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1. INTRODUCTION:

Despite the advances in processor design, users still demand more and more performance.

Eventually, single CPU technologies must give way to multiple processor parallel computers: it is

less expensive to run 10 inexpensive processors cooperatively than it is to buy a new computer 10

times as fast. This change is inevitable, and has been realized to some extent in the specialization of

subsystems like bus mastering drive controllers. However, the need for additional computational

power has thus far rested solely on advances in CPU technologies. 

In parallel systems, there are two kinds of fundamental models: shared memory and message

passing. From a programmer's perspective, shared memory computers, while easy to program, are

difficult to build and aren't scalable to beyond a few processors. Message passing computers, while

easy to build and scale, are difficult to program. In some sense, shared memory model and message

passing model are equivalent. 

One of the solutions to parallel systems is Distributed Shared Memory (DSM) whose

memory is physically distributed but logically shared. DSM appears as shared memory to the

applications programmer, but relies on message passing between independent CPUs to access the

global virtual address space. Both hardware and software implementations have been proposed in

the literature. The advantages of DSM programming model are well known. Firstly, shared memory

programs are usually shorter and easier to understand than equivalent message passing programs.

Secondly, shared memory gives transparent process-to-process communication. 

COMPUTER SYSTEMS:

Flynn [1966] proposed a simple model of categorizing all computers. He uses the stream concept

for describing a machine's structure. A stream simply means a sequence of items (data or

instructions). Four main types of computer organizations can be found:

SISD : (Singe-Instruction stream, Singe-Data stream) 

SISD corresponds to the traditional mono-processor ( Von Neumann computer). A

single data stream is being processed by one instruction stream.



SIMD: (Singe-Instruction stream, Multiple-Data streams)   

In this organization, multiple processing units of the same type process on multiple-

data streams. This group is dedicated to array processing machines. Sometimes, vector processors

can also be seen as a part of this group.  

MISD: (Multiple-Instruction streams, Singe-Data stream)

In case of MISD computers, multiple processing units operate on one single-data

stream. In practice, this kind of organization has never been used.

MIMD: (Multiple-Instruction streams, Multiple-Data streams) 

This last machine type builds the group for the traditional multi-processors. Several

processing units operate on multiple-data streams.   

   

Table 1Flynn Classification of Computer



MIMD (Multiple-Instruction streams, Multiple-Data streams):

MIMDs offer flexibility. With the correct hardware and software support, MIMDs can

function as single-user multiprocessors focusing on high performance for one application, as

multiprocessors running many tasks simultaneously, or as some combination of these functions.

MIMDs can build on the cost-performance advantages of off-the-shelf microprocessors. In

fact, nearly all multiprocessors built today use the same microprocessors found in workstation and

single-processor servers.

Existing multiprocessors are divided into two classes, depending on the number of

processors involved. The first group, which is called centralized shared-memory architectures,

has at most a few dozen processors. Multiple processor-cache subsystems share the same physical

memory, typically connected by a bus. So the main problem for this type of MIMD systems is the

scalability. By replacing a single bus with multiple buses, or even a switch, a centralized shared-

memory design can be scaled to a few dozen processors

.

Because there is a single main memory that has a symmetric relationship to all processors

and a uniform access time from any processor, these processors can be called symmetric

multiprocessors.

Table 2Centralized(Symmetric) Shared-Memory Architecture



The second group consists of multiprocessors with physically distributed memory. To

support larger processor counts, memory must be distributed among the processors. The basic

architecture of a distributed-memory multiprocessor consists of individual nodes containing a

processor, some memory, typically some I/O, and an interface to an interconnection network that

connects all the nodes.

Distributing the memory among the nodes has two major benefits: it is a cost-effective way

to scale the memory bandwidth and it reduces the latency for accesses to the local memory. The key

disadvantages for a distributed memory architecture is that communicating data between processors

becomes somewhat more complex and has higher latency, at least when there is no contention,

because the processors no longer share a single,centralized memory.

Table 3Distributed Memory Architecture



DISTRIBUTED SHARED-MEMORY ARCHITECTURES (DSM):

The physically separate memories can be addressed as one logically shared address space,

meaning that a memory reference can be made by any processor to any memory location. These

systems are called Distributed shared-Memory (DSM) Architectures. Shared memory means that the

address space is shared. The same physical address on two processors refers to the same location in

memory.

A memory reference can be made by any processor to any memory location and also this is

called NUMA (Nonuniform memory access).

Table 4Distributed Shared-Memory Architecture



The Cache Coherence problem is the most important problem in a multiprocessor system. A

memory system is coherence, when it satisfies these conditions:

• To the same location, a write immediately followed by a read by the same

processor will always return the written value. 

• To the same location, a read from P2 immediately follows a write by P1 will

returns the value written by P1 

• Two writes to the same location by any two processors are seen in the same

order by all processors 

Distributed  shared-memory architectures can exclude  cache coherence and can easily focus

a scalable memory system. The Cray T3D/E is the best known example. These systems have caches,

but to prevent coherence problems, shared data are marked as uncacheable and only private data are

kept in the caches. In this case,  cache coherence can be controlled by software of course. 

There are same disadvantages of this type of distributed shared memory architecture. First of

all, compiler-based software cache coherence is currently impractical. The basic difficulty is that

software-based coherence algorithms must be conservatives. Every block that might be shared must

be considered as shared block. So the programmers do not want t o deal with the coherence problem

due to the complexity of the possible interactions.

The multiprocessor loses the advantages of being able to fetch and use multiple words in a

single cache coherence block for close to the cost of fetching one word without cache coherence. 

For these reasons, in small multiprocessors, cache coherence is an accepted requirement.

Also for larger architecture, there are some new methods to be able to deal with the cache coherence

problem. Although the bus can certainly replaced with a more scalable interconnection network, the

lack of scalability of the snooping coherence scheme needs to be addressed.



There are two protocols to be able to deal with the cache coherence problems  shared

memory architectures.

• Snooping protocol: This is for Symmetric shared-memory architectures. Every cache

that has a copy of data from a block of physical memory also has a copy of the

sharing status of the block, and centralized state is kept. The caches are usually on a

shared memory bus, an all cache controllers monitor or snoop on the bus to

determine whether or not they have a copy of a block that is requested on the bus.

• Send all request for the data to all processors.

• Processors snoop to see if they have a copy and respond accordingly.

• Requires broadcast, since caching is at processors.

• Works well with bus (natural broadcast medium)

• Dominates for small scale machines. 

•  Directory -based protocols: This is for distributed shared memory architectures

(larger-scale). The sharing status of a block of physical memory is kept in just one

location, called the directory. Like snooping protocol, handling a read miss and

handling a write to a shared,clean cache block are the main operationsthat a directory

protocol must implement. The directory must track the state of each caches and the

states are as follows:

• Shared: one or ore processors have the block cached

• Uncached: no processor has a copy of a cache block

• Exclusive : exactly one processor has a copy of a cache block, the

processor is called the owner of the block.



To prevent directory becoming the bottleneck, we distribute directory entries with 

memory, each keeping track of which processors have copies of their memory blocks.

It will be good to be consider the message types that may be sent between the 

processors and the directories.

•  Local node: node where a request is originates.

•  Home node: node where the memory location and the directory entry of

an address reside.

• Remote node: node that has a copy of a cache block, whether exclusive or

shared.

We can take a look at the messages in the directory-based protocol in a table:

Table 5Directory added to distributed shared-memory architecture

Table 6Messages for Directory Protocols



In table 6, P is requesting processor number, A is requested address and D is data 

contents. The first two messages are miss requests sent by local cache to the home. 

The third through fifth messages are messages sent to a remote cache by the home 

when the needs the data to satisfy a read or write miss request.

PERFORMANCE of DISTRIBUTED SHARED-MEMORY MULTIPROCESSORS:

In DSM architectures, the memory requests between local and remote is key to performance.

It affects the bandwidth and the latency seen by requests. In the performance example we will

separate the cache misses into local and remote requests.We will also compare the performance

changings of the computational kernels FFT, LU; the applications Barnes and Ocean.

In the first performance table, we will see that the miss rates are not affected by the

increasing the number of processors. Only the application Ocean is affected by this changing. This

is mainly because of  the two factors: an increase in mapping conflits in the cache that occur when

the grid becomes small, and an increase in the number of the coherence misses, which are all

remote. 

Table 7The data miss rates



In the second performance table, we will see how the miss rate change as the cache size is

increased. These miss rates decrease as we might expect. By the time we reach the larger cache size,

the remote miss rate is equal to or greater than the local miss rate. Larger caches would amplify this

trend. 

In the third performance table, we examine the effect of changing the block size. Increasing

the block size is reducing the miss rate.

Table 8Miss rates versus increased cache size

Table 9Data miss rate versus block size
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