
GTK+ 2.0 Tutorial

Tony Gale

Ian Main

& the GTK team

GTK+ 2.0 Tutorial
by Tony Gale, Ian Main, and & the GTK team

This is a tutorial on how to use GTK (the GIMP Toolkit) through its C interface.

Table of Contents
1. Tutorial Availability ..1
2. Introduction ..3
3. Getting Started ...5

Hello World in GTK ..6
Compiling Hello World..8
Theory of Signals and Callbacks ...8
Events..10
Stepping Through Hello World...11

4. Moving On ..15
Data Types ..15
More on Signal Handlers ...15
An Upgraded Hello World ..15

5. Packing Widgets...19
Theory of Packing Boxes ..19
Details of Boxes..19
Packing Demonstration Program..20
Packing Using Tables ..25
Table Packing Example...26

6. Widget Overview ...29
Casting ..29
Widget Hierarchy ..29
Widgets Without Windows..31

7. The Button Widget...33
Normal Buttons ...33
Toggle Buttons ...34
Check Buttons..35
Radio Buttons...36

8. Adjustments..39
Creating an Adjustment ...39
Using Adjustments the Easy Way...39
Adjustment Internals ..40

9. Range Widgets..43
Scrollbar Widgets ..43
Scale Widgets ...43

Creating a Scale Widget ..43
Functions and Signals (well, functions, at least)44

Common Range Functions...44
Setting the Update Policy ...44
Getting and Setting Adjustments ..45

Key and Mouse bindings ...45
Example ..46

10. Miscellaneous Widgets...51
Labels ..51
Arrows ..53
The Tooltips Object..55
Progress Bars..56
Dialogs ..60
Rulers ..61
Statusbars ...64
Text Entries...66
Spin Buttons ...68
Combo Box ...74
Calendar ...76
Color Selection...85
File Selections...88

iii

11. Container Widgets ...91
The EventBox ...91
The Alignment widget..92
Fixed Container ...92
Layout Container ..94
Frames...95
Aspect Frames..97
Paned Window Widgets...98
Viewports ...101
Scrolled Windows..102
Button Boxes ..105
Toolbar ..107
Notebooks ..112

12. Menu Widget ..119
Manual Menu Creation ..119
Manual Menu Example ..121
Using ItemFactory...123

ItemFactory entries..123
Creating an ItemFactory ...126
Making use of the menu and its menu items127

Item Factory Example...127
13. Undocumented Widgets ...131

Accel Label ...131
Option Menu..131
Menu Items ..131

Check Menu Item ..131
Radio Menu Item ...131
Separator Menu Item ..131
Tearoff Menu Item ...131

Curves ...131
Drawing Area ..131
Font Selection Dialog ..131
Message Dialog..131
Gamma Curve..131
Image...131
Plugs and Sockets..132
Tree View ..132
Text View ..132

14. Setting Widget Attributes ..133
15. Timeouts, IO and Idle Functions ..135

Timeouts ...135
Monitoring IO..135
Idle Functions ..135

16. Advanced Event and Signal Handling ..137
Signal Functions ..137

Connecting and Disconnecting Signal Handlers137
Blocking and Unblocking Signal Handlers..137
Emitting and Stopping Signals ..137

Signal Emission and Propagation ...138
17. Managing Selections ...139

Overview ..139
Retrieving the selection ..139
Supplying the selection ..141

18. Drag-and-drop (DND) ..145
Overview ..145
Properties..145
Functions ..146

Setting up the source widget..146
Signals on the source widget: ..146
Setting up a destination widget:..147
Signals on the destination widget: ..147

iv

19. GLib..149
Definitions ..149
Doubly Linked Lists..150
Singly Linked Lists..151
Memory Management ..151
Timers..152
String Handling ...152
Utility and Error Functions..153

20. GTK’s rc Files..155
Functions For rc Files..155
GTK’s rc File Format...155
Example rc file ...156

21. Writing Your Own Widgets..159
Overview ..159
The Anatomy Of A Widget..159
Creating a Composite widget..160

Introduction..160
Choosing a parent class ..160
The header file..160
The _get_type() function...162
The _class_init() function ..162
The _init() function ...164
And the rest... ...164

Creating a widget from scratch ...166
Introduction..166
Displaying a widget on the screen ..167
The origins of the Dial Widget...167
The Basics..168
gtk_dial_realize() ...171
Size negotiation..172
gtk_dial_expose() ...173
Event handling...174
Possible Enhancements...178

Learning More ...178
22. Scribble, A Simple Example Drawing Program ..181

Overview ..181
Event Handling ...181
The DrawingArea Widget, And Drawing ...184
Adding XInput support..186

Enabling extended device information ..187
Using extended device information..188
Finding out more about a device...189
Further sophistications ...190

23. Tips For Writing GTK Applications...193
24. Contributing ...195
25. Credits ..197
26. Tutorial Copyright and Permissions Notice ...199
A. GTK Signals...201

GtkObject..201
GtkWidget ..201
GtkData...203
GtkContainer ...203
GtkCalendar...204
GtkEditable ..204
GtkNotebook..205
GtkList...205
GtkMenuShell ..205
GtkToolbar..205
GtkButton ...205
GtkItem ...206
GtkWindow..206

v

GtkHandleBox ...206
GtkToggleButton ...206
GtkMenuItem...206
GtkCheckMenuItem..206
GtkInputDialog ...206
GtkColorSelection ...206
GtkStatusBar ..207
GtkCurve ..207
GtkAdjustment ..207

B. GDK Event Types..209
C. Code Examples ..215

Tictactoe ..215
tictactoe.h ..215
tictactoe.c...216
ttt_test.c ...218

GtkDial..219
gtkdial.h ..219
gtkdial.c...220
dial_test.c ..229

Scribble..230
scribble-simple.c ..231
scribble-xinput.c...233

vi

Chapter 1. Tutorial Availability

A copy of this tutorial in SGML and HTML is distributed with each source code
release of GTK+. For binary distributions, please check with you vendor.

A copy is available online for reference at www.gtk.org/tutorial1.

A packaged verion of this tutorial is available from ftp.gtk.org/pub/gtk/tutorial2

which contains the tutorial in various different formats. This package is primary
for those people wanting to have the tutorial available for offline reference and
for printing.

Notes
1. http://www.gtk.org/tutorial

2. ftp:/ftp.gtk.org/pub/gtk/tutorial

1

Chapter 1. Tutorial Availability

2

Chapter 2. Introduction

GTK (GIMP Toolkit) is a library for creating graphical user interfaces. It is li-
censed using the LGPL license, so you can develop open software, free software,
or even commercial non-free software using GTK without having to spend any-
thing for licenses or royalties.

It’s called the GIMP toolkit because it was originally written for developing the
GNU Image Manipulation Program (GIMP), but GTK has now been used in a
large number of software projects, including the GNU Network Object Model
Environment (GNOME) project. GTK is built on top of GDK (GIMP Drawing
Kit) which is basically a wrapper around the low-level functions for accessing
the underlying windowing functions (Xlib in the case of the X windows system),
and gdk-pixbuf, a library for client-side image manipulation.

The primary authors of GTK are:

• Peter Mattis petm@xcf.berkeley.edu1

• Spencer Kimball spencer@xcf.berkeley.edu2

• Josh MacDonald jmacd@xcf.berkeley.edu3

GTK is currently maintained by:

• Owen Taylor otaylor@redhat.com4

• Tim Janik timj@gtk.org5

GTK is essentially an object oriented application programmers interface (API).
Although written completely in C, it is implemented using the idea of classes
and callback functions (pointers to functions).

There is also a third component called GLib which contains a few replacements
for some standard calls, as well as some additional functions for handling linked
lists, etc. The replacement functions are used to increase GTK’s portability, as
some of the functions implemented here are not available or are nonstandard on
other Unixes such as g_strerror(). Some also contain enhancements to the libc
versions, such as g_malloc() that has enhanced debugging utilities.

In version 2.0, GLib has picked up the type system which forms the foundation
for GTK’s class hierarchy, the signal system which is used throughout GTK, a
thread API which abstracts the different native thread APIs of the various plat-
forms and a facility for loading modules.

As the last component, GTK uses the Pango library for internationalized text out-
put.

This tutorial describes the C interface to GTK. There are GTK bindings for many
other languages including C++, Guile, Perl, Python, TOM, Ada95, Objective C,
Free Pascal, Eiffel, Java and C#. If you intend to use another language’s bindings
to GTK, look at that binding’s documentation first. In some cases that documen-
tation may describe some important conventions (which you should know first)
and then refer you back to this tutorial. There are also some cross-platform APIs
(such as wxWindows and V) which use GTK as one of their target platforms;
again, consult their documentation first.

If you’re developing your GTK application in C++, a few extra notes are in order.
There’s a C++ binding to GTK called GTK--, which provides a more C++-like
interface to GTK; you should probably look into this instead. If you don’t like that
approach for whatever reason, there are two alternatives for using GTK. First, you
can use only the C subset of C++ when interfacing with GTK and then use the C
interface as described in this tutorial. Second, you can use GTK and C++ together
by declaring all callbacks as static functions in C++ classes, and again calling
GTK using its C interface. If you choose this last approach, you can include as the
callback’s data value a pointer to the object to be manipulated (the so-called "this"
value). Selecting between these options is simply a matter of preference, since in
all three approaches you get C++ and GTK. None of these approaches requires
the use of a specialized preprocessor, so no matter what you choose you can use
standard C++ with GTK.

3

Chapter 2. Introduction

This tutorial is an attempt to document as much as possible of GTK, but it is by
no means complete. This tutorial assumes a good understanding of C, and how
to create C programs. It would be a great benefit for the reader to have previous X
programming experience, but it shouldn’t be necessary. If you are learning GTK
as your first widget set, please comment on how you found this tutorial, and
what you had trouble with. There are also C++, Objective C, ADA, Guile and
other language bindings available, but I don’t follow these.

This document is a "work in progress". Please look for updates on
http://www.gtk.org/.

I would very much like to hear of any problems you have learning GTK from this
document, and would appreciate input as to how it may be improved. Please see
the section on Contributing for further information.

Notes
1. mailto:petm@xcf.berkeley.edu

2. mailto:spencer@xcf.berkeley.edu

3. mailto:jmacd@xcf.berkeley.edu

4. mailto:otaylor@redhat.com

5. mailto:timj@gtk.org

6. http://www.gtk.org/

4

Chapter 3. Getting Started

The first thing to do, of course, is download the GTK source and install it. You can
always get the latest version from ftp.gtk.org1. You can also view other sources of
GTK information on http://www.gtk.org/. GTK uses GNU autoconf for config-
uration. Once untar’d, type ./configure --help to see a list of options.

The GTK source distribution also contains the complete source to all of the exam-
ples used in this tutorial, along with Makefiles to aid compilation.

To begin our introduction to GTK, we’ll start with the simplest program possi-
ble. This program will create a 200x200 pixel window and has no way of exiting
except to be killed by using the shell.

#include
�
gtk/gtk.h �

int main(int argc,
char *argv[])

{
GtkWidget *window;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_show (window);

gtk_main ();

return 0;
}

You can compile the above program with gcc using:

gcc base.c -o base ‘pkg-config --cflags --libs gtk+-2.0‘

The meaning of the unusual compilation options is explained below in Compiling
Hello World.

All programs will of course include gtk/gtk.h which declares the variables,
functions, structures, etc. that will be used in your GTK application.

The next line:

gtk_init (&argc, &argv);

5

Chapter 3. Getting Started

calls the function gtk_init(gint *argc, gchar ***argv) which will be called in all
GTK applications. This sets up a few things for us such as the default visual and
color map and then proceeds to call gdk_init(gint *argc, gchar ***argv). This func-
tion initializes the library for use, sets up default signal handlers, and checks the
arguments passed to your application on the command line, looking for one of
the following:

• --gtk-module
• --g-fatal-warnings
• --gtk-debug
• --gtk-no-debug
• --gdk-debug
• --gdk-no-debug
• --display
• --sync
• --name
• --class

It removes these from the argument list, leaving anything it does not recognize
for your application to parse or ignore. This creates a set of standard arguments
accepted by all GTK applications.

The next two lines of code create and display a window.

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_show (window);

The GTK_WINDOW_TOPLEVEL argument specifies that we want the window to un-
dergo window manager decoration and placement. Rather than create a window
of 0x0 size, a window without children is set to 200x200 by default so you can
still manipulate it.

The gtk_widget_show() function lets GTK know that we are done setting the at-
tributes of this widget, and that it can display it.

The last line enters the GTK main processing loop.

gtk_main ();

gtk_main() is another call you will see in every GTK application. When control
reaches this point, GTK will sleep waiting for X events (such as button or key
presses), timeouts, or file IO notifications to occur. In our simple example, how-
ever, events are ignored.

Hello World in GTK
Now for a program with a widget (a button). It’s the classic hello world a la GTK.

#include
�
gtk/gtk.h �

/* This is a callback function. The data arguments are ignored
* in this example. More on callbacks below. */
void hello(GtkWidget *widget,

gpointer data)
{

g_print ("Hello World\n");
}

gint delete_event(GtkWidget *widget,
GdkEvent *event,

6

Chapter 3. Getting Started

gpointer data)
{

/* If you return FALSE in the "delete_event" signal handler,
* GTK will emit the "destroy" signal. Returning TRUE means
* you don’t want the window to be destroyed.
* This is useful for popping up ’are you sure you want to quit?’
* type dialogs. */

g_print ("delete event occurred\n");

/* Change TRUE to FALSE and the main window will be destroyed with
* a "delete_event". */

return TRUE;
}

/* Another callback */
void destroy(GtkWidget *widget,

gpointer data)
{

gtk_main_quit ();
}

int main(int argc,
char *argv[])

{
/* GtkWidget is the storage type for widgets */
GtkWidget *window;
GtkWidget *button;

/* This is called in all GTK applications. Arguments are parsed
* from the command line and are returned to the application. */

gtk_init (&argc, &argv);

/* create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

/* When the window is given the "delete_event" signal (this is given
* by the window manager, usually by the "close" option, or on the
* titlebar), we ask it to call the delete_event () function
* as defined above. The data passed to the callback
* function is NULL and is ignored in the callback function. */

g_signal_connect (G_OBJECT (window), "delete_event",
G_CALLBACK (delete_event), NULL);

/* Here we connect the "destroy" event to a signal handler.
* This event occurs when we call gtk_widget_destroy() on the window,
* or if we return FALSE in the "delete_event" callback. */

g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (destroy), NULL);

/* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Creates a new button with the label "Hello World". */
button = gtk_button_new_with_label ("Hello World");

/* When the button receives the "clicked" signal, it will call the
* function hello() passing it NULL as its argument. The hello()
* function is defined above. */

g_signal_connect (G_OBJECT (button), "clicked",
G_CALLBACK (hello), NULL);

/* This will cause the window to be destroyed by calling
* gtk_widget_destroy(window) when "clicked". Again, the destroy
* signal could come from here, or the window manager. */

g_signal_connect_swapped (G_OBJECT (button), "clicked",
G_CALLBACK (gtk_widget_destroy),

G_OBJECT (window));

/* This packs the button into the window (a gtk container). */

7

Chapter 3. Getting Started

gtk_container_add (GTK_CONTAINER (window), button);

/* The final step is to display this newly created widget. */
gtk_widget_show (button);

/* and the window */
gtk_widget_show (window);

/* All GTK applications must have a gtk_main(). Control ends here
* and waits for an event to occur (like a key press or
* mouse event). */

gtk_main ();

return 0;
}

Compiling Hello World
To compile use:

gcc -Wall -g helloworld.c -o helloworld ‘pkg-config --cflags gtk+-
2.0‘ \

‘pkg-config --libs gtk+-2.0‘

This uses the program pkg-config, which can be obtained from
www.freedesktop.org3. This program reads the .pc which comes with GTK to
determine what compiler switches are needed to compile programs that use
GTK. pkg-config --cflags gtk+-2.0 will output a list of include directories
for the compiler to look in, and pkg-config --libs gtk+-2.0 will output the
list of libraries for the compiler to link with and the directories to find them in.
In the above example they could have been combined into a single instance,
such as pkg-config --cflags --libs gtk+-2.0.

Note that the type of single quote used in the compile command above is signifi-
cant.

The libraries that are usually linked in are:

• The GTK library (-lgtk), the widget library, based on top of GDK.

• The GDK library (-lgdk), the Xlib wrapper.

• The gdk-pixbuf library (-lgdk_pixbuf), the image manipulation library.

• The Pango library (-lpango) for internationalized text.

• The gobject library (-lgobject), containing the type system on which GTK is
based.

• The gmodule library (-lgmodule), which is used to load run time extensions.

• The GLib library (-lglib), containing miscellaneous functions; only g_print()
is used in this particular example. GTK is built on top of GLib so you will
always require this library. See the section on GLib for details.

• The Xlib library (-lX11) which is used by GDK.

• The Xext library (-lXext). This contains code for shared memory pixmaps and
other X extensions.

• The math library (-lm). This is used by GTK for various purposes.

8

Chapter 3. Getting Started

Theory of Signals and Callbacks

Note: In version 2.0, the signal system has been moved from GTK to GLib, therefore
the functions and types explained in this section have a "g_" prefix rather than a "gtk_"
prefix. We won’t go into details about the extensions which the GLib 2.0 signal system
has relative to the GTK 1.2 signal system.

Before we look in detail at helloworld, we’ll discuss signals and callbacks. GTK is
an event driven toolkit, which means it will sleep in gtk_main() until an event
occurs and control is passed to the appropriate function.

This passing of control is done using the idea of "signals". (Note that these signals
are not the same as the Unix system signals, and are not implemented using them,
although the terminology is almost identical.) When an event occurs, such as the
press of a mouse button, the appropriate signal will be "emitted" by the widget
that was pressed. This is how GTK does most of its useful work. There are signals
that all widgets inherit, such as "destroy", and there are signals that are widget
specific, such as "toggled" on a toggle button.

To make a button perform an action, we set up a signal handler to catch these
signals and call the appropriate function. This is done by using a function such
as:

gulong g_signal_connect(gpointer *object,
const gchar *name,
GCallback func,
gpointer func_data);

where the first argument is the widget which will be emitting the signal, and the
second the name of the signal you wish to catch. The third is the function you
wish to be called when it is caught, and the fourth, the data you wish to have
passed to this function.

The function specified in the third argument is called a "callback function", and
should generally be of the form

void callback_func(GtkWidget *widget,
gpointer callback_data);

where the first argument will be a pointer to the widget that emitted the
signal, and the second a pointer to the data given as the last argument to the
g_signal_connect() function as shown above.

Note that the above form for a signal callback function declaration is only a gen-
eral guide, as some widget specific signals generate different calling parameters.

Another call used in the helloworld example, is:

gulong g_signal_connect_swapped(gpointer *object,
const gchar *name,
GCallback func,
gpointer *slot_object);

g_signal_connect_swapped() is the same as g_signal_connect() except that the
callback function only uses one argument, a pointer to a GTK object. So when
using this function to connect signals, the callback should be of the form

void callback_func(GtkObject *object);

where the object is usually a widget. We usually don’t setup callbacks for
g_signal_connect_swapped() however. They are usually used to call a GTK
function that accepts a single widget or object as an argument, as is the case in
our helloworld example.

The purpose of having two functions to connect signals is simply to allow the
callbacks to have a different number of arguments. Many functions in the GTK
library accept only a single GtkWidget pointer as an argument, so you want to

9

Chapter 3. Getting Started

use the g_signal_connect_swapped() for these, whereas for your functions, you
may need to have additional data supplied to the callbacks.

Events
In addition to the signal mechanism described above, there is a set of events that
reflect the X event mechanism. Callbacks may also be attached to these events.
These events are:

• event
• button_press_event
• button_release_event
• scroll_event
• motion_notify_event
• delete_event
• destroy_event
• expose_event
• key_press_event
• key_release_event
• enter_notify_event
• leave_notify_event
• configure_event
• focus_in_event
• focus_out_event
• map_event
• unmap_event
• property_notify_event
• selection_clear_event
• selection_request_event
• selection_notify_event
• proximity_in_event
• proximity_out_event
• visibility_notify_event
• client_event
• no_expose_event
• window_state_event

In order to connect a callback function to one of these events you use the function
g_signal_connect(), as described above, using one of the above event names as
the name parameter. The callback function for events has a slightly different form
than that for signals:

gint callback_func(GtkWidget *widget,
GdkEvent *event,
gpointer callback_data);

GdkEvent is a C union structure whose type will depend upon which of the
above events has occurred. In order for us to tell which event has been issued
each of the possible alternatives has a type member that reflects the event being
issued. The other components of the event structure will depend upon the type
of the event. Possible values for the type are:

GDK_NOTHING
GDK_DELETE
GDK_DESTROY
GDK_EXPOSE
GDK_MOTION_NOTIFY
GDK_BUTTON_PRESS
GDK_2BUTTON_PRESS
GDK_3BUTTON_PRESS
GDK_BUTTON_RELEASE
GDK_KEY_PRESS
GDK_KEY_RELEASE
GDK_ENTER_NOTIFY
GDK_LEAVE_NOTIFY

10

Chapter 3. Getting Started

GDK_FOCUS_CHANGE
GDK_CONFIGURE
GDK_MAP
GDK_UNMAP
GDK_PROPERTY_NOTIFY
GDK_SELECTION_CLEAR
GDK_SELECTION_REQUEST
GDK_SELECTION_NOTIFY
GDK_PROXIMITY_IN
GDK_PROXIMITY_OUT
GDK_DRAG_ENTER
GDK_DRAG_LEAVE
GDK_DRAG_MOTION
GDK_DRAG_STATUS
GDK_DROP_START
GDK_DROP_FINISHED
GDK_CLIENT_EVENT
GDK_VISIBILITY_NOTIFY
GDK_NO_EXPOSE
GDK_SCROLL
GDK_WINDOW_STATE
GDK_SETTING

So, to connect a callback function to one of these events we would use something
like:

g_signal_connect (G_OBJECT (button), "button_press_event",
G_CALLBACK (button_press_callback), NULL);

This assumes that button is a Button widget. Now, when the mouse is over the
button and a mouse button is pressed, the function button_press_callback() will
be called. This function may be declared as:

static gint button_press_callback(GtkWidget *widget,
GdkEventButton *event,
gpointer data);

Note that we can declare the second argument as type GdkEventButton as we
know what type of event will occur for this function to be called.

The value returned from this function indicates whether the event should be
propagated further by the GTK event handling mechanism. Returning TRUE in-
dicates that the event has been handled, and that it should not propagate further.
Returning FALSE continues the normal event handling. See the section on Ad-
vanced Event and Signal Handling for more details on this propagation process.

For details on the GdkEvent data types, see the appendix entitled GDK Event
Types.

The GDK selection and drag-and-drop APIs also emit a number of events which
are reflected in GTK by the signals. See Signals on the source widget and Signals
on the destination widget for details on the signatures of the callback functions
for these signals:

• selection_received
• selection_get
• drag_begin_event
• drag_end_event
• drag_data_delete
• drag_motion
• drag_drop
• drag_data_get
• drag_data_received

11

Chapter 3. Getting Started

Stepping Through Hello World
Now that we know the theory behind this, let’s clarify by walking through the
example helloworld program.

Here is the callback function that will be called when the button is "clicked". We
ignore both the widget and the data in this example, but it is not hard to do things
with them. The next example will use the data argument to tell us which button
was pressed.

void hello(GtkWidget *widget,
gpointer data)

{
g_print ("Hello World\n");

}

The next callback is a bit special. The "delete_event" occurs when the window
manager sends this event to the application. We have a choice here as to what
to do about these events. We can ignore them, make some sort of response, or
simply quit the application.

The value you return in this callback lets GTK know what action to take. By re-
turning TRUE, we let it know that we don’t want to have the "destroy" signal
emitted, keeping our application running. By returning FALSE, we ask that "de-
stroy" be emitted, which in turn will call our "destroy" signal handler.

gint delete_event(GtkWidget *widget,
GdkEvent *event,

gpointer data)
{

g_print ("delete event occurred\n");

return TRUE;
}

Here is another callback function which causes the program to quit by calling
gtk_main_quit(). This function tells GTK that it is to exit from gtk_main when
control is returned to it.

void destroy(GtkWidget *widget,
gpointer data)

{
gtk_main_quit ();

}

I assume you know about the main() function... yes, as with other applications,
all GTK applications will also have one of these.

int main(int argc,
char *argv[])

{

This next part declares pointers to a structure of type GtkWidget. These are used
below to create a window and a button.

GtkWidget *window;
GtkWidget *button;

Here is our gtk_init() again. As before, this initializes the toolkit, and parses the
arguments found on the command line. Any argument it recognizes from the
command line, it removes from the list, and modifies argc and argv to make it
look like they never existed, allowing your application to parse the remaining
arguments.

gtk_init (&argc, &argv);

Create a new window. This is fairly straightforward. Memory is allocated for the
GtkWidget *window structure so it now points to a valid structure. It sets up

12

Chapter 3. Getting Started

a new window, but it is not displayed until we call gtk_widget_show(window)
near the end of our program.

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

Here are two examples of connecting a signal handler to an object, in this case,
the window. Here, the "delete_event" and "destroy" signals are caught. The first
is emitted when we use the window manager to kill the window, or when we
use the gtk_widget_destroy() call passing in the window widget as the object to
destroy. The second is emitted when, in the "delete_event" handler, we return
FALSE. The G_OBJECT and G_CALLBACK are macros that perform type casting and
checking for us, as well as aid the readability of the code.

g_signal_connect (G_OBJECT (window), "delete_event",
G_CALLBACK (delete_event), NULL);

g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (destroy), NULL);

This next function is used to set an attribute of a container object. This just sets
the window so it has a blank area along the inside of it 10 pixels wide where no
widgets will go. There are other similar functions which we will look at in the
section on Setting Widget Attributes

And again, GTK_CONTAINER is a macro to perform type casting.

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

This call creates a new button. It allocates space for a new GtkWidget structure
in memory, initializes it, and makes the button pointer point to it. It will have the
label "Hello World" on it when displayed.

button = gtk_button_new_with_label ("Hello World");

Here, we take this button, and make it do something useful. We attach a signal
handler to it so when it emits the "clicked" signal, our hello() function is called.
The data is ignored, so we simply pass in NULL to the hello() callback func-
tion. Obviously, the "clicked" signal is emitted when we click the button with our
mouse pointer.

g_signal_connect (G_OBJECT (button), "clicked",
G_CALLBACK (hello), NULL);

We are also going to use this button to exit our program. This will illustrate how
the "destroy" signal may come from either the window manager, or our program.
When the button is "clicked", same as above, it calls the first hello() callback func-
tion, and then this one in the order they are set up. You may have as many call-
back functions as you need, and all will be executed in the order you connected
them. Because the gtk_widget_destroy() function accepts only a GtkWidget *wid-
get as an argument, we use the g_signal_connect_swapped() function here in-
stead of straight g_signal_connect().

g_signal_connect_swapped (G_OBJECT (button), "clicked",
G_CALLBACK (gtk_widget_destroy),
G_OBJECT (window));

This is a packing call, which will be explained in depth later on in Packing Wid-
gets. But it is fairly easy to understand. It simply tells GTK that the button is to be
placed in the window where it will be displayed. Note that a GTK container can
only contain one widget. There are other widgets, that are described later, which
are designed to layout multiple widgets in various ways.

gtk_container_add (GTK_CONTAINER (window), button);

Now we have everything set up the way we want it to be. With all the signal
handlers in place, and the button placed in the window where it should be, we
ask GTK to "show" the widgets on the screen. The window widget is shown last
so the whole window will pop up at once rather than seeing the window pop

13

Chapter 3. Getting Started

up, and then the button form inside of it. Although with such a simple example,
you’d never notice.

gtk_widget_show (button);

gtk_widget_show (window);

And of course, we call gtk_main() which waits for events to come from the X
server and will call on the widgets to emit signals when these events come.

gtk_main ();

And the final return. Control returns here after gtk_quit() is called.

return 0;

Now, when we click the mouse button on a GTK button, the widget emits a
"clicked" signal. In order for us to use this information, our program sets up a
signal handler to catch that signal, which dispatches the function of our choice.
In our example, when the button we created is "clicked", the hello() function is
called with a NULL argument, and then the next handler for this signal is called.
This calls the gtk_widget_destroy() function, passing it the window widget as its
argument, destroying the window widget. This causes the window to emit the
"destroy" signal, which is caught, and calls our destroy() callback function, which
simply exits GTK.

Another course of events is to use the window manager to kill the window, which
will cause the "delete_event" to be emitted. This will call our "delete_event" han-
dler. If we return TRUE here, the window will be left as is and nothing will
happen. Returning FALSE will cause GTK to emit the "destroy" signal which of
course calls the "destroy" callback, exiting GTK.

Notes
1. ftp://ftp.gtk.org/pub/gtk

2. http://www.gtk.org/

3. http://www.freedesktop.org

14

Chapter 4. Moving On

Data Types
There are a few things you probably noticed in the previous examples that need
explaining. The gint, gchar, etc. that you see are typedefs to int and char, respec-
tively, that are part of the GLib system. This is done to get around that nasty
dependency on the size of simple data types when doing calculations.

A good example is "gint32" which will be typedef’d to a 32 bit integer for any
given platform, whether it be the 64 bit alpha, or the 32 bit i386. The typedefs are
very straightforward and intuitive. They are all defined in glib/glib.h (which
gets included from gtk.h).

You’ll also notice GTK’s ability to use GtkWidget when the function calls for a
GtkObject. GTK is an object oriented design, and a widget is an object.

More on Signal Handlers
Lets take another look at the g_signal_connect() declaration.

gulong g_signal_connect(gpointer object,
const gchar *name,
GCallback func,
gpointer func_data);

Notice the gulong return value? This is a tag that identifies your callback function.
As stated above, you may have as many callbacks per signal and per object as you
need, and each will be executed in turn, in the order they were attached.

This tag allows you to remove this callback from the list by using:

void g_signal_handler_disconnect(gpointer object,
gulong id);

So, by passing in the widget you wish to remove the handler from, and the tag
returned by one of the signal_connect functions, you can disconnect a signal han-
dler.

You can also temporarily disable signal handlers with the
g_signal_handler_block() and g_signal_handler_unblock() family of functions.

void g_signal_handler_block(gpointer object,
gulong id);

void g_signal_handlers_block_by_func(gpointer object,
GCallback func,
gpointer data);

void g_signal_handler_unblock(gpointer object,
gulong id);

void g_signal_handlers_unblock_by_func(gpointer object,
GCallback func,
gpointer data);

An Upgraded Hello World
Let’s take a look at a slightly improved helloworld with better examples of call-
backs. This will also introduce us to our next topic, packing widgets.

15

Chapter 4. Moving On

#include
�
gtk/gtk.h �

/* Our new improved callback. The data passed to this function
* is printed to stdout. */
void callback(GtkWidget *widget,

gpointer data)
{

g_print ("Hello again - %s was pressed\n", (gchar *) data);
}

/* another callback */
gint delete_event(GtkWidget *widget,

GdkEvent *event,
gpointer data)

{
gtk_main_quit ();
return FALSE;

}

int main(int argc,
char *argv[])

{
/* GtkWidget is the storage type for widgets */
GtkWidget *window;
GtkWidget *button;
GtkWidget *box1;

/* This is called in all GTK applications. Arguments are parsed
* from the command line and are returned to the application. */

gtk_init (&argc, &argv);

/* Create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

/* This is a new call, which just sets the title of our
* new window to "Hello Buttons!" */

gtk_window_set_title (GTK_WINDOW (window), "Hello Buttons!");

/* Here we just set a handler for delete_event that immediately
* exits GTK. */

g_signal_connect (G_OBJECT (window), "delete_event",
G_CALLBACK (delete_event), NULL);

/* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* We create a box to pack widgets into. This is described in detail
* in the "packing" section. The box is not really visible, it
* is just used as a tool to arrange widgets. */

box1 = gtk_hbox_new (FALSE, 0);

/* Put the box into the main window. */
gtk_container_add (GTK_CONTAINER (window), box1);

/* Creates a new button with the label "Button 1". */
button = gtk_button_new_with_label ("Button 1");

/* Now when the button is clicked, we call the "callback" function
* with a pointer to "button 1" as its argument */

g_signal_connect (G_OBJECT (button), "clicked",
G_CALLBACK (callback), (gpointer) "button 1");

/* Instead of gtk_container_add, we pack this button into the invisible

16

Chapter 4. Moving On

* box, which has been packed into the window. */
gtk_box_pack_start (GTK_BOX(box1), button, TRUE, TRUE, 0);

/* Always remember this step, this tells GTK that our prepara-
tion for

* this button is complete, and it can now be displayed. */
gtk_widget_show (button);

/* Do these same steps again to create a second button */
button = gtk_button_new_with_label ("Button 2");

/* Call the same callback function with a different argument,
* passing a pointer to "button 2" instead. */

g_signal_connect (G_OBJECT (button), "clicked",
G_CALLBACK (callback), (gpointer) "button 2");

gtk_box_pack_start(GTK_BOX (box1), button, TRUE, TRUE, 0);

/* The order in which we show the buttons is not really impor-
tant, but I

* recommend showing the window last, so it all pops up at once. */
gtk_widget_show (button);

gtk_widget_show (box1);

gtk_widget_show (window);

/* Rest in gtk_main and wait for the fun to begin! */
gtk_main ();

return 0;
}

Compile this program using the same linking arguments as our first example.
You’ll notice this time there is no easy way to exit the program, you have to use
your window manager or command line to kill it. A good exercise for the reader
would be to insert a third "Quit" button that will exit the program. You may also
wish to play with the options to gtk_box_pack_start() while reading the next sec-
tion. Try resizing the window, and observe the behavior.

17

Chapter 4. Moving On

18

Chapter 5. Packing Widgets

When creating an application, you’ll want to put more than one widget inside a
window. Our first helloworld example only used one widget so we could simply
use a gtk_container_add() call to "pack" the widget into the window. But when
you want to put more than one widget into a window, how do you control where
that widget is positioned? This is where packing comes in.

Theory of Packing Boxes
Most packing is done by creating boxes. These are invisible widget containers
that we can pack our widgets into which come in two forms, a horizontal box,
and a vertical box. When packing widgets into a horizontal box, the objects are
inserted horizontally from left to right or right to left depending on the call used.
In a vertical box, widgets are packed from top to bottom or vice versa. You may
use any combination of boxes inside or beside other boxes to create the desired
effect.

To create a new horizontal box, we use a call to gtk_hbox_new(), and for vertical
boxes, gtk_vbox_new(). The gtk_box_pack_start() and gtk_box_pack_end()
functions are used to place objects inside of these containers. The
gtk_box_pack_start() function will start at the top and work its way down in a
vbox, and pack left to right in an hbox. gtk_box_pack_end() will do the opposite,
packing from bottom to top in a vbox, and right to left in an hbox. Using these
functions allows us to right justify or left justify our widgets and may be mixed
in any way to achieve the desired effect. We will use gtk_box_pack_start() in
most of our examples. An object may be another container or a widget. In fact,
many widgets are actually containers themselves, including the button, but we
usually only use a label inside a button.

By using these calls, GTK knows where you want to place your widgets so it can
do automatic resizing and other nifty things. There are also a number of options
as to how your widgets should be packed. As you can imagine, this method gives
us a quite a bit of flexibility when placing and creating widgets.

Details of Boxes
Because of this flexibility, packing boxes in GTK can be confusing at first. There
are a lot of options, and it’s not immediately obvious how they all fit together. In
the end, however, there are basically five different styles.

Each line contains one horizontal box (hbox) with several buttons. The call to
gtk_box_pack is shorthand for the call to pack each of the buttons into the hbox.
Each of the buttons is packed into the hbox the same way (i.e., same arguments
to the gtk_box_pack_start() function).

This is the declaration of the gtk_box_pack_start() function.

19

Chapter 5. Packing Widgets

void gtk_box_pack_start(GtkBox *box,
GtkWidget *child,
gboolean expand,
gboolean fill,
guint padding);

The first argument is the box you are packing the object into, the second is the
object. The objects will all be buttons for now, so we’ll be packing buttons into
boxes.

The expand argument to gtk_box_pack_start() and gtk_box_pack_end() controls
whether the widgets are laid out in the box to fill in all the extra space in the
box so the box is expanded to fill the area allotted to it (TRUE); or the box is
shrunk to just fit the widgets (FALSE). Setting expand to FALSE will allow you
to do right and left justification of your widgets. Otherwise, they will all expand
to fit into the box, and the same effect could be achieved by using only one of
gtk_box_pack_start() or gtk_box_pack_end().

The fill argument to the gtk_box_pack functions control whether the extra space
is allocated to the objects themselves (TRUE), or as extra padding in the box
around these objects (FALSE). It only has an effect if the expand argument is also
TRUE.

When creating a new box, the function looks like this:

GtkWidget *gtk_hbox_new (gboolean homogeneous,
gint spacing);

The homogeneous argument to gtk_hbox_new() (and the same for
gtk_vbox_new()) controls whether each object in the box has the same size
(i.e., the same width in an hbox, or the same height in a vbox). If it is set, the
gtk_box_pack() routines function essentially as if the expand argument was
always turned on.

What’s the difference between spacing (set when the box is created) and padding
(set when elements are packed)? Spacing is added between objects, and padding
is added on either side of an object. The following figure should make it clearer:

Here is the code used to create the above images. I’ve commented it fairly heavily
so I hope you won’t have any problems following it. Compile it yourself and play
with it.

Packing Demonstration Program

#include
�
stdio.h �

#include
�
stdlib.h �

#include "gtk/gtk.h"

gint delete_event(GtkWidget *widget,
GdkEvent *event,
gpointer data)

20

Chapter 5. Packing Widgets

{
gtk_main_quit ();
return FALSE;

}

/* Make a new hbox filled with button-labels. Arguments for the
* variables we’re interested are passed in to this function.
* We do not show the box, but do show everything inside. */
GtkWidget *make_box(gboolean homogeneous,

gint spacing,
gboolean expand,
gboolean fill,
guint padding)

{
GtkWidget *box;
GtkWidget *button;
char padstr[80];

/* Create a new hbox with the appropriate homogeneous
* and spacing settings */

box = gtk_hbox_new (homogeneous, spacing);

/* Create a series of buttons with the appropriate settings */
button = gtk_button_new_with_label ("gtk_box_pack");
gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding);
gtk_widget_show (button);

button = gtk_button_new_with_label ("(box,");
gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding);
gtk_widget_show (button);

button = gtk_button_new_with_label ("button,");
gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding);
gtk_widget_show (button);

/* Create a button with the label depending on the value of
* expand. */

if (expand == TRUE)
button = gtk_button_new_with_label ("TRUE,");

else
button = gtk_button_new_with_label ("FALSE,");

gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding);
gtk_widget_show (button);

/* This is the same as the button creation for "expand"
* above, but uses the shorthand form. */

button = gtk_button_new_with_label (fill ? "TRUE," : "FALSE,");
gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding);
gtk_widget_show (button);

sprintf (padstr, "%d);", padding);

button = gtk_button_new_with_label (padstr);
gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding);
gtk_widget_show (button);

return box;
}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *button;
GtkWidget *box1;
GtkWidget *box2;
GtkWidget *separator;
GtkWidget *label;
GtkWidget *quitbox;
int which;

21

Chapter 5. Packing Widgets

/* Our init, don’t forget this! :) */
gtk_init (&argc, &argv);

if (argc != 2) {
fprintf (stderr, "usage: packbox num, where num is 1, 2, or 3.\n");
/* This just does cleanup in GTK and exits with an exit status of 1. */
exit (1);

}

which = atoi (argv[1]);

/* Create our window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

/* You should always remember to connect the delete_event signal
* to the main window. This is very important for proper intuitive
* behavior */

g_signal_connect (G_OBJECT (window), "delete_event",
G_CALLBACK (delete_event), NULL);

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* We create a vertical box (vbox) to pack the horizontal boxes into.
* This allows us to stack the horizontal boxes filled with but-

tons one
* on top of the other in this vbox. */

box1 = gtk_vbox_new (FALSE, 0);

/* which example to show. These correspond to the pictures above. */
switch (which) {
case 1:

/* create a new label. */
label = gtk_label_new ("gtk_hbox_new (FALSE, 0);");

/* Align the label to the left side. We’ll discuss this function and
* others in the section on Widget Attributes. */

gtk_misc_set_alignment (GTK_MISC (label), 0, 0);

/* Pack the label into the vertical box (vbox box1). Remember that
* widgets added to a vbox will be packed one on top of the other in
* order. */

gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0);

/* Show the label */
gtk_widget_show (label);

/* Call our make box function - homogeneous = FALSE, spacing = 0,
* expand = FALSE, fill = FALSE, padding = 0 */

box2 = make_box (FALSE, 0, FALSE, FALSE, 0);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* Call our make box function - homogeneous = FALSE, spacing = 0,
* expand = TRUE, fill = FALSE, padding = 0 */

box2 = make_box (FALSE, 0, TRUE, FALSE, 0);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* Args are: homogeneous, spacing, expand, fill, padding */
box2 = make_box (FALSE, 0, TRUE, TRUE, 0);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* Creates a separator, we’ll learn more about these later,
* but they are quite simple. */

separator = gtk_hseparator_new ();

/* Pack the separator into the vbox. Remember each of these
* widgets is being packed into a vbox, so they’ll be stacked

* vertically. */
gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5);

22

Chapter 5. Packing Widgets

gtk_widget_show (separator);

/* Create another new label, and show it. */
label = gtk_label_new ("gtk_hbox_new (TRUE, 0);");
gtk_misc_set_alignment (GTK_MISC (label), 0, 0);
gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0);
gtk_widget_show (label);

/* Args are: homogeneous, spacing, expand, fill, padding */
box2 = make_box (TRUE, 0, TRUE, FALSE, 0);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* Args are: homogeneous, spacing, expand, fill, padding */
box2 = make_box (TRUE, 0, TRUE, TRUE, 0);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* Another new separator. */
separator = gtk_hseparator_new ();
/* The last 3 arguments to gtk_box_pack_start are:
* expand, fill, padding. */

gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5);
gtk_widget_show (separator);

break;

case 2:

/* Create a new label, remember box1 is a vbox as created
* near the beginning of main() */

label = gtk_label_new ("gtk_hbox_new (FALSE, 10);");
gtk_misc_set_alignment (GTK_MISC (label), 0, 0);
gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0);
gtk_widget_show (label);

/* Args are: homogeneous, spacing, expand, fill, padding */
box2 = make_box (FALSE, 10, TRUE, FALSE, 0);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* Args are: homogeneous, spacing, expand, fill, padding */
box2 = make_box (FALSE, 10, TRUE, TRUE, 0);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

separator = gtk_hseparator_new ();
/* The last 3 arguments to gtk_box_pack_start are:
* expand, fill, padding. */

gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5);
gtk_widget_show (separator);

label = gtk_label_new ("gtk_hbox_new (FALSE, 0);");
gtk_misc_set_alignment (GTK_MISC (label), 0, 0);
gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0);
gtk_widget_show (label);

/* Args are: homogeneous, spacing, expand, fill, padding */
box2 = make_box (FALSE, 0, TRUE, FALSE, 10);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* Args are: homogeneous, spacing, expand, fill, padding */
box2 = make_box (FALSE, 0, TRUE, TRUE, 10);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

separator = gtk_hseparator_new ();
/* The last 3 arguments to gtk_box_pack_start are: expand, fill, padding. */
gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5);
gtk_widget_show (separator);

23

Chapter 5. Packing Widgets

break;

case 3:

/* This demonstrates the ability to use gtk_box_pack_end() to
* right justify widgets. First, we create a new box as before. */

box2 = make_box (FALSE, 0, FALSE, FALSE, 0);

/* Create the label that will be put at the end. */
label = gtk_label_new ("end");
/* Pack it using gtk_box_pack_end(), so it is put on the right
* side of the hbox created in the make_box() call. */

gtk_box_pack_end (GTK_BOX (box2), label, FALSE, FALSE, 0);
/* Show the label. */
gtk_widget_show (label);

/* Pack box2 into box1 (the vbox remember ? :) */
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0);
gtk_widget_show (box2);

/* A separator for the bottom. */
separator = gtk_hseparator_new ();
/* This explicitly sets the separator to 400 pixels wide by 5 pixels
* high. This is so the hbox we created will also be 400 pixels wide,
* and the "end" label will be separated from the other labels in the
* hbox. Otherwise, all the widgets in the hbox would be packed as
* close together as possible. */

gtk_widget_set_size_request (separator, 400, 5);
/* pack the separator into the vbox (box1) created near the start
* of main() */

gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5);
gtk_widget_show (separator);

}

/* Create another new hbox.. remember we can use as many as we need! */
quitbox = gtk_hbox_new (FALSE, 0);

/* Our quit button. */
button = gtk_button_new_with_label ("Quit");

/* Setup the signal to terminate the program when the button is clicked */
g_signal_connect_swapped (G_OBJECT (button), "clicked",

G_CALLBACK (gtk_main_quit),
G_OBJECT (window));

/* Pack the button into the quitbox.
* The last 3 arguments to gtk_box_pack_start are:
* expand, fill, padding. */

gtk_box_pack_start (GTK_BOX (quitbox), button, TRUE, FALSE, 0);
/* pack the quitbox into the vbox (box1) */
gtk_box_pack_start (GTK_BOX (box1), quitbox, FALSE, FALSE, 0);

/* Pack the vbox (box1) which now contains all our widgets, into the
* main window. */

gtk_container_add (GTK_CONTAINER (window), box1);

/* And show everything left */
gtk_widget_show (button);
gtk_widget_show (quitbox);

gtk_widget_show (box1);
/* Showing the window last so everything pops up at once. */
gtk_widget_show (window);

/* And of course, our main function. */
gtk_main ();

/* Control returns here when gtk_main_quit() is called, but not when
* exit() is used. */

return 0;
}

24

Chapter 5. Packing Widgets

Packing Using Tables
Let’s take a look at another way of packing - Tables. These can be extremely useful
in certain situations.

Using tables, we create a grid that we can place widgets in. The widgets may take
up as many spaces as we specify.

The first thing to look at, of course, is the gtk_table_new() function:

GtkWidget *gtk_table_new(guint rows,
guint columns,
gboolean homogeneous);

The first argument is the number of rows to make in the table, while the second,
obviously, is the number of columns.

The homogeneous argument has to do with how the table’s boxes are sized. If
homogeneous is TRUE, the table boxes are resized to the size of the largest widget
in the table. If homogeneous is FALSE, the size of a table boxes is dictated by the
tallest widget in its same row, and the widest widget in its column.

The rows and columns are laid out from 0 to n, where n was the number specified
in the call to gtk_table_new. So, if you specify rows = 2 and columns = 2, the
layout would look something like this:

0 1 2
0+----------+----------+
| | |
1+----------+----------+
| | |
2+----------+----------+

Note that the coordinate system starts in the upper left hand corner. To place a
widget into a box, use the following function:

void gtk_table_attach(GtkTable *table,
GtkWidget *child,
guint left_attach,
guint right_attach,
guint top_attach,
guint bottom_attach,
GtkAttachOptions xoptions,
GtkAttachOptions yoptions,
guint xpadding,
guint ypadding);

The first argument ("table") is the table you’ve created and the second ("child")
the widget you wish to place in the table.

The left and right attach arguments specify where to place the widget, and how
many boxes to use. If you want a button in the lower right table entry of our 2x2
table, and want it to fill that entry only, left_attach would be = 1, right_attach = 2,
top_attach = 1, bottom_attach = 2.

Now, if you wanted a widget to take up the whole top row of our 2x2 table, you’d
use left_attach = 0, right_attach = 2, top_attach = 0, bottom_attach = 1.

The xoptions and yoptions are used to specify packing options and may be bit-
wise OR’ed together to allow multiple options.

These options are:

GTK_FILL

If the table box is larger than the widget, and GTK_FILL is specified, the wid-
get will expand to use all the room available.

25

Chapter 5. Packing Widgets

GTK_SHRINK

If the table widget was allocated less space then was requested (usually by
the user resizing the window), then the widgets would normally just be
pushed off the bottom of the window and disappear. If GTK_SHRINK is spec-
ified, the widgets will shrink with the table.

GTK_EXPAND

This will cause the table to expand to use up any remaining space in the
window.

Padding is just like in boxes, creating a clear area around the widget specified in
pixels.

gtk_table_attach() has a lot of options. So, there’s a shortcut:

void gtk_table_attach_defaults(GtkTable *table,
GtkWidget *widget,
guint left_attach,
guint right_attach,
guint top_attach,
guint bottom_attach);

The X and Y options default to GTK_FILL | GTK_EXPAND, and X and Y padding
are set to 0. The rest of the arguments are identical to the previous function.

We also have gtk_table_set_row_spacing() and gtk_table_set_col_spacing().
These places spacing between the rows at the specified row or column.

void gtk_table_set_row_spacing(GtkTable *table,
guint row,
guint spacing);

and

void gtk_table_set_col_spacing (GtkTable *table,
guint column,
guint spacing);

Note that for columns, the space goes to the right of the column, and for rows,
the space goes below the row.

You can also set a consistent spacing of all rows and/or columns with:

void gtk_table_set_row_spacings(GtkTable *table,
guint spacing);

And,

void gtk_table_set_col_spacings(GtkTable *table,
guint spacing);

Note that with these calls, the last row and last column do not get any spacing.

Table Packing Example
Here we make a window with three buttons in a 2x2 table. The first two buttons
will be placed in the upper row. A third, quit button, is placed in the lower row,
spanning both columns. Which means it should look something like this:

26

Chapter 5. Packing Widgets

Here’s the source code:

#include
�
gtk/gtk.h �

/* Our callback.
* The data passed to this function is printed to stdout */
void callback(GtkWidget *widget,

gpointer data)
{

g_print ("Hello again - %s was pressed\n", (char *) data);
}

/* This callback quits the program */
gint delete_event(GtkWidget *widget,

GdkEvent *event,
gpointer data)

{
gtk_main_quit ();
return FALSE;

}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *button;
GtkWidget *table;

gtk_init (&argc, &argv);

/* Create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

/* Set the window title */
gtk_window_set_title (GTK_WINDOW (window), "Table");

/* Set a handler for delete_event that immediately
* exits GTK. */

g_signal_connect (G_OBJECT (window), "delete_event",
G_CALLBACK (delete_event), NULL);

/* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 20);

/* Create a 2x2 table */
table = gtk_table_new (2, 2, TRUE);

/* Put the table in the main window */
gtk_container_add (GTK_CONTAINER (window), table);

/* Create first button */
button = gtk_button_new_with_label ("button 1");

/* When the button is clicked, we call the "callback" function
* with a pointer to "button 1" as its argument */

g_signal_connect (G_OBJECT (button), "clicked",
G_CALLBACK (callback), (gpointer) "button 1");

27

Chapter 5. Packing Widgets

/* Insert button 1 into the upper left quadrant of the table */
gtk_table_attach_defaults (GTK_TABLE (table), button, 0, 1, 0, 1);

gtk_widget_show (button);

/* Create second button */

button = gtk_button_new_with_label ("button 2");

/* When the button is clicked, we call the "callback" function
* with a pointer to "button 2" as its argument */

g_signal_connect (G_OBJECT (button), "clicked",
G_CALLBACK (callback), (gpointer) "button 2");

/* Insert button 2 into the upper right quadrant of the table */
gtk_table_attach_defaults (GTK_TABLE (table), button, 1, 2, 0, 1);

gtk_widget_show (button);

/* Create "Quit" button */
button = gtk_button_new_with_label ("Quit");

/* When the button is clicked, we call the "delete_event" function
* and the program exits */

g_signal_connect (G_OBJECT (button), "clicked",
G_CALLBACK (delete_event), NULL);

/* Insert the quit button into the both
* lower quadrants of the table */

gtk_table_attach_defaults (GTK_TABLE (table), button, 0, 2, 1, 2);

gtk_widget_show (button);

gtk_widget_show (table);
gtk_widget_show (window);

gtk_main ();

return 0;
}

28

Chapter 6. Widget Overview

The general steps to creating a widget in GTK are:

1. gtk_*_new() - one of various functions to create a new widget. These are all
detailed in this section.

2. Connect all signals and events we wish to use to the appropriate handlers.

3. Set the attributes of the widget.

4. Pack the widget into a container using the appropriate call such as
gtk_container_add() or gtk_box_pack_start().

5. gtk_widget_show() the widget.

gtk_widget_show() lets GTK know that we are done setting the attributes of the
widget, and it is ready to be displayed. You may also use gtk_widget_hide to
make it disappear again. The order in which you show the widgets is not impor-
tant, but I suggest showing the window last so the whole window pops up at
once rather than seeing the individual widgets come up on the screen as they’re
formed. The children of a widget (a window is a widget too) will not be displayed
until the window itself is shown using the gtk_widget_show() function.

Casting
You’ll notice as you go on that GTK uses a type casting system. This is always
done using macros that both test the ability to cast the given item, and perform
the cast. Some common ones you will see are:

G_OBJECT (object)
GTK_WIDGET (widget)
GTK_OBJECT (object)
GTK_SIGNAL_FUNC (function)
GTK_CONTAINER (container)
GTK_WINDOW (window)
GTK_BOX (box)

These are all used to cast arguments in functions. You’ll see them in the exam-
ples, and can usually tell when to use them simply by looking at the function’s
declaration.

As you can see below in the class hierarchy, all GtkWidgets are derived from the
GObject base class. This means you can use a widget in any place the function
asks for an object - simply use the G_OBJECT() macro.

For example:

g_signal_connect(G_OBJECT (button), "clicked",
G_CALLBACK (callback_function), callback_data);

This casts the button into an object, and provides a cast for the function pointer
to the callback.

Many widgets are also containers. If you look in the class hierarchy below, you’ll
notice that many widgets derive from the Container class. Any one of these wid-
gets may be used with the GTK_CONTAINER macro to pass them to functions that
ask for containers.

Unfortunately, these macros are not extensively covered in the tutorial, but I rec-
ommend taking a look through the GTK header files or the GTK API reference
manual. It can be very educational. In fact, it’s not difficult to learn how a widget
works just by looking at the function declarations.

Widget Hierarchy
For your reference, here is the class hierarchy tree used to implement widgets.
(Deprecated widgets and auxiliary classes have been omitted.)

29

Chapter 6. Widget Overview

GObject
|
GtkObject
+GtkWidget
| +GtkMisc
| | +GtkLabel
| | | ‘GtkAccelLabel
| | +GtkArrow
| | ‘GtkImage
| +GtkContainer
| | +GtkBin
| | | +GtkAlignment
| | | +GtkFrame
| | | | ‘GtkAspectFrame
| | | +GtkButton
| | | | +GtkToggleButton
| | | | | ‘GtkCheckButton
| | | | | ‘GtkRadioButton
| | | | ‘GtkOptionMenu
| | | +GtkItem
| | | | +GtkMenuItem
| | | | +GtkCheckMenuItem
| | | | | ‘GtkRadioMenuItem
| | | | +GtkImageMenuItem
| | | | +GtkSeparatorMenuItem
| | | | ‘GtkTearoffMenuItem
| | | +GtkWindow
| | | | +GtkDialog
| | | | | +GtkColorSelectionDialog
| | | | | +GtkFileSelection
| | | | | +GtkFontSelectionDialog
| | | | | +GtkInputDialog
| | | | | ‘GtkMessageDialog
| | | | ‘GtkPlug
| | | +GtkEventBox
| | | +GtkHandleBox
| | | +GtkScrolledWindow
| | | ‘GtkViewport
| | +GtkBox
| | | +GtkButtonBox
| | | | +GtkHButtonBox
| | | | ‘GtkVButtonBox
| | | +GtkVBox
| | | | +GtkColorSelection
| | | | +GtkFontSelection
| | | | ‘GtkGammaCurve
| | | ‘GtkHBox
| | | +GtkCombo
| | | ‘GtkStatusbar
| | +GtkFixed
| | +GtkPaned
| | | +GtkHPaned
| | | ‘GtkVPaned
| | +GtkLayout
| | +GtkMenuShell
| | | +GtkMenuBar
| | | ‘GtkMenu
| | +GtkNotebook
| | +GtkSocket
| | +GtkTable
| | +GtkTextView
| | +GtkToolbar
| | ‘GtkTreeView
| +GtkCalendar
| +GtkDrawingArea
| | ‘GtkCurve
| +GtkEditable
| | +GtkEntry
| | ‘GtkSpinButton
| +GtkRuler
| | +GtkHRuler

30

Chapter 6. Widget Overview

| | ‘GtkVRuler
| +GtkRange
| | +GtkScale
| | | +GtkHScale
| | | ‘GtkVScale
| | ‘GtkScrollbar
| | +GtkHScrollbar
| | ‘GtkVScrollbar
| +GtkSeparator
| | +GtkHSeparator
| | ‘GtkVSeparator
| +GtkInvisible
| +GtkPreview
| ‘GtkProgressBar
+GtkAdjustment
+GtkCellRenderer
| +GtkCellRendererPixbuf
| +GtkCellRendererText
| +GtkCellRendererToggle
+GtkItemFactory
+GtkTooltips
‘GtkTreeViewColumn

Widgets Without Windows
The following widgets do not have an associated window. If you want to capture
events, you’ll have to use the EventBox. See the section on the EventBox widget.

GtkAlignment
GtkArrow
GtkBin
GtkBox
GtkButton
GtkCheckButton
GtkFixed
GtkImage
GtkLabel
GtkMenuItem
GtkNotebook
GtkPaned
GtkRadioButton
GtkRange
GtkScrolledWindow
GtkSeparator
GtkTable
GtkToolbar
GtkAspectFrame
GtkFrame
GtkVBox
GtkHBox
GtkVSeparator
GtkHSeparator

We’ll further our exploration of GTK by examining each widget in turn, creat-
ing a few simple functions to display them. Another good source is the testgtk
program that comes with GTK. It can be found in tests/testgtk.c.

31

Chapter 6. Widget Overview

32

Chapter 7. The Button Widget

Normal Buttons
We’ve almost seen all there is to see of the button widget. It’s pretty simple.
There is however more than one way to create a button. You can use the
gtk_button_new_with_label() or gtk_button_new_with_mnemonic() to create a
button with a label, use gtk_button_new_from_stock() to create a button
containing the image and text from a stock item or use gtk_button_new() to
create a blank button. It’s then up to you to pack a label or pixmap into this new
button. To do this, create a new box, and then pack your objects into this box
using the usual gtk_box_pack_start(), and then use gtk_container_add() to pack
the box into the button.

Here’s an example of using gtk_button_new() to create a button with a image
and a label in it. I’ve broken up the code to create a box from the rest so you can
use it in your programs. There are further examples of using images later in the
tutorial.

#include
�
stdlib.h �

#include
�
gtk/gtk.h �

/* Create a new hbox with an image and a label packed into it
* and return the box. */

GtkWidget *xpm_label_box(gchar *xpm_filename,
gchar *label_text)

{
GtkWidget *box;
GtkWidget *label;
GtkWidget *image;

/* Create box for image and label */
box = gtk_hbox_new (FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (box), 2);

/* Now on to the image stuff */
image = gtk_image_new_from_file (xpm_filename);

/* Create a label for the button */
label = gtk_label_new (label_text);

/* Pack the image and label into the box */
gtk_box_pack_start (GTK_BOX (box), image, FALSE, FALSE, 3);
gtk_box_pack_start (GTK_BOX (box), label, FALSE, FALSE, 3);

gtk_widget_show (image);
gtk_widget_show (label);

return box;
}

/* Our usual callback function */
void callback(GtkWidget *widget,

gpointer data)
{

g_print ("Hello again - %s was pressed\n", (char *) data);
}

int main(int argc,

33

Chapter 7. The Button Widget

char *argv[])
{

/* GtkWidget is the storage type for widgets */
GtkWidget *window;
GtkWidget *button;
GtkWidget *box;

gtk_init (&argc, &argv);

/* Create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_window_set_title (GTK_WINDOW (window), "Pixmap’d Buttons!");

/* It’s a good idea to do this for all windows. */
g_signal_connect (G_OBJECT (window), "destroy",

G_CALLBACK (gtk_main_quit), NULL);

g_signal_connect (G_OBJECT (window), "delete_event",
G_CALLBACK (gtk_main_quit), NULL);

/* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Create a new button */
button = gtk_button_new ();

/* Connect the "clicked" signal of the button to our callback */
g_signal_connect (G_OBJECT (button), "clicked",

G_CALLBACK (callback), (gpointer) "cool button");

/* This calls our box creating function */
box = xpm_label_box ("info.xpm", "cool button");

/* Pack and show all our widgets */
gtk_widget_show (box);

gtk_container_add (GTK_CONTAINER (button), box);

gtk_widget_show (button);

gtk_container_add (GTK_CONTAINER (window), button);

gtk_widget_show (window);

/* Rest in gtk_main and wait for the fun to begin! */
gtk_main ();

return 0;
}

The xpm_label_box() function could be used to pack images and labels into any
widget that can be a container.

The Button widget has the following signals:

• pressed - emitted when pointer button is pressed within Button widget

• released - emitted when pointer button is released within Button widget

• clicked - emitted when pointer button is pressed and then released within
Button widget

• enter - emitted when pointer enters Button widget

• leave - emitted when pointer leaves Button widget

34

Chapter 7. The Button Widget

Toggle Buttons
Toggle buttons are derived from normal buttons and are very similar, except they
will always be in one of two states, alternated by a click. They may be depressed,
and when you click again, they will pop back up. Click again, and they will pop
back down.

Toggle buttons are the basis for check buttons and radio buttons, as such, many
of the calls used for toggle buttons are inherited by radio and check buttons. I
will point these out when we come to them.

Creating a new toggle button:

GtkWidget *gtk_toggle_button_new(void);

GtkWidget *gtk_toggle_button_new_with_label(const gchar *label);

GtkWidget *gtk_toggle_button_new_with_mnemonic(const gchar *label);

As you can imagine, these work identically to the normal button widget calls. The
first creates a blank toggle button, and the last two, a button with a label widget
already packed into it. The _mnemonic() variant additionally parses the label for
’_’-prefixed mnemonic characters.

To retrieve the state of the toggle widget, including radio and check buttons, we
use a construct as shown in our example below. This tests the state of the tog-
gle button, by accessing the active field of the toggle widget’s structure, after
first using the GTK_TOGGLE_BUTTONmacro to cast the widget pointer into a toggle
widget pointer. The signal of interest to us emitted by toggle buttons (the toggle
button, check button, and radio button widgets) is the "toggled" signal. To check
the state of these buttons, set up a signal handler to catch the toggled signal, and
access the structure to determine its state. The callback will look something like:

void toggle_button_callback (GtkWidget *widget, gpointer data)
{

if (gtk_toggle_button_get_active (GTK_TOGGLE_BUTTON (widget)))
{

/* If control reaches here, the toggle button is down */

} else {

/* If control reaches here, the toggle button is up */
}

}

To force the state of a toggle button, and its children, the radio and check buttons,
use this function:

void gtk_toggle_button_set_active(GtkToggleButton *toggle_button,
gboolean is_active);

The above call can be used to set the state of the toggle button, and its children
the radio and check buttons. Passing in your created button as the first argument,
and a TRUE or FALSE for the second state argument to specify whether it should
be down (depressed) or up (released). Default is up, or FALSE.

Note that when you use the gtk_toggle_button_set_active() function, and the
state is actually changed, it causes the "clicked" and "toggled" signals to be emit-
ted from the button.

gboolean gtk_toggle_button_get_active (GtkToggleButton *toggle_button);

This returns the current state of the toggle button as a boolean TRUE/FALSE
value.

35

Chapter 7. The Button Widget

Check Buttons
Check buttons inherit many properties and functions from the the toggle buttons
above, but look a little different. Rather than being buttons with text inside them,
they are small squares with the text to the right of them. These are often used for
toggling options on and off in applications.

The creation functions are similar to those of the normal button.

GtkWidget *gtk_check_button_new(void);

GtkWidget *gtk_check_button_new_with_label (const gchar *label);

GtkWidget *gtk_check_button_new_with_mnemonic (const gchar *label);

The gtk_check_button_new_with_label() function creates a check button with a
label beside it.

Checking the state of the check button is identical to that of the toggle button.

Radio Buttons
Radio buttons are similar to check buttons except they are grouped so that only
one may be selected/depressed at a time. This is good for places in your applica-
tion where you need to select from a short list of options.

Creating a new radio button is done with one of these calls:

GtkWidget *gtk_radio_button_new(GSList *group);

GtkWidget *gtk_radio_button_new_from_widget(GtkRadioButton *group);

GtkWidget *gtk_radio_button_new_with_label(GSList *group,
const gchar *label);

GtkWidget* gtk_radio_button_new_with_label_from_widget(GtkRadioBut-
ton *group,

const gchar *la-
bel);

GtkWidget *gtk_radio_button_new_with_mnemonic(GSList *group,
const gchar *label);

GtkWidget *gtk_radio_button_new_with_mnemonic_from_widget(GtkRadioBut-
ton *group,

const gchar *la-
bel);

You’ll notice the extra argument to these calls. They require a group to
perform their duty properly. The first call to gtk_radio_button_new() or
gtk_radio_button_new_with_label() should pass NULL as the first argument.
Then create a group using:

GSList *gtk_radio_button_get_group(GtkRadioButton *radio_button);

The important thing to remember is that gtk_radio_button_get_group() must
be called for each new button added to the group, with the previous button
passed in as an argument. The result is then passed into the next call to
gtk_radio_button_new() or gtk_radio_button_new_with_label(). This allows a
chain of buttons to be established. The example below should make this clear.

You can shorten this slightly by using the following syntax, which removes the
need for a variable to hold the list of buttons:

button2 = gtk_radio_button_new_with_label(
gtk_radio_button_get_group (GTK_RADIO_BUTTON (button1)),
"button2");

36

Chapter 7. The Button Widget

The _from_widget() variants of the creation functions allow you to shorten this
further, by omitting the gtk_radio_button_get_group() call. This form is used in
the example to create the third button:

button2 = gtk_radio_button_new_with_label_from_widget(
GTK_RADIO_BUTTON (button1),

"button2");

It is also a good idea to explicitly set which button should be the default de-
pressed button with:

void gtk_toggle_button_set_active(GtkToggleButton *toggle_button,
gboolean state);

This is described in the section on toggle buttons, and works in exactly the same
way. Once the radio buttons are grouped together, only one of the group may be
active at a time. If the user clicks on one radio button, and then on another, the
first radio button will first emit a "toggled" signal (to report becoming inactive),
and then the second will emit its "toggled" signal (to report becoming active).

The following example creates a radio button group with three buttons.

#include
�
glib.h �

#include
�
gtk/gtk.h �

gint close_application(GtkWidget *widget,
GdkEvent *event,
gpointer data)

{
gtk_main_quit ();
return FALSE;

}

int main(int argc,
char *argv[])

{
GtkWidget *window = NULL;
GtkWidget *box1;
GtkWidget *box2;
GtkWidget *button;
GtkWidget *separator;
GSList *group;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

g_signal_connect (G_OBJECT (window), "delete_event",
G_CALLBACK (close_application),

NULL);

gtk_window_set_title (GTK_WINDOW (window), "radio buttons");

37

Chapter 7. The Button Widget

gtk_container_set_border_width (GTK_CONTAINER (window), 0);

box1 = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), box1);
gtk_widget_show (box1);

box2 = gtk_vbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget_show (box2);

button = gtk_radio_button_new_with_label (NULL, "button1");
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
gtk_widget_show (button);

group = gtk_radio_button_get_group (GTK_RADIO_BUTTON (button));
button = gtk_radio_button_new_with_label (group, "button2");
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (button), TRUE);
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
gtk_widget_show (button);

button = gtk_radio_button_new_with_label_from_widget (GTK_RADIO_BUTTON (button),
"button3");

gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
gtk_widget_show (button);

separator = gtk_hseparator_new ();
gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 0);
gtk_widget_show (separator);

box2 = gtk_vbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, TRUE, 0);
gtk_widget_show (box2);

button = gtk_button_new_with_label ("close");
g_signal_connect_swapped (G_OBJECT (button), "clicked",

G_CALLBACK (close_application),
G_OBJECT (window));

gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);
gtk_widget_grab_default (button);
gtk_widget_show (button);
gtk_widget_show (window);

gtk_main ();

return 0;
}

38

Chapter 8. Adjustments

GTK has various widgets that can be visually adjusted by the user using the
mouse or the keyboard, such as the range widgets, described in the Range Wid-
gets section. There are also a few widgets that display some adjustable portion of
a larger area of data, such as the text widget and the viewport widget.

Obviously, an application needs to be able to react to changes the user makes in
range widgets. One way to do this would be to have each widget emit its own
type of signal when its adjustment changes, and either pass the new value to the
signal handler, or require it to look inside the widget’s data structure in order to
ascertain the value. But you may also want to connect the adjustments of several
widgets together, so that adjusting one adjusts the others. The most obvious ex-
ample of this is connecting a scrollbar to a panning viewport or a scrolling text
area. If each widget has its own way of setting or getting the adjustment value,
then the programmer may have to write their own signal handlers to translate be-
tween the output of one widget’s signal and the "input" of another’s adjustment
setting function.

GTK solves this problem using the Adjustment object, which is not a widget but
a way for widgets to store and pass adjustment information in an abstract and
flexible form. The most obvious use of Adjustment is to store the configuration
parameters and values of range widgets, such as scrollbars and scale controls.
However, since Adjustments are derived from Object, they have some special
powers beyond those of normal data structures. Most importantly, they can emit
signals, just like widgets, and these signals can be used not only to allow your
program to react to user input on adjustable widgets, but also to propagate ad-
justment values transparently between adjustable widgets.

You will see how adjustments fit in when you see the other widgets that incorpo-
rate them: Progress Bars, Viewports, Scrolled Windows, and others.

Creating an Adjustment
Many of the widgets which use adjustment objects do so automatically, but some
cases will be shown in later examples where you may need to create one yourself.
You create an adjustment using:

GtkObject *gtk_adjustment_new(gdouble value,
gdouble lower,
gdouble upper,
gdouble step_increment,
gdouble page_increment,
gdouble page_size);

The value argument is the initial value you want to give to the adjustment, usu-
ally corresponding to the topmost or leftmost position of an adjustable widget.
The lower argument specifies the lowest value which the adjustment can hold.
The step_increment argument specifies the "smaller" of the two increments by
which the user can change the value, while the page_increment is the "larger"
one. The page_size argument usually corresponds somehow to the visible area
of a panning widget. The upper argument is used to represent the bottom most
or right most coordinate in a panning widget’s child. Therefore it is not always
the largest number that value can take, since the page_size of such widgets is
usually non-zero.

Using Adjustments the Easy Way
The adjustable widgets can be roughly divided into those which use and require
specific units for these values and those which treat them as arbitrary numbers.
The group which treats the values as arbitrary numbers includes the range wid-
gets (scrollbars and scales, the progress bar widget, and the spin button widget).
These widgets are all the widgets which are typically "adjusted" directly by the
user with the mouse or keyboard. They will treat the lower and upper values of

39

Chapter 8. Adjustments

an adjustment as a range within which the user can manipulate the adjustment’s
value. By default, they will only modify the value of an adjustment.

The other group includes the text widget, the viewport widget, the compound list
widget, and the scrolled window widget. All of these widgets use pixel values
for their adjustments. These are also all widgets which are typically "adjusted"
indirectly using scrollbars. While all widgets which use adjustments can either
create their own adjustments or use ones you supply, you’ll generally want to let
this particular category of widgets create its own adjustments. Usually, they will
eventually override all the values except the value itself in whatever adjustments
you give them, but the results are, in general, undefined (meaning, you’ll have to
read the source code to find out, and it may be different from widget to widget).

Now, you’re probably thinking, since text widgets and viewports insist on setting
everything except the value of their adjustments, while scrollbars will only touch
the adjustment’s value, if you share an adjustment object between a scrollbar and
a text widget, manipulating the scrollbar will automagically adjust the viewport
widget? Of course it will! Just like this:

/* creates its own adjustments */
viewport = gtk_viewport_new (NULL, NULL);
/* uses the newly-created adjustment for the scrollbar as well */
vscrollbar = gtk_vscrollbar_new (gtk_viewport_get_vadjustment (view-

port));

Adjustment Internals
Ok, you say, that’s nice, but what if I want to create my own handlers to respond
when the user adjusts a range widget or a spin button, and how do I get at the
value of the adjustment in these handlers? To answer these questions and more,
let’s start by taking a look at struct _GtkAdjustment itself:

struct _GtkAdjustment
{
GtkObject parent_instance;

gdouble lower;
gdouble upper;
gdouble value;
gdouble step_increment;
gdouble page_increment;
gdouble page_size;

};

If you don’t like to poke directly at struct internals like a real C programmer, you
can use the following accessor to inspect the value of an adjustment:

gdouble gtk_adjustment_get_value(GtkAdjustment *adjustment);

Since, when you set the value of an Adjustment, you generally want the change
to be reflected by every widget that uses this adjustment, GTK provides this con-
venience function to do this:

void gtk_adjustment_set_value(GtkAdjustment *adjustment,
gdouble value);

As mentioned earlier, Adjustment is a subclass of Object just like all the various
widgets, and thus it is able to emit signals. This is, of course, why updates hap-
pen automagically when you share an adjustment object between a scrollbar and
another adjustable widget; all adjustable widgets connect signal handlers to their
adjustment’s value_changed signal, as can your program. Here’s the definition
of this signal in struct _GtkAdjustmentClass:

void (* value_changed) (GtkAdjustment *adjustment);

The various widgets that use the Adjustment object will emit this signal on an
adjustment whenever they change its value. This happens both when user input

40

Chapter 8. Adjustments

causes the slider to move on a range widget, as well as when the program explic-
itly changes the value with gtk_adjustment_set_value(). So, for example, if you
have a scale widget, and you want to change the rotation of a picture whenever
its value changes, you would create a callback like this:

void cb_rotate_picture (GtkAdjustment *adj, GtkWidget *picture)
{
set_picture_rotation (picture, gtk_adjustment_get_value (adj));

...

and connect it to the scale widget’s adjustment like this:

g_signal_connect (G_OBJECT (adj), "value_changed",
G_CALLBACK (cb_rotate_picture), (gpointer) picture);

What about when a widget reconfigures the upper or lower fields of its adjust-
ment, such as when a user adds more text to a text widget? In this case, it emits
the changed signal, which looks like this:

void (* changed) (GtkAdjustment *adjustment);

Range widgets typically connect a handler to this signal, which changes their
appearance to reflect the change - for example, the size of the slider in a scrollbar
will grow or shrink in inverse proportion to the difference between the lower and
upper values of its adjustment.

You probably won’t ever need to attach a handler to this signal, unless you’re
writing a new type of range widget. However, if you change any of the values in
a Adjustment directly, you should emit this signal on it to reconfigure whatever
widgets are using it, like this:

g_signal_emit_by_name (G_OBJECT (adjustment), "changed");

Now go forth and adjust!

41

Chapter 8. Adjustments

42

Chapter 9. Range Widgets

The category of range widgets includes the ubiquitous scrollbar widget and the
less common scale widget. Though these two types of widgets are generally used
for different purposes, they are quite similar in function and implementation. All
range widgets share a set of common graphic elements, each of which has its own
X window and receives events. They all contain a "trough" and a "slider" (what
is sometimes called a "thumbwheel" in other GUI environments). Dragging the
slider with the pointer moves it back and forth within the trough, while clicking
in the trough advances the slider towards the location of the click, either com-
pletely, or by a designated amount, depending on which mouse button is used.

As mentioned in Adjustments above, all range widgets are associated with an ad-
justment object, from which they calculate the length of the slider and its position
within the trough. When the user manipulates the slider, the range widget will
change the value of the adjustment.

Scrollbar Widgets
These are your standard, run-of-the-mill scrollbars. These should be used only
for scrolling some other widget, such as a list, a text box, or a viewport (and it’s
generally easier to use the scrolled window widget in most cases). For other pur-
poses, you should use scale widgets, as they are friendlier and more featureful.

There are separate types for horizontal and vertical scrollbars. There really isn’t
much to say about these. You create them with the following functions:

GtkWidget *gtk_hscrollbar_new(GtkAdjustment *adjustment);

GtkWidget *gtk_vscrollbar_new(GtkAdjustment *adjustment);

and that’s about it (if you don’t believe me, look in the header files!). The ad-
justment argument can either be a pointer to an existing Adjustment, or NULL,
in which case one will be created for you. Specifying NULL might actually be
useful in this case, if you wish to pass the newly-created adjustment to the con-
structor function of some other widget which will configure it for you, such as a
text widget.

Scale Widgets
Scale widgets are used to allow the user to visually select and manipulate a value
within a specific range. You might want to use a scale widget, for example, to
adjust the magnification level on a zoomed preview of a picture, or to control the
brightness of a color, or to specify the number of minutes of inactivity before a
screensaver takes over the screen.

Creating a Scale Widget

As with scrollbars, there are separate widget types for horizontal and vertical
scale widgets. (Most programmers seem to favour horizontal scale widgets.)
Since they work essentially the same way, there’s no need to treat them
separately here. The following functions create vertical and horizontal scale
widgets, respectively:

GtkWidget *gtk_vscale_new(GtkAdjustment *adjustment);

GtkWidget *gtk_vscale_new_with_range(gdouble min,
gdouble max,
gdouble step);

GtkWidget *gtk_hscale_new(GtkAdjustment *adjustment);

GtkWidget *gtk_hscale_new_with_range(gdouble min,
gdouble max,
gdouble step);

43

Chapter 9. Range Widgets

The adjustment argument can either be an adjustment which has already been
created with gtk_adjustment_new(), or NULL, in which case, an anonymous Ad-
justment is created with all of its values set to 0.0 (which isn’t very useful in this
case). In order to avoid confusing yourself, you probably want to create your ad-
justment with a page_size of 0.0 so that its upper value actually corresponds to
the highest value the user can select. The _new_with_range() variants take care
of creating a suitable adjustment. (If you’re already thoroughly confused, read the
section on Adjustments again for an explanation of what exactly adjustments do
and how to create and manipulate them.)

Functions and Signals (well, functions, at least)

Scale widgets can display their current value as a number beside the trough. The
default behaviour is to show the value, but you can change this with this function:

void gtk_scale_set_draw_value(GtkScale *scale,
gboolean draw_value);

As you might have guessed, draw_value is either TRUE or FALSE, with predictable
consequences for either one.

The value displayed by a scale widget is rounded to one decimal point by default,
as is the value field in its Adjustment. You can change this with:

void gtk_scale_set_digits(GtkScale *scale,
gint digits);

where digits is the number of decimal places you want. You can set digits to
anything you like, but no more than 13 decimal places will actually be drawn on
screen.

Finally, the value can be drawn in different positions relative to the trough:

void gtk_scale_set_value_pos(GtkScale *scale,
GtkPositionType pos);

The argument pos is of type GtkPositionType, which can take one of the follow-
ing values:

GTK_POS_LEFT
GTK_POS_RIGHT
GTK_POS_TOP
GTK_POS_BOTTOM

If you position the value on the "side" of the trough (e.g., on the top or bottom of
a horizontal scale widget), then it will follow the slider up and down the trough.

All the preceding functions are defined in � gtk/gtkscale.h � . The header files
for all GTK widgets are automatically included when you include � gtk/gtk.h � .
But you should look over the header files of all widgets that interest you, in order
to learn more about their functions and features.

Common Range Functions
The Range widget class is fairly complicated internally, but, like all the "base
class" widgets, most of its complexity is only interesting if you want to hack on it.
Also, almost all of the functions and signals it defines are only really used in writ-
ing derived widgets. There are, however, a few useful functions that are defined
in � gtk/gtkrange.h � and will work on all range widgets.

Setting the Update Policy

The "update policy" of a range widget defines at what points during user interac-
tion it will change the value field of its Adjustment and emit the "value_changed"

44

Chapter 9. Range Widgets

signal on this Adjustment. The update policies, defined in � gtk/gtkenums.h � as
type enum GtkUpdateType, are:

GTK_UPDATE_CONTINUOUS

This is the default. The "value_changed" signal is emitted continuously, i.e.,
whenever the slider is moved by even the tiniest amount.

GTK_UPDATE_DISCONTINUOUS

The "value_changed" signal is only emitted once the slider has stopped mov-
ing and the user has released the mouse button.

GTK_UPDATE_DELAYED

The "value_changed" signal is emitted when the user releases the mouse but-
ton, or if the slider stops moving for a short period of time.

The update policy of a range widget can be set by casting it using the
GTK_RANGE(widget) macro and passing it to this function:

void gtk_range_set_update_policy(GtkRange *range,
GtkUpdateType policy);

Getting and Setting Adjustments

Getting and setting the adjustment for a range widget "on the fly" is done, pre-
dictably, with:

GtkAdjustment* gtk_range_get_adjustment(GtkRange *range);

void gtk_range_set_adjustment(GtkRange *range,
GtkAdjustment *adjustment);

gtk_range_get_adjustment() returns a pointer to the adjustment to which
range is connected.

gtk_range_set_adjustment()does absolutely nothing if you pass it the adjust-
ment that range is already using, regardless of whether you changed any of its
fields or not. If you pass it a new Adjustment, it will unreference the old one if
it exists (possibly destroying it), connect the appropriate signals to the new one,
and call the private function gtk_range_adjustment_changed(), which will (or
at least, is supposed to...) recalculate the size and/or position of the slider and
redraw if necessary. As mentioned in the section on adjustments, if you wish to
reuse the same Adjustment, when you modify its values directly, you should emit
the "changed" signal on it, like this:

g_signal_emit_by_name (G_OBJECT (adjustment), "changed");

Key and Mouse bindings
All of the GTK range widgets react to mouse clicks in more or less the same
way. Clicking button-1 in the trough will cause its adjustment’s page_increment
to be added or subtracted from its value, and the slider to be moved accord-
ingly. Clicking mouse button-2 in the trough will jump the slider to the point
at which the button was clicked. Clicking button-3 in the trough of a range or
any button on a scrollbar’s arrows will cause its adjustment’s value to change by
step_increment at a time.

Scrollbars are not focusable, thus have no key bindings. The key bindings for the
other range widgets (which are, of course, only active when the widget has focus)
are do not differentiate between horizontal and vertical range widgets.

All range widgets can be operated with the left, right, up and down arrow keys,
as well as with the Page Up and Page Down keys. The arrows move the slider

45

Chapter 9. Range Widgets

up and down by step_increment, while Page Up and Page Down move it by
page_increment.

The user can also move the slider all the way to one end or the other of the trough
using the keyboard. This is done with the Home and End keys.

Example
This example is a somewhat modified version of the "range controls" test from
testgtk.c. It basically puts up a window with three range widgets all connected
to the same adjustment, and a couple of controls for adjusting some of the pa-
rameters mentioned above and in the section on adjustments, so you can see how
they affect the way these widgets work for the user.

#include
�
gtk/gtk.h �

GtkWidget *hscale, *vscale;

void cb_pos_menu_select(GtkWidget *item,
GtkPositionType pos)

{
/* Set the value position on both scale widgets */
gtk_scale_set_value_pos (GTK_SCALE (hscale), pos);
gtk_scale_set_value_pos (GTK_SCALE (vscale), pos);

}

void cb_update_menu_select(GtkWidget *item,
GtkUpdateType policy)

{

46

Chapter 9. Range Widgets

/* Set the update policy for both scale widgets */
gtk_range_set_update_policy (GTK_RANGE (hscale), policy);
gtk_range_set_update_policy (GTK_RANGE (vscale), policy);

}

void cb_digits_scale(GtkAdjustment *adj)
{

/* Set the number of decimal places to which adj->value is rounded */
gtk_scale_set_digits (GTK_SCALE (hscale), (gint) adj->value);
gtk_scale_set_digits (GTK_SCALE (vscale), (gint) adj->value);

}

void cb_page_size(GtkAdjustment *get,
GtkAdjustment *set)

{
/* Set the page size and page increment size of the sample
* adjustment to the value specified by the "Page Size" scale */

set->page_size = get->value;
set->page_increment = get->value;

/* This sets the adjustment and makes it emit the "changed" sig-
nal to

reconfigure all the widgets that are attached to this signal. */
gtk_adjustment_set_value (set, CLAMP (set->value,

set->lower,
(set->upper - set->page_size)));

}

void cb_draw_value(GtkToggleButton *button)
{

/* Turn the value display on the scale widgets off or on depending
* on the state of the checkbutton */

gtk_scale_set_draw_value (GTK_SCALE (hscale), button->active);
gtk_scale_set_draw_value (GTK_SCALE (vscale), button->active);

}

/* Convenience functions */

GtkWidget *make_menu_item (gchar *name,
GCallback callback,

gpointer data)
{

GtkWidget *item;

item = gtk_menu_item_new_with_label (name);
g_signal_connect (G_OBJECT (item), "activate",

callback, (gpointer) data);
gtk_widget_show (item);

return item;
}

void scale_set_default_values(GtkScale *scale)
{

gtk_range_set_update_policy (GTK_RANGE (scale),
GTK_UPDATE_CONTINUOUS);

gtk_scale_set_digits (scale, 1);
gtk_scale_set_value_pos (scale, GTK_POS_TOP);
gtk_scale_set_draw_value (scale, TRUE);

}

/* makes the sample window */

void create_range_controls(void)
{

GtkWidget *window;
GtkWidget *box1, *box2, *box3;
GtkWidget *button;
GtkWidget *scrollbar;
GtkWidget *separator;
GtkWidget *opt, *menu, *item;

47

Chapter 9. Range Widgets

GtkWidget *label;
GtkWidget *scale;
GtkObject *adj1, *adj2;

/* Standard window-creating stuff */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
g_signal_connect (G_OBJECT (window), "destroy",

G_CALLBACK (gtk_main_quit),
NULL);

gtk_window_set_title (GTK_WINDOW (window), "range controls");

box1 = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), box1);
gtk_widget_show (box1);

box2 = gtk_hbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget_show (box2);

/* value, lower, upper, step_increment, page_increment, page_size */
/* Note that the page_size value only makes a difference for
* scrollbar widgets, and the highest value you’ll get is actually
* (upper - page_size). */

adj1 = gtk_adjustment_new (0.0, 0.0, 101.0, 0.1, 1.0, 1.0);

vscale = gtk_vscale_new (GTK_ADJUSTMENT (adj1));
scale_set_default_values (GTK_SCALE (vscale));
gtk_box_pack_start (GTK_BOX (box2), vscale, TRUE, TRUE, 0);
gtk_widget_show (vscale);

box3 = gtk_vbox_new (FALSE, 10);
gtk_box_pack_start (GTK_BOX (box2), box3, TRUE, TRUE, 0);
gtk_widget_show (box3);

/* Reuse the same adjustment */
hscale = gtk_hscale_new (GTK_ADJUSTMENT (adj1));
gtk_widget_set_size_request (GTK_WIDGET (hscale), 200, -1);
scale_set_default_values (GTK_SCALE (hscale));
gtk_box_pack_start (GTK_BOX (box3), hscale, TRUE, TRUE, 0);
gtk_widget_show (hscale);

/* Reuse the same adjustment again */
scrollbar = gtk_hscrollbar_new (GTK_ADJUSTMENT (adj1));
/* Notice how this causes the scales to always be updated
* continuously when the scrollbar is moved */

gtk_range_set_update_policy (GTK_RANGE (scrollbar),
GTK_UPDATE_CONTINUOUS);

gtk_box_pack_start (GTK_BOX (box3), scrollbar, TRUE, TRUE, 0);
gtk_widget_show (scrollbar);

box2 = gtk_hbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget_show (box2);

/* A checkbutton to control whether the value is displayed or not */
button = gtk_check_button_new_with_label("Display value on scale widgets");
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (button), TRUE);
g_signal_connect (G_OBJECT (button), "toggled",

G_CALLBACK (cb_draw_value), NULL);
gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
gtk_widget_show (button);

box2 = gtk_hbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);

/* An option menu to change the position of the value */
label = gtk_label_new ("Scale Value Position:");
gtk_box_pack_start (GTK_BOX (box2), label, FALSE, FALSE, 0);
gtk_widget_show (label);

48

Chapter 9. Range Widgets

opt = gtk_option_menu_new ();
menu = gtk_menu_new ();

item = make_menu_item ("Top",
G_CALLBACK (cb_pos_menu_select),
GINT_TO_POINTER (GTK_POS_TOP));

gtk_menu_shell_append (GTK_MENU_SHELL (menu), item);

item = make_menu_item ("Bottom", G_CALLBACK (cb_pos_menu_select),
GINT_TO_POINTER (GTK_POS_BOTTOM));

gtk_menu_shell_append (GTK_MENU_SHELL (menu), item);

item = make_menu_item ("Left", G_CALLBACK (cb_pos_menu_select),
GINT_TO_POINTER (GTK_POS_LEFT));

gtk_menu_shell_append (GTK_MENU_SHELL (menu), item);

item = make_menu_item ("Right", G_CALLBACK (cb_pos_menu_select),
GINT_TO_POINTER (GTK_POS_RIGHT));

gtk_menu_shell_append (GTK_MENU_SHELL (menu), item);

gtk_option_menu_set_menu (GTK_OPTION_MENU (opt), menu);
gtk_box_pack_start (GTK_BOX (box2), opt, TRUE, TRUE, 0);
gtk_widget_show (opt);

gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget_show (box2);

box2 = gtk_hbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);

/* Yet another option menu, this time for the update policy of the
* scale widgets */

label = gtk_label_new ("Scale Update Policy:");
gtk_box_pack_start (GTK_BOX (box2), label, FALSE, FALSE, 0);
gtk_widget_show (label);

opt = gtk_option_menu_new ();
menu = gtk_menu_new ();

item = make_menu_item ("Continuous",
G_CALLBACK (cb_update_menu_select),
GINT_TO_POINTER (GTK_UPDATE_CONTINUOUS));

gtk_menu_shell_append (GTK_MENU_SHELL (menu), item);

item = make_menu_item ("Discontinuous",
G_CALLBACK (cb_update_menu_select),
GINT_TO_POINTER (GTK_UPDATE_DISCONTINUOUS));

gtk_menu_shell_append (GTK_MENU_SHELL (menu), item);

item = make_menu_item ("Delayed",
G_CALLBACK (cb_update_menu_select),
GINT_TO_POINTER (GTK_UPDATE_DELAYED));

gtk_menu_shell_append (GTK_MENU_SHELL (menu), item);

gtk_option_menu_set_menu (GTK_OPTION_MENU (opt), menu);
gtk_box_pack_start (GTK_BOX (box2), opt, TRUE, TRUE, 0);
gtk_widget_show (opt);

gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget_show (box2);

box2 = gtk_hbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);

/* An HScale widget for adjusting the number of digits on the
* sample scales. */

label = gtk_label_new ("Scale Digits:");
gtk_box_pack_start (GTK_BOX (box2), label, FALSE, FALSE, 0);
gtk_widget_show (label);

49

Chapter 9. Range Widgets

adj2 = gtk_adjustment_new (1.0, 0.0, 5.0, 1.0, 1.0, 0.0);
g_signal_connect (G_OBJECT (adj2), "value_changed",

G_CALLBACK (cb_digits_scale), NULL);
scale = gtk_hscale_new (GTK_ADJUSTMENT (adj2));
gtk_scale_set_digits (GTK_SCALE (scale), 0);
gtk_box_pack_start (GTK_BOX (box2), scale, TRUE, TRUE, 0);
gtk_widget_show (scale);

gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget_show (box2);

box2 = gtk_hbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);

/* And, one last HScale widget for adjusting the page size of the
* scrollbar. */

label = gtk_label_new ("Scrollbar Page Size:");
gtk_box_pack_start (GTK_BOX (box2), label, FALSE, FALSE, 0);
gtk_widget_show (label);

adj2 = gtk_adjustment_new (1.0, 1.0, 101.0, 1.0, 1.0, 0.0);
g_signal_connect (G_OBJECT (adj2), "value_changed",

G_CALLBACK (cb_page_size), (gpointer) adj1);
scale = gtk_hscale_new (GTK_ADJUSTMENT (adj2));
gtk_scale_set_digits (GTK_SCALE (scale), 0);
gtk_box_pack_start (GTK_BOX (box2), scale, TRUE, TRUE, 0);
gtk_widget_show (scale);

gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0);
gtk_widget_show (box2);

separator = gtk_hseparator_new ();
gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 0);
gtk_widget_show (separator);

box2 = gtk_vbox_new (FALSE, 10);
gtk_container_set_border_width (GTK_CONTAINER (box2), 10);
gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, TRUE, 0);
gtk_widget_show (box2);

button = gtk_button_new_with_label ("Quit");
g_signal_connect_swapped (G_OBJECT (button), "clicked",

G_CALLBACK (gtk_main_quit),
NULL);

gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0);
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);
gtk_widget_grab_default (button);
gtk_widget_show (button);

gtk_widget_show (window);
}

int main(int argc,
char *argv[])

{
gtk_init (&argc, &argv);

create_range_controls ();

gtk_main ();

return 0;
}

You will notice that the program does not call g_signal_connect() for the
"delete_event", but only for the "destroy" signal. This will still perform the
desired function, because an unhandled "delete_event" will result in a "destroy"
signal being given to the window.

50

Chapter 10. Miscellaneous Widgets

Labels
Labels are used a lot in GTK, and are relatively simple. Labels emit no signals
as they do not have an associated X window. If you need to catch signals, or do
clipping, place it inside a EventBox widget or a Button widget.

To create a new label, use:

GtkWidget *gtk_label_new(const char *str);

GtkWidget *gtk_label_new_with_mnemonic(const char *str);

The sole argument is the string you wish the label to display.

To change the label’s text after creation, use the function:

void gtk_label_set_text(GtkLabel *label,
const char *str);

The first argument is the label you created previously (cast using the
GTK_LABEL() macro), and the second is the new string.

The space needed for the new string will be automatically adjusted if needed.
You can produce multi-line labels by putting line breaks in the label string.

To retrieve the current string, use:

const gchar* gtk_label_get_text(GtkLabel *label);

Do not free the returned string, as it is used internally by GTK.

The label text can be justified using:

void gtk_label_set_justify(GtkLabel *label,
GtkJustification jtype);

Values for jtype are:

GTK_JUSTIFY_LEFT
GTK_JUSTIFY_RIGHT
GTK_JUSTIFY_CENTER (the default)
GTK_JUSTIFY_FILL

The label widget is also capable of line wrapping the text automatically. This can
be activated using:

void gtk_label_set_line_wrap (GtkLabel *label,
gboolean wrap);

The wrap argument takes a TRUE or FALSE value.

If you want your label underlined, then you can set a pattern on the label:

void gtk_label_set_pattern (GtkLabel *label,
const gchar *pattern);

The pattern argument indicates how the underlining should look. It consists of a
string of underscore and space characters. An underscore indicates that the cor-
responding character in the label should be underlined. For example, the string
"__ __" would underline the first two characters and eight and ninth characters.

Note: If you simply want to have an underlined accelerator ("mnemonic")
in your label, you should use gtk_label_new_with_mnemonic() or
gtk_label_set_text_with_mnemonic(), not gtk_label_set_pattern().

51

Chapter 10. Miscellaneous Widgets

Below is a short example to illustrate these functions. This example makes use of
the Frame widget to better demonstrate the label styles. You can ignore this for
now as the Frame widget is explained later on.

In GTK+ 2.0, label texts can contain markup for font and other text attribute
changes, and labels may be selectable (for copy-and-paste). These advanced fea-
tures won’t be explained here.

#include
�
gtk/gtk.h �

int main(int argc,
char *argv[])

{
static GtkWidget *window = NULL;
GtkWidget *hbox;
GtkWidget *vbox;
GtkWidget *frame;
GtkWidget *label;

/* Initialise GTK */
gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
g_signal_connect (G_OBJECT (window), "destroy",

G_CALLBACK (gtk_main_quit),
NULL);

gtk_window_set_title (GTK_WINDOW (window), "Label");
vbox = gtk_vbox_new (FALSE, 5);
hbox = gtk_hbox_new (FALSE, 5);
gtk_container_add (GTK_CONTAINER (window), hbox);
gtk_box_pack_start (GTK_BOX (hbox), vbox, FALSE, FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (window), 5);

frame = gtk_frame_new ("Normal Label");
label = gtk_label_new ("This is a Normal label");
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0);

frame = gtk_frame_new ("Multi-line Label");
label = gtk_label_new ("This is a Multi-line label.\nSecond line\n" \

"Third line");
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0);

frame = gtk_frame_new ("Left Justified Label");

52

Chapter 10. Miscellaneous Widgets

label = gtk_label_new ("This is a Left-Justified\n" \
"Multi-line label.\nThird line");

gtk_label_set_justify (GTK_LABEL (label), GTK_JUSTIFY_LEFT);
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0);

frame = gtk_frame_new ("Right Justified Label");
label = gtk_label_new ("This is a Right-Justified\nMulti-line la-

bel.\n" \
"Fourth line, (j/k)");

gtk_label_set_justify (GTK_LABEL (label), GTK_JUSTIFY_RIGHT);
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0);

vbox = gtk_vbox_new (FALSE, 5);
gtk_box_pack_start (GTK_BOX (hbox), vbox, FALSE, FALSE, 0);
frame = gtk_frame_new ("Line wrapped label");
label = gtk_label_new ("This is an example of a line-wrapped la-

bel. It " \
"should not be taking up the entire " /* big space to test spac-

ing */\
"width allocated to it, but automatically " \
"wraps the words to fit. " \
"The time has come, for all good men, to come to " \
"the aid of their party. " \
"The sixth sheik’s six sheep’s sick.\n" \
" It supports multiple paragraphs correctly, " \
"and correctly adds "\
"many extra spaces. ");

gtk_label_set_line_wrap (GTK_LABEL (label), TRUE);
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0);

frame = gtk_frame_new ("Filled, wrapped label");
label = gtk_label_new ("This is an example of a line-wrapped, filled la-

bel. " \
"It should be taking "\
"up the entire width allocated to it. " \
"Here is a sentence to prove "\
"my point. Here is another sentence. "\
"Here comes the sun, do de do de do.\n"\
" This is a new paragraph.\n"\
" This is another newer, longer, better " \
"paragraph. It is coming to an end, "\
"unfortunately.");

gtk_label_set_justify (GTK_LABEL (label), GTK_JUSTIFY_FILL);
gtk_label_set_line_wrap (GTK_LABEL (label), TRUE);
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0);

frame = gtk_frame_new ("Underlined label");
label = gtk_label_new ("This label is underlined!\n"

"This one is underlined in quite a funky fashion");
gtk_label_set_justify (GTK_LABEL (label), GTK_JUSTIFY_LEFT);
gtk_label_set_pattern (GTK_LABEL (label),

"_________________________ _ _________ _ ______ __ _______ ___");
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0);

gtk_widget_show_all (window);

gtk_main ();

return 0;
}

53

Chapter 10. Miscellaneous Widgets

Arrows
The Arrow widget draws an arrowhead, facing in a number of possible directions
and having a number of possible styles. It can be very useful when placed on a
button in many applications. Like the Label widget, it emits no signals.

There are only two functions for manipulating an Arrow widget:

GtkWidget *gtk_arrow_new(GtkArrowType arrow_type,
GtkShadowType shadow_type);

void gtk_arrow_set(GtkArrow *arrow,
GtkArrowType arrow_type,
GtkShadowType shadow_type);

The first creates a new arrow widget with the indicated type and appearance.
The second allows these values to be altered retrospectively. The arrow_type
argument may take one of the following values:

GTK_ARROW_UP
GTK_ARROW_DOWN
GTK_ARROW_LEFT
GTK_ARROW_RIGHT

These values obviously indicate the direction in which the arrow will point. The
shadow_type argument may take one of these values:

GTK_SHADOW_IN
GTK_SHADOW_OUT (the default)
GTK_SHADOW_ETCHED_IN
GTK_SHADOW_ETCHED_OUT

Here’s a brief example to illustrate their use.

#include
�
gtk/gtk.h �

/* Create an Arrow widget with the specified parameters
* and pack it into a button */
GtkWidget *create_arrow_button(GtkArrowType arrow_type,

GtkShadowType shadow_type)
{
GtkWidget *button;
GtkWidget *arrow;

button = gtk_button_new ();
arrow = gtk_arrow_new (arrow_type, shadow_type);

gtk_container_add (GTK_CONTAINER (button), arrow);

gtk_widget_show (button);
gtk_widget_show (arrow);

return button;
}

int main(int argc,
char *argv[])

{
/* GtkWidget is the storage type for widgets */
GtkWidget *window;
GtkWidget *button;
GtkWidget *box;

54

Chapter 10. Miscellaneous Widgets

/* Initialize the toolkit */
gtk_init (&argc, &argv);

/* Create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_window_set_title (GTK_WINDOW (window), "Arrow Buttons");

/* It’s a good idea to do this for all windows. */
g_signal_connect (G_OBJECT (window), "destroy",

G_CALLBACK (gtk_main_quit), NULL);

/* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Create a box to hold the arrows/buttons */
box = gtk_hbox_new (FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (box), 2);
gtk_container_add (GTK_CONTAINER (window), box);

/* Pack and show all our widgets */
gtk_widget_show (box);

button = create_arrow_button (GTK_ARROW_UP, GTK_SHADOW_IN);
gtk_box_pack_start (GTK_BOX (box), button, FALSE, FALSE, 3);

button = create_arrow_button (GTK_ARROW_DOWN, GTK_SHADOW_OUT);
gtk_box_pack_start (GTK_BOX (box), button, FALSE, FALSE, 3);

button = create_arrow_button (GTK_ARROW_LEFT, GTK_SHADOW_ETCHED_IN);
gtk_box_pack_start (GTK_BOX (box), button, FALSE, FALSE, 3);

button = create_arrow_button (GTK_ARROW_RIGHT, GTK_SHADOW_ETCHED_OUT);
gtk_box_pack_start (GTK_BOX (box), button, FALSE, FALSE, 3);

gtk_widget_show (window);

/* Rest in gtk_main and wait for the fun to begin! */
gtk_main ();

return 0;
}

The Tooltips Object
These are the little text strings that pop up when you leave your pointer over
a button or other widget for a few seconds. They are easy to use, so I will just
explain them without giving an example. If you want to see some code, take a
look at the testgtk.c program distributed with GTK.

Widgets that do not receive events (widgets that do not have their own window)
will not work with tooltips.

The first call you will use creates a new tooltip. You only need to do this once for
a set of tooltips as the GtkTooltips object this function returns can be used to
create multiple tooltips.

GtkTooltips *gtk_tooltips_new(void);

Once you have created a new tooltip, and the widget you wish to use it on, simply
use this call to set it:

void gtk_tooltips_set_tip(GtkTooltips *tooltips,
GtkWidget *widget,
const gchar *tip_text,
const gchar *tip_private);

The first argument is the tooltip you’ve already created, followed by the widget
you wish to have this tooltip pop up for, and the text you wish it to say. The last

55

Chapter 10. Miscellaneous Widgets

argument is a text string that can be used as an identifier when using GtkTips-
Query to implement context sensitive help. For now, you can set it to NULL.

Here’s a short example:

GtkTooltips *tooltips;
GtkWidget *button;
.
.
.
tooltips = gtk_tooltips_new ();
button = gtk_button_new_with_label ("button 1");
.
.
.
gtk_tooltips_set_tip (tooltips, button, "This is button 1", NULL);

There are other calls that can be used with tooltips. I will just list them with a
brief description of what they do.

void gtk_tooltips_enable(GtkTooltips *tooltips);

Enable a disabled set of tooltips.

void gtk_tooltips_disable(GtkTooltips *tooltips);

Disable an enabled set of tooltips.

And that’s all the functions associated with tooltips. More than you’ll ever want
to know :-)

Progress Bars
Progress bars are used to show the status of an operation. They are pretty easy to
use, as you will see with the code below. But first lets start out with the calls to
create a new progress bar.

GtkWidget *gtk_progress_bar_new(void);

Now that the progress bar has been created we can use it.

void gtk_progress_bar_set_fraction (GtkProgressBar *pbar,
gdouble fraction);

The first argument is the progress bar you wish to operate on, and the second
argument is the amount "completed", meaning the amount the progress bar has
been filled from 0-100%. This is passed to the function as a real number ranging
from 0 to 1.

GTK v1.2 has added new functionality to the progress bar that enables it to dis-
play its value in different ways, and to inform the user of its current value and its
range.

A progress bar may be set to one of a number of orientations using the function

void gtk_progress_bar_set_orientation(GtkProgressBar *pbar,
GtkProgressBarOrientation ori-

entation);

The orientation argument may take one of the following values to indicate the
direction in which the progress bar moves:

GTK_PROGRESS_LEFT_TO_RIGHT
GTK_PROGRESS_RIGHT_TO_LEFT
GTK_PROGRESS_BOTTOM_TO_TOP
GTK_PROGRESS_TOP_TO_BOTTOM

56

Chapter 10. Miscellaneous Widgets

As well as indicating the amount of progress that has occured, the progress bar
may be set to just indicate that there is some activity. This can be useful in situ-
ations where progress cannot be measured against a value range. The following
function indicates that some progress has been made.

void gtk_progress_bar_pulse (GtkProgressBar *progress);

The step size of the activity indicator is set using the following function.

void gtk_progress_bar_set_pulse_step(GtkProgressBar *pbar,
gdouble fraction);

When not in activity mode, the progress bar can also display a configurable text
string within its trough, using the following function.

void gtk_progress_bar_set_text(GtkProgressBar *progress,
const gchar *text);

Note: Note that gtk_progress_set_text() doesn’t support the printf()-like formatting of
the GTK+ 1.2 Progressbar.

You can turn off the display of the string by calling gtk_progess_bar_set_text()
again with NULL as second argument.

The current text setting of a progressbar can be retrieved with the following func-
tion. Do not free the returned string.

const gchar *gtk_progress_bar_get_text(GtkProgressBar *pbar);

Progress Bars are usually used with timeouts or other such functions (see sec-
tion on Timeouts, I/O and Idle Functions) to give the illusion of multitasking.
All will employ the gtk_progress_bar_set_fraction() or gtk_progress_bar_pulse()
functions in the same manner.

Here is an example of the progress bar, updated using timeouts. This code also
shows you how to reset the Progress Bar.

#include
�
gtk/gtk.h �

typedef struct _ProgressData {
GtkWidget *window;
GtkWidget *pbar;
int timer;
gboolean activity_mode;

} ProgressData;

57

Chapter 10. Miscellaneous Widgets

/* Update the value of the progress bar so that we get
* some movement */
gint progress_timeout(gpointer data)
{
ProgressData *pdata = (ProgressData *)data;
gdouble new_val;

if (pdata- � activity_mode)
gtk_progress_bar_pulse (GTK_PROGRESS_BAR (pdata- � pbar));

else
{

/* Calculate the value of the progress bar using the
* value range set in the adjustment object */

new_val = gtk_progress_bar_get_fraction (GTK_PROGRESS_BAR (pdata-
� pbar)) + 0.01;

if (new_val � 1.0)
new_val = 0.0;

/* Set the new value */
gtk_progress_bar_set_fraction (GTK_PROGRESS_BAR (pdata- � pbar), new_val);

}

/* As this is a timeout function, return TRUE so that it
* continues to get called */

return TRUE;
}

/* Callback that toggles the text display within the progress bar trough */
void toggle_show_text(GtkWidget *widget,

ProgressData *pdata)
{
const gchar *text;

text = gtk_progress_bar_get_text (GTK_PROGRESS_BAR (pdata- � pbar));
if (text && *text)

gtk_progress_bar_set_text (GTK_PROGRESS_BAR (pdata- � pbar), "");
else

gtk_progress_bar_set_text (GTK_PROGRESS_BAR (pdata- � pbar), "some text");
}

/* Callback that toggles the activity mode of the progress bar */
void toggle_activity_mode(GtkWidget *widget,

ProgressData *pdata)
{
pdata- � activity_mode = !pdata- � activity_mode;
if (pdata- � activity_mode)

gtk_progress_bar_pulse (GTK_PROGRESS_BAR (pdata- � pbar));
else

gtk_progress_bar_set_fraction (GTK_PROGRESS_BAR (pdata- � pbar), 0.0);
}

/* Callback that toggles the orientation of the progress bar */
void toggle_orientation(GtkWidget *widget,

ProgressData *pdata)
{
switch (gtk_progress_bar_get_orientation (GTK_PROGRESS_BAR (pdata-

� pbar))) {
case GTK_PROGRESS_LEFT_TO_RIGHT:

gtk_progress_bar_set_orientation (GTK_PROGRESS_BAR (pdata- � pbar),
GTK_PROGRESS_RIGHT_TO_LEFT);

break;
case GTK_PROGRESS_RIGHT_TO_LEFT:

gtk_progress_bar_set_orientation (GTK_PROGRESS_BAR (pdata- � pbar),
GTK_PROGRESS_LEFT_TO_RIGHT);

break;
default:

// do nothing

58

Chapter 10. Miscellaneous Widgets

}
}

/* Clean up allocated memory and remove the timer */
void destroy_progress(GtkWidget *widget,

ProgressData *pdata)
{

gtk_timeout_remove (pdata- � timer);
pdata- � timer = 0;
pdata- � window = NULL;
g_free (pdata);
gtk_main_quit ();

}

int main(int argc,
char *argv[])

{
ProgressData *pdata;
GtkWidget *align;
GtkWidget *separator;
GtkWidget *table;
GtkWidget *button;
GtkWidget *check;
GtkWidget *vbox;

gtk_init (&argc, &argv);

/* Allocate memory for the data that is passed to the callbacks */
pdata = g_malloc (sizeof (ProgressData));

pdata- � window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_resizable (GTK_WINDOW (pdata- � window), TRUE);

g_signal_connect (G_OBJECT (pdata- � window), "destroy",
G_CALLBACK (destroy_progress),

(gpointer) pdata);
gtk_window_set_title (GTK_WINDOW (pdata- � window), "GtkProgressBar");
gtk_container_set_border_width (GTK_CONTAINER (pdata- � window), 0);

vbox = gtk_vbox_new (FALSE, 5);
gtk_container_set_border_width (GTK_CONTAINER (vbox), 10);
gtk_container_add (GTK_CONTAINER (pdata- � window), vbox);
gtk_widget_show (vbox);

/* Create a centering alignment object */
align = gtk_alignment_new (0.5, 0.5, 0, 0);
gtk_box_pack_start (GTK_BOX (vbox), align, FALSE, FALSE, 5);
gtk_widget_show (align);

/* Create the GtkProgressBar */
pdata- � pbar = gtk_progress_bar_new ();

gtk_container_add (GTK_CONTAINER (align), pdata- � pbar);
gtk_widget_show (pdata- � pbar);

/* Add a timer callback to update the value of the progress bar */
pdata- � timer = gtk_timeout_add (100, progress_timeout, pdata);

separator = gtk_hseparator_new ();
gtk_box_pack_start (GTK_BOX (vbox), separator, FALSE, FALSE, 0);
gtk_widget_show (separator);

/* rows, columns, homogeneous */
table = gtk_table_new (2, 3, FALSE);
gtk_box_pack_start (GTK_BOX (vbox), table, FALSE, TRUE, 0);
gtk_widget_show (table);

/* Add a check button to select displaying of the trough text */
check = gtk_check_button_new_with_label ("Show text");
gtk_table_attach (GTK_TABLE (table), check, 0, 1, 0, 1,

59

Chapter 10. Miscellaneous Widgets

GTK_EXPAND | GTK_FILL, GTK_EXPAND | GTK_FILL,
5, 5);

g_signal_connect (G_OBJECT (check), "clicked",
G_CALLBACK (toggle_show_text),
(gpointer) pdata);

gtk_widget_show (check);

/* Add a check button to toggle activity mode */
check = gtk_check_button_new_with_label ("Activity mode");
gtk_table_attach (GTK_TABLE (table), check, 0, 1, 1, 2,

GTK_EXPAND | GTK_FILL, GTK_EXPAND | GTK_FILL,
5, 5);

g_signal_connect (G_OBJECT (check), "clicked",
G_CALLBACK (toggle_activity_mode),
(gpointer) pdata);

gtk_widget_show (check);

/* Add a check button to toggle orientation */
check = gtk_check_button_new_with_label ("Right to Left");
gtk_table_attach (GTK_TABLE (table), check, 0, 1, 2, 3,

GTK_EXPAND | GTK_FILL, GTK_EXPAND | GTK_FILL,
5, 5);

g_signal_connect (G_OBJECT (check), "clicked",
G_CALLBACK (toggle_orientation),
(gpointer) pdata);

gtk_widget_show (check);

/* Add a button to exit the program */
button = gtk_button_new_with_label ("close");
g_signal_connect_swapped (G_OBJECT (button), "clicked",

G_CALLBACK (gtk_widget_destroy),
G_OBJECT (pdata- � window));

gtk_box_pack_start (GTK_BOX (vbox), button, FALSE, FALSE, 0);

/* This makes it so the button is the default. */
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);

/* This grabs this button to be the default button. Simply hitting
* the "Enter" key will cause this button to activate. */

gtk_widget_grab_default (button);
gtk_widget_show (button);

gtk_widget_show (pdata- � window);

gtk_main ();

return 0;
}

Dialogs
The Dialog widget is very simple, and is actually just a window with a few things
pre-packed into it for you. The structure for a Dialog is:

struct GtkDialog
{

GtkWindow window;

GtkWidget *vbox;
GtkWidget *action_area;

};

So you see, it simply creates a window, and then packs a vbox into the top, which
contains a separator and then an hbox called the "action_area".

The Dialog widget can be used for pop-up messages to the user, and other similar
tasks. There are two functions to create a new Dialog.

GtkWidget *gtk_dialog_new(void);

60

Chapter 10. Miscellaneous Widgets

GtkWidget *gtk_dialog_new_with_buttons(const gchar *title,
GtkWindow *parent,
GtkDialogFlags flags,
const gchar *first_button_text,
...);

The first function will create an empty dialog, and it is now up to you to use it.
You could pack a button in the action_area by doing something like this:

button = ...
gtk_box_pack_start (GTK_BOX (GTK_DIALOG (window)->action_area),

button, TRUE, TRUE, 0);
gtk_widget_show (button);

And you could add to the vbox area by packing, for instance, a label in it, try
something like this:

label = gtk_label_new ("Dialogs are groovy");
gtk_box_pack_start (GTK_BOX (GTK_DIALOG (window)->vbox),

label, TRUE, TRUE, 0);
gtk_widget_show (label);

As an example in using the dialog box, you could put two buttons in the ac-
tion_area, a Cancel button and an Ok button, and a label in the vbox area, asking
the user a question or giving an error etc. Then you could attach a different signal
to each of the buttons and perform the operation the user selects.

If the simple functionality provided by the default vertical and horizontal boxes
in the two areas doesn’t give you enough control for your application, then you
can simply pack another layout widget into the boxes provided. For example,
you could pack a table into the vertical box.

The more complicated _new_with_buttons() variant allows to set one or more of
the following flags.

GTK_DIALOG_MODAL

make the dialog modal.

GTK_DIALOG_DESTROY_WITH_PARENT

ensures that the dialog window is destroyed together with the specified par-
ent.

GTK_DIALOG_NO_SEPARATOR

omits the separator between the vbox and the action_area.

Rulers
Ruler widgets are used to indicate the location of the mouse pointer in a given
window. A window can have a vertical ruler spanning across the width and a
horizontal ruler spanning down the height. A small triangular indicator on the
ruler shows the exact location of the pointer relative to the ruler.

A ruler must first be created. Horizontal and vertical rulers are created using

GtkWidget *gtk_hruler_new(void); /* horizontal ruler */

GtkWidget *gtk_vruler_new(void); /* vertical ruler */

Once a ruler is created, we can define the unit of measurement. Units of measure
for rulers can beGTK_PIXELS, GTK_INCHES or GTK_CENTIMETERS. This is set using

void gtk_ruler_set_metric(GtkRuler *ruler,
GtkMetricType metric);

The default measure is GTK_PIXELS.
61

Chapter 10. Miscellaneous Widgets

gtk_ruler_set_metric(GTK_RULER(ruler), GTK_PIXELS);

Other important characteristics of a ruler are how to mark the units of scale and
where the position indicator is initially placed. These are set for a ruler using

void gtk_ruler_set_range(GtkRuler *ruler,
gdouble lower,
gdouble upper,
gdouble position,
gdouble max_size);

The lower and upper arguments define the extent of the ruler, and max_size is
the largest possible number that will be displayed. Position defines the initial
position of the pointer indicator within the ruler.

A vertical ruler can span an 800 pixel wide window thus

gtk_ruler_set_range(GTK_RULER(vruler), 0, 800, 0, 800);

The markings displayed on the ruler will be from 0 to 800, with a number for
every 100 pixels. If instead we wanted the ruler to range from 7 to 16, we would
code

gtk_ruler_set_range(GTK_RULER(vruler), 7, 16, 0, 20);

The indicator on the ruler is a small triangular mark that indicates the position of
the pointer relative to the ruler. If the ruler is used to follow the mouse pointer,
the motion_notify_event signal should be connected to the motion_notify_event
method of the ruler. To follow all mouse movements within a window area, we
would use

#define EVENT_METHOD(i, x) GTK_WIDGET_GET_CLASS(i)->x

g_signal_connect_swapped (G_OBJECT (area), "motion_notify_event",
G_CALLBACK (EVENT_METHOD (ruler, motion_notify_event)),
G_OBJECT (ruler));

The following example creates a drawing area with a horizontal ruler above it
and a vertical ruler to the left of it. The size of the drawing area is 600 pixels wide
by 400 pixels high. The horizontal ruler spans from 7 to 13 with a mark every 100
pixels, while the vertical ruler spans from 0 to 400 with a mark every 100 pixels.
Placement of the drawing area and the rulers is done using a table.

#include
�
gtk/gtk.h �

62

Chapter 10. Miscellaneous Widgets

#define EVENT_METHOD(i, x) GTK_WIDGET_GET_CLASS(i)- � x

#define XSIZE 600
#define YSIZE 400

/* This routine gets control when the close button is clicked */
gint close_application(GtkWidget *widget,

GdkEvent *event,
gpointer data)

{
gtk_main_quit ();
return FALSE;

}

/* The main routine */
int main(int argc,

char *argv[]) {
GtkWidget *window, *table, *area, *hrule, *vrule;

/* Initialize GTK and create the main window */
gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
g_signal_connect (G_OBJECT (window), "delete_event",

G_CALLBACK (close_application), NULL);
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Create a table for placing the ruler and the drawing area */
table = gtk_table_new (3, 2, FALSE);
gtk_container_add (GTK_CONTAINER (window), table);

area = gtk_drawing_area_new ();
gtk_widget_set_size_request (GTK_WIDGET (area), XSIZE, YSIZE);
gtk_table_attach (GTK_TABLE (table), area, 1, 2, 1, 2,

GTK_EXPAND|GTK_FILL, GTK_FILL, 0, 0);
gtk_widget_set_events (area, GDK_POINTER_MOTION_MASK |

GDK_POINTER_MOTION_HINT_MASK);

/* The horizontal ruler goes on top. As the mouse moves across the
* drawing area, a motion_notify_event is passed to the
* appropriate event handler for the ruler. */

hrule = gtk_hruler_new ();
gtk_ruler_set_metric (GTK_RULER (hrule), GTK_PIXELS);
gtk_ruler_set_range (GTK_RULER (hrule), 7, 13, 0, 20);
g_signal_connect_swapped (G_OBJECT (area), "motion_notify_event",

G_CALLBACK (EVENT_METHOD (hrule, motion_notify_event)),
G_OBJECT (hrule));

gtk_table_attach (GTK_TABLE (table), hrule, 1, 2, 0, 1,
GTK_EXPAND|GTK_SHRINK|GTK_FILL, GTK_FILL, 0, 0);

/* The vertical ruler goes on the left. As the mouse moves across
* the drawing area, a motion_notify_event is passed to the
* appropriate event handler for the ruler. */

vrule = gtk_vruler_new ();
gtk_ruler_set_metric (GTK_RULER (vrule), GTK_PIXELS);
gtk_ruler_set_range (GTK_RULER (vrule), 0, YSIZE, 10, YSIZE);
g_signal_connect_swapped (G_OBJECT (area), "motion_notify_event",

G_CALLBACK (EVENT_METHOD (vrule, motion_notify_event)),
G_OBJECT (vrule));

gtk_table_attach (GTK_TABLE (table), vrule, 0, 1, 1, 2,
GTK_FILL, GTK_EXPAND|GTK_SHRINK|GTK_FILL, 0, 0);

/* Now show everything */
gtk_widget_show (area);
gtk_widget_show (hrule);
gtk_widget_show (vrule);
gtk_widget_show (table);
gtk_widget_show (window);
gtk_main ();

return 0;

63

Chapter 10. Miscellaneous Widgets

}

Statusbars
Statusbars are simple widgets used to display a text message. They keep a stack
of the messages pushed onto them, so that popping the current message will re-
display the previous text message.

In order to allow different parts of an application to use the same statusbar to
display messages, the statusbar widget issues Context Identifiers which are used
to identify different "users". The message on top of the stack is the one displayed,
no matter what context it is in. Messages are stacked in last-in-first-out order, not
context identifier order.

A statusbar is created with a call to:

GtkWidget *gtk_statusbar_new(void);

A new Context Identifier is requested using a call to the following function with
a short textual description of the context:

guint gtk_statusbar_get_context_id(GtkStatusbar *statusbar,
const gchar *context_description);

There are three functions that can operate on statusbars:

guint gtk_statusbar_push(GtkStatusbar *statusbar,
guint context_id,
const gchar *text);

void gtk_statusbar_pop(GtkStatusbar *statusbar)
guint context_id);

void gtk_statusbar_remove(GtkStatusbar *statusbar,
guint context_id,
guint message_id);

The first, gtk_statusbar_push(), is used to add a new message to the statusbar.
It returns a Message Identifier, which can be passed later to the function
gtk_statusbar_remove to remove the message with the given Message and
Context Identifiers from the statusbar’s stack.

The function gtk_statusbar_pop() removes the message highest in the stack with
the given Context Identifier.

In addition to messages, statusbars may also display a resize grip, which can be
dragged with the mouse to resize the toplevel window containing the statusbar,
similar to dragging the window frame. The following functions control the dis-
play of the resize grip.

void gtk_statusbar_set_has_resize_grip(GtkStatusbar *statusbar,
gboolean setting);

gboolean gtk_statusbar_get_has_resize_grip(GtkStatusbar *statusbar);

The following example creates a statusbar and two buttons, one for pushing items
onto the statusbar, and one for popping the last item back off.

64

Chapter 10. Miscellaneous Widgets

#include
�
stdlib.h �

#include
�
gtk/gtk.h �

#include
�
glib.h �

GtkWidget *status_bar;

void push_item(GtkWidget *widget,
gpointer data)

{
static int count = 1;
char buff[20];

g_snprintf (buff, 20, "Item %d", count++);
gtk_statusbar_push (GTK_STATUSBAR (status_bar), GPOINTER_TO_INT (data), buff);

return;
}

void pop_item(GtkWidget *widget,
gpointer data)

{
gtk_statusbar_pop (GTK_STATUSBAR (status_bar), GPOINTER_TO_INT (data));
return;

}

int main(int argc,
char *argv[])

{

GtkWidget *window;
GtkWidget *vbox;
GtkWidget *button;

gint context_id;

gtk_init (&argc, &argv);

/* create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_set_size_request (GTK_WIDGET (window), 200, 100);
gtk_window_set_title (GTK_WINDOW (window), "GTK Statusbar Example");
g_signal_connect (G_OBJECT (window), "delete_event",

G_CALLBACK (exit), NULL);

vbox = gtk_vbox_new (FALSE, 1);
gtk_container_add (GTK_CONTAINER (window), vbox);
gtk_widget_show (vbox);

status_bar = gtk_statusbar_new ();
gtk_box_pack_start (GTK_BOX (vbox), status_bar, TRUE, TRUE, 0);
gtk_widget_show (status_bar);

context_id = gtk_statusbar_get_context_id(
GTK_STATUSBAR (status_bar), "Statusbar example");

button = gtk_button_new_with_label ("push item");
g_signal_connect (G_OBJECT (button), "clicked",

65

Chapter 10. Miscellaneous Widgets

G_CALLBACK (push_item), GINT_TO_POINTER (context_id));
gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 2);
gtk_widget_show (button);

button = gtk_button_new_with_label ("pop last item");
g_signal_connect (G_OBJECT (button), "clicked",

G_CALLBACK (pop_item), GINT_TO_POINTER (context_id));
gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 2);
gtk_widget_show (button);

/* always display the window as the last step so it all splashes on
* the screen at once. */

gtk_widget_show (window);

gtk_main ();

return 0;
}

Text Entries
The Entry widget allows text to be typed and displayed in a single line text box.
The text may be set with function calls that allow new text to replace, prepend or
append the current contents of the Entry widget.

Create a new Entry widget with the following function.

GtkWidget *gtk_entry_new(void);

The next function alters the text which is currently within the Entry widget.

void gtk_entry_set_text(GtkEntry *entry,
const gchar *text);

The function gtk_entry_set_text() sets the contents of the Entry widget, replacing
the current contents. Note that the class Entry implements the Editable interface
(yes, gobject supports Java-like interfaces) which contains some more functions
for manipulating the contents.

The contents of the Entry can be retrieved by using a call to the following func-
tion. This is useful in the callback functions described below.

const gchar *gtk_entry_get_text(GtkEntry *entry);

The value returned by this function is used internally, and must not be freed using
either free() or g_free().

If we don’t want the contents of the Entry to be changed by someone typing into
it, we can change its editable state.

void gtk_editable_set_editable(GtkEditable *entry,
gboolean editable);

The function above allows us to toggle the editable state of the Entry widget by
passing in a TRUE or FALSE value for the editable argument.

If we are using the Entry where we don’t want the text entered to be visible, for
example when a password is being entered, we can use the following function,
which also takes a boolean flag.

void gtk_entry_set_visibility(GtkEntry *entry,
gboolean visible);

A region of the text may be set as selected by using the following function. This
would most often be used after setting some default text in an Entry, making it
easy for the user to remove it.

void gtk_editable_select_region(GtkEditable *entry,
gint start,

66

Chapter 10. Miscellaneous Widgets

gint end);

If we want to catch when the user has entered text, we can connect to the acti-
vate or changed signal. Activate is raised when the user hits the enter key within
the Entry widget. Changed is raised when the text changes at all, e.g., for every
character entered or removed.

The following code is an example of using an Entry widget.

#include
�
stdio.h �

#include
�
stdlib.h �

#include
�
gtk/gtk.h �

void enter_callback(GtkWidget *widget,
GtkWidget *entry)

{
const gchar *entry_text;
entry_text = gtk_entry_get_text (GTK_ENTRY (entry));
printf("Entry contents: %s\n", entry_text);

}

void entry_toggle_editable(GtkWidget *checkbutton,
GtkWidget *entry)

{
gtk_editable_set_editable (GTK_EDITABLE (entry),

GTK_TOGGLE_BUTTON (checkbutton)- � active);
}

void entry_toggle_visibility(GtkWidget *checkbutton,
GtkWidget *entry)

{
gtk_entry_set_visibility (GTK_ENTRY (entry),

GTK_TOGGLE_BUTTON (checkbutton)- � active);
}

int main(int argc,
char *argv[])

{

GtkWidget *window;
GtkWidget *vbox, *hbox;
GtkWidget *entry;
GtkWidget *button;
GtkWidget *check;
gint tmp_pos;

gtk_init (&argc, &argv);

/* create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_set_size_request (GTK_WIDGET (window), 200, 100);
gtk_window_set_title (GTK_WINDOW (window), "GTK Entry");
g_signal_connect (G_OBJECT (window), "destroy",

G_CALLBACK (gtk_main_quit), NULL);
g_signal_connect_swapped (G_OBJECT (window), "delete_event",

G_CALLBACK (gtk_widget_destroy),
G_OBJECT (window));

67

Chapter 10. Miscellaneous Widgets

vbox = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), vbox);
gtk_widget_show (vbox);

entry = gtk_entry_new ();
gtk_entry_set_max_length (GTK_ENTRY (entry), 50);
g_signal_connect (G_OBJECT (entry), "activate",

G_CALLBACK (enter_callback),
(gpointer) entry);

gtk_entry_set_text (GTK_ENTRY (entry), "hello");
tmp_pos = GTK_ENTRY (entry)- � text_length;
gtk_editable_insert_text (GTK_EDITABLE (entry), " world", -1, &tmp_pos);
gtk_editable_select_region (GTK_EDITABLE (entry),

0, GTK_ENTRY (entry)- � text_length);
gtk_box_pack_start (GTK_BOX (vbox), entry, TRUE, TRUE, 0);
gtk_widget_show (entry);

hbox = gtk_hbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (vbox), hbox);
gtk_widget_show (hbox);

check = gtk_check_button_new_with_label ("Editable");
gtk_box_pack_start (GTK_BOX (hbox), check, TRUE, TRUE, 0);
g_signal_connect (G_OBJECT (check), "toggled",

G_CALLBACK (entry_toggle_editable), (gpointer) entry);
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (check), TRUE);
gtk_widget_show (check);

check = gtk_check_button_new_with_label ("Visible");
gtk_box_pack_start (GTK_BOX (hbox), check, TRUE, TRUE, 0);
g_signal_connect (G_OBJECT (check), "toggled",

G_CALLBACK (entry_toggle_visibility), (gpointer) entry);
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (check), TRUE);
gtk_widget_show (check);

button = gtk_button_new_from_stock (GTK_STOCK_CLOSE);
g_signal_connect_swapped (G_OBJECT (button), "clicked",

G_CALLBACK (gtk_widget_destroy),
G_OBJECT (window));

gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0);
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);
gtk_widget_grab_default (button);
gtk_widget_show (button);

gtk_widget_show (window);

gtk_main();

return 0;
}

Spin Buttons
The Spin Button widget is generally used to allow the user to select a value from
a range of numeric values. It consists of a text entry box with up and down arrow
buttons attached to the side. Selecting one of the buttons causes the value to "spin"
up and down the range of possible values. The entry box may also be edited
directly to enter a specific value.

The Spin Button allows the value to have zero or a number of decimal places
and to be incremented/decremented in configurable steps. The action of holding
down one of the buttons optionally results in an acceleration of change in the
value according to how long it is depressed.

The Spin Button uses an Adjustment object to hold information about the range
of values that the spin button can take. This makes for a powerful Spin Button
widget.

68

Chapter 10. Miscellaneous Widgets

Recall that an adjustment widget is created with the following function, which
illustrates the information that it holds:

GtkObject *gtk_adjustment_new(gdouble value,
gdouble lower,
gdouble upper,
gdouble step_increment,
gdouble page_increment,
gdouble page_size);

These attributes of an Adjustment are used by the Spin Button in the following
way:

• value: initial value for the Spin Button

• lower: lower range value

• upper: upper range value

• step_increment: value to increment/decrement when pressing mouse button
1 on a button

• page_increment: value to increment/decrement when pressing mouse button
2 on a button

• page_size: unused

Additionally, mouse button 3 can be used to jump directly to the upper or lower
values when used to select one of the buttons. Lets look at how to create a Spin
Button:

GtkWidget *gtk_spin_button_new(GtkAdjustment *adjustment,
gdouble climb_rate,
guint digits);

The climb_rate argument take a value between 0.0 and 1.0 and indicates the
amount of acceleration that the Spin Button has. The digits argument specifies
the number of decimal places to which the value will be displayed.

A Spin Button can be reconfigured after creation using the following function:

void gtk_spin_button_configure(GtkSpinButton *spin_button,
GtkAdjustment *adjustment,
gdouble climb_rate,
guint digits);

The spin_button argument specifies the Spin Button widget that is to be recon-
figured. The other arguments are as specified above.

The adjustment can be set and retrieved independantly using the following two
functions:

void gtk_spin_button_set_adjustment(GtkSpinButton *spin_button,
GtkAdjustment *adjustment);

GtkAdjustment *gtk_spin_button_get_adjustment(GtkSpinButton *spin_button);

The number of decimal places can also be altered using:

void gtk_spin_button_set_digits(GtkSpinButton *spin_button,
guint digits) ;

The value that a Spin Button is currently displaying can be changed using the
following function:

void gtk_spin_button_set_value(GtkSpinButton *spin_button,
gdouble value);

The current value of a Spin Button can be retrieved as either a floating point or
integer value with the following functions:

gdouble gtk_spin_button_get_value (GtkSpinButton *spin_button);

69

Chapter 10. Miscellaneous Widgets

gint gtk_spin_button_get_value_as_int(GtkSpinButton *spin_button);

If you want to alter the value of a Spin Button relative to its current value, then
the following function can be used:

void gtk_spin_button_spin(GtkSpinButton *spin_button,
GtkSpinType direction,
gdouble increment);

The direction parameter can take one of the following values:

GTK_SPIN_STEP_FORWARD
GTK_SPIN_STEP_BACKWARD
GTK_SPIN_PAGE_FORWARD
GTK_SPIN_PAGE_BACKWARD
GTK_SPIN_HOME
GTK_SPIN_END
GTK_SPIN_USER_DEFINED

This function packs in quite a bit of functionality, which I will attempt to clearly
explain. Many of these settings use values from the Adjustment object that is
associated with a Spin Button.

GTK_SPIN_STEP_FORWARDand GTK_SPIN_STEP_BACKWARD change the value of the
Spin Button by the amount specified by increment, unless increment is equal to
0, in which case the value is changed by the value of step_increment in theAd-
justment.

GTK_SPIN_PAGE_FORWARD and GTK_SPIN_PAGE_BACKWARD simply alter the value
of the Spin Button by increment.

GTK_SPIN_HOME sets the value of the Spin Button to the bottom of the Adjust-
ments range.

GTK_SPIN_END sets the value of the Spin Button to the top of the Adjustments
range.

GTK_SPIN_USER_DEFINED simply alters the value of the Spin Button by the spec-
ified amount.

We move away from functions for setting and retreving the range attributes of
the Spin Button now, and move onto functions that effect the appearance and
behaviour of the Spin Button widget itself.

The first of these functions is used to constrain the text box of the Spin Button
such that it may only contain a numeric value. This prevents a user from typing
anything other than numeric values into the text box of a Spin Button:

void gtk_spin_button_set_numeric(GtkSpinButton *spin_button,
gboolean numeric);

You can set whether a Spin Button will wrap around between the upper and
lower range values with the following function:

void gtk_spin_button_set_wrap(GtkSpinButton *spin_button,
gboolean wrap);

You can set a Spin Button to round the value to the nearest step_increment,
which is set within the Adjustment object used with the Spin Button. This is ac-
complished with the following function:

void gtk_spin_button_set_snap_to_ticks(GtkSpinButton *spin_button,
gboolean snap_to_ticks);

The update policy of a Spin Button can be changed with the following function:

void gtk_spin_button_set_update_policy(GtkSpinButton *spin_button,
GtkSpinButtonUpdatePolicy pol-

icy);

70

Chapter 10. Miscellaneous Widgets

The possible values of policy are either GTK_UPDATE_ALWAYS or
GTK_UPDATE_IF_VALID.

These policies affect the behavior of a Spin Button when parsing inserted text and
syncing its value with the values of the Adjustment.

In the case of GTK_UPDATE_IF_VALID the Spin Button only value gets changed if
the text input is a numeric value that is within the range specified by the Adjust-
ment. Otherwise the text is reset to the current value.

In case of GTK_UPDATE_ALWAYS we ignore errors while converting text into a nu-
meric value.

Finally, you can explicitly request that a Spin Button update itself:

void gtk_spin_button_update(GtkSpinButton *spin_button);

It’s example time again.

#include
�
stdio.h �

#include
�
gtk/gtk.h �

static GtkWidget *spinner1;

void toggle_snap(GtkWidget *widget,
GtkSpinButton *spin)

{
gtk_spin_button_set_snap_to_ticks (spin, GTK_TOGGLE_BUTTON (widget)-

� active);
}

void toggle_numeric(GtkWidget *widget,
GtkSpinButton *spin)

{
gtk_spin_button_set_numeric (spin, GTK_TOGGLE_BUTTON (widget)- � active);

}

void change_digits(GtkWidget *widget,

71

Chapter 10. Miscellaneous Widgets

GtkSpinButton *spin)
{
gtk_spin_button_set_digits (GTK_SPIN_BUTTON (spinner1),

gtk_spin_button_get_value_as_int (spin));
}

void get_value(GtkWidget *widget,
gpointer data)

{
gchar buf[32];
GtkLabel *label;
GtkSpinButton *spin;

spin = GTK_SPIN_BUTTON (spinner1);
label = GTK_LABEL (g_object_get_data (G_OBJECT (widget), "user_data"));
if (GPOINTER_TO_INT (data) == 1)

sprintf (buf, "%d", gtk_spin_button_get_value_as_int (spin));
else

sprintf (buf, "%0.*f", spin- � digits,
gtk_spin_button_get_value (spin));

gtk_label_set_text (label, buf);
}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *frame;
GtkWidget *hbox;
GtkWidget *main_vbox;
GtkWidget *vbox;
GtkWidget *vbox2;
GtkWidget *spinner2;
GtkWidget *spinner;
GtkWidget *button;
GtkWidget *label;
GtkWidget *val_label;
GtkAdjustment *adj;

/* Initialise GTK */
gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (gtk_main_quit),
NULL);

gtk_window_set_title (GTK_WINDOW (window), "Spin Button");

main_vbox = gtk_vbox_new (FALSE, 5);
gtk_container_set_border_width (GTK_CONTAINER (main_vbox), 10);
gtk_container_add (GTK_CONTAINER (window), main_vbox);

frame = gtk_frame_new ("Not accelerated");
gtk_box_pack_start (GTK_BOX (main_vbox), frame, TRUE, TRUE, 0);

vbox = gtk_vbox_new (FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (vbox), 5);
gtk_container_add (GTK_CONTAINER (frame), vbox);

/* Day, month, year spinners */

hbox = gtk_hbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (vbox), hbox, TRUE, TRUE, 5);

vbox2 = gtk_vbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5);

label = gtk_label_new ("Day :");

72

Chapter 10. Miscellaneous Widgets

gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5);
gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0);

adj = (GtkAdjustment *) gtk_adjustment_new (1.0, 1.0, 31.0, 1.0,
5.0, 0.0);

spinner = gtk_spin_button_new (adj, 0, 0);
gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner), TRUE);
gtk_box_pack_start (GTK_BOX (vbox2), spinner, FALSE, TRUE, 0);

vbox2 = gtk_vbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5);

label = gtk_label_new ("Month :");
gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5);
gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0);

adj = (GtkAdjustment *) gtk_adjustment_new (1.0, 1.0, 12.0, 1.0,
5.0, 0.0);

spinner = gtk_spin_button_new (adj, 0, 0);
gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner), TRUE);
gtk_box_pack_start (GTK_BOX (vbox2), spinner, FALSE, TRUE, 0);

vbox2 = gtk_vbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5);

label = gtk_label_new ("Year :");
gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5);
gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0);

adj = (GtkAdjustment *) gtk_adjustment_new (1998.0, 0.0, 2100.0,
1.0, 100.0, 0.0);

spinner = gtk_spin_button_new (adj, 0, 0);
gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner), FALSE);
gtk_widget_set_size_request (spinner, 55, -1);
gtk_box_pack_start (GTK_BOX (vbox2), spinner, FALSE, TRUE, 0);

frame = gtk_frame_new ("Accelerated");
gtk_box_pack_start (GTK_BOX (main_vbox), frame, TRUE, TRUE, 0);

vbox = gtk_vbox_new (FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (vbox), 5);
gtk_container_add (GTK_CONTAINER (frame), vbox);

hbox = gtk_hbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, TRUE, 5);

vbox2 = gtk_vbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5);

label = gtk_label_new ("Value :");
gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5);
gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0);

adj = (GtkAdjustment *) gtk_adjustment_new (0.0, -10000.0, 10000.0,
0.5, 100.0, 0.0);

spinner1 = gtk_spin_button_new (adj, 1.0, 2);
gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner1), TRUE);
gtk_widget_set_size_request (spinner1, 100, -1);
gtk_box_pack_start (GTK_BOX (vbox2), spinner1, FALSE, TRUE, 0);

vbox2 = gtk_vbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5);

label = gtk_label_new ("Digits :");
gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5);
gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0);

adj = (GtkAdjustment *) gtk_adjustment_new (2, 1, 5, 1, 1, 0);
spinner2 = gtk_spin_button_new (adj, 0.0, 0);
gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner2), TRUE);
g_signal_connect (G_OBJECT (adj), "value_changed",

73

Chapter 10. Miscellaneous Widgets

G_CALLBACK (change_digits),
(gpointer) spinner2);

gtk_box_pack_start (GTK_BOX (vbox2), spinner2, FALSE, TRUE, 0);

hbox = gtk_hbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, TRUE, 5);

button = gtk_check_button_new_with_label ("Snap to 0.5-ticks");
g_signal_connect (G_OBJECT (button), "clicked",

G_CALLBACK (toggle_snap),
(gpointer) spinner1);

gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0);
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (button), TRUE);

button = gtk_check_button_new_with_label ("Numeric only input mode");
g_signal_connect (G_OBJECT (button), "clicked",

G_CALLBACK (toggle_numeric),
(gpointer) spinner1);

gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0);
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (button), TRUE);

val_label = gtk_label_new ("");

hbox = gtk_hbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, TRUE, 5);
button = gtk_button_new_with_label ("Value as Int");
g_object_set_data (G_OBJECT (button), "user_data", val_label);
g_signal_connect (G_OBJECT (button), "clicked",

G_CALLBACK (get_value),
GINT_TO_POINTER (1));

gtk_box_pack_start (GTK_BOX (hbox), button, TRUE, TRUE, 5);

button = gtk_button_new_with_label ("Value as Float");
g_object_set_data (G_OBJECT (button), "user_data", val_label);
g_signal_connect (G_OBJECT (button), "clicked",

G_CALLBACK (get_value),
GINT_TO_POINTER (2));

gtk_box_pack_start (GTK_BOX (hbox), button, TRUE, TRUE, 5);

gtk_box_pack_start (GTK_BOX (vbox), val_label, TRUE, TRUE, 0);
gtk_label_set_text (GTK_LABEL (val_label), "0");

hbox = gtk_hbox_new (FALSE, 0);
gtk_box_pack_start (GTK_BOX (main_vbox), hbox, FALSE, TRUE, 0);

button = gtk_button_new_with_label ("Close");
g_signal_connect_swapped (G_OBJECT (button), "clicked",

G_CALLBACK (gtk_widget_destroy),
G_OBJECT (window));

gtk_box_pack_start (GTK_BOX (hbox), button, TRUE, TRUE, 5);

gtk_widget_show_all (window);

/* Enter the event loop */
gtk_main ();

return 0;
}

Combo Box
The combo box is another fairly simple widget that is really just a collection of
other widgets. From the user’s point of view, the widget consists of a text entry
box and a pull down menu from which the user can select one of a set of prede-
fined entries. Alternatively, the user can type a different option directly into the
text box.

The following extract from the structure that defines a Combo Box identifies sev-
eral of the components:

74

Chapter 10. Miscellaneous Widgets

struct _GtkCombo {
GtkHBox hbox;
GtkWidget *entry;
GtkWidget *button;
GtkWidget *popup;
GtkWidget *popwin;
GtkWidget *list;

... };

As you can see, the Combo Box has two principal parts that you really care about:
an entry and a list.

First off, to create a combo box, use:

GtkWidget *gtk_combo_new(void);

Now, if you want to set the string in the entry section of the combo box, this is
done by manipulating the entry widget directly:

gtk_entry_set_text (GTK_ENTRY (GTK_COMBO (combo)->entry), "My String.");

To set the values in the popdown list, one uses the function:

void gtk_combo_set_popdown_strings(GtkCombo *combo,
GList *strings);

Before you can do this, you have to assemble a GList of the strings that you want.
GList is a linked list implementation that is part of GLib, a library supporting
GTK. For the moment, the quick and dirty explanation is that you need to set up
a GList pointer, set it equal to NULL, then append strings to it with

GList *g_list_append(GList *glist,
gpointer data);

It is important that you set the initial GList pointer to NULL. The value returned
from the g_list_append() function must be used as the new pointer to the GList.

Here’s a typical code segment for creating a set of options:

GList *glist = NULL;

glist = g_list_append (glist, "String 1");
glist = g_list_append (glist, "String 2");
glist = g_list_append (glist, "String 3");
glist = g_list_append (glist, "String 4");

gtk_combo_set_popdown_strings (GTK_COMBO (combo), glist);

/* can free glist now, combo takes a copy */

The combo widget makes a copy of the strings passed to it in the glist structure.
As a result, you need to make sure you free the memory used by the list if that is
appropriate for your application.

At this point you have a working combo box that has been set up. There are a
few aspects of its behavior that you can change. These are accomplished with the
functions:

void gtk_combo_set_use_arrows(GtkCombo *combo,
gboolean val);

void gtk_combo_set_use_arrows_always(GtkCombo *combo,
gboolean val);

void gtk_combo_set_case_sensitive(GtkCombo *combo,
gboolean val);

gtk_combo_set_use_arrows() lets the user change the value in the entry using the
up/down arrow keys. This doesn’t bring up the list, but rather replaces the cur-
rent text in the entry with the next list entry (up or down, as your key choice

75

Chapter 10. Miscellaneous Widgets

indicates). It does this by searching in the list for the item corresponding to the
current value in the entry and selecting the previous/next item accordingly. Usu-
ally in an entry the arrow keys are used to change focus (you can do that anyway
using TAB). Note that when the current item is the last of the list and you press
arrow-down it changes the focus (the same applies with the first item and arrow-
up).

If the current value in the entry is not in the list, then the function of
gtk_combo_set_use_arrows() is disabled.

gtk_combo_set_use_arrows_always() similarly allows the use the the up/down
arrow keys to cycle through the choices in the dropdown list, except that it wraps
around the values in the list, completely disabling the use of the up and down
arrow keys for changing focus.

gtk_combo_set_case_sensitive() toggles whether or not GTK searches for entries
in a case sensitive manner. This is used when the Combo widget is asked to find
a value from the list using the current entry in the text box. This completion can
be performed in either a case sensitive or insensitive manner, depending upon
the use of this function. The Combo widget can also simply complete the current
entry if the user presses the key combination MOD-1 and "Tab". MOD-1 is often
mapped to the "Alt" key, by the xmodmap utility. Note, however that some window
managers also use this key combination, which will override its use within GTK.

Now that we have a combo box, tailored to look and act how we want it, all that
remains is being able to get data from the combo box. This is relatively straightfor-
ward. The majority of the time, all you are going to care about getting data from
is the entry. The entry is accessed simply by GTK_ENTRY (GTK_COMBO (combo)-
>entry). The two principal things that you are going to want to do with it are
connect to the activate signal, which indicates that the user has pressed the Re-
turn or Enter key, and read the text. The first is accomplished using something
like:

g_signal_connect (G_OBJECT (GTK_COMBO (combo)->entry), "activate",
G_CALLBACK (my_callback_function), (gpointer) my_data);

Getting the text at any arbitrary time is accomplished by simply using the entry
function:

gchar *gtk_entry_get_text(GtkEntry *entry);

Such as:

gchar *string;

string = gtk_entry_get_text (GTK_ENTRY (GTK_COMBO (combo)->entry));

That’s about all there is to it. There is a function

void gtk_combo_disable_activate(GtkCombo *combo);

that will disable the activate signal on the entry widget in the combo box. Person-
ally, I can’t think of why you’d want to use it, but it does exist.

Calendar
The Calendar widget is an effective way to display and retrieve monthly date
related information. It is a very simple widget to create and work with.

Creating a GtkCalendar widget is a simple as:

GtkWidget *gtk_calendar_new(void);

There might be times where you need to change a lot of information within this
widget and the following functions allow you to make multiple change to a Cal-
endar widget without the user seeing multiple on-screen updates.

void gtk_calendar_freeze(GtkCalendar *Calendar);

76

Chapter 10. Miscellaneous Widgets

void gtk_calendar_thaw(GtkCalendar *Calendar);

They work just like the freeze/thaw functions of every other widget.

The Calendar widget has a few options that allow you to change the way the
widget both looks and operates by using the function

void gtk_calendar_display_options(GtkCalendar *cal-
endar,

GtkCalendarDisplayOptions flags);

The flags argument can be formed by combining either of the following five
options using the logical bitwise OR (|) operation:

GTK_CALENDAR_SHOW_HEADING

this option specifies that the month and year should be shown when drawing
the calendar.

GTK_CALENDAR_SHOW_DAY_NAMES

this option specifies that the three letter descriptions should be displayed for
each day (eg Mon,Tue, etc.).

GTK_CALENDAR_NO_MONTH_CHANGE

this option states that the user should not and can not change the currently
displayed month. This can be good if you only need to display a particular
month such as if you are displaying 12 calendar widgets for every month in
a particular year.

GTK_CALENDAR_SHOW_WEEK_NUMBERS

this option specifies that the number for each week should be displayed
down the left side of the calendar. (eg. Jan 1 = Week 1,Dec 31 = Week 52).

GTK_CALENDAR_WEEK_START_MONDAY

this option states that the calander week will start on Monday instead of
Sunday which is the default. This only affects the order in which days are
displayed from left to right.

The following functions are used to set the the currently displayed date:

gint gtk_calendar_select_month(GtkCalendar *calendar,
guint month,
guint year);

void gtk_calendar_select_day(GtkCalendar *calendar,
guint day);

The return value from gtk_calendar_select_month() is a boolean value indi-
cating whether the selection was successful.

With gtk_calendar_select_day() the specified day number is selected within
the current month, if that is possible. A day value of 0 will deselect any current
selection.

In addition to having a day selected, any number of days in the month may be
"marked". A marked day is highlighted within the calendar display. The follow-
ing functions are provided to manipulate marked days:

gint gtk_calendar_mark_day(GtkCalendar *calendar,
guint day);

gint gtk_calendar_unmark_day(GtkCalendar *calendar,
guint day);

void gtk_calendar_clear_marks(GtkCalendar *calendar);

77

Chapter 10. Miscellaneous Widgets

The currently marked days are stored within an array within the GtkCalendar
structure. This array is 31 elements long so to test whether a particular day is cur-
rently marked, you need to access the corresponding element of the array (don’t
forget in C that array elements are numbered 0 to n-1). For example:

GtkCalendar *calendar;
calendar = gtk_calendar_new ();

...

/* Is day 7 marked? */
if (calendar->marked_date[7-1])

/* day is marked */

Note that marks are persistent across month and year changes.

The final Calendar widget function is used to retrieve the currently selected date,
month and/or year.

void gtk_calendar_get_date(GtkCalendar *calendar,
guint *year,
guint *month,
guint *day);

This function requires you to pass the addresses of guint variables, into which
the result will be placed. Passing NULL as a value will result in the corresponding
value not being returned.

The Calendar widget can generate a number of signals indicating date selection
and change. The names of these signals are self explanatory, and are:

• month_changed

• day_selected

• day_selected_double_click

• prev_month

• next_month

• prev_year

• next_year

That just leaves us with the need to put all of this together into example code.

78

Chapter 10. Miscellaneous Widgets

/*
* Copyright (C) 1998 Cesar Miquel, Shawn T. Amundson, Mattias Grönlund
* Copyright (C) 2000 Tony Gale
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include
�
gtk/gtk.h �

#include
�
stdio.h �

#include
�
string.h �

#include
�
time.h �

#define DEF_PAD 10
#define DEF_PAD_SMALL 5

#define TM_YEAR_BASE 1900

typedef struct _CalendarData {
GtkWidget *flag_checkboxes[5];

79

Chapter 10. Miscellaneous Widgets

gboolean settings[5];
gchar *font;
GtkWidget *font_dialog;
GtkWidget *window;
GtkWidget *prev2_sig;
GtkWidget *prev_sig;
GtkWidget *last_sig;
GtkWidget *month;

} CalendarData;

enum {
calendar_show_header,
calendar_show_days,
calendar_month_change,
calendar_show_week,
calendar_monday_first

};

/*
* GtkCalendar
*/

void calendar_date_to_string(CalendarData *data,
char *buffer,
gint buff_len)

{
struct tm tm;
time_t time;

memset (&tm, 0, sizeof (tm));
gtk_calendar_get_date (GTK_CALENDAR (data- � window),

&tm.tm_year, &tm.tm_mon, &tm.tm_mday);
tm.tm_year -= TM_YEAR_BASE;
time = mktime (&tm);
strftime (buffer, buff_len-1, "%x", gmtime (&time));

}

void calendar_set_signal_strings(char *sig_str,
CalendarData *data)

{
const gchar *prev_sig;

prev_sig = gtk_label_get_text (GTK_LABEL (data- � prev_sig));
gtk_label_set_text (GTK_LABEL (data- � prev2_sig), prev_sig);

prev_sig = gtk_label_get_text (GTK_LABEL (data- � last_sig));
gtk_label_set_text (GTK_LABEL (data- � prev_sig), prev_sig);
gtk_label_set_text (GTK_LABEL (data- � last_sig), sig_str);

}

void calendar_month_changed(GtkWidget *widget,
CalendarData *data)

{
char buffer[256] = "month_changed: ";

calendar_date_to_string (data, buffer+15, 256-15);
calendar_set_signal_strings (buffer, data);

}

void calendar_day_selected(GtkWidget *widget,
CalendarData *data)

{
char buffer[256] = "day_selected: ";

calendar_date_to_string (data, buffer+14, 256-14);
calendar_set_signal_strings (buffer, data);

}

void calendar_day_selected_double_click(GtkWidget *widget,
CalendarData *data)

{

80

Chapter 10. Miscellaneous Widgets

struct tm tm;
char buffer[256] = "day_selected_double_click: ";

calendar_date_to_string (data, buffer+27, 256-27);
calendar_set_signal_strings (buffer, data);

memset (&tm, 0, sizeof (tm));
gtk_calendar_get_date (GTK_CALENDAR (data- � window),

&tm.tm_year, &tm.tm_mon, &tm.tm_mday);
tm.tm_year -= TM_YEAR_BASE;

if (GTK_CALENDAR (data- � window)- � marked_date[tm.tm_mday-1] == 0)
{

gtk_calendar_mark_day (GTK_CALENDAR (data- � window), tm.tm_mday);
}

else
{

gtk_calendar_unmark_day (GTK_CALENDAR (data- � window), tm.tm_mday);
}

}

void calendar_prev_month(GtkWidget *widget,
CalendarData *data)

{
char buffer[256] = "prev_month: ";

calendar_date_to_string (data, buffer+12, 256-12);
calendar_set_signal_strings (buffer, data);

}

void calendar_next_month(GtkWidget *widget,
CalendarData *data)

{
char buffer[256] = "next_month: ";

calendar_date_to_string (data, buffer+12, 256-12);
calendar_set_signal_strings (buffer, data);

}

void calendar_prev_year(GtkWidget *widget,
CalendarData *data)

{
char buffer[256] = "prev_year: ";

calendar_date_to_string (data, buffer+11, 256-11);
calendar_set_signal_strings (buffer, data);

}

void calendar_next_year(GtkWidget *widget,
CalendarData *data)

{
char buffer[256] = "next_year: ";

calendar_date_to_string (data, buffer+11, 256-11);
calendar_set_signal_strings (buffer, data);

}

void calendar_set_flags(CalendarData *calendar)
{
gint i;
gint options = 0;
for (i = 0; i

�
5; i++)

if (calendar- � settings[i])
{

options=options + (1
���

i);
}

if (calendar- � window)
gtk_calendar_display_options (GTK_CALENDAR (calendar- � window), options);

}

81

Chapter 10. Miscellaneous Widgets

void calendar_toggle_flag(GtkWidget *toggle,
CalendarData *calendar)

{
gint i;
gint j;
j = 0;
for (i = 0; i

�
5; i++)

if (calendar- � flag_checkboxes[i] == toggle)
j = i;

calendar- � settings[j] = !calendar- � settings[j];
calendar_set_flags (calendar);

}

void calendar_font_selection_ok(GtkWidget *button,
CalendarData *calendar)

{
GtkStyle *style;
PangoFontDescription *font_desc;

calendar- � font = gtk_font_selection_dialog_get_font_name (
GTK_FONT_SELECTION_DIALOG (calendar- � font_dialog));

if (calendar- � window)
{

font_desc = pango_font_description_from_string (calendar- � font);
if (font_desc)

{
style = gtk_style_copy (gtk_widget_get_style (calendar- � window));
style- � font_desc = font_desc;
gtk_widget_set_style (calendar- � window, style);

}
}

}

void calendar_select_font(GtkWidget *button,
CalendarData *calendar)

{
GtkWidget *window;

if (!calendar- � font_dialog) {
window = gtk_font_selection_dialog_new ("Font Selection Dialog");
g_return_if_fail (GTK_IS_FONT_SELECTION_DIALOG (window));
calendar- � font_dialog = window;

gtk_window_set_position (GTK_WINDOW (window), GTK_WIN_POS_MOUSE);

g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (gtk_widget_destroyed),

(gpointer) &calendar- � font_dialog);

g_signal_connect (G_OBJECT (GTK_FONT_SELECTION_DIALOG (window)-
� ok_button),

"clicked", G_CALLBACK (calendar_font_selection_ok),
(gpointer) calendar);

g_signal_connect_swapped (G_OBJECT (GTK_FONT_SELECTION_DIALOG (window)-
� cancel_button),

"clicked",
G_CALLBACK (gtk_widget_destroy),
G_OBJECT (calendar- � font_dialog));

}
window=calendar- � font_dialog;
if (!GTK_WIDGET_VISIBLE (window))

gtk_widget_show (window);
else

gtk_widget_destroy (window);

}

void create_calendar()
{

82

Chapter 10. Miscellaneous Widgets

GtkWidget *window;
GtkWidget *vbox, *vbox2, *vbox3;
GtkWidget *hbox;
GtkWidget *hbbox;
GtkWidget *calendar;
GtkWidget *toggle;
GtkWidget *button;
GtkWidget *frame;
GtkWidget *separator;
GtkWidget *label;
GtkWidget *bbox;
static CalendarData calendar_data;
gint i;

struct {
char *label;

} flags[] =
{

{ "Show Heading" },
{ "Show Day Names" },
{ "No Month Change" },
{ "Show Week Numbers" },
{ "Week Start Monday" }

};

calendar_data.window = NULL;
calendar_data.font = NULL;
calendar_data.font_dialog = NULL;

for (i = 0; i
�

5; i++) {
calendar_data.settings[i] = 0;

}

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "GtkCalendar Example");
gtk_container_set_border_width (GTK_CONTAINER (window), 5);
g_signal_connect (G_OBJECT (window), "destroy",

G_CALLBACK (gtk_main_quit),
NULL);

g_signal_connect (G_OBJECT (window), "delete-event",
G_CALLBACK (gtk_false),
NULL);

gtk_window_set_resizable (GTK_WINDOW (window), FALSE);

vbox = gtk_vbox_new (FALSE, DEF_PAD);
gtk_container_add (GTK_CONTAINER (window), vbox);

/*
* The top part of the window, Calendar, flags and fontsel.
*/

hbox = gtk_hbox_new (FALSE, DEF_PAD);
gtk_box_pack_start (GTK_BOX (vbox), hbox, TRUE, TRUE, DEF_PAD);
hbbox = gtk_hbutton_box_new ();
gtk_box_pack_start (GTK_BOX (hbox), hbbox, FALSE, FALSE, DEF_PAD);
gtk_button_box_set_layout (GTK_BUTTON_BOX(hbbox), GTK_BUTTONBOX_SPREAD);
gtk_box_set_spacing (GTK_BOX (hbbox), 5);

/* Calendar widget */
frame = gtk_frame_new ("Calendar");
gtk_box_pack_start (GTK_BOX (hbbox), frame, FALSE, TRUE, DEF_PAD);
calendar=gtk_calendar_new ();
calendar_data.window = calendar;
calendar_set_flags (&calendar_data);
gtk_calendar_mark_day (GTK_CALENDAR (calendar), 19);
gtk_container_add(GTK_CONTAINER (frame), calendar);
g_signal_connect (G_OBJECT (calendar), "month_changed",

G_CALLBACK (calendar_month_changed),
(gpointer) &calendar_data);

83

Chapter 10. Miscellaneous Widgets

g_signal_connect (G_OBJECT (calendar), "day_selected",
G_CALLBACK (calendar_day_selected),

(gpointer) &calendar_data);
g_signal_connect (G_OBJECT (calendar), "day_selected_double_click",

G_CALLBACK (calendar_day_selected_double_click),
(gpointer) &calendar_data);

g_signal_connect (G_OBJECT (calendar), "prev_month",
G_CALLBACK (calendar_prev_month),

(gpointer) &calendar_data);
g_signal_connect (G_OBJECT (calendar), "next_month",

G_CALLBACK (calendar_next_month),
(gpointer) &calendar_data);

g_signal_connect (G_OBJECT (calendar), "prev_year",
G_CALLBACK (calendar_prev_year),

(gpointer) &calendar_data);
g_signal_connect (G_OBJECT (calendar), "next_year",

G_CALLBACK (calendar_next_year),
(gpointer) &calendar_data);

separator = gtk_vseparator_new ();
gtk_box_pack_start (GTK_BOX (hbox), separator, FALSE, TRUE, 0);

vbox2 = gtk_vbox_new (FALSE, DEF_PAD);
gtk_box_pack_start (GTK_BOX (hbox), vbox2, FALSE, FALSE, DEF_PAD);

/* Build the Right frame with the flags in */

frame = gtk_frame_new ("Flags");
gtk_box_pack_start (GTK_BOX (vbox2), frame, TRUE, TRUE, DEF_PAD);
vbox3 = gtk_vbox_new (TRUE, DEF_PAD_SMALL);
gtk_container_add (GTK_CONTAINER (frame), vbox3);

for (i = 0; i
�

5; i++)
{

toggle = gtk_check_button_new_with_label (flags[i].label);
g_signal_connect (G_OBJECT (toggle),

"toggled",
G_CALLBACK (calendar_toggle_flag),
(gpointer) &calendar_data);

gtk_box_pack_start (GTK_BOX (vbox3), toggle, TRUE, TRUE, 0);
calendar_data.flag_checkboxes[i] = toggle;

}
/* Build the right font-button */
button = gtk_button_new_with_label ("Font...");
g_signal_connect (G_OBJECT (button),

"clicked",
G_CALLBACK (calendar_select_font),
(gpointer) &calendar_data);

gtk_box_pack_start (GTK_BOX (vbox2), button, FALSE, FALSE, 0);

/*
* Build the Signal-event part.
*/

frame = gtk_frame_new ("Signal events");
gtk_box_pack_start (GTK_BOX (vbox), frame, TRUE, TRUE, DEF_PAD);

vbox2 = gtk_vbox_new (TRUE, DEF_PAD_SMALL);
gtk_container_add (GTK_CONTAINER (frame), vbox2);

hbox = gtk_hbox_new (FALSE, 3);
gtk_box_pack_start (GTK_BOX (vbox2), hbox, FALSE, TRUE, 0);
label = gtk_label_new ("Signal:");
gtk_box_pack_start (GTK_BOX (hbox), label, FALSE, TRUE, 0);
calendar_data.last_sig = gtk_label_new ("");
gtk_box_pack_start (GTK_BOX (hbox), calendar_data.last_sig, FALSE, TRUE, 0);

hbox = gtk_hbox_new (FALSE, 3);
gtk_box_pack_start (GTK_BOX (vbox2), hbox, FALSE, TRUE, 0);
label = gtk_label_new ("Previous signal:");

84

Chapter 10. Miscellaneous Widgets

gtk_box_pack_start (GTK_BOX (hbox), label, FALSE, TRUE, 0);
calendar_data.prev_sig = gtk_label_new ("");
gtk_box_pack_start (GTK_BOX (hbox), calendar_data.prev_sig, FALSE, TRUE, 0);

hbox = gtk_hbox_new (FALSE, 3);
gtk_box_pack_start (GTK_BOX (vbox2), hbox, FALSE, TRUE, 0);
label = gtk_label_new ("Second previous signal:");
gtk_box_pack_start (GTK_BOX (hbox), label, FALSE, TRUE, 0);
calendar_data.prev2_sig = gtk_label_new ("");
gtk_box_pack_start (GTK_BOX (hbox), calendar_data.prev2_sig, FALSE, TRUE, 0);

bbox = gtk_hbutton_box_new ();
gtk_box_pack_start (GTK_BOX (vbox), bbox, FALSE, FALSE, 0);
gtk_button_box_set_layout (GTK_BUTTON_BOX (bbox), GTK_BUTTONBOX_END);

button = gtk_button_new_with_label ("Close");
g_signal_connect (G_OBJECT (button), "clicked",

G_CALLBACK (gtk_main_quit),
NULL);

gtk_container_add (GTK_CONTAINER (bbox), button);
GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);
gtk_widget_grab_default (button);

gtk_widget_show_all (window);
}

int main(int argc,
char *argv[])

{
gtk_init (&argc, &argv);

create_calendar ();

gtk_main ();

return 0;
}

Color Selection
The color selection widget is, not surprisingly, a widget for interactive selection
of colors. This composite widget lets the user select a color by manipulating RGB
(Red, Green, Blue) and HSV (Hue, Saturation, Value) triples. This is done either
by adjusting single values with sliders or entries, or by picking the desired color
from a hue-saturation wheel/value bar. Optionally, the opacity of the color can
also be set.

The color selection widget currently emits only one signal, "color_changed",
which is emitted whenever the current color in the widget changes, either when
the user changes it or if it’s set explicitly through gtk_color_selection_set_color().

Lets have a look at what the color selection widget has to offer us. The widget
comes in two flavours: GtkColorSelection and GtkColorSelectionDialog.

GtkWidget *gtk_color_selection_new(void);

You’ll probably not be using this constructor directly. It creates an orphan ColorS-
election widget which you’ll have to parent yourself. The ColorSelection widget
inherits from the VBox widget.

GtkWidget *gtk_color_selection_dialog_new(const gchar *title);

This is the most common color selection constructor. It creates a ColorSelection-
Dialog. It consists of a Frame containing a ColorSelection widget, an HSeparator
and an HBox with three buttons, "Ok", "Cancel" and "Help". You can reach these

85

Chapter 10. Miscellaneous Widgets

buttons by accessing the "ok_button", "cancel_button" and "help_button" wid-
gets in the ColorSelectionDialog structure, (i.e., GTK_COLOR_SELECTION_DIALOG
(colorseldialog)->ok_button)).

void gtk_color_selection_set_has_opacity_control(GtkColorSelection *col-
orsel,

gboolean has_opacity);

The color selection widget supports adjusting the opacity of a color (also known
as the alpha channel). This is disabled by default. Calling this function with
has_opacity set to TRUE enables opacity. Likewise, has_opacity set to FALSE will
disable opacity.

void gtk_color_selection_set_current_color(GtkColorSelection *col-
orsel,

GdkColor *color);

void gtk_color_selection_set_current_alpha(GtkColorSelection *colorsel,
guint16 al-

pha);

You can set the current color explicitly by calling
gtk_color_selection_set_current_color() with a pointer to a GdkColor. Setting the
opacity (alpha channel) is done with gtk_color_selection_set_current_alpha().
The alpha value should be between 0 (fully transparent) and 65636 (fully
opaque).

void gtk_color_selection_get_current_color(GtkColorSelection *col-
orsel,

GdkColor *color);

void gtk_color_selection_get_current_alpha(GtkColorSelection *colorsel,
guint16 *al-

pha);

When you need to query the current color, typically when you’ve received a
"color_changed" signal, you use these functions.

Here’s a simple example demonstrating the use of the ColorSelectionDialog. The
program displays a window containing a drawing area. Clicking on it opens a
color selection dialog, and changing the color in the color selection dialog changes
the background color.

#include
�
glib.h �

#include
�
gdk/gdk.h �

86

Chapter 10. Miscellaneous Widgets

#include
�
gtk/gtk.h �

GtkWidget *colorseldlg = NULL;
GtkWidget *drawingarea = NULL;
GdkColor color;

/* Color changed handler */

void color_changed_cb(GtkWidget *widget,
GtkColorSelection *colorsel)

{
GdkColor ncolor;

gtk_color_selection_get_current_color (colorsel, &ncolor);
gtk_widget_modify_bg (drawingarea, GTK_STATE_NORMAL, &ncolor);

}

/* Drawingarea event handler */

gint area_event(GtkWidget *widget,
GdkEvent *event,
gpointer client_data)

{
gint handled = FALSE;
gint response;
GtkColorSelection *colorsel;

/* Check if we’ve received a button pressed event */

if (event- � type == GDK_BUTTON_PRESS)
{

handled = TRUE;

/* Create color selection dialog */
if (colorseldlg == NULL)
colorseldlg = gtk_color_selection_dialog_new ("Select back-

ground color");

/* Get the ColorSelection widget */
colorsel = GTK_COLOR_SELECTION (GTK_COLOR_SELECTION_DIALOG (colorseldlg)-

� colorsel);

gtk_color_selection_set_previous_color (colorsel, &color);
gtk_color_selection_set_current_color (colorsel, &color);
gtk_color_selection_set_has_palette (colorsel, TRUE);

/* Connect to the "color_changed" signal, set the client-data
* to the colorsel widget */
g_signal_connect (G_OBJECT (colorsel), "color_changed",

G_CALLBACK (color_changed_cb), (gpointer) colorsel);

/* Show the dialog */
response = gtk_dialog_run (GTK_DIALOG (colorseldlg));

if (response == GTK_RESPONSE_OK)
gtk_color_selection_get_current_color (colorsel, &color);

else
gtk_widget_modify_bg (drawingarea, GTK_STATE_NORMAL, &color);

gtk_widget_hide (colorseldlg);
}

return handled;
}

/* Close down and exit handler */

gint destroy_window(GtkWidget *widget,
GdkEvent *event,
gpointer client_data)

{

87

Chapter 10. Miscellaneous Widgets

gtk_main_quit ();
return TRUE;

}

/* Main */

gint main(gint argc,
gchar *argv[])

{
GtkWidget *window;

/* Initialize the toolkit, remove gtk-related commandline stuff */

gtk_init (&argc, &argv);

/* Create toplevel window, set title and policies */

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Color selection test");
gtk_window_set_policy (GTK_WINDOW (window), TRUE, TRUE, TRUE);

/* Attach to the "delete" and "destroy" events so we can exit */

g_signal_connect (GTK_OBJECT (window), "delete_event",
GTK_SIGNAL_FUNC (destroy_window), (gpointer) window);

/* Create drawingarea, set size and catch button events */

drawingarea = gtk_drawing_area_new ();

color.red = 0;
color.blue = 65535;
color.green = 0;
gtk_widget_modify_bg (drawingarea, GTK_STATE_NORMAL, &color);

gtk_widget_set_size_request (GTK_WIDGET (drawingarea), 200, 200);

gtk_widget_set_events (drawingarea, GDK_BUTTON_PRESS_MASK);

g_signal_connect (GTK_OBJECT (drawingarea), "event",
GTK_SIGNAL_FUNC (area_event), (gpointer) drawingarea);

/* Add drawingarea to window, then show them both */

gtk_container_add (GTK_CONTAINER (window), drawingarea);

gtk_widget_show (drawingarea);
gtk_widget_show (window);

/* Enter the gtk main loop (this never returns) */

gtk_main ();

/* Satisfy grumpy compilers */

return 0;
}

File Selections
The file selection widget is a quick and simple way to display a File dialog box. It
comes complete with Ok, Cancel, and Help buttons, a great way to cut down on
programming time.

To create a new file selection box use:

GtkWidget *gtk_file_selection_new(const gchar *title);

88

Chapter 10. Miscellaneous Widgets

To set the filename, for example to bring up a specific directory, or give a default
filename, use this function:

void gtk_file_selection_set_filename(GtkFileSelection *filesel,
const gchar *filename);

To grab the text that the user has entered or clicked on, use this function:

gchar *gtk_file_selection_get_filename(GtkFileSelection *filesel);

There are also pointers to the widgets contained within the file selection widget.
These are:

dir_list
file_list
selection_entry
selection_text
main_vbox
ok_button
cancel_button
help_button

Most likely you will want to use the ok_button, cancel_button, and help_button
pointers in signaling their use.

Included here is an example stolen from testgtk.c, modified to run on its own.
As you will see, there is nothing much to creating a file selection widget. While
in this example the Help button appears on the screen, it does nothing as there is
not a signal attached to it.

#include
�
gtk/gtk.h �

/* Get the selected filename and print it to the console */
void file_ok_sel(GtkWidget *w,

GtkFileSelection *fs)
{

g_print ("%s\n", gtk_file_selection_get_filename (GTK_FILE_SELECTION (fs)));
}

int main(int argc,
char *argv[])

89

Chapter 10. Miscellaneous Widgets

{
GtkWidget *filew;

gtk_init (&argc, &argv);

/* Create a new file selection widget */
filew = gtk_file_selection_new ("File selection");

g_signal_connect (G_OBJECT (filew), "destroy",
G_CALLBACK (gtk_main_quit), NULL);

/* Connect the ok_button to file_ok_sel function */
g_signal_connect (G_OBJECT (GTK_FILE_SELECTION (filew)- � ok_button),

"clicked", G_CALLBACK (file_ok_sel), (gpointer) filew);

/* Connect the cancel_button to destroy the widget */
g_signal_connect_swapped (G_OBJECT (GTK_FILE_SELECTION (filew)-

� cancel_button),
"clicked", G_CALLBACK (gtk_widget_destroy),

G_OBJECT (filew));

/* Lets set the filename, as if this were a save dialog, and we are giving
a default filename */

gtk_file_selection_set_filename (GTK_FILE_SELECTION(filew),
"penguin.png");

gtk_widget_show (filew);
gtk_main ();
return 0;

}

90

Chapter 11. Container Widgets

The EventBox
Some GTK widgets don’t have associated X windows, so they just draw on their
parents. Because of this, they cannot receive events and if they are incorrectly
sized, they don’t clip so you can get messy overwriting, etc. If you require more
from these widgets, the EventBox is for you.

At first glance, the EventBox widget might appear to be totally useless. It draws
nothing on the screen and responds to no events. However, it does serve a func-
tion - it provides an X window for its child widget. This is important as many
GTK widgets do not have an associated X window. Not having an X window
saves memory and improves performance, but also has some drawbacks. A wid-
get without an X window cannot receive events, and does not perform any clip-
ping on its contents. Although the name EventBox emphasizes the event-handling
function, the widget can also be used for clipping. (and more, see the example be-
low).

To create a new EventBox widget, use:

GtkWidget *gtk_event_box_new(void);

A child widget can then be added to this EventBox:

gtk_container_add (GTK_CONTAINER (event_box), child_widget);

The following example demonstrates both uses of an EventBox - a label is created
that is clipped to a small box, and set up so that a mouse-click on the label causes
the program to exit. Resizing the window reveals varying amounts of the label.

#include
�
stdlib.h �

#include
�
gtk/gtk.h �

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *event_box;
GtkWidget *label;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_window_set_title (GTK_WINDOW (window), "Event Box");

g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (exit), NULL);

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Create an EventBox and add it to our toplevel window */

event_box = gtk_event_box_new ();
gtk_container_add (GTK_CONTAINER (window), event_box);
gtk_widget_show (event_box);

/* Create a long label */

label = gtk_label_new ("Click here to quit, quit, quit, quit, quit");

91

Chapter 11. Container Widgets

gtk_container_add (GTK_CONTAINER (event_box), label);
gtk_widget_show (label);

/* Clip it short. */
gtk_widget_set_size_request (label, 110, 20);

/* And bind an action to it */
gtk_widget_set_events (event_box, GDK_BUTTON_PRESS_MASK);
g_signal_connect (G_OBJECT (event_box), "button_press_event",

G_CALLBACK (exit), NULL);

/* Yet one more thing you need an X window for ... */

gtk_widget_realize (event_box);
gdk_window_set_cursor (event_box- � window, gdk_cursor_new (GDK_HAND1));

gtk_widget_show (window);

gtk_main ();

return 0;
}

The Alignment widget
The alignment widget allows you to place a widget within its window at a po-
sition and size relative to the size of the Alignment widget itself. For example, it
can be very useful for centering a widget within the window.

There are only two functions associated with the Alignment widget:

GtkWidget* gtk_alignment_new(gfloat xalign,
gfloat yalign,
gfloat xscale,
gfloat yscale);

void gtk_alignment_set(GtkAlignment *alignment,
gfloat xalign,
gfloat yalign,
gfloat xscale,
gfloat yscale);

The first function creates a new Alignment widget with the specified parameters.
The second function allows the alignment parameters of an exisiting Alignment
widget to be altered.

All four alignment parameters are floating point numbers which can range from
0.0 to 1.0. The xalign and yalign arguments affect the position of the widget
placed within the Alignment widget. The xscale and yscale arguments effect
the amount of space allocated to the widget.

A child widget can be added to this Alignment widget using:

gtk_container_add (GTK_CONTAINER (alignment), child_widget);

For an example of using an Alignment widget, refer to the example for the
Progress Bar widget.

Fixed Container
The Fixed container allows you to place widgets at a fixed position within it’s
window, relative to it’s upper left hand corner. The position of the widgets can be
changed dynamically.

There are only a few functions associated with the fixed widget:

GtkWidget* gtk_fixed_new(void);

92

Chapter 11. Container Widgets

void gtk_fixed_put(GtkFixed *fixed,
GtkWidget *widget,
gint x,
gint y);

void gtk_fixed_move(GtkFixed *fixed,
GtkWidget *widget,
gint x,
gint y);

The function gtk_fixed_new() allows you to create a new Fixed container.

gtk_fixed_put() places widget in the container fixed at the position specified by
x and y.

gtk_fixed_move() allows the specified widget to be moved to a new position.

void gtk_fixed_set_has_window(GtkFixed *fixed,
gboolean has_window);

gboolean gtk_fixed_get_has_window(GtkFixed *fixed);

Normally, Fixed widgets don’t have their own X window. Since this is differ-
ent from the behaviour of Fixed widgets in earlier releases of GTK, the function
gtk_fixed_set_has_window() allows the creation of Fixed widgets with their own
window. It has to be called before realizing the widget.

The following example illustrates how to use the Fixed Container.

#include
�
gtk/gtk.h �

/* I’m going to be lazy and use some global variables to
* store the position of the widget within the fixed
* container */
gint x = 50;
gint y = 50;

/* This callback function moves the button to a new position
* in the Fixed container. */
void move_button(GtkWidget *widget,

GtkWidget *fixed)
{
x = (x + 30) % 300;
y = (y + 50) % 300;
gtk_fixed_move (GTK_FIXED (fixed), widget, x, y);

}

int main(int argc,

93

Chapter 11. Container Widgets

char *argv[])
{
/* GtkWidget is the storage type for widgets */
GtkWidget *window;
GtkWidget *fixed;
GtkWidget *button;
gint i;

/* Initialise GTK */
gtk_init (&argc, &argv);

/* Create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Fixed Container");

/* Here we connect the "destroy" event to a signal handler */
g_signal_connect (G_OBJECT (window), "destroy",

G_CALLBACK (gtk_main_quit), NULL);

/* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Create a Fixed Container */
fixed = gtk_fixed_new ();
gtk_container_add (GTK_CONTAINER (window), fixed);
gtk_widget_show (fixed);

for (i = 1 ; i
�
= 3 ; i++) {

/* Creates a new button with the label "Press me" */
button = gtk_button_new_with_label ("Press me");

/* When the button receives the "clicked" signal, it will call the
* function move_button() passing it the Fixed Container as its
* argument. */

g_signal_connect (G_OBJECT (button), "clicked",
G_CALLBACK (move_button), (gpointer) fixed);

/* This packs the button into the fixed containers window. */
gtk_fixed_put (GTK_FIXED (fixed), button, i*50, i*50);

/* The final step is to display this newly created widget. */
gtk_widget_show (button);

}

/* Display the window */
gtk_widget_show (window);

/* Enter the event loop */
gtk_main ();

return 0;
}

Layout Container
The Layout container is similar to the Fixed container except that it implements
an infinite (where infinity is less than 2^32) scrolling area. The X window system
has a limitation where windows can be at most 32767 pixels wide or tall. The
Layout container gets around this limitation by doing some exotic stuff using
window and bit gravities, so that you can have smooth scrolling even when you
have many child widgets in your scrolling area.

A Layout container is created using:

GtkWidget *gtk_layout_new(GtkAdjustment *hadjustment,
GtkAdjustment *vadjustment);

As you can see, you can optionally specify the Adjustment objects that the Layout
widget will use for its scrolling.

94

Chapter 11. Container Widgets

You can add and move widgets in the Layout container using the following two
functions:

void gtk_layout_put(GtkLayout *layout,
GtkWidget *widget,
gint x,
gint y);

void gtk_layout_move(GtkLayout *layout,
GtkWidget *widget,
gint x,
gint y);

The size of the Layout container can be set using the next function:

void gtk_layout_set_size(GtkLayout *layout,
guint width,
guint height);

The final four functions for use with Layout widgets are for manipulating the
horizontal and vertical adjustment widgets:

GtkAdjustment* gtk_layout_get_hadjustment(GtkLayout *layout);

GtkAdjustment* gtk_layout_get_vadjustment(GtkLayout *layout);

void gtk_layout_set_hadjustment(GtkLayout *layout,
GtkAdjustment *adjustment);

void gtk_layout_set_vadjustment(GtkLayout *layout,
GtkAdjustment *adjustment);

Frames
Frames can be used to enclose one or a group of widgets with a box which can
optionally be labelled. The position of the label and the style of the box can be
altered to suit.

A Frame can be created with the following function:

GtkWidget *gtk_frame_new(const gchar *label);

The label is by default placed in the upper left hand corner of the frame. A value
of NULL for the label argument will result in no label being displayed. The text
of the label can be changed using the next function.

void gtk_frame_set_label(GtkFrame *frame,
const gchar *label);

The position of the label can be changed using this function:

void gtk_frame_set_label_align(GtkFrame *frame,
gfloat xalign,
gfloat yalign);

xalign and yalign take values between 0.0 and 1.0. xalign indicates the posi-
tion of the label along the top horizontal of the frame. yalign is not currently
used. The default value of xalign is 0.0 which places the label at the left hand end
of the frame.

The next function alters the style of the box that is used to outline the frame.

void gtk_frame_set_shadow_type(GtkFrame *frame,
GtkShadowType type);

The type argument can take one of the following values:

GTK_SHADOW_NONE

95

Chapter 11. Container Widgets

GTK_SHADOW_IN
GTK_SHADOW_OUT
GTK_SHADOW_ETCHED_IN (the default)
GTK_SHADOW_ETCHED_OUT

The following code example illustrates the use of the Frame widget.

#include
�
gtk/gtk.h �

int main(int argc,
char *argv[])

{
/* GtkWidget is the storage type for widgets */
GtkWidget *window;
GtkWidget *frame;

/* Initialise GTK */
gtk_init (&argc, &argv);

/* Create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Frame Example");

/* Here we connect the "destroy" event to a signal handler */
g_signal_connect (G_OBJECT (window), "destroy",

G_CALLBACK (gtk_main_quit), NULL);

gtk_widget_set_size_request (window, 300, 300);
/* Sets the border width of the window. */
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Create a Frame */
frame = gtk_frame_new (NULL);
gtk_container_add (GTK_CONTAINER (window), frame);

/* Set the frame’s label */
gtk_frame_set_label (GTK_FRAME (frame), "GTK Frame Widget");

96

Chapter 11. Container Widgets

/* Align the label at the right of the frame */
gtk_frame_set_label_align (GTK_FRAME (frame), 1.0, 0.0);

/* Set the style of the frame */
gtk_frame_set_shadow_type (GTK_FRAME (frame), GTK_SHADOW_ETCHED_OUT);

gtk_widget_show (frame);

/* Display the window */
gtk_widget_show (window);

/* Enter the event loop */
gtk_main ();

return 0;
}

Aspect Frames
The aspect frame widget is like a frame widget, except that it also enforces the
aspect ratio (that is, the ratio of the width to the height) of the child widget to have
a certain value, adding extra space if necessary. This is useful, for instance, if you
want to preview a larger image. The size of the preview should vary when the
user resizes the window, but the aspect ratio needs to always match the original
image.

To create a new aspect frame use:

GtkWidget *gtk_aspect_frame_new(const gchar *label,
gfloat xalign,
gfloat yalign,
gfloat ratio,
gboolean obey_child);

xalign and yalign specify alignment as with Alignment widgets. If obey_child
is TRUE, the aspect ratio of a child widget will match the aspect ratio of the ideal
size it requests. Otherwise, it is given by ratio.

To change the options of an existing aspect frame, you can use:

void gtk_aspect_frame_set(GtkAspectFrame *aspect_frame,
gfloat xalign,
gfloat yalign,
gfloat ratio,
gboolean obey_child);

As an example, the following program uses an AspectFrame to present a drawing
area whose aspect ratio will always be 2:1, no matter how the user resizes the top-
level window.

97

Chapter 11. Container Widgets

#include
�
gtk/gtk.h �

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *aspect_frame;
GtkWidget *drawing_area;
gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Aspect Frame");
g_signal_connect (G_OBJECT (window), "destroy",

G_CALLBACK (gtk_main_quit), NULL);
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Create an aspect_frame and add it to our toplevel window */

aspect_frame = gtk_aspect_frame_new ("2x1", /* label */
0.5, /* center x */
0.5, /* center y */
2, /* xsize/ysize = 2 */
FALSE /* ignore child’s as-

pect */);

gtk_container_add (GTK_CONTAINER (window), aspect_frame);
gtk_widget_show (aspect_frame);

/* Now add a child widget to the aspect frame */

drawing_area = gtk_drawing_area_new ();

/* Ask for a 200x200 window, but the AspectFrame will give us a 200x100
* window since we are forcing a 2x1 aspect ratio */

gtk_widget_set_size_request (drawing_area, 200, 200);
gtk_container_add (GTK_CONTAINER (aspect_frame), drawing_area);
gtk_widget_show (drawing_area);

gtk_widget_show (window);
gtk_main ();
return 0;

}

98

Chapter 11. Container Widgets

Paned Window Widgets
The paned window widgets are useful when you want to divide an area into two
parts, with the relative size of the two parts controlled by the user. A groove is
drawn between the two portions with a handle that the user can drag to change
the ratio. The division can either be horizontal (HPaned) or vertical (VPaned).

To create a new paned window, call one of:

GtkWidget *gtk_hpaned_new (void);

GtkWidget *gtk_vpaned_new (void);

After creating the paned window widget, you need to add child widgets to its
two halves. To do this, use the functions:

void gtk_paned_add1 (GtkPaned *paned, GtkWidget *child);

void gtk_paned_add2 (GtkPaned *paned, GtkWidget *child);

gtk_paned_add1() adds the child widget to the left or top half of the paned
window. gtk_paned_add2() adds the child widget to the right or bottom half of
the paned window.

As an example, we will create part of the user interface of an imaginary email
program. A window is divided into two portions vertically, with the top portion
being a list of email messages and the bottom portion the text of the email mes-
sage. Most of the program is pretty straightforward. A couple of points to note:
text can’t be added to a Text widget until it is realized. This could be done by call-
ing gtk_widget_realize(), but as a demonstration of an alternate technique, we
connect a handler to the "realize" signal to add the text. Also, we need to add the
GTK_SHRINK option to some of the items in the table containing the text window
and its scrollbars, so that when the bottom portion is made smaller, the correct
portions shrink instead of being pushed off the bottom of the window.

#include
�
stdio.h �

#include
�
gtk/gtk.h �

99

Chapter 11. Container Widgets

/* Create the list of "messages" */
GtkWidget *create_list(void)
{

GtkWidget *scrolled_window;
GtkWidget *tree_view;
GtkListStore *model;
GtkTreeIter iter;
GtkCellRenderer *cell;
GtkTreeViewColumn *column;

int i;

/* Create a new scrolled window, with scrollbars only if needed */
scrolled_window = gtk_scrolled_window_new (NULL, NULL);
gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_window),

GTK_POLICY_AUTOMATIC,
GTK_POLICY_AUTOMATIC);

model = gtk_list_store_new (1, G_TYPE_STRING);
tree_view = gtk_tree_view_new ();
gtk_scrolled_window_add_with_viewport (GTK_SCROLLED_WINDOW (scrolled_window),

tree_view);
gtk_tree_view_set_model (GTK_TREE_VIEW (tree_view), GTK_TREE_MODEL (model));
gtk_widget_show (tree_view);

/* Add some messages to the window */
for (i = 0; i

�
10; i++) {

gchar *msg = g_strdup_printf ("Message #%d", i);
gtk_list_store_append (GTK_LIST_STORE (model), &iter);
gtk_list_store_set (GTK_LIST_STORE (model),

&iter,
0, msg,

-1);
g_free (msg);

}

cell = gtk_cell_renderer_text_new ();

column = gtk_tree_view_column_new_with_attributes ("Messages",
cell,
"text", 0,
NULL);

gtk_tree_view_append_column (GTK_TREE_VIEW (tree_view),
GTK_TREE_VIEW_COLUMN (column));

return scrolled_window;
}

/* Add some text to our text widget - this is a callback that is invoked
when our window is realized. We could also force our window to be
realized with gtk_widget_realize, but it would have to be part of
a hierarchy first */

void insert_text (GtkTextBuffer *buffer)
{

GtkTextIter iter;

gtk_text_buffer_get_iter_at_offset (buffer, &iter, 0);

gtk_text_buffer_insert (buffer, &iter,
"From: pathfinder@nasa.gov\n"
"To: mom@nasa.gov\n"
"Subject: Made it!\n"
"\n"
"We just got in this morning. The weather has been\n"
"great - clear but cold, and there are lots of fun sights.\n"
"Sojourner says hi. See you soon.\n"
" -Path\n", -1);

100

Chapter 11. Container Widgets

}

/* Create a scrolled text area that displays a "message" */
GtkWidget *create_text(void)
{

GtkWidget *scrolled_window;
GtkWidget *view;
GtkTextBuffer *buffer;

view = gtk_text_view_new ();
buffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (view));

scrolled_window = gtk_scrolled_window_new (NULL, NULL);
gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_window),

GTK_POLICY_AUTOMATIC,
GTK_POLICY_AUTOMATIC);

gtk_container_add (GTK_CONTAINER (scrolled_window), view);
insert_text (buffer);

gtk_widget_show_all (scrolled_window);

return scrolled_window;
}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *vpaned;
GtkWidget *list;
GtkWidget *text;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Paned Windows");
g_signal_connect (G_OBJECT (window), "destroy",

G_CALLBACK (gtk_main_quit), NULL);
gtk_container_set_border_width (GTK_CONTAINER (window), 10);
gtk_widget_set_size_request (GTK_WIDGET (window), 450, 400);

/* create a vpaned widget and add it to our toplevel window */

vpaned = gtk_vpaned_new ();
gtk_container_add (GTK_CONTAINER (window), vpaned);
gtk_widget_show (vpaned);

/* Now create the contents of the two halves of the window */

list = create_list ();
gtk_paned_add1 (GTK_PANED (vpaned), list);
gtk_widget_show (list);

text = create_text ();
gtk_paned_add2 (GTK_PANED (vpaned), text);
gtk_widget_show (text);
gtk_widget_show (window);

gtk_main ();

return 0;
}

101

Chapter 11. Container Widgets

Viewports
It is unlikely that you will ever need to use the Viewport widget directly. You
are much more likely to use the Scrolled Window widget which itself uses the
Viewport.

A viewport widget allows you to place a larger widget within it such that you can
view a part of it at a time. It uses Adjustments to define the area that is currently
in view.

A Viewport is created with the function

GtkWidget *gtk_viewport_new(GtkAdjustment *hadjustment,
GtkAdjustment *vadjustment);

As you can see you can specify the horizontal and vertical Adjustments that the
widget is to use when you create the widget. It will create its own if you pass
NULL as the value of the arguments.

You can get and set the adjustments after the widget has been created using the
following four functions:

GtkAdjustment *gtk_viewport_get_hadjustment (GtkViewport *viewport);

GtkAdjustment *gtk_viewport_get_vadjustment (GtkViewport *viewport);

void gtk_viewport_set_hadjustment(GtkViewport *viewport,
GtkAdjustment *adjustment);

void gtk_viewport_set_vadjustment(GtkViewport *viewport,
GtkAdjustment *adjustment);

The only other viewport function is used to alter its appearance:

void gtk_viewport_set_shadow_type(GtkViewport *viewport,
GtkShadowType type);

Possible values for the type parameter are:

GTK_SHADOW_NONE,
GTK_SHADOW_IN,
GTK_SHADOW_OUT,
GTK_SHADOW_ETCHED_IN,
GTK_SHADOW_ETCHED_OUT

Scrolled Windows
Scrolled windows are used to create a scrollable area with another widget inside
it. You may insert any type of widget into a scrolled window, and it will be acces-
sible regardless of the size by using the scrollbars.

The following function is used to create a new scrolled window.

GtkWidget *gtk_scrolled_window_new(GtkAdjustment *hadjustment,
GtkAdjustment *vadjustment);

Where the first argument is the adjustment for the horizontal direction, and the
second, the adjustment for the vertical direction. These are almost always set to
NULL.

void gtk_scrolled_window_set_policy(GtkScrolledWindow *scrolled_window,
GtkPolicyType hscrollbar_policy,
GtkPolicyType vscrollbar_policy);

This sets the policy to be used with respect to the scrollbars. The first argument
is the scrolled window you wish to change. The second sets the policy for the
horizontal scrollbar, and the third the policy for the vertical scrollbar.

102

Chapter 11. Container Widgets

The policy may be one of GTK_POLICY_AUTOMATIC or GTK_POLICY_ALWAYS.
GTK_POLICY_AUTOMATIC will automatically decide whether you need scrollbars,
whereas GTK_POLICY_ALWAYS will always leave the scrollbars there.

You can then place your object into the scrolled window using the following func-
tion.

void gtk_scrolled_window_add_with_viewport(GtkScrolledWindow *scrolled_window,
GtkWidget *child);

Here is a simple example that packs a table with 100 toggle buttons into a scrolled
window. I’ve only commented on the parts that may be new to you.

#include
�
stdio.h �

#include
�
gtk/gtk.h �

void destroy(GtkWidget *widget,
gpointer data)

{
gtk_main_quit ();

}

int main(int argc,
char *argv[])

{
static GtkWidget *window;
GtkWidget *scrolled_window;
GtkWidget *table;
GtkWidget *button;
char buffer[32];
int i, j;

gtk_init (&argc, &argv);

/* Create a new dialog window for the scrolled window to be
* packed into. */

window = gtk_dialog_new ();

103

Chapter 11. Container Widgets

g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (destroy), NULL);

gtk_window_set_title (GTK_WINDOW (window), "GtkScrolledWindow example");
gtk_container_set_border_width (GTK_CONTAINER (window), 0);
gtk_widget_set_size_request (window, 300, 300);

/* create a new scrolled window. */
scrolled_window = gtk_scrolled_window_new (NULL, NULL);

gtk_container_set_border_width (GTK_CONTAINER (scrolled_window), 10);

/* the policy is one of GTK_POLICY AUTOMATIC, or GTK_POLICY_ALWAYS.
* GTK_POLICY_AUTOMATIC will automatically decide whether you need
* scrollbars, whereas GTK_POLICY_ALWAYS will always leave the scrollbars
* there. The first one is the horizontal scrollbar, the sec-

ond,
* the vertical. */

gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_window),
GTK_POLICY_AUTOMATIC, GTK_POLICY_ALWAYS);

/* The dialog window is created with a vbox packed into it. */
gtk_box_pack_start (GTK_BOX (GTK_DIALOG(window)- � vbox), scrolled_window,

TRUE, TRUE, 0);
gtk_widget_show (scrolled_window);

/* create a table of 10 by 10 squares. */
table = gtk_table_new (10, 10, FALSE);

/* set the spacing to 10 on x and 10 on y */
gtk_table_set_row_spacings (GTK_TABLE (table), 10);
gtk_table_set_col_spacings (GTK_TABLE (table), 10);

/* pack the table into the scrolled window */
gtk_scrolled_window_add_with_viewport (

GTK_SCROLLED_WINDOW (scrolled_window), table);
gtk_widget_show (table);

/* this simply creates a grid of toggle buttons on the table
* to demonstrate the scrolled window. */

for (i = 0; i
�

10; i++)
for (j = 0; j

�
10; j++) {

sprintf (buffer, "button (%d,%d)\n", i, j);
button = gtk_toggle_button_new_with_label (buffer);
gtk_table_attach_defaults (GTK_TABLE (table), button,

i, i+1, j, j+1);
gtk_widget_show (button);

}

/* Add a "close" button to the bottom of the dialog */
button = gtk_button_new_with_label ("close");
g_signal_connect_swapped (G_OBJECT (button), "clicked",

G_CALLBACK (gtk_widget_destroy),
G_OBJECT (window));

/* this makes it so the button is the default. */

GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT);
gtk_box_pack_start (GTK_BOX (GTK_DIALOG (window)- � action_area), but-

ton, TRUE, TRUE, 0);

/* This grabs this button to be the default button. Simply hitting
* the "Enter" key will cause this button to activate. */

gtk_widget_grab_default (button);
gtk_widget_show (button);

gtk_widget_show (window);

gtk_main();

return 0;
}

104

Chapter 11. Container Widgets

Try playing with resizing the window. You’ll notice how the scrollbars react. You
may also wish to use the gtk_widget_set_size_request() call to set the default size
of the window or other widgets.

Button Boxes
Button Boxes are a convenient way to quickly layout a group of buttons. They
come in both horizontal and vertical flavours. You create a new Button Box with
one of the following calls, which create a horizontal or vertical box, respectively:

GtkWidget *gtk_hbutton_box_new(void);

GtkWidget *gtk_vbutton_box_new(void);

Buttons are added to a Button Box using the usual function:

gtk_container_add (GTK_CONTAINER (button_box), child_widget);

Here’s an example that illustrates all the different layout settings for Button
Boxes.

105

Chapter 11. Container Widgets

#include
�
gtk/gtk.h �

/* Create a Button Box with the specified parameters */
GtkWidget *create_bbox(gint horizontal,

char *title,
gint spacing,
gint child_w,
gint child_h,
gint layout)

{
GtkWidget *frame;
GtkWidget *bbox;
GtkWidget *button;

frame = gtk_frame_new (title);

if (horizontal)
bbox = gtk_hbutton_box_new ();

else
bbox = gtk_vbutton_box_new ();

gtk_container_set_border_width (GTK_CONTAINER (bbox), 5);
gtk_container_add (GTK_CONTAINER (frame), bbox);

/* Set the appearance of the Button Box */
gtk_button_box_set_layout (GTK_BUTTON_BOX (bbox), layout);
gtk_box_set_spacing (GTK_BOX (bbox), spacing);
/*gtk_button_box_set_child_size (GTK_BUTTON_BOX (bbox), child_w, child_h);*/

button = gtk_button_new_from_stock (GTK_STOCK_OK);
gtk_container_add (GTK_CONTAINER (bbox), button);

button = gtk_button_new_from_stock (GTK_STOCK_CANCEL);
gtk_container_add (GTK_CONTAINER (bbox), button);

button = gtk_button_new_from_stock (GTK_STOCK_HELP);
gtk_container_add (GTK_CONTAINER (bbox), button);

return frame;
}

int main(int argc,
char *argv[])

{
static GtkWidget* window = NULL;
GtkWidget *main_vbox;
GtkWidget *vbox;
GtkWidget *hbox;
GtkWidget *frame_horz;
GtkWidget *frame_vert;

/* Initialize GTK */
gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Button Boxes");

g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (gtk_main_quit),
NULL);

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

main_vbox = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), main_vbox);

frame_horz = gtk_frame_new ("Horizontal Button Boxes");
gtk_box_pack_start (GTK_BOX (main_vbox), frame_horz, TRUE, TRUE, 10);

vbox = gtk_vbox_new (FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (vbox), 10);

106

Chapter 11. Container Widgets

gtk_container_add (GTK_CONTAINER (frame_horz), vbox);

gtk_box_pack_start (GTK_BOX (vbox),
create_bbox (TRUE, "Spread (spacing 40)", 40, 85, 20, GTK_BUTTONBOX_SPREAD),

TRUE, TRUE, 0);

gtk_box_pack_start (GTK_BOX (vbox),
create_bbox (TRUE, "Edge (spacing 30)", 30, 85, 20, GTK_BUTTONBOX_EDGE),

TRUE, TRUE, 5);

gtk_box_pack_start (GTK_BOX (vbox),
create_bbox (TRUE, "Start (spacing 20)", 20, 85, 20, GTK_BUTTONBOX_START),

TRUE, TRUE, 5);

gtk_box_pack_start (GTK_BOX (vbox),
create_bbox (TRUE, "End (spacing 10)", 10, 85, 20, GTK_BUTTONBOX_END),

TRUE, TRUE, 5);

frame_vert = gtk_frame_new ("Vertical Button Boxes");
gtk_box_pack_start (GTK_BOX (main_vbox), frame_vert, TRUE, TRUE, 10);

hbox = gtk_hbox_new (FALSE, 0);
gtk_container_set_border_width (GTK_CONTAINER (hbox), 10);
gtk_container_add (GTK_CONTAINER (frame_vert), hbox);

gtk_box_pack_start (GTK_BOX (hbox),
create_bbox (FALSE, "Spread (spacing 5)", 5, 85, 20, GTK_BUTTONBOX_SPREAD),

TRUE, TRUE, 0);

gtk_box_pack_start (GTK_BOX (hbox),
create_bbox (FALSE, "Edge (spacing 30)", 30, 85, 20, GTK_BUTTONBOX_EDGE),

TRUE, TRUE, 5);

gtk_box_pack_start (GTK_BOX (hbox),
create_bbox (FALSE, "Start (spacing 20)", 20, 85, 20, GTK_BUTTONBOX_START),

TRUE, TRUE, 5);

gtk_box_pack_start (GTK_BOX (hbox),
create_bbox (FALSE, "End (spacing 20)", 20, 85, 20, GTK_BUTTONBOX_END),

TRUE, TRUE, 5);

gtk_widget_show_all (window);

/* Enter the event loop */
gtk_main ();

return 0;
}

Toolbar
Toolbars are usually used to group some number of widgets in order to simplify
customization of their look and layout. Typically a toolbar consists of buttons
with icons, labels and tooltips, but any other widget can also be put inside a
toolbar. Finally, items can be arranged horizontally or vertically and buttons can
be displayed with icons, labels, or both.

Creating a toolbar is (as one may already suspect) done with the following func-
tion:

GtkWidget *gtk_toolbar_new(void);

After creating a toolbar one can append, prepend and insert items (that means
simple text strings) or elements (that means any widget types) into the toolbar.
To describe an item we need a label text, a tooltip text, a private tooltip text,
an icon for the button and a callback function for it. For example, to append or
prepend an item you may use the following functions:

107

Chapter 11. Container Widgets

GtkWidget *gtk_toolbar_append_item(GtkToolbar *toolbar,
const char *text,
const char *tooltip_text,
const char *tooltip_private_text,
GtkWidget *icon,
GtkSignalFunc callback,
gpointer user_data);

GtkWidget *gtk_toolbar_prepend_item(GtkToolbar *toolbar,
const char *text,
const char *tooltip_text,
const char *tooltip_private_text,
GtkWidget *icon,
GtkSignalFunc callback,
gpointer user_data);

If you want to use gtk_toolbar_insert_item(), the only additional parameter
which must be specified is the position in which the item should be inserted,
thus:

GtkWidget *gtk_toolbar_insert_item(GtkToolbar *toolbar,
const char *text,
const char *tooltip_text,
const char *tooltip_private_text,
GtkWidget *icon,
GtkSignalFunc callback,
gpointer user_data,
gint position);

To simplify adding spaces between toolbar items, you may use the following
functions:

void gtk_toolbar_append_space(GtkToolbar *toolbar);

void gtk_toolbar_prepend_space(GtkToolbar *toolbar);

void gtk_toolbar_insert_space(GtkToolbar *toolbar,
gint position);

If it’s required, the orientation of a toolbar and its style can be changed "on the
fly" using the following functions:

void gtk_toolbar_set_orientation(GtkToolbar *toolbar,
GtkOrientation orientation);

void gtk_toolbar_set_style(GtkToolbar *toolbar,
GtkToolbarStyle style);

void gtk_toolbar_set_tooltips(GtkToolbar *toolbar,
gint enable);

Where orientation is one of GTK_ORIENTATION_HORIZONTAL or
GTK_ORIENTATION_VERTICAL. The style is used to set appearance of the
toolbar items by using one of GTK_TOOLBAR_ICONS, GTK_TOOLBAR_TEXT, or
GTK_TOOLBAR_BOTH.

To show some other things that can be done with a toolbar, let’s take the following
program (we’ll interrupt the listing with some additional explanations):

#include
�
gtk/gtk.h �

/* This function is connected to the Close button or
* closing the window from the WM */
gint delete_event (GtkWidget *widget, GdkEvent *event, gpointer data)
{
gtk_main_quit ();
return FALSE;

}

108

Chapter 11. Container Widgets

The above beginning seems for sure familiar to you if it’s not your first GTK
program. There is one additional thing though, we include a nice XPM picture to
serve as an icon for all of the buttons.

GtkWidget* close_button; /* This button will emit signal to close
* application */

GtkWidget* tooltips_button; /* to enable/disable tooltips */
GtkWidget* text_button,

* icon_button,
* both_button; /* radio buttons for toolbar style */

GtkWidget* entry; /* a text entry to show packing any widget into
* toolbar */

In fact not all of the above widgets are needed here, but to make things clearer I
put them all together.

/* that’s easy... when one of the buttons is toggled, we just
* check which one is active and set the style of the toolbar
* accordingly
* ATTENTION: our toolbar is passed as data to callback ! */
void radio_event (GtkWidget *widget, gpointer data)
{
if (GTK_TOGGLE_BUTTON (text_button)->active)

gtk_toolbar_set_style (GTK_TOOLBAR (data), GTK_TOOLBAR_TEXT);
else if (GTK_TOGGLE_BUTTON (icon_button)->active)

gtk_toolbar_set_style (GTK_TOOLBAR (data), GTK_TOOLBAR_ICONS);
else if (GTK_TOGGLE_BUTTON (both_button)->active)

gtk_toolbar_set_style (GTK_TOOLBAR (data), GTK_TOOLBAR_BOTH);
}

/* even easier, just check given toggle button and enable/disable
* tooltips */
void toggle_event (GtkWidget *widget, gpointer data)
{
gtk_toolbar_set_tooltips (GTK_TOOLBAR (data),

GTK_TOGGLE_BUTTON (widget)->active);
}

The above are just two callback functions that will be called when one of the
buttons on a toolbar is pressed. You should already be familiar with things like
this if you’ve already used toggle buttons (and radio buttons).

int main (int argc, char *argv[])
{
/* Here is our main window (a dialog) and a handle for the handle-

box */
GtkWidget* dialog;
GtkWidget* handlebox;

/* Ok, we need a toolbar, an icon with a mask (one for all of
the buttons) and an icon widget to put this icon in (but
we’ll create a separate widget for each button) */

GtkWidget * toolbar;
GtkWidget * iconw;

/* this is called in all GTK application. */
gtk_init (&argc, &argv);

/* create a new window with a given title, and nice size */
dialog = gtk_dialog_new ();
gtk_window_set_title (GTK_WINDOW (dialog), "GTKToolbar Tutorial");
gtk_widget_set_size_request (GTK_WIDGET (dialog), 600, 300);
GTK_WINDOW (dialog)->allow_shrink = TRUE;

/* typically we quit if someone tries to close us */
g_signal_connect (G_OBJECT (dialog), "delete_event",

G_CALLBACK (delete_event), NULL);

/* we need to realize the window because we use pixmaps for
* items on the toolbar in the context of it */

109

Chapter 11. Container Widgets

gtk_widget_realize (dialog);

/* to make it nice we’ll put the toolbar into the handle box,
* so that it can be detached from the main window */

handlebox = gtk_handle_box_new ();
gtk_box_pack_start (GTK_BOX (GTK_DIALOG (dialog)->vbox),

handlebox, FALSE, FALSE, 5);

The above should be similar to any other GTK application. Just initialization of
GTK, creating the window, etc. There is only one thing that probably needs some
explanation: a handle box. A handle box is just another box that can be used to
pack widgets in to. The difference between it and typical boxes is that it can be
detached from a parent window (or, in fact, the handle box remains in the parent,
but it is reduced to a very small rectangle, while all of its contents are reparented
to a new freely floating window). It is usually nice to have a detachable toolbar,
so these two widgets occur together quite often.

/* toolbar will be horizontal, with both icons and text, and
* with 5pxl spaces between items and finally,
* we’ll also put it into our handlebox */

toolbar = gtk_toolbar_new ();
gtk_toolbar_set_orientation (GTK_TOOLBAR (toolbar), GTK_ORIENTATION_HORIZONTAL);
gtk_toolbar_set_style (GTK_TOOLBAR (toolbar), GTK_TOOLBAR_BOTH);
gtk_container_set_border_width (GTK_CONTAINER (toolbar), 5);
gtk_toolbar_set_space_size (GTK_TOOLBAR (toolbar), 5);
gtk_container_add (GTK_CONTAINER (handlebox), toolbar);

Well, what we do above is just a straightforward initialization of the toolbar wid-
get.

/* our first item is
�
close � button */

iconw = gtk_image_new_from_file ("gtk.xpm"); /* icon widget */
close_button =

gtk_toolbar_append_item (GTK_TOOLBAR (toolbar), /* our toolbar */
"Close", /* button label */
"Closes this app", /* this button’s tooltip */
"Private", /* tooltip pri-

vate info */
iconw, /* icon widget */
GTK_SIGNAL_FUNC (delete_event), /* a sig-

nal */
NULL);

gtk_toolbar_append_space (GTK_TOOLBAR (toolbar)); /* space after item */

In the above code you see the simplest case: adding a button to toolbar. Just before
appending a new item, we have to construct an image widget to serve as an icon
for this item; this step will have to be repeated for each new item. Just after the
item we also add a space, so the following items will not touch each other. As
you see gtk_toolbar_append_item() returns a pointer to our newly created button
widget, so that we can work with it in the normal way.

/* now, let’s make our radio buttons group... */
iconw = gtk_image_new_from_file ("gtk.xpm");
icon_button = gtk_toolbar_append_element (

GTK_TOOLBAR (toolbar),
GTK_TOOLBAR_CHILD_RADIOBUTTON, /* a type of el-

ement */
NULL, /* pointer to wid-

get */
"Icon", /* label */
"Only icons in toolbar", /* tooltip */
"Private", /* tooltip pri-

vate string */
iconw, /* icon */
GTK_SIGNAL_FUNC (radio_event), /* signal */
toolbar); /* data for sig-

nal */
gtk_toolbar_append_space (GTK_TOOLBAR (toolbar));

110

Chapter 11. Container Widgets

Here we begin creating a radio buttons group. To do this we use
gtk_toolbar_append_element. In fact, using this function one can also
+add simple items or even spaces (type = GTK_TOOLBAR_CHILD_SPACE or
+GTK_TOOLBAR_CHILD_BUTTON). In the above case we start creating a radio
group. In creating other radio buttons for this group a pointer to the previous
button in the group is required, so that a list of buttons can be easily constructed
(see the section on Radio Buttons earlier in this tutorial).

/* following radio buttons refer to previous ones */
iconw = gtk_image_new_from_file ("gtk.xpm");
text_button =

gtk_toolbar_append_element (GTK_TOOLBAR (toolbar),
GTK_TOOLBAR_CHILD_RADIOBUTTON,
icon_button,
"Text",
"Only texts in toolbar",
"Private",
iconw,
GTK_SIGNAL_FUNC (radio_event),
toolbar);

gtk_toolbar_append_space (GTK_TOOLBAR (toolbar));

iconw = gtk_image_new_from_file ("gtk.xpm");
both_button =

gtk_toolbar_append_element (GTK_TOOLBAR (toolbar),
GTK_TOOLBAR_CHILD_RADIOBUTTON,
text_button,
"Both",
"Icons and text in toolbar",
"Private",
iconw,
GTK_SIGNAL_FUNC (radio_event),
toolbar);

gtk_toolbar_append_space (GTK_TOOLBAR (toolbar));
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (both_button), TRUE);

In the end we have to set the state of one of the buttons manually (otherwise they
all stay in active state, preventing us from switching between them).

/* here we have just a simple toggle button */
iconw = gtk_image_new_from_file ("gtk.xpm");
tooltips_button =

gtk_toolbar_append_element (GTK_TOOLBAR (toolbar),
GTK_TOOLBAR_CHILD_TOGGLEBUTTON,
NULL,
"Tooltips",
"Toolbar with or without tips",
"Private",
iconw,
GTK_SIGNAL_FUNC (toggle_event),
toolbar);

gtk_toolbar_append_space (GTK_TOOLBAR (toolbar));
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (tooltips_button), TRUE);

A toggle button can be created in the obvious way (if one knows how to create
radio buttons already).

/* to pack a widget into toolbar, we only have to
* create it and append it with an appropriate tooltip */

entry = gtk_entry_new ();
gtk_toolbar_append_widget (GTK_TOOLBAR (toolbar),

entry,
"This is just an entry",
"Private");

/* well, it isn’t created within the toolbar, so we must still show it */
gtk_widget_show (entry);

111

Chapter 11. Container Widgets

As you see, adding any kind of widget to a toolbar is simple. The one thing you
have to remember is that this widget must be shown manually (contrary to other
items which will be shown together with the toolbar).

/* that’s it ! let’s show everything. */
gtk_widget_show (toolbar);
gtk_widget_show (handlebox);
gtk_widget_show (dialog);

/* rest in gtk_main and wait for the fun to begin! */
gtk_main ();

return 0;
}

So, here we are at the end of toolbar tutorial. Of course, to appreciate it in full you
need also this nice XPM icon, so here it is:

/* XPM */
static char * gtk_xpm[] = {
"32 39 5 1",
". c none",
"+ c black",
"@ c #3070E0",
"# c #F05050",
"$ c #35E035",
"................+...............",
"..............+++++.............",
"............+++++@@++...........",
"..........+++++@@@@@@++.........",
"........++++@@@@@@@@@@++........",
"......++++@@++++++++@@@++.......",
".....+++@@@+++++++++++@@@++.....",
"...+++@@@@+++@@@@@@++++@@@@+....",
"..+++@@@@+++@@@@@@@@+++@@@@@++..",
".++@@@@@@+++@@@@@@@@@@@@@@@@@@++",
".+#+@@@@@@++@@@@+++@@@@@@@@@@@@+",
".+##++@@@@+++@@@+++++@@@@@@@@$@.",
".+###++@@@@+++@@@+++@@@@@++$$$@.",
".+####+++@@@+++++++@@@@@+@$$$$@.",
".+#####+++@@@@+++@@@@++@$$$$$$+.",
".+######++++@@@@@@@++@$$$$$$$$+.",
".+#######+##+@@@@+++$$$$$$@@$$+.",
".+###+++##+##+@@++@$$$$$$++$$$+.",
".+###++++##+##+@@$$$$$$$@+@$$@+.",
".+###++++++#+++@$$@+@$$@++$$$@+.",
".+####+++++++#++$$@+@$$++$$$$+..",
".++####++++++#++$$@+@$++@$$$$+..",
".+#####+++++##++$$++@+++$$$$$+..",
".++####+++##+#++$$+++++@$$$$$+..",
".++####+++####++$$++++++@$$$@+..",
".+#####++#####++$$+++@++++@$@+..",
".+#####++#####++$$++@$$@+++$@@..",
".++####++#####++$$++$$$$$+@$@++.",
".++####++#####++$$++$$$$$$$$+++.",
".+++####+#####++$$++$$$$$$$@+++.",
"..+++#########+@$$+@$$$$$$+++...",
"...+++########+@$$$$$$$$@+++....",
".....+++######+@$$$$$$$+++......",
"......+++#####+@$$$$$@++........",
".......+++####+@$$$$+++.........",
".........++###+$$$@++...........",
"..........++##+$@+++............",
"...........+++++++..............",
".............++++..............."};

112

Chapter 11. Container Widgets

Notebooks
The NoteBook Widget is a collection of "pages" that overlap each other, each page
contains different information with only one page visible at a time. This widget
has become more common lately in GUI programming, and it is a good way to
show blocks of similar information that warrant separation in their display.

The first function call you will need to know, as you can probably guess by now,
is used to create a new notebook widget.

GtkWidget *gtk_notebook_new(void);

Once the notebook has been created, there are a number of functions that operate
on the notebook widget. Let’s look at them individually.

The first one we will look at is how to position the page indicators. These page
indicators or "tabs" as they are referred to, can be positioned in four ways: top,
bottom, left, or right.

void gtk_notebook_set_tab_pos(GtkNotebook *notebook,
GtkPositionType pos);

GtkPositionType will be one of the following, which are pretty self explanatory:

GTK_POS_LEFT
GTK_POS_RIGHT
GTK_POS_TOP
GTK_POS_BOTTOM

GTK_POS_TOP is the default.

Next we will look at how to add pages to the notebook. There are three ways to
add pages to the NoteBook. Let’s look at the first two together as they are quite
similar.

void gtk_notebook_append_page(GtkNotebook *notebook,
GtkWidget *child,
GtkWidget *tab_label);

void gtk_notebook_prepend_page(GtkNotebook *notebook,
GtkWidget *child,
GtkWidget *tab_label);

These functions add pages to the notebook by inserting them from the back of the
notebook (append), or the front of the notebook (prepend). child is the widget
that is placed within the notebook page, and tab_label is the label for the page
being added. The child widget must be created separately, and is typically a set
of options setup witin one of the other container widgets, such as a table.

The final function for adding a page to the notebook contains all of the properties
of the previous two, but it allows you to specify what position you want the page
to be in the notebook.

void gtk_notebook_insert_page(GtkNotebook *notebook,
GtkWidget *child,
GtkWidget *tab_label,
gint position);

The parameters are the same as _append_ and _prepend_ except it contains an
extra parameter, position. This parameter is used to specify what place this page
will be inserted into the first page having position zero.

Now that we know how to add a page, lets see how we can remove a page from
the notebook.

void gtk_notebook_remove_page(GtkNotebook *notebook,
gint page_num);

This function takes the page specified by page_num and removes it from the wid-
get pointed to by notebook.

113

Chapter 11. Container Widgets

To find out what the current page is in a notebook use the function:

gint gtk_notebook_get_current_page(GtkNotebook *notebook);

These next two functions are simple calls to move the notebook page forward
or backward. Simply provide the respective function call with the notebook
widget you wish to operate on. Note: When the NoteBook is currently on the
last page, and gtk_notebook_next_page() is called, the notebook will wrap
back to the first page. Likewise, if the NoteBook is on the first page, and
gtk_notebook_prev_page() is called, the notebook will wrap to the last page.

void gtk_notebook_next_page(GtkNoteBook *notebook);

void gtk_notebook_prev_page(GtkNoteBook *notebook);

This next function sets the "active" page. If you wish the notebook to be opened
to page 5 for example, you would use this function. Without using this function,
the notebook defaults to the first page.

void gtk_notebook_set_current_page(GtkNotebook *notebook,
gint page_num);

The next two functions add or remove the notebook page tabs and the notebook
border respectively.

void gtk_notebook_set_show_tabs(GtkNotebook *notebook,
gboolean show_tabs);

void gtk_notebook_set_show_border(GtkNotebook *notebook,
gboolean show_border);

The next function is useful when the you have a large number of pages, and the
tabs don’t fit on the page. It allows the tabs to be scrolled through using two
arrow buttons.

void gtk_notebook_set_scrollable(GtkNotebook *notebook,
gboolean scrollable);

show_tabs, show_border and scrollable can be either TRUE or FALSE.

Now let’s look at an example, it is expanded from the testgtk.c code that comes
with the GTK distribution. This small program creates a window with a notebook
and six buttons. The notebook contains 11 pages, added in three different ways,
appended, inserted, and prepended. The buttons allow you rotate the tab posi-
tions, add/remove the tabs and border, remove a page, change pages in both a
forward and backward manner, and exit the program.

#include
�
stdio.h �

#include
�
gtk/gtk.h �

/* This function rotates the position of the tabs */
void rotate_book(GtkButton *button,

GtkNotebook *notebook)
{

gtk_notebook_set_tab_pos (notebook, (notebook- � tab_pos + 1) % 4);
}

/* Add/Remove the page tabs and the borders */
void tabsborder_book(GtkButton *button,

GtkNotebook *notebook)

114

Chapter 11. Container Widgets

{
gint tval = FALSE;
gint bval = FALSE;
if (notebook- � show_tabs == 0)
tval = TRUE;

if (notebook- � show_border == 0)
bval = TRUE;

gtk_notebook_set_show_tabs (notebook, tval);
gtk_notebook_set_show_border (notebook, bval);

}

/* Remove a page from the notebook */
void remove_book(GtkButton *button,

GtkNotebook *notebook)
{

gint page;

page = gtk_notebook_get_current_page (notebook);
gtk_notebook_remove_page (notebook, page);
/* Need to refresh the widget --
This forces the widget to redraw itself. */

gtk_widget_queue_draw (GTK_WIDGET (notebook));
}

gint delete(GtkWidget *widget,
GtkWidget *event,
gpointer data)

{
gtk_main_quit ();
return FALSE;

}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *button;
GtkWidget *table;
GtkWidget *notebook;
GtkWidget *frame;
GtkWidget *label;
GtkWidget *checkbutton;
int i;
char bufferf[32];
char bufferl[32];

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

g_signal_connect (G_OBJECT (window), "delete_event",
G_CALLBACK (delete), NULL);

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

table = gtk_table_new (3, 6, FALSE);
gtk_container_add (GTK_CONTAINER (window), table);

/* Create a new notebook, place the position of the tabs */
notebook = gtk_notebook_new ();
gtk_notebook_set_tab_pos (GTK_NOTEBOOK (notebook), GTK_POS_TOP);
gtk_table_attach_defaults (GTK_TABLE (table), notebook, 0, 6, 0, 1);
gtk_widget_show (notebook);

/* Let’s append a bunch of pages to the notebook */
for (i = 0; i

�
5; i++) {

sprintf(bufferf, "Append Frame %d", i + 1);
sprintf(bufferl, "Page %d", i + 1);

frame = gtk_frame_new (bufferf);

115

Chapter 11. Container Widgets

gtk_container_set_border_width (GTK_CONTAINER (frame), 10);
gtk_widget_set_size_request (frame, 100, 75);
gtk_widget_show (frame);

label = gtk_label_new (bufferf);
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_widget_show (label);

label = gtk_label_new (bufferl);
gtk_notebook_append_page (GTK_NOTEBOOK (notebook), frame, label);

}

/* Now let’s add a page to a specific spot */
checkbutton = gtk_check_button_new_with_label ("Check me please!");
gtk_widget_set_size_request (checkbutton, 100, 75);
gtk_widget_show (checkbutton);

label = gtk_label_new ("Add page");
gtk_notebook_insert_page (GTK_NOTEBOOK (notebook), checkbutton, la-

bel, 2);

/* Now finally let’s prepend pages to the notebook */
for (i = 0; i

�
5; i++) {

sprintf (bufferf, "Prepend Frame %d", i + 1);
sprintf (bufferl, "PPage %d", i + 1);

frame = gtk_frame_new (bufferf);
gtk_container_set_border_width (GTK_CONTAINER (frame), 10);
gtk_widget_set_size_request (frame, 100, 75);
gtk_widget_show (frame);

label = gtk_label_new (bufferf);
gtk_container_add (GTK_CONTAINER (frame), label);
gtk_widget_show (label);

label = gtk_label_new (bufferl);
gtk_notebook_prepend_page (GTK_NOTEBOOK (notebook), frame, label);

}

/* Set what page to start at (page 4) */
gtk_notebook_set_current_page (GTK_NOTEBOOK (notebook), 3);

/* Create a bunch of buttons */
button = gtk_button_new_with_label ("close");
g_signal_connect_swapped (G_OBJECT (button), "clicked",

G_CALLBACK (delete), NULL);
gtk_table_attach_defaults (GTK_TABLE (table), button, 0, 1, 1, 2);
gtk_widget_show (button);

button = gtk_button_new_with_label ("next page");
g_signal_connect_swapped (G_OBJECT (button), "clicked",

G_CALLBACK (gtk_notebook_next_page),
G_OBJECT (notebook));

gtk_table_attach_defaults (GTK_TABLE (table), button, 1, 2, 1, 2);
gtk_widget_show (button);

button = gtk_button_new_with_label ("prev page");
g_signal_connect_swapped (G_OBJECT (button), "clicked",

G_CALLBACK (gtk_notebook_prev_page),
G_OBJECT (notebook));

gtk_table_attach_defaults (GTK_TABLE (table), button, 2, 3, 1, 2);
gtk_widget_show (button);

button = gtk_button_new_with_label ("tab position");
g_signal_connect (G_OBJECT (button), "clicked",

G_CALLBACK (rotate_book),
(gpointer) notebook);

gtk_table_attach_defaults (GTK_TABLE (table), button, 3, 4, 1, 2);
gtk_widget_show (button);

button = gtk_button_new_with_label ("tabs/border on/off");

116

Chapter 11. Container Widgets

g_signal_connect (G_OBJECT (button), "clicked",
G_CALLBACK (tabsborder_book),
(gpointer) notebook);

gtk_table_attach_defaults (GTK_TABLE (table), button, 4, 5, 1, 2);
gtk_widget_show (button);

button = gtk_button_new_with_label ("remove page");
g_signal_connect (G_OBJECT (button), "clicked",

G_CALLBACK (remove_book),
(gpointer) notebook);

gtk_table_attach_defaults (GTK_TABLE (table), button, 5, 6, 1, 2);
gtk_widget_show (button);

gtk_widget_show (table);
gtk_widget_show (window);

gtk_main ();

return 0;
}

I hope this helps you on your way with creating notebooks for your GTK appli-
cations.

117

Chapter 11. Container Widgets

118

Chapter 12. Menu Widget

There are two ways to create menus: there’s the easy way, and there’s the hard
way. Both have their uses, but you can usually use the Itemfactory (the easy way).
The "hard" way is to create all the menus using the calls directly. The easy way is
to use the gtk_item_factory calls. This is much simpler, but there are advantages
and disadvantages to each approach.

The Itemfactory is much easier to use, and to add new menus to, although writing
a few wrapper functions to create menus using the manual method could go a
long way towards usability. With the Itemfactory, it is not possible to add images
or the character ’/’ to the menus.

Manual Menu Creation
In the true tradition of teaching, we’ll show you the hard way first. :)

There are three widgets that go into making a menubar and submenus:

• a menu item, which is what the user wants to select, e.g., "Save"

• a menu, which acts as a container for the menu items, and

• a menubar, which is a container for each of the individual menus.

This is slightly complicated by the fact that menu item widgets are used for two
different things. They are both the widgets that are packed into the menu, and
the widget that is packed into the menubar, which, when selected, activates the
menu.

Let’s look at the functions that are used to create menus and menubars. This first
function is used to create a new menubar.

GtkWidget *gtk_menu_bar_new(void);

This rather self explanatory function creates a new menubar. You use
gtk_container_add() to pack this into a window, or the box_pack functions to
pack it into a box - the same as buttons.

GtkWidget *gtk_menu_new(void);

This function returns a pointer to a new menu; it is never actually shown (with
gtk_widget_show()), it is just a container for the menu items. I hope this will
become more clear when you look at the example below.

The next three calls are used to create menu items that are packed into the menu
(and menubar).

GtkWidget *gtk_menu_item_new(void);

GtkWidget *gtk_menu_item_new_with_label(const char *label);

GtkWidget *gtk_menu_item_new_with_mnemnonic(const char *label);

These calls are used to create the menu items that are to be displayed. Remember
to differentiate between a "menu" as created with gtk_menu_new() and a "menu
item" as created by the gtk_menu_item_new() functions. The menu item will be
an actual button with an associated action, whereas a menu will be a container
holding menu items.

The gtk_menu_item_new_with_label() and gtk_menu_item_new() functions are
just as you’d expect after reading about the buttons. One creates a new menu
item with a label already packed into it, and the other just creates a blank menu
item.

Once you’ve created a menu item you have to put it into a menu. This is done
using the function gtk_menu_shelll_append. In order to capture when the item is
selected by the user, we need to connect to the activate signal in the usual way.

119

Chapter 12. Menu Widget

So, if we wanted to create a standard File menu, with the options Open, Save,
and Quit, the code would look something like:

file_menu = gtk_menu_new (); /* Don’t need to show menus */

/* Create the menu items */
open_item = gtk_menu_item_new_with_label ("Open");
save_item = gtk_menu_item_new_with_label ("Save");
quit_item = gtk_menu_item_new_with_label ("Quit");

/* Add them to the menu */
gtk_menu_shell_append (GTK_MENU_SHELL (file_menu), open_item);
gtk_menu_shell_append (GTK_MENU_SHELL (file_menu), save_item);
gtk_menu_shell_append (GTK_MENU_SHELL (file_menu), quit_item);

/* Attach the callback functions to the activate signal */
g_signal_connect_swapped (G_OBJECT (open_item), "activate",

G_CALLBACK (menuitem_response),
(gpointer) "file.open");

g_signal_connect_swapped (G_OBJECT (save_item), "activate",
G_CALLBACK (menuitem_response),
(gpointer) "file.save");

/* We can attach the Quit menu item to our exit function */
g_signal_connect_swapped (G_OBJECT (quit_item), "activate",

G_CALLBACK (destroy),
(gpointer) "file.quit");

/* We do need to show menu items */
gtk_widget_show (open_item);
gtk_widget_show (save_item);
gtk_widget_show (quit_item);

At this point we have our menu. Now we need to create a menubar and a menu
item for the File entry, to which we add our menu. The code looks like this:

menu_bar = gtk_menu_bar_new ();
gtk_container_add (GTK_CONTAINER (window), menu_bar);
gtk_widget_show (menu_bar);

file_item = gtk_menu_item_new_with_label ("File");
gtk_widget_show (file_item);

Now we need to associate the menu with file_item. This is done with the func-
tion

void gtk_menu_item_set_submenu(GtkMenuItem *menu_item,
GtkWidget *submenu);

So, our example would continue with

gtk_menu_item_set_submenu (GTK_MENU_ITEM (file_item), file_menu);

All that is left to do is to add the menu to the menubar, which is accomplished
using the function

void gtk_menu_bar_append(GtkMenuBar *menu_bar,
GtkWidget *menu_item);

which in our case looks like this:

gtk_menu_bar_append (GTK_MENU_BAR (menu_bar), file_item);

If we wanted the menu right justified on the menubar, such as help menus of-
ten are, we can use the following function (again on file_item in the current
example) before attaching it to the menubar.

void gtk_menu_item_right_justify(GtkMenuItem *menu_item);

Here is a summary of the steps needed to create a menu bar with menus attached:
120

Chapter 12. Menu Widget

• Create a new menu using gtk_menu_new()

• Use multiple calls to gtk_menu_item_new() for each item you wish to have on
your menu. And use gtk_menu_shell_append() to put each of these new items
on to the menu.

• Create a menu item using gtk_menu_item_new(). This will be the root of the
menu, the text appearing here will be on the menubar itself.

• Use gtk_menu_item_set_submenu() to attach the menu to the root menu item
(the one created in the above step).

• Create a new menubar using gtk_menu_bar_new. This step only needs to be
done once when creating a series of menus on one menu bar.

• Use gtk_menu_bar_append() to put the root menu onto the menubar.

Creating a popup menu is nearly the same. The difference is that the menu is
not posted "automatically" by a menubar, but explicitly by calling the function
gtk_menu_popup() from a button-press event, for example. Take these steps:

• Create an event handling function. It needs to have the prototype
static gint handler (GtkWidget *widget,

GdkEvent *event);

and it will use the event to find out where to pop up the menu.

• In the event handler, if the event is a mouse button press, treat event as a
button event (which it is) and use it as shown in the sample code to pass infor-
mation to gtk_menu_popup().

• Bind that event handler to a widget with
g_signal_connect_swapped (G_OBJECT (widget), "event",

G_CALLBACK (handler),
G_OBJECT (menu));

where widget is the widget you are binding to, handler is the handling func-
tion, and menu is a menu created with gtk_menu_new(). This can be a menu
which is also posted by a menu bar, as shown in the sample code.

Manual Menu Example
That should about do it. Let’s take a look at an example to help clarify.

#include
�
stdio.h �

#include
�
gtk/gtk.h �

static gint button_press (GtkWidget *, GdkEvent *);
static void menuitem_response (gchar *);

int main(int argc,
char *argv[])

{

121

Chapter 12. Menu Widget

GtkWidget *window;
GtkWidget *menu;
GtkWidget *menu_bar;
GtkWidget *root_menu;
GtkWidget *menu_items;
GtkWidget *vbox;
GtkWidget *button;
char buf[128];
int i;

gtk_init (&argc, &argv);

/* create a new window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_set_size_request (GTK_WIDGET (window), 200, 100);
gtk_window_set_title (GTK_WINDOW (window), "GTK Menu Test");
g_signal_connect (G_OBJECT (window), "delete_event",

G_CALLBACK (gtk_main_quit), NULL);

/* Init the menu-widget, and remember -- never
* gtk_show_widget() the menu widget!!
* This is the menu that holds the menu items, the one that
* will pop up when you click on the "Root Menu" in the app */

menu = gtk_menu_new ();

/* Next we make a little loop that makes three menu-entries for "test-
menu".

* Notice the call to gtk_menu_shell_append. Here we are adding a list of
* menu items to our menu. Normally, we’d also catch the "clicked"
* signal on each of the menu items and setup a callback for it,
* but it’s omitted here to save space. */

for (i = 0; i
�

3; i++)
{

/* Copy the names to the buf. */
sprintf (buf, "Test-undermenu - %d", i);

/* Create a new menu-item with a name... */
menu_items = gtk_menu_item_new_with_label (buf);

/* ...and add it to the menu. */
gtk_menu_shell_append (GTK_MENU_SHELL (menu), menu_items);

/* Do something interesting when the menuitem is selected */
g_signal_connect_swapped (G_OBJECT (menu_items), "activate",

G_CALLBACK (menuitem_response),
(gpointer) g_strdup (buf));

/* Show the widget */
gtk_widget_show (menu_items);

}

/* This is the root menu, and will be the label
* displayed on the menu bar. There won’t be a signal handler attached,
* as it only pops up the rest of the menu when pressed. */

root_menu = gtk_menu_item_new_with_label ("Root Menu");

gtk_widget_show (root_menu);

/* Now we specify that we want our newly created "menu" to be the menu
* for the "root menu" */

gtk_menu_item_set_submenu (GTK_MENU_ITEM (root_menu), menu);

/* A vbox to put a menu and a button in: */
vbox = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), vbox);
gtk_widget_show (vbox);

/* Create a menu-bar to hold the menus and add it to our main win-
dow */

menu_bar = gtk_menu_bar_new ();

122

Chapter 12. Menu Widget

gtk_box_pack_start (GTK_BOX (vbox), menu_bar, FALSE, FALSE, 2);
gtk_widget_show (menu_bar);

/* Create a button to which to attach menu as a popup */
button = gtk_button_new_with_label ("press me");
g_signal_connect_swapped (G_OBJECT (button), "event",

G_CALLBACK (button_press),
G_OBJECT (menu));

gtk_box_pack_end (GTK_BOX (vbox), button, TRUE, TRUE, 2);
gtk_widget_show (button);

/* And finally we append the menu-item to the menu-bar -- this is the
* "root" menu-item I have been raving about =) */

gtk_menu_shell_append (GTK_MENU_SHELL (menu_bar), root_menu);

/* always display the window as the last step so it all splashes on
* the screen at once. */

gtk_widget_show (window);

gtk_main ();

return 0;
}

/* Respond to a button-press by posting a menu passed in as widget.
*
* Note that the "widget" argument is the menu being posted, NOT
* the button that was pressed.
*/

static gint button_press(GtkWidget *widget,
GdkEvent *event)

{

if (event- � type == GDK_BUTTON_PRESS) {
GdkEventButton *bevent = (GdkEventButton *) event;
gtk_menu_popup (GTK_MENU (widget), NULL, NULL, NULL, NULL,

bevent- � button, bevent- � time);
/* Tell calling code that we have handled this event; the buck
* stops here. */

return TRUE;
}

/* Tell calling code that we have not handled this event; pass it on. */
return FALSE;

}

/* Print a string when a menu item is selected */

static void menuitem_response(gchar *string)
{

printf ("%s\n", string);
}

You may also set a menu item to be insensitive and, using an accelerator table,
bind keys to menu functions.

Using ItemFactory
Now that we’ve shown you the hard way, here’s how you do it using the
gtk_item_factory calls.

ItemFactory creates a menu out of an array of ItemFactory entries. This
means you can define your menu in its simplest form and then create the
menu/menubar widgets with a minimum of function calls.

123

Chapter 12. Menu Widget

ItemFactory entries

At the core of ItemFactory is the ItemFactoryEntry. This structure defines one
menu item, and when an array of these entries is defined a whole menu is formed.
The ItemFactory entry struct definition looks like this:

struct _GtkItemFactoryEntry
{
gchar *path;
gchar *accelerator;

GtkItemFactoryCallback callback;
guint callback_action;

gchar *item_type;
};

Each field defines part of the menu item.

*path is a string which defines both the name and the path of a menu item, for
example, "/File/Open" would be the name of a menu item which would come
under the ItemFactory entry with path "/File". Note however that "/File/Open"
would be displayed in the File menu as "Open". Also note since the forward
slashes are used to define the path of the menu, they cannot be used as part of the
name. A letter preceded by an underscore indicates an accelerator (shortcut) key
once the menu is open.

*accelerator is a string that indicates a key combination that can be used as a
shortcut to that menu item. The string can be made up of either a single character,
or a combination of modifier keys with a single character. It is case insensitive.

The available modifier keys are:

"
�
ALT � - alt

"
�
CTL � " or "

�
CTRL � " or "

�
CONTROL � " - control

"
�
MOD1 � " to "

�
MOD5 � " - modn

"
�
SHFT � " or "

�
SHIFT � " - shift

Examples:

"
�
ConTroL � a"

"
�
SHFT � � ALT � � CONTROL � X"

callback is the function that is called when the menu item emits the "activate"
signal. The form of the callback is described in the Callback Description section.

The value of callback_action is passed to the callback function. It also affects
the function prototype, as shown in the Callback Description section.

item_type is a string that defines what type of widget is packed into the menu
items container. It can be:

NULL or "" or "
�
Item � " - create a simple item

"
�
Title � " - create a title item

"
�
CheckItem � " - create a check item

"
�
ToggleItem � " - create a toggle item

"
�
RadioItem � " - create a (root) radio item

"Path" - create a sister radio item
"
�
Tearoff � " - create a tearoff

"
�
Separator � " - create a separator

"
�
Branch � " - create an item to hold submenus (optional)

"
�
LastBranch � " - create a right justified branch

Note that � LastBranch � is only useful for one submenu of a menubar.

124

Chapter 12. Menu Widget

Callback Description

The callback for an ItemFactory entry can take two forms. If callback_action is
zero, it is of the following form:

void callback(void)

otherwise it is of the form:

void callback(gpointer callback_data,
guint callback_action,
GtkWidget *widget)

callback_data is a pointer to an arbitrary piece of data and is set during the call
to gtk_item_factory_create_items().

callback_action is the same value as callback_action in the ItemFactory en-
try.

*widget is a pointer to a menu item widget (described in Manual Menu Cre-
ation).

ItemFactory entry examples

Creating a simple menu item:

GtkItemFactoryEntry entry = {"/_File/_Open...", "
�
CTRL � O", print_hello,

0, "
�
Item � "};

This will define a new simple menu entry "/File/Open" (displayed as "Open"),
under the menu entry "/File". It has the accelerator (shortcut) control+’O’ that
when clicked calls the function print_hello(). print_hello() is of the form void
print_hello(void) since the callback_action field is zero. When displayed the
’O’ in "Open" will be underlined and if the menu item is visible on the screen
pressing ’O’ will activate the item. Note that "File/_Open" could also have been
used as the path instead of "/_File/_Open".

Creating an entry with a more complex callback:

GtkItemFactoryEntry entry = {"/_View/Display _FPS", NULL, print_state,
7,"

�
CheckItem � "};

This defines a new menu item displayed as "Display FPS" which is under the
menu item "View". When clicked the function print_state() will be called. Since
callback_action is not zero print_state() is of the form:

void print_state(gpointer callback_data,
guint callback_action,
GtkWidget *widget)

with callback_action equal to 7.

Creating a radio button set:

GtkItemFactoryEntry entry1 = {"/_View/_Low Resolution", NULL, change_resolution,
1, "

�
RadioButton � "};

GtkItemFactoryEntry entry2 = {"/_View/_High Resolution", NULL, change_resolution,
2, "/View/Low Resolution"};

entry1 defines a lone radio button that when toggled calls the function
change_resolution() with the parameter callback_action equal to 1.
change_resolution() is of the form:

void change_resolution(gpointer callback_data,
guint callback_action,
GtkWidget *widget)

entry2 defines a radio button that belongs to the radio group that entry1 be-
longs to. It calls the same function when toggled but with the parameter call-

125

Chapter 12. Menu Widget

back_action equal to 2. Note that the item_type of entry2 is the path of en-
try1 without the accelerators (’_’). If another radio button was required in the
same group then it would be defined in the same way as entry2 was with its
item_type again equal to "/View/Low Resolution".

ItemFactoryEntry Arrays

An ItemFactoryEntry on it’s own however isn’t useful. An array of entries is
what’s required to define a menu. Below is an example of how you’d declare
this array.

static GtkItemFactoryEntry entries[] = {
{ "/_File", NULL, NULL, 0, "

�
Branch � " },

{ "/File/tear1", NULL, NULL, 0, "
�
Tearoff � " },

{ "/File/_New", "
�
CTRL � N", new_file, 1, "

�
Item � " },

{ "/File/_Open...", "
�
CTRL � O", open_file, 1, "

�
Item � " },

{ "/File/sep1", NULL, NULL, 0, "
�
Seperator � " },

{ "/File/_Quit", "
�
CTRL � Q", quit_program, 0, "

�
Item � "} };

Creating an ItemFactory

An array of GtkItemFactoryEntry items defines a menu. Once this array is de-
fined then the item factory can be created. The function that does this is:

GtkItemFactory* gtk_item_factory_new(GtkType container_type,
const gchar *path,
GtkAccelGroup *accel_group);

container_type can be one of:

GTK_TYPE_MENU
GTK_TYPE_MENU_BAR
GTK_TYPE_OPTION_MENU

container_type defines what type of menu you want, so when you extract it
later it is either a menu (for pop-ups for instance), a menu bar, or an option menu
(like a combo box but with a menu of pull downs).

path defines the path of the root of the menu. Basically it is a unique name
for the root of the menu, it must be surrounded by " ��� ". This is important
for the naming of the accelerators and should be unique. It should be unique
both for each menu and between each program. For example in a program
named ’foo’, the main menu should be called " � FooMain � ", and a pop-up
menu " � FooImagePopUp � ", or similar. What’s important is that they’re unique.

accel_group is a pointer to a gtk_accel_group. The item factory sets up the ac-
celerator table while generating menus. New accelerator groups are generated by
gtk_accel_group_new().

But this is just the first step. To convert the array of GtkItemFactoryEntry infor-
mation into widgets the following function is used:

void gtk_item_factory_create_items(GtkItemFactory *ifactory,
guint n_entries,
GtkItemFactoryEntry *entries,
gpointer callback_data);

*ifactory a pointer to the above created item factory.

n_entries is the number of entries in the GtkItemFactoryEntry array.

*entries is a pointer to the GtkItemFactoryEntry array.

callback_data is what gets passed to all the callback functions for all the entries
with callback_action != 0.

126

Chapter 12. Menu Widget

The accelerator group has now been formed, so you’ll probably want to attach it
to the window the menu is in:

void gtk_window_add_accel_group(GtkWindow *window,
GtkAccelGroup *accel_group);

Making use of the menu and its menu items

The last thing to do is make use of the menu. The following function extracts the
relevant widgets from the ItemFactory:

GtkWidget* gtk_item_factory_get_widget(GtkItemFactory *ifactory,
const gchar *path);

For instance if an ItemFactory has two entries "/File" and "/File/New", using a
path of "/File" would retrieve a menu widget from the ItemFactory. Using a path
of "/File/New" would retrieve a menu item widget. This makes it possible to set
the initial state of menu items. For example to set the default radio item to the
one with the path "/Shape/Oval" then the following code would be used:

gtk_check_menu_item_set_active(
GTK_CHECK_MENU_ITEM (gtk_item_factory_get_item (item_factory, "/Shape/Oval")),
TRUE);

Finally to retrieve the root of the menu use gtk_item_factory_get_item() with a
path of " � main � " (or whatever path was used in gtk_item_factory_new()). In
the case of the ItemFactory being created with type GTK_TYPE_MENU_BAR
this returns a menu bar widget. With type GTK_TYPE_MENU a menu widget
is returned. With type GTK_TYPE_OPTION_MENU an option menu widget is
returned.

Remember for an entry defined with path "/_File" the path here is actually "/File".

Now you have a menubar or menu which can be manipulated in the same way
as shown in the Manual Menu Creation section.

Item Factory Example
Here is an example using the GTK item factory.

/* example-start menu itemfactory.c */

#include <gtk/gtk.h>
#include <strings.h>

/* Obligatory basic callback */
static void print_hello(GtkWidget *w,

gpointer data)
{
g_message ("Hello, World!\n");

}

/* For the check button */
static void print_toggle(gpointer callback_data,

guint callback_action,
GtkWidget *menu_item)

{
g_message ("Check button state - %d\n",

GTK_CHECK_MENU_ITEM(menu_item)->active);
}

/* For the radio buttons */
static void print_selected(gpointer callback_data,

guint callback_action,
GtkWidget *menu_item)

{

127

Chapter 12. Menu Widget

if(GTK_CHECK_MENU_ITEM(menu_item)->active)
g_message("Radio button %d selected\n", callback_action);

}

/* Our menu, an array of GtkItemFactoryEntry structures that defines each menu item */
static GtkItemFactoryEntry menu_items[] = {
{ "/_File", NULL, NULL, 0, "<Branch>" },
{ "/File/_New", "<control>N", print_hello, 0, "

�
Item � " },

{ "/File/_Open", "<control>O", print_hello, 0, "
�
Item � " },

{ "/File/_Save", "<control>S", print_hello, 0, "
�
Item � " },

{ "/File/Save _As", NULL, NULL, 0, "
�
Item � " },

{ "/File/sep1", NULL, NULL, 0, "<Separator>" },
{ "/File/Quit", "<control>Q", gtk_main_quit, 0, "

�
Item � " },

{ "/_Options", NULL, NULL, 0, "<Branch>" },
{ "/Options/tear", NULL, NULL, 0, "<Tearoff>" },
{ "/Options/Check", NULL, print_toggle, 1, "<CheckItem>" },
{ "/Options/sep", NULL, NULL, 0, "<Separator>" },
{ "/Options/Rad1", NULL, print_selected, 1, "<RadioItem>" },
{ "/Options/Rad2", NULL, print_selected, 2, "/Options/Rad1" },
{ "/Options/Rad3", NULL, print_selected, 3, "/Options/Rad1" },
{ "/_Help", NULL, NULL, 0, "<LastBranch>" },
{ "/_Help/About", NULL, NULL, 0, "

�
Item � " },

};

static gint nmenu_items = sizeof (menu_items) / sizeof (menu_items[0]);

/* Returns a menubar widget made from the above menu */
GtkWidget *get_menubar_menu(GtkWidget *window)
{
GtkItemFactory *item_factory;
GtkAccelGroup *accel_group;

/* Make an accelerator group (shortcut keys) */
accel_group = gtk_accel_group_new ();

/* Make an ItemFactory (that makes a menubar) */
item_factory = gtk_item_factory_new (GTK_TYPE_MENU_BAR, "<main>",

accel_group);

/* This function generates the menu items. Pass the item factory,
the number of items in the array, the array itself, and any
callback data for the the menu items. */

gtk_item_factory_create_items (item_factory, nmenu_items, menu_items, NULL);

/* Attach the new accelerator group to the window. */
gtk_window_add_accel_group (GTK_WINDOW (window), accel_group);

/* Finally, return the actual menu bar created by the item factory. */
return gtk_item_factory_get_widget (item_factory, "<main>");

}

/* Popup the menu when the popup button is pressed */
static gint popup_cb(GtkWidget *widget, GdkEvent *event, GtkWidget *menu)
{

GdkEventButton *bevent = (GdkEventButton *)event;

/* Only take button presses */
if(event->type != GDK_BUTTON_PRESS)

return FALSE;

/* Show the menu */
gtk_menu_popup(GTK_MENU(menu), NULL, NULL,

NULL, NULL, bevent->button, bevent->time);

return TRUE;
}

/* Same as with get_menubar_menu() but just return a button with a sig-
nal to

call a popup menu */
GtkWidget *get_popup_menu(void)

128

Chapter 12. Menu Widget

{
GtkItemFactory *item_factory;
GtkWidget *button, *menu;

/* Same as before but don’t bother with the accelerators */
item_factory = gtk_item_factory_new (GTK_TYPE_MENU, "<main>",

NULL);
gtk_item_factory_create_items (item_factory, nmenu_items, menu_items, NULL);
menu = gtk_item_factory_get_widget(item_factory, "<main>");

/* Make a button to activate the popup menu */
button = gtk_button_new_with_label("Popup");
/* Make the menu popup when clicked */
g_signal_connect(G_OBJECT(button),

"event",
G_CALLBACK(popup_cb),
(gpointer) menu);

return button;
}

/* Same again but return an option menu */
GtkWidget *get_option_menu(void)
{

GtkItemFactory *item_factory;
GtkWidget *option_menu;

/* Same again, not bothering with the accelerators */
item_factory = gtk_item_factory_new (GTK_TYPE_OPTION_MENU, "<main>",

NULL);
gtk_item_factory_create_items (item_factory, nmenu_items, menu_items, NULL);
option_menu = gtk_item_factory_get_widget(item_factory, "<main>");

return option_menu;
}

/* You have to start somewhere */
int main(int argc,

char *argv[])
{
GtkWidget *window;
GtkWidget *main_vbox;
GtkWidget *menubar, *option_menu, *popup_button;

/* Initialize GTK */
gtk_init (&argc, &argv);

/* Make a window */
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
g_signal_connect (G_OBJECT (window), "destroy",

G_CALLBACK (gtk_main_quit),
NULL);

gtk_window_set_title (GTK_WINDOW(window), "Item Factory");
gtk_widget_set_size_request (GTK_WIDGET(window), 300, 200);

/* Make a vbox to put the three menus in */
main_vbox = gtk_vbox_new (FALSE, 1);
gtk_container_set_border_width (GTK_CONTAINER (main_vbox), 1);
gtk_container_add (GTK_CONTAINER (window), main_vbox);

/* Get the three types of menu */
/* Note: all three menus are separately created, so they are not the

same menu */
menubar = get_menubar_menu (window);
popup_button = get_popup_menu();
option_menu = get_option_menu();

/* Pack it all together */
gtk_box_pack_start (GTK_BOX (main_vbox), menubar, FALSE, TRUE, 0);
gtk_box_pack_end (GTK_BOX (main_vbox), popup_button, FALSE, TRUE, 0);
gtk_box_pack_end (GTK_BOX (main_vbox), option_menu, FALSE, TRUE, 0);

129

Chapter 12. Menu Widget

/* Show the widgets */
gtk_widget_show_all (window);

/* Finished! */
gtk_main ();

return(0);
}
/* example-end */

130

Chapter 13. Undocumented Widgets

These all require authors! :) Please consider contributing to our tutorial.

If you must use one of these widgets that are undocumented, I strongly suggest
you take a look at their respective header files in the GTK distribution. GTK’s
function names are very descriptive. Once you have an understanding of how
things work, it’s not difficult to figure out how to use a widget simply by looking
at its function declarations. This, along with a few examples from others’ code,
and it should be no problem.

When you do come to understand all the functions of a new undocumented wid-
get, please consider writing a tutorial on it so others may benefit from your time.

Accel Label

Option Menu

Menu Items

Check Menu Item

Radio Menu Item

Separator Menu Item

Tearoff Menu Item

Curves

Drawing Area

Font Selection Dialog

Message Dialog

Gamma Curve

131

Chapter 13. Undocumented Widgets

Image

Plugs and Sockets

Tree View

Text View

132

Chapter 14. Setting Widget Attributes

This describes the functions used to operate on widgets. These can be used to set
style, padding, size, etc.

(Maybe I should make a whole section on accelerators.)

void gtk_widget_activate(GtkWidget *widget);

void gtk_widget_set_name(GtkWidget *widget,
gchar *name);

gchar *gtk_widget_get_name(GtkWidget *widget);

void gtk_widget_set_sensitive(GtkWidget *widget,
gboolean sensitive);

void gtk_widget_set_style(GtkWidget *widget,
GtkStyle *style);

GtkStyle *gtk_widget_get_style(GtkWidget *widget);

GtkStyle *gtk_widget_get_default_style(void);

void gtk_widget_set_size_request (GtkWidget *widget,
gint width,
gint height);

void gtk_widget_grab_focus(GtkWidget *widget);

void gtk_widget_show(GtkWidget *widget);

void gtk_widget_hide(GtkWidget *widget);

133

Chapter 14. Setting Widget Attributes

134

Chapter 15. Timeouts, IO and Idle Functions

Timeouts
You may be wondering how you make GTK do useful work when in gtk_main.
Well, you have several options. Using the following function you can create a
timeout function that will be called every "interval" milliseconds.

gint gtk_timeout_add(guint32 interval,
GtkFunction function,
gpointer data);

The first argument is the number of milliseconds between calls to your function.
The second argument is the function you wish to have called, and the third, the
data passed to this callback function. The return value is an integer "tag" which
may be used to stop the timeout by calling:

void gtk_timeout_remove(gint tag);

You may also stop the timeout function by returning zero or FALSE from your
callback function. Obviously this means if you want your function to continue to
be called, it should return a non-zero value, i.e., TRUE.

The declaration of your callback should look something like this:

gint timeout_callback(gpointer data);

Monitoring IO
A nifty feature of GDK (the library that underlies GTK), is the ability to have it
check for data on a file descriptor for you (as returned by open(2) or socket(2)).
This is especially useful for networking applications. The function:

gint gdk_input_add(gint source,
GdkInputCondition condition,
GdkInputFunction function,
gpointer data);

Where the first argument is the file descriptor you wish to have watched, and the
second specifies what you want GDK to look for. This may be one of:

• GDK_INPUT_READ - Call your function when there is data ready for reading on
your file descriptor.

• >GDK_INPUT_WRITE - Call your function when the file descriptor is ready for
writing.

As I’m sure you’ve figured out already, the third argument is the function you
wish to have called when the above conditions are satisfied, and the fourth is the
data to pass to this function.

The return value is a tag that may be used to stop GDK from monitoring this file
descriptor using the following function.

void gdk_input_remove(gint tag);

The callback function should be declared as:

void input_callback(gpointer data,
gint source,
GdkInputCondition condition);

Where source and condition are as specified above.

135

Chapter 15. Timeouts, IO and Idle Functions

Idle Functions
What if you have a function which you want to be called when nothing else is
happening ?

gint gtk_idle_add(GtkFunction function,
gpointer data);

This causes GTK to call the specified function whenever nothing else is happen-
ing.

void gtk_idle_remove(gint tag);

I won’t explain the meaning of the arguments as they follow very much like the
ones above. The function pointed to by the first argument to gtk_idle_add will be
called whenever the opportunity arises. As with the others, returning FALSE will
stop the idle function from being called.

136

Chapter 16. Advanced Event and Signal Handling

Signal Functions

Connecting and Disconnecting Signal Handlers

gulong g_signal_connect(GObject *object,
const gchar *name,
GCallback func,
gpointer func_data);

gulong g_signal_connect_after(GObject *object,
const gchar *name,
GCallback func,
gpointer func_data);

gulong g_signal_connect_swapped(GObject *object,
const gchar *name,
GCallback func,
GObject *slot_object);

void g_signal_handler_disconnect(GObject *object,
gulong handler_id);

void g_signal_handlers_disconnect_by_func(GObject *object,
GCallback func,
gpointer data);

Blocking and Unblocking Signal Handlers

void g_signal_handler_block(GObject *object,
gulong handler_id);

void g_signal_handlers_block_by_func(GObject *object,
GCallback func,
gpointer data);

void g_signal_handler_unblock(GObject *object,
gulong handler_id);

void g_signal_handler_unblock_by_func(GObject *object,
GCallback func,
gpointer data);

Emitting and Stopping Signals

void g_signal_emit(GObject *object,
guint signal_id,
...);

void g_signal_emit_by_name(GObject *object,
const gchar *name,
...);

void g_signal_emitv(const GValue *instance_and_params,
guint signal_id,
GQuark detail,
GValue *return_value);

void g_signal_stop_emission(GObject *object,
guint signal_id,
GQuark detail);

void g_signal_stop_emission_by_name(GObject *object,

137

Chapter 16. Advanced Event and Signal Handling

const gchar *detailed_signal);

Signal Emission and Propagation
Signal emission is the process whereby GTK runs all handlers for a specific object
and signal.

First, note that the return value from a signal emission is the return value of
the last handler executed. Since event signals are all of type GTK_RUN_LAST,
this will be the default (GTK supplied) handler, unless you connect with
gtk_signal_connect_after().

The way an event (say "button_press_event") is handled, is:

• Start with the widget where the event occured.

• Emit the generic "event" signal. If that signal handler returns a value of TRUE,
stop all processing.

• Otherwise, emit a specific, "button_press_event" signal. If that returns TRUE,
stop all processing.

• Otherwise, go to the widget’s parent, and repeat the above two steps.

• Continue until some signal handler returns TRUE, or until the top-level widget
is reached.

Some consequences of the above are:

• Your handler’s return value will have no effect if there is a default handler,
unless you connect with gtk_signal_connect_after().

• To prevent the default handler from being run, you need to connect with
gtk_signal_connect() and use gtk_signal_emit_stop_by_name() - the return
value only affects whether the signal is propagated, not the current emission.

138

Chapter 17. Managing Selections

Overview
One type of interprocess communication supported by X and GTK is selections. A
selection identifies a chunk of data, for instance, a portion of text, selected by the
user in some fashion, for instance, by dragging with the mouse. Only one appli-
cation on a display (the owner) can own a particular selection at one time, so when
a selection is claimed by one application, the previous owner must indicate to the
user that selection has been relinquished. Other applications can request the con-
tents of a selection in different forms, called targets. There can be any number of
selections, but most X applications only handle one, the primary selection.

In most cases, it isn’t necessary for a GTK application to deal with selections
itself. The standard widgets, such as the Entry widget, already have the capability
to claim the selection when appropriate (e.g., when the user drags over text),
and to retrieve the contents of the selection owned by another widget or another
application (e.g., when the user clicks the second mouse button). However, there
may be cases in which you want to give other widgets the ability to supply the
selection, or you wish to retrieve targets not supported by default.

A fundamental concept needed to understand selection handling is that of the
atom. An atom is an integer that uniquely identifies a string (on a certain dis-
play). Certain atoms are predefined by the X server, and in some cases there
are constants in gtk.h corresponding to these atoms. For instance the constant
GDK_PRIMARY_SELECTION corresponds to the string "PRIMARY". In other cases,
you should use the functions gdk_atom_intern(), to get the atom correspond-
ing to a string, and gdk_atom_name(), to get the name of an atom. Both selections
and targets are identified by atoms.

Retrieving the selection
Retrieving the selection is an asynchronous process. To start the process, you call:

gboolean gtk_selection_convert(GtkWidget *widget,
GdkAtom selection,
GdkAtom target,
guint32 time);

This converts the selection into the form specified by target. If at all possible, the
time field should be the time from the event that triggered the selection. This
helps make sure that events occur in the order that the user requested them.
However, if it is not available (for instance, if the conversion was triggered by
a "clicked" signal), then you can use the constant GDK_CURRENT_TIME.

When the selection owner responds to the request, a "selection_received" signal
is sent to your application. The handler for this signal receives a pointer to a
GtkSelectionData structure, which is defined as:

struct _GtkSelectionData
{
GdkAtom selection;
GdkAtom target;
GdkAtom type;
gint format;
guchar *data;
gint length;

};

selection and target are the values you gave in your
gtk_selection_convert() call. type is an atom that identifies the type of data
returned by the selection owner. Some possible values are "STRING", a string
of latin-1 characters, "ATOM", a series of atoms, "INTEGER", an integer, etc.
Most targets can only return one type. format gives the length of the units (for
instance characters) in bits. Usually, you don’t care about this when receiving

139

Chapter 17. Managing Selections

data. data is a pointer to the returned data, and length gives the length of the
returned data, in bytes. If length is negative, then an error occurred and the
selection could not be retrieved. This might happen if no application owned
the selection, or if you requested a target that the application didn’t support.
The buffer is actually guaranteed to be one byte longer than length; the extra
byte will always be zero, so it isn’t necessary to make a copy of strings just to
nul-terminate them.

In the following example, we retrieve the special target "TARGETS", which is a
list of all targets into which the selection can be converted.

#include
�
stdlib.h �

#include
�
gtk/gtk.h �

void selection_received(GtkWidget *widget,
GtkSelectionData *selection_data,
gpointer data);

/* Signal handler invoked when user clicks on the "Get Targets" but-
ton */
void get_targets(GtkWidget *widget,

gpointer data)
{
static GdkAtom targets_atom = GDK_NONE;
GtkWidget *window = (GtkWidget *)data;

/* Get the atom corresponding to the string "TARGETS" */
if (targets_atom == GDK_NONE)

targets_atom = gdk_atom_intern ("TARGETS", FALSE);

/* And request the "TARGETS" target for the primary selection */
gtk_selection_convert (window, GDK_SELECTION_PRIMARY, targets_atom,

GDK_CURRENT_TIME);
}

/* Signal handler called when the selections owner returns the data */
void selection_received(GtkWidget *widget,

GtkSelectionData *selection_data,
gpointer data)

{
GdkAtom *atoms;
GList *item_list;
int i;

/* **** IMPORTANT **** Check to see if retrieval succeeded */
if (selection_data- � length �

0)
{

g_print ("Selection retrieval failed\n");
return;

}
/* Make sure we got the data in the expected form */
if (selection_data- � type != GDK_SELECTION_TYPE_ATOM)

{
g_print ("Selection \"TARGETS\" was not returned as atoms!\n");
return;

}

/* Print out the atoms we received */
atoms = (GdkAtom *)selection_data- � data;

item_list = NULL;
for (i = 0; i

�
selection_data- � length / sizeof(GdkAtom); i++)

{
char *name;
name = gdk_atom_name (atoms[i]);
if (name != NULL)

g_print ("%s\n",name);
else

g_print ("(bad atom)\n");
}

140

Chapter 17. Managing Selections

return;
}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *button;

gtk_init (&argc, &argv);

/* Create the toplevel window */

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Event Box");
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (exit), NULL);

/* Create a button the user can click to get targets */

button = gtk_button_new_with_label ("Get Targets");
gtk_container_add (GTK_CONTAINER (window), button);

g_signal_connect (G_OBJECT (button), "clicked",
G_CALLBACK (get_targets), (gpointer) window);

g_signal_connect (G_OBJECT (window), "selection_received",
G_CALLBACK (selection_received), NULL);

gtk_widget_show (button);
gtk_widget_show (window);

gtk_main ();

return 0;
}

Supplying the selection
Supplying the selection is a bit more complicated. You must register handlers that
will be called when your selection is requested. For each selection/target pair you
will handle, you make a call to:

void gtk_selection_add_target (GtkWidget *widget,
GdkAtom selection,
GdkAtom target,
guint info);

widget, selection, and target identify the requests this handler will manage.
When a request for a selection is received, the "selection_get" signal will be called.
info can be used as an enumerator to identify the specific target within the call-
back function.

The callback function has the signature:

void "selection_get" (GtkWidget *widget,
GtkSelectionData *selection_data,
guint info,
guint time);

The GtkSelectionData is the same as above, but this time, we’re responsible for
filling in the fields type, format, data, and length. (The format field is actually
important here - the X server uses it to figure out whether the data needs to be
byte-swapped or not. Usually it will be 8 - i.e. a character - or 32 - i.e. an integer.)
This is done by calling the function:

void gtk_selection_data_set(GtkSelectionData *selection_data,

141

Chapter 17. Managing Selections

GdkAtom type,
gint format,
guchar *data,
gint length);

This function takes care of properly making a copy of the data so that you don’t
have to worry about keeping it around. (You should not fill in the fields of the
GtkSelectionData structure by hand.)

When prompted by the user, you claim ownership of the selection by calling:

gboolean gtk_selection_owner_set(GtkWidget *widget,
GdkAtom selection,
guint32 time);

If another application claims ownership of the selection, you will receive a "selec-
tion_clear_event".

As an example of supplying the selection, the following program adds selection
functionality to a toggle button. When the toggle button is depressed, the pro-
gram claims the primary selection. The only target supported (aside from certain
targets like "TARGETS" supplied by GTK itself), is the "STRING" target. When
this target is requested, a string representation of the time is returned.

#include
�
stdlib.h �

#include
�
gtk/gtk.h �

#include
�
time.h �

#include
�
string.h �

GtkWidget *selection_button;
GtkWidget *selection_widget;

/* Callback when the user toggles the selection */
void selection_toggled(GtkWidget *widget,

gint *have_selection)
{
if (GTK_TOGGLE_BUTTON (widget)- � active)

{
*have_selection = gtk_selection_owner_set (selection_widget,
GDK_SELECTION_PRIMARY,
GDK_CURRENT_TIME);
/* if claiming the selection failed, we return the button to

the out state */
if (!*have_selection)

gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (widget), FALSE);
}

else
{

if (*have_selection)
{

/* Before clearing the selection by setting the owner to NULL,
we check if we are the actual owner */

if (gdk_selection_owner_get (GDK_SELECTION_PRIMARY) == widget- � window)
gtk_selection_owner_set (NULL, GDK_SELECTION_PRIMARY,

GDK_CURRENT_TIME);
*have_selection = FALSE;

}
}

}

/* Called when another application claims the selection */
gint selection_clear(GtkWidget *widget,

GdkEventSelection *event,
gint *have_selection)

{
*have_selection = FALSE;
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (selection_button), FALSE);

return TRUE;
}

142

Chapter 17. Managing Selections

/* Supplies the current time as the selection. */
void selection_handle(GtkWidget *widget,

GtkSelectionData *selection_data,
guint info,
guint time_stamp,
gpointer data)

{
gchar *timestr;
time_t current_time;

current_time = time (NULL);
timestr = asctime (localtime (¤t_time));
/* When we return a single string, it should not be null terminated.

That will be done for us */

gtk_selection_data_set (selection_data, GDK_SELECTION_TYPE_STRING,
8, timestr, strlen (timestr));

}

int main(int argc,
char *argv[])

{
GtkWidget *window;

static int have_selection = FALSE;

gtk_init (&argc, &argv);

/* Create the toplevel window */

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "Event Box");
gtk_container_set_border_width (GTK_CONTAINER (window), 10);

g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (exit), NULL);

/* Create a toggle button to act as the selection */

selection_widget = gtk_invisible_new ();
selection_button = gtk_toggle_button_new_with_label ("Claim Selection");
gtk_container_add (GTK_CONTAINER (window), selection_button);
gtk_widget_show (selection_button);

g_signal_connect (G_OBJECT (selection_button), "toggled",
G_CALLBACK (selection_toggled), (gpointer) &have_selection);

g_signal_connect (G_OBJECT (selection_widget), "selection_clear_event",
G_CALLBACK (selection_clear), (gpointer) &have_selection);

gtk_selection_add_target (selection_widget,
GDK_SELECTION_PRIMARY,
GDK_SELECTION_TYPE_STRING,

1);
g_signal_connect (G_OBJECT (selection_widget), "selection_get",

G_CALLBACK (selection_handle), (gpointer) &have_selection);

gtk_widget_show (selection_button);
gtk_widget_show (window);

gtk_main ();

return 0;
}

143

Chapter 17. Managing Selections

144

Chapter 18. Drag-and-drop (DND)

GTK+ has a high level set of functions for doing inter-process communication via
the drag-and-drop system. GTK+ can perform drag-and-drop on top of the low
level Xdnd and Motif drag-and-drop protocols.

Overview
An application capable of GTK+ drag-and-drop first defines and sets up the
GTK+ widget(s) for drag-and-drop. Each widget can be a source and/or destina-
tion for drag-and-drop. Note that these GTK+ widgets must have an associated
X Window, check using GTK_WIDGET_NO_WINDOW(widget)).

Source widgets can send out drag data, thus allowing the user to drag things off
of them, while destination widgets can receive drag data. Drag-and-drop desti-
nations can limit who they accept drag data from, e.g. the same application or
any application (including itself).

Sending and receiving drop data makes use of GTK+ signals. Dropping an item
to a destination widget requires both a data request (for the source widget) and
data received signal handler (for the target widget). Additional signal handers
can be connected if you want to know when a drag begins (at the very instant it
starts), to when a drop is made, and when the entire drag-and-drop procedure
has ended (successfully or not).

Your application will need to provide data for source widgets when requested,
that involves having a drag data request signal handler. For destination widgets
they will need a drop data received signal handler.

So a typical drag-and-drop cycle would look as follows:

1. Drag begins.

2. Drag data request (when a drop occurs).

3. Drop data received (may be on same or different application).

4. Drag data delete (if the drag was a move).

5. Drag-and-drop procedure done.

There are a few minor steps that go in between here and there, but we will get
into detail about that later.

Properties
Drag data has the following properties:

• Drag action type (ie GDK_ACTION_COPY, GDK_ACTION_MOVE).

• Client specified arbitrary drag-and-drop type (a name and number pair).

• Sent and received data format type.

Drag actions are quite obvious, they specify if the widget can drag with the
specified action(s), e.g. GDK_ACTION_COPY and/or GDK_ACTION_MOVE.
A GDK_ACTION_COPY would be a typical drag-and-drop without the
source data being deleted while GDK_ACTION_MOVE would be just like
GDK_ACTION_COPY but the source data will be ’suggested’ to be deleted after
the received signal handler is called. There are additional drag actions including
GDK_ACTION_LINK which you may want to look into when you get to more
advanced levels of drag-and-drop.

The client specified arbitrary drag-and-drop type is much more flexible, because
your application will be defining and checking for that specifically. You will need
to set up your destination widgets to receive certain drag-and-drop types by spec-
ifying a name and/or number. It would be more reliable to use a name since
another application may just happen to use the same number for an entirely dif-
ferent meaning.

145

Chapter 18. Drag-and-drop (DND)

Sent and received data format types (selection target) come into play only in your
request and received data handler functions. The term selection target is somewhat
misleading. It is a term adapted from GTK+ selection (cut/copy and paste). What
selection target actually means is the data’s format type (i.e. GdkAtom, integer, or
string) that being sent or received. Your request data handler function needs to
specify the type (selection target) of data that it sends out and your received data
handler needs to handle the type (selection target) of data received.

Functions

Setting up the source widget

The function gtk_drag_source_set() specifies a set of target types for a drag
operation on a widget.

void gtk_drag_source_set(GtkWidget *widget,
GdkModifierType start_button_mask,
const GtkTargetEntry *targets,
gint n_targets,
GdkDragAction actions);

The parameters signify the following:

• widget specifies the drag source widget

• start_button_mask specifies a bitmask of buttons that can start the drag (e.g.
GDK_BUTTON1_MASK)

• targets specifies a table of target data types the drag will support

• n_targets specifies the number of targets above

• actions specifies a bitmask of possible actions for a drag from this window

The targets parameter is an array of the following structure:

struct GtkTargetEntry {
gchar *target;
guint flags;
guint info;

};

The fields specify a string representing the drag type, optional flags and applica-
tion assigned integer identifier.

If a widget is no longer required to act as a source for drag-and-drop operations,
the function gtk_drag_source_unset() can be used to remove a set of drag-
and-drop target types.

void gtk_drag_source_unset(GtkWidget *widget);

Signals on the source widget:

The source widget is sent the following signals during a drag-and-drop opera-
tion.

Table 18-1. Source widget signals

drag_begin void (*drag_begin)(GtkWidget *widget,
GdkDragContext *dc, gpointer data)

drag_motion
gboolean (*drag_motion)(GtkWidget
*widget, GdkDragContext *dc, gint x,
gint y, guint t, gpointer data)

146

Chapter 18. Drag-and-drop (DND)

drag_data_get

void (*drag_data_get)(GtkWidget
*widget, GdkDragContext *dc,
GtkSelectionData *selection_data,
guint info, guint t, gpointer data)

drag_data_delete
void (*drag_data_delete)(GtkWidget
*widget, GdkDragContext *dc, gpointer
data)

drag_drop
gboolean (*drag_drop)(GtkWidget
*widget, GdkDragContext *dc, gint x,
gint y, guint t, gpointer data)

drag_end void (*drag_end)(GtkWidget *widget,
GdkDragContext *dc, gpointer data)

Setting up a destination widget:

gtk_drag_dest_set() specifies that this widget can receive drops and specifies
what types of drops it can receive.

gtk_drag_dest_unset() specifies that the widget can no longer receive drops.

void gtk_drag_dest_set(GtkWidget *widget,
GtkDestDefaults flags,
const GtkTargetEntry *targets,
gint n_targets,
GdkDragAction actions);

void gtk_drag_dest_unset(GtkWidget *widget);

Signals on the destination widget:

The destination widget is sent the following signals during a drag-and-drop op-
eration.

Table 18-2. Destination widget signals

drag_data_received

void (*drag_data_received)(GtkWidget
*widget, GdkDragContext *dc, gint x,
gint y, GtkSelectionData
*selection_data, guint info, guint t,
gpointer data)

147

Chapter 18. Drag-and-drop (DND)

148

Chapter 19. GLib

GLib is a lower-level library that provides many useful definitions and functions
available for use when creating GDK and GTK applications. These include defini-
tions for basic types and their limits, standard macros, type conversions, byte or-
der, memory allocation, warnings and assertions, message logging, timers, string
utilities, hook functions, a lexical scanner, dynamic loading of modules, and au-
tomatic string completion. A number of data structures (and their related oper-
ations) are also defined, including memory chunks, doubly-linked lists, singly-
linked lists, hash tables, strings (which can grow dynamically), string chunks
(groups of strings), arrays (which can grow in size as elements are added), bal-
anced binary trees, N-ary trees, quarks (a two-way association of a string and a
unique integer identifier), keyed data lists (lists of data elements accessible by a
string or integer id), relations and tuples (tables of data which can be indexed on
any number of fields), and caches.

A summary of some of GLib’s capabilities follows; not every function, data
structure, or operation is covered here. For more complete information about the
GLib routines, see the GLib documentation. One source of GLib documentation
is http://www.gtk.org/.

If you are using a language other than C, you should consult your language’s
binding documentation. In some cases your language may have equivalent func-
tionality built-in, while in other cases it may not.

Definitions
Definitions for the extremes of many of the standard types are:

G_MINFLOAT
G_MAXFLOAT
G_MINDOUBLE
G_MAXDOUBLE
G_MINSHORT
G_MAXSHORT
G_MININT
G_MAXINT
G_MINLONG
G_MAXLONG

Also, the following typedefs. The ones left unspecified are dynamically set de-
pending on the architecture. Remember to avoid counting on the size of a pointer
if you want to be portable! E.g., a pointer on an Alpha is 8 bytes, but 4 on Intel
80x86 family CPUs.

char gchar;
short gshort;
long glong;
int gint;
char gboolean;

unsigned char guchar;
unsigned short gushort;
unsigned long gulong;
unsigned int guint;

float gfloat;
double gdouble;
long double gldouble;

void* gpointer;

gint8
guint8
gint16
guint16
gint32
guint32

149

Chapter 19. GLib

Doubly Linked Lists
The following functions are used to create, manage, and destroy standard doubly
linked lists. Each element in the list contains a piece of data, together with point-
ers which link to the previous and next elements in the list. This enables easy
movement in either direction through the list. The data item is of type "gpointer",
which means the data can be a pointer to your real data or (through casting) a nu-
meric value (but do not assume that int and gpointer have the same size!). These
routines internally allocate list elements in blocks, which is more efficient than
allocating elements individually.

There is no function to specifically create a list. Instead, simply create a variable
of type GList* and set its value to NULL; NULL is considered to be the empty
list.

To add elements to a list, use the g_list_append(), g_list_prepend(), g_list_insert(),
or g_list_insert_sorted() routines. In all cases they accept a pointer to the begin-
ning of the list, and return the (possibly changed) pointer to the beginning of the
list. Thus, for all of the operations that add or remove elements, be sure to save
the returned value!

GList *g_list_append(GList *list,
gpointer data);

This adds a new element (with value data) onto the end of the list.

GList *g_list_prepend(GList *list,
gpointer data);

This adds a new element (with value data) to the beginning of the list.

GList *g_list_insert(GList *list,
gpointer data,
gint position);

This inserts a new element (with value data) into the list at the given position. If
position is 0, this is just like g_list_prepend(); if position is less than 0, this is just
like g_list_append().

GList *g_list_remove(GList *list,
gpointer data);

This removes the element in the list with the value data; if the element isn’t there,
the list is unchanged.

void g_list_free(GList *list);

This frees all of the memory used by a GList. If the list elements refer to
dynamically-allocated memory, then they should be freed first.

There are many other GLib functions that support doubly linked lists; see the glib
documentation for more information. Here are a few of the more useful functions’
signatures:

GList *g_list_remove_link(GList *list,
GList *link);

GList *g_list_reverse(GList *list);

GList *g_list_nth(GList *list,
gint n);

GList *g_list_find(GList *list,
gpointer data);

GList *g_list_last(GList *list);

GList *g_list_first(GList *list);

150

Chapter 19. GLib

gint g_list_length(GList *list);

void g_list_foreach(GList *list,
GFunc func,
gpointer user_data);

Singly Linked Lists
Many of the above functions for singly linked lists are identical to the above. Here
is a list of some of their operations:

GSList *g_slist_append(GSList *list,
gpointer data);

GSList *g_slist_prepend(GSList *list,
gpointer data);

GSList *g_slist_insert(GSList *list,
gpointer data,

gint position);

GSList *g_slist_remove(GSList *list,
gpointer data);

GSList *g_slist_remove_link(GSList *list,
GSList *link);

GSList *g_slist_reverse(GSList *list);

GSList *g_slist_nth(GSList *list,
gint n);

GSList *g_slist_find(GSList *list,
gpointer data);

GSList *g_slist_last(GSList *list);

gint g_slist_length(GSList *list);

void g_slist_foreach(GSList *list,
GFunc func,
gpointer user_data);

Memory Management

gpointer g_malloc(gulong size);

This is a replacement for malloc(). You do not need to check the return value as
it is done for you in this function. If the memory allocation fails for whatever
reasons, your applications will be terminated.

gpointer g_malloc0(gulong size);

Same as above, but zeroes the memory before returning a pointer to it.

gpointer g_realloc(gpointer mem,
gulong size);

Relocates "size" bytes of memory starting at "mem". Obviously, the memory
should have been previously allocated.

void g_free(gpointer mem);

Frees memory. Easy one. If mem is NULL it simply returns.

151

Chapter 19. GLib

void g_mem_profile(void);

Dumps a profile of used memory, but requires that you add #define
MEM_PROFILE to the top of glib/gmem.c and re-make and make install.

void g_mem_check(gpointer mem);

Checks that a memory location is valid. Requires you add #define MEM_CHECK
to the top of gmem.c and re-make and make install.

Timers
Timer functions can be used to time operations (e.g., to see how much time has
elapsed). First, you create a new timer with g_timer_new(). You can then use
g_timer_start() to start timing an operation, g_timer_stop() to stop timing an op-
eration, and g_timer_elapsed() to determine the elapsed time.

GTimer *g_timer_new(void);

void g_timer_destroy(GTimer *timer);

void g_timer_start(GTimer *timer);

void g_timer_stop(GTimer *timer);

void g_timer_reset(GTimer *timer);

gdouble g_timer_elapsed(GTimer *timer,
gulong *microseconds);

String Handling
GLib defines a new type called a GString, which is similar to a standard C string
but one that grows automatically. Its string data is null-terminated. What this
gives you is protection from buffer overflow programming errors within your
program. This is a very important feature, and hence I recommend that you make
use of GStrings. GString itself has a simple public definition:

struct GString
{
gchar *str; /* Points to the string’s current \0-terminated value. */
gint len; /* Current length */

};

As you might expect, there are a number of operations you can do with a GString.

GString *g_string_new(gchar *init);

This constructs a GString, copying the string value of init into the GString and
returning a pointer to it. NULL may be given as the argument for an initially
empty GString.

void g_string_free(GString *string,
gint free_segment);

This frees the memory for the given GString. If free_segment is TRUE, then this
also frees its character data.

GString *g_string_assign(GString *lval,
const gchar *rval);

This copies the characters from rval into lval, destroying the previous contents of
lval. Note that lval will be lengthened as necessary to hold the string’s contents,
unlike the standard strcpy() function.

152

Chapter 19. GLib

The rest of these functions should be relatively obvious (the _c versions accept a
character instead of a string):

GString *g_string_truncate(GString *string,
gint len);

GString *g_string_append(GString *string,
gchar *val);

GString *g_string_append_c(GString *string,
gchar c);

GString *g_string_prepend(GString *string,
gchar *val);

GString *g_string_prepend_c(GString *string,
gchar c);

void g_string_sprintf(GString *string,
gchar *fmt,
...);

void g_string_sprintfa (GString *string,
gchar *fmt,
...);

Utility and Error Functions

gchar *g_strdup(const gchar *str);

Replacement strdup function. Copies the original strings contents to newly allo-
cated memory, and returns a pointer to it.

gchar *g_strerror(gint errnum);

I recommend using this for all error messages. It’s much nicer, and more portable
than perror() or others. The output is usually of the form:

program name:function that failed:file or further description:strerror

Here’s an example of one such call used in our hello_world program:

g_print("hello_world:open:%s:%s\n", filename, g_strerror(errno));

void g_error(gchar *format, ...);

Prints an error message. The format is just like printf, but it prepends "** ERROR
**: " to your message, and exits the program. Use only for fatal errors.

void g_warning(gchar *format, ...);

Same as above, but prepends "** WARNING **: ", and does not exit the program.

void g_message(gchar *format, ...);

Prints "message: " prepended to the string you pass in.

void g_print(gchar *format, ...);

Replacement for printf().

And our last function:

gchar *g_strsignal(gint signum);

Prints out the name of the Unix system signal given the signal number. Useful in
generic signal handling functions.

153

Chapter 19. GLib

All of the above are more or less just stolen from glib.h. If anyone cares to docu-
ment any function, just send me an email!

Notes
1. http://www.gtk.org/

154

Chapter 20. GTK’s rc Files

GTK has its own way of dealing with application defaults, by using rc files. These
can be used to set the colors of just about any widget, and can also be used to tile
pixmaps onto the background of some widgets.

Functions For rc Files
When your application starts, you should include a call to:

void gtk_rc_parse(char *filename);

Passing in the filename of your rc file. This will cause GTK to parse this file, and
use the style settings for the widget types defined there.

If you wish to have a special set of widgets that can take on a different style from
others, or any other logical division of widgets, use a call to:

void gtk_widget_set_name(GtkWidget *widget,
gchar *name);

Passing your newly created widget as the first argument, and the name you wish
to give it as the second. This will allow you to change the attributes of this widget
by name through the rc file.

If we use a call something like this:

button = gtk_button_new_with_label ("Special Button");
gtk_widget_set_name (button, "special button");

Then this button is given the name "special button" and may be addressed by
name in the rc file as "special button.GtkButton". [<--- Verify ME!]

The example rc file below, sets the properties of the main window, and lets all
children of that main window inherit the style described by the "main button"
style. The code used in the application is:

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_set_name (window, "main window");

And then the style is defined in the rc file using:

widget "main window.*GtkButton*" style "main_button"

Which sets all the Button widgets in the "main window" to the "main_buttons"
style as defined in the rc file.

As you can see, this is a fairly powerful and flexible system. Use your imagination
as to how best to take advantage of this.

GTK’s rc File Format
The format of the GTK file is illustrated in the example below. This is the testgtkrc
file from the GTK distribution, but I’ve added a few comments and things. You
may wish to include this explanation in your application to allow the user to fine
tune his application.

There are several directives to change the attributes of a widget.

• fg - Sets the foreground color of a widget.

• bg - Sets the background color of a widget.

• bg_pixmap - Sets the background of a widget to a tiled pixmap.

• font - Sets the font to be used with the given widget.

In addition to this, there are several states a widget can be in, and you can set
different colors, pixmaps and fonts for each state. These states are:

155

Chapter 20. GTK’s rc Files

• NORMAL - The normal state of a widget, without the mouse over top of it, and
not being pressed, etc.

• PRELIGHT - When the mouse is over top of the widget, colors defined using
this state will be in effect.

• ACTIVE - When the widget is pressed or clicked it will be active, and the at-
tributes assigned by this tag will be in effect.

• INSENSITIVE - When a widget is set insensitive, and cannot be activated, it
will take these attributes.

• SELECTED - When an object is selected, it takes these attributes.

When using the "fg" and "bg" keywords to set the colors of widgets, the format is:

fg[
�
STATE>] = { Red, Green, Blue }

Where STATE is one of the above states (PRELIGHT, ACTIVE, etc), and the Red,
Green and Blue are values in the range of 0 - 1.0, { 1.0, 1.0, 1.0 } being white. They
must be in float form, or they will register as 0, so a straight "1" will not work, it
must be "1.0". A straight "0" is fine because it doesn’t matter if it’s not recognized.
Unrecognized values are set to 0.

bg_pixmap is very similar to the above, except the colors are replaced by a file-
name.

pixmap_path is a list of paths separated by ":"’s. These paths will be searched for
any pixmap you specify.

The font directive is simply:

font = "
�
font name>"

The only hard part is figuring out the font string. Using xfontsel or a similar utility
should help.

The "widget_class" sets the style of a class of widgets. These classes are listed in
the widget overview on the class hierarchy.

The "widget" directive sets a specifically named set of widgets to a given style,
overriding any style set for the given widget class. These widgets are registered
inside the application using the gtk_widget_set_name() call. This allows you to
specify the attributes of a widget on a per widget basis, rather than setting the
attributes of an entire widget class. I urge you to document any of these special
widgets so users may customize them.

When the keyword parent is used as an attribute, the widget will take on the
attributes of its parent in the application.

When defining a style, you may assign the attributes of a previously defined style
to this new one.

style "main_button" = "button"
{
font = "-adobe-helvetica-medium-r-normal--*-100-*-*-*-*-*-*"
bg[PRELIGHT] = { 0.75, 0, 0 }

}

This example takes the "button" style, and creates a new "main_button" style sim-
ply by changing the font and prelight background color of the "button" style.

Of course, many of these attributes don’t apply to all widgets. It’s a simple matter
of common sense really. Anything that could apply, should.

Example rc file

pixmap_path "
�
dir 1>:

�
dir 2>:

�
dir 3>:..."

#
pixmap_path "/usr/include/X11R6/pixmaps:/home/imain/pixmaps"
#
style

�
name> [=

�
name>]

156

Chapter 20. GTK’s rc Files

{
#

�
option>

}
#
widget

�
widget_set> style

�
style_name>

widget_class
�
widget_class_set> style

�
style_name>

Here is a list of all the possible states. Note that some do not ap-
ply to
certain widgets.
#
NORMAL - The normal state of a widget, without the mouse over top of
it, and not being pressed, etc.
#
PRELIGHT - When the mouse is over top of the widget, colors defined
using this state will be in effect.
#
ACTIVE - When the widget is pressed or clicked it will be active, and
the attributes assigned by this tag will be in effect.
#
INSENSITIVE - When a widget is set insensitive, and cannot be
activated, it will take these attributes.
#
SELECTED - When an object is selected, it takes these attributes.
#
Given these states, we can set the attributes of the widgets in each of
these states using the following directives.
#
fg - Sets the foreground color of a widget.
fg - Sets the background color of a widget.
bg_pixmap - Sets the background of a widget to a tiled pixmap.
font - Sets the font to be used with the given widget.
#

This sets a style called "button". The name is not really impor-
tant, as
it is assigned to the actual widgets at the bottom of the file.

style "window"
{
#This sets the padding around the window to the pixmap specified.
#bg_pixmap[

�
STATE>] = "

�
pixmap filename>"

bg_pixmap[NORMAL] = "warning.xpm"
}

style "scale"
{
#Sets the foreground color (font color) to red when in the "NORMAL"
#state.

fg[NORMAL] = { 1.0, 0, 0 }

#Sets the background pixmap of this widget to that of its parent.
bg_pixmap[NORMAL] = "

�
parent>"

}

style "button"
{
This shows all the possible states for a button. The only one that
doesn’t apply is the SELECTED state.

fg[PRELIGHT] = { 0, 1.0, 1.0 }
bg[PRELIGHT] = { 0, 0, 1.0 }
bg[ACTIVE] = { 1.0, 0, 0 }
fg[ACTIVE] = { 0, 1.0, 0 }
bg[NORMAL] = { 1.0, 1.0, 0 }
fg[NORMAL] = { .99, 0, .99 }
bg[INSENSITIVE] = { 1.0, 1.0, 1.0 }
fg[INSENSITIVE] = { 1.0, 0, 1.0 }

}

157

Chapter 20. GTK’s rc Files

In this example, we inherit the attributes of the "button" style and then
override the font and background color when prelit to create a new
"main_button" style.

style "main_button" = "button"
{
font = "-adobe-helvetica-medium-r-normal--*-100-*-*-*-*-*-*"
bg[PRELIGHT] = { 0.75, 0, 0 }

}

style "toggle_button" = "button"
{
fg[NORMAL] = { 1.0, 0, 0 }
fg[ACTIVE] = { 1.0, 0, 0 }

This sets the background pixmap of the toggle_button to that of its
parent widget (as defined in the application).
bg_pixmap[NORMAL] = "

�
parent>"

}

style "text"
{
bg_pixmap[NORMAL] = "marble.xpm"
fg[NORMAL] = { 1.0, 1.0, 1.0 }

}

style "ruler"
{
font = "-adobe-helvetica-medium-r-normal--*-80-*-*-*-*-*-*"

}

pixmap_path "~/.pixmaps"

These set the widget types to use the styles defined above.
The widget types are listed in the class hierarchy, but could prob-
ably be
just listed in this document for the users reference.

widget_class "GtkWindow" style "window"
widget_class "GtkDialog" style "window"
widget_class "GtkFileSelection" style "window"
widget_class "*Gtk*Scale" style "scale"
widget_class "*GtkCheckButton*" style "toggle_button"
widget_class "*GtkRadioButton*" style "toggle_button"
widget_class "*GtkButton*" style "button"
widget_class "*Ruler" style "ruler"
widget_class "*GtkText" style "text"

This sets all the buttons that are children of the "main window" to
the main_button style. These must be documented to be taken ad-
vantage of.
widget "main window.*GtkButton*" style "main_button"

158

Chapter 21. Writing Your Own Widgets

Overview
Although the GTK distribution comes with many types of widgets that should
cover most basic needs, there may come a time when you need to create your
own new widget type. Since GTK uses widget inheritance extensively, and there
is already a widget that is close to what you want, it is often possible to make
a useful new widget type in just a few lines of code. But before starting work
on a new widget, check around first to make sure that someone has not already
written it. This will prevent duplication of effort and keep the number of GTK
widgets out there to a minimum, which will help keep both the code and the
interface of different applications consistent. As a flip side to this, once you finish
your widget, announce it to the world so other people can benefit. The best place
to do this is probably the gtk-list.

Complete sources for the example widgets are available at the place you got this
tutorial, or from:

http://www.gtk.org/~otaylor/gtk/tutorial/

The Anatomy Of A Widget
In order to create a new widget, it is important to have an understanding of how
GTK objects work. This section is just meant as a brief overview. See the reference
documentation for the details.

GTK widgets are implemented in an object oriented fashion. However, they are
implemented in standard C. This greatly improves portability and stability over
using current generation C++ compilers; however, it does mean that the widget
writer has to pay attention to some of the implementation details. The informa-
tion common to all instances of one class of widgets (e.g., to all Button widgets)
is stored in the class structure. There is only one copy of this in which is stored
information about the class’s signals (which act like virtual functions in C). To
support inheritance, the first field in the class structure must be a copy of the
parent’s class structure. The declaration of the class structure of GtkButtton looks
like:

struct _GtkButtonClass
{
GtkContainerClass parent_class;

void (* pressed) (GtkButton *button);
void (* released) (GtkButton *button);
void (* clicked) (GtkButton *button);
void (* enter) (GtkButton *button);
void (* leave) (GtkButton *button);

};

When a button is treated as a container (for instance, when it is resized), its class
structure can be cast to GtkContainerClass, and the relevant fields used to handle
the signals.

There is also a structure for each widget that is created on a per-instance basis.
This structure has fields to store information that is different for each instance
of the widget. We’ll call this structure the object structure. For the Button class, it
looks like:

struct _GtkButton
{
GtkContainer container;

GtkWidget *child;

guint in_button : 1;
guint button_down : 1;

159

Chapter 21. Writing Your Own Widgets

};

Note that, similar to the class structure, the first field is the object structure of the
parent class, so that this structure can be cast to the parent class’ object structure
as needed.

Creating a Composite widget

Introduction

One type of widget that you may be interested in creating is a widget that is
merely an aggregate of other GTK widgets. This type of widget does nothing that
couldn’t be done without creating new widgets, but provides a convenient way of
packaging user interface elements for reuse. The FileSelection and ColorSelection
widgets in the standard distribution are examples of this type of widget.

The example widget that we’ll create in this section is the Tictactoe widget, a 3x3
array of toggle buttons which triggers a signal when all three buttons in a row,
column, or on one of the diagonals are depressed.

Choosing a parent class

The parent class for a composite widget is typically the container class that holds
all of the elements of the composite widget. For example, the parent class of the
FileSelection widget is the Dialog class. Since our buttons will be arranged in a
table, it might seem natural to make our parent class the Table class. Unfortu-
nately, this turns out not to work. The creation of a widget is divided among
two functions - a WIDGETNAME_new() function that the user calls, and a WIDGET-
NAME_init() function which does the basic work of initializing the widget which
is independent of the arguments passed to the _new() function. Descendant wid-
gets only call the _init function of their parent widget. But this division of labor
doesn’t work well for tables, which when created need to know the number of
rows and columns in the table. Unless we want to duplicate most of the function-
ality of gtk_table_new() in our Tictactoe widget, we had best avoid deriving it
from Table. For that reason, we derive it from VBox instead, and stick our table
inside the VBox.

The header file

Each widget class has a header file which declares the object and class structures
for that widget, along with public functions. A couple of features are worth point-
ing out. To prevent duplicate definitions, we wrap the entire header file in:

#ifndef __TICTACTOE_H__
#define __TICTACTOE_H__
.
.
.
#endif /* __TICTACTOE_H__ */

And to keep C++ programs that include the header file happy, in:

160

Chapter 21. Writing Your Own Widgets

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
.
.
.
#ifdef __cplusplus
}
#endif /* __cplusplus */

Along with the functions and structures, we declare three standard macros
in our header file, TICTACTOE(obj), TICTACTOE_CLASS(klass), and
IS_TICTACTOE(obj), which cast a pointer into a pointer to the object or class
structure, and check if an object is a Tictactoe widget respectively.

Here is the complete header file:

/* GTK - The GIMP Toolkit
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifndef __TICTACTOE_H__
#define __TICTACTOE_H__

#include
�
gdk/gdk.h �

#include
�
gtk/gtkvbox.h �

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

#define TICTACTOE(obj) GTK_CHECK_CAST (obj, tictactoe_get_type (), Tictactoe)
#define TICTACTOE_CLASS(klass) GTK_CHECK_CLASS_CAST (klass, tictac-
toe_get_type (), TictactoeClass)
#define IS_TICTACTOE(obj) GTK_CHECK_TYPE (obj, tictactoe_get_type ())

typedef struct _Tictactoe Tictactoe;
typedef struct _TictactoeClass TictactoeClass;

struct _Tictactoe
{
GtkVBox vbox;

GtkWidget *buttons[3][3];
};

struct _TictactoeClass
{
GtkVBoxClass parent_class;

void (* tictactoe) (Tictactoe *ttt);
};

GtkType tictactoe_get_type (void);

161

Chapter 21. Writing Your Own Widgets

GtkWidget* tictactoe_new (void);
void tictactoe_clear (Tictactoe *ttt);

#ifdef __cplusplus
}
#endif /* __cplusplus */

#endif /* __TICTACTOE_H__ */

The _get_type() function

We now continue on to the implementation of our widget. A core function for
every widget is the function WIDGETNAME_get_type(). This function, when first
called, tells GTK about the widget class, and gets an ID that uniquely identifies
the widget class. Upon subsequent calls, it just returns the ID.

GtkType
tictactoe_get_type ()
{
static guint ttt_type = 0;

if (!ttt_type)
{

GtkTypeInfo ttt_info =
{

"Tictactoe",
sizeof (Tictactoe),
sizeof (TictactoeClass),
(GtkClassInitFunc) tictactoe_class_init,
(GtkObjectInitFunc) tictactoe_init,
(GtkArgSetFunc) NULL,

(GtkArgGetFunc) NULL
};

ttt_type = gtk_type_unique (gtk_vbox_get_type (), &ttt_info);
}

return ttt_type;
}

The GtkTypeInfo structure has the following definition:

struct _GtkTypeInfo
{
gchar *type_name;
guint object_size;
guint class_size;
GtkClassInitFunc class_init_func;
GtkObjectInitFunc object_init_func;
GtkArgSetFunc arg_set_func;
GtkArgGetFunc arg_get_func;

};

The fields of this structure are pretty self-explanatory. We’ll ignore the
arg_set_func and arg_get_func fields here: they have an important, but as yet
largely unimplemented, role in allowing widget options to be conveniently set
from interpreted languages. Once GTK has a correctly filled in copy of this
structure, it knows how to create objects of a particular widget type.

The _class_init() function

The WIDGETNAME_class_init() function initializes the fields of the widget’s
class structure, and sets up any signals for the class. For our Tictactoe widget it
looks like:

enum {
TICTACTOE_SIGNAL,

162

Chapter 21. Writing Your Own Widgets

LAST_SIGNAL
};

static gint tictactoe_signals[LAST_SIGNAL] = { 0 };

static void
tictactoe_class_init (TictactoeClass *class)
{
GtkObjectClass *object_class;

object_class = (GtkObjectClass*) class;

tictactoe_signals[TICTACTOE_SIGNAL] = gtk_signal_new ("tictactoe",
GTK_RUN_FIRST,
object_class->type,
GTK_SIGNAL_OFFSET (TictactoeClass, tictactoe),
gtk_signal_default_marshaller, GTK_TYPE_NONE, 0);

gtk_object_class_add_signals (object_class, tictactoe_signals, LAST_SIGNAL);

class->tictactoe = NULL;
}

Our widget has just one signal, the tictactoe signal that is invoked when a row,
column, or diagonal is completely filled in. Not every composite widget needs
signals, so if you are reading this for the first time, you may want to skip to the
next section now, as things are going to get a bit complicated.

The function:

gint gtk_signal_new(const gchar *name,
GtkSignalRunType run_type,
GtkType object_type,
gint function_offset,
GtkSignalMarshaller marshaller,
GtkType return_val,
guint nparams,
...);

Creates a new signal. The parameters are:

• name: The name of the signal.

• run_type: Whether the default handler runs before or after user handlers.
Usually this will be GTK_RUN_FIRST, or GTK_RUN_LAST, although there are
other possibilities.

• object_type: The ID of the object that this signal applies to. (It will also apply
to that objects descendants.)

• function_offset: The offset within the class structure of a pointer to the de-
fault handler.

• marshaller: A function that is used to invoke the signal handler. For
signal handlers that have no arguments other than the object that emitted
the signal and user data, we can use the pre-supplied marshaller function
gtk_signal_default_marshaller.

• return_val: The type of the return val.

• nparams: The number of parameters of the signal handler (other than the two
default ones mentioned above)

• ...: The types of the parameters.

When specifying types, the GtkType enumeration is used:

typedef enum
{
GTK_TYPE_INVALID,
GTK_TYPE_NONE,

163

Chapter 21. Writing Your Own Widgets

GTK_TYPE_CHAR,
GTK_TYPE_BOOL,
GTK_TYPE_INT,
GTK_TYPE_UINT,
GTK_TYPE_LONG,
GTK_TYPE_ULONG,
GTK_TYPE_FLOAT,
GTK_TYPE_DOUBLE,
GTK_TYPE_STRING,
GTK_TYPE_ENUM,
GTK_TYPE_FLAGS,
GTK_TYPE_BOXED,
GTK_TYPE_FOREIGN,
GTK_TYPE_CALLBACK,
GTK_TYPE_ARGS,

GTK_TYPE_POINTER,

/* it’d be great if the next two could be removed eventually */
GTK_TYPE_SIGNAL,
GTK_TYPE_C_CALLBACK,

GTK_TYPE_OBJECT

} GtkFundamentalType;

gtk_signal_new() returns a unique integer identifier for the signal, that we store
in the tictactoe_signals array, which we index using an enumeration. (Con-
ventionally, the enumeration elements are the signal name, uppercased, but here
there would be a conflict with the TICTACTOE() macro, so we called it TICTAC-
TOE_SIGNAL instead.

After creating our signals, we need to tell GTK to associate our signals with the
Tictactoe class. We do that by calling gtk_object_class_add_signals(). We
then set the pointer which points to the default handler for the "tictactoe" signal
to NULL, indicating that there is no default action.

The _init() function

Each widget class also needs a function to initialize the object structure. Usually,
this function has the fairly limited role of setting the fields of the structure to
default values. For composite widgets, however, this function also creates the
component widgets.

static void
tictactoe_init (Tictactoe *ttt)
{
GtkWidget *table;
gint i,j;

table = gtk_table_new (3, 3, TRUE);
gtk_container_add (GTK_CONTAINER(ttt), table);
gtk_widget_show (table);

for (i=0;i<3; i++)
for (j=0;j<3; j++)

{
ttt->buttons[i][j] = gtk_toggle_button_new ();
gtk_table_attach_defaults (GTK_TABLE(table), ttt->buttons[i][j],

i, i+1, j, j+1);
gtk_signal_connect (GTK_OBJECT (ttt->buttons[i][j]), "toggled",

GTK_SIGNAL_FUNC (tictactoe_toggle), ttt);
gtk_widget_set_size_request (ttt->buttons[i][j], 20, 20);
gtk_widget_show (ttt->buttons[i][j]);

}
}

164

Chapter 21. Writing Your Own Widgets

And the rest...

There is one more function that every widget (except for base widget types like
Bin that cannot be instantiated) needs to have - the function that the user calls
to create an object of that type. This is conventionally called WIDGETNAME_new().
In some widgets, though not for the Tictactoe widgets, this function takes argu-
ments, and does some setup based on the arguments. The other two functions are
specific to the Tictactoe widget.

tictactoe_clear() is a public function that resets all the buttons in the widget
to the up position. Note the use of gtk_signal_handler_block_by_data() to
keep our signal handler for button toggles from being triggered unnecessarily.

tictactoe_toggle() is the signal handler that is invoked when the user clicks
on a button. It checks to see if there are any winning combinations that involve
the toggled button, and if so, emits the "tictactoe" signal.

GtkWidget*
tictactoe_new ()
{
return GTK_WIDGET (gtk_type_new (tictactoe_get_type ()));

}

void
tictactoe_clear (Tictactoe *ttt)
{
int i,j;

for (i=0;i<3;i++)
for (j=0;j<3;j++)

{
gtk_signal_handler_block_by_data (GTK_OBJECT(ttt->buttons[i][j]), ttt);
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (ttt->buttons[i][j]),

FALSE);
gtk_signal_handler_unblock_by_data (GTK_OBJECT(ttt->buttons[i][j]), ttt);

}
}

static void
tictactoe_toggle (GtkWidget *widget, Tictactoe *ttt)
{
int i,k;

static int rwins[8][3] = { { 0, 0, 0 }, { 1, 1, 1 }, { 2, 2, 2 },
{ 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 },
{ 0, 1, 2 }, { 0, 1, 2 } };

static int cwins[8][3] = { { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 },
{ 0, 0, 0 }, { 1, 1, 1 }, { 2, 2, 2 },
{ 0, 1, 2 }, { 2, 1, 0 } };

int success, found;

for (k=0; k<8; k++)
{

success = TRUE;
found = FALSE;

for (i=0;i<3;i++)
{

success = success &&
GTK_TOGGLE_BUTTON(ttt->buttons[rwins[k][i]][cwins[k][i]])->active;

found = found ||
ttt->buttons[rwins[k][i]][cwins[k][i]] == widget;

}

if (success && found)
{

gtk_signal_emit (GTK_OBJECT (ttt),
tictactoe_signals[TICTACTOE_SIGNAL]);

break;
}

165

Chapter 21. Writing Your Own Widgets

}
}

And finally, an example program using our Tictactoe widget:

#include
�
gtk/gtk.h �

#include "tictactoe.h"

/* Invoked when a row, column or diagonal is completed */
void
win (GtkWidget *widget, gpointer data)
{
g_print ("Yay!\n");
tictactoe_clear (TICTACTOE (widget));

}

int
main (int argc, char *argv[])
{
GtkWidget *window;
GtkWidget *ttt;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_window_set_title (GTK_WINDOW (window), "Aspect Frame");

gtk_signal_connect (GTK_OBJECT (window), "destroy",
GTK_SIGNAL_FUNC (gtk_exit), NULL);

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

/* Create a new Tictactoe widget */
ttt = tictactoe_new ();
gtk_container_add (GTK_CONTAINER (window), ttt);
gtk_widget_show (ttt);

/* And attach to its "tictactoe" signal */
gtk_signal_connect (GTK_OBJECT (ttt), "tictactoe",

GTK_SIGNAL_FUNC (win), NULL);

gtk_widget_show (window);

gtk_main ();

return 0;
}

Creating a widget from scratch

Introduction

In this section, we’ll learn more about how widgets display themselves on the
screen and interact with events. As an example of this, we’ll create an analog dial
widget with a pointer that the user can drag to set the value.

166

Chapter 21. Writing Your Own Widgets

Displaying a widget on the screen

There are several steps that are involved in displaying on the screen. After the
widget is created with a call to WIDGETNAME_new(), several more functions are
needed:

• WIDGETNAME_realize() is responsible for creating an X window for the wid-
get if it has one.

• WIDGETNAME_map() is invoked after the user calls gtk_widget_show(). It is re-
sponsible for making sure the widget is actually drawn on the screen (mapped).
For a container class, it must also make calls to map()> functions of any child
widgets.

• WIDGETNAME_draw() is invoked when gtk_widget_draw() is called for the
widget or one of its ancestors. It makes the actual calls to the drawing functions
to draw the widget on the screen. For container widgets, this function must
make calls to gtk_widget_draw() for its child widgets.

• WIDGETNAME_expose() is a handler for expose events for the widget. It makes
the necessary calls to the drawing functions to draw the exposed portion on
the screen. For container widgets, this function must generate expose events
for its child widgets which don’t have their own windows. (If they have their
own windows, then X will generate the necessary expose events.)

You might notice that the last two functions are quite similar - each is respon-
sible for drawing the widget on the screen. In fact many types of widgets don’t
really care about the difference between the two. The default draw() function
in the widget class simply generates a synthetic expose event for the redrawn
area. However, some types of widgets can save work by distinguishing between
the two functions. For instance, if a widget has multiple X windows, then since
expose events identify the exposed window, it can redraw only the affected win-
dow, which is not possible for calls to draw().

Container widgets, even if they don’t care about the difference for themselves,
can’t simply use the default draw() function because their child widgets might
care about the difference. However, it would be wasteful to duplicate the draw-
ing code between the two functions. The convention is that such widgets have a
function called WIDGETNAME_paint() that does the actual work of drawing the
widget, that is then called by the draw() and expose() functions.

In our example approach, since the dial widget is not a container widget, and
only has a single window, we can take the simplest approach and use the default
draw() function and only implement an expose() function.

The origins of the Dial Widget

Just as all land animals are just variants on the first amphibian that crawled up
out of the mud, GTK widgets tend to start off as variants of some other, previ-

167

Chapter 21. Writing Your Own Widgets

ously written widget. Thus, although this section is entitled "Creating a Widget
from Scratch", the Dial widget really began with the source code for the Range
widget. This was picked as a starting point because it would be nice if our Dial
had the same interface as the Scale widgets which are just specialized descen-
dants of the Range widget. So, though the source code is presented below in fin-
ished form, it should not be implied that it was written, ab initio in this fashion.
Also, if you aren’t yet familiar with how scale widgets work from the application
writer’s point of view, it would be a good idea to look them over before continu-
ing.

The Basics

Quite a bit of our widget should look pretty familiar from the Tictactoe widget.
First, we have a header file:

/* GTK - The GIMP Toolkit
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#ifndef __GTK_DIAL_H__
#define __GTK_DIAL_H__

#include
�
gdk/gdk.h �

#include
�
gtk/gtkadjustment.h �

#include
�
gtk/gtkwidget.h �

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

#define GTK_DIAL(obj) GTK_CHECK_CAST (obj, gtk_dial_get_type (), GtkDial)
#define GTK_DIAL_CLASS(klass) GTK_CHECK_CLASS_CAST (klass, gtk_dial_get_type (), GtkDialClass)
#define GTK_IS_DIAL(obj) GTK_CHECK_TYPE (obj, gtk_dial_get_type ())

typedef struct _GtkDial GtkDial;
typedef struct _GtkDialClass GtkDialClass;

struct _GtkDial
{
GtkWidget widget;

/* update policy (GTK_UPDATE_[CONTINUOUS/DELAYED/DISCONTINUOUS]) */
guint policy : 2;

/* Button currently pressed or 0 if none */
guint8 button;

/* Dimensions of dial components */
gint radius;
gint pointer_width;

/* ID of update timer, or 0 if none */

168

Chapter 21. Writing Your Own Widgets

guint32 timer;

/* Current angle */
gfloat angle;

/* Old values from adjustment stored so we know when something changes */
gfloat old_value;
gfloat old_lower;
gfloat old_upper;

/* The adjustment object that stores the data for this dial */
GtkAdjustment *adjustment;

};

struct _GtkDialClass
{
GtkWidgetClass parent_class;

};

GtkWidget* gtk_dial_new (GtkAdjustment *adjustment);
GtkType gtk_dial_get_type (void);
GtkAdjustment* gtk_dial_get_adjustment (GtkDial *dial);
void gtk_dial_set_update_policy (GtkDial *dial,

GtkUpdateType policy);

void gtk_dial_set_adjustment (GtkDial *dial,
GtkAdjustment *adjustment);

#ifdef __cplusplus
}
#endif /* __cplusplus */

#endif /* __GTK_DIAL_H__ */

Since there is quite a bit more going on in this widget than the last one, we have
more fields in the data structure, but otherwise things are pretty similar.

Next, after including header files and declaring a few constants, we have some
functions to provide information about the widget and initialize it:

#include
�
math.h �

#include
�
stdio.h �

#include
�
gtk/gtkmain.h �

#include
�
gtk/gtksignal.h �

#include "gtkdial.h"

#define SCROLL_DELAY_LENGTH 300
#define DIAL_DEFAULT_SIZE 100

/* Forward declarations */

[omitted to save space]

/* Local data */

static GtkWidgetClass *parent_class = NULL;

GtkType
gtk_dial_get_type ()
{
static GtkType dial_type = 0;

if (!dial_type)
{

static const GtkTypeInfo dial_info =
{

"GtkDial",
sizeof (GtkDial),
sizeof (GtkDialClass),

169

Chapter 21. Writing Your Own Widgets

(GtkClassInitFunc) gtk_dial_class_init,
(GtkObjectInitFunc) gtk_dial_init,
/* reserved_1 */ NULL,
/* reserved_1 */ NULL,
(GtkClassInitFunc) NULL

};

dial_type = gtk_type_unique (GTK_TYPE_WIDGET, &dial_info);
}

return dial_type;
}

static void
gtk_dial_class_init (GtkDialClass *class)
{
GtkObjectClass *object_class;
GtkWidgetClass *widget_class;

object_class = (GtkObjectClass*) class;
widget_class = (GtkWidgetClass*) class;

parent_class = gtk_type_class (gtk_widget_get_type ());

object_class->destroy = gtk_dial_destroy;

widget_class->realize = gtk_dial_realize;
widget_class->expose_event = gtk_dial_expose;
widget_class->size_request = gtk_dial_size_request;
widget_class->size_allocate = gtk_dial_size_allocate;
widget_class->button_press_event = gtk_dial_button_press;
widget_class->button_release_event = gtk_dial_button_release;
widget_class->motion_notify_event = gtk_dial_motion_notify;

}

static void
gtk_dial_init (GtkDial *dial)
{
dial->button = 0;
dial->policy = GTK_UPDATE_CONTINUOUS;
dial->timer = 0;
dial->radius = 0;
dial->pointer_width = 0;
dial->angle = 0.0;
dial->old_value = 0.0;
dial->old_lower = 0.0;
dial->old_upper = 0.0;
dial->adjustment = NULL;

}

GtkWidget*
gtk_dial_new (GtkAdjustment *adjustment)
{
GtkDial *dial;

dial = gtk_type_new (gtk_dial_get_type ());

if (!adjustment)
adjustment = (GtkAdjustment*) gtk_adjustment_new (0.0, 0.0, 0.0, 0.0, 0.0, 0.0);

gtk_dial_set_adjustment (dial, adjustment);

return GTK_WIDGET (dial);
}

static void
gtk_dial_destroy (GtkObject *object)
{
GtkDial *dial;

g_return_if_fail (object != NULL);

170

Chapter 21. Writing Your Own Widgets

g_return_if_fail (GTK_IS_DIAL (object));

dial = GTK_DIAL (object);

if (dial->adjustment)
gtk_object_unref (GTK_OBJECT (dial->adjustment));

if (GTK_OBJECT_CLASS (parent_class)->destroy)
(* GTK_OBJECT_CLASS (parent_class)->destroy) (object);

}

Note that this init() function does less than for the Tictactoe widget, since this
is not a composite widget, and the new() function does more, since it now has
an argument. Also, note that when we store a pointer to the Adjustment object,
we increment its reference count, (and correspondingly decrement it when we no
longer use it) so that GTK can keep track of when it can be safely destroyed.

Also, there are a few function to manipulate the widget’s options:

GtkAdjustment*
gtk_dial_get_adjustment (GtkDial *dial)
{
g_return_val_if_fail (dial != NULL, NULL);
g_return_val_if_fail (GTK_IS_DIAL (dial), NULL);

return dial->adjustment;
}

void
gtk_dial_set_update_policy (GtkDial *dial,

GtkUpdateType policy)
{
g_return_if_fail (dial != NULL);
g_return_if_fail (GTK_IS_DIAL (dial));

dial->policy = policy;
}

void
gtk_dial_set_adjustment (GtkDial *dial,

GtkAdjustment *adjustment)
{
g_return_if_fail (dial != NULL);
g_return_if_fail (GTK_IS_DIAL (dial));

if (dial->adjustment)
{

gtk_signal_disconnect_by_data (GTK_OBJECT (dial->adjustment), (gpointer) dial);
gtk_object_unref (GTK_OBJECT (dial->adjustment));

}

dial->adjustment = adjustment;
gtk_object_ref (GTK_OBJECT (dial->adjustment));

gtk_signal_connect (GTK_OBJECT (adjustment), "changed",
(GtkSignalFunc) gtk_dial_adjustment_changed,
(gpointer) dial);

gtk_signal_connect (GTK_OBJECT (adjustment), "value_changed",
(GtkSignalFunc) gtk_dial_adjustment_value_changed,
(gpointer) dial);

dial->old_value = adjustment->value;
dial->old_lower = adjustment->lower;
dial->old_upper = adjustment->upper;

gtk_dial_update (dial);
}

171

Chapter 21. Writing Your Own Widgets

gtk_dial_realize()

Now we come to some new types of functions. First, we have a function that
does the work of creating the X window. Notice that a mask is passed to the
function gdk_window_new()which specifies which fields of the GdkWindowAttr
structure actually have data in them (the remaining fields will be given default
values). Also worth noting is the way the event mask of the widget is created.
We call gtk_widget_get_events() to retrieve the event mask that the user has
specified for this widget (with gtk_widget_set_events()), and add the events
that we are interested in ourselves.

After creating the window, we set its style and background, and put a pointer to
the widget in the user data field of the GdkWindow. This last step allows GTK to
dispatch events for this window to the correct widget.

static void
gtk_dial_realize (GtkWidget *widget)
{
GtkDial *dial;
GdkWindowAttr attributes;
gint attributes_mask;

g_return_if_fail (widget != NULL);
g_return_if_fail (GTK_IS_DIAL (widget));

GTK_WIDGET_SET_FLAGS (widget, GTK_REALIZED);
dial = GTK_DIAL (widget);

attributes.x = widget->allocation.x;
attributes.y = widget->allocation.y;
attributes.width = widget->allocation.width;
attributes.height = widget->allocation.height;
attributes.wclass = GDK_INPUT_OUTPUT;
attributes.window_type = GDK_WINDOW_CHILD;
attributes.event_mask = gtk_widget_get_events (widget) |

GDK_EXPOSURE_MASK | GDK_BUTTON_PRESS_MASK |
GDK_BUTTON_RELEASE_MASK | GDK_POINTER_MOTION_MASK |
GDK_POINTER_MOTION_HINT_MASK;

attributes.visual = gtk_widget_get_visual (widget);
attributes.colormap = gtk_widget_get_colormap (widget);

attributes_mask = GDK_WA_X | GDK_WA_Y | GDK_WA_VISUAL | GDK_WA_COLORMAP;
widget->window = gdk_window_new (widget->parent->window, &attributes, attributes_mask);

widget->style = gtk_style_attach (widget->style, widget->window);

gdk_window_set_user_data (widget->window, widget);

gtk_style_set_background (widget->style, widget->window, GTK_STATE_ACTIVE);
}

Size negotiation

Before the first time that the window containing a widget is displayed, and when-
ever the layout of the window changes, GTK asks each child widget for its desired
size. This request is handled by the function gtk_dial_size_request(). Since
our widget isn’t a container widget, and has no real constraints on its size, we
just return a reasonable default value.

static void
gtk_dial_size_request (GtkWidget *widget,

GtkRequisition *requisition)
{
requisition->width = DIAL_DEFAULT_SIZE;
requisition->height = DIAL_DEFAULT_SIZE;

}

172

Chapter 21. Writing Your Own Widgets

After all the widgets have requested an ideal size, the layout of the window is
computed and each child widget is notified of its actual size. Usually, this will be
at least as large as the requested size, but if for instance the user has resized the
window, it may occasionally be smaller than the requested size. The size notifica-
tion is handled by the function gtk_dial_size_allocate(). Notice that as well
as computing the sizes of some component pieces for future use, this routine also
does the grunt work of moving the widget’s X window into the new position and
size.

static void
gtk_dial_size_allocate (GtkWidget *widget,

GtkAllocation *allocation)
{
GtkDial *dial;

g_return_if_fail (widget != NULL);
g_return_if_fail (GTK_IS_DIAL (widget));
g_return_if_fail (allocation != NULL);

widget->allocation = *allocation;
if (GTK_WIDGET_REALIZED (widget))

{
dial = GTK_DIAL (widget);

gdk_window_move_resize (widget->window,
allocation->x, allocation->y,
allocation->width, allocation->height);

dial->radius = MAX(allocation->width,allocation->height) * 0.45;
dial->pointer_width = dial->radius / 5;

}
}

gtk_dial_expose()

As mentioned above, all the drawing of this widget is done in the handler for
expose events. There’s not much to remark on here except the use of the function
gtk_draw_polygon to draw the pointer with three dimensional shading accord-
ing to the colors stored in the widget’s style.

static gint
gtk_dial_expose (GtkWidget *widget,

GdkEventExpose *event)
{
GtkDial *dial;
GdkPoint points[3];
gdouble s,c;
gdouble theta;
gint xc, yc;
gint tick_length;
gint i;

g_return_val_if_fail (widget != NULL, FALSE);
g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if_fail (event != NULL, FALSE);

if (event->count > 0)
return FALSE;

dial = GTK_DIAL (widget);

gdk_window_clear_area (widget->window,
0, 0,
widget->allocation.width,
widget->allocation.height);

xc = widget->allocation.width/2;
yc = widget->allocation.height/2;

173

Chapter 21. Writing Your Own Widgets

/* Draw ticks */

for (i=0; i<25; i++)
{

theta = (i*M_PI/18. - M_PI/6.);
s = sin(theta);
c = cos(theta);

tick_length = (i%6 == 0) ? dial->pointer_width : dial->pointer_width/2;

gdk_draw_line (widget->window,
widget->style->fg_gc[widget->state],
xc + c*(dial->radius - tick_length),
yc - s*(dial->radius - tick_length),
xc + c*dial->radius,
yc - s*dial->radius);

}

/* Draw pointer */

s = sin(dial->angle);
c = cos(dial->angle);

points[0].x = xc + s*dial->pointer_width/2;
points[0].y = yc + c*dial->pointer_width/2;
points[1].x = xc + c*dial->radius;
points[1].y = yc - s*dial->radius;
points[2].x = xc - s*dial->pointer_width/2;
points[2].y = yc - c*dial->pointer_width/2;

gtk_draw_polygon (widget->style,
widget->window,
GTK_STATE_NORMAL,
GTK_SHADOW_OUT,
points, 3,
TRUE);

return FALSE;
}

Event handling

The rest of the widget’s code handles various types of events, and isn’t too differ-
ent from what would be found in many GTK applications. Two types of events
can occur - either the user can click on the widget with the mouse and drag to
move the pointer, or the value of the Adjustment object can change due to some
external circumstance.

When the user clicks on the widget, we check to see if the click was appropri-
ately near the pointer, and if so, store the button that the user clicked with in
the button field of the widget structure, and grab all mouse events with a call
to gtk_grab_add(). Subsequent motion of the mouse causes the value of the
control to be recomputed (by the function gtk_dial_update_mouse). Depend-
ing on the policy that has been set, "value_changed" events are either gener-
ated instantly (GTK_UPDATE_CONTINUOUS), after a delay in a timer added with
gtk_timeout_add() (GTK_UPDATE_DELAYED), or only when the button is released
(GTK_UPDATE_DISCONTINUOUS).

static gint
gtk_dial_button_press (GtkWidget *widget,

GdkEventButton *event)
{
GtkDial *dial;
gint dx, dy;
double s, c;
double d_parallel;

174

Chapter 21. Writing Your Own Widgets

double d_perpendicular;

g_return_val_if_fail (widget != NULL, FALSE);
g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if_fail (event != NULL, FALSE);

dial = GTK_DIAL (widget);

/* Determine if button press was within pointer region - we
do this by computing the parallel and perpendicular distance of
the point where the mouse was pressed from the line passing through
the pointer */

dx = event->x - widget->allocation.width / 2;
dy = widget->allocation.height / 2 - event->y;

s = sin(dial->angle);
c = cos(dial->angle);

d_parallel = s*dy + c*dx;
d_perpendicular = fabs(s*dx - c*dy);

if (!dial->button &&
(d_perpendicular < dial->pointer_width/2) &&
(d_parallel > - dial->pointer_width))

{
gtk_grab_add (widget);

dial->button = event->button;

gtk_dial_update_mouse (dial, event->x, event->y);
}

return FALSE;
}

static gint
gtk_dial_button_release (GtkWidget *widget,

GdkEventButton *event)
{
GtkDial *dial;

g_return_val_if_fail (widget != NULL, FALSE);
g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if_fail (event != NULL, FALSE);

dial = GTK_DIAL (widget);

if (dial->button == event->button)
{

gtk_grab_remove (widget);

dial->button = 0;

if (dial->policy == GTK_UPDATE_DELAYED)
gtk_timeout_remove (dial->timer);

if ((dial->policy != GTK_UPDATE_CONTINUOUS) &&
(dial->old_value != dial->adjustment->value))

gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed");
}

return FALSE;
}

static gint
gtk_dial_motion_notify (GtkWidget *widget,

GdkEventMotion *event)
{
GtkDial *dial;
GdkModifierType mods;

175

Chapter 21. Writing Your Own Widgets

gint x, y, mask;

g_return_val_if_fail (widget != NULL, FALSE);
g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if_fail (event != NULL, FALSE);

dial = GTK_DIAL (widget);

if (dial->button != 0)
{

x = event->x;
y = event->y;

if (event->is_hint || (event->window != widget->window))
gdk_window_get_pointer (widget->window, &x, &y, &mods);

switch (dial->button)
{
case 1:

mask = GDK_BUTTON1_MASK;
break;

case 2:
mask = GDK_BUTTON2_MASK;
break;

case 3:
mask = GDK_BUTTON3_MASK;
break;

default:
mask = 0;
break;

}

if (mods & mask)
gtk_dial_update_mouse (dial, x,y);

}

return FALSE;
}

static gint
gtk_dial_timer (GtkDial *dial)
{
g_return_val_if_fail (dial != NULL, FALSE);
g_return_val_if_fail (GTK_IS_DIAL (dial), FALSE);

if (dial->policy == GTK_UPDATE_DELAYED)
gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed");

return FALSE;
}

static void
gtk_dial_update_mouse (GtkDial *dial, gint x, gint y)
{
gint xc, yc;
gfloat old_value;

g_return_if_fail (dial != NULL);
g_return_if_fail (GTK_IS_DIAL (dial));

xc = GTK_WIDGET(dial)->allocation.width / 2;
yc = GTK_WIDGET(dial)->allocation.height / 2;

old_value = dial->adjustment->value;
dial->angle = atan2(yc-y, x-xc);

if (dial->angle < -M_PI/2.)
dial->angle += 2*M_PI;

if (dial->angle < -M_PI/6)
dial->angle = -M_PI/6;

176

Chapter 21. Writing Your Own Widgets

if (dial->angle > 7.*M_PI/6.)
dial->angle = 7.*M_PI/6.;

dial->adjustment->value = dial->adjustment->lower + (7.*M_PI/6 -
dial->angle) *

(dial->adjustment->upper - dial->adjustment->lower) / (4.*M_PI/3.);

if (dial->adjustment->value != old_value)
{

if (dial->policy == GTK_UPDATE_CONTINUOUS)
{

gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed");
}

else
{

gtk_widget_draw (GTK_WIDGET(dial), NULL);

if (dial->policy == GTK_UPDATE_DELAYED)
{
if (dial->timer)

gtk_timeout_remove (dial->timer);

dial->timer = gtk_timeout_add (SCROLL_DELAY_LENGTH,
(GtkFunction) gtk_dial_timer,
(gpointer) dial);

}
}

}
}

Changes to the Adjustment by external means are communicated to our widget
by the "changed" and "value_changed" signals. The handlers for these functions
call gtk_dial_update() to validate the arguments, compute the new pointer an-
gle, and redraw the widget (by calling gtk_widget_draw()).

static void
gtk_dial_update (GtkDial *dial)
{
gfloat new_value;

g_return_if_fail (dial != NULL);
g_return_if_fail (GTK_IS_DIAL (dial));

new_value = dial->adjustment->value;

if (new_value < dial->adjustment->lower)
new_value = dial->adjustment->lower;

if (new_value > dial->adjustment->upper)
new_value = dial->adjustment->upper;

if (new_value != dial->adjustment->value)
{

dial->adjustment->value = new_value;
gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed");

}

dial->angle = 7.*M_PI/6. - (new_value - dial->adjustment->lower) * 4.*M_PI/3. /
(dial->adjustment->upper - dial->adjustment->lower);

gtk_widget_draw (GTK_WIDGET(dial), NULL);
}

static void
gtk_dial_adjustment_changed (GtkAdjustment *adjustment,

gpointer data)
{
GtkDial *dial;

g_return_if_fail (adjustment != NULL);

177

Chapter 21. Writing Your Own Widgets

g_return_if_fail (data != NULL);

dial = GTK_DIAL (data);

if ((dial->old_value != adjustment->value) ||
(dial->old_lower != adjustment->lower) ||
(dial->old_upper != adjustment->upper))

{
gtk_dial_update (dial);

dial->old_value = adjustment->value;
dial->old_lower = adjustment->lower;
dial->old_upper = adjustment->upper;

}
}

static void
gtk_dial_adjustment_value_changed (GtkAdjustment *adjustment,

gpointer data)
{
GtkDial *dial;

g_return_if_fail (adjustment != NULL);
g_return_if_fail (data != NULL);

dial = GTK_DIAL (data);

if (dial->old_value != adjustment->value)
{

gtk_dial_update (dial);

dial->old_value = adjustment->value;
}

}

Possible Enhancements

The Dial widget as we’ve described it so far runs about 670 lines of code. Al-
though that might sound like a fair bit, we’ve really accomplished quite a bit
with that much code, especially since much of that length is headers and boiler-
plate. However, there are quite a few more enhancements that could be made to
this widget:

• If you try this widget out, you’ll find that there is some flashing as the pointer
is dragged around. This is because the entire widget is erased every time the
pointer is moved before being redrawn. Often, the best way to handle this
problem is to draw to an offscreen pixmap, then copy the final results onto
the screen in one step. (The ProgressBar widget draws itself in this fashion.)

• The user should be able to use the up and down arrow keys to increase and
decrease the value.

• It would be nice if the widget had buttons to increase and decrease the value
in small or large steps. Although it would be possible to use embedded But-
ton widgets for this, we would also like the buttons to auto-repeat when held
down, as the arrows on a scrollbar do. Most of the code to implement this type
of behavior can be found in the Range widget.

• The Dial widget could be made into a container widget with a single child
widget positioned at the bottom between the buttons mentioned above. The
user could then add their choice of a label or entry widget to display the current
value of the dial.

178

Chapter 21. Writing Your Own Widgets

Learning More
Only a small part of the many details involved in creating widgets could be de-
scribed above. If you want to write your own widgets, the best source of examples
is the GTK source itself. Ask yourself some questions about the widget you want
to write: IS it a Container widget? Does it have its own window? Is it a modifica-
tion of an existing widget? Then find a similar widget, and start making changes.
Good luck!

Notes
1. http://www.gtk.org/~otaylor/gtk/tutorial/

179

Chapter 21. Writing Your Own Widgets

180

Chapter 22. Scribble, A Simple Example Drawing Program

Overview
In this section, we will build a simple drawing program. In the process, we will
examine how to handle mouse events, how to draw in a window, and how to
do drawing better by using a backing pixmap. After creating the simple draw-
ing program, we will extend it by adding support for XInput devices, such as
drawing tablets. GTK provides support routines which makes getting extended
information, such as pressure and tilt, from such devices quite easy.

Event Handling
The GTK signals we have already discussed are for high-level actions, such as a
menu item being selected. However, sometimes it is useful to learn about lower-
level occurrences, such as the mouse being moved, or a key being pressed. There
are also GTK signals corresponding to these low-level events. The handlers for
these signals have an extra parameter which is a pointer to a structure containing
information about the event. For instance, motion event handlers are passed a
pointer to a GdkEventMotion structure which looks (in part) like:

struct _GdkEventMotion
{
GdkEventType type;
GdkWindow *window;
guint32 time;
gdouble x;
gdouble y;
...
guint state;
...

};

typewill be set to the event type, in this case GDK_MOTION_NOTIFY, window is the
window in which the event occurred. x and y give the coordinates of the event.
state specifies the modifier state when the event occurred (that is, it specifies
which modifier keys and mouse buttons were pressed). It is the bitwise OR of
some of the following:

GDK_SHIFT_MASK

181

Chapter 22. Scribble, A Simple Example Drawing Program

GDK_LOCK_MASK
GDK_CONTROL_MASK
GDK_MOD1_MASK
GDK_MOD2_MASK
GDK_MOD3_MASK
GDK_MOD4_MASK
GDK_MOD5_MASK
GDK_BUTTON1_MASK
GDK_BUTTON2_MASK
GDK_BUTTON3_MASK
GDK_BUTTON4_MASK
GDK_BUTTON5_MASK

As for other signals, to determine what happens when an event occurs we call
gtk_signal_connect(). But we also need let GTK know which events we want
to be notified about. To do this, we call the function:

void gtk_widget_set_events (GtkWidget *widget,
gint events);

The second field specifies the events we are interested in. It is the bitwise OR
of constants that specify different types of events. For future reference the event
types are:

GDK_EXPOSURE_MASK
GDK_POINTER_MOTION_MASK
GDK_POINTER_MOTION_HINT_MASK
GDK_BUTTON_MOTION_MASK
GDK_BUTTON1_MOTION_MASK
GDK_BUTTON2_MOTION_MASK
GDK_BUTTON3_MOTION_MASK
GDK_BUTTON_PRESS_MASK
GDK_BUTTON_RELEASE_MASK
GDK_KEY_PRESS_MASK
GDK_KEY_RELEASE_MASK
GDK_ENTER_NOTIFY_MASK
GDK_LEAVE_NOTIFY_MASK
GDK_FOCUS_CHANGE_MASK
GDK_STRUCTURE_MASK
GDK_PROPERTY_CHANGE_MASK
GDK_PROXIMITY_IN_MASK
GDK_PROXIMITY_OUT_MASK

There are a few subtle points that have to be observed when calling
gtk_widget_set_events(). First, it must be called before the X window for
a GTK widget is created. In practical terms, this means you should call it
immediately after creating the widget. Second, the widget must have an
associated X window. For efficiency, many widget types do not have their own
window, but draw in their parent’s window. These widgets are:

GtkAlignment
GtkArrow
GtkBin
GtkBox
GtkImage
GtkItem
GtkLabel
GtkPixmap
GtkScrolledWindow
GtkSeparator
GtkTable
GtkAspectFrame
GtkFrame
GtkVBox
GtkHBox
GtkVSeparator
GtkHSeparator

To capture events for these widgets, you need to use an EventBox widget. See the
section on the EventBox widget for details.

182

Chapter 22. Scribble, A Simple Example Drawing Program

For our drawing program, we want to know when the mouse button is pressed
and when the mouse is moved, so we specify GDK_POINTER_MOTION_MASK and
GDK_BUTTON_PRESS_MASK. We also want to know when we need to redraw our
window, so we specify GDK_EXPOSURE_MASK. Although we want to be notified via
a Configure event when our window size changes, we don’t have to specify the
corresponding GDK_STRUCTURE_MASK flag, because it is automatically specified
for all windows.

It turns out, however, that there is a problem with just specifying
GDK_POINTER_MOTION_MASK. This will cause the server to add a new motion
event to the event queue every time the user moves the mouse. Imagine that it
takes us 0.1 seconds to handle a motion event, but the X server queues a new
motion event every 0.05 seconds. We will soon get way behind the users
drawing. If the user draws for 5 seconds, it will take us another 5 seconds to
catch up after they release the mouse button! What we would like is to only get
one motion event for each event we process. The way to do this is to specify
GDK_POINTER_MOTION_HINT_MASK.

When we specify GDK_POINTER_MOTION_HINT_MASK, the server sends us a motion
event the first time the pointer moves after entering our window, or after a button
press or release event. Subsequent motion events will be suppressed until we
explicitly ask for the position of the pointer using the function:

GdkWindow* gdk_window_get_pointer (GdkWindow *window,
gint *x,
gint *y,
GdkModifierType *mask);

(There is another function, gtk_widget_get_pointer() which has a simpler in-
terface, but turns out not to be very useful, since it only retrieves the position of
the mouse, not whether the buttons are pressed.)

The code to set the events for our window then looks like:

gtk_signal_connect (GTK_OBJECT (drawing_area), "expose_event",
(GtkSignalFunc) expose_event, NULL);

gtk_signal_connect (GTK_OBJECT(drawing_area),"configure_event",
(GtkSignalFunc) configure_event, NULL);

gtk_signal_connect (GTK_OBJECT (drawing_area), "motion_notify_event",
(GtkSignalFunc) motion_notify_event, NULL);

gtk_signal_connect (GTK_OBJECT (drawing_area), "button_press_event",
(GtkSignalFunc) button_press_event, NULL);

gtk_widget_set_events (drawing_area, GDK_EXPOSURE_MASK
| GDK_LEAVE_NOTIFY_MASK
| GDK_BUTTON_PRESS_MASK
| GDK_POINTER_MOTION_MASK
| GDK_POINTER_MOTION_HINT_MASK);

We’ll save the "expose_event" and "configure_event" handlers for later. The "mo-
tion_notify_event" and "button_press_event" handlers are pretty simple:

static gint
button_press_event (GtkWidget *widget, GdkEventButton *event)
{
if (event->button == 1 && pixmap != NULL)

draw_brush (widget, event->x, event->y);

return TRUE;
}

static gint
motion_notify_event (GtkWidget *widget, GdkEventMotion *event)
{
int x, y;
GdkModifierType state;

if (event->is_hint)
gdk_window_get_pointer (event->window, &x, &y, &state);

else

183

Chapter 22. Scribble, A Simple Example Drawing Program

{
x = event->x;
y = event->y;
state = event->state;

}

if (state & GDK_BUTTON1_MASK && pixmap != NULL)
draw_brush (widget, x, y);

return TRUE;
}

The DrawingArea Widget, And Drawing
We now turn to the process of drawing on the screen. The widget we use for this
is the DrawingArea widget. A drawing area widget is essentially an X window
and nothing more. It is a blank canvas in which we can draw whatever we like.
A drawing area is created using the call:

GtkWidget* gtk_drawing_area_new (void);

A default size for the widget can be specified by calling:

void gtk_drawing_area_size (GtkDrawingArea *darea,
gint width,
gint height);

This default size can be overridden, as is true for all widgets, by calling
gtk_widget_set_size_request(), and that, in turn, can be overridden if the
user manually resizes the the window containing the drawing area.

It should be noted that when we create a DrawingArea widget, we are completely
responsible for drawing the contents. If our window is obscured then uncovered,
we get an exposure event and must redraw what was previously hidden.

Having to remember everything that was drawn on the screen so we can prop-
erly redraw it can, to say the least, be a nuisance. In addition, it can be visually
distracting if portions of the window are cleared, then redrawn step by step. The
solution to this problem is to use an offscreen backing pixmap. Instead of drawing
directly to the screen, we draw to an image stored in server memory but not dis-
played, then when the image changes or new portions of the image are displayed,
we copy the relevant portions onto the screen.

To create an offscreen pixmap, we call the function:

GdkPixmap* gdk_pixmap_new (GdkWindow *window,
gint width,
gint height,
gint depth);

The window parameter specifies a GDK window that this pixmap takes some of its
properties from. width and height specify the size of the pixmap. depth specifies
the color depth, that is the number of bits per pixel, for the new window. If the
depth is specified as -1, it will match the depth of window.

We create the pixmap in our "configure_event" handler. This event is generated
whenever the window changes size, including when it is originally created.

/* Backing pixmap for drawing area */
static GdkPixmap *pixmap = NULL;

/* Create a new backing pixmap of the appropriate size */
static gint
configure_event (GtkWidget *widget, GdkEventConfigure *event)
{
if (pixmap)

gdk_pixmap_unref(pixmap);

184

Chapter 22. Scribble, A Simple Example Drawing Program

pixmap = gdk_pixmap_new(widget->window,
widget->allocation.width,
widget->allocation.height,
-1);

gdk_draw_rectangle (pixmap,
widget->style->white_gc,
TRUE,
0, 0,
widget->allocation.width,
widget->allocation.height);

return TRUE;
}

The call to gdk_draw_rectangle() clears the pixmap initially to white. We’ll say
more about that in a moment.

Our exposure event handler then simply copies the relevant portion of the
pixmap onto the screen (we determine the area we need to redraw by using the
event->area field of the exposure event):

/* Redraw the screen from the backing pixmap */
static gint
expose_event (GtkWidget *widget, GdkEventExpose *event)
{
gdk_draw_pixmap(widget->window,

widget->style->fg_gc[GTK_WIDGET_STATE (widget)],
pixmap,
event->area.x, event->area.y,
event->area.x, event->area.y,
event->area.width, event->area.height);

return FALSE;
}

We’ve now seen how to keep the screen up to date with our pixmap, but how
do we actually draw interesting stuff on our pixmap? There are a large num-
ber of calls in GTK’s GDK library for drawing on drawables. A drawable is sim-
ply something that can be drawn upon. It can be a window, a pixmap, or a
bitmap (a black and white image). We’ve already seen two such calls above,
gdk_draw_rectangle() and gdk_draw_pixmap(). The complete list is:

gdk_draw_line ()
gdk_draw_rectangle ()
gdk_draw_arc ()
gdk_draw_polygon ()
gdk_draw_string ()
gdk_draw_text ()
gdk_draw_pixmap ()
gdk_draw_bitmap ()
gdk_draw_image ()
gdk_draw_points ()
gdk_draw_segments ()

See the reference documentation or the header file � gdk/gdk.h � for further de-
tails on these functions. These functions all share the same first two arguments.
The first argument is the drawable to draw upon, the second argument is a graph-
ics context (GC).

A graphics context encapsulates information about things such as foreground
and background color and line width. GDK has a full set of functions for cre-
ating and modifying graphics contexts, but to keep things simple we’ll just use
predefined graphics contexts. Each widget has an associated style. (Which can be
modified in a gtkrc file, see the section GTK’s rc file.) This, among other things,
stores a number of graphics contexts. Some examples of accessing these graphics
contexts are:

widget->style->white_gc
widget->style->black_gc
widget->style->fg_gc[GTK_STATE_NORMAL]

185

Chapter 22. Scribble, A Simple Example Drawing Program

widget->style->bg_gc[GTK_WIDGET_STATE(widget)]

The fields fg_gc, bg_gc, dark_gc, and light_gc are indexed by a parameter of
type GtkStateType which can take on the values:

GTK_STATE_NORMAL,
GTK_STATE_ACTIVE,
GTK_STATE_PRELIGHT,
GTK_STATE_SELECTED,
GTK_STATE_INSENSITIVE

For instance, for GTK_STATE_SELECTED the default foreground color is white and
the default background color, dark blue.

Our function draw_brush(), which does the actual drawing on the screen, is
then:

/* Draw a rectangle on the screen */
static void
draw_brush (GtkWidget *widget, gdouble x, gdouble y)
{
GdkRectangle update_rect;

update_rect.x = x - 5;
update_rect.y = y - 5;
update_rect.width = 10;
update_rect.height = 10;
gdk_draw_rectangle (pixmap,

widget->style->black_gc,
TRUE,
update_rect.x, update_rect.y,
update_rect.width, update_rect.height);

gtk_widget_draw (widget, &update_rect);
}

After we draw the rectangle representing the brush onto the pixmap, we call the
function:

void gtk_widget_draw (GtkWidget *wid-
get,

GdkRectangle *area);

which notifies X that the area given by the area parameter needs to be updated. X
will eventually generate an expose event (possibly combining the areas passed in
several calls to gtk_widget_draw()) which will cause our expose event handler
to copy the relevant portions to the screen.

We have now covered the entire drawing program except for a few mundane
details like creating the main window.

Adding XInput support
It is now possible to buy quite inexpensive input devices such as drawing tablets,
which allow drawing with a much greater ease of artistic expression than does a
mouse. The simplest way to use such devices is simply as a replacement for the
mouse, but that misses out many of the advantages of these devices, such as:

• Pressure sensitivity

• Tilt reporting

• Sub-pixel positioning

• Multiple inputs (for example, a stylus with a point and eraser)

For information about the XInput extension, see the XInput HOWTO1.

If we examine the full definition of, for example, the GdkEventMotion structure,
we see that it has fields to support extended device information.

186

Chapter 22. Scribble, A Simple Example Drawing Program

struct _GdkEventMotion
{
GdkEventType type;
GdkWindow *window;
guint32 time;
gdouble x;
gdouble y;
gdouble pressure;
gdouble xtilt;
gdouble ytilt;
guint state;
gint16 is_hint;
GdkInputSource source;
guint32 deviceid;

};

pressure gives the pressure as a floating point number between 0 and 1. xtilt
and ytilt can take on values between -1 and 1, corresponding to the degree of
tilt in each direction. source and deviceid specify the device for which the event
occurred in two different ways. source gives some simple information about the
type of device. It can take the enumeration values:

GDK_SOURCE_MOUSE
GDK_SOURCE_PEN
GDK_SOURCE_ERASER
GDK_SOURCE_CURSOR

deviceid specifies a unique numeric ID for the device. This can be used to find
out further information about the device using the gdk_input_list_devices()
call (see below). The special value GDK_CORE_POINTER is used for the core pointer
device. (Usually the mouse.)

Enabling extended device information

To let GTK know about our interest in the extended device information, we
merely have to add a single line to our program:

gtk_widget_set_extension_events (drawing_area, GDK_EXTENSION_EVENTS_CURSOR);

By giving the value GDK_EXTENSION_EVENTS_CURSOR we say that we are inter-
ested in extension events, but only if we don’t have to draw our own cursor. See
the section Further Sophistications below for more information about drawing
the cursor. We could also give the values GDK_EXTENSION_EVENTS_ALL if we were
willing to draw our own cursor, or GDK_EXTENSION_EVENTS_NONE to revert back
to the default condition.

This is not completely the end of the story however. By default, no extension
devices are enabled. We need a mechanism to allow users to enable and configure
their extension devices. GTK provides the InputDialog widget to automate this
process. The following procedure manages an InputDialog widget. It creates the
dialog if it isn’t present, and raises it to the top otherwise.

void
input_dialog_destroy (GtkWidget *w, gpointer data)
{
*((GtkWidget **)data) = NULL;

}

void
create_input_dialog ()
{
static GtkWidget *inputd = NULL;

if (!inputd)
{

inputd = gtk_input_dialog_new();

gtk_signal_connect (GTK_OBJECT(inputd), "destroy",
(GtkSignalFunc)input_dialog_destroy, &inputd);

187

Chapter 22. Scribble, A Simple Example Drawing Program

gtk_signal_connect_object (GTK_OBJECT(GTK_INPUT_DIALOG(inputd)-
>close_button),

"clicked",
(GtkSignalFunc)gtk_widget_hide,
GTK_OBJECT(inputd));
gtk_widget_hide (GTK_INPUT_DIALOG(inputd)->save_button);

gtk_widget_show (inputd);
}

else
{

if (!GTK_WIDGET_MAPPED(inputd))
gtk_widget_show(inputd);

else
gdk_window_raise(inputd->window);

}
}

(You might want to take note of the way we handle this dialog. By connecting to
the "destroy" signal, we make sure that we don’t keep a pointer to dialog around
after it is destroyed - that could lead to a segfault.)

The InputDialog has two buttons "Close" and "Save", which by default have no
actions assigned to them. In the above function we make "Close" hide the dialog,
hide the "Save" button, since we don’t implement saving of XInput options in this
program.

Using extended device information

Once we’ve enabled the device, we can just use the extended device information
in the extra fields of the event structures. In fact, it is always safe to use this infor-
mation since these fields will have reasonable default values even when extended
events are not enabled.

Once change we do have to make is to call gdk_input_window_get_pointer()
instead of gdk_window_get_pointer. This is necessary because
gdk_window_get_pointer doesn’t return the extended device information.

void gdk_input_window_get_pointer(GdkWindow *window,
guint32 deviceid,
gdouble *x,
gdouble *y,
gdouble *pressure,
gdouble *xtilt,
gdouble *ytilt,
GdkModifierType *mask);

When calling this function, we need to specify the device ID as well as the
window. Usually, we’ll get the device ID from the deviceid field of an event
structure. Again, this function will return reasonable values when extension
events are not enabled. (In this case, event->deviceid will have the value
GDK_CORE_POINTER).

So the basic structure of our button-press and motion event handlers doesn’t
change much - we just need to add code to deal with the extended information.

static gint
button_press_event (GtkWidget *widget, GdkEventButton *event)
{
print_button_press (event->deviceid);

if (event->button == 1 && pixmap != NULL)
draw_brush (widget, event->source, event->x, event->y, event->pressure);

return TRUE;
}

static gint
motion_notify_event (GtkWidget *widget, GdkEventMotion *event)

188

Chapter 22. Scribble, A Simple Example Drawing Program

{
gdouble x, y;
gdouble pressure;
GdkModifierType state;

if (event->is_hint)
gdk_input_window_get_pointer (event->window, event->deviceid,

&x, &y, &pressure, NULL, NULL, &state);
else

{
x = event->x;
y = event->y;
pressure = event->pressure;
state = event->state;

}

if (state & GDK_BUTTON1_MASK && pixmap != NULL)
draw_brush (widget, event->source, x, y, pressure);

return TRUE;
}

We also need to do something with the new information. Our new draw_brush()
function draws with a different color for each event->source and changes the
brush size depending on the pressure.

/* Draw a rectangle on the screen, size depending on pressure,
and color on the type of device */

static void
draw_brush (GtkWidget *widget, GdkInputSource source,

gdouble x, gdouble y, gdouble pressure)
{
GdkGC *gc;
GdkRectangle update_rect;

switch (source)
{
case GDK_SOURCE_MOUSE:

gc = widget->style->dark_gc[GTK_WIDGET_STATE (widget)];
break;

case GDK_SOURCE_PEN:
gc = widget->style->black_gc;
break;

case GDK_SOURCE_ERASER:
gc = widget->style->white_gc;
break;

default:
gc = widget->style->light_gc[GTK_WIDGET_STATE (widget)];

}

update_rect.x = x - 10 * pressure;
update_rect.y = y - 10 * pressure;
update_rect.width = 20 * pressure;
update_rect.height = 20 * pressure;
gdk_draw_rectangle (pixmap, gc, TRUE,

update_rect.x, update_rect.y,
update_rect.width, update_rect.height);

gtk_widget_draw (widget, &update_rect);
}

189

Chapter 22. Scribble, A Simple Example Drawing Program

Finding out more about a device

As an example of how to find out more about a device, our program will print
the name of the device that generates each button press. To find out the name of
a device, we call the function:

GList *gdk_input_list_devices (void);

which returns a GList (a linked list type from the GLib library) of GdkDeviceInfo
structures. The GdkDeviceInfo structure is defined as:

struct _GdkDeviceInfo
{
guint32 deviceid;
gchar *name;
GdkInputSource source;
GdkInputMode mode;
gint has_cursor;
gint num_axes;
GdkAxisUse *axes;
gint num_keys;
GdkDeviceKey *keys;

};

Most of these fields are configuration information that you can ignore unless
you are implementing XInput configuration saving. The fieldwe are interested
in here is name which is simply the name that X assigns to the device. The
other field that isn’t configuration information is has_cursor. If has_cursor
is false, then we we need to draw our own cursor. But since we’ve specified
GDK_EXTENSION_EVENTS_CURSOR, we don’t have to worry about this.

Our print_button_press() function simply iterates through the returned list
until it finds a match, then prints out the name of the device.

static void
print_button_press (guint32 deviceid)
{
GList *tmp_list;

/* gdk_input_list_devices returns an internal list, so we shouldn’t
free it afterwards */

tmp_list = gdk_input_list_devices();

while (tmp_list)
{

GdkDeviceInfo *info = (GdkDeviceInfo *)tmp_list->data;

if (info->deviceid == deviceid)
{

printf("Button press on device ’%s’\n", info->name);
return;

}

tmp_list = tmp_list->next;
}

}

That completes the changes to "XInputize" our program.

Further sophistications

Although our program now supports XInput quite well, it lacks some features we
would want in a full-featured application. First, the user probably doesn’t want
to have to configure their device each time they run the program, so we should
allow them to save the device configuration. This is done by iterating through
the return of gdk_input_list_devices() and writing out the configuration to a
file.

190

Chapter 22. Scribble, A Simple Example Drawing Program

To restore the state next time the program is run, GDK provides functions to
change device configuration:

gdk_input_set_extension_events()
gdk_input_set_source()
gdk_input_set_mode()
gdk_input_set_axes()
gdk_input_set_key()

(The list returned from gdk_input_list_devices() should not be modified di-
rectly.) An example of doing this can be found in the drawing program gsumi.
(Available from http://www.msc.cornell.edu/~otaylor/gsumi/) Eventually, it
would be nice to have a standard way of doing this for all applications. This
probably belongs at a slightly higher level than GTK, perhaps in the GNOME
library.

Another major omission that we have mentioned above is the lack of cursor
drawing. Platforms other than XFree86 currently do not allow simultaneously
using a device as both the core pointer and directly by an application. See the
XInput-HOWTO3 for more information about this. This means that applications
that want to support the widest audience need to draw their own cursor.

An application that draws its own cursor needs to do two things: determine if the
current device needs a cursor drawn or not, and determine if the current device
is in proximity. (If the current device is a drawing tablet, it’s a nice touch to make
the cursor disappear when the stylus is lifted from the tablet. When the device is
touching the stylus, that is called "in proximity.") The first is done by searching
the device list, as we did to find out the device name. The second is achieved
by selecting "proximity_out" events. An example of drawing one’s own cursor is
found in the "testinput" program found in the GTK distribution.

Notes
1. http://www.gtk.org/~otaylor/xinput/howto/index.html

2. http://www.msc.cornell.edu/~otaylor/gsumi/

3. http://www.msc.cornell.edu/~otaylor/xinput/XInput-HOWTO.html

191

Chapter 22. Scribble, A Simple Example Drawing Program

192

Chapter 23. Tips For Writing GTK Applications

This section is simply a gathering of wisdom, general style guidelines and hints
to creating good GTK applications. Currently this section is very short, but I hope
it will get longer in future editions of this tutorial.

Use GNU autoconf and automake! They are your friends :) Automake examines
C files, determines how they depend on each other, and generates a Makefile so
the files can be compiled in the correct order. Autoconf permits automatic con-
figuration of software installation, handling a large number of system quirks to
increase portability. I am planning to make a quick intro on them here.

When writing C code, use only C comments (beginning with "/*" and ending
with "*/"), and don’t use C++-style comments ("//"). Although many C compil-
ers understand C++ comments, others don’t, and the ANSI C standard does not
require that C++-style comments be processed as comments.

193

Chapter 23. Tips For Writing GTK Applications

194

Chapter 24. Contributing

This document, like so much other great software out there, was created for free
by volunteers. If you are at all knowledgeable about any aspect of GTK that does
not already have documentation, please consider contributing to this document.

If you do decide to contribute, please mail your text to Tony Gale, gale@gtk.org1.
Also, be aware that the entirety of this document is free, and any addition by you
provide must also be free. That is, people may use any portion of your examples
in their programs, and copies of this document may be distributed at will, etc.

Thank you.

Notes
1. mailto:gale@gtk.org

195

Chapter 24. Contributing

196

Chapter 25. Credits

We would like to thank the following for their contributions to this text.

• Bawer Dagdeviren, chamele0n@geocities.com1 for the menus tutorial.

• Raph Levien, raph@acm.org2 for hello world ala GTK, widget packing, and
general all around wisdom. He’s also generously donated a home for this tuto-
rial.

• Peter Mattis, petm@xcf.berkeley.edu3 for the simplest GTK program.. and
the ability to make it :)

• Werner Koch werner.koch@guug.de4 for converting the original plain text to
SGML, and the widget class hierarchy.

• Mark Crichton crichton@expert.cc.purdue.edu5 for the menu factory code,
and the table packing tutorial.

• Owen Taylor owt1@cornell.edu6 for the EventBox widget section (and the
patch to the distro). He’s also responsible for the selections code and tutorial,
as well as the sections on writing your own GTK widgets, and the example
application. Thanks a lot Owen for all you help!

• Mark VanderBoom mvboom42@calvin.edu7 for his wonderful work on the
Notebook, Progress Bar, Dialogs, and File selection widgets. Thanks a lot
Mark! You’ve been a great help.

• Tim Janik timj@gtk.org8 for his great job on the Lists Widget. His excellent
work on automatically extracting the widget tree and signal information from
GTK. Thanks Tim :)

• Rajat Datta rajat@ix.netcom.com9 for the excellent job on the Pixmap tutorial.

• Michael K. Johnson johnsonm@redhat.com10 for info and code for popup
menus.

• David Huggins-Daines bn711@freenet.carleton.ca11 for the Range Widgets
and Tree Widget sections.

• Stefan Mars mars@lysator.liu.se12 for the CList section.

• David A. Wheeler dwheeler@ida.org13 for portions of the text on GLib and
various tutorial fixups and improvements. The GLib text was in turn based on
material developed by Damon Chaplin DAChaplin@msn.com14

• David King for style checking the entire document.

And to all of you who commented on and helped refine this document.

Thanks.

Notes
1. mailto:chamele0n@geocities.com

2. mailto:raph@acm.org

3. mailto:petm@xcf.berkeley.edu

4. mailto:werner.koch@guug.de

5. mailto:crichton@expert.cc.purdue.edu

6. mailto:owt1@cornell.edu

7. mailto:mvboom42@calvin.edu

8. mailto:timj@gtk.org

9. mailto:rajat@ix.netcom.com

10. mailto:johnsonm@redhat.com

11. mailto:bn711@freenet.carleton.ca

12. mailto:mars@lysator.liu.se

197

Chapter 25. Credits

13. mailto:dwheeler@ida.org

14. mailto:DAChaplin@msn.com

198

Chapter 26. Tutorial Copyright and Permissions Notice

The GTK Tutorial is Copyright (C) 1997 Ian Main.

Copyright (C) 1998-2002 Tony Gale.

Permission is granted to make and distribute verbatim copies of this manual pro-
vided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this document
under the conditions for verbatim copying, provided that this copyright notice is
included exactly as in the original, and that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this document into
another language, under the above conditions for modified versions.

If you are intending to incorporate this document into a published work, please
contact the maintainer, and we will make an effort to ensure that you have the
most up to date information available.

There is no guarantee that this document lives up to its intended purpose. This is
simply provided as a free resource. As such, the authors and maintainers of the
information provided within can not make any guarantee that the information is
even accurate.

199

Chapter 26. Tutorial Copyright and Permissions Notice

200

Appendix A. GTK Signals

As GTK is an object oriented widget set, it has a hierarchy of inheritance. This in-
heritance mechanism applies for signals. Therefore, you should refer to the wid-
get hierarchy tree when using the signals listed in this section.

GtkObject

void GtkObject::destroy (GtkObject *,
gpointer);

GtkWidget

void GtkWidget::show (GtkWidget *,
gpointer);

void GtkWidget::hide (GtkWidget *,
gpointer);

void GtkWidget::map (GtkWidget *,
gpointer);

void GtkWidget::unmap (GtkWidget *,
gpointer);

void GtkWidget::realize (GtkWidget *,
gpointer);

void GtkWidget::unrealize (GtkWidget *,
gpointer);

void GtkWidget::draw (GtkWidget *,
ggpointer,
gpointer);

void GtkWidget::draw-focus (GtkWidget *,
gpointer);

void GtkWidget::draw-default (GtkWidget *,
gpointer);

void GtkWidget::size-request (GtkWidget *,
ggpointer,
gpointer);

void GtkWidget::size-allocate (GtkWidget *,
ggpointer,
gpointer);

void GtkWidget::state-changed (GtkWidget *,
GtkStateType,
gpointer);

void GtkWidget::parent-set (GtkWidget *,
GtkObject *,
gpointer);

void GtkWidget::style-set (GtkWidget *,
GtkStyle *,
gpointer);

void GtkWidget::add-accelerator (GtkWidget *,
gguint,
GtkAccelGroup *,
gguint,
GdkModifierType,
GtkAccelFlags,
gpointer);

void GtkWidget::remove-accelerator (GtkWidget *,
GtkAccelGroup *,
gguint,
GdkModifierType,
gpointer);

gboolean GtkWidget::event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::button-press-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::button-release-event (GtkWidget *,
GdkEvent *,

201

Appendix A. GTK Signals

gpointer);
gboolean GtkWidget::motion-notify-event (GtkWidget *,

GdkEvent *,
gpointer);

gboolean GtkWidget::delete-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::destroy-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::expose-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::key-press-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::key-release-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::enter-notify-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::leave-notify-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::configure-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::focus-in-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::focus-out-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::map-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::unmap-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::property-notify-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::selection-clear-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::selection-request-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::selection-notify-event (GtkWidget *,
GdkEvent *,
gpointer);

void GtkWidget::selection-get (GtkWidget *,
GtkSelectionData *,
gguint,
gpointer);

void GtkWidget::selection-received (GtkWidget *,
GtkSelectionData *,
gguint,
gpointer);

gboolean GtkWidget::proximity-in-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::proximity-out-event (GtkWidget *,
GdkEvent *,
gpointer);

void GtkWidget::drag-begin (GtkWidget *,
GdkDragContext *,
gpointer);

void GtkWidget::drag-end (GtkWidget *,
GdkDragContext *,

202

Appendix A. GTK Signals

gpointer);
void GtkWidget::drag-data-delete (GtkWidget *,

GdkDragContext *,
gpointer);

void GtkWidget::drag-leave (GtkWidget *,
GdkDragContext *,
gguint,
gpointer);

gboolean GtkWidget::drag-motion (GtkWidget *,
GdkDragContext *,
ggint,
ggint,
gguint,
gpointer);

gboolean GtkWidget::drag-drop (GtkWidget *,
GdkDragContext *,
ggint,
ggint,
gguint,
gpointer);

void GtkWidget::drag-data-get (GtkWidget *,
GdkDragContext *,
GtkSelectionData *,
gguint,
gguint,
gpointer);

void GtkWidget::drag-data-received (GtkWidget *,
GdkDragContext *,
ggint,
ggint,
GtkSelectionData *,
gguint,
gguint,
gpointer);

gboolean GtkWidget::client-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::no-expose-event (GtkWidget *,
GdkEvent *,
gpointer);

gboolean GtkWidget::visibility-notify-event (GtkWidget *,
GdkEvent *,
gpointer);

void GtkWidget::debug-msg (GtkWidget *,
GtkString *,
gpointer);

GtkData

void GtkData::disconnect (GtkData *,
gpointer);

GtkContainer

void GtkContainer::add (GtkContainer *,
GtkWidget *,
gpointer);

void GtkContainer::remove (GtkContainer *,
GtkWidget *,
gpointer);

void GtkContainer::check-resize (GtkContainer *,
gpointer);

GtkDirectionType GtkContainer::focus (GtkContainer *,
GtkDirectionType,
gpointer);

void GtkContainer::set-focus-child (GtkContainer *,

203

Appendix A. GTK Signals

GtkWidget *,
gpointer);

GtkCalendar

void GtkCalendar::month-changed (GtkCalendar *,
gpointer);

void GtkCalendar::day-selected (GtkCalendar *,
gpointer);

void GtkCalendar::day-selected-double-click (GtkCalendar *,
gpointer);

void GtkCalendar::prev-month (GtkCalendar *,
gpointer);

void GtkCalendar::next-month (GtkCalendar *,
gpointer);

void GtkCalendar::prev-year (GtkCalendar *,
gpointer);

void GtkCalendar::next-year (GtkCalendar *,
gpointer);

GtkEditable

void GtkEditable::changed (GtkEditable *,
gpointer);

void GtkEditable::insert-text (GtkEditable *,
GtkString *,
ggint,
ggpointer,
gpointer);

void GtkEditable::delete-text (GtkEditable *,
ggint,
ggint,
gpointer);

void GtkEditable::activate (GtkEditable *,
gpointer);

void GtkEditable::set-editable (GtkEditable *,
gboolean,
gpointer);

void GtkEditable::move-cursor (GtkEditable *,
ggint,
ggint,
gpointer);

void GtkEditable::move-word (GtkEditable *,
ggint,
gpointer);

void GtkEditable::move-page (GtkEditable *,
ggint,
ggint,
gpointer);

void GtkEditable::move-to-row (GtkEditable *,
ggint,
gpointer);

void GtkEditable::move-to-column (GtkEditable *,
ggint,
gpointer);

void GtkEditable::kill-char (GtkEditable *,
ggint,
gpointer);

void GtkEditable::kill-word (GtkEditable *,
ggint,
gpointer);

void GtkEditable::kill-line (GtkEditable *,
ggint,
gpointer);

void GtkEditable::cut-clipboard (GtkEditable *,
gpointer);

204

Appendix A. GTK Signals

void GtkEditable::copy-clipboard (GtkEditable *,
gpointer);

void GtkEditable::paste-clipboard (GtkEditable *,
gpointer);

GtkNotebook

void GtkNotebook::switch-page (GtkNotebook *,
ggpointer,
gguint,
gpointer);

GtkList

void GtkList::selection-changed (GtkList *,
gpointer);

void GtkList::select-child (GtkList *,
GtkWidget *,
gpointer);

void GtkList::unselect-child (GtkList *,
GtkWidget *,
gpointer);

GtkMenuShell

void GtkMenuShell::deactivate (GtkMenuShell *,
gpointer);

void GtkMenuShell::selection-done (GtkMenuShell *,
gpointer);

void GtkMenuShell::move-current (GtkMenuShell *,
GtkMenuDirectionType,
gpointer);

void GtkMenuShell::activate-current (GtkMenuShell *,
gboolean,
gpointer);

void GtkMenuShell::cancel (GtkMenuShell *,
gpointer);

GtkToolbar

void GtkToolbar::orientation-changed (GtkToolbar *,
ggint,
gpointer);

void GtkToolbar::style-changed (GtkToolbar *,
ggint,
gpointer);

GtkButton

void GtkButton::pressed (GtkButton *,
gpointer);

void GtkButton::released (GtkButton *,
gpointer);

void GtkButton::clicked (GtkButton *,
gpointer);

void GtkButton::enter (GtkButton *,
gpointer);

void GtkButton::leave (GtkButton *,
gpointer);

205

Appendix A. GTK Signals

GtkItem

void GtkItem::select (GtkItem *,
gpointer);

void GtkItem::deselect (GtkItem *,
gpointer);

void GtkItem::toggle (GtkItem *,
gpointer);

GtkWindow

void GtkWindow::set-focus (GtkWindow *,
ggpointer,
gpointer);

GtkHandleBox

void GtkHandleBox::child-attached (GtkHandleBox *,
GtkWidget *,
gpointer);

void GtkHandleBox::child-detached (GtkHandleBox *,
GtkWidget *,
gpointer);

GtkToggleButton

void GtkToggleButton::toggled (GtkToggleButton *,
gpointer);

GtkMenuItem

void GtkMenuItem::activate (GtkMenuItem *,
gpointer);

void GtkMenuItem::activate-item (GtkMenuItem *,
gpointer);

GtkCheckMenuItem

void GtkCheckMenuItem::toggled (GtkCheckMenuItem *,
gpointer);

GtkInputDialog

void GtkInputDialog::enable-device (GtkInputDialog *,
ggint,
gpointer);

void GtkInputDialog::disable-device (GtkInputDialog *,
ggint,
gpointer);

206

Appendix A. GTK Signals

GtkColorSelection

void GtkColorSelection::color-changed (GtkColorSelection *,
gpointer);

GtkStatusBar

void GtkStatusbar::text-pushed (GtkStatusbar *,
gguint,
GtkString *,
gpointer);

void GtkStatusbar::text-popped (GtkStatusbar *,
gguint,
GtkString *,
gpointer);

GtkCurve

void GtkCurve::curve-type-changed (GtkCurve *,
gpointer);

GtkAdjustment

void GtkAdjustment::changed (GtkAdjustment *,
gpointer);

void GtkAdjustment::value-changed (GtkAdjustment *,
gpointer);

207

Appendix A. GTK Signals

208

Appendix B. GDK Event Types

The following data types are passed into event handlers by GTK+. For each data
type listed, the signals that use this data type are listed.

• GdkEvent

• drag_end_event

• GdkEventType<

• GdkEventAny

• delete_event

• destroy_event

• map_event

• unmap_event

• no_expose_event

• GdkEventExpose

• expose_event

• GdkEventNoExpose

• GdkEventVisibility

• GdkEventMotion

• motion_notify_event

• GdkEventButton

• button_press_event

• button_release_event

• GdkEventKey

• key_press_event

• key_release_event

• GdkEventCrossing

• enter_notify_event

• leave_notify_event

• GdkEventFocus

• focus_in_event

• focus_out_event

• GdkEventConfigure

• configure_event

• GdkEventProperty

• property_notify_event

209

Appendix B. GDK Event Types

• GdkEventSelection

• selection_clear_event

• selection_request_event

• selection_notify_event

• GdkEventProximity

• proximity_in_event

• proximity_out_event

• GdkEventDragBegin

• drag_begin_event

• GdkEventDragRequest

• drag_request_event

• GdkEventDropEnter

• drop_enter_event

• GdkEventDropLeave

• drop_leave_event

• GdkEventDropDataAvailable

• drop_data_available_event

• GdkEventClient

• client_event

• GdkEventOther

• other_event

The data type GdkEventType is a special data type that is used by all the other
data types as an indicator of the data type being passed to the signal handler. As
you will see below, each of the event data structures has a member of this type. It
is defined as an enumeration type as follows:

typedef enum
{
GDK_NOTHING = -1,
GDK_DELETE = 0,
GDK_DESTROY = 1,
GDK_EXPOSE = 2,
GDK_MOTION_NOTIFY = 3,
GDK_BUTTON_PRESS = 4,
GDK_2BUTTON_PRESS = 5,
GDK_3BUTTON_PRESS = 6,
GDK_BUTTON_RELEASE = 7,
GDK_KEY_PRESS = 8,
GDK_KEY_RELEASE = 9,
GDK_ENTER_NOTIFY = 10,
GDK_LEAVE_NOTIFY = 11,
GDK_FOCUS_CHANGE = 12,

210

Appendix B. GDK Event Types

GDK_CONFIGURE = 13,
GDK_MAP = 14,
GDK_UNMAP = 15,
GDK_PROPERTY_NOTIFY = 16,
GDK_SELECTION_CLEAR = 17,
GDK_SELECTION_REQUEST = 18,
GDK_SELECTION_NOTIFY = 19,
GDK_PROXIMITY_IN = 20,
GDK_PROXIMITY_OUT = 21,
GDK_DRAG_BEGIN = 22,
GDK_DRAG_REQUEST = 23,
GDK_DROP_ENTER = 24,
GDK_DROP_LEAVE = 25,
GDK_DROP_DATA_AVAIL = 26,
GDK_CLIENT_EVENT = 27,
GDK_VISIBILITY_NOTIFY = 28,
GDK_NO_EXPOSE = 29,
GDK_OTHER_EVENT = 9999 /* Deprecated, use filters instead */

} GdkEventType;

The other event type that is different from the others is GdkEvent itself. This is a
union of all the other data types, which allows it to be cast to a specific event data
type within a signal handler.

So, the event data types are defined as follows:

struct _GdkEventAny
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;

};

struct _GdkEventExpose
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
GdkRectangle area;
gint count; /* If non-zero, how many more events follow. */

};

struct _GdkEventNoExpose
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
/* XXX: does anyone need the X major_code or minor_code fields? */

};

struct _GdkEventVisibility
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
GdkVisibilityState state;

};

struct _GdkEventMotion
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 time;
gdouble x;
gdouble y;
gdouble pressure;
gdouble xtilt;
gdouble ytilt;
guint state;
gint16 is_hint;

211

Appendix B. GDK Event Types

GdkInputSource source;
guint32 deviceid;
gdouble x_root, y_root;

};

struct _GdkEventButton
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 time;
gdouble x;
gdouble y;
gdouble pressure;
gdouble xtilt;
gdouble ytilt;
guint state;
guint button;
GdkInputSource source;
guint32 deviceid;
gdouble x_root, y_root;

};

struct _GdkEventKey
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 time;
guint state;
guint keyval;
gint length;
gchar *string;

};

struct _GdkEventCrossing
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
GdkWindow *subwindow;
GdkNotifyType detail;

};

struct _GdkEventFocus
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
gint16 in;

};

struct _GdkEventConfigure
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
gint16 x, y;
gint16 width;
gint16 height;

};

struct _GdkEventProperty
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
GdkAtom atom;
guint32 time;
guint state;

};

212

Appendix B. GDK Event Types

struct _GdkEventSelection
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
GdkAtom selection;
GdkAtom target;
GdkAtom property;
guint32 requestor;
guint32 time;

};

/* This event type will be used pretty rarely. It only is important
for XInput aware programs that are drawing their own cursor */

struct _GdkEventProximity
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 time;
GdkInputSource source;
guint32 deviceid;

};

struct _GdkEventDragRequest
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 requestor;
union {

struct {
guint protocol_version:4;
guint sendreply:1;
guint willaccept:1;
guint delete_data:1; /* Do *not* delete if link is sent, only

if data is sent */
guint senddata:1;
guint reserved:22;

} flags;
glong allflags;

} u;
guint8 isdrop; /* This gdk event can be generated by a couple of

X events - this lets the app know whether the
drop really occurred or we just set the data */

GdkPoint drop_coords;
gchar *data_type;
guint32 timestamp;

};

struct _GdkEventDragBegin
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
union {

struct {
guint protocol_version:4;
guint reserved:28;

} flags;
glong allflags;

} u;
};

struct _GdkEventDropEnter
{
GdkEventType type;
GdkWindow *window;

213

Appendix B. GDK Event Types

gint8 send_event;
guint32 requestor;
union {

struct {
guint protocol_version:4;
guint sendreply:1;
guint extended_typelist:1;
guint reserved:26;

} flags;
glong allflags;

} u;
};

struct _GdkEventDropLeave
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 requestor;
union {

struct {
guint protocol_version:4;
guint reserved:28;

} flags;
glong allflags;

} u;
};

struct _GdkEventDropDataAvailable
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
guint32 requestor;
union {

struct {
guint protocol_version:4;
guint isdrop:1;
guint reserved:25;

} flags;
glong allflags;

} u;
gchar *data_type; /* MIME type */
gulong data_numbytes;
gpointer data;
guint32 timestamp;
GdkPoint coords;

};

struct _GdkEventClient
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
GdkAtom message_type;
gushort data_format;
union {

char b[20];
short s[10];
long l[5];

} data;
};

struct _GdkEventOther
{
GdkEventType type;
GdkWindow *window;
gint8 send_event;
GdkXEvent *xevent;

};

214

Appendix C. Code Examples

Below are the code examples that are used in the above text which are not in-
cluded in complete form elsewhere.

Tictactoe

tictactoe.h

/* GTK - The GIMP Toolkit
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifndef __TICTACTOE_H__
#define __TICTACTOE_H__

#include
�
gdk/gdk.h �

#include
�
gtk/gtkvbox.h �

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

#define TICTACTOE(obj) GTK_CHECK_CAST (obj, tictactoe_get_type (), Tictactoe)
#define TICTACTOE_CLASS(klass) GTK_CHECK_CLASS_CAST (klass, tictac-
toe_get_type (), TictactoeClass)
#define IS_TICTACTOE(obj) GTK_CHECK_TYPE (obj, tictactoe_get_type ())

typedef struct _Tictactoe Tictactoe;
typedef struct _TictactoeClass TictactoeClass;

struct _Tictactoe
{
GtkVBox vbox;

GtkWidget *buttons[3][3];
};

struct _TictactoeClass
{
GtkVBoxClass parent_class;

void (* tictactoe) (Tictactoe *ttt);
};

GtkType tictactoe_get_type (void);
GtkWidget* tictactoe_new (void);
void tictactoe_clear (Tictactoe *ttt);

#ifdef __cplusplus
}

215

Appendix C. Code Examples

#endif /* __cplusplus */

#endif /* __TICTACTOE_H__ */

tictactoe.c

/* GTK - The GIMP Toolkit
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include "gtk/gtksignal.h"
#include "gtk/gtktable.h"
#include "gtk/gtktogglebutton.h"
#include "tictactoe.h"

enum {
TICTACTOE_SIGNAL,
LAST_SIGNAL

};

static void tictactoe_class_init (TictactoeClass *klass);
static void tictactoe_init (Tictactoe *ttt);
static void tictactoe_toggle (GtkWidget *widget, Tic-
tactoe *ttt);

static gint tictactoe_signals[LAST_SIGNAL] = { 0 };

GType
tictactoe_get_type ()
{
static GType ttt_type = 0;

if (!ttt_type)
{

static const GTypeInfo ttt_info =
{

sizeof (TictactoeClass),
NULL,

NULL,
(GClassInitFunc) tictactoe_class_init,

NULL,
NULL,

sizeof (Tictactoe),
0,
(GInstanceInitFunc) tictactoe_init,

};

ttt_type = g_type_register_static (GTK_TYPE_VBOX, "Tictactoe", &ttt_info, 0);
}

return ttt_type;
}

static void
tictactoe_class_init (TictactoeClass *class)

216

Appendix C. Code Examples

{
GtkObjectClass *object_class;

object_class = (GtkObjectClass*) class;

tictactoe_signals[TICTACTOE_SIGNAL] = g_signal_new ("tictactoe",
G_TYPE_FROM_CLASS (object_class),

G_SIGNAL_RUN_FIRST,
0,

NULL,
NULL,

g_cclosure_marshal_VOID__VOID,
G_TYPE_NONE, 0, NULL);

class- � tictactoe = NULL;
}

static void
tictactoe_init (Tictactoe *ttt)
{
GtkWidget *table;
gint i,j;

table = gtk_table_new (3, 3, TRUE);
gtk_container_add (GTK_CONTAINER (ttt), table);
gtk_widget_show (table);

for (i = 0; i
�

3; i++)
for (j = 0; j

�
3; j++)

{
ttt- � buttons[i][j] = gtk_toggle_button_new ();
gtk_table_attach_defaults (GTK_TABLE (table), ttt- � buttons[i][j],

i, i+1, j, j+1);
g_signal_connect (G_OBJECT (ttt- � buttons[i][j]), "toggled",

G_CALLBACK (tictactoe_toggle), (gpointer) ttt);
gtk_widget_set_size_request (ttt- � buttons[i][j], 20, 20);
gtk_widget_show (ttt- � buttons[i][j]);

}
}

GtkWidget*
tictactoe_new ()
{
return GTK_WIDGET (g_object_new (tictactoe_get_type (), NULL));

}

void
tictactoe_clear (Tictactoe *ttt)
{
int i,j;

for (i = 0; i
�

3; i++)
for (j = 0; j

�
3; j++)

{
g_signal_handlers_block_by_func (G_OBJECT (ttt- � buttons[i][j]),

NULL, ttt);
gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (ttt- � buttons[i][j]),

FALSE);
g_signal_handlers_unblock_by_func (G_OBJECT (ttt- � buttons[i][j]),

NULL, ttt);
}

}

static void
tictactoe_toggle (GtkWidget *widget, Tictactoe *ttt)
{
int i,k;

static int rwins[8][3] = { { 0, 0, 0 }, { 1, 1, 1 }, { 2, 2, 2 },
{ 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 },

217

Appendix C. Code Examples

{ 0, 1, 2 }, { 0, 1, 2 } };
static int cwins[8][3] = { { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 },

{ 0, 0, 0 }, { 1, 1, 1 }, { 2, 2, 2 },
{ 0, 1, 2 }, { 2, 1, 0 } };

int success, found;

for (k = 0; k
�

8; k++)
{

success = TRUE;
found = FALSE;

for (i = 0; i
�

3; i++)
{

success = success &&
GTK_TOGGLE_BUTTON (ttt- � buttons[rwins[k][i]][cwins[k][i]])- � active;

found = found ||
ttt- � buttons[rwins[k][i]][cwins[k][i]] == widget;

}

if (success && found)
{

g_signal_emit (G_OBJECT (ttt),
tictactoe_signals[TICTACTOE_SIGNAL], 0);

break;
}

}
}

ttt_test.c

#include
�
stdlib.h �

#include
�
gtk/gtk.h �

#include "tictactoe.h"

void win(GtkWidget *widget,
gpointer data)

{
g_print ("Yay!\n");
tictactoe_clear (TICTACTOE (widget));

}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *ttt;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_window_set_title (GTK_WINDOW (window), "Aspect Frame");

g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (exit), NULL);

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

ttt = tictactoe_new ();

gtk_container_add (GTK_CONTAINER (window), ttt);
gtk_widget_show (ttt);

g_signal_connect (G_OBJECT (ttt), "tictactoe",
G_CALLBACK (win), NULL);

gtk_widget_show (window);

218

Appendix C. Code Examples

gtk_main ();

return 0;
}

GtkDial

gtkdial.h

/* GTK - The GIMP Toolkit
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifndef __GTK_DIAL_H__
#define __GTK_DIAL_H__

#include
�
gdk/gdk.h �

#include
�
gtk/gtkadjustment.h �

#include
�
gtk/gtkwidget.h �

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

#define GTK_DIAL(obj) GTK_CHECK_CAST (obj, gtk_dial_get_type (), GtkDial)
#define GTK_DIAL_CLASS(klass) GTK_CHECK_CLASS_CAST (klass, gtk_dial_get_type (), GtkDialClass)
#define GTK_IS_DIAL(obj) GTK_CHECK_TYPE (obj, gtk_dial_get_type ())

typedef struct _GtkDial GtkDial;
typedef struct _GtkDialClass GtkDialClass;

struct _GtkDial
{
GtkWidget widget;

/* update policy (GTK_UPDATE_[CONTINUOUS/DELAYED/DISCONTINUOUS]) */
guint policy : 2;

/* Button currently pressed or 0 if none */
guint8 button;

/* Dimensions of dial components */
gint radius;
gint pointer_width;

/* ID of update timer, or 0 if none */
guint32 timer;

/* Current angle */

219

Appendix C. Code Examples

gfloat angle;
gfloat last_angle;

/* Old values from adjustment stored so we know when something changes */
gfloat old_value;
gfloat old_lower;
gfloat old_upper;

/* The adjustment object that stores the data for this dial */
GtkAdjustment *adjustment;

};

struct _GtkDialClass
{
GtkWidgetClass parent_class;

};

GtkWidget* gtk_dial_new (GtkAdjustment *adjustment);
GtkType gtk_dial_get_type (void);
GtkAdjustment* gtk_dial_get_adjustment (GtkDial *dial);
void gtk_dial_set_update_policy (GtkDial *dial,

GtkUpdateType policy);

void gtk_dial_set_adjustment (GtkDial *dial,
GtkAdjustment *adjustment);

#ifdef __cplusplus
}
#endif /* __cplusplus */

#endif /* __GTK_DIAL_H__ */

gtkdial.c

/* GTK - The GIMP Toolkit
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include

�
math.h �

#include
�
stdio.h �

#include
�
gtk/gtkmain.h �

#include
�
gtk/gtksignal.h �

#include "gtkdial.h"

#define SCROLL_DELAY_LENGTH 300
#define DIAL_DEFAULT_SIZE 100

/* Forward declarations */

static void gtk_dial_class_init (GtkDialClass *klass);
static void gtk_dial_init (GtkDial *dial);
static void gtk_dial_destroy (GtkObject *object);
static void gtk_dial_realize (GtkWidget *widget);

220

Appendix C. Code Examples

static void gtk_dial_size_request (GtkWidget *widget,
GtkRequisition *requisition);

static void gtk_dial_size_allocate (GtkWidget *widget,
GtkAllocation *allocation);

static gint gtk_dial_expose (GtkWidget *widget,
GdkEventExpose *event);

static gint gtk_dial_button_press (GtkWidget *widget,
GdkEventButton *event);

static gint gtk_dial_button_release (GtkWidget *widget,
GdkEventButton *event);

static gint gtk_dial_motion_notify (GtkWidget *widget,
GdkEventMotion *event);

static gint gtk_dial_timer (GtkDial *dial);

static void gtk_dial_update_mouse (GtkDial *dial, gint x, gint y);
static void gtk_dial_update (GtkDial *dial);
static void gtk_dial_adjustment_changed (GtkAdjustment *adjustment,

gpointer data);
static void gtk_dial_adjustment_value_changed (GtkAdjustment *adjustment,

gpointer data);

/* Local data */

static GtkWidgetClass *parent_class = NULL;

GType
gtk_dial_get_type ()
{
static GType dial_type = 0;

if (!dial_type)
{

static const GTypeInfo dial_info =
{

sizeof (GtkDialClass),
NULL,
NULL,
(GClassInitFunc) gtk_dial_class_init,
NULL,
NULL,
sizeof (GtkDial),

0,
(GInstanceInitFunc) gtk_dial_init,

};

dial_type = g_type_register_static (GTK_TYPE_WIDGET, "GtkDial", &dial_info, 0);
}

return dial_type;
}

static void
gtk_dial_class_init (GtkDialClass *class)
{
GtkObjectClass *object_class;
GtkWidgetClass *widget_class;

object_class = (GtkObjectClass*) class;
widget_class = (GtkWidgetClass*) class;

parent_class = gtk_type_class (gtk_widget_get_type ());

object_class- � destroy = gtk_dial_destroy;

widget_class- � realize = gtk_dial_realize;
widget_class- � expose_event = gtk_dial_expose;
widget_class- � size_request = gtk_dial_size_request;
widget_class- � size_allocate = gtk_dial_size_allocate;
widget_class- � button_press_event = gtk_dial_button_press;
widget_class- � button_release_event = gtk_dial_button_release;
widget_class- � motion_notify_event = gtk_dial_motion_notify;

221

Appendix C. Code Examples

}

static void
gtk_dial_init (GtkDial *dial)
{
dial- � button = 0;
dial- � policy = GTK_UPDATE_CONTINUOUS;
dial- � timer = 0;
dial- � radius = 0;
dial- � pointer_width = 0;
dial- � angle = 0.0;
dial- � old_value = 0.0;
dial- � old_lower = 0.0;
dial- � old_upper = 0.0;
dial- � adjustment = NULL;

}

GtkWidget*
gtk_dial_new (GtkAdjustment *adjustment)
{
GtkDial *dial;

dial = g_object_new (gtk_dial_get_type (), NULL);

if (!adjustment)
adjustment = (GtkAdjustment*) gtk_adjustment_new (0.0, 0.0, 0.0, 0.0, 0.0, 0.0);

gtk_dial_set_adjustment (dial, adjustment);

return GTK_WIDGET (dial);
}

static void
gtk_dial_destroy (GtkObject *object)
{
GtkDial *dial;

g_return_if_fail (object != NULL);
g_return_if_fail (GTK_IS_DIAL (object));

dial = GTK_DIAL (object);

if (dial- � adjustment)
{

g_object_unref (GTK_OBJECT (dial- � adjustment));
dial- � adjustment = NULL;

}

if (GTK_OBJECT_CLASS (parent_class)- � destroy)
(* GTK_OBJECT_CLASS (parent_class)- � destroy) (object);

}

GtkAdjustment*
gtk_dial_get_adjustment (GtkDial *dial)
{
g_return_val_if_fail (dial != NULL, NULL);
g_return_val_if_fail (GTK_IS_DIAL (dial), NULL);

return dial- � adjustment;
}

void
gtk_dial_set_update_policy (GtkDial *dial,

GtkUpdateType policy)
{
g_return_if_fail (dial != NULL);
g_return_if_fail (GTK_IS_DIAL (dial));

dial- � policy = policy;
}

222

Appendix C. Code Examples

void
gtk_dial_set_adjustment (GtkDial *dial,

GtkAdjustment *adjustment)
{
g_return_if_fail (dial != NULL);
g_return_if_fail (GTK_IS_DIAL (dial));

if (dial- � adjustment)
{

g_signal_handlers_disconnect_by_func (GTK_OBJECT (dial- � adjustment), NULL, (gpointer) dial);
g_object_unref (GTK_OBJECT (dial- � adjustment));

}

dial- � adjustment = adjustment;
g_object_ref (GTK_OBJECT (dial- � adjustment));

g_signal_connect (GTK_OBJECT (adjustment), "changed",
GTK_SIGNAL_FUNC (gtk_dial_adjustment_changed),
(gpointer) dial);

g_signal_connect (GTK_OBJECT (adjustment), "value_changed",
GTK_SIGNAL_FUNC (gtk_dial_adjustment_value_changed),
(gpointer) dial);

dial- � old_value = adjustment- � value;
dial- � old_lower = adjustment- � lower;
dial- � old_upper = adjustment- � upper;

gtk_dial_update (dial);
}

static void
gtk_dial_realize (GtkWidget *widget)
{
GtkDial *dial;
GdkWindowAttr attributes;
gint attributes_mask;

g_return_if_fail (widget != NULL);
g_return_if_fail (GTK_IS_DIAL (widget));

GTK_WIDGET_SET_FLAGS (widget, GTK_REALIZED);
dial = GTK_DIAL (widget);

attributes.x = widget- � allocation.x;
attributes.y = widget- � allocation.y;
attributes.width = widget- � allocation.width;
attributes.height = widget- � allocation.height;
attributes.wclass = GDK_INPUT_OUTPUT;
attributes.window_type = GDK_WINDOW_CHILD;
attributes.event_mask = gtk_widget_get_events (widget) |

GDK_EXPOSURE_MASK | GDK_BUTTON_PRESS_MASK |
GDK_BUTTON_RELEASE_MASK | GDK_POINTER_MOTION_MASK |
GDK_POINTER_MOTION_HINT_MASK;

attributes.visual = gtk_widget_get_visual (widget);
attributes.colormap = gtk_widget_get_colormap (widget);

attributes_mask = GDK_WA_X | GDK_WA_Y | GDK_WA_VISUAL | GDK_WA_COLORMAP;
widget- � window = gdk_window_new (widget- � parent- � window, &attributes, attributes_mask);

widget- � style = gtk_style_attach (widget- � style, widget- � window);

gdk_window_set_user_data (widget- � window, widget);

gtk_style_set_background (widget- � style, widget- � window, GTK_STATE_ACTIVE);
}

static void
gtk_dial_size_request (GtkWidget *widget,

GtkRequisition *requisition)
{
requisition- � width = DIAL_DEFAULT_SIZE;

223

Appendix C. Code Examples

requisition- � height = DIAL_DEFAULT_SIZE;
}

static void
gtk_dial_size_allocate (GtkWidget *widget,

GtkAllocation *allocation)
{
GtkDial *dial;

g_return_if_fail (widget != NULL);
g_return_if_fail (GTK_IS_DIAL (widget));
g_return_if_fail (allocation != NULL);

widget- � allocation = *allocation;
dial = GTK_DIAL (widget);

if (GTK_WIDGET_REALIZED (widget))
{

gdk_window_move_resize (widget- � window,
allocation- � x, allocation- � y,
allocation- � width, allocation- � height);

}
dial- � radius = MIN (allocation- � width, allocation- � height) * 0.45;
dial- � pointer_width = dial- � radius / 5;

}

static gint
gtk_dial_expose (GtkWidget *widget,

GdkEventExpose *event)
{
GtkDial *dial;
GdkPoint points[6];
gdouble s,c;
gdouble theta, last, increment;
GtkStyle *blankstyle;
gint xc, yc;
gint upper, lower;
gint tick_length;
gint i, inc;

g_return_val_if_fail (widget != NULL, FALSE);
g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if_fail (event != NULL, FALSE);

if (event- � count � 0)
return FALSE;

dial = GTK_DIAL (widget);

/* gdk_window_clear_area (widget- � window,
0, 0,
widget- � allocation.width,
widget- � allocation.height);

*/
xc = widget- � allocation.width / 2;
yc = widget- � allocation.height / 2;

upper = dial- � adjustment- � upper;
lower = dial- � adjustment- � lower;

/* Erase old pointer */

s = sin (dial- � last_angle);
c = cos (dial- � last_angle);
dial- � last_angle = dial- � angle;

points[0].x = xc + s*dial- � pointer_width/2;
points[0].y = yc + c*dial- � pointer_width/2;
points[1].x = xc + c*dial- � radius;

224

Appendix C. Code Examples

points[1].y = yc - s*dial- � radius;
points[2].x = xc - s*dial- � pointer_width/2;
points[2].y = yc - c*dial- � pointer_width/2;
points[3].x = xc - c*dial- � radius/10;
points[3].y = yc + s*dial- � radius/10;
points[4].x = points[0].x;
points[4].y = points[0].y;

blankstyle = gtk_style_new ();
blankstyle- � bg_gc[GTK_STATE_NORMAL] =

widget- � style- � bg_gc[GTK_STATE_NORMAL];
blankstyle- � dark_gc[GTK_STATE_NORMAL] =

widget- � style- � bg_gc[GTK_STATE_NORMAL];
blankstyle- � light_gc[GTK_STATE_NORMAL] =

widget- � style- � bg_gc[GTK_STATE_NORMAL];
blankstyle- � black_gc =

widget- � style- � bg_gc[GTK_STATE_NORMAL];

gtk_paint_polygon (blankstyle,
widget- � window,
GTK_STATE_NORMAL,
GTK_SHADOW_OUT,

NULL,
widget,
NULL,
points, 5,
FALSE);

g_object_unref (blankstyle);

/* Draw ticks */

if ((upper - lower) == 0)
return FALSE;

increment = (100*M_PI) / (dial- � radius*dial- � radius);

inc = (upper - lower);

while (inc
�

100) inc *= 10;
while (inc � = 1000) inc /= 10;
last = -1;

for (i = 0; i
�
= inc; i++)

{
theta = ((gfloat)i*M_PI / (18*inc/24.) - M_PI/6.);

if ((theta - last)
�

(increment))
continue;

last = theta;

s = sin (theta);
c = cos (theta);

tick_length = (i%(inc/10) == 0) ? dial- � pointer_width : dial-
� pointer_width / 2;

gdk_draw_line (widget- � window,
widget- � style- � fg_gc[widget- � state],
xc + c*(dial- � radius - tick_length),
yc - s*(dial- � radius - tick_length),
xc + c*dial- � radius,
yc - s*dial- � radius);

}

/* Draw pointer */

s = sin (dial- � angle);
c = cos (dial- � angle);
dial- � last_angle = dial- � angle;

225

Appendix C. Code Examples

points[0].x = xc + s*dial- � pointer_width/2;
points[0].y = yc + c*dial- � pointer_width/2;
points[1].x = xc + c*dial- � radius;
points[1].y = yc - s*dial- � radius;
points[2].x = xc - s*dial- � pointer_width/2;
points[2].y = yc - c*dial- � pointer_width/2;
points[3].x = xc - c*dial- � radius/10;
points[3].y = yc + s*dial- � radius/10;
points[4].x = points[0].x;
points[4].y = points[0].y;

gtk_paint_polygon (widget- � style,
widget- � window,
GTK_STATE_NORMAL,
GTK_SHADOW_OUT,

NULL,
widget,
NULL,

points, 5,
TRUE);

return FALSE;
}

static gint
gtk_dial_button_press (GtkWidget *widget,

GdkEventButton *event)
{
GtkDial *dial;
gint dx, dy;
double s, c;
double d_parallel;
double d_perpendicular;

g_return_val_if_fail (widget != NULL, FALSE);
g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if_fail (event != NULL, FALSE);

dial = GTK_DIAL (widget);

/* Determine if button press was within pointer region - we
do this by computing the parallel and perpendicular distance of
the point where the mouse was pressed from the line passing through
the pointer */

dx = event- � x - widget- � allocation.width / 2;
dy = widget- � allocation.height / 2 - event- � y;

s = sin (dial- � angle);
c = cos (dial- � angle);

d_parallel = s*dy + c*dx;
d_perpendicular = fabs (s*dx - c*dy);

if (!dial- � button &&
(d_perpendicular

�
dial- � pointer_width/2) &&

(d_parallel � - dial- � pointer_width))
{

gtk_grab_add (widget);

dial- � button = event- � button;

gtk_dial_update_mouse (dial, event- � x, event- � y);
}

return FALSE;
}

static gint

226

Appendix C. Code Examples

gtk_dial_button_release (GtkWidget *widget,
GdkEventButton *event)

{
GtkDial *dial;

g_return_val_if_fail (widget != NULL, FALSE);
g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if_fail (event != NULL, FALSE);

dial = GTK_DIAL (widget);

if (dial- � button == event- � button)
{

gtk_grab_remove (widget);

dial- � button = 0;

if (dial- � policy == GTK_UPDATE_DELAYED)
gtk_timeout_remove (dial- � timer);

if ((dial- � policy != GTK_UPDATE_CONTINUOUS) &&
(dial- � old_value != dial- � adjustment- � value))

g_signal_emit_by_name (GTK_OBJECT (dial- � adjustment), "value_changed");
}

return FALSE;
}

static gint
gtk_dial_motion_notify (GtkWidget *widget,

GdkEventMotion *event)
{
GtkDial *dial;
GdkModifierType mods;
gint x, y, mask;

g_return_val_if_fail (widget != NULL, FALSE);
g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE);
g_return_val_if_fail (event != NULL, FALSE);

dial = GTK_DIAL (widget);

if (dial- � button != 0)
{

x = event- � x;
y = event- � y;

if (event- � is_hint || (event- � window != widget- � window))
gdk_window_get_pointer (widget- � window, &x, &y, &mods);

switch (dial- � button)
{
case 1:

mask = GDK_BUTTON1_MASK;
break;

case 2:
mask = GDK_BUTTON2_MASK;
break;

case 3:
mask = GDK_BUTTON3_MASK;
break;

default:
mask = 0;
break;

}

if (mods & mask)
gtk_dial_update_mouse (dial, x,y);

}

return FALSE;

227

Appendix C. Code Examples

}

static gint
gtk_dial_timer (GtkDial *dial)
{
g_return_val_if_fail (dial != NULL, FALSE);
g_return_val_if_fail (GTK_IS_DIAL (dial), FALSE);

if (dial- � policy == GTK_UPDATE_DELAYED)
g_signal_emit_by_name (GTK_OBJECT (dial- � adjustment), "value_changed");

return FALSE;
}

static void
gtk_dial_update_mouse (GtkDial *dial, gint x, gint y)
{
gint xc, yc;
gfloat old_value;

g_return_if_fail (dial != NULL);
g_return_if_fail (GTK_IS_DIAL (dial));

xc = GTK_WIDGET(dial)- � allocation.width / 2;
yc = GTK_WIDGET(dial)- � allocation.height / 2;

old_value = dial- � adjustment- � value;
dial- � angle = atan2(yc-y, x-xc);

if (dial- � angle �
-M_PI/2.)

dial- � angle += 2*M_PI;

if (dial- � angle �
-M_PI/6)

dial- � angle = -M_PI/6;

if (dial- � angle � 7.*M_PI/6.)
dial- � angle = 7.*M_PI/6.;

dial- � adjustment- � value = dial- � adjustment- � lower + (7.*M_PI/6 -
dial- � angle) *

(dial- � adjustment- � upper - dial- � adjustment- � lower) / (4.*M_PI/3.);

if (dial- � adjustment- � value != old_value)
{

if (dial- � policy == GTK_UPDATE_CONTINUOUS)
{

g_signal_emit_by_name (GTK_OBJECT (dial- � adjustment), "value_changed");
}

else
{

gtk_widget_queue_draw (GTK_WIDGET (dial));

if (dial- � policy == GTK_UPDATE_DELAYED)
{
if (dial- � timer)

gtk_timeout_remove (dial- � timer);

dial- � timer = gtk_timeout_add (SCROLL_DELAY_LENGTH,
(GtkFunction) gtk_dial_timer,
(gpointer) dial);

}
}

}
}

static void
gtk_dial_update (GtkDial *dial)
{
gfloat new_value;

g_return_if_fail (dial != NULL);

228

Appendix C. Code Examples

g_return_if_fail (GTK_IS_DIAL (dial));

new_value = dial- � adjustment- � value;

if (new_value
�

dial- � adjustment- � lower)
new_value = dial- � adjustment- � lower;

if (new_value � dial- � adjustment- � upper)
new_value = dial- � adjustment- � upper;

if (new_value != dial- � adjustment- � value)
{

dial- � adjustment- � value = new_value;
g_signal_emit_by_name (GTK_OBJECT (dial- � adjustment), "value_changed");

}

dial- � angle = 7.*M_PI/6. - (new_value - dial- � adjustment- � lower) * 4.*M_PI/3. /
(dial- � adjustment- � upper - dial- � adjustment- � lower);

gtk_widget_queue_draw (GTK_WIDGET (dial));
}

static void
gtk_dial_adjustment_changed (GtkAdjustment *adjustment,

gpointer data)
{
GtkDial *dial;

g_return_if_fail (adjustment != NULL);
g_return_if_fail (data != NULL);

dial = GTK_DIAL (data);

if ((dial- � old_value != adjustment- � value) ||
(dial- � old_lower != adjustment- � lower) ||
(dial- � old_upper != adjustment- � upper))

{
gtk_dial_update (dial);

dial- � old_value = adjustment- � value;
dial- � old_lower = adjustment- � lower;
dial- � old_upper = adjustment- � upper;

}
}

static void
gtk_dial_adjustment_value_changed (GtkAdjustment *adjustment,

gpointer data)
{
GtkDial *dial;

g_return_if_fail (adjustment != NULL);
g_return_if_fail (data != NULL);

dial = GTK_DIAL (data);

if (dial- � old_value != adjustment- � value)
{

gtk_dial_update (dial);

dial- � old_value = adjustment- � value;
}

}

229

Appendix C. Code Examples

dial_test.c

#include
�
stdio.h �

#include
�
stdlib.h �

#include
�
gtk/gtk.h �

#include "gtkdial.h"

void value_changed(GtkAdjustment *adjustment,
GtkWidget *label)

{
char buffer[16];

sprintf(buffer,"%4.2f",adjustment- � value);
gtk_label_set_text (GTK_LABEL (label), buffer);

}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkAdjustment *adjustment;
GtkWidget *dial;
GtkWidget *frame;
GtkWidget *vbox;
GtkWidget *label;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

gtk_window_set_title (GTK_WINDOW (window), "Dial");

g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (exit), NULL);

gtk_container_set_border_width (GTK_CONTAINER (window), 10);

vbox = gtk_vbox_new (FALSE, 5);
gtk_container_add (GTK_CONTAINER (window), vbox);
gtk_widget_show (vbox);

frame = gtk_frame_new (NULL);
gtk_frame_set_shadow_type (GTK_FRAME (frame), GTK_SHADOW_IN);
gtk_container_add (GTK_CONTAINER (vbox), frame);
gtk_widget_show (frame);

adjustment = GTK_ADJUSTMENT (gtk_adjustment_new (0, 0, 100, 0.01, 0.1, 0));

dial = gtk_dial_new (adjustment);
gtk_dial_set_update_policy (GTK_DIAL (dial), GTK_UPDATE_DELAYED);
/* gtk_widget_set_size_request (dial, 100, 100); */

gtk_container_add (GTK_CONTAINER (frame), dial);
gtk_widget_show (dial);

label = gtk_label_new ("0.00");
gtk_box_pack_end (GTK_BOX (vbox), label, 0, 0, 0);
gtk_widget_show (label);

g_signal_connect (G_OBJECT (adjustment), "value_changed",
G_CALLBACK (value_changed), (gpointer) label);

gtk_widget_show (window);

gtk_main ();

return 0;
}

230

Appendix C. Code Examples

Scribble

scribble-simple.c

/* GTK - The GIMP Toolkit
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/

#include
�
stdlib.h �

#include
�
gtk/gtk.h �

/* Backing pixmap for drawing area */
static GdkPixmap *pixmap = NULL;

/* Create a new backing pixmap of the appropriate size */
static gint configure_event(GtkWidget *widget,

GdkEventConfigure *event)
{
if (pixmap)

g_object_unref (pixmap);

pixmap = gdk_pixmap_new (widget- � window,
widget- � allocation.width,
widget- � allocation.height,
-1);

gdk_draw_rectangle (pixmap,
widget- � style- � white_gc,
TRUE,
0, 0,
widget- � allocation.width,
widget- � allocation.height);

return TRUE;
}

/* Redraw the screen from the backing pixmap */
static gint expose_event(GtkWidget *widget,

GdkEventExpose *event)
{
gdk_draw_drawable (widget- � window,

widget- � style- � fg_gc[GTK_WIDGET_STATE (widget)],
pixmap,
event- � area.x, event- � area.y,
event- � area.x, event- � area.y,
event- � area.width, event- � area.height);

return FALSE;
}

/* Draw a rectangle on the screen */
static void draw_brush(GtkWidget *widget,

gdouble x,
gdouble y)

{
GdkRectangle update_rect;

231

Appendix C. Code Examples

update_rect.x = x - 5;
update_rect.y = y - 5;
update_rect.width = 10;
update_rect.height = 10;
gdk_draw_rectangle (pixmap,

widget- � style- � black_gc,
TRUE,
update_rect.x, update_rect.y,
update_rect.width, update_rect.height);

gtk_widget_queue_draw_area (widget,
update_rect.x, update_rect.y,
update_rect.width, update_rect.height);

}

static gint button_press_event(GtkWidget *widget,
GdkEventButton *event)

{
if (event- � button == 1 && pixmap != NULL)

draw_brush (widget, event- � x, event- � y);

return TRUE;
}

static gint motion_notify_event(GtkWidget *widget,
GdkEventMotion *event)

{
int x, y;
GdkModifierType state;

if (event- � is_hint)
gdk_window_get_pointer (event- � window, &x, &y, &state);

else
{

x = event- � x;
y = event- � y;
state = event- � state;

}

if (state & GDK_BUTTON1_MASK && pixmap != NULL)
draw_brush (widget, x, y);

return TRUE;
}

void quit ()
{
exit (0);

}

int main(int argc,
char *argv[])

{
GtkWidget *window;
GtkWidget *drawing_area;
GtkWidget *vbox;

GtkWidget *button;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_set_name (window, "Test Input");

vbox = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), vbox);
gtk_widget_show (vbox);

g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (quit), NULL);

232

Appendix C. Code Examples

/* Create the drawing area */

drawing_area = gtk_drawing_area_new ();
gtk_widget_set_size_request (GTK_WIDGET (drawing_area), 200, 200);
gtk_box_pack_start (GTK_BOX (vbox), drawing_area, TRUE, TRUE, 0);

gtk_widget_show (drawing_area);

/* Signals used to handle backing pixmap */

g_signal_connect (G_OBJECT (drawing_area), "expose_event",
G_CALLBACK (expose_event), NULL);

g_signal_connect (G_OBJECT (drawing_area),"configure_event",
G_CALLBACK (configure_event), NULL);

/* Event signals */

g_signal_connect (G_OBJECT (drawing_area), "motion_notify_event",
G_CALLBACK (motion_notify_event), NULL);

g_signal_connect (G_OBJECT (drawing_area), "button_press_event",
G_CALLBACK (button_press_event), NULL);

gtk_widget_set_events (drawing_area, GDK_EXPOSURE_MASK
| GDK_LEAVE_NOTIFY_MASK
| GDK_BUTTON_PRESS_MASK
| GDK_POINTER_MOTION_MASK
| GDK_POINTER_MOTION_HINT_MASK);

/* .. And a quit button */
button = gtk_button_new_with_label ("Quit");
gtk_box_pack_start (GTK_BOX (vbox), button, FALSE, FALSE, 0);

g_signal_connect_swapped (G_OBJECT (button), "clicked",
G_CALLBACK (gtk_widget_destroy),
G_OBJECT (window));

gtk_widget_show (button);

gtk_widget_show (window);

gtk_main ();

return 0;
}

scribble-xinput.c

/* GTK - The GIMP Toolkit
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/

#include
�
gtk/gtk.h �

/* Backing pixmap for drawing area */
static GdkPixmap *pixmap = NULL;

233

Appendix C. Code Examples

/* Create a new backing pixmap of the appropriate size */
static gint
configure_event (GtkWidget *widget, GdkEventConfigure *event)
{
if (pixmap)

g_object_unref (pixmap);

pixmap = gdk_pixmap_new (widget- � window,
widget- � allocation.width,
widget- � allocation.height,
-1);

gdk_draw_rectangle (pixmap,
widget- � style- � white_gc,
TRUE,
0, 0,
widget- � allocation.width,
widget- � allocation.height);

return TRUE;
}

/* Redraw the screen from the backing pixmap */
static gint
expose_event (GtkWidget *widget, GdkEventExpose *event)
{
gdk_draw_drawable (widget- � window,

widget- � style- � fg_gc[GTK_WIDGET_STATE (widget)],
pixmap,
event- � area.x, event- � area.y,
event- � area.x, event- � area.y,
event- � area.width, event- � area.height);

return FALSE;
}

/* Draw a rectangle on the screen, size depending on pressure,
and color on the type of device */

static void
draw_brush (GtkWidget *widget, GdkInputSource source,

gdouble x, gdouble y, gdouble pressure)
{
GdkGC *gc;
GdkRectangle update_rect;

switch (source)
{
case GDK_SOURCE_MOUSE:

gc = widget- � style- � dark_gc[GTK_WIDGET_STATE (widget)];
break;

case GDK_SOURCE_PEN:
gc = widget- � style- � black_gc;
break;

case GDK_SOURCE_ERASER:
gc = widget- � style- � white_gc;
break;

default:
gc = widget- � style- � light_gc[GTK_WIDGET_STATE (widget)];

}

update_rect.x = x - 10 * pressure;
update_rect.y = y - 10 * pressure;
update_rect.width = 20 * pressure;
update_rect.height = 20 * pressure;
gdk_draw_rectangle (pixmap, gc, TRUE,

update_rect.x, update_rect.y,
update_rect.width, update_rect.height);

gtk_widget_queue_draw_area (widget,
update_rect.x, update_rect.y,
update_rect.width, update_rect.height);

}

234

Appendix C. Code Examples

static void
print_button_press (GdkDevice *device)
{
g_print ("Button press on device ’%s’\n", device- � name);

}

static gint
button_press_event (GtkWidget *widget, GdkEventButton *event)
{
print_button_press (event- � device);

if (event- � button == 1 && pixmap != NULL) {
gdouble pressure;
gdk_event_get_axis ((GdkEvent *)event, GDK_AXIS_PRESSURE, &pressure);
draw_brush (widget, event- � device- � source, event- � x, event- � y, pressure);

}

return TRUE;
}

static gint
motion_notify_event (GtkWidget *widget, GdkEventMotion *event)
{
gdouble x, y;
gdouble pressure;
GdkModifierType state;

if (event- � is_hint)
{

gdk_device_get_state (event- � device, event- � window, NULL, &state);
gdk_event_get_axis ((GdkEvent *)event, GDK_AXIS_X, &x);
gdk_event_get_axis ((GdkEvent *)event, GDK_AXIS_Y, &y);
gdk_event_get_axis ((GdkEvent *)event, GDK_AXIS_PRESSURE, &pressure);

}
else

{
x = event- � x;
y = event- � y;
gdk_event_get_axis ((GdkEvent *)event, GDK_AXIS_PRESSURE, &pressure);
state = event- � state;

}

if (state & GDK_BUTTON1_MASK && pixmap != NULL)
draw_brush (widget, event- � device- � source, x, y, pressure);

return TRUE;
}

void
input_dialog_destroy (GtkWidget *w, gpointer data)
{
*((GtkWidget **)data) = NULL;

}

void
create_input_dialog ()
{
static GtkWidget *inputd = NULL;

if (!inputd)
{

inputd = gtk_input_dialog_new();

g_signal_connect (G_OBJECT (inputd), "destroy",
G_CALLBACK (input_dialog_destroy), (gpointer) &inputd);

g_signal_connect_swapped (G_OBJECT (GTK_INPUT_DIALOG (inputd)-
� close_button),

"clicked",
G_CALLBACK (gtk_widget_hide),
G_OBJECT (inputd));

235

Appendix C. Code Examples

gtk_widget_hide (GTK_INPUT_DIALOG (inputd)- � save_button);

gtk_widget_show (inputd);
}

else
{

if (!GTK_WIDGET_MAPPED (inputd))
gtk_widget_show (inputd);

else
gdk_window_raise (inputd- � window);

}
}

void
quit ()
{
exit (0);

}

int
main (int argc, char *argv[])
{
GtkWidget *window;
GtkWidget *drawing_area;
GtkWidget *vbox;

GtkWidget *button;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_widget_set_name (window, "Test Input");

vbox = gtk_vbox_new (FALSE, 0);
gtk_container_add (GTK_CONTAINER (window), vbox);
gtk_widget_show (vbox);

g_signal_connect (G_OBJECT (window), "destroy",
G_CALLBACK (quit), NULL);

/* Create the drawing area */

drawing_area = gtk_drawing_area_new ();
gtk_widget_set_size_request (GTK_WIDGET (drawing_area), 200, 200);
gtk_box_pack_start (GTK_BOX (vbox), drawing_area, TRUE, TRUE, 0);

gtk_widget_show (drawing_area);

/* Signals used to handle backing pixmap */

g_signal_connect (G_OBJECT (drawing_area), "expose_event",
G_CALLBACK (expose_event), NULL);

g_signal_connect (G_OBJECT(drawing_area),"configure_event",
G_CALLBACK (configure_event), NULL);

/* Event signals */

g_signal_connect (G_OBJECT (drawing_area), "motion_notify_event",
G_CALLBACK (motion_notify_event), NULL);

g_signal_connect (G_OBJECT (drawing_area), "button_press_event",
G_CALLBACK (button_press_event), NULL);

gtk_widget_set_events (drawing_area, GDK_EXPOSURE_MASK
| GDK_LEAVE_NOTIFY_MASK
| GDK_BUTTON_PRESS_MASK
| GDK_POINTER_MOTION_MASK
| GDK_POINTER_MOTION_HINT_MASK);

/* The following call enables tracking and processing of extension
events for the drawing area */

gtk_widget_set_extension_events (drawing_area, GDK_EXTENSION_EVENTS_CURSOR);

236

Appendix C. Code Examples

/* .. And some buttons */
button = gtk_button_new_with_label ("Input Dialog");
gtk_box_pack_start (GTK_BOX (vbox), button, FALSE, FALSE, 0);

g_signal_connect (G_OBJECT (button), "clicked",
G_CALLBACK (create_input_dialog), NULL);

gtk_widget_show (button);

button = gtk_button_new_with_label ("Quit");
gtk_box_pack_start (GTK_BOX (vbox), button, FALSE, FALSE, 0);

g_signal_connect_swapped (G_OBJECT (button), "clicked",
G_CALLBACK (gtk_widget_destroy),
G_OBJECT (window));

gtk_widget_show (button);

gtk_widget_show (window);

gtk_main ();

return 0;
}

237

Appendix C. Code Examples

238

