
Some continuous and discrete distributions
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1 Continuous distributions.

Each continuous distribution has a “standard” version and a more general
rescaled version. The transformation from one to the other is always of the
form Y = aX + b, with a > 0, and the resulting identities:

fY (y) =
fX

(

y−b
a

)

a
(1)

FY (y) = FX

(

y − b

a

)

(2)

E(Y ) = aE(X) + b (3)

V ar(Y ) = a2V ar(X) (4)

MY (t) = ebtMX(at) (5)
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1.1 Standard uniform U [0, 1]

This distribution is “pick a random number between 0 and 1”.

fX(x) =
{

1 if 0 < x < 1
0 otherwise

FX(x) =







0 if x ≤ 0
x if 0 ≤ x ≤ 1
1 if x ≥ 1

E(X) = 1/2

V ar(X) = 1/12

MX(t) =
et − 1

t

1.2 Uniform U [a, b]

This distribution is “pick a random number between a and b”. To get a
random number between a and b, take a random number between 0 and 1,
multiply it by b − a, and add a. The properties of this random variable are
obtained by applying rules (1–5) to the previous subsection.

fX(x) =
{

1/(b − a) if a < x < b
0 otherwise

FX(x) =







0 if x ≤ a
x−a
b−a

if a ≤ x ≤ b
1 if x ≥ b

E(X) = (a + b)/2

V ar(X) = (b − a)2/12

MX(t) =
ebt − eat

t(b − a)

1.3 Standard normal N(0, 1)

This is the most important distribution in all of probability because of the
Central Limit Theorem, which states that the sums (or averages) of a large
number of independent random variables is approximately normal, no mat-
ter what the original distributions look like. Specifically, if X is a random
variable with mean µ and standard deviation σ, and if X1, X2, . . . are inde-
pendent copies of X, and if Sn = X1 + · · · + Xn, then for large values of n,
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Sn is approximately normal with mean nµ and standard deviation σ
√

n, and
Sn−nµ
√

nσ
is well approximated by the standard normal distribution.

fX(x) = e−x2/2/
√

2π

FX(x) is given in the table at the back of the book.

E(X) = 0

V ar(X) = 1

MX(t) = et2/2

1.4 Normal N(µ, σ)

To work with a normal random variable X, convert everything to “Z-scores”,
where Z = (X −µ)/σ. Z is then described by the standard normal distribu-
tion, which you can look up in the back of the book. Here are the formulas
for X.

fX(x) = e−(x−µ)2/2σ2

/
√

2πσ2

FX(x) is computed from Z-scores.

E(X) = µ

V ar(X) = σ2

MX(t) = eµteσ2t2/2

1.5 Standard exponential

The exponential distribution describes the time beween successive events in
a Poisson process. How long until the next click on my Geiger counter?
How long until this lightbulb burns out? How long until the next campaign
contribution comes in? A key feature is that it is memoryless: a one-year-
old lightbulb has the same change of burning out tomorrow as a brand new
lightbulb.

fX(x) = e−x, x > 0

FX(x) = 1 − e−x, x > 0
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E(X) = 1

V ar(X) = 1

MX(t) = 1/(1 − t)

1.6 Exponential with mean λ

This is obtained by multiplying a standard exponential by λ. Unfortunately,
the letter λ is used differently for Poisson and exponential distributions. If
a Poisson distribution has an average rate of r, then the waiting time is
exponential with mean 1/r. When talking about the Poisson distribution
we’d be inclined to say “λ = rt”, while when talking about the exponential
distribution we’d be inclined to say λ = 1/r.

fX(x) = λ−1e−x/λ, x > 0

FX(x) = 1 − e−x/λ, x > 0

E(X) = λ

V ar(X) = λ2

MX(t) = 1/(1 − λt)

1.7 Standard Gamma distribution

The sum of r independent (standard) exponential random variables is called
a Gamma random variable. It describes the time you need to wait for r
Poisson events to happen (e.g., the time it takes for 10 light bulbs to burn
out, for the Geiger counter to record 10 clicks, or for 10 people to send in
campaign contributions.) The formula for fX isn’t obvious, and that for FX

is complicated, but the others are directly related to those of the exponential
distribution.

fX(x) = xr−1e−x/(r − 1)!, x > 0

FX(x) = complicated,

E(X) = r

V ar(X) = r

MX(t) = (1 − t)−r

4



1.8 Gamma distribution Γ(r, λ)

This is a standard Gamma variable multiplied by λ, or equivalently the sum
of r independent exponential variables, each with mean λ

fX(x) = λ−rxr−1e−x/λ/(r − 1)!, x > 0

FX(x) = complicated,

E(X) = λr

V ar(X) = λ2r

MX(t) = (1 − λt)−r

2 Discrete distributions and transformation

rules.

The discrete random variables we will consider always take on integer values,
so we never rescale them. Also, the cdf FX(x) is rarely useful, with the
notable exception of the geometric distribution. The transformations that
are more relevant are those for adding two independent random variables. If
Z = X + Y , with X and Y independent, then

fZ(z) =
∑

x

fX(x)fY (z − x) (6)

E(Z) = E(X) + E(Y ) (7)

V ar(Z) = V ar(X) + V ar(Y ) (8)

MZ(t) = MX(t)MY (t) (9)

2.1 Bernoulli

A Bernoulli random variable is a variable that can only take on the values 0
and 1. We let p be the probability of 1, and 1 − p the probability of 0. This
example is easy to analyze, and MANY interesting random variables can be
built from this simple building block.

fX(x) =







1 − p if x = 0
p if x = 1
0 otherwise.
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E(X) = p

V ar(X) = p(1 − p)

MX(t) = 1 + p(et − 1)

2.2 Binomial

A binomial random variable is the sum of n independent Bernoulli random
variables, all with the same value of p. The usual application is counting
the number of successes in n independent tries at something, where each try
has a probability p of success. It also applies to sampling with replacement,
and is a very good approximation to sampling (without replacement) from
very large populations. When np and n(1 − p) are both large (say, 20 or
bigger), then the binomial distribution is well approximated by the normal
distribution. When n is large (at least 30) and p is small (less than 0.1), then
the binomial distribution is approximated well by the Poisson distribution.

fX(x) =

(

n

x

)

px(1 − p)n−x

E(X) = np

V ar(X) = np(1 − p)

MX(t) = (1 + p(et − 1))n

2.3 Poisson

The Poisson distribution (pronounced pwah-SON) is the limit of binomial
when n is large and p is small. The correspondence is λ = np. The Poisson
distribution replicates itself, in that the sum of a Poisson(λ) random variable
and a (independent!) Poisson(µ) random variable is a Poisson(λ+µ) random
variable. Anything that involves the sum of many, many long-shot events
(e.g., number of people hit by lightning in a year, or number of broken bones
from playing soccer, or number of clicks on a Geiger counter) will be described
by the Poisson distribution.

Closely related to the Poisson distribution is a Poisson process. In a Pois-
son process events accumulate at a certain average rate r. The number of
events in “time” t is then given by Poisson(rt). Examples include radioac-
tivity, where you have clicks per unit time, typos (where r is errors/page and
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t is the number of pages), industrial defects (r equals the average number of
defects per foot of sheet metal and t is the number of feet).

fX(x) = λxe−λ/x!

E(X) = λ

V ar(X) = λ

MX(t) = eλ(et
−1)

2.4 Geometric

The geometric distribution describes the waiting time between successes in
a Binomial process. For instance, flip coins and count the turns until the
first head, or roll dice and count the turns until you get a “6”. It is very
much like the exponential distribution, with λ corresponding to 1/p, except
that the geometric distribution is discrete while the exponential distribution
is continuous.

fX(x) = pqx−1, x = 1, 2, . . . , where q = 1 − p

E(X) = 1/p

V ar(X) = q/p2

MX(t) =
pet

1 − qet

2.5 Negative binomial

The sum X of r independent geometric random variables is given by the
discrete analog of the Gamma distribution (which describes the sum of r
independent exponential random variables).

fX(x) =

(

x − 1

r − 1

)

prqx−r, x = r, r + 1, . . . , where q = 1 − p

E(X) = r/p

V ar(X) = rq/p2

MX(t) =
prert

(1 − qet)r
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The term “negative binomial distribution” actually refers to Y = X − r,
and not to X. The data for Y are easily obtained from those of X:

fY (n) =

(

n + r − 1

n

)

prqn, n = 1, 2, . . . , where q = 1 − p

E(Y ) = rq/p

V ar(Y ) = rq/p2

MY (t) =
pr

(1 − qet)r

2.6 Hypergeometric distribution

The hypergeometric distribution describes sampling without replacement.
There are r red and w white balls in an urn (with N = r + w), we draw
n balls out, and let X be the number of red balls drawn. Of course, it
doesn’t have to be balls in urns. We could just as well be counting aces
dealt from a standard deck (with 4 aces and 48 non-aces), or Libertarians
drawn from a sample of voters. A hypergeometric random variable is the
sum of n Bernoulli random variables (with Xi indicating the color of the
i-th ball drawn). These Bernoulli variables are NOT independent, but their
covariances are easy to compute, and this gives us the variance of the hyper-
geometric variable. When n ¿ N , the hypergeometric distribution is very
close to a Binomial distribution with p = r/N .

fX(x) =

(

r
x

)(

w
n−x

)

(

N
n

)

E(Y ) = nr/N

V ar(Y ) = n
r

N

w

N

N − n

N − 1
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