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Poisson process

General

Poisson process is one of the most important models used in queueing theory.

• Often the arrival process of customers can be described by a Poisson process.

• In teletraffic theory the “customers” may be calls or packets. Poisson process is a viable

model when the calls or packets originate from a large population of independent users.

In the following it is instructive to think that the Poisson process we consider represents

discrete arrivals (of e.g. calls or packets).

0 tí îì
N(t)
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Mathematically the process is described by the so called counter process Nt or N(t). The

counter tells the number of arrivals that have occurred in the interval (0, t) or, more generally,

in the interval (t1, t2).






N(t) = number of arrivals in the interval (0, t) (the stochastic process we consider)

N(t1, t2) = number of arrival in the interval (t1, t2) (the increment process N(t2) − N(t1))
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General (continued)

A Poisson process can be characterized in different ways:

• Process of independent increments

• Pure birth process

– the arrival intensity λ (mean arrival rate; probability of arrival per time unit

• The “most random” process with a given intensity λ
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Definition

The Poisson process can be defined in three different (but equivalent) ways:

1. Poisson process is a pure birth process:

In an infinitesimal time interval dt there may occur

only one arrival. This happens with the probability

λdt independent of arrivals outside the interval.

l

í îì

dt

l

2. The number of arrivals N(t) in a finite interval of

length t obeys the Poisson(λt) distribution,

P{N(t) = n} =
(λt)n

n!
e−λt

Moreover, the number of arrivals N(t1, t2) and

N(t3, t4) in non-overlapping intervals (t1 ≤ t2 ≤ t3 ≤

t4) are independent.

í îìí îì

l

t1 t2
~ Poisson(lt )1 ~ Poisson(lt )2

3. The interarrival times are independent and obey the

Exp(λ) distribution:

P{interarrival time > t} = e−λt í îì

l

Exp(~ l)
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The equivalence of the definitions

The three definitions are equivalent:

syntymäprosessi, l

N(t) Poisson(l~ t) väliajat Exp(l~ )

1

2 3

In the following we show the equivalence by showing the implications in the direction of the

solid arrows. Then any of the three properties implies the other two ones.

In fact, the implication 2 → 1 is not necessary for proving the equivalence (as it follows from

the implications 2 → 3 and 3 → 1), but it can be shown very easily directly.

2

1

3

1 2 3® ®

3 1 2® ®
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Proof of the equivalence: part (1 → 2)

We wish to show that property 1 implies property 2 (essentially this was already shown when

discussing the pure birth process).

Assume that arrivals in different intervals are independent and

P{arrival in (t, t + dt)} = λ · dt

Consider the generating function of the counter Gt(z):

0 t t+dt

í îì í îì

N(0,t) N(t,t+dt)

Gt(z) = E[zN(0,t)]

Gt+dt(z) = E[zN(0,t+dt)] = E[zN(0,t)+N(t,t+dt)] = E[zN(0,t)]
︸ ︷︷ ︸

Gt(z)

E[zN(t,t+dt)]
︸ ︷︷ ︸

(1−λ·dt)z0+λ·dt·z1

= Gt(z) − λdt(1 − z)Gt(z)

Gt+dt(z)−Gt(z)
dt

= λ(z − 1)Gt(z) ⇒ d
dt
Gt(z) = λ(z − 1)Gt(z)

d

dt
log Gt(z) = λ(z − 1) ⇒ log Gt(z) − log G0(z)

︸ ︷︷ ︸

0

= λ(z − 1)t

Gt(z) = e(z−1)λt generating function of the Poisson distribution



J. Virtamo 38.3143 Queueing Theory / Poisson process 6

Proof of the equivalence: part (2 → 1)

Assume that P{N(t) = n} = (λt)n

n! e−λt. Then







P{N(dt) = 0} = e−λdt = 1 − λ · dt + o(dt)

P{N(dt) = 1} = λ·dt
1!

e−λdt = λ · dt + o(dt)

Moreover, since property 2 assumes indepen-

dence of arrivals in non-overlapping intervals
an arrival in interval dt occurs independently

of arrivals outside the interval.

Proof of the equivalence: part (2 → 3)

Consider the time interval X between two arrivals:

{X > t} ≡ {N(t) = 0} (the events are equivalent)

P{X > t} = P{N(t) = 0} = e−λt

⇒ X ∼ Exp(λ)

0 tí îì

väliaika X

Proof of the equivalence: part (3 → 1)

It was noted already in considering the exponential distribution: If X ∼ Exp(λ) then the

probability that the period ends (an arrival occurs) in the interval dt is λ · dt + O(dt).



J. Virtamo 38.3143 Queueing Theory / Poisson process 7

Properties of the Poisson process

The Poisson process has several interesting (and useful) properties:

1. Conditioning on the number of arrivals. Given that in the interval (0, t) the number of

arrivals is N(t) = n, these n arrivals are independently and uniformly distributed in the

interval.

• One way to generate a Poisson process in the interval (0, t) is as follows:
– draw the total number of arrivals n from the Poisson(λt) distribution

– for each arrival draw its position in the interval (0, t) from the uniform distribution,

independently of the others

2. Superposition. The superposition of two Poisson

processes with intensities λ1 and λ2 is a Poisson

process with intensity λ = λ1 + λ2.

l1

l2

l l21+

3. Random selection. If a random selection is made

from a Poisson process with intensity λ such that

each arrival is selected with probability p, inde-

pendently of the others, the resulting process is a

Poisson process with intensity pλ.

l

p×l

p
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Properties of the Poisson process (continued)

4. Random split. If a Poisson process with intensity λ

is randomly split into two subprocesses with proba-

bilities p1 and p2, where p1 + p2 = 1, then the re-

sulting processes are independent Poisson processes

with intensities p1λ ja p2λ.

(This result allows an straight forward generaliza-

tion to a split into more than two subprocesses.)

l

p2

p1×l

p2×l

p1

5. PASTA. The Poisson process has the so called PASTA property (Poisson Arrivals See

Time Averages): for instance, customers with Poisson arrivals see the system as if they

came into the system at a random instant of time (despite they induce the evolution of

the system).

We prove some of these properties. The proof of property 1 is left as an exercise.

For the proofs we may use any of the given tree definitions of the Poisson process as we find

most convenient.
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Proof (property 2, superposition)

The probability that an arrival occurs from process 1

in the interval dt is λ1 · dt independent of the arrivals

outside the interval. Similarly, the arrival probability

from process 2 is λ2 dt.

l1

l2

l l21+

í îì

dt

⇒ In the superposed process the probability for an arrival in the interval dt is (λ1 + λ2)dt

independent of arrivals outside the interval.

⇒ The superposition is a Poisson process with intensity λ1 + λ2.

Proof (property 3, random selection)

The probability that an arrival occurs from the original

process in the interval dt is λ · dt independent of the

arrivals outside the interval.

After the random selection the probability for an ar-

rival in the interval dt is p · λ · dt (independent of the

arrivals outside the interval).

l

p×l

p

í îì

dt

⇒ The process of the selected arrivals is a Poisson process with intensity p · λ.
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Proof (property 4, random split)

Both of the subprocesses resulting from the split rep-

resent a random selection of the original process and

are thus Poisson processes with intensities piλ.

l

p2

p1×l

p2×l

p1

í îì

dt

It remains to prove the independence of the processes. Let






N1(I1) = number of arrivals from subprocess 1 in the interval I1

N2(I2) = number of arrivals from subprocess 2 in the interval I2

Denote I = I1 ∩ I2






N1(I1) = N1(I) + N1(I1 ∩ Ī2)

N2(I2) = N2(I) + N2(I2 ∩ Ī1)

I1

I2

I = I2I1Ç

Arrivals in non-overlapping intervals I1 ∩ Ī2 and I2 ∩ Ī1 are certainly independent.

There may be dependence only between N1(I) and N2(I). But these represent the random

split of the total number of arrivals from the original process, with distribution Poisson(λ|I |),

into two sets; the sizes of these sets were shown to be independent in considering the properties

of the Poisson distribution.
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PASTA (Poisson Arrivals See Time Averages)

The PASTA property is one of the central tools in queueing theory. Sometimes this property

is referred to as ROP (Random Observer Property).

Consider an arbitrary system which spends its time in

different states Ej.

Arrivals to the system constitute a Poisson process

with intensity λ. These arrivals induce state transi-

tions in the system.

Systeemi
tila Ej

l

In equilibrium, we may associate with each state Ej two different probabilities:

1. The probability of the state as seen by an outside random observer

πj = probability that the system is in the state Ej at a random instant

2. The probability of the state seen by an arriving customer

π∗
j = probability that the system is in the state Ej just before (a randomly chosen) arrival

In general, πj 6= π∗
j
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PASTA (continued)

Example. Your own PC (one customer, one server)







E0 = PC free

E1 = PC occupied







π∗
0 = 1 (your own PC is always free when you need it)

π∗
1 = 0







π0 = proportion of time the PC is free (< 1)

π1 = proportion of time the PC is occupied (> 0)

Note, in this case the arrival process is not Poisson; when an arrival has occurred (i.e. you

have started to work with you PC) for a while it’s unlikely that another arrival occurs (i.e.

you have stopped the previous session and started a new one). Thus the arrivals at different

times are not independent.
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PASTA (continued)

In the case of a Poisson arrival process it holds

πj = π∗
j

Proof

The arrival history before the instant of consideration, irrespective whetehr we are considering

a random instant or an arrival instant, are stochastically the same:

a sequence of arrivals with exponentially distributed interarrival times.

This follows from the memoryless property of the ex-

ponential distribution. The remaining time to the next

arrival has the same exponential distribution irrespec-

tive of the time that has already elapsed since the pre-

vious arrival (the same holds also in reversed time, i.e.

looking backwards).

l

l

t

í îì
í îì

~ Exp(l)

~ Exp(l)

t   kiinnitetty
saapumiseen

t   mielivaltainen

Since the stochastic characterization of the arrival process before the instant of consideration

is the same, irrespective how the instant has been chosen) the state distributions of the system

(induced by the past arrivals processes) at the instant of consideration must be the same in

both cases.
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The hitchhiker’s paradox

The setting of the paradox is the following

• Cars are passing a point of a road according to a Poisson process.

• The mean interval between the cars is 10 min.

• A hitchhiker arrives to the raodside point at random instant of time.

• What is the mean waiting time W̄ until the next car.

l

í îì

odotusaika W Exp( )l~

í îì
väliaika X X = 10 min

_

The interarrival times in a Poisson process are exponentially distributed. From the memoryless

property of the exponential distribution it follows that the (residual) time to the next arrival

has the same Exp(λ) distribution and the expected time is thus

W̄ = 10 min

This appears paradoxical. Why isn’t the expected time 5 min? Is there something wrong?

Answer: No, the expected time is indeed W̄ = 10 min.



J. Virtamo 38.3143 Queueing Theory / Poisson process 15

Explanation for the hitchhiker’s paradox

In short, the explanation of the paradox lies therein that the hitchhiker’s probability to arrive

during a long interarrival interval is greater than during a short interval.

Given the interarrival interval, within that interval the arrival instant of the hitchhiker is

uniformly distributed and the expected waiting time is one half of the total duration of the

interval. The point is that in the selection by the random instant the long intervals are more

frequently represented than the short ones (with a weight proportional to the length of the

interval).

Consider a long period of time t. The waiting time

to the next car arrival W (τ ) as the function of the

arrival instant of the hitchhiker τ is represented by

the sawtooth curve in the figure. The mean waiting

time is the average value of the curve.

odotusaika W

í îì í îì í îì í îì

X1 X2 Xn
. . .

t

W

_

W̄ =
1

t

∫ t

0
W (τ )dτ ≈

1

t

n∑

i=1

1

2
X2

i (sum of the areas of the triangles; Xi is the interarrival time)

As t → ∞ the number of the triangles n tends to t/X̄ .

W̄ =
1

X̄

1

n

n∑

i=1

1

2
X2

i =
1

2

X2

X̄

For exponential distribution

X2 = (X̄)2 + V[X ]
︸ ︷︷ ︸

(X̄)2

= 2(X̄)2, thus W̄ = X̄
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Inhomogeneous Poisson process

Thus far we have considered a Poisson process with a constant intensity λ. This can be

generalized to a so called inhomogeneous Poisson process by letting the intensity to vary in

time λ(t). (Note. λ(t) is a deterministic function of time.)

l(t)

The probability of an arrival in a short interval of time (t, t + dt) is now λ(t)dt + o(dt).

• The probability for more than one arrivals is of the order o(dt)

• The expected number of arrivals in the interval (t, t + dt) is

E[N(t, t + dt)] =
∞∑

n=0
n · P{n arrivals in (t, t + dt)} = λ(t)dt + o(dt)

• Correspondingly, the expected number of arrivals in a finite interval (0, t) is

E[N(0, t)] = E[
∫ t

0
N(u, u + du)] =

∫ t

0
E[N(u, u + du)] =

∫ t

0
λ(u)du

(The expectation of a sum is always the sum of the expectations of individual terms,

therefore the order of integration and expectation can be interchanged.)
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Inhomogeneous Poisson process (continued)

In the same way as in the case of an ordinary homogeneous Poisson process, we can derive a

differential equation for the generating function Gt(z) of the counter process N(t) (number of

arrivals in (0, t)) of an inhomogeneous Poisson process,

d
dt
Gt(z) = (z − 1)λ(t)Gt(z) ⇒ d

dt
log Gt(z) = (z − 1)λ(t)

from which we get by integration

Gt(z) = e
(z−1)

∫ t

0
λ(u)du

Denote the expected number of arrivals in (0, t) by a(t)

a(t) = E[N(t)] =
∫ t

0
λ(u)du

We see that Gt(z) is the generating function of a random variable with Poisson distribution.

Thus,

N(t) ∼ Poisson(a(t))
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Properties of an inhomogeneous Poisson process

Analogously with homogeneous Poisson process, the inhomogeneous Poisson process can be

shown to have the following properties:

1. Conditioning on the number. Given the total number of arrivals N(t) = n in the interval

(0, t) from an inhomogeneous Poisson process, the arrival instants of these n arrivals are

distributed independently in the interval (0, t) with the density function λ(t)/
∫ t
0 λ(u)du.

2. Superposition. The superposition of two inhomogeneous Poisson processes with intensities

λ1(t) and λ2(t) is an inhomogeneous Poisson process with intensity λ(t) = λ1(t) + λ2(t).

3. Random selection. A random selection from an inhomogeneous Poisson process with in-

tensity λ(t) such that each arrival is selected, independent of the others, with the proba-

bility p(t) (note, may depend on time) results in an inhomogeneous Poisson process with

intensity p(t)λ(t).

4. Random split. If an inhomogeneous Poisson process with intensity λ(t) is randomly split

into two subprocesses with the probabilities p1(t) and p2(t), where p1(t) + p2(t) = 1,

then the resulting subprocesses are independent inhomogeneous Poisson processes with

intensities p1(t)λ(t) and p2(t)λ(t).
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Properties of an inhomogeneous Poisson process (continued)

4. Random split (continued)

l(t)

p (t)2

p (t) (t)×l1

p (t)1

p (t) (t)1 ×l


