Chapter 10

FLOW IN CONDUITS

Fluid Mechanics, Spring Term 2009

Shear stress distribution across a pipe section

For steady, uniform flow, the momentum balance in s for
the fluid cylinder yields

Z F, = Fpressure + F, gravity + Fyiscous = 0

> pA— (p+ %As) A— AWsina —7 (2nr) As =0

B T

regardless of whether flow is laminar or turbulent.

(Technically, turbulent flow is neither uniform nor steady, and there
are accelerations; we neglect this).

Velocity for laminar flow in pipes

Using the result
fOf' ‘C, We z (vertical)

substitute

dav r d
2| ds

Integration yields Vv — — Z_ [_ di (p+ ’Yz)} +C
S




The velocity is 0 at the boundary,

One boundary condition:

V=0 at r=nmrg

_ 2
—> |V = =T [ (parabolic profile)
4p s

Example 10.1:

Oil flows steadily in a vertical pipe. Pressure at z=100m is
200 kPa, and at z=85m it is 250 kPa.

Given: Diameter D =3 cm
Viscosity u = 0.5 Ns/m?
Density p = 900 kg/m?

Assume laminar flow.

Is the flow upward or downward? What is the velocity at
the center and at r=6mm?

Example 10.1: Solution

First determine rate of change of p + yz

d _ (p100 + v2100) — (g5 + Y285)
df(p +7z) =
S 2100 — 285

3 _ 3 .
_ [200 x 10° + 8830 (100)] — [250 x 10° +8830 (85)] _ . .o\ 0/ s
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Since the velocity is given by

r2 —r? d
V=" )

the flow velocity is negative, i.e., downward.

The velocity at any point r is found from

r2 — p2 d
v="o [—%(%72)]

where we have already determined the value of

d .

—(p+~2) = 5.53 kN/m®
ds

For r=0, V=-0.622 m/s

Forr=6 mm, V =-0.522 m/s

Note that the velocity is in the direction of pressure increase.
The flow direction is determined by the combination of
pressure gradient and gravity. In this problem, the effect of
gravity is stronger.




Head loss for laminar flow in a pipe

The mean velocity in the pipe is given by

—_Q_l/
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Rearranging gives

d 32uV
which we integrate along s between sections 1 and 2:
32uV
pe—p1+7(22 —21) = — ;2 (82 —s1)

Identify the length of pipe section L = s, - s,

: : 32uLV
E+21:}2+22+ HQ
Y Y vD

This is simply the energy equation for a pipe with head loss

_ 32uLV
= ’}’Dz

Criterion for Turbulent vs. Laminar Flow in a Pipe

The behavior of flow in pipes is determined by the Reynolds
number Re.  VDp
m

Flow tends to become turbulent when Re > 3000.
Flow is always laminar when Re < 2000.

Re

For 2000 < Re < 3000, the behavior is unpredictable and
often switches back and forth between laminar and
turbulent.

When conditions are carefully controlled so that the flow
is perfectly motionless at the inlet of the pipe and the pipe
is free of vibrations, then it is possible to maintain laminar
flow even at Re > 3000.

Example 10.3: Determine rate of flow in the pipe

Elevation =1 m

6-mm diameter

Elevation = 0

I 100 m |

Fluid is kerosene with

Density p =820 kg/m?3
Viscosity u = 3.2 x 103 Ns/m?

We've solved this type of problem before...
The problem here is that we don’t know (we are not told)
whether or not the flow is laminar.




Example 10.3: Solution

We don’t know the velocity, so we cannot compute the
Reynolds number which tells us whether the flow is laminar or
turbulent.

The pipe is quite thin, so we begin by assuming that the flow
is laminar. Once we have the solution, we’ll check whether
that assumption was justified.

Energy equation (point 1 at surface of tank, point 2 at outlet):

a, V2 > ay V7 32uLV:
¥ 2g g 29 vD
(If the flow were turbulent, we’d have to use a different
form for the last term, the head loss).

P, o Vlz D2 O-‘2V22 32uL Vs

—t Y txan=—+—"F""+2+ :

Y 2g T2 yD?
P, V4, P, and z, are zero. We thus have all the information
we need to solve for V,

However, if the flow is laminar then the terms involving
squares of velocity should be small, so we assume the
term involving V.2 is zero (easier calculations...)

32uLV,
0+0+1m=0+0+0+ 122
~yD
Im x yD?
S V= XTI 98 ommls
32uL

This is our “guess” for the solution. Now we check
whether our assumptions were justified.

po_ VDo (0.0282m/s)(0.006m)2(820kg/m?)
e = = =

: 434
L 0.0032Ns/m?

Re is much less than 2000, so the flow is laminar. That
was our main assumption which is thus correct.

P 61‘11”12 P2
— 4+ — = — + + 2y
Y 29 @ v

We found that the 1st and 3rd circled terms = 1m.
We neglected the 2nd one.

’Vz VZ 4
2272 %2 281 x 10°m
29 g

This term is indeed negligible so our solution is OK.

Turbulent flow is less efficient than laminar flow:

Velocity profile —’ N Velocity profile

for turbulent flow | ! : if flow were laminar
: , everywhere
—

T |

Thin, laminar boundary layer

If flow could remain laminar, the pipe could transport more
fluid for a given pressure gradient.

The swirls and eddies associated with turbulence make
the fluid appear as though it had a much higher viscosity
where flow is turbulent.




Same concept, different way of looking at it:
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The effective mean stress (or apparent stress) is much
greater than the stress expected for laminar flow.
Within the turbulent flow, this stress is approximately
linear with radius.

The apparent stress depends on the turbulent velocity
perturbations u’ and v’.

Velocity distribution in smooth pipes:

Experiments show:
10,000 |-
U _ uxyp (laminar
Uy |u' bOU ndary 1,000 - I
layer) R
Usyp
for 0 < <35
2 o0
X =575 l0g10 2 455
[Eq. (10.1901
u Uxyp
— =5.75log —— +55 Mgk
[Eq. (10.18)]
1y yp ‘ ‘ .
for 20 < < 10° g e 20 5
70 Laminar  Turbulent
where  y, = —

(note logarithmic scales)

More empirical (experimental) relations for smooth pipes:

VZ
To = f pB shear stress at wall
. fL V2 head loss (Darcy-Weisbach
I= 3 9¢D equation)
64 .
where f=— for laminar flow
Re

For turbulent flow
=21og(R 0.8
og(Rev/f) with Re > 3000
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Rough Pipes

Velocity distribution X 575108 % +B

*

k is a parameter that characterizes the height of the
roughness elements.

B is a parameter that is a function of the type, concentration,
and the size variation of the roughness.

y is distance from wall.




Rough Pipes

k
(i) Re < 10
D

(k—s) Re > 1000
D

™ =

2 LV?
feV” 'OSV and hy=

Low Reynolds number or small
roughness elements:
Roughness unimportant, pipe
considered smooth

High Reynolds number or large
roughness elements:

Fully rough, f independent of
Reynolds number.

2_g—D are still valid

TABLE 10.2  EQUIVALENT SAND GRAIN ROUGHNESS, &, FOR VARIOUS PIPE MATERIALS

Boundary Material k,, millimeters k, inches
Glass, plastic Smooth Smooth
Copper or brass tubing 0.0015 6x 107
Wrought iron, steel 0.046 0.002
Asphalted cast iron 0.12 0.005
Galvanized iron 0.15 0.006
Cast iron 0.26 0.010
Concrete 0.3t03.0 0.012-0.12
Riveted steel 0.9-9 0.035-0.35
Rubber pipe (straight) 0.025 0.001

How to find f for rough pipes? Moody diagram:

use this parameter and the

corresponding black lines if velocity

ret2= 22 (%4 g not known.
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Reynolds number (if velocity is known)

Get value for ks from table; each value of

ks/D corresponds to one of the blue curves

Example 10.4: Find head loss per kilometer of pipe.

Pipe is a 20-cm asphalted cast-iron pipe.
Fluid is water.

Flow rate is Q = 0.05 m3/s.

Solution:

First compute Reynolds number

VL L
Re— YL _ QLp

H Ap
From Table 10.2, k, = 0.12 mm for asphalted cast-iron pipe.

=3.18 x 10°

So, k/D = 0.0006




With f = 0.019, we get the head loss h; from the Darcy-
pepa - 222 (21} Weisbach equation:
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Example 10.5: Find volume flow rate Q.
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0090 RV TN AT i 111 o
{5\ . 281 1 1R A W i A W WAV, R 2
Plpe |S 20'Cm asphalted CaSt-Iron 0070: N -j\-:‘\_\_\_\_\ 1 LTIA 1y Tt T g‘gi g
i i 0,060 1AS W\ L | WA INAE| ’ £
Fluid is water. AT 3 VIR BT A R 3
. . 0.050 E4——%3 0.02

Head loss per kilometer is 12.2 m. CTETV NS I W vV s y
£ 0.040 N A o= a ¥ <

- Hle TR P e 2

% ooso LI Tm N —raue P | §

. . . ) g 0025E ‘\_ \\\‘\ \‘ \‘ \‘ \ \ \ \ \‘ } %D 3

The difference to the previous problem is that we don’t R 5£ S\EAR LA WA NI R
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Now we use the Darcy-Weisbach equation again to get V

2
hy — LV
2Dg
-y, [*Dghy
fL
V = 1.59m/s
n D?

Q=AV= TV = 0.050m3/s

Flow at pipe inlets and losses from fittings

| . ‘

L ¢ Limit of boundary layer

AN
i

(nonuniform flow) (uniform flow)

( Region of developing flow Fully developed flow /

Rounded inlet Sharp-edged inlet

Head loss for inlets, outlets, and fittings:
VZ
hy =K—
2g
where K is a parameter that depends on the geometry.
For a well-rounded inlet, K = 0.1, for abrupt inlet K = 0.5
(much less resistance for rounded inlet).

Bends in pipes:

Sharp bends result in
separation downstream of
the bend.

The turbulence in the
separation zone causes
ﬂOW reSIStance Separation zone—_|

T T2

Greater radius of bend
reduces flow resistance.

TABLE 10.3  LOSS COEFFICIENTS FOR VARIOUS TRANSITIONS AND FITTINGS

Additional
Description Sketch Data K Source
r/d K, (18)7
Pipe entrance \ 7 0.0 0.50
= d — 0.1 0.12
h = K,V2/2g / W >0.2 0.03
K Ke
Contraction D,/D, u=060° u=180° (18)
b 0.0 0.08 0.50
A 0.20 0.08 0.49
Dy 5 “Eﬁ 0.40 0.07 042
. 0.60 0.06 0.27
0.80 0.06 0.20
hy = KcV3/2g 0.90 0.06 0.10

* Engineering handbooks usually include extensive tables of loss coefficients. References (18), (19),
(20), (21), (22). and (23) are particularly useful in this respect.




TABLE 10.3  LOSS COCFFICIENTS FOR VARIOUS TRANSITIONS AND FITTINGS (CONTINUED)

Additional
Description Sketch Data K Source
Ky Ke
Expansion B D,/D, u=120° u=180° (17
ny 00 1.00
13 D, 0.20 0.30 0.87
T ¥ 040 0.25 0.70
0.60 0.15 0.41
= KVi2g 080 0.10 0.15
90° miter bend Vanes Without K,=11 (23)
— 3 vanes
3
With K,=02 (23)
| vancs
90° smooth bend /d (24)
and
= I = 1 K, =035 an
X0 2 0.19
s 4 0.16
} 6 021
8 0.28
10 0.32
Threaded Globe valve—wide open K, =100 (23)
pipe Angle valve—wide open K, = 50
itings Gate valve—wide open K, = 02
Gate valve—half open K,= 56
Return bend K, = 22
Tee
straight-through flow K = 04
side-outlet Mlow K= 18
90° elbow K,= 09
45° elbow K,= 04

“Reprinted by permission of the American Socicty of Heating, Refrigerating and Air Conditioning Engincers, Atlanta, Georgia,
trom the 1981 ASHRAE Handbook—Fundamentals.

Transition losses and grade lines

oroutence produced o the trance Head loss due to
transitions (inlets, etc.) is

distributed over some

distance.

Details are often quite

Drop in the HGL
due to high
velocity in flow
just downstream HGL

of entrance

~ = -0 —
g ——— complicated.
Iy, due to

entrance

}/rl due to partially

clsed vale Approximation: Abrupt
i losses at a point.

} outlet

== — T — =

Turbulent Flow in Non-Circular Conduits

Relations for shear stress at boundary and for head loss
are similar to those for circular conduits:

Circular pipes Non-circular conduits

d d
ro=§[—£(p+'yZ)] fo=§[—$(p+?2:)]

. 2
LVE (Darcy-Weisbach P LV

hf = fﬁ equation) F= ﬂ 2g

here A is cross sectional
area and P is perimeter
of pipe.

In these equations, the circular pipe diameter D was simply
replaced by 4 A/ P.

Hydraulic radius: R, = =

The conduit need not be filled with fluid:

A is the cross-sectional area of the pipe

Air

P is the wetted perimeter of the pipe,
that is, the length of pipe perimeter
that is in contact with the fluid.

Cross section of
rectangular conduit.




Flow problems for non-circular conduits can be solved
the same way as problems for circular pipes.

Simply replace D by 4R,,
. , ks
Relative roughness is ——
4Ry

4V Rup
u

Reynolds number is Re

Uniform free-surface flows

Side view End view

Same equations as for non-circular conduits.

However, A is only the cross-sectional area of the fluid.

VR

As for pipes, is laminar for i < 2000
4V R

and turbulent for #hp > 3000

(But for some reason the Reynolds number for open channels
is usually defined as  p, _ VERip )

7

Chezy and Manning Equations (for open channels)
. fJI}V2
4Ry 29

In an open channel, the hydraulic grade line is the
same as the free surface, so that the slope is given by

Start with head-loss equation: h f

hy
So= -1
=L
and hence Ry, So = LVZ
89
V =C+RypSo 3
with C = °9

0 = CAVR,S, f

(Chezy equation)

Thus far, we have only re-organized the formulas we
used before.

However, the way C is commonly determined in the
Chezy equation is

R/6

c=-"t
n

where n is a resistance coefficient called Manning’s n.




TABLE 104 TYPICAL VALUES OF THE ROUGHNESS COEFFICIENT

Lined Canals

Cement plaster 0.011
Untreated gunite 0.016
e ome we used the Moody
Wood, unplaned 0.013 i
Concrete, troweled 0.012 d I ag ral'm (t hdat h
Concrete, wood forms, unfinished 0.015 m ] t I .
Rubble in cement 0.020 co p cate g ap )
Asphalt. smooth 0.013
Asphalt, rough 0.016 In the Moody
Corrugated metal 0.024 .
Unlined Canals dlag ram’ we used

Earth, straight and uniform 0.023 the relatlve
Earth, winding and weedy banks 0.035
Cut in rock, straight and uniform 0.030 roug hneSS, kS / D .
Cut in rock, jagged and irregular 0.045

Natural Channels Here, there is 0n|y
Gravel beds, straight 0.025
Gravel beds plus large boulders 0.040 one type Of
Earth, straight, with some grass 0.026 H H
Earth, winding, no vegetation 0.030 roug hness WhICh IS
Earth, winding, weedy banks 0.050 i
Earth, very weedy and overgrown 0.080 Inde pe nde nt Of the

n

Recall in the
previous approach

channel size.

The approach we used before is more accurate. However, the

Chezy equation is still commonly used.

An additional word of caution:

Substituting for C, the Chezy equation can be written as

1.0 2/3 ol/2
Q= -—AR""S
n h 0

It is valid only in Sl units.

For “traditional units” (feet, pounds, ...) the equation is

1.49
Q =~ AR}’s)?
n

(Manning’s equation)

(This sort of stuff only happens if you leave out the
proper units somewhere; e.g., using a unitless parameter
instead of keeping the units it should have. This is highly
unscientific!)

Best Hydraulic Section

From Chezy formula: Q = O/-flfw'iZ’@'Slf2

for a given slope S, the flow rate is proportional to

A\

Large cross-sectional area A gives high Q.

Large wetted perimeter P gives low Q.

Highest flow rate Q for certain types of shapes

Most efficient conduit
4 With rectangular cross-
section.

) _ Not this
(best hydr_aullc section for or this
rectangle is half a square)

Best rounded shape: Best trapezoid:
Half of a circle. Half of a hexaaon.




