Planarity Testing

Sander Schuckman

October 3, 2007

Sander Schuckman

Outline

- 2 Bush Form and PQ-Tree
- Overtex Addition Algorithm
- 4 Finding Planar Embedding

Universiteit Utrecht

Planar Graphs

- Graph is represented by a set of *n* lists; called adjacency lists
- The adjacency list of a vertex contains all its neighbours
- An embedding of a graph determines the order of the neighbours embedded around a vertex
- A graph is planar if and only if all the biconnected components are planar
- Assume $m \leq 3n$; otherwise the graph is nonplanar

Definition of st-Numbering

- An *st*-numbering is numbering 1, . . . , *n* of the vertices of a graph such that
 - Vertices "1" and "n" are adjacent
 - Every other vertex j is adjacent to two vertices i and k such that $i \leq j \leq k$
- Vertex "1" is the source s and vertex "n" the sink t

Depth-First Search

- Start with arbitrary edge (t, s)
- Compute for each vertex its depth-first number, its parent and its lowpoint

Definition (Lowpoint)

$$LOW(v) = \min(\{v\} \cup \{w \mid \text{ there exists a backedge } (u, w) \text{ such that} u \text{ is descendant of } v \text{ and } w \text{ is an} ancestor of v in a DFS tree}\})$$

Partition edges into paths

Vertices s, t and edge (s, t) are marked "old"

- Case 1 There is a "new" back edge (v, w)
 - Mark (v, w) "old"
 - Return *vw*

Case 2 There is a "new" tree edge (v, w)

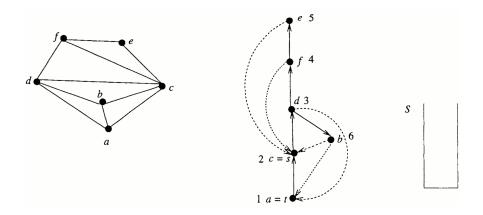
- Let $ww_1w_2...w_k$ be the path to the lowpoint w_k of v
- Mark vertices and edges on the path "old"
- Return $ww_1w_2...w_k$
- Case 3 There is a "new" back edge (w, v)
 - Let $ww_1w_2...w_k$ be the path going backward to an old vertex w_k
 - Mark vertices and edges on the path "old"
 - Return $ww_1w_2...w_k$
- Case 4 All edges incident to v are "old"
 - Return \emptyset

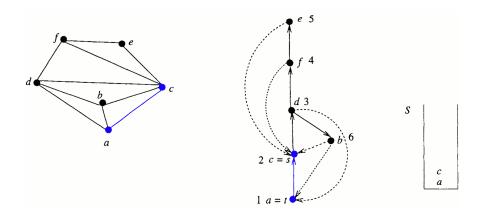
st-Numbering Algorithm

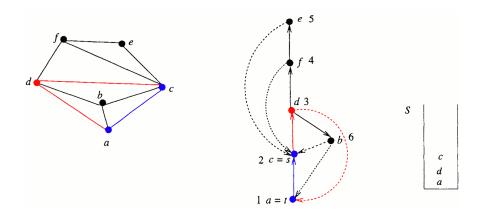
Invariant

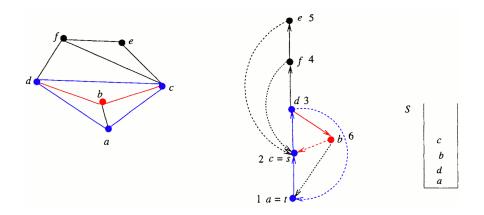
Vertices are pushed into a stack such that for every vertex v one neighbour is stored above v and one neighbour is stored below v; vertex above v will be assigned a lower number and vertex below v a higer number

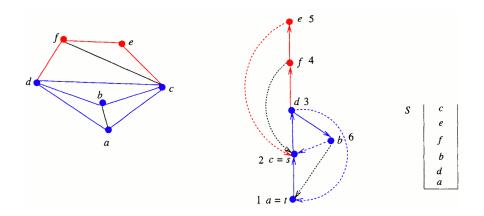
- O Push vertices t and s onto stack S (s is above t)
- **2** Pop the top entry v from the stack
- If PATH(v) = \emptyset then number v
- Otherwise let PATH(v) = vu₁...u_kw; push vertices v_k,..., v₁, v onto S (v is top of S)
- 🧿 Goto 2



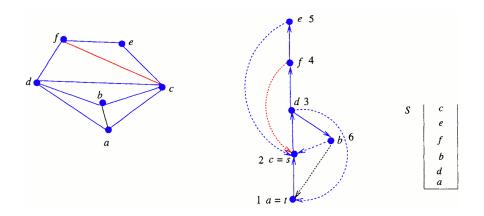




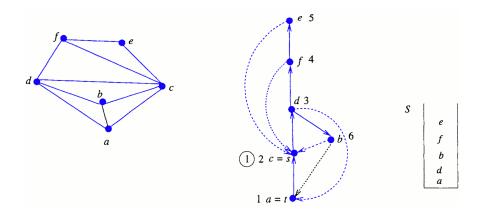


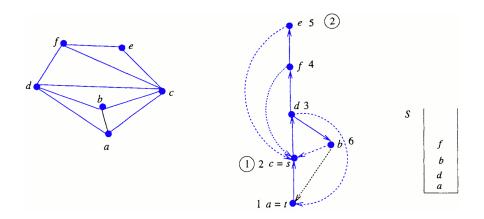


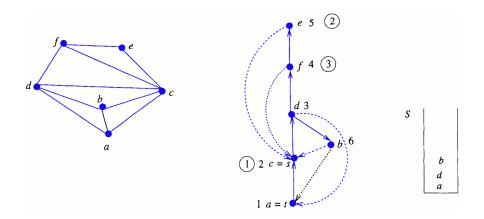
${\sf Planarity Testing} > \ st{-}{\sf Numbering}$

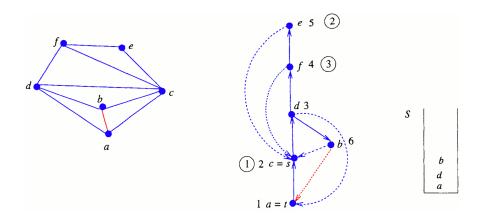


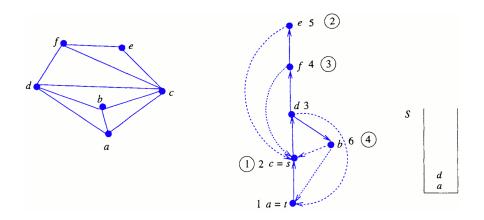
${\sf Planarity Testing} > \ st{-}{\sf Numbering}$

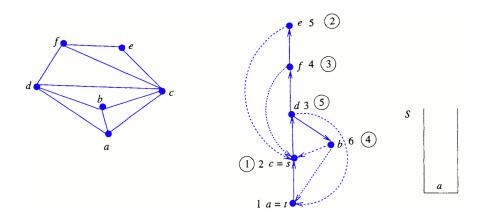


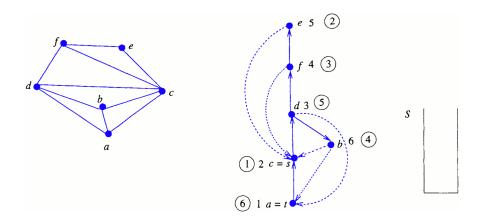










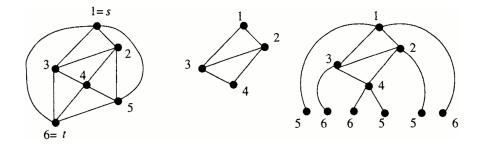


Bush Form

- Let $G_k = (V_k, E_k)$ be the subgraph induced by the vertices $V_k = \{1, \dots, k\}$
- Let G'_k be the graph formed by adding all edges with ends in $V V_k$, where the ends of the edges are kept seperate
- These edges are called virtual edges and their ends virtual vertices
- A bush form of G'_k is an embedding of G'_k such that the virtual vertices are on the outer face

Planarity Testing > Bush Form and PQ-Tree

Example of Bush Form



Sander Schuckman

PQ-Tree Data Structure

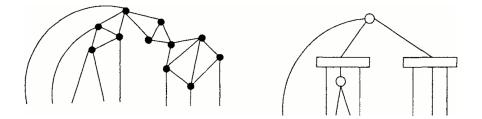
- Use PQ-tree to represent bush form B_k
- PQ-tree consists of
 - *P*-nodes Represents a cut vertex of B_k , and its children can be permuted arbitrarily
 - *Q*-nodes Represents a biconnected component of B_k , and its children are only allowed to reverse

leaves Represents a virtual vertex of B_k

• PQ-tree represents all the permutations and reversions possible in a bush form B_k

Planarity Testing > Bush Form and PQ-Tree

Example of *PQ*-Tree



Sander Schuckman

Vertex Addition Algorithm

Lemma

If we have a bush form B_k of a subgraph G_k of a planar graph G, then there exists a sequence of permutations and reversions to make all virtual vertices labeled "k + 1" occupy consecutive positions

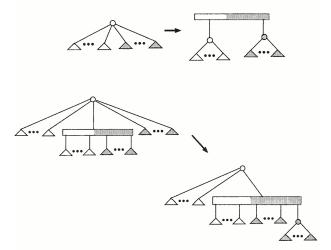
- Idea of the algorithm is to test planarity of G_{k+1} by finding these permutations and reversions
- The permutations and reversions can be found by applying nine transformation rules to the *PQ*-tree
- A leaf labeled "k + 1" is pertinent and a pertinent subtree is a minimal subtree of a PQ-tree containing all the pertinent leaves
- A node of a *PQ*-tree is full if all the leaves of its descendents are pertinent

Template matchings

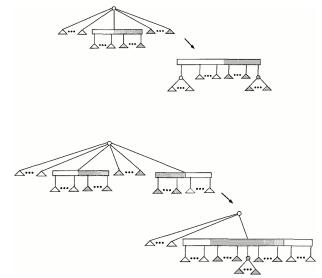


Sander Schuckman

Template matchings

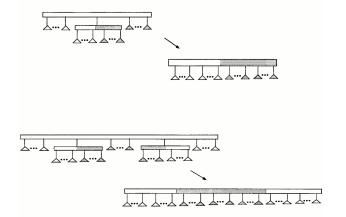


Template matchings



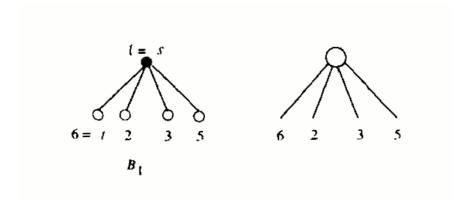
Sander Schuckman

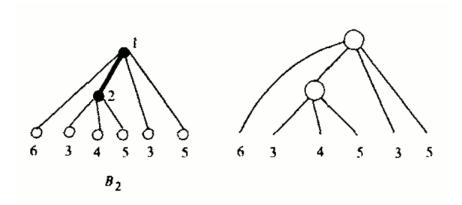
Template matchings

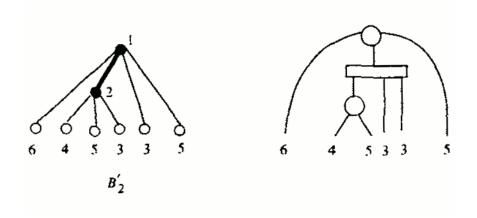


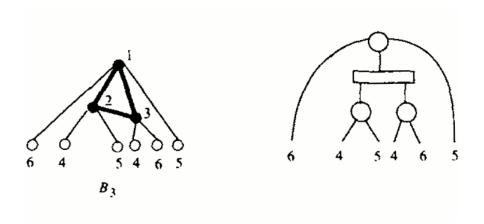
Planarity Testing Algorithm

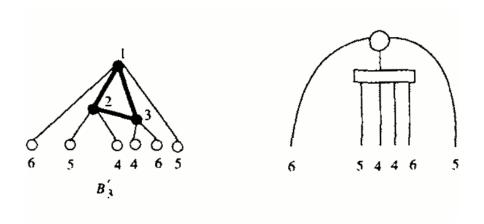
- Assign st-numbers to the vertices of G
- **Q** Construct PQ-tree corresponding to G'_1
- Gather pertinent leaves by applying the template matchings
- If the reduction fails then G is nonplanar
- Replace full nodes of the PQ-tree by a new P-node
- 🧿 Goto 3

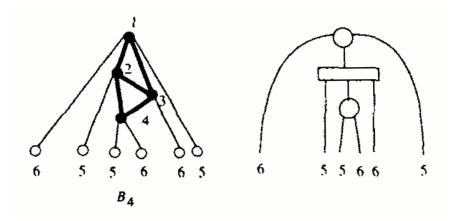


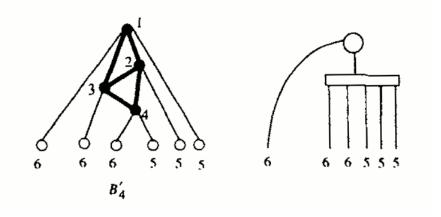


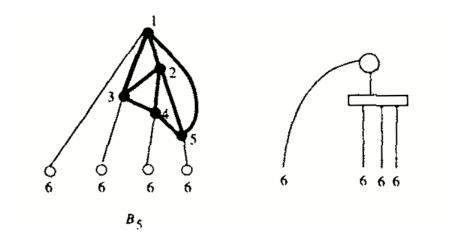


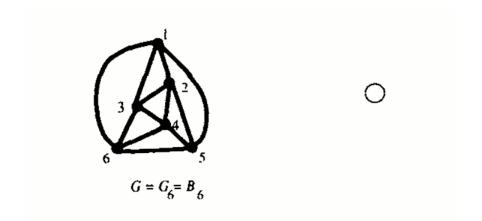












Planarity Testing > Finding Planar Embedding

Naive Embedding Algorithm

- Rewrite the adjacency lists of the bush form with each reduction of the *PQ*-tree
- Updating adjacency lists take time O(n) per reduction step
- Algorithm spends time $O(n^2)$

Upward Embedding

- An upward digraph is a digraph obtained from *G* by assigning a direction to every edge from the larger vertex to the smaller.
- An upward embedding A_u is an embedding of an upward digraph.
- First determine an upward embedding; second construct entire embedding from upward embedding

Constructing Upward Embedding

- In the vertex addition step for vertex v we can easily construct an upward adjacency list $A_u(v)$ for v
- If v is reversed during the reduction step, then correct $A_u(v)$ by reversing it
- Simple counting algorithm takes time $O(n^2)$

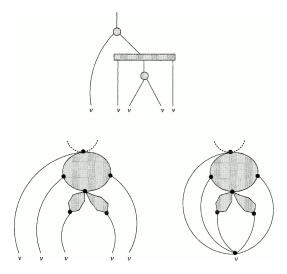
Direction Indicators

- At the vertex addition step for v we add a special "direction indicator" node to the PQ-tree as one of v's siblings
- Indicator is used to track the reversions of v
- Indicator gives the direction of v relative to its brothers, when clockwise ordering of one its brothers is known $A_u(v)$ can be corrected

Upward Embedding Algorithm

- At the vertex addition step for v add to A_u(v) the direction indicators between leaves of v
- If the root of the pertinent subtree is full
 - The pertinent subtree corresponds to a reversible component
 - Assume vertices in $A_u(v)$ are in clockwise order
 - For each direction indication w in A_u(v) which is in opposite direction correct A_u(w) recursively
- Otherwise add direction indicator v as child of the pertinent subtree

Reversible component



Extending A_u into entire embedding

Lemma

In an embedding of a planar graph all neighbours smaller than a vertex v are embedded consecutively around v

Do a depth-first search starting at the sink t on the upward digraph and add vertex y_k to the front of the list $A_u(v)$ when the directed edge (y_k, v) is searched

