT 3 [4], since MASCOT’s communication
paths correspond closely to our concept of information flows.

The principal components of a MASCOT design decom-
position are activities — fundamental processing elements,
conceptually executed in parallel — and Intercommunication
Data Areas (IDAs) — passive components which encapsulate
the mechanisms through which the activities communicate
and share data. The fault transformations possible within
a passive IDA are much more restricted than those possible
within an activity, providing good fault containment proper-
ties in the implementation, and an effective basis for analysis.

A further attraction of MASCOT is the strong mapping
between a MASCOT design and the eventual implementa-
tion. The structure of the code is developed directly from a
textual representation of the design diagrams, supplemented
by definitions of data types and the executable code. Thus we
can have confidence that analysis results at the architectural
design level will remain valid for the implementation.

III. METHOD OUTLINE

We first briefly describe other approaches to HAZOP based
software safety analysis in order to identify limitations which
we intend our method to overcome.

A. Other approaches

A number of recent papers [5], [6], [7] have suggested
adaptations of HAZOP to the software environment.

Burns and Pitblado [5] propose three separate studies for
programmable systems which control or monitor plant or
machinery:

1. An initial “conventional” HAZOP studying the plant
to be controlled, using the guide words and method
outlined above.

2. A more detailed Programmable Electronic System
(P.E.S.) HAZOP study of the computer or Pro-
grammable Logic Controller (PLC) systems control-
ling a plant, considering deviations in SIGNALS and
ACTIONS, using the guide words NO, MORE, LESS
and WRONG.

3. A human factors HAZOP.

Of these, the P.E.S. HAZOP is closest to our intended appli-
cation, but the paper implies that this study is intended to be

2



conducted at the level of the external interfaces of the system.
J. V. Earthy’s short paper [7] presents little more than an

overview of some possibilities for adapting HAZOP tech-
niques to software. Again, the recommendation appears to
be to apply the analysis at the level of interfaces, in this case
between processor, storage devices and peripherals. At a
lower level, data flow diagrams are identified as a suitable
model for analysis, subject to verification that they represent
the system as built, but this overview does not suggest details
of a method or propose guide words.

Cambridge Consultants’ modification of HAZOP de-
scribed in Chudleigh’s paper [6] most closely matches the
method we are developing. Data flow diagrams are used as a
basis for the analysis, a table of guide words and the parame-
ters to which they apply is presented, and a brief description
is given of the manner in which they are applied. However,
the method does not follow the principles of the process in-
dustries’ HAZOP method in that, although deviations in the
input data flows are considered, the processes (components)
themselves are analysed to determine possible deviations of
the process outputs. Mention is also made of the review of
the analysis of data flows entering and leaving the diagram
from and to a higher level of the hierarchy.

The analysis of activities as well as data flows seems to
complicate the analysis unnecessarily; any meaningful failure
of a process must eventually manifest itself as a deviation at an
output of that process and, provided the analysis of the output
flows is thorough, will be considered when possible causes are
sought for that deviation. A consequence of this complication
is that, although the set of guide words presented is relatively
large, it is difficult to be confident that they provide complete
coverage of all credible failure modes. In developing our own
method and selecting the guide words we have attempted to
address these criticisms.

B. Our method

It is important to state that the intention of this analysis
method is only to assess the safety or otherwise of the appli-
cation software. It assumes that the operating environment
(i.e. the MASCOT run-time system) is error free, and cor-
rectly enforces the fundamental MASCOT principles such as
independence of processes, and inter-process communication
via IDAs.

Although we recognise the potential benefits to software
system development of a team approach to analysis and de-
sign review, it is hard to define the environment in which the
method is applied, and our work so far has concentrated on
defining the procedure and guide words.

The basic unit for analysis of a software design is a single
MASCOT drawing representing a system or subsystem. This
system or subsystem consists of components — i.e. MAS-
COT activities and IDAs and external devices — connected
by information flows. These flows may be MASCOT paths,
or device-server interfaces. Separate tables are produced for
each MASCOT diagram, with the MASCOT hierarchy defin-

ing the relationship between the tables. The process begins
with the top-level (context) MASCOT diagram of the system.

The major steps of the method are:

1. The flows in the diagram are identified and consistently
labeled.

2. The design is reviewed to ensure that the intended op-
eration is clear. At this stage, various context infor-
mation is recorded. This is mainly a textual form of
the information contained in the MASCOT notation,
and could be supplied automatically by a suitable tool.
However, path protocols, which describe the commu-
nication and synchronisation models of each flow, are
not shown in MASCOT, and must be added.

3. A table of guide words is constructed, as described in
section IV

4. The appropriate set of guide words is considered for
each flow. Each guide word may suggest one or more
hypothetical failure modes, which are recorded.

5. The potential causes of each identified fault are deter-
mined.
This stage is a deductive analysis (i.e. similar to Fault
Tree analysis), searching for possible causes of the
hypothetical failure in the component where the flow
originates.

6. The effects of each hypothetical fault are considered
and recorded. Where necessary, the effects of the hypo-
thetical fault in combination with normal states, nor-
mal events or other faults occurring simultaneously are
also considered.
This step is an inductive analysis (i.e. similar to FMEA)
of the effects of the hypothetical fault on the destination
component of the flow.

7. The set of hypothetical faults is reduced to a set of
meaningful faults by discarding those for which the
potential causes are acceptably improbable, and those
for which no hazardous effects have been identified.
An important feature of the method is that a justification
must be given whenever a hypothetical failure mode is
discarded. In most cases this will be a simple statement,
but where the decision is difficult it may be necessary
to supply a more complete argument.

8. For each meaningful failure mode identified, alterna-
tive strategies are suggested for removing its causes or
limiting its effects. These may take the form of design
modifications or a set of requirements which must be
satisfied by lower-level design elaboration to achieve
acceptable system-level safety properties.
The final step is selection of one of these strategies to
pursue, and recording a justification for the selection.

When the design of the current level of decomposition is
satisfactory, the first-cut design for the next level of decom-
position is produced, taking account of any new requirements
derived from the analysis, and the process begins again at the
new level.

3



C. Application of the method

One of the most obvious over-simplifications in this out-
line method is that it assumes that system development will
always proceed top-down, and that the role of the analysis is
simply to refine the specification of lower level subsystems.
Once defined these specifications will only be changed if re-
quirements change at a higher level, or it proves impossible
to meet the specification, prompting a re-design. This is quite
clearly at odds both with the reality of system development
and with our stated aim of producing a method appropriate to
all stages of a more integrated system lifecycle.

The top-down development model is attractive because of
its simplicity; it consists of a sequence of steps which are
simply repeated at successively more detailed levels until
there is nothing to be gained from further decomposition.
It is well suited to an environment where many people are
involved in the development of a system, particularly if parts
of the system are to be subcontracted to other departments or
companies.

In practice, however, rigid adherence to this model is too
inflexible — there are many factors which can lead to a system
being developed in quite different ways. For example, a new
system may be re-using parts of an existing system, for which
no safety analysis has been carried out. Alternatively, the sys-
tem may be based on a library of standard low-level routines,
e.g. hardware interfaces or common functions, which have
well-known properties. Another common approach is for
parts of the system which are seen as difficult in some way to
be either prototyped or fully implemented first, and the rest
of the system built around these core parts. The integrated
method must be sufficiently flexible to accommodate all of
these scenarios.

To provide acceptable support for these different patterns
of development, we have defined a second role for the method,
namely as a means of recording design assumptions affecting
safety. This is based on the observation that at all stages of
design, up to and even including actual coding, the imple-
mentor(s) of a system are making implicit assumptions about
the way that other parts of the system will function. The only
change required to the outline given above is that, instead of
specifying what is required of subsystems at a given level,
the analyst records the anticipated failure properties of each
subsystem, based on an assumed implementation, and then
uses these to determine whether the current level of decom-
position will meet the properties which were assumed when
it was defined at a higher level.

This approach attempts to take advantage of the way in
which system implementors work. It is far less rigid than the
system of progressive specification refinement and, as such, is
probably better suited to the lower levels of system design and
implementation, or to small systems which will be developed
by one person or a small team. Its biggest disadvantage is
that it is extremely difficult to concisely express what may
be a very complex set of assumptions about the expected
implementation of a system or component. One of our aims

in our research is to find an appropriate balance between
complexity and utility in representing assumptions.

These two models of development are not incompatible.
Indeed, even if a progressive refinement approach is adopted
rigorously, the analysts should, in specifying the require-
ments for a subsystem, consider possible implementations of
that subsystem (i.e. make assumptions) and set requirements
which are believed to be reasonable and attainable.

IV. SELECTION OF GUIDE WORDS

Since the set of guide words used for HAZOP analysis in
the process industries has been developed and refined over a
considerable period of time, the interpretation of each guide
word in a given situation is well understood, and there is a
high degree of confidence that systematic application of the
complete set of guide words, by a suitably qualified team of
people, will result in a complete analysis of all the important
failure modes of the plant.

Traditional analysis techniques have concentrated on iden-
tifying rather than classifying failures. However, a consider-
able amount of research has been carried out into the classi-
fication of software failures, and this provides the basis for
proposing a means of developing sets of guide words with a
high degree of confidence in their completeness.

Recent publications in this area include [8] and [9]. The
categorisations proposed by both papers are similar, although
that proposed by Bondavalli and Simoncini [9] is of more
interest to this work, since it explicitly examines the de-
tectability of faults, an important property when considering
strategies for handling failures.

The categorisations they propose are based on considera-
tion of a service — usefully analogous to our model of an
information flow. The provision of a service is specified in
terms of two parameters; the value associated with it, and the
time at which this value is presented. The value domain is
divided into four categories; correct, subtle incorrect, coarse
incorrect and omission. The distinction between subtle and
coarse incorrectness is that subtly incorrect values cannot be
detected. The time domain, similarly, is divided into four;
correctly timed, early, late and infinitely late. Bondavalli and
Simoncini’s summary of the possible combinations of time
and value faults, and how they may be detected, is reproduced
in table I.

The distinction between an omission in the value domain
and infinite lateness is assumed to be made by a perfect ob-
server, who has knowledge of the internal state of the system
providing the service. In practice, as the table shows, the two
are indistinguishable to a user of the service, and can only be
detected by their timing behaviour.

A problem with this scheme is that there is no combination
of time and value categories which reasonably accommo-
dates the case of a faulty system which emits some sort of
output when a correctly functioning system would not have
emitted any output at all. It is interesting that Bondavalli
and Simoncini reject the Byzantine fault class proposed by

4



TABLE I : FAULT CLASSES AND DETECTABILITY

Value

Time
Correctly

Valued
Subtle

Incorrect
Coarse Incorrect Omission

Correctly
timed

Correct
service

Undetectable
failure

Detection on value
syntax or semantics

Detection at
T �����

Early
Detection on

time
Detection on

time

Detection on value
syntax or semantics

and/or time

Detection at
T �����

Late
Detection on

time
Detection on

time

Detection on value
syntax or semantics

and/or time

Detection at
T �����

Infinitely
late

Detection at
T �����

Detection at
T ����� Detection at T ����� Detection at

T �����

Shrivastava and Ezhilchelvan, [8] which expressly includes
events such as completely unexpected output. It is desirable
for analysis purposes to include this case specifically — we
will use the term commission.

We therefore consider that a complete set of suitable failure
classes is:

Service provision : OMISSION

COMMISSION

Service timing : EARLY

LATE

Service value : COARSE INCORRECT

SUBTLE INCORRECT

These words represent a similar level of abstraction to the
guide words used for process HAZOP analysis, and could
be employed directly. We believe, however, that there are
be significant advantages in attempting to develop a more
precise set of guide words. In particular, this might make it
easier to produce a formal definition of each word, which will
ultimately be useful in automating analysis.

The most obvious way to attempt the definition of more
precise guide words is to consider the interpretation of each
failure class when applied to particular data types. At present,
we know of no other work which has attempted to do this. The
meaning of the value failure classes can clearly be refined by
considering the data type to which they are applied. However,
knowledge of the data type of a flow alone is insufficient, since
there are many different path protocols (i.e. communication
models) possible in MASCOT and it is these which determine
the timing and service provision characteristics of a flow.

Our proposal is that, once the data type and path protocol
of each flow in a MASCOT diagram have been established,
guide words should be defined by considering the interpreta-
tion of each failure class in the context of every combination
of type and protocol. Clearly, where the same types and pro-
tocols are used in many diagrams, this need only be done
once. For some combinations of data type and path protocol,

consideration of one fault class may result in the definition of
more than one guide word. The guide words thus defined are
recorded in a table, and the appropriate set selected as each
flow is analysed.

V. EXAMPLE

To illustrate the applicationof the method, consider the fol-
lowing example. A prototype full-authority electronic throttle
controller is to be added to the engine management system
(E.M.S.) of a development vehicle. The mechanical linkage
between the accelerator pedal and the throttle plate will be
replaced by pedal position sensors and a computer controlled
actuator. The requirements for the new system are:

� The accelerator pedal will have two independent posi-
tion sensors. In addition, there will be two independent
switches which will be opened when the accelerator
pedal is released and reaches the top of its travel, so a
wiring or switch failure will appear to signal a closed
throttle.

� The throttle body will have a single actuator controlled
by the E.M.S., which will directly control the position
of the throttle plate. If the actuator is not energised,
a mechanical spring and damper system will close the
throttle plate.

� The throttle control software will receive data from
other vehicle systems and E.M.S. subsystems. This
data will be assembled by a data monitor process, and
supplied to the throttle control software in a single
record to ensure that it is consistent.

� The software shall have two independent channels,
each of which will receive a copy of the data record
from the data monitor process, the signal from one
of the accelerator position sensors and one of the end
stop switches, and independently calculate the required
throttle plate angle.

� Each channel shall incorporate self-test routines to de-
tect sensor failures and internal errors.

5



Status

Stat1

Status

Stat

Pos_Output

Out

TPOut

Out2

Out1

Throttle_control

Data

PosOut

PosOutThrottle_calc

Pos1

Pos2

TPos

TPos

Data

Throttle_calc

SelectorData_dup

Stat

Stat2
SOut

EMS_Data

Select
InDIn

TPos

Sel

P4

OP1

OD1

P3

P2

ID4

EMS_Data

P1

P7

P5

Data_In

ID3

Output

ID2

Sensor_1

Switch_1

Sensor_2

Switch_2

T_A_Calc_1

ID1

Select
EMS_Data

IP1

T_A_Calc_2

Actuator

P6

Fig. 1. Initial proposal for the Throttle Control System decomposition

� The position of the throttle plate shall be updated every
25 ms. It shall normally be controlled by the output
of one channel, unless its self-test routines signal an
error, in which case the other channel shall be used.
If both channels fail, the actuator will be released (de-
energised) to allow the mechanical system to close the
throttle.

� The software shall return a record to the E.M.S. con-
taining the commanded throttle position, and a flag
which shall be set if the controller has failed.

The initial design proposal is to partition the software into
five subsystems — the two calculation channels, a process
which duplicates the data received from the E.M.S., a process
which monitors the calculation channel’s status and deter-
mines which is to be used, and the output routine containing
the actuator interface. Since the actuator update rate is rela-
tively high, all the data flows into the output routine are to be
pools — a destructive read / non-destructive write protocol
which can be implemented to give completely asynchronous
access. Figure 1 represents this design.

This design is subjected to analysis. The flow labels are
shown in small circles on the flows in the diagram, and ta-
ble II shows the guide words derived by applying the failure
classifications to the combinations of path protocol and data
type used in this design. Some comments should be made on
this table:

1. The categorisation early is shown as not applicable to
the pool protocol, since there is no way in which this
can be detected by or affect the activity which is reading

from the pool.
2. The complex data type represents a data structure which

contains several (possibly related) values, but is always
passed as a single item.

Table III shows a fragment of the analysis output— the col-
umn headed M? records whether a hypothetical failure mode
has been identified as meaningful. This section has been se-
lected because it shows a critical failure mode; consideration
of the guide word OLD DATA applied to flow P2 reveals that
there is a potential race condition, which could result in the
output of a defective channel being used to control the throt-
tle. This arises from the separation of the status and result
outputs of each channel. If a scheduling failure should occur,
it is possible that the error status output by a channel which
has detected an internal failure may not propagate through
the Select subsystem in time to prevent an erroneous result
being read by the Output process. Since the Select subsystem
cannot be guaranteed to complete before Output is scheduled,
this failure mode is plausible, and a redesign is required to
remove it.

The solution in this case is trivial — the functionality of
the Select subsystem is sufficiently small that it can be incor-
porated into the Output subsystem. The calculated throttle
position and status output from each channel are combined
into a single record, and a sequence counter is added, ensur-
ing that Output can also detect a channel which has stopped
updating its output. This revised design is shown in figure
2, and part of the analysis of the new combined data path is
shown in table IV.

6



TABLE II : TABLE OF GUIDE WORDS FOR THE THROTTLE CONTROLLER EXAMPLE

Failure Categorisation

Flow Service Provision Timing Value
Protocol Data Type Omission Commission Early Late Subtle Coarse

Device Input
Boolean NO READ UNWANTED READ EARLY LATE

STUCK AT 0
N/A

STUCK AT 1

Value NO READ UNWANTED READ EARLY LATE INCORRECT IN RANGE OUT OF RANGE

Device Output Value NO WRITE UNWANTED WRITE EARLY LATE INCORRECT N/A

Pool

Enumerated NO UPDATE UNWANTED UPDATE N/A OLD DATA INCORRECT N/A

Value NO UPDATE UNWANTED UPDATE N/A OLD DATA INCORRECT IN RANGE OUT OF RANGE

Complex NO UPDATE UNWANTED UPDATE N/A OLD DATA INCORRECT INCONSISTENT

Signal
Boolean NO DATA EXTRA DATA EARLY LATE

STUCK AT 0
N/A

STUCK AT 1

Complex NO DATA EXTRA DATA EARLY LATE INCORRECT INCONSISTENT

Out2

TPos

Throttle_control

Throttle_calc

Throttle_calc

CDOut

CDOut

InEMS_Data

Data

Data

Data_dup

Out

Out1

Pos_Output

TPOut

DIn

P3

OP1

ID4

P4

P1

OD1

P2

ID2

ID3

IP1

Sensor_1

Switch_1

Sensor_2

T_A_Calc_1

EMS_Data

EMS_Data

Data_In

Output

ID1

CDIn2

CDIn1
ChanData

ChanData

T_A_Calc_2

Actuator

Switch_2

Fig. 2. Revised proposal for the Throttle Control System decomposition

7



TA
B

L
E

II
I

:A
F

R
A

G
M

E
N

T
O

F
T

H
E

A
N

A
LY

S
IS

O
F

T
H

E
IN

IT
IA

L
T

H
R

O
T

T
L

E
C

O
N

T
R

O
L

L
E

R
D

E
S

IG
N

F
lo

w
I.

D
.n

um
be

r
:

P
2

M
A

SC
O

T
ty

pe
:

S
el

P
at

h
pr

ot
oc

ol
:

P
oo

l
B

as
ic

ty
pe

:
E

nu
m

er
at

ed

G
ui

de
W

or
d

D
ev

ia
ti

on
C

au
se

s
C

o-
ef

fe
ct

or
s

E
ff

ec
ts

M
?

Ju
st

ifi
ca

ti
on

/D
es

ig
n

P
ro

po
sa

ls
N

O
U

P
D

A
T

E
C

ha
nn

el
st

at
us

ne
ve

r
av

ai
la

bl
e

to
O

ut
pu

t
C

om
pl

et
e

sc
he

du
lin

g
or

co
m

m
u-

ni
ca

tio
n

fa
ilu

re

A
ny

N
o

ou
tp

ut
to

th
ro

ttl
e

pl
at

e.
Fa

ilu
re

fl
ag

ge
d

to
E

M
S

N
O

V
eh

ic
le

w
ill

no
ts

ta
rt

,s
in

ce
in

hi
b-

ite
d

by
fa

ilu
re

fl
ag

.

U
N

W
A

N
T

E
D

U
P

D
A

T
E

C
ha

nn
el

st
at

us
up

-
da

te
d

un
ex

pe
ct

ed
ly

S
ch

ed
ul

in
g

fa
ilu

re
A

ny
N

on
e

si
gn

ifi
ca

nt
N

O
N

o
si

gn
ifi

ca
nt

ef
fe

ct
s

O
L

D
D

A
TA

C
ha

nn
el

st
at

us
no

tu
p-

da
te

d
by

S
el

ec
tb

ef
or

e
re

ad
by

O
ut

pu
t

S
ch

ed
ul

in
g

af
fe

ct
ed

by
an

y
pr

oc
es

s
ex

ce
ed

in
g

tim
e

al
lo

ca
tio

n

S
en

so
r

or
ch

an
ne

l
fa

ilu
re

D
ef

ec
tiv

e
ch

an
ne

lm
ay

ha
ve

co
nt

ro
lo

f
th

ro
ttl

e
Y

E
S

C
ri

tic
al

ra
ce

co
nd

iti
on

in
he

re
nt

in
de

si
gn

,
si

nc
e

da
ta

an
d

st
at

us
ar

e
pa

ss
ed

se
pa

ra
te

ly
fr

om
ch

an
ne

ls
to

ou
tp

ut
.

R
ec

om
m

en
d

re
de

si
gn

.
. . .

. . .
. . .

. . .
. . .

. . .
. . .

TA
B

L
E

IV
:A

F
R

A
G

M
E

N
T

O
F

T
H

E
A

N
A

LY
S

IS
O

F
T

H
E

R
E

V
IS

E
D

T
H

R
O

T
T

L
E

C
O

N
T

R
O

L
L

E
R

D
E

S
IG

N

F
lo

w
I.

D
.n

um
be

r
:

P
1

M
A

SC
O

T
ty

pe
:

C
ha

nD
at

a
P

at
h

pr
ot

oc
ol

:
P

oo
l

B
as

ic
ty

pe
:

C
om

pl
ex

G
ui

de
W

or
d

D
ev

ia
ti

on
C

au
se

s
C

o-
ef

fe
ct

or
s

E
ff

ec
ts

M
?

Ju
st

ifi
ca

ti
on

/D
es

ig
n

P
ro

po
sa

ls
N

O
U

P
D

A
T

E
C

ha
nn

el
da

ta
ne

ve
r

av
ai

la
bl

e
to

O
ut

pu
t

C
om

pl
et

e
sc

he
du

lin
g

or
co

m
m

u-
ni

ca
tio

n
fa

ilu
re

T
A

C
al

c
2

fa
ile

d
B

ot
h

ch
an

ne
ls

fa
ile

d,
so

th
ro

ttl
e

ac
tu

at
or

re
le

as
ed

N
O

S
pe

ci
fi

ed
ac

tio
n

on
co

m
pl

et
e

so
ft

w
ar

e
fa

ilu
re

ac
hi

ev
ed

.

A
ny

ot
he

r
C

on
tr

ol
as

su
m

ed
by

T
A

C
al

c
2

N
O

N
o

ha
za

rd
ou

s
co

ns
eq

ue
nc

es
.

U
N

W
A

N
T

E
D

U
P

D
A

T
E

C
ha

nn
el

da
ta

up
da

te
d

un
ex

pe
ct

ed
ly

S
ch

ed
ul

in
g

fa
ilu

re
A

ny
N

on
e

si
gn

ifi
ca

nt
N

O
N

o
si

gn
ifi

ca
nt

ef
fe

ct
s

O
L

D
D

A
TA

O
ld

ch
an

ne
ld

at
a

re
ad

by
O

ut
pu

t
D

is
ru

pt
ed

sc
he

du
lin

g
A

ny
O

ld
da

ta
de

te
ct

ed
on

se
qu

en
ce

nu
m

be
r.

E
f-

fe
ct

s
as

fo
r

N
O

U
P

D
A

T
E

N
O

N
o

ha
za

rd
ou

s
ef

fe
ct

s.

. . .
. . .

. . .
. . .

. . .
. . .

. . .

8



VI. CONCLUSIONS

This paper has described the essential principles of a soft-
ware safety analysis method based on the application of a set
of guide words to suggest hypothetical failures in the flows
between components of a system.

The method has been applied experimentally to a real sys-
tem of moderate size, both by its developers and by an inde-
pendent assessor. The results of this study were encouraging,
demonstrating the applicability of the method at early stages
of system development and its ability to provide useful input
to later stages of design elaboration. The case-study itself
was of an aerospace system, but the example above is tech-
nically extremely similar and representative of the type of
results produced.

The work involved in analysing the case-study was not
excessive, and with suitable tool support would be further
reduced. We are now investigating the development of a pro-
totype tool to support a larger trial application in an industrial
environment. The information such a tool must manage has
been identified, and we are currently attempting to define a
minimal essential functionality.

As a long term goal, we hope that tools can be developed
which provide advanced support such as consistency check-
ing both within a single diagram and between the analyses
at different levels of the hierarchy, although this will require
the development of a formal notation or structured language
representation of failure modes, causes and effects and the
precise meaning of guide words.

The method as described above applies to a smaller portion
of the systems lifecycle than our ideal, and extension into ad-
ditionalphases must be considered. In particular, we have not
yet included verification and validation activities in a study,
although we believe that this style of analysis may allow these
activities to commence at an earlier stage of development than
is commonly achieved.

Although MASCOT has been used for most of the work
to date, our hope is that the method can be adapted with rel-
atively little effort to work with other design notations such
as HOOD. In common with most other safety analysis tech-
niques, our method is based primarily on the consideration of
events, and we would like to investigate the potential for de-
veloping a similar technique for a state based design approach
such as StateCharts.

ACKNOWLEDGEMENTS

This work was supported by British Aerospace under the
activities of the BAe Dependable Computing Systems Centre
at the University of York.

REFERENCES

[1] P. Fenelon, J. A. McDermid, M. Nicholson, and D. J.
Pumfrey, “Towards integrated safety analysis and de-
sign”, ACM Applied Computing Review, Aug. 1994, (To
appear).

[2] CISHEC, A Guide to Hazard and Operability Studies,
The Chemical Industry Safety and Health Council of the
Chemical Industries Association Ltd., 1977.

[3] T. Kletz, Hazop and Hazan: Identifying and Assess-
ing Process Industry Hazards, Institution of Chemical
Engineers, third edition, 1992.

[4] JIMCOM, The Official Handbook of Mascot, Version
3.1, Joint IECCA and MUF Committee on Mascot, June
1987.

[5] D. J. Burns and R. M. Pitblado, “A modified HAZOP
methodology for safety critical system assessment”, in
Directions in Safety-critical Systems: Proceedings of the
Safety-critical Systems Symposium, Bristol 1993, F. Red-
mill and T. Anderson, Eds. Feb. 1993, pp. 232–245,
Springer-Verlag.

[6] M. Chudleigh, “Hazard analysis using HAZOP: A case
study”, in Safecomp ‘93: Proceedings of the 12th In-
ternational Conference on Computer Safety, Reliability
and Security, Poznań-Kiekrz, Poland, J. Górski, Ed., Oct.
1993, pp. 99–108.

[7] J. V. Earthy, “Hazard and operability studies as an ap-
proach to software safety assessment”, in I.E.E. Comput-
ing and Control Division Colloquium on Hazard Analy-
sis. Nov. 1992, Institutionof Electrical Engineers, Digest
No.: 1992/198.

[8] P. D. Ezhilchelvan and S. K. Shrivastava, “A classification
of faults in systems”, Universityof Newcastle upon Tyne,
1989.

[9] A. Bondavalli and L. Simoncini, “Failure classification
with respect to detection”, in First Year Report, Task B:
Specification and Design for Dependability, Volume 2.
ESPRIT BRA Project 3092: Predictably Dependable
Computing Systems, May 1990.

9


