
Title: The Perl Scripting Language

Author: David Stotts
Affiliation: Department of Computer Science

 University of North Carolina at Chapel Hill
 stotts@cs.unc.edu

Final Draft: December 20, 2002

Outline
1 Introduction
2 A Brief History of Perl
3 Perl Language Overview
 3.1 Basic Data Types and Values
 3.2 Basic operations
 3.3 Control Flow
 3.4 Subroutines
 3.5 Regular Expressions and Pattern Matching
 3.6 Input/output and File Handling
 3.7 Other Perl features
4 Putting it All Together: Sample Programs
 4.1 First example: text processing
 4.2 A Simpler, More Sophisticated Example
 4.3 Directory information processing
5 Network Programming in Perl
 5.1 Perl Modules and CPAN
 5.2 Web Server Scripts with CGI
 5.3 Web Clients with LWP
 5.4 Database Use
 5.5 Processes and IPC
6 On Beyond Perl
 6.1 Python
 6.2 Ruby
7 For More Information

Glossary

CGI Common Gateway Interface, standard for Web server scripting
CPAN Comprehensive Perl Archive Network, repository for useful Perl code and documentation
Hash Associate array, a collection of data items indexed by string (scalar) values
HTTP HyperText Transfer Protocol, encoding standard for Web transactions
HTML HyperText Markup Language, language for specifying Web page content
IPC Interprocess Communication
Linux Popular open source version of Unix for PCs
Pipe Unix name for a communication channel between processes
Regular expression formal language for specifiying complex patterns and strings of characters
Scalar Singular data value such as integer, string, boolean, real
Unix Popular operating system developed at Bell Labs, UC Berkeley in the late 70’s

mailto:stotts@cs.unc.edu

Abstract
This article gives an overview of the Perl scripting language and shows how it is used for programming Internet
and Web applications. The history of the language is presented along with its Unix heritage. Basic language
features are explained with examples of Perl scripts for string manipulation, pattern matching, text processing,
and system interactions. The Perl community module repository CPAN is discussed, and several of the popular
Perl modules are used to illustrate Web client, Web server, database, and network programming. Two newer
scripting languages – Python and Ruby – are briefly discussed and compared to Perl. Finally, many of Perl’s
most advanced features are mentioned but not discussed, so references are provided for readers who wish
further study.

1 Introduction
From its introduction to the programming community in 1987, Perl has become today one of the most widely
known and used programming languages. Designed by Larry Wall, and originally thought of as a natural
enhancement for the popular csh shell script notation of Unix, Perl was at first primarily used for text
manipulation. Its maturity in the early 90’s coincided with the rise of the Web, and it rapidly became the most
popular programming language for HTML form processing and other Web development as well.

Perl has been called a “Swiss Army chainsaw” for its plethora of features coupled with its considerable
programming power and flexibility. The common phrase among hardened Perl programmers is “there’s more
than one way to do it.” Most programming goals can be achieved in Perl in at least three ways, depending on
which language features and techniques the programmer prefers to use. It is not uncommon for an
experienced Perl programmer to reach for the manual when reading code written by another programmer. Perl
has also been called “duct tape for the Web” emphasizing its utility for producing applications, web sites, and
general program fixes for a wide variety of problems and domains.

In this article we give a brief history of Perl, including major events preceding Perl that set the historical stage
for it. We provide an overview of the language, including example code to show how its features are used in
practice. We discuss Web site programming in Perl using the CGI (Common Gateway Interface) standard, and
show several database interface methods in Perl. We discuss the community of programmers that has grown
up around Perl, and conclude with a presentation of several technologies that are logical follow-ons to Perl.

2 A Brief History of Perl
Perl grew out of the Unix programming community. Though it did not formally appear until the late 80’s, the
technical components and motivations for Perl were developed in the two decades prior to that. Here are the
main events in the “genealogy” of Perl:

1969 Unix is created at Bell Labs
1977 awk is invented by Aho, Weinberger, and Kernighan
1978 “sh” shell is developed for Unix
1987 Perl is created
1995 (March) Perl 5.001 released, the most recent major version;

 as of this writing, Perl version 5.8.0 is the newest download at http://www.perl.com

The “Unix philosophy” of software construction, at least in the early days of that operating system, was to
provide users with a large toolbox of useful “filters” – programs that could do one small task well – and then
compose a larger program from the smaller ones. The shell script notations sh and csh were the means by
which composition was done; sed, awk, tr, and other programs were some of the more commonly used filters.
Perl was developed ostensibly to solve a problem in text processing that awk was not good at, and has
continued to evolve from there.

To summarize Perl completely and succinctly, we probably cannot do much better than this excerpt from the
original Unix help file:

Perl is (an) interpreted language optimized for scanning arbitrary text files, extracting information
from those text files, and printing reports based on that information. It's also a good language for
many system management tasks. The language is intended to be practical (easy to use, efficient,

complete) rather than beautiful (tiny, elegant, minimal). It combines (in the author's opinion,
anyway) some of the best features of C, sed, awk, and sh, so people familiar with those languages
should have little difficulty with it. (Language historians will also note some vestiges of csh, Pascal,
and even BASIC|PLUS.) Expression syntax corresponds quite closely to C expression syntax. If you
have a problem that would ordinarily use sed or awk or sh, but it exceeds their capabilities or must
run a little faster, and you don't want to write the silly thing in C, then perl may be for you. There
are also translators to turn your sed and awk scripts into perl scripts. OK, enough hype.

Larry Wall is a trained linguist and this interest and expertise shows in Perl. Here he summarizes the nature
and intent of his language, and his design rationale:

When they first built the University of California at Irvine campus, they just put the buildings in.
They did not put any sidewalks, they just planted grass. The next year, they came back and built
the sidewalks where the trails were in the grass. Perl is that kind of a language. It is not designed
from first principles. Perl is those sidewalks in the grass. Those trails that were there before were
the previous computer languages that Perl has borrowed ideas from. And Perl has unashamedly
borrowed ideas from many, many different languages. Those paths can go diagonally. We want
shortcuts. Sometimes we want to be able to do the orthogonal thing, so Perl generally allows the
orthogonal approach also. But it also allows a certain number of shortcuts, and being able to insert
those shortcuts is part of that evolutionary thing.

I don't want to claim that this is the only way to design a computer language, or that everyone is
going to actually enjoy a computer language that is designed in this way. Obviously, some people
speak other languages. But Perl was an experiment in trying to come up with not a large language
-- not as large as English -- but a medium-sized language, and to try to see if, by adding certain
kinds of complexity from natural language, the expressiveness of the language grew faster than the
pain of using it. And, by and large, I think that experiment has been successful.

 … Larry Wall, in Dr. Dobbs Journal, Feb. 1998

In its early versions, Perl was simple and much closer to the scripting notations from which it grew. In later
versions, as with many languages, Perl began to accumulate features and facilities as advocates tried to make
it more general purpose and keep it in step with object-oriented language developments.

3 Perl Language Overview
A discussion of the programming features and facilities of Perl is in order before we present the areas in which
Perl can be applied. This will be an overview, not a tutorial, so no attempt is made to provide an exhaustive or
in-depth treatment. Components of Perl that are unique or unusual will be emphasized at the expense of
features common to many languages.

Perl is an interpreted language, meaning that a control program that understands the semantics of the
language and its components (the interpreter) executes program components individually as they are
encountered in the control flow. Today this usually is done by first translating the source code into an
intermediate representation -- called bytecode -- and then interpreting the bytecode. Interpreted execution
makes Perl flexible, convenient, and fast for programming, with some penalty paid in execution speed.

Perl programs are often called scripts because of its historical development as an extension of the Unix
command-level command scripting notations. A Perl script consists of a series of declarations and statements
with intersperced comments. A declaration gives the interpreter type information and reserves storage for
data. Each statement is a command that is recognized by the Perl interpreter and executed. Every statement
is usually terminated by a semicolon, and in keeping with most modern syntax, white space between words is
not significant. A comment begins with the # character and can appear anywhere; everything from the # to the
end of the line is ignored by the Perl interpreter. 1

1 Though the Perl language proper does not have multi-line (block) comments, the effect can be achieved using POD (Plain
Old Documentation) directives that are ignored by the interpreter. POD directives begin with an “=” and can appear
anywhere the interpreter expects a statement to start. They allow various forms of documentation and text markup to be
embedded in Perl scripts, and are meant to be processed by separate POD tools. A block comment can be done by
opening it with a directive like “=comment” and ending it with “=cut”. All lines in between are ignored.

Perl is considered by some to have convoluted and confusing syntax; others consider this same syntax to be
compact, flexible, and elegant. Though the language has most of the features one would expect in a “full
service” programming notation, Perl has become well known for its capabilities in a few areas where it exceeds
the capabilities of most other languages. These include

• String manipulation
• File handling
• Regular expressions and pattern matching
• Flexible arrays (hashes, or associative arrays)

In the following sections we present the basics of core language, with emphasis on the features that Perl does
especially well.

3.1 Basic Data Types and Values
Perl provides three types of data for programmers to manipulate: scalar, array, and hash (associative array).
Scalar types are well known to most programmers, as is the array type. The hash is less well known and one of
the most powerful aspects of Perl (along with pattern matching, discussed later). Scalar values include integer,
real, string, and boolean, with the expected operations available for each. Variables do not have to be
declared before use; the first character indicates the type.

Scalars Scalar variables have a leading “$”; for example, these are all valid Perl scalar variables:

$n $N $var28 $hello_World $_X_ $_

Case matters in Perl, so the first two examples are different variables. The final variable “$_” is special, one of
many that the Perl interpreter will use by default in various operations if the programmer does not indicate
otherwise. Any particular valid identifier can be used to designate a scalar, an array, and a hash. The leading
character determines which of the three types the variable has. For example, here the identifier “name” is
used to denote three different variables:

$name @name %name

The first is a scalar; the second is an array; the last is a hash. All three can be used concurrently, as they
denote different storage areas. A variable of type scalar can contain any scalar value:

$v1 = “good morning”;
$v1 = 127;

The first assignment places a string value in the variable. The second replaces the string with an integer value.
This is different from many strongly typed languages (like C++ and Java) where types are finely divided into
categories like integer, real, string, and boolean. In Perl these are values, but not types; Perl uses type
distinction mainly to separate singular entities (scalar) from collective entities (arrays and hashes).

String values are delimited with either single or double quotes. Single quoted literals are used exactly as
written, whereas double quoted literals are subject to escape character and variable interpolation before the
final value is obtained. For example:

$numer = 2;
$st1 = ‘one fine $numer day’;
$st2 = “$numer fine day \n”;
print $st2;
print “$st1\n”;

The output from this script is

2 fine day
one fine $numer day

Four interpolations have taken place. In the second line, the $numer appears to be a use of a variable, but
since the string is in single quotes the characters are included as they appear. In the third line the string literal
is in double quotes, so the variable name is replaced with its current value (2) to produce the final string value;
the escape sequence “\n” also puts in a newline character. The first print statement shows the result. The
second print shows two interpolations as well, as the string being printed is in double quotes. The value in

$st1 is interpolated into the output string and then a newline is added to the end. Even though $st1 has
‘$numer’ in its value, this is not recursively interpolated when those characters are put into the output string.

Context Many of the operators in Perl will work on all three types, with different results being produced
depending on the form of the operands. This polymorphism is known in Perl as context. There are two major
contexts: scalar and list. Scalar context is further classified as numeric, string, or boolean. Consider a scalar
variable that is assigned an integer value. If the same variable is later used in a string context (meaning
operated on by a string function), the integer value is automatically treated as a string of ASCII characters
representing the digits of the integer. For example:

$v1 = 127;
$v1 = $v1 . ", and more !!";
print $v1, “\n”;
$v1 = 127;
print $v1 + " 151 ", "\n";
print $v1 + ", and more !!", "\n";

The output from these statements is

127, and more !!
278
127

The “.” operator in the second assignment performs string concatenation, making the expression have string
context; the interpreter therefore treats the value of $v as an ASCII string of digits, not as an integer. Since
integers and strings are both scalars, we can store the resulting string value back into $v, which previously
held an integer value. The “+” in the second print is an arithmetic operator, giving that expression numeric
context; the interpreter converts the string “ 151 “ to the obvious integer value for addition. The final print is
also a numeric context, but there is no obvious valid integer value for the string “, and more !!” so a zero is
used for the addition.

Arrays Use of array variables in expressions can cause some confusion. In fact, Perl’s somewhat convoluted
syntax is one of the main complaints against the language2. When an array is manipulated collectively, the
leading “@” notation is used:

@A = (“hi”, “low”, 17, 2.14159, “medium”);
@A = @B;
print “$B[1] \n”;

This code fragment outputs “low” on one line. The first statement creates an array A by assigning the
members of the list to consecutive array elements; the second line then sets another array B to have all the
same values. Finally, it prints the 2nd element from B (array indexes start at 0 in Perl). Arrays contain scalars
as elements, so integer, real, boolean, and string values can be stored in the same array. Note also that when
individual elements in an array are manipulated, the scalar notation “$” is used; the reasoning is that the
element itself is not an array, but is a scalar. Using this notation, individual array elements can be given values
via assignment.

Array references can be used anywhere a scalar can be, such as in a subscript expression. If an array
subscript expression produces a scalar that is not an integer (such as string or real) Perl converts it to some
reasonable integer interpretation:

$A[0] = 72;
$A[4] = “moderate exercise”;
$A[$i] = $B[$j];
print “$A[$A[3]]\n”;

Here the last line produces “17” on one line. The inner expression evaluates to 2,14159; to use this as a
subscript Perl takes the integer part. Thus, it prints $A[2], which is the scalar 17.

Hashes Hashes (associative arrays) have elements that are indexed by any scalar (usually strings) rather than
by integer value:

2 “It’s the magic that counts,” quipped Larry Wall on one occasion, when this feature of the syntax was publicly noted.

$assoc{"first"} = 37;
$assoc{‘second’} = 82;
$assoc{"third"} = "3_rd";

Syntactically, subscripts are delimited with curly braces rather than brackets, and string constants used for
subscripts can be delimited with single or double quotes. Elements are retrieved from an associative array in
similar fashion:

$str = "first";
$N = $assoc{$str};
print "$assoc{'second'} - $N \n";
print %assoc, "\n";

The output from this segment is

82 – 37
first37third3_rdsecond82

The last line shows that accessing the entire associative array is possible with the leading “%”, and that when
printed this way, the output shows up as (index,value) pairs in arbitrary order (determined by the interpreter).
Note also in the next to last line that scalar variables can appear inside strings; they are interpolated, that is,
replaced by their values in the value of the string. Input/output is discussed in more detail later.

3.2 Basic operations
Scalar Scalar values can be manipulated by the common operators you would expect of a modern
programming language. Numbers have arithmetic operations and logical comparisons, autoincrement and
decrement (++ and --), and operator assignments (+=, -=, *=). Strings have lexical comparison operations, as
well as concatenation, truncation, substring extraction and indexing operations. Booleans have the expected
logical operators, and the conjunction (&&) and disjunction (||) are evaluated clause-by-clause and will short-
circuit as soon as the final expression value can be determined.

Array Perl has the expected assignment and referencing operators for arrays; it also provides subrange
operators to use part of an array. $#arr3 will give you the scalar value that is the last index used in array
@arr3; since Perl indexes arrays from 0, $#arr3 + 1 will give the array length. Several predefined functions
allow a programmer to use arrays as implementations of other data abstractions. For example, push(@ar7,
$elt) and pop(@arr7) will treat the array @arr7 as a stack; reverse, sort, shift, join, splice, and map are other
predefined functions on arrays.

Hash (associative array) Hashes have assignment and multi-assignment to create attribute/value pairs,
and have array referencing via scalar subscripts (usually strings) to retrieve the value associated with an
attribute. Most other operations are provided as functions on the array name. For example, keys (%aa2) will
return a list of the subscript strings for which there are values in the hash aa2. Other such operations are
values, each, and delete.

3.3 Control Flow
Aside from syntactic differences, Perl has much the same while, until, and for loop structures most
programming languages have. In keeping with the stated goal of being flexible and not limiting, however, Perl
allows several forms of limited jumps within the context of loops that many other languages do not.

If / elsif / else The traditional if / then / else conditional statement is altered a bit in Perl. There is no then
keyword required on the true clause, and following that may be nothing, an else clause, or an elsif clauses. An
elsif clause flattens the decision tree that would otherwise be formed by having another if/else as the body of
an else clause. Perl lacks a case statement, so the elsif functions in this capacity, as in this example:

 if ($thresh < 10) {
 # … the ‘then’ block of the conditional
} elsif ($thresh < 20) {
 # the next block in the decision tree
} elsif ($thresh < 40) {
 # and the next…
} else {

 # the final clause catches what falls through
}

The negation shorthand unless(exp) can be used for if (!exp) in all contexts where the if keyword is valid.

Expressions and do blocks In Perl, statements are viewed as expressions, and executing a statement
produces a value for that expression. Every value can also, by convention, be interpreted as a truth value. Any
empty string, the number 0, and the string “0” are all treated as “false”; other values are treated as “true”
(with a few exceptions). For example, executing the assignment $a = 27 has the effect of setting the value of
variable $a, but it also produces the value 27 as the result of the expression. If this expression were used in a
context where a Boolean was needed, then the 27 is interpreted as “true”.

$a = $b = 27; # assigns 27 to both variables,
 # since the first assignment to $b produces 27 as its value
print “val: “, ($a = $b = 27), “\n” ;
if ($a = 27) { # assignment to $a... illustration only, not good style
 print “it was true \n” ;
} else {
 print “it was false \n” ;
}
if ($a = 0) { # another assignment to $a
 print “it was true \n” ;
} else {
 print “it was false \n” ;
}

This code fragment produces this output:

val: 27
It was true
It was false

A do { BLOCK } statement simply executes the code within the statement block and returns the value of the last
expression in the block. We can use this feature combined with statement values to produce an alternate form
of conditional. The following two statements are equivalent:

($thresh < 125) && do { print “it passed \n” ; } ;
if ($thresh < 125) { print “it passed \n” ; } ;

In the first form we also make use of the fact that Perl will evaluate the clauses of a logical conjunction one at
a time, left to right, and stop if one should evaluate to false. In this case, should the boolean comparison fail,
the second clause of the conjunction (the one with the printing) will not be attempted.

Loop structures Looping in Perl is done with variants of the while, the do, and the for structures. The while
structure is equivalent to that of Java, C, or C++. The loop body block executes as long as the controlling
expression remains true.. The until (expnB) structure is functionally equivalent to while (! expnB) :

while ($d < 37) { $d++; $sum += $d; }
until ($d >= 37) { $d++; $sum += $d; }

The do/while and do/until structures work similarly to the while structure, except that the code is executed at
least once before the condition is checked.

do { $d++; $sum += $d; } while ($d < 37);
do { $d++; $sum += $d; } until ($d >= 37) ;

The for structure works similarly to that of C, C++ or Java, and is really syntactic sugar for a specific type of
while statement. More interesting is the foreach loop, which is specifically designed for systematic processing
of Perl's native data types. The foreach structure takes a scalar, a list and a block, and executes the block of
code, setting the scalar to each value in the list, one at a time. Thus the foreach loop is a form of iterator,
giving access to every element of some controlling collection. Consider this example:

my @collection = (“first”, “second”, “third”, “fourth”);
foreach $item (@collection) { print "$item\n"; }

This will print out each item in collection on a line by itself. You are permitted to declare the scalar variable
directly within the foreach, and its scope is the extent of the loop. Perl programmers find the foreach loop to
be one of the most useful structures in the language.

last operator The last operator, as well as the next and redo operators that follow, apply only to loop control
structures. They cause execution to jump from where they occur to some other position, defined with respect to
the block structure of the encompassing control structure. Thus, they function as limited forms of goto
statements. Last causes control to jump from where it occurs to the first statement following the enclosing
block. For example:

$d = 2;
while ($d++) {
 if ($d >= 37) { last ; }
 $sum += $d ;
}
last jumps to here

Jumps can be made from inner nested loops to points in outer loops by labeling the loops, and using the
appropriate label after the last (as well as next and redo). We can now combine several of these features to
give another way to “fake” the case statement shown previously as a decision tree with if/elseif/else:

CASE: {
 ($thresh < 10) && do {
 # the ‘then’ block of the conditional
 last CASE ; }
 ($thresh < 20) && do {
 # the next block in the decision tree
 last CASE ; }
 ($thresh < 40) && do {
 # and the next ...
 last CASE ; }
 # the final clause here catches what falls through
} # end of CASE block

As we mentioned earlier, there’s always more than one way to do things in Perl.

next operator The next operator is similar to last except that execution jumps to the end of the block, but
remains inside the block, rather than exiting the block. Thus, iteration continues normally. For example:

while ($d < 37) {
 $d++ ;
 if (($d%5)==1) { next };
 $sum += $d ;
 # next jumps to here
}

redo operator The redo operator is similar to next except that execution jumps to the top of the block
without re-evaluating the control expression. For example:

while ($d < 37) {
 # redo jumps to here
 $d++ ;
 $sum += $d;
 if (($d%3)==0) { redo; }
 $prod *= $d ;
}

3.4 Subroutines
A subprogram in Perl is often called a function, but we shall use the term subroutine here to distinguish
programmer-defined structures from the built-in functions of Perl. A subroutine is invoked within the context of
some expression. In early versions of Perl, an ampersand (&) was placed before the subroutine name to

denote invocation; current versions allow invocation without as well. If the subroutine takes arguments, they
are placed within parentheses following the name of the subroutine.

 &aSubProg() ;
 bSubProg() ;
 cSubProg($ar3, $temp5, @ARY) ;

Control is transferred to the code of the subroutine definition, and transfers back either when the end of the
subroutine code is reached, or an explicit return()statement is executed in the subroutine body.

The subroutine definition is marked by the keyword sub followed by the name of the subroutine, without an
ampersand prefix. A block of code for the subroutine body follows, enclosed in curly braces; this is executed
when the subroutine is called.

sub aSubProg {
 stmt_1;
 stmt_2;
 $a = $b + $c;
}

The value returned by a Perl subroutine is the value of the last expression evaluated in the subroutine. In this
example, aSubProg will return the value $a has at the time when the subroutine ends. Functions such as print
return values of 0 or 1, indicating failure or success.

Arguments are enclosed in parentheses following the name of the subroutine during invocation; thus, they
constitute a list. They are available within the subroutine definition block through @_ the predefined (list)
variable:

aSubProg ($a, "Literal_string", $b);

sub aSubProg {
 foreach $temp(@_) { print "$temp \n"; }
}

Any variables defined within the body of a Perl program are available inside a Perl subroutine as global
variables. Consequently, Perl provides an explicit scope operator (my) that can be used to limit the visibility of
variables and protect globals from inadvertent side effects. Similarly, these locals will not be visible outside the
subroutine. Local variables are, by convention, defined at the top of a Perl subroutine:

aFunc ($a, $b);

sub aFunc {
 my ($aLocal, $bLocal);
 $aLocal = $_[0]; # @_ is used $_[i] for individual arguments
 $bLocal = $_[1];
}

$aLocal and $bLocal will have the same values inside the subroutine as $a and $b have at the time it is
invoked. Changes to either local variable inside the function, however, will not affect the values of $a or $b.

Built-in functions and system operations Perl offers a rich selection of built-in functions as part of the
standard interpreter. These include mathematical operations (such as abs, sin, sqrt, log); list manipulation
operations (such as join, reverse, sort); array manipulation operations (such as push, pop, shift); string
manipulation operations (such as chop, index, length, substr, pack, reverse); and myriad operating system
functions reflecting Perl’s Unix birthright.

Since one of the reasons for the creation of Perl was to give Unix programmers more expressive power and
convenience, the language provides several mechanisms for invocating operating system services from
executing scripts. The most general method is the system function:

$retVal = system(“pwd”) ;

In this example, the Perl interpreter uses the system command to get the underlying operating system to
execute the Unix “pwd” command. The result of the command appears on STDOUT just as it would if it were
done from the command line; the return value, in this case, is an indicator of success or failure. Often
programmers want to capture the output of a system command for inclusion in the executing script. This is
accomplished by enclosing the command in backward single quotes, often called “backticks”:

$dir = `pwd` ;
print “the current directory is $dir \n” ;

Many other operating system (specifically, Unix) manipulations are available in Perl via built-in functions. The
chdir function allows a Perl script to alter the default directory in which it finds its files while executing; the
opendir, readdir, and closedir functions allow a Perl script to obtain directory listings; mkdir and rmdir allow a
script to create and delete directories; rename and chmod allow a script to rename a file and change its
access permissions. All these capabilities exist because Perl was originally designed to make it easy for
system managers to write programs to manipulate the operating system and user file spaces.

Functions exec, fork, wait, and exit allow scripts to create and manage child processes. Perl provides a means
of connecting a running process with a file handle, allowing information to be sent to the process as input
using print statements, or allowing the process to generate information to be read as if it were coming from a
file. We illustrate these features in the section “Network Programming in Perl”.

3.5 Regular Expressions and Pattern Matching
Perhaps the most useful, powerful, and recognizably Perl-ish aspect of Perl is its pattern matching facilities and
the resulting rich and succinct text manipulations they make possible. Given a pattern and a string in which to
search for that pattern, several operators in Perl will determine whether -- and if so, where -- the pattern occurs.
The pattern descriptions themselves are called regular expressions. In addition to providing a general
mechanism for evaluating regular expressions, Perl provides several operators that perform various
manipulations on strings based upon the results of a pattern match.

Regular expression syntax Patterns in Perl are expressed as regular expressions, and they come to the
language through its Unix awk heritage. Since regular expressions are well understood from many areas of
computing, we will not give an involved introduction to them here. Rather, we will simply use Perl examples to
give an idea of the text processing power they give the language.

By default, regular expressions are strings that are delimited by slashes, e.g., /rooster/. This delimiter can be
changed, but we will use it for the examples. By default, the string that will be searched is in the variable $_.
One can apply the expression to other strings and string variables, as will be explained below.

The simplest form of pattern is a literal string. For example:

if (/chicken/) { print "chicken found in $_\n"; }

The “/” delimiters appearing alone denote a default application of the match operator. Thus this code
fragment searches in the default variable $_ for a match to the literal “chicken”, returning true if found. In
addition to including literal characters, expressions can contain categories of characters. They can specify
specific sequences with arbitrary intervening strings; they can specify matches at the beginning or end; they
can specify exact matches, or matches that ignore character case. Examples of these uses include:

/.at/ # matches "cat," "bat", but not "at"
/[aeiou]/ # matches a single character from the set of vowels
/[0-9]/ # matches any single numeric digit
/\d/ # digits, a shorthand for the previous pattern
/[0-9a-zA-Z]*/ # matches a string of alphanumeric characters, or length zero
or more
/\w/ # words, a shorthand for the previous pattern
/[^0-9]/ # not a digit
/c*mp/ # any number of c's followed by mp
/a+t/ # one or more a's followed by t
/a?t/ # zero or one a followed by t
/a{2,4}t/ # between 2 and 4 a's followed by t

/k{43}/ # exactly 43 occurrence of “k”
/(pi)+(sq)*/ # strings with one or more “pi” pairs followed by zero or more
“sq” pairs
/^on/ # match at start: "on the corner" but not "Meet Jon"
/on$/ # match at end: "Meet Jon" but not "on the corner"
/cat/i # ignore case, matches "cat", "CAT", "Cat", etc.
$A =~ /pong/ # does the content of string variable $A contain "pong"?
<STDIN> =~ /b.r+/ # does the next line of input contain this pattern
 # which matches bar, bnr, bor, brrr, burrrrrr, etc.

Pattern matching is greedy, meaning that if a pattern can be found at more than one place in the string, the
leftmost instance is returned; if there are overlapping leftmost instances, the longest match will be identified,
thereby affecting the outcome of patterned-based operators such as substitution. String substituiton, and the
comparison operations shown in the last two lines above, are exemplified in more detail with the longer
programs in the section “Putting it All Together”.

String manipulation Regular expression operators include a regular expression as an argument but instead
of just looking for the pattern and returning a truth value, as in the examples above, they perform some action
on the string, such as replacing the matched portion with a specified substring (like the well-known "find and
replace" commands in word processing programs). The simplest is the “m” operator, the explicit match. In the
following example, a string is searched for the substring “now” (ignoring character case); the match operator
return value is interpreted as a Boolean for control of the conditional:

my($text) = "Now is the time, now seize the day";
if ($text =~ m/now/i) { print “yep, got it\n”; }
if ($text =~ /now/i) { print “yep, got it\n”; } # equivalent form, no “m”

In general, when invoking the match operator the “m” is usually omitted, as illustrated in the 3rd line above. If
a pattern is given with no explicit leading operator, the match operator is employed by default. Though we do
not extract or use the matching substring in this example, the operator actually matches on the first 3
characters “Now” because of the ignore case option.

The substitution operator “s” looks for the specified pattern and replaces it with the specified string. By default,
it does this for only the first occurrence found in the string. Appending a “g” to the end of the expression
causes global replacement of all occurrences.

s/cat/dog/ # replaces first "cat" with "dog" in the default variable $_
s/cat/dog/gi # same thing, but applies to "CAT", "Cat" everywhere in $_
$A =~ s/cat/dog/ # substitution on the string in $A rather than the default $_

The split function searches for all occurrences of a pattern in a specified string and returns the pieces that
were separated by the pattern occurrences as a list. If no string is specified, the operator is applied to $_.

$aStr = “All category”;
@a = split(/cat/, $aStr); # a[1] is “All ” and a[2] is “egory”
@a = split(/cat/); # this split happens on the string in default $_

The join function performs the opposite of a split, assembling the strings of a list into a single string with a
separator (the first argument) placed between each part:

$a = join(“:”, “cat", "bird", “dog”); # returns "cat:bird:dog"
$a = join(“”, “con”, “catenate”); # returns “concatentate”
$a = “con” . “catenate” ; # $a gets the value “concatentate”
@ar = (“now”, “is”, “the”, “time”);
$a = join “”, @ar ; # $a gets the value “nowisthetime”

In the second line above, where the separator is no character at all, the effect of the join is the same as using
Perl’s concatentation operator, as shown in the third line. The added power of join is that it will operate on all
elements of a list without them being explicitly enumerated, as illustrated in the fourth and fifth lines.

Pattern memory The portion of the string that matches a pattern can be assigned to a variable for use later
in the statement or in subsequent statements. This feature is triggered by placing the portions of a pattern to
be remembered in parentheses. When used in the same statement or pattern, the matched segment will be
available in the variables \1, \2, \3, etc. in the order their targets occur. Beyond the scope of the statement,

these stored segments are available in the variables, $1, $2, $3, etc. as well as contextually. Other matching
information available in variables include $&, the sequence that matched; $`, everything in the string up to the
match; and $', everything in the string beyond the match.

For example, the following program separates the file name from the directory path in a Unix-style path name.
It works by exploiting Perl’s greedy matching, along with the pattern memories:

my($text) = "/tmp/subsysA/user5/fyle-zzz";
my($directory, $filename) = $text =~ m/(.*\/)(.*)$/;
print "D=$directory, F=$filename\n";

The pattern finds the last occurrence of “/” in the target string so the Unix directory can be split out from the
file name. The first set of parentheses saves this directory substring, and the second set captures the file
name. The assignment after the match on $text stores both pattern memories by positional order into the
variable $directory and $filename. Here is another example using the \1 and $1 memory notations:

 $A = "crave cravats" ;
$A =~s/c(.*)v(a.)*s/b\1\2e/ ; # \1 is “rave cra” and \2 is “at”
print "$A\n";
print "$1\n" ;
print "$2\n" ;

The output from this code fragment is

brave craate
rave cra
at

The substitute operator in the second line performs the match by first finding the longest string of characters
between the “c” and “v” and saving it in the \1 memory. It then finds the longest string of “a” followed by any
single character in the rest, and saves that in the \2 memory. Once matched, the replacement string is formed
by concatenating the memories, adding a “b” at the front, and an “e” at the end. The last two lines show that
the string parts that matched the pattern parts are still available after the match for as long as the variables
$1 and $2 are not overwritten.

3.6 Input/Output and File Handling
File handling is another area where Perl makes life easy for the programmer. The basic file manipulation
operators, coupled with array capabilities, make creating internal structures out of text input succinct and
efficient. Files are accessed within a Perl program through filehandles, which are bound to a specific file
through an open statement. By convention, Perl filehandle names are written in all uppercase, to differentiate
them from keywords and function names. For example:

open (INPUT, "index.html");

associates the file named “index.html” with the filehandle INPUT. In this case, the file is opened for read
access. It may also be opened for write access and for update (appending) by preceding the filename with
appropriate symbols:

open (INPUT, ">index.html"); # opens for write
open (INPUT, ">>index.html"); # opens for appending

Since Perl will continue operating regardless of whether a file open is successful or not, we need to test the
success of an open statement. Like other Perl constructs, the open statement returns a true or false value.
Thus, one common way to test the success of the open and take appropriate action is to combine the lazy
evaluation of logical or with a die clause, which prints a message to STDERR and terminates execution:

open (INPUT, "index.html") || die "Error opening file index.html ";

Files are closed implicitly when a script ends, but they also may be closed explicitly:

close (INPUT);

Perl provides default access to the keyboard, terminal screen, and error log with predefined filehandles STDIN,
STDOUT, and STDERR; these handles will be automatically available whenever a script is executed. Once

opened and associated with a filehandle, a file can be read with the diamond operator (<>), which can appear
in a variety of constructs. STDIN is most commonly accessed this way. When placed in a scalar context, the
diamond operator returns the next line; when place in an array context, it returns the entire file, one line per
item in the array. For example:

$a = <STDIN>; # returns next line in file
@a = <STDIN>; # returns entire file

STDOUT is the default file accessed through a print statement. STDERR is the file used by the system to which
it writes error messages; it is usually mapped to the terminal display.

Here is an example that reads an entire file from STDIN, line-by-line, and echos each line to STDOUT with line
numbering:

$lnum = 0;
while (<STDIN>) { # read one line at a time until EOF
 # in this case, the default variable $_ receives the line
 chomp; # remove line-ending character (newline here)
 # again, it operates on $_ automatically
 $lnum++; # auto-increment operator on line counter
 print “$lnum: $_\n"; # print the line read, using default $_
}

In this example, we illustrate one of the many Perl conveniences. In many contexts, if no scalar variable is
indicated, an operation will give a value to a variable named ‘$_ ‘, the default scalar variable. This is in
keeping with Perl’s design philosophy of making it very easy to do common tasks. We could also have omitted
the filehandle STDIN and simply have written “while (<>)“; the diamond operator will operate on STDIN by
default if given no filehandle explicitly.

Once a file has been opened for either write or update access, data can be sent to that file through the print
operator. For example:

print OUTPUT "$next \n"; # outputs $next followed by newline
print “this statement works on STDOUT by default\n”;

The second example illustrates a common and useful shorthand in Perl; a print statement with no filehandle
operates on STDOUT by default.

Finally, there are a number of circumstances where the actions taken by the Perl program should take into
account attributes of the file, such as whether or not the file currently exists, or whether it has content. A
number of tests can be performed on files through file test operators. For example, to check for file existence
use the –e test:

if (-e “someFile.txt”) {
 open (AFYLE, “someFile.txt”) || die “not able to open file” ;
}

Using different characters, many other attributes can be tested including if a file is readable, writable,
executable, or owned by certain users; if it is text or binary; if it is a directory or symbolic link; or if it is empty to
name a few.

There’s more than one way to do it In concluding this section we again illustrate the famous Perl adage,
this time with file open statements. Here are several examples of conditional expressions for safely opening
files and trapping errors. In the following, the last four lines all do the same thing:

$aFile = "foo.txt";
if (!open(fh, $aFile)) { die "(a) Can't open $aFile: $!"; }
die "(b) Can't open $aFile: $!" unless open(fh,$aFile);
open(fh,$aFile) || die "(c) Can't open $aFile: $!";
open(fh,$aFile) ? '' : die "(d) Can't open $aFile: $!";

3.7 Other Perl Features

Perl has several other features and capabilities that have found their way into the language as it evolved.
These later features tend to be capabilities that programmers found useful in other languages and desired to
have in Perl. In particular, Perl version 5 introduced classes, objects and references (or pointers) into a
language that was previously a more traditional Unix scripting notation “on steroids”. Since they do not greatly
enhance Perl’s capabilities in the areas for which it has proven especially superior (text processing, file
handling, string matching, OS interactions) we will not go into them in detail. Some programmers even
consider these additions to aggravate the already difficult task of reading Perl code. These later features are
not unimportant aspects of the language; they are simply well beyond the original domains of expertise and
applicability for which Perl was developed. As such, they represent the natural end to which languages tend to
evolve as they gain popularity – something of everything for everyone.

Perl has many more sophisticated capabilities. Access to the interpreter is available to an executing script
through the eval function, allowing a program to create and then run new code dynamically. Symbol tables can
be accessed and manipulated directly with Perl typeglobs. Function closures can be created (as in many
functional languages) allowing subroutines to be packaged dynamically with their data and passed back from a
function call as a reference for execution later. Packages and modules provide encapsulation and namespace
control. The later versions of Perl even support concurrent computations with a thread model.

We refer the reader to the texts cited in For More Information for thorough presentations of all these topics.

4 Putting it All Together: Sample Programs

4.1 First example: text processing
Here is a Perl script that will take as input a file called “foo.txt”, produce as output a file called “bar.txt”; lines in
input will be copied to output, except for the following transformations:

• any line with the string “IgNore” in it will not go to output
• any line with the string “#” in it will have that character and all characters after it, to end of line,

removed
• any string “*DATE*” will be replaced by the current date in output

One program to do this is as follows:

#!/usr/local/bin/perl
$infile = "foo.txt" ;
$outfile = "bar.txt" ;
$scrapfile = "baz.txt" ;
open(INF,"<$infile") || die "Can't open $infile for reading" ;
open(OUTF,">$outfile") || die "Can't open $outfile for writing" ;
open(SCRAPS,">$scrapfile") || die "Can't open $scrapfile for writing" ;
chop($date = `date`) ; # run system command, remove the newline at the end
foreach $line (<INF>) {
 if ($line =~ /IgNore/) {
 print SCRAPS $line ;
 next;
 }
 $line =~ s/*DATE*/$date/g ;
 if ($line =~ /\#/) {
 @parts = split ("#", $line);
 print OUTF "$parts[0]\n" ;
 print SCRAPS "#" . @parts[1..$#parts] ; # range of elements
 } else {
 print OUTF $line ;
 }
}
close INF ; close OUTF ; close SCRAPS ;

In keeping with the Perl adage that there’s more than one way to do things, here is an alternative way to write
the foreach loop; this one uses the implicit $_ variable for pattern matching:

this version uses the implicitly defines $_ variable
foreach (<INF>) {
 if (/IgNore/) {
 print SCRAPS ;
 next;
 }
 s/*DATE*/$date/g ;
 if (/\#/) {
 @parts = split ("#");
 print OUTF "$parts[0]\n" ;
 print SCRAPS "#" . @parts[1..$#parts] ; # range of elements
 } else {
 print OUTF ;
 }
}

And finally, a third version, using boolean and conditional expressions in place of if-else statements:

this version uses boolean interpretation of expressions as
substitution for if clauses in previous versions
foreach (<INF>) {
 /IgNore/ && do { print SCRAPS; next } ;
 s/*DATE*/$date/g ;
 /#/ ? do {
 @parts = split ("#");
 print OUTF "$parts[0]\n" ;
 print SCRAPS "#" . @parts[1..$#parts] ; # range of elements
 }
 : do {
 print OUTF ;
 }
}

4.2 A Simpler, More Sophisticated Example
Consider this problem: take an input file and produce an output file which is a copy of the input with any
duplicate input lines removed. Here is a first solution:

#!/usr/local/bin/perl
foreach (<STDIN>) { print unless $seen{$_}++ ; }

This is, of course, exactly why so many like Perl so fervently. A task that would take many lines of C code can
be done in Perl with a few lines, thanks to the sophisticated text handling facilities built in to the language. In
this solution, we are reading and writing standard input and output; in Unix we supply specific file names for
these streams when the program it is invoked from the command line, like this:

second.pl <foo.txt >bar.txt

Here is a second solution:

#!/usr/local/bin/perl
this version prints out the unique lines in a file, but the order
is not guaranteed to be the same as they appear in the file
foreach (<>) { $unique{$_} = 1 ; }
print keys(%unique); # values(%unique) is the other half

And a third solution:

#!/usr/local/bin/perl
this version eliminates duplicate lines

and prints them out in arbitrary order
also tells how many time each line was seen
oh, and it sorts the lines in alpha order
foreach (<>) { $unique{$_} += 1 ; }
foreach (sort keys(%unique)) {
 print "($unique{$_}):$_" ;
}

This last example shows the considerable power and terseness of Perl. In essentially 4 lines of code, we filter
a file to remove duplicate lines, reports a count of how many times each unique line appeared in the original
input, and prints the unique lines sorted in alphabetic order. All the facilities used in this program are part of
the standard Perl language definition. It does not depend on any user-supplied routines or libraries.

4.3 Directory information processing
In this example, the script takes input from a Linux dir command (directory); we assume the command has
been piped into the Perl script, so the script reads standard input and writes to standard output. The output
produced is itself an executable script (in Linux csh notation) that copies every file (not directory) older than
12/22/97 to a directory called \ancient. The output of dir (and so the input to the script) is this:

. <DIR> 12-18-97 11:14a .

.. <DIR> 12-18-97 11:14a ..
INDEX HTM 3,214 02-06-98 3:12p index.htm
CONTACT HTM 7,658 12-24-97 5:13p contact.htm
PIX <DIR> 12-18-97 11:14a pix
RANGE HTM 9,339 12-24-97 5:13p range.htm
FIG12 GIF 898 06-02-97 3:14p fig12.gif
README TXT 2,113 12-24-97 5:13p readme.txt
ACCESS LOG 12,715 12-24-97 5:24p ACCESS.LOG
ORDER EXE 77,339 12-24-97 5:13p order.exe
INVNTRY <DIR> 02-06-98 1:58p invntry
 7 file(s) 113,276 bytes
 4 dir(s) 27,318,120 bytes free

In C or C++ this program would be long and involved. In Perl, we get a compact handful of lines, making good
use of the regular expressions, pattern matching, and pattern memories:

my $totByte = 0;
while(<>){
 my($line) = $_;
 chomp($line);
 if($line !~ /<DIR>/) { # we don’t want to process directory lines
 # dates is column 28 and the filename is column 44
 if ($line =~ /.{28}(\d\d)-(\d\d)-(\d\d).{8}(.+)$/) {
 my($filename) = $4;
 my($yymmdd) = "$3$1$2";
 if($yymmdd lt "971222") {
 print "copy $filename \\ancient\n"; } }
 if ($line =~ /.{12}((\d| |,){14}) \d\d-\d\d-\d\d/) {
 my($bytecount) = $1;
 $bytecount =~ s/,//; # delete commas
 $totByte += $bytecount;
 }
 }
 print STDERR "$totByte bytes are in this directory.\n";
}

In the first match, the variables $1, $2, $3 and $4 are the pattern memories corresponding to the parenthesis
sets. The first three are re-assembled into a yymmdd date string which can be compared with the constant
"971222". The fourth holds the filename that will be copied to the \ancient directory. As a side effect of

processing the directory listing, we set up an accumulator and extract a cumulative byte count. This is done
with a second match on the same input line, as well as a substitution operation to remove commas from the
numbers found.

5 Network Programming in Perl
The World Wide Web is the most widely known Internet application. Many Web sites provide more than static
HTML pages. Instead, they collect and process data, or provide some sort of computational service to
browsers. For example, several companies operate Web sites that allow a user to enter personal income and
expense information, and will then not only compute income tax returns online but will also electronically file
them with the IRS. There are numerous technical ways to provide this processing horsepower to a Web site
(e.g., Microsoft’s Active Server Pages, JavaScript, C/C++/C# programs, etc.) but Perl is the most widespread
and popular of these options. In this section we look at how Perl scripts can provide communications between
Web browsers and servers, and how they can make use of databases for persistent storage. We also discuss
some of Perl’s capabilities for interprocess communication and network computations.

Much of this Web and network programming is not usually done from scratch, but rather by re-using excellent
Perl modules written by other programmers to encapsulate details and provide abstractions of the various
domain entities and services. We begin with a discussion of CPAN, the Perl community’s repository for these
freely shared modules.

5.1 Packages, Modules and CPAN

CPAN is a large collection of Perl code and documentation that has been donated by developers to the greater
Perl programming community. It is accessed on the Web at http://www.cpan.org and contains many
modules that have become de facto standards for common Perl scripting tasks. In addition to programmer-
contributed modules, the source code for the standard Perl distribution can be found at CPAN. In the words of
Larry Wall in Programming Perl, “If it’s written in Perl, and it’s helpful and free, it’s probably on CPAN.”

Packages CPAN is best known for its collection of modules. These are groups of Perl variables and
subroutines that are encapsulated to provide namespace protection, making the code more easily reusable.
Modules are based on the package, the unit of namespace control in Perl. By default, a Perl program produces
names in a main package, and many useful programs never use any other. However, for programs intended to
be reused in contexts where the programmer cannot anticipate the variable names that will exist, a separate or
protected namespace is needed. A package declaration establishes this new namespace. Variable references
are always evaluated in the current package, unless fully qualified with a specific package name:

$total = 17;
package PackOne ;
 $total = 0 ;
 $name = "Mr. Jones" ;
 @arr = (12, 34, 45.7) ;
package main;
 print $total;
 print "(b)$arr[1]";
 print "(c)$PackOne::arr[1]";

This program prints “(a)17(b)(c)34”. The first declaration of the variable $total goes into the symbol table
for the default main namespace. The package declaration in the second line establishes a symbol table that is
separate from the default main and the three variables declared after that are placed in this new namespace.
A package declaration stays in effect until the end of the enclosing scope, or until another package declaration
is encountered, as in line six here. The final three print statements take place again in the context of main, so
the value of “17” is found for $total. No values exist for any elements of @arr in main, so the second print
produces only the “(b)”. The last line shows how to qualify a variable name to indicate explicitly what package
namespace to look into; here we find the array values established at line fine, in the PackOne package.

http://www.cpan.org/

As this example shows, Perl allows multiple packages to be declared in one code file; it also allows a single
package declaration to span multiple files. However, for simplicity many programmers follow the convention
that each package declaration gets its own file, and the file name is the same as the package name.

Modules The module is the main mechanism for code reuse in Perl. A module is a package declared in a file
that has “.pm” as its filename extension; the package, module, and file have the same name. The author of a
module further defines what names within the module are to be made available to outside Perl programs. This
is done through the Export module. To incorporate the variables, subroutines, and objects of a modules into a
program, the use statement is employed:

use JacksCode ; # in which a variable $jackrabbit is declared
print “$jackrabbit \n”;
print “$JacksCode::jackrabbit \n”;

In this example, the use statement requests access to all names that are exported from the module
“JacksCode”, which the interpreter will expect to find in a file named “JacksCode.pm” someplace on its search
path. If this module declares a variable named “$jackrabbit” then the last two lines do the same thing. A
variable name imported from a module need no longer be fully qualified with the module name. There are
several alternate forms of the use statement that give finer-grained control over which of the exported names
are imported.

Many of the modules most commonly used by programmers come as part of the standard Perl distribution.
CPAN contains dozens of other heavily used modules. These include

• CGI, HTML, HTTP, LWP, Apache module families for Web server scripts
• POSIX for Unix-programming compatibility
• Socket for network structures and programming
• Net::FTP, Net::DNS, Net::TCP, Net::SMTP, Net::IMAP, and many other for dozens of protocols
• RPC::plserver, RPC::plclient, RCP::simple for remote procedure call support
• Math::BigInt, Math::Trig, Math::Polynomial and dozens more supporting various forms of mathematical

structures and functions
• List, Set, Heap, Graph module families giving common abstract data types
• Statistics module family for various common tests and distributions
• Date, Time:, Calendar module families
• DBI, DBD, Oracle, Sybase and other database interfaces
• Java for communication between Perl and the JVM
• Language::ML, Language::Prolog, C::DynaLib, Python, and other language interfaces
• String, Text, Lingua module families for text and language processing
• PostScript, Font, PDF, XML, RTF, Tex, SQL module families for documents
• PGP, DES, Crypt, Authen module families for encryption and security

As enjoyable as Perl programmers find their craft to be, no one wants to spend time re-writing code someone
else has already done well. CPAN is the result of an enthusiastic community effort to leverage success.

5.2 Web Server Scripts with CGI
When a Web page contains fill-out forms, or has some other computational behavior required, there are
several ways to provide the processing needed on the Web server side of the transaction. One way is via
scripts that adhere to the data formatting standards of the CGI web interface. CGI scripts can be written in any
programming language that the server will support. A separate article in this compilation covers the CGI
standard in detail, so we concentrate here on the specifics of how Perl allows programmers to take advantage
of this standard for Web development.

In any interaction between a Web browser and a Web server, there is data being exchanged. The browser
sends information to the server requesting some action be taken, and the server sends a reply back, usually in
the form of an HTML Web page. This interaction often happens by the user filling out the fields of a form in the
browser window, and clicking on some “submit” button. Submitting the form entails the browser collecting the
data from the form fields, encoding it as a string according to the CGI standard, and passing it to the Web
server specified in the URL associated with the submit button in the form. This URL not only contains the
location of the server that will process the form data, but the name of the Perl script that should be executed
as well on the server side.

The following script fragments show portions of such a Perl server-side CGI script. The data in the form from
the browser is made available to Perl via environment variables. Usually the Web site programmer will either
write a collection of Perl subroutines to process this incoming information in various ways, or will choose to use
one of the many such packages out there that others have already written and published. In this example, the
first line specifies the inclusion of a set of CGI processing subroutines (“cgi.pl”) and then immediately invokes
several of them to process the information being sent from the Web browser:

require "cgi.pl";
&cgi_receive; # get the URL information from the environment
&cgi_decode; # parse the CGI formatted string and build @FORM
&cgi_head; # begin forming the CGI-compliant HTML page to return
produce the title etc. for the HTML page being returned…
print <<EndOfStuff ;
<html>
 <head>
 <title>Company Evaluation</title>
 </head>
 <body background="/images/backgrnd.gif" >
 <H1>$FORM{‘uid’}: Submit your report</H1>
 <hr>
EndOfStuff
form data processing proceeds . . .
remove blanks from what the user typed into the form
$FORM{'measid'} =~ s/ //g;
if ($FORM{'uid'} eq "") {
 print "<H2>Missing User ID</H2>\n";
 exit;
}
if ($FORM{‘passwd’} ne “onThe.Road”) {
 print “<H2>Bad password given\n”;
 exit;
}

The data that was put into the form fields on the browser side is now available to the Perl CGI script in the
associative array %FORM. This array is built by the subroutine “cgi_decode”; the keys of the hash are the
names of the fields from the form. The Perl subroutines in this CGI package look like this:

sub cgi_receive {
Procedure to get the information sent from a form. Works with both
POST and GET methods.
 if ($ENV{'REQUEST_METHOD'} eq "POST") {
 read(STDIN, $incoming, $ENV{'CONTENT_LENGTH'});
 } else {
 $incoming = $ENV{'QUERY_STRING'};
 }
}

sub cgi_head { print "Content-type: text/html\n\n"; }

sub cgi_decode {
Procedure to process the information sent from a form.
creates two arrays: @fields and %FORM.
elements of @fields are the subscripts for %FORM.
elements of %FORM are the form values.
 my(@pairs) = split(/&/, $incoming);
 foreach (@pairs) {
 ($name, $value) = split(/=/, $_);
 $name =~ tr/+/ /;
 $value =~ tr/+/ /;
 $name =~ s/%([A-F0-9][A-F0-9])/pack("C", hex($1))/gie;
 $value =~ s/%([A-F0-9][A-F0-9])/pack("C", hex($1))/gie;
 # Strip out semicolons unless for special character
 $value =~ s/;/$$/g;

 $value =~ s/&(\S{1,6})$$/&\1;/g;
 $value =~ s/$$/ /g;
 $value =~ s/\|/ /g;
 $value =~ s/^!/ /g; ## Allow exclamation points in sentences
 $value =~ s/\n/ /g; ## Remove embedded newlines
 # Skip blank text entry fields
 next if ($value eq "");
 # Check for "assign-dynamic" field names
 # Mainly for on-the-fly input names, especially checkboxes
 if ($name =~ /^assign-dynamic/) {
 $name = $value;
 $value = "on";
 }
 # Allow for multiple values of a single name
 $FORM{$name} .= " " if ($FORM{$name});
 $FORM{$name} .= $value;
 push (@fields, $name) unless ($name eq $fields[$#fields]);
 }
}

Module “CGI” The previous example is a “roll-your-own” version of CGI processing, included here to
illustrate how the CGI standard encodes web form data and to give a few more examples of Perl scripts
manipulating string data. In the early days of the Web, such scripts were common; each Web site developer
would produce her own collection of subroutines since standard code libraries were not available. Today, the
task is made much easier through the standard Perl module “CGI”. Using the CGI module, the previous server-
side form processing script would look something like this (simplified):3

use CGI;
$q = CGI::new();
$mid = $q->param(“measid”);
$uid = $q->param(“uid”);
$pwd = $q->param(“passwd”);
print $q->header();
print $q->head($q->title(“Company Evaluation”));
print $q->body(
 $q->h1(“$uid: Submit Your Report”),
 $q->hr,
 etc... rest of body elements...
);
)

As shown here, the CGI module provides functions for retrieving environment variables, creating web forms as
output, and generating HTML tags. This example is selecting data from a Web form containing text fields
called “measid”, “uid”, and “passwd”. It is generating an HTTP-compliant return message with the necessary
header and an HTML page for the browser to display. Assuming the “uid” here comes in from the form as
“Jones”, we get:

Content-type: text/html; charset=ISO-8859-1
<head>
 <title>Company Evaluation</title>
</head>
<body>
 <h1>Jones: Submit My Report</h1>
 <hr>
 etc...

The CGI module also assists the Web site developer in solving other problems common with Web scripting.
Since the HTTP protocol is stateless, one problem is maintaining session state from one invocation of a script

3 The arrow notation (->) is the Perl syntax for dereferencing a reference (chasing a pointer). In this module, and others
following, it is used to access the fields and functions of a Perl object.

to the next. This is normally done with cookies, data items a server asks the Web browser to store locally and
return on request. However not all browsers allow cookies, and in those that do the user may turn cookies off
for security or privacy reasons. To help with this a script using CGI, when called multiple times, will receive
default values for its input fields from the previous invocation of the script.

5.3 Web Clients with LWP
While the CGI module supports construction of scripts on the server-side of a Web connection, the modules
LWP (Library for Web access in Perl) provides support for developing applications on the client side. Most
notable among Web clients are the GUI-based browsers, but many other applications acts as clients in HTTP
interactions with Web servers. For example, web crawlers and spiders are non-GUI programs (called “bots” or
robots) that continuously search the Web for pages meeting various criteria for cataloging.

The LWP modules each support a different aspect of Web client construction and operation. They include:

• HTML for parsing and converting HTML files
• HTTP for implementing the requests and responses of the HTTP protocol
• LWP core module, for network connections and client/server transactions
• URI for parsing and handling URLs
• WWW implementing robot program standards
• Font for handling Adobe fonts
• File for parsing directory listings and related information

A Web interaction starts with a client program establishing a network connection to some server. At the low
level this is done via sockets with the TCP/IP protocol. Perl does support socket programming directly (see
below), and the module Net contains functions to allow a program to follow TCP/IP (as well as many others
Internet protocols, such as FTP, DNS, and SMTP). On top of sockets and TCP/IP for basic data transfer, the
HTTP protocol dictates the structure and content of messages exchanged between client and server. Rather
than deal with all these technologies individually, the LWP::UserAgent module allows the programmer to
manage all client-side activities through a single interface. A simple client script would look like this:

use LWP::UserAgent; # imports other modules too
$client = new LWP::UserAgent;
$acmeRep = new URI::URL(‘www.acme.com/reports/index.html’);
$htmlHead =
 new HTTP::Headers(User-Agent=>‘RepBot v2.0’, Accept=>‘text/html’);
$outMsg = new HTTP::Request(GET, $acmeRep, $htmlHead);
$inMSg = $client->request($outMsg);
$inMsg->is_success ? {print $inMsg->content;} : {print $inMsg->message;}

The network connections and message formatting to HTTP protocol requirements is handled transparently by
the LWP functions. Here, the client causes a request like this to be sent to the Web server at www.acme.com:

GET /reports/index.html HTTP/1.0
User-Agent: RepBot v2.0
Accept: text/html

If the requested file is not there, the response from the server will be an error message. If it is there, the
response will contain the HTML file for the “bot” to process in some fashion.

5.4 Database Use
Many Web sites depend on databases to maintain persistent information -- customer data, statistics on site
usage, collection of experimental results, medical records. Perl has several ways a CGI script (or any Perl
script, Web-based or otherwise) can store and retrieve database records.

Module “DBM” Perl comes with a module called DBM (DataBase Module) that contains functions
implementing a built-in database structure. DBM treats an external data store internally as hashes, or
key/value pairs. This internal database is intended for simple, fast usage; searching requires as few as three
lines of script. The method is convenient for fast retrieval, even from very large databases, when there is a
unique key for searching (e.g. ISBN numbers). It is not as useful for complex data or queries.

dbmopen (%db, $database, 0400) || die "Can't open DB"; #open read only

http://www.acme.com/

for ($k=$max; $k< $max+20; $k++){ print "$k $db{$k}" } #get and print data
dbmclose (%db); #close database

In this example, we know the index values are numbers and are unique. The database looks to the Perl script
like a hash, so the associative array variable %db is used to get the data values from it.

One useful feature Perl provides is DBM filters. These are small data transformation routines, written by a
programmer to manage situations where the format of the data fields in a database are not quite compatible
with the form needed by a script. Rather than put small data manipulation code chunks scattered throughout
the script, or write and call extra functions, DBM filters can be attached directly to the fields of a database;
data transformation then takes place automatically as field values are moved into and out of the database.
This feature makes the code using the database easier to read, and less error prone due to less code
replication.

 Access files

 Access DBD

Figure

Module “DBI” For more a
simple structure of DBM. Fo
hide the details of specific d
interface allows expressing S
The DBI module does not co
to numerous vendor-specific
detailed code needed to com

Figure 1 illustrates the relati
When a Perl script invokes a
module according to how the
DBD module communicates
query results. These results
Perl script. This layer of indi
system to another relative p

Module “ODBC” In addit
external databases, such as
from several 3rd party distrib
 User’s Perl Script

 Oracle server

 Oracle DBD
 Perl DBI module

 1: DBI provides an abstract interface for specific database systems

dvanced applications, a relational database is often more desirable than the
r this Perl provides the DBI module, or Data Base Interface. DBI is designed to
atabase systems, allowing the programmer to create scripts that are general. The
QL queries, executing them against a specific database, and retrieving the results.

ntain code specific to any database vendor’s product, but it does have references
 modules called DBD’s (DataBase Drivers). A DBD module will contain the
municate with a specific brand of database system.

onship among the executing script, the DBI, the DBD, and the physical database.
 DBI function to execute a query, the query is routed to the appropriate DBD
 DBI database handle was opened (as an Oracle DB, as an Access DB, etc.). The

 with the actual files or tables of the physical database system, and produces
 are communicated back to the DBI module, which relays them back to the user’s
rection gives Perl scripts a generality that makes migration from one physical DB
ainless.

ion to the DBI module, programmers wishing to write Perl scripts that interface to
 Access or Oracle, can obtain an ODBC compatibility package as a free download
utors. This module contains functions that implement the ODBC standard

database interface. Perl scripts written to use this standard can then work with any relational database under
them, as long as that database has its own ODBC interface. Almost all major relational database vendors
provide an ODBC implementation for their products. ODBC provides essentially the same advantages as DBI,
but the ODBC standard was designed outside Perl and is available in many other programming languages as
well.

5.5 Processes and IPC
While the Web is the major Internet application, it is certainly not the only one. Perl includes facilities to
support general network applications, and many Perl programs are written to use the Internet in many different
ways. While not designed specifically for concurrent or multiprocess computations, Perl does support various
forms of processes, interprocess communication (IPC), and concurrency.4 Processes are relatively heavyweight
computations that each have their own resources and address spaces. Multiple processes may execute on the
same machine, or on different machines across the Internet. Data exchange among processes is usually done
via files, pipes (channels), or lower level sockets.

Simple Unix-style process communications can be established in Perl using file I/O operations. Processes are
given filehandles, and communication paths are established with the open statement using a pipe symbol “|”
on command the process will execute. To read from an executing program, for example, the pipe goes at the
end:

$pid = open(DATAGEN, "ls -lrt |") || die "Couldn't fork: $!\n";
while (<DATAGEN>) {
 print ;
}
close(DATAGEN) || die "Couldn't close: $!\n";

This program creates a process that executes the Unix “ls” command with arguments “-lrt” to generate a listing
of the current directory. The pipe symbol tells Perl that the open is specifying a process command to run
instead of a simple file name. To write to a process, the pipe goes at the beginning of the command:

$pid = open(DATASINK, "| myProg args") || die "Couldn't fork: $!\n";
print DATASINK "some data for you\n";
close(DATASINK) || die "Couldn't close: $!\n";

A script can use pipe and fork to create two related processes that communicate, with better control than can
be had from open, system, and backticks:

pipe(INFROM, OUTTO); # opens connected filehandles
if (fork) { # both processes share all open filehandles
 # run parent code for writing
 close(INFROM);
 # now the writer code...
} else {
 # run child code for reading
 close(OUTTO);
 # now the reader code...
}

For more complicated situations, such as reading and writing to the same executing process, the previous
methods are not sufficient. There is a special forking form of open that can be used. However, using the
IPC::Open2 module is a better approach:

use IPC::Open2;
open2(*READFROM, *WRITETO, “myProg arg1 arg2”);
print WRITETO "here's your input\n";
$output = <READFROM>;
 # etc...
close(WRITETO);

4 Perl having been born of Unix, this section is heavy on Unix process concepts such as pipes and forking.

close(READFROM);

Here the program “myProg” is executed as a process, using the supplied arguments, and the filehandles
READFROM and WRITETO are connected to its standard input and output respectively so the Perl script can
exchange data with it.

Module “Socket” Even finer-grained control over processes can be obtained if the programmer is willing to
program lower into the operating system. Sockets are the underlying technical mechanism for network
programming on the Internet. Perl gives access to this level with built-in functions that operate on sockets.
These include

• socket to assign a filehandle
• bind to associate a socket with a port and address
• listen to wait for activity on the server-side connection
• accept to allow incoming connection on server-side
• connect to establish communications with a server
• recv to get data off a socket
• send to put data onto a socket
• close to end it all

Sockets are given filehandles on creation, so Perl functions that operate on filehandles can be used on sockets
as well. Socket functions tend to need hard-coded values related to machine specifics and IP address, which
limits portability of scripts. The Perl module Socket should be used in conjunction with the Perl socket
functions to pre-load machine-specific constants and data into Perl variables.

Module “Thread” Lighter weight and finer grained than processes, many languages support concurrent
computations that share common resources and address spaces. Known as multithreading, programming
such applications is a specialized endeavor. As Larry Wall says in the text Programming Perl, “Perl is a rich
language, and multithreading can make a muddle of even the simplest of language.” Nonetheless, recent
releases of Perl do support a simple thread model for concurrency within a script. Though obviously with
different syntax, the behavior is similar to Java threads, with thread creation, synchronization, queuing for
execution, resource locking, and signals. Because of its specialized and error-prone nature, we only mention
the threads capability here; for more detailed information see references on the module Thread found at
CPAN.

6 On Beyond Perl
Perl was created when object-oriented (OO) programming concepts were young and less well understood than
today. Early versions of Perl, in fact, did not even contain objects or references. As understanding of OO
concepts has advanced, Perl has evolved to contain OO features. They work fairly well, but since they were
not part of the original design rationale of Perl, many consider them less elegant and cohesive than the original
set of language features.

Two more recently developed programming languages – Python and Ruby -- claim Perl in their heritage, but
have been designed specifically as OO programming tools. The designers of each wanted to retain the extreme
convenience and flexibility of Perl’s text handling and string matching, but to incorporate as well other
capabilities that go beyond Perl. The results are two notations that are still largely thought of as “scripting”
languages, but with more highly integrated object semantics. Following are brief discussions of each with
respect to Perl.

6.1 Python
Guido van Rossum began work on the design of Python in late 1989. One of his goals for the new language
was to cater to infrequent users and not just experienced ones. Infrequent users of a notation can find rich
syntax (such as that of Perl) to be more burdensome than helpful. This means that Python is a compact
language. A programmer can easily keep the entire feature set in mind without frequent references to a
manual. C is famously compact in much the same way, but Perl most certainly is not. The Perl design principle
of ``more than one way to do it'' shows up in Perl’s wealth of features, notational shortcuts, and style idioms.
Van Rossum also wanted a language designed from the beginning to be object-oriented and to have clear
module semantics. In Python everything is an object or class including the base data types.

Python has unusual syntax for a modern programming language. Rather than being a free-form notation, in
Python whitespace is important for defining the block structure of a script. Indentation levels serve the same
purpose in Python that pairs of “{ }” do in Perl, C, and others. Here, the body of the loop, and the bodies of the
conditional clauses, are defined by vertical alignment :

while x < y:
 buf = fp.read(blocksize)
 if not buf: break
 conn.send(buf)
x = 3
if x == 4:
 result = x + 2
 print x
else:
 print 'Try again.'

Though this initially appears to be a cumbersome throwback, in many ways this makes Python easy to use.
Python has a very clean and structured layout, and it's very easy to follow what's going on. Perl can frequently
look noisy, and new programmers particularly can have difficulty trying to understand the behavior they see
from their Perl scripts. Python programmers report that after a small training period, they can produce working
code about as fast as they can type, and that they begin to think of Python as executable pseudocode.

Python gives programmers good support for modern programming practices like design of data structures and
object-oriented programming. The compactness causes programmers to write readable, maintainable scripts
by eliminating much of the cryptic notations in Perl. In Perl’s original application domains, Python comes close
but rarely beats Perl for programming flexibility and speed. On the other hand, Python is proving quite usable
well beyond Perl's best application domains.

6.2 Ruby
Ruby is another language that is advertised as being a natural successor to Perl. It was developed in Japan in
1993 by Yukihiro Matsumoto, and began attracting a user community in the United States by the year 2000. In
Japan, Ruby has overtaken Python in popularity. Like Python, Ruby is open sourced and so is easy to extend,
correct or modify by others.

Matsumoto was looking to design an object oriented scripting language that did not have the messy “Swiss
Army chainsaw” aspects of Perl, but he considered Python to be not object oriented enough. Ruby has
retained many of the text manipulation and string matching features of Perl that Python leaves out, but they
are elevated to the class level (e.g., regular expressions are classes). Even operators on the base types are
methods of the base classes. In addition to classes, Ruby allows metaclass reasoning, allowing scripts to
understand and exploit the dynamic structure of objects at runtime. Ruby is best thought of as having modern
object semantics, as Python does, but also retaining more of the Perl features and syntax than Python does.

7 For More Information
If you are looking to learn programming this text teaches it, using Perl:

• Elements of Programming with Perl, by A. L. Johnson (Manning Publications, October1999)

These books give more details on the Perl language for readers who understand programming:
• Perl: The Programmers Companion, by N. Chapman (John Wiley and Sons, September 1997)
• Programming Perl, by L. Wall, T. Cristiansen, and J. Orwant (O’Reilly and Associates, July 2000, 3rd ed.)
• Perl in a Nutshell, by E. Siever, S. Spainhour, and N. Patwardhan (O’reilly and Associates, June 2002)
• Learning Perl: Making Easy Things Easy and Hard Things Possible, by R. Schwartz and T. Phoenix (O’Reilly and

Associates, July 2001, 3rd ed.)
• Perl Cookbook: Solutions and Examples for Perl Programmers, by T. Christiansen and N. Torkington (O’Reilly

and Associates, August 1998)
• Perl Pocket Reference, 4th Edition, by J. Vromans (O'Reilly and Associates, July 2002)

These texts give detailed, “under the covers” explanations of the advanced features in Perl:

• Advanced Perl Programming, by S. Srinivasan (O’Reilly and Associates, August 1997)
• Object Oriented Perl, by D. Conway (Manning Publications, August 1999)
• Mastering Regular Expressions, by J. E. F. Friedl (O’Reilly and Associates, July 2002, 2nd ed.)

These references show how to apply Perl and Perl modules in specific application domains:
• Writing Apache Modules with Perl and C, by L. Stein and D. MacEachern (O’Reilly and Associates, March

1999)
• Perl and LWP, by S. M. Burke (O'Reilly and Associates, June 2002)
• Perl and XML, by E. T. Ray and J. McIntosh (O’Reilly and Associates, April 2002)
• CGI/Perl Cookbook, by M. Wright (Wiley Computer Publishing, October 1997).
• CGI Programming with Perl, by S. Guelich, S. Gundavaram, and G. Birznieks (O’Reilly and Associates, July

2000, 2nd ed.)

These references give more information on languages with some similarity to Perl:
• Programming Ruby: The Pragmatic Programmer’s Guide, by D. Thomas and A. Hunt, (Addison Wesley

Longman, October 2000), http://www.rubycentral.com/book/
• The Quick Python Book, by D. Harms and K. McDonald (Manning Publications, October 1999)
• Learning Python, by M. Lutz and D. Ascher (O’Reilly and Associates, April 1999)
• Python Essential Reference, by D. Beazley (New Riders, 2001, 2nd ed.)

These web sites contain extensive information about the Perl language definition and standard, tutorials on
programming in Perl, example programs and useful scripts, libraries, and upcoming conferences:

• http://www.perl.com/ main perl commercial distribution site
• http://cpan.org/ perl archives
• http://use.perl.org/ news clearinghouse
• http://history.perl.org/PerlTimeline.html specific development timeline
• http://www.perl.org/ Perl mongers
• http://dev.perl.org/perl6/ latest in development of Perl 6
• http://www.activestate.com/ Perl implementations for Windows platforms
• http://history.perl.org/ perl through the ages

Finally, there are the Perl newsgroups. Use your favorite news reader to access these groups. There you will
find discussions about Perl, and a place to ask and answer questions.

• comp.lang.perl.misc The Perl language in general.
• comp.lang.perl.announce Announcements about Perl. (moderated)

http://www.rubycentral.com/book/
http://www.perl.com/
http://cpan.org/
http://use.perl.org/
http://history.perl.org/PerlTimeline.html
http://www.perl.org/
http://dev.perl.org/perl6/
http://www.activestate.com/
http://history.perl.org/

	Title: The Perl Scripting Language
	3.1 Basic Data Types and Values
	
	3.2 Basic operations
	3.4 Subroutines

	3.5 Regular Expressions and Pattern Matching

	4 Putting it All Together: Sample Programs
	
	
	
	4.1 First example: text processing
	
	4.2 A Simpler, More Sophisticated Example

	1 Introduction
	
	
	
	In this article we give a brief history of Perl, including major events preceding Perl that set the historical stage for it. We provide an overview of the language, including example code to show how its features are used in practice. We discuss Web si
	2 A Brief History of Perl
	Larry Wall is a trained linguist and this interest and expertise shows in Perl. Here he summarizes the nature and intent of his language, and his design rationale:
	3 Perl Language Overview
	A discussion of the programming features and facilities of Perl is in order before we present the areas in which Perl can be applied. This will be an overview, not a tutorial, so no attempt is made to provide an exhaustive or in-depth treatment. Compon
	3.1 Basic Data Types and Values
	The first assignment places a string value in the variable. The second replaces the string with an integer value. This is different from many strongly typed languages (like C++ and Java) where types are finely divided into categories like integer, re
	Context Many of the operators in Perl will work on all three types, with different results being produced depending on the form of the operands. This polymorphism is known in Perl as context. There are two major contexts: scalar and list. Scalar conte
	
	3.2 Basic operations
	Scalar Scalar values can be manipulated by the common operators you would expect of a modern programming language. Numbers have arithmetic operations and logical comparisons, autoincrement and decrement (++ and --), and operator assignments (+=, -=,

	Array Perl has the expected assignment and referencing operators for arrays; it also provides subrange operators to use part of an array. $#arr3 will give you the scalar value that is the last index used in array @arr3; since Perl indexes arrays from 0
	Hash (associative array) Hashes have assignment and multi-assignment to create attribute/value pairs, and have array referencing via scalar subscripts (usually strings) to retrieve the value associated with an attribute. Most other operations are p
	
	
	3.4 Subroutines
	A subprogram in Perl is often called a function, but we shall use the term subroutine here to distinguish programmer-defined structures from the built-in functions of Perl. A subroutine is invoked within the context of some expression. In early versions
	Built-in functions and system operations Perl offers a rich selection of built-in functions as part of the standard interpreter. These include mathematical operations (such as abs, sin, sqrt, log); list manipulation operations (such as join, reverse
	Since one of the reasons for the creation of Perl was to give Unix programmers more expressive power and convenience, the language provides several mechanisms for invocating operating system services from executing scripts. The most general method is th

	3.5 Regular Expressions and Pattern Matching

	4 Putting it All Together: Sample Programs
	
	
	
	4.1 First example: text processing
	
	4.2 A Simpler, More Sophisticated Example

	And a third solution:

	5 Network Programming in Perl
	6 On Beyond Perl
	7 For More Information

