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Planar Graphs

Graph is represented by a set of n lists; called adjacency lists

The adjacency list of a vertex contains all its neighbours

An embedding of a graph determines the order of the neighbours
embedded around a vertex

A graph is planar if and only if all the biconnected components
are planar

Assume m ≤ 3n; otherwise the graph is nonplanar
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Definition of st-Numbering

An st-numbering is numbering 1, . . . , n of the vertices of a graph
such that

Vertices “1” and “n” are adjacent
Every other vertex j is adjacent to two vertices i and k such that
i ≤ j ≤ k

Vertex “1” is the source s and vertex “n” the sink t
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Depth-First Search

Start with arbitrary edge (t, s)

Compute for each vertex its depth-first number, its parent and its
lowpoint

Definition (Lowpoint)

LOW(v) = min({v} ∪ {w | there exists a backedge (u,w) such that

u is descendant of v and w is an

ancestor of v in a DFS tree})
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Partition edges into paths

Vertices s, t and edge (s, t) are marked “old”

Case 1 There is a “new” back edge (v ,w)

Mark (v ,w) “old”
Return vw

Case 2 There is a “new” tree edge (v ,w)

Let ww1w2 . . .wk be the path to the lowpoint wk of v
Mark vertices and edges on the path “old”
Return ww1w2 . . .wk

Case 3 There is a “new” back edge (w , v)

Let ww1w2 . . .wk be the path going backward to an old vertex wk

Mark vertices and edges on the path “old”
Return ww1w2 . . .wk

Case 4 All edges incident to v are “old”

Return ∅
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st-Numbering Algorithm

Invariant

Vertices are pushed into a stack such that for every vertex v one
neighbour is stored above v and one neighbour is stored below v ;
vertex above v will be assigned a lower number and vertex below v a
higer number

1 Push vertices t and s onto stack S (s is above t)

2 Pop the top entry v from the stack

3 If PATH(v) = ∅ then number v

4 Otherwise let PATH(v) = vu1 . . . ukw ; push vertices vk , . . . , v1, v
onto S (v is top of S)

5 Goto 2
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Example of an st-Numbering
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Bush Form

Let Gk = (Vk ,Ek) be the subgraph induced by the vertices
Vk = {1, . . . , k}
Let G ′

k be the graph formed by adding all edges with ends in
V − Vk , where the ends of the edges are kept seperate

These edges are called virtual edges and their ends virtual vertices

A bush form of G ′
k is an embedding of G ′

k such that the virtual
vertices are on the outer face
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Example of Bush Form
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PQ-Tree Data Structure

Use PQ-tree to represent bush form Bk

PQ-tree consists of

P-nodes Represents a cut vertex of Bk , and its children can
be permuted arbitrarily

Q-nodes Represents a biconnected component of Bk , and its
children are only allowed to reverse

leaves Represents a virtual vertex of Bk

PQ-tree represents all the permutations and reversions possible in
a bush form Bk
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Example of PQ-Tree
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Vertex Addition Algorithm

Lemma

If we have a bush form Bk of a subgraph Gk of a planar graph G, then
there exists a sequence of permutations and reversions to make all
virtual vertices labeled “k + 1” occupy consecutive positions

Idea of the algorithm is to test planarity of Gk+1 by finding these
permutations and reversions

The permutations and reversions can be found by applying nine
transformation rules to the PQ-tree

A leaf labeled “k + 1” is pertinent and a pertinent subtree is a
minimal subtree of a PQ-tree containing all the pertinent leaves

A node of a PQ-tree is full if all the leaves of its descendents are
pertinent
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Template matchings
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Planarity Testing Algorithm

1 Assign st-numbers to the vertices of G

2 Construct PQ-tree corresponding to G ′
1

3 Gather pertinent leaves by applying the template matchings

4 If the reduction fails then G is nonplanar

5 Replace full nodes of the PQ-tree by a new P-node

6 Goto 3
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Naive Embedding Algorithm

Rewrite the adjacency lists of the bush form with each reduction
of the PQ-tree

Updating adjacency lists take time O(n) per reduction step

Algorithm spends time O(n2)
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Upward Embedding

An upward digraph is a digraph obtained from G by assigning a
direction to every edge from the larger vertex to the smaller.

An upward embedding Au is an embedding of an upward digraph.

First determine an upward embedding; second construct entire
embedding from upward embedding
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Constructing Upward Embedding

In the vertex addition step for vertex v we can easily construct an
upward adjacency list Au(v) for v

If v is reversed during the reduction step, then correct Au(v) by
reversing it

Simple counting algorithm takes time O(n2)
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Direction Indicators

At the vertex addition step for v we add a special “direction
indicator” node to the PQ-tree as one of v ’s siblings

Indicator is used to track the reversions of v

Indicator gives the direction of v relative to its brothers, when
clockwise ordering of one its brothers is known Au(v) can be
corrected
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Upward Embedding Algorithm

At the vertex addition step for v add to Au(v) the direction
indicators between leaves of v

If the root of the pertinent subtree is full

The pertinent subtree corresponds to a reversible component
Assume vertices in Au(v) are in clockwise order
For each direction indication w in Au(v) which is in opposite
direction correct Au(w) recursively

Otherwise add direction indicator v as child of the pertinent
subtree
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Reversible component

Sander Schuckman



Planarity Testing > Finding Planar Embedding > Constructing Entire Embedding

Extending Au into entire embedding

Lemma

In an embedding of a planar graph all neighbours smaller than a vertex
v are embedded consecutively around v

Do a depth-first search starting at the sink t on the upward digraph
and add vertex yk to the front of the list Au(v) when the directed edge
(yk , v) is searched
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