Planarity Testing

Sander Schuckman

October 3, 2007

Outline

(1) st-Numbering
(2) Bush Form and $P Q$-Tree
(3) Vertex Addition Algorithm

44 Finding Planar Embedding

Planar Graphs

- Graph is represented by a set of n lists; called adjacency lists
- The adjacency list of a vertex contains all its neighbours
- An embedding of a graph determines the order of the neighbours embedded around a vertex
- A graph is planar if and only if all the biconnected components are planar
- Assume $m \leq 3 n$; otherwise the graph is nonplanar

Definition of st-Numbering

- An st-numbering is numbering $1, \ldots, n$ of the vertices of a graph such that
- Vertices " 1 " and " n " are adjacent
- Every other vertex j is adjacent to two vertices i and k such that $i \leq j \leq k$
- Vertex " 1 " is the source s and vertex " n " the sink t

Depth-First Search

- Start with arbitrary edge (t, s)
- Compute for each vertex its depth-first number, its parent and its lowpoint

Definition (Lowpoint)

$\operatorname{LOW}(v)=\min (\{v\} \cup\{w \quad \mid \quad$ there exists a backedge (u, w) such that u is descendant of v and w is an ancestor of v in a DFS tree $\}$)

Partition edges into paths

Vertices s, t and edge (s, t) are marked "old"
Case 1 There is a "new" back edge ($v, w)$

- Mark (v, w) "old"
- Return vw

Case 2 There is a "new" tree edge (v, w)

- Let $w w_{1} w_{2} \ldots w_{k}$ be the path to the lowpoint w_{k} of v
- Mark vertices and edges on the path "old"
- Return $w w_{1} w_{2} \ldots w_{k}$

Case 3 There is a "new" back edge (w, v)

- Let $w w_{1} w_{2} \ldots w_{k}$ be the path going backward to an old vertex w_{k}
- Mark vertices and edges on the path "old"
- Return $w w_{1} w_{2} \ldots w_{k}$

Case 4 All edges incident to v are "old"

- Return \emptyset

st-Numbering Algorithm

Invariant

Vertices are pushed into a stack such that for every vertex v one neighbour is stored above v and one neighbour is stored below v; vertex above v will be assigned a lower number and vertex below v a higer number
(1) Push vertices t and s onto stack S (s is above t)
(C) Pop the top entry v from the stack

- If $\operatorname{PATH}(v)=\emptyset$ then number v
(Otherwise let $\operatorname{PATH}(v)=v u_{1} \ldots u_{k} w$; push vertices v_{k}, \ldots, v_{1}, v onto S (v is top of S)
(Goto 2

Example of an st-Numbering

- Let $G_{k}=\left(V_{k}, E_{k}\right)$ be the subgraph induced by the vertices $V_{k}=\{1, \ldots, k\}$
- Let G_{k}^{\prime} be the graph formed by adding all edges with ends in $V-V_{k}$, where the ends of the edges are kept seperate
- These edges are called virtual edges and their ends virtual vertices
- A bush form of G_{k}^{\prime} is an embedding of G_{k}^{\prime} such that the virtual vertices are on the outer face

Example of Bush Form

- Use $P Q$-tree to represent bush form B_{k}
- $P Q$-tree consists of
P-nodes Represents a cut vertex of B_{k}, and its children can be permuted arbitrarily
Q-nodes Represents a biconnected component of B_{k}, and its children are only allowed to reverse
leaves Represents a virtual vertex of B_{k}
- $P Q$-tree represents all the permutations and reversions possible in a bush form B_{k}

Vertex Addition Algorithm

Lemma

If we have a bush form B_{k} of a subgraph G_{k} of a planar graph G, then there exists a sequence of permutations and reversions to make all virtual vertices labeled " $k+1$ " occupy consecutive positions

- Idea of the algorithm is to test planarity of G_{k+1} by finding these permutations and reversions
- The permutations and reversions can be found by applying nine transformation rules to the $P Q$-tree
- A leaf labeled " $k+1$ " is pertinent and a pertinent subtree is a minimal subtree of a $P Q$-tree containing all the pertinent leaves
- A node of a $P Q$-tree is full if all the leaves of its descendents are pertinent

Template matchings

Template matchings

Template matchings

Planarity Testing > Vertex Addition Algorithm
Template matchings

Planarity Testing Algorithm

(1) Assign st-numbers to the vertices of G
(2) Construct $P Q$-tree corresponding to G_{1}^{\prime}
© Gather pertinent leaves by applying the template matchings
(1) If the reduction fails then G is nonplanar
(Replace full nodes of the $P Q$-tree by a new P-node
© Goto 3

Example of Vertex Addition Algorithm

62
3
5

Example of Vertex Addition Algorithm

Example of Vertex Addition Algorithm

$$
B_{2}^{\prime}
$$

Example of Vertex Addition Algorithm

Naive Embedding Algorithm

- Rewrite the adjacency lists of the bush form with each reduction of the $P Q$-tree
- Updating adjacency lists take time $O(n)$ per reduction step
- Algorithm spends time $O\left(n^{2}\right)$

Upward Embedding

- An upward digraph is a digraph obtained from G by assigning a direction to every edge from the larger vertex to the smaller.
- An upward embedding A_{u} is an embedding of an upward digraph.
- First determine an upward embedding; second construct entire embedding from upward embedding

Constructing Upward Embedding

- In the vertex addition step for vertex v we can easily construct an upward adjacency list $A_{u}(v)$ for v
- If v is reversed during the reduction step, then correct $A_{u}(v)$ by reversing it
- Simple counting algorithm takes time $O\left(n^{2}\right)$

Direction Indicators

- At the vertex addition step for v we add a special "direction indicator" node to the $P Q$-tree as one of v 's siblings
- Indicator is used to track the reversions of v
- Indicator gives the direction of v relative to its brothers, when clockwise ordering of one its brothers is known $A_{u}(v)$ can be corrected

Upward Embedding Algorithm

- At the vertex addition step for v add to $A_{u}(v)$ the direction indicators between leaves of v
- If the root of the pertinent subtree is full
- The pertinent subtree corresponds to a reversible component
- Assume vertices in $A_{u}(v)$ are in clockwise order
- For each direction indication w in $A_{u}(v)$ which is in opposite direction correct $A_{u}(w)$ recursively
- Otherwise add direction indicator v as child of the pertinent subtree

Reversible component

Extending A_{u} into entire embedding

Lemma

In an embedding of a planar graph all neighbours smaller than a vertex v are embedded consecutively around v

Do a depth-first search starting at the sink t on the upward digraph and add vertex y_{k} to the front of the list $A_{u}(v)$ when the directed edge $\left(y_{k}, v\right)$ is searched

