
Chapter 10

FLOW IN CONDUITS

Fluid Mechanics, Spring Term 2009

Shear stress distribution across a pipe section

For steady, uniform flow, the momentum balance in s for

the fluid cylinder yields

with

and

we solve for ! to get:

regardless of whether flow is laminar or turbulent.
(Technically, turbulent flow is neither uniform nor steady, and there

are accelerations; we neglect this).

Velocity for laminar flow in pipes

Using the result

for !, we

substitute

Integration yields



The velocity is 0 at the boundary,

One boundary condition:

(parabolic profile)

Example 10.1:

Oil flows steadily in a vertical pipe.  Pressure at z=100m is

200 kPa, and at z=85m it is 250 kPa.

Given: Diameter D = 3 cm

            Viscosity µ = 0.5 Ns/m2

            Density " = 900 kg/m3

Assume laminar flow.

Is the flow upward or downward?  What is the velocity at
the center and at r=6mm?

Example 10.1: Solution

First determine rate of change of p + #z

Since the velocity is given by

the flow velocity is negative, i.e., downward.

The velocity at any point r is found from

where we have already determined the value of 

For  r = 0, V = -0.622 m/s

For r = 6 mm, V = -0.522 m/s

Note that the velocity is in the direction of pressure increase.

The flow direction is determined by the combination of

pressure gradient and gravity.  In this problem, the effect of

gravity is stronger.



Head loss for laminar flow in a pipe

The mean velocity in the pipe is given by

Rearranging gives

which we integrate along s between sections 1 and 2:

Identify the length of pipe section L = s2 - s1

This is simply the energy equation for a pipe with head loss

Criterion for Turbulent vs. Laminar Flow in a Pipe

The behavior of flow in pipes is determined by the Reynolds

number Re.

Flow tends to become turbulent when Re > 3000.

Flow is always laminar when Re < 2000.

For 2000 < Re < 3000, the behavior is unpredictable and
often switches back and forth between laminar and

turbulent.

When conditions are carefully controlled so that the flow

is perfectly motionless at the inlet of the pipe and the pipe
is free of vibrations, then it is possible to maintain laminar

flow even at Re > 3000.

Example 10.3: Determine rate of flow in the pipe

Fluid is kerosene with

     Density    " = 820 kg/m3

     Viscosity µ = 3.2 x 10-3 Ns/m2

We!ve solved this type of problem before…
The problem here is that we don!t know (we are not told)

whether or not the flow is laminar.



Example 10.3: Solution

We don!t know the velocity, so we cannot compute the

Reynolds number which tells us whether the flow is laminar or

turbulent.

The pipe is quite thin, so we begin by assuming that the flow

is laminar.  Once we have the solution, we!ll check whether

that assumption was justified.

Energy equation (point 1 at surface of tank, point 2 at outlet):

(If the flow were turbulent, we!d have to use a different
form for the last term, the head loss).

p1, V1, p2 and z2 are zero.  We thus have all the information

we need to solve for V2

However, if the flow is laminar then the terms involving

squares of velocity should be small, so we assume the

term involving V2
2 is zero (easier calculations…)

This is our “guess” for the solution.  Now we check

whether our assumptions were justified.

Re is much less than 2000, so the flow is laminar.  That

was our main assumption which is thus correct.

We found that the 1st and 3rd circled terms = 1m.

We neglected the 2nd one.

This term is indeed negligible so our solution is OK.

Turbulent flow is less efficient than laminar flow:

Velocity profile

for turbulent flow

Velocity profile

if flow were laminar

everywhere

Thin, laminar boundary layer

If flow could remain laminar, the pipe could transport more

fluid for a given pressure gradient.

The swirls and eddies associated with turbulence make
the fluid appear as though it had a much higher viscosity

where flow is turbulent.



Same concept, different way of looking at it:

The effective mean stress (or apparent stress) is much

greater than the stress expected for laminar flow.

Within the turbulent flow, this stress is approximately
linear with radius.

The apparent stress depends on the turbulent velocity

perturbations u! and v!.

Velocity distribution in smooth pipes:

Laminar      Turbulent

Experiments show:

for

for

where

(laminar

boundary

layer)

(note logarithmic scales)

More empirical (experimental) relations for smooth pipes:

where                               for laminar flow

shear stress at wall

head loss (Darcy-Weisbach

equation)

For turbulent flow

with Re > 3000

Rough Pipes

Velocity distribution

k is a parameter that characterizes the height of the

roughness elements.

B is a parameter that is a function of the type, concentration,

and the size variation of the roughness.

y is distance from wall.



Rough Pipes

Low Reynolds number or small

roughness elements:

Roughness unimportant, pipe
considered smooth

High Reynolds number or large

roughness elements:

Fully rough, f independent of

Reynolds number.

and                                are still valid

How to find f for rough pipes?  Moody diagram:

Reynolds number (if velocity is known)
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Example 10.4:  Find head loss per kilometer of pipe.

Pipe is a 20-cm asphalted cast-iron pipe.
Fluid is water.

Flow rate is Q = 0.05 m3/s.

Solution:

First compute Reynolds number

From Table 10.2, ks = 0.12 mm for asphalted cast-iron pipe.

So, ks/D = 0.0006



x

f = 0.019

With f = 0.019, we get the head loss hf from the Darcy-

Weisbach equation:

Similar to last problem:

Pipe is 20-cm asphalted cast-iron.
Fluid is water.

Head loss per kilometer is 12.2 m.

The difference to the previous problem is that we don!t
know the velocity, so we can!t compute Re.

Compute instead
where

is the kinematic viscosity.

Example 10.5:  Find volume flow rate Q.
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f = 0.019again



Now we use the Darcy-Weisbach equation again to get V
Flow at pipe inlets and losses from fittings

Rounded inlet                               Sharp-edged inlet

Head loss for inlets, outlets, and fittings:

where K is a parameter that depends on the geometry.

For a well-rounded inlet, K = 0.1, for abrupt inlet K = 0.5

(much less resistance for rounded inlet).

Bends in pipes:

Sharp bends result in
separation downstream of

the bend.

The turbulence in the

separation zone causes
flow resistance.

Greater radius of bend

reduces flow resistance.



Transition losses and grade lines

Head loss due to

transitions (inlets, etc.) is

distributed over some
distance.

Details are often quite

complicated.

Approximation:  Abrupt

losses at a point.

Turbulent Flow in Non-Circular Conduits

Relations for shear stress at boundary and for head loss

are similar to those for circular conduits:

Circular pipes                                     Non-circular conduits

(Darcy-Weisbach

equation)

here A is cross sectional

area and P is perimeter

of pipe.

In these equations, the circular pipe diameter D was simply

replaced by 4 A / P.

Hydraulic radius:

The conduit need not be filled with fluid:

A is the cross-sectional area of the pipe

P is the wetted perimeter of the pipe,

that is, the length of pipe perimeter

that is in contact with the fluid.

Cross section of

rectangular conduit.



Flow problems for non-circular conduits can be solved

the same way as problems for circular pipes.

Simply replace D by 4Rh

Relative roughness is

Reynolds number is 

Uniform free-surface flows

Same equations as for non-circular conduits.

However, A is only the cross-sectional area of the fluid.

As for pipes, is laminar for

and turbulent for

(But for some reason the Reynolds number for open channels

is usually defined as                              )

Chezy and Manning Equations (for open channels)

Start with head-loss equation:

In an open channel, the hydraulic grade line is the

same as the free surface, so that the slope is given by

and hence

with

(Chezy equation)

Thus far, we have only re-organized the formulas we

used before.

However, the way C is commonly determined in the

Chezy equation is

where n is a resistance coefficient called Manning!s n.



Recall in the

previous approach

we used the Moody

diagram (that
complicated graph).

In the Moody

diagram, we used

the relative

roughness, ks / D.

Here, there is only

one type of

roughness which is

independent of the
channel size.

The approach we used before is more accurate.  However, the

Chezy equation is still commonly used.

An additional word of caution:

Substituting for C, the Chezy equation can be written as

It is valid only in SI units.

For “traditional units” (feet, pounds, …) the equation is

(Manning!s equation)

(This sort of stuff only happens if you leave out the

proper units somewhere; e.g., using a unitless parameter

instead of keeping the units it should have.  This is highly

unscientific!)

Best Hydraulic Section

From Chezy formula:

for a given slope S0, the flow rate is proportional to

Large cross-sectional area A gives high Q.

Large wetted perimeter P gives low Q.

Highest flow rate Q for certain types of shapes

Most efficient conduit

with rectangular cross-

section.

            Not this

            or this(best hydraulic section for

rectangle is half a square)

Best rounded shape:
Half of a circle.

Best trapezoid:
Half of a hexagon.


