Lecture 3 Inverse transform method

- How does one transform a sample of the uniform[0,1] random variable into a sample of a given distribution ?
- Methods for transformation
 - Inverse transform method
 - Convolution method
 - Composition method
 - Acceptance-rejection method

Generating random numbers

Problem: Generate sample of a random variable X with a given density f. (The sample is called a *random variate*)

What does this mean ?

Answer: Develop an algorithm such that if one used it repeatedly (and independently) to generate a sequence of samples X_1, X_2, \ldots, X_n then as n becomes large, the proportion of samples that fall in any interval [a, b] is close to $\mathbf{P}(X \in [a, b])$, i.e.

$$\frac{\#\{X_i \in [a,b]\}}{n} \approx \mathbf{P}(X \in [a,b])$$

Solution: 2-step process

- \bullet Generate a random variate uniformly distributed in [0,1] .. also called a $\mathit{random\ number}$
- Use an appropriate transformation to convert the random number to a random variate of the correct distribution

why is this approach good ?

Answer: Focus on generating samples from ONE distribution only.

Pseudo-random numbers

Many different methods of generating a (uniform[0,1]) random number ...

- 1. physical methods : roulette wheel, balls for the lottery, electrical circuits etc.
- 2. numerical/arithmetic : sequential method ... each new number is a deterministic function of the past numbers

For simulation ... numerical method works best

- numbers generated by the numerical method are never *random* !
- enough that the numbers "look" uniformly distributed and have no correlation between them i.e. pass *statistical tests*
- All we want is that the central limit theorem should kick in ...

Properties that psuedo-random number generators should possess

- 1. it should be fast and not memory intensive
- 2. be able to reproduce a given stream of random numbers ... why ?
 - debugging or verification of computer programs
 - may want to use *identical* numbers to compare different systems
- 3. provision for producing several different independent "streams" of random numbers

Linear Congruential generators

- Will not focus too much on generating random numbers ... all simulators and languages have good generators
- A good example ... Linear congruential generators

$$Z_i = (aZ_{i-1} + c) \pmod{m}$$
 $i \ge 1$, $U_i = \frac{Z_i}{m}$.

— modulus m, multiplier a, increment c, and seed Z_0 are nonnegative

- a < m, and $c, Z_0 < m$

Example

$Z_i = (5Z_{i-1} + 3) (\text{mod}16)$								$Z_i = (5Z_{i-1} + 6) (\text{mod}16)$								
i	Z_i	i	Z_i	i	Z_i	i	Z_i		i	Z_i	i	Z_i	i	Z_i	i	Z_i
0	7	5	10	10	9	15	4		0	7	5	1	10	3	15	13
1	6	6	15	11	0	16	7		1	9	6	11	11	5	16	7
2	1	7	12	12	3	17	6		2	3	7	13	12	15	17	9
3	8	8	15	13	2	18	1		3	5	8	7	13	1	18	3
4	11	9	14	14	13	19	8		4	15	9	9	14	11	19	5

• Several other types of generators

- more general congruences $Z_i = g(Z_{i-1}, Z_{i-2}, \ldots) \pmod{m}$.
- a popular example ... Tautsworth generator

$$Z_i = (c_1 Z_{i-1} + c_2 Z_{i-2} + \ldots + c_q Z_{i-q}) (\text{mod } 2)$$

Assume that we have an algorithm (program) that generates independent samples of uniform[0,1] random variable.

Generating random variates

- Inverse transform method
- Composition approach
- Convolution method
- Acceptance-Rejection technique

Continuous random variables

- Generate a continuous random variable $X \sim F$ as follows :
 - 1. Generate a uniform random variable \boldsymbol{U}

2. Set
$$X = F^{-1}(U)$$

(Assumption: The inverse $F^{-1}(x)$ exists ...)

Using the inverse and hence ... Inverse Transform Method

• Proof: Have to show that the CDF of the samples produced by this method is precisely F(x).

$$\mathbf{P}(X \le x) = \mathbf{P}(F^{-1}(U) \le x)$$

= $\mathbf{P}(U \le F(x))$ (1)
= $F(x)$ (2)

where

- $-\left(1\right)$ follows by the fact that F is an increasing function
- -(2) follows from the fact $0 \le F(x) \le 1$ and the CDF of a uniform $F_U(y) = y$ for all $y \in [0, 1]$
- Algorithm:
 - Given: the CDF F(x) or the density f(x). If density given then first integrate to get CDF. (Most frequent error: incorrect limits on the integration)
 - Set F(X) = U and solve for X in terms of U. Have to make sure that the solution X lies in the correct range.

- The density $f(x) = \lambda e^{-\lambda x}$ and the cdf $F(x) = 1 e^{-\lambda x}$.
- Set F(X) = U and solve for U

$$1 - e^{-\lambda X} = U$$
$$e^{-\lambda X} = 1 - U$$
$$X = -\frac{1}{\lambda}\log(1 - U)$$

• Algorithm :

1. Generate random number U2. Set $X = -\frac{1}{\lambda}\log(1-U)$

• But if U is uniform[0,1] then 1 - U is also uniform[0,1] so one might as well define

$$X = -\frac{1}{\lambda}\log(U)$$

Inverse transform method : Discrete random variables

• Want to generate a *discrete* random variable X with pmf

$$\mathbf{P}(X=x_i)=p_i, \quad i=1,\ldots,m$$

• Consider the following algorithm

1. Generate a random number U 2. Transform U into X as follows, $X = x_j \quad \text{if} \quad \sum_{i=1}^{j-1} p_i \le U < \sum_{i=1}^{j} p_i$

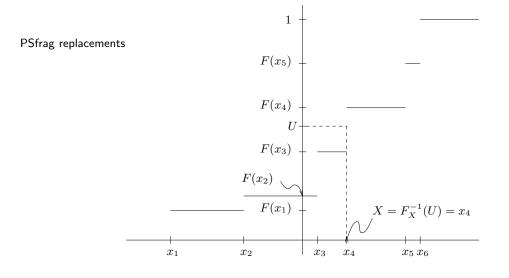
• Proof the algorithm works ...

$$\mathbf{P}(X = x_j) = \mathbf{P}(\sum_{i=1}^{j-1} p_i \le U < \sum_{i=1}^{j} p_i)$$
$$= \sum_{i=1}^{j} p_i - \sum_{i=1}^{j-1} p_i = p_j$$

QED

• Suppose $x_1 < x_2 < \ldots < x_m$ then the cdf of $X \ F_X$ is

$$F_X(x) = \begin{cases} 0, & x < x_1, \\ \sum_{i=1}^j p_i, & x_j \le x < x_{j+1}, j \le m-1 \\ 1, & x \ge x_m \end{cases}$$



Thus ... $X = x_j$ if $F_X(x_{j-1}) \le U < F_X(x_j)$

 \bullet If one defines the generalized inverse F_X^{-1} by

$$F_X^{-1}(x) = \min\{y \mid F_X(y) \ge x\}$$

then ... $X=F_X^{-1}(U)$

• Want to simulate the random variable X with the pmf

$$p_1 = 0.2, p_2 = 0.15, p_3 = 0.25, p_4 = 0.40$$

• Algorithm :

1. Generate a random number U 2. If $U < p_1 = 0.2$, set $X \leftarrow x_1$ and stop 3. If $U < p_1 + p_2 = 0.35$, set $X \leftarrow x_2$ and stop 4. If $U < p_1 + p_2 + p_3 = 0.60$, set $X \leftarrow x_3$ and stop 5. Else set $X \leftarrow x_4$ and stop

• Is this the most efficient way of generating the random variate ?

The amount of time is proportional to the *number of intervals* one must search. Thus, it helps to consider the values x_j in *decreasing* order of p_i 's.

• More efficient algorithm :

1. Generate a random number U 2. If $U < p_4 = 0.4$, set $X \leftarrow x_4$ and stop 3. If $U < p_4 + p_3 = 0.65$, set $X \leftarrow x_3$ and stop 4. If $U < p_4 + p_3 + p_1 = 0.85$, set $X \leftarrow x_1$ and stop 5. Else set $X \leftarrow x_2$ and stop

Example : Geometric distribution

- In this case get a closed form expression for $F_X^{-1}(U)$.
- The pmf of the geometric random variable X is :

$$\mathbf{P}(X = i) = pq^{i-1}, \quad i \ge 1, q = (1-p)$$

• The cdf of the random variable

$$\begin{split} F(i) &= \mathbf{P}(X \leq i), \\ &= 1 - \mathbf{P}(X > i), \\ &= 1 - \mathbf{P}(\text{first } i \text{ trials are failures}) = 1 - q^i. \end{split}$$

• Transformation : X = j if

$$\begin{split} F(j-1) &\leq U < F(j) \ \Leftrightarrow \ 1-q^{j-1} \leq U < 1-q^{j} \\ &\Leftrightarrow \ q^{j} < 1-U \leq q^{j-1} \end{split}$$

Therefore

$$X = \min\{j \mid q^{j} < 1 - U\} \\ = \min\{j \mid j \log(q) < \log(1 - U)\} \\ = \min\{j \mid j > \frac{\log(1 - U)}{\log(q)}\}$$

i.e.

$$X = \lceil \frac{\log(1-U)}{\log(1-p)} \rceil$$

where $\lceil z \rceil$ is the smallest integer larger than z.

Example : Binomial random variable

- No closed form solution ... algorithm
- the pmf is

$$p_i = \mathbf{P}(X=i) = \binom{n}{i} p^i (1-p)^i, \quad i = 0, \dots, n$$

Therefore ...

$$p_i = \left(\frac{n-i}{i+1}\right) \left(\frac{p}{1-p}\right) p_{i-1}$$

• Algorithm

1. Generate a random number U
2. Set
$$i \leftarrow 0$$
, $P \leftarrow (1 - p)^n$, $F \leftarrow P$,
3. If $U < F$, set $X \leftarrow i$ and stop
4. Set $P \leftarrow \left(\frac{n-i}{i+1}\right) \left(\frac{p}{1-p}\right) P$, $F \leftarrow F + P$, $i \leftarrow i+1$
5. Goto step 3

Disadvantages and advantages

Disadvantages:

- 1. requires a closed form expression for F(x)
- 2. speed ... often very slow because a number of comparisons required

Advantages:

Inverse transform method preserves *monotonicity* and *correlation* which helps in

- 1. Variance reduction methods ...
- 2. Generating truncated distributions ...
- 3. Order statistics ...

• Suppose X is a sum of independent random variables Z_1, Z_2, \ldots, Z_m , i.e.

$$X = Z_1 + Z_2 + \ldots + Z_m$$

where $Z_i \sim F_i$ and are all independent.

• Algorithm :

1. Generate m random numbers U_1 , U_2 , ..., U_m 2. Inverse transform method : $Z_i = F_i^{-1}(U_i)$

3. Set
$$X = \sum_{i=1}^{m} Z_i$$

• Why is this called the *convolution method* ?

Let Z_1 , Z_2 independent with densities f_1 and f_2 resp. Let $X = Z_1 + Z_2$ then the density f_X of X is given by

$$f_X(x) = \int f_1(u) f_2(x-u) du$$

Operation on f_1 and f_2 called *convolution*. Denoted by $f_1 * f_2$. Method *samples* from the density $f_1 * f_2 * \ldots * f_m$.

• **Problem**: Generate a sample from $Erlang(\lambda, m)$ distribution.

The density of $f_{\lambda,m}$ of $Erlang(\lambda,m)$ dist. is

$$f_{\lambda,m}(x) = \frac{\lambda(\lambda x)^{m-1}}{(m-1)!} e^{-\lambda x}$$

• Fact : If $Z_i \sim \exp(\lambda)$ and independent, then

$$X = Z_1 + Z_2 + \ldots + Z_m$$
 is Erlang (λ, m)

• All set for the convolution method ...

1. Generate m random numbers U_1 , U_2 , ..., U_m 2. Set $Z_i = -\frac{1}{\lambda} \log(U_i)$ 3. Set $X = \sum_{i=1}^m Z_i$

- Not very efficient ... need m random numbers to generate $1 \\ {\rm sample}$
- Will discuss a more efficient method later.