
Informix Unleashed

Table of Contents:

• Introduction

Part I - Introduction

• Chapter 1 - Informix Company Overview
• Chapter 2 - Informix's Future Direction
• Chapter 3 - Database Concepts

Part II - Informix Environments

• Chapter 4 - Informix Environment Introduction
• Chapter 5 - INFORMIX-Standard Engine
• Chapter 6 - INFORMIX-OnLine
• Chapter 7 - INFORMIX-OnLine Dynamic Server
• Chapter 8 - INFORMIX-Universal Server

Part III - Informix Administration

• Chapter 9 - Administration Introduction
• Chapter 10 - Installing an Informix Environment
• Chapter 11 - Configuring the Informix Environment
• Chapter 12 - Incorporating a Database in Your Informix Environment
• Chapter 13 - Advanced Configurations
• Chapter 14 - Managing Data with Stored Procedures and Triggers
• Chapter 15 - Managing Data with Locking
• Chapter 16 - Privileges and Security Issues
• Chapter 17 - Managing Data Integrity with Constraints
• Chapter 18 - Managing Data Backups
• Chapter 19 - Parallel Database Query
• Chapter 20 - Data and Index Fragmentation
• Chapter 21 - Monitoring Your Informix Environment
• Chapter 22 - Advanced Monitoring Tools
• Chapter 23 - Tuning Your Informix Environment
• Chapter 24 - Anticipating Future Growth
• Chapter 25 - The INFORMIX-Enterprise Gateway Manager
• Chapter 26 - Problem Handling

Part IV - Informix Database Development

• Chapter 27 - Informix Development Introduction
• Chapter 28 - INFORMIX-SQL
• Chapter 29 - Creating a Database Using SQL
• Chapter 30 - Data Management Using SQL
• Chapter 31 - Advanced SQL
• Chapter 32 - SQL Tools
• Chapter 33 - Understanding the Informix Optimizer

Part V - Application Development

• Chapter 34 - Application Development Introduction
• Chapter 35 - Introduction to 4GL
• Chapter 36 - 4GL Coding
• Chapter 37 - 4GL Development
• Chapter 38 - Advanced 4GL Development
• Chapter 39 - Introduction to NewEra
• Chapter 40 - NewEra Language
• Chapter 41 - The NewEra Development System
• Chapter 42 - Serving Data on the WWW

Part VI - Data Modeling

• Chapter 43 - Model-Driven Development for the Informix RDBMS
• Chapter 44 - Designing and Implementing SuperViews for INFORMIX-NewEra
• Chapter 45 - Modeling Types for INFORMIX-Universal Server

Part VII - Appendixes

• Appendix A - Finding Help

Informix Unleashed
Acknowledgments

Writing anything of this size is no easy task. A book that encompasses this much
information cannot be written alone, which I tried to do at first. Even after other authors
were brought on, I still relied on friends, family, and co-workers for help. My biggest
thanks goes to Barbara Marie Vassallo, whom I also love very much. Without her
proofing my chapters, redrawing my drawings (so that the artists at Sams could read
them), and having plenty of caffeinated soda on hand, this would not have been possible.
The support Barbara provided helped me complete this book without losing my mind.
Her help and support really meant a lot to me. I'd also like to thank my mother, Mary
Gillespie, whose example in her many projects and endeavors gave me the drive to take

on this project. But even in my adult age, she can still make me feel guilty for not getting
the book done so that I could visit her more often. I must also thank Lisa Manno at
AT&T, whose help with creating the chapters was undeniably a big asset. Finally, I must
thank the folks at Sams Publishing--especially Rosemarie Graham and Steve Straiger.
The patience and support that they and everyone else gave made an impossible task
become possible.

--John McNally

Crafting even part of a work like this is a team effort. I was a meager fountainhead,
providing grist for the team of Sams editors. Riding herd on them and me, Acquisitions
Editor Elaine Brush corralled our efforts into a work I'm proud to be associated with. Her
good humor and irreverent homilies made the work seem a little more like play. Thanks
especially to my technical conscience and pool nemesis, Bob Davis, who was gracious
enough to tell me that my words were complete and accurate, while simultaneously
enhancing and correcting them. You the man, Bob.

Oh, and "Thanks, Mom."

--Glenn Miller

I want to acknowledge the contributions of Dr. Robert Mantha, Dr. Daniel Pascot, and
Dr. Dzenan Ridjanovic for their contributions to the field of modeling for Information
Systems, to techniques used in implementation of models, and of course, to my
knowledge in this area. I also want to thank my many clients who forced me to come up
with ways to deliver a lot with the least amount of work and time possible. That is, of
course, the goal of modeling.

--Jim Prajesh

I would like to thank James Hartwright for his invaluable assistance in reviewing my
work as I wrote this chapter, and Nicola for her support throughout this endeavour.

--Rick Ward

Sams Publishing would like to thank Sandy Emerson of Informix Press for her
enthusiasm, input, and dedication to this project. Other individuals who were a
tremendous help with Informix Unleashed are Carlton Doe, President of the Informix
International User Group; Scham Myfor of Informix Technical Support; and Bill
Maderas of Computer Systems Advisers, Inc.

--Sams Publishing

About the Authors

Matt Bentley is a database analyst at American Stores Company in Salt Lake City, Utah.
He has seven years of experience in software development and database administration in
the medical/insurance, manufacturing, and retail industries. In his spare time, he enjoys
hiking, biking, fishing, and camping with his wife and two sons in Utah's great outdoors.

Robert Donat is a Technical Consultant for CNA Financial Corporation in Chicago, IL,
and he lives near the Cubs' Wrigley Field. Previously, at the Signature Group in
Schaumburg, IL, he administered more than 50 Informix, Sybase, and Oracle database
servers, which comprised over a terabyte of storage. Robert is working on his Masters
Degree in Computer Science at DePaul University, holds a B.S. in Finance from the
University of Illinois, and has served as an Army Artillery Officer. He enjoys skydiving,
scuba diving, and maintaining several saltwater aquariums in his spare time. Robert can
be reached by e-mail at donat@wwa.com or on his Web page at
http://sashimi.wwa.com/~donat.

Sandy Emerson is an independent consultant and the Program Manager of Informix
Press and Informix publishing programs. Sandy, who previously managed Sybase Press,
is a co- author of The Practical SQL Handbook and three other computer trade books. A
current resident of Half Moon Bay, California, Sandy can be reached via e-mail at
semerson@informix.com.

Ron Flannery has a diverse background in Informix. He has worked for eight years in
various aspects of design, coding, implementation, and database and systems
administration. He is a certified Informix Data Specialist and Data Administrator. He co-
founded the Michigan Informix User Group in 1992 and is now its president. He
currently works as a consultant--mostly in DBA, Internet, and data warehouse roles. He
can be reached at rflanner@speedlink.net or through his Web site at
www.speedlink.net/~rflanner.

Ron is an employee of ZenaComp in Livonia, Michigan. ZenaComp specializes in
customized database architecture and integration services across a wide range of
industries. As one of a select number of certified Informix Consulting Partners,
ZenaComp is recognized as a nationwide expert for the entire suite of Informix products.
They provide project-oriented solutions for client/server, Internet/intranet, and data
warehousing. ZenaComp is an Informix Authorized Education Center.

José Fortuny (jfortuny@compuserve.com) is a systems consultant specializing in the
design, development, and integration of customized business databases and applications.
Many of the projects he works on involve a mixture of production, manufacturing, and
accounting components.

Fortuny Software Systems, Inc.--a corporation that he started in the early 90s--is a
development partner of Informix, offering consulting services and software development
services in character-based, GUI, and browser interfaces on networked environments.

José holds a Ph.D. in Industrial Engineering/Operations Research from Purdue University
and also teaches Production Management for the Continuing Education Division of Drury
College, in Springfield, Missouri.

Gordon Gielis is a Director of Select Software Solutions Pty Ltd, an Informix software
company based in Sydney, Australia. Gordon is a Certified Informix Professional with
more than 12 years of experience developing software for a wide variety of industries.

Kevin Kempter is a consultant for Informix Software with the Informix data-warehouse
group. He has been working with Informix products for a variety of companies for more
than seven years. He has experience in UNIX/C and ESQL/C application development,
Database Design, Data Architecture, Database Administration, System Administration,
and other generally cool stuff. Kevin can be contacted at kkempter@informix.com.

John Patrick McNally is an information systems specialist with AT&T. Over the last
eight years, John has worked on many projects such as developing C applications that
access Informix servers, being the primary DBA for a very large OLTP Informix system,
working on a document and image management system as the technical lead, and
developing a two-terabyte OLTP database system as the lead technical and operational
architect. John is also involved in multimedia, information systems, and artificial
intelligence consulting with his own company, Windward Solutions. John earned his B.S.
in Computer Science from Salisbury State University and his M.S. in Multimedia and
Artificial Intelligence from The George Washington University. You can reach John on
the Internet at jpmcnally@attmail.com or McNallyJP@aol.com.

Glenn Miller is president and co-founder of tsunami consulting group, a Denver-based
information services provider. tsunami, an Informix Solutions Alliance Partner, excels in
developing client/server and Web-based applications built on sophisticated relational
database models.

One of the first Informix Certified Professionals, Glenn has been a hands-on developer
and administrator of Informix products for more than 13 years. He currently oversees a
large data warehouse for MCI, using Informix Extended Parallel Server. He also plays a
mean game of chess. Glenn can be reached at glenn@tsunami.com.

Mary Mudie is a Consulting Engineer with Informix Software. She has specialized in
database management systems for 20 years with IBM, Illustra, and Informix. She has co-
authored several IBM "red books" on IMS and DB2, and she has developed and taught
classes on database implementation, performance, and recovery. More recently, she has
been working with the Illustra and INFORMIX-Universal Server database products and
is now fulfilling her secret desire to be a WebMistress. Mary (and her dog) can be
reached at MaryMudie@compuserve.com.

Gavin Nour is a Director of Select Software Solutions Pty Ltd, an Informix software
company based in Sydney, Australia. Gavin is also the Secretary of the Informix Users
Group in NSW and is on the Board of Directors of the International Informix Users

Group. He has more than 12 years of experience developing and tuning Informix
applications covering a wide variety of industries.

Select Software Solutions (www.selectsoftware.com.au) was formed in 1994 and
provides the following services: customized software development (for example,
INFORMIX-NewEra, INFORMIX-4GL, Visual Basic, or Web database applications for
the Internet and intranets); application tuning/optimization or application migration
projects (for example, migration of INFORMIX-4GL to a client/server-based application
such as Windows, NT, intranet, or Internet); database tuning or database migration
projects (for example, Informix database upgrades such as OnLine DSA to Universal
Server); general Informix consulting; project management; Informix training; database
administration; and database design. Gavin can be contacted at Select Software Solutions
by telephone at 0419-803-113 (mobile); by fax at 02-9-314-6310; or by e-mail at
nourg@selectsoftware.com.au.

Jim Prajesh is manager of Information Technology Services for Computer Systems
Advisers, Inc. He provides training and consulting services to a wide variety of leading
international organizations, often managing multimillion dollar projects. He also trains
people in methodologies and other techniques in model-driven development of large
systems. He has spoken at many major IT conferences in the U.S. and abroad. Mr.
Prajesh holds a Master of Science degree in Computer Science and a Master of Business
Administration. He can be reached via e-mail at prajesh@ix.netcom.com.

Jan Richardson is currently enjoying the position of Systems and Operations Manager
for the city of Aurora, Colorado. She has been working with Informix database products
since 1985. Jan started her career with Southwestern Bell Telephone Company in St.
Louis, Missouri. She held the position of Coordinator of Computer Services for two years
at East Central College in Union, Missouri. Just prior to moving to Colorado, she spent
11 years as a senior applications and database consultant for major corporations in the
Midwest.

Kerry Sainsbury has been professionally developing applications software since 1985,
and he is still loving every minute of it. His current project, for Quanta Systems' new
Financial and Distribution package, includes the formidable combination of Borland's
Delphi (his first OO language), Business Logic coded in INFORMIX-4GL (his second
tongue), and an Informix 7.x database on a UNIX server. Kerry is a current board
member of the International Informix User Group, and he created and maintains the
Informix FAQ. Kerry lives in Auckland, New Zealand with his fantastic wife, Fidelma,
and their spectacular children, Ryan and Erin. He can be contacted via e-mail at
kerry@kcbbs.gen.nz.

Mark D. Stock started his IT career in 1983 by developing bespoke software for a small
software house. Mark was introduced to the INFORMIX-SQL and INFORMIX-4GL
products in 1987 and began working with SE, OnLine, 4GL, 4GL-RDS, and ESQL/C for
a varied selection of application developments in 1988. In 1991, Mark emigrated to South
Africa and joined the then Informix distributor, InfoWare.

In 1994 Mark joined his business partner and set up the West Solutions Group, a group of
companies supplying IT services primarily based on Informix products. These include
consulting, development, training, recruitment, hardware solutions, and cabling. Mark is
the Managing Director of two companies in the group and concentrates on the consulting
and training aspects of the business. The West Solutions Group keeps a close alliance
with Informix SA and, as such, provides most of the training services for Informix in
Southern Africa. Mark gives a number of Informix courses both at the Informix training
center and at client sites.

Mark has been in the IT industry for 14 years, using most flavors of UNIX throughout
that time. He has been using and supporting the Informix products for the last 10 years.

Rick Ward has been employed at Great Universal Stores Home Shopping, the UK's
largest mail order retailer, since 1991. He worked as an IBM Mainframe assembler and
CICS, COBOL, and DB2 programmer, before joining a newly formed Database
Administration team in 1993. Since that time, Rick has been responsible for
implementing Informix SE, OnLine V5, and OnLine DSA V7 on a wide range of Sun
UNIX platforms, working within development teams promoting good database and
program design for both DB2 and Informix projects.

Tell Us What You Think!

As a reader, you are the most important critic and commentator of our books. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to
pass our way. You can help us make strong books that meet your needs and give you the
computer guidance you require.

Do you have access to CompuServe or the World Wide Web? Then check out our
CompuServe forum by typing GO SAMS at any prompt. If you prefer the World Wide
Web, check out our site at http://www.mcp.com.

NOTE: If you have a technical question about this book, call the technical support
line at 317-581-3833.

As the publishing manager of the group that created this book, I welcome your
comments. You can fax, e-mail, or write me directly to let me know what you did or
didn't like about this book--as well as what we can do to make our books stronger. Here's
the information:

Fax: 317-581-4669

E-mail: enterprise_mgr@sams.mcp.com

Mail: Rosemarie Graham

Sams Publishing

201 W. 103rd Street

Indianapolis, IN 46290

Introduction

This book focuses on all aspects of data processing, involving every available Informix
relational database management system and other Informix products. Information is
provided on all the different Informix products and how to use them to solve business
problems--whether the business's size is very small or as large as most corporations.
Designed for the beginner-to-advanced reader, this book covers the basic and advanced
concepts required of database administrators, system administrators, and application
developers that use Informix products. This book specializes in providing and explaining
issues beyond system manuals and training classes.

Informix Unleashed will fulfill the following needs of readers (such as database
administrators, system administrators, application developers, and general users of
Informix-based applications and products):

• It introduces and explains all of the current Informix Server environments
and the services and functionality differences between each of them. It
also explains how each server performs these services and functions.

• It prepares the reader to set up, configure, and administer an Informix
server. This includes hardware and operating system configurations.
Further information is given on tuning, monitoring, backing up, planning
for future growth, and handling an outage.

• It provides a complete section that is dedicated to creating databases and
using structured query language, or SQL, to access these databases. Detail
is provided on all SQL-related issues, including creating efficient and
relationally correct databases while enforcing business and referential
rules, security, and data integrity. Many SQL examples using Informix
SQL extensions are provided.

• It explains all the current ways to build applications that access an
Informix database system. Great detail is given on how to use embedded
SQL to build applications in programming languages such as COBOL and
C. A section of this book is dedicated to all the aspects of building

applications using INFORMIX-4GL. A similar section is dedicated to
building applications using another Informix tool called NewEra.

• It also covers other Informix-related issues: for example, storing and
managing other forms of data such as images and other multimedia data
types. In addition, a section is included on using Informix products to build,
run, and provide database stored content to a Web site.

Informix Unleashed uses step-by-step procedures interspersed with figures and examples
to further explain each issue.

Foreword

Over the past 10 years, those of us who have been involved with databases and database
applications have seen a remarkable transformation occur in the functionality databases
have been required to provide. In addition to payables records, order and customer
information, and inventory counts, databases may now need to store more complex pieces
of data such as video or time-series calculations. The focus of the database environment
has also expanded (and grown in size) to include being an analytical tool to find
weaknesses in your own organization or in the performance of your competitors. With
this shift and growth of responsibilities, the database engine and related technologies
must now support an enterprise-wide, mission-critical computing environment.

Deciding which database product to use has a significant impact on the ability of your
company to execute its strategies, to provide the appropriate level of service to your
customers, and, ultimately, to survive in this highly competitive business environment.

Informix Software and its products have undergone a similar transformation during this
same 10 year period. My experience with Informix products began back when all they
had was the INFORMIX-4GL programming language and a C-ISAM-based flat-file-
oriented database engine. Through the years, other products were launched. Wingz and
the Turbo engine stand out in my memory, along with INFORMIX-4GL/GX, the
precursor to NewEra.

Finally, the INFORMIX-OnLine Dynamic Scalable Architecture engine was born. With
this engine product, what was once a little-known, second-level database vendor could
legitimately compete--and win--against all other database vendors on almost any scale
you would care to use. Informix's market share began to grow at a tremendous rate as the
engine began to prove itself in real-world applications as the best product on the market.
Informix increased its technological lead when it purchased and integrated Illustra's
object-oriented server product into OnLine DSA to create INFORMIX-Universal Server.
Where that product will go and what it will be able to do is limited only by the
imagination of the people using it.

Informix now stands as the number-two database vendor in the world in terms of total
revenue, yet it does not compete in as many markets as its competitors. This is an
indication of how powerful the Informix products are, and how well received they have
been. Almost without exception, analysts and objective reviewers have been highly
complimentary of the changes Informix has made to its most important products. Those
of us who have toiled in the shadows of other (now defunct or almost defunct) vendors
are beginning to feel a little bit vindicated in placing our trust in Informix and its overall
product strategies laid out over the past several years.

The fact that a general technical publisher like Sams would produce the book you are
holding in your hands is another example of the respect Informix products--and those
who use them--have in the marketplace. Written to provide a broadbrush, general
overview of Informix's products, this book contains a lot of valuable information that you
can use whether you are new to Informix's products or have been using them for awhile.
The authors who contributed to this volume live in England, Australia, New Zealand,
Latin America, and the United States. They write about more than just the dry technical
details; they share their experiences and expertise developed, in part, because of their
diverse backgrounds. Being a published author myself, I know how hard this is to do. I
recognize and commend them for their work.

Included at the back of this book is a CD-ROM that contains a number of tools, utilities,
and scripts you will find helpful. Use them to automate tasks and increase your
productivity. Study them as well to increase your understanding of how to work with
Informix's products.

With the Informix database technology, and market share, continuing to expand, Informix
Unleashed will help get you up to speed with the knowledge and information you need to
use Informix products successfully in your particular environment. Good luck and have
fun! Carlton Doe

President, International Informix Users Group

http://www.iiug.org

PART I – INTRODUCTION
• Chapter 1 - Informix Company Overview
• Chapter 2 - Informix's Future Direction

• Chapter 3 - Database Concepts

- 1 -

Informix Company Overview

• Informix Software, Inc.
o Market Share from Technological Innovation
o Mind Share from Strong Partnerships

• The Early Years: 1980-1988
o A User-Friendly Database System

• Informix Phase Two: New Leadership
o Technology Objectives
o Entering New Markets with INFORMIX-OnLine
o Championing Open Systems and Standards
o Reaching Out to Partners and to the Public
o Growing Into Distributed Client/Server

• The Multithreaded Revolution: OnLine Dynamic Server
o Aggressive Growth in Sales and Marketing
o A New Era in Tools
o Interoperability Goals: Gateways and Connectivity

• OnLine Dynamic Server Today
o Modular Subsystems

• Data Warehousing and Decision Support
o Data Analysis with ROLAP

• Informix and the Internet
o Partnering with Netscape

• Acquiring Illustra: The Web Is Wide
o The Need for INFORMIX-Universal Server

• Overview of Current Products
o Database Servers
o Enabling Technology: Connectivity Products
o Relational OnLine Analytical Processing Technology
o Application Development Tools
o Third-Party Products

• Summary

by Sandra L. Emerson

NOTE: This chapter is based on information from the quarterly customer
newsletter Informix Times (formerly Spectrum) and from Informix Annual
Reports 1987-1996. Thanks to Michael Pooley, Marketing Communications
Manager, for making these archives available.

Informix Software, Inc.

Informix Software, Inc.--with a 48 percent database revenue growth rate for 1996, annual
revenues of close to a billion dollars, and over 4,500 employees worldwide--has
successfully built its business on two strengths: innovative technology and strong
worldwide partnerships.

Market Share from Technological Innovation

Informix based its relational database management products on open systems and
standards such as industry-standard Structured Query Language (SQL) and the UNIX
operating system. Two notable innovations have propelled Informix to an industry-
leading position in database management technology: the parallel processing capabilities
of Informix Dynamic Scalable Architecture (DSA) and the ability to extend relational
database management to new, complex data types using the object-relational powers of
INFORMIX-Universal Server.

Dynamic Scalable Architecture

Dynamic Scalable Architecture is multithreaded, supporting many users and many tasks
with a single operating system process rather than requiring one process per user. This
multithreading layer opens the way for concurrent tasks to be performed in parallel,
which can significantly enhance throughput and performance. The fact that Informix built
its own multithreading layer instead of relying on operating system thread support gives
servers based on the Dynamic Scalable Architecture the ability to make maximally
efficient use of a wide variety of hardware and software environments.

Object-Relational Database Management

Object-relational database management is embodied by INFORMIX-Universal Server,
which combines the functionality of INFORMIX-OnLine Dynamic Server with the
object-relational Illustra Server. Because the designers of these servers (both influenced
by Dr. Michael Stonebraker's Postgres project at the University of California at Berkeley)
shared certain design goals and made similar decisions on aspects of architecture and
modularization, the two technologies comfortably merged. The result is an extensible
database management system, or DBMS, that can manage all the structured and
unstructured data in an enterprise, and can adapt to new data management challenges as
they arise.

INFORMIX-Universal Server is extended with DataBlade modules, which are plug-in
components that add functionality for new data types and applications. One or more
DataBlade modules can be installed in INFORMIX-Universal Server, as desired, to
facilitate tasks ranging from audio library management to cyberpublishing to geographic
information systems.

Mind Share from Strong Partnerships

Informix has always valued its partnerships with key application vendors, hardware
manufacturers, systems integrators, and value-added resellers. More than 4,500 software
application partners, software tools partners, service partners, and hardware and operating
system partners participate in the Informix Solutions Alliance. Partners are supported
with early access to software, Internet and intranet resources, training, conferences, and
preferential access to the Informix Certified Professional program.

Long-standing alliances with partners worldwide provide Informix with a solid reputation
in the developer and user communities. In addition, partners connect Informix to new
lines of business and industry sectors. Rather than lose focus on its core competency of
databases, Informix has created profitable joint ventures in the industry areas of retail,
telecommunications, World Wide Web, workflow, document management, imaging,
multimedia, and financial services.

Informix as a Global Enterprise

Informix has more than 118 sales offices in 42 countries, with significant development
and support activity in England, Ireland, Western and Eastern Europe, India, and Asia
Pacific. In most years since Informix became a public company in 1986, more than half
of annual net revenues have come from Informix's international operations.

With the formation of development and localization centers beginning with Singapore
and Europe in 1993, and continuing with major investments such as the India
Development Center, Informix has continually strengthened its commitment to
international customers. Product features such as Informix Global Language Support
(GLS) let developers localize applications for language, alphabet, and cultural features
such as date, time, and currency. In recent years, Informix has made key acquisitions and
business alliances with dozens of additional international distributors and partners.

Initiatives in Service and Support

In keeping with Informix's broad market and platform coverage, the company provides
customers, prospects, developers, and end users with many avenues for obtaining
technical and market information. As might be expected from a company that supplies
key technology for the Internet and the World Wide Web, the external Web site at
www.informix.com is increasingly seen as the main vehicle for distributing information
of all types. The Informix Web site, driven by the Informix Web DataBlade module and
INFORMIX-Universal Server, contains links to the following:

• Corporate information and events (conferences, white papers, user
groups)

• Partners and industries

• Business solutions

• Products and technology

• Services and support (tech pubs, training, and tech support)

• News room (press releases)

• Cyber store (downloadable software)

A random browse through the Informix Web pages could lead to features such as a video
on Informix's technical sponsorship of the MILIA 97 International Publishing and New
Media Market property licensing conference, to the monthly Cyber Planet online
magazine, to a technical brief on INFORMIX-OnLine Dynamic Server 7.22, or to an
online registration form for an upcoming event. Informix has had a presence on the Web
since January 1995, and the company is using this medium with considerable
commitment and enthusiasm.

The Early Years: 1980-1988

In 1980, Roger Sippl and Laura King founded Relational Database Systems (RDS) in
Sunnyvale, California. In February 1988, RDS merged with Innovative Software of
Overland Park, Kansas, which had been founded by Mike Brown and Mark Callegari in
1979. The 1988 merger, which was the first major acquisition by Informix, was an effort
to broaden platform coverage for the Informix DBMS and add needed end-user tools. The
tools (initially Macintosh-based) never did exactly meet the executives' expectations, but
the acquisition could be interpreted as a welcome gesture of support for the end user.

A User-Friendly Database System

Roger Sippl and Laura King founded Relational Database Systems at a time when both
relational database management and the UNIX operating system were just beginning to
be encountered on mini- and micro-computers. From the beginning, the company sought
a broad market: Rather than tailoring the DBMS for mainframe hardware and proprietary
operating systems, RDS built a product that used an open operating system, ran on small,
general- purpose hardware, used a standard programming interface (SQL), and supplied a
number of end-user tools and utilities. RDS was among the first companies to bring
enterprise-level database management out of the computer room and onto the desktop.

The corporate culture that RDS fostered during its first decade--as it grew to a size of
several hundred employees and $150 million in revenues--formed the basis for Informix
Software, Inc., which still promotes open systems and standards, aims at a very broad
market, and widely distributes information, tools, programs, and enabling technologies.

Informix Phase Two: New Leadership

The year 1990 marked the end of the first decade of Informix's growth. Phil White, who
joined Informix as chief executive officer in January 1989, had a remarkable first year at
the helm. Revenues for 1989 grew by no less than 40 percent compared to 1988,
accompanied by a 338 percent increase in earnings and a 300 percent increase in earnings
per share for stockholders.

White redefined corporate strategy and made the hard decisions that ultimately resulted in
the financial turnaround of the company. (Early in 1991, Informix voluntarily changed its
revenue recognition policy, which resulted in a huge restatement of revenue for fiscal
1990; this painful but necessary change in accounting practices provided a sound basis
for the unbroken string of profitable years that followed.) For several years in a row, Phil
White has been ranked among the nation's top executives by a number of industry
publications: he was named CEO of the Year by magazine from 1993-1995.

Technology Objectives

In 1990, early in his tenure as CEO, Phil White and his executives forged the corporate
mission statement that is still in force in 1997: "The mission of Informix is to provide,
through partnerships worldwide, the best technology and services for developing
enterprise-wide data management applications for open systems."

White and his team also set forth a number of specific product and corporate objectives.
Informix pledged to provide the following:

• A robust server running on an open operating system such as UNIX

• Clients running on all popular desktop platforms

• Support for easy-to-use information retrieval tools

• Interoperability of SQL among major database vendors

• A global presence enabled by strong relationships with distributors and
partners

• Entry into a broad spectrum of industries through partners and channels

Entering New Markets with INFORMIX-OnLine

In 1990, the original INFORMIX-SE (Standard Engine) database server was joined by
INFORMIX-OnLine, which added features such as fault-tolerant online transaction
processing, logging, and recovery, in addition to support for multimedia database
applications. The (loosely defined) multimedia support was provided by new BLOB

(Binary Large OBject) data types such as BYTE and TEXT. Binary large object types
permit users to store up to two gigabytes of unstructured data such as text or image data.
Like other vendors, Informix stores only the pointer to a BLOB in the primary table and
puts the BLOB data in a storage space of its own. Informix was one of the first vendors to
implement BLOB types for relational database management.

Although the INFORMIX-OnLine multimedia database was definitely not the same as an
object-oriented database, in which a variety of complex relationships are supported
among objects having attributes and behavior, the BLOB did provide a general-purpose
method of incorporating more complex data into the core database management system.

Championing Open Systems and Standards

Informix persistently championed open systems such as UNIX and industry-standard
SQL. The 1990s marked the decade when UNIX finally became a popular commercial
operating system, nearly 20 years after its inception. UNIX ran on a wide variety of
general-purpose hardware; a UNIX multiprocessor could provide the power of
mainframe-level processing at a fraction of the cost.

Led by founder and chairman Roger Sippl, Informix drove the effort to make SQL-based
DBMSs interoperable. The SQL Access group, founded in 1989, included among its
members Hewlett-Packard, Informix, Ingres, Microsoft, Oracle, Sun, Sybase, and
X/Open (itself an open standards advocacy group). Roger Sippl resigned from Informix
in December 1992 and soon thereafter founded Visigenic, an object request broker
(ORB) technology company.

Reaching Out to Partners and to the Public

The InformixLink information system was the first of several information services for
partners and support customers. InformixLink is now available through the Web, on CD-
ROM, or as "InformixLink Classic" (the original dial-up electronic bulletin board
version). In addition to InformixLink, Informix provides technical publications on CD-
ROM and on the Web, support publications such as and , and many other information
dissemination projects.

Informix, intent on getting its technology message out, even equipped a 72-foot tractor-
trailer truck as a rolling demo station! In the early 1990s, the Informix truck would
reliably appear at conferences and events, bearing a variety of personal computers and
workstations running Informix-based applications.

Since 1992, the Informix Worldwide User Conference has been a major arena for
reaching the user, developer, and partner communities. At the first Informix Worldwide
User Conference in 1992, Informix expected 1,000 attendees and had 1,500; there were
3,000 in 1993; and at the 1997 conference, Informix expects 6,000 attendees from all
over the world.

The Informix Certified Professional Program was launched in 1995 to certify Informix
application developers and database administrators. In 1997, Informix created the
Informix Developers Network as a Web-enabled community for sharing information and
getting early access to software.

Growing Into Distributed Client/Server

The server and connectivity products that made up INFORMIX-OnLine 5.0 supported
client/server computing and distributed transaction processing, with improved
performance, bandwidth, and scalability. New features in OnLine 5.0 included two-phase
commit, stored procedures, the DB-Access utility, and Level 1 FIPS compliance
(certification of standard SQL). To complement its server products, Informix increasingly
sought solutions from outside vendors in the areas of CASE modeling, transaction
monitoring, and database gateways (DRDA support between Informix and IBM
mainframes running DB2).

Late in 1992, Informix added trigger support to the 5.01 release of INFORMIX-OnLine
and INFORMIX-SE, adding a valuable tool for enforcing consistent application of
business rules and conditions, and supplementing the ANSI-compliant declarative
integrity constraints that had previously been implemented in 5.0.

The Right Tools for the Job

In 1992, the Informix product family included client tools such as INFORMIX-SQL,
INFORMIX-ESQL/C, and INFORMIX-4GL; connectivity products such as INFORMIX-
NET; INFORMIX-NET PC; and servers including INFORMIX-OnLine for UNIX and
INFORMIX-SE for DOS, UNIX, and NetWare. In fact, the single-threaded INFORMIX-
SE engine is still supported in 1997 as a bulletproof, load-and-go database engine that
can run on practically anything.

The search for a breakthrough client tools product continued in the early 1990s. Although
Informix had delivered successful SQL tools products such as INFORMIX-SQL and
INFORMIX-4GL, the company hoped to develop a next-generation client tool that could
capture a larger market share of the tools business.

The Wingz and HyperScript tools that Informix had acquired in 1988, and which had
been through several incarnations, were sold to Investment Intelligence Systems
Corporation (IISC) of London, UK, in 1995.

The Money Will Follow

The tools-side disappointments did little to affect the world's good opinion of
INFORMIX-OnLine and other innovative Informix technologies. In 1992, Informix and
Kmart were awarded the prestigious Computerworld Smithsonian Award for the
development and implementation of the Kmart Information Network (KIN II). KIN II
allowed store employees to scan a product code using a hand-held scanning device and

access up-to-the-minute information about the product from the INFORMIX-OnLine
database via radio waves. This early application of wireless technology was on the
leading edge at the time. Other 1992 awards included Reader's Choice Awards (Best
4GL) from and (INFORMIX-OnLine 5.0). Informix continues to win industry awards: In
1997, Informix was named "Most Influential Database Vendor" by (Illustra won the same
award in 1996).

The Multithreaded Revolution: OnLine Dynamic Server

The earthshaking events of 1993-1994 were the advent of the multithreaded INFORMIX-
OnLine Dynamic Server (planned for a series of releases) and the integration of the
server family under the rubric Dynamic Scalable Architecture (DSA). The DSA
architecture creates a database system that can scale up to increased demands,
accommodating more users, more data, and more processors. With DSA, Informix
servers could suddenly handle hundreds of concurrent users, online transaction
processing (OLTP) volumes in the tens-of-gigabytes range, and decision support in the
hundreds-of-gigabytes range, across the full spectrum of uniprocessor and multiprocessor
hardware.

The secret of this scalability is performing tasks in parallel--for example, parallel queries,
parallel index creation, parallel joins--and taking advantage of multiprocessing hardware
to break each individual task into subtasks. DSA can partition tables across disks and
tasks across multiple CPUs, resulting in a near-linear improvement in processing times as
disk drives are added.

In addition to parallel processing, the INFORMIX-OnLine Dynamic Server of 1994
supported data replication and other facilities for enterprise-wide client/server computing.
According to an Informix advertisement of the time, the following database management
activities could be done in parallel (on more than 25 platforms): OLTP, queries, indexing,
load, backup, recovery, parallel resource management and control, parallel hash joins,
and static database partitioning.

Customers and partners experienced substantial performance gains with the new and
improved parallel processing. AT&T Network Systems Group developed an enhanced
911 emergency information system using INFORMIX-OnLine Dynamic Server and
reported that their database build time was reduced from two weeks to 30 minutes. An
AT&T subsidiary reported that database load time decreased from 4 hours to 10 minutes.

Aggressive Growth in Sales and Marketing

With the OnLine Dynamic Server product in its arsenal, Informix increased its
investment in its sales and marketing organizations. The company created the position of
Vice President of Marketing to champion the aggressive marketing efforts that could take
Informix to the next level.

Informix was the first database company to offer user-based pricing: a pricing structure
that is supposed to be easy to understand and administer, removing confusing options and
tiers. The user-based pricing scheme bundles the core server and connectivity
functionality, and charges customers according to the number of users they want to
support, at a fixed price per user.

The Beginnings of the Benchmark Wars

If you're going to do battle in the database market, you have to keep posting performance
wins with the industry-standard benchmarks administered by the Transaction Processing
Council. Informix published its first benchmarks in 1991, with scores from TPC-A and
TPC-B for measuring response time and throughput of transactions. (TPC-A simulates a
single-user environment; TPC-B simulates a batch environment; TPC-C simulates a
multi-user environment doing real work.) By 1994, INFORMIX-OnLine had already
been used in 15 TPC-C benchmarks. Recent ads proudly display its top-of-the-charts
TPC-C results; TPC-D results are also available.

Targeted Industries and Markets

The major market sectors for Informix include finance, manufacturing, retail,
telecommunications, hospitality, health care, oil and gas, media, transportation, and
government. Because of its early emphasis on partnering and broad support of lower-end
platforms, Informix counts such household names as Wal-Mart, Kmart, Good Guys, and
Home Depot among its customers in the retail sector.

Moving Toward the Microsoft Demographic

Although Informix server technology began on the UNIX operating system, the company
displayed early support for Microsoft operating environments. Beginning with
INFORMIX-SE for DOS, Informix ported INFORMIX-SE and INFORMIX-OnLine to
Windows NT; it supports knowledge base products such as InformixLink on Windows
and Windows NT; and it supports client tools such as INFORMIX-4GL for Microsoft
Windows. In a creative foray into the Microsoft server market, INFORMIX-SE (the old
reliable) was shipped bundled with Windows NT. CEO Phil White said in a recent
interview that Informix intends to port the entire product line to Windows NT.

The DSA server family is now routinely ported to Windows NT, where applicable.
INFORMIX-OnLine Workgroup Server and Workstation Server can be downloaded from
the Informix Web site. The effort of developing products for the NT market has resulted
in some useful features such as improved installation and administration tools.

A New Era in Tools

Informix introduced the INFORMIX-NewEra client tool in the third quarter of 1994.
INFORMIX-NewEra is an open, graphical, object-oriented application development
environment for creating and deploying production-level applications. NewEra includes

its own compiled language and an application repository for class libraries (new and
existing C and C++ class libraries). NewEra lets application developers partition their
application processing among server, middleware, and client. With NewEra, you can
create specialized application servers that act as an intermediary between client and
server tasks.

NewEra application layers can handle the interface with the database server, permitting
developers to use their choice of client tools such as Java, ActiveX, or Visual Basic. The
Informix tools strategy is evolving into a mix-and-match component approach, which
should fit well with Internet and intranet application development approaches. In 1997,
Informix acquired CenterView software, a developer of Visual Basic tools.

Interoperability Goals: Gateways and Connectivity

Middleware support by Informix and other vendors' products lets an Informix database
environment interoperate with databases from other vendors, including mainframe,
legacy, and proprietary systems. A database company's connectivity strategy is the
plumbing--a collection of pipes and fittings--a developer uses to connect all the desired
pieces of a distributed database management system. Informix's latest efforts in
connectivity products have been to integrate more of the products into a single bundle,
for ease of use. INFORMIX-Enterprise Gateway provides transparent access to multiple
enterprise data sources such as ODBC, DRDA, NT, Macintosh, Motif, OS/2, and UNIX.

OnLine Dynamic Server Today

INFORMIX-OnLine Dynamic Server 7.x stepped up from the Release 6 foundation with
full-blown Parallel Data Query (PDQ), improved support for local table partitioning,
dynamic memory allocation and management, and high-availability data replication. The
product suite also supplied more comprehensive database administration and monitoring
tools. Wherever possible, the 7.x release sought to enhance the scalable performance
enabled by its parallel processing architecture.

The appearance of 7.x so soon after Release 6.0 confirmed another key OnLine Dynamic
Server design decision--namely, incremental releases. The dramatically shorter six-month
development cycle, resulting in releases every nine months, allowed Informix to put a
huge amount of new product into the market.

Modular Subsystems

The INFORMIX-OnLine Dynamic Server architecture isolated the abstract type manager
into its own subsystem so that adding data types would affect only a small portion of the
code. This modularization made it possible to merge with the Illustra extensible-data type
system without massive disruption to OnLine Dynamic Server.

Industry analysts have pointed out that both the Illustra Server and OnLine Dynamic
Server were influenced by Dr. Michael Stonebraker's Postgres project at UC Berkeley.

Dr. Stonebraker, the founder of Illustra, became Chief Technical Officer of Informix after
its merger with Illustra in 1996.

Data Warehousing and Decision Support

Data warehouses and data marts are supported both by INFORMIX-OnLine Dynamic
Server and by the INFORMIX-OnLine Extended Parallel Server (XPS). XPS supports
specialized hardware and operating environments: loosely coupled clusters and massively
parallel processing, and shared-nothing computing environments, including clusters of
SMP systems and MPP systems. The DSA parallel processing architecture is well suited
to handling a data warehouse's extensive data queries, index scans, loading, indexing,
updates, inserts, deletes, and backup and recovery.

XPS-caliber database management is demanded by customers who need to process and
manage very large amounts of data in OLTP, decision-support systems, data
warehousing, batch processing, and other applications. Data warehousing--deriving
market intelligence from enterprise-wide collections of current and historical data--is an
activity being keenly pursued by the Fortune 2000.

Data Analysis with ROLAP

Making market sense out of a data warehouse usually involves extracting a snapshot of
the data for use with an OnLine Analytical Processing (OLAP) tool. To handle this part
of the data warehousing effort, Informix acquired the Stanford Technology Group in
1996 and created the MetaCube ROLAP (Relational OLAP) engine, which is
multidimensional OLAP software integrated with OnLine Dynamic Server.

ROLAP begins with the premise that data does not need to be stored multidimensionally
to be viewed multidimensionally. While resting firmly on the relational model, ROLAP
presents users with a multidimensional view that makes logical sense in the context of
their complex queries. The INFORMIX-MetaCube family (based on the Stanford
Research Group technology) is a collection of tools including an analysis engine and an
ad hoc decision support tool, a tool that exports data warehouse data to the Excel
spreadsheet program, and a graphical management and administration tool.

Informix and the Internet

Informix opened for business on the World Wide Web early in 1995 and later that year
announced the prospective merger with Illustra. Essentially, when Informix turned
toward the Internet, it never looked back. Most of the Informix product line today is
aimed at Internet application development in one form or another.

Partnering with Netscape

An early partnership with Netscape spurred Informix Internet product development
efforts. Marc Andreessen, Netscape's founder and chief technology officer, gave the 1995

Informix Worldwide User Conference keynote address; Andreessen continues to make
frequent appearances at Informix conferences and events.

Informix and Netscape have created several bundled products. For example, INFORMIX-
SE formed the foundation technology for Netscape's I-Store product. As an easy-to-use-
and- administer, load-and-go database server, I-Store targeted the individual business
owner and provided the integrated data management, online credit card authorization, and
billing and order-processing capabilities required for an electronic storefront.

Netscape LiveWirePro is a bundle integrated with INFORMIX-OnLine Workgroup
Server. The Netscape Internet Applications (AppFoundry) family of turnkey software
solutions also incorporates Informix database technology.

Other Informix Web efforts include Web Interface Kits for 4GL and NewEra
(downloadable from the Cyber Store on the Informix Web site) and the announced
Jworks tools for integrating Java-based applications with Informix database technology.

In addition to the Netscape alliance and Web-enabling technologies, the acquisition of
Illustra is the most significant step that Informix has taken toward creating a family of
products for the Internet, intranets, and the World Wide Web. The INFORMIX-Universal
Server supports the Informix Web DataBlade module as a complete package for
developing INFORMIX-Universal Server Web applications.

Acquiring Illustra: The Web Is Wide

For Informix, 1996 was The Year of the Web: With the acquisition of Illustra, Informix's
potential on the World Wide Web exploded. Suddenly, Informix was the database
management system best suited to the Web. Whenever a new type of data or new access
method is required, a developer can meet the challenge by creating another DataBlade
extension for INFORMIX-Universal Server, the hybrid object-relational DBMS that in
fact represents the latest incarnation of INFORMIX-OnLine Dynamic Server.

The Need for INFORMIX-Universal Server

Up to 85 percent of all data that could be managed is unstructured, complex, and
probably not yet digitized. INFORMIX-Universal Server provides scalable high-
performance support for new and increasingly complex types of data in a way that can be
extended by Informix, third parties, or customers. INFORMIX-Universal Server's
greatest value lies in enabling users to store all desired corporate and personal data in the
same system as their corporate data. INFORMIX-Universal Server goes beyond storage
of BLOBs, supporting information retrieval functions on the content of these large
objects. With INFORMIX-Universal Server, the user can search an image file to find "all
images that look like [this sample] that were created by a graphic artist living in Canton,
Ohio" and other queries possible only in an object-relational system.

The Edge of Extensibility: DataBlade Modules

Despite skeptics who claimed that Informix would never be able to integrate Illustra with
OnLine Dynamic Server, INFORMIX-Universal Server shipped on schedule in
December 1996, to great fanfare. DataBlade partners provided DataBlade modules
ranging from 2D/3D spatial DataBlade modules, to text and image DataBlade modules, to
time series modules, to modules for geographic information systems.

In its campaign to proselytize DataBlade module development, Informix was vastly more
successful than in its attempt to foster class library development for NewEra. DataBlade
modules are practical, possible, and desirable, and Informix is standing behind them with
a full DataBlade Developers Program including software, training, support, and joint
marketing opportunities.

Currently, 29 DataBlade modules have been released as full-fledged products, and dozens
more are under development.

Cyberpublishing and Event Support

INFORMIX-Universal Server is also spawning a new Web enterprise: live, real-time
coverage of events anywhere in the world. The concept of was pioneered by
photographer Rick Smolan, who used the Illustra-Server for his February 1996 Web
event "24 Hours in Cyberspace." At the July 1996 Informix Worldwide User Conference,
"24 Hours in Cyberspace" became "72 Hours in Chicago." Everything from conference
keynote addresses to instant quotes from conference attendees went into the
cyberpublishing mix. This live project showed how Informix technology on the Web
makes it possible to manage and publish digital content from anywhere in the world and
to update that content in real time. As an Informix promotional tag line puts it, "If you
can imagine it, we can manage it."

Overview of Current Products

The following overview of Informix Current Products is derived directly from the
"Informix At A Glance" article on the Informix Web site and from the latest Informix
Technology Overview.

Database Servers

The following sections cover the Informix Dynamic Scalable Architecture family of
servers.

INFORMIX-Universal Server

INFORMIX-Universal Server is the industry's only fully extensible that is designed
explicitly to handle rich, complex data types. INFORMIX-Universal Server combines the
power and scalability of Informix's Dynamic Scalable Architecture with the extensibility

of DataBlade technology--enabling the intelligent management of complex data while
preserving the superior performance and manageability that's required for OLTP-
intensive and data warehousing applications.

DataBlade Modules

DataBlade Modules are plug-in object extensions that expand the general-purpose
capabilities of INFORMIX-Universal Server to manage complex data types such as
video, audio, image, spatial, time-series, and Web (HTML). DataBlade modules provide
data storage and management functionality attuned to the needs of a specific application
and can be used independently or in conjunction with one another. Customers can choose
from a wide selection of Informix and third-party DataBlade modules, or they can design
their own to meet their unique data management requirements. Currently, 29 DataBlade
modules are available, and dozens more are under development. In addition, through the
DataBlade Developers Program, Informix provides DataBlade partners with a DataBlade
Developers Kit that assists them with building DataBlade modules and ensures that all
DataBlade code meets Informix's quality assurance standards.

INFORMIX-OnLine Extended Parallel Server (OnLine XPS)

INFORMIX-OnLine Extended Parallel Server (OnLine XPS) is Informix's powerful,
multithreaded database server that is designed to exploit the capabilities of loosely
coupled or shared-nothing computing architectures, including clusters of symmetric
multiprocessors and massively parallel processors. OnLine XPS is designed to support
large database environments for OLTP, data warehousing, imaging, document
management, and workflow database applications. In addition, OnLine XPS delivers new
features, including enhanced parallel SQL operations, high availability capabilities,
enterprise replication, and a suite of systems management tools.

INFORMIX-OnLine Dynamic Server

INFORMIX-OnLine Dynamic Server is Informix's powerful, multithreaded database
server that is designed to exploit the capabilities of both symmetric multiprocessor and
uniprocessor architectures to deliver breakthrough database scalability, manageability,
and performance. OnLine Dynamic Server provides superior transaction processing and
optimal decision support through parallel data query (PDQ) technology, high availability,
data integrity, mainframe-caliber administration, enterprise replication facilities,
graphical monitoring tools, client/server and Web connectivity, and multimedia
capabilities--all within a single package.

INFORMIX-OnLine Workgroup Server

INFORMIX-OnLine Workgroup Server is the industry's first complete database solution
for developing and deploying client/server and Web/intranet applications across an
organization (that is, distributed workgroups and cross-functional departments). It
combines a high- performance, scalable, multithreaded database server; complete

connectivity for client/server and desktop applications; and Web/intranet services--all
within a single package featuring easy-to-use administration and configuration tools.

INFORMIX-OnLine Workstation

INFORMIX-OnLine Workstation is a single-user, cost-effective platform for the
development and deployment of workgroup applications. Like INFORMIX-OnLine
Workgroup Server, OnLine Workstation combines a database server, complete
connectivity for client/server and desktop applications, and a Web/intranet server and
browser into a single package with easy-to-use administration and configuration tools.
OnLine Workstation allows for development on lower-cost platforms and can serve as an
entry point to the full OnLine Dynamic Server family.

INFORMIX-OnLine/Secure Dynamic Server

INFORMIX-OnLine/Secure Dynamic Server offers all the capabilities of OnLine
Dynamic Server, with added features for multilevel secure applications.

INFORMIX-SE

INFORMIX-SE is an easy-to-use, low-maintenance, "load-and-go" database server that
provides excellent performance, data consistency, client/server capabilities, and SQL
compliance with minimal database administration.

C-ISAM

C-ISAM is Informix's indexed sequential access method library of C functions for
creating and using indexed sequential files.

Enabling Technology: Connectivity Products

Informix's array of enabling technology and connectivity products includes the products
covered in the following sections.

INFORMIX-Universal Web Connect

INFORMIX-Universal Web Connect is an open platform that provides high-performance
connectivity between Web servers and databases. Universal Web Connect enables Web
developers to create intelligent Web applications that dynamically deliver multimedia-
rich, tailored Web pages to a corporation's Internet, intranet, and extranet users. Features
include an Application Page Builder API, state and connection management capabilities,
subscription and notification features, Java connectivity, and a security interface.

INFORMIX-Enterprise Gateway Manager

INFORMIX-Enterprise Gateway Manager is a member of the INFORMIX-Enterprise
Gateway family, a complete set of standards-based gateways. Enterprise Gateway
Manager is a high-performance gateway solution that allows Informix application users
and developers to transparently access Oracle, Sybase, DB2, and other non-Informix
databases.

INFORMIX-Enterprise Gateway for EDA/SQL

INFORMIX-Enterprise Gateway for EDA/SQL allows tools and applications running on
UNIX and Microsoft Windows to access data located anywhere in your enterprise. It
provides both SQL and remote procedure call access to over 60 relational and
nonrelational data sources on 35 different hardware platforms and operating systems.

INFORMIX-Enterprise Gateway with DRDA

INFORMIX-Enterprise Gateway with DRDA integrates IBM relational databases (that is,
DB2, DB2/400, and DB2/VM) with Informix applications on open systems without the
need for host-resident software.

INFORMIX-ESQL for C and COBOL

INFORMIX-ESQL for C and COBOL embeds SQL statements directly into the code of
your favorite third-generation languages.

INFORMIX-CLI

INFORMIX-CLI is a call-level interface that enables application developers to access
Informix database servers dynamically, eliminating the need for an SQL preprocessor and
for the recompilation of source code for each independent data source. Based on
Microsoft's Open Database Connectivity (ODBC) architecture, INFORMIX-CLI
provides an industry-standard means of connecting to Informix data.

INFORMIX-Connect

INFORMIX-Connect provides the runtime libraries required for INFORMIX-ESQL for
C and COBOL and INFORMIX-CLI.

INFORMIX-DCE/NET

INFORMIX-DCE/NET is a Distributed Computing Environment (DCE)-based
connectivity product that allows users to access Informix databases transparently and
other relational databases via ODBC, while taking advantage of DCE features such as
security and naming services.

Relational OnLine Analytical Processing Technology

Informix ROLAP strategy is founded on the MetaCube product line, as outlined in the
following sections.

INFORMIX-MetaCube Product Suite

INFORMIX-MetaCube Product Suite is a family of decision-support software designed
specifically for large-scale data warehouses. The product suite is based on an open,
extensible architecture that integrates tightly with Informix DSA technology. The
MetaCube family includes the following products:

• INFORMIX-MetaCube Analysis Engine is a sophisticated ROLAP engine
that provides the backbone for high-performance data warehouse
applications. The MetaCube engine takes advantage of the relational
power of your Informix database, eliminating the need to manage and
maintain a separate proprietary multidimen-sional database.

• INFORMIX-MetaCube Explorer is an ad hoc decision-support tool for end
user access and analysis. MetaCube Explorer provides data warehouse
access, reporting, charting, and desktop productivity application
integration through a sophisticated, yet easy-to-use, drag-and-drop
interface.

• INFORMIX-MetaCube for Excel brings MetaCube-based
multidimensional analysis of very large data warehouses to the Excel
environment, allowing you to take advantage of the Excel tools that your
organization understands.

• INFORMIX-MetaCube Warehouse Manager offers a point-and-click
graphical tool for managing metadata--information that describes your
data warehouse--in a logical, user-friendly manner.

• INFORMIX-MetaCube Warehouse Optimizer analyzes and recommends a
data warehouse aggregation strategy to improve query performance and
overall usability of the data warehouse.

• INFORMIX-MetaCube Scheduler is an easy-to-administer batch processor
that manages any server-based task, such as a query or data load.

• INFORMIX-MetaCube QueryBack executes long-running user queries in
the background while managing recurring jobs with intelligence about
relative time.

• INFORMIX-MetaCube Aggregator creates and maintains aggregates in
the data warehouse, providing for incremental as well as full aggregation
through summarization, resulting in better performance.

• INFORMIX-MetaCube for the Web brings the MetaCube analysis
capabilities to your intranet via integration with popular Web servers and
Web browsers.

Application Development Tools

Informix's current application development products, such as INFORMIX-NewEra and
INFORMIX-4GL, have been incorporated into the Universal Tools Strategy announced
in March of 1997. The Universal Tools Strategy gives application developers a wide
choice of application development tools for Informix database servers, permitting
developers to take a modular, component-based, open tools approach. The INFORMIX-
Data Director family of plug-in modules lets developers extend, manage, and deploy
applications for INFORMIX-Universal Server using their choice of Informix and other
industry-standard tools.

The following products are included under the Universal Tools Strategy:

• INFORMIX-Data Director for Visual Basic

• INFORMIX-Data Director for Java (formerly Jworks)

• INFORMIX-NewEra

• INFORMIX-4GL

• INFORMIX-Java Object Interface (JOI) (formerly Java API)

• INFORMIX-JDBC

• INFORMIX-C++ Object Interface (COI)

• INFORMIX-CLI

• INFORMIX-ESQL/C

• INFORMIX-Developer SDK

The following sections describe currently available Informix tools.

INFORMIX-NewEra

INFORMIX-NewEra builds client/server, Web-enabled, and dynamic content
management applications. NewEra features a component-based, object-oriented
architecture with an impressive set of next-generation features including a powerful and
flexible database application language; facilities for distributed, partitioned applications,
and team-oriented development; OLE and ActiveX support and Java code generation;
and a comprehensive suite of productive visual programming tools.

INFORMIX-NewEra ViewPoint Pro

INFORMIX-NewEra ViewPoint Pro is a suite of graphical development and database
administration tools designed to simplify the creation of small- to mid-range database
applications. It features a graphical forms painter, report writer, and application builder
(for creating user menu systems), as well as a database schema builder, SQL editor, and
builder (for creating highly specialized views to the database that simplify the access,
retrieval, and analysis of corporate data). SuperViews are used in NewEra, NewEra
ViewPoint Pro, and NewEra ViewPoint.

INFORMIX-Mobile

INFORMIX-Mobile turns an INFORMIX-NewEra application into a powerful message-
based system for remote access to standard LAN-based applications such as e-mail and
fax as well as more specialized applications such as sales force automation--all through a
single wireless communication connection.

INFORMIX-4GL Product Family

INFORMIX-4GL Product Family includes INFORMIX-4GL Rapid Development System
(RDS), INFORMIX-4GL Interactive Debugger, and INFORMIX-4GL Compiled.
Together they form a comprehensive fourth-generation application development and
production environment that provides abundant power and flexibility for all your
application development needs.

INFORMIX-SQL

INFORMIX-SQL is a complete database application development tool suite that includes
a schema editor, menu builder, SQL editor, forms builder, and report writer.

INFORMIX-Ada/SAME

INFORMIX-Ada/SAME is an SQL module language compiler extended to support Ada's
advanced features.

INFORMIX-Data Director for Visual Basic

INFORMIX-Data Director for Visual Basic is a versatile product that enables Visual
Basic developers to prototype, build, and extend workgroup and enterprise applications
rapidly. Data Director accelerates the entire development process and simplifies working
with different data types--while leveraging the performance and extensibility of
INFORMIX-Universal Server. Data Director vastly reduces the amount of application
code that programmers need to write for client/server solutions by automating all the data
access operations of the client application. This automation allows programmers to
incorporate sophisticated functionality easily without having to be SQL experts and
enables project teams to deliver timely, scalable applications that solve real business
problems.

INFORMIX-Data Director for Java

INFORMIX-Data Director for Java is a drag-and-drop Java development component that
allows developers to build database-aware Java applets for Informix's family of database
servers--including INFORMIX-Universal Server. Unlike other Java development
components, Data Director for Java supports the new SQL3 standard, so organizations
can use worldwide Internet or corporate intranet applications to provide access to
corporate data. Data Director for Java can be used in conjunction with any Java-based
Web development environment to generate Java automatically so that developers can
build Web-enabled applications--without writing any code.

Informix Client SDK for C/C++ and Java

Informix Client SDK for C/C++ and Java is a collection of Informix APIs that provide
native access to Informix servers, focusing on C/C++ and Java applications. It includes
ESQL/C, LibC++, and CLI developer components. It also contains the Java API,
including both JDBC and RIM support.

Third-Party Products

Many third-party products are available in the following categories: Analysis and Design

Connectivity and APIs

Database Administration Tools

Data Access Tools

Data Modeling

Data Mining Tools

Data Warehouse Management Tools

DataBlade Modules

Development Languages

Form Painters and Code Generators

Imaging Tools

INFORMIX-NewEra Class Libraries

Life Cycle Management

Office Automation

Publishing

Report Writers and Query Tools

Specialty Tools

Statistical Analysis

Windows End-User Tools Windows Application Development Tools

Summary

Decentralized, distributed computing environments are becoming the norm in the
corporate landscape as organizations expand geographically and strive for greater agility
in competitive markets. However, developing and maintaining IT solutions that support
the information management needs of today's distributed enterprise present a host of new
challenges in terms of complexity, connectivity options, and application development
requirements.

Informix's database technology is designed with distributed enterprise requirements in
mind--and delivered through an integrated, extensible database architecture that combines
the mainframe-caliber performance and scalability of DSA server technology with off-
the-shelf configuration, connectivity, replication, and administration facilities. The
Informix database management products support multi-tier client/server development,
support Internet and intranet applications, and set the standard for next-generation
application support.

- 2 -

Informix's Future Direction

• Informix: Always on the Leading Edge
• High-Level Direction
• Where Is Technology Going?

o Object-Relational Databases
o Web-Enabled Technologies
o Workgroup Computing
o Open Standards
o High-End Database Servers

• Creating the Future: Informix Products
o INFORMIX-4GL
o INFORMIX-NewEra
o ESQL/C
o Java
o The Informix Universal Web Architecture (IUWA)
o Standard Engine
o OnLine Server
o Dynamic Scalable Architecture (DSA)

• Informix Unleashed...Into the Future
• Summary

by Ron M. Flannery

You'll learn a lot about Informix in this book. You'll be exposed to the many tools that
are used with Informix, including 4GL, NewEra, and DataBlade modules. You'll
understand Dynamic Scalable Architecture (DSA), which is the core of all Informix
database servers. You'll have a good understanding of how to set up and administer
databases and instances. You'll be exposed to Informix and Web database applications.

But now it's time to talk about the future of Informix.

Informix: Always on the Leading Edge

Informix has always stayed on top of technology. Informix was originally created as a
UNIX-only database. At that time, UNIX was just beginning to be recognized as an
enterprise-wide server for Information Systems. Through the years, Informix continued to
adapt to the ever-improving world of UNIX and database computing. Then came the
Web, object-relational databases, and workgroup computing. Informix was always
willing to adapt to current and future technologies. Some specific examples include the
following:

• Dynamic Scalable Architecture (DSA). When Informix created DSA in
1993, it effectively rewrote the product's entire core technology. Although
this was a major undertaking, it built a solid foundation upon which DSA
could grow. The fact that Informix was able to combine object-relational
technologies (that is, Illustra) into DSA in less than a year is an excellent
example of the power of the code base. It is compact, well-written, and will
change with technology.

• Object-Relational DBMS (ORDBMS). The acquisition of Illustra brought
Informix into the forefront of database technology. Illustra was combined
into Informix's DSA-based OnLine Dynamic Server to create Universal
Server. The object technologies inherent in Universal Server enable users
to combine nonstandard data types (for example, pictures, movies, and
text) with relational data. This is considered to be the future of relational
database technology. Again, Informix had its eye on the future.

• Massively Parallel Processing. Informix created Extended Parallel Server
(XPS), which is designed to support large to very large databases. XPS
utilizes Massively Parallel Processing (MPP) and clustered Symmetrical
Multiprocessing (SMP). MPP enables databases to span a number of
computers and/or processors, making the most of their resources (such as
CPU and memory). SMP can exploit the power of CPUs that share the
same memory, disk, and I/O systems. XPS allows the creation of very large
databases (VLDB), including OLTP systems, imaging applications, and data
warehouses. We all know how important these environments are in today's
world.

• World Wide Web. Recently, Informix took the wraps off the Informix
Universal Web Architecture (IUWA), Universal Tools, and Data Director.
These tools help create powerful Web-enabled applications. As companies
move toward open, Web-oriented database applications, Informix moves
with them. Informix's Web tools and Universal Server embrace these
technologies.

• Workgroup Computing. When NT began to be accepted as a viable and
popular solution, Informix created workgroup database servers, including
OnLine Workgroup Server and OnLine Workstation. Workgroup Server
and Workstation are, of course, based on DSA. Informix also enabled
OnLine Dynamic Server for NT platforms. Workgroup computing is
considered a major area of growth in the computing world.

• Open Standards. Through its Informix Universal Web Architecture,
Universal Tools Strategy, and Data Director, Informix is keeping on top of
industry standards. The computing world of the future will provide many
interoperable computing platforms that Informix is including in its current
product offerings.

• Smart Cards. Hewlett-Packard, GEM, and Informix partnered to create
Smart Card technology with their Imagine Cards. Imagine Cards are
about the size of a credit card. They store information about the current
user and his or her needs. They will be very important in the future of
electronic check paying, credit card processing, and many other things.
They will be vital to computer security. The market for these is also
expected to explode.

As you can see, Informix has never watched technology go by; the company always
embraces it and changes with it. Why should the future be any different?

High-Level Direction

As evidenced by its past accomplishments, Informix will always continue to move with
the needs of the market. The following provides a high-level ("executive summary") list
of Informix's future goals. It is from focusing on these goals that the specific technologies
will continue to evolve.

1. Extensibility of data. This is the ability to create applications that can
adapt to the needs of their environment. Many current and future
Informix products include object-oriented technologies, allowing the
products to handle the data needs of any application. It is predicted that a
great majority of the database market will be using nonstandard data in
the very near future. To handle this, the database must be able to extend
into various data types, including those defined by users.

2. Enterprise computing. Applications across a company must be able to
communicate. Regardless of whether the applications are mainframe, PC,
Macintosh, or anything, it is important that they share their data. Today's
computing world provides many evolving standards. Informix will stay on
top of these standards and combine them into its products. Informix
designs its products to be highly scalable and interchangeable, allowing the
products to be enabled across entire corporations.

3. Ease of use. The components in an open computing environment must

be easy to use. Through the aid of different vendors and products,
Informix will continue to simplify the use of applications. This includes not
only application development, but user access as well.

4. High-end OLTP and data warehouse. Major corporations need to be
able to efficiently process large amounts of data. The database server must
be able to exploit the ever-increasing power of hardware and software
platforms. Informix scales well and will continue to use the power of DSA
to increase its leadership in this area.

5. Web-enabled applications. Certainly, the power of Web-enabled
applications can't be ignored. The advent of the Web and its browser front
ends allows a very open and powerful computing world.

6. Workgroup computing. Windows NT has opened up the workgroup
computing portion of the applications market. The workgroup market
includes offices varying in size from small to medium. Informix
acknowledges this and includes the workgroup market as a major part of
its direction.

7. Open standards. It is very exciting to see the advent of standards in the
computing world. Standards allow various computer applications to "talk"
to each other, based on some well-defined protocols. The advantages are
incredible. Informix conforms to all the important standards of the
computing world.

8. Partnerships. Informix has always been very focused on its core
products: database servers and enabling technologies. Many companies
tend to try to do too many things. Because Informix remains focused, it can
deliver higher quality in its products. The company can then leverage its
quality partnerships to provide "best of breed" solutions.

Soon, I'll show you how Informix is incorporating these high-level goals into its future
product direction. For now, let's try to gauge the direction of the market in general.

Where Is Technology Going?

Where is technology going? How can anyone predict? We can only take our best guess
based on current products and trends. Before getting into specific Informix products, let's
examine some of the currently evolving trends in computing, many of which are a

common thread throughout this chapter. It is very likely that the following trends will be
a major part of database application development, at least in the near term.

Object-Relational Databases

An object-relational database management system (ORDBMS) combines many types of
data, including standard relational, text, pictures, movies, Web pages, and Java programs.
All the major database vendors--Informix, Oracle, Sybase, IBM, and CA--are heavily
embracing ORDBMS.

Each vendor implements ORDBMS somewhat differently. In fact, many of the vendors'
plans seem to be in flux. Oracle is planning to separate its nonrelational data processing
from the database engine. Sybase intends to use a middleware-based approach. Informix
and IBM store the data and the methods to operate on it in the database. CA will have an
entirely separate object-oriented database for nonrelational data.

TIP: For an excellent overview of ORDBMSs and how they relate to data
processing needs, take a look at Mike Stonebraker's whitepaper at

http://www.informix.com/informix/corpinfo/zines/whitpprs/illuswp/wave.h
tm

He also wrote a book called Object-Relational DBMSs--The Next Great Wave, which
clearly describes ORDBMS. Mr. Stonebraker was very involved with the development of
the Illustra database and is currently the Chief Technology Officer at Informix.

There have been a lot of predictions about what percentage of corporate data will be
stored in object-relational databases. Some estimates say that 85 percent of all "loose"
data (which means anything on paper) will eventually be stored in databases. In fact,
because this technology is so new and these types of objects can be very large, this might
not be too far from reality.

The power of ORDBMS is incredible. It can greatly simplify the storage and retrieval of
information in a company. One good example is in the advertising industry: An
ORDBMS can store various pictures and videos. Because of this, a future database
vendor must implement a strong ORDBMS.

Web-Enabled Technologies

Certainly, Web-enabled technologies are a part of the future. This can't be denied.
Basically, Web-enabled database technologies allow deploying the browser as a front end
to database applications. The application does not to be on the World Wide Web: It can

be on the user's hard drive, the local network, or the Web. The important part is that the
browser is the front end to the application.

There are different ways to create Web-enabled applications. Chapter 42, "Serving Data
on the WWW," provides an in-depth discussion of this. The future of data processing will
certainly have these technologies as a core. Databases must be able to adapt to these
technologies.

Workgroup Computing

Workgroup computing was more or less started with the introduction of Windows NT.
Microsoft provided a flexible database server that was less expensive and easier to use
than UNIX. The sales of NT have skyrocketed. Some estimates say that it is currently
outselling UNIX, and if not, it is certainly headed in that direction.

The workgroup market--not only NT but new UNIX solutions--must certainly be
addressed by the database vendors. And all the major vendors do in fact have NT
solutions now.

Open Standards

There has been a large drive toward open standards in the computer industry. And that
makes good sense: With all the computing platforms out there, standards must exist.
Standards simplify communication between various computers and networks, and they
make programming and communication much easier.

A lot of attention has been focused on Common Object Request Broker Architecture
(CORBA) and Distributed Component Object Model (DCOM). CORBA is an open
standard that provides a complete model of how objects should communicate across a
network or the Internet. CORBA is a product of the Object Management Group (OMG), a
consortium of hundreds of hardware and software vendors. DCOM has many of the
characteristics of CORBA, but it was created by Microsoft and tends to lean more toward
Microsoft platforms. The future suggests a CORBA/DCOM interoperability and a more
open DCOM.

It is very likely that CORBA and DCOM will greatly influence the way applications are
developed in the future. They provide excellent models of how to enable
communications.

High-End Database Servers

With the incredible increase in processing power of UNIX and NT computers, higher-end
databases are now possible. Some of the increased performance includes processing
speed, amount of memory, and hard disk size and speed. Databases that were
unimaginable just five years ago are now very much a reality.

To keep up with technology, database vendors need to take full advantage of these
products. Technologies such as massively parallel processing (MPP) and symmetrical
multiprocessing (SMP) can do this. These concepts will lead to more powerful products
that will process large amounts of data at an incredible speed.

Creating the Future: Informix Products

This book provides details on how to use the many products provided by Informix. These
include products that are "legacy"--those that are older but still very functional--products
using the current best technologies, and the real leading edge products. Most Informix
products are leading edge. The following sections describe Informix's plans to leverage
the current products and how they will all be merged into the future technology direction.

INFORMIX-4GL

The INFORMIX-4GL language is a server-based fourth-generation language. It provides
a wide range of functionality, including user input screens, reports, data loading, database
updates, and database administration functions. Although some consider it obsolete, it
certainly provides a great deal of functionality that can be used in the future.

Informix has Webkits that allow linking of 4GL, NewEra, and ESQL/C programs into
CGI Web applications.

Languages such as Java can work well with the distributed world of the future, but 4GL
still will have its place. 4GL is easy to use and deploy on the server side of things and can
be much quicker to develop in many cases; also, you can find a large number of existing
4GL applications. Sometimes it's not practical to jump on the technology bandwagon.

INFORMIX-NewEra

NewEra is one of Informix's object-oriented development tools. It provides many
powerful client/server and distributed-processing capabilities. It includes support for
many object- oriented concepts and is generally a very strong language. Informix will
incorporate NewEra into its overall architectures. NewEra has function calls that allow it
to directly interface to Universal Server databases. NewEra also has a Webkit that allows
CGI deployment.

ESQL/C

The ESQL/C product provides APIs that allow C programs to interact with Informix
databases. C is a very powerful, albeit cryptic, language. It will have a continuing role in
the direction of Informix, perhaps more so than NewEra and 4GL. It is important to note,
though, that C functions can be called from within NewEra and 4GL programs.

The C language is very widely used. Vendors support many different APIs for it.
Informix readily provides the C APIs for its database server and Web products. Also, C

can be used to communicate directly with Web servers and is used by many third-party
vendors. So it will indeed be an important part of the future.

Java

What more can be said about Java? It has taken the Web world by storm and now can be
deployed in many non-Web applications. Java is a new language, created with object-
orientation and open interoperability in mind. It has excellent functionality for creating
applications on a large number of computing platforms--which is perhaps the biggest part
of its power. It ties well into CORBA and DCOM. Numerous vendors provide high levels
of Java support. It is hard to imagine going wrong by choosing Java as a direction.

Informix is heavily embracing Java. Java is supported in the Informix Universal Web
Architecture, Data Director, and Universal Tools Strategy. In addition, JDBC drivers,
which connect to databases, have strong Informix support.

The Informix Universal Web Architecture (IUWA)

The IUWA is a complete set of products and technologies that enables the
interoperability of applications using Web technologies. It is covered in some detail in
Chapter 42. The IUWA is a framework that really enables intelligent Web applications. It
provides for applications to work in synch with open standards and Web technologies.
The IUWA--as much as anything--truly demonstrates Informix's commitment to the
future of computing. It can be used in conjunction with any DSA-enabled database to
provide browser-enabled applications.

Standard Engine

The INFORMIX-Standard Engine is the current name for the original Informix database.
It runs on UNIX platforms and is very easy to use and administer. It provides good
performance, though it can't really scale to the levels of the DSA databases. It should
continue to be supported, but it is probably advisable to consider moving into the DSA
line of databases, considering the power they provide.

OnLine Server

The INFORMIX-OnLine Server (version 5.) family of databases works well in many
environments. It runs on UNIX platforms and provides more functionality than Standard
Engine, including administrative utilities and the ability to use "raw disk space" to store
data. It is a good database that will be around for awhile. It is not built on the DSA,
though, so it might not plug in as well to the newer environments.

Dynamic Scalable Architecture (DSA)

As discussed previously, the DSA is the core architecture for most of the Informix
database servers. This is important because it allows each of the servers to have the same

powerful functionality based on a parallel processing model. The DSA will continue to be
used as the enabling technology in Informix server products. The databases currently
using DSA include the following:

• OnLine Dynamic Server
• XPS
• Workgroup Server and Workstation
• Universal Server

It is easy to see why one architecture across all servers is so important. This advantage
will be demonstrated more in the "Universal Server" section that follows.

OnLine Dynamic Server (ODS)

ODS is the original DSA database. It is very powerful and easy to administer on many
UNIX and NT platforms. It provides a well-balanced set of administration tools, as well
as parallel-processing capabilities. ODS will continue to work well in environments that
scale from small to very large databases. (XPS is more appropriate in some situations.)

Informix Extended Parallel Server (XPS)

XPS is Informix's massively parallel database platform. It provides a model, which
allows multiple computers and processors in a network to share large databases. This is
obviously an important part of the future, considering the availability of the hardware and
software to support such databases.

Workgroup Server and Workstation

These are the two newest products in the Informix database family. As stated previously,
they generally were created to compete in the lower-end market (small- to medium-sized
applications). They run on both UNIX and NT. One of the major selling points of these
products is their ease of use: They are very easy to install and administer. This is very
consistent with the goals of a workgroup environment. These products blend well into the
IUWA. They are easy to use as Web database servers and should be considered for
particular Web and workgroup applications.

Universal Server

The INFORMIX-Universal Server (IUS) implements the best of both worlds: object and
relational. In the near future, Informix plans to have the full line of DSA-enabled
products migrated to Universal Server. Universal Server provides full object-oriented
functionality within the database. The database can be extended using DataBlades, which
allows operating on many nonstandard data types. Data types that can be handled in
Universal Server include the following:

• Standard relational data
• Pictures
• Movies
• Graphics
• Web pages
• Audio

The object-oriented functionality of DataBlades allows easy operation on all these types
of data. This goes back to the extensibility aspect. For example, a user can search for
different pictures, based on some of their characteristics. Movies can be stored in the
database and processed in a similar manner.

Many analysts throughout the industry predict that object-relational databases will take
over the market. Now that the technology is available, people can start using it. This has
been affirmed with the amount of attention these servers have received.

By combining the best of both worlds--high-performance relational DSA and object-
relational--Informix has created a great product that manages all of a company's database
needs. The market certainly will explode in the very near future and Informix is well
positioned.

Informix Unleashed...Into the Future

Informix has seen its revenues grow 33-fold since it was created in 1986. The incredible
growth rate doesn't seem to be slowing down, despite heavy competition from Oracle and
Sybase. Informix continues to be the fastest-growing of the three companies. Phil White,
CEO of Informix, predicted that Informix would pass Oracle in database revenues in
1999. It certainly isn't out of the question. Either way, the future certainly seems bright
for Informix.

By moving with the needs of technology, Informix has firmly established itself as a
leader in the industry. There certainly is no sign of that changing. Informix is an exciting,
leading-edge company that will continue well into the future.

Summary

This chapter helped prepare you for what you are about to learn in this book. You saw
historical examples of how Informix has remained on the leading edge of technology. I
summarized Informix's high-level direction and the direction of technology. Finally, I
described the products that Informix is using to continue positioning itself for the future.

Informix is a database vendor that has prepared itself to continue growing for many years
to come. The rest of this book describes how to use Informix now and in the future.

- 3 -

Database Concepts
• Data Management Concepts
• Summary

by John McNally

This chapter provides

• A description of a database management system, commonly referred to as
a DBMS

• A list and explanation of the benefits of a DBMS

• A description of the different types of DBMSs

• An explanation of the types of DBMSs built by Informix and the relational
database management system, commonly referred to as an RDBMS

• A brief description of types of RDBMS users

• An explanation of client/server processing

• A description of the different types of applications, batch and OLTP, that
access the Informix RDBMS

• A description of the types of tasks that are requested by the applications

• An explanation of data warehousing

Data Management Concepts

A database management system, or DBMS, is considered a basic component of data
processing. A DBMS is a collection of programs that are constantly running processes.
They are used to control the activities required to store, retrieve, and manage data in a
database or databases. Most DBMSs available today, such as Informix, can manage not
only multiple data columns, rows, and tables within a database but multiple databases as
well.

The DBMS software product came about in the early 1960s when software developing
scientists realized that every time they built an application, they duplicated code to handle
the data functions of store, retrieve, and maintain. Over time, the programs that perform
these same functions became a separate, generic system. This new separate, generic data
management system could be used for multiple applications. Moreover, these different
applications needed only to contain calls to access the data management system to
perform specific data operations.

This data management system evolved into the DBMSs of today. Besides reducing the
need for duplicating code, DBMSs provide many other benefits:

• Scalability
• Better developer productivity
• Shared data
• Security
• Data integrity management, redundancy, and consistency
• Data independence

The first benefit is that a DBMS is scalable. This means the DBMS is able to grow and
expand so that it can run across many machines or stay on a single machine. A DBMS is
a single software system that runs many individual processes, like an operating system.
The DBMS can share a machine's resources, such as CPUs and disk, or it can use them
all itself. Because the DBMS can run in many different configurations, it is considered
scalable. Most DBMSs start on a single machine, sharing that machine's resources with
other applications and processes. As the DBMS increases in the amount of data it stores
and the number of applications it services, it needs more resources. The database
administrator, or DBA, then starts to scale the DBMS to a different configuration that
satisfies the growing processing needs.

Because the DBMS is a stand-alone software system that can grow to meet the
application and data storage needs, the developers building the applications can spend
more time concentrating on their applications. Developing time and costs are lower
because the DBMS already has the data processing functions built in. In addition, the
developer does not have to rebuild those functions into the application software.
Whenever developers need their application to deal with the database, a call to the DBMS
is placed within the application code that tells that DBMS which data to find and what to
do with it.

The DBMS also allows for data sharing because the DBMS is a single, scalable system
that is easy to access by an application or multiple, different applications. All Informix
and most other DBMSs allow for many users through multiple applications that can
access the same data. This access is available as long as the users have the proper
permissions.

The next benefit of a DBMS is security. A DBMS allows or disallows any user from
accessing specific data columns, rows, tables, or databases.

Rules involving security, however, are not the only rules a DBMS can enforce. Data
integrity, consistency, and redundancy types of rules can also be enforced. For example, a
DBMS can be given the responsibility to ensure the data types are correct, multiple data
items are not stored, and the data meets a specific criteria such as true or false, or a
specific state such as MD, VA, or CA.

The final benefit of a DBMS is that it maintains different views of the data and the
databases it manages. These DBMS-provided views, usually referred to as schemas, are
broken down into three different types: physical (or internal), conceptual, and user (or
external). The physical schema is the actual layout of the data and databases in their
physical locations on the disk or tape. The conceptual view is how the data and the
databases look in column, row, and table layout. The user view is also in column, row,
and table layout, but it is tailored to each user's security access levels. With these views,
the DBMS provides data independence. Data independence occurs when the applications
and users are separate and have no impact on the representations of the actual data they
use. For example, if a physical location is changed for an entire database within the
DBMS, the conceptual and user views do not change, which means the applications don't
need to change or be recompiled. For example, if an application changes a column's name
from Soc_Sec_Numb to SSN, the conceptual and physical views do not have to change.
Data independence saves a lot of time and effort for the application developers and
DBAs.

The first type of DBMS to receive standard use throughout the data processing
community in the 1960s was file processing. The actual data was kept within flat files,
which are basic text-based files. As these files became larger, the speed and efficiency of
data access degraded. By the early 1970s, file processing was replaced by the hierarchy
and network-style DBMSs. The hierarchy DBMS used structured trees to store data. On
the other hand, the network DBMS used records to store each data entity. Both of these
DBMSs allowed for larger, more robust databases with faster and more efficient access.
Because they didn't provide the best data independence, they were replaced by the current
type of DBMS--relational.

Relational databases are the result of Dr. E.F. Codd's frustrations with the standard
database management systems available at the time. A researcher at IBM in 1969, Dr.
Codd discovered that algebraic concepts can be applied to the database world, where data
can be organized into tables that contain columns and rows. Each column, row, and table
must adhere to specific relationships.

Relational database management systems, or RDBMSs, gained popularity in the late
1970s and became the standard by the mid-1980s. About the same time, Informix
introduced its first RDBMSs--INFORMIX-Standard Engine and INFORMIX-OnLine.

Many chapters in this book are dedicated to setting up a relational database, applying the
relational rules, and accessing the data using the latest Informix RDBMS products.

There are four major types of Informix RDBMS product users. These users include the
database administrator or DBA, the system administrator or SA, the application
developer, and the application user. The DBA is the person generally responsible for
keeping the Informix RDBMS running. The SA is responsible for the operating system
and the machine on which the RDBMS is running. An application developer builds the
applications that access the Informix RDBMS. Finally, the application user is the person
who runs the application to access the data in the Informix RDBMS and performs
specific tasks on that data.

All user applications that access the Informix RDBMS are considered clients, and the
actual Informix RDBMS is considered the server. The client/server process is natural in
the RDBMS world because the RDBMS is its own software process, running throughout
the day and waiting for tasks to perform. These tasks are specified by the accessing client
applications, which run for the duration of the task. There are many types of clients.
Some are provided by Informix to perform tasks such as database backups and system
checks. Other clients are user-built applications that perform tasks such as collecting data
to store or creating and printing reports on the information stored in the database.

A client can have the Informix RDBMS server perform one of four basic tasks. These
tasks are select, insert, update, or delete. A select is considered a query because it looks at
a specific set of data. An insert actually adds new information, usually an entire row, into
the database. An update task changes existing data. A delete actually removes an entire
row of data; consider it the opposite of an insert.

The two different types of clients that perform these tasks are batch or online. A batch
client performs many tasks for a long period of time, usually without involving a user.
For example, a batch process can read thousands of addresses from a file and store them,
or insert them, into the database. Each set of tasks performed by the batch client is
considered a transaction. A single transaction can contain many long tasks or a few short
tasks.

An online client is an example of a process that uses transactions containing a few short,
quick, single-minded tasks. In contrast to a batch client, which runs a single transaction
containing hundreds of tasks that might run for minutes or hours until completed, an
online transaction contains a few tasks and should complete within seconds. Known as
OLTP, or online transaction processing, this client is usually run by a user sitting at a
keyboard, performing his own tasks. When that user needs to retrieve or store data, his
application makes a quick access to the DBMS.

The databases used by these clients are sometimes considered the most important part of
day-to-day business. A database is usually set up to represent a specific view of a
company's business world. For example, a company that sells auto parts could have three
major areas of its business world represented in databases: parts inventory, customers,

and orders. All a company needs to know about its day-to-day activities resides in the
company's databases, and the applications it builds are the way to access that data.

Most databases are under a gigabyte in size, but some can grow to be quite large. They
utilize the most popular application client--OLTP. Batch processing was very popular in
the 1970s and 1980s, but with the decrease in desktop equipment prices, companies can
afford to have more online users. Most of this book is dedicated to building these
business world databases in an Informix RDBMS, tuning these databases for efficient
access, and building application clients to access those databases.

Sometimes companies build extremely large databases called data warehouses. Although
most databases contain a company's world of information, a data warehouse contains the
universe of an entire corporation. Data warehouses are not generally used to perform
daily OLTP activities. A data warehouse is used to perform intense data analysis, called
data mining. These databases can be expected to grow into a terabyte or larger in size.

Summary

No matter what type of RDBMS user you are--DBA, SA, application developer, or
application user--database management encompasses a lot of different technology and
information systems concepts. Many of the concepts touched on in this chapter are
covered in greater detail throughout this book. All these concepts are explained while
using the Informix RDBMS products. No one is expected to know it all, but with an
Informix RDBMS, it is easy to start learning.

Part II - Informix Environments
• Chapter 4 - Informix Environment Introduction
• Chapter 5 - INFORMIX-Standard Engine
• Chapter 6 - INFORMIX-OnLine
• Chapter 7 - INFORMIX-OnLine Dynamic Server
• Chapter 8 - INFORMIX-Universal Server

- 4 -

Informix Environment Introduction
• Range of Environments
• Summary

by John McNally

This chapter provides a description of the different types of open systems, including
hardware and operating systems, that run Informix RDBMS products.

Range of Environments

The following chapters in this part describe in detail all the different Informix RDBMSs.
It starts with INFORMIX-Standard Engine and ends with INFORMIX-Parallel Server.
All the Informix RDBMSs described in the following chapters are available to run in
many different computer environments. Which environment will meet the database
processing needs of a business?

The first thing needed to run an Informix RDBMS is a computer system. To run Informix
products, this machine must be able to run as an open system. An open system consists of
two key components--the hardware and the operating system. An open system is loosely
defined as a multiple-processing, resource-sharing system that allows the operating
system or other processes to determine how things are processed. Almost all computer
systems available today are considered open systems. Computer systems using UNIX or
Windows NT as their operating systems are the most widely known open systems. Even
though computer systems using DOS or Windows 95 are not open systems, they are still
very popular.

As previously mentioned, hardware is a key component to making a system open. A
standard desktop PC is very powerful but is usually unable to gain the true power of
being an open system. To truly be open, the computer hardware must have multiple
central processing units, or CPUs. The CPU is the brain of the computer. With multiple
CPUs, an open system can spread the workload between each CPU or split a single
process between multiple CPUs to perform parallel processing. Commonly referred to as
server machines or just servers, these computer systems usually have multiple CPUs,
large amounts of internal memory, and even larger amounts of disk space.

Having all this hardware, CPUs, memory, and disk space without being able to manage it
is a waste. That is where an open systems operating system comes in handy. An operating
system, or OS, is the master control program that manages and allows access to all the
hardware's resources--that is, memory, disk, and CPUs. Only specific OSs such as UNIX,
Windows NT, and OS/2 are capable of handling true multiprocessing or multiple CPUs.
Other OSs, such as Windows 95, simulate multiprocessing by swapping processes within
one CPU very quickly. This swapping of processes within a single CPU is called
multitasking.

All Informix RDBMS products are available for UNIX systems. UNIX was created in the
early 1970s by Bell Laboratories. A very portable OS, UNIX is used on a wide variety of
computers, from mainframes to personal computers, that support multitasking and are
ideally suited to multiuser applications. UNIX is a very flexible operating system, well-
suited to the needs of advanced computer users.

Bell Labs gave UNIX away after it was created. Because of that, every hardware vendor
has tailored UNIX to work differently on its own machines. For example, HP/UX, HP's
version of UNIX, does not run on an IBM RS6000. An IBM RS6000 uses AIX, IBM's
version of UNIX. There are dozens of different computer hardware server manufacturers,
and there are dozens of different UNIX OSs. Because of all the multiple hardware and
OS combinations, there are many different versions of the same Informix product. For
example, there are versions of INFORMIX-OnLine Dynamic Server for HP/UX, Sun OS,
AIX, and many others. There is even a version of INFORMIX-OnLine Dynamic Server
for a totally different type of OS--Windows NT.

A Microsoft product, Windows NT is a 32-bit operating system that can run on high-end
Pentium systems with or without multiple CPUs. Windows NT provides the performance
of a medium to low-end UNIX workstation but at a lower cost. For companies already
running with Windows 95 products on their desktops, the same products are available on
Win- dows NT.

Which hardware and OS system does a company need? That all depends on three major
factors: system requirements, existing equipment, and available capital. The first and
most important factor is the entire system's requirements. Some of these requirements
include the number of users, the amount of processing to be done, the time needed to
perform the processing, the amount of data to store, how long to keep the data, the
importance of the data, and most importantly, how much money this system makes or
saves in the long run.

After a clear-cut set of system requirements is created, see whether any existing hardware
and software can be reused or upgraded. Look at placing the new RDBMS on an existing
machine that is not processing at 100 percent. Possibly take a machine that is running at
100 percent capacity and upgrade it by adding more memory, CPUs, and disk space.

If an existing machine is not a feasible solution, then see what is available for purchase
that fits the company's budget. You can almost always find an appropriate machine
because there are so many options when purchasing a new system. The more time you
spend investigating a solution to meet the system requirements, the better the system will
be.

In cases when you need a solution immediately but the company does not contain the
expertise to make a proper selection, it is time to bring in a consultant. Informix, all
hardware vendors, and other companies can provide consultants to help create the best
solution to meet the company's database, hardware, and OS needs.

Summary

Many different types of open systems are available today, and Informix has versions of
its products for most of them. When reading the next few chapters, keep in mind the type
of hardware and OS that a business needs. Also keep in mind the overall system
requirements, including software, applications, OS, hardware, and RDBMS. Learn as

much as possible when creating a new system. If internal sources are not available, use
other resources to gain this information, such as the Web, consultants, and other
companies. Throwing away money and resources to build a system that doesn't meet the
requirements is a very expensive way to learn.

- 5 -

INFORMIX-Standard Engine
• What Is INFORMIX-Standard Engine?

o Performance
o Data Protection
o Data Locking
o Isolation Levels

• Uses
• Limitations
• System Architecture
• Summary

by John McNally

This chapter provides

• A description of how INFORMIX-Standard Engine works

• Advantages of INFORMIX-Standard Engine

• Uses for INFORMIX-Standard Engine

• Limitations of INFORMIX-Standard Engine

• A description of Standard Engine's client/server architecture

What Is INFORMIX-Standard Engine?

In the early 1980s, Informix released its first relational database product for small- to
medium-sized data storage requirements. This product was one of the first professionally
supported database systems to run on the UNIX operating system. INFORMIX-Standard
Engine, also known as INFORMIX-SE, was designed to provide a dependable relational

database solution for small- to medium-sized businesses without placing extra demands
on the business's human and machine resources.

A client/server database system is where the application programs, known as clients,
must run as processes separate from the programs that maintain and store the data, called
servers. A client process does not necessarily have to be running on a different machine
from the server. It simply must be a different process. An example of a non-client/server
database system, where the program maintaining the database also controls the user's
access to that data, is Microsoft Access. The client/server relationship is only possible
because the clients must communicate with the server to access the data.

INFORMIX-SE is a relational database server that allows many different types of clients
to access the stored data using the Structured Query Language, or SQL. For more
information about SQL, refer to Chapter 28, "INFORMIX-SQL." The relational database
system is one where data is stored and accessed by its relationship to important data
items, known as keys. SQL is the language used by relational databases to work with the
data using these keys. INFORMIX-SE is a complete relational database management
system, also known as RDBMS, that comes with not only the previous mentioned server,
but also its own front-end client--DBaccess. By using DBaccess, users and administrators
can use SQL and menu-driven commands to create and maintain databases on every type
of UNIX platform.

To automate database processing, you can run SQL statements by referencing DBaccess
within a UNIX shell program. A UNIX shell program is where UNIX commands can be
combined with standard programming conditional structures, such as if-then-else and
case statements, to perform a task. Administrators can place commonly used SQL
commands in time-managed processes, such as cron and at, to run at regular cycles.
Two examples of queries or job updates that a database administrator (DBA) might run
on a daily basis are row counts and table reindexing. Rather than run these jobs during
normal working hours, when users also access the database, the administrator can have
cron run them in the middle of the night. Other users can also automate their queries and
updates by creating UNIX shell programs to perform their tasks. Because these shell
programs have the capability to pass data through variables, these programs can perform
some complicated tasks.

Sometimes the user's task becomes too complicated for DBaccess and shell programs.
These complicated tasks include interactive screens and data migrations (importing and
exporting between databases). In these situations, the SE server permits database access
from other types of user-built client applications. You can create C, C++, and COBOL
applications with an additional product called INFORMIX-ESQL. INFORMIX-ESQL
provides the capability to compile programs that contain SQL statements embedded
within the program code. Informix also sells a fourth generation language (4GL), called
INFORMIX-4GL, that allows users to build applications to access SE databases. For
more information on 4GL, see Chapter 35, "Introduction to 4GL." The general idea
behind a 4GL tool is to assist users in building screens for data input, deciding what form
the output will take, and processing this data. When the user completes these screens, the

4GL tool generates the necessary code and compiles it into a new application. Part V,
"Application Development," deals with creating client applications.

Performance

Because INFORMIX-SE's server deals with the client and the server as separate entities,
it is able to provide better performance. Because the client applications are responsible
for creating, processing, and displaying the data, the server can concentrate on storing
and retrieving the data faster and more safely.

SE's server is able to retrieve and store data quickly by using a cost-based optimizer and
various indexing strategies. A cost-based optimizer is a program that decides the best
possible way to do something before it actually does it. For example, if you need to go
from one town to another, you don't jump in a car and go. You consult a map, a friend, or
a road sign to figure out the best route to take. The cost-based optimizer does the same
thing. Before storing data in a table, the optimizer decides where and how it should be
stored, keeping in mind how often it will be retrieved or changed. Less-used data and
tables have a lower priority than frequently used data and tables.

INFORMIX-SE uses a B+ tree algorithm to build its indexes from table data. A B+ tree
is a dynamic structure built on specific data keys. Only the outside nodes, or leaves, of
the B+ tree contain the pointers to each data row. Inserting or deleting from the index is
easier because only the ends and edges of the tree must be changed, and not an entire
branch.

SE uses two types of B+ tree indexing strategies: unique and clustered. A unique
indexing strategy is one in which each key in the index is different. A unique index
prevents duplicate entries in a table and automatically maintains data integrity. The least
amount of storage time is used with a unique index because SE knows that only one key
exists for each row. For better retrieval times, use clustering, the other indexing strategy
available to SE. A clustered index achieves this improvement by physically organizing
the layout of the table to match the index. Therefore, a clustered index can retrieve data
faster, but storage time is increased due to its reorganizing during writes to the table.

Data Protection

Data in the database can become corrupt in two ways. The first is when a failure occurs
with the hardware, operating system, or database server. To make sure that the data is
safe and sound after such an event, SE uses transaction logging, auditing, and backups.
Every activity performed by the SE server is considered a transaction, whether it's a
query, an insertion, or a deletion. As SE performs the activity, it also writes what it did in
a log file. When a failure occurs, SE uses an auditing process to compare what is in the
log file to what is actually in the database. If they don't match, the audit process applies
the activities from the log against the database.

With major data corruption in the database, it may be best to restore the entire database
from a backup. After the backup is restored, applying the log files from the last backup to
the time of the failure restores the database to the state it was in before the corruption.

Databases can also become corrupt from overzealous client applications. Many client
applications access the database at the same time throughout the processing day, usually
trying to access the same data and tables. For data to maintain its integrity and
consistency, SE uses integrity constraints, data locking, and process isolation levels.

Integrity Constraints

Sometimes referred to as business rules, integrity constraints are divided into two types:

• Entity integrity
• Referential integrity

Entity Integrity

The first type of integrity constraint at the data level is called entity integrity. Entity
integrity includes any constraints placed on a specific entity's data range. For example, a
data item called discount can have a constraint of 0 to 50. This implies that any
percentage between 0 and 50 is permitted for the entry stored in the discount field in the
database. A client application that tries to store 75 percent is rejected by the SE server.
Another example is a different database field called marital_status that allows only M,
S, D, or W for married, single, divorced, or widowed. All other entries fail when the
client tries to update or insert the data.

Referential Integrity

The other integrity constraint, referential integrity, deals with the relationships between
data. Referential integrity prevents client applications from breaking any predetermined
rules when dealing with a data item that has a relationship with other data items. Some
examples follow: A client application can add an address, but referential integrity can
require that a zip code also be present; an employee's salary can be updated but not
without changing the tax bracket; or a customer can be deleted but not if the customer has
a balance past due.

Data Locking

SE uses data locking to stop a client from changing a data item while another client is
working with the same item. Locking does not prevent other clients from querying data
that is currently being updated; it only restricts concurrent updates on the same data. The
three levels of data locking are

• Table row

• Entire table
• Database

Table Row Level

The lowest level, the table row level, locks only the current row being updated.

When a clustered index is present on the table containing the row, to maintain index
integrity, SE actually locks three rows: the current row, the row above, and the row
below. Row locking is recommended for database systems where many clients access the
same data to perform small updates. Row locking requires the least wait time for other
clients waiting to update the same data, but it also requires the most processing from SE.
An adjustable lock limit parameter for SE is used to keep track of the number of locks
currently held. Because row-level locking is the smallest lock level, there is the potential
to have more locks at one time than for any other level. SE must keep track of all these
locks, which causes greater processing overhead. Row locking is set as the default when a
table is created.

Long transactions that change many rows may cause problems when clients access the
database. A single transaction that updates hundreds of rows locks each row as it makes
the change, but it does not release the lock until all the rows are changed. Any other
clients trying to update rows locked by the long transaction must wait until the long
transaction is complete.

Entire Table Level

The next locking level covers an entire table. This forces more clients to wait to perform
updates and inserts on the same table but uses fewer locks and less overhead. Table
locking is better for long transactions that update many rows all in the same transaction.
An example of a mass update is the following: All the customers with a standard
purchase plan get a discount of 10 percent. This data is stored in a database where both
the customer and payment tables have thousands of rows. The single transaction SQL
statement looks like this:

UPDATE customers
SET (discount=10)
WHERE purchase_plan='s';

Database Level

The final locking level covers a database. This level is not recommended for systems
with more than a couple concurrent users. Locking the entire database improves
performance of batch jobs that update or insert many rows in different tables within the
same transaction. An example of this type of mass update is one in which all the standard
purchase plan customers without balances due in the payment table get a discount of 25
percent. This information is in a database where both the customer and payment tables

have thousands of rows each. The SQL statement for this single transaction with multiple
tables looks like this:

UPDATE customers
SET (discount=25)
WHERE purchase_plan='s'
AND customer_id =
 (SELECT customer FROM payments
 WHERE balance=0);

Isolation Levels

When client applications are querying the database, another client process can change the
data being accessed. To prevent data change during a read, SE has built-in process
isolation levels. A process isolation level is the stage at which a data update can or cannot
occur while a select (or read) query is being performed. The standard level is the basic
SELECT statement. By using this basic SELECT statement, the client is letting any other
client process change the data while the original client is still viewing the data. When the
data is in the process of being updated, the SELECT statement retrieves the most current
data.

The next level is the SELECT FOR UPDATE statement. This statement locks the data at the
current locking level, preventing other clients from changing the data until the original
client completes its query. A SELECT FOR UPDATE query fails if the data is already locked
by another client.

The prevention of data corruption through logging and locking is important when system
failures and clients stress the server, but it is also necessary to prevent clients from
accessing certain data all together. Database security is managed by SE at the database
and table levels. A database-level security restriction prevents specific users from
creating and deleting tables and indexes. This ensures that a user without the proper
security level running a specific report application doesn't delete an entire table just to see
whether he can.

The next restriction is placed at the table level. Privileges at this level let specific users
access data that others may not have permission to see. A restriction placed on the
employee payroll data field may be a good idea unless a company benefit permits your
employees to give themselves raises. You can leave open (unlocked) the fields that
contain information on addresses and dependents so employees can update these fields
when they change residence or add a new family member.

Keeping a current backup and transaction log reduces the time and effort required after a
failure. Even maintaining proper locking and security helps SE run more smoothly and
efficiently. SE has an extra feature to improve performance and security called stored
procedures. A stored procedure is a single SQL statement or a group of SQL statements
kept within the SE servers' own tables. Rather than send the SQL command to the SE
server to be optimized and processed, the client can just send a request to execute the

stored procedure that contains the already processed and optimized SQL commands. Any
commonly used, non-changing commands can and should be stored procedures,
independent of their size or complexity.

A stored procedure can be quite elaborate, accepting variable input and performing
multitask insert, delete, and update operations. Stored procedures reduce server
optimization and the communication between the client and server. A stored procedure
EXECUTE command is four words long, EXECUTE STORED PROCEDURE PROCEDURE_1, plus
any input data.

In an office that receives hundreds of payments a day, rather than send the same SQL to
post the payment and adjust the balance for each customer, a stored procedure can be
created to perform the post, update the balance, and return the new balance. You can also
build security into stored procedures. Clients can be restricted from accessing specific
database tables through normal SQL commands but can be allowed to use a stored
procedure that works with the table. In this way, employees can look at their own
personal information but not at the information of other employees. Stored procedures
can also restrict some users from performing operations while allowing others. For
example, branch managers of sales offices can be the only clients allowed to apply a
discount or refund to a customer's account, preventing the sales personnel from adjusting
the same data.

Stored procedures can also be activated by a particular event occurring on a data field.
This event is called a trigger. SE allows you to activate triggers whenever an insert,
update, or delete is performed by a client on a specific field. A trigger can start a stored
procedure to check whether a customer's current balance is past due before inserting a
new order into the database. Triggers are also useful for logging events. When companies
need their own auditing information, rather than build the tracking into each client
application, you can set up a trigger at the database level.

Uses

The most common use of INFORMIX-SE is the standard business-related database.
These databases contain information used on a daily basis for the non-corporate sized
company. You can store information concerning the location of a specific part in a
warehouse and mailing lists of interested customers in SE's database. With Informix's
development tools, these businesses can create elaborate front-end programs to customize
the storage and retrieval of their companies' important information.

Here are some possible uses for INFORMIX-SE:

• Controlling a department's inventory
• Managing employee personal records
• Storing ordering data for a small telemarketing company
• Maintaining address lists for a catalog distribution company

Although SE is recommended for small- to medium-sized databases, this
recommendation does not mean SE can't handle large amounts of data. SE can manage
multiple databases, each with hundreds of tables containing up to a million rows per
table. Of course, the limitations depend on the machine on which SE is running, the
amount of memory, and the disk space. Most companies find that SE is perfect in
situations where personal computer database systems are too small for the company's
data and don't provide future growth possibilities. In addition, companies looking to take
advantage of UNIX-based systems' capability to handle client/server applications find SE
a good starting database system.

Whether these companies' needs include a hundred users accessing the database all day
long or just 10 users accessing it occasionally, SE can meet most database processing
needs without much hassle. Setting up the database, deciding the type of client, and
determining whether to build or buy a client takes more effort than maintaining the
database. Running on a UNIX-based minicomputer, SE offers the storage and processing
power of the big mainframe systems with the tools, ease of use, and low maintenance of
the personal computer systems.

Limitations

The largest of SE's limitations is that it is not an online transaction processing (OLTP),
client/server-type of system. An OLTP system has multiple users connected to a database
system at the same time, accessing the database constantly during the day. Each access is
considered a transaction, a specific task that is performed on the database, such as a
query, an insert, or a delete. A client/server system is where the database is managed by a
continuously running program called the server. Clients are separate programs that
contact the server for access to the needed data within the database. When the client is
finished, it disconnects from the server. In an OLTP, client/server system, many client
processes connect to a database server for extended periods of time. SE is a client/server
system, but due to its limited processing capability, SE is unable to provide standard
OLTP performance to hundreds of users at the same time.

As mentioned at the beginning of this chapter, SE permits client connection with
DBaccess, SQL in shell programs, compiled code with INFORMIX-ESQL, and
applications created with INFORMIX-4GL. SE can handle any or all of these client-types
accessing the database at the same time, but the more clients, the slower the response. A
standard OLTP system must be able to handle hundreds of client transactions at the same
time, returning the transactions' results from the server within a few seconds. National
airline reservation systems and bank automated teller systems are examples of OLTP,
client/server database systems. SE does not have the processing power to filter that many
transactions that quickly. If an OLTP system is needed or an SE system is not performing
well, using INFORMIX-OnLine might be the answer. INFORMIX-OnLine is designed
for OLTP database processing, using the same clients and development tools used for SE.

Although SE is not intended for OLTP processing, it can perform all other types of
database processing. SE can handle batch client processes that make hundreds of accesses

to the database without any problem. SE can also have a small number of users, under 25,
making many daily short transactions with one or two database updates per client
connection without performance degradation. SE cannot handle hundreds of these
connections at the same time, needing 24 hours of database availability a day.

Availability is another limitation of SE. A transaction log is maintained by SE, recording
all changes made to the database. This log is cleared and restarted fresh after you make a
backup on the database. If a crash occurs and some recent data is lost, you must restore
the last backup and then apply the last transaction log. If it's been seven days since the
last backup when a crash occurs, you must apply seven days worth of work from the
transaction log. Of course, higher activity databases should get backups on a more regular
basis than once a week-- usually once a night so that the maximum restore is one day of
activity from the trans- action log.

Unfortunately, backups, restores, and transaction log application can take a few hours to
perform, which restricts all activity on the database from the client processes. Systems
that can allow only a bare minimum of down time should use more enhanced database
servers with built-in safety measures. INFORMIX-OnLine is just such a system; it uses
transaction logging to track changes applied to the data since a checkpoint created a clean
version of the database. Checkpoints usually perform this cleaning every five to 10
minutes within OnLine. This means that an OnLine database has only five to 10 minutes
of database to rebuild, but an SE must rebuild from the last backup.

System Architecture

INFORMIX-SE relies heavily on the UNIX operating system to provide a backbone
architecture. UNIX has its own set of programs that provide interprocess communications
(IPCs) and file system operations. Because SE is UNIX-based, an administrator actually
needs more UNIX knowledge than database knowledge.

Interprocess communications is one running program sending or receiving data from
other running programs. As shown in Figure 5.1, these UNIX IPCs cause the SE
client/server relationship to occur. When a client process starts, so does the IPC
connection to the server. As the client sends an SQL statement to the server, it happens
over that IPC. Results from the server are then sent back over that IPC to the client. The
IPC connection is held until the client process ends--not when the individual transactions
are completed, but when the entire client process is completed. The client process shown
in Figure 5.1 allows users to enter information through an entry screen and hold its IPC
connection until the user ends the entry screen program.

Figure 5.1.
A client process connected to an SE server by UNIX IPCs.

When multiple clients are connected to the server, there are also multiple IPC
connections. As shown in Figure 5.2, SE's server must be able to handle many different

client applications at the same time. To reduce the amount of processing required by the
server, users can build a mid-process for client connections.

Figure 5.2.

Multiple client processes connected to an SE server by UNIX IPCs.

Called a two-tier client/server system, clients connect and disconnect from processes that
perform specific tasks. If multiple users are running the same client program, when
database activity is needed, the client programs connect to a specific middle process that
has an IPC connection with SE already established. That middle process sends the SQL
to and receives the results from the SE server. The middle process then sends the results
back to the client and drops the communication with the client but maintains its
connection to the server. Figure 5.3 shows multiple clients connected to specific task
middle processes that are connected to the SE server. Communication between the
middle process and the client is usually achieved through transaction processing software.

Figure 5.3.

Clients accessing an SE server through task-specific middle processes.

The file system access performed by SE is also achieved through UNIX. Each table is
stored as a UNIX file. When data in that table is needed, SE makes a call to native UNIX
file utilities to perform the work. Backup and restores are also done through INFORMIX-
SE programs using UNIX file system utilities.

The table file is possibly three separate UNIX files for each table in the database. A .DAT
file contains the actual row-by-row data contained in the table. An .IDX file contains the
index on the table by data key and index configuration. A third file is an .LOK file, used
to keep track of locks; this file exists only when locks are held.

Summary

Most small- to medium-sized companies don't need database systems that are extremely
large, but they do have enough data to exceed the storage limitations of personal desktop
computers. Moreover, these companies might have enough concurrent users to exceed a
network of desktop computers. INFORMIX-SE provides a UNIX, minicomputer,
multiuser solution to handle these database needs.

Requiring little maintenance while providing high reliability, INFORMIX-SE furnishes a
powerful relational database management system. With its natural client/server
architecture, SE provides processing beyond batch and single-user access. Many different
types of client access are provided by SE, all using Structured Query Language (SQL).

Because SE is UNIX-based, the amount of database administration is minimal. A system
administrator who manages the hardware and operating system can also manage
INFORMIX-SE.

All the functionality found in INFORMIX-SE is also found in Informix's later server
products--INFORMIX-OnLine, INFORMIX-OnLine Dynamic Server, and INFORMIX-
OnLine Universal Server. This enables companies to start out with small database
systems and then grow, gaining a more powerful system with new features without losing
functionality originally found in SE. Chapters 6, "INFORMIX-OnLine," 7, "INFORMIX-
OnLine Dynamic Server," and 8, "INFORMIX-Universal Server," contain more
information about these more powerful database servers and the functionality that they
contain beyond the basics found in INFORMIX-SE.

- 6 -

INFORMIX-OnLine
• What Is INFORMIX-OnLine?
• Uses
• Limitations
• Differences Between INFORMIX-Standard Engine and INFORMIX-

OnLine
• Two-Process System Architecture
• Networking with INFORMIX-NET and INFORMIX-STAR

o INFORMIX-STAR
o INFORMIX-NET

• Using INFORMIX-STAR and INFORMIX-NET Together
• Summary

by John McNally

This chapter provides

• A description of INFORMIX-OnLine and its advantages

• Uses for INFORMIX-OnLine

• Limitations of INFORMIX-OnLine

• Differences between Standard Engine and OnLine

• A detailed description of OnLine's two-process system architecture

• An explanation of how INFORMIX-STAR and INFORMIX-NET open
network and data distribution options for OnLine systems

What Is INFORMIX-OnLine?

INFORMIX-OnLine is the follow-up and enhancement to the Standard Engine product.
Originally a UNIX product, OnLine has been ported to almost all current UNIX system
machines, and it is even available for the Windows NT platform. Released in the late
1980s, OnLine is Informix's answer to the business world's need to use online transaction
processing (OLTP) technology to add more users without retrieval time increases and
allow for a growth in data storage with a minimal amount of down time and data loss.

When most people think of online, they think of a person connected via a local computer,
through a network or phone line, to a central main computer, as shown in Figure 6.1. This
main computer is usually larger than the user's computer, with a lot of processing power.
The location of this main computer can be a local site in the same city or a remote site
across the country.

Figure 6.1.

Local and remote users connected to an online service.

INFORMIX-OnLine is based on this same concept; it acts as the online service on the
main computer. OnLine is actually a continuously running program on a main computer;
this program is known as a database server or an engine. This engine controls how the
data is stored, retrieved, physically maintained on the computer, and presented logically
to users--all done within the rules of the relational database model. Therefore, Informix's
database server engine is actually a relational database management system (RDBMS).
Refer to Chapter 3, "Database Concepts," for more information on database management
systems and relational models.

The server engine, shown in Figure 6.2, also provides a way that the outside users can
connect to the server's relational database and request tasks to be performed on the data.
This user task is called a client process. Multiple users can connect to the engine at the
same time. Users can also connect from the same computer or from a remote computer
via a network or a modem, as shown in Figure 6.3.

Figure 6.2.

A main computer running the INFORMIX-OnLine server engine.

Figure 6.3.

Local and remote users connected to the main computer running INFORMIX-OnLine.

The complete client/server relationship is what makes INFORMIX-OnLine an online
transaction processing server, where each transaction is related to a single client's tasks.
For example, a client requests Informix to change 10 phone numbers in 10 different
database accounts. The update to these 10 accounts is considered one transaction. The
transaction is not complete until all 10 accounts change. Other client processes are unable
to access these 10 accounts until the first client's transaction is complete. This type of
built-in logic allows many clients to access the database at the same time without causing
data confusion.

With all the processing power of the OLTP server, Informix can provide a higher-
performance database system while controlling data reliability and consistency.
INFORMIX-OnLine achieves better performance by building its own I/O and
multiprocessor routines. Rather than use the UNIX operating system routines, Informix
takes control of disk and CPU management to achieve faster, more efficient results.

The I/O routines, called direct memory access (DMA), allow Informix to write from
memory directly to disk, and vice versa for reading. Built-in UNIX buffering is skipped
entirely.

DMA works with raw disk devices only. A raw disk device is one that was not
configured or formatted to represent a UNIX file system. Informix uses raw disk devices
to control how data is stored on the disks. UNIX does not always allocate space
contiguously, which causes a problem when working with sequential indexes. OnLine
solves that problem by creating its own storage system to work on the raw disk devices.

OnLine also performs CPU management to take advantage of multiprocessor machines.
More efficient than UNIX 's or NT's CPU management, Informix is capable of setting
specific CPUs to work on single processes or subprocesses only. The CPU does not share
its time between multiple processes, which is the default for the UNIX and NT CPU
managers. In those managers, each CPU is given multiple processes to work on, each a
little bit at a time, pausing on one process to work a little on the next. With OnLine's
manager, most processes are handled in the same way, a little bit at a time; however, in
some cases, OnLine will tell the CPU to work exclusively on a specific process or
processes. This management allows for some subprocesses, such as sorting and resource
access, to be performed at the same time on different CPUs, even though both of these
subprocess tasks are part of the same process. The CPU manager can also assign specific
client processes directly to specific CPUs rather than assign all processing to one CPU.
Spreading out processes across multiple CPUs prevents more than one process from
being swapped in and out of a single CPU--instead of giving each process a part of the
single CPU's time slice.

Keeping databases available all the time and maintaining safe data are two important
priorities of Informix. Therefore, the capability to mirror all vital information is standard
with OnLine. When one drive is unavailable, OnLine automatically uses its mirror. The
switch to the mirrored drive is transparent to the user. In the event that OnLine does go

down because of a system or hardware crash, OnLine has built-in logging and archiving
to help get the database back up as quickly as possible.

Uses

Here are some possible uses for INFORMIX-OnLine:

• Manage accounts receivable
• Catalog scans of baseball cards
• Act as an ordering system
• Catalog satellite images
• Store legal documents

The most common use of INFORMIX-OnLine is a standard business-related database.
These databases contain information about mundane employee data as well as vital
money-making information such as sales lead lists. INFORMIX-OnLine's flexibility
makes it able to fulfill most of the needs of a business's information systems departments.

To grow with technology, INFORMIX-OnLine offers a wide array of uses beyond the
standard accounts-receivable or ordering types of database systems. OnLine can store
special data types such as date and time, in addition to character, numeric, or combination
types. INFORMIX-OnLine also can store multimedia files such as images and sound, and
it can store entire documents and large text files without reformatting.

These special data types that store files, images, and sounds are called blobs in
INFORMIX-OnLine. Blob is an acronym for binary large object. It's not an object in the
object-oriented paradigm, but it's a single entity. TIFF, GIF, or JPG image files or
MPEG, AVI, or QuickTime movie files are quite large and in a non-ASCII format. These
file types are considered binary objects. INFORMIX-OnLine can catalog these types of
files in a database. The same can be said of a database that stores the print files of bills
sent to customers. If you need a reprint, the client application retrieves the bill from
INFORMIX-OnLine and then reprints it. No conversion from one format to another is
necessary.

Limitations

Although INFORMIX-OnLine is a powerful database system, it does have some
limitations. One limitation that was solved in the next family of Informix products,
Dynamic Server, is the lack of a built-in wait queue in OnLine. This decreases throughput
because too many clients attach to the server at one time. OnLine tries to process each
client at the same time, which causes the machine's CPUs to constantly switch between
client processes, trying to perform the requested task within a CPU time slice. The
maximum number of clients depends on what type of machine OnLine is running. Instead
of upgrading to Dynamic Server, you can build a midpoint process using transaction
processing middleware such as INFORMIX-TP/XA or third-party software such as

Tuxedo between the client and server. This midpoint process then filters clients' requests
into a queue to limit the connections to the server. See the section "OLTP Applications"
in Chapter 34, "Application Development Introduction," for more information on OLTP
alternatives.

OnLine is limited in how it handles bad sectors in a disk platter. Disk checks and
management are performed by the UNIX operating system, but all other disk I/O is done
by OnLine. When a disk contains bad sectors due to a hardware or software problem,
rather than avoid the bad sectors, OnLine stops using the entire logical partition of the
disk that contains the problem. OnLine is also unable to provide any information to the
administrator about where the problem resides beyond the logical partition. OnLine
actually shuts itself down if the logical partition contains system tables or logs. One
alternative is to mirror all important system and database disks. Disk mirroring allows
OnLine to continue processing as long as one of the twin partitions does not contain bad
sectors.

Another limitation of OnLine is how it handles the multimedia blobs. There are no built-
in processes to scan and insert binary objects into a file. All multimedia files must be
created or scanned through an outside application such as a draw program or digital
cameras and scanners. There is also no way for OnLine to automatically compress and
uncompress blobs or save and retrieve requests. Compression, if needed, must be built
into the client application before the object is inserted into the database, and similarly, an
uncompress must be done after the compressed object is retrieved from the database.

Differences Between INFORMIX-Standard Engine and INFORMIX-
OnLine

Because OnLine is meant for larger databases on larger machines, the differences
between it and Standard Engine (SE) are important. SE was designed for small
companies to store their internal databases, whereas OnLine was created for the
corporate-level type of database. Although SE is a relational database management
system with the capability for client/server processing just like OnLine, SE is not an
OLTP system. OnLine does continue to provide the functionality such as logging,
security, locking, triggers, and stored procedures that were originally provided by SE.
Major differences between the two database systems are a result of the size and OLTP
options available in OnLine, as shown in Table 6.1.

Table 6.1. Differences between SE and OnLine.
INFORMIX-SE INFORMIX-OnLine

Small databases Large databases

Manual recovery Automatic recovery

Requires little
administration

Requires full-time
administration

Does not use shared
memory

Uses shared memory

 Automatic data consistency

 Quick performance

 Crucial availability

 Supports distributed databases

 Stores multimedia data types

Important data with high availability needs should be placed on an OnLine system.
OnLine has a better data safety mechanism built in than SE. OnLine also automatically
fixes and rebuilds the data after a hardware crash.

Due to SE's small size, the computer administrator can also act as the database
administrator when needed. OnLine's complexity and size require more of a DBA's time
for daily and weekly monitoring.

Database tables on an SE system shouldn't exceed 10,000 rows. OnLine can have much
larger tables, and it also can have more of them. Multiple databases and tables can be on
a local machine or distributed on different machines. OnLine also offers the capability to
store multimedia data.

Two-Process System Architecture

Understanding that INFORMIX-OnLine is an OLTP client/server relational database
management system is one thing; understanding how it works is another. INFORMIX-
OnLine uses the two-process architecture to create a natural client/server system. Users
or users' processes, also known as clients, can connect to a database by going through
standard UNIX pipes, called interprocess communications, or IPCs. Each client/server
connection uses two one-way pipes, one for sending and the other for receiving, as shown
in Figure 6.4. Because UNIX is such an open environment, it doesn't make a difference to
Informix whether this user connection is from a machine far away or from a machine in
the same room.

Figure 6.4.

A user client application sending SQL to a sqlturbo server process.

All client connections contain SQL statements to perform some kind of task on the
database. Refer to Chapter 28, "INFORMIX-SQL," for more information on SQL and its
relationship to databases. The SQL statements are received from the client by the server
process, which is called a sqlturbo. Each client process has its own sqlturbo link into
the OnLine database.

Each sqlturbo server process is actually four subprocesses running as one, as shown in
Figure 6.5. The first subprocess handles the communication to and from the client. It also
communicates with the next subsystem, the SQL parser.

Figure 6.5.

A sqlturbo server process and its four subprocesses interacting with each other.

Because the client sent its request in the form of SQL, the SQL Optimizer must parse
these SQL statements into individual tasks. After they are optimized and converted to
more machine-like tasks, the statements are placed into a query plan and passed to the
next subprocess, the Indexed Sequential Access Method (ISAM) library. The ISAM
library contains the basic I/O functions to perform reads, writes, verifies, commits, and so
on.

These functions are performed on the actual physical storage devices by the last
subprocess, the Random Sequential Access Method library, or RSAM library. The ISAM
functions know what to perform, but the RSAM functions know how. The RSAM
functions are what interact with the OnLine System.

The OnLine System controls and manages the data. Up and running at all times, the
OnLine System fulfills the client's requests while maintaining the integrity and order of
the stored data.

Figure 6.6 shows the three major parts to the OnLine System. The first is the UNIX
daemons (pronounced "demons"). OnLine has three different types of daemons running
in the background. These daemons keep the data in order, making sure everything is
cleaned up after a client makes changes. This ensures that even after a crash, the data is
complete. These daemons usually perform cleaning tasks at certain intervals, called
checkpoints, or when the data changes extensively. OnLine uses a checkpoint as a clean
starting point to apply changes to the database after a system crash.

Figure 6.6.

The OnLine System and its three parts.

The main daemon, the TBINIT process, is created when OnLine is started. The TBINIT
process is responsible for managing shared-memory and disk space. Another
responsibility of the TBINIT process is to manage the other two daemons--TBUNDO and
TBPGCL. The TBUNDO daemon process cleans up or continues the task of a sqlturbo
server process after it dies or loses the connection to OnLine. The last daemon process,
TBPGCL, is commonly called the page cleaner. Its task is to periodically check shared
memory for a major amount of data change. Unlike TBINIT and TBUNDO, there can be
multiple TBPGCLs running within OnLine. It's recommended that one page cleaner runs
for every disk used by OnLine. When needed, the page cleaner updates disk storage to
represent the changes in shared memory. This updating of the disk from shared memory

is known as flushing. Page cleaner daemons also flush data at DBA-set increments called
checkpoints. For more information on page cleaners and checkpoints, see Chapter 23,
"Tuning Your Informix Environment."

The second part of the OnLine System is shared memory. This is where all the changes to
the data are made and retrieved. When INFORMIX-OnLine is installed and set up, the
shared memory size is one of the most important configuration components. Not
designating enough shared memory requires a lot of I/O to and from physical storage.
Designating too much shared memory requires major cleaning at each checkpoint by the
daemon processes. Refer to Chapter 11, "Configuring the Informix Environment," for
more information on the amount of shared memory needed.

A copy of the data pages, usually the most active and recently used pages, resides in
shared memory. When a client process requests that an action be performed on a specific
data item, it is performed within shared memory.

The last part of the OnLine System is physical storage. Dedicated for OnLine's use only
are disks where a clean untouched copy of the database resides. The daemon cleaners
update the copy on disk when the daemon cleaners feel that the active copy of the data in
shared memory differs from what's on disk.

The entire process, shown in Figure 6.7, consists of a client process creating SQL to
perform a task on the database. The client uses an IPC to send the SQL to a sqlturbo
server process. That server optimizes the SQL statement and performs the individual
SQL tasks on the copy of the data in shared memory of the OnLine System. If the data is
not in shared memory, the OnLine System retrieves the information needed from disk and
places it in shared memory. After the tasks are performed, the sqlturbo server sends the
results back to the client. During a routine checkpoint or special cleaning, the daemons of
the OnLine System make sure the data in shared memory is updated to disk.

As described in the last paragraph, shared memory is an important part of the OnLine
System. Shared memory is a concept created in the UNIX environment to allow different
processes to share the same data at the same time. This gives OnLine the capability to
have each incoming client/server process look in the same area for data, rather than
having each process manage its own resources to access data on disk and to maintain its
own memory area in which to store that data.

Not only does this give the sqlturbo server less to do, but it also makes it easier for the
OnLine System to maintain data integrity. The only versions of the data are the original
on disk and the working copy in shared memory. Disk I/O is also reduced because the
most popular data pages are already in shared memory and new server processes won't
require the OnLine System to swap new pages in from disk into shared memory and vice
versa.

Understanding how each component of the OnLine client/server relationship works and
how data is passed along to the next component is necessary when investigating

problems. Tracking a client's SQL statements from end to end helps determine system
bottlenecks. Each client's SQL or group of SQL statements is considered a single
database transaction.

These are the steps in a standard database transaction:

1. The client sends a request for a task to be performed.

The task is in the form of SQL.

2. UNIX IPCs start an sqlturbo process.

3. The communication subsystem of the sqlturbo acknowledges that the
client's task is received.

4. The communication subsystem then sends the received information to
the SQL subsystem.

5. The SQL subsystem parses the SQL statement into individual tasks,
placing these tasks into the most optimal order for processing.

6. The SQL subsystem then passes this optimal order list to the ISAM
library subsection.

7. The ISAM library processes each task in the list one at a time.

8. When a task is required to interact with the database, the ISAM library
calls the appropriate low-level function residing in the RSAM library
subsection.

Figure 6.7.

A client process connected to the sqlturbo server, which is connected to the OnLine
System.

9. The RSAM library's functions connect with the OnLine System's shared
memory area.

10. If the data requested is not in shared memory, the OnLine System
daemon swaps data pages between shared memory and disk.

11. When the RSAM function has performed its task within the OnLine
System, the next ISAM function is performed.

12. After all the ISAM/RSAM tasks are performed, the SQL subsection
receives the results of the tasks and puts them in an order that the client
can understand.

13. The SQL subsection sends the formatted results to the communication
subsection.

14. The communication subsection sends these results back to the client.

15. Daemons in the OnLine System clean and maintain the shared memory
and disk areas while the client/sqlturbo processes also access the OnLine
System.

Networking with INFORMIX-NET and INFORMIX-STAR

The capability to network remote users in an OnLine database or distributed data is not
included within the standard OnLine software. The two additional software systems you
need are INFORMIX-STAR to provide distributed database support and INFORMIX-
NET to provide support for remote users to access INFORMIX-OnLine servers across a
network. Remember that local servers need INFORMIX-STAR only if they share data
with other servers or act as a remote server for a client over a network that is running
INFORMIX-NET.

INFORMIX-STAR

INFORMIX-STAR enables OnLine servers to share data with other servers that are also
using INFORMIX-STAR. This data sharing is a concept known as distributed database
technology. Many companies have different databases on different machines that are
maintained by different divisions within the company. Distributed database technology
allows information from these individual machines to be available to each other, without
maintaining multiple copies of each database.

Within one SQL statement, client processes can query and update data on any of the
databases within the INFORMIX-STAR network, as long as they have read and write
privileges on the remote databases. The client processes don't communicate directly with
the other database; it's the local server that does. The local server knows that specific data
is stored on remote servers. When activity to be performed on one of these remote
databases is requested by a client application, the client's local server connects to the
proper remote server and requests that the task be performed.

The connection between the two servers, as shown in Figure 6.8, is done through a
sqlexecd daemon process. This sqlexecd process is essential to the INFORMIX-STAR
network. Every INFORMIX-STAR server must have a sqlexecd process available for
every other INFORMIX-STAR server it needs to communicate with. Not only does the
sqlexecd process make sure that all incoming and outgoing requests are processed, but it
also makes sure that OnLine's standard of automatic recovery is maintained. If one of the
INFORMIX-STAR servers crashes, not only does OnLine's recovery apply the local
changes since the last checkpoint, but when INFORMIX-STAR reconnects to the other
servers, it also applies any changes needed on the remote databases.

Figure 6.8.

Local clients connected to an INFORMIX-STAR server that is connected to another
INFORMIX-STAR server.

INFORMIX-NET

The other Informix network product is INFORMIX-NET. As shown in Figure 6.9,
INFORMIX-NET is needed on the client applications that want to access remote database
servers across a network. INFORMIX-NET client applications can access only remote
OnLine servers that have INFORMIX-STAR running. This differs in an SE environment;
INFORMIX-STAR is not necessary, but INFORMIX-NET is used at both ends of the
client-to-SE-server connection. Remember that client applications that run on the same
system as the OnLine server do not need INFORMIX-NET.

There are many advantages in using INFORMIX-NET. First, the client application can
act as a single entity, thus reducing the OnLine server's processing requirements and
network traffic. All the data processing is done on the client machine, not on the server.
In most cases, the client applications and OnLine run on the same machine, causing the
CPUs of that machine to constantly work. With INFORMIX-NET clients, the server
machine can concentrate on just being a database server. Refer to Chapter 13, "Advanced
Configurations," for ways to achieve machine task independence by using other network
software or two-tier client/server configurations.

Figure 6.9.

Local and remote clients connected to an INFORMIX-STAR server.

Not only does the client application use its CPU to process the data, but it also performs
some of the optimizing usually done by the sqlturbo process. Before sending the SQL
statement to the OnLine server across the sqlexecd connection, INFORMIX-NET
organizes and optimizes just like the sqlturbo does. In this way, only the bare machine-
like tasks are sent across the network, rather than the entire SQL statement in user-
readable form. This reduces both network activity and processing activity by the OnLine
server.

The second advantage is that INFORMIX-NET runs on many different platforms over
many different transfer protocols. Currently, INFORMIX-NET is available on every
known UNIX platform, and it is also available for PC DOS and Windows. The
OnLine/INFORMIX-STAR server still resides on a UNIX machine, but it does not care
what the client runs on as long as the network protocol is the same.

INFORMIX-NET supports the standard network communication protocol, which is
Transmission Control Protocol/Internet Protocol (TCP/IP). Therefore, any client machine
with TCP/IP or socket calls can communicate with any remote OnLine/INFORMIX-
STAR servers and their distributed data on other connected remote OnLine/INFORMIX-
STAR servers.

Using INFORMIX-STAR and INFORMIX-NET Together

Businesses can set up client applications in many different sites on different platforms
that all require the same database information. With only the delay of communication
connections as an impact on the user, through INFORMIX-STAR and INFORMIX-NET
connections to the remote database server are made without any extra effort by the user
or by the client application providing access for the user. When the remote database is
also distributed, the client's request might travel even further across a network to obtain
the needed data. By combining INFORMIX-STAR and INFORMIX-NET with OnLine
as shown in Figure 6.10, you can create an endless number of solutions for any business's
needs with minimal impact to the user.

Figure 6.10.

A combination of INFORMIX-NET clients, INFORMIX-STAR servers, and INFORMIX-
STAR servers connected to other INFORMIX-STAR servers, with and without local
clients.

Many companies have needs that go beyond the scope of a standard client/server
database management system. Here are possible scenarios where you use INFORMIX-
NET and INFORMIX-STAR with INFORMIX-OnLine:

• A remote client (INFORMIX-NET) accesses OnLine database
(INFORMIX-STAR) with or without local clients.

• Local clients have access to a local OnLine server and a remote server
through the local server (INFORMIX-STAR to INFORMIX-STAR).

• Combinations of the preceding scenarios.

Summary

INFORMIX-OnLine is a powerful OLTP client/server database management system for
medium to large businesses. Building on the functionality started with INFORMIX-SE,
OnLine adds more security and safety to data handling. OnLine uses its own I/O file
system to increase the speed and efficiency of data access. Shared memory provides an
area for OnLine to work on data while maintaining a safe copy on disk.

OnLine can store data beyond the normal character and number. With its ability to store
blobs, OnLine can store multimedia objects such as images and sounds.

Networking and distributing data with INFORMIX-NET and INFORMIX-STAR
increases the usability of OnLine. With these products, OnLine is able to handle more
users from farther distances and allow access to data on different OnLine systems.

- 7 -

INFORMIX-OnLine Dynamic Server
• What Is OnLine Dynamic Server?
• Uses
• Limitations
• Differences Between OnLine and OnLine Dynamic Server
• Multithreaded Architecture
• Dynamic Server's Client/Server Configuration
• Summary

by John McNally

This chapter provides

• A description of INFORMIX-OnLine Dynamic Server and its advantages

• An explanation of the new Dynamic Scalable Architecture

• Uses for INFORMIX-OnLine Dynamic Server

• Limitations of INFORMIX-OnLine Dynamic Server

• Differences between Dynamic Server and the previous version of OnLine

• A detailed listing of standard and new functionality provided by
INFORMIX-OnLine Dynamic Server

• A detailed description of Dynamic Server's multithreaded architecture

• A complete listing of each virtual processor and its uses

• An explanation of how Dynamic Server replaces the way it performs
client/server connections locally and remotely over a network

What Is OnLine Dynamic Server?

As with INFORMIX-SE and INFORMIX-OnLine, INFORMIX-OnLine Dynamic Server
is a relational database management system (RDBMS) that provides client/server
processing. Where INFORMIX-OnLine stops in functionality is where Dynamic Server
continues. Version 5 was the last release of OnLine. Version 6 was a transitional release
of OnLine that included some new dynamic features. The current version, 7, contains the
complete OnLine Dynamic Server. The additional functionality is what the term dynamic
refers to. It is Dynamic Server's capability to change its configuration through its
Dynamic Server Architecture, when needed, without affecting the clients or taking the
system offline. Dynamic Server also increases processing while lowering overhead with
its virtual processors to achieve a multithreaded architecture and parallel data queries.

Throughout the processing day, which is becoming a complete 24 hours by necessity, the
activity levels fluctuate for clients accessing the database. The need for 24-hour, 7-days-
a-week availability makes it hard to fit batch processing in an online transaction
processing (OLTP) system running an INFORMIX-OnLine system. You cannot run
batch jobs that perform mass updates, inserts, or deletes during the peak online hours.
Sometimes these jobs are so large that they don't finish for hours or days.

To make the batch jobs faster or to handle the high points of OLTP users during the day,
you need to make configuration changes in OnLine. The changes make the batch jobs
faster, but OLTP processes might run slower and inefficiently. These configuration
changes also require that OnLine be brought offline before they take effect,
inconveniencing any OLTP users who are working on the system. With Dynamic Server
comes a new feature to change configuration parameters without taking the database
offline. Dynamic Scalable Architecture (DSA) provides the capability to add and
decrease available shared memory and server processes without bouncing the database
system. With Dynamic Server's DSA, batch jobs and a high amount of OLTP users do
not slow the system. When these new activities start, Dynamic Server adjusts to meet the
need for extra processing. When the processing level lowers, Dynamic Server
relinquishes the extra resources and shared memory it grabbed to handle the strain.

Shared memory is the area in which all data activity is performed. This data is kept in
shared memory by OnLine and Dynamic Server in order to keep frequently accessed and
common data pages available, without performing disk I/O each time the data is needed.

OnLine shared memory is restricted to a predetermined size that is allocated when
OnLine is started. Dynamic Server is also started with a predetermined shared memory
size but is able to increase or decrease the size, depending on memory availability and
hardware limitations. This resizing can be automatically changed by Dynamic Server or
by an administrator. These changes can occur at any time while the system is in use
without affecting the current client processes actively using the database.

There is a lot of processing overhead involved with keeping shared memory and disk
versions of the database clean, up to date, and available. Long transactions are sometimes
required to swap large amounts of data off disks and into shared memory. If shared
memory is not large enough to hold all the data, early data within the transaction is
swapped to a temporary disk area and then more data is retrieved from disk. When the
transaction is complete and committed, the changed data is then transferred back to the
original disk from the temporary disk through shared memory. All this I/O can be
avoided by Dynamic Server's server process's capability to make shared memory large
enough to hold the entire transaction's data.

The server processes are individual jobs, known as daemons in OnLine, that run
concurrently within the server. Dynamic Server calls these daemons virtual processors,
and each virtual processor performs a specific task within the server. OnLine has three
types of daemons: a single main process, TBINIT; a single backout process, TBUNDO; and
multiple page-cleaner processes, TBPGCLs. As shown in Table 7.1, Dynamic Server has
11 classes of virtual processors to perform specific tasks, and each class can have
multiple versions of itself running concurrently.

Table 7.1. Classes of virtual processors.
VP
Class

Function

ADM Performs administrative operations

ADT Performs auditing operations

AIO Performs disk-related I/O, not associated with logging

CPU Performs main processing and starts and manages other virtual
processors

LIO Writes activity information into the logical-log file

MSC Performs miscellaneous system calls

PIO Writes activity information into the physical-log file

OPT Performs optical disk-related I/O, not associated with logging

SOC Performs socket-related network communications

SHM Communicates with shared memory

TLI Performs TLI-related network communications

Just as shared memory can be increased or decreased by the administrator or
automatically by Dynamic Server, so can the number of virtual processors. When peak
processing increases beyond the normal configuration, or large batch jobs monopolize
resources, Dynamic Server can change to meet these needs without hindering any other
client processing.

Besides the benefit gained by dynamically changing the amount of shared memory and
number of virtual processors, Dynamic Server benefits from having many individually
tasked virtual processors. Using a "divide-and-conquer" technique to break down
processing, Dynamic Server first separates into the individual virtual processors. Second,
each virtual processor has its own processes to perform subtasks, called threads. Threads
are very specialized, small tasks to be performed. A virtual processor is considered a
multithreaded process, because it manages many threads at the same time that all require
the same type of processing.

Threads are actually pieces of client or system task instructions. A system task is a client
process that performs a job required by OnLine but is not started by a user's client
process, such as a checkpoint-initiated page cleaning. In OnLine, each client and system
task has its own daemon called a sqlturbo. Each sqlturbo represented a one-to-one
connection between the client and the server that had to be managed by the CPU and
processed in shared memory. The virtual processors of Dynamic Server can handle many
threads from many client and system tasks at the same time, reducing the amount of CPU
and shared memory management needed.

When a virtual processor cannot handle any more threads, another virtual processor in the
same class automatically runs to manage the extra threads. This prevents threads from
waiting for the first virtual processor to become free. When the system load decreases,
the extra virtual processors end.

On a multi-CPU computer system, Dynamic Server allows for a specific virtual processor
to be associated with a specific CPU. Referred to as processor affinity, it allows a specific
process to run only on a designated CPU and on no others. A CPU class virtual processor
has the capability to be bound to a specific CPU, which prevents other CPU class virtual
processors from using the CPU. The bound virtual processor's performance is greatly
improved because it does not have to fight for a CPU time slice and it does not have to
swap its information in and out when other CPU class virtual processors need the CPU.

CPU class virtual processors can break a thread's subtask into even smaller parts. Thread
tasks that require activity such as sequential queries, loads and unloads, indexing, joins,
and sorting can be done with multiple threads working in parallel. Known as the parallel
database query (PDQ) feature, it provides an efficient way to use more resources for a
short period, rather than use one resource for a longer period of time.

Dynamic Server's memory grant manager (MGM) is what allows the degree of
parallelism. The MGM works with the cost-based optimizer to ensure that parallelism is
used whenever possible without utilizing all available resources. The cost-based

optimizer is a feature, originally from OnLine, that determines the best possible way to
retrieve and store data.

Partitioning table data increases the opportunities to use PDQ. With this fragmentation,
Dynamic Server allows tables to be physically spread across multiple disks. Rather than
start a table in one disk and sequentially spread it in that disk's space, Dynamic Server
can store the table by specific key values, where each key value or range of values has its
row stored on a specific disk. If a table contains customer information and it is
fragmented between two disks, the fragmentation strategy could be to have one disk hold
all the rows for customers added before a specific date and the other disk contain the
customer's rows on or after that specific date. When working with fragment tables,
Dynamic Server processes the intelligence to realize where to get the data it needs. With
the customers separated by date, Dynamic Server skips over the partition that does not
contain the correct date range and proceeds right to the other partition. When looking for
a date range that spans both partitions, Dynamic Server searches both partitions in
parallel.

Uses

Dynamic Server has the same use that OnLine has, to store business-related data, but it
can do it faster, safer, and on larger amounts of data. Business databases have become
large and sophisticated as technology makes advances in tools used to build client
applications. Many companies use UNIX-based minicomputers and networks to replace
the old mainframes. Not only does this migration from mainframes require new client
applications, but new databases are needed to store the vast amounts of data once
contained in these older systems. Companies are now realizing that having their data
more accessible allows them to create all types of applications to use it, which were
impossible to build when the data was stored in the old MVS system. This makes the data
more valuable. The following examples of high-availability databases illustrate some
possible uses for INFORMIX-OnLine Dynamic Server:

• Manage a hospital's patient care system.
• Act as a 24-hour ordering system.
• Serve data on the World Wide Web.
• Store and provide data for an airline reservation system.
• Track information and pictures of criminals nationwide.

Dynamic Server is a more powerful database system than the ones that run on the old
mainframes. It can handle OLTP system requirements while maintaining millions of data
items. Dynamic Server can actually maintain more than four billion rows per table
fragment and more than two thousand fragments per table. Of course, achieving these
numbers is possible as long as hardware is available to store all this data. The lack of
hardware shouldn't be an issue because memory and storage come at a lower cost than
some software products.

On the old mainframe systems, access to the data was not quick enough to merit elaborate
client applications. Many large banks, airlines, and telecommunication companies still
have examples of these old systems. As these companies create graphical user interface
(GUI) applications to replace and combine the old systems, the need for data is greater
and the hours it's needed are longer. Many databases must be available 24 hours a day, 7
days a week. When databases are down, millions of dollars are lost due to customers
waiting and employees staring at blank screens.

Dynamic Server maintains the functionality created with OnLine to provide fast recovery
after an unexpected system failure. However, OnLine requires expected down times to do
backups and configuration changes. With Dynamic Server, there is less need for
scheduled down times. You can do backups and configuration changes while the database
is online and clients access the data.

Limitations

As described in Chapter 6, "INFORMIX-OnLine," there are three limitations found in
OnLine. Two of these limitations are also contained in Dynamic Server. The first
limitation is the capability to handle bad sectors and the second is the lack of blob
management. The third limitation found in OnLine, the lack of a built-in wait queue, was
satisfied by Dynamic Server's multitasking parallel virtual processors.

Disk errors are still managed by the UNIX operating system. Like OnLine, Dynamic
Server stops using an entire logical partition of a disk where a bad-sector error occurs. If
the disk partition contains system tables, Dynamic Server shuts itself down. The only
way to avoid data loss or shutdown is to mirror the partitions. Mirroring is the process of
writing the same information to two different disks. When a bad-sector error occurs,
Dynamic Server automatically uses the mirrored partition. Mirroring is a configurable
option within Dynamic Server. It is highly recommended that you mirror the system
information. Mirroring requires two disks rather than one, so mirroring all the data-
related disks can be a great hardware expense. Data in high-availability systems should
be mirrored.

Although there are many ways to load and retrieve multimedia blobs into Dynamic
Server's databases, there are still no tools to create, collect, view, and compress them. A
blob is a binary large object, which can be an executable file or a photographic image.
Dynamic Server can manage this data with indexes and keys. To do anything with these
objects, such as view or edit, Dynamic Server requires client applications to incorporate
their own tools.

As the World Wide Web becomes a popular environment to distribute and display data,
the need to manage blob data is increasing. Informix is currently working on tools to
incorporate multimedia blobs within WWW pages and use Dynamic Server as the
database server. It's only a matter of time before Informix solves this limitation.

Differences Between OnLine and OnLine Dynamic Server

The main reason for the differences between Dynamic Server and OnLine is all the new
functionality added to Dynamic Server. They both are client/server, OLTP, relational
database management systems, but Dynamic Server has more functionality and performs
at a much higher level than OnLine.

Major functionality available in INFORMIX-OnLine is continued in INFORMIX-OnLine
Dynamic Server. Any OnLine database can easily be switched over to Dynamic Server
without requiring the upgraded system to use the new functionality. Dynamic Server can
run and act just like an OnLine system and still show performance improvements because
Dynamic Server uses its improved architecture to perform all its tasks.

The following list outlines the original INFORMIX-OnLine functionality continued in
Dynamic Server:

• Client/server architecture: Informix naturally allows connection to the
server using the Informix-built clients INFORMIX-ISQL and DBaccess,
through SQL commands placed within UNIX shell programs, and through
self-built clients using INFORMIX-ESQL/C, INFORMIX-ESQL/COBOL,
INFORMIX-NewEra, and INFORMIX-4GL.

• High-performance OLTP: Informix allows many concurrent clients to
attach to the server to perform quick transactions many times a day.

• Automatic quick recovery: Informix uses physical and logical logs to
rebuild the database after a system crash and applies these logs to the
database bringing it to the state it was at the last checkpoint. A checkpoint
is a timed event to make sure that the database and shared memory
contain the same data. Checkpoints usually occur every 10 minutes, so
recovery could take 10 minutes. Archive and restore utilities were
improved in Dynamic Server to take advantage of its built-in parallel
capabilities.

• Raw disk management: Rather than use UNIX's disk management and the
processing overhead associated with it, Informix uses its own disk
management routines that minimize disk I/O and provide better
organization than UNIX provides.

• Mirroring: Support to mirror the raw disks used by the server is built in.
When configuring the original raw disk partition, a mirror version of that
disk's data can be assigned. Dynamic Server improves mirroring by

performing writes to the original and mirrored disk at the same time
rather than serially, as done in OnLine.

• Structured Query Language: An enhanced version of ANSI SQL is used to
tell the database server what task to perform on the data.

• Multimedia/blob support: Any binary object can be stored within the
database with associated keys to index, store, and update the data.

OnLine backup: You can perform backups of the database while the database is in use by
clients. A shutdown of the server is not necessary. OnLine required that the entire
database be backed up at the same time. Dynamic Server has the capability to back up
and restore at the dbspace (disk partitions) and blobspace (blob disk partitions).

• Data security: You can apply many different levels of security to the data
within the database, allowing specific users privileges from read, write,
and delete to read-only.

• Integrity constraints: Business rules and how data relates to other data
items are enforced through integrity constraints.

• Cost-based optimizer: Informix has the capability to find the best possible
way to perform a database task before actually doing the task.

• Cursors: Informix provides a way to dynamically allocate SQL to create a
pointer at a data item within a group of data items. The pointer can move
up and down the group to perform its work.

• Deadlock management: Informix allows one update transaction to
complete its work on a data item before other transactions can start their
work on that same data item, which provides the capability to keep
separate database transactions on the same data item from getting mixed
up. It also stops the working transaction from locking out other
transactions for a long time. Dynamic Server uses a new level of locking,
called key value locking, to provide an increase in concurrent data access
by different client processes.

• Isolations levels: Informix has the capability to allow or restrict specific
client processes from reading data that other clients are currently working
with.

• Networking: Informix has a built-in capability to spread client processes
across a network rather than tie them directly to the machine that runs

the database server. Dynamic Server does not require INFORMIX-NET
and INFORMIX-STAR as did OnLine and SE.

• Distributed databases: This built-in capability gives clients access to
remote databases through one local database server. Dynamic Server does
not require INFORMIX-STAR as does OnLine.

• Optical disk storage: Informix has the capability to store blob data on
optical disk storage devices rather than just disk and tape.

• Stored procedures: Informix provides the capability to build reusable,
generic database transactions that are maintained by the database server
rather than the client. It skips the transmission and optimizing steps that
client SQL must go through before being processed by the server.

• Triggers: Informix lets specific events start processes within the database
server.

• System Monitoring Interface (SMI) : Informix has the capability to track
database administration information using SQL, onstat, and oncheck.
onstat and oncheck are referred to as tbstat and tbcheck in releases
prior to INFORMIX-OnLine Version 6. Extra tables and flags were added
to the SMI tables and utilities to track the extra features of Dynamic
Server.

New functionality in Dynamic Server improves how all other functionality performs.
OnLine-created functionality is improved because of Dynamic Server's capability to
dynamically allocate resources and perform tasks in parallel.

The following list outlines the new INFORMIX-OnLine Dynamic Server functionality:

• Dynamic resource allocation: Dynamic Server provides the capability to
adjust resources at high and low processing points. During peak periods,
administrators or Dynamic Server can automatically add more virtual
processor and thread resources, if more are available, to process the extra
load. At lower periods, these resources can be suspended until needed.

• Shared memory management: Dynamic Server has the capability to
automatically add and increase the amount of shared memory segments
needed to perform its database tasks.

• Parallelization: Dynamic Server features the capability to improve
performance by processing scans, joins, and sorts on data in parallel using
Parallel Database Queries (PDQ).

• Fragmentation: Dynamic Server provides the capability to spread table
data and indexes across multiple disk partitions with some form of
algorithm. Fragmentation increases the capability to perform PDQ tasks
on the data.

• Event alarms: Just like triggers, event alarms start processes when
administrative actions occur. When table space is nearly full, Dynamic
Server starts an alarm or process before a problem occurs.

• Asynchronous I/O: Dynamic Server speeds up I/O processing by creating
its own I/O utilities, separated into four classes-- logical log, physical log,
asynchronous, and kernel asynchronous I/O.

• Read ahead: Dynamic Server provides the capability to read several pages
of data ahead during sequential table and index scans.

• DB/Cockpit: Dynamic Server has a graphical user interface utility that
aids administrators in monitoring the database server environment. It
provides a user-friendly way to set alarms and measure system resources.

• OnPerf: Dynamic Server provides a graphical user interface utility that
provides information usually retrieved by the onstat utility.

• Cascading deletes: Dynamic Server has the capability to delete all rows
related to one specific main row. With this parent/child relationship, you
can set up Dynamic Server to delete all children rows when a parent is
deleted.

• Communication: Although database distribution and networking is
functionality that originally started with OnLine, other Informix products
were required to provide the functionality completely. Dynamic Server
has the functionality built in, so these products are no longer required.

• High-availability data replication: The capability to create a remote hot
backup is available in Dynamic Server. You can create a second database
server to maintain the same database as the original. As changes are made
to the original, they are also made on the backup. When problems occur on

the primary site, Dynamic Server can automatically switch all clients to
use the remote backup before the primary system fails.

Dynamic Server's new functionality offers many benefits for new database systems or for
upgrading database systems from previous versions of OnLine. Regardless of whether
you use all the new features, Dynamic Server provides a safer, faster system than could
be achieved with OnLine.

Multithreaded Architecture

As mentioned previously in this chapter, Dynamic Server can provide better performance
through the new functionality designed with its Dynamic Scalable Architecture (DSA).
DSA allows administrators and Dynamic Server to reduce OS overhead, memory
requirements, and resource contention by changing its configuration without taking the
system offline.

DSA is made possible by Dynamic Server's multithreaded architecture. Multithreading is
the method of running many copies of the same process for different users without
replicating the entire operating system. To the UNIX operating system, the multithreaded
process is a single process.

Consider multithreading at another level: Most UNIX machines have multiple CPUs.
Each of these CPUs runs multiple UNIX processes to keep track of the multiple users
logged onto the machine. As shown in Figure 7.1, one CPU might be processing three
users' processes--ls, cat, and ls--at the same time, while another CPU is handling other
users and their processes. The CPU processing the ls, cat, and the other ls command
can be considered a multithread process because it's one CPU handling three tasks. These
three tasks--ls, cat, and ls--can be considered threads.

A thread is a piece of work being performed, a sequence of instructions executed within a
program. Multiple threads can be the same, such as two ls commands, or different, such
as ls and cat. But if they run within the same process or CPU, it is considered
multithreading.

Figure 7.1.

Individual processes accessing a single CPU.

The CPU processes the first ls command until it is complete or until the amount of time
a process is allowed with the CPU expires. Suppose that the ls completes before its time
is up. Then, the CPU processes the cat command. It runs longer than the allocated CPU
time slice, so the CPU saves information on where it stopped with the cat command and
starts processing the second ls command. The ls command also uses up the allocated
time slice. The CPU saves where it stopped on the ls command and returns to the cat
command. Starting where it previously stopped, the CPU is still unable to complete the

cat command. Once again, it saves the cat command's information at the new stopping
point and starts the ls command at its last stopping point. The ls command is able to
complete, so the CPU starts the cat command from its last stopping point. The CPU
continues to process the cat command until it is complete or until new processes wait for
the next time slice.

This swapping processes in and out of the CPU is called context switching. The
information on each process contains the program counter value where the process's next
or first instruction resides, a stack pointer to any local variables needed by the process,
and a pointer to registers that contain data needed by the process. This information is
commonly referred to as the process context. A context switch occurs when the CPU time
slice expires, the process completes, or an interrupt occurs. The context of the current
process is saved and the next process's context is given to the CPU.

Dynamic Server takes this concept one level lower, into individual processes, as shown in
Figure 7.2. A running process has multiple threads waiting to be operated on. This one
process performs a context switch on each thread in and out until all threads are
complete. As mentioned earlier in this chapter, many different types of these single
multithread processes make up the database server. These processes are called virtual
processors (VP). As shown in Figure 7.3, each virtual processor has many threads
attached to it, and each CPU can have many virtual processors attached to it. Each VP
swaps threads around to be processes just as each CPU swaps VPs for processing.

Figure 7.2.

Individual processes being accessed by many subprocesses.

Figure 7.3.

Individual CPUs accessed by many virtual processors, which are accessed by multiple
threads.

Many different types of virtual processors perform specific groups of tasks. Table 7.2
provides detailed descriptions of Dynamic Server's 11 classes of virtual processors.

Table 7.2. Classes of virtual processors.
VP
Class

Function

ADM Performs administrative operations related to start and stop time-related
threads. A time-related thread runs in specific increments and sleeps in
between these increments. An ADM thread is responsible for starting and
stopping page cleaners. One ADM VP is always running.

ADT Performs secure auditing operations to track all database activity server-

wide. One VP runs when auditing is required. When no auditing is needed,
there is no ADT VP running.

AIO Performs disk-related I/O, which includes SQL-related reads and writes,
checkpoints, and any other non-logging associated I/O. There can be as
many AIO VPs as needed by the system to handle the I/O load.

CPU Performs main processing and starts and manages other virtual
processors. Responsible for running all threads required to process a
client's task. Also responsible for some internal threads needed to
maintain the server environment. There can be as many CPU VPs as
needed by the system.

LIO Performs internal threads to write activity information into the logical-log
file. One LIO VP is started with Dynamic Server. Two LIO VPs are started
when the logical log disk partition is mirrored.

MSC Performs threads to process miscellaneous system calls to check user
licensing and UNIX authentication. One MSC VP is started with the
database server.

PIO Performs internal threads to write activity information into the physical-
log file. One PIO VP is started with Dynamic Server. Two PIO VPs are
started when the logical log disk partition is mirrored.

OPT Performs threads to place blob information into a staging area before
performing optical disk I/O. When INFORMIX-OnLine/Optical software is
not installed, there is no OPT VP running.

SOC Runs threads to perform socket-related network communications to watch
and wait (known as polling) for incoming TCP/IP client requests. The
number of SOC VPs is configurable to the amount of network traffic.
When no network traffic is expected, you can configure zero SOC VPs.

SHM Runs threads that poll for connections into shared memory. There can be
as many SHM VPs as needed by the system.

TLI Runs threads that poll for TLI-related network communications. The
number of TLI VPs is configurable to the amount of network traffic. When
no network traffic is expected, you can configure zero TLI VPs.

These virtual processors run two types of threads--session and internal. A session thread
is a process to complete a task requested by a client's SQL statement. In multiple CPU
systems, multiple session threads can run for a specific client to achieve parallel
processing. An internal thread is used to handle the server, maintaining tasks such as
logging and page cleaning.

Another label attached to threads is called user threads, which encompasses all external
task-driven threads. All session threads are considered user threads because they come
into the server from the external client processes. Other external tasks that use user
threads but are not driven by a client program are recovery and page-cleaner processes.

As you see in Figure 7.4, many threads are processed by a few VPs. These VPs are in
turn processed by a few CPUs. This fan-in is much different from the previous OnLine
processing done with sqlturbos. Every client had its own sqlturbo connected with the
server that connected to CPUs. This used a lot of overhead just to keep track of all the
context switching that occurred at the CPU. With Dynamic Server, UNIX requires less
overhead to swap processes in and out. The VPs use less overhead to swap the threads
around. Because the VPs handle the switching, they don't get swapped out of the CPU.
Dynamic Server purposely keeps a VP running on a CPU as long as it can.

Figure 7.4.

Many threads connected to fewer virtual processors.

Some multiprocessor systems allow specific processes to be directly tied to one CPU.
This processor affinity sets a process to run exclusively on a specific CPU. Dynamic
Server has the capability to tie CPU VPs directly to CPUs. This reduces overhead even
further by preventing UNIX from managing any context switches at the CPU level.

Much of the UNIX operating system overhead required to switch processes in and out of
the CPU is reduced because context switching of threads is performed within each VP.
Just like processes running on a CPU, each thread has its own context information. It
stores the same type of information that is stored during a CPU context switch, but not as
much. VPs can perform context switches much faster because there is not as much
information to swap. This context information is stored by the VP in a thread-control
block (TCB). Figure 7.5 shows the layout of a thread-control block.

Figure 7.5.

Thread-control block layout.

The VP holds the same responsibilities that the UNIX operating system has, managing
time slices and the priority levels of the jobs allowed to run on the CPU. The VP manages
the priority and scheduling of the threads connected to it. VPs are also responsible for
switching threads when needed. Figure 7.6 shows a VP switching the context of two
threads.

Figure 7.6.

Context switching performed on two threads by a virtual processor.

Threads are not restricted to work under a specific time slice as CPU processes are. A
thread continues processing in the VP until it completes its task or until it must wait for
something else to occur before it can continue. These waits are built into the thread's
instructions, usually to take care of reads or writes or to free up locks. The VP sometimes
learns from the running thread which thread should run next. This learning occurs when
the thread realizes that it needs more information; it allows itself to be switched out so
that another thread can be started to satisfy the need of the original thread.

Three types of queues hold the threads not running for each VP class. The ready queue is
where all threads that are ready to run reside; that is, they have all the data needed to
perform their task. The sleep queue is where threads that have no work to perform reside
until there is work for them to do. The wait queue is where threads are placed when they
need something else to complete before they can continue. Threads in sleep and wait
queues are placed in the ready queue when they are needed to run again.

When there is more than one VP of the same class running, there is still only one set of
queues. A thread waiting in the class queue is run on the first VP available. This provides
a balance in the workload of each VP and provides faster work throughput of ready
threads.

Multiprocessor systems also provide the capability to perform some tasks in parallel.
Usually a client process has one session thread associated with it at one time. Tasks that
require index building, sorting, sequential scanning, and joining can have more than one
session thread. Figure 7.7 shows a client process with more than one session thread
attached to various VPs. An example is when a client process reads through table data
sequentially. If this table is fragmented over different disk partitions, a thread to read
each partition's data can run at the same time. After all the partition reads are complete,
the data is placed together by one thread and returned to the client. This process is also
known as fan-out, where the single starting point of the fan is at the client. The fan
becomes wider as multiple threads are created and connect to multiple VPs. Each of these
VPs then connects to multiple CPUs.

Figure 7.7.

Fan-out thread processing.

Dynamic Server's multithreaded architecture provides a valuable backbone to the
database servers' processing capability. Using virtual processors and threads reduces the
UNIX operating system overhead needed to service client processes. On multiprocessor
systems, it provides the means to perform parallel processing.

Dynamic Server's Client/Server Configuration

Dynamic Server continues to maintain its built-in capability to perform client/server
database processing. Client/server processing occurs when the client processes and the

database are separate running programs. A client process can run locally on the same
machine as the database server, or it can access the database remotely through a network.

Version 5 of OnLine requires INFORMIX-NET and INFORMIX-STAR to perform
remote client/server and distributed database connections. UNIX pipes are used to make
the connection between each client and the server. With the release of Dynamic Server,
remote connection functionality is built-in through network interfaces using popular
UNIX network protocols.

A network protocol is a standard format for transmitting data between applications. One
of the reasons UNIX is considered an open system is that the code for network protocols
was ported on every system running UNIX. An HP machine can talk to a Sun machine
because they use the same network protocols. These protocols were expanded to run on
PCs, Macs, and MVS mainframes.

Dynamic Server supports the two most popular network protocols: TCP/IP and IPX/SPX.
TCP/IP, or Transmission Control Protocol/Internet Protocol, is a network protocol that
originally was built to exchange information between UNIX machines across a simple
generic network. TCP/IP is now standard as a network protocol on all operating systems.
IPX/SPX or Internet packet exchange/sequenced packet exchange was originally built to
exchange information across Novell networks, but it is also now available for most
networks. Both client and server systems must support the same protocol. Clients running
on a system using TCP/IP cannot connect to a database server running on a system using
IPX/SPX. Dynamic Server can receive connections from clients of both types, but it is
recommended that you use only one.

Shown in Figure 7.8, Dynamic Server's database server and clients use a network
interface to invoke the protocol communications. A network interface is a piece of
program code that sends and receives calls to perform a program function. Referred to as
an application programming interface (API), these programs contain routines that
communicate with other running applications.

Figure 7.8.

Using network interfaces at each end of the client/server connection.

Dynamic Server supports two types of network interfaces--TLI and sockets. Transport
layer interface (TLI) uses a continuous stream of data when exchanging data across a
network. Think of it like water through a hose; as the data comes across it is read bit by
bit. Sockets, on the other hand, send information in a single file, and usually are not
processed until the entire file is across.

Although you must use the same network protocol on both ends of the client/server
connection, the network interfaces do not need to be the same on both ends. IPX/SPX is
required to use TLI, but TCP/IP can use both TLI and sockets. Figure 7.9 illustrates how

clients running with TLI and sockets can connect to the same database server when all
three machines rely on TCP/IP as their protocol.

Figure 7.9.

TCP/IP connection to the server using both TLI and sockets at the client processes.

Both of these protocols and interfaces are popular and available on most operating
systems for most platforms. Check with your network and hardware administrators about
which are used internally at your company.

When client applications run on the same system as the database server, there is no need
for network protocols and interfaces between the two. Figure 7.10 shows how Dynamic
Server allows local clients to connect directly to a shared memory area on the local
machine. Do not confuse this area with the shared memory used by the database server to
make changes to the database. This area is shared between clients and Dynamic Server.

Figure 7.10.

Client/server connections by using shared memory.

Shared memory connections are very fast but have less protection from problem clients.
Shared memory connections are really a back door into the database server. The UNIX
operating system is very open with its internal buffers and registers. Most client
applications developed internally by companies are written in C or C++, a language that
takes advantage of access to UNIX's lower levels. When client processes with logic and
memory allocation errors get in that back door, all types of havoc can occur.

Using a network connection locally provides a safer, but slightly slower, way for clients
to communicate with the database server. You can set up the client and server to use
network protocols and interfaces for local communications as you do for remote
communications. With this local loopback, a transaction from a network interface is
bounced back to itself. A ping on your own IP address results in a local loopback, as
shown in Figure 7.11. This occurs when the network interface of the sender and receiver
is the same, residing on the same machine. Because the client and server are two separate
processing entities, they each think they're using a different network interface. As shown
in Figure 7.11, when a transaction leaves the client or the server, it is bounced to the
other.

Figure 7.11.

Local client/server connections using loopback.

When the connection between the client and the server is made, the server waits for a
transaction. A special thread, poll, waits and watches a port associated with the chosen
network protocol and interface. The poll thread is part of the network virtual processors.

There is a SOC VP for sockets and a TLI VP for TLI communications. On single
processor systems, the CPU VP takes over the responsibility of running the polling thread
so that less switching occurs. On multiprocessor systems, it's good to have one network
VP for every 150 to 200 clients.

After receiving a connection, the poll thread sends the connection request to a listen
thread. One listen thread is assigned to each network port. Its task is to verify the users,
establish the connection, create the session and thread control blocks, and start an
sqlexec thread. After the connection is verified as valid, control returns to the poll
thread, which places the request and data into the control blocks and wakes the sqlexec
thread created by the listen thread. When shared memory is used as a communication
connection, there is no port to be established by the listen thread, so the sqlexec thread
starts rather than waits after it's created by the listen thread.

All processing is performed by the sqlexec thread. After processing starts, all further
communication with the client is performed by the sqlexec through the port established
by the listen thread. Figure 7.12 shows the poll, listen, and sqlexec threads
connecting and processing a client's request.

Figure 7.12.

Client connections processed by poll, listen, and sqlexec threads.

Compared to OnLine's one sqlexecd connect per client, Dynamic Server can process
many client requests faster and more efficiently. Not requiring extra communication
software for the client and server to connect remotely allows the workload to be removed
from the server machine and spread out on other processors. Client applications using the
old communication add-on INFORMIX-NET are still able to run without any changes or
recompiles. These clients using INFORMIX-NET actually use TCP/IP to connect to a
server running with INFORMIX-STAR. Dynamic Server's polling thread works just like
INFORMIX-STAR does.

Summary

Dynamic Server is an excellent client/server relational database management system. Its
multithreaded architecture provides superior functionality and processing speeds with its
DSA, PDQ, virtual processors, and built-in networking. All these features make Dynamic
Server the right choice for new systems or migrations from earlier versions of
INFORMIX-OnLine.

The capability to add or decrease resources while the server is running comes from
Dynamic Server's DSA functionality. No longer will spikes in client usage cause the
system to slow or force administrators to take the system offline to add more resources.

The multithreaded architecture benefits both single- and multiple-processor systems by
efficiently using the CPU and other resources. On multiprocessor systems, Dynamic
Server has the capability to use PDQ to perform some database operations in parallel.

Processing in a client/server application is what Dynamic Server is meant to do. Using
virtual processors and threads to manage the workload, Dynamic Server can handle
hundreds of clients simultaneously. Connecting to Dynamic Server is easier than with
earlier versions of OnLine. Remote and local connections look and act the same, using
standard network protocols such as TCP/IP and IPX/SPX. INFORMIX-STAR and
INFORMIX-NET are no longer required to perform remote client connections.

- 8 -

INFORMIX-Universal Server
• Overview

o Architecture
o New Data Types
o Inheritance
o User-Defined Routines
o Access Methods and Indices
o Smart Large Objects
o DataBlade Modules

• Configuration Changes
o User-Defined Virtual Processor Classes
o Sbspaces
o Extspaces
o System Catalog Changes
o Systems Monitoring Interface

• Application Programming Interfaces
o DataBlade Application Programming Interface
o New Object-Oriented Application Programming Interfaces

• User-Defined Routines
• Data Types

o Built-In Data Types
o Complex Data Types
o Inheritance
o User-Defined Data Types
o Large Object Support

• Access Methods

o B-Tree Indexes
o R-Tree Indexes
o Functional Indexes
o DataBlade Indices

• Developing DataBlades
o DataBlade Developer's Kit

• Tools and Utilities
o BladeManager
o Schema Knowledge
o SQL Editor

• The Informix Web DataBlade
o Application Page Builder (APB)
o Building a Sample Web Page

• Summary

by Mary Mudie

INFORMIX-Universal Server is an object-relational database management system that
allows developers to extend the range of available data types, add routines that operate on
those data types, and access methods to ensure good performance. It is based on the
Informix Dynamic Scalable Architecture (DSA) and, thus, inherits the performance,
scalability, and reliability characteristics of previous products based upon that
architecture, such as INFORMIX-OnLine Dynamic Server 7.2. This chapter focuses on
the object-oriented enhancements supplied with INFORMIX-Universal Server and
assumes an understanding of DSA, such as is provided elsewhere in this book.

Overview

Traditional relational database systems restrict the user to character string and numeric
data types. Some systems support the storage of binary large objects (blobs) but cannot
manipulate the contents of these objects or perform searches based upon their content.
INFORMIX- Universal Server allows the developer to define new types of data and build
routines to allow user access to the data via SQL statements. This extensibility supports
the development of applications that use rich data types like multidimensional and time-
series data and multimedia data types like audio, video, image, and text objects.
INFORMIX-Universal Server developers can either design and build their own sets of
data types and associated routines or can purchase DataBlade modules, which are
packages of predefined types and routines that address a specific domain, such as text
storage and retrieval. DataBlade modules are generally developed by domain experts and
can be "mixed and matched" with DataBlade modules from other vendors that address
other business requirements.

Architecture

The underlying architecture of INFORMIX-Universal Server is based upon that of
INFORMIX-OnLine Dynamic Server 7.2. The major difference is the capability to "plug
in" DataBlade modules that extend server functionality.

In INFORMIX-Universal Server, information about data types, functions, and access
methods is stored in catalog tables, rather than being hard-coded in the server. This
means that all types, functions, and access methods, when registered, are treated in the
same way whether they are user-defined or built-in objects provided with the server.

Figure 8.1 shows the various components of the server engine that are involved in the
execution of an SQL query.

Figure 8.1.

INFORMIX-Universal Server architecture.

The following list shows the components of the server engine and their functions:

• The parser reads and verifies the syntax. User-defined functions and data
types are recorded in the catalog tables and, therefore, will be recognized
by the parser.

• The optimizer chooses the best path to access the data needed to satisfy the
query. The query plan chosen by the optimizer will depend on the relative
costs of different paths to the data. Information about the cost of user-
defined functions is provided by the DataBlade developer to assist the
optimizer in making its choice.

• The function manager finds and executes the user-defined functions
because they are recorded in the catalog tables.

• The appropriate access method is chosen for the data being retrieved. The
access method may be provided with INFORMIX-Universal Server or
supplied by the DataBlade developer.

• The data manager physically moves the data on and off the disk.

To summarize, DataBlade modules (for example, user-defined types, routines, and access
methods) appear to be built into the engine. They execute in the same address space, are
callable in the same way as existing built-in functions, are correctly optimized, and can
interact with other DataBlade modules and applications.

New Data Types

New data types provided by INFORMIX-Universal Server include row types, collections,
and user-defined data types that can be distinct or opaque, as well as the new built-in
types lvarchar, boolean, blob, and clob.

Row types provide the capability of grouping multiple columns together for ease of
access and processing. For example, an address row type could include elements for
street address, apartment number, city, state, and zip code. If the whole address is
required, a simple SQL statement such as

select name, address from employee;

will retrieve all the fields. If only one element is required, dot notation is used, as in

select name, address from employee where address.state = `CA';

Collections allow for the definition of repeating elements within one column, addressing
a common "normalization" dilemma. Using a combination of collections and row types,
you could store the various phone numbers for a customer contact in one row by creating
a table like this:

create table customer_contact (name char(20),
 phone set (row (phonetype varchar(10),
 phoneno char(10))
 not null)
);

Collections can be extended and updated in much the same way as tables.

Developers can define new data types to suit their particular needs. These can either be
distinct data types, which are based on some existing type, or opaque types, which are
encapsulated data types that can be defined to store data of any format.

Distinct data types allow the developer to differentiate between different types of
business data, even when the underlying storage mechanism is the same. INFORMIX-
Universal Server supports strong typing, which means that data of different types cannot
inadvertently be compared or operated upon without the appropriate conversion being
performed. For example, by defining types for different currencies (dollar, franc, yen, and
so on), you can ensure that a column defined as type dollar cannot be added to a column
defined as franc without some conversion (or casting) being performed.

Opaque types, also known as abstract data types, are generally used to represent complex
internal structures for storing rich data, such as text, audio, or video objects. Developers
with domain expertise in some particular area can construct opaque types to hold data and
define functions, operators, and access methods to operate on them. Opaque types

support the object-oriented notion of private data, which means that users can access the
contents only via associated functions.

Inheritance

INFORMIX-Universal Server supports inheritance for row types and tables. A typed
table inherits the behaviors (functions and routines) and the structural characteristics
(storage options, indices, constraints, and triggers) from its supertable, thus facilitating
the reuse of code. A search against the supertable will automatically search all tables
below it in the hierarchy, unless the query is specifically restricted with the keyword
only.

User-Defined Routines

User-defined routines can be used to encapsulate complex business logic and extend SQL
to meet unique processing needs. For example, you can define a routine that will crop an
image to meet specific requirements and invoke it in an SQL statement by coding

select crop(image_name, crop_specifications) from myimages;

User-defined routines can be overloaded, which allows the same routine name to be used
for different routines that perform the same function but against different data types. A
user wanting to crop an image will always invoke the crop function, but a different
version of the function will be used depending on the data type of the image that is being
passed.

Access Methods and Indices

INFORMIX-Universal Server includes two secondary access methods (or indices):
generic B-tree and R-Tree. The latter is particularly appropriate for indexing
multidimensional data, such as spatial data. Developers can also write their own
secondary access methods to improve performance in accessing a user-defined data type.
Indices can also be defined on the output of a function operating upon some data, rather
than on the data itself.

Access methods can be developed by using the Virtual Table Interface to access data
stored externally to the server. User-defined routines are needed to map the data so that it
can be retrieved using standard SQL statements. This interface can be used to provide
access to data that may be better stored in a specialized server, such as a video server, or
to build a gateway to heterogeneous database servers. After the data is defined as a virtual
table, the user can select, join, and process the data as if it were stored in the
INFORMIX-Universal Server database.

Smart Large Objects

Along with support for the traditional large objects (BYTE and TEXT), INFORMIX-
Universal Server introduces smart large objects that provide the capability for developers
to seek, read from, and write to segments within the object. Smart large objects are
recoverable, although logging can be disabled if required. The following are the two
types:

• Character large objects (clobs) used for storing ASCII text objects

• Binary large objects (blobs) generally used for storing user-defined data
types, such as video and audio clips, images, pictures, drawings, and maps

DataBlade Modules

DataBlade modules are software packages that take advantage of the extensibility options
to provide new capabilities. DataBlades are generally developed by domain experts to
meet a specific business need, such as image processing, text retrieval, or spatial systems.
A DataBlade typically consists of a set of user-defined types, routines and casts, table and
index definitions, and appropriate documentation. It may also include access methods and
indices, and a client interface if appropriate.

The Spatial DataBlade module, for example, adds definitions for data types that contain
the representation of such objects as circles, polygons, rectangles, and points defined by x
and y coordinates. Functions are provided that allow the user to search and manipulate
these spatial objects. The server's R-tree index access method is used to accelerate
performance when searching on spatial data types.

For example, assume that a table has been created that contains restaurant names,
addresses, and locations specified as (x,y) coordinates with the pnt data type, which is
defined in the Spatial DataBlade:

create table restaurant(
 name char(5),
 address char(50),
 category char(10),
 location pnt);

You could then find all restaurants within a certain distance of some specific point that
serve Italian food by using the distance function.

select name, address from restaurant
 where distance(location, startpoint) < 5
 and category = `Italian';

Some basic DataBlade modules are developed by Informix, but most are developed by
third-party vendors who have considerable expertise in their fields. Examples of currently
announced DataBlade modules include the following

• The Informix TimeSeries DataBlade module adds support for the
management of time-series and temporal data. It can be used, for
example, to store and query a time-based series of stock prices, including
open, high, low, and close values. Calendaring functions are provided so
that calculations take into account weekends and holidays.

• The MapInfo Geocoding DataBlade module performs all the calculations
necessary to geocode addresses. It can create a geographic point (Latitude
and Longitude) from any address and allow applications to locate the
nearest product or service relative to a particular point.

• The Excalibur Face Recognition DataBlade module searches and retrieves
facial images based on feature vector comparison (for example, eyes, nose,
and mouth). It can be used in security applications with other verification
techniques to control access to secure areas.

• The MuscleFish AIR DataBlade module provides content-based retrieval
of digital audio and enables users to search for audio clips that "sound
like" some target sound.

• The NEC TigerMark DataBlade module enables content owners to embed
imperceptible watermarks in images of all sorts and to extract and verify
watermarks from retrieved images. TigerMarks help protect images
displayed or sold on the Internet or other digital medium.

• The Virage VIR DataBlade module enables users to search for images by
the intrinsic properties of the images themselves: the color, texture,
structure, and composition.

• The Verity Text DataBlade module enables full-text search of data, which
is especially useful for applications that need fuzzy-search capability.

• The Informix Web DataBlade module is a toolkit for developing complex
dynamic HTML pages without the use of scripting languages such as Perl
or TCL.

Purchasing a DataBlade module allows a developer to build applications using new types
of data, without needing to develop in-house expertise in the manipulation, storage, and
retrieval of that data. For example, a text DataBlade can provide fuzzy searches of large
text documents without the application developer needing to understand the mechanisms
behind such a search. This capability to plug in new technology can lead to dramatic
improvements in application development times.

Multiple DataBlade modules can be used in one application to meet business
requirements. In the previous example, the restaurant menu could be included in the
table, and text DataBlade functions could be used in the search criteria to enable a
traveler to locate a restaurant that served Bombay curry within walking distance of her
hotel.

Informix provides a DataBlade Developer's Kit to assist developers with expertise in
some particular domain in designing DataBlade objects and in building a package that
can be easily deployed to customers. There is also a certification process used to evaluate
quality, documentation, compatibility, and conformance to development guidelines.

Configuration Changes

Configuration changes have been made to support the extensibility options provided with
INFORMIX-Universal Server. These changes include the addition of a new virtual
processor class, new storage spaces, and changes to the system catalog tables.

User-Defined Virtual Processor Classes

INFORMIX-Universal Server is a multithreaded server, based on the Informix Dynamic
Scalable Architecture (DSA). It supports the same virtual processor (VP) classes as
INFORMIX-OnLine Dynamic Server 7.2 (CPU, PIO, LIO, AIO, SHM, TLI, SOC, OPT,
ADM, ADT, and MSC) and has a new VP class for running user-defined routines. It is
designed to be used by user-defined routines not suitable for running in the CPU class
because they make blocking calls, do not yield control to other threads, or modify the
global VP state. Typically, these classes would be used for DataBlade routines that need
to issue direct file system calls (which are blocking calls).

A new parameter, VPCLASS, has been added to the ONCONFIG file to specify the number
and classes of virtual processors to start. You can also disable priority aging, if this is
permitted by your operating system, and assign VPs to specific CPUs when running in a
multiprocessor environment that supports processor affinity. The VPCLASS is an
alternative to the parameters AFF_SPROC, AFF_NPROCS, NOAGE, NUMBERCPUVPs,
NUMAIOVPS, and SINGLE_CPU_VP.

To create a user-defined class of VPs to run DataBlade or user-defined routines, you must
include a VPCLASS parameter that specifies the name of the class and the number of VPs
to start. Here is an example:

VPCLASS my_udrs,num=3

This will cause the server to start three virtual processors that will be used for any user-
defined routines that have been assigned to the class my_udrs. Assigning classes is done
with the CLASS parameter on the CREATE FUNCTION statement.

Sbspaces

An sbspace is composed of one or more chunks that store clobs (character large objects)
and blobs (binary large objects), which can contain up to 4 terabytes of data. Like a
dbspace, an sbspace is a collection of chunks and is created by the onspaces or the
OnMonitor utilities. It also includes a metadata partition that contains descriptive
information about the smart large objects stored in the sbspace to enable the server to
manipulate and recover the objects. Information about smart large objects is also stored in
the system catalog. Smart large objects are recoverable, but logging can be turned off if
desired--for example, when loading large numbers of objects. Metadata is always logged.
The structure of an sbspace is shown in Figure 8.2.

Figure 8.2.

Layout of an sbspace.

SBSPACENAME is a new ONCONFIG parameter that specifies the name of the system default
sbspace. INFORMIX-Universal Server will store smart lobs in the default sbspace unless
you specify otherwise.

Extspaces

An extspace is a logical name associated with a pointer to any kind of file on any kind of
device. A user-defined access method must be supplied to provide access to the contents
of the file. Application developers can then use SQL statements to access the data. More
information on user-defined access methods is provided later in this chapter.

System Catalog Changes

New system catalog tables have been added to store information about the extensibility
features of INFORMIX-Universal Server. The new tables are shown in Table 8.1.

Table 8.1. New systems catalog tables.
Table Contents

sysams Access methods.

sysattrtypes Members of a complex type.

syscasts Casts.

sysdomains Domains.

sysindices Replacement for sysindexes. (There is a view that provides access
as sysindexes for backward compatibility.)

sysinherit Table and type inheritance.

syslangauth Authorization on languages.

syslogmap Changes to table or row ids after new table creation or row

movement.

sysopclasses Operator classes.

sysroutinelang
s

Languages for writing routines.

systabamdata Options selected after table creation.

sysxtddesc Domain and user-defined type descriptions.

sysxtdtypeaut
h

Domain and user-defined types.

Systems Monitoring Interface

A new table has been added to the sysmaster database for use by the Systems Monitoring
Interface (SMI). The sysextspaces table provides information on external spaces.

Application Programming Interfaces

New APIs include C++, Java, and the DataBlade API. ESQL/C, ESQL/COBOL, the
INFORMIX-CLI, and the GLS API are still supported.

DataBlade Application Programming Interface

This C-based API is used for the development of applications or routines that access data
stored in an INFORMIX-Universal Server database. The DBAPI interface sends SQL
command strings to the server for execution and processes results returned by the server
to the application. It should always be used for developing external routines that run in
the server (user-defined routines, operator class functions for access methods, support
functions for user-defined types, implicit casts and triggers) because it includes functions
and routines that promote the development of thread safe code. For example, there are
memory management routines that allocate space from shared memory rather than from
process-private memory.

New Object-Oriented Application Programming Interfaces

In addition to the existing INFORMIX-CLI, INFORMIX-Universal Server provides the
Java API and C++ APIs for object-oriented programmers. These APIs offer dynamic type
extensibility in the client, encapsulating server features into an object library that allows
client programs to adapt as the server schema changes. Both APIs support the following
classes:

• Operation classes provide access to common database methods for issuing
queries and retrieving results. Operation classes encapsulate database
objects such as connections, cursors, and queries.

• Value interfaces are abstract classes that encapsulate database objects such
as object types. They support a COM-style capability-based paradigm
where objects are accessed or known only through interfaces and where
each capability is represented by an interface. Database objects accessed
through this interface are implementation-independent. Value objects can
also be used to manage display behavior and GUI components.

Both the C++ and Java APIs are designed to support component-based architectures. The
C++ interface is compatible with the Microsoft Common Object Model (COM) value
object model for native ActiveX support. The Java API has been modeled to support Java
Beans and when used with Remote Method Invocation (RMI), provides a fully "remoted"
client, allowing workstations to run Java database applications without preloaded client
connectivity software. Java Database Connectivity (JDBC) can also be used for SQL92
standards-based access to INFORMIX-Universal Server.

User-Defined Routines

A user-defined routine is a piece of code written either in SPL (Stored Procedure
Language) or in C that performs some application logic or other function on data stored
in INFORMIX-Universal Server. Java will be supported for user-defined routines in a
future release. Typically, user-defined routines perform operations on user-defined data
types, but they can also be used to encapsulate some frequently used application logic
against built-in data types. User-defined routines can also be coded in C++ and are then
executed within a C wrapper.

User-defined routines can be functions, or they can be procedures similar to those
currently available with INFORMIX-OnLine Dynamic Server 7.2. Both functions and
procedures accept arguments, but only functions return values, while procedures do not.
However, for backward compatibility, the current version of INFORMIX-Universal
Server allows procedures to return values as well.

User-defined routines are frequently used to provide support for new data types. For
example, if you have defined a data type to hold temperatures recorded in Celsius and
another data type to hold temperatures recorded in Fahrenheit, you can write a user-
defined routine to perform the conversion between the two. User-defined routines can
also be used to perform complex calculations that are frequently required, thus reducing
application development time as well as enhancing code quality.

Creating a User-Defined Routine

The CREATE FUNCTION and CREATE PROCEDURE statements are used to register functions
in the server. If the routine is written in SPL, the SPL code is included in the CREATE
statement and is stored internally in the server; if the routine is written in C, it must be
stored externally in a shared library.

Typically, C code is required for more complex operations; for example, if you need to
execute routines that are external to the server, such as sending e-mail, you will need to
code in C and use the DataBlade API. If you plan to develop user-defined routines, you
should consider acquiring the DataBlade Developer's Kit. This provides guidance on
good coding practices and development techniques, as well as tools for facilitating
development of such routines.

Assume that you have a product table containing price and discount information:

create table product (
 product_id integer,
 description char(20),
 price money,
 discount decimal(4,2));

You could create a function, calc_cost, which would calculate the cost of the product as
being the price multiplied by the quantity ordered:

create function calc_cost(price money,
 quantity integer)
 returning money;
 return (price*quantity);
end function;

Then you could use that function to determine the cost if a particular quantity, let's say
12, was ordered. You do not need to know whether a user-defined routine was written in
SPL or in C in order to use it. It is invoked in the same way as built-in functions like MAX
or MIN; however, you do need to know the arguments that need to be passed and what, if
anything, will be returned.

If you insert a row into the table, like

insert into product val
ues (111,'Spanner',10.99,2.25);

and then you execute the statement

select product_id, description, calc_cost(price,12) cost from product;

the following result will be returned:

product_id description cost
 111 Spanner $131.88

Routine Overloading

Often, you might need to develop routines that have the same objective but execute
different logic depending on the arguments that are passed to them. The calculation of the

cost of an order might depend on whether a discount percentage was to be applied. You
could create another routine, also called calc_cost, to perform this calculation:

create function calc_cost(price money,
 quantity integer,
 discount decimal(4,2))
 returning money;
 return (price*quantity - price*quantity*discount/100);
end function;

These routines are said to be overloaded. While they have the same name, they have
different signatures, which uniquely identify them. The signature of a routine includes
the following items:

Routine type (procedure or function)

Routine name

Number of parameters

Data types of parameters

Order of parameters

When you invoke a routine, the server searches for a routine whose signature matches
what you have specified. Issue this statement against the same data that you inserted
previously:

select product_id, description, calc_cost(price,12,discount) cost
 from product;
This returns the following result:
product_id description cost
 111 Spanner $128.91

Data Types

INFORMIX-Universal Server allows you to manage many different types of data,
ranging from traditional numbers and character strings to complex constructs such as
spatial data, video, image, audio, and encoded documents. Certain built-in and extended
data types are provided with the server, and, in addition, you can define your own types
to suit your requirements. You can also write routines and functions to manipulate
existing or user-defined types and provide new access methods for them.

When you create a table, you specify the data types associated with each column. The
data type associated with a column provides information to the server on how the data is
to be stored, what operations can be performed on it, what access methods can be used to
locate it, and how it should be converted to or from a different data type.

Figure 8.3 shows the different kinds of data types supported by INFORMIX-Universal
Server. Some are provided with the server; others are defined by the user.

Figure 8.3.

INFORMIX-Universal Server data types.

Built-In Data Types

Built-in data types are provided by the server and include the traditional data types such
as integer, date, decimal, character, and float. Built-in types new with INFORMIX-
Universal Server are listed in Table 8.2.

Table 8.2. New built-in data types.
Data
Type

Description

boolean Provides a one byte true/false indicator.
serial8 Similar in function to serial but stores a large sequential integer.
integer8 Stores a whole number ranging from -2,147,483,647 to +2,147,483,647.
byte Stores any kind of binary data and is generally used for upward

compatibility with existing applications. blob should be used for new
applications.

text Stores any kind of text data and is generally used for upward
compatibility for existing applications. varchar or clob should be used
for new applications.

blob Stores any kind of binary data, including images.
clob Stores large text items.
lvarchar Stores varying length data up to 32KB.

Complex Data Types

Complex data types are extended data types built from a combination of other data types.
Unlike a built-in type, you can manipulate the individual components of a complex data
type through SQL. Complex types can be collections or row types.

Collection Types

A collection is a complex type made up of individual elements, each of which is the same
data type. But these elements could themselves be complex types, or built-in or user-
defined types. There are three kinds of collections: SET, MULTISET, and LIST.

A SET collection is a set of unique elements (that is, no duplicate values) in no implied
order. Like a SET, a MULTISET collection has no implied ordering, but duplicate values
are allowed.

The following example shows how you could create a table that would contain the list of
available colors for an item.

create table items (
 item_number integer,
 description varchar(40),
 colors multiset (char(10) not null));
You insert rows into the set using the following syntax:
insert into item values (1234,
 `gardening clogs',
 "multiset{`red','blue','green'}");
insert into item values (3456,
 `short-handled rake',
 "multiset{`green'}");

When you retrieve rows, you can search on the value of a particular item of the set.
Searching on the color green returns two rows:

select item_number, description from item
 where `green' in (colors);
item_number description
 1234 gardening clogs
 3456 short-handled rake

Searching on the color red, on the other hand, returns only one:

select item_number, description from item
 where `red' in (colors);
item_number description
 1234 gardening clogs

Unlike a SET or MULTISET, a LIST collection is an ordered set of elements, and duplicate
values are allowed. The following table could be used to hold the average temperatures
for each month during the year:

create table city_temps (city_name char(30),
 avg_temps LIST(integer not null));

Row Types

Whereas collections are groups of elements of the same type, row types are groups of
elements of different types and form the template for a record. You can set up a row type
to define a frequently used set of closely related fields and thus ensure consistency across
different tables, as well as saving time in coding table definitions. A common example
would be to set up the row type for an address, such as

create row type address_t (street char(30),
 city char(20),
 state char(2),
 zip char(5));

Now you could create different tables using this row type and ensure that everybody uses
the same names and field lengths for the different elements, as in the following example:

create table customer (customer_no integer,
 name char(30),
 address address_t,
 balance money);

Here's another example:

create table vendor (vendor_no integer,
 company_name char(30),
 address address_t,
 contact_name char(30));

To insert data into a table containing a row type, you need to use the cast (::) function,
described in the "Casting" section, later in this chapter:

insert into customer
 values (12345,
 `John Smith',
 row(`355 27th Street','San
Jose','CA','12355')::address_t,
 1000.00);
insert into customer
 values (22222,
 `Fred Brown',
 row(`355 Oak
Street','Fairoaks','CA','92355')::address_t,
 2000.00);

Dot notation is used to manipulate the individual fields of a row type. The statement

select customer_no, name from customer
 where address.state='CA'
will retrieve
customer_no name
 12345 John Smith
 22222 Fred Brown

When you update a row type, you must specify all the fields; however, you can update an
individual field by using the following technique:

update customer
 set address=row(address.street,
address.city,'AZ',address.zip)::address_t
 where customer_no=22222;

The select statement shown in the preceding example will now retrieve only one row:

customer_no name
 12345 John Smith

You can use row types within row types. For example, if you wanted to use an extended
zip code, you could define a row type

create row type zip_t (code char(5),
 suffix char(4));

and use it in the definition of the address_t row type, like this:

create row type address_t (street char(30),
 city char(20),
 state char(2),
 zip zip_t);

Creating the types and table would now look like this:

create row type zip_t (code char(5),
 plus4 char(4));
create row type address_t (street char(30),
 city char(20),
 state char(2),
 zip zip_t);
create table customer (customer_no integer,
 name char(30),
 address address_t,
 balance money);

To insert data, you would need to cast the zip code fields, as well as the address fields:

insert into customer
 values (12345,
 `John Smith',
 row (`355 27th Street', `San Jose','CA',
 row(`94131','2011')::zip_t)::address_t,
 1000.00);
insert into customer
 values (22222,
 `Fred Brown',
 row(`355 Oak Street','Fairoaks','CA',
 row(`92355','3245')::zip_t)::address_t,
 2000.00);

The preceding are all examples of named row types, and the convention of naming a row
type is to append _t to the end of a descriptive name, as in address_t or zip_t. You can
also define unnamed row types, as shown here:

create table customer (customer_no integer,
 name char(30),

 address row(street char(30),
 city char(20),
 state char(2),
 zip char(5)),
 balance money);

In this example, you cannot reuse the definition of the row type describing address
because it does not have a name. But, like a named row type, a user can either retrieve all
the fields by selecting the column name or use dot notation to access an individual field.

You can create a typed table by assigning a named row type to the table. You can assign
the same named row type to different tables, thus creating multiple tables with the same
structure:

create row type city_t (city_name varchar(30),
 population integer);
create table city of type city_t;

Inheritance

Inheritance allows an object to acquire the properties of another object. For example, if a
table is defined as a subtable of another one, it will inherit behaviors of the supertable,
such as constraints, triggers, indices, and storage options. So, if the supertable is specified
as having a referential constraint, the subtable will inherit that same constraint. Similarly,
a named row type that is defined as a subtype of another row type will inherit the data
fields and the behavior of the supertype, including routines, aggregates, and operators. If
a user-defined routine had been created that operated on the supertype, the same routine
could be used against the subtype.

In INFORMIX-Universal Server, inheritance is supported for named row types and typed
tables. This means that you must define the row types before you can define the tables.

Here you are creating an employee row type, which contains basic information about
each employee: name, department, and base salary. Then you create two row types for
employees of different categories: salesmen who are paid on a commission basis and
manage various accounts, and engineers who receive a bonus and possess various skills:

create row type employee_t (name char(20),
 dept integer,
 salary money);
create row type salesman_t (quota money,
 attainment decimal(4,2),
 commission decimal(4,2),
 accounts set(varchar(30) not null))
 under employee_t;
create row type engineer_t (MBO_bonus money,
 skills set(varchar(30) not null))
 under employee_t;

Because salesman_t and engineer_t are defined under employee_t, they will inherit
the data fields name, dept, and salary, as well as any behaviors, such as user-defined
routines, that may have been defined on employee_t. Both salesman_t and engineer_t
are said to be subtypes of employee_t. employee_t is a supertype of salesman_t and
engineer_t.

Now you can create tables based on these row types:

create table employee of type employee_t;
create table salesman of type salesman_t under employee;
create table engineer of type engineer_t under employee;

employee is a supertable, and salesman and engineer are subtables. When you define a
table hierarchy, you must ensure that the relationships between the tables in the hierarchy
match the relationships between the types in the type hierarchy, as shown in Figure 8.4.

The subtables salesman and engineer inherit all the properties of the supertable
employee. This includes all the columns, indices, triggers, storage options, and any
constraints, such as referential integrity constraints.

Figure 8.4.

Table and type hierarchies.

When you insert a row into one of the subtables, you must insert data for the columns
inherited from the supertable:

insert into employee
 values(`Fred Smith',
 111,
 1000.00);
insert into salesman
 values (`Tom Jones',
 222,
 2000.00,
 50000.00,
 80.00,
 5.00,
 "set{`ABC Shoes','Leiner Boots'}");
insert into engineer
 values (`Janet Brown',
 333,
 3000.00,
 1000.00,
 "set{`Cobol','Java'}");

When you have a table hierarchy, you can build an SQL statement whose scope is a
supertable and its subtables. A SELECT statement against a supertable will return data for
all the columns defined in that supertable, as well as for the inherited columns in the
subtable:

select name, dept from employee;
returns
name dept
Fred Smith 111
Tom Jones 222
Janet Brown 333

So if you have several different employee categories and define a separate subtable for
each category, you do not need to query each table individually if what you want to
retrieve is common data that is stored in the supertable. And if you add another subtable,
you do not need to recode your query.

If you want to restrict the query to the supertable, you must use the ONLY keyword:

select name, dept from only (employee);

This returns

name dept
Fred Smith 111

You can also retrieve all the columns in all the tables with one SELECT statement. This
results in rows of varying length, known as jagged rows:

select employee from employee;

This returns

employee ROW(`Fred Smith `,111 ,'$1000.00')
employee ROW(`Tom Jones `,222
,'$2000.00','$50000.00',80 ,
 5 ,SET{`ABC Shoes','Leiner Boots'})
employee ROW(`Janet Brown `,333 ,'$3000.00','$1000.00',
 SET{`Cobol','Java'})

Notice that the columns in the rows are returned in row type format.

You can develop user-defined routines against row types defined in a type hierarchy. In
the example, the total compensation for different categories of employees is calculated in
a different way. An administrative employee simply receives a base salary; a salesman
receives a base salary plus a commission based on quota attainment, and an engineer
receives a base salary plus a bonus.

If you initially define only one compensation function against the employee type that
simply returns the base salary, it will be used for all types in the hierarchy:

create function compensation(emp employee_t)
 returning money;
 return emp.salary;
end function;

select name, salary, compensation(e) compensation
 from employee e;

This returns

name salary compensation
Fred Smith $1000.00 $1000.00
Tom Jones $2000.00 $2000.00
Janet Brown $3000.00 $3000.00
3 row(s) retrieved.

You could also create functions against the different types that perform different
calculations:

create function compensation (sales salesman_t)
 returning money;
 return (sales.salary
 +sales.commission/100
 *sales.attainment/100*sales.quota);
end function;
create function compensation(eng engineer_t)
 returning money;
 return (eng.salary+eng.MBO_bonus);
end function;

Now using the same SQL statement as in the first example, different results are returned
because different routines are invoked, depending on the row type passed to the function:

select name, salary, compensation(e) compensation
 from employee e;

This now returns

name salary compensation
Fred Smith $1000.00 $1000.00
Tom Jones $2000.00 $4000.00
Janet Brown $3000.00 $4000.00

What is happening in these examples is function overloading. When routines are defined
for types in a type hierarchy, the function manager will look for a routine with a signature
of the row type that is being passed. If there is no routine with that signature, it can use an
inherited routine from the supertype. The specific routine is selected only when the data
is passed; this is known as late binding.

User-Defined Data Types

In addition to the data types you have already reviewed, you can extend the functionality
of INFORMIX-Universal Server by defining your own data types to meet the needs of
your application. For example, if you have an application dealing with weather
information from different countries, where temperatures are recorded in Celsius or

Fahrenheit, you can define data types to hold the readings and develop user-defined
routines to convert from one scale to the other. The strong typing characteristic of
INFORMIX-Universal Server ensures that a user cannot inadvertently compare readings
on different scales without doing the appropriate conversion.

Distinct Data Types

A distinct data type is based on an existing type, such as a built-in type or a complex
type, and has the same internal structure as the type on which it is based. Because it is
based on a type that is already defined, the server knows how to store it, access it, and
operate on it.

Assume you have a table that contains average summer and winter temperatures for
different cities. You will use a user-defined data type, fahrenheit, based on an integer
data type, to hold temperature values for cities in the United States, and another one,
celsius, to hold temperature values for cities in the Republic of South Africa:

create distinct type fahrenheit as integer;
create distinct type celsius as integer;
create table rsa_city (city_name char(20),
 population integer,
 avg_summer_temp celsius,
 avg_winter_temp celsius);
create table usa_city (city_name char(20),
 population integer,
 avg_summer_temp fahrenheit,
 avg_winter_temp fahrenheit);

You can define functions for the type that allow you to cast it to and from another data
type, as well as functions to perform different operations on the type. Because distinct
types are strongly typed, you cannot, for example, do a direct compare between a column
of a distinct type and a column defined as the base type without casting one type to the
other.

Casting

Casting functions perform the operations necessary to convert data from one type to
another. For example, casting from decimal to integer would include truncating the digits
after the decimal point. Implicit cast functions are defined in the server for converting
character types to other character types, numeric to numeric, time to or from date time,
and character to or from any other built-in type. Implicit casts are automatically invoked
by the server when required.

When you define a distinct type, INFORMIX-Universal Server automatically creates
explicit casts between the new type and its source type. Because these casts are explicit,
you must use the cast operator to invoke them, as shown in the following INSERT
statements:

insert into rsa_city values (`CapeTown',
 3200000,
 21::celsius,
 14::celsius);
insert into rsa_city values (`Johannesburg',
 1900000,
 19::celsius,
 9::celsius);
insert into usa_city values (`Anchorage',
 250000,
 45::fahrenheit,
 20::fahrenheit);
insert into usa_city values (`Miami',
 2100000,
 82::fahrenheit,
 67::fahrenheit);

You can also create casting functions to perform the conversions between the celsius
and fahrenheit data types:

create function c_to_f (temp celsius)
 returning fahrenheit;
 return (9*temp::integer/5 +32)::fahrenheit;
end function;
create explicit cast (celsius as fahrenheit with c_to_f);

This would allow a user to perform comparisons between temperatures in different cities.
The SQL statement

select city_name, avg_summer_temp::fahrenheit avg_summer
 from rsa_city
 union
select city_name, avg_summer_temp avg_summer
 from usa_city
order by 2 desc;
will produce
city_name Miami
avg_summer 82
city_name CapeTown
avg_summer 69
city_name Johannesburg
avg_summer 66
city_name Anchorage
avg_summer 45

You could create a function that would calculate whether a temperature was above or
below freezing. Because the calculation is different depending on whether the
temperature was recorded in Celsius or Fahrenheit, you could overload the function
name, as shown here:

create function above_freezing(temp celsius)
 returning boolean;
if (temp::integer > 0) then

 return `t'::boolean;
else
 return `f'::boolean;
end if
end function;
create function above_freezing(temp fahrenheit)
 returning boolean;
if (temp::integer > 32) then
 return `t'::boolean;
else
 return `f'::boolean;
end if
end function;

Then you could use that function to determine which cities had temperate winter
climates. For example, for the U.S. cities, the average winter temperature in Anchorage is
recognized as being below freezing:

select city_name, `Warmish' Comfort_Level, avg_winter_temp
 from usa_city
 where above_freezing(avg_winter_temp)
union
select city_name, `Coldish' Comfort_Level, avg_winter_temp
 from usa_city
 where not above_freezing(avg_winter_temp)
order by 2 desc;

This returns

city_name Miami
comfort_level Warmish
avg_winter_temp 67
city_name Anchorage
comfort_level Coldish
avg_winter_temp 20

For the South African cities, temperatures below 20 are recognized as being above
freezing because they are on the Celsius scale:

select city_name, `Warmish' Comfort_Level, avg_winter_temp
 from rsa_city
 where above_freezing(avg_winter_temp)
union
select city_name, `Coldish' Comfort_Level, avg_winter_temp
 from rsa_city
 where not above_freezing(avg_winter_temp)
order by 2 desc;

This returns

city_name CapeTown
comfort_level Warmish
avg_winter_temp 14

city_name Johannesburg
comfort_level Warmish
avg_winter_temp 9

Opaque Data Types

Opaque types are named as such because INFORMIX-Universal Server does not know
anything about the internal representation of the data. Distinct types are not opaque
because they are based on other types that are known to the server. Similarly, row types
and collections are based on other defined types. And if distinct row types or collections
are based on opaque types, those opaque types must already have been defined to the
server. An opaque type is similar to a built-in type in that it cannot be broken into smaller
pieces; you cannot use SQL statements to access its components. The only way a user can
access or manipulate an opaque type is via user-defined functions. Opaque types are
typically used to store complex data structures--such as image, audio, or video objects--or
to represent complex relationships such as networks or geometric shapes. An opaque type
can store data within its internal structure or, for very large amounts of data, can embed a
smart large object.

Creating an opaque type is not a trivial task. Opaque types are generally created by
DataBlade developers. When you create an opaque type, you must provide the following
information:

• A C structure to describe the data so that it can be stored correctly. This
structure can be of fixed or variable length.

• Support functions that allow the server to interact with the data. Examples
of support functions include functions to convert the opaque data from its
internal representation to its external representation, or to compare two
data items of this opaque type during a sort. If the data type includes
embedded smart large objects, additional support functions are required
to allow INFORMIX-Universal Server to search for references to these
objects.

• Additional routines to support user requirements for interacting with the
data. For example, if the opaque data type is used for storing text, you
would probably want to create search routines. You might also want to
overload existing built-in functions such as length().

If you plan to make extensive use of opaque types and their associated routines, you
should consider acquiring the DataBlade Developer's Kit. This provides guidance on
recommended coding practices and development techniques.

Large Object Support

INFORMIX-Universal Server supports both simple large objects (BYTE and TEXT) and
smart large objects (BLOB and CLOB) to handle large amounts of data (greater than 255
bytes). The main difference between simple large objects (which were available with
INFORMIX-OnLine Dynamic Server 7.2) and smart large objects is that programs can
randomly access data within a smart large object and can update portions of the data.
Simple large objects, on the other hand, can only be inserted or deleted; they cannot be
updated. The BYTE and TEXT data types are provided for backward compatibility, and for
new applications you should generally use the BLOB and CLOB data types.

Smart large objects are generally used for storing user-defined data types that contain
images, audio or video clips, large documents, or spatial objects like drawings or maps.
The random access capability allows you to manipulate portions of a large object, thus
giving you the ability to access data within the object without retrieving the entire object.

Creating a Table with a Smart Large Object

When you create a table containing a smart lob, you can specify the sbspace where the
lob is to be placed, as well as other options, such as whether lob actions are to be logged
and what kind of integrity checks are to be performed when the lob is updated. This
example shows that the picture large object is to be placed in the sbspace called
sbspace3:

create table cars (make char(20),
 model char(20),
 picture blob)
 put picture in (sbspace3);

Inserting and Deleting Smart Large Objects

Four functions are provided to move data into and out of smart lobs. The FiletoBLOB
and FiletoCLOB functions copy an external flat file into an sbspace while the LOtoFile
function copies a blob or a clob from the sbspace to an external file. For all three of these
functions, you can specify whether the external file resides on the server or the client:

insert into cars values (`Toyota',
 `Celica',
 filetoBLOB(`celica.gif','client'));

The LOCopy function allows you to copy a lob from one table to another. For example, if
you have defined a table "assets" as

create table assets (asset_id char(5),
 asset_type char(15),
 picture blob)
 put picture in (sbspace3);

you could copy a picture from the cars table with this statement:

update assets set
 picture=LOCopy(picture,'cars','picture')
 where asset_id='12345';

Manipulating Data Within a Smart Large Object

If you select a column containing a smart large object from a tool like DBaccess, you will
not actually see the object because DBaccess does not know how to present it. (It could
be an image, a video stream, a spreadsheet, or anything else that you have chosen to store
there.) Instead, you will receive a message indicating that smart lob data is present.

select * from cars;
make Toyota
model Celica
picture <SBlob Data>

If you want to manipulate data within a smart lob, you will need to use the ESQL/C or
DataBlade APIs. These allow you to seek to a given position within the lob and read or
write a user- specified number of bytes from that position. DataBlade developers often
use smart lobs to store their user-defined data types and will provide you with user-
defined functions or end-user tools to perform these manipulations, so that you do not
need to code to these APIs.

Access Methods

A primary access method is a set of routines used to access data directly. INFORMIX-
Universal Server provides a built-in primary access method that performs table
operations such as scan, insert, update, and delete. In addition, the virtual table interface
allows you to develop primary access methods for accessing data stored external to the
server--for example, data stored in other vendor databases or in flat files. You can then
define a table and specify that it is stored in an extspace, which is a storage space not
managed directly by the server. You must also specify the access method to be used to
access that table.

Secondary access methods, often called indices, provide alternate access paths to data
managed by the server. The primary access method supplied with INFORMIX-Universal
Server supports two secondary access methods: generic B-tree and an R-tree.

B-Tree Indexes

The generic B-tree access method can be used to index user-defined types as well as
built-in data types. When indexing on user-defined types, you may need to define
additional functions to enable the server to index and retrieve the data correctly.

If you are indexing on a distinct type whose logical sequence is the same as the sequence
of the underlying base type, you need not define additional functions. For example, the
distinct type CELSIUS could be indexed using a generic B-tree index without coding any

additional routines because a temperature of 100° is greater than a temperature of 80°,
just as the integer 100 is greater than 80. On the other hand, if you want to use a generic
B-tree on an opaque type, you must code functions that the server can use to compare
different values.

R-Tree Indexes

The R-tree index is used for columns that contain spatial data such as maps. It is a
dynamic balanced multiway tree structure that uses a concept called bounding boxes,
which are sets of coordinates that enclose one or more objects. Non-leaf pages contain
bounding boxes that contain all the lower-level children. If a WHERE clause contained an
EQUAL, GREATERTHAN, or LESSTHAN function, the optimizer would evaluate using a B-tree
index; if it contained an OVERLAP, EQUAL, CONTAINS, or WITHIN function, an R-tree index
would be considered.

Functional Indexes

You can create an index on the values of a function performed against one or more
columns. For example, if you have defined a function TOTAL_PAY() that computes the
total compensation of an employee as the sum of a base salary and a bonus, you could
define an index as

create index pay_index on employee
 (total_pay(salary,bonus));

In this case, the server will build the index using the computed values and will update the
index if the underlying data changes.

DataBlade Indices

DataBlade developers can create their own access methods in order to improve
performance by providing indices on opaque types they have defined. To do this, they
need to extend the operator class that includes the set of functions that supports a
secondary access method. These functions include

• Strategy functions that tell the optimizer which predicates in the query are
indexable. Examples of strategy functions for a B-tree index are the
operator functions less than (<), equals (=), and so on.

• Support functions that the optimizer uses to evaluate the strategy
functions. The support function for a B-tree index is a compare() function.

To build an index on an opaque type they have defined, DataBlade developers must
overload the existing strategy and support functions by defining new functions with the
same name that take their data type as an argument.

A similar process can be used to extend the operator class for R-tree indexes.

Developing DataBlades

The first step in building a DataBlade is to decide on the requirements you want to
address. The typical DataBlade has a fairly narrow focus on some specific domain in
which the developer has significant expertise. DataBlades may address horizontal
markets, such as text, audio, or image processing, or vertical industry markets, such as
insurance, manufacturing, or medical applications. Multiple DataBlades may be
appropriate even within one domain. For example, in the audio arena, you could develop
a DataBlade to perform voice recognition (that is, identify a person by his speech
patterns), another one to find all sounds similar to a particular sound, and a third to
implement a voice-to-text system.

Developing a DataBlade includes building some or all of the following components:

• User-defined data types

• C functions using the DataBlade API or stored procedures to support the
data types

• Casts for converting values between data types

• Secondary access methods

• Interfaces that register dependencies on any other DataBlades

• Tables, views, and indices to support client applications

• Test cases

• Documentation

• Help files

• Client applications

• Installation and maintenance scripts

DataBlade Developer's Kit

To facilitate the development of DataBlade modules by third-party vendors, Informix
offers a DataBlade Developer's Program that offers tools, training, and joint-marketing
opportunities. The DataBlade Developer's Kit (DBDK) provides a graphical development
environment for creating new data types and functions, and for managing the packaging,

registration, and installation of the resulting DataBlade modules. Using this tool ensures
that DataBlade users have a consistent interface for the installation of DataBlades they
purchase.

DataBlade API

The DataBlade API is a call-level interface that provides access to database objects from
client applications written in C, C++, and Visual Basic, and from user-defined functions
and support routines written in C. DataBlade code executes in the INFORMIX-Universal
Server threaded environment and shares memory with other server processes. Guidelines
are provided with the DBDK documentation to assist you in developing safe, efficient
modules. They include recommendations for using the DataBlade API memory allocation
routines--mi_alloc() and mi_free()--rather than the C library malloc() and free(),
and other methods for writing thread-safe code. You can also create a private installation
of the server that can be used for debugging DataBlade modules.

BladeSmith

BladeSmith, shown in Figure 8.5, assists with DataBlade development projects by
providing a visual representation of the objects in a DataBlade module and by allowing
you to add new objects and modify object properties. It is designed for a team
development environment and includes facilities for copying components between
projects.

When you define a new data type, you can specify the various operators and support
functions that are needed. BladeSmith will generate the SQL statements needed to define
the data type and, if it is based on a C structure, will also generate a starter set of C code
for the operators and functions necessary to support a B-tree or R-tree index, as well as
many of the other operators and support functions.

After the objects have been defined, BladeSmith will generate source code files, SQL
scripts, and the installation packaging files.

BladePack

BladePack, shown in Figure 8.6, packages the various components of the DataBlade and
prepares a distribution file for delivery to a customer. It takes SQL scripts, shared object
files, and other components and generates diskette images or a directory tree that can be
packaged using a program such as tar or pkzip for final distribution.

Figure 8.5.

The BladeSmith tool.

Figure 8.6.

The BladePack tool.

Tools and Utilities

The onspaces, oncheck, and onstat utilities have been enhanced to support the new
objects. Onspaces is used to create, drop, or extend sbspaces that are used for storing
smart large objects. New parameters with the onspaces utility include specification of
metadata storage size and options relating to logging, access time tracking, and expected
object sizes.

Existing tools previously available with INFORMIX-OnLine Dynamic Server 7.2 are
supported under INFORMIX-Universal Server and have been extended to support the
new objects as appropriate. These include dbload, dbexport/dbimport, dbschema, and
dbaccess. Three new DBA tools are provided: BladeManager, Schema Knowledge, and
the SQL Editor.

BladeManager

BladeManager allows you to register and unregister DataBlades in a particular database.
The registration process involves reading a script that contains SQL statements to register
each function, data type, aggregation, and cast into the database catalog. BladeManager
runs as a GUI interface on Windows clients or as a text interface on UNIX systems.

Options are available to list the DataBlade modules that are installed on the system but
are not registered in a database, to list the modules that are registered, and to install client
files to support a DataBlade module. Figure 8.7 shows the screen you would use to
register a DataBlade.

Figure 8.7.

Using BladeManager to register a DataBlade.

Schema Knowledge

Schema Knowledge is a Windows-based tool that allows you to see the metadata about
objects in your database. For example, you can see what tables have been defined, what
columns are in a particular table, and what the definitions of those columns are. Schema
Knowledge can be particularly valuable in determining what casts have been defined,
what inheritance hierarchies exist, and what arguments are needed by different functions.

After you have connected to a database, Schema Knowledge presents a window divided
into two main views: a Database view that contains a list of objects and an Item view that
contains details of the object that has been selected in the Database view. Figure 8.8
shows the objects in the database "sandbox" and a list of all the tables.

Figure 8.8.

Schema Knowledge.

You can set a filter to restrict the objects displayed; you can filter by owner name or other
object attributes. Navigation is similar to Windows 95 Explorer; clicking on an object in
the Database view will cause a list of the contents to be displayed in the Items view;
double- clicking will expand the hierarchy in the Database view. If the object selected is
at the lowest level in the hierarchy, details about that object will be displayed in the Items
view.

Figure 8.9 shows an example of the information provided for a user-defined routine. The
SPL code is displayed; if the routine had been developed in C, the path to the binary
object would have been displayed instead.

Interrelationships between objects can be explored using the Hyperlink facility. For
example, if you are displaying column details in the Item view, as shown in Figure 8.10,
clicking on the arrow next to the column type will take you to information about the
definition of that column type. The Jump History toolbar allows you to traverse back and
forth across the path you have followed.

Schema Knowledge can be very useful in providing a view of the hierarchical
relationship between tables or types. The Database view shows the Inheritance view for
the whole database when the Inheritance tab is selected. The Items view shows the
immediate supertable and subtable for the table selected in the Database view. Hyperlinks
are provided so that you can jump to view information about any of these objects.

Figure 8.9.

User-defined functions.

Figure 8.10.

Column details in Schema Knowledge.

SQL Editor

The SQL Editor, shown in Figure 8.11, is a Windows-based tool that allows you to test
SQL statements and view their results. You can enter SQL statements on the screen or
use statements that have been stored in a text file.

Figure 8.11.

Using SQL Editor to enter SQL statements.

As you can see in Figure 8.11, the SQL Editor window contains a text box in which you
can enter SQL statements. You can use icons on the tool bar to request a syntax check on
all statements in the text box or only statements you have highlighted. Similarly, you can

request that all statements be executed or only selected ones. When a statement is
executed, the returned results can be seen by selecting the Output tab. Status messages
are displayed in the Result History text box.

The SQL statement used to produce the return results is shown at the top of the Output
folder. In the example in Figure 8.12, one of the columns, Address, was in fact a row
type, and you can see the primary heading Address with secondary headings below it for
the individual fields, street, city, state, and zip. You can select some or all of the columns
and copy and paste them to some other application, such as a spreadsheet.

If the data returned cannot be displayed in the Returned Rows grid, the Cell Viewer can
be used to display the contents of a particular cell. Figure 8.13 shows how the Cell
Viewer can be used to see the individual elements of a MULTISET collection data type.

Figure 8.12.

Looking at results in SQL editor.

Figure 8.13.

Using the Cell Viewer.

The Informix Web DataBlade

The Web DataBlade is a set of tools that enables you to build dynamic Web applications
without having to write CGI scripts in Perl, TCL, or C. Instead, it provides a database-
resident scripting metaphor, which includes the capability to publish any database content
on the Web. HTML documents that include these scripting tags are called AppPages. The
database- resident parser (which scans HTML documents for specific tags) works in
conjunction with a general-purpose middle-tier component--Webdriver. This middle tier,
which is implemented for both cgi and nsapi/isapi environments, can retrieve HTML
documents (with embedded tags) and large objects with their associated mime types from
the database. This enables you to store your entire Web site (HTML, images, documents,
and application data) in the database. Object and page caching functions are included.
Figure 8.14 illustrates the architecture.

Figure 8.14.

Web DataBlade architecture.

If the browser requests a URL that specifies Webdriver (for example,
http://server.domain.com/cgi-bin/webdriver?Mival=apppage), the server will
invoke the Webdriver CGI interface. Using a configuration file called web.cnf as well as
the parameters passed from the browser, Webdriver executes a WebExplode function
(provided with the Web Blade) that retrieves the AppPage from the database and

executes any SQL contained within the AppPage. The results are formatted and returned
as HTML via Webdriver to the Web server, which, in turn, sends it to the client browser.

The power of the WebExplode function is that the SQL it executes can retrieve not just
application data from database tables, but also further HTML definitions, so that the
structure, appearance, and components of the final HTML page can be dynamically
generated. The final appearance of the page can be based on requests passed by the
browser, parameters stored in the configuration file, and/or data retrieved from the
database during page generation. You can also access variables from the Web Server
environment and work with cookies to track users or develop a transaction mode of
operation. The Web DataBlade can be used in conjunction with other DataBlades such as
a text or spatial DataBlade, so that you can search across different data types and/or
display them on your Web site.

The Web DataBlade includes the following SGML-compliant tags:

• <?MISQL> contains SQL statements and formatting specifications for the
data that is retrieved.

• <?MIVAR> is used to create, assign, and display user variables.

• <?MIBLOCK> delimits logical blocks of HTML that can be executed based on
user-defined conditions.

• <?MIERROR> is used to manage error processing.

In addition, you can define your own tags. This feature allows you to reuse HTML and
can help ensure consistency across a Web site as well as cut down on development time.
SQL- proficient developers can code tags that allow HTML coders to retrieve application
data from the database without understanding the intricacies of SQL.

The web.cnf configuration file contains environment variables used by Webdriver, as
well as user application variables. Environment variables include

WEB_HOME: The URL-mapped path to the Webdriver binary.

MIval: The name of the AppPage to be retrieved.

MItab: The name of the table containing the AppPages.

Other variables are used to specify the table that contains images, the names of the
columns that contain the AppPage or image, and so on.

Application Page Builder (APB)

The Web DataBlade module also includes a sample application that allows you to create
and maintain AppPages. Figure 8.15 shows the initial page.

Figure 8.15.

The application page builder menu.

APB also provides good examples of how to code AppPages and user-defined tags.
During the APB installation process, a set of tables is created for storing AppPages,
images, audio clips, videos, and documents, as well as other administrative pages. You
can use these for storing objects you plan to use on your Web site, such as buttons, logos,
or background images.

Building a Sample Web Page

Let's assume that you want to build a Web page that displays the contents of a widgets
table. You would like to use a standard header and footer layout to ensure consistency
across all the pages on your site. But you would like to be able to vary the color or
background image to be used, depending on which part of the site you are in.

To achieve these objectives, you would need to do the following:

1. Construct the overall page definition and store it in the webPages table.
<?web_header TITLE="Wilhelmina Widget Factory" BGIMG=jazzbkgd>
<CENTER>
<TABLE border=2 width=400>
<?MiSQL SQL="select picture, id, name, price from widgets;">
<TR ALIGN=CENTER>
 <TD></TD>
 <TD>$2</TD>
 <TD ALIGN=LEFT>$3</TD>
 <TD>$4</TD>
</TR>
<?/MISQL>
</TABLE>
</CENTER>
<?web_footer>

The first thing you should do is invoke a tag to set up the header. As you'll
see later on, this tag will provide the <HTML>, <HEAD>, and <BODY> tags. You
pass two parameters--the phrase you want to display as the title, and the
name of a gif that is to be used as the background.

Then you set up a table to display the output of the SQL call that follows.
The MISQL tag contains a SELECT statement that retrieves four columns
from the widgets table. The results from the SELECT statement are
returned as numbered column variables ($1, $2, and so on). The first
column retrieved is a picture of the widget. The "handle" of the picture

(which is stored in a blob column) is passed to the IMG tag as column
variable $1. The IMG SRC parameter specifies the $WEB_HOME variable that
will expand to the URL-mapped path to the Webdriver module as defined
in the web.cnf configuration file. Webdriver will then retrieve the actual
picture from the database. The remaining column variables--$2, $3, and
$4--will be placed in the other table columns. A new table row will be
generated for each row of data returned by the SQL statement.

Finally, you invoke the web_footer tag to display the footer. As you'll see
later on, this tag will provide the </BODY> and </HTML> tags.

2. Define the header tag that would be stored in the webTags table.

<?MIVAR NAME=bgcolor>@BGCOLOR@<?/MIVAR>
<?MIVAR NAME=bgimg>@BGIMG@<?/MIVAR>
<HTML>
<HEAD>
<TITLE>Informix Universal Server - @TITLE@</TITLE>
</HEAD>
<?MIVAR>
<BODY BGCOLOR=$bgcolor
 BACKGROUND=$WEB_HOME?MIvalObj=$bgimg>
<?/MIVAR>
<CENTER>
<TABLE WIDTH=400>
<TR ALIGN=CENTER>
<TD WIDTH=80>
 <IMG SRC=<?MIVAR>$WEB_HOME<?/MIVAR>?MIvalObj=mylogo ALIGN=middle>
</TD>
<TD ALIGN=CENTER>
 @TITLE@
</TD>
</TR></TABLE>
</CENTER>

<HR>

The MIVAR tags define two variables: bgcolor and bgimg. These variables
are set to the values passed when this tag is invoked. The title is set to the
title phrase that is passed.

The BODY tag illustrates another way of loading images. Here you pass the
name of the image to be retrieved (which was supplied in the bgimg
variable) to Webdriver to retrieve from the database. You use the same
technique to retrieve the company logo.

3. Define the footer tag, which would be stored in the webTags table.

<HR>
<P ALIGN=RIGHT>Powered by

<?MIVAR>
Informix Universal Server
<?/MIVAR>
</BODY>
</HTML>

Here you see an example of setting up a reference to another AppPage.
Again, the $WEB_HOME variable will be expanded to the URL of the
Webdriver module.

The page produced is shown in Figure 8.16.

The generated HTML for this page, as displayed at the browser, is shown in Listing 8.1.
(The LO handles have been abbreviated for clarity.)

Figure 8.16.

A sample Web page.

Listing 8.1. Generated HTML.
<HTML>
<HEAD>
<TITLE>Informix Universal Server - Wilhelmina Widget Factory</TITLE>
</HEAD>
<BODY BGCOLOR=#B0C4DE
 BACKGROUND=http://ius.domain.com/cgi-bin/webdriver?MIvalObj=>
<CENTER>
<TABLE WIDTH=400>
<TR ALIGN=CENTER>
<TD WIDTH=80>
 <IMG SRC=http://ius.domain.com/cgi-bin/webdriver?MIvalObj=mylogo
ALIGN=middle>
</TD>
<TD ALIGN=CENTER>
 Wilhelmina Widget Factory
</TD>
</TR></TABLE>
</CENTER>

<HR>
<CENTER>
<TABLE border=2 width=400>
<TR ALIGN=CENTER>
 <TD><IMG SRC=http://ius.domain.com/cgi-
bin/webdriver?LO=000...00&MItypeObj=image/gif></TD>
 <TD>12345</TD>
 <TD ALIGN=LEFT>Genuine Leather Briefcase</TD>
 <TD>$15.50</TD>
</TR>
<TR ALIGN=CENTER>
 <TD><IMG SRC=http://ius.domain.com/cgi-
bin/webdriver?LO=006...00&MItypeObj=image/gif></TD>
 <TD>21435</TD>

 <TD ALIGN=LEFT>Right-handed Reflex Camera</TD>
 <TD>$27.95</TD>
</TR>
<TR ALIGN=CENTER>
 <TD><IMG SRC=http://ius.domain.com/cgi-bin/
 Âwebdriver?LO=006...00&MItypeObj=image/gif></TD>
 <TD>52341</TD>
 <TD ALIGN=LEFT>Space-to-Earth Cellphone</TD>
 <TD>$19.95</TD>
</TR>
<TR ALIGN=CENTER>
 <TD><IMG SRC=http://ius.domain.com/cgi-
bin/webdriver?LO=006...00&MItypeObj=image/gif></TD>
 <TD>53461</TD>
 <TD ALIGN=LEFT>Clock of Ages</TD>
 <TD>$33.33</TD>
</TR>
<TR ALIGN=CENTER>
 <TD><IMG SRC=http://ius.domain.com/cgi-
bin/webdriver?LO=006...00&MItypeObj=image/gif></TD>
 <TD>32546</TD>
 <TD ALIGN=LEFT>Heavy Duty Cutlery Mover</TD>
 <TD>$23.42</TD>
</TR>
<TR ALIGN=CENTER>
 <TD><IMG SRC=http://ius.domain.com/cgi-
bin/webdriver?LO=006...00&MItypeObj=image/gif></TD>
 <TD>84753</TD>
 <TD ALIGN=LEFT>MonitorLess Keyboard</TD>
 <TD>$78.33</TD>
</TR>

</TABLE>
</CENTER>
<HR>
<P ALIGN=RIGHT>Powered by
Informix
Universal Server
</BODY>
</HTML>

Summary

INFORMIX-Universal Server extends traditional relational database technology to
support more complex data types with associated user-defined functions and access
methods. You can define your own extensions to support the data types needed by your
applications, or you can purchase DataBlade modules from third-party vendors with
domain expertise. The underlying Dynamic Scalable Architecture provides a
multithreaded, parallelized, and high-performance fault-tolerant environment suitable for
building industrial-strength business applications, and it allows you to leverage skills
gained with earlier Informix database products.

Part III - Informix Administration

• Chapter 9 - Administration Introduction
• Chapter 10 - Installing an Informix Environment
• Chapter 11 - Configuring the Informix Environment
• Chapter 12 - Incorporating a Database in Your Informix Environment
• Chapter 13 - Advanced Configurations
• Chapter 14 - Managing Data with Stored Procedures and Triggers
• Chapter 15 - Managing Data with Locking
• Chapter 16 - Privileges and Security Issues
• Chapter 17 - Managing Data Integrity with Constraints
• Chapter 18 - Managing Data Backups
• Chapter 19 - Parallel Database Query
• Chapter 20 - Data and Index Fragmentation
• Chapter 21 - Monitoring Your Informix Environment
• Chapter 22 - Advanced Monitoring Tools
• Chapter 23 - Tuning Your Informix Environment
• Chapter 24 - Anticipating Future Growth
• Chapter 25 - The INFORMIX-Enterprise Gateway Manager
• Chapter 26 - Problem Handling

- 9 -

Administration Introduction
• Being a DBA
• Types of DBAs
• Tasks of DBAs
• Interaction Between the DBA and the Developer
• Interaction Between the DBA and the User
• Summary

by John McNally

This chapter provides

• A description of the different types of database administrators (DBAs)

• A breakdown of tasks performed by DBAs

• A description of batch and online transaction processing and how they
affect a DBA's tasks

• An analysis of the interaction between DBAs and developers

• An analysis of the interaction between DBAs and users

Being a DBA

Of all the jobs in the data-processing world, being a DBA can be the most precarious.
The DBA is always in the middle when a problem occurs. If the system is not running
very well, the DBA is usually the first person blamed, even when a hardware or
application software situation is causing the problem. It seems natural for the rest of the
data-processing community to blame the database or the database administrator, because
the database is the one area users see as a "black box." Programmers, application
managers, and users do not understand what the DBMS is doing to manage their data. It
is this lack of understanding--combined with the need for their data to be easily accessed-
-that makes non-DBAs look toward the database first when a problem occurs. But if the
DBA is a calm person, able to explain the DBMS process to others, and able to handle
stress well, then being a DBA is a technically challenging and rewarding job.

Not all DBA positions are as stressful as the ones just mentioned, but it's true that the
DBA is in the middle of things. The data that the DBA is responsible for is important to
certain people, or they would not need the data stored at all. The DBA must make sure
that the data is available and safe, and that the system is providing that data as quickly
and efficiently as possible. How "mission-critical" this data is and how well the system is
running determines the amount of stress in the DBA's job.

Most of the DBA's stress comes from unexpected system problems. All DBMSs have
problems with bugs and operating system compatibility. These problems are usually
solved with system patches, with small fixes from the vendor, or by complete software
upgrades. But this is a never-ending cycle; every time a bug is fixed, a new one is created
somewhere else. And with every new software version installed, a new set of problems is
found. Informix products suffer from these situations, like every other software product
sold, for the multitude of different operating systems. Fortunately, being a DBA on an
Informix database system has its benefits over other database management systems.

One benefit is that Informix provides a DBMS that is very easy to administer. As
explained in the previous chapters on each of the Informix DBMS products, all the
Informix data- base management systems have many built-in functions to monitor and
manage themselves. A well-tuned and trimmed, standard-sized Informix database
requires very little DBA interaction on a daily basis. This allows the DBA to concentrate
on other issues, such as data layouts and the application's performance.

Another benefit of Informix is that the time required to become an Informix DBA is short
when compared to other DBMSs. Because of this, many computer professionals are not
full-time Informix DBAs. Usually, people are dedicated Informix DBAs for companies
with extremely large databases or for companies with many smaller separate database
systems. This explains why there are many different types of Informix DBAs.

Types of DBAs

As you know, there are many types of Informix DBAs. The size of the company or the
size of the database determines the type of DBA that is needed.

Here are the two main types of DBAs:

• Operational
• Combination

Combination DBAs can be further broken down into these categories:

• Developer
• System Administrator

The operational DBA performs only the tasks required to maintain and tune an Informix
DBMS. Usually a dedicated operational DBA is needed only for very large, mission-
critical, or multiple-database systems. This person (or persons) spends every day
watching the database and taking care of problems and tuning.

The combination DBA is the standard and most popular type of Informix DBA. This
person spends only a portion of the time performing the tasks that an operational DBA
does all day. Again, this is because most Informix systems are not large enough to require
the full-time daily attention of one or more people. The Informix DBMS was built to
require less administrative attention when dealing with standard business-size databases.

In some situations, one or two people involved with the development of applications that
require access to an Informix database are the same people who administer the database.
These people have an intimate knowledge of the data and how it is stored within the
database. This knowledge makes administering any DBMS easier, especially when
tuning. The knowledge of how the data is accessed will help these people adjust Informix
to provide efficient performance.

In systems where the development of applications is a large effort, or where the
application is purchased, the person who administers the system (the SA) usually also
administers Informix. An SA is responsible for hardware and operating system issues as
well as memory and disk space. The SA installs, configures, and monitors the Informix
DBMS as well as all the products running on the hardware systems under his or her
responsibility.

An Informix DBA can hold many responsibilities beyond the ones required by the
database. In smaller companies, one or two people could fill the positions of application
developer, SA, DBA, and possibly user of the very same system. This is possible because
the basic tasks of a standard-sized database's administrator are quick and easy.

Tasks of DBAs

The DBA must perform many tasks to create, maintain, and manage an Informix DBMS.
The amount of overlap among the roles of application developer, system administrator,
and DBA dictates who performs each task. Throughout the rest of this section, it is
assumed that the DBA is a combination of all three roles and is able to perform all tasks
required by an Informix DBMS. These tasks include the following:

• Installing an Informix DBMS environment
• Upgrading the Informix DBMS environment
• Configuring that environment
• Creating or incorporating a database
• Tuning
• Daily Monitoring
• Migrations
• Backups and recovery
• Problem investigations

Installing and upgrading the Informix environment is the physical act of loading the
Informix software onto the system that will be used to run that software. Similar to when
you install any software, Informix requires specific amounts of disk and memory in order
to be able to run properly. For more information on how to plan, install, or upgrade an
Informix DBMS, refer to Chapter 10, "Installing an Informix Environment."

After the Informix DBMS is installed, it should be configured to manage your planned
database. Disk space must be divided to hold tables, and communications must be set up
for clients to access the database. Chapter 11, "Configuring the Informix Environment,"
provides information on how to set up Informix.

The act of creating a database or incorporating an existing database into the Informix
DBMS is the most important task of a DBA. The amount of time and effort put into
making sure that the database is properly created, that tables are laid out correctly, and
that indexes are based on the application's needs helps to reduce the need for changes in
the future. The more the DBA knows about the applications that require the database and
about the data stored in the database, the better the DBA can create the database to serve
the application more usefully. Many of the chapters within this book will help DBAs
create a database. Start with Chapter 12, "Incorporating a Database in Your Informix
Environment," and Chapter 29, "Creating a Database Using SQL."

After the database is created, the DBA tunes and monitors it by adjusting the data layout,
adding more memory, and changing tables and rows. As the database grows, the DBA
makes changes here and there to improve performance. Depending on the amount of data
and users, tuning and monitoring can be a minor or major effort. Many chapters of this
book are also dedicated to tuning and monitoring the Informix DBMS. Start with Chapter

21, "Monitoring Your Informix Environment," and Chapter 23, "Tuning Your Informix
Environment."

As the database grows, new data might become important and old data might become
useless. New data fields and tables will be required, whereas existing tables contain
information that is no longer needed. To handle these changes, and to keep the database
at a manageable size, the DBA needs to perform migrations. A migration is the act of
moving data from one area to another, usually changing the layout of that data in the
process. When a new field is added to a table, Informix automatically migrates the data
that exists in the table into the new layout. The same applies when fields are removed.

Another form of migration is a data purge, which occurs when data that is no longer
needed (which is decided by some factor, such as date) is removed from the database. For
example, a database that keeps track of orders might need to keep only three years worth
of orders in the database. A purge could be done on a regular basis to remove orders older
than three years from the database and put them onto tape. When you do this, the
database will stay at a relatively consistent size. Chapter 24, "Anticipating Future
Growth," discusses migration and database layout change situations and how to handle
them.

Another primary task of the DBA is to make sure that data within the database is properly
backed up and able to be used for recovery at all times. It's an unavoidable situation when
the system crashes due to a hardware problem; but if the data is lost as a result of this
crash, the DBA could be out of a job (depending on the importance of the lost data). It is
the DBA's responsibility to create a backup strategy that corresponds to the importance of
the data within the database. If the data is easily replicated, backups might not be needed.
But if the data is worth hundreds, thousands, or millions of dollars, the database must be
backed up on a regular basis. Chapter 18, "Managing Data Backups," deals with these
issues and explains the many ways Informix can keep data backed up.

When things go wrong or the DBMS is not running correctly, it's the DBA's job to find
the problem and fix it. Sometimes, the problems have nothing to do with Informix and
the way the database is designed. Problems that look like they occur within the DBMS
might actually be caused by the application accessing the database or by the hardware
that is running the DBMS. That is why the DBA should have knowledge beyond the
Informix DBMS. The more the DBA knows about the entire system, the more successful
he or she will be at finding the problems or bottlenecks. Chapter 26, "Problem Handling,"
explains how to locate the source of problems and what to do about them.

Not every DBA has to perform all of these tasks, and the importance of each task is
determined by the importance of the database and how it is configured. Three basic
configurations of an Informix DBMS determine where the DBA's work will be
concentrated. These DBMS configurations are as follows:

• Online transaction processing (OLTP)
• Batch processing

• A combination of both OLTP and batch processing

An OLTP system is a system in which actions on the database are performed in a client-
server situation. User applications send transactions to the database to do something with
the data within that database. The client is the user's application, and the server is the
Informix DBMS. These transactions between the client and the server are usually small
and happen multiple times each day. This configuration allows for multiple clients to use
the database without having to run on the same machine as the DBMS. Clients run on
their own machines, using their own resources, although it is not necessary to have a
client and the server on separate machines to achieve an OLTP configuration. A system is
considered OLTP when multiple, separate, small transactions interact with the DBMS at
the same time all day long. Each transaction takes less than a second to process. For
example, a library's electronic card catalog system would check books in and out all day,
and also perform checks to see whether books are available.

A batch configuration occurs when the DBMS processes a single long transaction from
one distinct process. A batch process can work with hundreds of data items within a
database during the life of the single batch process. Batch processes are expected to run
minutes to hours, depending on the size of the database. An example of a batch process is
a mailing process that creates a letter for every customer stored within the database.

In most Informix DBMSs, the DBA has to manage both OLTP and batch processes. This
requires the DBA to perform specific monitoring and adjustments to meet both OLTP
and batch needs.

The following tasks are required by an OLTP system:

• Thread multiprocessing monitoring
• Logging
• Managing multiple access paths
• Client communication connections

The following tasks are required by a batch system:

• Specific indexing for batch processes
• Stop/restart processing
• Locking limitations

The following tasks are required in a system that performs both OLTP and batch
processing:

• All OLTP tasks
• All Batch tasks
• Manage performance to find an efficient processing mix

Several chapters throughout this section deal with all of these issues. When setting up an
Informix DBMS, remember to keep in mind the type of processing that will be
performed. An incorrect configuration will drag the performance down on any DBMS.
Better performance from the DBMS leads to a better relationship between the DBA and
the people needing the database.

Interaction Between the DBA and the Developer

The DBA is in the middle of everything, because the data managed by the DBA is
important to everyone. On one side of the DBMS are the developers--the people that
build or buy the applications that access the database. If the database fails or is designed
poorly, that will make the application look bad. A partnership must be formed between
the DBA and developer teams. Without the application, the database would not be
needed. Without the database, the application would not be able to process. In order to
ensure the best database design, when a new application is being created or bought, the
DBA must be involved from the beginning.

It would be ideal for the project to be small enough that the DBA is also a developer or
evaluator of the software to be purchased. If a DBA is not part of the development or
evaluation team, a DBA should be brought in to oversee all predesign efforts and the
gathering of data requirements.

The DBA should be involved at this early stage to avoid data view misconceptions. The
view of the database to the application or the developer could be very different from the
database view. A view is how the data is perceived to be stored within tables and rows.
The view of the database does not always match physically and logically. So, letting the
application determine the layout could create a database that is not very efficient.

The DBA should be involved to ensure that the relational rules are followed. That is, the
DBA should ensure that all primary and foreign keys are correctly established. The DBA
should spread tables and data apart to take advantage of multiprocessing. Most
developers and application salespeople will not have these concerns.

Make sure that a DBA is represented when choosing a new application. A good
relationship between the DBA and the development teams will help lay the groundwork
for a stable and efficient database system.

Interaction Between the DBA and the User

Because of the relationship between the developer and the DBA, the DBA might consider
the developer to be a specific kind of user of the DBMS because developers need to
access the database to add new data elements and to perform testing. However, the actual
user--the people who access the database through the developer's application--is another
relationship that the DBA must maintain. The user usually does not distinguish between
the application and the database. Because the data is important, the user thinks of the

application as a tool to use the data. That data must be safe, secure, and correct. If it is
not, the user community will be forming a lynch mob to find the DBA.

The DBA must make adjustments for the users--usually more than is required of the
developers. The more the DBA can do to maintain data integrity, security, and efficient
access, the happier the users will be.

Summary

This chapter laid the groundwork for a DBA to start with when administering an Informix
DBMS. It is important to remember that a DBA might need knowledge in many different
areas of the information system beyond the database. The DBA might have to wear the
hat of a DBA, a developer, a system administrator, or a combination of all three roles.

The DBA also needs to perform many tasks to maintain a stable and secure Informix
DBMS. Fortunately, learning how to be an administrator of Informix is quick and easy,
and some of these tasks are performed automatically by Informix.

Different systems process data in different modes. Some systems use OLTP, and others
use batch only. Most Informix systems need to be set up to do a combination of both
OLTP and batch processing. The DBA must be able to adjust and administer either
situation.

The relationships between developers, users, and the DBA are important. The better the
communication, the better the system. The DBA should be involved in all aspects of a
new system in order to create a database that meets all of the company's needs.

The job of a DBA can become hectic and stressful if it is not properly managed. The
more up-front work a DBA can perform on a database, the better it will perform when it
is in production.

- 10 -

Installing an Informix Environment
• Preparing to Install the INFORMIX-OnLine Product Family

o Setting Up UNIX Configuration Parameters and Environmental
Variables

o Creating the Informix User and Group
o Creating the Appropriate Devices and Directories

• Installing Informix Products
o Informix Product Installation Order
o Retrieving the Informix Product Files from Tape or CD

o Running the Install Script
• Bringing the Informix Database Server OnLine

o The sqlhosts File
o The onconfig File
o Initializing from the Command Line
o Initializing from Within onmonitor
o Verifying Your Installation

• Customizing Your Informix Environment
o Adding Temporary Database Spaces
o Changing the Size and Placement of the Physical Log
o Adding Application Database Spaces and Chunks

• Upgrading the Informix Version
• Problems You Might Encounter

o Installation Failed
o OnLine Will Not Initialize

• Summary

by Robert Donat

This chapter details the steps required to install, start, and test an Informix database
instance. The installation of OnLine Dynamic Server for UNIX involves much more
instruction than the installation of both the Informix Standard Engine and INFORMIX-
OnLine for Windows NT. For this reason, the details in this chapter relate mostly to
OnLine Dynamic Server because many are unnecessary for the other two types of
installation. This chapter applies to the installation of application development tools, SQL
Application Programming Interfaces (APIs), the OnLine server itself, and additional
Informix products.

Preparing to Install the INFORMIX-OnLine Product Family

A few small but critical steps need to take place prior to beginning your Informix
installation. They include setting up UNIX configuration parameters, creating appropriate
users, and determining the proper placement of the INFORMIX-OnLine products on your
system. In the case of Windows NT installations, the necessary registry entries and users
are created automatically as part of the setup. To complete installation, run the
d:\setup.exe program that comes on the Informix for NT CD-ROM.

Setting Up UNIX Configuration Parameters and Environmental Variables

Before you attempt to install INFORMIX-OnLine on your server, a few entries and
changes must be made on your UNIX server. Environmental variables must be declared,

/etc/system shared memory parameters must be set, and /etc/services entries must
be made.

Environmental Variables

A few Informix environmental variables must be set for the installation and for all users
of that installation in the future. These environmental variables are as follows:

• INFORMIXSERVER
• INFORMIXDIR
• PATH
• ONCONFIG
• INFORMIXTERM

INFORMIXSERVER is set to the name of the INFORMIX-OnLine instance that you are
installing. You can call it anything you like, but be sure to make it descriptive and
concise. Examples would be finance, ol_prod, or mozart, to indicate the purpose,
scope, or server name for the Informix server. You might want to distinguish the platform
of your INFORMIX-OnLine instance in the INFORMIXSERVER variable as well. This
could help you distinguish NT instances from UNIX instances, for example.

INFORMIXDIR is the base directory of the Informix installation. Set this to the area of the
disk you will use for your installation or the symbolic link that points to it. For this
example, INFORMIXDIR is set to /usr/informix, which is a symbolic link to
/home/informix.

PATH is the set of directories in which the server searches for executable files when you
do not specify their fully qualified pathname. PATH must include ${INFORMIXDIR}/bin in
order to install and run Informix properly.

ONCONFIG is optional, and it is set only if you want to use a different configuration file
than ${INFORMIXDIR}/etc/onconfig. The file used during startup is
${INFORMIXDIR}/etc/${ONCONFIG}.

INFORMIXTERM is set to termcap or terminfo in order to allow character-based Informix
clients (dbaccess, onmonitor, 4GL programs, and so on) to function properly with the
terminal type and preferences you use in your UNIX environment.

NOTE: Usually, setting INFORMIXTERM to termcap will work in your environment.
However, Informix supplies its own termcap file in ${INFORMIXDIR}/etc if you
experience difficulty with your UNIX terminals. In addition, termcap files for
specific hardware configurations are available in the International Informix
Users' Group Web site, at http://www.iiug.org.

The way to set these environmental variables depends on the shell you use. Here are
some examples:

Bourne or Korn shells:

INFORMIXDIR=/usr/informix; export INFORMIXDIR
PATH=${PATH}:${INFORMIXDIR}/bin; export PATH

C shell:

setenv INFORMIXDIR /usr/informix
setenv PATH ${PATH}:${INFORMIXDIR}/bin

TIP: Place these entries in a file such as /etc/profile or /etc/.login (depending
on the default shell), which is executed for each user when that user logs on.

You can verify that these variables are set by typing echo $PATH or echo
$INFORMIXDIR.

Ensure that all appropriate environmental variables are set for your environment before
you continue. They should look like those in Listing 10.1.

Listing 10.1. Obtaining Informix environmental variables.
root@sams> env|egrep `(INF|^PATH)'
PATH=/usr/sbin:/usr/bin:/usr/local/bin:/usr/informix/bin
INFORMIXBIN=/usr/informix/bin
INFORMIXTERM=terminfo
INFORMIXDIR=/usr/informix
INFORMIXSERVER=sams

Shared Memory

Shared memory is a facility provided by the operating system that allows Informix to use
a reserved area of memory. This allows Informix to communicate faster between
processes and threads than if independent areas of memory were used for each process or
if disk I/O were required.

Several platform-specific shared memory parameters need to be set prior to rebooting the
UNIX server and beginning the installation process. If they are not configured properly,
OnLine will not initialize. Because these parameters differ between specific UNIX
vendors' platforms, they are not detailed here.

The directory ${INFORMIXDIR}/release has a subdirectory structure based on your
platform, Informix version, and default language. The file named ONLINE_7.2 (or

something similar) has sample configuration parameters for your version of OnLine.
Your platform documentation will help you determine the best way to tune shared
memory based on your platform memory resources and the applications that share the
server with Informix. Listing 10.2 shows a typical ONLINE_7.2 file.

Listing 10.2. The beginning of the ONLINE_7.2 file.
=================================
 MACHINE SPECIFIC NOTES
 FOR
 INFORMIX-OnLine Dynamic Server 7.22.UC1 PRODUCT RELEASE
 DATE: 26 Dec 1996
 =================================
PORT NUMBER: 042949, 042974
IRIS JOB NUMBER: 9462
INFORMIX-OnLine Dynamic Server Shared Memory Parameters and Kernel
Parameters:
===
=======
The following entries were put in /etc/system while doing the port.
set enable_sm_wa = 1
set shmsys:shminfo_shmmax=268435456
set semsys:seminfo_semmap=64
set semsys:seminfo_semmni=4096
set semsys:seminfo_semmns=4096
set semsys:seminfo_semmnu=4096
set semsys:seminfo_semume=64
set semsys:seminfo_semmsl=100

Services Entries

You need to enter a few /etc/services entries, based on your configuration. These
identify TCP/IP or network ports that are used for specific purposes. They can be
customized based on your network needs, but they must remain consistent across the
network for servers and clients that will use them. These entries consist of the following
elements:

• nettcp 1400/tcp: nettcp is used for network communication for
INFORMIX-OnLine 6 and 7.

• sqlexec 1399/tcp: sqlexec is used for network communication for
Informix 5.

• oncockpit 1401/tcp: oncockpit is optional and is used with onprobe and
the oncockpit graphical performance monitor.

• egm 1402/tcp: If the Enterprise Gateway Manager will be installed, it will
need its own port and service name.

• secondserver 1402/tcp: Each of a machine's distinct servers will need its
own port if they are to run simultaneously.

For a simple installation, however, only nettcp is necessary, and it can be named and
numbered any way you choose, as long as it is consistent and referenced in the
${INFORMIXDIR} /etc/sqlhosts Informix communications parameters file. These
examples are shown in an actual /etc/services file in Listing 10.3.

Listing 10.3. Informix entries in /etc/services.
sqlexec 1399/tcp #Informix 5
nettcp 1400/tcp #Informix 7
oncockpit 1401/tcp #Informix GUI monitor
egm 1402/tcp #Enterprise Gateway Manager
secondsrvr 1403/tcp #Informix 7, server 2

Creating the Informix User and Group

A user and group, each with the name informix (in lowercase) must exist before you
install the server. They need to be placed in the /etc/passwd and /etc/group files,
respectively. Placing the user and group in NIS (Network Information Service) instead, or
in /etc/shadow, might be necessary, depending on the UNIX security scheme you use.
Be sure to make the informix user's home directory the same directory where you want
to install the server. Typical user and group entries can be seen in Listing 10.4.

Listing 10.4. Informix user and group entries.
root@sams> grep informix /etc/passwd /etc/group
/etc/passwd:informix:x:201:200:Informix DBA:/usr/informix:/bin/ksh
/etc/group:informix::200:

NOTE: If you want to use Informix role separation to facilitate auditing, create
the groups ix_aao and ix_dbsso for the audit analysis officer and system security
officer roles. You must also create at least one user for each role. (They can be
ix_aao and ix_dbsso as well.) These users and groups will be granted ownership
of certain directories when installing OnLine, and you will be prompted for them
during the install. Role separation allows different users to administer the online
instance, set up auditing, and review auditing independent of each other. In order
to enable this functionality during the installation, the environmental variable
INF_ROLE_SEP must be set to any value prior to installing the online engine.

Creating the Appropriate Devices and Directories

Before installing Informix, you must decide where you want to place your installation
files, as well as how much space to give the database and where that space will reside.
These decisions must be based on several factors:

• Your current server configuration
• Initial and anticipated database sizes
• Database usage type and criticality

A typical Informix installation with 4GL and ESQL products included could take
between 60MB and 90MB of free disk space. Your database or databases might take up
only 50MB of space, or they might take up 100GB or more of space. In addition, some
types of applications might require huge amounts of temporary storage space because of
their processing requirements, and others might require very little space. Storage
considerations must be appropriate for your specific installation, server usage, and
resource limitations.

Create a directory in the most appropriate file system on your machine, and symbolically
link that file to /usr/informix or an appropriate site-specific convention. Change the
ownership of both the directory and the link to user and group informix. An example of
how these look when done can be seen in Listing 10.5.

Listing 10.5. A typical file system and creating the Informix directory
structure.
root@sams> df -k
Filesystem kbytes used avail capacity Mounted on
/dev/md/dsk/d0 144799 91454 38875 71% /
/dev/md/dsk/d30 336863 105905 197278 35% /usr
/proc 0 0 0 0% /proc
fd 0 0 0 0% /dev/fd
/dev/md/dsk/d50 1170638 622555 431023 60% /home
/dev/md/dsk/d60 1074590 605587 361553 63% /home2
/dev/md/dsk/d40 288855 65145 194830 26% /opt
/dev/md/dsk/d70 288855 106438 153537 41% /usr/openwin
swap 835312 28 835284 1% /tmp
root@sams > mkdir /home/informix_7
root@sams > ln -s /home/informix_7 /usr/informix
root@sams > chown informix:informix /home/informix_7
root@sams > chown -h informix:informix /usr/informix
root@sams > ls -ld /home/informix_7
drwxr-xr-x 17 informix informix 1536 Apr 1 23:56 home/informix_7
root@sams > ls -l /usr/informix
lrwxrwxrwx 1 root other 17 Mar 25 12:56 /usr/informix -
>/home/informix_7

You can use raw disk partitions or cooked files in an existing file system for your
database storage space. Raw disk space is the recommended approach, because the
database manages it directly. This speeds up activity because the system-level file
processing does not need to occur. It also ensures recoverability because the database
knows exactly what has been written to disk. This is not the case with cooked files, which

buffer disk input and output and might report to the database that an activity has occurred
on disk that has actually been cached in memory instead. If the system fails at a time like
this, information will be unrecoverable, and the database could become corrupt. It is
recommended that you symbolically link your raw partitions to easy-to-manage
filenames, such as the ones shown in Listing 10.6.

Listing 10.6. Samples of Informix raw devices and links.
root@sams > ls -l /dev/vx/rdsk/db_chunk00?
crw-rw---- 1 informix informix 112, 5 Mar 23 08:43
/dev/vx/rdsk/db_chunk001
crw-rw---- 1 informix informix 112, 6 Mar 22 17:57
/dev/vx/rdsk/db_chunk002
crw-rw---- 1 informix informix 112, 7 Mar 22 17:57
/dev/vx/rdsk/db_chunk003
crw-rw---- 1 informix informix 112, 8 Mar 22 17:57
/dev/vx/rdsk/db_chunk004
crw-rw---- 1 informix informix 112, 9 Mar 22 17:57
/dev/vx/rdsk/db_chunk005
crw-rw---- 1 informix informix 112, 10 Mar 22 17:57
/dev/vx/rdsk/db_chunk006
crw-rw---- 1 informix informix 112, 11 Mar 22 17:57
/dev/vx/rdsk/db_chunk007
crw-rw---- 1 informix informix 112, 12 Mar 22 17:57
/dev/vx/rdsk/db_chunk008
crw-rw---- 1 informix informix 112, 13 Mar 22 17:57
/dev/vx/rdsk/db_chunk009
root@sams > ls -l /dev/online_space001
lrwxrwxrwx 1 root other 24 Mar 22 17:57
/dev/online_space001 ->/dev/vx/rdsk/db_chunk001

If you require your database to continue to run even if a disk error occurs, you might
want to mirror your database chunks. In this case, the raw partitions are duplicated
across two similarly sized areas of disk. Although this allows uninterrupted activity to
occur in case of hardware failure, it also demands twice the normal amount of available
disk space and only helps if the mirrors are on separate physical disk drives.

The largest chunk of raw disk space that can be allocated to Informix is usually 2GB.
You can check your machine notes in the ${INFORMIXDIR}/release directory for more
specific limitations.

After you decide which areas of disk you will dedicate to the Informix installation and
which raw partitions you will dedicate to the database itself, you are ready to install the
pieces of the database, one product at a time.

Installing Informix Products

There are a few easy steps to follow to install the Informix products after setting up the
UNIX environment. The products must be installed in the appropriate order. The tape or
CD-ROM that contains each product must be unloaded to ${INFORMIXDIR}, and the
installation can then be run on each product in succession by the user root.

Informix Product Installation Order

When you install an Informix instance, you usually need to install several different
products. Here are some examples:

• Application Development Tools
• INFORMIX-4GL
• INFORMIX-4GL Rapid Development Package
• INFORMIX-4GL Interactive Debugger
• SQL Application Programming Interfaces (APIs)
• INFORMIX-SQL
• INFORMIX-ESQL/C
• INFORMIX-ESQL/COBOL
• INFORMIX-Connect
• INFORMIX-CLI
• Database Servers
• INFORMIX-OnLine Dynamic Server
• INFORMIX-OnLine Dynamic Server Runtime Facility
• Additional Products
• C-ISAM
• C-ISAM Runtime Facility
• Informix Messages and Corrections
• INFORMIX-OnLine/Optical
• INFORMIX-Enterprise Gateway for DRDA
• INFORMIX-Enterprise Gateway Manager

This list gives examples of the types of products that belong in each of the four "stages"
of installation. The products all have a similar installation procedure, but they must be
installed in this order, with the most recent versions of each subproduct installed last. For
example, if you have a more recent version of INFORMIX-4GL than the INFORMIX-
4GL Interactive Debugger, install the Debugger first so that the most recent shared files
will not be overwritten by the older debugger files. When upgrading to a new version of
one of these products, you need to reinstall all remaining products in order.

Retrieving the Informix Product Files from Tape or CD

Retrieving the product files is very simple. Informix ships its products on tape or on CD-
ROM. In either case, the retrieval instructions are similar. Mount the tape or CD so that it
is available to the server on which you want to install. Change to the correct directory
with cd ${INFORMIXDIR}. Depending on the media and the instructions on the tape or
CD, you need to execute a tar or cpio command. They would look like this:

• cpio -ivdBum < devicename [e.g. cpio -ivdBum</dev/rmt/1]

• tar xvf devicename [e.g. tar xvf /cdrom/unnamed_cdrom/online.tar]

You will see a list of files that are taken from the media and placed in your
${INFORMIXDIR}. When the files have all been retrieved, you then need to run (as root)
the installxxxxxx script that is particular to the product you have just retrieved.

NOTE: It is advisable to read the machine-specific notes at this time in the
${INFORMIXDIR}/release directory for helpful information relating to your
specific platform.

TIP: If you want to install on more than one machine, you might want to archive
and compress the CD or tape files before installation or modification, so that you
do not need to load them again from media, which can take some time.

Running the Install Script

Each product comes with its own install script, which will modify the files you just
retrieved, as well as their ownership, permissions, and application licensing information.
The following are some install scripts:

Product Installation
Command

INFORMIX-CLI /installcli

INFORMIX-ESQL/C /installesql

INFORMIX-ESQL/COBOL /installesqlcob

INFORMIX-OnLine Dynamic
Server

/installonline

INFORMIX-Messages and
Corrections

/installpsmsg

You will be able to tell which script is appropriate for the product you just retrieved by
looking at the install scripts that exist in the ${INFORMIXDIR} directory and comparing
them with the ones you have already used.

You need to run the install script as root from the ${INFORMIXDIR} directory. It verifies
that you are running it as root, and then it prompts you for licensing information, which
might have come with your media or you might have received it separately. After you
successfully enter a valid Serial Number and Key, the script installs the product and lets

you know when it is done. You then see something similar to what is shown in Listing
10.7. The script should, but might not, link all shared objects to /usr/lib for you. When
convenient, find all shared objects under ${INFORMIXDIR} and verify that they have been
linked to /usr/lib. You might use a UNIX command such as find ${INFORMIXDIR} -
name "*.so" -print to list all shared objects and then link them, if they are not already,
with ln -s ${INFORMIXDIR}/lib/libesql.so /usr/lib/libesql.so or a similar
command for each unlinked object.

Listing 10.7. Running an Informix install script.
root@sams# cd $INFORMIXDIR
root@sams# pwd
/usr/informix
root@sams# ls -l installonline
-rwxr-xr-x 1 informix informix 10008 Dec 26 17:26 installonline
root@sams# ./installonline
INFORMIX-OnLine Dynamic Server Version 7.22.UC1
Copyright (C) 1986-1996 Informix Software, Inc.
Installation and Configuration Script
This installation procedure must be run by a privileged user (Super
User)
It will change the owner, group, mode, (and other file attributes on
Secure systems) of all files of this package in this directory.
There must be a user "informix" and a group "informix" known to the
system.
Press RETURN to continue,
or the interrupt key (usually CTRL-C or DEL) to abort.
Enter your serial number (for example, INF#X999999) >
INF#X999999
Enter your serial number KEY (uppercase letters only) >
ABCDEF
WARNING!
 This software, and its authorized use and number of users, are
subject to the applicable license agreement with Informix Software,
Inc.
If the number of users exceeds the licensed number, the excess users
may
be prevented from using the software. UNAUTHORIZED USE OR COPYING MAY
SUBJECT YOU AND YOUR COMPANY TO SEVERE CIVIL AND CRIMINAL LIABILITIES.
Press RETURN to continue,
or the interrupt key (usually CTRL-C or DEL) to abort.
...
Installing directory gls/lc11/os
Installing directory gls/lc11/pl_pl
Installing directory gls/lc11/ru_ru
Installing directory gls/lc11/sv_se
Installing directory bitmaps
Installing Shared Libraries in System Directories ...
Linking /usr/lib/ismdd07b.so from lib/ismdd07b.so
Previous version of /usr/lib/ismdd07b.so saved as
/usr/lib/ismdd07b.so.970208
Linking /usr/lib/ismdd07a.so from lib/ismdd07a.so
Previous version of /usr/lib/ismdd07a.so saved as
/usr/lib/ismdd07a.so.970208
Installation of INFORMIX-OnLine Dynamic Server complete.

root@sams >

When you have installed all the Informix products you have purchased or need to install,
you are ready to configure your instance and bring the Informix engine online for the first
time.

TIP: If you intend to configure several identical instances of Informix on identical
machines, and you are licensed to do so, you might want to make a snapshot of this
installation before modifying it. You can do this like so:
cd ${INFORMIXDIR}
tar cvf informixinstall.tar .
compress informixinstall.tar
mv informixinstall.tar.Z /archivedir

When you need to reinstall Informix on a new machine (or reinstall from scratch on this
one), you then need only to move the informixinstall.tar.Z file to the new server
and install like this:

cd ${INFORMIXDIR}
zcat /tmp/informixinstall.tar.Z|tar xvf -
cd lib [and each subdirectory with shared objects]
[in ksh syntax]
for i in *.so
do
ln -s `pwd`/$i /usr/lib/$i
done

Now you have a complete install without all of the individual installations.

Bringing the Informix Database Server OnLine

You need to perform a few small steps before you can use the INFORMIX-OnLine
Server for actual development or production. The two configuration files that need to be
changed are ${INFORMIXDIR}/etc/sqlhosts and ${INFORMIXDIR}/etc/onconfig.
The sample files sqlhosts.std and onconfig.demo, which are shown in Listing 10.8,
should be copied into sqlhosts and onconfig to be used as templates. You need to edit
sqlhosts, and you can either edit onconfig directly or use the Informix utility
onmonitor to edit it through a convenient interface. Then the database can be initialized
for the first time.

Listing 10.8. Copying and editing sample onconfig and sqlhosts files.
root@sams# su - informix
Sun Microsystems Inc. SunOS 5.5 Generic November 1995
informix@sams> cd etc
informix@sams> ls -l sqlhosts* onconfig*

-rw-r--r-- 1 informix informix 7171 Dec 26 17:29 onconfig.std
-rw-r--r-- 1 informix informix 978 Dec 26 17:27 sqlhosts.demo
informix@sams> cp onconfig.std onconfig
informix@sams> cp sqlhosts.demo sqlhosts
informix@sams> vi sqlhosts

The sqlhosts File

sqlhosts contains information about the local and networked INFORMIX-OnLine
instances. It contains one entry for each connection to an Informix engine, either through
a network or through shared memory. The four or five columns for each entry are as
follows:

• The name of the database server that is listed

• The connection mechanism or net type

• The network name of the machine that hosts the server

• The port name from /etc/services, which is used for a network
connection

• The options, if any

The name of the database server should match the DBSERVERNAME or DBSERVERALIASES
in the onconfig file for that server.

The connection mechanism or net type is an eight-character field that represents three
different instance specifics. The first two characters (on) indicate that it is an online net
type. The next three letters indicate the connection type--either shared memory (ipc) or
network (tli for transport-level interface, or soc for sockets). The last three letters
indicate the protocol type. Examples are shm for shared memory, tcp for TCP/IP, or spx
for IPX/SPX.

The network name of the server's host is simply the hostname, which is reachable and
resolvable to a valid IP address on the network.

Options allow you to specify different parameters for security, connection keep-alive
configuration, and TCP/IP communication buffer size. These are advanced configuration
settings and are not necessary for the initial configuration. They can be changed at any
time in the future. The sqlhosts entries for this example can be seen in Listing 10.9.

Listing 10.9. A sample sqlhosts file.
Title: sqlhosts.demo
Sccsid: @(#)sqlhosts.demo 9.2 7/15/93 15:20:45
Description:
Default sqlhosts file for running demos.

#**

#demo_on onipcshm on_hostname on_servername
sams onipcshm sams anything
sams_net ontlitcp sams nettcp

The onconfig File

The onconfig file is the master configuration file for all Informix parameters. It contains
roughly 90 parameters that can be tuned to obtain optimum performance for your
particular resources and needs. It can be edited directly, in which case changes might not
take place until the next time OnLine is initialized, or it can be changed from within
onmonitor, which often allows changes to take place immediately while the engine is
online. There are two ways to initialize the Informix instance for the first time.

Initializing from the Command Line

If you want to edit the onconfig file directly, a few changes should be made within your
editor before the database can be initialized. The changes are as follows:

• ROOTNAME: The name you want to give to your root database space.

• ROOTPATH: The pathname to the raw or cooked file for your rootdbs.

• ROOTOFFSET: The number of kilobytes to be skipped from the beginning of
ROOTPATH.

• ROOTSIZE: The size allocated in the ROOTPATH for ROOTNAME. Note that this
does not need to be the entire free space on the device.

• DBSERVERNAME: The name of the Informix instance you entered in sqlhosts.

• NETTYPE: The type of network and number of threads to poll for that
network.

• MULTIPROCESSOR: Whether or not the machine is multiprocessor.

• NUMCPUVPS: The number of CPU virtual processors.

• SINGLE_CPU_VP: Whether or not the number of CPU VPs is limited to one.

• NUMAIOVPS: The number of I/O VPs.

The entries for these variables can be seen in Listing 10.10.

Listing 10.10. A partial onconfig file with Root Dbspace and system
configuration changes made.
#**

INFORMIX SOFTWARE, INC.

Title: onconfig
Description: INFORMIX-OnLine Configuration Parameters

#**

Root Dbspace Configuration
ROOTNAME rootdbs # Root dbspace name
ROOTPATH /dev/online_space001 # Path for device containing root
dbspace
ROOTOFFSET 2 # Offset of root dbspace into device
(Kbytes)
ROOTSIZE 1023998 # Size of root dbspace (Kbytes)
Disk Mirroring Configuration Parameters
MIRROR 0 # Mirroring flag (Yes = 1, No = 0)
MIRRORPATH # Path for device containing mirrored
root
MIRROROFFSET 0 # Offset into mirrored device (Kbytes)
...
LTAPEDEV /dev/tapedev # Log tape device path
LTAPEBLK 16 # Log tape block size (Kbytes)
LTAPESIZE 10240 # Max amount of data to put on log tape
(Kbytes)
Optical
STAGEBLOB # INFORMIX-OnLine/Optical staging area
System Configuration
SERVERNUM 0 # Unique id corresponding to a OnLine
instance
DBSERVERNAME sams # Name of default database server
DBSERVERALIASES sams_net # List of alternate dbservernames
NETTYPE tlitcp,5,250,NET # Configure poll thread(s) for
nettype
NETTYPE ipcshm,2,250,CPU # Configure poll thread(s) for
nettype
DEADLOCK_TIMEOUT 60 # Max time to wait of lock in
distributed env.
RESIDENT 0 # Forced residency flag (Yes = 1, No =
0)
MULTIPROCESSOR 0 # 0 for single-processor, 1 for multi-
processor
NUMCPUVPS 1 # Number of user (cpu) vps
SINGLE_CPU_VP 0 # If non-zero, limit number of cpu vps
to one
NOAGE 0 # Process aging

The specifics of all of the onconfig variables and their usages are fully documented in
the Informix Administrator's Guide. These are the minimum variables that must be set
manually if you want to initialize the Informix engine from the command line.

After you have edited the appropriate areas of the onconfig file, you can simply use the
command oninit -i to initialize the disk space allocated for your Informix instance.
The oninit program will ask for verification before initializing and destroying any
information on the disk space that has been allocated. After it completes, you can verify
that the engine is online by typing onstat -. This is shown with the code in Listing
10.11.

Listing 10.11. Steps to initialize the database instance and confirm its
OnLine status.
informix@sams> oninit -i
This action will initialize INFORMIX-OnLine;
any existing INFORMIX-OnLine databases will NOT be accessible -
Do you wish to continue (y/n)? y
informix@sams> onstat -
INFORMIX-OnLine Version 7.22.UC1 -- On-Line -- Up 00:00:27 -- 8944
Kbytes

Working with vi and the command line is quicker for experienced administrators, but it
is much easier for first-time installations if you use the onmonitor utility to initialize
your database.

Initializing from Within onmonitor

If you choose to use the Informix administration utility onmonitor to initialize your new
database server, the utility prompts you to change the appropriate variables. In addition, it
provides descriptions of each variable to aid you in the installation process. You can
begin by typing onmonitor as informix. You will see a screen like that shown in Figure
10.1.

Figure 10.1.

The onconfig main menu.

TIP: If your onconfig screen becomes unreadable and lines display themselves
improperly, make sure your TERM and LINES environmental variables are set
properly. Usually TERM=vt100 and LINES=24 correct these problems.

After bringing up the onconfig main menu, you need to choose the Parameters option
by arrowing to it and pressing Return, or by pressing the key that is in a capital letter (P)
as a shortcut to that menu.

TIP: Sometimes the arrow keys do not function properly within the onmonitor
and dbaccess Informix utilities. In this case, using the capitalized shortcut keys is
recommended. If you must navigate using arrow keys, you can use the Control
key and the standard up, down, left, and right keys for the UNIX editor vi. They
are, respectively, Ctrl+k, Ctrl+j, Ctrl+h, and Ctrl+l.

Choose Initialize from the Parameters menu, and you will be placed in your first
initialization screen, shown in Figure 10.2. You can edit the fields and blank them out
with spaces, but certain fields do not allow you to exit unless valid parameters are
specified. Ctrl+C or the Delete key exits you from the screen without saving, and the
Escape key accepts all changes and moves you to the next screen.

A few additional parameters need to be specified when using onmonitor to initialize the
engine, but the majority of necessary changes consists of the variables mentioned in the
prior section. The first necessary changes are the two tape device names. You need to
provide valid tape devices or /dev/null in order to continue past these parameters. Root
Size, Primary Path, and Root Offset (a minimum of 2 is recommended) need to be
modified before continuing.

Figure 10.2.

The INITIALIZATION onconfig screen.

The next two pages contain the only other fields necessary to be changed. They can be
seen in

Figures 10.3 and 10.4. The Server Name and Server Aliases need to be specified and
accepted using the Escape key. Then the CPU-specific fields must be customized to your
particular configuration on the next form. The NETTYPE settings must be set in the same
way as detailed before, and they must reflect your particular resources and needs.

Figure 10.3.

The SHARED MEMORY onconfig screen.

Figure 10.4.

The PERFORMANCE onconfig screen.

The remaining screens might be interesting for you to look through and read the field
level help for, but they do not need to be changed. Escape through them until you are
asked Do you really want to continue?. Press Y and your database will be
initialized, as shown in Figure 10.5.

Figure 10.5.

The onconfig initialization warn- ing message.

The screen then shows the database state as quiescent. This means it is active but in
single-user mode, which allows no actual database connections. You can bring it online
by exiting to the main menu and then choosing Mode|On-Line. The status bar then shows
On-Line, and you are ready to continue.

Verifying Your Installation

When your installation has finished with no errors and the database is in On-Line mode,
you can install the sample database to verify that everything is functioning properly. You
can do this by typing dbaccessdemo7 stores. You can replace the word stores with
whatever you would like the database to be named. Do this from a directory other than
$INFORMIXDIR, because the installation asks to copy some sample files to your current
directory. When this is done, you can start dbaccess by typing dbaccess stores, which
places you in the correct database. This screen looks like the one in Figure 10.6.

Figure 10.6.

The main dbaccess menu.

When you start dbaccess, the INFORMIX-SQL client, you get a menu structure the
same way you do in onmonitor. Choose Query Language|New, and type select * from
state;. Then press the escape key to go to the prior menu, and run the SQL. You then
see the list of states that exist in the state table of the stores database. Congratulations!
You have just executed the first query on your new Informix database server.

Customizing Your Informix Environment

Now that your Informix environment has been properly installed, you need to make some
tuning and configuration changes. Tuning is covered in detail in Chapter 23, "Tuning
Your Informix Environment," but a few quick additions to your installation are
appropriate at this time. Based on your database size, system resources, and needs, you
probably need to add temporary database spaces, change the location and size of your
physical log, and add database spaces for your application needs.

Adding Temporary Database Spaces

In order to add a temporary database space, you need another raw partition or cooked file
available. The advantage of a raw partition dedicated to Informix for temporary space is
that instead of using file system space in /tmp, the default temporary dbspace, Informix
will have a dedicated and faster area of disk to perform temporary activity.

Additional database spaces can be added through the onmonitor utility, under the
Dbspaces|Create menu. The dbspace name is first specified (tmpdbs, for instance). "N" is
entered in the mirror field because temporary dbspaces are never mirrored. "Y" is
entered in the temporary field to indicate the temporary nature of this new database
space to the Informix engine. The full pathname (or a symbolic link), offset, and size then
need to be specified. Additional chunks can be added in the Dbspaces|Add_chunk menu
of onmonitor.

When you finish configuring your temporary dbspace, you need to change the value of
DBSPACETEMP in your ${INFORMIX}/etc/onconfig file to reflect the name or names you
chose for your temporary database space or spaces.

Changing the Size and Placement of the Physical Log

The physical log is a system area that takes a snapshot of the disk pages changed during
database activity. It aids in recovery in case of failure, as well as with transaction
processing. If you expect to have a very busy database, you definitely need to expand
your physical log. First create an appropriately sized dbspace--for example, phydbs--and
then bring the database into quiescent mode with onmode -s or from the onmonitor
Mode menu. Then, from the onmonitor menu Parameters|Physical-log, modify the size
and placement parameters, as shown in Figure 10.7. The physical log takes some time to
format and recover.

Figure 10.7.

The physical log modification screen.

Adding Application Database Spaces and Chunks

You should segment certain databases into specific database spaces, depending on your
particular needs. Otherwise, disk contention and the time necessary for recovery will
hamper your important applications if less critical or development database activity takes
place in the same dbspace. The dbspaces are added in the same manner as with the
tempdbs, but the temporary status flag will be "N" this time. You can add chunks from
the Dbspaces|Add_chunk menu again if necessary.

When you have finished adding all the dbspaces and chunks, you can verify their
existence and sizes with the onstat -d command. Note that the phydbs will show that
the area allocated to the physical log is used. You can check in the Status|Logs menu to
see how full the physical log actually is.

Upgrading the Informix Version

You might need only to upgrade your database server rather than create a brand new
instance. Upgrading from a 6.0, 5.0, or 4.1 version must be done after carefully verifying

pre-upgrade database consistency, and archiving both the database and the Informix file
system com- ponents.

Depending on the version you are upgrading from, you need to make certain
environmental variables, shared memory, and disk modifications. These details are very
nicely detailed in the Informix Migration Guide, and there are version- and platform-
specific notes under the release directory in the file MIGRATEDOC_7.2. After the
necessary changes have been made, you should place the new executables in a separate
directory to ensure recoverability. When the engine is brought online, it does the
necessary conversions. This is also the case for upgrades to new versions of Informix 7.x.

CAUTION: Do not initialize the database the same way you would for a new
install. This destroys your current database. Instead, make sure that the
configuration files (onconfig and sqlhosts) match the settings for the previous
version--especially the root dbspace location, size, and so on. When you bring up
the engine with oninit or the onmonitor Mode menu, the conversion takes place
for you. Never use oninit -i or the onmonitor Initialize menu with an upgrade!

The most convenient way to do any upgrade is to place the new executables in a new
directory and relink /usr/informix to the new directory. That way, the INFORMIXDIR
environmental variable doesn't need to be changed. If you are doing an incremental
upgrade, you might want to do only a backup of both your database and your
${INFORMIXDIR}, and then overwrite the executables with the new version. Always make
sure that the OnLine engine is in Off-Line mode when doing an upgrade.

Problems You Might Encounter

You might encounter a few problems when attempting to install Informix for the first
time. The problems usually occur either during the installation or during the first
initialization.

Installation Failed

If you receive errors when you run an Informix install script, it means that the distribution
might be corrupt, or your Serial Number and Key are invalid or have been improperly
entered. Check with Informix if you still have problems after re-entering the codes.

OnLine Will Not Initialize

If your installation will not initialize, the problem is very likely with either your shared
memory parameters or your disk allocation.

Make sure that the shared memory parameters from the ONLINE_7.2 file have been
placed into /etc/system, and make sure that the machine has been rebooted and the
kernel has been reconfigured. Often, having touch /reconfigure as root will help to
ensure that a reboot rebuilds the kernel.

Make sure that your disk parameters are set properly and the sizes, ownership,
permissions, and locations of the disk partitions or files you have allocated for the root
dbspace are correct. Remember that the owner and group need to be informix, and the
permissions must be set to read/write for the owner and group (660). Also make sure you
have not allocated more than 2GB for any chunk. If Informix generates an error during
installation, you can look at the description by typing finderr ???, where ??? is the
error code number returned.

Summary

This chapter has shown what is necessary for a typical Informix installation. Although a
few UNIX parameters, Informix modifications, and installation-specific decisions must
be made, it is very easy to install an instance of the INFORMIX-OnLine Dynamic Server,
as well as all of the Informix application interfaces.

- 11 -

Configuring the Informix Environment
• Message and Log Files
• Connectivity Files
• The Root dbspace
• Estimating the Size of the Root dbspace

o The Physical Log
o The Logical Log
o Temp Space
o Data Space
o On-Archive Catalogs
o Reserved Pages

• onconfig Parameters
o ALARMPROGRAM
o BUFFERS
o CHUNKS
o CKPTINTVL
o CLEANERS
o CONSOLE

o DBSERVERNAME
o DBSPACES
o DBSPACETEMP
o LOGBUFF
o LOGFILES
o LRUS
o LRU_MAX_DIRTY
o LRU_MIN_DIRTY
o LTXHWM
o LTXEHWM
o MSGPATH
o MULTIPROCESSOR
o NETTYPE
o NUMAIOVPS
o NUMCPUVPS
o PHYSBUFF
o PHYSFILE
o RESIDENT
o ROOTNAME
o ROOTOFFSET
o ROOTPATH
o ROOTSIZE
o SINGLE_CPU_VP

• Initializing the OnLine Engine
• Creating Additional dbspaces

o Cooked Files
o Raw Devices
o Create dbspaces

• Mirroring Strategy
o What Is Mirroring?
o Why Mirror?
o Mirroring Costs
o Recovering a Failed Mirror

• Managing the Logs
o Moving the Logs

• Informix Temp Space
• A Sample onconfig File
• Starting and Stopping the OnLine Engine
• Using Informix ON-Monitor
• Summary

by Kevin Kempter

The INFORMIX-OnLine environment consists of several components, including a
configuration file, connectivity files, log files, disk layout, and UNIX environment
variables. This section describes the basics for initially setting up and configuring an
INFORMIX-OnLine environment.

Message and Log Files

The INFORMIX-OnLine engine uses two important files to communicate what is
happening within the engine and its processes: the message log file and the console
message file. Each file contains a specific type of information for the Informix DBA. The
INFORMIX-OnLine log and console files are both UNIX flat files, which are specified in
the Informix onconfig file, via the CONSOLE and MSGPATH onconfig parameters. The
message log file contains routine informational messages, assertion failure messages,
messages requiring administrative action to be taken, and fatal error messages. The
default path is /usr/informix/OnLine.log. The alarm program specified by the
ALARMPROGRAM onconfig file parameter can be set to the pathname of a script or program
to be run whenever certain events take place within the message log file.

The console message file is used to display routine status messages and diagnostic
messages. The default path is /dev/console.

Connectivity Files

The INFORMIX-OnLine engine uses a number of files to define its communications
protocol and network interface. This allows the OnLine engine to communicate and
transfer data to and from various client connections. This communication requires the
proper entries in the following UNIX environment variables and key files:

• INFORMIXSERVER
• /etc/hosts
• /etc/services
• $INFORMIXDIR/etc/sqlhosts

The INFORMIXSERVER UNIX environment variable indicates which database server
(DBSERVERNAME in the sqlhosts file, which is the same as DBSERVERNAME in the
onconfig file) to connect to by default.

The /etc/hosts file contains an entry for every machine on the network that will
connect to the INFORMIX-OnLine engine. The /etc/hosts entries contain the
following information:

• IP/Internet address

• Host name
• Host alias names (optional), such as

/etc/hosts entry:
 MeanMachine

The /etc/services file contains an entry for each service that will use TCP/IP as a
connection protocol. Each entry in the /etc/services file contains the following
information:

• The service name
• The port number/the protocol
• Any alias names (optional), such as

/etc/services entry:
 dbservice 1525/tcp

The $INFORMIXDIR/etc/sqlhosts file contains information that allows an INFORMIX-
OnLine database client/server connection to occur from any client on the network. Each
type of connection to each separate instance of the OnLine engine (database server)
requires an entry in the sqlhosts file.

The following fields are required for each entry into the sqlhosts file:

• dbservername
• nettype
• hostname
• service name

The dbservername corresponds to the DBSERVERNAME entry in the OnLine configuration
file associated with an instance of the OnLine engine. This name is used to look up all the
other connection information for a particular database instance.

The nettype field describes three attributes about the connection:

• The database server type
• The network interface
• The communications protocol

The database server type indicates which Informix database server product is being used:

• on represents a connection to INFORMIX-OnLine engine.
• ol provides another way to represent a connection to INFORMIX-OnLine.
• se represents a connection to the INFORMIX-SE engine.
• dr represents a connection to INFORMIX-Gateway with DRDA.

The network interface describes what type of communication interface will occur:

• ipc: PC (UNIX interprocess communication)
• soc: NIX sockets
• tli: LI (transport-level interface)

The communications protocol determines the specific type of connection mechanism:

• shm is a shared memory connection.
• tcp is a TCP/IP network connection.
• spx is a PX/SPX network connection.

The hostname field serves as a way for the INFORMIX-OnLine engine to look up the
hostname entry in the /etc/hosts file, indicating which machine is the server.

NOTE: When defining a shared memory connection (shm), the hostname and
service name fields are not used. The names can be arbitrary, although entering
the actual hostname and an actual service name makes maintenance easier.

The service name field, when using a shared memory connection, allows OnLine to
look up shared memory information on the host machine, based on whatever arbitrary
name is provided as long as it is unique to the host machine environment. When using a
TCP/IP network connection, the service name allows the OnLine engine to look up the
service name entry in the /etc/services file in order to establish the client/server
connection. When using an IPX/SPX network, the service name field can be arbitrary
as long as it is a unique name across the IPX/SPX network environment. If you are using
INFORMIX-OnLine for NetWare v4.1, the service name must be the same as the
dbservername.

Here are some examples of sqlhosts entries:

dbservername nettype hostname service name
grndkahuna onsoctcp MeanMachine dbservice
mstrdba ontlitcp MeanDBA dbservice2

The Root dbspace

The root dbspace is a special dbspace that the INFORMIX-OnLine engine creates
during disk initialization. The root dbspace contains several pages of key information:

• OnLine reserved pages
• The first chunk free list

• The tblspace table
• The database table
• Physical and logical logs (which can be moved after disk initialization)

The INFORMIX-OnLine reserved pages are the first 12 sequential pages of space in the
root dbspace. These 12 pages are reserved for use internally by the OnLine engine. The
Informix reserved pages contain the information listed in Table 11.1.

Table 11.1. Information contained in the Informix reserved pages.
Reserved Page(s) Information Stored

1 Internal engine/system information

2 The current onconfig file

3-4 OnLine checkpoint information

5-6 dbspace information/status

7-8 Chunk information

9-10 Mirror information

11-12 Archive and data-replication
information

The first chunk free list page is a standard free list page (a page on disk that contains a
list of free space within a chunk).

Each tblspace table in the root dbspace describes a tblspace. As tables are created, as
fragments are added, and so on, additional tblspace pages in the root dbspace are
added.

Each database page in the root dbspace contains information about a database within the
OnLine engine instance.

The physical log is a series of pages where "before" images of buffer pages are stored
before they are modified. When OnLine changes a page in the shared memory buffer
pool, it first stores a copy of the page in the physical log buffer in shared memory. The
physical log buffer retains all "before" image pages until they are flushed to disk via the
OnLine page cleaners.

INFORMIX-OnLine stores all changes to the database data in the logical logs. The
logical logs can be used to roll-forward any recorded changes or transactions in the event
of a restore, or to roll-back any failed or otherwise canceled (such as with a rollback
statement) transactions.

Estimating the Size of the Root dbspace

The following calculations and information should be considered when attempting to
estimate the necessary size for the root dbspace.

The Physical Log

The initial physical log size can be estimated by using the following calculation: (The
number of anticipated users)x(The max number of OnLine pages per critical section)x4
The number of anticipated userthreads should be set in the NETTYPE parameter in the
INFORMIX-OnLine configuration file (the onconfig file).

The maximum pages per critical section, according to the INFORMIX-OnLine
documentation, is five. This is the maximum number of pages per section that absolutely
must be completed as a single unit or transaction. When OnLine modifies data, the
maximum number of pages is five, so no more than five should be used for this value.

The Logical Log

To determine the initial number and size of the logical logs, use the following calculation,
which is a starting point only. The only way to configure the size and number of the
logical logs correctly is through examination of the system design and use, as well as
tuning. Here is the calculation: (Number of log files)x(Number of userthreads)x(2 log
pages)x(The system page size) Additional logical logs can always be added to increase
the size allowed for your logical logs. When the INFORMIX-OnLine engine is initialized
for the first time, the minimum number of logs is three.

TIP: Whenever possible, move the logical logs out of the root dbspace after the
engine is initialized for the first time, and mirror the dbspace that contains them.
Additional logs can be added at any time to provide more space, based on the
monitoring of the engine.

Temp Space

The default for INFORMIX-OnLine temp space is to use the root dbspace. There are
several advantages to using separate temp dbspaces (which are discussed in the
"Informix Temp Space" section of this chapter). Like sizing the logical logs, determining
the optimal amount of space for temp space requires monitoring and research to be
optimized. An initial size for temp space can be estimated by evaluating the following
guidelines.

Table Join Space

Attempt to estimate which tables will be joined often, and estimate the size of the largest
join that could take place. You should size for the worst-case scenario (using the formula
table A total size + table B total size). If a fairly accurate estimate is impossible, use the
following calculation: (Projected size of the largest table)x1.5

Logical Log Size

Consider the size of your logical logs. In the event of a warm restore, the OnLine engine
needs to create a temp file as large as your logical log, which requires the following
formula: (The LOGSIZE onconfig parameter)x(The number of logs)

TIP: The INFORMIX-OnLine performance can be greatly enhanced by creating
separate dbspaces for temp processing. See the "Informix Temp Space" section,
later in this chapter, for more information.

Data Space

If you allow databases and tables to be stored in the root dbspace, you need to estimate
the size of the space they will occupy in the root dbspace.

TIP: Most DBAs would never allow any developers to create tables in the root
dbspace. In fact, many DBAs would become violent at the suggestion.
The majority of systems I have worked on create databases only in the root
dbspace and create all tables in other dbspaces, or they create both the databases
and the tables in other dbspaces.

If you allow databases to be created in the root dbspace, the growth of the system
catalogs and reserved pages needs to be estimated. (See the INFORMIX-OnLine Dynamic
Server Administrators Guide for what happens when a database is created.)

If you allow tables to be created in the root dbspace, you also need to estimate the size of
the tblspace pages and the data for the tables.

On-Archive Catalogs

Although this chapter does not cover the On-Archive product, if you decide to use On-
Archive to perform your archives, you will also need to account for the size of the On-

Archive catalog data. Refer to the INFORMIX-OnLine Dynamic Server Performance
Guide for guidelines on sizing each of the On-Archive catalog tables.

Reserved Pages

The recommendation according to the INFORMIX-OnLine documentation is to allow an
additional 3 percent of the size of the root dbspace, plus the size of 14 pages, following
this formula: (current root dbspace sizex.03)+(system page sizex14) Table 11.2 contains
an example sizing of an INFORMIX-OnLine root dbspace. The following configuration
describes the system being sized:

• 20 processor MPP box
• 2GB main memory
• 100GB disk space for the database (partitioned as eight 500MB partitions

per disk across 25 4.5GB disks)
• System page size of 4KB (4,096 bytes)
• Largest table estimated at a size of 10GB
• Estimate of 150 as the maximum number of users
• 20 logical logs of 10MB each and LOGSIZE set to 10MB (10,240,000 bytes)

Table 11.2. A sample root dbspace sizing.
Step Calculation Size

Size for physical log 150x5x4 3,000

Size for logical logs (sized for 3 logs
becauselogs will be moved)

3x150x2x4,096 3,686,400

Size for temp space (separate dbspaces
will be created as temp dbspaces)

 0

Data space (no databases/tables will live
in the root dbspace)

 0

On-Archive(On-Archive will not be
used)

 0

Reserved pages (3,689,400x.03)+(4,096x14) 168,026

Total root dbspace size 3,857,426
(3.8MB)

onconfig Parameters

This section covers the basic Informix onconfig configuration file parameters needed in
order to initialize an instance of the INFORMIX-OnLine Dynamic server. Information on

additional parameters can be found in the INFORMIX-OnLine Dynamic Server
Administrators Guide. The onconfig configuration file is identified to Informix via the
UNIX environment variable ONCONFIG. The default file name for the Informix onconfig
file is onconfig.std. The onconfig file is always found in the etc directory in the
Informix base directory specified by the UNIX environment variable INFORMIXDIR.

ALARMPROGRAM

The ALARMPROGRAM parameter allows the path to a shell script or executable program to
be specified. If set, this program is run when an alarm condition occurs, such as the
logical logs being full or a logical recovery failure. If an alarm program is put in place,
the INFORMIX-OnLine engine passes the following parameters when calling it:

• Event severity level
• Event class ID
• Event class message string
• Event specific message
• Event "see also" file

The shell script shown in Listing 11.1 is an example of a script to mail the database
administrator when the logical logs are full.

Listing 11.1. The log_full_alarm.sh script.
#!/bin/ksh

log_full_alarm.sh
Shell to alert the DBA if the logs are full.
Written by: The DBA (Master of Technology)

Syntax: log_full_alarm.sh
<event severity> <class id> <class msg>
<event specific msg> <see also file>
check for logical logs full class id
if [$2 = "20"]
then
 # mail a message to the informix login
 mailx informix < "HEY THE LOGS ARE FULL"
fi
exit 0

BUFFERS

The BUFFERS parameter specifies the maximum size (in pages) of the INFORMIX-
OnLine shared memory buffer pool. This parameter determines how much memory the
OnLine engine can utilize to cache disk I/O. The default value is 200. Informix
recommends a starting value of approximately 20 percent to 25 percent of the physical
memory on the machine. Informix also recommends that you set this parameter first, and
base all other related parameters on the size of the BUFFERS parameter. After the OnLine

engine is initialized, the buffer cache should be monitored with the onstat -p command.
If the cache read rate is less that 90 to 99 percent, more buffer pages should be added.

TIP: When you reach a 98 to 99 percent cache read rate, start to back off on the
number of buffer pages configured. This enables you to configure the minimum
number of pages needed to attain an optimized buffer cache size. If this is not
done, you could end up with too many buffer pages when increasing the size to get
a 90 to 99 percent read cache rate. If this happens, you could hurt system
performance by causing the system to start paging due to having insufficient
memory resources left for other applications.

CHUNKS

The CHUNKS parameter defines the maximum number of chunks that the OnLine engine
can use. Informix recommends that the CHUNKS parameter be set as close as possible to
the maximum number of files that the operating system can have open simultaneously.
The maximum number of simultaneously open files is a tunable UNIX kernel parameter.
The maximum number that the CHUNKS parameter can be set to is 2047.

CKPTINTVL

The CKPTINTVL parameter specifies, in seconds, how often the OnLine engine checks to
see whether a checkpoint is needed. When a checkpoint is performed, all the dirty pages
(which are buffer pages that have been modified in memory, but not yet updated on disk)
in the buffer cache are flushed to disk. To optimize this parameter, you need to find a
balance between how long you are willing to wait while the checkpoint is performed, and
the amount of time you are willing to allow to pass before your disks are updated.
Obviously, the longer you wait between checkpoints, the longer the checkpoint will take
to perform, depending on the amount of activity in the database.

CLEANERS

The CLEANERS parameter determines how many threads will be allocated to flush the
dirty buffer pages to disk. Informix recommends that you specify one page cleaner per
disk drive. If your system contains more than 20 disks dedicated to the database, the
recommendation is one page cleaner for every two disks. For systems that contain more
than 100 database disks, Informix recommends one page cleaner to be configured for
every four database disks on the system.

CONSOLE

This parameter determines where OnLine will write system console messages. The
default is /dev/console. You can specify the path to any valid filename for which
Informix has read and write permissions.

DBSERVERNAME

The DBSERVERNAME parameter contains the name you decide to give to this particular
instance of the OnLine engine. The default is the hostname of the machine. The
DBSERVERNAME parameter is used in the sqlhosts file to allow connectivity between the
database server and clients submitting requests to the database. The DBSERVERNAME
parameter must meet the following criteria to be valid:

• All lowercase letters
• No spaces, tabs, newlines, or comment characters

DBSPACES

The DBSPACES parameter indicates the maximum number of dbspaces that the OnLine
engine can utilize. This parameter should be close to the number of chunks specified,
because each dbspace must contain at least one chunk. However, dbspaces can contain
multiple chunks. The default value for DBSPACES is 8.

DBSPACETEMP

The DBSPACETEMP parameter specifies which dbspaces will be utilized when temp space
is needed. Informix uses temp space for operations such as creating temp tables, sorting
data, performing joins, and performing recovery processing. The DBSPACETEMP parameter
can list as many dbspaces as you want, separated by a comma (,) or a colon(:), as long
as the entire list is less than 254 characters. If 254 characters is not enough space to list
all of your temp dbspaces, you can also use the DBSPACETEMP UNIX environment
variable. (See the Informix Guide to SQL: Reference for more information.)

LOGBUFF

The LOGBUFF parameter defines the size of the logical log buffers. INFORMIX-OnLine
allocates three buffers of size LOGBUFF at the time of the shared memory initialization.
See the section "Estimating the Size of the Root dbspace" for more information.

LOGFILES

The LOGFILES parameter simply specifies the initial number of logical logs at
initialization time.

LRUS

The LRUS parameter specifies the number of LRU (least recently used) queues. Informix
utilizes LRUs to determine which buffer cache pages will be flushed to disk when a new
page from disk is needed and no free pages are in the buffer cache. Informix recommends
that you set this parameter equal to the number of CPU VPs (Virtual Processors of the
CPU class) configured on the system (covered in greater detail under the NUMCPUVPS
parameter), or at least to 4 in the case of a system with fewer than four CPU VPs. The
LRUs help control how often the buffer pool dirty pages are flushed to disk. After the
INFORMIX-OnLine engine is initialized, you should monitor the LRUs with the onstat
-R command. If the number of dirty pages is consistently greater than the
LRU_MAX_DIRTY parameter, you need to add more LRUs or CLEANERS. (See the
INFORMIX-OnLine Dynamic Server Performance Guide for more information.)

LRU_MAX_DIRTY

The LRU_MAX_DIRTY parameter is a high-water mark for the percentage of pages allowed
to be dirty at any given point. When the number of dirty pages exceeds this threshold, the
OnLine engine page cleaner threads start flushing dirty pages to the disk.

LRU_MIN_DIRTY

The LRU_MIN_DIRTY parameter is the low-water mark for the dirty pages. Page cleaners
flush dirty pages to disk from the buffer pool until the LRU_MIN_DIRTY percentage of
dirty pages is reached.

LTXHWM

This value specifies the long transaction high-water mark. If the value is set to 80 and the
logical logs become 80 percent full, OnLine checks for a long transaction. A long
transaction is a single transaction that requires more space than is available across all the
logical logs. The logs cannot be backed up until the transaction is completed. If OnLine
detects a long transaction in progress, it rolls the transaction back and frees the logs.

LTXEHWM

This parameter specifies the exclusive transaction high-water mark. If OnLine detects a
long transaction in progress and the percentage of the logical logs that are full via this
transaction exceeds the exclusive high-water mark, the threads attempting to roll back the
transaction are given exclusive access to the logical logs.

MSGPATH

The MSGPATH parameter indicates where the INFORMIX-OnLine engine will write log
messages. The message log contains OnLine processing information. This file is usually
set to a file in an $INFORMIXDIR/logs directory. The default is
/usr/informix/OnLine.log.

MULTIPROCESSOR

The MULTIPROCESSOR parameter indicates to the OnLine engine whether or not the
machine is a multiprocessor box. The values are as follows:

• 0 = Single processor
• 1 = Multiprocessor

NETTYPE

The NETTYPE parameter is a field that specifies several values separated by commas. The
first value indicates the connection protocol. The onconfig file can contain multiple
NETTYPE settings--one for each type of connection. The valid values for the connection
are the same as the nettype field in the sqlhosts file (discussed in the "Connectivity
Files" section of this chapter), minus the server product information (which is the first
two letters).

The next value indicates the number of poll threads for that connection type. If the
number is unspecified, the default is one poll thread. As a general rule, each poll thread
can effectively handle 200 to 250 users.

Next is the maximum number of concurrent users. (This is not needed for a shared
memory connection.)

The last piece is the VP (Virtual Processor) class entry. This entry defines which CPU
class the connection uses--either CPU or NET. The OnLine engine attempts to use the best
type, if unspecified, based on the connection type.

The CPU class is generally more efficient.

NUMAIOVPS

The NUMAIOVPS parameter specifies the number of AIO virtual processors to launch at
initialization. If kernel asynchronous I/O (KAIO) is implemented, set this parameter to
the number of cooked files (UNIX files used for database data rather than UNIX raw
space) that you have configured and add 1. If KAIO is not implemented, Informix
recommends that you use one AIOVP per disk that contains database data.

NUMCPUVPS

The NUMCPUVPS parameter indicates to the OnLine engine how many CPU virtual
processor threads to use when the engine is initialized. If you are running on a multiple
CPU box, Informix recommends that you configure NUMCPUVPS to the number that is one
less than the number of CPUs your machine has. If you have a single processor box,
configure NUMCPUVPS to 1.

PHYSBUFF

OnLine uses two buffers in shared memory in which to store "before" images before
writing them to the physical log. The PHYSBUFF parameter defines how much memory
OnLine can allocate to these buffers. Each write to the physical log buffers is one page,
so make the size evenly divisible by your system page size. The size of this parameter
determines how often the physical log buffer will be flushed. The default is 32.

PHYSFILE

The PHYSFILE parameter determines the size of the physical log. The more update-
intensive your application will be, the bigger your physical log should be. The following
is the calculation recommended by Informix to determine the maximum size: (number of
concurrent connectionsx20xsystem page size)÷1024

RESIDENT

If your system supports forced residency, this parameter can force the resident portion of
the OnLine shared memory to never be swapped. Be careful with this parameter. If you
force residency while the system needs to swap, and not enough memory is left to
perform the system processes, you will have serious performance problems. The default
is 0 (no forced residency). To force residency, set this parameter to 1.

ROOTNAME

This is the name of the root dbspace. It is an arbitrary name, although it must be unique
among the dbspaces for this instance of OnLine. The default is rootdbs.

ROOTOFFSET

The ROOTOFFSET parameter specifies how many kilobytes to offset the start of the root
dbspace into the partition defined in ROOTPATH. The default is 0.

ROOTPATH

This is the full pathname (including the device/file name) to the device file or cooked file
that will be used as the root dbspace.

TIP: You can use links to the raw devices named for the use of the dbspace to
help manage your raw devices. In this case, you would specify the link to the root
dbspace. If your root device is /dev/informix/vg0037R, you could create a link of
/informix/root and specify /informix/root in your ROOTPATH parameter.

ROOTSIZE

The ROOTSIZE parameter specifies the size of the root dbspace in kilobytes. See the
section "Estimating the Size of the Root dbspace" in this chapter for more information.

SINGLE_CPU_VP

Set this parameter to 1 if you are running on a single-processor system. This allows the
OnLine engine to optimize for a single processor. For multiprocessor boxes, set
SINGLE_CPU_VP to 0.

Initializing the OnLine Engine

There are two types of initialization for the INFORMIX-OnLine engine. One initializes
the disk for initial use. This completely wipes out any information that was previously on
the disk where the dbspaces are initialized, making the data absolutely unrecoverable.
The second type of initialization is simply to start the engine and bring it to an online
(currently running) state.

The command used for initialization is the oninit command. If you run oninit without
any parameters, it attempts to bring online or up an existing instance of INFORMIX-
OnLine. There are a number of UNIX environment variables that tell oninit which
instance to initialize.

The other type of initialization used to initialize a new instance is run when you provide a
-i parameter to the oninit command. The oninit command prompts you to verify that
this is what you want to do and indicates that it will destroy all existing data. You can use
oninit -iy if you want to bypass the verify prompt.

The following UNIX environment variables need to be set in order to run oninit, for
initialization, or to bring an existing instance online:

• DBSERVERNAME: The name of the database server instance.

• onconfig: The name of the configuration file.

• INFORMIXDIR: The base directory of the Informix installation.

• INFORMIXSERVER: The same as the DBSERVERNAME if you want the sysmaster
database to be built during disk initialization.

• PATH: The PATH needs to include $INFORMIXDIR/bin.

Creating Additional dbspaces

After you have initialized the INFORMIX-OnLine system, you will probably want to
configure additional dbspaces. Informix dbspaces can be a raw device (UNIX space set
aside for a process to access the space directly without the overhead of the UNIX kernel
handling the I/O) or a cooked UNIX file (a UNIX file accessed via the UNIX kernel I/O
processes). There are valid reasons why you would want to use both cooked and raw
dbspaces.

Cooked Files

An Informix cooked file is a UNIX file, so UNIX manages all of the I/O to the dbspace.
Although Informix manages the data structure within the cooked files, allowing UNIX to
manage the I/O poses additional overhead that affects performance.

In some instances, you will want to use cooked files instead of raw devices. The
following sections outline some of the benefits of using cooked files as dbspaces.

Cooked File Setup

Cooked files are very easy to set up. Simply create a UNIX file and verify the correct
permissions as follows:

• Log in as user informix.

• cd to the directory where the cooked dbspaces will live (that is, cd
/informix/cooked_files)

• Create an empty file by using the touch command or the following
command:

• > roasted_chunk

• Change the permissions on the new file using the following command:

• chmod 660 roasted_chunk

• Change ownership of the new file with the following commands:

• chown informix roasted_chunk

• chgrp informix roasted_chunk

NOTE: There are several ways to create a UNIX file, and all of the methods are
equally good. Here are a few methods:
> file creates a file named file, which is shorthand for the command cat /dev/
null > file
touch file

Generally, cooked files are a good choice when setting up a training environment or
when performance is not a factor. When performance is an issue, cooked files are rarely
an acceptable method.

Raw Devices

A raw device is a "character-special" file that can be accessed using direct memory
access (DMA). This type of access allows Informix to bypass the UNIX file management
and manage the I/O to the device via a direct transfer to and from shared memory. This
type of access is dramatically faster than using cooked files. The process to set up a raw
device is more involved than setting up a cooked file, but the performance increase is
well worth the effort. When raw devices are used, the INFORMIX-OnLine engine can
guarantee that the committed data is stored on the disk; when cooked files are used, the
UNIX kernel can buffer the data, thus creating a risk of lost data in the event of a system
crash.

Raw Device Setup

Every version of UNIX has a method of creating raw devices, and all of the methods are
fairly similar. Usually, the creation of raw devices involves some setup within the UNIX
system administrators tools.

After the raw devices have been created, the steps are pretty similar to the cooked file
setup:

1. Change the permissions on the raw device with the following command:

chmod 660 /dev/raw_chunk

2. Change ownership of the raw device with the following commands:

chown informix /dev/raw_chunk

chgrp informix /dev/raw_chunk

Create dbspaces

After the raw devices or the cooked files have been created, you can create the dbspaces.
Informix dbspaces can be created via the ON-Monitor tool or via command-line utilities.
The ON-Monitor tool is discussed later in this chapter. The onspaces command can be
used to create dbspaces. The following command creates a 100MB dbspace called
big_boy, starting at an offset of 8KB into the raw device:

onspaces -c -d big_boy -p /dev/raw_chunk -o 8 -s 100000

Mirroring Strategy

This section discusses what mirroring is and how it is implemented. Whether to mirror or
not and an approach to mirroring will be examined as well.

What Is Mirroring?

Mirroring is the process of replicating a dbspace for the purpose of reducing the risk of
data loss in the event of a hardware failure. When mirroring is in place, both the primary
and the mirror chunks are written to automatically. If a hardware failure causes the
primary chunk to be inaccessible, Informix automatically reads from the mirror chunk.

Why Mirror?

Mirroring provides a method of real-time recovery from media failure, without having to
bring down the OnLine engine. Any database that contains business-critical data should
be mirrored. The root dbspace, the physical log, and logical logs should always be
mirrored.

TIP: Mirroring can also be handled at the UNIX level. For many types of UNIX,
the presence of a mirror raw space automatically causes reads from the mirror
chunk when the primary chunk is in use. This can improve performance
immensely.

Mirroring Costs

The biggest cost associated with mirroring is the disk space. Mirroring consumes twice as
much disk space for your database. This is why you should carefully weigh which
dbspaces to mirror. Certainly temp dbspaces would be the lowest priority, and root and
the logs are probably the highest priority. The data chunks must be evaluated as to how
critical they are to the business. If one of the critical chunks (such as root dbspace,
logical logs, or physical log) is not mirrored and the media fails, OnLine will go offline
immediately.

Recovering a Failed Mirror

If a mirrored disk fails, after the disk has been replaced the following onspaces
command recovers and resyncs the primary and the mirror chunks:

onspaces -s big_dbspace -p /dev/chunk_to_recover -o 8 -O

Managing the Logs

The Informix logical logs are critical to the welfare of the INFORMIX-OnLine instance.
The DBA needs to ensure that every effort has been taken to manage the logs properly
and limit the risk of losing the logs. The previous section on mirroring covers why and
how you would attempt to minimize the risk of losing the logs. The management of the
logs generally includes moving the logs to a separate dbspace.

Moving the Logs

Placing the logs in separate dbspaces can boost performance because they are written to
so often. In order to do this, the following steps need to be taken:

1. Free the logical logs. (Normally, an intake archive to /dev/null frees all
logs except the current log.)

2. Add new logical logs to the new dbspace using the onparams command,
like this:

onparams -a -d new_dbspace -s 50000

3. Create a level 0 archive so that the new logs can be used with ontape.

4. Use onmode -l to switch the current log to one of the new logs.

5. Create an archive again to free the original logs.

6. Drop the original logs from the root dbspace using the onparams
command:

onparams -d -l 2 (where 2 is the log number from an onstat -l output)

Informix Temp Space

The INFORMIX-OnLine engine uses temp space to perform tasks such as sorts, joins, the
creation of tables and indexes, and various other operations. If unspecified, the root
dbspace will be used as the temp dbspace. By creating temp dbspaces, you can improve
performance and reduce the size needed for the root dbspace. The value of creating
additional dbspaces exclusively for the use of the OnLine engine's temporary operations
should not be underestimated. The impacts on performance, as well as on general
administration of the database, can be dramatic.

Temporary dbspaces can be created for the exclusive use of temp tables. Temp dbspaces
can be created like other dbspaces, using the onspaces command. The following
command creates a 500MB temp dbspace named temp1, with an offset of 8KB. The -t
flag indicates to the OnLine engine that this will be a dbspace used exclusively for
temporary operations.

onspaces -d temp1 -t -p /dev/tmp_chunk01 -o 8 -s 500000

A Sample onconfig File

The following onconfig file contains only the parameters discussed in this chapter. The
system represented is as follows:

• 20 processor MPP box

• 2GB main memory

• 50GB disk space for the database (partitioned as four 1GB partitions per
disk across 13 4.5GB disks)

• System page size of 4KB (4,096 bytes)

• Estimated 150 as the maximum number of users

The following onconfig file would serve as a good starting point in the creation of an
OnLine instance. Further tuning is always an ongoing task. Comments can be placed in
the onconfig file by using the pound sign.

BUFFERS 80000 # 327MB
CHUNKS 120
CKPTINTVL 60
CLEANERS 27
CONSOLE /informix/logs/console.log
DBSERVERNAME enterprise
DBSPACES 60
DBSPACETEMP dbs_t1,dbs_t2,dbs_t3,dbs_t4,dbs_t5
LOGBUFF 65536 #informix recommended value (16 pages)
LOGFILES 3
LRUS 19
LRU_MAX_DIRTY 60
LRU_MIN_DIRTY 50
LTXHWM 80
LTXEHWM 90
MSGPATH /informix/logs/online.log
MULTIPROCESSOR 1
NETTYPE soctcp,1,150,NET
NUMAIOVPS 2 # using KAIO
NUMCPUVPS 19
PHYSBUFF 65536 #informix recommended value (16 pages)
PHYSFILE 12000

RESIDENT 0
ROOTNAME rootdbs
ROOTOFFSET 0
ROOTPATH /dev/rootvg
ROOTSIZE 3857426
SINGLE_CPU_VP 0

Starting and Stopping the OnLine Engine

The INFORMIX-OnLine engine can be started and stopped from the ON-Monitor tool
(which is discussed in the next section of this chapter), as well as from the command line.
To start and stop the INFORMIX-OnLine engine from the command line, use the oninit
and onmode commands. Table 11.3 describes the OnLine commands to start up and shut
down the engine.

Table 11.3. OnLine startup and shutdown commands.
Comman
d

Flags Description

oninit Brings an offline instance online, leaving disk/data
intact.

oninit -i (initialize
disk)

Initializes OnLine (disk initialization, OnLine asks
whether you are sure you want to do this because any
existing data will be lost).

oninit -iy (answer
yes to prompts)

Initializes OnLine (disk initialization without asking
whether you are sure).

onmode -k (shut down
the engine)

Brings OnLine offline (prompts you to confirm).

onmode -ky Brings OnLine offline without any confirmation.

Using Informix ON-Monitor

Informix ON-Monitor is an easy-to-use monitoring and tuning tool. The ON-Monitor tool
allows a variety of operations and status listings to be performed. When you are in the
ON-Monitor menus, you can select options by using the Spacebar to highlight the option
and pressing Return, or by pressing the first letter of the option that you want to run.

The following lists provide a brief summary of the options available in the Informix ON-
Monitor tool. The options are self-explanatory for the most part, so I didn't go into great
detail for any of them. For more information, see the INFORMIX-OnLine Dynamic
Server Administrators Guide.

ON-Monitor Main Menu

Status Status options

Parameters Set/modify OnLine parameters

Dbspaces Create, monitor, and modify dbspaces and
relatedparameters

Mode Alter modes such as online, offline/shutdown options, and so
on

Force-Ckpt Force a checkpoint to occur

Archive Set tape device parameters

Logical-Logs Modify logging status and set logical log tape device
parameters

Exit Exit the ON-Monitor menu

ON-Monitor Status Menu

Profile Display performance statistics

Userthreads Display status of active user threads

Spaces Display status information about dbspaces, chunks, and so on

Databases Display information about the OnLine databases

Logs Display status info about the logs

Archive Display ontape archive information

data-Replication Display data replication status information

Output Store any of the status displays in a file

Configuration Create a copy of the current config file

Exit Get out

ON-Monitor Parameters Menu

Initialize Initialize disk space

Shared-Memory Set shared memory parameters

perFormance Specify virtual processors

data-Replication Set data replication parameters

diaGnostics Set diagnostic parameters

pdQ Modify the PDQ priority (parallel data query) parameter

Add-Log Add a logical log

Drop-Log Drop a logical log

Physical-Log Modify size/location of the physical log

Exit Previous menu

ON-Monitor Dbspaces Menu

Create Create a dbspace

BLOBSpace Create a blobspace

Mirror Add or end mirroring

Drop Drop a dbspace or blobspace

Info Usage info and space used for dbspaces

Add_chunk Add a chunk to a dbspace

datasKip Modify the DATASKIP parameter to enable/disable dataskip
for dbspaces

Status Modify the status of a mirrored chunk

Exit Previous menu

ON-Monitor Mode Menu

Startup Bring the engine up to quiescent mode

On-Line Bring the engine from quiescent mode to On-Line mode

Graceful-
Shutdown

Take the engine to quiescent mode, allowing users to
complete their work

Immediate-
Shutdown

Take the engine to quiescent mode in 10 seconds

Take-Offline Take the engine from quiescent to Offline mode

Add-Proc Add virtual processors

Drop-Proc Drop virtual processors

deCision-support Set DSS (decision-support system) parameters

Exit Previous menu

ON-Monitor Force-Ckpt Menu

Forces a
checkpoint

ON-Monitor Archive Menu

Tape-Parameters Set archive tape parameters

Exit Previous menu

ON-Monitor Logical-Logs Menu

Databases Change database logging status

Tape-Parameters Set logical-log tape parameters

Exit Previous menu

Summary

As you can see, configuring an INFORMIX-OnLine environment can be a complex task,
and tuning that environment can be even more complex. This chapter provided you with
a methodical way to set up the INFORMIX-OnLine environment, and it gave you some
realistic guidelines for assigning initial values to the various settings and parameters
involved.

- 12 -

Incorporating a Database in Your
Informix Environment

• Designing the Database
o Normalization Versus Denormalization
o Online Transaction Processing and Decision Support
o Table Placement and Fragmentation
o Indexes
o SET EXPLAIN
o Business Rules and Referential Integrity
o Views
o Synonyms
o Replication
o Mirroring
o Security

• Database Design Considerations
o Users and Transactions
o Database Size
o Access Tools and Development Tools
o Database Logging
o Multiple Instances

• Populating the Database
o Migrating from Legacy Mainframe Systems
o Migrating from Desktop Databases
o Migrating from Prior Versions of Informix

o Load Utilities
o Improved Processing

• Monitoring, Tuning, and Configuring
o ONCONFIG Parameters

• Ongoing Maintenance
o Update Statistics
o oncheck
o Backups

• Summary

by Matt Bentley

A properly designed database can enhance the performance and simplify development of
the application. Before the first table is created, there must be detailed planning of the
database and how it will be used. When you understand the trade-offs of the different
features in Informix, the database can be implemented for best performance and still
satisfy its purpose.

Designing the Database

Designing a physical database should follow a thorough investigation of the
requirements, data needs, and development of a solid logical data model. Considering the
developers' point of view will add significantly to the progress of the project.

Normalization Versus Denormalization

Some of the benefits of normalizing your database include the ability to

• Identify dependencies
• Identify which attributes belong in which tables
• Reduce redundant data
• Create a flexible design

A fully normalized database offers flexibility to the data but can cause complexities when
accessing and maintaining it. The physical implementation of a database generally
involves some level of denormalizing, mostly to increase performance and simplify
development.

Denormalizing the database involves splitting tables if there is a logical separation of
how the columns are selected or maintained. In some cases, it means combining tables
where columns from those tables are always selected together. In addition to splitting and
combining tables, duplicating columns can also be done for performance reasons.

Online Transaction Processing and Decision Support

The purpose of a database is to store information. Frequently the data is very dynamic
and it is changed often. Databases in which the data is constantly changing are called
online transaction processing (OLTP) databases.

Information is valuable when used correctly. When you analyze data, intelligent
decisions can be made by finding patterns and trends in the data. When the purpose of the
database is primarily decision support, it is called a Decision Support System (DSS) or an
OnLine Analytical Processing (OLAP) database. These types of databases are also known
as data warehouses.

When the database serves both purposes, it is important to understand the trade-offs in
performance when designing the database and tuning the database engine. Identifying
those trade-offs is difficult, and in many cases it cannot be done until development has
begun or the database is fully populated with many users accessing it.

Size or potential size of the database will drive a lot of decisions about the design and
implementation. If the database is small and will not grow, many performance
considerations can be set aside; however, if the database will be large, decisions such as
the data type of a column can impact the maintenance and performance of the database.

Table Placement and Fragmentation

Tables that will be accessed or updated frequently should be placed on separate disks to
limit disk head movement and contention. Consider fragmenting large tables across
multiple disks and even isolating them on their own disks. This will allow the data in that
table to be accessed in parallel.

Performance comes from some combination of fragment elimination and parallel queries.
If the optimizer identifies that any of the fragments of a table can be eliminated, it will do
so. Fragment elimination will not occur when the table is fragmented by round-robin
methods. However, round-robin ensures evenly distributed data across all fragments. If
the table will be fully scanned or the majority of the data in the table is being accessed,
round-robin might be an appropriate fragmentation strategy.

Indexes

Indexes provide a shortcut to the data. When the optimizer determines that an index is
available and will be used to access the data, the index pages are read into the buffers.
The btree index is then traversed until the key or keys in the index match the criteria
supplied. When the matching key is found, the data page that contains the specific row is
retrieved into the buffers and the specific row is returned to the application that requested
the data. Columns that are used to qualify which row or rows are selected should be
included in an index to make accessing the data more efficient. Understanding how the
data will be accessed by users will help when trying to identify which columns need to be

indexed. When you create multiple indexes on a table, many different qualifiers can be
used to more effectively implement the request for data. An example is changing Mr.
Jones's address in the address table because he has moved. The update can be qualified
on his name, account number, phone number, or even his old address. When individual
indexes are on each of these columns, the optimizer chooses one of them to use. When
implementing indexes, also remember that having too many indexes on a table degrades
the performance of changes to the data and that each index consumes disk space.

Informix stores the keys of an index on separate pages from the data. The smaller the
index key, the more keys will fit on each index page. Having more keys on an index page
means fewer disk reads.

When indexes are created on tables with a high volume of inserts, they become
inefficient quickly and should be re-created. By specifying a FILLFACTOR when the index
is created, you can reduce the frequency of re-creating them.

Indexes can dramatically help improve the performance of an application, but they can
also hinder the performance of the application that is primarily inserting rows. This is
also the case when the application frequently summarizes or scans the majority of the
data in the table and chooses an index path rather than a sequential scan of the table.

If the data that is being selected is contained in the index key, only the index pages will
be read into buffers. For example, if the date an account is opened is part of the key with
the account number, and you want to know the date that account 123456 was opened, no
data pages will be read into the buffers because all information being requested is stored
in the index pages.

TIP: The optimizer chooses to use a composite index even though not all columns
are used to qualify the request. In these cases, the optimizer uses the composite
index only if the leading columns are used to qualify data. To benefit from this,
create the index with the leading columns being the ones most likely to be
qualified on.

Although accessing data is more efficient with indexes, the overhead of adding keys in
the index is costly for inserting rows. This is true because every time a row is written,
both a data page and an index page are affected. This is also the case if columns in an
index key are updated.

A feature of OnLine Dynamic Server Architecture (DSA) is the capability to detach and
fragment indexes. Detaching indexes separates the index pages from the data pages on
separate disks. Parallel reads and writes can happen when the data being accessed is on
separate disks. You must provide a dbspace name for the index to be created in if you

want the index to be detached. The following CREATE INDEX statement shows a detached
index being created in the dbspace cust_dbsp:

CREATE INDEX customer_x ON customer (cust_id) IN cust_dbsp;

Fragmenting an index can speed access by spreading it across multiple disks. An index
can be explicitly fragmented only by expression. If an index is created on a fragmented
table but is not explicitly detached or fragmented, it will be fragmented the same as the
table. The following CREATE INDEX statement shows it being fragmented by expression
across three different dbspaces in a separate table space from the data:

CREATE INDEX customer_x ON customer (cust_id)
 FRAGMENT BY EXPRESSION
 cust_id <=1500 IN cust_dbsp1,
 cust_id <= 5000 AND cust_id > 1500 IN cust_dbsp2,
 cust_id > 5000 IN cust_dbsp3;

Tables are accessed more efficiently if the rows are sorted the same as the index. When
you create a CLUSTER index, the table will be physically sorted the same as the index.
You must have adequate disk space because the table is copied while it is being sorted.
The order in the table is not maintained, so you might need to run this periodically to re-
sort the table.

SET EXPLAIN

SET EXPLAIN is an SQL statement that is very useful in revealing how the database
engine will access the data for a given query. By using SET EXPLAIN you can identify
that you have correct indexes and which columns should be indexed. When you run SET
EXPLAIN ON, the output is written to the file sqexplain.out in the current directory.
Output from each query continues to be appended to sqexplain.out for the entire
session unless you issue a SET EXPLAIN OFF.

SET EXPLAIN shows the query plan, estimated number of rows that will be returned, and
an estimated cost of the query. The estimated cost is strictly an estimate used by the
optimizer when comparing access paths.

The query plan shows the access path to each table and the order in which each table is
read. For each table, you are shown the following:

• Whether the table was sequentially scanned or read by an index

• Which index was used

• Whether the database engine satisfied the query by doing an index-only
read

• Which columns were being joined between tables

• The remote table when distributed queries are run and where the filter
occurs

• Fragment elimination or parallel access for fragmented tables

• If PDQPRIORITY is not set, SET EXPLAIN shows that the fragments were
accessed serially

TIP: When a query is executed, it is first checked for syntax and then optimized.
After the query is optimized, the query path is written to sqexplain.out, and
then the data is retrieved. At this point, the query can be aborted. This is
especially useful when analyzing long-running queries.

Because the query plan is influenced by the statistics of the underlying tables, the plan
might be different in a production database from the development or test databases.
Because the data in the database will change over time, it is necessary to run SET
EXPLAIN periodically against the production database.

TIP: Because of changing data in the database, an application might begin to run
slowly for no apparent reason. By implementing SET EXPLAIN in the application,
you can identify problems in the query plan for the SQL statements in the
application. By passing an argument to the application, you can change to SET
EXPLAIN ON when you want.

Business Rules and Referential Integrity

Business rules are implemented at the database through referential integrity, which is an
important aspect of the database. Maintaining that integrity in the database rather than in
the application ensures that data relationships are not compromised. With all the tools
available to access a database, making sure all users keep referential integrity in the
database would be difficult. Many features are available to enforce integrity at the
database level. This puts the logic on the database server rather than in the applications.
These features include constraints, triggers, stored procedures, and defaults.

Constraints

Constraints are implemented at the table or column level. When there is an update to a
row in the table, the table-level constraints are evaluated. When a column with a
constraint is updated, the constraint for the column is evaluated. If the constraint check

fails, an error is returned to the application. PRIMARY KEY and FOREIGN KEY constraints
are a good way to enforce the relationship between parent and child tables. If you try to
insert a child row without a related row in the parent table, the insert will fail. Similarly, a
constraint error will occur if you attempt to delete a row in the parent table and there are
still related rows in the child table. You can specify in Data Definition Language (DDL)
that when the parent row is deleted from a table with a PRIMARY KEY constraint,
cascading deletes can occur. The database engine will automatically delete the child rows
if there is a FOREIGN KEY constraint defined in the child tables. The cascade delete is
performed as a transaction, so logging is required on the database.

A UNIQUE constraint ensures that rows do not have duplicate key values. NOT NULL
constraints force columns to contain data where the data is required.

Triggers

Triggers can also be used to implement referential integrity. There are three types of
triggers: insert, update, and delete. For each trigger, you can do many things, including
calling a stored procedure, which really gives you a lot of flexibility. A triggered event
can execute triggered actions BEFORE, AFTER, or FOR EACH ROW. Separate update triggers
can be created for each column, but each column can be included in only one update
trigger event.

An example of using triggers would be an invoice header table that has the total of all
invoice line items. Each time a line item is added, updated, or deleted, it is necessary to
change the total in the invoice header table. Do this by implementing an insert trigger on
the invoice line item table to add the new amount to the total in the invoice header table.
Similar triggers would also be created for deleting and updating line items.

Stored Procedures

Stored procedures can be used in many different ways. As mentioned earlier, they can be
called from triggers to extend the ability of the trigger. They can be embedded in SQL
statements such as the SELECT statement. They can be called with the EXECUTE
PROCEDURE statement. Stored procedures can have arguments passed to them, making
them dynamic. It is also possible using the SYSTEM command to execute OS commands
and programs to further extend the functionality of the stored procedure. Stored
procedures can also be implemented to further secure a database from unauthorized
access.

Views

Views are used for many different purposes. A view can be defined to allow access to
only certain columns from a table or to summarize and derive data columns. A view can
be defined to restrict users from accessing certain groups of rows by limiting the view's
SELECT statement in the WHERE clause. Views can be defined to summarize and derive
data columns.

When defining a view, an SQL SELECT statement is the underlying structure of the view.
The statement need not be limited to a single table, but it can include several tables with
complex joins and filter criteria. Each time the view is accessed, the SQL SELECT
statement is executed.

Views are updateable if the definition is based on a single table and there are no GROUP
BY clauses, no DISTINCT or UNIQUE clauses, and no aggregated or derived columns.
Updates can be restricted, ensuring that the updated row still qualifies for the view by
using the WITH CHECK OPTION. The following view definition is an updateable view
using WITH CHECK OPTION:

CREATE VIEW utah_customers
 (cust_id, f_name, l_name, city, state) AS
 SELECT cust_id, f_name, l_name, city, state
 FROM customers
 WHERE state = "UT"
 WITH CHECK OPTION ;

Synonyms

A synonym creates an alias to a table or view. Synonyms are a convenient way of making
a remote table look local. Any data manipulation statements can be executed against a
synonym, provided the user has the appropriate privileges on the underlying table.

Synonyms are PUBLIC by default. PRIVATE synonyms can be created but are accessible
only by the owner of the synonym. If you create a PRIVATE synonym of the same name as
a PUBLIC synonym and you use the synonym in a select statement, the PRIVATE
synonym is used, unless the synonym name is qualified by the owner's ID of the PUBLIC
synonym. Here is an example of a PUBLIC synonym created by user informix and a
PRIVATE synonym with the same name created by tjones. tjones wants to select from
the PUBLIC synonym, so he must qualify the synonym name:

CREATE SYNONYM informix.corp_sales FOR sales;
CREATE SYNONYM tjones.corp_sales FOR div_sales;
SELECT * FROM informix.corp_sales;

Replication

Business-critical databases that cannot go down for any period of time can be replicated
to ensure availability. Replication requires twice the hardware. One machine is the
primary server, which is where updates to the data occur. As the data is updated on the
primary server, changes are sent to the secondary server through the logical logs. The
logs are then processed on the secondary server, in turn updating the data there. If the
secondary server detects that the primary server has failed, all uncommitted transactions
are rolled back and the secondary server switches to normal database server mode. The
two servers can be synchronized after the primary server is up again.

Though replication requires redundant hardware, the secondary server can be used to
reduce the system load of the primary server by having other applications access the
database on the secondary server for read-only purposes.

Mirroring

To minimize downtime, consider mirroring some or all of your dbspaces. If a dbspace is
mirrored and the disk crashes the mirror, dbspace takes over until the disk of the primary
dbspace is recovered and brought back online. Critical dbspaces should be mirrored to
avoid a full instance restore in the event of a disk failure. The critical dbspaces include
rootdbs and those dbspaces where the logical and physical logs are placed.

The database engine will perform parallel reads from the mirrored dbspaces by reading
data that is on one half of the primary disk and data placed on the other half of the
mirrored disk. Any writes to the dbspace must occur to both the primary and mirror
dbspaces.

NOTE: If the table does not span both halves of the dbspace, only a single scan
thread will be used to get the data from disk.

Mirroring can be achieved outside the database server by implementing it in a disk
subsystem or a logical volume manager. Many believe this is a more efficient and reliable
method of mirroring.

Security

Security levels for the database are CONNECT, RESOURCE, and DBA. CONNECT allows the
user to access database objects for the database in which the privilege is granted.
RESOURCE has the same privileges as CONNECT, plus it allows the user to create database
objects. After creating objects, the user can ALTER or DROP only those objects created by
that user. DBA privilege allows the user unlimited capabilities in that database.

Table security can be granted to allow the user to SELECT, INSERT, DELETE, UPDATE,
INDEX, and ALTER that table. SELECT and UPDATE can be granted at the column level, also
allowing an even finer granularity of data access. Any or all of the privileges can be
granted or revoked.

Restricting access to groups of rows can be accomplished in three ways. The user with
DBA privileges can create a view that selects specific columns, filters the data in the WHERE
clause, and then grants access to the view to individuals or roles and revokes privileges
from public on the table. The second is by granting access to specific dbspaces of a
fragmented table. Of course, this applies only to fragmented tables. The third option is to

REVOKE all access to tables and allow access to data only through stored procedures. This
eliminates the need to know and understand the underlying table structures.

To execute a stored procedure, the user must have the EXECUTE privilege for the specific
stored procedure. A stored procedure can be created as a DBA procedure. When the DBA
procedure is executed, the user inherits the DBA privilege for all commands in the stored
procedure.

Roles ease the administration of table security. Roles are similar to UNIX groups; by
adding users to roles, privileges can be maintained for the ROLE rather than individual
users.

Database Design Considerations

In addition to the database structures, other factors influence the physical implementation
of the database.

Users and Transactions

Resources allocated to the database server are limited. These resources must be shared by
all users and processes that connect to the database server. As the number of users and
transactions increases, the likelihood is greater for contention of these limited resources.
This is where it is important to balance and share the resources so that the processes will
have the resources they need when they need them.

Database Size

When designing large databases, give extra attention so that you reduce major
administrative activities later. Most maintenance tasks will take longer and consume
more resources because of the sheer volume of the data.

Access Tools and Development Tools

Many tools are available to access and manipulate the data in the database, such as
DBaccess, which comes with Informix. Query and reporting tools such as Viewpoint and
Crystal Reports simplify SQL for the user who doesn't know SQL. Development tools
include INFORMIX-4GL, NewEra, PowerBuilder, and Delphi. Decision Support tools
include MetaCube and Microstrategy. Designing the database should take into account
the tools that will be used to access the database. These tools are very powerful; however,
a database design that complicates the access path to the data will result in complex
applications and limit the ability of users and developers to use these tools. The design of
the database must accommodate how the tools expect to see the data or what types of
database models they work best with.

Database Logging

When you log your database, many updates can be treated as a single logical unit of
work. If any statement from that unit fails, the data that was changed is returned to its
original state. Logging a database maintains a before and an after copy of every row that
changes. Maintaining a before and an after copy of each row that changes has a
considerable amount of overhead associated with it. Use BEGIN WORK to start a
transaction and COMMIT WORK to end the transaction. ROLLBACK WORK undoes any changes
during a transaction. If BEGIN WORK and COMMIT WORK are not coded in the application
and the database has logging, each SQL statement will be treated as a single transaction.
The database implicitly does a BEGIN WORK and COMMIT WORK for each statement. Log
the database only if it is necessary.

CAUTION: After an application is coded for transactions, database logging must
remain on when the application is trying to access the database or the application
will receive an error.

Multiple Instances

Databases with different purposes require different tuning parameters. If resources are
available, consider putting the databases in separate instances. Additional instances will
create more administration and coordination than the single instance. Each instance can
be tuned to perform better for the expected activity of the database. For example, in an
OLTP database, the engine should be tuned for quick updates and response time of
transactions.

Populating the Database

Little benefit is gained from an empty database. Populating the database can be done in
many ways. The source of the data can come from many different places and formats.
How to deal with the different formats can be the biggest challenge.

When building a new database, the formats you might have to deal with can only be
paper forms or lists. Occasionally, the data does not fit the relationships built in the
database. When this happens, the database might need to be changed to accommodate the
data. At other times, the data is made to fit by manipulating the data or by creating
business rules to ensure that the data fits.

Migrating from Legacy Mainframe Systems

A lot of companies thought downsizing was the answer to their high cost of maintaining
mainframe hardware and applications. Other companies realized that their mainframe
could not go away, but they could save CPU cycles by moving users to smaller systems.
Many data warehouses that are implemented on midrange systems are sourced from

legacy systems. Nightly, weekly, or monthly data is extracted from a database on the
mainframe and loaded into the midrange database system.

Moving data from the legacy system can be done with a gateway product that often has
tools to take data in one format and put it into another for a specific database. Some of
the tools Informix has will reformat data as it loads into the database. Converting data
from one format to another will have overhead associated with it. If you plan ahead, the
data can be converted on the legacy system to a format that will be easier to deal with and
requires less processing when trying to load into the database.

Migrating from Desktop Databases

Nearly all desktop databases can be unloaded in a format that can be read by the Informix
load utilities. Knowing the utilities and the formats they support will simplify moving
data from the desktop database to an Informix database.

Open database connectivity (ODBC) is a convenient way of connecting to multiple
RDBMSs at the same time, using the same application. An ODBC driver is probably
available for all desktop databases. When you use the ODBC driver for Informix and the
driver for the desktop database, you might be able to use a desktop utility to move the
data into an Informix database.

Migrating from Prior Versions of Informix

With each new release of the Informix database, you get several options for migrating the
existing database to the new version. In most cases, it is as simple as bringing the
database engine offline, installing the new version, and bringing the database engine
online. The old structures are automatically converted to the new structures.

It is not uncommon for companies to require thorough testing of new versions of software
to ensure that there are no incompatibilities. In these cases, a copy of the database from
the old version needs to be taken and put into the new version. It is not difficult to have
two different versions of Informix running on the same machine, given adequate
resources to do so.

Load Utilities

Informix provides a wide range of utilities for loading and unloading data. The
granularity, ease of use, and performance vary significantly across those utilities.

INSERT

The standard SQL INSERT statement is very easy to use and can be used in a 4GL
language or embedded SQL (ESQL) language such as ESQL/C. Using an embedded
language gives you the flexibility of that language, and you have access to the data in the
database for validating or crosswalking as you insert. Sometimes it is necessary to

manipulate the data as it is loaded. That manipulation could be more complex than the
load utilities can handle and must be done in an application.

Each row is inserted one row at a time using the INSERT statement. Using an insert cursor
speeds the application by buffering the inserts, flushing them to the database when the
buffer is full. Preparing the INSERT statements avoids the need to check the syntax of the
INSERT statement each time it is executed.

LOAD and UNLOAD

LOAD is another SQL statement that will load data from a file and insert it into a table.
The file must be delimited. You can specify the delimiter using the DELIMITER clause;
the default is the vertical bar (|).

Dbload

Dbload is a command-line utility for loading and formatting data. It can read delimited
and fixed-length records. Dbload is always accompanied by a command file that defines
the format rules. You can specify the row in the load file to begin with when loading, as
well as how many rows to read before quitting. A threshold can be set for the number of
bad rows that can be rejected before aborting the load. For logged databases, a commit
interval can be set to avoid long transactions.

In the command file, you identify the filename of the datafile, the delimiter character, the
field beginning and ending positions in the datafile, and the INSERT statement.

dbimport and dbexport

The simplest way to migrate data between Informix instances, regardless of the version,
is to use dbimport and dbexport. The dbexport command unloads the data from every
table in the database and generates a schema of that database. The unloads can be written
to tape or file. Using the -ss switch, the server-specific configurations of the database,
such as extent size, lock mode, and dbspace placement, are retained. The dbexport
command tries to get an exclusive lock on the entire database that is being exported. If an
exclusive lock cannot be obtained, the command fails. Because dbexport locks the
database, no users can be connected to the database. This guarantees the referential
integrity of the database when it is imported using dbimport.

dbimport takes the schema file generated from the dbexport command and creates the
database loading the data from the unload files. You can specify the dbspace in which to
create the database by using the -d option. Using the -l option, you can create the
database with logging.

TIP: dbimport loads data into the table immediately after the table is created
and then creates any indexes. This ensures that the entire table is in contiguous
disk space. If you find that many of your tables have multiple extents and are
unintentionally fragmented, use dbexport and dbimport to reorganize the
database.

Onload and Onunload

Onunload dumps a table to a file or tape. A copy of all pages allocated to the table,
including index and free pages, is dumped. Because every page is dumped with no regard
to the contents, this utility runs very fast.

When you Onload a table, you must specify the table name. The table cannot already
exist in the database or you will receive an error. Indexes are preserved when using
Onunload; however, privileges, views, synonyms, and constraints are lost. Use dbschema
to get the DDL for privileges, views, synonyms, and constraints related to the table you
are Onloading so that you can re-create these objects.

High-Performance Loader

High-performance loader (HPL) is the latest utility Informix has developed for loading
large amounts of data. HPL maximizes performance by running each step of the load
process in parallel. This includes parallel reads from the data files or tape devices,
formatting the data, converting the data, and inserting the data into the table. To take
advantage of the parallelism, the load data must be split into multiple files or multiple
tape drives and the table must be fragmented.

HPL has two modes of running--express and deluxe. Express mode writes directly to a
new extent. After it completes, that extent is appended to the existing extent of the table.
If the table has indexes, they are re-created after the express mode HPL is run. If the
database is logged, the inserts are not logged. Constraints and triggers are also not
maintained during express load, but they are checked after the load completes. After
using HPL in express mode, the table is read-only until a level-0 archive has been taken.
Running HPL in deluxe mode maintains the indexes, constraints, and triggers during the
load.

HPL job definitions are stored in the onpload database. The interface for creating jobs is
an X Window interface. You can also populate the tables manually, but this is not
recommended because of the complexity of the onpload database.

Improved Processing

Turn off logging on a logged database while loading or updating large amounts of data.
Dropping indexes, constraints, and triggers or disabling them also improves performance.

If you do this, remember that indexes are re-created when enabling them, and triggers and
constraints are validated or executed when they are enabled or re-created. Locking the
database or table in exclusive mode reduces the overhead of lock management.

TIP: On a multiprocessor machine, running multiple loads in parallel might gain
some performance if the load utility or program is serially reading data from files
and serially inserting rows. If the application is doing a lot of processing such as
calculations or conversions of data before the actual insert occurs, it might
benefit from multiple instances of the application. Be careful to watch the CPU
utilization so that not all processes are contending for the same CPU cycles. Also
watch how busy the CPUVPs are.

If the initial extent of a table was not defined, you can potentially have multiple extents.
When you have multiple extents scattered across the disk, the head must do more work to
get the data. To avoid this, be sure to specify the size of the initial extent when creating
the table and the size of the next extent. After the table is created, the initial extent size
cannot be changed without re-creating the table, but the NEXT SIZE can. Also, if an
extent fills and another extent is created, and if the next extent immediately follows, the
two extents will be concatenated forming a single extent. This happens as long as the
space being used by each additional extent is contiguous.

Monitoring, Tuning, and Configuring

Tuning the database engine is an iterative process. You must first monitor the system to
identify potential problems, and then change configuration parameters and monitor the
system again. Incrementally change configuration parameters to recognize the impact of
each parameter that has changed.

NOTE: The onstat command is very useful when monitoring the performance of
the database engine.

The statistics reported by the onstat command are accumulated since the database
engine was brought online. The statistics can be reset using onstat -z. When comparing
these statistics, keep in mind the period of time since the statistics were reset.

ONCONFIG Parameters

The INFORMIX-OnLine DSA configuration file is where the database engine tuning
takes place. Changing the parameters in the ONCONFIG file might significantly increase

performance and eliminate bottlenecks. The usage of the database will help identify
which parameters should be changed. Some parameters will impact the database,
depending on its purpose, and other parameters will not impact performance at all.

Buffers

Before the engine can process data and index pages, the pages must be read into buffers.
After they are read into the buffers, the pages will stay there if they are accessed
frequently. Having more buffers increases the likelihood that a requested row will be in
memory. There is a point at which adding more buffers does not produce a benefit.
Onstat -p shows buffer reads (bufreads) and writes (bufwrits). It is not uncommon to
achieve greater than 95 percent buffer reads and greater than 90 percent buffer writes.

The way to tune the buffers is to watch the read/write buffer hit ratio. If the values are
less than 95/90 reads/writes, add buffers and monitor during normal activity for a period
of time. Keep adding buffers until no advantage is gained by adding more. Do not
allocate too much memory to the database, or the operating system and other applications
will suffer.

CAUTION: Adding buffers might increase the checkpoint duration, because
there are more buffers to write to disk each time a checkpoint occurs. Because
the pages are sorted, writes are more efficient when done during a checkpoint;
however, all processing is stopped during the checkpoint. LRU_MIN_DIRTY and
LRU_MAX_DIRTY can be tuned to reduce this duration.

Checkpoint Duration

Long checkpoints can cause bad response time for interactive applications. But overall
runtime of batch programs might benefit from long checkpoints if a lot of data is
changing or being inserted.

Long checkpoint duration can be decreased by reducing LRU_MIN_DIRTY and
LRU_MAX_DIRTY to 5 and 10 respectively (or even lower). This forces the engine to write
modified data pages between checkpoints, so there is less work to do when a checkpoint
is required. Keep in mind that writes are more efficient during a checkpoint because the
pages are sorted.

Parallel Data Query (PDQ)

To take advantage of parallel queries, you must have multiple CPUVPs, have
PDQPRIORITY set, and fragment the tables you want to access. Several configuration
parameters manage the resources allocated to parallel queries.

PDQPRIORITY can be set to a number between 0 and 100, or it can be set to OFF(0),
LOW(1), or HIGH(100). This specifies the percentage of resources that a query will use.
PDQPRIORITY can be set three ways. The first is in the ONCONFIG file. All queries will run
with this value when set in the ONCONFIG file, unless the application overrides it.

Using the SQL statement, SET PDQPRIORITY overrides the value in the ONCONFIG file.
When you set the environment variable, PDQPRIORITY overrides both. If the
PDQPRIORITY is set to a value higher than MAX_PDQPRIORITY, the priority is set to
MAX_PDQPRIORITY.

Other configuration parameters that manage and control parallel queries are as follows:

• DS_MAX_QUERIES
• DS_MAX_SCANS
• DS_TOTAL_MEMORY

DS_MAX_QUERIES is the total number of parallel queries that can run at the same time.

Pages are read from disk by the scan threads. DS_MAX_SCANS sets the number of parallel
scan threads to be used by parallel queries.

DS_TOTAL_MEMORY is the amount of memory that is shared by parallel queries.

CAUTION: If a query has PDQPRIORITY set to 50 and half the resources are
unavailable, that query must wait until enough resources are available before it
can run.

onstat -g mgm shows the number of parallel queries, scan threads, and memory usage,
and it shows whether any queries are waiting on resources.

RA_PAGES and RA_THRESHOLD

RA_PAGES specifies how many pages should be read into buffers when a query is doing a
sequential scan of a table or an index. RA_THRESHOLD specifies when another read ahead
should take place. When the number of pages (RA_THRESHOLD) has been processed,
another read ahead occurs. onstat -p shows whether read ahead pages are being used
efficiently.

CPUVPs

The CPUVPs are the virtual processors that do most of the work in the database engine.
If there are multiple physical processors and the machine is primarily an Informix

database server, NUMCPUVPs should be set to the number of physical CPUs minus one. If
there are multiple instances, the physical CPUs will be shared between instances.

Ongoing Maintenance

After implementing the database, several things should be done and checked on a regular
basis.

Update Statistics

Information about a table and the data in it is gathered and stored by the UPDATE
STATISTICS command. The optimizer uses the statistics gathered to determine the best
access path of all queries. These are especially important when joining multiple tables in
a query. Statistics should be regenerated any time there is significant activity in the
database or a table.

UPDATE STATISTICS can be run for a specific table or all tables in the database. Stored
procedures are reoptimized when UPDATE STATISTICS is run for them.

Statistics can be generated at three levels for tables: LOW, MEDIUM, and HIGH. At each
level, a certain amount of information is gathered. LOW gathers and stores as little
information as necessary, such as row and page counts. MEDIUM gathers distribution
information about the data in the table by taking samples. HIGH gathers exact
distributions. HIGH might have to scan a table several times to gather information for each
column.

If statistics are out of date, queries could actually run slower because of inaccurate
information about tables.

oncheck

oncheck verifies the consistency of the database. This includes checking, displaying, and
repairing the database structures. The -pe option shows the physical location of database
objects on each disk. This report is useful in identifying tables with multiple extents.

Backups

Backups must be considered when designing and implementing a database. Two utilities
are provided for online backups--ontape and onarchive. These utilities back up the data
while there is activity against the database. They both require log backups in addition to
the archives that are taken, even if the database is not logged. You can restore the entire
instance back to the time of the archive you are restoring from. Then apply the logs to roll
forward any transactions since that archive.

Archives are necessary to recover from a disaster, but to restore specific rows or a table
because of an accidental delete or drop of a table could be very difficult. It is a good idea
to periodically unload the data from the tables. Unloading the tables requires additional
disk space, but certain utilities, such as compressing the files or writing them to tape, can
minimize that disk space. It might not be necessary to unload all tables.

Summary

Creating a database is much more than deciding which columns belong to which tables
and creating them. When you understand the purpose of the database and the features
available, your database and application will be a success.

- 13 -

Advanced Configurations
• Introduction
• The Informix ONCONFIG File
• DSS Versus OLTP Configurations

o DSS Overview
o DSS ONCONFIG Parameters
o PDQPRIORITY
o DS_MAX_QUERIES
o DS_MAX_SCANS
o DS_TOTAL_MEMORY
o OLTP Overview
o OLTP ONCONFIG Parameters

• Memory Utilization
o Overview
o BUFFERS
o LOGBUFF
o PHYSBUFF
o LOCKS
o DSS Versus OLTP Memory Usage
o Informix ONCONFIG Parameters That Affect Memory
o The Virtual Portion of Informix Shared Memory
o The Message Portion of Informix Shared Memory
o Shared Memory ONCONFIG Parameters

• PDQ
o PDQ Overview

o Informix ONCONFIG Parameters That Affect PDQ
• CPU Utilization

o Overview
o UNIX Parameters That Affect CPU Utilization
o Semaphore Sets
o Number of Semaphores
o Informix ONCONFIG Parameters That Affect CPU Utilization

• Disk and I/O Utilization
o Overview
o Managing Disk Layout
o Table Placement
o High-Use Tables
o Multiple Disks
o Creating Tables
o Fragmentation
o OLTP Versus DSS Considerations

• Temp Tables and Sorting
o DBSPACETEMP

• Multiple Instances
o SERVERNUM
o ROOTPATH and ROOTOFFSET
o DBSERVERNAME
o MSGPATH
o Connections
o Connect

• Multiple Database Servers
• Client-Server Architecture

o Shared Memory Connections
o Network Connection

• Mirroring and Replication
o Mirroring
o Data Replication

• Monitoring
o Overview
o onstat
o The oncheck Utility
o The onlog Utility
o Sample Scripts

• Summary

by Kevin Kempter

Introduction

Now that you have an instance of INFORMIX-OnLine up, as you learned in Chapter 11,
"Configuring the Informix Environment," this chapter can cover advanced configuration
topics.

The Informix ONCONFIG File

The Informix ONCONFIG file is the method by which the OnLine engine determines what
tunable values to use. The ONCONFIG file is always located in the $INFORMIXDIR/etc
directory, where $INFORMIXDIR is the UNIX environment variable that contains the full
path to the Informix root installation directory.

This chapter discusses all the IINFORMIX-OnLine engine ONCONFIG file parameters,
outlines their uses, and recommends efficient values.

DSS Versus OLTP Configurations

There are two main approaches to setting up the ONCONFIG file, geared toward DSS
(Decision Support System) queries, or toward OLTP (online transaction processing)
queries.

DSS queries are generally very large queries, often containing many joins and returning
hundreds or thousands of rows. OLTP queries are transaction-based, returning only a few
rows at a time (often only one), generally for some sort of modification.

DSS Overview

DSS or data-warehousing is becoming increasingly popular in today's information
technology market. Most DSS systems have the same basic characteristics, although there
are often exceptions, such as these:

• The database is read-only.

• The data is time-sensitive (that is, representative of snapshots in time
across several months or years).

• The physical model is a star or a snowflake schema. A star schema is one
or more large fact tables linked to tables that represent categories or
dimensions that help define a snapshot in time of the fact table records--

thus the term dimensional modeling. One example of a very basic star
schema would be a fact table that represents sales, which would include
sales figures such as cost, margin, profit, units sold, and so on. This table by
itself is pretty meaningless. But add the dimension tables that represent
time, geography, and products, and now you can ask questions such as,
"What were the gross profits for brand X in the northwest region for the
past three quarters?," or "Show it to me by city and by week, and
summarize the quarterly net profits." A snowflake schema is a star with
each dimension broken out into more normalized tables. (For example, the
geography dimension could contain city, state, county, and region tables.)

Figure 13.1 depicts a very basic star schema.

Figure 13.1.

A basic retail star schema.

DSS ONCONFIG Parameters

The Informix ONCONFIG file contains several parameters that are associated with DSS
environments. These parameters allow the OnLine engine to be optimized for a data
warehouse environment.

PDQPRIORITY

The Informix PDQPRIORITY ONCONFIG parameter determines what percentage of
resources OnLine allocated to PDQ (Parallel Data Queries). The INFORMIX-OnLine
engine weighs the request against other requests and determines whether the amount
requested or some lesser, more proportional amount is allocated to the query.

NOTE: In version 7.2 of INFORMIX-OnLine, the PDQPRIORITY parameter is no
longer set in the ONCONFIG file. The new method is to set the PDQPRIORITY as a
UNIX environment variable, or to set PDQPRIORITY in the informix.rc file in the
$INFORMIXDIR/etc directory.

TIP: The only way you will ever get any degree of parallel processing of a query
is by setting the PDQPRIORITY value to a value greater than zero. This is the only
method OnLine uses to determine whether a query is a parallel or a DSS query.

You can set the PDQPRIORITY parameter to several recognized values:

0 or OFF

1 or LOW

HIGH

A specified value (up to 100)

DS_MAX_QUERIES

The DS_MAX_QUERIES parameter determines how many concurrent DSS queries can be
active.

INFORMIX-OnLine considers a DSS query to be any query with a PDQ priority set to a
nonzero value.

Although this parameter is difficult to generalize, a good guideline to set it by would be
the Informix default value, which is the value of NUMCPUVPS * 2 * 128.

DS_MAX_SCANS

The DS_MAX_SCANS parameter regulates how many scan threads can be launched in order
to process any one query. This parameter is very helpful in disallowing any single user
from hogging all possible threads, thus forcing the DBA to go berserk and choke that
particular user. (So it's sort of a DBA blood pressure regulator.)

As in the case of DS_MAX_QUERIES, this parameter is difficult to generalize. It varies
based on your use of DSS. Again, the default value--1,048,576 (1024*1024)--is
probably a good starting point.

DS_TOTAL_MEMORY

The DS_TOTAL_MEMORY parameter sets a maximum amount of shared memory that can be
allocated concurrently to DSS (or PDQ) queries. This value obviously should never be
greater than, or even equal to, the SHMTOTAL (total max shared memory) parameter.

OLTP Overview

OLTP (online transaction processing) is just about the exact opposite of DSS. Whereas
DSS queries are large read-only queries, returning large datasets, OLTP queries generally
attempt to modify a small dataset or even a single record at a time.

OLTP ONCONFIG Parameters

There really aren't any ONCONFIG parameters dedicated specifically to OLTP. Like some
of the DSS parameters, the standard ONCONFIG parameters are associated with the OnLine
engine in general.

Memory Utilization

The INFORMIX-OnLine Dynamic Server utilizes shared memory extensively in order to
perform database functions as quickly as possible. This makes the OnLine engine very
dependent on how the operating system handles memory. Knowing how your particular
operating system handles memory can provide useful insight when performance-tuning.

Because there is a finite amount of memory on any given machine, and the DBAs are
generally restricted to some portion for the database engine (most DBAs push for 90-95
percent), at some point the machine needs to allocate more memory than it has for a
running process. At this point, the CPU searches the physical memory looking for any
free memory pages. When no free memory pages are found, the CPU then looks for any
pages that are unlikely to be needed immediately. Most operating systems utilize LRU
(least-recently used) algorithms within their memory management systems. An LRU
algorithm determines which pages are unlikely to be used immediately, by selecting the
oldest or least-recently used pages in memory. The CPU then begins to copy these pages
to a swap area on disk. This is referred to as paging.

At some point, these pages are needed by their respective processes, so they are copied
back into memory. If there are not enough free pages to copy the needed pages into, more
pages are paged out to make room. Under extremely heavy processing and memory
usage, this paging can become so bad that the CPU spends more time paging than
processing jobs. This is known as thrashing, or by the less-technical term hosed.

Some operating systems employ a threshold algorithm that forces the CPU to copy all
pages associated with a process into the swap area after a certain threshold of paging is
reached. This is called swapping. Swapping is a desperate attempt to recover from too
much paging. If your system is swapping consistently, it is generally performing poorly,
and a few long nights of performance-tuning are in order (or at least kick all those pesky
users off the system).

Most operating systems provide some method of monitoring paging activity. When
monitoring paging activity, look for page-out activity, because this is done only when
there are no free pages in memory. If you see a high rate of page scans (the CPU
scanning for free pages), this might be an early warning that your system memory is
beginning to bottleneck and your system could soon be in an undesirable state.

INFORMIX-OnLine Dynamic Server also uses an LRU algorithm to page database data
pages between the memory buffer pool and the disk.

The use of shared memory allows INFORMIX-OnLine virtual processors (a set of
process threads that service processes similar to how CPUs service processes) and other

OnLine processes, tools, utilities, and so on, to share data without having to store the data
in multiple places. Shared memory also allows extremely fast communications and
transferring of data.

Overview

The INFORMIX-OnLine shared memory is divided into three basic components:

• The resident portion
• The message portion
• The virtual portion

The resident portion of shared memory is the section of memory that contains the buffer
pool, log files, locks, reserved pages, and so on. The following ONCONFIG parameters are
directly tied to the resident portion of Informix shared memory:

BUFFERS

LOGBUFF

PHYSBUFF

LOCKS

BUFFERS

This parameter determines how many pages will be allocated to the buffer pool, thus
seriously affecting how often your database can read from memory and how often the
pages in memory must be written to the disk. The BUFFERS ONCONFIG parameter and
recommended sizing guidelines are discussed in Chapter 11 in the "ONCONFIG
Parameters" section.

LOGBUFF

The LOGBUFF parameter specifies how big the buffer in memory for the current logical
log is. INFORMIX-OnLine holds three logical logs in shared memory at all times.
OnLine uses only one logical log at a time; any changes taking place in the database are
written to the logical log buffer. If OnLine needs another log, the next log is marked as
the current log so that transactions can begin writing to the new log while the previous
log is flushed to disk. The logical log buffer is used for both buffered and unbuffered
logging. For unbuffered logging, the logical log buffer is flushed to disk every time a
transaction is committed. For buffered logging, the transactions are held in the log buffer
as long as possible, until one of the following events occurs:

• The buffer becomes full
• A checkpoint is executed

• The connection to the database is closed
• A commit is performed on a database with unbuffered logging

PHYSBUFF

OnLine contains two physical log buffers in memory. The PHYSBUFF parameter specifies
the size for each of the physical log buffers. The physical log buffers work similar to the
logical buffers for the before-image pages. When a before image is written to the physical
buffer, it always writes a full page. When one of the physical log buffers becomes full,
the next buffer becomes the current buffer while the full buffer is flushed to disk. The
size of this parameter will dictate how often the physical log buffer needs to be flushed to
disk. Informix recommends a value equal to 16 pages for the PHYSBUFF parameter.

TIP: Always make the size of the physical log buffers divisible by the system page
size. If this value is not divisible by a page, OnLine rounds down to the next value
that is divisible by a page. In this case, the extra space is simply unusable.

LOCKS

The INFORMIX-OnLine engine uses shared memory locks to maintain a balance
between sharing data in the fastest possible way and keeping any threads from using stale
data (changed and uncommitted data, deleted data, and so on). To accomplish this,
Informix uses two types of shared memory locks--a shared lock and an exclusive lock.

The shared lock allows an INFORMIX-OnLine thread to lock a data buffer, while other
OnLine threads still have access to the data buffer in read-only mode. The exclusive lock
completely disallows all access to the data buffer until the lock is freed.

The LOCKS ONCONFIG parameter specifies the maximum number of LOCKS that can be
used concurrently. Each lock OnLine uses 44 bytes of memory in the resident portion of
shared memory. Although 44 bytes is not much of a concern, if you allocate 500,000
locks, for example, you would use 20MB of resident memory space. The maximum
number of locks that any instance of OnLine can use is 8 million. The LOCKS parameter
should be set to the maximum number of locks that any one user query could use,
multiplied by the number of concurrent users expected. See the Informix OnLine
Dynamic Server Performance Tuning Guide for more information pertaining to how
many locks a query will use.

DSS Versus OLTP Memory Usage

OLTP applications generally access small sets of data, often one row at a time, and often
for the purpose of modification. An OLTP application typically supports a high number
of concurrent users and provides sub-second response time.

DSS applications provide methods for strategic planning, forecasting, and summarization
of a company's data. DSS queries are typically very large, complex, and often take
several minutes to several hours to run. DSS systems generally support very few
concurrent users.

Due to the extreme differences in OLTP versus DSS application traits, the memory usage
for OLTP queries is often detrimental to DSS queries and vice versa. When both DSS and
OLTP are to be utilized on the same system, which is rare (because it really irritates
DBAs), the PDQPRIORITY ONCONFIG parameter discussed in the "PDQ" section later in
this chapter becomes an extremely important tool for maintaining an acceptable level of
performance.

Informix ONCONFIG Parameters That Affect Memory

The resident portion of Informix shared memory was discussed earlier in this chapter in
the section titled "Memory Utilization." The remaining two portions of INFORMIX-
OnLine shared memory are as follows:

• The virtual portion
• The message portion

The Virtual Portion of Informix Shared Memory

The virtual portion of shared memory is dynamic. OnLine will allocate more segments as
needed. The virtual portion of shared memory contains the components covered in the
following sections.

Big Buffers

OnLine uses big buffers to manage any instances of multiple contiguous pages of data
that need to be written to or retrieved from disk. A big buffer is a buffer that is large
enough to contain 32 pages of data.

The Dictionary Cache

OnLine maintains a set of structures in memory that allow the system catalog table data
to be accessed in an efficient manner. When OnLine receives a request to access a system
catalog table, the table is read and stored in the memory structures. These memory
structures constitute the dictionary cache.

The Global Pool

OnLine stores all structures that are global to OnLine in this section of shared memory.
The message queues, where poll threads place messages from clients, are in the global
pool.

Session Data

When OnLine begins a session with a client application, a data structure in memory is
populated. This is the SCB (session control block). In addition to several status flags, the
SCB contains the following information:

• Session ID
• User ID
• Client Process ID
• Hostname

The Sorting Pool

The INFORMIX-OnLine engine allocates memory for sorts. The size of this sorting pool
depends on the number of concurrent sorts taking place. The maximum amount of
memory that OnLine will allocate for sorts is 5MB.

The Stored Procedures Cache

The stored procedure cache is a nonconfigurable section of memory that stores any called
stored procedures in an executable format the first time each stored procedure is called.
This cache can then be accessed by any subsequent calls to the same stored procedures.

Thread Data

When connections are made to OnLine, or when internal threads are needed, OnLine
launches both a thread and a TCB (thread control block). When OnLine performs a
context switch (switches one thread out and begins running another), the TCB retains all
the needed information to run the thread when it is switched back. INFORMIX-OnLine
adds more memory for TCBs as it is needed.

The Message Portion of Informix Shared Memory

The message communications portion of INFORMIX-OnLine shared memory is simply
the memory allocated at initialization time to allow connections to communicate with the
OnLine engine. The amount of memory is based on the number of users specified in the
NETTYPE parameter, or the USERTHREADS ONCONFIG parameter, whichever is less.

Shared Memory ONCONFIG Parameters

The following Informix ONCONFIG parameters specifically affect the use of shared
memory.

RESIDENT

The RESIDENT ONCONFIG parameter indicates whether or not OnLine should enforce
residency for the resident portion of Informix shared memory. If your system supports
forced residency, and you specify OnLine to force residency, the LRU queues will never
be swapped or paged out of physical memory. This can greatly increase performance of
the OnLine engine. This increase in performance in the OnLine engine can come at a cost
to other applications.

SHMBASE

The SHMBASE ONCONFIG parameter specifies the base address of the OnLine shared
memory, where any additional virtual segments will be attached.

SHMVIRTSIZE

SHMVIRTSIZE specifies the initial size for the virtual portion of shared memory. You
should attempt to size this segment large enough that most day-to-day processing requires
no additional memory segments, but small enough that spikes in workload will require
additional segments to be added. This balance between having enough memory to
support 90 percent of all requests and not having so much memory that memory is
needlessly being wasted is the optimal configuration. Use the onstat -g seg command
(described later in this chapter in the section titled "Monitoring") to determine whether
too few or too many memory segments are being allocated. Informix recommends that
you use as an initial value the item in the following list that produces the largest setting:

• 8000KB
• 350 x (the number of connections specified in one or more NETTYPE parameters)

SHMADD

SHMADD indicates how big each additional memory segment added to the virtual portion
of shared memory will be. As in the case of the SHMVIRTSIZE parameter, SHMADD is also
optimally configured based on finding a balance between allocating too many small
segments and too few large segments. Too many small segments will waste CPU cycles
because the CPU will need to add segments more often. Allocating too few large
segments will hog too much memory, depriving memory available for other processes,
and possibly leading to performance problems. (Refer to the "Memory Utilization"
section earlier in this chapter.) Table 13.1 indicates the Informix recommended initial
settings for the SHMADD parameter. The recommended values are based on the amount of
physical memory on the machine.

Table 13.1. Informix recommended initial values for SHMADD.
Physical Memory Size Initial SHMADD

Setting

(greater than 512MB) 32,768KB

(less than 256MB and less than or equal to
512MB)

16,384KB

(less than or equal to 256MB) 8,192KB

SHMTOTAL

The SHMTOTAL parameter places a ceiling on the total amount of shared memory that an
instance of INFORMIX-OnLine can use. If you set SHMTOTAL to 0, OnLine will continue
to allocate more memory until no virtual memory is left to allocate on the machine.
Setting SHMTOTAL is generally the best method.

STACKSIZE

STACKSIZE indicates the initial stack size per thread. This amount of memory is initially
allocated to each thread. You can reduce the size of the virtual portion of shared memory
by attempting to estimate what this total size should be and sizing the virtual portion of
shared memory appropriately. You can then modify the SHMVIRTSIZE parameter
accordingly. The STACKSIZE is a portion of the thread data in the virtual portion of shared
memory. The following calculation is the Informix recommended calculation to estimate
the total STACKSIZE needed:

(total virtual memory for threads) = STACKSIZE x (avg. no. of concurrent threads)

PDQ

PDQ (Parallel Data Query) is the method Informix uses to control parallelism in the tasks
performed by the engine when querying the database.

PDQ Overview

PDQ allows OnLine to greatly improve the performance of a DSS query by utilizing
parallelism. OLTP queries should run at peak performance with the default OnLine
setting, which is 0 for no parallelism. DSS queries are typically large, long-running
queries, sometimes involving very large table scans. PDQ can allow a large table scan to
run faster, and more efficiently, by launching multiple threads to read through the table in
parallel. OLTP queries, on the other hand, would probably not benefit from parallelism
because a typical OLTP query attempts to fetch a very small set of rows or a single row.
PDQ allows INFORMIX-OnLine DSA to handle both types of queries. Consider the
following example:

The number of concurrent active queries (DS_MAX_QUERIES) is set to 5.

• Five large DSS queries, each using PDQ, are currently running, with an
expected finish time of 45 minutes.

• A user wants to find out whether the Northridge store has the coolbreeze
cordless mouse in stock (an OLTP query).

If the user launches the preceding query using PDQ, the query will be queued up for
about 45 minutes, until one of the current PDQ queries is finished. However, if this query
is launched with no PDQ, the number of concurrent active queries (DS_MAX_QUERIES)
limitation no longer applies. Because this is an OLTP query, combined with the fact that
the database was designed by an incredible DBA, the user receives the answer in sub-
second response time.

Informix ONCONFIG Parameters That Affect PDQ

The following ONCONFIG parameters (described in the "DSS ONCONFIG Parameters"
section in this chapter) all affect PDQ resources:

DS_MAX_QUERIES

DS_MAX_SCANS

DS_TOTAL_MEMORY

PDQPRIORITY

OnLine considers any query with a PDQPRIORITY value greater than 0 to be a PDQ or a
DSS query. When OnLine receives a DSS query, the query request is placed in a priority
queue (the priority based on the value of PDQPRIORITY). MGM (the Memory Grant
Manager) performs the following five checks (referred to as gates) for each DSS query to
determine when the queries are granted resources and to determine the amount of
resources as the query is processed:

• If initialization is in progress, all queries wait for initialization to complete.

If the number of running DSS queries is equal to the value specified by DS_MAX_QUERIES,
all queued queries wait until one or more DSS queries finish.

If a DSS query with a higher PDQPRIORITY than the one being checked (passed through
the gates) is found, the DSS query (the one currently being checked) returns to the queue.

• If no more DSS memory (or any memory) is available, the queries wait
until some memory is freed up.

If the number of threads allocated to the query is equal to the value set for
DS_MAX_SCANS, the query waits until one or more threads complete.

CPU Utilization

This section describes the various factors and parameters that affect the system CPU.

Overview

In order to maximize how efficiently INFORMIX-OnLine utilizes CPU processing, you
need to look at both UNIX kernel parameters and Informix ONCONFIG parameters. The
UNIX parameters allow system functions related to the database operations to be
efficient. The ONCONFIG parameters allow the OnLine engine to operate efficiently.

UNIX Parameters That Affect CPU Utilization

The UNIX level parameters that affect OnLine are the UNIX semaphore and file-
descriptor-related parameters.

There are two semaphore-related kernel parameters that you should tune:

• The parameter for your particular flavor of UNIX that controls the
number of semaphore sets allocated

• The parameter that sets the maximum number of semaphores

Semaphore Sets

Informix recommends that at least the following three semaphore sets be allocated, in
addition to any required by other software on the system:

One set for each 100 (or fraction of) VPs (virtual processors) that are configured in the
ONCONFIG file.

• One set for each additional VP that you feel you might add dynamically
after the engine is online.

• One set for each 100 (or fraction of) users that will connect concurrently
via a shared memory connection type.

Informix recommends that you double the value for the shared memory connections and
set the poll threads value in the NETTYPE ONCONFIG parameter as if the number of
expected users were doubled.

Number of Semaphores

The value of the kernel parameter that sets the maximum number of semaphores for the
system should be set to a minimum of 100. INFORMIX-OnLine uses at least two
semaphores for each instance of the engine.

TIP: A single instance managing several databases will almost always outperform
multiple Informix instances on the same box.

One UNIX kernel parameter related to file descriptors affects INFORMIX-OnLine
performance. That is the kernel parameter that sets the number of files that can be open at
any one time.

This parameter directly controls the number of chunks your instance of OnLine can have.
The following calculation is what Informix recommends as a starting point for this
parameter:

(number of chunks x NUMAIOVPS) + NUMCPUVPS + (number of non-shared memory
connections)

Informix ONCONFIG Parameters That Affect CPU Utilization

Several ONCONFIG parameters affect CPU utilization. This section explains their usage
and recommended values.

AFF_NPROCS

If your operating system supports processor affinity, you can direct OnLine to
automatically affinitize or bind CPU VPs to processors. The AFF_NPROCS parameter
specifies the number of CPUs that OnLine will use to bind CPU VPs. The OnLine CPU
VPs are assigned to the specified number of CPUs serially. When a CPU VP is bound to
a CPU, the CPU VP will run exclusively on that CPU. Binding CPU VPs to CPUs does
not prevent other processes (database or not) from running on that CPU.

AFF_SPROC

The AFF_SPROC parameter specifies which processor to start binding CPU VPs. If your
system has 20 processors and you set AFF_NPROCS to 10, which forces OnLine to bind
CPU VPs to 10 processors and AFF_SPROC to 11, then OnLine will bind CPU VPs to
processors 11-20.

MULTIPROCESSOR

The MULTIPROCESSOR ONCONFIG parameter specifies whether you are running on a
multiprocessor box. If you specify 0, indicating that you are on a single CPU box, the

AFF_NPROCS and AFF_SPROC parameters are ignored, and locking is done in a manner
suitable for a single CPU machine. If you specify 1, indicating that you are on a
multiprocessor box, OnLine performs locking in a way that is suitable for a
multiprocessor box.

NOAGE

Some breeds of the UNIX operating system will continually lower the priority of a
process the longer the process has been running. This is referred to as priority aging
(although DBAs tend to use other less flattering terms for it). Obviously, this can be a bad
thing for the database, especially in the case of a large DSS query. NOAGE allows this
feature to be disabled. If your OS supports priority aging, Informix recommends that you
set NOAGE to 1, which disables aging. Setting NOAGE to 0 (the default) allows the system to
perform priority aging.

NUMAIOVPS

The NUMAIOVPS parameter specifies the number of AIO VPs (AIO class virtual
processors). Each chunk is assigned a queue by OnLine, in which all I/O requests are
placed. OnLine prioritizes the order of the requests in order to minimize disk head
movement. The I/O requests are then serviced in a round-robin sequence. Informix
recommends that you set NUMAIOVPS to the number of disks that contain database chunks
on your system.

Some systems support KAIO (Kernel Asynchronous I/O). KAIO is extremely efficient.
Your OS machine notes describe how to enable KAIO. If you enable KAIO, OnLine
makes raw I/O requests directly to the kernel. If you use KAIO, Informix recommends
that you configure NUMAIOVPS to 1, plus 1 for each cooked file you have. I generally
configure no less than three NUMAIOVPS on a system utilizing KAIO.

NUMCPUVPS

NUMCPUVPS specifies the number of CPU VPs (CPU class virtual processors) to launch
when OnLine is initialized. The CPU VPs are a set of virtual processors that launch
threads to process all SQL requests. To maximize your use of the CPU VPs, you want the
CPU threads to be busy as often as possible (no sleeping CPU threads), but not so busy
that you have a bottleneck. Informix recommends that you set NUMCPUVPS to one less than
the number of CPUs on your system, or to 1 for a single CPU system. There is some
question as to whether setting NUMCPUVPS to 2 on a two processor box will increase
performance or create more overhead than it is worth. You will need to run some tests if
this is your situation (or scream for more CPUs).

OPTCOMPIND

OPTCOMPIND helps guide the OnLine engine in decisions of how to process joins. The two
basic types of joins are hash joins and nested loop joins. Hash joins are definitely superior
in performance. However, a drawback to using hash joins is that during a large hash join,
the conditions could exist (if isolation is set to repeatable read) that would lock all
records in a table for a short amount of time. For some people, this is a problem. The
alternative is to perform nested loop joins, which create less contention by using fewer
locks but perform with a less than superior rating. So, depending on your situation and
priorities, you can choose from the following settings for OPTCOMPIND:

0 forces a nested loop join whenever an index can be used, regardless of the cost (default
setting).

1 is used for an isolation setting of anything except repeatable read. The optimizer uses
the setting below for 2. If isolation is set to repeatable read, the above 0 setting is used.

2 makes the optimizer always weigh the cost of the execution path. There is no
preference given to either type of join. The cost factor is the only consideration.

SINGLE_CPU_VP

The SINGLE_CPU_VP allows OnLine to utilize code that has been specifically optimized
for little single-processor machines. You should watch the following things carefully
when you set this parameter to 1, indicating that you are on a single-processor box:

If you set SINGLE_CPU_VP to 1 and NUMCPUVPS to >1, initialization will bomb.

• If you attempt to add a CPU VP dynamically while OnLine is up, the
attempt will fail.

Disk and I/O Utilization

This section describes the various database configuration issues that affect system I/O
utilization.

Overview

Disk and I/O utilization allows a DBA to optimize the performance of OnLine I/O
processes. In order to do this, you must consider several factors, including disk layout,
fragmentation, indexes, and extents.

Managing Disk Layout

Managing the layouts of your disks starts with proper planning. In order to effectively
plan a layout that will perform well, you need to optimize the way you initially set up
your database. This section discusses some of the key components you need to consider
when planning your database.

Table Placement

There are two major factors in creating your tables on disk: where the table is created
(dbspace/chunk) and where the dbspace/chunk actually resides on the disk. Most DBAs
utilize a logical volume tool, provided by the OS. Using a logical volume manager allows
the creation of disk slices called logical volumes, and it allows the DBA to know where
the LV (logical volume) lives on the disk. The cylinders in the center of a hard drive are
considered to be the highest performance areas of a disk, because the read/write heads
have less distance to move. After the LVs are created, dbspaces/chunks can be created in
those areas of the disk.

High-Use Tables

The tables that will be accessed the most should be isolated, preferably from all other
tables, but at least from other high-use tables. When you place high-use tables on separate
disks, obviously the performance will be increased because now the I/O for those tables
can occur concurrently without creating contention due to threads wanting to read both
dbspaces at the same time from the same disk.

Multiple Disks

A table can be created across multiple dbspaces, and if those dbspaces are on separate
drives, the dbspaces can be read in parallel.

Creating Tables

There are two basic ways to control where a table lives:

CREATE TABLE: The create table statement, by default, creates any tables in the dbspace
where the database was created. If no dbspace was specified for the create database
statement, the default is the rootdbs.

CREATE TABLE IN DBSPACE: The syntax for the create table statement allows you to
specify a dbspace or several dbspaces in which the table will live. If a table has five
dbspaces, the engine under certain conditions will read all five dbspaces in parallel.

Fragmentation

Fragmentation is the term for creating several dbspaces across disks and creating tables
that span some or all of those dbspaces. There are several key benefits to fragmentation:

• Parallel scans: The OnLine engine can launch multiple threads in parallel,
each reading from a separate disk. The benefits from this are obviously
dramatic, especially if those same disks are isolated across SCSI channels,
and even more so if they are isolated across I/O controllers.

• Balanced data: I/O bottlenecks can be greatly reduced because, via
fragmentation, you can easily ensure that the data is evenly distributed
across all its dbspaces.

High availability: If you lose a disk that contains part of a fragmented table, and the data
in that table is non-critical for continued operation, you can set a flag (DATASKIP) to ON
for that dbspace, and until you repair and restore the dbspace it will simply be skipped in
queries. This would allow the business to continue to be online, and if you know exactly
what data is on that disk, you could perform other business functions until it is fixed.

• Archiving: Fragmentation allows you to back up specific dbspaces, which
makes your job of managing your data much easier.

Fragmentation is set up one of two ways--fragmentation by round-robin or fragmentation
by expression. Round-robin fragmentation places rows sequentially across the fragment
dbspaces in round-robin fashion. This is absolutely the fastest method of loading large
amounts of data, and it guarantees an even distribution of data. Expression-based
fragmentation can offer other benefits such as not even searching certain dbspaces
(fragmentation elimination). Fragmentation elimination can occur in an expression-based
fragmentation scheme because OnLine knows what values of data live in which
dbspaces. When a query is running and specific values have been specified, fragments
that do not contain those values will not be searched.

Here are some fragmentation strategy guidelines:

• Avoid expressions that require conversion (that is, dates).

• Define the fragmentation expression list with the most restrictive
expressions first. The order of the expression list is the order in which
OnLine will perform the checks.

• For expression-based fragmentation, try to evenly distribute the keys or
datasets that will be hit the most often across disks, even if this forces you
to have an overall uneven data distribution.

• Per your fragmentation expressions: Keep it simple.

OLTP Versus DSS Considerations

When you lay out your fragmentation strategy, you need to consider whether you are
setting up a DSS or an OLTP system. The type of system you have can significantly
impact your layout. The following list describes some basic guidelines recommended by
Informix:

• Don't fragment every table; pick your fragmented tables intentionally.

• For DSS systems, fragment your large, high-use tables but not the indexes.
Create detached indexes in a separate dbspace.

• For large DSS tables that will generally be sequentially scanned, use
round-robin fragmentation. This guarantees an even distribution, and
because most DSS queries scan the entire table anyway, fragmentation
elimination is less of a concern.

• Fragment the indexes for OLTP systems. This allows multiple users to be
scanning/searching different index fragments concurrently.

• Don't fragment small tables. The overhead to fragment them might not be
worth the benefit.

Temp Tables and Sorting

Temp tables can be extremely useful when processing large or very complex queries.
INFORMIX-OnLine stores both tables specified as temp tables, and it stores internal
work space tables in defined temp space. INFORMIX-OnLine dbspaces can be tagged as
temp-only dbspaces. To create a temp dbspace, use the -t flag in the onspaces
command. The following command is a sample onspaces command that creates a 1GB
temp space in a dbspace called temp_dbs01, with an offset of 8KB in the UNIX raw
device /dev/informix/rvgc1d2s3:

onspaces -c -d temp_dbs01 -p /dev/informix/vgc1d2s3 -o 8 -s
1024000000

The DBSPACETEMP parameter helps you manage temp space.

DBSPACETEMP

The DBSPACETEMP ONCONFIG parameter specifies a list of dbspaces for OnLine to use as
temp table and sorting space. If multiple dbspaces are specified, OnLine fragments the
temp tables across the temp dbspaces and uses parallel scans to process them. The list of
dbspaces for DBSPACETEMP must be a colon- or comma-separated list of dbspace names.
The maximum size of the list is 254 characters. If you need more room to list temp
dbspaces, you can use the DBSPACETEMP UNIX environment variable to add more
dbspace names in the same fashion.

Multiple Instances

INFORMIX-OnLine DSA supports the creation of multiple instances of the OnLine
engine on a single machine, referred to as multiple residency. Here are a couple of
benefits to using multiple residency:

• Isolation of databases for security, separation of development for
contention reasons, and so on

• The testing of a distributed environment

In order to set up multiple instances, you would go through the same steps you did to
initialize your first instance. Several key differences would be made, as demonstrated in
the following sections.

SERVERNUM

The SERVERNUM ONCONFIG parameter would need to be changed. This value must be
unique across all instances of OnLine on the machine.

ROOTPATH and ROOTOFFSET

The ROOTPATH and ROOTOFFSET ONCONFIG parameters must also be unique. Multiple
instances of OnLine cannot share the same root dbspace. The same applies to the root
MIRRORPATH and MIRROROFFSET parameters.

DBSERVERNAME

The DBSERVERNAME again must be unique; without this unique identifier, no clients could
connect to the new instance.

MSGPATH

The MSGPATH is where the INFORMIX-OnLine log file is written to. Without this as a
unique value, debugging and maintenance would be impossible.

Connections

You need to set up new connections, as you learned in Chapter 11. This might require an
entry into the /etc/services file and the $INFORMIXDIR/etc/sqlhosts file.

Connect

After the preceding steps are done, you can change the users' $DBSERVERNAME
environment variable to be the new ONCONFIG setting, which also is the first entry in the

new line in the sqlhosts file. A connection to the new OnLine instance can now be
completed.

Multiple Database Servers

In the same way you can define multiple instances of OnLine on a single machine and
connect to them, you can also define instances of OnLine on several different machines
and connect to any one of them. Many of the parameters in the preceding section can be
the same in this case; however, the following parameters should be unique:

DBSERVERNAME

Entries in the /etc/services file

Entries in the $INFORMIXDIR/etc/sqlhosts file

As in the multiple residency section, changing the $DBSERVERNAME parameter should
allow connections, assuming that the clients either have the same /etc/services and
$INFORMIXDIR/etc/sqlhosts files, or the files are NFS mounts.

Client-Server Architecture

Chapter 11 described the connectivity files and their use concerning INFORMIX-
OnLine's client-server architecture. This section discusses more on some of the more
common types of client-server configurations.

Shared Memory Connections

Shared memory connections are the fastest type of connection you can use. If your
OnLine server and the client are both residing on the same machine, you can use a shared
memory connection.

The following list describes how a shared memory connection would be set up:

DBSERVERNAME grnd_kahuna_shm
$INFORMIXDIR/etc/sqlhosts File
dbservername nettype hostname servicename
grnd_kahuna_shm onipcshm bogus_entry another_bogus_entry

Network Connection

A network connection is a connection via the network, when the database server resides
on one machine and the client lives on another machine. The following section shows
what the configuration for a network connection looks like:

DBSERVERNAME grnd_kahuna
$INFORMIXDIR/etc/sqlhosts entry for host big_kahuna

dbservername nettype hostname servicename
grnd_kahuna onsoctcp big_kahuna grnd_kahuna_soc
$INFORMIXDIR/etc/sqlhosts entry for host little_kahuna
dbservername nettype hostname servicename
grnd_kahuna onsoctcp big_kahuna grnd_kahuna_soc

NOTE: If the little_kahuna host used a different network interface, the nettype
could be different--perhaps ontlitcp for a tli connection. The nettype field
must always reflect the network interface on the host where the sqlhosts file
lives.

Mirroring and Replication

Mirroring and replication can help create a more fault-tolerant system. This section
describes why and how to set up both mirroring and data replication.

Mirroring

Mirroring is a method in which a primary and secondary chunk of the database can be
logically connected, or paired. Every write to that chunk or dbspace is then written to
both chunks. If one disk is lost, INFORMIX-OnLine automatically starts using the
mirror.

Adding Mirror Chunks

You can use two methods to start mirroring--onmonitor and onspaces. You can start
mirroring for an existing dbspace, or you can start mirroring when you create the
dbspace.

The following onspaces command creates a new dbspace called dbs1 in /dev/rvg01,
and it automatically starts mirroring to /dev/mirror/rvg01:

onspaces -c -d dbs1 -p /dev/rvg01 -o 0 -s 500000 -m
/dev/mirror/rvg01 0

The next onspaces command shows how you would start mirroring for an existing
dbspace to an existing dbspace. This command would start mirroring for dbspace dbs2 in
/dev/rvg02, and mirror it to dbmirror_01 in /dev/mirror/rvg02:

onspaces -m dbs2 -p /dev/rvg02 -o 0 -m dbmirror_01 -p
/dev/mirror/rvg02 0

Monitoring

There are several ways to monitor your mirror chunks--onstat, onmonitor, and
querying the SMI tables. My preference is to use onstat. The onstat -d command lists
all the dbspaces you have and their respective chunks. The onstat flags indicate whether
a chunk is mirrored, whether it is a primary or mirror, and whether it is down. See the
onstat command for more information.

Recovery

When you perform a recovery, OnLine performs basically the same steps as when you
started mirroring. OnLine marks the chunk as in recovery mode, copies all data from the
mirror chunk, and then sets the status of the chunk to online.

The following onspaces command would initiate recovery for a down dbspace named
dbs04 in /dev/rvg04:

onspaces -s dbs04 -p /dev/rvg04 -o 0 -O

Data Replication

This section describes how data replication works and how to set up data replication for
INFORMIX-OnLine.

Overview

Data replication in simple terms is basically mirroring an instance of OnLine on a
different machine, possibly at a different site. Data replication provides clients the ability
to read from both the primary and secondary servers, so some contention can be
eliminated by pointing specific processes to the secondary server. Only the primary
server can be modified; the secondary server is read-only. High availability is achieved
via data replication; if the primary server is lost, clients can access the secondary server.

NOTE: Any blobs stored in dbspaces will be replicated; however, blobspaces will
not be replicated.

How Replication Works

Informix uses a level-0 archive and the logical log records to initially replicate the server.
After it is replicated, OnLine keeps the servers in sync by continuously sending all the
logical logs from the primary server to the secondary server.

If a server fails, you have several options for handling redirection of the connections to
the secondary server.

DBPATH Redirection Upon the failure of a connection attempt, the client application will
use the DBPATH UNIX environment variable to try to find the dbserver (specified by the
INFORMIXSERVER environment variable) to which it wants to connect.

Administrator Controlled Redirection The database administrator can handle
redirection by performing any one of the following tasks:

Modify the sqlhosts file to force the connection to connect to the secondary server.

Change the setting for all users' $INFORMIXSERVER environment variables.

Replication Setup

The first step in data replication is to set up the system to be the replication secondary
server.

The following steps need to be taken in order to configure the secondary server:

1. The hardware servers must be identical.

2. The software versions must be identical.

3. The amount of dbspace/disk space must be equal.

4. Transaction logging must be turned ON.

5. ROOTNAME, ROOTPATH, ROOTOFFSET, and ROOTSIZE must be identical on both
servers.

6. If the primary server has root mirroring turned on, the secondary
server must mirror root as well. The mirror paths, however, can be
different.

7. The PHYSDBS and PHYSFILE ONCONFIG parameters must be identical.

8. The TAPEBLK, TAPESIZE, LTAPEBLK, and LTAPESIZE ONCONFIG parameters
must be identical. The tape devices can be different.

9. LOGFILES and LOGSIZE must match; also any additional log files you have

configured on the primary server must be set up on the secondary server.

10. All shared memory parameters must match.

11. The data replication ONCONFIG parameters--DRINTERVAL, DRLOSTFOUND,
DRTIMEOUT, and DRAUTO--must be identical on both servers.

12. Both servers must have one entry for each of the servers (both primary
and secondary) in their respective $INFORMIXDIR/etc/sqlhosts files.

13. Each server must have entries in /etc/hosts and /etc/services for
the other server.

After you have the preceding requirements set up, you can start data replication by
performing the following steps:

1. Create a level-0 archive on the primary server.

2. Use onmode -d primary_name secondary_name on the primary server,
providing the names of the primary and secondary servers to set the
primary and secondary server names. The connection attempt will fail at
this point, which is expected.

3. Restore onto the secondary server the level-0 archive you just created.
(Use ontape -p if using ontape; ontape -r will not work.)

4. Run onmode -d _secondary_name primary_name on the secondary
server. At this point, the attempted connection will be successful (as shown
in the OnLine log files). The secondary server now automatically performs
a logical-log recovery. If you have backed up and freed logs on the primary
server since the level-0 archive, you will be prompted for the log tapes.

Data replication is now complete.

Replication Failures

Several types of data replication failures can occur. A data replication failure is the loss
of the connection between the servers.

In the event of a data replication failure that causes a loss of your primary server, the
following steps should recover your primary server and restore data replication:

If DRAUTO was set to 0 or 1, run onmode -s and then onmode -d secondary_name
primary_name on the secondary server.

Run ontape -p on the primary server.

Run onmode -d primary_name secondary_name on the primary server.

Run ontape -l on the primary server.

Data replication should now be restored.

Monitoring

This section discusses the various tasks involved in monitoring an instance of
INFORMIX-OnLine. Included are detailed descriptions of commands and some sample
UNIX shell scripts.

Overview

Monitoring is a big portion of a DBA's job. The system should be continually monitored
and tuned in order to keep the system performing at its peak, even amidst continually
changing workloads, user types, and so on. This section highlights some of the more
common methods for monitoring what is going on in the OnLine engine.

onstat

The onstat command is a DBA's best friend. I use the onstat command probably more
than any other. The onstat command allows the DBA to look at activity in the OnLine
engine and make decisions about changes that might boost performance. Table 13.2
provides a high-level look at onstat and its parameters.

Table 13.2. The onstat utility.
Command Purpose
onstat - Indicates whether the engine is online.
onstat -- Displays a list of all onstat options.
onstat -a Displays everything.
onstat -b Displays information about all buffers currently in use,

including the buffer address, most recent user thread address,
page number, memory address, number of slot-table entries,
lock info, owner of the lock, and so on.

onstat -c Displays the current ONCONFIG file.

onstat -d Information about dbspaces and chunks.
onstat -f Displays dataskip status.
onstat -k Displays lock info.
onstat -l Displays logging info.
onstat -m Displays message log info.
onstat -p Displays profile.
onstat -s Displays general latch info.
onstat -t Displays TBLspaces.
onstat -u Displays user threads.
onstat -x Prints transactions.
onstat -z Zeroes all stats.
onstat -B Same as -b, but for all buffers.
onstat -C B+ tree cleaner information.
onstat -D Displays page read and write info for the first 50 chunks of each

dbspace.
onstat -F A counter of the following types of writes: foreground writes,

LRU writes, chunk writes, the address of the structure assigned
to this page cleaner thread, the page cleaner number, the
current state of the page cleaner, and additional data.

onstat -R Displays LRU queues.
onstat -X Displays entire list of sharers and waiters for buffers.
onstat -r Repeats options every n seconds (default: 5).
onstat -o Puts shared memory into specified file (default: onstat.out)

infile. Use infile to obtain shared memory information.
onstat -g all All multithreading information.
onstat -g ath Displays all threads.
onstat -g wai Displays waiting threads.
onstat -g act Prints all active threads.
onstat -g rea Displays ready threads.
onstat -g sle Displays all sleeping threads.
onstat -g spi Prints spin locks with long spins.
onstat -g sch Prints VP scheduler statistics.

onstat -g lmx Displays all locked mutexes.
onstat -g wmx Displays all mutexes with waiters.
onstat -g con Conditions and waits.
onstat -g stk
<tid> Dumps the stack of a specified thread.

onstat -g glo Global multithreading info, including CPU use information
about VPs.

onstat -g seg Displays memory segment statistics.
onstat -g rbm Prints block map for resident segment.
onstat -g mem

<pool name> or
Memory stats for a pool.

<session id>
onstat -g nbm Blocks bitmap for all nonresident memorysegments.
onstat -g afr

<pool name> or
<session id>

Allocated memory fragments for a sharedmemory pool or a
session.

onstat -g ffr
<pool name>
or<session id>

Prints free fragments for a shared memory pool.

onstat -g ufr
<pool name>
or<session id>

Displays allocated fragments listed by use.

onstat -g iov Displays disk I/O statistics by VP.
onstat -g iof I/O stats, by chunk.
onstat -g ioq I/O queuing information.
onstat -g iog I/O global information.
onstat -g iob Big-buffer usage listed by I/O VP class.
onstat -g ppf
<partition no>
or<0>

Displays partition profile data for the partition number
provided. Number 0 provides data for all partitions.

onstat -g tpf

<tid> or <0>
Displays thread profile info for the provided thread id (tid); tid
0 provides info for all threads.

onstat -g ntu Displays net user thread profile information.
onstat -g ntt Displays net user thread access times.
onstat -g ntm Displays net message information.
onstat -g ntd Prints net dispatch information.

onstat -g nss Network shared memory stats.
onstat -g nss
<session id> Network shared memory stats by session id.

onstat -g nsc
<client id> Prints net shared memory status.

onstat -g nsd Network shared memory stats for poll threads.
onstat -g sts Displays max and current stack sizes.
onstat -g dic One line for each table cached in the shared memory dictionary.
onstat -g dic
<tablename> Internal SQL information for the specified table.

onstat -g dsc Data distribution cache info.
onstat -g opn
<tid> Displays open tables.

onstat -g qst Prints queue statistics.
onstat -g wst Prints thread wait statistics.
onstat -g ses Prints session summary info for all sessions.
onstat -g ses
<session id> Prints session information for the specified session id.

onstat -g sql Prints sql summary information for all sql statements.
onstat -g sql
<session id> Prints sql information for the specified sql statement.

onstat -g stq
<session id> Prints stream queue information.

onstat -g dri Data replication information.
onstat -g pos Displays /INFORMIXDIR/etc/.infos.DBSERVERNAME file.
onstat -g mgm Memory grant manager information, including the mgm gates.
onstat -g lap Displays light append information.
onstat -g ddr Displays DDR log post processing information.
onstat -g dmp
<address>
and<length>

Dumps shared memory.

onstat -g src

<pattern> and
<mask>

Searches memory for (mem&mask)==pattern.

The oncheck Utility

The oncheck utility is a tool that allows the validation, display, and repair of the internal
INFORMIX-OnLine disk structures. The oncheck utility checks catalog tables, reserved

pages, free list pages, index information, and several other areas. The Informix oncheck
tool has numerous options for check, display, and repair processing. See the INFORMIX-
OnLine Dynamic Server Administrators Guide for more information on oncheck.

The onlog Utility

The onlog utility displays the contents of the logical log files. The onlog tool is
generally used in cases where a specific transaction may help debug an application. For
more information on the onlog utility, see the INFORMIX-OnLine Dynamic Server
Administrators Guide.

Sample Scripts

As a DBA, you will use a wide variety of shell scripts to do everything from creating
dbspaces and tables, to unloading data and running backups. Listings 13.1, 13.2, and 13.3
show a few sample shell scripts that perform some of the day-to-day DBA tasks you
might run into.

Listing 13.1. The grant_perms.sh shell script.
#!/bin/ksh

grant_perms.sh

Author -The MasterDBA

shell to grant permissions to a list of users
shell grants resource to all users at the dbase level
as well as specified table level perms if any.

Syntax: grant_perms.sh <dbase_name> <owner> <users_list> {-s -u -d -
i}
dbase_name: the name of the database to use
owner: grant perms for all tables owned by <owner>
users_list: file containing comma seperated list of users(NO
spaces)
-s: grant select on all tables
-u: grant update on all tables
-d: grant delete on all tables
-i: grant insert on all tables
get the params
see if user needs help
if [-z "$1"]
then
 echo
 echo "Syntax: "
 echo "Syntax: grant_perms.sh <dbase_name> <owner> <users_list> {-s
-u -d -i}"
 echo " dbase_name: the name of the database to use"
 echo " owner: grant perms for all tables owned by <owner>"
 echo " users_list: file containing comma seperated list of
users(NO spaces)"
 echo " -s: grant select on all tables

 echo " -u: grant update on all tables
 echo " -d: grant delete on all tables
 echo " -i: grant insert on all tables
 echo
 echo "Get it Right!"
 exit 1
else
 db=$1
 own=$2
 usrs="$3"
 shift
 shift
 shift
fi
echo "set params"
for param in $*
do
 case $param
 in
 -s)
 select="1"
 tab_perms="1"
 ;;
 -u)
 update="1"
 tab_perms="1"
 ;;
 -d)
 delete="1"
 tab_perms="1"
 ;;
 -i)
 insert="1"
 tab_perms="1"
 ;;
 *)
 echo "Invalid parameter [$param]"
 echo
 exit 1
 ;;
 esac
done
echo "Building grant resource/connect file"
echo "[$usrs]"
for usr_name in `cat $usrs`
do
 # grant resource
 echo "dbase stmt"
 echo "database $db;" > grant.sql
 echo "chmod"
 chmod 777 grant.sql
 echo "resource"
 echo "grant resource to $usr_name;" >> grant.sql
 echo "clean log file"
 >grant_perms.log
 echo "perms"
 chmod 777 grant_perms.log

 dbaccess -e - grant.sql > grant_perms.log 2>&1
 if [$? -ne 0]
 then
 echo
 echo "Error granting resource to $usr_name"
 echo "Exiting.."
 echo
 exit 1
 fi
 #table level stuff
 echo "Building list of tables"
 # build list of tables
 echo "database $db;" > get_tbls.sql
 echo " select tabname from systables" >> get_tbls.sql
 echo " where tabid > 99 and owner = `$own'" >> get_tbls.sql
 echo " and tabtype = `T';" >> get_tbls.sql
 chmod 777 get_tbls.sql
 > tbls.lst
 chmod 777 tbls.lst
 dbaccess - get_tbls.sql | grep -v tabname \
 | grep -v `^$' >tbls.lst 2>> grant_perms.log
 rm -f get_tbls.sql
 if [$? -ne 0]
 then
 echo
 echo "Error building list of table names"
 echo "Exiting.."
 echo
 exit 1
 else
 echo "Table list created " >> grant_perms.log
 fi
 for tab in `cat tbls.lst`
 do
 echo "Table: $tab" >> grant_perms.log
 # select
 echo "database $db;" > grant.sql
 if ["$select" = "1"]
 then
 echo " grant select on $tab to $usr_name;" >> grant.sql
 fi
 dbaccess -e - grant.sql >> grant_perms.log 2>&1
 if [$? -ne 0]
 then
 echo
 echo "Error granting select to $usr_name"
 echo "Exiting.."
 echo
 exit 1
 else
 echo "Select" >>grant_perms.log
 fi
 # update
 echo "database $db;" > grant.sql
 if ["$update" = "1"]
 then
 echo " grant update on $tab to $usr_name;" >> grant.sql

 fi
 dbaccess -e - grant.sql >> grant_perms.log 2>&1
 if [$? -ne 0]
 then
 echo
 echo "Error granting update to $usr_name"
 echo "Exiting.."
 echo
 exit 1
 else
 echo "Update" >>grant_perms.log
 fi
 # delete
 echo "database $db;" > grant.sql
 if ["$delete" = "1"]
 then
 echo " grant delete on $tab to $usr_name;" >> grant.sql
 fi
 dbaccess -e - grant.sql >> grant_perms.log 2>&1
 if [$? -ne 0]
 then
 echo
 echo "Error granting delete to $usr_name"
 echo "Exiting.."
 echo
 exit 1
 else
 echo "Delete" >>grant_perms.log
 fi
 # insert
 echo "database $db;" > grant.sql
 if ["$insert" = "1"]
 then
 echo " grant insert on $tab to $usr_name;" >> grant.sql
 fi
 dbaccess -e - grant.sql >> grant_perms.log 2>&1
 if [$? -ne 0]
 then
 echo
 echo "Error granting insert to $usr_name"
 echo "Exiting.."
 echo
 exit 1
 else
 echo "Insert" >>grant_perms.log
 fi
 done
done
rm -f grant.sql
rm -f tbls.lst

Listing 13.2. The mk_table_list.sh shell script.
#!/bin/ksh
mk_tbl_list builds a list of dbase table names
Author -The MasterDBA

syntax: mk_tbl_list [dbase_name] [output_filename]
if [-z "$1"]
then
 echo "Syntax :"
 echo " mk_tbl_list [dbase_name] [output_filename]"
 echo " dbase_name: name of the informix dbase to "
 echo " build list for"
 echo
 echo "Get it Right!"
 exit
fi
if [-z "$2"]
then
 echo "Syntax :"
 echo " mk_tbl_list [dbase_name] [output_filename]"
 echo " dbase_name: name of the informix dbase to "
 echo " build list for"
 echo
 exit
fi
echo "select tabname from systables" > tbl_sel.sql
echo "where tabid > 99" >> tbl_sel.sql
dbaccess "$1" tbl_sel.sql | grep -v tabname | grep -v `^$' > $2
rm -f tbl_sel.sql

Listing 13.3. The dbase_dump.sh shell script.
#!/bin/ksh
dbase_dump.sh
dumps a dbase to flat files

Author -The MasterDBA

syntax dbase_dump.sh [dbase] [target_dir]
check syntax
if [$# -lt 2]
then
 echo "syntax dbase_dump.sh [dbase] [target_dir_list] "
 echo " dbase: name of the database to unload"
 echo " target_dir_list: name of file holding a list of
target dir's"
 echo " The data will span the filesystems in the target list
as "
 echo " the filesystems fill up"
 echo
 echo "Get it Right!"
 exit
else
 dbase="$1"
 target_lst="$2"
fi
make_restore function call
make_restore() {
set - `isql db_admin <<!
select dbspace from disk_layout
where dbase = `${dbase}'
and tabname = `${table}'

#!`
#dbspace="$2"
echo
 echo "load from ${target}/${dbase}/${table}.unl " >>
${restore_file}
 echo " insert into ${table};\n" >> ${restore_file}
}
next_target function call
next_target() {
 old_target="$target"
 curr_tgt_found="0"
 for new_target in `cat $target_lst`
 do
 if ["$curr_tgt_found" = "1"]
 then
 target="$new_target"
 break
 fi
 if ["$target" = "$new_target"]
 then
 curr_tgt_found="1"
 else
 curr_tgt_found="0"
 fi
 done
 if ["$old_target" = "$new_target"]
 then
 echo "Error, no more targets left to hold data"
 echo "Get some more disks and try again"
 exit
 else
 echo "rm -fr ${target}/${dbase}"
 rm -fr ${target}/${dbase}
 wait
 mkdir ${target}/${dbase}
 chmod 777 ${target}/${dbase}
 echo "rm -fr ${old_target}/${dbase}/${table}.unl"
 rm -fr ${old_target}/${dbase}/${table}.unl
 >${target}/${dbase}/${table}.unl
 chmod 666 ${target}/${dbase}/${table}.unl
 echo "${target}/${dbase}/${table}.unl"
 isql ${dbase} <<!
 unload to ${target}/${dbase}/${table}.unl
 select * from ${table};
!
 make_restore
 fi
}
echo start time
clear
date
get first target
for new_target in `cat $target_lst`
do
 target=$new_target
 break
done

create a list of all dbase tables
mk_tbl_list ${dbase} ${dbase}.list
setup the target directory
echo "rm -fr ${target}/${dbase}"
rm -fr ${target}/${dbase}
mkdir ${target}/${dbase}
chmod 777 ${target}/${dbase}
clear out the restore file
restore_file=${target}/${dbase}/${dbase}_restore.sql
> ${restore_file}
put a dbschema in the target dir
if [-z ${INFORMIXDIR}]
then
 echo
 echo "The env var \$INFORMIXDIR is not set "
 echo " run the script again when you "
 echo" have a clue of what you're doing"
 echo
 exit 1
fi
$INFORMIXDIR/bin/dbschema -d ${dbase} -ss
${target}/${dbase}/schema.sql
loop thru tables & do the backup thing
for table in `cat ${dbase}.list`
do
 >${target}/${dbase}/${table}.unl
 chmod 666 ${target}/${dbase}/${table}.unl
 echo "${target}/${dbase}/${table}.unl"
 isql ${dbase} <<!
 unload to ${target}/${dbase}/${table}.unl
 select * from ${table};
!
 set - `df ${target}`
 if ["${13}" = "99%" -o "${13}" = "100%"]
 then
 next_target
 else
 make_restore
 fi
done
rm -f ${dbase}.list
chmod 666 ${restore_file}
echo done time
date
echo "Done.."

Summary

As you can see, configuring a properly tuned Informix database is not a trivial task. A
good DBA must know how to tune the various aspects of the server pertaining to
memory, CPU, and I/O utilization. The DBA must also know when to use different types
of connections to the database, when and why to mirror or use data replication, and how
to monitor the database efficiently through the use of various commands and shell scripts.

- 14 -

Managing Data with Stored Procedures
and Triggers

• Stored Procedures
o Creating and Storing Stored Procedures
o Developing SPL/SQL Procedures
o Executing Stored Procedures
o Maintenance on Stored Procedures
o Stored Procedure Conclusion

• Triggers
o Creating and Storing Triggers
o Triggers Conclusion

• Summary

by John McNally

This chapter provides

• A description of stored procedures and their advantages

• How to create stored procedures

• How to use the Stored Procedure Language to provide functionality found
in other programming languages

• How to store, maintain, and remove stored procedures

• A description of triggers and their advantages

• How to create a trigger

• How to store, maintain, and remove triggers

Stored Procedures

A stored procedure is a small program written in a limited language containing embedded
SQL statements. This limited language is called SPL, or Stored Procedure Language.

The small program is stored internally in the database server system tables waiting to be
run at a later time. Introduced in the OnLine release, stored procedures are available in
the SE, OnLine, and Dynamic Server products.

There are two major advantages to using stored procedures. The first advantage is that
time and processing overhead is reduced by putting large, complicated, and common
SQL tasks in stored procedures. All SQL sent to the server from clients goes through a
parsing and optimizing step before actually performing its task. With stored procedures,
parsing and optimizing is part of the storage process. Placing the SQL in a stored
procedure requires some internal overhead to retrieve, but no conversion or optimization
is needed. Figure 14.1 shows the difference between a normal SQL task and a stored
procedure task processed by the database server.

The second advantage of stored procedur es is that they can reduce network usage
considerably. Large, complicated SQL statements performed numerous times during the
processing day can slow down networks. Placing these statements into stored procedures
drastically reduces network traffic because you send only the command to run the stored
procedure and related input data across the network to the server.

TIP: Stored procedures are a waste of server memory and overhead when used
for infrequently run, small tasks. It is best to use stored procedures when the task
is larger than three SQL statements and is used many times a day.

Figure 14.1.

Side-by-side processing of a task through SQL and a stored procedure.

Stored procedures also offer two smaller benefits. The first is that stored procedures can
act as a central library for reusable SQL commands so that you don't use the same
statement in different client applications. Design the stored procedures to be generic
enough to handle different forms of data and different tables and rows. Client
applications need to know how to call the stored procedures and what type of data to send
in order to achieve the client applications' desired results from the stored procedure.

The other small benefit is that stored procedures also offer a means to limit some client
applications from performing certain tasks by using privilege levels. You can give access
to only certain users and applications to run specific stored procedures. Privileges on
stored procedures help to enforce business rules by not only stopping client processes
from accessing data, but also limiting them to what actions can be performed on the data.

Another benefit is possible through Dynamic Server. Although the SQL commands
related to creating and executing stored procedures are not processed in parallel, the SQL
statements within the procedure are. The advantage of performing some tasks in parallel
is not lost when called from within a stored procedure.

It's not a good idea to place most SQL tasks in stored procedures. Overhead results from
retrieving and processing a stored procedure. When retrieved, the stored procedure is
placed into a cache in shared memory. Every time a stored procedure is placed into this
cache from disk, it must be compiled from text into an executable format. The server
allows only 16 stored procedures to reside in cache at the same time. As a result,
frequently used stored procedures reside in cache, whereas others are swapped out. Every
time a stored procedure is swapped out of cache and must be retrieved, a compile is
performed. Unless the stored procedure is used consistently, it does not fully take
advantage of the stored procedure benefits.

On the older server systems, SE and OnLine, the stored procedures residing in cache can
be reused only by the client process that caused them to be retrieved. If a different client
wants to use the same stored procedure, another version of the procedure is placed in
cache. Dynamic server uses a stored procedure memory pool to cache the retrieved stored
procedures. This memory pool allows all client processes to share access to one version
of the same stored procedure.

Changing tables, rows, and indexes used by the stored procedure requires it to be re-
optimized. As a result, it's better to have different stored procedures for each data area,
even if the task being performed is the same. The only time you might want a "data-
generic" stored procedure is when you use stored procedures for a central library of
reusable tasks.

Updating database statistics at the table level also requires the stored procedure to be re-
optimized the next time it is used. Running update statistics against the entire database
performs the re-optimization at the same time. When updating statistics only for tables, it
is wise to update statistics on the procedures that use that table.

Creating and Storing Stored Procedures

To develop a stored procedure, you must make a connection to the server as you do with
any other database transaction. The SQL command create performs the parsing,
optimizing, and storage of the procedure. DBaccess is the easiest way to create the
procedure and run the create procedure command, but you can also do it through any
other client, such as a UNIX shell or a C program with embedded SQL.

The create procedure command has six separate parts:

• Procedure name
• Parameters area
• Returning section
• Statement block
• Document section
• With listing

The procedure name is the name that is used in calling and running the stored procedure.
It can be 18 characters or fewer in size.

The parameters area is where data values passed by the calling client are tied to variable
names. These names can be associated with individual data types such as date, integer, or
string, as well as complete columns and rows. Clients that execute the procedure do not
have to send data to the procedure when a default value is included for each variable.

The returning section is optional for the create procedure statement. If you do not
need to return results to the calling client, you can omit the returning section. When you
do return results, the returning statement must have a listing for each data item by its data
type, separated by a comma and ending with a semicolon. The variable name that holds
the value for this data type is referenced by the SPL return command in the statement
block.

The statement block is where the actual procedure is created. The statement block is what
is saved in the data server by the create procedure command. This area is where the
SPL/SQL program is placed or referenced. The procedure listing concludes with the line
end procedure.

The document section is optional and is used for comments and descriptions of the stored
procedure. The information in the document section is stored in a system table that
contains all the document descriptions of created stored procedures.

The last section, the with listing, is also optional. It is used to specify a filename where
compile messages and errors are placed. Every time the stored procedure is retrieved
from disk and placed in cache to be used, it is compiled. If the table or row layout has
changes but the stored procedure does not, this file is where Informix places the error
messages. The first time the procedure is compiled, which occurs when you submit the
create procedure command, compile messages are displayed back to you. The with
listing file is only for compiles performed after it is stored.

After the create procedure statement is complete, submit the statement as if it is any
other SQL command. The procedure from the statement block is parsed, optimized, and
converted to ASCII before it is actually stored in server-owned tables. The process of
placing stored procedures within the servers' system tables has six steps:

1. The create procedure statement is received.

2. Parse and optimize SQL producing query tree and dependency list.

3. Store query tree and dependency list in ASCII format.

4. Parse SPL code, producing pcode.

5. Store pcode in ASCII format.

6. Store owner information.

The sysprocedures table is where all the procedure's characteristics are stored.
Information such as owner and size are placed in the row associated with the procedure
being created.

The SQL is parsed and optimized the same way all SQL statements are compiled, and a
query tree and a dependency list are created. A query tree is a structure that places SQL
in a layout that the server can store and execute easier than line-by-line SQL commands.
A dependency list contains all the tables, indexes, rows, and columns involved in the
stored procedure. Before every execution of the stored procedure, items in this list are
checked to see whether they still exist. Generic stored procedures need to be optimized
each time they are run because the data items used at execution do not reside in the
dependency list. The query tree and dependency list are stored in the sysprocplan
system table.

The SPL statements are also parsed into pseudocode called pcode. pcode serves the same
purpose that the query tree does. They both have a format that is easy to store and
execute. The pcode for the stored procedure is placed in the sysprocbody system table.
If the document section of the create procedure statement is provided, the comments
and descriptions of the stored procedure from this section are also stored in the
sysprocbody table.

The sysprocauth table is another important system table for stored procedures. It holds
permission information for accessing each stored procedure. When the procedure is
created, permission defaults to the creator only. To provide other users with the ability to
execute the procedure, you must use a grant execute on procedure_name to
user_list statement, where the procedure_name can be an asterisk for all procedures
and the user_list can be one or more user IDs. You can use the keyword PUBLIC to
indicate that all users have access. You can use the revoke execute on
procedure_name from user_list to prevent specific users from executing a specific
stored procedure.

There are two ways to access the system tables to see what stored procedures are
available and what they do. The first method is to issue dbschema -d database_name -
f procedure_name. To list all available procedures, use all as the procedure name. The
other method is to write a SQL query against the previously mentioned system tables.

Developing SPL/SQL Procedures

Replacing code that currently resides in client applications is the main purpose of stored
procedures. Standard SQL statements might not have enough functionality to perform the
original task. As mentioned earlier in this chapter, the limited programming language that

is used with SQL to create stored procedures is called Stored Procedure Language (SPL).
SPL allows users to develop their stored procedures with some of the same programming
structures found in standard programming languages. With SPL and SQL, you can
perform almost all database tasks with stored procedures.

Some SQL commands are not allowed in stored procedures. The following statements
have a direct impact on data and tasks beyond the scope of a stored procedure:

CHECK TABLE CLOSE
CLOSE DATABASE CONNECT
CREATE DATABASE CREATE PROCEDURE
CREATE PROCEDURE FROM DATABASE
DECLARE DESCRIBE
EXECUTE EXECUTE IMMEDIATE
FETCH FLUSH
FREE GET DESCRIPTOR
INFO LOAD
OPEN OUTPUT
PREPARE PUT
REPAIR ROLLFORWARD DATABASE
SET DESCRIPTOR START DATABASE
UNLOAD WHENEVER

Some SQL statements have limitations in stored procedures. For example, you can use
the DROP procedure in a stored procedure as long as it's not trying to drop itself. You
cannot use statements such as alter, create, delete, drop, insert, and update in a
procedure that is called by a client process performing an insert, delete, or select. An
example is a select statement that searches for all customers' names that have
total_purchases meeting the results of the stored procedure premiere_customer. The
premiere_customer stored procedure cannot alter data in tables in any way. If the
premiere_customer procedure has an update within it, the original select fails.

SPL provides extra functionality to the SQL commands to perform logic usually found in
standard programs. Branching and variable substitution are the main features of the SPL
commands.

CALL

The CALL statement is used to execute another stored procedure. It works just like the
execute procedure SQL statement that is sent to the database server to start a stored
procedure. The CALL statement is able to send and receive data.

Here are some examples of the CALL statement:

A stored procedure update_balance processes a task using the customer_id and
payment:

CALL update_balance(customer_id, payment);

A stored procedure get_balance_due processes a task using the customer_id and
places its results in a variable called balance:

CALL get_balance_due(customer_id) RETURNING balance;

Comments

To place comments within the procedure code, use the double hyphen (--), which
separates the rest of the line as a comment.

Here are some examples of comments:

• Add a comment to an entire line:

-- Stored Procedure: Send_Mail

-- Sends e-mail to customers

• Add a comment to a statement line:

CALL getmid(cust_id) RETURNING mail_id; -- finds email id

• Comment out a statement line so that it is not processed when run:

-- CALL getmid(cust_id) RETURNING mail_id;

CONTINUE

The CONTINUE statement is used to jump to the next loop value without processing any
more of the statements in the current iteration of a FOR, WHILE, or FOREACH loop. When a
CONTINUE statement is run, processing returns to the top of the loop.

The following procedure sets the discount of products with IDs 1 through 100 to 10
percent. Every product except 50 is added to the sale_table:

FOR count IN (1 to 100)
 UPDATE inventory_table
 SET discount = 10
 WHERE product_id = count;
 IF count = 50
 CONTINUE FOR;
 INSERT (count, "ON SALE") into sale_table;
END FOR;

DEFINE

The DEFINE statement is used to create local variables for use within the stored
procedures. You can assign any SQL data type from INT for integer through blobs to
specific variable names with the DEFINE statement. Refer to Chapter 28, "INFORMIX-
SQL," for a complete list of SQL data types. The DEFINE keyword is followed by a
unique variable name up to 18 characters long, a data type description, and a semicolon.
You can use as many DEFINE statements as you need in the procedure. All DEFINE
statements must come directly after the CREATE PROCEDURE and RETURNING statements
and before any other statements.

Using the DEFINE GLOBAL keyword declares the variable usable beyond the scope of the
defining procedures. All other procedures running at the same time can access the global
variable. When the defining procedure ends, the global variable no longer exists. Global
variables are not shared between different databases but only between different
procedures in the same database.

When you place the DEFAULT keyword and a specific value after the data type, the
specified value is used when no other value is assigned to the variable. You can use only
six default values with the DEFAULT keyword:

NULL Any data type with no value.
SITENAME A character string containing the name of the machine site.
DBSERVERNAME A character string containing the name of the data server.
USER A character string containing the name of the user that the

procedure is running for.
CURRENT A DATETIME data type that holds the specified date and time values

when running, such as SECOND or YEAR.
TODAY A DATE data type that holds the current date when running.

The DEFAULT keyword is available only with the DEFINE GLOBAL label. Local variables
cannot have default values.

Use the LIKE keyword instead of a data type to assume the data type of a specific
database column. When the procedure runs, it resolves the variable's data type by
checking the data type of the column.

To override SQL commands that are considered reserved words, use the PROCEDURE
keyword in place of a data type. This indicates that a variable is a user-defined procedure
rather than a predefined SQL or SPL command.

To work with blob data types, use BYTE and TEXT as the data type labels but precede them
with the REFERENCES keyword. Blob data items are much too large to be sorted in a

register assigned to manage each variable. The REFERENCES label creates a pointer to the
data type. Pointers are addresses to where the blobs exist. A pointer is a numeric value
small enough to be managed by registers.

The following paragraphs present some examples using the DEFINE statement.

Declare count to be an integer data type. When the RETURNING statement is present, all
DEFINEs go after it:

CREATE PROCEDURE test_define()
 RETURNING INT;
 DEFINE count INT;

Declare balance as a shared integer variable during the life of the procedure. There is no
RETURNING statement, so DEFINEs start after the CREATE PROCEDURE statement:

CREATE PROCEDURE test_define2()
 DEFINE GLOBAL balance INT;

The next DEFINE declares payment as a global integer with a default value of NULL:

DEFINE GLOBAL payment INT DEFAULT NULL;

The next DEFINE declares a character string of eight characters for a global variable
called operator, which defaults to the user's UNIX ID:

DEFINE GLOBAL operator CHAR(8) DEFAULT USER;

The next example declares a global character string of five characters with the word
"SALE" as the default:

DEFINE GLOBAL topic CHAR(5) DEFAULT `SALE';

The next example uses the LIKE keyword to assign the email_address data type from
the customer table to the local variable mail_id:

DEFINE mail_id LIKE customer.email_address;

Using the PROCEDURE keyword redefines the SQL function of date to a user-defined
procedure called date. The redefine lasts for the life of the defining procedure:

DEFINE date PROCEDURE;

The next statement declares the variable sale_flyer as a pointer to blob data item:

DEFINE sale_flyer REFERENCES BYTE;

EXIT

The EXIT statement is used to stop a loop before the looping condition is met. This occurs
where EXIT is followed by a FOR, WHILE, or FOREACH keyword, ending with a semicolon.
The keywords FOR, WHILE, and FOREACH represent the three types of loops in SPL.

In the following example, each looping statement has an EXIT associated with it. The for
loop exits halfway. The while loop starts at 50, due to the exit from the for loop, and
exits after 20 iterations.

The FOREACH loop starts at the first customer ID and continues looping until all 100
customers are processed. The exit occurs when the hundredth customer is reached.

CREATE PROCEDURE exit_loops()
 DEFINE count INT;
 FOR count = 1 TO 100
 IF count = 50 THEN
 EXIT FOR;
 END IF
 END FOR
 WHILE count < 75
 LET count = count + 1;
 IF count = 70 THEN
 EXIT WHILE;
 END IF
 END WHILE
 FOREACH SELECT customer_id INTO count from customers
 IF count = 100 THEN
 EXIT FOREACH;
 END IF
 END FOREACH
END PROCEDURE

FOR

The FOR statement is used to perform definite loops, whereas the WHILE statement is used
for indefinite loops. The FOR statement is followed by a variable name, and then the
expression range is specified.

An expression range is started one of two ways: with the keyword IN or with the equal
sign, =. IN specifies that the variable is in the expression range. For example, if the
expression range is all the letters of the alphabet, A through Z, a variable of eight causes
the loop to stop. A loop continues until the variable is no longer in the range. The equal
sign assigns the current expression iteration to the variable. If the range is from 1 to 100,
the variable is the value of 1, 2, 3, ... until 100.

Ranges can be generalized by the TO keyword. For the range of 1, 2, 3, ... 100, rather than
list each value, use 1 TO 100. The loop automatically cycles through each number, one at
a time.

To cycle through a list at different rates other than one at a time, use the STEP keyword.
Specifying STEP after the range allows different jump iterations. With a STEP 2, the 1 TO
100 range actually hits every odd-valued number.

You can use SQL statements as part of the expression range. A SELECT statement is very
useful in creating ranges of values from tables that can be used for looping while a
variable labeled as IN is found within the SELECT statement's output.

You can use two or more ranges to specify the loop conditions, separating each range
with a comma when listing in the expression. The ranges are performed in the order in
which they are listed in the expression.

In the first example, the for loop starts at 1 and continues until 100, stepping one number
at a time:

FOR count = 1 TO 100
 SELECT balance FROM customer
 WHERE customer_id = count;

The next for loop also goes from 1 to 100, but at every 5 value: 1, 5, 10, 15 ... 100:

FOR count = 1 TO 100 STEP 5
SELECT balance FROM customer
 WHERE customer_id = count;

The next loop continues while the input_value is one of the four listed character strings:

FOR input_value IN (`YES', `Y', `NO', `N')

The next loop continues while the input_value is in the list of survey result's values:

FOR input_value IN (SELECT value_1 from survey_results)

FOREACH

The FOREACH statement loops until a specific task is complete. Each step of the task is
considered an iteration of the loop.

Three types of tasks are used in the FOREACH statement: SELECT INTO, a cursor select, or
another procedure.

The SELECT INTO loops until the select has performed its search. Each data item found
by the search is placed into the loop variable.

The cursor select is similar to the SELECT INTO. The same process happens in each
situation because cursors are processes that naturally stop at each find during a search.

You can also use another procedure to provide individual data items for processing. The
procedure you call must contain a RETURN value WITH RESUME statement, so the next
iteration starts where the last left off.

The first example loops at each customer ID found in the customer table. The current
customer ID is placed in the procedure variable cid:

FOREACH SELECT cust_id INTO cid FROM customer

The next example loops again for each customer ID found in the customer table. The
cursorpoint variable is the cursor or point where the search has progressed:

FOREACH cursorpoint FOR SELECT cust_id INTO cid FROM customer

The next example loops for each returned value from the get_cust_id procedure. Each
returned value is placed in cid and processed by the loop. Then, the procedure is called
again, and the next value is returned.

FOREACH EXECUTE PROCEDURE get_cust_id INTO cid

IF

The IF statement provides the capability to branch as specific conditions are met. You
can embed almost any other SQL or SPL statement within the IF statement. Conditions
are evaluated as true or false.

You build conditional statements using any SQL conditional comparison operator, such
as BETWEEN, IN, IS NULL, LIKE, or MATCHES. You can also use relational operators, such
as =, !=, >, <, >=, and <=.

You can evaluate more than one conditional statement within the IF statement. Using the
keyword AND requires all conditional statements to be true for the entire IF to be true.
Using the keyword OR allows only one of the conditional statements to be true for the
entire IF to be true.

When the IF statement is evaluated as true, the statements directly under the IF are
performed. When the IF is evaluated as false, an ELIF, ELSE, or statement following the
END IF statement is performed.

An ELIF statement is used to perform another evaluation when the IF is considered false.
When the ELIF is true, the statements directly beneath it are executed. When the ELIF is
false, the next ELIF, ELSE, or statement following the END IF statement is performed.

The ELSE statement is used to handle processing of statements when an IF or an ELIF are
evaluated as false.

The END IF statement ends the scope of the IF statement and sequential processing
resumes.

The IF example processes one set of statements if count is over 50. The ELIF processes
another set when count is between 25 and 50, and the ELSE processes another set if
count is under 25.

IF count > 50 THEN
 ...
ELIF count > 25 THEN
 ...
ELSE
 ...

LET

The LET statement is used to assign values to variables. LET is followed by a variable
name, an equal sign, and any other expression that provides a value. The other
expressions can be simple assigns or calls to other procedures.

The first example assigns the value of 100 to the integer variable count:

LET count = 100;

The next example assigns count the value of itself plus 1:

LET count = count + 1;

The next example assigns count the value of a SELECT statement that determines the
number of customers in the customers_table:

LET count = (SELECT count(*) from customers_table);

The last example assigns count the value returned by another shared procedure:

LET count = get_tot_customers();

ON EXCEPTION

The ON EXCEPTION statement is used to specify what action to take when an error occurs.
If there is no matching ON EXCEPTION statement for an error, it stops processing the
procedure. When you provide an ON EXCEPTION statement for an error code, special
processing can be done before the procedure is stopped. When you provide an ON
EXCEPTION statement with the keyword WITH RESUME, the procedure is able to continue
rather than fail.

The first procedure automatically raises an exception with the error code value of -206,
table name not in the database, which is handled by the ON EXCEPTION statement:

CREATE PROCEDURE test_error
 ON EXCEPTION IN (-206)
 TRACE `table not found';
 END EXCEPTION
 SELECT * FROM test_table;
TRACE `This message should never happen';

The next stored procedure continues even after the exception is raised because ON
EXCEPTION uses WITH RESUME:

CREATE PROCEDURE test_error_with_resume
 ON EXCEPTION IN (-206)
 TRACE `table not found, will create it';
 CREATE TABLE test_table;
 TRACE `run procedure again to use new table'
 END EXCEPTION WITH RESUME
 SELECT * FROM test_table;
TRACE `This message should happen';

RAISE EXCEPTION

The RAISE EXCEPTION statement is used to create an error situation determined within
the stored procedure. RAISE EXCEPTION works with the ON EXCEPTION statement. You
must create an ON EXCEPTION statement to handle the RAISE EXCEPTION statement.
RAISE EXCEPTION is followed by an SQL error number, an ISAM error number, and a
message surrounded by quotes.

The first procedure automatically raises an exception with the error code value of -999,
which is handled by the ON EXCEPTION statement:

CREATE PROCEDURE test_error
 ON EXCEPTION IN (-999)
 TRACE `hit my error';
 END EXCEPTION
 TRACE `In procedure test_error';
 RAISE EXCEPTION -999, 0, `My own error message';
 TRACE `This message should never happen';

The next stored procedure continues even after the exception is raised because ON
EXCEPTION uses WITH RESUME:

CREATE PROCEDURE test_error_with_resume
 ON EXCEPTION IN (-999)
 TRACE `hit my error';
 END EXCEPTION WITH RESUME
 TRACE `In procedure test_error';
 RAISE EXCEPTION -999, 0, `My own error message';
 TRACE `This message should happen';

RETURN

The RETURN statement is used to send results back to the process that started the stored
procedure. The starting process can be another stored procedure or a client program. The
RETURN statement is followed by whatever statement is needed to provide a value. The
type and number of data values listed with the RETURN statement should match what was
declared in the create procedure statement's RETURNING clause. If the RETURN
statement does not return values to match the RETURNING clause, the waiting variables are
populated with NULL.

Adding the WITH RESUME keyword after the return value returns the value after each loop
iteration.

The first example returns a NULL value:

RETURN;

The next example returns the value contained in the variable some_value:

RETURN some_value;

The next example returns the values contained in variables some_value1 and
some_value2:

RETURN some_value1, some_value2;

The next example returns the value contained in some_value at each iteration of the loop.
This process continues until the loop condition is met. The return value of some_value is
3, 5, 7, 9 ... until 100 is reached:

FOR some_value IN (1 TO 100)
 LET some_value = some_value + 2;
RETURN some_value WITH RESUME;

SYSTEM

The SYSTEM statement provides a way to run an operating system-owned process. These
processes can range from UNIX commands to executable programs. The SYSTEM
statement is followed by the command and the data needed for the command. Anything
related to the operating system and the command must be surrounded by single quotes.
Any value from the stored procedure must be referenced by the variable name that is not
in quotes. Use the double pipe symbol, ||, to append local variables. If a variable name is
within the single quotes, it is used as is and not as its value.

In the example, the section of stored procedures loops through the customer table and
retrieves each customer's e-mail ID. A SYSTEM statement then starts a UNIX program file

called send_sale_notice to each customer's mail ID with the system date. To UNIX,
the command looks like

send_sale_notice bigbuyer@money.com 1/1/97
 WHILE count <> last_customer_id
 SELECT mail_id from customer_table
 WHERE count = customer_id
 INTO send_id;
 SYSTEM `send_sale_notice ` || send_id || ` date'
 LET count = count + 1;

TRACE

The TRACE statement allows you to capture debugging information while the stored
procedures run. The debugging information includes specialized messages, variable
values, procedure arguments, return values, SQL error codes, and ISAM error codes.

The following list outlines the different formats and uses of TRACE:

TRACE ON traces every statement and variable until a TRACE OFF statement is
encountered.

TRACE OFF stops the tracing started by TRACE ON.

TRACE PROCEDURE traces only calls and return values of other procedures used in the top-
level procedure.

You can single out special messages and values by placing the message in quotes after
the keyword TRACE.

This example shows how you can use the TRACE statement within a procedure:

CREATE PROCEDURE test ()
 DEFINE count INT;
BEGIN
 TRACE `starting test procedure';
 TRACE ON;
 WHILE count < 100
 LET count = count + 1;
 END WHILE
 TRACE OFF;
 TRACE `Finished test procedure';
 TRACE `Last count value is ` || count;

WHILE

The WHILE statement is used to loop indefinitely and is formed by following the WHILE
statement with the condition to be met. The END WHILE statement designates the end of
statements that are repeated until the condition is met.

In the example, this section of a stored procedure loops until the balance of all payments
in the database matches the total_payments variable:

 WHILE balance <> total_payments
 CALL get_next_payment(customer_id)
RETURNING payment;
 LET balance = balance + payment;
 END WHILE;

Executing Stored Procedures

There are two main ways to execute a stored procedure. The most common method is
from a client process using SQL. These processes can range from DBaccess to UNIX to
C/C++ programs with embedded SQL. The other way is from another stored procedure.

The SQL statement to run the stored procedure is EXECUTE PROCEDURE, which is
followed by the procedure name and a list of data to pass to the procedure within
parentheses, (). You can use the keyword INTO and a list of variable names separated by
commas to trap returned values. When using DBaccess or UNIX shells, you can send the
return values to the screen by not including the INTO keyword.

To submit the EXECUTE PROCEDURE command, the user must have permission. The GRANT
EXECUTE ON procedure name TO statement followed by the user name is the SQL
command that gives users permission to run stored procedures.

The database server receives an EXECUTE PROCEDURE statement or an SPL CALL
statement to start a procedure. First, the pcode is retrieved from the sysprocbody system
table, and the query tree and dependency list are retrieved from the sysprocplan system
table. They are then converted from ASCII to binary format so that the server can read
them.

The server checks the dependency list to make sure that all the dependencies were
updated. If dependencies still exist, the procedure is re-optimized. When an item on the
dependency list no longer exists, an error occurs.

After the dependencies are checked and any necessary optimizing is performed, the data
passed in by the calling process is parsed and evaluated to resolve data names into actual
data values.

Finally, the binary procedure, possibly re-optimized, and the passed-in data are presented
to the interpreter to be executed.

After a procedure is retrieved and converted to binary, it resides in cache to be used
again. The least recently used procedures are bumped out of the cache when new
procedures are retrieved. Frequently used procedures usually stay in the cache after they
are initially retrieved.

Procedures that reside in the cache do not have to be retrieved when executed again, nor
do they usually need to be re-optimized.

Maintenance on Stored Procedures

When a change is needed within a stored procedure, you must redo the creation process.
Rather than retype the entire procedure, however, you can edit and store the latest version
in the system tables. When a current copy is not available for editing, you can perform a
query on the system tables to retrieve the procedure.

The system tables are very helpful in maintaining stored procedures. It is wise to keep a
copy of the procedure in the database, rather than keep copies of the procedure on many
individual accounts. One person's changes may be overwritten by another version of the
same procedure.

TIP: Always retrieve the current version of a stored procedure to make changes.
In that way, you'll ensure that you have the latest and best version.

To see a list of all the stored procedures within the database, use DBaccess to query the
sysprocedures table.

The statement SELECT procname from sysprocedures; displays all procedure names.
Figure 14.2 shows the layout of all the columns in the sysprocedures table.

Figure 14.2.

The column layout of the sysprocedures system table.

The sysprocplan table contains the query plan and dependency list for each procedure.
Figure 14.3 shows the layout of its columns. To view the query plan of procedures, use
the query SELECT * FROM sysprocplan WHERE datakey='Q'; or SELECT * FROM
sysprocplan WHERE datakey='D'; for the dependency list.

Figure 14.3.

The column layout of the sysprocplan system table.

The sysprocbody table contains the actual procedure and its DOCUMENT description.
Figure 14.4 shows the layout of its columns. To view each procedure's description
created from the DOCUMENT statement during the CREATE PROCEDURE, use SELECT data
FROM sysprocbody WHERE datakey='D';. To view the actual procedure code, use
SELECT data FROM sysprocbody WHERE datakey='T';.

Figure 14.4.

The column layout of the sysprocbody system table.

The best way to retrieve the stored procedure for editing is to use the dbschema program
at a UNIX prompt. dbschema is a utility that looks at the current database and builds an
SQL script to build a database exactly like the current one. You should run dbschema
after you make layout changes to the database because it is useful if a rebuild is required
or a duplicate copy of the database is needed.

The command dbschema -d database name -f procedure name builds the CREATE
PROCEDURE statement with the SPL and SQL procedure. Pipe the dbschema output to a
file, and you have an editable copy of the latest version of the procedure.

After you make the changes to the procedure, it's a good idea to remove the version in the
database. Do this before running the CREATE PROCEDURE to place the edited version in the
database. You can remove a procedure from the database by running the SQL statement
DROP PROCEDURE procedure_name;.

After the version of the stored procedure has been dropped from the database, run the
edited dbschema version of the CREATE PROCEDURE statement. This places the newest,
just edited, version of the procedure back in the database.

You can use DROP PROCEDURE to remove any old, no longer used procedures from the
database as long as the user submitting the DROP has permission to do so.

Stored Procedure Conclusion

Stored procedures offer a viable means to reduce processing and network traffic. This is
achieved by moving task-related code away from the client processes and into the
database server as stored procedures. Functionality in the client programs is not lost. All
programming structure and functionality can be replicated through the Stored Procedure
Language (SPL) with embedded SQL commands.

Triggers

A trigger is a process that is set off when a specific event occurs. With Informix database
servers, you can assign triggers to inserts, updates, and deletes on specific tables and
columns. The action performed by the trigger can also be one or more insert, update, and
delete statements. Triggers can also start stored procedures, which is the reason triggers
and stored procedures are usually presented together.

Because triggers occur when an action is performed on columns and tables, there is no
way to circumvent it. If a trigger is designed to activate when a delete occurs on the
customer table, it occurs no matter what, even if the permissions are different for the
users accessing the table. Whether a DBA deletes a customer or a standard user does the

delete, a trigger occurs. Triggers also don't care what type of client application is used.
Whether the delete was performed through DBaccess or a C program, the trigger occurs.
Because triggers are consistent to their tasks, setting them up to enforce rules and
perform audit tracking is a great benefit.

A business rule is considered a rule used to match the needs of the business and how the
business handles its activities. An example of a business rule is to not let an account's
ATM card withdraw money if the ATM card is reported stolen. Another example is that a
customer's request to stop service alerts a salesperson to contact the customer and keep
him from switching services.

An audit trail is used to track specific data changes in some reports. You can use an audit
trail to track how many new customers are added per day. Another audit trail can track
how many customers are lost each day.

You can also use triggers to perform data manipulations and authorizations. During data
manipulations, you can record an automatic copy of the data before the data is changed or
deleted. You can do this in cases when data changes might need to be backed out, such as
when a customer places an order and then calls back an hour later to change part of it.
Some data manipulations can cause other data to be changed or new data to be created.
For instance, when a payment is received, the posting of that payment can trigger the
balance to be updated by subtracting the payment from the balance to create a current
balance. Security authorizations can be done prior to data changes by a trigger that
verifies that user has the permission to do a specific task. For example, regular sales
agents might not be able to provide a customer a discount, but a sales manager can. You
can set up a trigger to determine whether the client process is done by a sales agent or
manager.

Triggers provide a simple way of placing these needs into an automated system with little
impact on the client or the server.

Creating and Storing Triggers

You use the SQL statement CREATE TRIGGER to place information on what is performed
when an action occurs.

The CREATE TRIGGER statement has three main parts: the trigger name, the triggering
action definition, and the action to perform.

The Trigger Name

The trigger name can be any combination of characters, no longer than 18 characters. The
trigger name is used to reference that trigger after it is created. The trigger name should
follow directly after the CREATE TRIGGER keywords, like this:

CREATE TRIGGER test1 ...

The Triggering Action Definition

The three types of action definitions are INSERT ON, DELETE ON, and UPDATE ON.

The INSERT ON keyword, combined with a table name, designates that the table makes a
trigger occur whenever an insert is performed on the table:

CREATE TRIGGER test1 INSERT ON customer_table ...

The DELETE ON keyword, combined with a table name, works just like the INSERT ON.
Whenever a delete occurs on the table, a trigger is performed:

CREATE TRIGGER test1 DELETE ON customer_table ...

You can place a trigger with an update for the entire table or on a specific column
contained in the table. This way, you can assign different triggers to different data
changes.

To place a trigger to handle an update for an entire table, use the UPDATE ON keyword:

CREATE TRIGGER test1 UPDATE ON customer_table ...

To place a trigger to handle an update to a specific data column, use the UPDATE OF
keyword with the column name, followed by the ON and table name:

CREATE TRIGGER test1 UPDATE OF balance_due ON customer_table ...

The Action to Perform

After you define the action to trigger on, you must set up the action to be performed. You
also define the time that the trigger is performed. The three keywords used to indicate
when an action is performed are AFTER, BEFORE, and FOR EACH ROW.

The AFTER keyword makes sure that the action to be performed is done after the
triggering event completes. For example, when a trigger is set up for a delete and AFTER
is used, the delete completes before the action is performed. AFTER is good to build
triggers for audit functions. After a data item is changed, the trigger can log information
on what and when it was changed.

The following example uses the AFTER keyword:

CREATE TRIGGER test1 INSERT ON customer_table AFTER ...

The BEFORE keyword makes sure that the action to be performed is done before the
triggering event starts. For example, when a trigger is set up to kick off for a delete and
BEFORE is used, the delete must wait until the trigger action completes. BEFORE is useful
for setting up triggers to verify or copy data before something is done.

The following example uses the BEFORE keyword:

CREATE TRIGGER test1 INSERT ON customer_table BEFORE ...

The FOR EACH ROW keyword is used to make sure that the trigger action is performed for
every row affected by the triggering event. For example, a trigger is set to occur when a
delete occurs from a table. When a delete is performed on the table, the trigger is started.
On multirow deletes, such as DELETE FROM customers WHERE balance=0, all the
customers with no balance are deleted. Without FOR EACH ROW, only one triggered event
occurs. With it, a trigger occurs for each row deleted:

CREATE TRIGGER test1 INSERT ON customer_table FOR EACH ROW ...

Combinations of BEFORE, AFTER, and FOR EACH ROW are allowed in a specific order.
Combinations are useful for situations when one action must perform before the data
change and a different action is needed after. BEFORE must precede any other keywords in
the syntax, and AFTER must come last. TIP

BEFORE and AFTER keywords perform a trigger action only once per table access. In cases
where multiple changes occur from one triggering event, only one trigger action is per-
formed. Use FOR EACH ROW to trigger an action for every change in an event.

The following list outlines allowable combinations and the order they must follow:

BEFORE action

AFTER action

FOR EACH ROW action

BEFORE action FOR EACH ROW action

AFTER action FOR EACH ROW action

BEFORE action AFTER action

BEFORE action FOR EACH ROW action AFTER action

When you use the FOR EACH ROW keyword, you can save any data value being changed,
inserted, or deleted by the SQL statement that is causing the trigger. Therefore, when the
trigger performs its actions, it will have a copy of the original data value to work with.
For example, when deleting rows from the customer table where the balance is zero, you
can save the entire row for the trigger to use, even though the row was deleted. This
situation might occur when deleting customers to kick off a trigger for each row deleted.
The trigger's action might be to place the customer ID in a report, or the trigger might
check to see whether the customer purchases a lot but keeps a zero balance.

Three keyword statements are used to hold data to be used in the trigger action:
REFERENCING NEW AS, REFERENCING OLD AS, and REFERENCING OLD AS NEW AS. All
three are required with the FOR EACH ROW keyword, but the FOR EACH ROW keyword does
not require any of the three hold data keywords when no data is needed for the trigger to
perform its action.

The name specified to hold the data in the REFERENCING statements is a pointer to the
entire row of data. With an insert, the specified variable contains all the data of the row in
the exact layout as it was stored in the database. With delete, the entire row is available
through the specified variable. With updates, just the data being changed is available.

For inserts, REFERENCING NEW AS allows a variable to hold the information being
inserted into the new row.

In the first example, the customer table has a row layout of customer_id, phone, and
balance:

CREATE TRIGGER test1
INSERT ON customer_table
REFERENCING NEW AS original
FOR EACH ROW ...

To reference each data item being inserted, use the referenced name separated by a period
and then the column name:

original.customer_id

For deletes, REFERENCING OLD AS allows a variable to hold the information being
deleted from the table.

In the next example, the customer table has a row layout of customer_id, phone, and
balance:

CREATE TRIGGER test1
DELETE ON customer_table
REFERENCING OLD AS original
FOR EACH ROW ...

To reference each data item being deleted, use the referenced name separated by a period
and then the column name:

original.customer_id

For updates, REFERENCING OLD AS NEW AS allows two variables to hold how the row
looks before and after the information is changed in the row.

In this example, the customer table has a row layout of

customer_id, phone, balance.

The update statement causing the trigger is

UPDATE customer SET balance=0 WHERE balance < 10.
CREATE TRIGGER test1
UPDATE OF balance ON customer_table
REFERENCING OLD AS original NEW AS newversion
FOR EACH ROW ...

To reference each data item being inserted, use the referenced name separated by a period
and then the column name:

original.customer_id
newversion.customer_id
original.balance
newversion.balance

You can perform a conditional test to further qualify whether a trigger action should be
performed. You can use the WHEN keyword with a condition to evaluate whether a trigger
should be performed. Execution of the trigger action occurs when a true evaluation
results; the trigger action is not performed with a false result. The conditions used within
the WHEN are the same ones used for the IF statement of SPL:

CREATE TRIGGER test1
UPDATE OF balance ON customer_table
REFERENCING OLD AS original NEW AS newversion
FOR EACH ROW WHEN (original.balance=0)

After the trigger is named, the causing event is defined, the time the action should be
performed is specified, any necessary data is saved, and any special qualifications are
met, then you can determine the action to be performed. A trigger can perform INSERT,
DELETE, UPDATE, and EXECUTE PROCEDURE. You can put any combination of these tasks
in the action area:

CREATE TRIGGER test1
DELETE ON customer_table
REFERENCING OLD AS original
FOR EACH ROW WHEN (original.balance>0)
(INSERT INTO notpaid
 VALUES(original.customer_id, original.balance));
CREATE TRIGGER test1
UPDATE OF balance ON customer_table
REFERENCING OLD AS original NEW AS newversion
BEFORE WHEN (original.balance=0)
 (EXECUTE PROCEDURE track_balance (original.balance))
AFTER (EXECUTE PROCEDURE adust_worth (newversion.balance));

When the trigger is created, its information is stored in two system tables. The
systrigger table shown in Figure 14.5 contains the information on the owner, type of

trigger, and the data or table that starts the trigger. The systrigbody table shown in
Figure 14.6 contains the information on what actions to take when the trigger occurs.

Figure 14.5.

The column layout of the systrigger system table.

Figure 14.6.

The column layout of the systrigbody system table.To query the system tables for
information on currently stored triggers, use the following SQL statement:

SELECT trigname, data FROM systrigbody, systriggers
 WHERE systrigbody.trigid = systriggers.trigid
 AND (systrigbody.datakey = "D"
 OR systrigbody.datakey = "A")

Triggers are retrieved for execution in the same way stored procedures are. The first time
a trigger is executed, it is retrieved from the two system tables and optimized. After
optimization, the trigger is stored in a shared cache. The popular triggers are maintained
in cache throughout the processing day.

To remove a trigger from the database system tables so that it is no longer used, you use
the DROP TRIGGER SQL statement. This statement totally removes the trigger from the
database server, and events that once caused the trigger no longer have that effect:

DROP TRIGGER test1

WARNING: Dropping tables and columns from the database that invokes
triggers also deletes the triggers associated with them.

Triggers Conclusion

Triggers offer a valuable functionality to automatically start processes at the database
server rather than at the client. Triggers provide a single point to track and manage data
activity and perform specialized tasks, so you don't need to use many different client
applications.

Summary

Stored procedures and triggers are two essential features that make a successful database
server and also a successful database management system. Not only do stored procedures
offer a viable means to reduce processing and network traffic, they also help remove
general and repetitive functionality from the different client applications and put them

into a central server. Triggers provide the means to automatically process when other
events occur in the database. By combining triggers with stored procedures, you can
build a library of processes to manage repetitive or special processing, without forcing
the client applications to deal with building the logic into their code to handle the special
situations.

15 -

Managing Data with Locking
• Introduction to Locking
• Lock Types
• Lock Levels

o Page
o Row
o Table
o Database

• Isolation Levels
o Dirty Read
o Committed Read
o Cursor Stability
o Repeatable Read
o Isolation Level Defaults
o Setting Isolation Levels

• Lock Modes
• Locking Efficiency
• Lock Tracking
• Summary

by John McNally

This chapter provides

• A description of what locking is and how it works within Informix database
servers

• A description of the two major types of locks: shared and exclusive

• A description of the different levels of locks and how to create and use
them

• How to use isolation levels to view data even if it's locked or how to
restrict other processes from viewing

• How to use lock modes to wait for a lock to be released from a lock placed
by another process

• A description of situations in which you can use locks, isolation levels, and
lock modes to create efficient but safe concurrent database servers

• How to use system utilities to track locking

Introduction to Locking

In a multiuser database management system, locking is very important. Locking allows
one user to work with a data item without another user changing the data item's value.
Locking is necessary for maintaining data integrity while concurrent users access
database information. Figure 15.1 shows the scenario in which locking is not present on a
multiuser system. The value of a payment is lost when the process (user process 1)
crediting the balance finishes before the process (user process 2) that increases the
balance is finished. The correct end value of the balance should be $125, but the $50
payment was lost.

Figure 15.1.

Concurrent users access the same data item without locking.

Relational databases should have the capability to use locking to prevent the situation
shown in Figure 15.1. All Informix database servers--INFORMIX-SE, INFORMIX-
OnLine, and INFORMIX-OnLine Dynamic Server--have locking as a standard feature.
Through SQL, you can specify locks on rows of tables and entire databases. Figure 15.2
shows the same scenario used in Figure 15.1 but with locking. Now the second process is
unable to access the balance until the first process is complete.

Figure 15.2.

Concurrent users access the same data item with locking.

Locks not only maintain data integrity, but they also keep things moving. Without
locking, the only other way to prevent the situation shown in Figure 15.1 is to allow one
user access to the entire database at a time, which results in a very slow database
management system. Every user would have to wait his turn regardless of whether he

accessed the same data item. Using different degrees of locking allows users access to the
same database, even the same table, without causing one to wait until a lock is freed.

Lock Types

You can place two major types of locks on data items. The first is a shared lock. When a
process places a shared lock on a data item, the process declares that it is just viewing the
data and it allows others to look, but no other processes can change the data item. Figure
15.3 shows a shared lock in action. Process 1 places the shared lock, which keeps process
3 from changing the value but doesn't stop process 2 from reading the value. Other
processes can place shared locks on the same data item already locked by a shared lock.
Shared locks are used by processes that are reading data that should not be changed while
the process is reading it.

Figure 15.3.

Concurrent users access the same data item with a shared lock placed by the first user
process.

The second lock type is called an exclusive lock. When a process places an exclusive
lock on a data item, the process declares that it will probably change that data item. This
prevents other processes from slipping in and changing the data item before the first
process finishes. This type of lock also warns processes that are "just looking" that they
can continue to look, but the data may change. Figure 15.4 shows an exclusive lock
preventing other processes from accessing the data. Now process 3 and process 2 must
wait until process 1 releases the lock.

Figure 15.4.

Concurrent users access the same data item with an exclusive lock placed by the first
user process.

An exclusive lock is used automatically during DELETE, INSERT, and UPDATE processes.
You cannot place an exclusive lock on a data item already locked by a shared or another
exclusive lock. You cannot place a shared lock on a data item held by an exclusive lock,
but select type processes can view the data. Table 15.1 shows a grid of when locks can
overlap.

Table 15.1. Locking overlap.

 Exclusive Shared

Exclusiv
e

Not
allowed

Not
allowed

Shared Not
allowed

Allowed

A third type of lock is the promotable lock, which allows processes to lay claim to a data
item that is currently under a shared lock. A promotable lock tells Informix that the
process placing that lock plans to update the item being locked very soon. A promotable
lock can be thought of as a shared lock that automatically becomes exclusive. Until the
promotable lock holder is ready to make the update, other processes can place shared
locks on that item. When the promotable lock holder is ready to perform the update, the
lock is "promoted" to an exclusive lock. All the other processes must have also finished
their work and dropped their shared locks before the promotion can occur.

Lock Levels

The four levels on data item locks are page, row, table, and database.

Page

A page is a physical amount of data that Informix works with at one time. When Informix
retrieves data from disk to place in shared memory, it gets the entire data page rather than
one row or data field. When placing the data back to disk, Informix writes the entire
page. Working at the page level makes Informix's reading and writing of data more
efficient.

Because pages are what Informix uses to access data, page level locking is the default.
Whenever a process updates, inserts, or deletes rows from a table, the entire page where
the row resides is locked exclusively. Whenever a process performs a select on data, it
places a shared lock on the page or pages where the data resides.

Locking at page level is very efficient for OLTP processing environments because users
can access different data items residing on different pages. OLTP transactions are usually
short in duration because they change only a specific data item. Page locking is not
recommended for batch processes because it uses large transactions that lock many
pages, which requires a lot of overhead. Also, long transactions hold locks until all the
work is complete, even if it finishes its work on most of the pages.

When a process performs an update, insert, or delete on a page with an index, a lock is
also placed on the index page. This prevents one process from changing an index while
another process changes the data. The index and data pages must remain in sync.

To create a table that uses page locking, the SQL statement looks like this:

CREATE TABLE table_name
 {
 ... data field declarations ...
)
LOCK MODE PAGE

Because page is the default locking level, LOCK MODE PAGE is optional. All processes use
page locking unless they override to a different locking level or alter the table to use a
different level.

To change a table's locking mode, you must alter the default:

ALTER TABLE table_name LOCK MODE (PAGE)

After they are altered, all processes use the new locking level unless they override to a
different locking level or the table is altered again.

A page lock is released when the locking process completes its work, but page locking is
used by all processes that access the table.

Row

Locking at the row level is perfect in very heavy OLTP processing systems. When page-
level locking is not low enough to handle many concurrent users, row locking is. Like
page locking, row locking is specified at table creation and used whenever a process
performs activity on data in a table.

An exclusive lock is created whenever a process inserts, deletes, or updates data in a row.
A shared lock is created whenever a process performs a select on data residing in a row.

Row locking requires the most overhead of all the lock levels because each row used in a
transaction requires a specific lock. For an index, three more locks are necessary--one
lock for the accessed row, one for the row before the accessed row, and one for the row
after the accessed row. These three locks maintain the accessed row's position in the
index. When a table has multiple indexes, add three locks for each index.

If you use row locking in a batch transaction that accesses millions of rows, you might
have millions of locks for every row and three times more for each index containing these
rows. It isn't a good idea to use row locking in non-OLTP systems.

Row locking is great for very busy OLTP systems. Because only the row is locked, many
users can access different data items that reside only a few rows apart without causing
either process to wait.

To create a table that uses row locking, the SQL statement looks like this:

CREATE TABLE table_name
 {
 ... data field declarations ...
)
LOCK MODE ROW

Because page is the default locking level, the LOCK MODE ROW clause is required to
achieve row locking. All processes use row locking unless they override to a different
level temporarily or the table is altered to page locking.

To change a table's locking mode, you must alter the table:

ALTER TABLE table_name LOCK MODE (ROW)

A row lock is released when the locking process finishes its work.

Row locking is the only level supported by INFORMIX-SE. For more information on the
limitations of SE compared to the rest of the Informix server products, refer to Chapter 5,
"INFORMIX-Standard Engine."

Table

Systems that fall between OLTP and batch processing should use table locking. Locking
at the table level uses more resources than a database lock and less than a row or page
lock. Table locking temporarily overrides row or page locking. Whereas row and page
locking are used by all processes, a table lock is used only by the one process that
specifies the lock for the duration of the process. It is best to use a table lock when
running batch processes against the database. A single process that accesses specific
tables works best with table locking. When you lock only those specific tables, your
process will run more efficiently and other processes can work in other areas of the
database. OLTP should be careful with table locks if most of the processing is performed
on the same table. Shared and exclusive locking are also available at the table level.

A shared lock placed on a table allows other users to view the data, but no processes can
change the data. To place a shared lock on an entire table, use this syntax:

LOCK TABLE table_name IN SHARED MODE

An exclusive lock allows a process to change data without letting other processes change
the data at the same time. The data is available for viewing, but another shared or
exclusive lock is prevented. To place an exclusive lock on an entire table, use this syntax:

LOCK TABLE table_name IN EXCLUSIVE MODE

To release a lock held on a table, the locking process must use this syntax:

UNLOCK TABLE table_name

After the lock is released, locking returns to the page or row locking specified in the
create or alter statement.

Database

A database-level lock allows only other user processes to view the data within the entire
database. This lock is perfect for batch processing that performs multiple updates,
deletes, or inserts. It is not recommended that you use a database lock in OLTP systems
where hundreds of users access the database at the same time. There is no shared lock at
the database level. A database-level lock is best when running a single, very large
database that is performing a lot of activity batch processes. For example, when reloading
or refreshing the database, purging the database, or running database-wide reports, you
might want to lock the entire database.

To override page or row locking and lock the entire database, use the following SQL
statement:

DATABASE database_name EXCLUSIVE

To release the lock, you must perform a close:

CLOSE DATABASE

To access a database without locking out other processes and use the created lock level of
row or page, drop the exclusive tag:

DATABASE database_name

Usually, it is better to lock at a lower level--such as table, row, or page--than to lock an
entire database.

Isolation Levels

Selecting data from the database usually creates a shared lock. There are different degrees
of locks and how locks are handled by select statements. These degrees, called isolation
levels, are what determines the amount of concurrency achieved by processes accessing
the data. The four isolation levels used by Informix database servers are dirty read,
committed read, cursor stability, and repeatable read.

Dirty Read

A dirty read provides no isolation from locks, which means that all locks are ignored by
the select statement. Regardless of whether an exclusive or shared lock is placed on an
item, a select process can view the data. This is handy for processes that don't care
whether the data being viewed is up-to-date. Processes that need the most current data
value should not run at the dirty read isolation level because they might get a value that is
in the process of changing.

Running at dirty read level also prevents the select statement from placing a shared lock
on a data item. Another process could put an exclusive lock on the data item while the
first process is still working on the data item.

The fastest and most efficient isolation level, dirty read, is perfect for systems that don't
care about how up-to-date the data is and do not want updates, inserts, and deletes to wait
for a select to finish. For example, a system that is used during the day for mostly read-
only activity, where most of the updates and inserts occur at night, would be a good
system to set for a dirty read. Database systems without logging automatically have dirty
read as their default isolation level.

Committed Read

An isolation level of committed read makes sure that the select returns only values that
are committed to the database. All exclusive locks held by other processes cause the
select to fail or wait. A select running at the committed read isolation level does not place
shared locks on the data it's viewing. Other processes can place exclusive locks on data
being used by the select without causing the select to fail.

Databases with logging that are not ANSI-compliant, which is the default Informix
database type, keep committed read as their default isolation level.

Cursor Stability

When using cursors to select multiple rows from the database, cursor stability isolation
level places a shared lock on the current row to make sure that the current row is not
changed by other processes. When the shared lock is placed on the current row, cursor
stability prevents other processes from placing an exclusive lock on that row. When the
cursor moves to the next row in the select, it releases the shared lock on the previous row.

Repeatable Read

Repeatable read performs similarly to cursor stability, but it places a shared lock on all
items selected, whereas cursor stability places the lock on only one row at a time. The
lock is held until the entire transaction is complete. For ANSI-compliant databases,
repeatable read is the default.

Isolation Level Defaults

As indicated in the previous descriptions, some isolation levels are defaults for specific
database types. Table 15.2 shows the different database types and their associated
isolation level defaults. The defaults are determined by how a database is created.

Table 15.2. Database type isolation level defaults.
Database Type Isolation Level

No logging and not ANSI-
compliant

Dirty Read

Logging and not ANSI-compliant Committed

Read

ANSI-compliant Repeatable
Read

To create a dirty read default database, use this syntax:

CREATE DATABASE database_name

To create a committed read default database, use this syntax:

CREATE DATABASE database_name
 WITH LOG

To create a repeatable read default database, use this syntax:

CREATE DATABASE database_name
 WITH LOG MODE ANSI

Setting Isolation Levels

Sometimes it is necessary to override the default isolation level, such as when you use a
cursor with cursor stability or run a single process that doesn't care whether the data is
committed so that it can use dirty read to speed up its processing.

To change or initially set the isolation level for an individual process, that process should
use any one of these statements:

SET ISOLATION TO DIRTY READ SET

SET ISOLATION TO COMMITTED READ

SET ISOLATION TO CURSOR STABILITY

SET ISOLATION TO REPEATABLE READ

The isolation level continues to override the default until the process ends or it performs a
different SET ISOLATION statement. A database that does not use logging can use only
dirty read, but a logged database can use any of the four isolation levels.

Lock Modes

Usually when an exclusive lock is placed on a data item, a different process trying to
place an exclusive lock on the same data will fail. This also happens when a shared lock
is placed on a data item and another process tries to place an exclusive lock on the same
data item. Rather than fail, the second process can wait for a specified amount of time or
until the lock is released by the first process.

To allow a process to wait for a specified amount of time, the process should declare

SET LOCK MODE TO WAIT time_amount_in_seconds

To set the wait to 10 seconds, use

SET LOCK MODE TO WAIT 10

For an entire minute, use

SET LOCK MODE TO WAIT 60

To let the process wait until the locking process releases its lock, use

SET LOCK MODE TO WAIT

To return to the default, use

SET LOCK MODE TO NOT WAIT

The lock mode continues until the process completes or it issues a different SET LOCK
MODE command.

Locking Efficiency

A lock at a specific level should be determined by the activity and throughput of client
processes. High-level locks, such as database and table, use less overhead and provide
faster performance for a single process. High-level locks are perfect for batch processing
systems or systems where few users concurrently update the same data within a database.
Lower-level locks, such as page and row, require more overhead to manage the locks, but
they also allow concurrent users to access the same data without much wait.

You should also use isolation levels with throughput in mind. Repeatable read creates a
lot of shared locks, especially when the lock level is set to page and the select spans
thousands of pages. It might be better to use committed or dirty read levels for all select
processes and use repeatable read when it's absolutely necessary.

It's also wise not to use a lock mode of wait but use wait with a time limit that recycles
the request a few times when the time limit expires. This prevents a deadlock situation.
Informix checks each lock request to see whether it creates a deadlock, and it fails the
request when a deadlock situation may occur no matter what lock mode is set. Sometimes
Informix is unable to determine whether a deadlock will occur. When you use wait with a
time limit, a deadlock will not happen for very long.

The reason for this minimum overhead, maximum throughput discussion is a direct result
of how Informix tracks each lock.

Lock Tracking

A configuration parameter called LOCKS determines the maximum number of locks that
can be held by a process at one time. INFORMIX-OnLine has a limit of 256,000 locks
per user process. INFORMIX-OnLine Dynamic Server allows up to 8,000,000. Both
servers default to 2,000 locks per user process. When a process exceeds the lock limit set
in the configuration file, Informix fails the process and rolls back the changes. This can
cause the entire system to slow down because the entire system is consumed by tracking
all the locks--44 bytes of shared memory per lock, which is 44MB for 1,000,000 locks.
When the lock limit is exceeded, the system must concentrate on rolling back all the data.
Procedures must determine a safe number of locks to set without using all the shared
memory.

The database administrator should monitor locks to determine how many locks to allow
and what type of locking to use.

Use onstat -p (tbstat -p for versions earlier than OnLine Dynamic Server) to display
profile counts, as shown in Figure 15.5. The column labeled lokwaits displays the
number of times that processes had to wait for locks to be released since the online
started. If this number is high, over a hundred per one online day, you might want to
adjust to a different locking type. Use page locking rather than table or row locking.

Figure 15.5.

Output of the onstat -p command.

There are also labels for deadlocks prevented (deadlks) and deadlock time-outs that
were not prevented (dltouts). If either of these numbers is high, 10 or more per day, it
might be wise to change the way processes wait for locks and use dirty read isolation
levels when possible.

To view a list of current locks, use the onstat -k command. This can be a very large
list, so you can pipe the output to the UNIX command more or into a file. As shown in
Figure 15.6, the output contains information on every lock held by all users on the
system.

Figure 15.6.

Output of the onstat -k command.

Information contained in the output is labeled as in the following table:

address The address of the lock in the lock table.
wtlist The address of any user threads that are waiting for this lock to

become free. Use the onstat -u to match this address to an actual

user.
owner The address of the thread that is holding the lock. Use the onstat -u to

match this address to an actual user.
lklist The address of the next lock held by the same owner. It should be

listed in the same output.
type The type of lock held:
 S for shared.
 X for exclusive.
 IX for intent exclusive (exclusive in progress).
 IS for intent shared (shared in progress).
tblsnum The hex number representing a specific table. Do a query on systable

to see the actual table name.
rowid Contains the level of the lock:
 0 for a table lock.
 Ends in 00 for a page lock.
 Six digits or less not ending in 0 for a row lock; the value represents

the actual row address.
 Larger than six digits for a lock on the index related to a specific row.
key#/bsiz The index key address or the number of bytes for a VARCHAR data type

that is locked.

At the very bottom of the list is a number of active locks on the system and a number of
total locks since the online started. If the active number is close to the LOCK parameter, it
is wise to increase the LOCK value or check to see whether some of the processes are
using a lower level of locking than they should. When a batch process that updates every
row of a thousand-row table uses row-level locking, you should change it to use a table-
level lock instead to reduce the number of locks from 1000 to 1.

To periodically check the total number of active locks, use

onstat -k | grep active

This shows only the list of all the locks currently held.

Summary

Locking is a necessary evil of database management. Done correctly, locking can protect
the database and keep the data integrity intact while allowing the maximum amount of

concurrent accesses. Informix provides many different locking schemes to run an
efficient batch, OLTP, or batch/OLTP-combination database system.

It is also important to monitor locking and locks during the online day. Not only does
under- or over-locking cause efficiency problems with the server, but it causes processes
to display errors and roll back their changes.

- 16 -

Privileges and Security Issues
• Introduction to Privileges
• Privileges

o Database-Level Privileges
o Table-Level and Column-Level Privileges

• Stored Procedures and Triggers
• Views

o Creating a View
o Accessing and Using Views
o Check Option
o Dropping a View
o Changing a View

• Operating System
• Summary

by John McNally

This chapter provides

• A description of privileges and security issues that affect database
management

• How to set and revoke privileges at the database, table, and column levels

• How stored procedures and triggers can aid in enforcing and tracking
security

• How to use views to force specific users to access distinct subsets of the
data contained within tables and columns

• How you can use operating system procedures to prevent unauthorized
users from accessing the database data areas and client applications

Introduction to Privileges

The data stored within the database is very important to running a business. Not only
should the data be protected from loss with backups and logging, but it should also be
protected from overzealous and unscrupulous users by enforcing security access through
privileges. A company shouldn't maintain a totally separate database system of employee
information that is only accessible to payroll personnel. The payroll data should reside on
the same system where the ordering database resides. You should not need two machines
and two database server software packages. Even though two separate databases are
managed by one server, access to each database or even specific tables or data fields
should be restricted to certain users.

You can protect data and provide security with four different features:

• Privileges that restrict or authorize access to databases, tables, and data
items

• Stored procedures and triggers that can watch and audit processes as they
access the data

• Views to limit what specific processes see as the database

• Operating system protection to restrict or authorize access to database-
related programs and tools

Privileges

Three levels of data-related security keep database users (users who must have some type
of access to data in the database) from accessing specific data items. These levels are
database, table, and column.

Database-Level Privileges

All users must have access to a database to use data within a server. The three database-
level privileges are connect, resource, and DBA. Table 16.1 shows the different authority
levels associated with each privilege.

Table 16.1. Database-level privileges.
Privileges Connec

t
Resourc
e

DB
A

Select, insert, update, delete, use temporary tables, and
use views.

Yes Yes Yes

Create, alter, drop, and index own tables. No Yes Yes

Grant, revoke, drop other owned tables, and start and
stop server.

No No Yes

Connect

The minimum database-level privilege is the connect level. Users with connect can
perform select, insert, update, and delete statements, run stored procedures against tables,
create views on tables, and create temporary tables with or without indexes.

Resource

Users with resource privileges have all the privileges of connect users. They also have the
added ability to create, alter, and drop their own tables and place indexes on these tables.

DBA

The creator and owner of a database is automatically given DBA privileges. A DBA has
the same privileges as the connect and resource users with added abilities. The added
abilities include granting and revoking connect, resource, and DBA privileges to and
from other users, and dropping and altering other users' tables and views. Users with
DBA privilege can also drop, start, stop, and recover the database.

Granting and Revoking Database-Level Privileges

The user who creates the database is automatically given DBA privileges, which is the
only level that can perform grants and revokes. The first DBA can create other DBAs
with a grant statement in SQL. A grant gives authority to specific users at whatever level
you choose. The DBA can also use a revoke to remove or lower the authority.

Informix has a keyword called PUBLIC that represents all users who access the database
server. To specify users, use their UNIX IDs. You can specify a list of users by
separating each UNIX ID with a comma.

The database to which users get access is the database to which the DBA is connected
when running the SQL to perform the grant. If the database server has multiple databases,
the DBA must perform a grant for each database to provide access to them all. If the user
is allowed access to only one of the available databases, you perform the grant within
only that specific database when it is open.

To grant connect privileges, use this syntax:

GRANT CONNECT TO PUBLIC;
GRANT CONNECT TO user1;
GRANT CONNECT TO usera,userb,userc;

To revoke connect privileges, use this syntax:

REVOKE CONNECT FROM PUBLIC;
 REVOKE CONNECT FROM user1;
 REVOKE CONNECT FROM usera,userb,userc;

To grant resource privileges, use this syntax:

GRANT RESOURCE TO PUBLIC;
GRANT RESOURCE TO user1;
GRANT RESOURCE TO usera,userb,userc;

To revoke resource privileges, use this syntax:

REVOKE RESOURCE FROM PUBLIC;
 REVOKE RESOURCE FROM user1;
 REVOKE RESOURCE FROM usera,userb,userc;

To grant DBA privileges, use this syntax:

GRANT DBA TO user1;
GRANT DBA TO usera,userb,userc;

To revoke DBA privileges, use this syntax:

REVOKE DBA FROM user1;
REVOKE DBA FROM usera,userb,userc;

It is not a good idea to grant DBA privileges to PUBLIC. Imagine giving hundreds of users
the ability to drop the database! When initially granting privileges, remember to grant
only connect or resource levels to PUBLIC.

Table-Level and Column-Level Privileges

When a user has access to a database, the DBA can limit access to specific tables and
columns within tables. The creator of the table or any resource-level or DBA-level user
can create tables. That owner or any DBA can grant table-level privileges to other users
for that table. A total of eight keywords provide different table-level privileges: insert,
delete, select, update, references, index, alter, and all.

Insert

Granting insert privileges allows users to add new data to the table. Revoking that
privilege stops users from adding data to the table.

GRANT INSERT ON customer_table TO user1;
REVOKE INSERT ON customer_table FROM PUBLIC;

Delete

Granting delete privileges allows users to remove data from a table. Revoking that
privilege stops users from removing data from the table.

GRANT DELETE ON customer_table TO user1;
 REVOKE DELETE ON customer_table FROM PUBLIC;

Select

Select privileges can be granted at the table level or at specific column levels. Users can
have the ability to query an entire row in the table or just specific fields. In the first
example, user1 can look at any column or any row of the customer_table. The second
grant only allows PUBLIC to query only the customer_id and balance columns of the
customer_table. You can revoke privileges in the same way.

GRANT SELECT ON customer_table TO user1;
GRANT SELECT (customer_id, balance)
ON customer_table TO PUBLIC;
REVOKE SELECT ON customer_table FROM user3;
REVOKE SELECT (customer_id, balance)
ON customer_table FROM user4;

Update

You can grant update privileges at the table level or specific column levels. Users can
have the ability to change an entire row in the table or just specific fields. In the first
example, user1 can update any column or any row of the customer_table. The second
grant allows PUBLIC to update only the customer_id and balance columns of the
customer_table. You can revoke privileges in the same way.

GRANT UPDATE ON customer_table TO user1;
GRANT UPDATE (customer_id, balance)
ON customer_table TO PUBLIC;
REVOKE UPDATE ON customer_table FROM user3;
REVOKE UPDATE (customer_id, balance)
ON customer_table FROM user4;

References

You can grant users the ability to force referential constraints on the entire row or
specific columns of a table. The user must be a resource database-level user before the
references privilege works. Referential constraints perform tasks such as cascading
deletes or any other task that relies on how columns relate to other columns.

GRANT REFERENCES ON customer_table TO user1;

GRANT REFERENCES (customer_id, balance)
ON customer_table TO PUBLIC;
REVOKE REFERENCES ON customer_table FROM user3;
REVOKE REFERENCES (customer_id, balance)
ON customer_table FROM user4;

Index

The index privilege grants users the ability to create and drop indexes related to a table.
Users must have the resource privilege in combination with the index privilege. Users
with connect cannot create an index, even if they have the index privilege. There is no
column-level privilege because indexes are built on all table rows.

GRANT INDEX ON customer_table TO user1;
REVOKE INDEX ON customer_table FROM user3;

Alter

The alter privilege allows users to change the layout of the columns within the table.
Users with alter can add, delete, and change columns and the column data types. Only
users with knowledge of the database system and how to protect it should have this
privilege. This privilege is almost as high-level as DBA. Alter applies only to the table
level.

GRANT ALTER ON customer_table TO user1;
REVOKE ALTER ON customer_table FROM user3;

All

The keyword all provides all table and column privileges to users. Using the all
keyword grants or revokes any table privileges that the user might have.

GRANT ALL ON customer_table TO user1;
REVOKE ALL ON customer_table FROM user2;

Combinations

You can grant or revoke different combinations of table and column privileges in one
command. Place the privileges in any sequence, separated by a comma, after the grant or
revoke keyword.

 GRANT INSERT, DELETE, UPDATE
ON customer_table TO PUBLIC;
 GRANT SELECT, UPDATE (customer_id, balance)
 ON customer_table TO user2;
 REVOKE INDEX, ALTER ON customer_table FROM user1;

You can also combine table-level and column-level privileges in one statement. Column-
level privileges use the specified columns, and table-level privileges use the specified
table.

 GRANT INSERT, DELETE, SELECT, UPDATE
(customer_id, balance)
 ON customer_table TO user2;
REVOKE INDEX, SELECT, ALTER (customer_id, balance)
 ON customer_table FROM user3;

Other Keywords

You can use two other keywords in conjunction with the GRANT command. The first is the
WITH GRANT OPTION keyword. When combined with the GRANT command, the user
receiving the privileges can also grant the same privileges to other users.

In the following example, user1 not only has insert, delete, select and update privileges
on customer_table, but he or she can also grant any or all of these privileges to other
users.

 GRANT INSERT, DELETE, SELECT, UPDATE
ON customer_table TO user1
WITH GRANT OPTION;

If user1 has one or all of the privileges revoked, all the users that user1 granted
privileges to will also have the same privileges revoked.

The other keyword used with grant is the AS keyword. The AS keyword allows you to
perform a grant as if another user performs the grant. This sets up the situation described
previously; if the grantor is revoked, all the users granted by that user are also revoked.

Continuing with the preceding example, user1 was given insert, delete, select, and
update privileges on customer_table and the right to grant these privileges. A DBA, the
owner of the table, or the user that granted user1 the privileges could then grant as user1
to other users:

 GRANT INSERT, DELETE, SELECT, UPDATE
ON customer_table TO user2, user3, user4, user5
AS user1;

Now user1 through user5 have the same privileges. To revoke the privileges on all five
users, just revoke user1:

REVOKE ALL ON customer_table FROM user1;

Stored Procedures and Triggers

Stored procedures and triggers are two essential functions that make a successful
database server and also a successful database management system. Not only do stored
procedures offer a viable means to reduce processing and network traffic, but they also
help remove general and repetitive functionality from the different client applications.

Stored procedures are considered separate database entities, and because they are
separate, users must have the appropriate privileges to create, edit, and execute them.
What is nice about stored procedures is that they can have access to specific areas of the
database that users are not able to see. However, these same users might have the ability
to run the stored procedure, which in turn performs specific functions in restricted areas.
Therefore, the stored procedure enables users to go into restricted areas, but does not let
them have full access to run wild. For example, a table contains all employees' salary and
bonus information. A stored procedure is executed when a user enters information about
a sale that earned commission. The stored procedure checks to see whether it's a valid
commission, and then adds that amount to the appropriate person's salary. The user has
no access to the table that contains the salary information, and if he or she tried to add the
commission to the table without using the stored procedure, or perform any other activity
on the table, it would fail.

Triggers provide the means to automatically process a task when other events occur in the
database, such as specific data access or creation. By combining triggers with stored
procedures, you can build a library of processes to manage data security and auditing.
Chapter 14, "Managing Data with Stored Procedures and Triggers," describes in detail
how to use stored procedures and triggers to manage security.

Views

A view is a logical representation of physical columns from one or multiple tables. A
view looks and acts like a table, but it really isn't a physical table that resides on disk.
Referred to by Informix as a virtual table, a view is a great way to present specific
information to specific users, without placing an entire table's data in the open or keeping
multiple versions of the data for different groups of users. Figure 16.1 shows how users
view data from single or multiple tables through a view.

FIGURE 16.1.

A user's view of data compared to the actual database layout.

Views provide a means to restrict certain columns from users. Sometimes tables contain
tons of information that is useful to only a small segment of users. Most of the time, only
one or two columns are actually accessed. A view can show and allow access to those
few columns. This method makes the tables seem less overwhelming to users who don't
fully understand all the data columns.

Some data contained in a table may be sensitive to specific users for legal or moral
reasons. You can use a view to allow users access to some of the data contained in
sensitive tables while restricting access to other columns. For example, an employee table
might contain information on each employee's address, phone number, who to notify in
case of an emergency, and salary. Obviously, employees should not have access to other
employees' salaries, but contact information could be important.

Views can represent derived values as easily as they can show stored column data. Any
computations allowed by SQL can be represented in a view with a virtual column. For
example, you can create a current balance column in a view to represent the sum of all
current orders, subtracting any payments received. Every time the database makes an
order or payment, the balance column in the view is updated.

You can represent derived data values within a view. By using the columns from one or
more tables, the data placed in a view can be a derived value by using additions,
subtraction, or any other mathematical function. For example, you can create a view
showing the items, quantity, and value of orders placed by the customer Joe's Pizza,
where the value is equal to the quantity multiplied against the price.

Creating a View

To create a view, the user attempting the create must have at least select privileges on all
the tables with columns that are represented in the view. The two parts to the view
creation statement are view naming and column selection.

A view's name must be a unique name of up to 18 characters. This name is used to access
the view after it is created:

CREATE VIEW view_name AS

To assign columns to a view, use a standard SQL SELECT statement. The keywords ORDER
BY and UNION are not allowed within a view's select statement, but all other select
keywords are allowed.

Data type values are automatically inherited from the original columns to the new view
columns. The names of the columns can also be inherited to the view unless specified as
something different. When creating a virtual column, you must specify a name for the
new column. When a column name is specified, the CREATE VIEW statement requires that
all column names be specified, regardless of whether the names are different:

CREATE VIEW view_name (column list) AS
SELECT columns FROM tables

The first example sets up a standard view for the addresses of all employees who are
currently employed full-time. No columns are renamed, so no column list is required.

CREATE VIEW empl_address AS

 SELECT name, street, city, zip
 FROM employee_info
 WHERE current = Y AND
 work_status = F

The next create sets up a view for all customers' ordering and payment activity. A virtual
column is also created. You must list all columns because the virtual column needs a
name. This view also joins two tables to retrieve the information:

CREATE VIEW customer_bal
(cust_id, last_order, last_payment, current_balance) AS
 SELECT cust_id, total_order, total_payment,
 total_order - total_payment
 FROM order_table, payment_table
 WHERE order_table.cust_id = payment_table.cust_id

You can use other views' columns to build other views. The next create example
determines the total outstanding balance owed to the company from the customer_view
view. You can also use aggregate SQL commands to create virtual columns. Aggregate
commands include SUM, MIN, MAX, AVG, and COUNT. The SUM command is used to add all
the balances together:

CREATE VIEW total_balance (balance) AS
 SELECT SUM(current_balance)
 FROM customer_view

The next create example sets up a view on all the column data related to specific rows.
All sales made by salesperson 12, Joe, are listed in the view:

CREATE VIEW joes_sales AS
 SELECT *
 FROM sales
 WHERE sales_person = 12

Accessing and Using Views

The creator of a view is considered the owner; owners and DBA-level users can grant and
revoke access to the view to other users. You can restrict access to an entire table but give
users access to the table's data through a view. This forces the users to use the view to
access the data.

To restrict standard users from accessing the entire employee table but still allow them to
access their addresses, you use the following example:

REVOKE ALL ON employee_info;
CREATE VIEW empl_address AS
 SELECT name, street, city, zip
 FROM employee_info;
GRANT SELECT, UPDATE ON empl_address TO PUBLIC;

Working with a view is just like accessing a table. Use the view name instead of the table
name in all SQL commands. Some restrictions related to views are not found with
individual tables. First, no indexes can be created on a view. Any table-related indexes
are used when accessing the indexed data through a view. Any columns or tables used in
a view must be present. If a table or view is dropped, any views that use the table or
column are also dropped. Views that contain joins or aggregates can be accessed only
with SELECT statements because a join or aggregate view takes different data items from
different places and makes it look like it's all from one place. Informix cannot determine
how a change to data in a view relates back to the original tables. Almost the same
situation applies to virtual columns; because virtual columns are derived from multiple
data sources, it is impossible to insert or update that value in a view. It is possible to
delete the row from a view that contains a virtual column because Informix can trace
back to the original column and keys.

Check Option

As mentioned in the previous discussion on creating views, you can create a view with
information related to a specific data value or row. As in the joes_sales example, a
view can contain a subset of a table or table's data.

The joes_sales example showed the following code:

CREATE VIEW joes_sales
(sales_person, customer, sub_length, price) AS
 SELECT *
 FROM sales
 WHERE sales_person = 12;

If this view is available for Joe to use, he might want to insert his new sales directly
through this view rather than use the entire sales table. If Joe sells newspaper
subscriptions and he makes a sale of a one month subscription to Mary Jones at $9.99,
this information is placed in the sales table through the joes_sales view:

INSERT INTO joes_sales
 VALUES (12, "Mary Jones", 1, 9.99);

If Joe makes a mistake and uses the wrong sales_person number, his sale is credited to
someone else:

INSERT INTO joes_sales
 VALUES (11, "Mary Jones", 1, 9.99);

Although he uses joes_sales, the insert for sales_person 11, Jake, succeeds back to
the sales table. Joe can check his view:

SELECT * FROM joes_sales;

The entry for 11 does not show up because the view is limited to sales_person 12. Jake
can see the entry if he has his own view:

SELECT * FROM jakes_sales;

Users with direct access to the sales table can also see the entry:

SELECT * FROM sales;

To prevent this problem, use the keyword WITH CHECK OPTION when creating the view.
The WITH CHECK OPTION allows inserts, updates, and deletes to occur only when they
meet the view select criteria:

CREATE VIEW joes_sales
(sales_person, customer, sub_length, price) AS
 SELECT *
 FROM sales
 WHERE sales_person = 12
WITH CHECK OPTION;

When Joe tries to insert his sales with the wrong sales_person number, he receives an
error message.

Dropping a View

An owner of the view or a DBA can drop an existing view. When you drop a view, you
do not lose the data, columns, and tables; only the view to that data is gone. The data still
resides in the underlying tables and columns of the database. On the other hand, if the
actual tables and columns are dropped, any views that use those tables and columns are
automatically dropped. In views such as joes_sales, if Joe has no sales in the sales
table, the view continues to exist, but it contains zero rows.

To drop a view, use the DROP VIEW command:

DROP VIEW view_name;

The following example uses DROP VIEW:

DROP VIEW joes_sales;

Changing a View

You cannot use an ALTER to change the layout of a view. If you need to change a view
layout, you must drop and re-create the view with the new layout.

To verify the current view layouts, use the sysviews and sysdepends system tables. The
sysviews system table contains the actual CREATE VIEW statement originally entered.

To see all the views currently in the database server, use

SELECT * FROM sysviews;

The sysdepends system table contains information on each view and the tables or other
views that provide the data that makes up the original view.

To see all the dependencies each view contains, use

SELECT * FROM sysdepends;

When a view is dropped, its information no longer resides in the sysviews or
sysdepends tables. It is a good idea to save a copy of the preceding queries as a backup
listing of all the views to use as a reference when creating or re-creating a view.

Operating System

As mentioned in Chapter 4, "Informix Environment Introduction," the Informix database
servers run on a multitude of UNIX-based systems and a few Windows NT
environments. Using the operation system's security and permission is another level of
allowing some users access to the database while preventing others. The following list
outlines various ways to use the operating system to limit database access:

• The logon can prevent unauthorized users from accessing the entire
system.

• You can limit specific groups of users with the right to execute client
software to access the database.

• Build client applications that also require specific logon security.

• You can set directory permission to prevent unauthorized users from
accessing the actual files and data on disk that make up the database
server.

• Create backups often and use mirrors just in case a user accidentally
crashes the machine, which can corrupt the database.

Summary

Security is an important issue with database creators, owners, providers, and users. Not
only does security provide a means of keeping the data safe and intact from loss, but it
also goes another level by keeping the content of the data safe and secure from misuse or
abuse.

You can achieve both levels of database security by using GRANT and REVOKE statements
to set privileges at the database, table, and column levels. Setting different types of users
also separates users responsible for managing the database, DBAs, and normal users.

You can use stored procedures and triggers to audit how and when data is used or
changed and also restrict access to data. You can set up a stored procedure to perform a
task on data, and only privileged users can access that stored procedure to perform the
task.

Another way of restricting how users access data is through views. You can use a view to
force users to perform tasks on a subset of the actual data, rather than access the entire
database.

Finally, you can use the operating system procedures to lock users out of the database and
the entire system. Client applications should build in specific logon processes to allow
only privileged users into the database server.

- 17 -

Managing Data Integrity with
Constraints

• Introduction to Data Integrity and Constraints
• Semantic Integrity

o Data Type
o Default Value
o Check Constraints

• Entity Integrity
• Referential Integrity

o Types of Parent-Child Relationships
• Constraint Modes
• Summary

by John McNally

This chapter provides descriptions of

• Data integrity and constraints

• How to create and use semantic integrity constraints such as data type,
default value, and column-level and table-level check constraints

• How to create and use entity integrity coinsurance

• How to create and use referential integrity constraints to enforce parent-
child data relationships

• How to change the way Informix checks constraints before, during, or
after a database task occurs by using constraint modes

Introduction to Data Integrity and Constraints

Previous chapters discussed how to keep users from accessing specific data items and
how to protect the data from harm or loss. What helps make sure the data is correct and
accurate? For example, is there a way to ensure that a field holding a person's gender is
populated with only M for male or F for female? Can a database automatically verify that
an item is in stock before an order is placed for that item?

These questions all deal with the data's integrity, or whether the data stored in the
database is complete and sound. Data integrity constraints help keep the data sound and
complete. Integrity constraint functionality is built into all Informix database servers to
handle these situations.

Data integrity constraints can prevent data from becoming incorrect but cannot guarantee
its accuracy. There is still plenty of room for human error. Integrity constraints can
prevent a gender data item from straying beyond M or F or verify that items are in stock,
but they cannot prevent a person from accidentally entering F for a male or M for a
female, or miscounting the stock during inventory.

Referred to as business rules, integrity constraints help keep the data in line with how its
values relate to the real world. Whereas security can prevent actions for specific users
during insert, update, delete, and select operations, integrity constraints look at the data
that is updated, inserted, or deleted--and don't look at the user.

The three types of integrity constraints that can be enforced by all Informix database
servers are semantic, entity, and referential. Semantic integrity constraints deal with how
a column handles specific data types and the value that is stored in that column. Entity
constraints enforce rows within a table to maintain proper primary keys. Referential
integrity constraints deal with how rows within tables correspond with other rows within
other tables. You should use a combination of all three types of integrity at the server and
client applications to make sure the data is correct.

Semantic Integrity

Semantic integrity is the most basic of all integrity constraints. Also known as domain
constraints, semantic constraints work directly with the data type and its initial value.
The three types of semantic constraints used by Informix database servers are data type,
default value, and check constraint.

Data Type

A data type is assigned to the column when the table is originally created or altered later.
For example, a column labeled balance can be created as a small integer, an integer, or
possibly a float data type because a balance value is numeric. An insert or update trying
to place a character in that column fails due to type mismatch. Informix never allows a
value in a column with a different data type. Table 17.1 shows the different data types
allowed by Informix and the values limited to each.

Table 17.1. Informix data types.
Data Type Data Value
BYTE Blob data

CHAR or CHARACTER Determined size string
DATE Configurable date layouts
DATETIME Configurable date and time layouts

DEC, DECIMAL, or NUMERIC Numbers configured to a specific precision

FLOAT or DOUBLE
PRECISION

Numbers preset to double-precision

INT or INTEGER Whole numbers from -2,147,483,647 to 2,147,483,647
INTERVAL Configurable time span layout
MONEY Configurable currency layout
NCHAR Mixed mode (letters, numbers, and symbols),

determined size string
NVARCHAR Mixed mode (letters, numbers, and symbols), varying

size string

REAL or SMALLFLOAT Single-precision numbers
SERIAL Sequential integers
SMALLINT Whole numbers from -32,767 to 32,767
TEXT Varying size text streams

VARCHAR or CHARACTER Varying size string

VARYING

Data types are assigned when the table is created. The standard SQL CREATE TABLE
statement is used to assign the data types within Informix:

CREATE TABLE customer
 (
 customer_name CHAR(20),
 customer_id SERIAL,
 street VARCHAR(30,20),
 city CHAR(20),
 state CHAR(2),
 zip CHAR(10),
 last_update DATE,
 balance MONEY(5,2),
 total_orders INT
);

To change a data type, use the SQL ALTER TABLE statement. During an ALTER, Informix
copies the data out of the table, changes the data type, attempts to convert the data value,
and then places the database back in the table. Make sure that the data type is not going to
cause a failure, such as when changing an INT to a CHAR. The data type change must be
able to handle the copied back data, such as changing a SMALLFLOAT to a FLOAT or a CHAR
to a VARCHAR.

To alter an existing table's columns, use the MODIFY keyword within the ALTER statement.
You can change more than one column within parentheses, separated by a comma:

ALTER TABLE customer MODIFY
city VARCHAR(20,10);
ALTER TABLE customer MODIFY
(
city VARCHAR(20,10),
total_orders SMALLINT
);

You can also use the ALTER statement to add new columns to an existing table. Rather
than use MODIFY, use the ADD keyword. You can use the BEFORE keyword to specify
where the new columns sit in the row. Not using BEFORE places the new column at the
end of the row:

ALTER TABLE customer ADD
 phone CHAR (10) BEFORE last_update;
ALTER TABLE customer ADD
(
 area_code CHAR (3),
 line CHAR (7)
);

Default Value

Setting a default value is another semantic constraint. If no data is provided for specific
columns during an insert, a predetermined default value is used instead. Data used for the
default can be a constant defined by a literal, such as 1 or Y. You can use functions as
defaults for special data types, such as today's date for a DATE data type. Table 17.2
shows which data types can have specific literal default values, and Table 17.3 shows
which data types can have specific functions as defaults.

Table 17.2. Data type default literals.
Data Type Literal Examples

INT, SMALLINT, DEC, MONEY Integer 1, 258, 999

FLOAT, SMALLFLOAT, DEC, MONEY Decimal 1.1, 2.58, .999

FLOAT, SMALLFLOAT, CHAR, NCHAR, NVCHAR,
VARCHAR, DATE

Character "Y", "Joe", "1-1-
90"

INTERVAL Interval (2 11) DAY TO
DAY

DATETIME Date and
time

96-04-19 11:30

Table 17.3. Data type default functions.
Data Type Function Purpose

CHAR, NCHAR,
NVARCHAR, VARCHAR

DBSERVERNAME or
SITENAME

Provides database server name.

CHAR, VARCHAR USER Provides the user ID.
DATE TODAY Provides the current calendar date in

mm-dd-yy format.
DATETIME CURRENT Provides the current calendar date and

current time in mm-dd-yy hh:mm:ss
format.

Use the SQL keyword DEFAULT within the CREATE TABLE and ALTER TABLE statements
to assign a default value within Informix. The ALTER statement uses the MODIFY keyword,
as shown in the previous data type section, to specify the default for existing columns:

CREATE TABLE customer
(
 customer_name CHAR(20) NOT NULL,
 customer_id SERIAL,
 street VARCHAR(30,20),
 city CHAR(20),
 state CHAR(2) DEFAULT "VA",
 zip CHAR(10),

 last_update DATE DEFAULT TODAY,
 balance MONEY(5,2) DEFAULT 0,
 total_orders INT DEFAULT 0
);
ALTER TABLE customers MODIFY
(
 city DEFAULT "Sterling",
 zip DEFAULT "20164"
);
INSERT INTO customer (customer_name) VALUES ("Joes Pizza");

The previous insert places a row into customer that looks like the following (assuming
the current date is 4/19/96):

Column Value
customer_name Joes Pizza
customer_id 1
street NULL
city Sterling
state VA
zip 20164
last_update 4-19-96
balance 0.00
total_orders 0

When no default is specified and no value is provided, a NULL value is placed in the
column. Using the keyword NOT NULL forces a value to be inserted for each column
containing the NOT NULL keyword. In the preceding example, customer_name specified
NOT NULL, so an insert without a customer_name value would fail. Specifying DEFAULT
NULL is allowed even though not specifying any default implies the same thing. A
combination of DEFAULT NULL and NOT NULL is not allowed, but any other default and
NOT NULL is allowed.

Check Constraints

When data must be within a specific range of values--a subset of a specific data type,
such as an integer between 5 and 10 or a character equal to M or F--you can achieve data
integrity through value bounding by the check constraint. A check constraint provides the
means to specify data items that must fall within predetermined limits. Within Informix,
the check constraint is available at the column and table levels. Any row updated or
inserted in the table must pass the check constraints before the values are allowed in the
columns or rows.

Column-Level Check Constraints

To place a check constraint on a column, use the SQL keyword CHECK with the CREATE
TABLE or ALTER TABLE with MODIFY statements. The CHECK keyword must be followed
by some form of condition. The condition cannot contain subqueries or functions. The
following example uses the CHECK keyword:

CREATE TABLE customer
 (
 customer_name CHAR(20) NOT NULL,
 customer_id SERIAL,
 street VARCHAR(30,20),
 city CHAR(20),
 state CHAR(2) DEFAULT "VA"
CHECK (state IN ("VA","MD","DC")),
 zip CHAR(10),
 last_update DATE DEFAULT TODAY,
 balance MONEY(5,2) DEFAULT 0
 CHECK (balance BETWEEN 0 and 999),
 total_orders INT DEFAULT 0
 CHECK (total_orders >= 0)
);

Any values inserted or updated within these columns must meet the check criteria. Using
a value outside the criteria, such as a State code of "PA", causes an error.

When altering a table to add or change a check constraint, all the data currently in the
table must pass the new condition. Data values that do not meet the new constraint cause
the alter to fail:

ALTER TABLE customer MODIFY
total_orders CHECK (total_orders >= 1);

This alter statement is valid as far as formatting, but the original create statement had
total_orders default to 0 when no data was entered. Any rows that still exist with a
total_orders value of 0 cause the alter to fail.

Table-Level Check Constraints

Placing a check at the table level means that an entire row must pass these checks to be
added to the table. With column-level checks, an entire insert for adding a new row fails
when a column-level check fails. With individual inserts for each column, only the insert
for the failed column-level check does not succeed; the other columns are populated by
the other inserts. Table-level constraints allow for an entire row check every time new
data is entered into the row.

Table-level checks allow access to all the columns within the row, whereas column-level
checks allow access only to the current column. To create a table with a table-level
check, use the CHECK keyword on an independent line within the CREATE TABLE

statement. Because the CHECK keyword is on its own line, Informix knows that it is not
associated with a specific column. The following example uses this technique:

CREATE TABLE customer
(
 customer_name CHAR(20) NOT NULL,
 customer_id SERIAL,
 street VARCHAR(30,20),
 city CHAR(20),
 state CHAR(2) DEFAULT "VA"
CHECK (state IN ("VA","MD","DC")),
 zip CHAR(10),
 last_update DATE DEFAULT TODAY,
 cur_balance MONEY(5,2) DEFAULT 0
 CHECK (cur_balance BETWEEN 0 and 999),
prev_balance MONEY(5,2) DEFAULT 0
 CHECK (prev_balance BETWEEN 0 and 999),
last_payment MONEY(5,2) DEFAULT 0
 CHECK (last_payment BETWEEN 0 and 999),
 total_orders INT DEFAULT 0
 CHECK (total_orders >= 0),
 CHECK (prev_balance - last_payment = cur_balance)
);

Any time a row is changed or inserted into the customer table, the previous balance
minus the last payment must always equal the current balance. All the column-level
checks are also checked.

To add a table-level constraint to an existing table, use the ALTER command with the ADD
CONSTRAINT keywords rather than MODIFY:

ALTER TABLE customer ADD CONSTRAINT
 CHECK (prev_balance - last_payment = cur_balance);

Entity Integrity

An entity is like a noun in the English language; it is a person, place, or thing. An entity is
usually the main column used to reference the other columns in that row. Because this
column is important to finding the row, it is considered a primary key. To be a primary
key, the data in that column must be unique. In the relational database model, the
requirement for having a unique primary key that identifies each row in a table is referred
to as the entity integrity constraint. Informix has a built-in process to ensure that every
table has rows with unique primary keys.

Informix actually has two ways to ensure that a column used to identify each row is
unique. The first way is by using the UNIQUE keyword in a CREATE or ALTER TABLE
statement.

A table containing information about advisors for a college uses the individual advisor's
Social Security number to uniquely identify each person:

CREATE TABLE advisors
(ssn CHAR (9) UNIQUE,
 name CHAR (20)
);

To make the column unique after the table exists, use the ALTER TABLE statement with
the MODIFY keyword. Remember that altering a column to be unique will fail if it already
contains duplicate data:

ALTER TABLE advisors MODIFY
 ssn UNIQUE;

The other way to ensure that the main entity is unique is to specify it as the primary key.
Primary keys are mainly used to enforce referential integrity, as discussed in the next
section. By default, a primary key enforces entity uniqueness because it is a basic
requirement of a primary key to be unique. To specify a column as a primary key, use the
PRIMARY KEY keyword in the CREATE or ALTER TABLE statement:

CREATE TABLE advisors
(ssn CHAR (9),
 name CHAR (20),
 PRIMARY KEY (ssn)
);

The ALTER TABLE uses the ADD CONSTRAINT keyword with the PRIMARY KEY label.
When you change a table's primary key from one column to another, the previous
primary key's column is labeled UNIQUE:

ALTER TABLE advisors ADD CONSTRAINT
 PRIMARY KEY (name);

When you need multiple columns to make a row unique, the UNIQUE keyword does not
work. You must use the PRIMARY KEY keyword instead. You can combine multiple
columns to make the primary key; referred to as a composite key, it's two or more semi-
unique columns that become unique when combined. For example, a table containing
class information on courses in a college might have a column that identifies the course
number of each topic being taught, but some classes are taught on the same topic at
different times and days. A primary key is a combination of the course number and the
day and time it is taught.

The following example uses a composite key:

CREATE TABLE classes
(course_number INT (5),
 daytaught CHAR,
 timetaught DATETIME (HOUR),
teacher CHAR (9),
 PRIMARY KEY (course_number, daytaught, timetaught)
);

If all classes start at the same time, regardless of the day, then the primary key must
contain only a combination of the course_number and daytaught. Use the ALTER TABLE
statement with the ADD CONSTRAINT keyword to change the primary key. Any existing
primary key is dropped automatically:

ALTER TABLE classes ADD CONSTRAINT
 PRIMARY KEY (course_number, daytaught);

In all three examples--unique, primary key, and multicolumn primary key--any insert or
update of an entity that already exists will fail. Not only does an entity integrity constraint
provide a database layout that meets relational database model requirements, but it also
provides a faster means for indexing. An index built on unique keys provides processing
improvement over a non-unique entity table.

Referential Integrity

The integrity used to bind primary and foreign keys together is called referential
integrity. This binding of the relationship between primary and foreign keys is commonly
referred to as the parent-child relationship, where the child is a foreign key and the
parent is the primary key. Figure 17.1 shows parent and child and their relationship to
each other. Throughout this section, you can assume that the term parent is synonymous
with primary and child is synonymous with foreign.

FIGURE 17.1.

Parent and child table relationships.

The primary key is a unique column that represents the entire row in a table. For
example, a Social Security number is a unique key, which means that everyone has a
different one. A table containing information on students attending a college can use
Social Security numbers as the primary key of the table. A primary key is required in the
relational database model for every table within a database. To the database user, it's a
must because an index is usually built from a primary key. With an index, the user's
retrieval rate is dramatically increased over the retrieval rate on the same tables without
an index. Without a primary key and an index, you use a sequential search to find the
requested row. On large tables, this sequential search can take a long time.

When no single column in the row uniquely identifies that row within a table, you can
combine multiple columns to make the primary key. Referred to as a composite key, it's
two or more semi-unique columns that become unique when combined. For example, a
table containing information on college courses can have a column that identifies the
course number of each topic being taught, but some classes teach the same topic at
different times and days. A primary key is a combination of the course number and the
day and time it is taught.

A foreign key is a column, usually in another table, that matches the primary key of
another table. This match can include multiple columns when you have composite
primary keys. The relationship between primary and foreign keys is considered a join. An
example is a table containing students enrolled in a specific class. This table has its own
primary key, a combination of the current semester, a course, a date-time column, and a
student's Social Security number. The table can also contain extra information, such as
the final grade of that student, but this information is not part of the key.

Figure 17.2 shows the first two sample tables and how their primary keys become foreign
keys in the third table example. This join also demonstrates a basic parent-child
relationship.

FIGURE 17.2.

Primary and foreign keys interacting.

The basic parent-child relationship rule states that every parent must be unique and every
child must have a parent. Informix has the capability to enforce this rule and all the
situations that arise while trying to maintain it. The following are some of these
situations:

Inserts A primary key must exist when you insert a child. You cannot create a
primary key if it already exists.

Update
s

Changing a foreign key cannot separate it from an existing primary key,
but it can change it to a different primary key. Changing a primary key
cannot separate it from its children foreign keys. The children must be
moved to a different primary key first.

Deletes A primary key with children cannot be removed until its children are
removed or moved to a different parent.

Even though Informix is set up to enforce parent-child relationships, it must be
configured for a specific type of parent-child relationship.

Types of Parent-Child Relationships

Three types of parent-child relationships exist in the relational database model. All three
can be represented in Informix databases. Each of these types is different in the way its
keys are positioned within the database tables. When the parent and child reside in the
same table, it is called self-referencing. When parent and child reside in different tables,
the relationship is considered cyclic. When a cyclic relationship is defined between a
parent in one table and children in different tables, it is considered multiple path. Figure
17.3 diagrams the three types of relationships between parent and child.

FIGURE 17.3.

Different parent-child relationships.

Informix's Referential Constraints

Informix provides the capability to enforce referential integrity in all three parent-child
relationships. Informix applies referential constraints to specific columns to ensure that
the update, delete, and insert rules are enforced. Informix uses four pieces within the
CREATE or ALTER TABLE statement, in different combinations, to enforce the different
parent-child relationships. These four pieces are the keywords PRIMARY KEY, FOREIGN
KEY, REFERENCES, and CONSTRAINT.

You must specify a parent or primary key with the PRIMARY KEY keyword:

CREATE TABLE mutual_funds
(fund_id INT,
 fund_name CHAR(12),
 numofowners INT,
 value INT,
 PRIMARY KEY (fund_id)
);

To produce the same result, the keyword can follow the column definition:

CREATE TABLE mutual_funds
(fund_id INT PRIMARY KEY,
 fund_name CHAR(12),
 numofowners INT,
 value INT
)

To add or change the primary key of an existing table, use the ALTER TABLE statement
with the MODIFY keyword:

ALTER TABLE mutual_funds
fund_id PRIMARY KEY;

You use the next two keywords to create the child or foreign key. Use the FOREIGN KEY
keyword in the CREATE or ALTER statements. Unlike the PRIMARY KEY keyword, the
foreign key definition also requires the REFERENCES keyword. The REFERENCES keyword
specifies in what table the child's parent resides:

CREATE TABLE fund_owners
(owner_id INT,
 owner_name CHAR(15),
 fund_id INT,
numofshares INT,
 FOREIGN KEY (fund_id)
 REFERENCES mutual_funds
);

To produce the same result, the keyword can follow the column definition:

CREATE TABLE fund_owners
(owner_id INT,
 owner_name CHAR(15),
 fund_id INT FOREIGN KEY
 REFERENCES mutual_funds,
numofshares INT
);

To add or change the foreign key of a table, use the ALTER TABLE statement with the
MODIFY keyword. Use the FOREIGN KEY and REFERENCES labels as you do in CREATE, but
you do not need to reassign the data type INT:

ALTER TABLE fund_owners MODIFY
 fund_id FOREIGN KEY
 REFERENCES mutual_funds;

The final piece is the CONSTRAINT keyword, which you use to name each piece of the
parent-child constraint. It works as an alias for each parent and child.

For example, place a constraint name on the primary key example:

CREATE TABLE mutual_funds
(fund_id INT PRIMARY KEY
CONSTRAINT pk_fund_id,
 fund_name CHAR(12),
 numofowners INT,
 value INT
);

All interaction with this table's primary key constraint is referred to as pk_fund_id. If
you attempt to insert a duplicate primary key, Informix refers to pk_fund_id in the
duplicate key error message.

Place a constraint name on the foreign key example:

CREATE TABLE fund_owners
(owner_id INT,
 owner_name CHAR(15),
 fund_id INT,
numofshares INT,
 FOREIGN KEY (fund_id)
 REFERENCES mutual_funds
 CONSTRAINT fk_fund_id
);

All interaction with a table's child constraint is referenced by foreign key's constraint
name. One example is adding a row with a fund_id that does not exist in the
mutual_funds table. The error specifying that the parent does not exist contains a
reference to the constraint name fk_funk_id.

You don't need to specify constraint names; Informix creates a default name
automatically, but it is rather cryptic. To find the Informix default constraint name, query
the sysconstraints system table, which contains all constraint names and their tables.

To remove a constraint that is holding a parent-child relationship together, use the ALTER
TABLE statement with the DROP CONSTRAINT keyword. This breaks the ties between tables
so that you no longer require a unique parent or a parent for every child. Dropping the
primary or foreign key columns gets the same results, except that both columns are
physically dropped from each table. It is better to drop the constraint, rather than delete
the columns:

ALTER TABLE mutual_funds
DROP CONSTRAINT pk_fund_id;

After you decide the table's primary and foreign keys, you should decide how they relate
to each other in the database layout. Different types of parent-child relationships cause
different table layouts.

Self-Referencing Referential Constraints

A parent and its children residing in the same table have a self-referencing parent-child
relationship. Informix provides a means to enforce this relationship by using its built-in
referential constraints.

For example, you can create a table to track college students and their advisors. Assume
that advisors can advise many students and these student advisees can also be advisors to
other students. The primary key is advisor and the foreign key is student, and both
keys are the person's Social Security number. This first insert creates a main advisor--
probably not a student because he advises himself:

CREATE TABLE advising
(advisee CHAR (9),
advisor CHAR (9),
 PRIMARY KEY (advisee)
 CONSTRAINT pk_advisee,
 FOREIGN KEY (advisor)
 REFERENCES advising (student)
 CONSTRAINT fk_advisee
);
INSERT INTO advising VALUES (`215909999', `215909999');

These inserts create a few students who are advised by the main advisor:

INSERT INTO advising VALUES (`215908888', `215909999');
INSERT INTO advising VALUES (`215907777', `215909999');
INSERT INTO advising VALUES (`215906666', `215909999');

The next insert creates a student who is advised by another student:

INSERT INTO advising VALUES (`215905555', `215907777');

The next insert fails because the advisor 215904444 does not exist as a student or a main
advisor in the table:

INSERT INTO advising VALUES (`215903333', `215904444');

The sample table enforces that an advisee (student) must have an existing advisor. Even
an advisor must be advised by another advisor. Those two rules and all the other insert,
update, and delete rules specified are automatically enforced between the parent and its
children in the single table.

Cyclic-Referential Constraints

Cyclical parent-child relationships occur when the primary key is in one table and the
foreign key is in a different table. Unlike the self-referencing example that required that
an advisor have advisors, in the next example all advisors are college staff who do not
need advisors. The following code sets up the parent table:

CREATE TABLE advisors
(advisor CHAR (9),
 PRIMARY KEY (advisor)
 CONSTRAINT pk_advisor
);

This is the child table:

CREATE TABLE advising
(advisee CHAR (9),
advisor CHAR (9),
 FOREIGN KEY (advisor)
 REFERENCES advisors (advisor)
 CONSTRAINT fk_advisor
);

With this parent-child example, every advisor must be unique in the advisors table and
every advisee must have an existing advisor. That rule and all the other insert, update,
and delete rules specified are automatically enforced between the parent and its child
table. There is no built-in logic, as in the self-referencing example, to require that even
advisors have advisors.

Multiple-Path Referential Constraints

When a cyclical relationship occurs between one parent and many different child tables,
it is considered to have multiple paths. For example, if the advisors also taught classes,
their primary keys are linked to two child tables--the existing advisors table and a new
course table.

For this example, change the name of the advisors table to staff. The new parent table
looks like this:

CREATE TABLE staff
(staff_member CHAR (9),
 PRIMARY KEY (staff_member)
 CONSTRAINT pk_staff_member
);

The advising child is the same but now references the staff table and the staff_member
primary key:

CREATE TABLE advising
(advisee CHAR (9),
advisor CHAR (9),
 FOREIGN KEY (advisor)
 REFERENCES staff (staff_member)
 CONSTRAINT fk_advisor
);

The advising child table is changed to use the new staff parent table. Notice that the
foreign key advisor does not have to be named the same as the primary key it relates to
because the REFERENCES keyword ties them together. The following code shows the new
teaching child:

CREATE TABLE classes
(course_number INT (5),
teacher CHAR (9),
 FOREIGN KEY (teacher)
 REFERENCES staff (staff_member)
 CONSTRAINT fk_teacher
);

Not only is every student required to have an advisor that exists on staff, but also every
course must have a teacher that exists on staff. Those rules and all the other insert,
update, and delete rules specified are automatically enforced between the parent and its
children.

Constraint Modes

With the three constraints discussed previously, it was implied that the check for these
constraints occurred as the task (insert, update, or delete) occurred on the row or column.
For semantic constraints, this is true. An incorrect data type fails as soon as you attempt
to place an incorrect value in the column. This is also the case for default and check
constraints but not for entity and referential constraints. You can indicate when entity and
referential constraints should be checked.

Informix can set three time frames to check an entity or referential constraint. These
times are referred to as constraint modes, and the three are immediate, deferred, and
detached.

The default mode is immediate, which is what was assumed during the constraint
descriptions. Immediate mode checks for a failure at the end of each individual task. For
an update that impacts 40 rows in a table, immediate checking occurs as each update is
completed 40 times.

Deferred mode waits until all the tasks of a statement are complete. Using the same
example, deferred mode waits until all 40 updates are complete and the statement is about
to commit before the check occurs.

The last mode, detached, checks as the task is occurring. Like immediate, detached
checks 40 times, but it doesn't wait for the single task to complete; as soon as a violation
occurs, the task stops. Detached mode is possible only when you turn off logging.
Logging and detached mode are incompatible because logging must place a copy of
every task performed in the transaction log, but detached mode causes a task to stop
before it can write a copy in the log.

To change the constraint mode within Informix, use the SET CONSTRAINTS statement
with the IMMEDIATE or DEFERRED keywords. You can set every existing constraint to a
specific mode by using the ALL keyword, or you can set individual constraints or groups
of constraints with their names:

SET CONSTRAINTS ALL DEFERRED;
SET CONSTRAINTS pk_table1 IMMEDIATE;
SET CONSTRAINTS pk_table1, pk_table2 IMMEDIATE;

Constraints are named during the CREATE or ALTER TABLE statements by the REFERENCES
keyword. If a constraint is not named, Informix generates a name for it. You can find all
constraint names in the sysconstraints system table.

To achieve detached mode, use immediate mode without logging. Detached mode is the
only mode available to INFORMIX-SE servers. All modes are available in INFORMIX-
OnLine and INFORMIX-OnLine Dynamic Server.

Summary

Data integrity is a very important part of any database system. By adding constraints to
the database, you keep the data's value clean and correct. Any business rules that
associate the data with the real world can be enforced through data integrity constraints.

Semantic constraints are the most basic forms of data constraints. You can use semantic
constraints to make sure the data placed in the database meets three levels of standards.
The first standard is met with data type constraints. Data type constraints make sure that
values going into a column match the data type of the column. The next level enforces
that a default value is used when no data is present. This is done with default value
constraints. The final semantic constraint level makes sure that data in a column or table
falls into a predetermined range. Called check constraints, they perform user or
administrator checks on the actual value of the data entered into the database.

Entity constraints enforce the basic rules of the relational database model; every row
must be uniquely identified. The column or columns used to uniquely identify a row is
referred to as the primary key. You can place entity constraints on tables to make sure
that primary keys are unique and present.

Referential constraints enforce the relationship and dependencies held between tables and
rows. Known as the parent-child relationship, referential constraints make sure that
primary keys (as parents) and foreign keys (as children) are correctly connected.

You can check entity and referential constraints at specified times by using constraint
modes. You can set constraint modes to check during or after a specific database task.
Constraint modes can also wait until a group of tasks are completed before performing
constraint checks. Semantic constraints are restricted to check only during each database
task.

With the three types of constraints--semantic, entity, and referential--it is very simple to
configure a database system to enforce any data-related rules that arise. With constraint
modes, you can also configure when the database should enforce these rules.

- 18 -

Managing Data Backups
• Why Make Backups?

o Data Availability
o Data Reliability

• Terminology
o Backup Operations
o Restore Operations
o Restore Types

• OnBar Backup and Restore System
o What Is the onbar Utility?
o OnBar Architecture Overview
o Configuring OnBar
o Performing a Backup
o Backing Up the Logical Logs
o Performing a Restore
o Monitoring the OnBar Activity

• The ontape Utility
o Configuring the ontape Parameters
o Performing a Backup

o Backing Up Your Logical Logs
o Performing a Restore

• Summary

by Mario Estrada

This chapter explains how to implement a backup and recovery strategy for Informix
Database Servers, which is one of the most important activities in any database
environment. The system administrator is in charge of such activity, but the database
administrator is still responsible for the data in the Informix Database Server.

Why Make Backups?

Information is a vital component in a company. A hardware failure, a disaster, a human
error, or a software error can put your company's operation in jeopardy. This problem can
be solved if you are ready with a recovery strategy. Usually, the better strategy is the one
that takes less time to bring your company online again. As a guideline, the system
administrator should automate the backup procedures and have the more appropriate
recovery strategy on hand. Informix has backup and recovery systems as well as utilities
to accomplish this guideline. But remember that many third-party products are
specialized in enterprise backup management. This chapter emphasizes the tools
available in Informix Database Servers only.

Data Availability

For mission-critical applications, the information must be available 24 hours a day. It will
be your responsibility as a system administrator to provide this availability, and your goal
will be to reduce the downtime required to bring your database system online again.

Data Reliability

You can ensure data reliability by implementing hardware and software that is optimal
for the type of operation your company performs. For example, the reliability of
jukeboxes is jeopardized when a lot of dust is present in the room where the equipment is
stored. Therefore, the environment is a factor that you must be aware of when you are
concerned about the reliability of your storage devices, such as jukeboxes.

When your data becomes available after a recovery procedure, you have to corroborate
the consistency of the information. Usually, you work with the DBA, who is responsible
for the accuracy of the data. Checking the database server integrity involves checking
indexes, system catalogs, reserved pages, and data integrity as well as referential
integrity.

Terminology

When Informix describes backup and restore activities, you will see that the terminology
might differ from that used by other database systems. Although the activities are
described differently, the end result is usually the same. You need to understand the terms
and the database activity involved with them. The following sections explain these
activities as two major operations--backup and restore.

Backup Operations

The first major component operation is backup. Informix provides you with complex
backup systems, as well as utilities to perform this task. This chapter discusses the use of
the onbar backup system and the ontape utility. There are two types of backups--
physical and logical. Usually, you need to implement a strategy to perform both backup
types. Most sites do not take advantage of logical backups, but I will explain further why
it is important to consider logical backups when planning the best strategy for your
backup activity.

Before attempting to perform a backup operation, keep in mind the data consistency
verification, using the oncheck utility as follows:

• oncheck -cD or -cd performs data checks.

• oncheck -cI or -ci performs index checks.

• oncheck -cr performs reserved pages checks.

• oncheck -cc performs system catalog checks.

Backup Levels

Informix implements three levels of backup operation--level 0, level 1, and level 2.
Figure 18.1 shows an example of the proportions of data backed up for each level; this is
useful when your system manages large databases and you can't afford the time it takes to
perform a whole system backup. The level 0 backup copies all the pages that contain data
in the specified dbspaces, the level 1 backup copies only the pages that have changed
since the last level 0 backup, and the level 2 backup copies all the pages that have
changed since the last level 1 backup.

You can take advantage of these three backup levels by using the schedule specified in
Table 18.1.

Table 18.1. A simple schedule you can follow to take advantage of
backup levels included in Informix Database Servers.
Day Backup

Level

Monday 0

Tuesday 1

Wednesda
y

2

Thursday 1

Friday 0

Saturday 1

Sunday 2

FIGURE 18.1.

The three backup level operations.

What Is a Physical Backup?

This operation involves all or selected database spaces (dbspaces). You can instruct
Informix to perform a backup while Informix is in online mode or in quiescent mode.
These two options are related to the operation mode of your Informix Database Server.
Remember that the rootdbs keeps information about your whole system, so it will be
important for you to back up that dbspace to restore the entire system.

Informix does not back up the pages that are available for a dbspace but still are not
assigned to an extent of a table space (tblspace). Also none of the blobspaces located
in any optical subsystem are backed up. Figure 18.2 shows you the physical backup
diagram.

Informix does not perform a physical backup for the following conditions:

• A temporary dbspace (created with the flag "t")

• Dbspaces or blobspaces marked as down are skipped

• Mirror chunks when the primary chunks are accessible

• Blobs in blobspaces managed by INFORMIX-OnLine/Optical and stored in
optical platters

• Dbspace pages allocated to Informix DSA but still not allocated to an
extent in a tblspace

FIGURE 18.2.

A diagram of the physical backup.

NOTE: None of these tools backs up your onconfig or sqlhosts files or any other
configuration file. You can accomplish this by using UNIX commands such as cpio
or tar.

OnLine Mode Backup When your Informix Database Server is in online mode, the
backup operation increases the duration of a checkpoint, thus reducing the performance,
but it is compensated by the availability of the data to users. During the online mode
backup operation, Informix creates a temporary table for those pages residing in the
physical log. Usually pages residing in this log are called before-image pages. During
this operation, the allocation of any disk page to a tblspace or dbspace could remain
temporarily unresolved until the operation is over. The online mode backup operation is
shown in Figure 18.3.

FIGURE 18.3.

The online mode backup operation.

Quiescent Mode Backup The quiescent mode backup operation can be an impractical
solution when data availability is a concern; however, this can be useful when you want
to eliminate from your archive all those transactions that can be partial or incomplete. In
other words, this is useful when you want to be sure that the data you are backing up
represents an exact copy of the data you have on disk, and no transactions will be
occurring during your backup operation to violate this consistency.

What Is a Logical Backup?

In an OLTP environment, transactions play an important part of the game. All databases
with log mode or ANSI mode need to insert transaction information in the logical log
files. Suppose that you performed an archive yesterday at 8:00 PM. Your data might have
changed by 10:00 AM today. Every operation that caused a change to the data is in the
logical-log files. If your system suffers a severe system crash at 11:00 AM, you can
restore your last night backup and restore your logical-log files to roll forward the
transactions and leave your Informix Database Server in a consistent state. Figure 18.4
shows the logical backup operation.

FIGURE 18.4.

The logical backup operation.

NOTE: Informix uses the logical logs when an administrative task such as
checkpoint activities is performed. Thus, you will still look at activity in the logical
logs, even if you don't have a database created with log or defined as ANSI mode.

Full Logical Log Backup This operation backs up all the logical log files that are
currently full. Usually, you perform this type of backup when only one tape device is
available in your system. A schedule for this type of backup will be needed in order to
avoid collision with other administrative tasks.

TIP: You can use the alarm program, the new feature of Informix Database
Servers, to automatically back up a log. An event is fired when a log becomes full;
thus, you can monitor it and perform the backup of the log. The advantage over a
continuous backup mode is that whenever the tape is unavailable, you can bypass
the current log backup until the event is fired again.

Continuous Logical Log Backup Normally, if you have two tape devices available on
your system, you will dedicate the one with less capacity for backing up the logical log
files in a continuous manner. In most systems, it is not necessary to attend this type of
operation because the transaction activity will not require the full tape capacity for one
normal day of operation.

NOTE: Some system administrators also back up the logical log files to disk.
Assuming that the disk is in another physical area, the recovery strategy can be
implemented without involving a tape device for logical log recovery.

Restore Operations

After you have implemented a backup strategy, you need to know how data can be
restored from those backup tapes in case of a system failure. Remember that Informix has
a fast recovery facility that can fail for any number of reasons. If that happens, you will
have only the choices of performing a restore operation or calling Informix support so
that they can log into your machine and put your instance online again.

There are two types of restore operations:

• A physical restore operation
• A logical restore operation

What Is a Physical Restore?

Whenever you restore a dbspace, you are performing a physical restore. Suppose a chunk
that was part of the dbspace foo is marked as down, probably for hardware failure. In that
case, you will be able to restore that dbspace from your backup tapes. The physical
restore operation is illustrated in Figure 18.5.

FIGURE 18.5.

The physical restore operation.

What Is a Logical Log Salvage?

The logical log salvage is executed automatically by Informix before the restore
operation takes place, but you can accomplish it in a manual fashion. The goal is to back
up the logical logs that were not backed up normally before the system crash. This feature
is very convenient when you want to return your Informix Database Server to the state it
was in at a specific time--in this case, the specific time when the system failed.

NOTE: All databases not created with logging mode will not be restored to a
specific point in time, but to the state they were in at the time of the last backup
containing such databases.

What Is Logical Restore?

After you have performed a physical restore, you need to restore the logical logs that
were backed up before the failure to roll them forward. Whether the logical logs reside on
disk or on tape, you will be performing a logical restore operation, as shown in Figure
18.6.

FIGURE 18.6.

The logical restore operation.

The information stored in the logical log files is read and sorted by table space (tblspace).
You can speed up the restore operation by increasing the number of threads that will
perform this operation. This can be achieved by modifying the default configuration for
the onconfig parameters ON_RECVRY_THREADS and OFF_RECVRY_THREADS. Depending on

the state of your Informix Database Server (online or offline), by the time of the
logical restore, one of these two parameters will be read to start the specified number of
recovery threads. For example, if your Informix Database Server is in online mode, the
number specified in the ON_RECVRY_THREADS will be used to start the recovery threads.

Informix needs to replay the transactions specified in the log files for certain dbspaces.
Informix creates the logs that will be used to replay those transactions in temporary
dbspaces to avoid overwriting the original logical log files. Therefore, it is important to
check your environment variable or your configuration parameter DBSPACETEMP so that it
points to specific dbspaces with enough space to hold those logical logs (normally, the
size of the total number of logs currently configured).

NOTE: Informix automatically rolls back any unresolved transaction when the
logical restore operation is complete.

Restore Types

Informix helps you restore your data in three ways:

• Performing a cold restore

• Performing a warm restore

• Performing a mixed restore

The method you choose depends directly on the information you are restoring and the
mode the Informix Database Server instance is in by the time you need to perform the
restore operation.

Remember that Informix divides the dbspaces into two groups--the critical dbspaces and
the noncritical dbspaces. The rootdbs is a critical dbspace, because it contains the
information Informix needs in order to work. Also, a critical dbspace is any other dbspace
containing the physical log and logical log files. The rest of the dbspaces are known as
noncritical because they are not important to help recover your Informix Database Server
after a system crash. However, they are a vital component for your application because
they contain your data.

What Is a Cold Restore?

Whenever serious damage is done to one of the critical dbspaces, Informix goes offline,
and sometimes it does not come up again. This is the situation in which you will have to
perform a cold restore. A cold restore restores the whole system while Informix is in
offline mode. After it has restored the reserved pages from the rootdbs, it goes into a

recovery mode until the logical restore operation is complete. An illustration of the cold
restore operation is shown in Figure 18.7.

FIGURE 18.7.

The cold restore operation.

A cold restore consists of the following operations:

1. A physical restore of one or more database objects

2. A logical log salvage

3. A logical restore

After the logical restore operation, Informix is in quiescent mode until you manually
change its mode using the onmode command line or the onmonitor utility.

NOTE: After a cold restore is performed, the next backup operation must always
be a level 0 backup to maintain the backup information in the reserved pages
accurately and ensure backup reliability.

What Is a Warm Restore?

When one of your chunks fails due to disk damage or any other circumstance, but your
Informix Database Server instance remains in online mode (which is basically whenever
a noncritical dbspace fails), you have to perform a warm restore operation.

A warm restore can be performed whether Informix is in online mode or in quiescent
mode. Users might still be generating transactions by the time you are executing the
restore of your dbspaces. Informix has to replay the transactions in the logical logs for the
dbspaces that are being restored. To avoid overwriting the transaction information in the
current logical log, Informix writes the logical log files to temporary space specified in
the DBSPACETEMP environment variable and configuration parameter.

A warm restore consists of the following activities:

1. One or more physical restore operations

2. A logical log backup of the current logs on disk to tape

3. A logical restore

The warm restore operation is shown in Figure 18.8.

FIGURE 18.8.

The warm restore operation.

What Is a Mixed Restore?

This operation requires a cold restore of the critical dbspaces while your Informix
Database Server is in offline mode, and a warm restore for the rest of the dbspaces to
ensure data availability. If you need to restore your whole Informix Database Server
system, but you want some users to have access to some information before the whole
operation is completed, you should take advantage of this type of restore operation. The
mixed restore operation takes more time and temporary space than the cold restore
because the first one has to perform two logical restore operations--one for the cold
portion (shown in Figure 18.9) and the other for the warm portion (shown in Figure
18.10). But data availability is achieved for those dbspaces restored during the cold
restore phase.

FIGURE 18.9.

The cold portion of a mixed restore.

FIGURE 18.10.

The warm portion of a mixed restore.

OnBar Backup and Restore System

Informix introduced OnBar in engine 7.21. It is equipped with a storage management
API, which allows you to interface it with many sophisticated third-party storage
management vendor subsystems on the market today. OnBar allows you to back up and
restore single or multiple dbobjects (such as dbspaces, blobspaces, and logical log
files). Although OnBar performs some tasks similar to On-Archive, it is a whole new
product. It is much easier to use and is available on all UNIX platforms such as Sun
Solaris, Digital Equipment Corp., Hewlett-Packard, IBM, Intel SCO, Intel Solaris,
Pyramid, Sequent, SGI, SNI, Data General, Tandem, Unisys, NCR, NEC, and Windows
NT from Microsoft Corporation.

TIP: OnBar can back up and restore anything at the dbspace level. If you want a
higher availability of your information, consider table fragmentation so that you
can back up and restore at the partition level, or try to put tables such as
customer information in a single dbspace so that you can back up and restore at
the table level.

What Is the onbar Utility?

The onbar utility is a program that can accept an action from a command line or from a
storage manager through the X/Open Backup Services Application programmer's
interface (XBSA). This utility is the communication facility between Informix Database
Servers and any XBSA-conforming storage management application (such as Legato and
ADSM). When a backup operation is requested by the storage manager, the onbar utility
asks Informix questions about the dbobjects and translates the information to the
storage manager. When a restore operation is required, the process is reversed.

The onbar utility doesn't create an intermediate file while it is performing a backup or
restore operation. It supports database and dbspace backup granularity, and it also
supports incremental backups. The administration of the storage manager server is out of
the scope of this chapter.

OnBar Architecture Overview

The onbar utility is just one component of the whole OnBar system. For every backup
and restore operation, the following components are involved in the operation:

• The onbar utility

• The XBSA interface

• The storage manager client/storage manager server

• The emergency boot file

• The Message File, which is different from the Informix Database Server
message log

These components of the OnBar architecture are shown in Figure 18.11.

FIGURE 18.11.

The OnBar architecture.

What Is a Storage Manager?

A storage manager is a third-party application program that controls all the storage
devices in your system. Usually, those storage devices are tape storage devices,
jukeboxes, and stackers. When you use OnBar, you direct orders to the storage manager,
using the X/Open API, which in turn directs orders to the storage manager server. The

way a storage manager controls storage devices is transparent to Informix and the onbar
utility.

For large systems, using a storage manager can be very advantageous because it supports
networked and distributed backup and restore operations, as well as data compression,
encryption, and automation of all backup tasks.

NOTE: If you are using the Windows NT version of the Informix OWS Database
Server, you can take advantage of the storage manager bundled with Informix.
Sun Microsystems private-labels the Legato NetWorker for Solaris product line
under the name Solstice Backup, which is a single server edition of the Legato
NetWorker. Check the following address to see whether your UNIX operating
system appears in the OEM's list software:

http://www.legato.com/documents/NetWorker/compat.html

What Kind of Storage Managers Are Compatible with OnBar?

Informix is planning to provide a simple storage manager of its own by mid-1997, so it
would be helpful for you to check out your release notes. At the time I wrote this chapter,
the bundled storage manager was available only for Windows NT. If you are using a
UNIX platform, you can evaluate the Legato Networker (http://www.legato.com) and
the ADSTAR Distributed Storage Manager (ADSM) from IBM
(http://www.storage.ibm.com/storage/software/adsm/adsmhome.htm).

ADSM server works with HP UX, Solaris, AIX, and Windows NT. The Omniback II
from Hewlett-Packard (http://www.hp.com) should also be considered. Keep in mind
that this chapter does not discuss any of these products; only the administration of the
Informix backup and restore tools are covered. You should refer to your storage manager
manuals to see how to configure and administer your storage manager.

In the case of the Windows NT platform, Informix ships bundled with its database
servers a DLL library called the Informix Storage Manager. It is easy to administer. You
must specify in the Onconfig file what devices will be available to the storage manager.
For more information, refer to your Informix Backup and Restore Manual.

The ADSM X/Open API, ADSM backup/archive command-line client component, and
ADSM common files module (for AIX or Solaris) must be installed on the machine
where OnBar is installed. These three pieces are available via the AIX or Solaris client
code packages on the IBM ftp server at index.storsys.ibm.com.

What Is the XBSA Interface?

The X/Open Backup Services Application Programmer's Interface (XBSA) is a collection
of functions that makes possible the communication of the onbar utility with any storage
manager that can talk to the XBSA interface. OnBar uses the XBSA interface to
exchange information about dbspaces, blobspaces, and logical log files (dbobjects) with
the storage manager. It is also used to exchange control data information such as backup
history of dbobjects and XBSA/onbar compatibility verification.

NOTE: The X/OPEN API is available for the C language, so you can write a user
program that interacts with many of the storage managers available today.

Making OnBar Communicate with the Storage Manager

If you are using Legato NetWorker or any Legato OEMs such as Solstice Backup, you
need to download the Informix BusinesSuite Module from http://www.legato.com. It
is usually a 30-day free evaluation copy. The Informix BusinesSuite Module provides
preconfigured media pools. A media pool is a collection of backup media (tapes or
optical media). Each media pool contains backup data that fits a specific profile. For
example, a media pool called "FullOnly" might contain only data from a full backup.
This is useful to separate devices dedicated to logical log backups from the normal
backup operations. If you are using the Network Edition of NetWorker for UNIX release
4.2, you also need the TurboPak option to use BusinesSuite Module.

NOTE: The Informix BusinesSuite Module preconfigured media pools are
DBMIData and DBMILogs for Data and Log backup, respectively.

If you are using ADSM, the ADSM X/Open API, ADSM backup/archive command-line
client component, and ADSM common files module (for AIX or Solaris) must be
installed on the machine where OnBar is installed. These three pieces are available via
the AIX or Solaris client code packages on the IBM ftp server at
index.storsys.ibm.com.

Configuring OnBar

Configuring OnBar requires changes only to some configuration parameters located in
the onconfig file. The major task is to configure the storage manager itself. In the case of
Legato and ADSM, depending on the platform, both include GUI and command-line
interfaces for the following tasks:

• Administrative tasks

• Backup/restore operations

• Scheduling

During the administrative task, a hierarchy of storage media can be used to define the
media pools. The media pools can contain disk storage, optical devices, and tape devices.
If you want to perform scheduled backups using the storage manager, you need to create
backup groups with descriptive names, and assign them save sets. The save sets must
include the Informix Database Server name and a list of dbobjects. For example, if you
want to back up the dbspace data01 from the Informix Database Server mcp, the save set
list would be INFORMIX:/mcp/data01. If you don't specify a list of dbobjects, all the
dbobjects available in your Informix Database Server will be included in the backup list
automatically.

If you are using Legato NetWorker and a backup or restore is required from the storage
manager and not from the onbar utility, enter nsrdbmi as the entry for "Backup
command." This is a script located in the /usr/sbin/nsrdbmi directory for SOLARIS
and in the /usr/bin/nsrdbmi directory for AIX.

NOTE: The onbar utility and the BusinesSuite Module from Legato rely on a
shared XBSA library to perform storage management tasks for OnLine Dynamic
Server. Before using onbar with the BusinesSuite Module, you must tell onbar
where the NetWorker XBSA portion of the library exists. Use the root name on
the system running onbar, and create a symbolic link using the following
commands for each system:

SOLARIS ln -s /usr/lib/libbsa.so \ /usr/lib/ibsad001.so AIX ln -s
/usr/lib/libbsa.a \ /usr/lib/ibsad001.a HP-UX ln -s /usr/lib/libbsa.sl
\ /usr/lib/ibsad001.sl

WARNING: If you are using the Business Module from Legato and you do not
run the dbmi_config script to create media pools and label templates for your
database data, NetWorker sends the data to the Default pool. Refer to the "Using
Volumes Pools" section in Chapter 3, "Database Concepts," of the BusinesSuite
Module for Informix Administrator's Guide for more information.

NOTE: Unfortunately, it isn't possible to include in this chapter every
configuration for all the storage managers on the market. You should carefully
read the documentation included with your storage manager and the Informix
interface modules.

The Configuration Parameters

In the onconfig file, located in the $INFORMIXDIR/etc/ directory, you find four
parameters dedicated to the exclusive use of the OnBar Backup and Restore System. You
don't have to specify the location of any storage media you want to use with the onbar
utility, because it is configured as media pools in the storage manager configuration.
These parameters only affect the performance of the OnBar system. The parameters and
their explanations are listed in Table 18.2.

Table 18.2. OnBar configuration parameters.
ONCONFIG
Parameter

Function

BAR_ACT_LOG OnBar writes information about its activity to a log file, which
is different from the message log of Informix DSA. You
specify in this parameter the full pathname of this log file and
its location; the default value is bar_act.log.

BAR_MAX_BACKUP This parameter limits the number of processes that can be
started by each onbar command; the default value is 1.

BAR_XPORT_COUNT OnBar exchanges information with the Informix Database
Server using data buffers. The number of buffers that can be
started by one onbar process is specified in this parameter;
the default value is 10, and it can range from 1 to an unlimited
number. You should be careful when tuning this and the
BAR_XFER_BUFSIZE values, because they can affect the
performance in the communication with the Informix
Database Server. Also keep in mind that, in the same way, you
will have to tune some similar parameters in the storage
manager configuration file.

BAR_XFER_BUFSIZE OnBar receives information from the Informix Database
Server in buffers. You will have to set a similar configuration
parameter in your storage manager. Suppose that onbar
receives 10KB buffers. It wouldn't make sense to have onbar
send 5KB buffers to the SMCL, because that would require
two transfers to send the entire 10KB buffer but would

depend on the type of connection you are using to
communicate with the Storage Manager Server. The default
value depends on the OS page size. If the operative system
page size is 4KB, the default value will be 15. For a 2KB page
size, the default value is 31. To calculate the actual size of a
transfer data buffer, use the formula (BAR_XFER_BUFSIZE *
os_page_size + 500 bytes). The result will be in byte units.

BAR_RETRY If for any reason onbar fails to perform a backup or restore
operation of certain dbobjects, you must set what onbar
should do next. You can direct onbar to wait n number of
times to see whether the dbobject becomes available
(BAR_RETRY = n), to skip to the next dbobject (BAR_RETRY =
BAR_CONT), or to abort the operation whenever it happens
(BAR_RETRY = BAR_ABORT). The default value is BAR_CONT.

WARNING: The onbar utility communicates to the Storage Manager Command
Line (SMCL) through the XBSA interface. It puts the pages that it reads from the
database server in buffers. Depending on the size of these buffers, you might
saturate the stream communication between onbar and the SMCL, affecting
performance.

The OnBar Emergency Boot File

The emergency boot file contains the necessary information to perform a cold restore. It
is used by onbar to direct the storage manager to what information needs to be restored
in case of a system failure. The file is located in the $INFORMIXDIR/etc directory. The
name is ixbar.servernum, where servernum is the value of the SERVERNUM
configuration parameter in the $ONCONFIG file.

Performing a Backup

You can perform a backup of 0, 1, or 2 level. You can also specify whether you want to
back up the whole system or a specific number of dbspaces. Remember that the X/OPEN
API handles information about your instance. That information is kept in the storage
manager database, which is administered by the storage manager itself and is different
from the sysutil database used by OnBar.

The client indexes and the server's bootstrap file are vital for restoring data to the
Informix Database Server in the event of a disaster. Occasionally, you might need to
perform an on-demand backup of the Informix Database Server dbobjects by using the

onbar utility. After performing an on-demand backup, back up the NetWorker server's
client index and bootstrap manually by invoking the savegrp command line from the
NetWorker server using the savegrp -O -l full -c client-name -c \ networker-
servername command, where client-name is the value of the INFORMIXSERVER
environment variable. All storage managers include this capability to back up the client
indexes. Refer to your storage manager documentation.

Backing Up the Whole System

There are two ways to back up the whole system. You can specify the -w option, or you
can choose not to specify the -w or the -f option, without any dbspace listed.

The following operation directs onbar to execute a whole system backup. The default
level is 0. Notice the -b option, which tells onbar to perform a backup operation.

%onbar -b -w

NOTE: If you specify an incremental backup with the -L option, the previous
level will be performed if OnBar doesn't find it. If you specify -L 1 but you
haven't performed the level 0, the level 0 will be performed.

Backing Up Specified Database Objects

You can also specify a list of dbspaces that you want to archive. Usually, you list those
dbspaces separated by a space, or you can use a file that contains a list of dbspaces,
which in turn has the same functionality.

If you want to make a level 1 backup of the rootdbs and the physdbs, you must type the
following command:

% onbar -b -L 1 rootdbs physdbs

Now assume that you have created a file named foo, containing the two dbspaces (one
dbspace per line) that you want to archive at level 0. You should execute the following
command line:

% onbar -b -L 0 -f foo

NOTE: If you are using your storage manager instead of the onbar utility to
perform backups, remember to configure backup groups and save sets to back up
specified dbobjects.

Administrative Tasks Requiring a Backup

Some administrative tasks, such as changing the logging mode of a database and adding a
mirror chunk, require you to make a level 0 backup. Sometimes it is necessary for you to
synchronize those administrative tasks with your next backup activity, but if you want to
make them now, you can perform a simulated backup operation by using the -F option of
the onbar utility. Keep in mind that you will not restore any information from a
simulated backup because it is not actually a backup, just an internal procedure. There are
some exceptions such as adding a new dbspace for a simulated backup, even if it is
allowed. Refer to the Informix Backup and Restore Manual for more information about
the administrative tasks that require a backup operation.

Suppose that you changed the logging mode of the database sams, which is located in the
dbspace edbspace. Then you can perform a simulated backup for that dbspace, as
follows:

% onbar -b -L 0 -F edbspace

Backing Up the Logical Logs

The log files contain records of transactions and other administrative tasks performed by
the Informix Database Server. For instance, when a new reserved page is allocated, the
RSVXTEND record is written to the logical log. The size of each logical log is specified by
the DBA. When the log becomes full, it will have the flag "U", depending on the number
of logical logs configured. You will have to back them up to free the logical log space so
that Informix can reuse it. After a logical log is backed up, you can use it in the logical-
restore event, such as a warm restore.

NOTE: If LTAPEDEV is undefined or set to /dev/null in the ONCONFIG file, an
OnBar logical log backup returns the error code 131, and a message is sent to
BAR_ACT_LOG. The error occurs when the Informix Database Server switches to
the next log before OnBar has a chance to send the logical log data to the storage
manager server. Keep in mind that OnBar does not use the LTAPEDEV
configuration parameter. To avoid this situation, configure LTAPEDEV to a valid
tape device or a UNIX file.

NOTE: To monitor the state of each logical log, you should use the onstat -l
command line.

On-Demand Logical Log Backup

You can back up all the logical logs that are full (100 percent used). This is known as the
on-demand logical log backup. The following command line accomplishes the on-
demand logical log backup:

% onbar -l

It is useful when you want to schedule the backup of your logical logs--assuming that you
have enough logical log space (the sum of all your logical log files)--to support your
operations between each logical backup event.

Backing Up the Current Logical Log

Sometimes you need to back up the current logical log, which is the one with the "C" flag
from the onstat -l output, no matter how full the logical log is. The following
instruction backs up the current logical log, and the pointer is switched to the next logical
log:

% onbar -l -c

Continuous Logical Log Backup

The continuous backup of your logical logs limits your loss to only a percentage of the
last logical log file in use. Most sites implement the strategy of many small log files, thus
reducing the percentage of the transactions that are lost in a system crash. Informix tries
to salvage the logical log when you perform a cold restore, but serious damage in the
media containing the logical log will restrict Informix from succeeding in the salvage
operation. In such situations, Informix skips the salvage of the logical log and continues
the restore operation.

Informix provides a shell script called log_full.sh, located in the $INFORMIXDIR/etc
directory. This script contains a sample set of instructions you should use to direct onbar
to perform continuous backup of your logical logs. This script works with the event alarm
program feature of Informix, which triggers the event class number 20 when a logical log
becomes full. If you already have a main shell script that is fired by the alarm event, you
should modify your main script to call the log_full.sh when the event class is the
number 20.

NOTE: A continuous backup of the logical logs requires a permanent backup
medium--which means that a tape or any other device must always be available.

For more information about the ALARMPROGRAM configuration parameter, refer to the
Informix Database Server's Administrator's Manual. Refer to your storage manager
documentation for information about how to back up the logical log in a continuous
manner from your storage manager server.

Salvaging the Logical Logs

Informix automatically performs a log salvage during a cold restore; however, it will be
necessary for you to salvage the logical logs that haven't been backed up yet before you
replace a damaged medium. This is the only case in which you need to salvage the logical
log manually.

The following instruction accomplishes this task:

% onbar -l -s

Performing a Restore

As explained before, there are three types of restores. If you are performing a cold
restore--that is, one or more of your critical dbspaces became corrupted and Informix
DSA doesn't come up--you must use the emergency boot file located in the
$INFORMIXDIR/etc/ixbar.server_num directory. This file contains information that
OnBar needs in order to perform the cold restore. If you are performing a warm restore,
OnBar reads the sysutil database to perform the restore.

Restoring the Whole System

If you are restoring the whole system, you are performing a whole system cold restore. In
this case, OnBar restores all the dbspaces, even those not marked as down. The critical
dbspaces will be restored first, as indicated in the emergency boot file.

The following example performs a whole system cold restore. Keep in mind that
Informix will try to salvage the logical logs on disk.

% onbar -r -w

Restoring Down Dbspaces

If one or more of your dbspaces are marked as down, you can restore those dbspaces as
follows:

% onbar -r -p

Then you can inform OnBar to restore the appropriate logical logs for the dbspaces that
have been restored, as follows:

% onbar -r -l

NOTE: When restoring down dbspaces, it is not necessary to list those dbspaces.
OnBar checks the state of every dbspace and performs the restore.

Restoring a Particular Dbspace

To perform a restore of a particular dbspace, you can specify a list of dbspaces separated
by a space; or if the list is large, you can create an ASCII file containing one dbspace per
line.

Suppose that you have the table sameditor, which is fragmented in three dbspaces
(compbks, scienbks, and electbks), and you want to restore the compbks and electbks
fragments. If you use the -p option, a logical restore will be required. If you don't want to
restore the logical logs, you must execute the following command:

% onbar -r compbks elctbks

If you have a large list of dbspaces, you must create a file containing the dbspaces, one
per line. If you name the file samdbspaces, the following command will restore all the
dbspaces listed in the file samdbspaces:

% onbar -r -f samdbspaces

As you can see, a restore without specifying the -p option does not require a logical log
restore.

NOTE: The -f option also works with the physical restore specified with the -p
option.

A Point-in-Time Recover

OnBar supports the point-in-time recovery feature. It is based on a simple and highly
valuable concept that makes OnBar stop rolling forward the logical logs until a specified
time has been reached. The time is specified by the -t option of the restore process.

Let's assume you have a table, sams_delivery, that is fragmented by expression in three
dbspaces (onehour, twohour, and morehour). Yesterday you performed a level 0 backup
of those dbspaces. Today at 8:00 AM a batch process started, which finished at 8:30 AM.
At 8:35 AM another process changed the information from the twohour dbspace, and you
cannot reverse the change. In this case, you should perform a point-in-time recover for

the twohour dbspace. Assuming that you want the dbspace returned to the state it was in
at 8:30 AM, you should perform the following commands.

First perform a physical restore of the twohour dbspace:

% onbar -r -p twohour

The physical restore requires a logical restore in order to leave the twohour dbspace
available to the users, as follows:

% onbar -r -t8:30 -l

NOTE: You can also restore at a specified number of logical logs, using the -n
option instead of the -t option.

Monitoring the OnBar Activity

Your storage manager provides you with information about the backup and restore
activity, using its own database. You can use the graphical interface provided by your
storage manager server to view the backup history and the future backup activities.
OnBar uses the database sysutil to keep information about its backup and restore
activity. The database sysutil is created when the Informix Database Server is
initialized the first time. Informix executes the bldutil.sh script to accomplish this task.

The Catalog Tables

The tables created in the sysutil database are used by OnBar to store useful information
about the backup and restore activity. Table 18.3 lists those tables with a short description
of each.

Table 18.3. An overview of the sysutil database tables.
Table Purpose
Bar_action Lists the backup and restore activities performed for a database

object. Even if the action was not successful, it will be listed here.
Bar_instance Lists the successful actions attempted to a database object.
Bar_version Lists the compatible version of OnBar, XBSA interface, and the

storage manager for every successful action registered in the
bar_instance table.

Bar_object Keeps track of all the database objects that have been involved
with the OnBar system.

Bar_server Keeps track of all the Informix DSA instances.

If you installed Legato NetWorker, OnBar does not automatically insert the required
version values for the shared NetWorker XBSA library into the bar_version table. To
accomplish this manually, follow these steps:

1. Create or append the file sm_versions located in the $INFORMIXDIR/etc/
directory.

2. Execute the following command line. Enter the string in quotes exactly
as shown, without blank spaces:

echo "1|1.0.1|nwbsa|1">> \$INFORMIXDIR/etc/sm_versions

3. If you don't intend to reinitialize your Informix Database Server using
the oninit -i command, connect to the sysutil database using DBaccess
and run the following SQL command:

insert into bar_version values (`1','1.0.1','nwbsa','1');

4. If you want to reinitialize your Informix Database Server, the
bldutil.sh script will load the contents of the sm_versions file into the
bar_version table.

The ontape Utility

This utility is easy to use and configure. If your site doesn't manage large complex
databases, ontape will do the job of archiving and restoring your information in a simple
and efficient way. ontape doesn't have a menu-driven interface; it has only a command
line. It cannot make archives at the dbspace level, only at the system level; but the restore
operation can be done at the dbspace level. ontape supports the incremental archives 0,
1, and 2 and provides on-demand and automatic backup of your logical logs.

NOTE: The ontape utility will not retry an operation. Therefore, if a tape or a
database object is not available at the time of the backup operation, ontape
aborts the process.

WARNING: The ontape utility must be executed by the Informix user. If you
execute it as root, an su -informix command is issued, and the operation will be
executed as informix. Any other user will receive an error.

NOTE: The Legato NetWorker 4.1 storage manager server can work with the
ontape utility using the Informix Database Toolkit ASM available at

http://www.legato.com

The download form is available at

http://www.legato.com/forms/ev-form.html

It works only with Informix Database Servers 7.1 and up.

Configuring the ontape Parameters

Six parameters from the onconfig file are used by the Ontape utility, as explained in
Table 18.4.

Table 18.4. The ontape configuration parameters.
Parameter Purpose
TAPEDEV The tape device used for archiving
TAPEBLK The block size of the tape device used for archiving in

kilobytes
TAPESIZE The size of the tapes used for archiving in kilobytes
LTAPEDEV The tape device used for backup and restore of logical logs
LTAPEBLK The block size of the logical log tape device in kilobytes
LTAPESIZE The size of the logical log tapes in kilobytes

These parameters can be changed while Informix is in online mode, using the onmonitor
utility or by editing the $INFORMIXDIR/etc/$ONCONFIG file. If you change the onconfig
file, the changes will be available the next time you bring Informix DSA online.

As you can see, the logical log tape device is specified in a different configuration
parameter. It would be better for you to have an available tape device for archiving and
restoring your logical logs, usually the tape device with less capacity. Most system
administrators back up the logical logs to disk. This can be very useful and convenient
when you don't have a tape device available for the logical logs.

It is also recommended that you use symbolic links when specifying the path of the tape
devices. This can be useful when you want to change the tape device path while Informix
is in online mode. A good example of its usefulness can be seen whenever you perform
an administrative task that requires a level 0 backup, such as changing the logging mode

to a database. This can be simulated by changing the tape device to /dev/null; thus, you
have to change only the symbolic link without changing any configuration parameter
from the onconfig file.

For example, you can create a symbolic link for the /dev/rmt/0 device, as follows:

% ln -s /dev/rmt/0 /ifx/logtape

And then in the onconfig file, the TAPEDEV configuration parameter could be set to
/ifx/logtape. When you want to change the tape device path, you have to change only
the symbolic link.

Remote Tape Configuration

You can even perform a backup operation using a tape device located in another
machine. If the other machine's hostname is samsnet2, the TAPEDEV or LTAPEDEV
configuration parameters can contain the value samsnet2:/dev/rmt/0. Assuming that
the tape device is the /dev/rmt/0 in the other machine, you can even specify a symbolic
link in the other machine.

Tape Size and Block Size Considerations

When you specify a tape size for your tapes, it is necessary that this value be a multiple
of the block size specified. Check your hardware's manual to see what would be the most
optimal block size for the tape you are using. For example, in the AIX manual, it says
that the 8mm tape devices, should be specified as a 1024 block size, and the 4mm tape
devices should be of 512 block size. Sometimes, depending on your operating system, it
is necessary to synchronize the configuration of the tape device and block size between
your OS and Informix. This is the case for the AIX OS, on which you must use SMIT to
configure the tape devices. You should set it to zero--that is, of variable length--so that
you don't experience any problems with Informix and other OS administrative tasks when
both of them use the tape device.

Performing a Backup

Informix performs some internal steps before performing a backup. You should have
enough logical log space available, because if the total logical log free space is less than
one half of a logical log file, the process will be aborted. In this case, you should back up
the logical logs.

Informix requires temporary disk space, usually from those dbspaces specified in the
DBSPACETEMP configuration parameter or environment variable. This is necessary because
Informix has to create a list of pages from the physical log file for every dbspace to be
archived.

The following information is stored in a tape containing an archive. This information is
presented in the order in which it is stored:

• A control page, containing a list of database objects archived.

• The system reserved pages.

• If the archive is level 0, information about logical logs containing open
transactions at the time of the archive is stored.

• Blobspaces, if your system contains them.

• The dbspaces are archived in no particular order.

• The before-image from the temporary files is appended for every dbspace.

• A Trailer page is written when the last page of the last chunk is stored,
marking the end of the archive.

NOTE: If a dbspace or blobspace is marked as down, ontape aborts the operation.
This is not the case when using the OnBar utility.

Performing a Whole System Backup

ontape prompts you to mount the tape, and if you don't specify the backup level, you are
prompted to specify it, also. The following command makes and archives level 0 of your
whole system:

% ontape -s -L0

As you can see, it is not necessary to specify a tape device. ontape will read it from the
reserved page that contains a copy of the onconfig file in memory.

Scheduling Backups

Whenever ontape asks for a tape to be mounted, you must press the Enter key in order to
continue. Most system administrators implement a simple routine to accomplish this task,
which is useful when you use the cron utility of UNIX to run a script at a specified time.
The following example should resolve the please-mount-the-tape problem. (Thanks to
our friends at c.d.i., comp.databases.informix.)

% ontape -s -L 0<<hit
 \n

 \n
 hit

Or if you're editing your script using vi, for example, you just need to press the Enter key
in the here-document between the two hit words, as follows:

ontape -s -L 0 <<hit
 press_enter_here
 hit

Label Your Tapes

It is important to label your tapes so that, in the unlikely event of a system crash when
you need to perform a restore, you can easily identify the tapes that are needed. The tapes
must contain at least the following information, some of which is provided by the ontape
utility:

• The archive level 0, 1, 2, or logical log backup

• The date and time of the archive

• The tape number

• The logical log numbers contained on the tape

TIP: The logical log numbers contained on the tape should be backed up to
restore your system to the state it was in at the moment of the archive date and
time.

Backing Up Your Logical Logs

This process can be accomplished in two ways:

• A continuous logical log backup

• On-demand logical log backup

Continuous Logical Log Backup

You can use the -c option of the ontape utility to perform a continuous backup of your
logical logs. Therefore, whenever a logical log becomes full, it will be backed up
immediately. You need a dedicated terminal, a window from your graphic environment to
be dedicated to this task, which in turn can be canceled by pressing the interrupt key
(usually the Ctrl+C key combination).

For example, if you execute the command

% ontape -c

your terminal or active window will become busy, exclusively using the ontape utility.
When you press the interrupt key, the utility quits; it terminates the next time it goes to
the loop or simply quits if it was already in the loop.

NOTE: Whenever ontape is run with the -c option, it will remain in a loop until a
logical log becomes full.

On-Demand Logical Log Backup

To perform an on-demand logical log backup, you can use the -a option of the ontape
utility. This is useful when you want to schedule your logical log backup. You must make
sure that the tape is available. The following command line accomplishes this task:

% ontape -a

The following is a sample output of the ontape -a command line:

Performing automatic backup of logical logs.
Please mount tape 1 on /dev/rmt/0 and press Return to continue
. . .
Do you want to backup the current logical log? (y/n) Y
Please label this tape as number 1 in the log tape sequence.
This tape contains the following logical logs:
1 - 5

WARNING: The ontape utility overwrites the tape whenever a new operation is
performed on it. Think of it like the tar command in UNIX.

Performing a Restore

The ontape utility can restore the information at the dbspace level or at the system level;
the cold restore, warm restore, and mixed restore are also supported. You need to have
the tapes to be restored on-hand. Also remember that it is a good idea to label them.

Performing a Whole System Restore

A whole system restore is also known as a whole system cold restore. In general, you use
this level of restore because of a serious system crash, or you use it when Informix
becomes looped in the fast recovery mode. In these cases, if you cannot afford to attempt

a whole system restore, call Informix Technical Support. They have special utilities to
clean some part of the log file, causing Informix to become looped when attempting the
fast recovery procedure.

The following is a sample session of the whole system restore:

% ontape -r

The information about your archive is on the tape in the control list page. The sample
output session is as follows:

Please mount tape 1 on /dev/rmt/0 and press Return to continue
Archive Tape Information
Tape type: Archive Backup Tape
Online version: INFORMIX-OnLine Version 7.21.UC2
Archive date: Tue Mar 15 10:34:02 1997
User id: informix
Terminal id: /dev/pts2
Archive level: 0
Tape device: /dev/rmt/0
Tape blocksize (in k): 1024
Tape number in series: 1
Spaces to restore: rootdbs samdbs1
Continue restore?(y/n) y

After reading the chunk information, a similar output should be displayed:

Archive Information
INFORMIX-OnLine Copyright© 1986,1987 Informix Software, Inc.
Initialization Time 03/16/97 11:30:33
System Page Size 2048
Version 2
Archive Checkpoint Time 03/15/97 10:34:02
Dbspaces
number flags fchunk nchunks flags owner name
1 1 1 1 N informix rootdbs
2 1 2 1 N informix samdbs1
Chunks
chk/dbs offset size free bpages flags pathname
 1 1 5000 5000 3201 PO- /dev/rchk1
 1 1 10000 5000 4747 PO- /dev/rchk2
Continue restore? (y/n) Y

At this point, you are asked whether you want to perform a logical log salvage, like so:

Do you want to backup the logs? (y/n) y
Please mount tape 1 on /dev/rmt/0 and press Return to continue

You are also asked whether you want to restore any other level of archive:

Restore a level 1 or 2 archive (y/n) n

Next, you are asked whether you have a log tape device that you want Informix to use to
replay the transactions specified in those log files:

Do you want to restore log tapes? (y/n) y
Roll forward should start with log number 3
Please mount tape 1 on /dev/logtape and press Return to continue
Do you want to restore another log tape? (y/n) n
Program over.

Performing a Warm Restore

A warm restore is used when Informix DSA is in online mode, a noncritical dbspace is
marked as down, and you want to restore it. Suppose that the dbspace samsdb1 has been
marked as down, and you want to perform a restore. You should accomplish it by
executing the following command line:

% ontape -r -D samsdb1

NOTE: Note that the -r option physically and logically restores a dbspace or a list
of space-separated dbspaces.

Summary

The availability and reliability of your information is becoming a serious subject for
companies dedicated exclusively improving the backup and restore operations in software
and hardware. Informix provides a communication mechanism so that you can take
advantage of those specialized software and hardware vendors. The release of the OnBar
system makes the Informix database backup and restore operations easy, with a higher
level of availability and granularity.

- 19 -

Parallel Database Query
• What Is PDQ?
• Overview of PDQ Architecture

o PDQ Components
o How Memory Is Granted
o What Resources Are Allocated by Informix?

• Applications Supported in Informix DSA
o DSS Applications
o OLTP Applications

• PDQ Administration
o How to Configure Informix DSA for PDQ
o Using Environment Variables and SQL Statements to Configure

PDQ
o Changing PDQ Parameters
o The Memory Grant Manager
o Tuning PDQ
o OLTP and DSS Applications in the Same Instance

• PDQ and Stored Procedures
o What to Do When Stored Procedures Are Implemented Using PDQ

• Who Controls PDQ Resources?
o How a User Can Control PDQ Resources
o How an Administrator Can Control PDQ Resources

• The Optimizer Compare Index Parameter
• Understanding the SET EXPLAIN Functionality
• Summary

by Mario Estrada

This chapter explains, in detail, how to take advantage of the Informix Dynamic Scalable
Architecture (DSA), included in the Informix ODS, XPS, and OWS database servers, for
PDQ processing. It helps you to understand how PDQ works and how to implement
OLTP and DSS systems environments within the same instance of the OnLine database
server. From this chapter, you also learn the tools necessary to monitor, use, and improve
your PDQ performance.

NOTE: Informix Universal Server is also based on the Informix Dynamic Scalable
Architecture. The concepts you learn in this chapter will also apply to this state-
of-the-art database server.

What Is PDQ?

PDQ stands for Parallel Database Query, which is a new implementation of Informix
updated since the release of the 7.x engines. It accomplishes complex SQL operations in
parallel across several processors, thus reducing the execution time. PDQ breaks down
large query operations into small tasks, so that multiple threads can execute their portion
of the large task in parallel. The tasks that can be executed in parallel are scan queries,
joins, sorts, aggregates, groups, delete, insert, and index creation operations. The PDQ
architecture is best suited for Decision Support Systems that require a lot of reads with

complex query operations against the database engine. However, if your environment
requires you to take advantage of both OLTP and DSS systems in the same instance of
Informix DSA, you need to configure and monitor the resources allocated for PDQ so
that it does not decrease the performance for OLTP operations. An illustration of parallel
computing is shown in Figure 19.1.

FIGURE 19.1.

Parallel computing.

Overview of PDQ Architecture

Informix implementation of parallel database queries consists of five principal
components. Occasionally, Informix DSA makes use of these components in parallel.
Every component can be attended by multiple threads; this is known as intra-query
parallelism. These threads do the job assigned to a component, running on different
virtual processors of the class CPU, which in turn can run across multiple processors to
achieve a true parallelism. (See Figure 19.2.) The degree of parallelism is specified by the
user and limited by the administrator and the resources available in the system.

FIGURE 19.2.

Informix's PDQ architecture.

PDQ Components

PDQ consists of seven parallel components, which are well known as SQL operations
that usually involve large amounts of data and consume a lot of system resources such as
memory, CPU, and disk I/O bandwidth. The parallel database query components in
Informix DSA are as follows:

• Parallel Scan

• Parallel Join

• Parallel Sort

• Parallel Aggregation

• Parallel Grouping

• Parallel Insert

• Parallel Index Builds

NOTE: Whenever the query is a parent of a correlated subquery, or you declare
a cursor with the clause "for update," Informix will not treat the query as a PDQ
query.

A PDQ query can have one or more parallel components. Sometimes these components
can be run in parallel, which is known as inter-operator parallelism. Suppose that you
have a complex query with a join clause. First, Informix must scan the data in parallel. As
soon as it has sufficient information, it starts the join, and while the join runs, Informix
sorts the information. The parallelism will indicate how many threads will be started to
attend a component, and how many components will be executed in parallel, thus
improving the execution time, as shown in Figure 19.3.

FIGURE 19.3.

The response time for scan, join, and sort operations is significantly improved in PDQ
technology.

The primary thread component is the scan thread; the join, sort, aggregate, and group
threads are secondary threads. These thread components communicate to each other with
an internal mechanism called exchange. One thread can be a producer or a consumer.
Suppose that a scan thread feeds information to a join thread, which in turn processes the
information and feeds the group thread. Thus, the join thread is known as a consumer and
a producer thread. The information about these threads is located in an internal table
called the thread control block or simply tcb, which is coordinated by the sqlexec
session-thread. An example of the internal communication mechanism is shown in Figure
19.4.

Parallel Scan

Scanning a table is a basic activity for many database operations. The time needed to
complete the whole operation may be significantly affected by the time required to
complete a scan operation. The parallel scan component reduces scan times dramatically
by taking advantage of table fragmentation (as shown in Figure 19.5), because the whole
operation could be carried out by multiple threads reading the fragments in parallel.
Usually, if a fragment strategy is implemented, Informix starts one scan thread for every
fragment. Whether it scans the table or scans the index, Informix can be configured to
asynchronously read several pages ahead while the current page is being processed. With
this read-ahead capability, applications spend less time waiting for disk access to
complete. You configure the read-ahead capability by setting the configuration
parameters RA_PAGES and RA_THRESHOLD.

FIGURE 19.4.

An example of the exchange mechanism.

FIGURE 19.5.

The table fragmentation strategy.

The following SQL statement directs the engine to scan the entire table:

SELECT * FROM customers;

Imagine that the table is across 10 fragments. If PDQ is not used to execute this query, all
the fragments are read serially. Using PDQ, those fragments could be read in parallel by
10 scan threads, thus reducing the execution time by 90 percent, depending on many
other factors that you will learn about in this chapter.

Parallel Join

The parallel join component sometimes works in parallel with the parallel scan
component. As the results are being set in the temporary buffers or in the temporary
tables, a join activity is started to form a tuple. Informix supports the following join
strategies, depending on the value of the configuration parameter OPTCOMPIND:

• A nested loop join scans the table chosen by the optimizer in any order and
then matches the corresponding columns in the second table. As rows are
read and matched, a tuple is created.

• A sort merge join orders every table involved in the join by the join column,
merging the results to form a tuple.

• Hash joins are faster than the other two methods. A hash table is typically
created on the smaller table. Informix executes a hash function on every
row in the table, determining the hash bucket that will hold the row. The
rows in the buckets are not sorted. The hash table is created in the virtual
portion of the shared memory. When no space is available in the virtual
portion, it is partitioned out to the dbspaces specified in the DBSPACETEMP
environment variable or configuration parameter.

TIP: Informix recommends the following calculation to estimate the size of
memory in bytes required by a hash join:
(32 bytes * row_size) * #rows_in_the_smallest_table

An example of a SQL statement that would take advantage of the parallel join component
is the following:

SELECT * FROM customers,orders
WHERE customers.cust_id = orders.cust_id;

WARNING: Using repeatable read isolation level with hash joins can temporarily
lock all records in the join, because it reads all the records in the table to
determine their qualification.

Parallel Sort

Informix implements the philosophy of divide and conquer by breaking each list to be
sorted into sections, which in turn are directed to a separate processor for action. Every
processor will cooperate to assemble the final result. The Group by clause in SQL
statements, sort-merge joins, the update statistics statement, and the creation of an
index will benefit from this component. An overview of the parallel sort package is
shown in Figure 19.6.

FIGURE 19.6.

The parallel sort package overview.

The following SQL statement would benefit from the parallel sort component:

SELECT * FROM customers
WHERE customer_id BETWEEN 1000 AND 1050
ORDER BY f_name;

NOTE: The update statistics SQL statement is not processed in parallel, but it
is affected by the values of the PDQ parameters because it must allocate memory
for sorting.

Parallel Aggregation

Sometimes a query operation includes other types of operations, such as SUM, COUNT, AVG,
MAX, and MIN. These operations do not return rows from the database server. Instead,
they give you information about those rows; and, to obtain that information, they usually
have to read rows from the database. You can think of parallel scan, join, and sort
working in cooperation with any of these aggregate functions.

The following example shows SQL statements using aggregate functions, which take
advantage of PDQ:

SELECT SUM(total) FROM orders
WHERE order_date BETWEEN '01/01/1995' AND '01/01/1996';
SELECT COUNT(*) FROM orders
WHERE order_num BETWEEN `1020' AND `20050'
 AND order_status = `S';

Parallel Grouping

The parallel grouping component is invoked when the SQL statement includes the GROUP
BY clause, and it will work in parallel with the parallel aggregation component. It feeds
information to the threads in charge of the aggregate functions, so that they can work on
the data sets supplied by this component.

The following SQL statements would benefit from the parallel grouping component:

SELECT user_id FROM activity_log
GROUP BY user_id;
SELECT order_num,COUNT(*) number ,SUM(total_price) price
FROM items
GROUP BY order_num;

Parallel Insert

The key for this type of parallel operation is FRAGMENTATION. Informix recognizes the
following two types of insert operations that take advantage of PDQ:

• Insert operations using explicit temporary tables

• Insert operations using implicit temporary tables

NOTE: When inserting a large number of records using the INSERT INTO
statement, the parallel insert component will dramatically speed up the
transaction by inserting the records in parallel.

Insert Operations Using Explicit Temporary Tables This operation is of the type
SELECT...INTOTEMP, provided that you have set PDQ priority greater than 0 and you
have listed two or more temporary dbspaces in the DBSPACETEMP environment variable or
in the configuration file. Informix writes to the temporary dbspaces in a round-robin
fashion. Remember that true parallelism is achieved if you specify two or more
temporary dbspaces. Figure 19.7 shows you this concept.

FIGURE 19.7.

The concept of inserting operations using explicit temporary tables.

TIP: Increase the number of temporary dbspaces available to your system if you
want to improve performance for this operation, because every temporary
dbspace becomes a fragment for the temporary table, and Informix writes to
them in parallel.

Insert Operations Using Implicit Temporary Tables Informix also uses the parallelism
for implicit tables that it creates or tables that already exist. For implicit temporary tables,
the list of temporary dbspaces discussed earlier still applies, and for normal tables, the
parallelism depends directly on how fragmented the table is. Note that not only
fragmentation, but also many other parameters that are covered later in this chapter,
impose a limit on the number of threads started to achieve this parallel operation. These
SQL statements are of the form INSERT...INTO...SELECT, where the target table can be
either a permanent table or a temporary table.

To take advantage of PDQ in these types of SQL statements, PDQ priority must be
greater than 0 and the target table must meet the following criteria:

• If it is a permanent table, it must be fragmented into two or more
dbspaces.

• If it is a temporary table, you must specify a list of two or more temporary
dbspaces in the DBSPACETEMP environment variable or configuration file.

• The table must not reside in another database, whether the database is in
the same instance or in another instance.

• The table has no referential constraints enabled or triggers defined.

• The table does not contain fields of the type TEXT or BYTE.

• If the database has logging enabled, the table must not contain defined
filtering constraints.

As mentioned, the key is fragmentation, because the threads insert the information to
temporary tables or normal tables in a round-robin fashion.

TIP: When you list a dbspace in the DBSPACETEMP environment variable, this
dbspace should be declared as a temporary dbspace when created, so that no log
activity is started for it.

NOTE: Informix does not process the operation in parallel if a stored procedure
is used to generate the information for the select statement.

Parallel Index Builds

The Informix XPS server builds an index in parallel. When you issue a CREATE INDEX
statement, Informix XPS samples the data and determines how many scan threads will be
required in order to scan the table. The scan threads read the table in parallel and put the
results in shared memory buffers called bins. The bins are then sorted in parallel,
generating a subtree. The subtrees generated are merged into the final index. As you can
see, the Informix XPS does not implement a serial-based architecture when building an
index.

The following SQL statement would benefit from the parallel index builds component:

CREATE INDEX idx01 ON customer(customer_id,customer_category);

How Memory Is Granted

Every PDQ query must register with the Memory Grant Manager (MGM), which
coordinates the resources for PDQ. The MGM is explained further later in this chapter.
However, keep in mind that PDQ takes more memory and resources from the virtual
portion of the shared memory, and that there are approximately 50 pools configured to
work in the virtual portion. Among the pools that PDQ queries use most are the sort pools
and the pools required by hash joins.

Every PDQ query registered with the MGM is assigned a unit of memory, which is called
quantum and is the result of dividing the total memory available for PDQ by the
maximum number of queries that can be executed concurrently
(DS_TOTAL_MEMORY/DS_MAX_QUERIES). The quantum is the smallest unit of memory that
can be granted to a query.

Depending on the value of PDQPRIORITY assigned to a query, MGM assigns a percentage
of the total memory available for PDQ to the query, according to the formula
DS_TOTAL_MEMORY * (PDQPRIORITY/100) * (MAX_PDQPRIORITY/100) rounded to the
nearest quantum. MGM reserves a percentage of the resources available for PDQ to each
query; it's up to the query to use all or part of it.

Asking More Than a User Is Allowed

If a user asks for more priority than he or she is allowed, the MGM grants a percentage of
what the user is asking. For example, suppose the MAX_PDQPRIORITY parameter is set to
50 by the administrator, and an end user is trying to obtain 80 percent. If PDQPRIORITY is

set to 80, MGM gives the query 40 percent of the resources. You can see that, as an
administrator, you will be able to limit the resources for PDQ queries, even if a user asks
for a higher priority.

WARNING: If you set PDQPRIORITY greater than 0, a query will be treated as a
PDQ query, even if it doesn't use any parallel processing at all, thus consuming
memory for PDQ. If PDQPRIORITY is set to 0, all PDQ queries will be executed
without taking advantage of the resources available for PDQ.

What Resources Are Allocated by Informix?

PDQ processing requires a lot of system resources, including the following:

• CPU

• Memory

• Disk usage (usually involving I/O operations for temporary table spaces
and fragmented tables)

• Scan threads (parallel scan operations)

• Secondary threads (dedicated to join, sort, group, and aggregate parallel
operations)

You can administer what percentage of these resources will be available for PDQ
processing. It is up to you how to balance the resources between DSS, OLTP
applications, and non-Informix operations in your system.

You can accomplish the task of balancing by setting some parameters dedicated
exclusively for PDQ administration, as explained further later in this chapter. But,
generally, you have to do it in the following way:

1. Limit the priority for PDQ queries.

2. Limit the amount of memory allocated for PDQ processing.

3. Limit the number of scan threads.

4. Limit the number of PDQ queries that can run concurrently.

Applications Supported in Informix DSA

Applications supported by Informix can be divided into two major groups:

• OnLine Transaction Processing (OLTP) applications

• Decision Support System (DSS) applications

The division is made because OLTP and DSS perform different types of queries and
require different resources from the system and different proportion from the resources
that are commonly used for each one. For example, a PDQ query requires more memory
from the virtual portion than does an OLTP query, as you can see in Figure 19.8.

FIGURE 19.8.

A comparison of virtual memory portion usage for OLTP and DSS.

DSS Applications

This type of application usually involves large complex query operations, requiring disk
space for temporary table creation, memory for a session, sorting, threads, and CPU
utilization.

Informix implements PDQ technology to manage PDQ queries. Usually this type of
query requires a lot of memory from the virtual portion of the shared memory allocated
by Informix. Remember that approximately 50 pools are designed to work in the virtual
portion. PDQ queries require space from the shared structures in the form of AIO vector
and sort memory, and also from the thread pool.

DSS applications usually meet the following criteria:

• Many rows are read, usually sequentially.

• The transaction output is extremely low, and sometimes no transaction
activity is involved.

• Large temporary tables are created.

• Complex SQL statements are executed, involving the join of large tables.

• The response time of a single operation is usually measured in hours and
minutes.

• They are usually involved in batch processes, such as report creation.

OLTP Applications

The OLTP applications usually involve simple writes and reads, require less memory
from the virtual portion, and require more memory from the resident portion of the shared
memory in the form of buffer pools. An example of this type of application is an Order
Entry application, which requires simple lookup queries using an index. The response
time for this application is fast, assuming that you have tuned your instance well.

OLTP applications usually meet the following criteria:

• They have high transaction activity.

• Few rows are read, and usually an index read is involved.

• The SQL operations are simple, usually in the form of lookup queries.

• The response times are measured in seconds to fractions of seconds,
depending on how well-tuned your instance is.

NOTE: Usually, as an OnLine Administrator, you must balance the resources for
both types of applications. A good start is limiting the percentage of the virtual
portion of shared memory that a PDQ query can gain (DS_TOTAL_MEMORY); then
you adjust it, depending on how the rest of it has been used by OLTP queries, so
that a higher percentage can be supplied for the PDQ queries.

PDQ Administration

So far, you have learned about the two types of applications supported by Informix DSA
and what resources are required for PDQ queries. Now you will learn how to administer
the resources available on your system, even if you run both types of applications or only
DSS applications.

How to Configure Informix DSA for PDQ

Before running a query, if PDQPRIORITY is set to a value greater than 0, you are telling
Informix to treat the query as a PDQ query, which must be registered with the Memory
Grant Manager. Configuration is that easy. However, you need to limit the resources
available for a query, such as memory usage, the number of scan threads available for the
query, the number of secondary threads, and the number of queries that can run
concurrently. No well-defined rule exists for setting these parameters. It is your
responsibility to monitor your system and set adequate parameters for your needs.

An overview of the parameters from the configuration file involved in PDQ
administration is shown in Table 19.1 and Table 19.2.

Table 19.1. Parameters involved in PDQ administration from the
onconfig file.
onconfig
Parameter

Effect

DS_MAX_QUERIES Maximum number of concurrent PDQ queries in your system
DS_TOTAL_MEMORY Maximum memory for PDQ queries, in kilobytes
MAX_PDQPRIORITY Maximum priority system-wide that a query can claim
OPTCOMPIND Used with the optimizer
DBSPACETEMP One or more temporary dbspaces
DATASKIP Indicates whether a dbspace should be skipped whenever it is

down

Table 19.2. Parameters in the form of environment variables and SQL
statements.
Parameter/SQL Statement Effect
PDQPRIORITY/SET PDQPRIORITY What priority a user is requesting for a

query
DBSPACETEMP/ One or more temporary dbspaces

WARNING: If MAX_PDQPRIORITY is not set, a default value of 100 percent is
assigned by Informix, so be careful to limit the priority for all the PDQ queries
using this configuration parameter.

How to Determine the Degree of Parallelism for a PDQ Query

When using PDQPRIORITY--regardless of whether it is defined from an environment
variable or from an SQL statement--you are telling Informix what priority you need for
the next query to be run in your session. This also determines how many secondary
threads (Sorts, Joins, Groups, and Aggregates) will be available to attend the query, using
the following formula:

secondary_threads = (PDQPRIORITY/100)* number_of_virtual_processors

In earlier versions of Informix DSA, the PDQPRIORITY parameter was in the onconfig
file. But having it there didn't make sense, because every query should set its priority;

therefore, the parameter has been removed from the onconfig file. Thus, you have only
two choices for setting this parameter (unless your system still supports it). The choices
are as follows:

• You can use the environment variable PDQPRIORITY, which supersedes the
configuration parameter if your system still has it in the onconfig file.

• You can use the SQL statement SET PDQPRIORITY, which supersedes both
the environment variable and the configuration parameter (if applicable).

Table 19.3 shows the possible values for the PDQPRIORITY environment variable or the
SET PDQPRIORITY SQL statement.

Table 19.3. Values for the PDQPRIORITY parameter allowed by
Informix.
Valu
e

Meaning

0 (OFF) No parallel processing; even if the query is a PDQ query.
1 (Scan Only) Only scan parallelism is achieved. The other components are

executed serially.

2-100 Specifies the degree of parallelism a query is claiming, which is the number
of secondary threads (not scan threads) available for PDQ queries, and the
percentage of the resources available for PDQ processing.

For scan threads, the degree of parallelism depends greatly upon the number of fragments
for a table, the PDQ priority claimed by the user or the application, and of course, the
limit specified in the DS_MAX_SCANS configuration parameter. Suppose you have a table
consisting of 50 fragments, and DS_MAX_SCANS is set to 25. Twenty-five scan threads will
be available to scan the entire table, and one scan thread will read two fragments serially.
Therefore, the response time might be affected for that single query operation.

You can use the following formula to determine how many scan threads will be available
to your PDQ queries:

#scan_threads = MINimum value of(#_of_fragments for the table to be
scanned or
(DS_MAX_SCANS * PDQPRIORITY/100 * MAX_PDQPRIORITY/100))

NOTE: If you want to achieve only scan parallelism, you should specify it by
setting the PDQPRIORITY parameter to 1. This directs Informix to activate the scan
threads for the query to be run, and the other components are executed serially.

How to Limit the Degree of Parallelism for All PDQ Queries

You must limit the degree of parallelism in your system, because it consumes a lot of
memory when threads have to be started to complete a PDQ query task. (Remember that
a thread is an instance of the same program, and it must be allocated in memory in order
to run.) The degree of parallelism refers to the number of threads allocated to a single
query operation. Because you have scan threads and secondary threads, the limitation
should exist for both types of threads, and the limitation is accomplished in different
ways.

NOTE: Informix reduces the PDQ priority to 1 (Low) during the duration of a
query, whenever a query asks for a priority of more than 1 and contains OUTER
index joins. In the case of subqueries, the reduction is made to the subqueries and
not for the parent queries.

Limiting the Degree of Parallelism for Scan Operations

The following three configuration parameters and a fragmentation strategy affect the
parallelism for scan operations:

• The DS_MAX_SCAN configuration parameter (located in the onconfig file)

• The MAX_PDQPRIORITY configuration parameter (located in the onconfig
file)

• The PDQPRIORITY parameter (environment variable or SQL statement)

• The maximum number of fragments for a given table

The formula mentioned earlier gives you an idea of how Informix determines the number
of scan threads available for scan operations. But consider the following situation:

• PDQPRIORITY is set to 50 percent

• MAX_PDQPRIORITY is set to 40 percent

• DS_MAX_SCAN is set to 20

• 24 is the maximum number of fragments for a given table in your system

Informix starts eight scan threads (which is the minimum value from the formula) for a
PDQ query with scan parallelism (PDQPRIORITY >=1) activated. It is up to you as an

administrator to set the optimal value for your system. In this scenario, eight threads will
have to work on 24 fragments, which means that three fragments are executed serially by
a single thread and the whole operation will be executed in parallel. For batch processing
executing large report operations, you can configure these parameters dynamically using
the onmode command line, which is covered later in this chapter in the "Changing the
Parameters Dynamically" section.

Even if the optimal performance can be obtained by having one scan thread per fragment,
the rest of the activities would be affected because more memory and CPU utilization
would be required.

Using the configuration parameter DS_MAX_SCAN, you tell Informix the maximum number
of scan threads that can be allocated system-wide to run concurrently. Assume that you
have set this parameter to 100. If two queries requiring 30 scan threads are executed and
a query that requires 50 scan threads registers with the MGM, the last query is held in the
ready queue until one of the first two queries releases the scan threads.

NOTE: Keep in mind that if the value of the configuration parameter
DS_MAX_SCAN is too short, some users will be waiting for long periods of time.

Improving Performance for Scan Operations

The I/O wait time for sequential reads is significantly affected by the amount of time
Informix takes to locate where to start reading the next group of pages, because Informix
first has to locate the starting page. This situation can't be avoided, but your process can
avoid the waiting time by configuring how many pages Informix will read ahead of the
first set of pages. Thus, whenever a scan thread requires the next set of pages, they will
already be in shared memory.

Even when the DATASKIP configuration parameter indicates whether a dbspace should be
skipped by a query whenever it is down--affecting the result of sequential scans--the only
two parameters affecting read ahead operations are RA_PAGES and RA_THRESHOLD.

The RA_PAGES parameter indicates how many pages will be read ahead, and
RA_THRESHOLD places a limit on the number of pages that must remain in shared memory
before the next set of pages are read.

The three forms of read ahead are as follows:

• Sequential scans
• Searches using an index key only
• Sequential scans using an index key

The concepts of these three forms of read-ahead operations are illustrated in Figure 19.9.

Sequential scans are performed for queries not having a WHERE clause or whenever there
is not a usable index in the table for that query.

FIGURE 19.9.

The three types of read-ahead operations.

When all the columns specified in the SELECT clause are part of an index, instead of
reading the table, the index will be read, and as long as the columns are present in the
index, no additional read will have to be performed. This type of operation is well-known
as a "search using an index key only." Here's an example:

SELECT customer_id,customer_rank
FROM customer
WHERE customer_id BETWEEN 1000 and 25000
 AND customer_rank BETWEEN 1 AND 3;

If you use the preceding SQL statement, and an index exists on columns customer_id and
customer_rank, Informix will read the index to extract the information on the two
columns, and no additional read will have to be performed; that is, it will not be
necessary to read the table to extract the customer_id and customer_rank information.

The sequential scans using an index key are not appropriate for PDQ queries. Scan
threads must read the index leaf nodes sequentially, but then they must read the key's
associated data page, which is probably not sequential. That's why it is sometimes better
to remove the index to improve a PDQ query's performance.

If you don't set the RA_PAGES configuration parameter, Informix uses as a default value
the maximum value of the following two expressions:

(number of buffers / number of sessions)
(total number of buffers * 75/100)

As a starting point, you should consider the following formulas for both configuration
parameters:

RA_PAGES = (BUFFERS * %of_the_buffers) / (2* concurrent_PDQ_queries) +
2
RA_THRESHOLD = (BUFFERS * %of_the_buffers) / (2*
concurrent_PDQ_queries) - 2

In this formula, %of_the_buffers is the percentage of the total number of buffers that
you want to assign for large scan operations, and concurrent_PDQ_queries is the
maximum number of concurrent PDQ queries performing large scan operations. For more
information refer to the INFORMIX-OnLine Dynamic Server Performance Guide.

You should monitor the read ahead parameter using onstat -p , which can give you
information about the read ahead activity. In general, check the output of %cached (for
reads), bufwaits, ixda-RA, idx-RA, da-RA, and RA-pgsused.

If the output of %cached--which is the percentage of the read cache--is decreasing, your
RA_PAGES parameter is set too high, meaning that too many pages are being read for a
single user. This causes a flush activity for other pages needed by other users.

If a query requires more pages but the read ahead activity is still being performed, the
output of bufwaits will be increased. To avoid this situation, make sure that you haven't
configured RA_PAGES too high or RA_THRESHOLD too low.

If all the pages read ahead are being used by the session, the output of RA-pgsused would
be equal or close to the sum of (ixda-RA + idx-RA + da-RA).

WARNING: If you configure RA_PAGES too large and RA_THRESHOLD too high, you
will have a lot of page cleaning activity because Informix has to make room for
the subsequent set of pages that are being read but are not yet used.

TIP: The size of the light scan buffer used by read ahead operations can be
obtained from RA_PAGES / 8.

Limiting the Degree of Parallelism for Secondary Operations

The secondary threads in charge of activities such as joining, sorting, grouping, and
aggregating information are directly related to the number of CPUs available in your
OnLine system (configured in the NUMCPUVPS configuration parameter) and the priority
claimed by the query before its execution.

It is well known that parallel processing requires a multiprocessor machine for best
performance. Informix PDQ is no exception, because its secondary threads are started
and limited by the number of virtual processors of the class CPU, which in turn are linked
to a physical processor.

The formula secondary_threads = (PDQPRIORITY/100)* NUMCPUVPS is used by
Informix to determine the number of these threads to be started by your OnLine system.
Given this formula, you should see that four secondary threads will be started if your
PDQ priority is set to 100 and you have four cpu_vps configured in your OnLine system.
Therefore, having more processors available helps you achieve a higher degree of
parallelism for joining, sorting, grouping, and aggregating operations.

Special Discussion About Sort Threads

Sort threads require a special mention because the environment variable PSORT_NPROCS
specifies a maximum number of threads (working directly in a physical processor) for
sorting operations that can be started by a session.

Parallel sorting can be achieved even if PDQPRIORITY is set to 0. But when specifying a
PDQ priority greater than 0, you obtain benefits from PDQ because operations such as
scan and join are executed in parallel. Informix grants a specific size of memory for
sorting, and this memory is represented as a number of sort pools in the virtual portion of
shared memory. Figure 19.10 shows you four threads working in parallel, sorting the
information in the sort pools from the virtual portion of shared memory, and then
concatenating the results.

FIGURE 19.10.

A parallel sorting package.

You can also specify where the sort files or temporary tables will be stored. Although the
environment variable PSORT_DBTEMP can be used to specify one or more file systems for
sort files, the configuration parameter or environment variable DBSPACETEMP gives you
better performance because you can define temporary dbspaces configured as raw
devices. Remember that a raw device is more efficient for I/O than are cooked files.

NOTE: Because the PSORT_NPROCS environment variable is not set in Version 7 of
Informix DSA, a default value of 2 is placed by the server. When a parallel index
build is required, two threads are started for every thread that is in charge of
building the index subtrees. These threads are called btappender threads.

Limiting the Maximum Number of PDQ Queries Running Concurrently

Many factors affect the concurrence of PDQ queries, including the following:

• Virtual portion size of shared memory

• DS_TOTAL_MEMORY configuration parameter

• DS_MAX_QUERY configuration parameter

• PDQPRIORITY environment variable or SET PDQPRIORITY SQL statement

The virtual portion size of shared memory and the DS_TOTAL_MEMORY configuration
parameter limit the memory used by a PDQ query. It is up to the query to ask for all the

memory or just a percentage of it, by using the PDQPRIORITY environment variable or
simply executing the SET PDQPRIORITY SQL statement. The percentage of that memory
required for a PDQ query will limit the number of queries that can be executed
concurrently.

An Example of PDQ Query Concurrence and Sorting Memory
Required

The following example will give you a better idea of how memory resource for sorting
operations are calculated for PDQ processing and how PDQ parameters can affect the
number of PDQ queries that can run at the same time.

Assume that the following query will be executed in your system:

SELECT * FROM item
order by order_num,order_date;

I won't concentrate on the parallelism, because all the memory required by the query will
be distributed evenly among the threads required to perform the operation. Instead, this
example focuses on the sorting memory required and the parameters that may change the
PDQ concurrence, assuming you have the following parameters configured:

• The average number of rows in the item table is 2,000.

• PDQPRIORITY is set to 25 for all users.

• DS_TOTAL_MEMORY is set to 2MB (2,048KB in the configuration file).

• MAX_PDQPRIORITY is set to 100.

• DS_MAX_QUERIES is set to 8.

• OnLine virtual segment size is 8MB (8,192KB in the configuration file).

• The average row size is 300 bytes for the table item.

The memory required from the virtual portion for a single sort is

(average_rowsize*average_number_of_rows)

In our example, this value is approximately 600KB.

Based on the values of PDQPRIORITY and DS_TOTAL_MEMORY, the maximum concurrent
queries for this operation are four PDQ queries. Any other query should be received by
the MGM and remain in the ready queue until resources are available--that is, until at
least one of the queries finishes its job and releases its resources.

If you change the PDQPRIORITY to 50 for all users, the first query makes a claim for the
50 percent of the resources available, reserving 1,024KB from the virtual portion of
shared memory. Thus, only two queries can run concurrently. If a query asks for a
priority, MGM allocates what the query asks; it is up to the query to use all of it or just
part of it. In this case, if the query requires just 600KB, but claims for 1,024KB, MGM
reserves 1,024KB for it.

Now change the MAX_PDQPRIORITY to 50, and set PDQPRIORITY to 50 for all users. Fifty
percent of the MAX_PDQPRIORITY configuration parameter is 25 percent. Therefore, every
query receives 25 percent of the DS_TOTAL_MEMORY configuration parameter, and four
queries could be executed concurrently again, as in the first example.

As you can see, everything depends on your system resources, the volume, and the type
of information in the database. In the end, how you configure all these parameters is up to
you, based on your own needs.

Limiting the Memory Used by PDQ

Limiting the memory available for your PDQ queries is important because some
degradation can occur for OLTP queries and other non-Informix activities. The limit size
is specified in the DS_TOTAL_MEMORY configuration parameter. Remember that your PDQ
queries consume a lot of memory, especially the memory allocated for PDQ from the
virtual portion of the shared memory. Because OLTP queries require less memory from
the virtual portion and more memory from the resident portion, which is not related to the
DS_TOTAL_MEMORY configuration parameter, the balancing of the resources is applied only
to the virtual portion.

If you are going to run a DSS system only, you should set the value of DS_TOTAL_MEMORY
to 60 or 90 percent of the total shared memory virtual size. You can check this size using
the command onstat -g seg. If you must balance the resources between OLTP and
DSS applications, start by applying 20 percent of the total shared memory virtual size,
and monitor the use of the virtual segment for OLTP queries. If OLTP queries are not
using a lot of memory from the virtual portion, try to increase DS_TOTAL_MEMORY
gradually.

If DS_TOTAL_MEMORY and DS_MAX_QUERIES are not set and the SHMTOTAL configuration
parameter is set to 0, Informix allocates a default value of (NUMCPUVPS*2*128).
Remember that the 128KB value comes from the default value that Informix sets for sort
operations.

If DS_TOTAL_MEMORY is not set, DS_MAX_QUERIES is greater than 0, and SHMTOTAL is set to
0, then Informix computes DS_MAX_QUERIES*128, and the result is DS_TOTAL_MEMORY.
As you can see, Informix at least needs space for sorts, which in turn make room for
other operations.

If DS_TOTAL_MEMORY is not set but SHMTOTAL is greater than 0, Informix computes the
following formula:

DS_TOTAL_MEMORY = (total_physical_memory_available -
 memory_occuppied_by_the_OS - size_of_the_resident_portion_of_informix
-
(128 * number_of_users) - other_non_informix_process_memory)

Then Informix assigns you the result as a default value for DS_TOTAL_MEMORY. You can
use this formula for yourself as a starting value for DS_TOTAL_MEMORY. Remember to
monitor your OnLine activity.

WARNING: If you set DS_TOTAL_MEMORY too high, your operating system starts
paging. Use your OS monitor tools to monitor paging and swapping. If paging is
increasing, you should consider decreasing the value of DS_TOTAL_MEMORY.

In any of the aforementioned cases, Informix informs you about the result by writing to
the OnLine message log file. When you use a default value, if there is no physical space
in your computer, Informix assigns the maximum possible value. The maximum value to
assign is 1024 * 1024. A good starting point is dividing SHMVIRTSIZE by 4 and
assigning the result to DS_TOTAL_MEMORY (which is 25 percent of the total virtual portion
of shared memory).

Using Environment Variables and SQL Statements to Configure PDQ

An application can claim a PDQ priority by executing the SET PDQPRIORITY SQL
statement, which supersedes the environment variable. Pre-7.0 versions of Informix DSA
used the PDQPRIORITY configuration parameter. This was helpful when you wanted a
global behavior of the PDQ priority parameter in your system. You can have the same
functionality with the most recent versions of Informix DSA by setting the environment
variable in a common resource file such as informix.rc or even in the system profile.

The main reason for this change is that every different query deserves special attention
and different priority, depending on the time, user, and system activity at the time the
query is being executed.

The other environment variable affecting PDQ is DBSPACETEMP. As mentioned earlier in
this chapter, when you specify two or more temporary dbspaces in this environment
variable or in the configuration file, the insert operation that creates implicit or explicit
temporary tables is executed in parallel.

An Overview of Environment Variables Affecting PDQ Operations

In summary, the following environment variables affect PDQ operation:

• PDQPRIORITY

• PSORT_DBTEMP

• DBSPACETEMP

• PSORT_NPROCS

Changing PDQ Parameters

Usually, you have to change the PDQ configuration parameters in order for your
Informix DSA instance to work properly. The adjustment of these parameters can be
made before Informix is brought online, and some adjustments can be made dynamically
while Informix is online using the onmode utility.

Changing the Configuration File

The configuration file specified by the $ONCONFIG environment variable, located in
$INFORMIXDIR/etc, contains the following parameters:

• PDQPRIORITY (in earlier versions of Informix DSA)

• MAX_PDQPRIORITY

• DS_MAX_QUERIES

• DS_TOTAL_MEMORY

• DS_MAX_SCANS

Other configurations related to PDQ, located in the configuration file, are as follows:

• RA_PAGES

• RA_THRESHOLD

• DBSPACETEMP

• DATASKIP, for which three possible values can be assigned: OFF (no
dbspaces will be skipped), ALL (all dbspaces will be skipped), and ON with a
list of dbspaces to be skipped

• OPTCOMPIND (the value of 2 is best suited for PDQ operations)

These parameters can be changed using the onmonitor utility or simply by editing the
configuration file. The changes take effect when the engine is online again.

Changing the Parameters Dynamically

Informix provides the onmode utility to change some parameters dynamically while the
engine is up and running. The onmode utility itself provides a great number of options,
but this section focuses on those available to change PDQ parameters.

You receive benefits from this feature whenever you want to perform batch processing at
night, and you want your script to change the configuration dynamically. Table 19.4
shows you the options available using the onmode utility and the PDQ parameters
affected.

Table 19.4. An overview of the onmode utility for PDQ dynamic
configuration.
Command
Line

Configuration Parameter
Affected

onmode -M DS_TOTAL_MEMORY
onmode -Q DS_MAX_QUERIES
onmode -D MAX_PDQPRIORITY
onmode -S DS_MAX_SCANS

The onmode utility does not make any changes to the configuration file; instead, it directs
the engine to change the new value in the engine's internal structures.

NOTE: If you change the parameters dynamically, the queries already running or
in the ready queue will not be affected by the new values of the DS_TOTAL_MEMORY
and DS_MAX_SCANS configuration parameters.

The Memory Grant Manager

Imagine that you have a set of queries running concurrently in your system and taking
from your host computer as many resources as they want, with no program available to
control what they take. This could be a disaster. It would be similar to entering a
supermarket that has no employees and many customers who want service. Informix
implements a memory manager, which is a set of functions capable of administering the
resources available for PDQ processing and coordinating the execution of every query
with a PDQPRIORITY greater than 0.

What Is MGM?

The Memory Grant Manager is implemented by Informix to manage the resources
available for PDQ and to check every query with a PDQ priority greater than 0, so that it

can reserve the memory and other resources available in a given time. The following
activities are performed by the Informix MGM:

1. Control the number of concurrent PDQ queries.

2. Supervise the maximum number of scan threads that can be started.

3. Control the degree of parallelism for a query--which is basically the
number of PDQ threads that can be started by a single query.

4. Reserve the amount of memory and CPU utilization for a PDQ query.

You can influence the MGM by modifying the parameters available for PDQ processing.

Analyzing the Output of onstat -g mgm

Using onstat -g mgm at the command line, you get a picture of what is happening at the
instant when PDQ processing is taking place. I'll describe every single output from an
example so that you can understand what is happening and why some users might still be
having low response times.

The following example shows the output of the command onstat -g mgm:

Memory Grant Manager (MGM)

MAX_PDQ_PRIORITY: 100
DS_MAX_QUERIES: 3
DS_MAX_SCANS: 10
DS_TOTAL_MEMORY: 3000 KB
Queries: Active Ready Maximum
 1 3 3
Memory: Total Free Quantum
(KB) 3000 0 1000
Scans: Total Free Quantum
 10 8 3
Load Control:(Memory) (Scans) (Priority) (Max Queries) (Reinit)
 Gate 1 Gate 2 Gate 3 Gate 4 Gate 5
(Queue Length) 1 0 2 0 0
Active Queries:

Session Query Priority Thread Memory Scans Gate
 11 cca79c 100 be62d8 375/375 0/2 -
Ready Queries:

Session Query Priority Thread Memory Scans Gate
 12 ccd079c 100 bee908 0/375 0/2 1
 13 cd679c 100 bfa508 0/375 0/2 3
 14 cdc79c 100 c06718 0/375 0/2 3
Free Resource Average # Minimum #
------------- --------- ---------

Memory 0.0 +- 0.0 0
Scans 2.0 +- 0.0 2
Queries Average # Maximum # Total#
------------- --------- --------- ------
Active 1.0 +- 0.0 1 1
Ready 3.0 +- 0.0 3 3

To make it more simple, let's divide the output into seven parts.

Part 1: PDQ Parameters This shows you the values of the MAX_PDQPRIORITY,
DS_MAX_QUERIES, DS_MAX_SCANS, and DS_TOTAL_MEMORY configuration parameters that
Informix took from the configuration file or from the last dynamic change using the
onmode utility.

Part 2: Queries This shows you how many PDQ queries are being executed, how many
are ready to run but are hindered by something (which is usually reflected in the fourth
part, called load control), and how many threads will be allowed to be active or how
many threads could be running concurrently (shown in the last field). In this example,
only one query is running. Three queries in the ready queue, and a maximum of three,
can be executed concurrently, which is the value of DS_MAX_QUERIES.

Part 3: Memory The field Total reflects the value of the DS_TOTAL_MEMORY
configuration parameter. The next field shows the memory available or the memory that
is free. The last field shows the value of the quantum, which is derived from the formula
(DS_TOTAL_MEMORY/DS_MAX_QUERIES). In this case, Quantum is 1000, and no free
memory is available for other queries.

Part 4: Scans This line shows you information about scan threads. The field Total
reflects the value of the DS_MAX_SCANS configuration parameter. The Free field shows
how many scan threads are available for other queries. The Quantum field shows the
smallest unit of scan threads that can be started. Remember that usually one scan thread is
started for every fragment of a table, and it is constrained by the DS_MAX_SCANS
configuration parameter. In this case, two scan threads are working and eight are free.

Part 5: Load Control Every query registered in the MGM has to pass the load control
line. This is implemented as a series of gates, and every gate has some functionality.
Every gate shows you the number of queries waiting for the resource controlled by the
gate, and every query has to pass from gate 5 to gate 1.

The gates control resources for memory, scan threads, priority, and maximum queries
that can be executed at a time. The gate 5 controls the queries affected by the changes
made to the PDQ parameters using the onmode utility.

In the sample output, one query is waiting for memory, and two queries are waiting for
other queries with a higher priority to be executed. The Load Control components are
explained in detail as follows:

• Waiting for Memory (Gate 1). If you see an increment in the number of
queries in this gate, this means you've reached the amount of memory
constrained by the DS_TOTAL_MEMORY configuration parameter, and the
query must wait for some memory to be released. You could probably
increment the SHMVIRTSIZE (or onmode -a dynamically) of the
configuration parameter, and then add more memory for PDQ processing
(incrementing DS_TOTAL_MEMORY), or you can simply monitor what OLTP
queries are running and what portion of the shared memory they are using
(onstat -u , onstat -g ath, and onstat -g ses #), so that you can
increment the total memory for PDQ.

• Waiting for Scan threads (Gate 2). If the query requires more scan threads
than are available (Free from Scans:), it has to wait in this gate until the
scan threads needed to start running the query are available. If you see an
increment in this gate, your DS_MAX_SCANS might be too low or too high,
depending on the fragments contained by the table to be scanned. (For
more information, refer to the "Limiting the Degree of Parallelism for
Scan Threads" section in this chapter.)

• Waiting for Priority (Gate 3). This gate keeps all the queries waiting for
other queries with higher priority to complete their tasks. It is really up to
you and up to the application to control what priority a query should claim.
If you see an increment in this gate, you should reconfigure the priority for
your queries, or constrain them by modifying the value of the
MAX_PDQ_PRIORITY configuration parameter.

• Waiting for a Slot Available (Gate 4). If a query enters this gate, the limit
imposed by DS_MAX_QUERIES has been reached; that is, no slot is available
for the query, so it needs to wait until at least one of the queries actually
running terminates its job.

• Waiting for Reinitialization (Gate 5). Whenever you use the onmode utility
to change PDQ parameters dynamically, Informix has to modify its
internal tables, usually located in the reserved pages of the rootdbs. Any
new query registering with MGM will be placed in this gate until the
reinitialization of these parameters is complete.

Part 6: Active Queries This part shows you information about the active (or actually
running) queries and the ready queries, which are not running because of a resource
constraint, explained in the load control line (the gates 1 to 5).

The information given for every query is the session identification (Session), the
hexadecimal address of internal control block associated with the query (Query), the
priority claimed by the query (Priority), and the hexadecimal address of the thread that
registered the query with MGM (Thread). The Memory field contains two numbers: The
first number indicates the number of memory internal get calls and the amount of
memory reserved for the query. These numbers represent blocks of 8KB each. The Scans
field shows the number of scan threads allocated for the query and the number of scan
threads currently in use. Finally, if the query is in a ready state, the field Gate shows you
what kind of resources the query is awaiting.

In the sample output, only one query is running because it has a priority of 100 percent
and MAX_PDQ_PRIORITY is set to 100 percent. The other three queries are in the ready
queue. As you can see, the first query in the ready queue is in gate 1 waiting for memory.
It is claiming 375 units of memory, but no memory has been granted because the query
that is running has reserved all the memory available.

The other two queries are in gate 3, which means that they are both waiting for the thread
in gate 1 to be executed. After the query in gate 1 goes to the active queue, one of the two
queries in gate 3 goes to gate 1.

Part 7: Statistics This part of the output shows you statistics about free resources and
queries. These statistics are reset whenever the system is initialized or an onmode -Q , -M,
or -S is issued.

The free resource section lists the averages, the minimum amount of memory for PDQ in
units of 8KB, and scan threads. The standard deviation from that average is also
presented for both memory and scan threads.

The query section lists information about the active ready queue. The first column gives
information about the average length for every queue. The second column shows the
maximum size the queues have been. The last column (Total#) increments every time a
query is in every queue, so it tells you how many threads have been in the ready queue
and in the active queue respectively. You can use these statistics to tell how your PDQ
queries are being executed, how often they are running concurrently, and whether the
average time they are waiting for other queries to be executed is making more users wait
for a large query to be completed.

Tuning PDQ

As you can see, no fixed rule exists for configuring PDQ. You need to start with some
default values. After some monitoring activities, you should write down your
expectations, so that you can find a balance in the resources available in your system.
Informix PDQ is very flexible, and how it performs really depends on the resources
available and how you configure it.

An Overview of the Factors to Consider When Tuning PDQ

Here are some questions you need to answer before implementing PDQ in your system:

• How many users will be executing PDQ queries concurrently?

• What queries will enjoy a high priority, and what kind of reports should
work in the background (lower priority)?

• Should all the PDQ queries run at the same time? The best thing you can
do is to implement a little benchmark in your system, and test everything
before deciding which queries should run at the same time.

• Are OLTP queries running in the same instance? If so, determine the
amount of memory that should be allocated for PDQ queries, and
remember that PDQ queries use a great deal of memory.

• What kind of table fragmentation are you using? Is it the best in the
world? Does it take advantage of different physical hard disks? Remember
that having a lot of fragments does not mean a good fragmentation
strategy is being used.

• Are you using the temporary dbspaces? If so, how are they configured?

In fact, the best thing you can do before implementing values in your production system
is to make some tests with the parameters you have in mind for PDQ.

OLTP and DSS Applications in the Same Instance

By now, you have learned how you can control the resources available for PDQ. When
you have control of PDQ, you can have both types of applications in the same instance. A
balance of resources must exist, and it is your responsibility to balance those resources
(memory, disk I/O bandwidth, and CPU utilization).

Conserving the Resources of Your System

If only some of your applications make use of join, sort, group, and aggregate parallel
com-ponents, you should set the PDQPRIORITY to 1 and DS_MAXPQPRIORITY to 25 or 40.
This should conserve PDQ resources for some applications, while others receive the
benefits of a higher parallelism using the SET PDQPRIORITY SQL statement inside the
application or a stored procedure.

This should balance the resources between your normal DSS applications, your large
DSS applications, and your OLTP applications.

Factors to Consider for OLTP Queries

The first factor is memory. Even if OLTP applications don't require a great deal of
memory from the virtual portion, they require memory from the resident portion for
transaction operations. And you should remember that other processes are involved in
OLTP.

The second factor is disk usage. OLTP queries usually require a disk read for every
operation. To avoid this, the buffers that hold data pages from disk must be tuned for
optimal performance.

You might experience some degradation when large reads are executed by PDQ queries,
which could reduce some read response times for query lookups (OLTP queries). But
remember that when you have more users concurrently running the same DSS
application, performance can be improved because some data pages are already in
memory.

You have the tools to constrain the resources available in your system for PDQ, and also
the tools to monitor the PDQ activity.

Maximizing OLTP Throughput

If you want to maximize OLTP throughput for a query at the cost of some DSS activities,
you should set MAX_PDQ_PRIORITY to 0. This forces any query claiming a PDQ priority
greater than 0 to be granted 0, which means that the query is executed without
parallelism.

Improving OLTP Queries

OLTP queries usually decrease in performance whenever they have to make sequential
scans over large tables or whenever they have to order the rows from tables. Even the
join method really impacts OLTP operations. Here are some guidelines you can use as a
starting point to optimize your OLTP queries:

1. Avoid sequential scans on large tables.

2. Have an index in the columns in the ORDER BY statement that directs
Informix DSA to read the index and avoids the sort operation.

3. Set OPTCOMPIND to 0, which avoids the hash and sort merge joins.

4. Influence the query path for the optimizer by using indexes and reading
data distributions.

5. Use the SET OPTIMIZATION statement to reduce the time the optimizer takes
when choosing the best query path.

Improving PDQ Queries

Not having an index improves performance for your PDQ queries, just as it does when
you configure the read-ahead capability. If your queries join large tables, it is better to
use the hash join method, which is the faster method. As you've already learned, this is
done by setting the OPTCOMPIND configuration parameter to 2. Also, for large table scans,
it is necessary to have the table fragmented, so that multiple scan threads can work in
parallel. If a certain number of users will be working simultaneously in PDQ queries, you
should consider setting your PDQ parameters so that those queries can be executed
concurrently and the response time can be improved. A recent benchmark for Informix
XPS proved that this is true. In general, you should adhere to the following guidelines to
improve your PDQ query's response time:

1. If the optimizer is using an index to read a large table, first check your
OPTCOMPIND parameter, which should be set to 2. If the parameter is set to
2, try to remove the index from that table. Remember that scanning a
table based on an index read operation decreases your performance.

2. Set OPTCOMPIND to 2. This option tells the optimizer to consider all
possible query paths. It also tells the optimizer to choose the lowest costing
method between index join, hash join, or sort merge join.

3. Of course, turning on PDQ is necessary. Otherwise, the query will be
executed serially and will not take advantage of the resources available for
PDQ queries.

4. Try to fragment your large tables so that parallel scans can be invoked.

PDQ and Stored Procedures

A stored procedure is considered to be an object that should contain many SQL
statements. The benefit of using PDQ inside a procedure is usually known as intraquery
parallelism, because it can start with a global priority and change the value after it has
been started. Also, intraquery parallelism exists for complex queries that sometimes
change the priority for subqueries.

What to Do When Stored Procedures Are Implemented Using PDQ

The recommendation is to set PDQ priority to 0 as the first executable line inside the
procedure (SET PDQPRIORITY 0), because Informix freezes the PDQ priority available in

the environment whenever a stored procedure is created or a manual compilation is
taking effect using UPDATE STATISTICS.

NOTE: None of the operations that make use of stored procedures will be
executed in parallel. The SQL statements inside a stored procedure are the ones
that really can take advantage of PDQ.

Who Controls PDQ Resources?

As an administrator, you have to allocate resources for PDQ activity, and you have to
exert control over the configuration parameters. Your users will also be responsible for
the PDQ behavior in some way. The application itself can change some PDQ priority
inside, and it could cause some other queries to start complaining about resources. It is
your responsibility to talk with the application engineers and with the end users about the
pros and cons of PDQ processing in your system.

How a User Can Control PDQ Resources

An end user can simply specify the environment variable PDQPRIORITY to a value of 0 to
100. This is the end user's only weapon. But even if the end user specifies a high or a low
priority, the application can ask for more or less. Remember that the SET PDQPRIORITY
SQL statement supersedes the environment variable, so the end user basically depends on
the application, unless the application doesn't make use of the SET PDQPRIORITY SQL
statement.

How an Administrator Can Control PDQ Resources

The administrator is the king in this context, because he controls everything by using the
configuration parameter file, using the onmonitor utility, or simply changing
dynamically the PDQ parameters using the onmode utility.

The Optimizer Compare Index Parameter

The OPTCOMPIND configuration parameter and environment variable is used to tell the
optimizer the intended use of the application. It can have only the following three values:

• 0 means that nested-loop joins will be the preferred method chosen by the
optimizer. This is a behavior of the optimizer in past releases of Informix.

• 1 means that the optimizer will base the join strategy on costs if the
isolation level of a query is not a repeatable read.

• 2 means that the optimizer will base join strategy on costs, regardless of
the isolation level of a query.

Usually, the nested-loop join locks fewer rows than hash and sort-merge joins, but it
performs more slowly when large tables are involved.

For DSS systems, 1 and 2 are the best choice. If you do not set the isolation level to
repeatable read, use the 2 value, which gives the optimizer more query paths to choose
from. The query path is a method that the optimizer chooses to form the tuples. (It
contains rows from a join.) If a good query path is chosen, the amount of data to be
examined will be minimized, and extra sorting for ORDER BY and GROUP BY statements
will be avoided, thus improving performance.

TIP: You should always run update statistics. This is the basic principle for
tuning your engine, because the information provided helps the optimizer to
choose the better query path.

Understanding the SET EXPLAIN Functionality

Sometimes you can monitor your individual queries by using the SET EXPLAIN ON SQL
statement. Using SET EXPLAIN ON generates the file sqexplain.out, which contains the
query plans for all SQL statements executed until Informix finds the SET EXPLAIN OFF
statement or the client application ends. This can help you determine which query path
the optimizer chose for a given query. If the file sqexplain.out already exists, it will be
appended, which is useful when you want to collect a log of selected queries.

Each query plan in the sqexplain.out file contains some information. Depending on the
query, some information will not be present. The general information is as follows:

NOTE: Only the query path chosen is listed by SET EXPLAIN ON. You can't find the
alternates paths that were considered by the optimizer.

• The query. The chosen query will be printed out before any
documentation.

• Estimated cost in units. The units are not very important; they are used
only to compare the cost with other query paths, and they are not used to
determine how long the query will take.

• Estimated number of rows returned. This is only an estimate. Sometimes it
is most accurate when the statistics for the tables are up to date and all
filter and join conditions are associated with indexes.

• Temporary files required. If the query requires you to create temporary
tables, you are shown which clause of the SQL statement was involved
when the optimizer decided to create that temporary table.

• The type of access. The type of access can be SEQUENTIAL SCAN when all
rows will be read sequentially, INDEX PATH when one or more indexes will
be used to read the rows, and AUTOINDEX PATH when Informix will create a
temporary index. Sometimes the creation of the index is faster than the
sequential scan. REMOTE PATH is used when a remote server will decide the
type of access.

• The type of join. Informix uses this type of join to join two tables. The
nested-loop join, sort-merge join, and hash join are the only valid join
methods supported by Informix. The hash join is available only in engines
later than 7.x.

• The SORT SCAN. The SORT SCAN keyword tells you that Informix executes a
sort in preparation for a sort-merge join. It displays the columns that will
form the sort key.

• The MERGE JOIN. This tells you that Informix will execute a sort-merge join
on the tables and columns specified below this keyword.

• DYNAMIC HASH JOIN. This keyword indicates that a hash join method will be
used to join the tables listed below the keyword DYNAMIC HASH JOIN. It also
prints the columns to be used for the join operation. This is the best join
method for DSS systems.

• Parallel, fragments: #. This keyword was introduced in engines later
than Version 7. It tells you whether a table will be read in parallel and how
many fragments will be used to accomplish the scan operation. If all the
fragments will be used, the keyword ALL is present after the word
fragments:.

• # of Secondary Threads: This shows you the number of threads started
for operations such as join, sort, group, and aggregate.

Suppose that you have the following sqlexplain.out file:

Query:
SELECT sales_cd, prod_cd, manufact, company
FROM product, sales
WHERE sales_cd IN (`new') AND product.prod_cd = sales.prod_cd
GROUP BY 2,3,1;
Estimated cost: 1088090
Estimated # Rows Returned: 20
1) informix.product: SEQUENTIAL SCAN (Parallel, fragments: ALL)
2) informix.sales: SEQUENTIAL SCAN
filters: informix.sales.sales_cd IN (`new')
DYNAMIC HASH JOIN
Dynamic hash Filters:
 informix.product.prod_cd = informix.sales.prod_cd
of Secondary Threads: 11

From the information contained in the sqexplain.out file, you can tell that the scan join
will be executed in parallel for the table product, the sequential scan for the table sales
contains a filter condition, a dynamic hash join will be performed, the table product will
be used by the hash function, and 11 threads will be started to perform the join and
group parallel components. For the scan operation, you limit the number of scan threads,
as explained in this chapter, and you can look at more information using the Memory
Grant Manager if the query is a PDQ query.

Summary

The PDQ technology implemented by Informix is a result of new computer market
trends. After the evolution of data-warehouse implementations, it was necessary to create
a new database server and new hardware that could give similar or better performance for
parallel query operation than those implemented by proprietary mechanisms in
mainframes. Because the Dynamic Server of Informix offers great flexibility in the
configuration and monitoring of the database parallel processing, it can fit in any
computer environment. The DBA must make it work according to his or her own special
needs.

- 20 -

Data and Index Fragmentation
• Reasons to Fragment

o Parallel Disk Operations
o Fragment Elimination
o Dataskip
o Dbspace Management

• Reasons Not to Fragment
• Physical Storage of Informix Databases

o Standard Engine
o OnLine, Including DSA
o Extended Parallel Server

• Standard Engine Data Distribution
o Table Placement
o Logical Volume Manager

• OnLine Data Distribution
o Logs
o Custom Dbspaces
o Temporary Spaces

• DSA Data Fragmentation
o Round-Robin Fragmentation
o Expression-Based Fragmentation
o Choosing the Proper Strategy
o Monitoring Fragment Usage
o Exploiting Temporary Spaces
o Avoiding ROWIDS

• XPS Data Fragmentation
o Dbslices
o System-Defined Hash Fragmentation
o Monitoring Fragment Usage
o Enabling Co-Located Joins
o Using Flex Temporary Tables

• Index Fragmentation
o User Indexes
o System Indexes

• Modifying Fragmentation Strategies
o Creating a New Fragmentation Strategy
o Changing a Fragmentation Strategy
o Adding a Fragment
o Dropping a Fragment
o Combining Fragments into One Table
o Splitting a Table into Component Fragments

• Summary

by Glenn Miller

Fragmentation is the deliberate placement of data and indexes on disk according to
predefined rules. The term is also commonly used to describe the state of physical files

that have become dispersed across a disk, effectively slowing sequential access to them.
This disparity is unfortunate. However, because Informix chose to use the term
fragmentation for its data distribution terminology, the same is done here, and scattering
is used to characterize non- contiguous files. Reducing scattering as a means of
improving database performance is discussed in Chapter 23, "Tuning Your Informix
Environment."

Beginning with version 7 of the INFORMIX-OnLine Dynamic Server Architecture
(DSA), you can intelligently fragment tables and indexes among several disks as a means
of balancing I/O. Systems that can parallelize disk operations can take advantage of this
intelligent fragmentation and reduce dramatically the time needed for massive reads or
writes. This chapter describes how and when to employ data and index fragmentation.

Reasons to Fragment

Databases are disk hogs. Those few that are not, and that do not tax system I/O, are
exceptions. Should you be endowed with such a gift, move on. This chapter is not for
you.

The main goal in fragmentation is to balance I/O across multiple disks. Maximizing
throughput in this way is especially critical in very large databases, such as those seen in
Decision Support Systems (DSS) and Data Warehouses. As opposed to OnLine
Transaction Processing (OLTP) environments, DSS systems are characterized by
sequential scans of the data, with concomitant slow response times. OLTP applications,
conversely, usually perform indexed reads and have sub-second response times. DSS
systems usually find themselves disk-bound, so it is crucial that such environments
employ the most effective means of scanning data rapidly. Fragmentation is such a
means.

The gain for OLTP systems is in reduced contention. When indexes and data are
fragmented evenly across multiple disks, simultaneous requests can be served more
efficiently. Less contention for single disks results in more concurrency and faster overall
system performance.

Parallel Disk Operations

When a table's data is fragmented across multiple disks, a DSS query under OnLine-DSA
spawns multiple scan threads in parallel to read the data. This crucial component of PDQ
(covered in Chapter 19, "Parallel Database Query") accounts for significant performance
gains.

NOTE: When using INFORMIX-DSA for DSS applications, the biggest benefit of
fragmentation--even more important than balancing I/O--is using parallel scans.

The ability to invoke parallel scans is one of the reasons that database-level
fragmentation can be more effective than hardware striping. Disk striping at the hardware
level can help balance I/O for reads and writes but cannot notify OnLine to create parallel
scan threads.

Informix's Extended Parallel Server (XPS), an extension of DSA designed for parallel
architectures, can take even greater advantage of parallel disk operations. OnLine-XPS
can also perform inserts across coservers in parallel, using its Pload/XPS utility. Such
inserts are considerably faster than standard loads when inserting into a fragmented table.
In addition to inserts and scans, XPS also performs the following functions in parallel:

• Aggregation
• Deletes
• Index builds
• Joins
• Logging
• Sorts
• Unloads
• Updates

This broad range of parallelized functions underscores the importance of implementing
an effective fragmentation scheme for an XPS platform.

Fragment Elimination

In certain circumstances, Informix can eliminate fragments from a search. When this
occurs, system resources such as CPU cycles, cache buffers, and LRU queues are freed
for other operations. Whether fragment elimination can occur depends on the form of the
query and the distribution scheme of the table being searched. In brief, this can happen
when the query is equality-based and uses filters on the same columns as those that
define the fragmentation scheme. Fragment elimination is described further in the section
"DSA Data Fragmentation," later in this chapter.

Dataskip

When increased availability of data during disk failures is paramount, fragmentation can
mitigate the effects of failed devices. If an application does not need access to all
fragments of a table, such as when retrieving data where OnLine has invoked fragment
elimination, a query can succeed even when some of the table's data is unavailable.

Additionally, some applications may be designed to tolerate the unavailability of some
data. In such cases, if the administrator has marked a fragment unavailable by setting
DATASKIP ON, the query will still complete. The application may even anticipate such
failures and, by executing the SET DATASKIP ON statement internally, specify which
fragments may be safely ignored if they are unavailable.

Dbspace Management

Another benefit of fragmentation is finer control over disk usage. The following
examples suggest just some of the ways to manage custom dbspaces effectively.

Reliability

OnLine performs backups and restores at the dbspace level. A dbspace is a collection of
disk regions specifically allocated by the OnLine administrator. Because fragments are
assigned to dbspaces, you can implement fine granularity for recovery planning with a
judicious fragmentation scheme. Especially critical data can be assigned to its own
dbspace for rapid recovery in the event of a disk failure. Index-only dbspaces can be
eliminated from the backup plan. Index-only dbspaces can always be reconstructed from
the base data, so it is often reasonable not to archive them and to speed up the archive
process instead.

Flexibility

The fragmentation scheme for a table can be fluid. That is, fragments can be attached to,
and detached from, a table over time. With the ATTACH FRAGMENT statement, you can
maintain a "rolling" fragmentation mechanism. This is often useful in a data warehouse
application. Usually with such applications, summary data is added to the warehouse
periodically--monthly, for example. This load need not disturb the warehouse proper.
You can load new data into tables that match the format of the warehouse. When loaded,
these tables can be attached to the warehouse's existing tables as fragments, as long as the
warehouse's tables are fragmented by expression on, in this case, month. Because
attaching fragments is quicker than loading, the warehouse stays more available to its
users. Conversely, when warehouse data becomes stale, you can use DETACH FRAGMENT
to delete old data or move it to slower disks.

Security

With the GRANT FRAGMENT and REVOKE FRAGMENT statements, you can give individual
users custom permissions on specific fragments. In the preceding example, perhaps one
set of users is granted permission to alter current data, but permissions on older fragments
are more restrictive. The GRANT FRAGMENT statement, while only valid for tables
fragmented according to an expression-based distribution scheme, can still be a useful
complement to your security planning.

Reasons Not to Fragment

The primary reason to avoid fragmentation is that it is often not needed. Too often,
through over-fragmentation, schemas become overcomplicated, dbspaces become
difficult to manage, and administrators' jobs become arduous. Fragmentation should be
driven by need, not caprice. Small tables should not be fragmented. Infrequently accessed

tables should not be fragmented. Most indexes should not be fragmented. Rather, given
the option, choosing a fragmentation scheme ought to be done after a system is in
operation. Usually, just a few tables or indexes reveal themselves as candidates for
fragmentation. By using onstat -g iof and other monitoring tools, described later in
the section "Monitoring Fragment Usage," you can identify eligible hot spots and
construct custom fragmentation schemes for them.

Physical Storage of Informix Databases

Before you can design effective fragmentation schemes, you need to understand how
Informix stores its database objects. This section reviews the fundamentals of these basic
but crucial concepts.

Standard Engine

SE databases reside entirely in a single directory, databasename.dbs. Within that
directory, each table, including each system table, is stored as a set of files with the same
(full or partial) name as the table, a unique number starting at 100, and an extension. For
a table such as stores, the files might be stores100.dat for data, stores100.idx for
indexes and, on certain platforms, stores100.lok for locks.

OnLine, Including DSA

OnLine differentiates between two distinct types of storage: physical units and logical
units. Physical units are those sections of disk available for the database to exploit;
logical units are internal groupings Informix uses to manage the database. Logical units
overlay and generally span physical units.

Physical Units

Informix uses the following units of physical storage:

• Chunk
• Page
• Blobpage
• Extent

The largest physical unit is the chunk. It is a contiguous region of disk, and on most
platforms, it has a maximum size of 2GB. It is the only unit allocated to the database
directly by the OnLine administrator. Within a chunk, the most atomic unit of physical
disk storage is a page. A page is typically 2KB or 4KB, but it is system-dependent and
unchangeable. As shown in Figure 20.1, chunks are composed end-to-end of contiguous
pages, and because pages are the building blocks of chunks, pages can never cross chunk
boundaries.

Figure 20.1.

Chunks comprise pages.

A blobpage is the unit of disk space that Informix uses to store blobs, or binary large
objects. Byte and text are the two blob data types currently supported. Blobpages are
specified as multiples of the page size. As with standard chunks, chunks in a blobspace
consist entirely of adjacent, whole blobpages. It is possible to store blobs in a standard
dbspace, with standard pages; however, when blobs span multiple pages, using custom
blobpages is more efficient.

Extents are contiguous groupings of pages within a chunk that store data for a given
table. When a table is defined, you can specify its initial extent size and next extent size.
The default size for each is eight pages. Upon the creation of a table, the system finds an
area of disk large enough to allocate the first extent. Over time, as a table grows beyond
its first or any subsequent extents, additional extents of the current next size for that table
are allocated. Succeeding data rows are stored in this next extent. As with pages, extents
must exist entirely within a chunk. This does not mean that tables cannot span multiple
chunks; different extents for the same table can be in different chunks. In fact, this
flexibility is what allows for the myriad fragmentation schemes available to an
administrator.

Logical Units

Informix uses the following units of logical storage:

• Dbspace
• Blobspace
• Database
• Table
• Tblspace

A dbspace is a collection of one or more chunks in which databases and other Informix
objects are stored. The root dbspace is one dbspace that must exist on every instance. It is
where Informix stores housekeeping data and is the default dbspace for all other
operations. Overriding the root dbspace defaults with deliberate dbspaces is usually the
first step toward effective data distribution. At the least, moving the physical and logical
logs to separate devices, as described in the section "OnLine Data Distribution," is almost
always worthwhile.

Besides standard dbspaces, OnLine version 6.0 and OnLine-DSA also support the use of
temporary dbspaces. Temporary dbspaces are those reserved exclusively for the storage
of temporary tables and are temporary only insofar as their contents are not preserved in
the case of a shutdown. Temporary dbspaces also escape logical and physical logging.

Because of this reduced overhead, temporary dbspaces are ideal for transitory database
operations.

A blobspace is a logical storage unit consisting of chunks that contain only blobpages.
Blobs from several tables can be stored in the same blobspace. Because blob data is so
voluminous, Informix has chosen to write blob data directly to the blobspaces, rather than
shunting writes through resident shared memory, as it does with all other data types.
Likewise, blob updates are never written to the logical or physical logs. Instead, the
blobspaces are written directly from disk to the logical log backup tapes when the logical
logs are backed up.

As a logical storage unit containing related tables and indexes, a database is initially
created within a single dbspace. Also in that dbspace are the system tables Informix uses
to store information about that database's structure and internal relationships. If no
dbspace is named when a database is created, it is created in the root dbspace. By default,
tables are created in the same dbspace as their database. Much of the remainder of this
chapter describes how and when to override those defaults to recognize the advantages of
data and index fragmentation.

Informix uses the tblspace as a logical grouping to indicate all the pages that are allocated
for a table. In addition to data and index pages, tblspaces contain pages used to store blob
data (when stored in a dbspace), remainder pages, and bitmap pages that track page usage
within the table extents. When a table is fragmented, it consists of several tblspaces
because each fragment is considered to be its own tblspace.

Figure 20.2 depicts how tblspaces can exist on more than one disk and how tables within
that tblspace can span disks.

Figure 20.2.

Tblspaces can span disks.

Extended Parallel Server

Informix recently introduced an extension of its DSA engine suitable for loosely coupled
cluster and massively parallel processor architectures. The Extended Parallel Server
(XPS) shares many features of DSA but adds functionality designed specifically to
exploit the parallelism of these new architectures. Because of its efficiency at performing
parallel operations, XPS is especially suitable for very large (more than 50GB) DSS and
data warehouse applications.

An XPS system is designed around a multiple coserver model. On each coserver, or node,
is a separate Informix instance that communicates with the other coservers through a
high-speed internal switch. Coservers have their own CPUs, memory, and disk. It is this
segregation of functions that allows database operations to be performed in parallel. The
performance improvements achievable for simple parallel operations such as loading are

dramatic: Speeds increase nearly linearly as additional nodes are added. The challenge
for the administrator is to marshal the independent resources of the coservers into an
effective team.

OnLine-XPS adds the following units of storage to those described earlier:

• Dbslice
• Logslice
• ROOTSLICE
• PHYSSLICE

One construct available to help deploy coservers effectively is the dbslice. A dbslice is a
collection of automatically generated dbspaces, usually identical, and usually on multiple
coservers, which can be administered concurrently. As with dbspaces, dbslices may be
standard or temporary. The derived dbspaces contain all the traditional OnLine storage
units but allow you to apply a single reference to the dbslice to each dbspace
simultaneously. Without such a consistent means of managing the numerous dbspaces
usually required for an XPS system, OnLine administration quickly becomes unwieldy.

Figure 20.3 shows a series of derived dbspaces, named cust_slice.1 through
cust_slice.6, which are the components of the cust_slice dbslice. In this example,
each of the three coservers uses two disks for this dbslice.

Figure 20.3.

Dbslices simplify XPS administration.

A logslice is a type of dbslice used only for managing logical logs. Logslices simplify the
creation and management of logical logs across coservers by treating sets of logs as a
single entity.

ROOTSLICE is an optional configuration parameter that specifies a root dbspace on each
defined coserver. If used, it supersedes the ROOTNAME parameter. It takes effect only when
the disk is initialized and creates one derived dbspace per coserver. The dbspaces that are
created are named rootslicename.n, where n is the coserver number. You cannot
change the ROOTSLICE parameter once the instance is initialized.

When used, PHYSSLICE, another optional global configuration parameter, dictates where
the physical log resides. As with ROOTSLICE, it is used to specify a range of derived
dbspaces and takes effect when the Informix instance is initialized. You can use the
coserver-specific parameter PHYSDBS after initialization to migrate the physical log if
needed.

Standard Engine Data Distribution

There is no fragmentation per se with the Standard Engine. SE is used primarily where
reliability is more important than performance and when the sacrifice of flexibility in
tuning is acceptable. Moreover, SE databases are generally small and, on the whole, less
complex than OnLine databases. Often, there is only one disk; fragmentation then is
unreasonable. Nonetheless, when multiple disks are available, especially if they are on
different disk controllers, you should place the database on its own disk. The best option
is to separate the database's disk from other disk-intensive areas, such as system swap
space, or drives where the operating system is mounted.

Table Placement

You can use tools available within the operating system to distribute heavy-use or large
tables to dedicated disks if needed. If you can predict that a table or set of tables would
benefit from being placed on its own drive, you can define this with a statement like the
following:

CREATE TABLE stores (
store_no INTEGER,
store_mgr CHAR(20))
IN "/disk2/store";

After an SE database is created, it is trickier to move an existing table. Re-creating the
table with a designated directory and reloading the data are preferred. Another option is
to move the table to another disk and then create a symbolic link at its original location.
The following syntax shows one way to accomplish this:

mv /busy_disk/retail_db.dbs/stores100.dat /quiet_disk/stores100.dat
ln -s /quiet_disk/stores100.dat /busy_disk/retail_db.dbs/stores100.dat

If you decide to move files in this way, be sure to keep the index file (.idx) and data file
(.dat) in the same location.

CAUTION: Exercise care when moving existing data and index files in this
manner. This method of distributing data is not supported by Informix.

Logical Volume Manager

Some operating systems provide a Logical Volume Manager (LVM). With an LVM, you
can create a custom pool of available space, called a logical volume, which can span disk
drives. Directories can be allocated to a logical volume, instead of to a fixed partition.
These logical volumes can therefore be arranged to balance I/O by partitioning a database
directory, or a heavily used table, across several drives.

OnLine Data Distribution

Informix's OnLine Engine is characterized by its internal management of dbspaces. Even
though fragmentation proper is not available with INFORMIX-OnLine version 5, many
tools do exist with which to allocate and distribute data effectively.

Logs

In an OLTP environment, gaining maximum advantage from "prime real estate," the
center of the disks, is critical. Because a dbspace may be composed solely of one chunk
and a chunk's location is determined exactly by the administrator, you can precisely
define the location of a dbspace on disk. Therefore, you can place the most active
dbspaces on the most efficient disk drives. For OLTP systems, the disk hot spot is usually
the logical log.

TIP: In an OLTP environment, migrate the logical logs to the fastest dedicated
drive available. Because writes to the logical logs are sequential, the disk head is
always positioned correctly.

For systems with rapidly changing data, the physical log can also create a performance
bottleneck, especially when it resides on the same disk as the root dbspace. After
migrating the logical logs, consider moving the physical log next.

Custom Dbspaces

At the extreme, you can place each table in its own dedicated dbspace. With such a
strategy, you can achieve exact partitioning of the disk. This is almost never worthwhile.
Instead, after migrating databases and logs out of the root dbspace, only spend the time to
distribute high usage or very large tables. In addition, if certain tables are always being
joined, consider placing them on separate disks.

When a critical table requires the use of several disks to balance I/O, you can mimic disk
striping with the tactic pictured in Figure 20.4.

Figure 20.4.

How to mimic disk striping.

In this case, the customers_dbs dbspace comprises three chunks, one per disk. Each
chunk is 100MB. The customer table's first and next extents are defined to be 60MB. The
first extent is placed in chunk1 on disk1. Informix allocates extents with contiguous
pages, if possible. After 60MB of data are loaded, OnLine allocates the next extent,
another 60MB. Because there is insufficient space in chunk1 to allocate the entire next

extent, it is created in chunk2. 40MB of chunk1 remain unused. An extent is created in
chunk3 in a similar fashion. You can place other tables, or even indexes from this table,
in the unused space; alternatively, the space can remain available to accommodate further
growth.

Temporary Spaces

Even though OnLine version 5 does not support temporary dbspaces per se, you can still
create a dbspace for the exclusive use of explicit temporary tables. By default, explicit
temp tables are placed in the dbspace of the current database, but this may be superseded:

CREATE TEMP TABLE work_area (
cust_no INTEGER,
cust_totals INTEGER)
IN temp_dbs;

You can place this temp_dbs dbspace on a high-speed disk if one is available. Such a
dedicated dbspace can help ensure that space is always available for those operations that
use explicit temporary tables.

You can create two other kinds of temp tables: sort and implicit. Sort temp tables are
created with the following kind of SQL statement when no index on last_name exists:

 SELECT *
 FROM customer
ORDER BY last_name;

Sort temp tables are created in the /tmp directory, unless other directories are specified
with the environmental variable DBTEMP. You can name several directories, separated by
colons.

If a multiprocessor machine is used and the environmental variable PSORT_NPROCS is set,
then OnLine can invoke parallel processing for sorts. Candidates for parallel sorting
include not only ORDER BY statements but also SELECT UNIQUE commands and
sort/merge joins. When this happens, Informix writes these temporary sort files to the
directories listed in PSORT_DBTEMP. When this variable is set to multiple directories, those
writes are spread across multiple file systems. For instance, by setting
PSORT_DBTEMP=/tmp:/tmp2, you place sort files alternately in /tmp and /tmp2.
Naturally, these directories should be on different disks. If a parallel sort is invoked and
PSORT_DBTEMP is not set, OnLine uses the value of DBTEMP. If DBTEMP is not set, it uses
/tmp.

Finally, implicit tables are those generated internally in the process of executing a
statement such as a SCROLL CURSOR.

For Informix versions prior to 6.0, implicit temp tables are created in the root dbspace.
With OnLine version 6.0, you can use true temporary dbspaces. When available,

Informix uses these for implicit and sort temp tables. A temporary dbspace can--and
should--also be used for explicit temp tables.

DSA Data Fragmentation

The general goal of fragmentation is to distribute data evenly. Any fragmentation scheme
selected ought to have this idea paramount. When an improper fragmentation strategy
distributes data unevenly, such that one dbspace has an inordinate quantity of data, the
result is known as data skew. The choice of which fragmentation scheme to use depends
largely on which can properly avoid data skew. An additional benefit afforded by
expression-based and hash-based fragmentation is that certain fragments can be
eliminated from a search. Fragment elimination can substantially reduce contention and
increase search speed.

NOTE: When a table is fragmented, the extent size specified in the CREATE TABLE
statement is applied to each fragment. Thus, extent sizes calculated for a table as
a whole need to be divided by the number of fragments to be appropriate for a
fragmented table.

Round-Robin Fragmentation

The round-robin fragmentation scheme is the easiest to use. It places rows of data
alternately into each dbspace specified in the CREATE TABLE statement. This is best used
when all fragments must be scanned, as is often true with DSS applications:

CREATE TABLE tablename (column list)
FRAGMENT BY ROUND ROBIN
IN (list of dbspaces);

The primary advantage of a round-robin fragmentation scheme, besides simplicity, is that
it is guaranteed to avoid data skew. However, because the scheme is not expression-
based, the OnLine engine is never able to eliminate fragments from a query that accesses
a table fragmented by round robin.

Expression-Based Fragmentation

The expression-based fragmentation strategy places related rows in the same dbspace. An
SQL expression that identifies a set of rows is specified for each fragment. Rows that
match the criteria in an expression are placed in the corresponding dbspace:

CREATE TABLE tablename (column list)
FRAGMENT BY EXPRESSION
SQL expression IN dbspace,
SQL expression IN dbspace,

REMAINDER IN dbspace;

The SQL expression can refer only to columns in the table and cannot contain subqueries,
stored procedures, or references to external tables. The REMAINDER IN clause is optional
and indicates where rows that do not match any of the SQL expressions should be placed.

TIP: Be cautious with the REMAINDER IN clause of the FRAGMENT BY EXPRESSION
statement. Remainder fragments often become overloaded with data, creating
data skew. Additionally, OnLine is not always able to eliminate a remainder
fragment from a search.

Fragmenting by expression is especially beneficial when it allows OnLine to eliminate
fragments to be scanned. This occurs when the query expression can unequivocally
identify the fragment to be scanned based solely on the fragmentation expressions.
Generally, this means that the query contains an equality or range expression, and the
fragmentation rule creates non-overlapping fragments. In such situations, when the data
is accessed with a high degree of selectivity, fragmenting by expression is most
advantageous.

Choosing the Proper Strategy

The first step in choosing the proper fragmentation strategy is understanding your
application. Primarily, is it a DSS application, where improved single user response time
is important, or is it an OLTP application, where reducing contention matters most? For a
review of the differences, refer to the section "Reasons to Fragment," earlier in this
chapter.

If you have a DSS application, maximum data throughput is generally your primary
concern. Often, all data fragments have to be scanned. When this is true, you should
fragment your data to increase parallelism but not fragment your indexes. You may have
few indexes; those you do have should be detached and placed in separate dbspaces.

If there is a reasonable set of expressions that can be established to distribute your data
evenly (see "Avoiding Data Skew," later in this chapter), then you should use a FRAGMENT
BY EXPRESSION scheme. Otherwise, as long as the application will not delete many rows,
use FRAGMENT BY ROUND ROBIN. DSS queries primarily demand balanced I/O and permit
no fragment elimination. Round-robin fragmentation provides this.

The exigencies of OLTP applications demand a different strategy. Fragment elimination
is usually your chief interest. When you eliminate fragments--usually index fragments--
individual queries run faster, simultaneous sessions contend less for disk, and
concurrency is generally increased.

The goal is to design an effective rule, or set of expressions, by which to fragment. In
most cases, the same rule is applied both to the data and to the index. When designing the
fragmentation rule, try to create non-overlapping expressions based on a single column
with no remainder clause. OnLine is best able to eliminate fragment when these
conditions are true. For a clear example of how fragment elimination occurs with such a
rule, refer to the section "Monitoring Fragment Usage," later in this chapter.

Tuning the Expressions

The following tips will help you create more efficient SQL expressions when you use an
expression-based fragmentation scheme:

• Order the expressions by their likelihood of being true. The expressions
are evaluated in order, with a row's destination determined as soon as an
expression evaluates to true.

• Keep expressions simple, so as not to confuse the optimizer and to make it
more likely that fragmentation elimination will occur.

• Do not fragment on a data type that needs conversion, such as date. Type
conversions increase the time needed to evaluate the expression.

CAUTION: Some Informix manuals recommend using the MOD operator in a
FRAGMENT BY EXPRESSION to simulate a hash scheme. Don't do this. The supposed
advantage is to create an even distribution of data; instead, use round robin. The
overhead required to parse the MOD value makes it unacceptable as a fragment
key.

Avoiding Data Skew

Starting with OnLine version 6.0, Informix has the capability to generate and report on
data distributions for a column. By examining these distributions, you can create a
FRAGMENT BY EXPRESSION strategy that avoids data skew. In the following example,
imagine that you want to fragment the orders table among five disk drives. You decided
that you will construct range-based expressions on cust_no, but you want to be sure to
create balanced fragments. With the following SQL statement, you instruct OnLine to
sample the orders table and apportion the values it finds for cust_no into 10 bins:

UPDATE STATISTICS HIGH FOR TABLE orders(cust_no)
RESOLUTION 10 DISTRIBUTIONS ONLY;

TIP: When you invoke UPDATE STATISTICS to generate distributions for refining
your fragmentation expression, add the DISTRIBUTIONS ONLY clause. This keeps
OnLine from reconstructing index information. The time savings can be
considerable.

After the statistics are calculated, you can examine the results with the following
Informix utility:

dbschema -d retail_db -hd orders

The following code shows a portion of the output:

Distribution for informix.orders.cust_no
High Mode, 10.000000 Resolution
--- DISTRIBUTION ---
 (1)
 1: (1257, 965, 967)
 2: (1257, 1065, 2032)
 3: (1257, 1149, 3182)
 4: (1257, 715, 3900)
 5: (1257, 1213, 5113)
 6: (1257, 899, 6012)
 7: (1257, 1205, 7317)
 8: (1257, 1244, 8642)
 9: (1257, 619, 9261)
10: (1218, 1166, 10427)

Each bin's statistics are shown on one line. The first value is the number of rows in the
bin; the second value is the number of unique values for cust_no in the bin; the last
column shows the high value for that bin.

With these values, you can build the following accurate fragmentation strategy:

FRAGMENT BY EXPRESSION
cust_no < 2032 IN dbspace1,
cust_no >= 2032 AND cust_no < 3900 IN dbspace2,
cust_no >= 3900 AND cust_no < 6012 IN dbspace3,
cust_no >= 6012 AND cust_no < 8642 IN dbspace4,
cust_no >= 8642 IN dbspace5;

Because each bin represents 10 percent of the data, by adopting the high value for every
second bin as the barrier between fragments, you ensure an equal distribution of data
among the five disks. If this distribution becomes inefficient over time, you can change it
when the need arises. For details on how to do this, refer to the section "Modifying
Fragmentation Strategies," later in this chapter.

Creating Data Skew

In some situations, it might actually be beneficial to create an intelligent data skew.
Suppose that in the previous example, the older data (lower cust_no values) is seldom
accessed. The need then is to balance I/O requests across disks, rather than data. You can
separate a smaller amount of heavily accessed data from larger amounts of lightly
accessed data. To accommodate spreading active portions of the data across disks might
call for a scheme like this one:

FRAGMENT BY EXPRESSION
cust_no < 5000 IN dbspace1,
cust_no >= 5000 AND cust_no < 7500 IN dbspace2,
cust_no >= 7500 AND cust_no < 9000 IN dbspace3,
cust_no >= 9000 AND cust_no < 10000 IN dbspace4,
cust_no >= 10000 IN dbspace5;

The net performance for accessing the table with this strategy might improve, even
though there is an uneven distribution of data rows.

Minimizing Overhead

Do not fragment capriciously. There is some overhead in creating and maintaining a
table's fragments, so do not create very small fragments. Also, do not fragment seldom
used tables or indexes; the complexity is unnecessary.

Over-fragmenting can lead to thread saturation, when too many scan threads are
generated and overwhelm the CPU VPs. Although it is true with individual queries that
parallel I/O performance increases nearly linearly with the number of fragments added,
this increase has a limit. With very small fragments, the limits of the bus bandwidth and
the number of CPUs defeat any gains from parallel scans. Any benefits of fragmentation
are offset by the need to coordinate multiple scan operations.

Another way to avoid unnecessary overhead is to choose stable columns in the
fragmentation expression. If a column that is updated is part of a fragment-by-expression
rule, the database engine needs to reevaluate the row to see if its distribution should
change. The evaluation is slow; actually moving a row is even slower.

Monitoring Fragment Usage

You have a number of tools for monitoring fragment usage. A few of them are described
in the following sections. For more information about monitoring in general, see Chapter
21, "Monitoring Your Informix Environment," and Chapter 22, "Advanced Monitoring
Tools."

SET EXPLAIN

The SQL statement SET EXPLAIN ON displays the path Informix uses to process a query.
As a general monitoring tool to optimize your applications, it is invaluable. You can find
an extensive discussion of this tool in Chapter 23. A subset of its output reveals which
fragments of a table Informix needs to use to satisfy a query. This is especially useful to
recognize whether Informix can eliminate fragments from a query.

The following examples show fragment elimination occurring for a table when it is
fragmented by expression but not when it is fragmented by round robin. Consider the
following two fragmentation schemes:

CREATE TABLE customers (
cust_no INTEGER,
last_name CHAR(20))
FRAGMENT BY EXPRESSION
cust_no > 0 AND cust_no < 5000 IN dbspace1,
cust_no >= 5000 AND cust_no < 10000 IN dbspace2,
cust_no > 10000 IN dbspace3;
CREATE TABLE customers (
cust_no INTEGER,
last_name CHAR(20))
FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3;

When a query that filters only on cust_no is run, Informix may be able to eliminate
fragments when the table is fragmented by expression:

SELECT *
 FROM customers
 WHERE cust_no < 6212;

The database engine needs to examine only fragments 0 and 1 (dbspace1 and dbspace2).
The relevant lines from the SET EXPLAIN output reveal this:

Estimated Cost: 342
Estimated # of Rows Returned: 6155
1) informix.customers: SEQUENTIAL SCAN (Parallel, fragments: 0, 1)
 Filters: informix.customers.cust_no < 6212

As Table 20.1 shows, certain equality and range operators allow fragment elimination for
expression-based fragmentation, but Informix can never use round-robin fragmentation to
eliminate fragments.

Table 20.1. SET EXPLAIN reveals fragment elimination. These
fragments must be scanned to satisfy the query.
Filter Expression-Based

Fragmentation
Round-Robin
Fragmentation

cust_no = 432 0 All
cust_no < 6212 0, 1 All
cust_no > 5200 and cust_no
< 7219 1 All

cust_no in (502, 11312) 0, 2 All
cust_no between 10342 and
12335 2 All

cust_no > 0 All All
cust_no < 0 None All

The last row in the table is of special interest. Informix recognizes, solely from the
fragmentation expression, that no rows can satisfy this query.

The Sysfragments Table

Informix stores information about the structure of its databases and storage units in a set
of internal tables called system tables. One of these tables, sysfragments, keeps a row
for each fragment managed by OnLine. Table 20.2 shows some of the useful columns in
this table.

Table 20.2. Useful Sysfragments components.
Column
Name

Description

fragtype Type of fragment: (I)ndex or (T)able
tabid The table ID that corresponds to this table's entry in systables
indexname The name of the index, if this entry describes index fragmentation
partn Unique number that identifies the physical location of the fragment
strategy (R)ound robin, (H)ash, (E)xpression, (I)ndex, detached from table,

(T)able-based, or attached index
exprtext Fragmenting expression
dbspace The dbspace where this fragment is located
levels The number of levels for the B+ tree index, if this is an index
npused Number of pages used (for table: data pages; for index: leaf node

pages)
nrows Number of rows in the fragment (for table: data rows; for index:

unique values)

One way to use this table is to examine the amount of data in each fragment to see
whether data and indexes are distributed evenly. The following SQL query shows all
user-defined fragments:

 SELECT t.tabname, f.partn, f.dbspace, f.npused, f.nrows
 FROM sysfragments f, systables t
 WHERE f.tabid > 99
 AND f.tabid = t.tabid
ORDER BY 1, 2;

With this query, you can tell at a glance whether a distribution is even. A sample output,
which shows effective fragmentation of the customer table, might look like

tabname partn dbspace npused nrows
customers 2752556 dbspace1 316 24678
customers 3473452 dbspace2 319 24879
customers 4128812 dbspace3 317 24733

The values in this table are refreshed only when you run UPDATE STATISTICS. Therefore,
be sure to run UPDATE STATISTICS after loading data into fragments.

onstat

Several options of the OnLine utility onstat are effective for monitoring fragment usage.
The following option displays page reads and page writes by chunk:

onstat -D

One especially useful form of this command is to isolate which disks are the most active.
It zeroes the read and write counts between each interval you specify--in this case, 10
seconds:

onstat -D -z -r 10 | grep /

It runs until you interrupt it. Adding the repeat flag (-r 10) and resetting the counts (-z)
can be combined with any of these onstat commands.

The following option displays asynchronous I/O frequency by chunk for each dbspace:

onstat -g iof

It also displays statistics for temporary files and sort-work files. The ppf (partition
profile) option shows statistics about each fragment that is currently open:

onstat -g ppf

Although actual disk reads and writes are not listed, the isrd (ISAM reads) and iswrt
(ISAM writes) columns indicate which fragments are used heavily. The output shows I/O

activity by partnum, so you might have to translate that value to find the table being
referenced. One way is with the following query:

SELECT t.tabname
 FROM sysfragments f, systables t
 WHERE f.partn = partnum
 AND f.tabid = t.tabid;

The next option displays the dataskip status for each dbspace:

onstat -f

When you execute this statement, you see one of the following three results:

dataskip is OFF for all dbspaces
dataskip is ON for all dbspaces
dataskip is ON for dbspaces:
 dbspace1 dbspace2

Exploiting Temporary Spaces

With OnLine-DSA, all temporary tables--explicit, temp, and sort--are created in the
temporary spaces defined by the environmental variable DBSPACETEMP, if set. If this
variable is not set, these tables are created in the same space as the database. Because
decision support queries typically use temporary dbspaces extensively, especially for
large joins and sorts, setting DBSPACETEMP properly is crucial. In your OnLine
configuration, you should set DBSPACETEMP to a list of temporary dbspaces on different
disks. OnLine then alternates the use of these spaces as it creates temporary tables.
Although this does not imply actual fragmentation of the temporary tables, it does afford
some degree of load balancing.

You can fragment explicit temporary tables if you choose. The syntax is the same as for
regular tables.

TIP: Fragment large, explicit temporary tables by round robin across temporary
dbspaces.

Avoiding ROWIDS

With the onset of fragmentation, Informix eliminated the virtual column ROWID, which
had previously been available in every table. Some applications exploited ROWID as a
handy alternate key--that is, as a handle with which to select a known row quickly. This
was effective because ROWID stored the physical location of a data row and allowed for
immediate data access. In versions 7.0 and higher, this pseudocolumn is no longer created
by default for fragmented tables.

If you must have ROWIDS available for a fragmented table, you can force OnLine to
generate them explicitly with

CREATE TABLE tablename (column list)
FRAGMENT BY (fragmentation scheme)
WITH ROWIDS;

When you do this, OnLine assigns a unique, invariant value for every row. It also creates
an index that it uses to find the physical location of each row. In addition, it adds four
bytes to each row. Finally, it inserts a sysfragments row to indicate the existence and
attributes of the ROWID column. Consequently, creating ROWIDS for a fragmented table
adds significant overhead and will impair performance.

TIP: Avoid using ROWIDS for access to fragmented tables. Use primary keys
instead.

XPS Data Fragmentation

Fragmentation with XPS is fundamentally similar to fragmentation with OnLine-DSA.
Two innovations are most noteworthy: dbslices and hash fragmentation. Dbslices, groups
of related dbspaces, greatly simplify dbspace administration. Hash fragmentation is an
alternative fragmentation strategy that can both minimize data skew and offer fragment
elimination.

Dbslices

For the examples in this section, consider that cust_slice is a dbslice that defines six
identical derived dbspaces, cust_slice.1 through cust_slice.6. Refer to Figure 20.3
for a diagram of this construct.

When a dbslice exists, it can be used in a fragmentation expression wherever a list of
dbspaces is legal in OnLine-DSA. For example, the statement

CREATE TABLE stores (column definitions)
FRAGMENT BY ROUND ROBIN IN cust_slice;

is identical to and easier to administer than

CREATE TABLE stores (column definitions)
FRAGMENT BY ROUND ROBIN IN cust_slice.1, cust_slice.2, cust_slice.3,
 cust_slice.4, cust_slice.5, cust_slice.6;

To best distribute the workload, when establishing a dbslice, you should have the number
of dbspaces equal a multiple of the number of coservers.

System-Defined Hash Fragmentation

Available only with XPS, fragmentation by a system-defined hash key combines ease of
distribution with some opportunity for fragment elimination. A column or set of columns
is defined as the hash key, and a list of destination dbspaces--or a dbslice--is named:

CREATE TABLE tablename (column list)
FRAGMENT BY HASH (hash key columns)
IN list of dbspaces OR dbslice;

Using an internal algorithm, XPS determines the dbspace in which to place each row.
Generally, if the data for the hash key is evenly distributed, then the data should be
evenly spread over the fragments. A serial key that is used as a table's primary key, and
often used for joins, is an ideal candidate for a hash key. If such a choice is not available,
consider using a composite hash key to ensure an even distribution of the data. Because
data skew is still a concern, the size of each fragment should be checked after a table is
loaded to verify that a reasonable hash key was selected.

A sample hash fragmentation scheme for the customer table follows:

CREATE TABLE customers (
cust_no SERIAL,
last_name CHAR(20))
FRAGMENT BY HASH (cust_no) IN cust_slice;

In this case, given that cust_no is serial, the distribution of rows among the six dbspaces
comprising cust_dbslice ought to be even. If no naturally variant key existed, it might
be necessary to use a composite hash key to avoid data skew.

Fragment elimination can occur with a system-defined hash scheme but only when the
query has an equality operator (=, IN) on the entire hash key. A statement such as

SELECT last_name
 FROM customers
 WHERE cust_no IN (325, 6642);

will eliminate fragments from the search.

Monitoring Fragment Usage

OnLine-XPS includes a new utility, onutil, to help create and monitor storage units.
With it, you can observe the allocation status of a fragment. First, you must determine the
tblspace number (partn) for a fragment, perhaps with an SQL statement such as

database sysmaster;
SELECT *
 FROM systabnames
 WHERE tabname = "customers";

This statement returns the partn for each fragment of the specified table. You can then
examine the space usage information for any of these table fragments. For example, if the
preceding query identified partn 3473452 as a fragment of customers, then from within
onutil, you could execute

CHECK TABLE INFO IN TABLESPACE 3473452;

Data returned includes the number of extents, the extent sizes, the number of pages
allocated and used, and the number of rows. Finally, it lists each extent that was allocated
for the fragment. At a glance, you can recognize whether space is used efficiently and
whether significant scattering of the table occurred. The CHECK TABLE INFO statement is
functionally equivalent to oncheck -pt, available in earlier OnLine versions.

Enabling Co-Located Joins

When tables that span coservers are joined, XPS must merge the data from each table
before executing the join. Passing the raw data between coservers can be slow. You can
mitigate this traffic if you can create a co-located join. This occurs when data from rows
to be joined are found on the same coserver. For XPS to recognize this, you must create
the hash key equal to the join key.

TIP: When possible, create your hash key equal to your join key to enable co-
located joins. A co-located join allows the join for the tables to occur locally per
coserver so that data does not need to be shipped to other coservers until after
the join is completed.

Using Flex Temporary Tables

OnLine-XPS adds a useful mechanism for the internal management of certain explicit
temporary tables. Those eligible have the following format:

 SELECT *
 FROM customers
INTO TEMP temp_cust;

For this kind of statement, XPS create a flex temporary table, one in which OnLine
determines a fragmentation strategy automatically. As long as DBSPACETEMP is defined,
OnLine fragments such a table across temporary dbspaces in a round-robin fashion. The
details of this parallelized operation follow:

• If the query produces no rows, OnLine creates an empty, nonfragmented
table in a single dbspace.

• If the data returned requires less than 8KB to store, the temporary table
resides in a single dbspace.

• If the data returned exceeds 8KB, OnLine creates multiple fragments and
distributes the data using a round-robin scheme.

Index Fragmentation

If you create an attached index on a fragmented table--that is, without specifying an
explicit scheme for the index--OnLine fragments the index with the same distribution
scheme as the table. Alternatively, you can dictate an independent fragmentation strategy
for an index, thus creating it detached. A detached index need not be fragmented; with a
statement such as

CREATE INDEX ix_cust ON customers (cust_no) IN dbspace2;

it can merely be placed in a separate dbspace.

For a nonfragmented table, index pages and data pages are intermingled in the same
extent. This is not true for a fragmented table with an attached index. Instead, although
the data fragment and index fragment are still stored in the same dbspace, they are kept in
separate tblspaces.

User Indexes

User indexes are those defined explicitly with the SQL statement CREATE INDEX. Of
these, any statements that include an IN clause to specify location are detached. The
following SQL statement shows one method of creating a detached, and, in this case,
fragmented index:

CREATE INDEX ix_cust ON customers (cust_no)
FRAGMENT BY EXPRESSION
cust_no < 1000 IN dbspace1,
cust_no >= 1000 IN dbspace2;

In OLTP environments, fragmenting an index is an important way to reduce contention.
The principles of fragment elimination apply to indexes as well as to tables, so different
users can read different fragments of the same index at the same time. However, this does
not demand that you should fragment an index differently from its table. In fact, if the
table is fragmented by expression, you should generally create the indexes attached.

TIP: If a table is fragmented by expression, fragment the indexes the same way.

An additional benefit of fragmenting indexes is that each fragment that holds an index
maintains its own complete B+ tree. The B+ tree is Informix's internal method of storing
an index and, for a large index, can become excessively complex. By fragmenting an
index, you keep each individual B+ tree simpler. Simpler B+ tree structures are cached
more readily and traversed more quickly than complex ones.

It is not always true that a fragmented index is beneficial. When OnLine uses a
fragmented index, it must scan each fragment and then combine the results. Because of
this overhead, explicitly fragmenting an index by round robin is not allowed. However,
when you fragment a table by round robin, any attached indexes adopt the same
fragmentation scheme by default and create the very kind of index Informix disallows
explicitly. Performance suffers if you allow this.

TIP: If a table is fragmented by round robin, do not create attached indexes.
Place them in separate dbspaces.

System Indexes

System indexes--those used to enforce unique constraints and referential constraints--are
not fragmented. They instead are created as detached indexes in the dbspace where the
database was created. Nonetheless, it is possible to fragment a system index if needed.
When a system index is created, it adopts a user index if one exists. Therefore, to
fragment a system index, first create a user index on the same columns used for the
constraint and then rebuild the constraint with the proper ALTER TABLE statement. For
instance, if a primary key constraint is constructed this way, and the underlying index is
subsequently dropped, the system index that enforces the primary key constraint retains
the fragmentation scheme of the old index.

Modifying Fragmentation Strategies

A table's fragmentation scheme can be modified or created even after the table already
exists. The various forms of the ALTER FRAGMENT statement shown in this section are
used for this purpose. It is often sensible to create your tables initially without any
fragmentation and, only through monitoring a live system, decide which tables merit
being fragmented.

The examples in this section assume you have used monitoring tools such as those
outlined in the section "Monitoring Fragment Usage" earlier in this chapter. With them,
you determined that a change in a specific fragmentation scheme is necessary. The
remainder of this section details the various forms of the ALTER FRAGMENT statement that
you might employ.

CAUTION: For databases with logging, the entire ALTER FRAGMENT statement is
executed as a single transaction. Each row is thus written to the logical logs, and
may, in the case of large tables, risk creating a long transaction. Consider turning
off logging before performing such operations.

The examples in this section also assume that the following two tables already exist and
have the fragmentation schemes shown:

CREATE TABLE stores (column definitions)
FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3;
CREATE TABLE customers (column definitions)
FRAGMENT BY EXPRESSION
cust_no < 5000 IN dbspace1,
cust_no >= 5000 AND cust_no < 10000 IN dbspace2,
REMAINDER IN dbspace3;
CREATE INDEX ix_cust ON customer (cust_no);

Creating a New Fragmentation Strategy

You use the INIT clause to create a new fragmentation scheme for a table or index,
regardless of whether it is currently fragmented. Any current storage option is discarded.

Creating New Table Fragmentation

With the INIT clause, you completely rewrite the fragmentation scheme for a table. For
example, use the following code to initiate round-robin fragmentation on the customers
table:

ALTER FRAGMENT ON TABLE customers
INIT FRAGMENT BY ROUND ROBIN IN dbspace1, dbspace2, dbspace3;

You can also use INIT to convert a fragmented table to a nonfragmented one. You might
decide that the round-robin fragmentation defined previously for the stores table is no
longer needed. To rebuild the table in a single dbspace, use

ALTER FRAGMENT ON TABLE stores
INIT IN dbspace1;

When you convert a fragmented table in this way, you must explicitly name a dbspace for
the table.

Creating New Index Fragmentation

Although all the ALTER FRAGMENT statements apply to indexes as well as tables, they are
used much less often for indexes. Generally, rebuilding the index is sufficient and
obviates needing to master the several ALTER FRAGMENT options. Still, there are times

when using the ALTER FRAGMENT statement is sensible. One such occasion is to use the
INIT clause to detach an index from a table's fragmentation strategy:

ALTER FRAGMENT ON INDEX ix_cust
INIT IN dbspace4;

Not all index changes are initiated so explicitly. Changing a table's fragmentation strategy
causes a concomitant change in any attached indexes, although certain system indexes
create exceptions to this rule:

• When you convert a nonfragmented table to fragmented, an existing
system index generated by creating a primary key is not fragmented in the
same fashion. Rather, the index remains in the dbspace where the
database was created.

• Regardless of the current status of an index generated from a primary key
constraint (attached, fragmented by expression, or fragmented in one
dbspace), when a fragmented table is converted to nonfragmented, the
index reverts to an attached index.

Any system indexes that rely on detached user indexes are not affected by the INIT
operation.

Changing a Fragmentation Strategy

You use the MODIFY clause to alter an existing expression-based fragmentation scheme.
With it, you can change the dbspace for a fragment, the expression that dictates which
rows are placed in a fragment, or both. For example, you may determine that you prefer
the data currently in dbspace3 for the customers table to be moved to dbspace4 instead.
To accomplish the migration, use

ALTER FRAGMENT ON TABLE customer
MODIFY dbspace3 TO REMAINDER IN dbspace4;

CAUTION: OnLine maintains space for the original fragment until the ALTER
FRAGMENT statement completes. Make sure that you have enough disk space to
simultaneously accommodate the fragment being deleted and the fragment being
added.

Alternatively, through monitoring your fragmentation usage, you may find that dbspace2
has a disproportionate amount of data. To move some of those rows to the remainder
space, you can restrict the expression on dbspace2:

ALTER FRAGMENT ON TABLE customer
MODIFY dbspace2 TO cust_no >= 5000 AND cust_no < 7500 IN dbspace2;

With MODIFY, you cannot change the number of fragments in your distribution scheme.
For that, use the ADD, DROP, or INIT clause.

Adding a Fragment

Adding a fragment is especially useful when a new disk is added to a system. With the
following ADD clause, you can add another fragment to the stores table:

ALTER FRAGMENT ON TABLE stores
ADD dbspace4;

You can also add additional fragment expressions to an existing expression-based
distribution scheme. This can be useful when one fragment becomes too large or too
active:

ALTER FRAGMENT ON TABLE customers
ADD cust_no >= 10000 AND cust_no < 15000 IN dbspace4
AFTER dbspace2;

All rows that were in the remainder fragment are reevaluated. Those that match the new
range are moved to dbspace4. For an expression-based strategy, the ADD clause includes
the optional BEFORE and AFTER statements so that you can customize the order in which
the expressions are evaluated.

Dropping a Fragment

With the DROP clause, you can eliminate a fragment from a fragmentation list. Note that
the data from the dropped fragment is not lost: It moves to another appropriate fragment.
With an expression-based scheme, you must be sure that a destination exists for data in a
dropped fragment. If the data cannot be moved to another fragment, the operation fails.
To drop one of the fragments from the stores fragmentation scheme, use

ALTER FRAGMENT ON TABLE stores
DROP dbspace2;

NOTE: You cannot drop a fragment when the table contains only two fragments.
Instead, to make a fragmented table nonfragmented, use either the INIT or
DETACH clause.

Combining Fragments into One Table

The attach and detach flavors of the ALTER FRAGMENT statement are especially useful to
implement the kind of rolling table described in the section "Dbspace Management"
earlier in this chapter. These statements combine tables with the same structure into a
single fragmented table or isolate a fragment of a table into a separate table.

Two or more tables on different dbspaces can be combined with the ATTACH clause into a
single fragmented table. The fragmentation scheme for the resultant table can be any
mechanism allowed by your version of OnLine. Consider a table that tracks sales by
month, fragmented by expression on month:

CREATE TABLE sales (
store_no INTEGER,
sales_month SMALLINT,
sales_totals MONEY(12,2))
FRAGMENT BY EXPRESSION
sales_month = 1 IN dbspace1,
sales_month = 2 IN dbspace2,
sales_month = 3 IN dbspace3;

Furthermore, suppose that current sales are stored in the following nonfragmented table:

CREATE TABLE current_sales (
store_no INTEGER,
sales_month SMALLINT,
sales_totals MONEY(12,2))
IN dbspace4;
The following expression consolidates the current_sales table with the
sales table:
ALTER FRAGMENT ON TABLE sales
ATTACH dbspace4 AS sales_month = 4;

In the process, the current_sales table is consumed and no longer exists. All the rows
that were in current_sales are now in dbspace4 of sales.

You can also use ATTACH to combine several nonfragmented tables, which have identical
structures and are on separate dbspaces, into a single fragmented table. Suppose that
sales1, sales2, and sales3 are such nonfragmented tables. With the following
statement, you can combine them into a single table, fragmented by round robin, with
three fragments:

ALTER FRAGMENT ON TABLE sales1
ATTACH sales1, sales2, sales3;

When this statement completes, sales2 and sales3 are dropped. With this construct,
you must name the surviving table--in this case, sales1--as the first element in the attach
list.

Splitting a Table into Component Fragments

The DETACH clause is used to segregate a fragment of a table into a separate
nonfragmented table. In the sales example, to detach old sales data to its own table, use

ALTER FRAGMENT ON TABLE sales
DETACH dbspace1 AS old_sales;

This creates the independent, nonfragmented table old_sales in dbspace1.

NOTE: The new table created by the DETACH statement does not inherit indexes
or constraints from the original table. Only data is preserved.

Summary

The judicious use of fragmentation, especially when using DSA for DSS and data
warehouse applications, can produce dramatic performance improvements. Even in
OLTP environments, fragmentation can significantly decrease contention and thus
increase concurrency.

This chapter described the benefits and methods of implementing data and index
fragmentation for an Informix environment. Developing a mastery of these concepts is
essential to becoming an effective OnLine administrator.

- 23 -

Tuning Your Informix Environment
• Tuning Your Efforts

o Taking the First Steps
o Recognizing Your Application

• Tuning Your Informix Instance
o Optimizing Shared Memory
o Optimizing Disk Usage
o Optimizing Network Traffic

• Tuning Your Informix Database
o Indexing Mechanics
o Indexing Guidelines
o Logging
o Locking
o Isolation Levels
o Data Types

o Constraints
o Denormalization

• Tuning Your Informix Operations
o Update Statistics
o Parallel Data Query
o Archiving
o Bulk Loads
o In-Place ALTER TABLE

• Tuning Your Informix Application
o The Cost-Based Optimizer
o Optimizing SQL
o Sacrificing a Goat (or Overriding the Optimizer)
o Optimizing Application Code
o Stored Procedures and Triggers

• Summary

by Glenn Miller

Databases can always be made faster--at a cost. The goal in tuning an Informix
environment effectively is to know what improvements will have the biggest effects and
what trade-offs are required to implement them. This effort demands that you be
comfortable with an unfinished task because you will never be done. This chapter will
help you decide where to start and when to stop.

The first requirement is to know your system. You can find information about ways to
take your system's pulse in Chapter 21, "Monitoring Your Informix Environment," and
Chapter 22, "Advanced Monitoring Tools." Monitoring must be done not only when
troubles arise, but also when no performance issues are pressing. You need to recognize
your system's baseline activity and fundamental limitations.

In an ideal world, the topic of tuning might arise when a system is being designed: How
best should the disks be arranged, what data model is most efficient, what coding
standards enhance performance? More commonly, however, tuning becomes necessary
when an already operational system is unacceptably slow. This more frequent scenario is
not a bad thing. Rather, with a live system you have much more data regarding system
load, background processes, and disk activity. The problems are tangible, not theoretical.
This concreteness helps you focus your effort where it is needed the most.

Tuning Your Efforts

Be sure you are examining the real problem. Not all slow processes indicate that Informix
should be tuned. The elapsed time of an activity is a combination of network

communication time, CPU time handling the user process, CPU time handling system
activities such as paging, and I/O time. Use tools such as vmstat to find out which
component is the limiting factor. Use ps -ef to see which other activities are running
simultaneously. Discover whether other elements have changed recently. Was there an
operating system upgrade? Did the network configuration change? Look around.

Narrow your efforts by examining what is out of the ordinary. At any given time,
something is always slowest. Find that "hot spot," and address it individually. When disk
I/O is the limiting factor, look for ways to reduce or balance I/O. If the CPU is pegged--
fully utilized--but is never waiting for I/O, then tuning disk access is pointless. If the
database engine is overburdened, use onstat -g ses to inspect the active SQL
operations. Address slow SQLs one at a time. The principle is to maintain as close to a
controlled environment as you can so that you can see the effect of individual changes.
Tune one thing. Examine the results. Verify that you have not slowed anything else
unduly. Verify that you have not broken anything. Repeat this process until the
diminishing returns you achieve are no longer worth your effort.

Taking the First Steps

The relevancy of most tips depends on your specific system configuration. These first
two, however, do not.

TIP: Run UPDATE STATISTICS. The optimizer needs the information about your
database's contents that only this statement can supply. Refer to the section
"Tuning Your Informix Operations" for complete details about this crucial
command.

TIP: Read the release notes. Upon installation, Informix stores the release notes
in the $INFORMIXDIR/release directory. You will find valuable information there
on new features, known problems, workarounds, new optimization schemes,
optimal Informix parameters, compatibility issues, operating system
requirements, and much more. Because its products are constantly evolving,
Informix uses the release notes as the most direct, and often the only, means of
communicating essential system-specific and version-specific information.

Recognizing Your Application

The primary distinction here is between OLTP and DSS. OnLine Transaction Processing
(OLTP) systems are characterized by multiple users with simultaneous access. Generally,
they select few rows, and they perform inserts and updates. OLTP applications usually
use indexed reads and have sub-second response times. Fast query speed is paramount.

As opposed to OLTP environments, Decision Support Systems (DSS) are characterized
by sequential scans of the data, with concomitant slow response times. Data warehouses
are prime examples of DSS applications. Maximizing throughput is especially critical for
these very large databases. They usually find themselves disk-bound, so it is crucial that
such environments employ the most effective means of scanning data rapidly.

If your environment is OLTP, and an SQL process is slow, fix it with an index.

TIP: Add an index. In most OLTP environments, for most databases, for most
applications, adding a well-considered index will provide the greatest
performance improvement at the least cost. Hundredfold decreases in query
execution time are not uncommon. Really. Look to indexes first. Refer to the
section "Tuning Your Informix Database" later in this chapter for a thorough
(perhaps excruciating) explanation of indexing mechanics and guidelines.

In a DSS environment, the primary concern is reading huge amounts of data, usually for
aggregation, or to summarize for trends. Disk I/O and specifically disk reads are most
important. In such environments, fragmenting tables and indexes intelligently will
generally produce the most significant improvements. Fragmenting is partitioning data or
indexes horizontally across separate disks for parallel access. For more information on
distributing data in this way, refer to Chapter 20, "Data and Index Fragmentation."

TIP: Fragment your critical tables and indexes. Fragmentation allows parallel
scans and, for query execution, elimination of those fragments that cannot satisfy
the query. These two advantages can dramatically improve your overall
performance. If invoking fragmentation means that you need to upgrade to
Informix-DSA, you should consider doing so.

Tuning Your Informix Instance

An instance is a single installation of an Informix database engine, such as OnLine or
Standard Engine. For the most part, the topics in this section refer only to OnLine.
Administration of SE is intentionally simple and mostly not tunable.

Optimizing Shared Memory

A crucial feature of OnLine is its management of shared memory segments, those
reserved sections of RAM isolated for OnLine's private use. By adjusting the values in
onconfig, you can tune the way in which OnLine allocates resources within its shared

memory pool for greatest efficiency. Refer to Chapter 13, "Advanced Configurations,"
for more information about these important settings.

Installing more than one instance of OnLine on a system is possible. Having multiple
database servers coexisting on the same computer is called multiple residency. On
occasion, creating such a residency is done to segregate production environments from
development environments or to test different server versions, but, for performance, it is a
bad idea.

CAUTION: Avoid multiple residency. Informix is unable to manage the separate
segments of shared memory efficiently.

In addition, maintaining separate environments is tricky and prone to error.

Optimizing Disk Usage

For most databases, disk I/O presents the chief bottleneck. Finding ways to avoid,
balance, defer, minimize, or predict I/O should all be components of your disk tuning
toolkit. It is also true that disks are the most likely component of a database environment
to fail. If your disks are inaccessible because of a disk failure, and you do not have a
proper archiving scheme, tuning cannot fix it. Before you implement any of these
changes, ensure that your archiving procedure is sturdy and that your root dbspace is
mirrored. For more information about developing a complete archiving strategy, refer to
Chapter 18, "Managing Data Backups."

Increasing Cached Reads

Informix can process only data that is in memory, and it stores only whole pages there.
First, these pages must be read from the disk, a process that is generally the slowest part
of most applications. At any given time, the disk or its controller might be busy handling
other requests. When the disk does become available, the access arm might have to spend
up to hundreds of milliseconds seeking the proper sector. The latency, or rotational time
until the page is under the access arm, could be a few milliseconds more. Disks are slow.

Conversely, reads from shared memory buffers take only microseconds. In these buffers,
Informix caches pages it has read from disk, where they remain until more urgent pages
replace them. For OLTP systems, you should allocate as many shared memory buffers as
you can afford. When your system is operational, use onstat -p to examine the
percentage of cached reads and writes. It is common for a tuned OLTP system to read
from the buffer cache well over 99 percent of the time. Although no absolute tuning rule
applies here, you should continue allocating buffers until the percentage of cached reads
stops increasing.

Some DSS applications can invoke light scans, described later in this chapter. These
types of reads place pages of data in the virtual segment of shared memory and bypass
the buffer cache. In such cases, your cached read percentage could be extremely low,
even zero. See the "Light Scans" section for ways to encourage this efficient behavior.

Balancing I/O

With a multidisk system, a primary way to ease an I/O bottleneck is to ensure that the
distribution of work among the disks is well balanced. To do so, you need to recognize
which disks are busiest and then attempt to reorganize their contents to alleviate the
burden. On a production system, you can use any number of disk monitoring utilities,
especially iostat and onstat -g iof, to recognize where activity is highest. For a
development environment or for a system being designed, you have to rely instead on
broad guidelines. The following general priorities indicate a reasonable starting point in
identifying which areas ought to receive the highest disk priority--that is, which dbspaces
you will place on the "prime real estate," the centers of each disk, and which items are
good candidates for fragmentation. For an OLTP system, in descending order of
importance, try the following:

1. Logs
2. High Use Tables
3. Low Use Tables
4. DBSPACETEMP

For DSS applications, a reasonable order is as follows:

1. High Use Tables
2. DBSPACETEMP
3. Low Use Tables
4. Logs

Additionally, prudent disk management should also include the use of raw, rather than
cooked, disks. Among the numerous reasons for using these disks, performance is
foremost. Not only do raw disks bypass UNIX buffering, but if the operating system
allows, raw disk access might use kernel-asynchronous I/O (KAIO). KAIO threads make
system calls directly to the operating system and are faster than the standard
asynchronous I/O virtual processor threads. You cannot implement KAIO specifically; it
is enabled if your platform supports it. Read the release notes to determine whether
KAIO is available for your system.

Many hardware platforms also offer some version of striping, commonly via a logical
volume manager. Employing this hardware feature as a means of distributing disk I/O for
high-use areas is generally advantageous. However, if you're using Informix-specific
fragmentation, you should avoid striping those dbspaces that contain table and index
fragments.

CAUTION: Hardware striping and database-level fragmentation are generally
not complementary.

Finally, set DBSPACETEMP to a series of temporary dbspaces that reside on separate disks.
When OnLine must perform operations on temporary tables, such as the large ORDER BY
and GROUP BY operations typically called for in DSS applications, it uses the dbspaces
listed in DBSPACETEMP in a round-robin fashion.

Consolidating Scattered Tables

Disk access for a table is generally reduced when all the data for a table is contiguous.
Sequential table scans will not incur additional seek time, as the disk head continues to be
positioned correctly for the next access. One goal of physical database design is
preventing pieces of a table from becoming scattered across a disk. To prevent this
scattering, you can designate the size of the first and subsequent extents for each table
when it is created. Unfortunately, if the extents are set too large, disk space can be
wasted. For a review of table space allocation, refer to Chapter 20. In practice,
unanticipated growth often interleaves multiple tables and indexes across a dbspace.
When this scattering becomes excessive--more than eight non-contiguous extents for the
same table in one dbspace--"repacking" the data is often worthwhile. With the Informix
utility oncheck -pe, you can examine the physical layout of each dbspace and recognize
those tables that occupy too many extents.

You can employ several straightforward methods to reconsolidate the data. Informix
allows the ALTER TABLE NEXT EXTENT extentsize, but this command alone does not
physically move data; it only changes the size of the next extent allocated when the table
grows. If a table is small, with few constraints, rebuilding the table entirely is often
easiest:

1. Generate a complete schema.

2. Unload the data.

3. Rebuild the table with larger extents.

4. Reload the data.

5. Rebuild any indexes.

6. Rebuild any constraints.

7. Rebuild any triggers.

8. Rebuild any views dependent on the data.

9. Rebuild any local synonyms.

Note that whenever a table is dropped, all indexes, constraints, triggers, views, and local
synonyms dependent on it are also dropped. You can see that this process can become
complicated and often impractical if many database interdependencies exist. The simplest
alternative when many tables are scattered is to perform an onunload/onload of the
entire database. This operation reorganizes data pages into new extents of the size
currently specified for each table. Just before unloading the data, you can set the next
extent size larger for those tables that have become excessively scattered. Upon the
reload, the new value will be used for all extents beyond the first that are allocated.

An alternative for an individual table is to create a clustered index, described more fully
later in this chapter. When a clustered index is built, the data rows are physically
rewritten in newly allocated extents in index order. If you have just set the next extent
size to accommodate the entire table, the rebuilt table will now be in, at most, two
extents. When you use a clustered index for this purpose, any other benefits are merely a
bonus.

Light Scans

Light scans are efficient methods of reading data that OnLine-DSA uses when it is able.
These types of reads bypass the buffer pool in the resident portion of shared memory and
use the virtual segment instead. Data read by light scans to the virtual buffer cache is
private; therefore, no overhead is incurred for concurrency issues such as locking. When
the goal is to read massive amounts of data from disk quickly, these scans are ideal.
Unfortunately, DSA does not always choose to always employ them. In general, the
following conditions must be true for light scans to be invoked:

• PDQ is on.

• Data is fragmented.

• Data pages, not index pages, are being scanned.

• The optimizer determines that the amount of data to be scanned would
swamp the resident buffer cache.

• The Cursor Stability isolation level is not being used.

• The selectivity of the filters is low, and the optimizer determines that at
least 15 to 20 percent of the data pages will need to be scanned.

• Update statistics has been run, to provide an accurate value for
systables.npused.

TIP: Design your DSS application to exploit light scans.

You can examine whether light scans are active with onstat -g lsc. You can employ a
few tricks to encourage light scans if you think they would be beneficial for your
application:

• Reduce the size of the buffer cache by reducing BUFFERS in onconfig.

• Increase the size of the virtual portion of shared memory by increasing
SHMVIRTSIZE in onconfig.

• Drop secondary indexes on the table being scanned. They include foreign
key constraints and all other non-primary key indexes.

• Manually increase the systables.npused value.

Enabling light scans is worth the effort. Performance increases can be in the 100 to 300
percent range.

LRU Queues

As a means of efficiently managing its resident shared memory buffers, OnLine
organizes them into LRU (Least Recently Used) queues. As buffer pages become
modified, they get out of synch with the disk images, or dirty. At some point, OnLine
determines that dirty pages that have not been recently accessed should be written to disk.
This disk write is performed by a page cleaner thread whenever an individual LRU queue
reaches its maximum number of dirty pages, as dictated by LRU_MAX_DIRTY. After a page
cleaner thread begins writing dirty pages to disk, it continues cleaning until it reaches the
LRU_MIN_DIRTY threshold.

These writes can occur as other processes are active, and they have a minimal but
persistent background cost. You can monitor these writes with onstat -f. Here is a
sample output:

Fg Writes LRU Writes Chunk Writes
0 144537 62561

The LRU Writes column indicates writes by the page cleaners on behalf of dirty LRU
queues. Earlier versions of OnLine included Idle Writes, which are now consolidated
with LRU Writes. Foreground writes (Fg Writes) are those caused by the server when no

clean pages can be found. They preempt other operations, suspend the database
temporarily, and are generally a signal that the various page cleaner parameters need to
be tuned to clean pages more frequently. Chunk writes are those performed by
checkpoints, and they also suspend user activity. They are described in the "Checkpoints"
section later in this chapter. You should consider tuning the LRU queue parameters or
number of page cleaners if the temporary suspensions of activity from checkpoints
become troublesome.

Generally, the LRU_MAX_DIRTY and LRU_MIN_DIRTY are the most significant tuning
parameters. To increase the ratio of LRU writes, decrease these values and monitor the
performance with onstat -f. Values as low as 3 and 5 might be reasonable for your
system.

You can use onstat -R to monitor the percentage of dirty pages in your LRU queues. If
the ratio of dirty pages consistently exceeds LRU_MAX_DIRTY, you have too few LRU
queues or too few page cleaners. First, try increasing the LRUS parameter in onconfig to
create more LRU queues. If that is insufficient, increment CLEANERS to add more page
cleaners. For most applications, set CLEANERS to the number of disks, but not less than
one per LRU so that one is always available when an LRU queue reaches its threshold. If
your system has more than 20 disks, try setting CLEANERS to 1 per 2 disks, but not less
than 20.

Checkpoints

One of the background processes that can affect performance is the writing of
checkpoints. Checkpoints are occasions during which the database server, in order to
maintain internal consistency, synchronizes the pages on disk with the contents of the
resident shared memory buffer pool. In the event of a database failure, physical recovery
begins as of the last checkpoint. Thus, frequent checkpoints are an aid to speedy
recovery. However, user activity ceases during a checkpoint, and if the checkpoint takes
an appreciable amount of time, user frustration can result. Furthermore, writing
checkpoints too frequently incurs unnecessary overhead. The goal is to balance the
concerns of recovery, user perceptions, and total throughput.

Checkpoints are initiated when any of the following occurs:

• The checkpoint interval is reached, and database modifications have
occurred since the last checkpoint.

• The physical log becomes 75 percent full.

• The administrator forces a checkpoint.

• OnLine detects that the next logical log contains the last checkpoint.

• Certain dbspace administration activities occur.

Each time a checkpoint occurs, a record is written in the message log. With onstat -m,
you can monitor this activity. You can adjust the checkpoint interval directly by setting
the onconfig parameter CKPTINTVL. If quick recovery is not crucial, try increasing the 5-
minute default to 10, 15, or 30 minutes. Additionally, consider driving initiation of
checkpoints by decreasing the physical log size.

TIP: Set the checkpoint frequency by adjusting the size of the physical log. Using
the trigger of having a checkpoint forced when the physical log is 75-percent full
ensures that checkpoints are used only when needed.

There is one additional performance consideration for large batch processes. Note that
page cleaner threads write pages from memory to disk both when LRU queues are dirty
and when a checkpoint is performed. However, the write via a checkpoint is more
efficient. It uses chunk writes, which are performed as sorted writes, the most efficient
writes available to OnLine. Also, because other user activity is suspended, the page
cleaner threads are not forced to switch contexts during checkpoint writes. Finally,
checkpoint writes use OnLine's big buffers, 32-page buffers reserved for large contiguous
reads and writes. These advantages make chunk writes preferable to LRU writes. Large
batch processes can be made more efficient by increasing the ratio of chunk writes to
LRU writes. To do so, increase the LRU_MAX_DIRTY and LRU_MIN_DIRTY values, perhaps
as high as 95 percent and 98 percent. Then decrease the CKPTINTVL or physical log size
until the bulk of the writes are chunk writes.

Read Aheads

When OnLine performs sequential table or index scans, it presupposes that adjacent
pages on disk will be the next ones requested by the application. To minimize the time an
application has to wait for a disk read, the server performs a read ahead while the current
pages are being processed. It caches those pages in the shared memory buffer pool. When
the number of those pages remaining to be read reaches the read ahead threshold
(RA_THRESHOLD), OnLine fetches another set of pages equal to the RA_PAGES parameter.
In this way, it can stay slightly ahead of the user process.

Although the default parameters are usually adequate, you can adjust both RA_PAGES and
RA_THRESHOLD. If you expect a large number of sequential scans of data or index pages,
consider increasing RA_PAGES. You should keep RA_PAGES a multiple of 8, the size of the
light scan buffers in virtual memory. For most OLTP systems, 32 pages is generous. Very
large DSS applications could make effective use of RA_PAGES as high as 128 or 256
pages. The danger in setting this value too high is that unnecessary page cleaning could
have to occur to make room for pages that might never be used.

Optimizing Network Traffic

In a client/server environment, application programs communicate with the database
server across a network. The traffic from this operation can be a bottleneck. When the
server sends data to an application, it does not send all the requested data at once. Rather,
it sends only the amount that fits into the fetch buffer, whose size is defined by the
application program. The fetch buffer resides in the application process; in a client/server
environment, this means the client side of the application.

When only one row is being returned, the default fetch buffer size is the size of a row.
When more than one row is returned, the buffer size depends on the size of three rows:

• If they fit into a 1,024-byte buffer, the fetch buffer size is 1,024 bytes.

• If not, but instead they fit into a 2,048-byte buffer, the fetch buffer size is
2,048 bytes.

• Otherwise, the fetch buffer size is the size of a row.

If your application has very large rows or passes voluminous data from the server to the
application, you might benefit from increasing the fetch buffer size. With a larger size,
the application would not need to wait so often while the server fetches and supplies the
next buffer-full of data. The FET_BUF_SIZE environmental variable dictates the fetch
buffer size, in bytes, for an ESQL/C application. Its minimum is the default; its maximum
is generally the size of a SMALLINT: 32,767 bytes. For example, with the following korn
shell command, you could set the fetch buffer size to 20,000 bytes for the duration of
your current shell:

export FET_BUF_SIZE=20000

You can also override the FET_BUF_SIZE from within an ESQL/C application. The global
variable FetBufSize, defined in sqlhdr.h, can be reset at compile time. For example,
the following C code excerpt sets FetBufSize to 20000:

EXEC SQL include sqlhdr;
...
FetBufSize = 20000;

Tuning Your Informix Database

Database tuning generally occurs in two distinct phases. The first, at initial design,
includes the fundamental and broad issue of table design, incorporating normalization
and the choices of data types. Extent sizing and referential constraints are often included
here. A primary reason that these choices are made at this stage is that changing them
later is difficult. For example, choosing to denormalize a table by storing a derived value
is best done early in the application development cycle. Later justification for changing a
schema must be very convincing. The second phase of tuning involves those structures
that are more dynamic: indexes, views, fragmentation schemes, and isolation levels. A
key feature of these structures is their capability to be generated on-the-fly.

Indexing Mechanics

Much of this chapter describes when to use indexes. As an efficient mechanism for
pointing to data, indexes are invaluable. However, they have costs, not only in disk space,
but also in maintenance overhead. For you to exercise effective judgment in their
creation, you need a thorough understanding of Informix's indexing mechanics and the
overhead involved in index maintenance.

The remainder of this section describes how Informix builds and maintains indexes
through the use of B+ tree data structures. B+ trees are hierarchical search mechanisms
that have the trait of always being balanced--that is, of having the same number of levels
between the root node and any leaf node.

B+ Tree Index Pages

Indexes comprise specially structured pages of three types: root nodes, branch nodes, and
leaf nodes. Each node, including the singular root node, holds sets of associated sorted
keys and pointers. The keys are the concatenated data values of the indexed columns. The
pointers are addresses of data pages or, for root and branch nodes, addresses of index
pages. Figure 23.1 shows a fully developed index B+ tree, with three levels. In this
diagram, finding the address of a data element from its key value requires reading three
index pages. Given a key value, the root node determines which branch to examine. The
branch node points to a specific leaf node. The leaf node reveals the address of the data
page.

Leaf nodes also include an additional element, a delete flag for each key value.
Furthermore, non-root nodes have lateral pointers to adjacent index nodes on that level.
These pointers are used for horizontal index traversal, described later in this section.

Figure 23.1.

Indexes use a B+ tree structure.

Index Node Splits

Indexes are not fully formed when they are created. Instead, they start out as a single
page: a root node that functions also as a leaf node. They evolve over time. When enough
index entries are added to fill a node, it splits. To split, it creates another node at its level
and moves half its index entries to that page. It then elevates the middle key value, the
one dividing the two nodes, to the parent node. There, new index entries that point to
these two nodes are created. If no parent node exists, one is created. When the root node
splits, its new parent page becomes the root node. Figure 23.2 shows this process of
splitting an index node to create a new level in the B+ tree index.

Figure 23.2.

Index node split creates a new root node.

NOTE: If a table has multiple indexes, inserting a data row forces the index
creation step for each index. The performance and space overhead can be
significant.

Delete Flagging

For OnLine versions after 6.0, when a data row is deleted, its index rows are not
immediately removed. Instead, the index row is marked with a delete flag, indicating that
this row is available for deletion. Marking deleted index entries with a delete flag avoids
some locking and concurrency problems that could surface with the adjacent key locking
mechanism used in older Informix versions. The rows are actually deleted by a page
cleaner thread. The page cleaner examines the pages in its list--whose entries were placed
there by the delete process--every minute, or whenever it has more than 100 entries.

When the page cleaner thread deletes a row, it checks to see whether two or fewer index
entries remain on the page. If so, OnLine tries to merge the entries on the page with an
adjacent node. If it can, it then frees the current page for other purposes. If no space is
available on an adjacent node, OnLine instead shuffles data from the adjacent node into
the current page to try to balance the index entries. The merging and shuffling caused by
massive deletes not only invoke considerable processing overhead, but also can leave
many semi-empty index pages.

Update Costs

When an indexed value is updated, Informix maintains the index by first deleting the old
index entry and then inserting a new entry, thus invoking the overhead of both operations.
You will find that bulk updates on indexed columns can consume considerable resources.

Optimal Structure

Index pages, like any pages, are read most efficiently when cached in the shared memory
buffers. Because only whole pages are read from disk, only whole pages can be cached.
Non-full index nodes therefore take more space to store, thus reducing the number of
keys that can be stored at once. It is usual for the root node of an index to remain cached,
and common for the first branch nodes as well. Subsequent levels are usually read from
disk. Therefore, compact, balanced indexes are more efficient.

Checking the status of indexes occasionally, especially after numerous database
operations, is therefore prudent. Oncheck is designed for this purpose. Here is a sample
oncheck command, followed by the relevant part of its output:

oncheck -pT retail:customers
 Average Average
Level Total No. Keys Free Bytes
----- -------- -------- ----------
 1 1 2 4043
 2 2 246 1542
 3 492 535 1359
----- -------- -------- ----------
Total 495 533 1365

Note that this index B+ tree has three levels and that the leaf nodes (level 3) average
about one-third empty. An index with a high percentage of unused space, for which you
do not anticipate many inserts soon, is a good candidate for rebuilding. When you rebuild
an index, consider setting the FILLFACTOR variable, described in the next section.

The preceding index was rebuilt with a FILLFACTOR of 100. Notice how much less free
space remains in each page and, therefore, how many more key values each leaf node
contains. Additionally, an entire level was removed from the B+ tree.

 Average Average
Level Total No. Keys Free Bytes
----- -------- -------- ----------
 1 1 366 636
 2 366 719 428
----- -------- -------- ----------
Total 367 718 429

FILLFACTOR

When OnLine builds an index, it leaves 10 percent of each index page free to allow for
eventual insertions. The percent filled is dictated by the onconfig parameter
FILLFACTOR, which defaults to 90. For most indexes, this value is adequate. However, the
more compact an index is, the more efficient it is. When you're creating an index on a
static read-only table, you should consider setting FILLFACTOR to 100. You can override
the default with an explicit declaration, as in the following example:

CREATE INDEX ix_hist ON order_history (cust_no) FILLFACTOR 100;

Likewise, when you know that an index will undergo extensive modifications soon, you
can set the FILLFACTOR lower, perhaps to 50.

FILLFACTOR applies only to the initial index creation and is not maintained over time. In
addition, it takes effect only when at least one of the following conditions is true:

• The table has over 5,000 rows and over 100 data pages.

• The table is fragmented.

• The index is fragmented, but the table is not.

Indexing Guidelines

Crafting proper indexes is part experience and part formula. In general, you should index
columns that are frequently used for the following:

• Joins

• Filters that can usually discriminate less than 10 percent of the data values

• UNIQUE constraints, including PRIMARY KEY constraints

• FOREIGN KEY constraints

• GROUP BY operations

• ORDER BY clauses

In addition, try to avoid indexes on the following:

• Columns with few values

• Columns that already head a composite index

• VARCHARS, for which the entire maximum length of the column is stored for
each index key value

Beyond these general guidelines, index what needs to be indexed. The optimizer can help
you determine what should be indexed. Check the query plans, and let the optimizer
guide you. In the section called "Tuning Your Informix Application" later in this chapter,
you learn how to use the SET EXPLAIN ON directive to examine Informix's use of specific
indexes.

Unique Indexes

Create a unique index on the primary key, at least. One is generated automatically for
unique constraints, but the names of system-generated constraints start with a space.
Naming your PRIMARY KEY indexes yourself is best. Explicit names are clearer and allow
for easier modification later. For example, altering an index to cluster, or changing its
fragmentation scheme, is simpler for a named index.

Cluster Indexes

Clustering physically reorders the data rows to match the index order. It is especially
useful when groups of rows related by the index value are usually read together. For
example, all rows of an invoice line item table that share an invoice number might

usually be read together. If such rows are clustered, they will often be stored on the same
or adjacent pages so that a single read will fetch every line item. You create a clustered
index with a statement like this:

CREATE CLUSTER INDEX ix_line_item on invoice_lines (invoice_no);

When it creates the index, Informix first allocates new extents for the table and then
copies the data to the new extents. In the process, room must be available for two
complete copies of the table; otherwise, the operation will fail.

CAUTION: Before you create a cluster index, verify that two copies of the table
can coexist in the available space.

Because clustering allocates new extents, it can be used to consolidate the remnants of a
scattered table.

The clustering on a table is not maintained over time. If frequent inserts or deletes occur,
the benefits of clustering will diminish. However, you can recluster a table as needed,
like this:

ALTER INDEX ix_line_item TO CLUSTER;

This statement instructs the database engine to reorder the rows, regardless of whether the
index named was previously a cluster index.

Composite Indexes

Composite indexes are those formed from more than one column, such as

CREATE INDEX ix_cust_name ON customer (last_name, first_name,
middle_name);

You can use this index to accomplish searching or ordering on all three values, on
last_name and first_name, or on last_name alone. Because the index keys are created
from concatenated key values, any subset of the columns, left to right, can be used to
satisfy queries. Therefore, any independent indexes on these columns would be redundant
and a waste of space.

Because the column order in a composite index is so significant, you should put the most
frequently used column first. Doing so will help ensure that the index has greater utility.
That is, its component parts can also be used often to fulfill index criteria.

One other use for composite indexes is to store the data for key-only reads, described in
the next section. By doing so, you can, in effect, create a subset of the table's data that

can be used very effectively in certain queries. Of course, there is a cost. You must
balance the overhead of index maintenance and extra disk usage with the benefits of
quicker performance when the key-only reads occur.

TIP: Consider creating an artificial composite index whose only purpose is to
allow a key-only read.

Key-Only Reads

Key-only reads are those that can satisfy the query entirely with values found in the index
pages alone. Naturally, the avoidance of invoking the I/O required to access the data
pages affords a considerable performance improvement. You can generally predict a key-
only read by examining the indexes available to the optimizer. For example, consider the
following query:

 SELECT last_name, count(*)
 FROM customer
GROUP BY last_name
ORDER BY last_name;

Its needs can be satisfied entirely with the values contained in an index on
customer.last_name. The output of SET EXPLAIN confirms that only the index is
needed to complete the query:

Estimated Cost: 80
Estimated # of Rows Returned: 10
1) informix.customers: INDEX PATH
 (1) Index Keys: last_name (Key-Only)

The single index suffices to supply the data and to enable the GROUP BY, the ORDER BY,
and the COUNT operations.

Bi-Directional Indexes

Bi-directional indexes are introduced in OnLine-DSA version 7.2. With them, OnLine
can traverse an index in either direction. Whether a single column index is created in
ascending or descending order is irrelevant. Indexes are still created ascending by default.
Composite indexes can also be accessed from either direction but are reversed at the
column level when they contain column-specific direction instructions. For example,
consider the following index:

create index ix_cust3 on customers (last_name asc, first_name asc,
cust_no desc);

Access from the opposite direction acts as if the rows were sorted in the reverse order on
every column. For the preceding index, reading it in the opposite direction is the same as
reading the following index:

create index ix_cust4 on customers (last_name desc, first_name desc,
cust_no asc);

Horizontal Index Traversal

Informix index pages can be traversed in two ways. The one used for index-based
standard lookups starts at the root node and follows the traditional root to branch to leaf
pattern. But there is another way. In the page header of every index leaf node and branch
node page are horizontal links to sibling index pages. They are pointers to the adjacent
left and right pages.

When Informix does a sequential index scan, such as a non-discriminatory key-only
select from a composite index, the index nodes are traversed in sequential index order,
left to right, at the leaf node level only. Data pages are never read, nor are the root or
branch nodes accessed. This efficient means of navigating indexes is not tunable but is
just one of the ways Informix optimizes its index structure.

Logging

In all Informix versions prior to XPS, database logging is not required. However, without
it, explicit transactions cannot be performed; that is, rollbacks are not available. For most
operations, business constraints make this unacceptable. There are exceptions, such as
turning off logging for bulk database loads, but, in general, logging overhead must be
incurred. Often, the only choice is how to minimize the overhead.

Databases with logging can be created either buffered or unbuffered. Buffered logging
routes transactions through a buffer pool and writes the buffer to disk only when the
logical log buffer fills. Although unbufferred logging transactions also pass through the
logical log buffer, with them the entire buffer is written after any transaction is
completed. Because of the frequent writes, unbuffered logging provides greater data
integrity in case of a system failure.

CAUTION: With buffered logging, transactions in memory can be lost if the
system crashes.

Nonetheless, the I/O savings afforded by buffered logging are almost always worth the
small risk of data loss. This is especially true in active OLTP systems in which logical
log writes are often the greatest source of disk activity.

NOTE: All databases share logical logs and the logical log buffer. If one database
is unbuffered, it will cause flushing of the entire log buffer whenever a
transaction within it is committed. This action can negate the advantage of
buffered logging for all other databases in the instance.

Using Non-Logging Tables

Non-logging databases are no longer supported in INFORMIX-OnLine XPS. Rather,
within a database that has logging, new table types exist for specific operations that need
not incur the overhead of logging. For example, when you load raw data from an external
source into a table for initial scrubbing, logging is often superfluous, because you can
usually perform the load again should the initial attempt fail. Table 23.1 summarizes the
table types available with OnLine XPS.

Table 23.1. OnLine XPS table types.
Table Type Duration Logge

d
Writes
Allowed

Indexes
Allowed

Restorable from
Archive

SCRATCH temporar
y

no yes no no

TEMP temporar
y

yes yes yes no

RAW permane
nt

no yes no no

STATIC permane
nt

no no yes no

OPERATIONAL permane
nt

yes yes yes no

STANDARD permane
nt

yes yes yes yes

A common tactic is to use a RAW table to load data from an external source and then alter
it to STATIC after the operation is finished. As an added bonus, whereas all temporary
tables can be read with light scans because they are private, STATIC tables can always be
read with light scans because they are read-only.

Locking

Locking in Informix is available at the following decreasing levels of granularity, or
scope:

• Database
• Table
• Page
• Row

For a complete discussion of locking, refer to Chapter 15, "Managing Data with
Locking." Generally, the demands of increased concurrency in a multi-user application
force locking to be assigned at the smallest granularity. Unfortunately, this constraint also
invokes the greatest overhead. Although the number of locks is tunable, they are finite
resources.

TIP: Lock at the highest granularity possible. Generating, holding, and checking
for a lock all take time. You should make every effort to reduce the number of
locks by increasing their granularity.

Certainly for bulk off-hour operations, you should consider the LOCK DATABASE
databasename EXCLUSIVE command. Finally, be cautious about creating large tables
with row-level locking; with it, mass inserts or deletes to a table can quickly exhaust the
available locks. Even with tables that have page level locking, using LOCK TABLE
tablename IN EXCLUSIVE MODE whenever possible is best.

Isolation Levels

The isolation level dictates the degree to which any reads you perform affect and are
affected by other concurrent users. The different levels place increasingly stringent
requirements on what changes other processes can make to rows you are examining and
to what degree you can read data currently being modified by other processes. Isolation
levels are meaningful only for reads, not for data manipulation statements.

In decreasing order of permissiveness, the isolation levels available in OnLine are as
follow:

• Dirty Read
• Committed Read
• Cursor Stability
• Repeatable Read

Dirty Read is the most efficient and simplest isolation level. Effectively, it does not honor
any locks placed by other processes, nor does it place any. Regardless of whether data on
disk is committed or uncommitted, a Dirty Read scan will copy the data. The danger is
that a program using Dirty Read isolation might read a row that is later uncommitted.

Therefore, be sure you account for this possibility, or read only from static tables when
this isolation level is set.

TIP: For greatest efficiency, use the Dirty Read isolation level whenever possible.

The Committed Read isolation level ensures that only rows committed in the database are
read. As it reads each row, OnLine checks for the presence of an update lock. If one
exists, it ignores the row. Because OnLine places no locks, the Committed Read isolation
level is almost as efficient as the Dirty Read isolation level.

Cursor Stability causes the database to place a lock on the current row as it reads the row.
This lock ensures that the row will not change while the current process is using it. When
the server reads and locks the next row, it releases the previous lock. The placement of
locks suggests that processes with this isolation level will incur additional overhead as
they read data.

With Repeatable Read, processes lock every row that has been read in the current
transaction. This mode guarantees that reading the same rows later would find the same
data. As a result, Repeatable Read processes can generate many locks and hold them for a
long time.

CAUTION: Be careful when you use the Repeatable Read isolation level. The
number of locks generated could exceed the maximum available.

Data Types

Two key performance principles apply when you're selecting a data type: minimize space
and reduce conversions. Smaller data types save disk space, create tidier indexes, fit
better into shared memory, and allow faster joins. For example, never use an INTEGER
when a SMALLINT will do. Unless you need the added range (an INTEGER can store from -
2,147,483,647 to 2,147,483,647, whereas the limits for a SMALLINT are -32,767 and
32,767) use the 2-byte SMALLINT rather than the 4-byte INTEGER. In a similar fashion,
minimize the precision of DECIMAL, MONEY, and DATETIME data types. Their storage
requirements are directly related to their precision.

In addition, use data types most appropriate for the operations being performed on them.
For example, do not store numeric values in a CHAR field if they are to be used for
calculations. Such type mismatches cause the database to perform a conversion for every
operation.

Small Join Keys

When Informix joins two tables, it performs the operation in memory as much as it is
able. The smaller the keys, the less likely a join operation is to overflow to disk.
Operations in memory are fast; disk operations are slow. Creating a small join key might
mean replacing large composite keys with alternatives, often serial keys. It is common
that the natural keys in a table offer no concise join candidate. For example, consider the
following table:

CREATE TABLE transactions (
cust_no INTEGER,
trans_type CHAR(6),
trans_time DATETIME YEAR TO FRACTION,
trans_amount MONEY(12,2),
PRIMARY KEY (cust_no, trans_type, trans_time));

Imagine that business rules demand that it often be joined to the following:

CREATE TABLE trans_audits (
cust_no INTEGER,
trans_type CHAR(6),
trans_time DATETIME YEAR TO FRACTION,
auditor_no INTEGER,
audit_date DATE,
FOREIGN KEY (cust_no, trans_type, trans_time) REFERENCES transactions);

If these tables are large, joins will be slow. The transaction table is an excellent candidate
for an artificial key whose sole purpose is to make joins of this sort more efficient. Such a
scheme would look like the following:

CREATE TABLE transactions (
trans_no SERIAL PRIMARY KEY,
cust_no INTEGER,
trans_type CHAR(6),
trans_time DATETIME YEAR TO FRACTION,
trans_amount MONEY(12,2));
CREATE TABLE trans_audits (
trans_no INTEGER REFERENCES transactions,
auditor_no INTEGER,
audit_date DATE);

At the cost of making the transactions table a little larger and forcing the maintenance of
an added key, the joins are more efficient, and the trans_audit table is considerably
smaller.

Blobs

Blobs can be stored in a table's tblspace with the rest of its data or in a custom blobspace.
Blobspaces comprise blobpages, which can be defined to be multiple pages.

TIP: Place large blobs in blobspaces, and define the blobpages large enough to
store the average blob.

With blobpages large enough, most blobs will be stored contiguously. Blobs stored in
blobspaces also bypass the logical log and buffer cache; blobs stored in tblspaces do not.
Another hazard of storing blobs in tblspaces is that they could flood the cache buffers and
force out other, more useful pages.

Constraints

One of the most insidious means of sapping performance is to allow bad data to infiltrate
your database. Disk space is wasted. Application code becomes convoluted as it tries to
accommodate data that should not be there. Special processes must be run to correct or
cull the invalid data. These violations should be prevented, not repaired. Using Informix's
constraints to enforce integrity upon your database is almost always worthwhile.
Constraints are mostly enabled via indexes, and indexes can have high costs. But the
existence of costs should not preclude implementing a good idea.

In the real world, performance is almost never considered in a vacuum. Usually, you are
faced with trade-offs: Indexing to improve query speed uses extra disk space; adding
more cache buffers increases the paging frequency; an efficient but tricky piece of
application code requires a greater maintenance effort. The principle applies here as well:
Using constraints to enforce integrity carries with it significant overhead. Do it anyway.

Table 23.2 shows how key elements critical to a sound data model can be enforced with
constructs available in Informix.

Table 23.2. Using constraints to enforce integrity.
Relational Object Enforcement Mechanism

Primary Key PRIMARY KEY CONSTRAINT

UNIQUE CONSTRAINT
NOT NULL CONSTRAINT

Domain data types
CHECK CONSTRAINT

DEFAULT values
NOT NULL CONSTRAINT

Foreign Key FOREIGN KEY CONSTRAINT, including ON DELETE
CASCADE

triggers and stored
procedures

For more information on enforcing primary key and foreign key constraints, refer to
Chapter 17, "Managing Data Integrity with Constraints."

Denormalization

For every rule, you'll find exceptions. On occasion, conforming to absolute relational
strictures imposes too great a performance cost. At such times, well considered
denormalization can perhaps provide a performance gain significant enough to justify the
effort. A fully normalized model has no redundant data or derived data. The examples in
this section suggest times when introducing redundancy or derived data might be of
value.

Maintain Aggregates Tables

A stock-in-trade of data warehouse applications, aggregate tables often store intermediate
levels of derived data. Perhaps a retail DSS application reports frequently on historical
trends of sales for each product by store and by day. Yet the base data available in the
normalized database is at the transaction level, where thousands of individual rows must
be aggregated to reach what to the DSS application is an atomic value. Furthermore,
although historical transaction data is static, queries often summarize transactions months
or years old.

Such an environment calls for creating an aggregate table like the following:

CREATE TABLE daily_trans (
product_no INTEGER,
store_no INTEGER,
trans_date DATE,
sales_total MONEY(16, 2));

New aggregates can be summed nightly from base transaction data and added to the
aggregate. In addition to creating efficient queries at the granularity of one daily_trans
row, this table can be used as the starting point for other queries. From it, calculating
sales by month or daily sales by product across all stores would be simple matters.

Maintain Aggregate Columns

Storing a denormalized aggregate value within a table is often reasonable, especially if it
is referenced often and requires a join or aggregate function (or both) to build. For
example, an orders table might commonly store an order_total value, even though it
could be calculated as follows:

SELECT SUM(order_details.line_total)

 FROM orders, order_details
 WHERE orders.order_no = order_details.order_no;

Application code, or perhaps a trigger and a stored procedure, must be created to keep the
order_total value current. In the same fashion for the following example,
customers.last_order_date might be worth maintaining rather than always
recalculating:

SELECT MAX(orders.order_date)
 FROM customers, orders
 WHERE customers.cust_no = orders.cust_no;

In these cases, you must monitor your application closely. You have to weigh whether the
extra complexity and overhead are justified by any performance improvements.

Split Wide Tables

Wide tables are those with many columns, especially those with several large columns.
Long character strings often contribute greatly to a table's width. Few of the long rows
from a wide table can fit on any given page; consequently, disk I/O for such a table can
be inefficient. One tactic to consider is to split the table into components that have a one-
to-one relationship with each other. Perhaps all the attributes that are rarely selected can
be segregated to a table of their own. Possibly a very few columns that are used for
critical selects can be isolated in their own table. Large strings could be expelled to a
companion table. Any number of methods could be considered for creating
complementary tables; you have to consider individually whether the performance gain
justifies the added complexity.

Tuning Your Informix Operations

You can improve the overall operation of your environment by balancing system
resources effectively. For example, as much as possible, only run resource-intensive
processes when the system is least frequently used, generally at night. Candidates for off-
hour processing include calculating aggregates and running complex reports. Also during
the off-hours, perform the background operations that keep your system healthy, such as
archiving and updating statistics.

Update Statistics

To optimize SQL statements effectively, Informix relies on data it stores internally. It
uses the sysindexes, systables, syscolumns, sysconstraints, sysfragments, and
sysdistrib tables to store data on each table. It tracks such values as the number of
rows, number of data pages, and depth of indexes. It stores high and low values for each
column and, on demand, can generate actual data distributions as well. It recognizes
which indexes exist and how selective they are. It knows where data is stored on disk and
how it is apportioned. With this data, it can optimize your SQL statements to construct
the most efficient query plan and reduce execution time.

Informix can perform these jobs well only when the internal statistics are up-to-date. But
they often are not--these values are not maintained in real-time. In fact, most of the
critical values are updated only when you run the UPDATE STATISTICS statement.
Therefore, you must do so on a regular basis.

Whenever you run UPDATE STATISTICS, you specify the objects on which it should act:
specific columns, specific tables, all tables, all tables and procedures, specific procedures,
or all procedures.

NOTE: If you execute UPDATE STATISTICS without specifying FOR TABLE,
execution plans for stored procedures are also re-optimized.

In addition, you can specify how much information is examined to generate the statistics.
In LOW mode, UPDATE STATISTICS constructs table and index information. UPDATE
STATISTICS MEDIUM and HIGH also construct this data but, by scanning data pages, add
data distributions.

UPDATE STATISTICS LOW

With the default UPDATE STATISTICS mode (LOW), the minimum information about the
specified object is gathered. This information includes table, row, and page counts along
with index and column statistics for any columns specified. This data is sufficient for
many purposes and takes little time to generate. The following statements show examples
of these operations:

UPDATE STATISTICS LOW FOR TABLE customers (cust_no);
UPDATE STATISTICS LOW FOR TABLE customers;
UPDATE STATISTICS LOW;

You can even use the UPDATE STATISTICS statement on a temporary table. Also, with
the DROP DISTRIBUTIONS clause, you can drop previously generated data distribution
statistics:

UPDATE STATISTICS LOW FOR TABLE customers DROP DISTRIBUTIONS;

Distributions are values that have been generated by a previous execution of UPDATE
STATISTICS MEDIUM or UPDATE STATISTICS HIGH. If you do not specify the DROP
DISTRIBUTIONS clause, any data distribution information that already exists will remain
intact.

UPDATE STATISTICS MEDIUM

The MEDIUM and HIGH modes of UPDATE STATISTICS duplicate the effort of UPDATE
STATISTICS LOW, but they also create data distributions. With MEDIUM, data is only

sampled; with HIGH, all data rows are read. These data distributions are stored in the
sysdistrib table. Informix creates distributions by ordering the data it scans and
allocating the values into bins of approximately equal size. By recording the extreme
values in each bin, it can recognize the selectivity of filters that might later be applied
against these columns. Thus, Informix can recognize when the data values are skewed or
highly duplicated, for example. You can alter the sampling rate and the number of bins
by adjusting the CONFIDENCE and RESOLUTION parameters. For example, the following
statement generates 25 bins (100/RESOLUTION) and samples enough data to give the same
results as UPDATE STATISTICS HIGH approximately 98 percent of the time:

UPDATE STATISTICS MEDIUM FOR TABLE customers (cust_no) RESOLUTION 4
CONFIDENCE 98;

UPDATE STATISTICS HIGH

When you specify UPDATE STATISTICS HIGH, Informix reads every row of data to
generate exact distributions. This process can take a long time. Normally, HIGH and
MEDIUM gather index and table information, as well as distributions. If you have already
gathered index information, you can avoid recalculating it by adding the DISTRIBUTIONS
ONLY clause:

UPDATE STATISTICS LOW FOR TABLE customers;
UPDATE STATISTICS HIGH FOR TABLE customers (cust_no) DISTRIBUTIONS
ONLY;

With the DISTRIBUTIONS ONLY clause, UPDATE STATISTICS MEDIUM and HIGH generate
only table and distribution data.

Comprehensive UPDATE STATISTICS Plan

Your goal should be to balance the performance overhead of creating statistics
inefficiently or too often with the need for regular recalculations of these values. The
following plan strikes a good balance between execution speed and completeness:

1. Run the UPDATE STATISTICS MEDIUM command for the whole database. It
will generate index, table, and distribution data for every table and will re-
optimize all stored procedures.

2. Run the UPDATE STATISTICS HIGH command with DISTRIBUTIONS ONLY
for all columns that head an index. This accuracy will give the optimizer
the best data about an index's selectivity.

3. Run the UPDATE STATISTICS LOW command for all remaining columns
that are part of composite indexes.

If your database is moderately dynamic, consider activating such an UPDATE STATISTICS
script periodically, even nightly, via cron, the UNIX automated job scheduler. Finally,
remember to use UPDATE STATISTICS specifically whenever a table undergoes major
alterations.

Parallel Data Query

OnLine-DSA offers the administrator methods of apportioning the limited shared
memory resources among simultaneous DSS queries. Primary among these parameters is
MAX_PDQPRIORITY, a number that represents the total fraction of PDQ resources available
to any one DSS query. For a complete description of the PDQ management tools
available to the administrator, refer to Chapter 19, "Parallel Database Query."

Archiving

If you use ON-Archive, you can exercise very specific control over the dbspaces
archived. By carefully allocating like entities to similar dbspaces, you can create an
efficient archive schedule. One tactic is to avoid archiving index-only dbspaces.
Generally, indexes can be reconstructed as needed from the base data. In addition,
arrange a schedule that archives active dbspaces more frequently than less dynamic ones.
By giving some thought to the nature of individual dbspaces, you can design an archive
strategy that balances a quick recovery with a minimal archiving time.

Bulk Loads

When you need to load large amounts of data into a table, consider ways to reduce the
overhead. Any of the following procedures could improve performance or, at the least,
minimize the use of limited system resources such as locks:

• Drop indexes to save shuffling of the B+ tree index structure as it attempts
to stay balanced.

• Lock the table in exclusive mode to conserve locks.

• Turn off logging for the database to avoid writing each insert to the logical
logs and perhaps creating a dangerous long transaction.

Be sure to restore the database or table to its original state after the load is finished.

In-Place ALTER TABLE

Starting with OnLine version 7.2, ALTER TABLE statements no longer necessarily rebuild
a table when executed. If a column is added to the end of the current column list, then an
in-place ALTER TABLE operation will be performed. With this mechanism, the table is
rewritten over time. Inserts of new rows are written with the updated format, but an

existing row is rewritten only when it is updated. As a result, a small amount of
additional overhead is required to perform this conversion. Although the in-place ALTER
TABLE is generally efficient, you might find it useful to explicitly force the table to be
rebuilt when you issue the ALTER TABLE statement. Including the BEFORE clause in the
ALTER TABLE statement ensures this action will occur. By forcing an immediate rebuild,
you can avoid the ongoing update overhead.

Tuning Your Informix Application

Application programs generally contain numerous components: procedural statements
intermingled with various embedded SQL commands. Foremost in tuning an application
is identifying the element that is slow. Often, users do this work for you. A query that
previously was fast is suddenly slow, or a report takes too long to run. When you start
trying to isolate the specific bottleneck, recognize that almost never is it anything other
than a database operation.

TIP: If an Informix-based application program is slow, the culprit is an SQL
statement.

When an application is generally slow, you need to peer inside it as it runs to identify the
bottleneck. Two monitoring tools are especially useful to help you with this job. The first
is onstat -g sql:

onstat -g sql sesid -r interval

With the preceding command, you can take a series of snapshots of the SQL statement
currently being run for a given session. Generally, a single statement will emerge as the
one that needs attention.

The second important tool is xtree. Normally, xtree is invoked as a component of the
performance monitoring tool onperf. With xtree, you can examine the exact execution
path of a query in progress and track its joins, sorts, and scans.

Given that most application performance tuning will address making queries more
efficient, understanding how Informix analyzes and executes them is important.

The Cost-Based Optimizer

Informix employs a cost-based optimizer. This means that the database engine calculates
all the paths--the query plans--that can fulfill a query. A query plan includes the
following:

• Table evaluation order

• Join methods
• Index usage
• Temporary table creation
• Parallel data access
• Number of threads required

The engine then assigns a cost to each query plan and chooses the plan with the lowest
cost. The cost assignment depends on several factors, enumerated in the next section, but
chief of which is accurate data distribution statistics. Statistics on data distributions are
not maintained in real-time; in fact, they are updated only when you execute UPDATE
STATISTICS. It is critical that statistics be updated in a timely fashion, especially after
major insert or delete operations.

Query Plan Selection

To calculate the cost of a query plan, the optimizer considers as much of the following
data as is available (certain of these values are not stored for SE):

• How many rows are in the table
• The distribution of the values of the data
• The number of data pages and index pages with values
• The number of B+ tree levels in the index
• The second-largest and second-smallest values for an indexed column
• The presence of indexes, whether they are clustered, their order, and the

fields that comprise them
• Whether a column is forced via a constraint to be unique
• Whether the data or indexes are fragmented across multiple disks

Any optimizer hints: the current optimization level and the value of OPTCOMPIND

Of these factors, the first five are updated only with the UPDATE STATISTICS statement.
Based on the query expression, the optimizer anticipates the number of I/O requests
mandated by each type of access, the processor work necessary to evaluate the filter
expressions, and the effort required to aggregate or order the data.

Understanding Query Plans

The SQL statement SET EXPLAIN ON tells Informix to record the query plans it selects in
a file named sqexplain.out. The directive stays in effect for the duration of the current
session, or until you countermand it via SET EXPLAIN OFF. Because the sqexplain.out
file continually grows as new query plans are appended to it, you should generally toggle
SET EXPLAIN ON only long enough to tune a query and then turn it off again.
Additionally, a small amount of overhead is required to record the query plans.

Some sample excerpts from sqexplain.out follow, with line-by-line explanations.

Estimated Cost: 80234

The cost is in arbitrary disk access units and is generally useful only to compare
alternative plans for the same query. A lower cost for different access methods for the
same query is usually an accurate prediction that the actual query will be faster.

Estimated # of Rows Returned: 26123

When the data distributions are accurate, this estimated number can be very close to the
actual number of rows that eventually satisfy the query.

Temporary Files Required For: Group By

Temporary files are not intrinsically bad, but if Informix must keep re-creating the same
one to handle a common query, it could be a signal that you should create an index on the
GROUP BY columns. Notice that not all GROUP BY operations can be handled with an
index. For example, if a GROUP BY clause includes columns from more than one table or
includes derived data, no index can be used.

1) informix.orders: SEQUENTIAL SCAN
2) informix.customers: INDEX PATH
 (1) Index Keys: cust_no
 Lower Index Filter: informix.customers.cust_no =
informix.orders.cust_no

In the preceding example, the optimizer chooses to examine the orders table first via a
sequential scan. Then it joins orders rows to customers rows using the index on
customers.cust_no.

SET EXPLAIN can reveal myriad variations of query plans. You should examine the
output from several queries to familiarize yourself with the various components of
sqexplain.out. When you're tuning specific queries, spending your time examining
query plans is critical. Look for sequential scans late in the process. If the table being
scanned is large, a late sequential scan is probably a sign of trouble and might merit an
index. Look for any failure to use indexes that should be used; look for data scans when
key-only reads make sense; look for high relative costs; look for unreasonable index
choices.

Experience here counts. Part of that experience must include understanding the join
methods available to the database engine.

Join Methods

When Informix must join tables, it can choose any of three algorithms. All joins are two-
table joins; multi-table joins are resolved by joining initial resultant sets to subsequent

tables in turn. The optimizer chooses which join method to use based on costs, except
when you override this decision by setting OPTCOMPIND.

• Nested Loop Join: When the join columns on both tables are indexed, this
method is usually the most efficient. The first table is scanned in any order.
The join columns are matched via the indexes to form a resultant row. A
row from the second table is then looked up via the index. Occasionally,
Informix will construct a dynamic index on the second table to enable this
join. These joins are often the most efficient for OLTP applications.

• Sort Merge Join: After filters are applied, the database engine scans both
tables in the order of the join filter. Both tables might need to be sorted
first. If an index exists on the join column, no sort is necessary. This
method is usually chosen when either or both join columns do not have an
index. After the tables are sorted, joining is a simple matter of merging the
sorted values.

• Hash Join: Available starting in version 7, the hash merge join first scans
one table and puts its hashed key values in a hash table. The second table is
then scanned once, and its join values are looked up in the hash table. Hash
joins are often faster than sort merge joins because no sort is required.
Even though creating the hash table requires some overhead, with most
DSS applications in which the tables involved are very large, this method is
usually preferred.

NOTE: The hash table is created in the virtual portion of shared memory. Any
values that cannot fit will be written to disk. Be sure to set DBSPACETEMP to point
to enough temporary space to accommodate any overflow.

Influencing the Optimizer

Much of how you can influence the optimizer depends on your constructing queries that
are easily satisfied. Nonetheless, you can set two specific parameters to influence the
OnLine optimizer directly.

For version 7, you can set the OPTCOMPIND (OPTimizer COMPare INDex methods)
parameter to influence the join method OnLine chooses. You can override the onconfig
default of 2 by setting it as an environmental variable. OPTCOMPIND is used only when
OnLine is considering the order of joining two tables in a join pair to each other: Should
it join table A to B, or should it join table B to A? And, when it makes the decision, is it

free to consider a dynamic-index nested loop join as one of the options? The choices for
OPTCOMPIND are as follow:

• 0--Only consider the index paths. Prefer nested loop joins to the other two
methods. This method forces the optimizer to behave as in earlier releases.

• 1--If the isolation level is Repeatable Read, act as if OPTCOMPIND were 0.
Otherwise, act as if OPTCOMPIND were 2. The danger with the Repeatable
Read isolation level is that table scans, such as those performed with sort
merge and hash joins, could lock all records in the table.

• 2--Use costs to determine the join methods. Do not give preference to
nested loop joins over table scans.

These options are admittedly obscure. If you choose to tune this parameter, first try the
following tip.

TIP: For OLTP applications, set OPTCOMPIND to 0. For DSS applications, set
OPTCOMPIND to 1.

OPTCOMPIND is not used with INFORMIX-XPS. XPS always chooses the join method
based solely on cost.

You can explicitly set the optimization level with SET OPTIMIZATION LOW. The default,
and only other choice for SET OPTIMIZATION, is HIGH. Normally, the cost-based
optimizer examines every possible query path and applies a cost to each. With SET
OPTIMIZATION LOW, OnLine eliminates some of the less likely paths early in the
optimization process, and as a result saves some time in this step. Usually, the
optimization time for a stand-alone query is insignificant, but on complex joins (five
tables or more), it can be noticeable. Generally, the best result you can expect is that the
optimizer will choose the same path it would have taken with SET OPTIMIZATION HIGH
but will find it quicker.

Optimizing SQL

Identifying which process is slow is half the tuning battle. Understanding how Informix
optimizes and performs the queries is the other half. With those facts in hand, tuning
individual queries is generally a matter of persuading Informix to operate as efficiently as
it can. The following suggestions offer some specific ways of doing that.

UPDATE STATISTICS

By now, this refrain should be familiar. If Informix seems to be constructing an
unreasonable query plan, perhaps the internal statistics are out of date. Run the UPDATE
STATISTICS command.

Eliminate Fragments

With OnLine-DSA, tables and indexes can be fragmented across multiple disks. One way
to accomplish this horizontal partitioning is to create the table or index with a FRAGMENT
BY EXPRESSION scheme. Consider this example:

CREATE TABLE orders (
order_no SERIAL,
order_total MONEY (8,2))
FRAGMENT BY EXPRESSION
order_no >= 0 AND order_no < 5000 IN dbspace1,
order_no >= 5000 AND order_no < 10000 IN dbspace2,
order_no >= 10000 IN dbspace3;
A query such as
SELECT SUM(order_total)
 FROM orders
 WHERE order_no BETWEEN 6487 AND 7212;

can be satisfied wholly with the data in dbspace2. The optimizer recognizes this and
spawns a scan thread only for that fragment. The savings in disk access when fragment
elimination occurs can be considerable. Additionally, contention between users can be
significantly reduced as they compete less for individual disks. For a complete
explanation of this topic, refer to Chapter 20.

Change the Indexing

Be guided by the optimizer. If it suggests an auto-index, add a permanent one. If it
continues to create a temporary table, try to construct an index to replace it. If a very
wide table is scanned often for only a few values, consider creating an artificial index
solely to enable key-only reads. If a sequential scan is occurring late in the query plan,
look for ways that an index can alter it, perhaps by indexing a column on that table that is
used for a filter or a join. Indexes allow you to experiment without a large investment.
Take advantage of this fact and experiment.

Use Explicit Temp Tables

Sometimes a complex query takes a tortuous path to completion. By examining the query
path, you might be able to recognize how a mandated intermediate step would be of
value. You can often create a temporary table to guarantee that certain intermediate steps
occur.

When you use explicit temporary tables in this way, create them using WITH NO LOG to
avoid any possibility of logging. Indexing temporary tables and running UPDATE
STATISTICS on them are also legal. Examine whether either of the these operations might
be worthwhile.

Select Minimal Data

Keep your communication traffic small. Internal program stacks, fetch buffers, and cache
buffers all operate more efficiently when less data is sent. Therefore, select only the data
that you need. Especially, do not select an aggregate or add an ORDER BY clause when
one is not needed.

Avoid Non-Initial Substring Searches

Indexes work left to right from the beginning of a character string. If the initial value is
not supplied in a filter, an index cannot be used. For example, no index can be used for
any of the following selection criteria:

WHERE last_name MATCHES "*WHITE"
WHERE last_name[2,5] = "MITH"
WHERE last_name LIKE "%SON%"

Rewrite Correlated Subqueries

A subquery is a query nested inside the WHERE clause of another query. A correlated
subquery is one in which the evaluation of the inner query depends on a value in the outer
query. Here is an example:

SELECT cust_no
 FROM customers
 WHERE cust_no IN (SELECT cust_no
 FROM orders
 WHERE order_date > customers.last_order_date);

This subquery is correlated because it depends on customers.last_order_date, a value
from the outer query. Because it is correlated, the subquery must execute once for each
unique value from the outer SELECT. This process can take a long time. Occasionally,
correlated subqueries can be rewritten to use a join. For example, the preceding query is
identical to this one:

SELECT c.cust_no
 FROM customers s, orders o
 WHERE c.cust_no = o.cust_no
 AND o.order_date > c.last_order_date;

Usually, the join is faster. In fact, INFORMIX-XPS can do this job for you on occasion.
Part of its optimization includes restructuring subqueries to use joins when possible.

Sacrificing a Goat (or Overriding the Optimizer)

Wave the computer over your head three times in a clockwise direction. If that fails, and
you are desperate, you might try these arcane and equally disreputable incantations. The
Informix optimizer has continually improved over the years, but it is still not foolproof.
Sometimes, when the query plan it has constructed is simply not the one you know it
should be, you can try underhanded ways to influence it. Be aware, though, that some of
the techniques in this section work only in older versions of Informix, and recent versions
of the optimizer might even negate your trick (such as stripping out duplicate filters)
before constructing a query plan.

CAUTION: Trying these techniques will get you laughed at. And they probably
won't work.

Rearrange Table Order

Put the smallest tables first. The order of table evaluation in constructing a query plan is
critical. Exponential differences in performance can result if the tables are scanned in the
wrong order, and sometimes the optimizer is unable to differentiate between otherwise
equal paths. As a last resort, the optimizer looks at the order in which the tables are listed
in the FROM clause to determine the order of evaluation.

Complete a Commutative Expression

Completing a commutative expression means explicitly stating all permutations of
equivalent expressions. Consider the following statement:

SELECT c.cust_no, o.order_status
 FROM customers c, orders o
 WHERE c.cust_no = o.cust_no
 AND o.cust_no < 100;

The optimizer might select an index on orders.cust_no and evaluate that table first.
Perhaps you recognize that selecting the customers table first should result in a speedier
query. You could include the following line with the preceding query to give the
optimizer more choices:

AND c.cust_no < 100

The optimizer might change its query plan, using the following statement:

SELECT r.*
 FROM customers c, orders o, remarks r
 WHERE c.cust_no = o.cust_no
 AND o.cust_no = r.cust_no;

Older versions of the optimizer would not consider that all customer numbers are equal.
By stating it explicitly, as follows, you offer the optimizer more ways to satisfy the
query:

AND c.cust_no = r.cust_no

Duplicate an Important Filter

Without duplicating the filter in the following query, the optimizer first suggests a query
plan with a sequential scan. Indexes exist on orders.cust_no, customers.cust_no, and
customers.last_name. The output from sqexplain.out follows the query.

SELECT o.order_no
 FROM customers c, orders o
 WHERE c.cust_no = o.cust_no
 AND c.last_name MATCHES "JON*";
1) informix.o: SEQUENTIAL SCAN
2) informix.c: INDEX PATH
 Filters: informix.c.last_name MATCHES `JON*'
 (1) Index Keys: cust_no
 Lower Index Filter: informix.c.cust_no = informix.o.cust_no

One trick is to duplicate the filter on last_name to tell the optimizer how important it is.
In this case, it responds by suggesting two indexed reads:

SELECT o.order_no
 FROM customers c, orders o
 WHERE c.cust_no = o.cust_no
 AND c.last_name MATCHES "JON*"
 AND c.last_name MATCHES "JON*";
1) informix.c: INDEX PATH
 Filters: informix.c.last_name MATCHES `JON*'
 (1) Index Keys: last_name
 Lower Index Filter: informix.c.last_name MATCHES `JON*'
2) informix.o: INDEX PATH
 (1) Index Keys: cust_no
 Lower Index Filter: informix.o.cust_no = informix.c.cust_no

You have no guarantee that the second method will actually execute faster, but at least
you will have the opportunity to find out.

Add an Insignificant Filter

For the following query, Informix uses the index on cust_no instead of order_no and
creates a temporary table for the sort:

 SELECT *
 FROM orders
 WHERE cust_no > 12
ORDER BY order_no;

In this instance, perhaps you decide that the index on cust_no is not very discriminatory
and should be ignored so that the index on order_no can be used for a more efficient
sort. Adding the following filter does not change the data returned because every
order_no is greater than 0:

AND order_no > 0

However, adding this filter might force the optimizer to select the index you prefer.

Avoid Difficult Conjunctions

Some versions of the optimizer cannot use an index for certain conjunction expressions.
At such times, using a UNION clause, instead of OR, to combine results is more efficient.
For example, if you have an index on customers.cust_no and on
customers.last_name, the following UNION-based expression can be faster than the OR-
based one:

SELECT last_name, first_name
 FROM customers
 WHERE cust_no = 53 OR last_name = "JONES";
SELECT last_name, first_name
 FROM customers
 WHERE cust_no = 53
 UNION
SELECT last_name, first_name
 FROM customers
 WHERE last_name = "JONES";

In the preceding examples, the optimizer might choose to use each index once for the
UNION-based query but neither index for the OR-based expression.

Optimizing Application Code

Especially in OLTP systems, the performance of application code is crucial. DSS
environments often run more "naked" queries and reports, where the specific queries are
apparent. With languages such as ESQL/C and INFORMIX-4GL that can have embedded
SQL statements, it is often unclear which statement is slow and, furthermore, how to
make it faster. When you're examining a piece of slow code, assume first that an SQL
statement is the bottleneck. The performance differences of non-SQL operations are
generally overshadowed. Although a linked list might be microseconds slower than an
array, for example, SQL operations take milliseconds, at least. Spend your time where it
is most fruitful: Examine the SQL.

Identify the Culprit

One way to study the query plans of embedded SQL commands is to include an option
that invokes SET EXPLAIN ON as a runtime directive. Within the code, check for the

existence of an environmental variable that can be toggled by the user. For example,
consider this INFORMIX-4GL code:

IF (fgl_getenv("EXPLAIN_MODE") = "ON") THEN
 SET EXPLAIN ON
END IF

By placing code such as this at the beginning of your 4GL MAIN routine, you can enable
SET EXPLAIN exactly when you need it.

Extract Queries

Queries buried deep within complex application code can be difficult to optimize. It is
often beneficial to extract the query and examine it in isolation. With DBaccess, you can
give a troublesome query special treatment, using SET EXPLAIN ON to examine the query
plan. Performing many iterations of modifying a query with DBaccess is much easier
than it is when the statement is embedded within many layers of application code.

Prepare SQL Statements

When an SQL statement gets executed on-the-fly, as through DBaccess, the database
engine does the following:

1. Checks the syntax

2. Validates the user's permissions

3. Optimizes the statement

4. Executes the statement

These actions require reading a number of system tables and incur considerable overhead
when performed often. For very simple statements, steps 1 through 3 can take longer than
step 4. Yet for an application, only step 4, executing the statement, is needed for each
iteration. The PREPARE statement allows the database to parse, validate, and assemble a
query plan for a given statement only once. After it does so, it creates an internal
statement identifier that you can use as a handle to execute the statement repeatedly.

TIP: Use PREPARE to create efficient handles for commonly used SQL statements.

Often used to construct dynamic SQL statements at runtime, the PREPARE statement can
significantly help performance as well. The first place to look for good candidates to use

with PREPARE is inside loops. Consider the following theoretical fragment of
INFORMIX-4GL code:

DECLARE good_cust_cursor CURSOR FOR
 SELECT cust_no
 FROM customers
 WHERE acct_balance <= 0
FOREACH good_cust_cursor INTO good_cust_no
 UPDATE customer
 SET credit_rating = 100
 WHERE cust_no = good_cust_no
END FOREACH

For this example, ignore that the operation could be performed with a single SQL
statement. Instead, notice that the UPDATE statement, with its concomitant overhead, is
executed once for each "good" customer. Compare the preceding to this next example:

PREPARE update_cust FROM
"UPDATE customer SET credit_rating = 100 WHERE cust_no = ?"
FOREACH good_cust_cursor INTO good_cust_no
 EXECUTE update_cust USING good_cust_no
END FOREACH

Note the use of a placeholder ("?") to allow the substitution of different values each time
it is executed. Because the UPDATE statement does not need to be reevaluated for each
execution, this method is more efficient than the first.

Most SQL statements can be prepared. Aside from optimizing individual SQL
statements, preparing commonly called SQL statements such as those in loops or in
library functions will generally provide the biggest performance gain.

UPDATE WHERE CURRENT OF

In the preceding example, you already know which customer row is being updated; it is
likely in memory. Yet when the UPDATE statement executes, the database server must
reselect the customer row. To update (or delete) a row you have already selected, use the
UPDATE WHERE CURRENT OF statement. This way, the server avoids the extra lookup. To
do so, you must first declare the cursor FOR UPDATE, as follows:

DECLARE good_cust_cursor CURSOR FOR
 SELECT cust_no
 FROM customers
 WHERE acct_balance <= 0
FOR UPDATE OF credit_rating
PREPARE update_cust FROM
"UPDATE customer SET credit_rating = 100 WHERE CURRENT OF
good_cust_cursor"
FOREACH good_cust_cursor INTO good_cust_no
 EXECUTE update_cust
END FOREACH

A cursor of this type, prepared only once and repeatedly executed, is exceedingly
efficient.

Use Insert Cursors

Normally, as inserts occur, they are written to disk; an insert cursor is a mechanism that
instead allows these writes to be buffered in memory. This insert buffer is written to disk
only when it fills, when you issue the FLUSH statement, or when you commit a
transaction. As a result, communication traffic is minimized, and disk usage is
consolidated. For bulk insert operations, creating and using an insert cursor is essential
for best performance.

Minimize Scroll Cursors

A scroll cursor is a convenient applications code construction that allows you to operate
flexibly on an active set. With it, you can move back or forward in the active set to any
relative or absolute row. However, Informix uses an implicit temporary table to enable
this action. If you do not need so much flexibility in positioning, avoid using a scroll
cursor.

Custom ESQL/C Functions

Informix has created a set of ESQL/C library functions optimized for each installed
platform. These functions can be noticeably faster than their C library counterparts. If
your applications code performs these operations numerous times, the performance gain
from using the Informix flavor is probably worth the effort of including them. Table 23.3
shows several of these ESQL/C functions and their C library complements.

Table 23.3. INFORMIX-ESQL/C library functions.
Informix C Description
stcat() strcat() Concatenate two null-terminated strings
stcmpr() strcmp() Compare two null-terminated strings
stcopy() strcpy() Copy one null-terminated string to another
stleng() strlen() Count the bytes in a null-terminated string
bycmpr() memcmp() Compare two sets of bytes for a given length
bycopy() memcpy() Copy a fixed number of bytes from one location to

another
byfill() memset() Fill a variable with a fixed number of a single

character
rdownshift() tolower() Convert all letters in a null-terminated string to

lowercase
rupshift() toupper() Convert all letters in a null-terminated string to

uppercase
rstod() atof() Convert a null-terminated string to a double
rstoi() atoi() Convert a null-terminated string to an integer
rstol() atol() Convert a null-terminated string to a long

These library functions are automatically included by the ESQL preprocessor.

Compile Efficiently

After you build and debug INFORMIX-4GL or ESQL/C code, you should make the
executables as efficient as possible. Include the -O directive in both ESQL/C and 4GL
compile instructions to enable compile-time optimization. To reduce the size of the
executable, add the -nln option to avoid storing line numbers for embedded SQL.
Finally, strip the executable, removing its symbol table, to reduce the size of the final
executable program.

Pass Minimal Data to Functions

Within applications code, especially INFORMIX-4GL, avoid sending unneeded values to
a function. INFORMIX-4GL allows the simple definition of a record with the DEFINE
RECORD LIKE tablename.* syntax. It is convenient, but inefficient, to pass the entire
record to a function when, often, most of the values are unnecessary. To pass data
between functions, INFORMIX-4GL passes each value onto and off an internal stack.
This data shuffling causes unnecessary overhead if done to excess. Only pass the values
you need.

Stored Procedures and Triggers

Stored procedures are sequences of SQL statements and program logic that are stored in
the database. When they are created, they are parsed, checked for validity, and optimized.
Later, they can execute more quickly because these steps do not need to be repeated.
However, stored procedures are no panacea. They garner their own overhead because
they must be selected from the database, and they must be converted to executable
format. Nonetheless, stored procedures that comprise more than one SQL statement are
usually faster than the equivalent dynamic SQL statements. Another stored procedure
benefit is that they reduce messaging traffic. If network traffic is a bottleneck, stored
procedures can be especially worthwhile. For more information on these topics, refer to
Chapter 14, "Managing Data with Stored Procedures and Triggers."

Summary

The task of tuning your Informix environment will fill the time allotted, and more. The
demanding part of the job is to recognize what improvements are reasonable to
implement and to stop when the returns no longer justify the cost. After you know what
enhancements can be expected, you need to educate your user community and set their
expectations accordingly. Tuning your Informix environment does not have to be a
never-ending process.

- 24 -

Anticipating Future Growth
• Today and Tomorrow
• Project Roles
• Planning Checklist

o Always Think Ahead!
o Use Experience
o Believe in Organization
o Never Stop Planning
o Consider Everyone's Opinion
o Use Idea Buckets and Brainstorming
o Capture the Ideas
o Make Meetings Work
o Be a Team
o Don't Panic
o Avoid Constant Firefighting
o Admit Mistakes in Planning
o Ensure an Open Communication Process
o Adapt to New Technology and Solutions
o Provide Management Justification
o Summary: The Costs of Improper Planning

• Question Checklist
• The Pieces: Technology

o Database Design
o Making the Design Pretty
o Verifying the Design
o Current and Future Products
o Budget
o Putting the Pieces Together

o Hardware
o Network
o Internet

• Examples
o Example 24.1: Small System
o Example 24.2: Medium to Large System

• Summary

by Ron M. Flannery

This chapter presents strategies to help you plan for the inevitable changing needs of the
design and implementation of a database application. This information includes
everything from project planning to hardware to the database engine. I will discuss how
to prepare for these needs before you implement.

Thinking in terms of the future is extremely important. Creating a database to meet the
needs of the future is an ongoing process. It is a way of thinking that helps drive all the
decisions that are made for an application. In this chapter, I will help you develop a
mindset to aid in this process. If you are a chief information officer (CIO), manager,
designer, programmer, or contractor, this chapter will help prepare you for the future.

In this chapter, I will describe a complete methodology for ensuring the success of your
application. I begin by presenting a complete philosophy of project implementation.
Applying these strategies will help make the rest of the process work. After that, I discuss
the actual database design process, with a particular emphasis on Informix products. I
then describe different considerations for database engine, operating system, hardware,
network, and Internet. Included are checklists to help you cover all the bases. Finally, I
give specific examples and tie all the information together.

Today and Tomorrow

You've got a great database design, and you know everything there is to know about
administering databases. Your team spent many long hours, and now you're ready to go
live. Good job! But how will the database look in three months, six months, or a year?
Has the design taken into consideration changing user, management, and business needs?
What about the computers and the network?

The first point to keep in mind is to always think ahead. Everything might seem to fit
together now, but that could easily change, and much faster than you can imagine.
Keeping the future needs of the system in perspective now can greatly reduce
implementation time later. You must consider the future in every design decision.
Technology, tools, and user needs change so fast that your original solution could be
obsolete before you even deliver it. So, let me just emphasize this: Always think ahead!

Data warehouses are excellent examples of the importance of proper planning. They tend
to be very large, enterprise-wide projects with sky-high budgets. They often have an
impact on hundreds or thousands of users. Determining the needs of all users can be
almost impossible. Without proper planning, the costs and time required for data
warehouse projects often well exceed initial estimates. This cost overrun can become
very difficult to explain to a CIO, especially if you're the one doing the explaining.

Planning ahead is the cornerstone of data warehouse development and should be the
cornerstone of every database project. I will now present some principles to help you
incorporate planning for the future into every project with which you are involved.

NOTE: In the context of this chapter, the following terms are used somewhat
interchangeably: application, project, implementation, and database.
For your needs, they all mean basically the same thing: creating a database
application. This application has no particular size. It can be anywhere from 1
user to 10,000 users, from 50 kilobytes to 50 terabytes. Nor is there any particular
type of application. The principles can apply to an OLTP system, a Web system, or
whatever you want. The important point is that the principles can help you be
prepared for the future in any project that your company performs.

Project Roles

Database implementations can impact many different levels of an organization. In turn,
many different roles exist within these implementations. This arrangement can vary,
depending on the size of the project, corporation, and so on. The following list describes
some of the many persons who can have an impact on database projects:

• End users and data entry clerks
• CIO, president, CEO, and other high-level decision-makers
• Directors
• Managers
• Project and team leaders
• Technical writers
• Database designers
• Programmers
• Quality assurance workers and testers
• Consultants

This list is meant to give you an idea of how many people can actually be involved when
implementing a database project. If you can keep this information in perspective, taking
into account the future needs of the database is much easier.

Consider how all these different levels of an organization relate to planning a project. If
planning is kept within the scope of any one of these groups, the needs of the whole
corporation might not be met. During the development of your application, be sure to
review this list and consider the needs of everyone.

Using the guidelines in the following sections can help you keep everything in
perspective, regardless of your role and the size of the project. Remember that no matter
which role you have in the project, you have a part in its success.

Planning Checklist

The process of designing and implementing a new database application isn't easy. The
larger the application and the larger the corporation, the harder the design tasks.
Considering the needs of one, a dozen, or hundreds of users can be quite a daunting task.
No matter how many times you've done it, complications that were impossible to forecast
often exist. Don't worry: Discovering complications is part of implementing a new
system. Proper planning and preparation can make the process as simple and painless as
possible.

This section is not meant to be a project management guide; it is meant to help you
develop a mindset that you can use throughout the whole process. This section can help
you always consider the future needs of your database application. No matter what role
you have in the implementation, these guidelines apply to you. Applying these principles
the whole way through the process (for example, database design) can help ensure that
the application will meet everyone's needs.

Let's see, have I said this before? Always think ahead! In the planning stage, the scope,
cost, resources, and timeline for the project are determined--or at least estimated.
Considering the future needs is crucial in successful planning and implementation.
During the planning stage, many later problems can be avoided.

Checklist 24.1 summarizes many principles that you should always keep in mind during
implementation of a project. I will refer to this checklist throughout the chapter. You can
use these principles as an overall guide to help meet the needs of the future. This list is by
no means complete. In fact, I have included two blank lines for you to add your own
principles.

Checklist 24.1. A list of project planning principles.

___ Always think ahead!

___ Use experience--your experience and others' experience.

___ Believe in organization: Be organized from the beginning, and don't keep saying,
"We'll create that plan later."

___ Never stop planning.

___ Consider everyone's opinion--user's and management's.

___ Use idea buckets and brainstorming.

___ Capture the ideas.

___ Make meetings work.

___ Be a team: Work with each other, not against each other.

___ Don't panic: Don't get overwhelmed, and keep everything in perspective.

___ Avoid constant firefighting: Follow your plan and take time to readjust it.

___ Admit mistakes in planning: This way, you can save a great deal of time and money
later. Avoid the surprise factor!

___ Ensure an open communication process.

___ Adapt to new technology and solutions: Keep up with the incredible rate of change,
and be sure to add new solutions as they become available.

___ Provide management justification: This rule is important--and necessary.

___ Costs of improper planning can be enormous.

___ ___ In the following sections, I give an overview of each of these principles and how
each one can help you implement your project successfully now and into the future.

Always Think Ahead!

Here I go again with the "think ahead" thing! I can't say enough about this basic
principle. It means seeing the forest for the trees. Thinking outside your realm. Seeing the
big picture. Developing this mentality and remembering it at all times will greatly
increase the chances for a successful project implementation. Make sure that all the
members of your project are also in tune with this principle.

Use Experience

Experience is a great teacher. Be sure to use your own experience: Learn from the past! If
every project you've worked on for this company missed budget or due dates, consider
what happened on those projects. Use your past experiences to help make this project a
success. Don't be shy about calling on all appropriate colleagues to understand their

experiences. Listen to the voices of experience and use that information to build a
successful implementation.

Technical experience is also very important. You'll often find a trade-off between using
current internal employees and hiring new employees or contractors with specialized
skills. Making sure that the cost of using current employees in a new role will not have a
great impact on the project, especially where specialized experience is needed, is very
important. See the later sections on database design, hardware, and networks for
examples.

Believe in Organization

Be organized from the beginning, and don't keep saying, "We'll create that plan later." Set
up the overall structure and methodology of the project right at the beginning and stick to
it (unless it has problems). Use whatever project planning tools work for your
organization. Set up responsible resources for the project, and make sure that their roles
are clearly defined. After the initial project setup is organized, make sure that it remains
organized.

Never Stop Planning

Planning continues through the life of the project, up to and including implementation. In
fact, it continues as long as the project lives. Planning must be an ongoing part of any
project. After you create an initial design, do not consider it the final plan. Thinking of
everything is impossible. Be open to changing the plan as needed as the project moves
forward.

Consider Everyone's Opinion

A successful project will make people happy at all levels of an organization. Therefore,
everyone the project affects must be considered during the "planning" (remember the
definition of planning). To do so, team members must be sure to meet the proper users
and understand all their needs.

Use Idea Buckets and Brainstorming

One of the frustrating aspects of a project can be taking advantage of the many ideas and
organizing them. In fact, capturing all necessary ideas is crucial. One method of doing so
is to create an "idea bucket." An idea bucket is just a dumping of ideas into one place. It
can be a spreadsheet, a small database, or a simple text file. It does not have to be
organized at first: You can do that later.

Brainstorming sessions work hand-in-hand with idea buckets. A brainstorming session is
a collective dumping of ideas, thoughts, needs, and plans by many people. Having these
sessions is a good way to get many ideas out on the table at once. You can then place the

ideas directly into the idea bucket. Brainstorming sessions should be conducted with all
levels of people in a project (users, management, and so on).

Here is a sample brainstorming session on determining how to create an information
tracking system in a small company:

"Let's put it in Microsoft Access! We can keep it on my computer!"

"But then no one else can use it."

"We can use the Windows 95 networking option."

"What if you're not here, and no one has your password?"

"Your computer will always have to be on."

"What about Windows NT?"

"We don't have that."

"I hear it's cheap, and maybe we can use Informix Workgroup Server."

"Oh yeah, we can use NT for our printers and e-mail, too!"

"Don't forget about UNIX! We can get an SCO OpenServer for about the same price, and
it does the same things."

And on and on. The point is, if enough people put their minds to the job, they can create
many new ideas.

NOTE: You might be wondering at this point what a brainstorming session has to
do with future planning of a database application. A lot! By having such sessions,
you can get a lot of ideas out into the open long before they become problems. If
these sessions are not used, the ideas might not be revealed until much later in
the process. Remember that a major aspect of future planning is making sure
that all the necessary ideas are on the table and incorporated into the plans.

Capture the Ideas

After you have a brainstorming session, you can use the following methodology to
incorporate the ideas into a project plan:

1. Set up a meeting with project design and planning teams. (See the next
section for meeting tips.)

2. Discuss how the project is organized and how brainstorming results can
be used.

3. Go through brainstorming ideas one at a time:

a. Is the idea necessary? If not, delete it and move on to the next item.

b. To which section of the project does it apply?

c. What is its priority?

d. If follow-up is required, schedule a time to meet with the right people.

e. Move the item to whatever project planning methodology is being used.
Assign resources and so on.

f. Remove the item from the brainstorming list.

Make Meetings Work

Meetings are an inevitable part of any successful project. That's okay because everyone
loves meetings. Okay, maybe not everyone. In fact, maybe hardly anybody! But why not?
If you let me go out on a limb, I'd say a possible reason for the overall dislike for
meetings is that they tend to not be productive. Here are some guidelines on how to make
meetings more productive to the project and its overall goals:

• Invite only people who need to be there.

• Create an agenda with time limits and responsible parties. At the
beginning of the agenda, clearly state the purpose of the meeting. Allow
for an open discussion at the end of the meeting, but not for too long.

• Send out a notice of the meeting in time to make sure that all parties are
aware of it.

• Start the meeting right on time. Starting a meeting late tends to breed
overall inefficiency.

• Appoint a meeting leader (probably the agenda author), and make sure
that everyone is aware that this person is in charge.

• Stay with the agenda as much as possible. Digressions are another meeting
killer.

• If a new topic comes up, save it for the "open discussion" section of the
meeting.

Be a Team

For the project to be successful, people on all levels need to remember that the end result
is a successful project. Sure, the "team" concept is much overused, so avoiding use of the
"team" word might be best. However, people need to be aware that to complete a project,
they have to cooperate with others and allow for proper future planning.

Don't Panic

If things start getting out of hand, simply stick to the process that was set up from the
beginning. For this reason, the philosophy in Checklist 24.1 is very important. If you
need more meetings, have them. If you need to change the design, change it. If you need
to get new approval, get it. Panicking when things start to go astray only adds to stress
and threatens the proper implementation of the project.

Avoid Constant Firefighting

Avoiding constant firefighting generally ties in with a number of the preceding sections.
If the project is laid out in an organized fashion, you will have little need to do
firefighting; changes will be part of the plan. And as I stated in the "Don't Panic" section,
if something goes wrong, do what it takes to fix the problem. Keep an organized state of
mind with respect to the whole project.

Admit Mistakes in Planning

Any flaws uncovered by the preceding--or any--methodology must be immediately
addressed. People tend not to admit that they have made a mistake, and it ultimately is
very costly, both in time and money. Ask your boss if he or she would rather know about
a problem now or find out about it at the last minute. Keeping the mentality that a project
is constantly evolving helps make admitting mistakes much easier. If the whole team
understands the mentality and principles outlined here, they will understand that changes
happen and that the changes simply need to be plugged in and fixed.

Ensure an Open Communication Process

One of the key aspects in developing a new application is getting the right information.
Getting the right information is contingent in large part on proper communication. It is a
fact of life that users, managers, and programmers tend to talk different languages.
Programmers and developers tend to be more technical and sometimes have trouble
getting the necessary information from users and managers. Properly "translating" when
developing the design is important. Bring a translator if you want! Be sure to verify what
you're communicating. A common way to do so is to follow this axiom: Say what you're
going to say. Say it. Say what you said. Also, be sure to acknowledge what you heard by
restating it to the person.

Adapt to New Technology and Solutions

In today's world, everything is evolving at an incredible pace. "Everything" includes
specific software and hardware solutions, and project needs in general. During the life of
a medium- or large-sized project, portions of the project will almost certainly have better
solutions. Make sure that resources are available to keep up with these solutions and plug
them back into the whole development process.

WARNING: Although being able to always have the "latest and greatest" is nice,
it is not always practical--or necessary. Be sure to take into consideration the
timing and needs of the project. Decide whether you really do need this cool new
computer or software package right now. On the other hand, you also must be
sure that you are prepared for the future.

Provide Management Justification

Someone has to pay for the project. Generally speaking, there must be management buy-
in to support current and future spending. Following the principles outlined here will
create an efficient means of determining a proper direction and adjusting for changes and
the future. If managers understand this need, the support will be much easier to obtain.
They must understand how fast things evolve and that a change now can save a great deal
in the future.

Summary: The Costs of Improper Planning

Let me reiterate that the cost of not planning for the future can be great. Be sure to always
take into account what will be needed a year or five years from now. Looking ahead can
often be the most difficult aspect of design. Decide how these things can be incorporated
into your system. Be sure that the design selected allows for the future growth of the
system, be it in software, hardware, or people. Follow an organized and well-balanced
approach, considering the needs of others.

Projects can always succeed; sometimes you just need to help them a little.

Question Checklist

Checklist 24.2 shows examples of many questions you can ask users, managers, and
others involved in the project. If nothing else, this checklist will help you start to think
about issues to keep in mind during planning and into the future. Because the questions
can cross over between various types of users (for example, managers and end users),
they are not categorized in any particular order.

Checklist 24.2. Planning question checklist.

___ Do you have an existing way to track this data? If so, provide details.

___ How fast does the current data grow? Do you think this speed will increase or
decrease?

___ What are some of the projected changes in the overall company applications,
networks, and databases? Do they fit in with the new application?

___ How fast is the company growing? Do you anticipate that these changes will affect
the new system?

___ Which other parts of the company use this data? What are their needs?

___ Does the current system have problems that need to be corrected in the new system?

___ Where will the users be located? Will they be in the same office, across the country,
or worldwide?

___ Do you have an Internet connection? If so, provide details.

___ What is the current setup of your network (Internet, Ethernet, and so on)?

___ Who are the other users of the system? How can I contact them?

___ What types of people use the system (experience level, and so on)?

___ What software do you currently own? Include databases, PC packages, and so on.

___ What hardware do you currently own? Include computers, PCs, and so on.

___ What is the budget for the new system?

___ Who needs to approve the system?

___ Which resources are available for the project?

___ What is the skill level of your existing employees?

___ Will you be using contractors?

___ Is the current system hard to use? How could it be made easier?

___ How do you picture the "perfect solution"?

___ What is the current organizational structure?

___ Which project management tool do you use (for example, Microsoft Project)?

___ Do you currently use a project management methodology?

___ Will this project realistically be a big part of the future of the company?

___ Does a prepackaged software package meet these needs? Maybe one that would need
just minor modification?

___ How willing to change are the users of the system? ___ What types of deadlines does
the system have?

The Pieces: Technology

Now that you've learned about general project planning, you can get to the nitty-gritty:
the technology! In the following sections, I explain how to structure your application
properly to meet the future needs of the project. I discuss the following:

• Database design
• Database engines and versions
• Physical design
• Operating systems
• Hardware
• Networks
• Internet

NOTE: Remember that the project principles in Checklist 24.1 can help you move
toward the right decisions in all parts of the planning process, including hardware
and software. All the preceding pieces need to work together to create a
successful long-term implementation. Keep the future in mind and have fun!

Database Design

Now you're ready to design the database. To finalize the database design, you can use
many of the basic principles discussed in this chapter. Consider the needs of the
application, and remember to solicit information from all necessary users and
management. Make sure that you truly consider all the future needs of the application.
Ensure that experienced database designers are used when possible. Spend a lot of time
designing, honing, and getting approval for the design. Work at all levels of the chain
(users, managers, developers, and designers).

NOTE: As you learn later in this chapter, a relationship exists among database
design, database engines, hardware, networks, and the Internet. They all tend to
drive each other. However, the database design is a necessary part of any
implementation, so I have separated it from the process (see Figure 24.1). In
some cases, the database design will be more driven by the database engine, but I
believe it should be separate.

Figure 24.1 illustrates how the many parts of a database implementation drive each other.

Figure 24.1.

Database implementation flow.

A lot of time must be taken to design the database properly. Improper planning can start a
chain reaction of changes. Consider some of the possible events that can occur if the
database is not designed properly:

• Redesigning some or all of the database. New project plans need to be
made, people resources need to be maintained, the budget needs to be
approved, and so on.

• Getting different hardware. Upgrading hardware to meet new needs of
the system might be necessary. Upgrading can include a whole new
computer, disk drives, network upgrades, and more.

• Rewriting programs. Programs need to be changed to meet new database
table and column definitions.

• Time loss. Any big changes mean more time before the application will be
available.

• Profit and loss. At this stage, the higher levels of management might
become a bit unhappy. The increased costs and possible loss of profit from
time delays can make for a very bad situation.

All in all, the best way to avoid these problems is to take the time to do the job right the
first time! The following sections discuss the different aspects of proper database design:
table, index, and physical design.

Table Design

The design of the tables is the core of the whole system. If the table design is wrong, then
everything else fails--or at least doesn't function as well as it can. Take the time up front
to make sure you have covered all the bases in your table designs.

Following are some overall pointers to help make sure table design is properly handled.
Note that the project and communication process outlined in Checklist 24.1 will
inherently help satisfy many of these needs.

• Discuss initial needs with users and managers.

• Create preliminary design of tables and discuss with the appropriate
people.

• Create a data dictionary or graphical representation. Many software
packages do this job.

• Work through several data scenarios with the design.

• Make any necessary modifications and go through the process again.

In the following sections, I describe the different aspects of table design.

Column Selection and Naming

Obviously, a table is made up of columns, which represent the data in the database. But
they have to be the correct columns. As I've said time and time again, doing the job right
the first time is very important, and table column selection is no exception. Not adding
columns or adding incorrect columns can cause major headaches after the database is
online. Spend as much time as possible making sure that you get the columns right the
first time.

TIP: If a column is used in two different tables, which is frequently the case in a
relational database (for joined tables), there are two schools of thought: Name

the column with a piece of the table name (for example, billing_cust_code in
the Billing table and cust_code in the Customer table), or keep the column name
the same in each table. I highly recommend the latter: Keep the column name the
same. This naming method greatly simplifies the understanding of the database.
You'll always know what cust_code means. Also, you can make database changes
much more easily (because you'll know where all the cust_code fields are found).

Normalization

Table design always includes at least some level of normalization. Normalization of a
table involves designing the table in a way that removes redundant data. There are
different levels of normalization: first, second, and third normal form.

Here is an example. A customer has an address that is stored in the Customer table in the
database. A bill is generated, and its data is placed in the Bill table. When a bill is sent
to the customer, the address is read directly from the Customer table; it does not need to
be repeated in the Bill table.

Different types of databases require different degrees of normalization. OLTP databases
should be as normalized as possible. Data warehouses tend not to be as normalized.
Object-oriented (OO) databases are different beasts altogether: Table design is based on a
hierarchical structure, which is outside the scope of this text (and doesn't apply to the
current Informix database). Object-relational database management systems (ORDBMS)
such as Informix Universal Server are generally more relational in nature than OO
databases and must give consideration to proper normalization techniques.

Table 24.1 lists some different types of databases and how much normalization should be
applied to each.

Table 24.1. Database normalization considerations.
Type of
Application

Level of
Normalization

Comments

OLTP/Data
Entry

High High normalization results in less hard drive storage.
Because data is usually entered by users, it should be
less redundant. This level of normalization helps
prevent user data entry errors because users do not
have to repeat entries (such as company or employee
name and address information). Use efficient
indexing to join OLTP tables.

DSS/Data
Warehouse

Medium to
Low

Data is often loaded by batch processes, not
manually. Less normalization means that data is

repeated in these tables, allowing fewer joins and
quicker lookups. Joins are done based on linking a
central detail ("fact") table (often with redundant
data) to several lookup ("dimension") tables. This is
known as a star schema.

OLTP/DSS High to Low Use object-relational database management systems
ORDBMS) to handle a mix of different types,
including multimedia and relational.

Multimedia Low Use an object-oriented database for pure media
management. Because ORDBMS gives object as well
as relational capabilities, using it would be best.

Experience is important in choosing a design to meet the future needs of an application.
Someone used to working in a mainframe environment, for example, might not be as
familiar with the proper normalization techniques. Databases might repeat data, as in a
mainframe-type flat file. The proper techniques must be applied to the database for your
application. Getting the proper resources, whether consultants or employees, is of utmost
importance in proper database design.

Numbers of Rows

The number of rows is probably one of the most common underestimates in system
design. Determining the initial numbers of rows in the tables might be fairly easy, but
how accurately can you determine how many rows these tables will have a year from
now?

Understand that the number of rows in tables will affect how the database is physically
designed (see the "Physical Design" section). It helps to determine how much disk space
is needed, which indexes are practical, how the data is partitioned, and more. Improperly
estimating this information can greatly add to the costs of the project as more hardware is
needed.

TIP: Projecting the number of rows in database tables requires serious
interaction with users. This number is often one of the issues that the users (and
designers!) can grossly underestimate. You must always take a close look at the
application, past growth, and future growth projections as well as what the users
tell you.

Your corporation might not be able to afford the hardware for the database needs a year
from now. Nonetheless, be sure to give your company an accurate idea of what will be

needed further down the road. Understanding the future application needs now is much
better than having to adjust to them after the system is online. Again, avoid the surprise
factor!

Indexes

After determining all the table designs, you're ready to create the indexes. Indexes are
created to increase the speed of database lookups and ensure database integrity.
Improperly designed indexes can make or break an application. They are an integral part
of design. If you've ever heard "this screen always takes so long to run," chances are, the
problem has something to do with an index.

You can use several different index tuning strategies. The strategies are often very
specific to the Informix product you're using. As much as anything, index planning is a
case in which you should read the dreaded manuals.

WARNING: Besides being careful not to create too few indexes, be sure not to
create too many! As I stated in the "Normalization" section, data warehouses
have different index considerations. For example, trying to over-index a data
warehouse can greatly slow query times if queries will be selecting too much data
out of one table. Techniques such as fragmentation can greatly reduce the query
times in a data warehouse.

For normalized relational databases, you can easily create too many indexes. Redundant
indexes (for example, indexes that use columns with too few unique values or use the
same "head" columns) not only take more disk space, but also confuse the Informix
optimizer, slowing queries. Too many indexes can also greatly increase the time it takes
to insert and delete data (because indexes need to be rearranged to accommodate the
data). If an index column is often updated, performance can also be affected.

A crucial part of a good index design is creating primary key or unique indexes on the
tables. They help ensure data integrity and provide for overall better programming of the
application. Even if your table "will never have duplicates," make sure you put a unique
index on the table to enforce it. Find out now what the unique indexes are, and make sure
they are part of the initial design.

Making the Design Pretty

You can visualize and document the database design in many good ways. Doing so helps
the designers and the users of the system, and can help point out possible flaws. The
following are some of the methods:

• E/R diagram: An efficient method to build and maintain a table design is
through an E/R design tool (for example, ERwin or S-Designer). This
diagram helps chart the tables and put them in a graphical form. It better
illustrates the tables both for designers and users and can help identify any
necessary changes. Figure 24.2 is an example of an E/R diagram generated
from ERwin. Note how easily you can see the relationship between the
tables.

• Data dictionary: A data dictionary describes the tables and their
attributes. It includes column sizes, indexes, and text descriptions of their
attributes. Some software packages can greatly simplify this process. You
can use it in conjunction with the E/R diagram. In fact, many E/R diagram
tools can generate a corresponding data dictionary. Table 24.2 shows an
example of a data dictionary. The description of each table in this data
dictionary contains table name, description, join fields, and detail for each
column. This example is simple; data dictionaries can be much more
detailed and/or user-friendly.

Figure 24.2.

An example of an ERwin E/R diagram.

For the data dictionary in Table 24.2, the following information applies:

Table
Name:

Customer.

Description
:

This table supplies information about each customer. It is used by
many other tables in the database.

Join Fields: The table is usually joined by cust_nbr.

Table 24.2. An example of a data dictionary.
Column
Name

Column Type Description

cust_nbr serial Number assigned by system; uniquely identifies each
customer

last_name character(3
0)

Last name

first_name character(2
5)

First name

address1 character(3
0)

First address line

address2 character(3
0)

Second address line

city character(3
0)

Customer city

state character(1
0)

State, province, or other

postal_code character(1
0)

Zip or postal code

phone character(1
5)

Phone number

Verifying the Design

After you create the designs of the tables, make sure to work through some scenarios.
Here are some ways to do so:

• Show users and other analysts E/R diagrams, data dictionaries, and other
documentation.

• Work through all the user business processes, and make sure the tables
will meet user needs.

• Create queries that the users would do.

• Go through as many iterations as possible until you get it right; don't "get
back to it later."

• Write sample programs if you need to.

The information in the database design phase is of utmost importance to the
implementation of the project. After the design is finalized, many decisions are made for
the rest of the project. Make sure that the information is as accurate as possible, for now
and a year from now. Again, the time you spend now can save incalculable time and
money later.

Do what it takes and do it now.

Current and Future Products

As everyone knows, technology is changing at a blinding rate of speed. How many times
have you heard the complaint, "I just bought my computer six months ago, and now I can
get a computer that's twice as powerful for the same money!" or "I'm just waiting for the
new features to come out and the prices to come down before I buy." There is no single
right time to buy software or hardware. Life must go on, and so must applications.

Be as aware as possible of the upcoming hardware and software products for your
application. Plan to upgrade and move into them. Build applications with the future needs
in mind: Make sure they can grow into the needs of applications instead of being
completely upgraded. And most importantly, be sure your choices can grow into the
future.

On the flip side of the coin, if the company currently owns a product (hardware or
software), determine whether the new application instead merits upgrading of current
software. Consider the upgrade costs associated with the current license of the product:
Some upgrades are free or very low cost for current owners of products. Also, if you have
a high level of familiarity with a product, the cost and time savings can be great.
Remember the future, though. Don't lock yourself into an obsolete product just for the
sake of not changing.

If this application is simply replacing a database on an existing system (that is, you
already own the software), you must consider the necessity of changing database engines.
Why upgrade if you don't have to? For example, suppose you're replacing a database
running on Standard Engine. If it is in a small office with limited technical resources,
upgrading to another Informix version might not be necessary.

Budget

The budget allocated to the project might prohibit some of the remaining choices. Just be
sure to have all your design "ducks in a row" before you actually try to estimate how
much hardware is needed. If the database absolutely needs to have certain pieces, making
a case for it business-wise is much easier if you have the proper documentation.

Putting the Pieces Together

In the following sections, I describe considerations for the database engine, operating
system, hardware, and network. Note that these decisions tend to somewhat drive each
other. Many of these choices are made based on the size and design of the database.
Figure 24.1 illustrates this process.

Database Engines and Versions

You often hear recommendations to select the database engine before the hardware,
operating system, and other physical pieces of the system. Why? Because the database is
often (not always) the driving force of the application. After you understand the needs of
the database, you can choose the proper Informix database engine. You can then choose

the rest of the hardware and software needs based on the needs of this engine. This
situation might not always be the case, but it is a good general assumption.

When choosing the database engine, you must take into account the future growth and
needs of the application. The engine you choose must be able to grow as your application
grows. It should also keep on top of the necessary technology. Because you will, of
course, be using an Informix database, I will structure this discussion around specific
Informix products.

To assess properly which database engine to use, consider the following:

• Size of the database: Use the size of tables and indexes determined
following the logic in the "Table Design" section. As described in the
Informix product overview in Table 24.1, the size of the database helps
determine which product is most appropriate.

• Database administration skills: In this area, training, hiring, or contracting
certainly is essential.

• Tuning: How much performance tuning will likely be done to the
database?

• Future support: What are Informix's future plans for this engine?

• Types of queries: Queries returning millions of rows joining several tables
require a more high-end solution.

• Types of solutions: Is it OLTP, data warehouse, and so on? (See Checklist
24.2 for more information.)

While you have this information in mind, look at Table 24.3, which summarizes current
Informix engines. The chapters in Part II of this book give a detailed description of each
of these products. Note that the order of the products is the approximate order in which
they were released.

Table 24.3. Informix database engine summary.
Informix
Database
Engine

Comments

Standard
Engine

1.0-5.x

 • Good for lower-end databases.

 • If you already own it, it might meet your needs.

 • Very little database administration needed.

 • Uses UNIX file system, which is not as efficient for larger
tables but is simpler for smaller (fewer than 1,000,000
rows) tables. Much depends on the number and size of
indexes.

 • Easily backed up with UNIX utilities.

OnLine Server 5.x

 • Good for medium to large databases.

 • Allows users to distribute the database across multiple
disks and file systems. an use raw disk space, resulting in
increased performance

 • Allows a great deal of tuning and administration through
the tb utilities.

 • Requires more database administrator support.

OnLine
Dynamic
Server

6.x-7.x

 • Can handle very large databases.

 • Exploits parallel processing capabilities of UNIX and NT,
greatly increasing speed.

 • Adds more tuning options and complexity to those
introduced in OnLine Server.

 • Has many more administrative and backup utilities than

OnLine Server. (The on commands replace tb commands.)

 • Requires more database administration than OnLine
Server.

Universal
Server

• Contains all features of OnLine Dynamic Server, with the
addition of nonstandard data types (for example, video and
audio).

 • Provides a wide variety of vendor-created DataBlades,
which allow powerful manipulation of all types of data.

 • Has very powerful Web site development capabilities.

 • Contains all administrative utilities in OnLine Dynamic
Server--and more.

 • Could require more training to exploit object-oriented
capabilities.

XPS • Designed for very high-end database applications such as
data warehouses.

 • Allows distributing the data over several computer
"nodes" (massively parallel processing).

 • Contains all features of OnLine Dynamic Server and more.

 • Contains SQL extensions that are optimized for data
warehouse queries, as well as other powerful SQL
extensions.

 • Requires more database administration than OnLine
Dynamic Server.

Workgroup
Server

• Easy to install and administer; everything is GUI-based.

 • Designed for small to mid-sized applications. Supported on
NT and UNIX.

TIP: Go to the Informix Web site at www.informix.com to get all the latest
information and specifications on all Informix products.

Physical Design

The physical design of a database is crucial: It determines how the database is to be
stored on disk. This design can include some of the following database configuration
parameters:

• Logical logs
• Physical logs
• Root dbspace
• Tables
• Indexes
• Extent sizes

These parameters vary depending on the version of Informix being used. Generally
speaking, the larger and more complex the database, the more physical design should be
incorporated. See the "Database Engines and Versions" section for specific information.

The physical design is the place where all the table and index designs and row counts
come into play. For every row in an indexed table, the following index overhead for each
index exists: (index size + overhead) * number of rows For example, if your index is 10
bytes long, and you have 10,000,000 rows in your database, the index is 100,000,000
bytes. But that's just for the data portion of the index. The overhead (approximately 4
bytes) must be added for each row. Overhead can consist of more bytes in later versions
of Informix. Informix is an efficient database for indexing, but disk space can add up in a
hurry.

After the size for the indexes, you need to account for the data. You can generally
calculate it with this equation: (row size + overhead) * number of rows Use the
information gathered from the preceding equation to help determine disk space
requirements. Again, be sure to consider the future needs of the database.

WARNING: The preceding calculations do not determine where the data is to be
stored, just the number of kilobytes. Physical design really comes into play here.
In larger databases, you increase performance by "striping" tables and indexes

across different hard drives and physical devices. In versions 7.x and greater, you
can also "fragment" the tables. This part of the physical design is crucial. Because
it is engine-specific, I highly recommend you carefully read those sections in your
Informix manuals.

The physical design can also include distributing the database across a network. It can
become very complex, depending on the application. Physical design is something that
can be very hard to change in the future. For example, it might require adding or
changing specific computer setups, disk arrays, and more. Be prepared up front!

Operating System

Generally speaking, your choices in an operating system to support an Informix product
are UNIX and NT. Versions of Informix for Windows are also available, but they are
generally single-user applications. The operating system choice should be based on these
factors:

• Availability of the database engine on the platform
• Speed and performance needs of the database
• User familiarity
• Ease of use
• Future support of the operating system

While you have that information in mind, I provide in the following sections some high-
level overviews of the operating system choices and how they might fit into your future
plans.

UNIX

UNIX was the only choice in operating system platform for Informix databases until
recently. In fact, Informix was originally written for UNIX (Information+UNIX =
Informix). The programs in the database engine were optimized for UNIX. Only recently
did NT come onto the scene.

One of the main reasons to use UNIX over NT is that it is a well-developed operating
system. It has been around for almost 30 years. With the rapid growth of computing
applications, hardware vendors have been very supportive of UNIX releases and
optimizations and certainly will only get more competitive.

Comparing NT and UNIX systems can create some great debates. Perhaps more than
anything else, the choice of operating system can be a real source of loyalty--and bias.
Many UNIX pundits are just now beginning to accept NT as an option. By the same

token, Microsoft loyalists might be giving UNIX more credit for its power. Nonetheless,
a UNIX versus NT debate can become quite intense.

Here are some of the advantages of using UNIX as the operating system for your
Informix database:

• Longevity: UNIX has been around for a long time and is well developed.

• Tuning: UNIX allows a high level of tuning.

• Parallel processing: Although NT claims to be a parallel processing system,
it is still behind the power of UNIX, particularly on the high end.

• Scalability: UNIX can scale to the high end very well. It can scale to many
CPUs as well as cluster a number of computers. NT currently is much
more limited in this area.

• Portability: UNIX systems are very open, allowing you to move
applications to different UNIX platforms fairly easily. Microsoft products
tend to be more proprietary.

Looking into the future, the UNIX market and its processing power are growing fast. The
advent of 64-bit operating systems allows for incredible processing speed that will be
very hard to rival by NT.

NT

NT is a very new entry in the Informix product market. The first Informix database
engine for NT (Workgroup Server) became available in mid-1996. Because of the
incredible growth rate of NT (some say its sales will soon outpace UNIX on the server
end), Informix needed to be in the NT sector of the market.

NT currently offers the most threat to UNIX in smaller or departmental applications.
However, Microsoft is working hard to change that to include all sizes of database
applications. Because Microsoft is working closely with Intel and other chipmakers,
database processing power on NT could give UNIX a run for the money (some say it
does now) on the high end as well. For these reasons, Informix provides strong products
in the NT market.

You might read claims that NT just isn't ready to compete at the enterprise level yet. You
should read as many independent comparisons as possible. The intention of this book is
not to judge or evaluate. You should, however, consider the fact that NT is very new in
the database market.

Because this chapter concerns future planning, you should note that Microsoft has long-
term plans for NT: It is their operating system of the future. Object-oriented and 64-bit
versions are in development. And Microsoft's future is something that must at least be
considered in corporate planning.

Currently, OnLine Dynamic Server and Workgroup Server are the only Informix
database engines available for NT. Universal Server support is coming soon. The NT
versions of these engines are much easier to administer because of GUI interfaces, though
Informix is beginning to ship an enterprise-wide GUI interface for all its databases.

The advantages of using NT as the operating system of choice include the following:

• Price: NT competes well with UNIX from a price/performance aspect.

• Ease-of-use: With almost everything being GUI-driven, configuring and
administering NT can be much easier than configuring and administering
UNIX.

• Availability of applications: Many Windows 3.11 and 95 applications can be
run on NT.

• Integration: NT applications can integrate well with other Microsoft
desktop products.

Hardware

As I discussed previously, the hardware you use is in large part driven by other portions
of the application (for example, database engine). Hardware includes all computers and
related devices. This can go all the way to the desktop (user) level. It includes the
following:

• Servers, where the database runs (which can include a number of
networked servers, depending on the application)

• Disk drives and arrays

• User desktops

• Memory

• Backup devices

Hardware can be the most frustrating aspect of future development if you let it. Consider
the speed at which new processors are being released by Intel and others. Here are some
pointers on how to buy hardware that will help meet your future needs:

• Verify that the hardware vendor provides an easy upgrade path.

• Consider the vendor's reputation in this and other markets.

• Evaluate how the hardware will handle the initial needs of your system. If
it just handles your needs, consider spending a little more money to handle
more of the future needs of the system.

Again, be sure to consult the proper hardware specialists when making hardware
decisions. Often, hardware decisions are much more complicated than you can imagine.
Be sure to plan and select carefully, and make sure the hardware is compatible with the
rest of the picture. Again, your choices all go back to the individual needs of the system:
You must consider the interoperability of all the parts.

Network

The network is what allows your applications to communicate. The network portion of
the application includes the following:

• Network servers and operating systems (for example, Novell and NT)

• Physical cabling

• Internet connection

• Modems, routers, and bridges

• Network management software

I won't go into a detailed description of these elements in this chapter. Networks are also
a specialized field that must be handled by experienced people, at least as much as the
other parts of the project.

A poor network setup can create responses such as, "I spent all this money and look at the
response time I get!" "I hate the new computer," "The system is too slow," and "You're
fired!" In other words, other pieces of the system--the application or database--can
actually get blamed for a poor or inadequate network configuration.

Be sure to determine these factors:

• Number of users

• Number and size of queries (if your users will be creating many queries
that return large query sets to their desktops, add more bandwidth)

• Integration with current networks

• Structure of applications (Are they "client-centric" or "server-centric"?)

• Networking costs

• Communication among different corporate offices

Many network decisions can influence application design decisions, and vice versa. For
example, if a corporation decides to create Java applications that run on the server, it
might want to supply end users with network computing devices or diskless workstations.
This setup takes much of the processing off the user desktops but puts much more of a
burden on the network. Be sure you consider all these bandwidth needs.

Internet

With the advent of the Internet and World Wide Web, many decisions must focus on how
to use the Internet with the application you're developing. It is estimated that most--if not
all--companies will have Internet connections by 1999. Certainly, this fact does not mean
that you have to create your application for the Internet, but chances are that your
company will be connected.

Generally speaking, unless your company needs to share data across multiple locations or
with the outside world, you don't need an Internet connection for an application. Because
such a connection is becoming so much easier to implement, however, more and more
applications will benefit from it. See Chapter 42, "Serving Data on the WWW," for more
information on how to create Web-enabled applications. You need to address a number of
additional considerations (for example, security) when creating an Internet or intranet
application.

Examples

In the following sections, I provide some examples to help illustrate the complex
preparation process.

Example 24.1: Small System

The application to be designed will be used in an office of 10 people. The company is not
expected to grow much, and the application should remain somewhat stable. This
example is about as easy as it can get. But don't worry, complications can still exist. Here
are some examples:

• Don't take the simplicity of the system for granted. Treat it the same as
you would any large application.

• Be sure to talk to all the users and remember the future!

• After an application is created, users discover its power and tend to want
more features.

Now, cut through the many stages of the design process and look at what type of
configuration you might expect:

• Database Design: Meet with all users of the system, go through their
needs, and create the proper design document. This part is different from
any implementation only in size of application and user base.

• Database Engine: Informix Workgroup Server, or OnLine Server if some
database expertise is available in-house or via contract. Base this choice on
how much bigger the application and data needs are expected to get.

• Physical Design: Depends on the database engine. In an application like
this, though, the physical design should be fairly straightforward.

• Operating System: Depends on the company's experience level on the
operating system and availability of the database engine on the operating
system. For example, if users have strong NT or UNIX experience, use one
or the other, but make sure that the database engine is supported.

• Hardware: An application of this size will likely not need a lot of hardware
(for example, disk drives), and there is a good chance it will all be
contained on the same computer as the database.

• Network: You likely can use an existing network. It will probably need to
support TCP/IP.

• Internet: Unless there is a real need for Internet connectivity (for
example, users travel often), chances are that the Internet will not be
needed. It would not be worth the expense of creating a firewall and
paying for the connection. If remote access is needed, set up dial-in lines.

Example 24.2: Medium to Large System

This application will serve a nationwide company. It will be an OLTP system with
reporting capabilities. It will be an intranet, an application that uses Internet technologies
(for example, TCP/IP). The amount of data entry will be somewhat large, perhaps 5,000
entries a day.

Here are some of the considerations for this type of application:

• Database Design: Meet with many users of the system, go through their
needs, and create the proper design document. This part is different from
any implementation only in size of application and user base.

• Database Engine: It will likely be OnLine Dynamic Server (ODS) version
7.x. Because it is a robust product and this is a larger company, ODS would
likely be the best choice.

• Physical Design: Because this application will be fairly large, it will include
many more pieces than Example 24.1. For example, the database
administrator might opt to use several different hard drives for the tables,
dbspaces, and physical and logical logs. In versions 7.x and greater, the
tables could be fragmented.

• Operating System: This application would almost certainly need to be on a
UNIX server. Not only can UNIX servers scale better than NT servers, but
the Informix products are much more developed on UNIX.

• Hardware: As I mentioned in the preceding sections, this system will
require a decent amount of hardware. It will likely require at least one
server with multiple disk drives. Depending on the amount and setup of
data, the database might span multiple database servers. It will also need
to include any special needs of the physical design.

• Network: For nationwide applications like this one, you must make many
considerations network-wise. The offices will need to be connected
somehow, probably through the Internet or high-speed dedicated lines. In
addition, the internal networks will need to handle the added traffic.

• Internet: For an application that is nationwide, the Internet is fast
becoming a more viable option. Many security standards and products are
being created. An Internet connection will add to the need for this
additional security but can also save the high costs of dedicated lines. The
response time on the Internet, however, might be a big consideration for
an OLTP system.

As you can see, applications come in many different types. The number of factors
involved can be immense. But the whole system is manageable. You should lay out all
the pieces of the system (as in this chapter) to help map out a path. Be sure to follow

many of the overall project implementation guidelines in Checklist 24.1, and life will be
much easier.

Summary

A great deal of work goes into creating a computing application, no matter what kind of
application it is. Developing a database for your company's current needs is hard, and
developing what you will need in a year or more is even harder. In this chapter, I gave
you guidelines on how to think in terms of now and the future. As companies and
technologies move forward, planning for the future will become more difficult, but if
everyone on a project follows a few simple guidelines, the future will fall into place.

- 25 -

The INFORMIX-Enterprise Gateway
Manager

• What Is the Enterprise Gateway Manager?
o What Are the Uses for the Enterprise Gateway Manager?
o Products Supported by the Enterprise Gateway Manager

• Enterprise Gateway Manager Installation and Configuration
o Requirements and Planning
o Installation of the Enterprise Gateway Manager
o ODBC File Configuration
o Bringing the Enterprise Gateway Manager Online

• The egmdba Utility
o User Mappings in the egmdba Utility
o Test Connections with the egmdba Utility
o Installing the System Catalogs with the egmdba Utility

• Summary

by Robert Donat

The Enterprise Gateway Manager is an important product for Informix database
applications that need to access data from other databases. It allows simple, transparent
access to third-party data sources, and it greatly reduces the complexity of such
applications. The Enterprise Gateway Manager has many different uses and is a helpful
tool in most development and production environments that do not exclusively rely on
Informix products. Many application development products benefit from the Enterprise

Gateway Manager, and if the main thrust of a database environment is toward Informix,
this product is invaluable.

What Is the Enterprise Gateway Manager?

The INFORMIX-Enterprise Gateway Manager is a relatively new product from Informix,
which provides OnLine instances the communication necessary to query and update non-
Informix data sources. It acts as a bridge to databases such as Sybase and Oracle, as well
as to mainframe VSAM, IMS, and DB2 data through third-party middleware applications
such as CrossAccess. Any level-two compliant UNIX ODBC driver can be used with the
Enterprise Gateway Manager to provide both read and write access to a number of data
sources.

These data sources appear to Informix clients as if they were actually INFORMIX-
OnLine instances. The communication and data conversion is transparent to the client,
and the client needs to know only the Gateway Manager service and data source names in
order to use this data (when authorized to do so). When the Enterprise Gateway Manager
has been set up and client authorization mappings have been created, direct or distributed
queries are handled in the same way they are with any one or more Informix data sources.

What Are the Uses for the Enterprise Gateway Manager?

The Enterprise Gateway Manager is a very important piece of the Informix product line,
and it allows tremendous flexibility in the way applications are developed and used.
Three types of uses are immediately apparent: cross-platform application development,
database or data migration, and data warehousing.

Cross-Platform Application Development

If a business requires an application to have access to data in more than one type of
database, there are a few ways to approach the implementation. One way is to use the
client application itself to coordinate the data access at the client level. This means
loading more than one set of low-level database communications libraries and perhaps
several ODBC drivers, depending on the application. Another way to approach this
situation would be to replicate the data from one type of server to the other on a weekly,
nightly, or continual basis. A third, and much better, solution is to use a product such as
the Enterprise Gateway Manager.

With the first approach, a client application--perhaps a Visual Basic front end--must be
used to obtain data from more than one data source such as Informix, Sybase, and Oracle.
At the minimum, a communications library for each of the three databases and, possibly,
an ODBC driver for each database must be installed on the client PC. When cross-
platform joins are performed, they are done on the client machine, which is most likely a
single-processor PC with limited memory and storage space. Large data operations
cannot be performed in a timely manner, if at all, when this scenario is present. The
drawbacks of this approach are serious. The application must manage several different

low-level database communications libraries or multiple ODBC data sources and
configurations. In addition, it will be an application that is intensive in terms of memory,
storage, and network activity, which must coordinate and join data from all the necessary
database sources.

The second approach, where one database replicates all of the disparate data for the
application, solves several of the problems of the first, but it also introduces new
problems. Rather than multiple connections and data sources to maintain for the
application, there is only one. Joins and data processing can now take place on the
database server, where they receive the benefits of more memory, processing power, and
storage capacity. Also, network traffic is kept to a minimum, because only the result set
must be transmitted to the client application, instead of every row from every source from
which a result set is obtained. The drawback of this method is the development effort that
is necessary to synchronize data from several sources on one server. Typically, this
would be done as a batch process, which would unload data from one source on an hourly
or more appropriate basis. This data, in ASCII form, would then be loaded into the
central target database. Depending on the needs of the application, hourly, nightly, or
weekly synchs could be appropriate. Perhaps data must be up to the second, though, in
which case complicated programs will be necessary to synch data on demand. If there is a
large amount of data, and only a small but indeterminable subset is updated regularly, the
data unload, transport, and subsequent load become more overhead than is desired.

The best approach for an application that needs to use multiple data sources from
different database types is to use a product such as the Enterprise Gateway Manager. The
client is required to connect to only one data source, because all data is available through
the Enterprise Gateway Manager service. Processing and joins still take place on the
Enterprise Gateway Manager database server where they belong, and no regular batch
processing is necessary in order to ensure that data is current. Data will be as fresh as the
most recent update. Although table joins can take place across a network rather than on
the same database server, the network speeds between servers are usually much greater
than on a typical PC--and this situation is no different from having two different
INFORMIX-OnLine instances that reside on separate UNIX servers. The only downside
to this approach is the slower data manipulation speeds that result due to the ODBC
connection, which is slower than a native connection.

Clearly, in most situations where multiple databases are used for an application, using the
Enterprise Gateway Manager is the best approach, and it gives the application developer
the least amount of time spent managing connections and batch processes.

Database and Application Migration

When an application and its database are ported from a non-Informix database to an
OnLine instance, the Enterprise Gateway Manager can help bypass several hurdles.
Usually, applications such as these are moved from one database or front end to another
because of unmanageable data or business rules growth, or a change in corporate
standards.

The first and most obvious benefit of the Enterprise Gateway Manager is the ease of data
migration. Instead of unloading and reloading all of the data from ASCII files, you can
accomplish this much more quickly and easily using the Enterprise Gateway Manager
directly. Another benefit becomes apparent if an application is upgraded or rewritten
during the process of porting the database. In cases like this, the Enterprise Gateway
Manager can help to facilitate the eventual move.

If application data currently resides in a non-Informix database but will be ported to
Informix eventually, the application must also eventually be changed to point toward a
completely different database type. The Enterprise Gateway Manager can be used to
service the current data needs without requiring the rewrite of the communications type
when the port is completed, so that you don't have to develop against the current non-
Informix database directly. For example, if a Sybase database will soon be ported to an
Informix database, but an application must be developed and used prior to the port of the
database, the Enterprise Gateway Manager can be used. The application can be written to
point toward the INFORMIX-Enterprise Gateway Manager, instead of the actual Sybase
database. The data is available to the application immediately. And when the database is
ported, rather than change the application dramatically from a Sybase back end to an
Informix back end, only a change in the Enterprise Gateway Manager data source is
required. No further change is necessary for the client application, and significant
development time is cut from the application port.

Data Warehousing

Data warehouses are now a large part of many corporations' immediate plans. However,
because legacy systems and many different Relational Database Systems are in use at
most companies, centralizing all of the data becomes a large problem. The INFORMIX-
Enterprise Gateway Manager is a perfect tool to use to populate a data warehouse with
Informix data, or to populate an Informix data warehouse with outside data. In fact,
although it is not the best use for the INFORMIX-Enterprise Gateway Manager, it can be
used to populate a non-Informix warehouse with non-Informix data. An example is
selecting from a Sybase instance and inserting into an Oracle instance if no other
convenient way exists to exchange data between the two.

The use of the Enterprise Gateway Manager for a data warehouse depends entirely on the
company's needs and environment. The Enterprise Gateway Manager can be used for
summarizing and archiving time-sensitive mainframe data into an Informix history file if
the more expensive mainframe DASD storage is unavailable. It can also be used for
populating a large Oracle instance with Informix detail information at the end of each
month before it is summarized and purged from the smaller Informix instance. Whatever
the corporate warehousing needs, if they involve Informix at some level, the Enterprise
Gateway Manager is an appropriate tool.

Products Supported by the Enterprise Gateway Manager

Because the Enterprise Gateway Manager is essentially an INFORMIX-OnLine instance,
it supports all the same products that Informix typically supports. The versions that are
currently supported are as follows:

• 7.10 and higher INFORMIX-OnLine Dynamic Server and OnLine Optical

• 5.05 INFORMIX-OnLine database server

• 7.10 and 5.05 INFORMIX-ESQL/C and COBOL for UNIX

• 6.10 and 4.13 INFORMIX-4GL for UNIX

Also, through the standard Informix connectivity products, most clients such as NewEra,
PowerBuilder, SQLWindows, and Visual Basic are able to make use of the Enterprise
Gateway Manager's functionality. You should read the release notes file that comes with
the Enterprise Gateway Manager (EGMREL_7.x) to determine any specifics for your
platform.

Enterprise Gateway Manager Installation and Configuration

The Enterprise Gateway Manager is installed in the same manner as all other Informix
products, and it is usually one of the last products that should be installed on a new
installation. If the Sybase and Oracle Informix ODBC drivers are used, they should be
installed after installing the Enterprise Gateway Manager itself. As with any other
installation, some planning and custom configuration will be required.

Requirements and Planning

A few requirements are necessary in order to install and use the INFORMIX-Enterprise
Gateway Manager. One or more ODBC drivers must be obtained, either from Informix or
from another vendor. For each data source that is used with the Enterprise Gateway
Manager, that data source's communications libraries must be obtained and available on
the same server. It is best to map out the first few data sources, which will be used to help
visualize and document your installation before it takes place. This also helps to
standardize your installation and naming conventions.

Additional ODBC Drivers

When the INFORMIX-Enterprise Gateway Manager ships, it comes with only an
Informix ODBC driver. This driver does not allow any additional Informix connectivity
beyond what is inherent to an OnLine instance. Therefore, you probably won't need to
use the Enterprise Gateway Manager unless another ODBC driver is obtained. The only
benefit that the Enterprise Gateway Manager provides by itself is the capability to
logically group networked databases together so that they look like separate databases on
the same server.

Communications Libraries

Because other database drivers are probably needed, those native database libraries must
exist on the same machine as the Enterprise Gateway Manager. It is not necessary for a
full-blown Sybase or Oracle instance to exist on the same server as the Enterprise
Gateway Manager, but their respective communications libraries must exist in the library
path in order to allow connectivity. These can usually be obtained in the lib directory,
which exists under a typical Sybase or Oracle installation. If you are unsure which
libraries must exist for communications to take place, the third party documentation or
Informix technical support might help.

Planning of Anticipated Data Sources

If you intend to install more than a few data sources, you might want to fully document
the server types, server names, and database names to which you want to connect. This
helps you to determine exactly what your expectations are prior to the configuration. A
data source naming standard should be established, because you will need to adequately
derive the actual data source type, server name, and database name from each Enterprise
Gateway Manager data source. If only Oracle and Sybase will be used, perhaps a
convention such as s_dev_pubs would be adequate to indicate a Sybase connection to the
pubs database on the development server.

Installation of the Enterprise Gateway Manager

When the Enterprise Gateway Manager is installed, it is expanded from its UNIX tar
format like any other Informix product and installed as root with the ./installegm
command line. You should read the release notes for the Enterprise Gateway Manager, as
well as for the Sybase and Oracle drivers that come from Informix if they are also
installed. Each of the add-on ODBC drivers must be installed as well, with its own
./installxxx script as root. The platform- specific libraries must be linked to /usr/lib
or some appropriate area of your server, where they can be found during runtime. At
some point during the installation, you must create a new entry in /etc/services to be
used for your Enterprise Gateway Manager network connections. This can be simply egm
or any appropriate entry that conforms to your naming conventions. That service must
then be mapped in the $INFORMIXDIR/etc/sqlhosts file to a new Informix gateway
instance. After the files have been copied and properly licensed during installation, the
data sources must then be defined and configured in order to use the Enterprise Gateway
Manager.

ODBC File Configuration

After installation, a file called .odbc.ini is created in the $INFORMIXDIR/egm/odbc
directory. If you want to keep this file as your default ODBC configuration file, the
environmental variable ODBCINI must be set to this file in order to start and use the
Enterprise Gateway Manager properly. The only Enterprise Gateway Manager

configuration file is the .odbc.ini file. Be aware when you look for it that it is a hidden
file, because it starts with a period. Therefore, you must use ls -a in order to see it. The
.odbc.ini, or $ODBCINI, file contains the details of your Enterprise Gateway Manager
setup and connectivity options.

It contains three main sections. The first section, [ODBC Data Sources], lists the names
of each mapped data source, as well as the type of driver that is used. The second section
has an entry for each of the line items in the first section. The driver library that is used is
specified here, as well as a description, the server, and database names. Depending on the
type of driver, certain fields may vary and will be noted in the accompanying
documentation. The last section of the .odbc.ini file is the [ODBC] section, which has
information on trace levels, trace files, and the installation directory. A sample
.odbc.ini file is shown in Listing 25.1.

Listing 25.1. The Enterprise Gateway Manager .odbc.ini file.
[ODBC Data Sources]
sams_stores=Informix Driver
s_dev_pubs=Sybase Driver
SFVSAM=Cross Access Criver
[jerry_stores]
Driver=/usr/informix/egm/odbc/lib/libifmx07.so.1
Description=stores database on sams server
Database=stores@sams
[s_dev_pubs]
Driver=/usr/informix/egm/odbc/lib/libsybs10.so.1
Description=pubs database on sybase development server
Server=SYS10DEV
Database=pubs2
[SFVSAM]
Driver=/usr/informix/cxa/libdrvr.so
Description=VSAM gateway
[ODBC]
Trace=0
TraceFile=odbctrace.out
InstallDir=/usr/informix/egm/odbc

Bringing the Enterprise Gateway Manager Online

After the Enterprise Gateway Manager has been installed and configured, it can be
brought online. The command line necessary to do this is

egmd instancename -s egm -l /usr/informix/egm/egm.log

The instancename refers to the name of the online connection that was specified in the
sqlhosts file, and the service name that was placed in both /etc/services and
sqlhosts is specified after the -s flag. When the Enterprise Gateway Manager daemon
is running, you can then map users and test connections with the egmdba utility.

The egmdba Utility

The egmdba utility is used to administer and test connections that are specified in the
.odbc.ini file. It is also used to install platform-specific UNIX users, which are mapped
to data source logins. Additionally, the system catalogs, which Informix uses for each
data source, can be managed and updated through the egmdba utility.

User Mappings in the egmdba Utility

The way Informix authenticates itself to sources such as Sybase or Oracle is by mapping
a corresponding user and password to each UNIX user. Because both Sybase and Oracle
use a third-level security scheme, an Informix user must be a valid UNIX user and map to
a valid Sybase or Oracle user as well. The egmdba allows users to create mappings
between their UNIX logins and third-party database IDs for different data sources. The
main screen and its options are shown in Figure 25.1.

Figure 25.1.

The main egmdba screen.

First, you choose the User menu, and under the Add-one menu you enter a valid UNIX
name. If the user informix uses this program, any name can be specified. If a user other
than informix uses the program, only the current user login can be specified. You
specify a data source from the $ODBCINI file and enter a corresponding user and
password that will be used to log into the data source. This can be seen in Figure 25.2.

Figure 25.2.

The egmdba user administration screen.

Test Connections with the egmdba Utility

After the correct user mappings have been entered, a test connection can be made. This is
done by choosing Test-connect and entering the appropriate data source name and
Enterprise Gateway Manager name, as shown in Figure 25.3.

Figure 25.3.

The egmdba test connect screen.

When you've made a connection, the test can be run against any table in the database that
is in use. An owner and table name are specified, and if the test is successful, the number
of rows in that table is shown. The results from a successful test are shown in Figure
25.4. If there are problems with the connection, the corresponding error code should be
investigated in the Enterprise Gateway Manager documentation.

Figure 25.4.

A successful connectivity test to the Sybase pubs database.

Installing the System Catalogs with the egmdba Utility

The Enterprise Gateway Manager relies on its own set of system tables, which reside on
each data source. These tables help Informix to achieve some of its functionality and
performance. Although it is not necessary to install and populate these tables, it is
recommended, especially if you encounter any difficulty with your data sources. The
main catalog menu is shown in Figure 25.5.

Figure 25.5.

The egmdba main catalog menu.

This screen allows you to install and uninstall the catalogs, and to refresh their data with
new table and stored procedure data. This must be done when changes occur to the data
source objects in order to make them known to the INFORMIX-Enterprise Gateway
Manager. In order to install the catalog, choose the Install option and provide a data
source and Enterprise Gateway Manager name. When the connection is made, you are
offered a choice of catalogs. When connecting to a Sybase or Oracle data source, you
should install the respective catalog. When the data source is an Informix or other
ODBC-connected source, the generic catalog should be installed. This choice is shown in
Figure 25.6.

Figure 25.6.

Catalog installation choices.

TIP: On the remote database, you need to provide a user named informix. This
user must have the ability to read system tables and create new tables, and must
exist before you can install the catalogs.

After the catalog has been installed, you are done with the installation and can now begin
work on your application. Remember that the catalogs must be refreshed periodically if
changes are made that affect the database objects.

Summary

The Enterprise Gateway Manager is a tremendous help to cross data source development.
When you use its capability to both read and write to Sybase and Oracle databases, as
well as to ODBC- mapped VSAM, IMS, and DB2 mainframe data sources, the

development effort required for new applications is greatly lessened. Although the
INFORMIX-Enterprise Gateway Manager is still a relatively new product, it will
certainly become a frequently used and valuable tool for many sophisticated database
developers in the future.

- 26 -

Problem Handling
• Dealing with the Pressure

o Prepare and Be Confident
o Lock the Door and Screen Your Calls
o Breathe Deeply and Control Stress

• Determining the Source of the Problem
o Informix SQL Error Messages
o Log Files
o INET and Isolating the Location of the Problem
o Engine Utilities
o Engine Parameters
o Database Issues
o A Sample Resolution Process

• Confining a Problem
• Using the "Hotline"
• Fixes

o The Good
o The Bad
o The Ugly

• Recovering the Production Environment
• Success

o Avoiding Downtime: Preventing Future Occurrences
• Summary

by Jan Richardson

This chapter focuses on methods of handling and resolving problems in an operational
environment. Effective problem handling and resolution employ a step-by-step process.
The first topic addresses the most basic step in the process, dealing with pressure. The
successful handling of problems requires the successful handling of pressure. Under
pressure, the programmer, database administrator (DBA), or system administrator must

determine the cause of the problem, remedy the problem, and then recover the normal
operational environment. These topics comprise the remainder of the chapter.

The second topic describes methods and tools for determining the source of the problem.
Confining the problem so that its impact can be limited is the third topic. Next, I address
effective utilization of the Informix technical support hotline. This information is
followed by a discussion of various approaches for correcting system problems. For the
final topic, I discuss capitalizing on successful experiences.

In this chapter, I focus on system-level problems rather than on debugging actual
programs. For more information on debugging programs, refer to the documentation for
the tools you're using for your applications development.

Dealing with the Pressure

In compiling this chapter, I contacted several Informix engineers and asked, "If you could
tell your customers something about approaching problem resolution, what would you
tell them?" The most common response was some version of "Calm down and think." So
what creates an atmosphere in which normally intelligent, competent professionals lose
their good senses and methodical habits, becoming stressed-out candidates for the
burnout ward?

A critical problem generally has high visibility within an organization. Users and
managers want an immediate response, a guaranteed fix, and the "responsible" agent. The
responsible agent is to be "fixed," regardless of whether it is hardware, software, or a
human. Lost computer time costs the organization too much to allow weak links. In
today's technological environment, these costs are real. They include financial realities
such as lost productivity, increased costs, and ultimately lost profits. The financial health
of an organization quickly affects the bottom line for staff--that is, job security and
paychecks. With these issues weighing on the individual attempting to resolve a problem,
the pressure for swift recovery and non-recurrence is often excessive. This pressure can
cause a normally intelligent, competent professional to lose his or her good senses and
methodical habits.

Because problem handling and its associated pressures are an integral part of the DBA's
or system administrator's position, individuals in these positions must learn to manage
their responses to the pressure. Nonproductive management of pressure can result in
ulcers, irritability, reduced productivity, and burnout. None of these consequences of
employment are desirable. Effective handling of pressure can result in self-confidence,
job satisfaction, job enjoyment, and promotion. These consequences of employment are
all desirable. You should know that you can take some simple steps to help improve your
pressure-handling skills.

Prepare and Be Confident

Nothing assists you in handling pressure more than the confidence afforded by
preparation. This preparation can be gained as the result of training or experience.
Training can be formal classroom training, on-the-job training, or self-study. Informix
offers several classes to learn the basics of its database engines and tools products. These
classes form a sound foundation on which to base your preparation. They provide you
with a fact-based grounding in standard, routine operations of the products. When you
have a good understanding of what should happen, you can learn to sense problems
before they explode and thus anticipate their possible consequences. By being able to
anticipate possible fallout from a problem, you can avoid surprises that generate
additional problems and added stress.

On-the-job training can occur in two ways: with a mentor or on your own. In the optimal
situation, a mentor walks you through the steps to resolve situations. In this situation, you
learn to resolve the problem with a safety net. Your individual exposure is limited by
having another person with more experience to rely on for guidance. You learn from the
experience, and your confidence grows with limited risk. You're in a position to learn the
questions and thought processes used to analyze the situation from an individual who has
already been through the process.

The on-your-own scenario can be risky, frightening, and dangerous. The dangers
associated with making errors on your own are significant enough for me to recommend
this method be used only in an emergency or with a relatively minor problem. If a mentor
is not available, and the problem is serious, contact the Informix technical support line
and let the tech support staff be your mentors. You can find a more detailed discussion of
the Informix technical support line later in this chapter.

Self-study is a tremendous preparation tool. You can find articles and books on problem
resolution, performance tuning, and debugging in numerous publications. The
newsgroups on the Internet can provide information on problems others have encountered
and how those problems were solved. The newsgroup comp.databases.informix is a
good place to begin your reading. Be careful when reading this newsgroup, though. The
information contained in the postings is not necessarily accurate, often contains gossip,
and should always be tested before it is applied to your system. Remember, the Internet is
only a tool, not an official source.

A user group can also be an excellent source of information for self-study. Attending user
group meetings affords you the chance to ask questions of your peers and any Informix
representatives present. Additionally, the training and discussion sessions provided by
most user groups are excellent vehicles to expand your skill set.

Lock the Door and Screen Your Calls

This advice to lock the door and screen your calls sounds flippant, but the most
distracting experience I have ever encountered in attempting to resolve a major crisis is
having the boss constantly asking, "Is it fixed yet?" or worse, sitting in my cubicle acting
important while I try to troubleshoot. During these stressed-out times, I have actually

considered keeping a baseball bat in my cubicle. The bottom line is this: To ensure that
the job is done correctly, you must limit interruptions. Do whatever you can to isolate
yourself so that your concentration is not broken. You must keep focused so that you can
think through the consequences of each of your actions.

To avoid irritating your peers or your boss, try putting a message on your voice mail with
the status of the situation; then turn down or turn off the ringer. If people need to leave
messages, they can, and you can return their calls according to your schedule. You can
use a similar approach by posting a notice on your door or outside your cubicle with the
status and a polite request that you not be disturbed unless another emergency occurs.
Your peers have probably been in a similar situation at some point in their careers and
will appreciate your need to concentrate. The boss is concerned about the status and
expected clearing time; if the notices or voice mail provide sufficient information, his or
her requirements will be fulfilled. If you are still interrupted, and you do not have a
private office, look for a private location away from your office, perhaps in your
company's data center. Being in a familiar environment with your reference material is
always best, but being able to concentrate is more important, even if that means
relocation.

Breathe Deeply and Control Stress

The first sign I notice that the pressure and stress are affecting me is getting tight
shoulders. If I ignore this signal, I begin to grow grouchy; then my back begins to ache,
followed rapidly by a headache, nervousness, and an inability to concentrate effectively.
As a result, the more the pressure affects me, the less I am capable of quickly resolving
the problem while avoiding cascading issues. Accepting this fact took me several years
because I always felt I worked best under pressure. What I didn't realize is that there is a
point at which pressure becomes counterproductive. This pivot point is different for
everyone. I think that we all need pressure of some level, and we therefore do work best
under pressure, but with too much pressure, productivity decreases.

You can find hundreds of workshops and books teaching methodologies for handling
pressure and stress. What works for one person might not work for another, so you have
to learn the tools that work best for you. Some of the techniques I have learned over the
years to release some of the tension are very simple. I've included some of the best here:

• Bow your head; then roll your head slowly in a circle. Try to make your
head roll to the farthest point in each direction and go slow.

• Roll your shoulders in circles and arch your back.

• Stand up and stretch. Pace slowly in your office or cubicle while stretching
out your muscles.

• Take five slow, deep breaths. Count slowly to five while inhaling, hold for a
count of three, exhale slowly for a count of five, and then hold for a count
of three. This way, you can get oxygen to your brain.

You can perform these simple techniques in your work area. Don't be fooled by their
deceptive simplicity. Their true power comes from their simplicity and portability. You
can use these techniques anywhere at any time to assist in controlling your response to
pressure or stress.

Determining the Source of the Problem

Armed with the ability to control the pressure, you must sort through the confusion to
determine the actual source of a problem. This task is daunting. I can't possibly cover
even a fraction of the possible scenarios faced in the day-to-day operations of a database.
Any attempt to accomplish this task would be incomplete, inaccurate, and futile.
Therefore, in this section, I try to help you identify the places to look in researching the
problem. You can find many sources of information on how the Informix engine is
performing.

Informix SQL Error Messages

Informix provides several types of error messages. The SQL error messages are received
when an SQL statement is executed. The application submitting the SQL statement to the
engine receives the message back from the Informix engine or INET. The messages are
returned in a structure that must be analyzed by the application. Most applications pass
the content of the error back to the user. A good application also logs unknown error
messages to an application log file so that they can be analyzed further. An unknown
error message requires further investigation into its cause. A simple duplicate index or
record not found might not warrant an entry in the application log file.

Each of these messages has the format of a numeric identifier and a text string. The
numeric identifiers are in logical groupings such as

• Operating system errors

• DBaccess

• Connectivity

• SQL

Therefore, all the positive number error messages refer to configuration and startup
errors, all errors from -1 to -79 refer to operating system errors, and so on.

Error messages generally stay the same from release to release, with the exception that
new messages are added with each release and often each dot release of the Informix
products. The Informix manual Informix Error Messages for your release of the engine is
the only accurate documentation for these messages. The text explanations associated
with these error messages give some insights as to the possible causes of the problems. If
the error message indicates that you should notify Informix technical support of the
problem, you should follow this advice and notify the support staff. They might be the
only people with access to the utilities required to fix the error.

Although Informix has made concerted efforts to make the descriptions of these error
messages informative, they are often inadequate to resolve the problem. My favorite error
message is -32766 Unknown error message number. The number is unknown to the
Informix error message subroutines. In my experience, if the environment variables are
set correctly and no other symptoms occur, these errors must be referred to the Informix
staff so that they can use the grep command on the source code and find the cause of the
error. If other symptoms occur, you can use other investigative tools to research the
problem.

Log Files

Interpreting the entries found in the Informix log files can be critical to identifying the
cause of a problem. When the Informix daemon is started, a log file is specified. Informix
logs periodic messages to this file. These messages are both routine and exceptional.
They can be important in determining the cause of a problem as well as in evaluating
recovery capabilities. You can see a sample log file in Figure 26.1.

Figure 26.1.

A normal Informix log file during a system shutdown and startup for an Informix 5
engine.

The log file shown in this figure is from an Informix 5 engine. It illustrates several types
of log entries. Each time the Informix engine issues a checkpoint, the activity is noted in
the engine log file. The entry marked 06:36:45 begins a shutdown of the Informix
engine. Any errors encountered in the shutdown are added to the log. The message
marked 06:36:51 indicates that the engine was successfully stopped. When the engine is
started, the first entry in the log indicates the date and time, as noted in the sample. This
information is followed by all messages generated during engine startup. Figure 26.1
illustrates a normal, successful shutdown and startup of an Informix 5 engine.

Other normal operational messages that can be monitored through the engine log files
include logical log and archive activity. These messages assist in recovery of the database
by indicating when the last log file was backed up. This information is useful if the
engine aborts and log files that have not been backed up are lost. This way, you can
notify the user community as to how much processing will have to be re-created after
operations are restored. Information about the most recent archive can also be important

when you're recovering a database. Figures 26.2. and 26.3 show some examples of
normal operational messages.

Figure 26.2

A normal Informix log file during routine activity for an Informix 5 engine.

Figure 26.3.

A normal log file for an Informix 7.2 engine.

Knowing what entries to expect in a normal log file enables you to identify abnormal
messages quickly. You can now review an abnormal log file and search for clues as to the
cause of the problem. You might find clues as entries in the log file, as shown in Figure
26.4, or as omissions to the log file, as you can see in Figure 26.5.

Figure 26.4.

An aborted process message on an Informix 5 engine.

Figure 26.5.

A sample log file for an Informix 5 engine.

The process aborted abnormal message can be caused by many factors, but it is an
indication that a problem occurred. If this message correlates to problems with the
engine, it might be an appropriate place to begin your research. The process id number
(pid) can be useful if the process is still active in the system and can therefore be
identified and traced. The user number is also useful in tracking down the process
originator. After you locate the offending process or user, you can begin more detailed
analysis to isolate the actual cause of the incident.

Compare Figure 26.5 with Figure 26.1. In this log, the engine stops without the proper
shutdown sequence messages. This problem indicates that something happened outside
the normal Informix processing to stop the engine--for example, an operating system
command to kill the daemon. You now have a direction to begin your investigation. You
are also immediately alerted to the fact that you will have database recovery issues when
the engine is restarted. The Informix engine will attempt to recover itself and note the
recovery messages, but data can still be lost.

Log file messages are just one source of information that you can use in researching the
cause of a database problem. These samples are merely an indication of a few of the
messages that you can find in a log file. Log files are important and significant sources of
information. They are usually the first place to begin an investigation. Utilizing the log
files, you can quickly rule in or out many possible causes of system problems. If no
abnormal messages appear, there's a good chance the culprit is either an application

program or the operating system. If error messages appear, you can use them as the
starting points to track down the cause of the problem.

INET and Isolating the Location of the Problem

Isolating whether the problem is with the application, network, or database engine is
probably the most challenging task faced in problem resolution. Whether this task is done
in a network environment or not, much of the logic is the same. Therefore, for this
discussion, I will assume that you have the additional complicating factor of network
connections. If your environment does not involve this level of complication, you can
still follow this logic by simply eliminating the steps and questions that do not apply to
your environment.

INET is used to access databases on machines other than the one to which the user is
currently attached. This example is best illustrated using the client/server architecture. In
a client/server environment in which INET is used to access the databases, problem
identification can be more complicated. The problem can have three possible locations:
the client, the network, and the servers. Each of these locations has a complete set of
possible causes for the problem. Therefore, the first step is to isolate the location of the
problem. To identify the location of the problem, you must be able to isolate the pieces of
the client/server world.

The possible sources for the problem include the following:

• The client application

• The client-to-Informix communications

• The network

• The application server in a three-tier environment

• The server in which the database engine is running

To isolate the problem to a specific location, you must test each step in the process. A
sample procedure in a two-tier client/server environment could resemble the following:

1. Does the application work correctly on the client? Chances are, it
doesn't; otherwise, you wouldn't need to follow this problem-resolution
pathway. Therefore, proceed to step 2.

2. Can INET on the client access the database using some other
application? This question can be tested using any query tool that uses
INET. If no such tools exist, use the Informix ISQL tool. One PC tool from
Informix allows you to enter queries from the PC in a manner similar to

the ISQL server-based query tool. Try a query to the database; if it works,
the problem is probably in the application. If it doesn't work, proceed to
step 3.

3. Try to ping the server from the PC. If you can ping the server using your
PC TCP/IP tools, then check your INET installation procedures. INET
might be installed incorrectly. If INET is installed correctly, proceed to
step 4. If you cannot ping the server, you might have a problem on the
network. Also check the Informix network/services log file on the server.
It should have an entry for each attempted network login and the status of
the attempt.

4. At this point, you know that you cannot query the database, and you can
communicate across the network. Use the ISQL tool to attempt a query
against the database. If the query fails, try a query against another
database on the same machine. If both fail, begin an investigation on the
status of the database engine. If the second query succeeds, begin an
investigation into the status of the database used in the first query.

These steps, shown in Figure 26.6, assist in isolating a starting point for the problem
resolution. They are not fail-proof and should be used with that knowledge, but they are
good locators for a starting point.

Figure 26.6.

A troubleshooting schematic for Informix problems.

Engine Utilities

Some of the Informix engine utilities can be invaluable for identifying problems on a
system. They include tbstat/onstat, tbcheck/oncheck, and tbmonitor/onmonitor.
Each of these utilities is covered in more depth elsewhere in this book, but this discussion
addresses their use in helping to identify problems on the database.

The naming conventions for these utilities indicate the release of the engine that the
product supports. If the utility name starts with tb, it supports release 5 and earlier; if it
starts with on, it supports release 7 and greater. On both versions, you can get an online
summary of the options by typing utilityname --. This command gives you a brief list
of the options for the utility. Some of the options between the utilities overlap, but each
utility presents the information in a slightly different format. Sometimes the difference in
the presentation makes the difference in identifying a potential problem.

tbstat/onstat provides a wealth of statistical information about the current status of the
Informix engine. The specific options vary depending on the release of the engine
running. You can use this information to find the cause of both system hangs and
performance problems. The following list indicates some of the information available:

• Buffer statistics and statuses
• tblspaces and chunk details
• dbspaces details
• Read and write statistics
• Lock statistics and statuses
• Physical and logical log information
• Queue information
• User information
• Profile information

tbcheck/oncheck also provides several options. You can use it to fix or repair as well as
to analyze the database. You must use extreme care, however, when running this utility to
prevent accidental updating of the database. The primary purpose of tbcheck/oncheck is
to look at disk structures for problems. These structures include the following:

• Blobspaces
• Chunks and extents
• Data rows
• Indexes
• Pages

The utility can review any of these structures to determine if any errors or inconsistencies
exist. Inconsistencies can point to database problems. For example, a broken index tree
could result in invalid queries or performance problems. Because this utility scans the
actual physical device, it can also assist you in locating physical problems with a disk
drive.

tbmonitor/onmonitor provides information in a menu rather than in a report format. It
provides a quick view into the following items:

• Key database statuses
• Database engine setup parameters
• dbspace status
• The current operating mode of the engine

In addition to learning status information, you can also use tbmonitor/onmonitor to
change various engine settings, archive a database, force a checkpoint, and start or stop
the database engine. In problem resolution, tbmonitor/onmonitor is most effective in

reviewing engine parameters, checking space issues, checking the logical logs, and
checking the engine status.

Engine Parameters

Often Informix error messages refer to issues that involve engine tuning parameters such
as semaphores or engine locks. To troubleshoot these issues, you need to refer to your
system parameters and the Informix database administration manuals for your release of
the Informix engine. Carefully review the error message; some messages point you to a
particular engine parameter. Check the setting for your system, and then refer to the
detailed description in the manual for that setting.

These problems are probably the most technically challenging to resolve. Because having
the same problem occur repeatedly is rare, do not hesitate to call Informix technical
support if you do not understand the cause of the error. Many of the engine parameters
interact with each other, and the results can be difficult to trace.

Database Issues

Database issues are often the cause of system problems. Deadlocks, queries, space,
extents, and so on, all contribute to system performance issues. When a problem has been
isolated to a database issue, you must determine whether only certain queries or programs
are affected or whether the entire database is affected.

If only certain queries or programs are affected, review the affected processes. Look for
common tables, indexes, tblspaces, or dbspaces. If you find some commonalities, look at
the statistics for those areas. If the commonality is tblspaces or dbspaces, check to see
whether you have sufficient space in the areas. Also check to determine whether you
have a hardware problem. If you have common tables or indexes, use tbcheck/oncheck
to determine whether the tables or indexes have damage. If no cause is apparent, take the
queries in question and run set explain. You also might need to run update
statistics or check the lock mechanisms setting for the table.

If the problem affects the entire database, using the Informix utilities is the best method
of beginning an investigation. Check for space issues; then check the integrity of the table
data and indexes. This step-by-step process is slow. There are no easy answers for a
general database problem. Finding answers often becomes a process of elimination. Be
methodical and document each item checked to ensure that you're not duplicating efforts.

A Sample Resolution Process

You receive a call that a client machine is hung and can't process. How do you begin to
investigate the problem? Following is a step-by-step account of a problem-resolution
effort for a common situation--long transactions.

1. Check another client to determine whether the problem is isolated to
one user. For this example, it is not. If the clients are on different sections
of the network, the problem is probably not INET or the network.

2. Log in to the server and access the database through ISQL. In this case,
you cannot run a query.

3. Transaction logging is active. Run tbmonitor and check the logical logs.
If they are full, back them up or change the tape as appropriate. In this
case, they are full, but you can't seem to force them to tape.

4. A check of the users indicates one user is holding all the locks. A quick
check of the log file supports this conclusion.

5. You contact the user and find that she is doing a massive update without
transaction processing and has generated a long transaction situation.

6. The process is canceled, and you discuss with the user how to prevent
long transactions in your environment.

Confining a Problem

When a problem occurs on the database that impairs only the database, you might have to
confine the impact of the problem. Some of the methods of accomplishing this task are
limiting new users to the system, asking users to sign off the system, forcing users off the
system, or disabling batch jobs. In two primary situations, confining the problem
becomes necessary: first, when the problem cause is unknown, but there is significant
chance of additional activity furthering the problem; and second, when the problem cause
is known, but a resolution might take some time and furthering processing might
exacerbate the problem.

In deciding to limit processing, you must consider several issues. Database integrity is the
key issue. You must be knowledgeable enough in the cause of the problem to be able to
assess the impact of additional processing on the integrity of the database. If additional
processing holds the potential for compromising database integrity, your decision must be
to limit processing. If you're operating under Informix 7 and dataskip is active, additional
processing might cause data integrity issues by reading only partial databases.

The simplest method of limiting processing is to shut down the database. You can do so
by using either tbmonitor/onmonitor or tbmode/onmode. Shutting down the database
prevents any users from doing any additional work on the database. Your ability to shut
down bits and pieces of engine access depends on your release of the engine and your

application programs. If you can shut down segments of the application, your users'
access to the system is only impaired rather than prevented.

Using the "Hotline"

Professionals do not avail themselves of the support services Informix provides to all
users for two common reasons: pride and fear. Neither reason is especially productive in
the business world. The Informix technical support line is organized to route your call to
a group of individuals skilled in the knowledge area for which you're seeking assistance.
If you have contracted with Informix for maintenance on your products, the bottom line
is this: "You paid for it, so use it!"

Before you call, you need to know certain information. You need to know your serial
numbers. Always have your engine serial number and exact release number. To obtain
the engine serial number, enter the following command:

isql -v

The response provides your release number and serial number. A similar command works
for 4GL:

i4ql -v

You should also have ready any additional information needed to pass to the engineer
answering your call. This information can include sample SQL statements, database
schema, tbstat or tbcheck output files, error messages, or configuration file listings.
The more information you have ready for the engineer, the quicker the problem will be
resolved. Also know whether a modem or other network connection is available so that
the engineer can access your system. Have the number or network access information, a
user ID, and password available.

Armed with this information, you are ready to call the Informix technical support
services. You will be greeted by an automatic call direction system that lists a number of
options. Don't panic. If you don't catch the correct option the first time, you can repeat
your options. Always remember to listen to the options because they change periodically.
If you select a wrong option, you can always hang up and dial back; the number is toll
free. If you're unsure of what option to select--some problems may be difficult to isolate
as engine, SQL, INET, and so on--select the option you think might be correct. The
customer service representative will help direct your call if it needs to go to another
section. You can always play dumb and say, "I don't know if I have the right option.
Would you mind assisting me?" This tactic works great. It makes the customer service
representative feel important and challenges him or her to assist you even more
courteously.

Always remember that the customer service representatives and engineers are on the
other end of a phone line. They cannot bite, and barking is just a great deal of hot air.

You can also be assured that you can never have a stupid question. You are the customer,
and your questions are always valid. Informix would rather have you call with questions
than be dissatisfied with their products.

WARNING: When you call the technical support line, you should observe certain
protocols. A 911 option is available for a system down. Do not abuse this option!
This tool is very important for individuals who have production systems down and
need to restore them as soon as possible. Down means dead, non-functional. It
does not mean a single query is not working or slow. In determining whether a
system is a candidate for 911 services, always make sure that the problem is the
engine, not the network or the application.

When you talk to a customer services representative, you will be given a case number.
This number will track your case from open to close, through all hands that are involved.
This number is important; write it down. If you need to call back for more information,
have the case number available, and the system will automatically contact the engineer
currently assigned to the case. If you need documentation on the case, you can request a
report from Informix for the ticket number.

The engineers are assigned times to be on the phone and times to be researching
problems. If you're calling the support line on an existing, nonemergency problem, be
patient with the engineer if he or she cannot take your call immediately. He or she might
be assigned to the support line at the current time. Leave a message; the engineer will
return the call. If the engineer has not returned the call in a reasonable time frame--say,
24 to 48 hours--call back and speak with a customer services representative. The
representative will make sure that someone returns your call.

If you need to escalate a call because you do not feel that your problem is being resolved
effectively, merely ask a customer services representative to transfer you to the
supervisor for the engineer. Explain the situation to the supervisor. After a problem is
escalated, management will track the ticket and ensure that the problem is resolved as
efficiently as possible.

Fixes

The next step in the problem-resolution process is to fix the identified problem. There are
levels of severity in fixing the problem. Always try the gentlest method first. The stronger
the tool used to correct the problem, the more likely you'll have further ramifications
from the problem resolution.

The Good

The "good" fixes are the gentlest methods to be used in resolving problems. They provide
a clean solution--that is, one with the least chance for database corruption. These fixes are
preferred over all other resolution methods.

If an application program is in error, fix the program. Correct the code and place the new
module in production. You also need to assess what damage might have already been
done to the integrity of the database. If data issues result from the error, use programs or
isql commands to correct the database. After you correct the data and have the new
module in place, the problem is resolved.

If the problem involves changing Informix engine parameters, it is doubtful that the data
integrity has been affected. Begin by asking all users to exit the system. When the users
are off, shut down the engine completely; take it offline. You can do so by using
tbmonitor/onmonitor or tbmode/onmode. Make the changes to the database
parameters. If the changes require UNIX kernel parameter changes, you have to make the
changes following the instructions for kernel changes in your operating system. Then
make any changes required to the Informix engine parameters in the Informix
configuration files. If kernel changes are required, reboot your system after making the
changes. If only engine parameter changes are required, bring Informix back online. Your
system problems should be resolved.

You also might have to make changes to the network parameters for the Informix system,
such as the hosts file. You might not be required to start and stop the Informix engine in
order for these parameters to become active. The necessity of restarting the engine
depends on the parameter changed. For example, the engine does not need to be restarted
to add a new client on the network. If all changes are on a client, you do not need to do
anything to the server. If the changes are on the server, consult your Informix release
manuals to determine whether you need to stop and restart your Informix engine.

If you have to kill an Informix process because of an endless loop or other problem, use
tbmonitor or tbstat -u to get the process id (pid) of the offending process. Use
tbmode to kill the command as follows:

tbmode -z pid

This approach is the only guaranteed safe method of killing an Informix process.
However, it does not always work. If it does not work, you have to go to the operating
system to kill the process. This dangerous process is addressed in the next section.

You can use one of two methods to shut down the Informix engine. Always try the
graceful option first. This method will wait for users to finish before shutting down. If
you cannot wait or if you have hanging processes, use the immediate option. Immediate
tells you who is still on the system and asks whether you still want to continue. If you do,
this command attempts to shut down all users and then the engine. After the engine is
quiescent, take it offline. If an immediate shutdown request hangs, go to the next
discussion on the "bad" fixes. If it succeeds, go to the operating system and make sure

that you have no orphan processes associated with the engine. If you do, attempt to kill
these processes with this operating system command:

kill pid

If this approach does not work, you have to use a more destructive kill method, as
discussed in the next section.

Now you know a few of the good or gentle methods of resolving problems. If they don't
work, continue reading.

The Bad

The "bad" fixes are serious methods used in resolving problems. You should use them
only if a good method fails. These methods can have serious repercussions for your
database and system. They can corrupt files and databases. Be extremely careful in
employing these methods.

You might encounter difficulty in killing processes using tbmode. You might also
encounter difficulties shutting down the Informix engine because of the inability to kill
processes. If an immediate shutdown fails or hangs, you must resort to killing the
processes through the operating system.

Killing operating system processes generally requires the use of the kill command. The
options on the kill command vary from system to system. To use the kill command,
you must know the process id. (I discussed finding the process id number previously in
this chapter.) Informix processes often spawn subordinate processes. Killing one process
in the chain can leave dangling or orphaned processes. It is important that you follow the
process id hierarchy to determine the highest level parent in the process chain. To
identify the chain, use the ps operating system command. Be sure to use the option that
identifies parent process ids.

After you identify the chain, you can try to kill the process. Identify the parent process,
and use the kill command option that tries to kill all subordinate processes. Monitor the
progress of the kill command, checking the ps output listing for the subordinate and
parent processes. If the processes don't appear to be dying, try to kill the subordinate
processes one by one. If they can't be killed using the subordinate process option, try
using kill -9 pid. It is a last resort to kill a process.

If you cannot get the processes to die using the kill command, attempt to shut down the
database engine as I describe in the preceding section. If you cannot perform an
immediate shutdown of the Informix engine, you might have to kill the Informix process.
Doing so brings the system down hard. When you restart the system, it will have to
attempt to recover. Be sure to run tbcheck/oncheck utilities to verify the database
before allowing users back on the system. The engine usually recovers successfully
without intervention, but be prepared for possible problems. To kill the Informix engine,

use the ps command to identify the correct process id number for your version of the
engine. Attempt a kill using the option to kill all subordinate processes. If this approach
fails, you can try to use kill -9 pid.

At this point, you still have a few other options to bring down the system. If you cannot
kill the Informix process from the operating system, you are down to the final options--
the "ugly" fixes.

The Ugly

You've tried everything else to fix the problem, and the system is still hung. The "ugly"
fixes are the last-resort options. You stand an excellent chance of having fallout
problems, but you have no other choices.

Your first option is to shut down the server. Do not use the regular shutdown process,
because you have probably altered it to perform a shutdown of the Informix engine.
Because you have already attempted to accomplish this and failed, you want to just shut
down the engine. If you are successful, the operating system will shut down in a normal
fashion; however, Informix will be killed in mid-process. You must be prepared to handle
recovery issues when you try to restart the engine. Be sure to run the tbcheck/oncheck
utilities to verify the database before allowing users back on the system.

If the system is hung to the point that you cannot shut down the operating system, the
absolute final step is the power switch. This fix has the potential for corrupting not only
database files, but also operating system files. Be prepared for a difficult restart because,
in addition to the tbcheck/oncheck utilities, file system checks should be run on all
operating system file systems before any user is allowed on the system.

If you employ either of these two options, be sure you document what causes the problem
and what fixes the problem before restarting the system. These serious problems need to
be resolved immediately. Both of these options are akin to playing Russian roulette with
your computer systems. You might get by a few times without serious repercussions, but
you will eventually get caught.

Recovering the Production Environment

After a problem is resolved, the final step is to restore and ensure the integrity of the
production environment. This step is the test of your system's archive and backup
strategies. Recovery can be simple or complicated. The problem and its signature
determine the severity of the recovery process.

If the problem resolution required changes only to the engine parameters or required you
to install a new program, you have no recovery issues to address. If, however, the
problem resolution affected the database in either data integrity or database integrity,
recovery might be necessary.

When you restart the engine, it always checks its status and attempts to correct any errors
it finds. It does not check data integrity, indexes, or data blocks in the database. The
applications personnel are the only people who can determine whether an applications
problem affected data integrity. If the integrity has been compromised, these people need
to create scripts or programs that will correct any errors and run these scripts against the
database prior to allowing users on the system. If the errors cannot be corrected
programatically, restoring the database to a level prior to the applications errors that
caused the problem might be necessary. These solutions are unique to every outage. Your
guidelines must be whether the data can be scrubbed with a script or program.

If database integrity is compromised, using tbcheck/oncheck is the best method of
attempting to recover. If tbcheck/oncheck cannot fix the problem, you need to do
further processing. If the integrity problems involve indexes only, you can drop and re-
create the indexes. If data is compromised, you might have to restore the database from a
previous archive. If a restoral is required, forward recovery with the database logs might
be possible. You can be guaranteed to have access only to the logs that have been backed
up. If recovery from these logs does not reintroduce a problem, you might lose less data.
If the problem was an applications program error, however, recovering from the logs
might not be advisable, because it will carry data integrity errors forward.

The prime factors in a successful restoral are to understand the nature of the problem and
to be careful not to duplicate the problem. You must think through each step of the
recovery and ask yourself exactly what impact this step will have on the database. Taking
thoughtful, logical steps is the only way to ensure a problem-free restoral.

Success

After you have the system restored and operating, it is important that problem-resolution
success activities take place. These activities are as important as solving the problem. The
first activity that you should engage in is taking a deep breath and congratulating yourself
and your team. The system is restored; with luck, no data was lost, and the pressure is
gone. Then look back, analyze the situation, and learn from what happened. You can
learn a great deal from problems and mistakes.

One of the most detrimental activities performed after a problem has been resolved is
finger- pointing. Don't fall into this trap. Finger-pointing creates a negative atmosphere
and can generate a fear of progress. Progress often involves risks. Risks must be
calculated and taken intelligently, but taking risks is part of the job. You must understand
what happened and prevent it from recurring, but that job does not require finger-
pointing. Always keep the post-problem assessment positive.

Positive assessment involves the entire team. A thorough understanding of the cause of
the problem should be disseminated to all team members. This information will assist in
preventing a recurrence and promotes learning within the team. Next, review the steps
required to prevent such a problem in the future. As a team, analyze the response to the
problem: Was recovery effective or was data lost? What new steps or training are

required to prevent a recurrence? Engaging in such a team activity minimizes individual
self-consciousness without negating individual responsibility. Everyone learns from
every other member of the team. Each member of the team learns that everyone makes
mistakes; the response to the mistakes identifies the true professionals.

Avoiding Downtime: Preventing Future Occurrences

System availability is the key performance index used to measure the effectiveness of a
system. The costs of system downtime to an organization can be profound. Therefore,
minimizing down-time is important. Several routine tasks can assist in identifying
problems before they reach the production environment or can identify production
problems before they become critical. Here are some of these steps:

• Review all system logs on a daily basis.

• Schedule periodic system statistics to run. Store these statistics to watch
for trends.

• Check all e-mail to user Informix daily.

• Implement a test system and enforce system testing before implementing
system changes in production.

• Require walk-throughs on all system changes. Have all programmers,
systems administrators, and database administrators present.

• Provide proper and complete training for staff professionals.

• Make sure that all manuals are readily available to staff and encourage
their use.

These tasks are all designed to be preemptive of problems. The best solution for problem
resolution is avoidance. It is better to be proud of a job done right than to be proud of
fixing the job on something that should not have been broken in the first place.

Summary

Problems cannot be avoided. The true test is how quickly and professionally the problems
are handled. Quick assessment of the problem assists in isolating the cause. After a
general cause can be identified, a more detailed problem-identification process can be
employed. After the problem is identified, corrective action can be taken.

Problem resolution involves differing severities. It is important that extreme actions are
taken only with full knowledge of their potential fallout. After the problem is corrected,
the database recovery activities are equally important to the problem resolution. Thought

and care are required to ensure that database integrity and data integrity are maintained
and that minimal user data entry and processing are lost.

After the problem is resolved and the database is again operational, the post-problem
assessment is as important as the problem-resolution process. During the post-assessment
phase, learning can be shared with other team members, ensuring that the problem does
not happen again. This time is also important for brainstorming to identify new
procedures and methods required to support what was learned from this problem. With
effective assessment, follow-through, and preventive planning, problems can be
minimized.

Part IV - Informix Database Development
• Chapter 27 - Informix Development Introduction
• Chapter 28 - INFORMIX-SQL
• Chapter 29 - Creating a Database Using SQL
• Chapter 30 - Data Management Using SQL
• Chapter 31 - Advanced SQL
• Chapter 32 - SQL Tools
• Chapter 33 - Understanding the Informix Optimizer

- 27 -

Informix Development Introduction
• Database Design Concepts and Terminology

o Classes of Objects
• Entity Relationship Diagrams

o Styles
o Resolving One-to-One Relationships
o Resolving Many-to-Many Relationships
o Entity Instance
o Primary Key
o Special Primary Keys
o Primary Key Rules
o Foreign Key
o Special Relationships

• Normalization
o Benefits
o Rules
o First Normal Form

o Second Normal Form
o Third Normal Form

• Logical to Physical Design
o Logical Versus Physical Terminology
o Assigning Data Types
o Assigning Variable-Length Data Types
o Indexes
o Referential and Entity Integrity

• Summary

by Mark D. Stock

This chapter gives a brief introduction to relational database design. It looks at database
design concepts and terminology, entity relationship diagrams and their uses,
normalization of the design, and the conversion from logical design to the physical design
or database.

Database Design Concepts and Terminology

Any database management system relies on a good database design. Get the design
wrong, and the system never fully attains the required goals or is difficult to maintain. To
fulfill the requirements of the system and therefore the users, database design relies on
good data modeling. The data model is a logical representation of the required data. The
data model is used to visualize, organize, and plan the database design. It also serves as a
communication tool between end users and database designers.

A simple approach to data modeling is the entity relationship data model. This involves
developing an entity relationship diagram (ERD). A database designer must have a
comprehensive and in-depth understanding of the business, which includes identifying
the various pieces of data that are required to run the business. These are uncovered
during the user interview, or joint analysis and design (JAD) sessions. This is when users
describe their business activities and the relationships between the various pieces of data.
These can then be represented in an ERD.

Classes of Objects

The elements required to construct an ERD are often referred to as objects. There are
three classes of object: entities, relationships, and attributes.

Entities

The first step in relational data modeling is to identify the entities. An entity is a major
data object that is of significant interest to the user. An entity can represent something
real, tangible, or abstract. Entities are usually nouns in the form of a person, place, thing,
or event of informational interest.

Entities are uncovered during the JAD sessions. This is when users describe their
business activities. Any information items the users reference during such sessions are
recorded. A list of entities can then be accumulated. The key to successful design is to
identify all entities required by the business.

Example entities in an ordering system might be identified as those shown in Figure 27.1.

At this time, it is also useful to identify entity instances. An entity instance is a particular
occurrence or individual instance of an entity. If customer is identified as an entity, then a
specific customer is an occurrence of that entity, or an entity instance. Identifying entity
instances helps the designer understand the use of the entity and how it fits into the
overall design. They also assure the user that the designer is speaking the same language.

Figure 27.1.

Entities in an ordering system.

Relationships

After the entities are defined, the next step is to identify the relationships between the
entities. A relationship is an association or join between two entities representing real
world associations. A relationship can usually be described by a verb or preposition
connecting two entities. The most important aspect of the relational database design
process is identifying and understanding the entities and relationships.

The relationships identified in Figure 27.2 are examples that may be found in the
ordering system. A simple verb or preposition is placed between the entities identifying
the relationship. The simple verb or preposition located on the left describes the
relationship from left to right. The simple verb or preposition located on the right
describes the relationship from right to left.

Figure 27.2.

Entity relationships in the ordering system.

You need to examine the relationship both ways to determine the correct connectivity.
Connectivity is discussed in the following pages. It does not matter which entity is placed
on the left or right. This physical arrangement is not significant once an ERD is
constructed from the entities.

A relationship between entities is described in terms of connectivity, cardinality, and
existence. The most common representation is the connectivity between entities.
Connectivity, cardinality, and existence help define the business rules. The entity
relationship approach to data modeling allows you to represent connectivity, cardinality,
and existence diagrammatically.

Connectivity Connectivity describes the number of entity instances based on the
business rules. There are three types of connectivity:

• One-to-one (1:1)

• One-to-many (1:N)

• Many-to-many (M:N)

The most common connectivity is one-to-many. Try to represent all relationships as one-
to-many.

The business rules ultimately define and determine the design of your ERD. You need to
determine whether exceptions are accommodated in the final ERD. A useful tip to help
identify the connectivity type is to think of the connectivity in terms of entity instances.

The connectivity of the entities for the order system is shown in Figure 27.3 from left to
right. One customer places many orders. One order consists of many order items. One
order item can be in stock many times.

Figure 27.3.

Connectivity in the ordering system.

You need to examine the relationship in reverse (from right to left) to determine the
correct connectivity and uncover any many-to-many relationships. Resolving many-to-
many relationships is discussed in the following pages.

The connectivity of the entities examined in reverse is shown in Figure 27.4. One order is
placed by one customer. One order item is on one order. One stock item may be on many
order items.

Figure 27.4.

Connectivity in reverse.

Now examine the relationships both ways. By combining the relationships, you can
determine the correct connectivity. The rules for combining the different connectivity
types are as follows:

• Two one-to-one (1:1) = one-to-one (1:1)

• Two one-to-many (1:N) = many-to-many (M:N)

• One one-to-one (1:1) and one one-to-many (1:N) = one-to-many (1:N)

By combining the relationships, the correct connectivity for the ordering system entities
are

• Customer to order 1:N and order to customer 1:1 = 1:N

• Order to order item 1:N and order item to order 1:1 = 1:N

• Order item to stock 1:N and stock to order item 1:N = M:N

The order-item-to-stock relationship is many-to-many. Resolving many-to-many
relationships is discussed in the following pages. The other relationships are one-to-
many.

Cardinality Cardinality defines any constraints on the expected or maximum number of
entity instances. There might be a cardinality constraint between an order and an order
item entity. An order can be restricted to a maximum of 20 items. Instead of indicating
the connectivity as (1:N), it is shown as (1:20). It is important to identify any cardinality
constraints in the database design. The constraints must be considered in the application
design. The ERD becomes a valuable reference for application developers.

Existence Dependency Existence dependency describes whether the existence of an
entity in a relationship is optional or mandatory. Sometimes, the existence of both entities
in a relationship is required in order for the relationship to exist.

You must decide the connectivity of each entity in a relationship and determine if it is
mandatory or optional. The entity relationship data model allows you to indicate the
existence dependency diagramatically. This is an important consideration when designing
the physical database and developing applications.

Attributes

An attribute is a fact or piece of information describing an entity. You cannot further
decompose an attribute without losing the original meaning. For example, a general
ledger account number might be represented as 210-1891-0520. If the general ledger
number actually represents a cost center number, a department number, and an account
number, it can be broken down into three separate attributes. An order number might be
represented as 100542, but it cannot be further decomposed without losing its original
meaning.

Attributes are generally uncovered during JAD sessions. If you identified the entities, you
can simply ask the users what information they need to know about the entity. You also
find that reports, forms, and other documents are excellent sources of the required
attributes.

Types Attributes are generally classified into two types--identifiers and descriptors. An
identifier is also known as a key and is an attribute that specifies a unique characteristic
of a particular entity. An identifier attribute of the entity customer might be a company
registration number. A company registration number always uniquely identifies a
company.

A descriptor is an attribute that specifies a non-unique characteristic of a particular entity
instance. A descriptor attribute of the entity customer might be the last name. A last name
does not always uniquely identify a customer if two customers have the same last name.
Sample attributes for the ordering system are shown in Figure 27.5.

Derived Data Derived data are usually values that are calculated from other attributes. It
is generally not recommended to store derived data in a relational database because it can
impact both performance and data integrity. It is recommended that the data be obtained
through calculations performed in the application or in stored procedures, rather than
from values stored in the database.

In the ordering system, the order total is derived data, as shown in Figure 27.6. Whenever
the unit price or quantity is changed on an order item, the order total also changes.

Figure 27.5.

Attributes in the ordering system.

Figure 27.6.

Derived data in the ordering system.

Domain A domain describes the constraints on the values of attributes. You must
examine each attribute and identify any domain characteristics. Domain characteristics
may be a set of valid values or identification of similar groupings or characteristics.

Usually, the set of valid values can be represented by codes. Such codes are often used to
represent more meaningful data. These domains in many cases result in the creation of a
new entity, often referred to as a lookup table.

A sample domain is state codes. This is represented by a state entity with state code and
description as attributes. The use of codes generally reduces storage requirements and can
reduce data entry key strokes.

The valid list of states and the valid list of manufacturers as shown in Figure 27.7 could
be considered valid domains in the ordering system. Initially, all possible domains should
be documented as possible code tables. When finalized, these can be added to the data
model.

The decision to create a new entity is normally based on the number of unique values in
the domain. Creating a new entity for a small number of values might not be necessary.
However, creating a new entity for what is initially identified as a small set of values
adds flexibility to the design by enabling the list of values to grow without requiring
changes to the design at a later stage.

Figure 27.7.

Domains in the ordering system.

Entity Relationship Diagrams

Entity relationship diagrams (ERDs) are a valuable tool to model the information needs
of a business. They are used to model entity relationships identified during JAD sessions.
ERDs are an excellent source of documentation for users, application developers, and
database administrators. Ultimately, they are used to create the physical database schema.

Styles

There are several different styles of ERD. The entity-relationship approach has
undergone many changes over the years to support extensions for more complex models.

Many styles in use today combine a mixture of several original styles. They provide for a
diagrammatic syntax that is easy to understand.

I use one of the more commonly used styles. An entity is represented by a squared box.
The entity name is placed inside the box in singular, lowercase form. A relationship is
depicted by a single solid line drawn between two entities.

A dotted line drawn between two entities indicates that the existence of the relationship is
optional. In most cases, the business rules of the enterprise determine the relationship's
existence. If a relationship is optional, it is important to denote that on the diagram.

The use of crows feet at either end of a relationship implies a one-to-many relationship. A
relationship depicted by a single line with no crows feet implies a one-to-one
relationship. This is illustrated in Figure 27.8.

Figure 27.8.

ERD basic objects.

The ERD for the ordering system is shown in Figure 27.9.

Figure 27.9.

The ordering system ERD.

Several different styles of ERD can be used in a data model. Select and standardize on
the style you find most useful for your requirements. You can even add some of your
own extensions to the syntax to aid your development efforts. Some alternative styles are
shown in Figure 27.10.

Figure 27.10.

ERD alternative objects.

Resolving One-to-One Relationships

One-to-one relationships are very rare. Probably 90 percent of relationships are one-to-
many. When a one-to-one relationship is detected, one entity is usually just a set of
attributes that can be merged with the other entity.

In Figure 27.11, the entity order could be expanded to incorporate the attributes of the
entity shipping information. This results in the one-to-many relationship depicted in
Figure 27.12.

Figure 27.11.

A one-to-one relationship.

Figure 27.12.

Resolving a one-to-one relationship.

Resolving Many-to-Many Relationships

One of the strengths of ERDs is that they allow you to detect and resolve many-to-many
relationships.

The key to resolving many-to-many relationships is to separate the two entities and create
two one-to-many relationships with a third intersect entity. This reduces complexity and
confusion in both the design and the application development process.

The first ERD for the ordering system contained a many-to-many relationship between
the order item and stock entities. An order item is in stock many times and a stock item
can be ordered many times.

To resolve the many-to-many relationship, you can separate the two entities and create
two one-to-many relationships with a third intersect entity. This new entity intersect
entity is shown in Figure 27.13.

Figure 27.13.

Resolving many-to-many relationships in the ordering system.

The many-to-many relationship that existed between the order item and the stock entities
was resolved by creating an intersect entity, stock item, and two one-to-many
relationships. The new stock entity contains static (non-changing) information about a
stock item. The stock item name does not change regardless of the number of those items
in stock.

The stock item entity is the intersect entity and contains detailed information about each
item in stock. Regardless of whether there are one or more items in stock, the stock item
entity contains information about the particular item: the manufacturer, the price, and the
color.

The stock entity can have many stock items, and a stock item can be listed on many order
items.

Entity Instance

Figure 27.14 shows a diagram representing an entity instance in the ordering system. It is
very useful to diagram an entity instance representing the attributes. The entity instance
diagram can help verify the model that represents the data requirements. It can verify the
relationships between entities.

Figure 27.14.

Entity instance for the ordering system.

Primary Key

All entities should have exactly one primary key. The primary key must be an attribute or
combination of attributes that uniquely identifies an entity instance. Identifier attributes
are generally used for primary keys because they meet the unique constraint
requirements. A primary key must exist for all entity instances. A unique constraint is
enforced for every primary key.

You can enforce primary key rules through the database definition when the table is
created. These concepts are covered later in the book.

Special Primary Keys

If you cannot identify an attribute that adheres to the unique constraint requirement, you
should consider the use of a special primary key.

A composite key is a key using two or more attributes. Using composite keys increases
uniqueness.

You can use a system-generated key to guarantee uniqueness. You can add a new
attribute with a serial data type. The unique value assigned to the attribute is
automatically generated by the database engine.

Primary Key Rules

Each primary key must adhere to the following rules:

• Unique

• Not null

• Cannot be updated

• Does not influence row or column order

• Does not influence row access

NOTE: It is not recommended to use long character strings for performance
reasons.

The primary keys for the ordering system entities are shown in Figure 27.15. A primary
key should be a numeric data type (integer, smallint, or serial) or short character codes
(char). It is not recommended to use long character strings or composite keys that consist
of several long character strings for performance reasons.

The order, order item, stock, and stock item entities did not have attributes that meet the
qualifications for a primary key. A system-generated key was added for each entity. A
new attribute with a serial data type was added to each entity.

The customer entity possessed an identifier attribute--the customer name. However, it is
not recommended to use long character strings as a primary key. A system-generated key
was added to the customer entity.

Figure 27.15.

Primary keys for the ordering system. (Primary keys are shown in bold.)

Foreign Key

A foreign key is used to establish the relationship between entities. A foreign key must
reference an existing primary key in the associated entity. There may be multiple foreign
keys in an entity if the entity is related to multiple entities.

Foreign keys can be null, although this is not recommended to enforce referential
constraints. Foreign keys can contain duplicates and can be changed.

You can enforce the primary key and foreign key association through the database
definition using the CREATE TABLE statement. This concept is covered later in the book.
The foreign keys for the ordering system are shown in Figure 27.16.

NOTE: In one-to-many relationships, the many entity usually contains the foreign
keys.

Figure 27.16.

Foreign keys for the ordering system. (Primary keys are shown in bold, and foreign keys
are shown in italic.)

Special Relationships

Three special types of relationships require consideration when designing the data model.

Complex

A complex relationship is an association among three or more entities. It requires all
three (or more) entities to be present for the relationship to exist. To resolve all complex
relationships, reclassify them as an entity, related through binary relationships to each of
the original entities.

Complex relationships are difficult to evaluate and define. They are difficult to diagram
and sometimes impossible to translate directly into a database schema.

An example of a complex relationship is depicted in Figure 27.17. This shows the sale of
a cell phone by a salesperson to a customer. In order for the relationship to exist, all three
entities must be represented.

The complex relationship can be simplified by defining a new entity called Sale. As
shown in Figure 27.18, Sale is related through simple relationships to each of the original
entities: Salesperson, Cell Phone, and Customer.

Figure 27.18.

Resolving complex relationships.

Figure 27.17.

Complex relationship.

Recursive

A recursive relationship is an association between occurrences of the same entity type.
An entity can be related to itself. This type of relationship is also known as a self-
referencing or looped association.

Recursive relationships do not occur frequently but are very powerful for defining
organization structures and bill-of-materials (BOM) requirements. Examples include

• An employee manages many employees

• A part is composed of many parts

You should be very careful to identify these related entities as the same actual entity. As
shown in Figure 27.19, the sample entities supervisor and employee are identified during
the JAD sessions.

Figure 27.19.

Recursive relationships.

Redundant

Redundant relationships are usually two or more relationships that are used to represent
the same concepts. You should analyze redundant relationships very carefully and
eliminate them from your data model.

Two or more relationships between the same two entities are acceptable as long as the
two relationships have different meanings.

There are several reasons for eliminating redundant relationships:

• Redundant relationships add complexity.

• Redundant relationships result in unnormalized relations when
transforming into a relational database schema.

• Redundant relationships might lead to incorrect placement of attributes.

• Application developers and analysts might interpret redundant
relationships as non-redundant and not take both entities into
consideration in data manipulation operations.

The example in Figure 27.21 assumes that the postal address and physical address entities
contain the same attributes. The postal address entity and physical address entity
represent the same entity participating in different relationships with the company.

Figure 27.21.

Redundant rela-tionships.

A new entity, company address, was added to the model, and the address and company
entities are related to it through two simple relationships. These new relationships are
shown in Figure 27.22.

Figure 27.22.

Resolving redundant relationships.

Normalization

Normalization is a formal approach to applying a set of rules used in associating
attributes with entities. The set of rules is designed to help the designer convert the
logical entities into a conceptual model for the database design.

During normalization, the structure of the logical model that may translate into
undesirable properties in the physical model is examined and resolved.

The normalization process is used to ensure that the conceptual model of the database
will work. An unnormalized model can be implemented, but it will present problems in
application development and data manipulation operations.

Benefits

A normalized model is more flexible and better able to meet a wide range of end-user
application requirements with minimal structural change. New applications are less likely
to force a database design change.

Normalization reduces redundant data, minimizing the amount of disk storage required to
store the data and making it easier to maintain accurate and consistent data.

A simple and logical design can result in increased programmer productivity.
Normalization reduces the maintenance costs for an application because changes to the
application are easier.

The benefits gained from normalization can be summarized as follows:

• Greater flexibility

• Ensures attributes are placed in proper tables

• Reduces data redundancy

• Increases programmer productivity

• Decreases application maintenance costs

• Maximizes stability of the data model

Although there are benefits, do not over-normalize. A normalized data model might not
meet all design objectives. You can use selective denormalization in some areas of the
data model to increase performance.

Rules

Normalization includes several rules for converting the logical design to a more effective
physical design. These rules are referred to as the normal forms.

There are several normal forms used to organize data. The first three forms--first normal
form (1NF), second normal form (2NF), and third normal form (3NF)--are the most
commonly used.

Each normal form constrains the data to be more organized than the previous form. For
this reason, each normal form must be achieved in turn before the next normal form can
be applied.

First Normal Form

An entity relationship is in first normal form if there are no repeating groups (domains).
Each entity must have a fixed number of single-valued attributes.

Figure 27.23 shows an order entity that is not in first normal form because it contains
attributes that repeat. The item and quantity information appears up to five times,
depending on the number of items in an order.

Figure 27.23.

Before first normal form.

In this example, the maximum number of items that can be ordered is five. If a customer
wants to order 10 items, the database structure cannot accommodate it and must be
changed. A table that is not in first normal form is less flexible and can also waste disk
storage space. If a customer orders only one item, this design still stores five items,
regardless.

Finally, a table not in first normal form makes data searches more difficult. Finding
orders that contain a particular item in this example requires a search on all five repeats
of the item attribute.

To put this order entity into first normal form, separate the entity into two. The first entity
removes the repeating groups. The second entity has a single copy of the attribute group,
together with a new primary key and a foreign key reference to the first entity. This
leaves you with the example shown in Figure 27.24.

Figure 27.24.

After first normal form.

Notice that the restriction on the number of order items was removed. Only items that are
ordered now use disk storage space. Also, searching for a particular item on order
requires a search on only one attribute.

Second Normal Form

An entity relationship is in second normal form if it is in first normal form and all its
attributes depend on the whole primary key. Remember that the primary key is a minimal
set of attributes that uniquely identify an entity instance. Second normal form requires
that every attribute must be fully functionally dependent on the primary key. Functional
dependence means there is a link between the values in the different attributes.

Figure 27.25 shows that the attributes stock item and quantity depend on order number
and item number, which form the primary key. The order date attribute, however,
depends on the order number only, which forms only part of the primary key. This means
the value of order date can be determined for a particular row if the value of order
number is known, regardless of the value of item number.

Figure 27.25.

Before second normal form.

To convert the order item entity to second normal form, you need to remove the order
date attribute, as shown in Figure 27.26. The appropriate table to place this attribute is the
order table because the primary key for this entity is order number alone and order date

depends on only order number. If the value of paid date is changed now, it must be
changed in only one place, regardless of how many items are ordered.

Figure 27.26.

After second normal form.

Third Normal Form

An entity relationship is in third normal form if it is in second normal form and all its
attributes depend on the whole primary key and nothing but the primary key. This
eliminates attributes that not only depend on the whole primary key but also on other
non-key attributes, which in turn depend on the whole primary key. This is known as
transitive (indirect) dependence.

An example of transitive dependence is shown in Figure 27.27. In this example, unit
price is not only dependent on the primary key but on stock number and manu code as
well. This leads to the following problems:

• A unit price cannot be entered unless the stock item is ordered.

• A unit price is lost if all orders containing the stock item are deleted.

• Unit price information is redundant because the same stock item has a unit
price entered whenever it is ordered.

• If the unit price for a stock item changes, each order on which the item
appears must be updated.

Figure 27.27.

Before third normal form.

To convert the order entity to third normal form, the unit price attribute must be moved to
another entity. A new entity was created called Stock, as shown in Figure 27.28.

Figure 27.28.

After third normal form.

Because unit price is also dependent on stock number and manu code, these are copied
from the order entity to form the primary key for the new Stock entity.

This new design has the following advantages:

• The unit price can be entered for any stock item, even if there are no
orders for it.

• If all orders containing a particular stock item are deleted, the unit price is
not lost.

• If the unit price changes, it must be changed in only one place.

• There is no redundancy because unit price exists once per stock item, thus
reducing disk storage requirements.

NOTE: The way to remember the first three normal forms is to remember the
saying, "The key, the whole key, and nothing but the key."

Applying these concepts to the ordering system gives the design shown in Figure 27.29.
Notice that the contact details were identified as a repeating group, even though only one
set was stored. You must be careful to identify such groups, even though they may appear
as a group of one. The JAD sessions should identify the requirements, and if only one
contact is ever required, then this normalization might not be necessary. Of course,
adding this flexibility at the design stage does no harm.

Figure 27.29.

The ordering system in third normal form. (Primary keys are shown in bold, and foreign
keys are shown in italic.)

Logical to Physical Design

The logical data model should usually be a platform-independent design. This means that
you should be able to use the design on any hardware platform with any operating
system. You should be able to implement it with any relational database management
system (RDBMS) and application development tools.

When considering the physical design, as its name suggests, you need to consider the
physical aspects of implementing the design. You need to consider the terminology used
by Informix, the different data types available, the various design concepts available, and
how they are implemented.

Logical Versus Physical Terminology

Table 27.1 illustrates the use of logical versus physical terminology in relational database
design.

Table 27.1. Logical versus physical terminology.
Logical Physical

ER data
model

Database schema

Entities Tables

Attributes Columns

Relationships Primary and foreign
keys

Entity
instance

Row

A schema is the physical definition for the tables in the database. A table is a two-
dimensional representation of columns and rows.

When converting relational data models to the Structured Query Language (SQL), you
use the following constructs:

• Attribute name

• Data type

• Null values

• Primary keys

• Foreign keys

• Unique (non-duplicating)

When defining attribute names, it is a good practice to establish naming conventions.
Generally, you should use unique and meaningful names. Avoid using synonyms
(different names with the same meaning) and homonyms (same name with different
meanings).

Assigning Data Types

You must assign a data type to each attribute. The data type indicates the kind of
information you intend to store in that attribute. The general data types to consider are
listed in Table 27.2.

Table 27.2. General data types.
Data Type Description

Character Any combination of letters, numbers, or
symbols

Numeric Numbers only

System assigned Sequential numbers assigned by the system

Date Calendar dates

Money Currency amount

Date-time Calendar dates with time of day

Interval Intervals of time

Variable length Variable-length character values

Binary large object
(BLOB)

Large text or binary-based information

When selecting appropriate data types, you need to consider the data types available with
Informix. These general data types relate to the Informix data types as detailed in Table
27.3.

Table 27.3. Informix data types.
General Data Type Informix Data Type

Character char

Numeric integer, smallint, float, smallfloat,
decimal

System assigned serial

Date date

Money money

Date-time datetime

Interval interval

OnLine Database Engine Only
Variable length varchar

Binary large object (BLOB) text, byte

Informix treats a null as having a special meaning. A null value assignment specifies a
missing or unknown value. You can define whether an attribute can accept null values or
whether an attribute requires a value to be entered.

A null value is not the same as a blank or zero. If a user enters a blank space or zero in a
field, SQL interprets it as a blank space or zero.

You can specify a unique constraint for an attribute. A unique constraint ensures a unique
value for every attribute. If you define an attribute to enforce a unique constraint, you are
prevented from entering the same information in multiple rows of a column.

NOTE: You can use the serial data type to establish a unique constraint for an
attribute. A serial data type is generally used to generate system-assigned
primary keys and is assigned to an identifier attribute to establish a unique
constraint.

When identifying not null and unique constraints, you should select a naming convention
to represent these on your ERD. The naming convention used in Figure 27.30 is as
follows:

• NN indicates a not null constraint.

• U indicates a unique constraint.

Figure 27.30.

Identifying constraints. (Unique constraints are labeled with U, and not null constraints
are labeled with NN.)

Assigning Variable-Length Data Types

You should note that variable-length data types (varchar, text, and byte) are only
available with the OnLine database engine. These data types should be selected carefully.
Although you can use the varchar data type to save storage space, the use of the blob
data types generally require large storage areas that can store up to 2GB in a single
column.

Indexes

The primary purpose of an index is to improve performance for data retrieval. However,
you can use indexes to ensure the uniqueness of attributes. By creating an index on a
column with the UNIQUE keyword, you place a unique constraint on every value entered
for the column.

A foreign key usually has an index, and a primary key always has a unique index.

Remember that composite keys increase uniqueness in a table. A composite index is an
index created on more than one column.

Referential and Entity Integrity

Referential integrity is the concept of enforcing the relationships between tables. Integrity
is defined as the accuracy or correctness of the data in the database. Entity integrity is
enforced by creating a primary key that uniquely identifies each row in the table.
Referential integrity is enforced by creating a foreign key that references the primary key
of the related table.

By creating primary and foreign keys, you can enforce master-detail (parent-child)
relationships. When you use referential constraints in this way, the database engine
enforces the following rules:

• All values within a primary key must be unique. An attempt to insert a
duplicate value into a primary key fails.

• If a user attempts to delete a primary key and there are corresponding
foreign keys, the delete fails.

• If a user attempts to update a primary key and there are foreign keys
corresponding to the original values of the primary key, the update fails.

• There are no restrictions associated with deleting foreign keys.

• If a user attempts to update a foreign key and there is no primary key
corresponding to the new, non-null value of the foreign key, the update
fails.

• When a user attempts to insert a row into a child table, if all foreign keys
are non-null and there are no corresponding primary keys, the insert fails.

NOTE: To enforce mandatory referential integrity, you should allow no nulls in
the primary and foreign key columns.

Summary

Successful database development relies on a good understanding of the business. To
ensure an accurate database design, use data modeling. Identify all the entities required
by the business and their relationships, and use this information to design the ERD. By

using data modeling techniques, the ERD can be expanded to not only cater to the
existing requirements, but allow some flexibility for future growth.

Use normalization rules to convert the logical entities into a conceptual model for the
database design. The normalization process is used to ensure that the conceptual model of
the database will work. You can implement an unnormalized model, but it will present
problems in application development and data manipulation operations.

When you are converting the logical design to the physical design, or database schema,
consider the Informix data types available. Also use referential and entity integrity to
enforce relationships at the database level.

A good database design not only ensures that the requirements of the system are fulfilled,
but that the system is easy to maintain and enhance. A successful system relies on a good
database design.

- 28 -

INFORMIX-SQL
• What Is SQL?
• History
• Uses of SQL
• The SQL Query
• Modifying SQL Statements
• Privilege SQL Statements
• Referential Integrity SQL Statements
• Embedded SQL Statements
• Summary

by John McNally

This chapter covers INFORMIX-SQL, which is a data access language used to
communicate with the database manager. INFORMIX-SQL, INFORMIX-DBaccess,
INFORMIX-4GL, and INFORMIX-NewEra are all Informix products that use SQL.
Also, INFORMIX-ESQL/C and INFORMIX-ESQL/COBOL are used for SQL
Application Programming Interfaces (APIs). These APIs allow programmers to place
SQL commands within their C or COBOL coded programs.

In addition, this chapter discusses the following topics:

• What is SQL?

• The history of SQL

• Uses of SQL

SQL is an industry-standard query language product developed by the IBM Corporation.
Informix uses an enhanced version of this.

What Is SQL?

The name SQL stands for Structured Query Language. It is a data access language used
for communicating with a database manager. The free-form, English-like simplified
language is used for any number of relational database management systems (RDBMS).

SQL is a complete database language with statements that do the following:

• Initial creation of the database

• Creation of physical objects

• Creation of logical objects (views)

• Provide authorizations/grants and privileges

• Data Manipulation and retrieval from the database

• Management and/or use of databases

SQL makes the decision on how to get your data from the database. You specify the
requirements, and SQL completes the process. This is also known as non-navigational
data processing. SQL statements can be executed directly against the database or
embedded in one of many programming languages.

SQL has many processing capabilities, which are as follows:

• Data Definition Language (DDL)

• Data Manipulation Language (DML)

• Cursor manipulation

• Dynamic management

• Data access

• Data integrity

• Query optimization information

• Stored procedures

• Auxiliary statements

• Client/server connection

One main feature of SQL is that statements can be processed interactively, which means
that an SQL statement is processed when it is submitted to the database server. Unlike
most programming languages, SQL does not have to be compiled into an executable
program to run. Using an interface or other program, SQL commands can be executed
while the system is operating. The following lists describe each of the processing
statements.

The following data definition statements allow creation of the database and the data
structures for the system:

ALTER FRAGMENT
ALTER INDEX
ALTER TABLE
CLOSE DATABASE
CREATE DATABASE
CREATE INDEX
CREATE PROCEDURE
CREATE PROCEDURE FROM
CREATE ROLE
CREATE SCHEMA
CREATE SYNONYM
CREATE TABLE
CREATE TRIGGER
CREATE VIEW
DATABASE
DROP DATABASE
DROP INDEX
DROP PROCEDURE
DROP SYNONYM
DROP TABLE
DROP TRIGGER
DROP VIEW
RENAME COLUMN
RENAME DATABASE
RENAME TABLE

The following data manipulation statements allow you to add, delete, modify, and query
data in the database:

DELETE
INSERT

LOAD
SELECT
UNLOAD
UPDATE

Cursors are used to deal with a group of specific data rows. As each row is processed, the
cursor keeps track of where you are in the group. The following cursor manipulation
statements are used while working with cursors:

CLOSE
DECLARE
FETCH
FLUSH
FREE
OPEN
PUT

Dynamic management statements are used to manage resources at runtime. Dynamic
management SQL statements are used at a program's runtime and are built with variables
needed at this specific run. Whereas most SQL statements are static and never-changing,
dynamic statements can change at each run. Just as an interactively run SQL can be
changed by the user, a dynamic SQL statement can be changed by the program within
which it is embedded. Here are the dynamic management statements:

ALLOCATE DESCRIPTOR
DEALLOCATE DESCRIPTOR
DESCRIBE
EXECUTE
EXECUTE IMMEDIATE
FREE
GET DESCRIPTOR
PREPARE
SET DESCRIPTOR

The following data access statements are used to determine the access of the data. Such
access is used in case of permissions and data security.

GRANT
LOCK TABLE
REVOKE
SET ISOLATION
SET LOCK MODE
SET ROLE
SET SESSION AUTHORIZATION
SET TRANSACTION
UNLOCK TABLE

The following data integrity statements are used to ensure the data's integrity. These
statements ensure that the data is safe and is tracked in multiple places:

BEGIN WORK
CHECK TABLE

COMMIT WORK
CREATE AUDIT
DROP AUDIT
RECOVER TABLE
REPAIR TABLE
ROLLBACK WORK
ROLL FORWARD DATABASE
SET CONSTRAINTS
SET LOG
START DATABASE

The following query optimization information statements are used to gather information
on the query in execution. These are great to use when trying to investigate why a certain
SQL statement runs a very long time and how to improve it.

SET EXPLAIN
SET OPTIMIZATION
SET PDQ PRIORITY
SET STATISTICS

The following stored procedure statements are used to execute and debug stored
procedures. A stored procedure is a group of SQL statements that resides in the database
server. Rather than submit the entire group of statements from a program or submit them
interactively, just submit the command to run the stored procedure.

EXECUTE PROCEDURE
SET DEBUG FILE TO

The following auxiliary statements are supplemental statements that are part of SQL but
are not grouped with any of the prior processing categories:

INFO
OUTPUT
GET DIAGNOSTICS
WHENEVER

The following client/server connection statements are used to establish application
connection for a specific environment and/or database:

CONNECT
DISCONNECT
SET CONNECTION

SQL statements are used to perform all direct functions on the database. The statements
and keywords used will lead to the database operations being performed. SQL commands
consist of command verbs, optional clauses, keywords, and parameter operands. The use
of these in SQL syntax permits exact specification of the data requests. The language
allows single and double byte characters to be used in identifiers and variables. SQL has
many types of commands; some are for handling the data, and some are for controlling

administrative matters. Chapters 29 through 32 explain these commands in greater detail
and tell you how and when to use them.

In relational database systems such as Informix, the data is organized and stored in tables
or entities, which are just a collection of columns and rows. Figure 28.1 shows an
example of a database table. Rows are the horizontal parts of the table or are otherwise
referred to as instances. Columns are the vertical parts of the table, which are also known
as attributes. Tables, rows, and columns are a way of organizing the data and giving you
an understanding of a relational model.

Figure 28.1.

A relational database table.

The process of organizing data brings you to the definition or values that can be stored in
the columns of a table. Table 28.1 shows the data types that are supported by Informix.

Table 28.1. Data types supported by Informix.

Data Type Definition
BYTE Stores binary data
CHAR Stores letters, numbers, and special characters
DATE Stores calendar date
DATETIME Stores calendar date with the time of day
DECIMAL Stores decimal numbers with digits of numeric precision
DOUBLE PRECISION Stores double-precision floating numbers
FLOAT Stores double-precision floating numbers
INTEGER Stores numbers ranging from -2,147,483,648 to

2,147,483,647
INTERVAL Stores span of time
MONEY Stores currency amount
NUMERIC Stores decimal numbers with digits of numeric precision
NCHAR Stores a native string of letters, numbers, and special

characters
NVARCHAR Stores native character strings of varying length
SERIAL Stores sequential integers
SMALLFLOAT Stores single-precision floating numbers
SMALLINT Stores numbers ranging from -32,767 to +32,767

TEXT Stores text data
VARCHAR Stores character strings of varying length

A significant feature of SQL is that it can be used by two different interfaces. SQL is both
an interactive query language and a database programming language. This means that any
SQL statement that can be entered at a terminal can also be embedded in a program.

Finally, SQL processing is also known as a set level language, which means your updates
will change records and return the results. You simply state what you want without
specifying a procedure, and the system automatically completes the process.

SQL is the communicating device to the relational database management system. You
will find SQL to be a simplified and straightforward process for accessing data. When
you are familiar with the language, fairly sophisticated data processing can be done. The
following list logically summarizes the SQL language:

• Simple, flexible database access language

• Standard relational language

• English-like query language

• Supports many relational products, such as these:
o DB2

o SQL/DS

o QMF

o Oracle

o Informix

o Sybase

o Focus

o REXX

o XDB

As you will see, relational database systems have two aspects. First, all information is
represented by data values, and second, the system supports a high-level language. SQL
is the high-level language.

History

SQL was initially developed by D.D. Chamberlain and others at IBM in San Jose,
California, in the late 1970s. The language was originally known as SEQUEL (Structured
English Query Language) and was implemented and tested under the name of System R.
Many relational database management system products have evolved from the System R
technology. SQL is commonly pronounced sequel today. And, just to confuse matters,
others pronounce it by spelling out S-Q-L.

Since the birth of SQL, many vendors have created their own SQL-oriented database
products. The American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO) have stated SQL standards. These standards are
similar to the standards of the IBM SQL language, which is the official interface to
relational systems. Since then, many vendors have created an enhanced SQL language to
use with their relational products. This allows a SQL command created with the standard
to run on any system, as long as one vendor's enhanced command is not used on another
vendor's system.

At the start of the relational database system project, many goals were established. The
goals were as follows:

• Provide different types of database uses

• Support a rapidly changing database environment

• Provide a high-level non-navigational user interface

• Provide maximum user productivity

• Provide means of database recovery

• Provide flexible means of defined data

• Provide a high level of database performance

The SQL interface was created with goals of being simple, powerful, and data-
independent. The SQL language was simple enough that users with minimal prior
experience could learn it without difficulty. At the same time, the language was very
powerful in functionality.

In the early stages, suggestions were made to make improvements to SQL, while
developing applications. Users requested simple syntax, capabilities for searching partial
character strings, dynamic SQL, and outer table joins. The SQL language has progressed
tremendously since these initial development days.

The user can issue statements from an online terminal interface or from other
programming languages. The user does not need to know where things are physically
stored or what access paths are available. SQL statements do not require the user to know
anything about the access path for data retrieval. This means that an SQL statement can
be made without the user knowing which columns have indices or how much data will be
retrieved. However, keep in mind that for better performance from your database,
knowing the access paths and indexes will help to keep processing efficient.

During the initial System R project, many phases and goals were set. The first phase was
to execute high-level SQL statements from a PL/I program. The SQL statements
contained basic queries and updates to the database. From this testing, a decision was
made that a system catalog was needed. The catalog would consist of tables that describe
the structure of the database. The catalog would automatically be updated as changes to
the database were made. Along with making processing more efficient, the following
additional objectives were important:

• Minimize the number of rows retrieved

• Perform measurements of I/O

• Improve CPU time usage and lower I/O count

• Determine the importance of "join" processing

• Manage complex and then simple queries

Much time was spent on how to optimize SQL processing. Starting with complex queries
and then working back to simple queries, the following functions were established:

Function Description

Optimizer A component of the database that makes the decision of how the
query should be performed

Views A synthetic table

Authorizatio
n

Control of privileges by the central administration

Recovery Safeguarding the database

Locking Providing isolation levels

It has been proven that System R and SQL could be applied to a relational database
system in a production environment. Since the time of the original implementation, many
improvements have been made, including an enhanced Optimizer and a Distributed

Database System. All of the enhancements and improvements placed in SQL are
available in Informix database systems.

Uses of SQL

The SQL language has many uses. The most important use is the SELECT statement. The
SELECT statement allows you to look at data from a relational database, whereas INSERT,
UPDATE, and DELETE allow you to manipulate data in the database. When you combine
the SELECT statement with a manipulating statement, SQL allows you to change specific
data.

The SQL Query

The SELECT statement by itself can retrieve data from the database, and this action is
commonly referred to as a query. When a SELECT is used with the INSERT statement,
additional data can be added to the database, similar to how data can be updated on the
database using SELECT with the UPDATE statement.

The five SELECT statement clauses are as follows:

• SELECT

• FROM

• WHERE

• ORDER BY

• INTO TEMP

When doing a simple query, only the SELECT and FROM clauses are necessary. When a
WHERE, ORDER BY, or INTO TEMP are added, specific requests are made in the query.

Before you can select on the database, you must have connect privileges given to you by
the administrator. Otherwise, the query will always fail, regardless of whether or not it is
correctly formed.

You can select data from one table and complete the following functions:

• Select specific rows or all rows from the table.

• Select specific columns or all columns from the table.

• Order the data selected (on two or more columns).

• Perform functions on the retrieved data.

As previously stated, to form a basic SELECT statement, you need only the SELECT and
FROM clauses. The following is a sample of selecting all rows from a table:

SELECT * FROM table1

The * in the SELECT statement is a wildcard, which stands for all the columns in the
specified table.

To specify certain columns from a table, the statement should be as follows:

SELECT column1, column2, column3 FROM table1

While retrieving data from a specific table, you can have the system sort the results by
adding an ORDER BY to the SELECT statement. In the SELECT statement, you must list the
columns that you want to be sorted. An additional option is to have the data returned in
ascending or descending order. Here's how it looks:

SELECT column1, column2, column3
 FROM table1
 ORDER BY column2
SELECT * FROM table1
 ORDER BY column1 DESC

You can sort multiple columns from your table. The statement is set up by selecting
specific columns and then listing the order in which you want the data to be returned, like
this:

SELECT column1, column2, column3
 FROM table1
 ORDER BY column2, column3

The WHERE clause of a statement allows you to specify exactly which rows you would like
to see. When using the WHERE clause, you can use many operators or keywords:

Keyword
s

BETWEEN
LIKE
MATCHES

Operator
s

< less than

> greater than
<= less than or equal to
>= greater than or equal

to
!= not equal to

You can use one of the preceding keywords or operators to create a comparison in the
query. Here is an example:

SELECT column1, column2, column3
 FROM table1
 WHERE column1 = valueA

To identify a table from which you want data, you place the table name after the FROM
clause. To identify the column names, you place them in the SELECT clause. To code any
conditions in the query, you use the WHERE clause.

NOTE: Be aware that if no conditions are stated, all rows will be selected.

This has covered the basic simple SELECT statements. A query can go from simplistic to
very complex. Some of the functions in the more advanced SELECT statements are using
GROUP BY or HAVING, creating Self Joins, creating Outer Joins, and creating Multiple-
Table Joins. Subqueries in a SELECT statement can be used along with set operations such
as UNION, difference, and intersection.

In Chapters 29 through 32, greater detail is given to complex queries and additional SQL
functions. The following list gives summaries of additional functions that a query can
perform:

• DISTINCT or UNIQUE keywords can be used to eliminate duplicates.

• Use operators AND, OR, or NOT for additional search criteria.

• Search for Null values by using the IS NULL or IS NOT NULL keywords.

• Use aggregate functions such as AVG, COUNT, MAX, MIN, and SUM in the SELECT.

• Use time functions in the SELECT (such as DATE, YEAR, CURRENT).

• Join two or more tables.

• Select data into a temporary table.

Modifying SQL Statements

Modifying data is also a function that SQL is used for. In Chapters 29 through 32, greater
detail is given to SQL statements that modify data. The following statements modify
data:

• DELETE

• INSERT

• UPDATE

The DELETE statement can remove one or many rows from a table. After a DELETE
statement has been executed and the transaction has been committed, the deleted rows
cannot be recovered. The DELETE statement specifies a table name and a WHERE clause to
specify the delete criteria. If the DELETE statement does not contain a WHERE clause, all
rows in the table will be deleted.

The INSERT statement adds one or many new rows to a table. The values must be
supplied and have an exact correspondence to the table you are inserting into.

The UPDATE statement is used to change the existing data from one or many columns of a
table. The UPDATE statement can use the WHERE clause to determine exactly which rows
should be modified.

Privilege SQL Statements

One major use for SQL is for managing database privileges. There are two levels of
privileges: database level and table level. For a more in-depth look at privileges and
security, refer to Chapter 16, "Privileges and Security Issues."

Here are the database-level privileges:

• CONNECT enables you to open a database and run queries, as well as create
and index temporary tables.

• RESOURCE enables you to create tables.

• DBA allows CONNECT and RESOURCE privileges, along with additional grant
privileges.

Here are the table-level privileges:

• SELECT enables you to select rows from a table.

• DELETE enables you to delete rows.

• INSERT enables you to insert rows.

• UPDATE enables you to update specific rows.

Referential Integrity SQL Statements

SQL is also used for setting up the referential integrity on a database. Referential
integrity is the relationship between tables. For a more in-depth look at referential
integrity, refer to Chapter 17, "Managing Data Integrity with Constraints."

Each table must have a primary key. When the primary key is used in other tables, not as
the primary key but as a reference point back to the table that uses that value as the
primary key, it is called the foreign key.

The foreign key is what is used to establish the relationship between the two tables. The
tables form a hierarchy, and this can cause cascading changes within the tables. Primary
and foreign keys are defined by using the REFERENCES clause on the CREATE TABLE and
ALTER TABLE statements. INFORMIX-OnLine does not allow the referential integrity to
be violated; this means that if a change (such as a deletion) takes place in the child table
before the change is made in the parent table, an error occurs.

NOTE: When using Informix, Transaction Logging must be on in order for a
cascade delete to work.

Embedded SQL Statements

SQL can also be used with almost any programming language. Here are the options that
are available when programming with SQL:

• SQL in SQL APIs

• SQL in Application Language

• Static SQL

• Dynamic SQL

When using an SQL API, the SQL is embedded in the source code, which then goes
through a program that converts the SQL statements into procedure calls and data

structures. The source code then goes through a compiler and creates an executable
program. For the Application Language, using embedded SQL enables you to have the
SQL as part of its natural statement set.

Static SQL statements are the most common and simple way of including SQL
statements in your program. The statements are included as part of the source code.

Dynamic SQL statements are not part of the source code. These SQL statements are
composed from user input and then passed to the database for execution. The program
creates a character string from the input and puts it to memory prior to the pass to the
database server. Whenever information is passed from the program to the database server,
information and/or results must be returned. A data area known as SQLCA (SQL
Communications Area) is where all information about the statements comes from.

SQL statements can be written into any program just like any ordinary statement. Static
statements are used in the source program, whereas dynamic statements take input and
use the database servers for execution.

Summary

In summary, SQL is used as the communicating device to the relational database
management system. SQL is a simplified and straightforward process for accessing data.
SQL statements and keywords are used to perform all direct functions on the database.

Many uses of the SQL language were covered in this chapter. The SELECT statement
allows you to look at data from a relational database, and INSERT, UPDATE, and DELETE
allow you to manipulate data in the database.

In addition, SQL statements can be written into any program. Static statements are used
in the source program, whereas dynamic statements take the SQL as input and use the
database server for execution.

All SQL functionality explained in this chapter is supported by all Informix database
servers.

- 29 -

Creating a Database Using SQL
• Determining the Database Layout

o Creating a Data Model
o Implementing a Data Model
o Creating a Database

• Size Requirements
o Chunks
o Pages
o Extents
o dbspaces
o Blobspaces
o Root Dbspace
o Size Requirement Considerations

• Creating Tables
o Constraint Limitations
o Dropping and Adding Constraints
o Defining a Unique Column
o Defining a Primary and Foreign Key
o Defining Check Constraints
o Table Storage
o Extent Option
o Lock Mode Option
o Temporary Tables
o Creating Views

• Altering Tables
o ADD Clause
o DROP Clause
o MODIFY Clause
o ADD CONSTRAINT Clause
o DROP CONSTRAINT Clause
o MODIFY NEXT SIZE Clause
o LOCK MODE Clause

• Creating Indexes
• Altering Indexes
• Privileges

o Database-Level Privileges
o Table-Level Privileges
o Stored Procedures
o Views

• Integrity
o Entity Integrity
o Semantic Integrity
o Referential Integrity

• Summary

by John McNally

This chapter reviews the fundamentals of database design and determines the factors of
designing the database from a physical standpoint. I start by reviewing what an entity-
relationship (ER) data model is, how it can be used, and which data objects--such as
entities, relationships, and attributes--must be defined.

There are many ways to approach the design of a database, but this chapter reviews the
basic three-step design. This process consists of the following steps:

1. Name the entities.

2. Define the relationships.

3. List the attributes.

INFORMIX-SQL is the primary tool, along with DBaccess, which is used for creating
and testing your database design. Refer to Chapter 32, "SQL Tools," for additional
information on DBaccess.

In addition, this chapter discusses

• Determining the database layout

• Size requirements

• Creating tables

• Altering tables

• Creating indexes

• Altering indexes

• Privileges

• Data integrity

Determining the Database Layout

The database layout is the most important part of an information system. Just as you don't
want to build a house without a blueprint, creating a database without a predesigned

layout could be disastrous. The more design and thought put into a database, the better
the database will be in the long run.

You should gather information about the user's requirements, data objects, and data
definitions before creating a database layout and definitely before creating the database in
Informix.

Creating a Data Model

The first step you take when determining the database layout is to build a data model that
defines how the data is to be stored. For most relational databases, you create an entity-
relationship (ER) diagram or model. For more information about relational databases, see
Chapter 27, "Informix Development Introduction," which goes into more detail on how to
use the relational database model when you create a database system.

The steps to create this model are as follows:

1. Identify and define the data objects (entities, relationships, and
attributes).

2. Diagram your objects and relationships.

3. Translate your objects into relational constructs (such as tables).

4. Resolve your data model.

5. Perform the normalization process.

First, define your entities and the relationships between them. An entity is something that
can be distinctively identified. An example of an entity is a specific person, place, or
thing. The relationship is the association between the entities, which is described as
connectivity, cardinality, or dependency.

Connectivity is the occurrence of an entity, meaning the relationship to other entities is
either one-to-one, one-to-many, or many-to-many. The cardinality term places a
constraint on the number of times an entity can have an association in a relationship. The
entity dependency describes whether the relationship is mandatory or optional.

After you identify your entities, you can proceed with identifying the attributes.
Attributes are all the descriptive features of the entity. When defining the attributes, you
must specify the constraints (such as valid values or characters) or any other features
about the entity.

After you complete the process of defining your entities and the relationship of the
database, the next step is to display the process you designed. Graphically displaying or

diagramming your entities and relationships gives you a complete layout of the process.
Figure 29.1 shows an example of an ER diagram.

Figure 29.1.

An example of an ER diagram.

There are many purposes for diagramming your data objects:

• Organizes information, allowing you to work smarter

• Documents for the future and gives people new to the project a basic
understanding of what is going on

• Identifies entities and relationships

• Determines the logical design to be used for the physical layout

After your diagram is complete, the next step is to translate the data objects (entities and
attributes) into relational constructs. You translate all the data objects that are defined
into tables, columns, and rows. Each entity is represented as a table, and each row
represents an occurrence of that entity.

A table is an object that holds data relating to a single entity. Table design includes the
following:

• Each table is uniquely named within the database.

• Each table has one or more columns.

• Each column is uniquely named within the table.

• Each column contains one data type.

• Each table can contain zero or more rows of data.

The tables contain two types of columns: keys or descriptors. A key column uniquely
defines a specific row of a table, whereas a descriptor column specifies non-uniqueness in
a particular row.

When you create tables, you define primary and foreign keys. The primary key consists
of one or more columns that make each row unique. Each table must have a primary key.
The foreign key is one or more columns in one table that match the columns of the
primary key of another table. The purpose of a foreign key is to create a relationship
between two tables so you can join tables.

The next step in your data model is to resolve your relationships. The most common
types of relationships are one-to-many (1:m) and many-to-many (m:n). In some
instances, a one-to-one relationship may exist between tables. In order to resolve the
more complex relationships, you must analyze the relational business rules, and in some
instances, you might need to add additional entities.

The final step in building your data model is normalization. The three forms of
normalization are

• First normal form: A table defined with no repeating columns.

• Second normal form: A table that is in first normal form and contains
columns dependent on the primary key.

• Third normal form: A table that is in second normal form and contains
columns that are dependent on the primary key along with descriptive
columns.

When you finish normalization, you should have a complete data model for your database
design with minimal data redundancy. If the process is correctly designed at the first,
later performance problems should not occur.

Implementing a Data Model

Next, I review the procedures for implementing your data model. After the data model is
complete, it must be implemented. The two steps in the implementation process are

1. Define the domain for every column.

2. Use SQL to create the actual data model into a new or existing database.

The domain is defined for each column. This means that restrictions are put on the valid
values for that particular column. There are three ways to specify constraints: data types,
default values, and check constraints.

The data type constraint allows you to choose a data type for the column and allows
storage of data only of that specific type. (Refer to Chapter 28, "INFORMIX-SQL," for
additional information on data types.) Data type is important because it sets the rules for
the type of data that can be stored, and it can specify the amount of disk space that is
utilized. Default values are values that can be inserted into a column of a table when the
specific values are not indicated.

Check constraints check the requirements on a value before any updating or inserting is
done to a specific column. If a constraint is defined and a value is not valid, the database
server returns an SQL error code.

Creating a Database

A database is the object that holds all the parts of your data model together. The parts
include the tables, views, and indexes. You must create the database before anything else
can be created.

You create a database by running the CREATE DATABASE SQL statement. The database
usually resides in one dbspace as specified in the statement, but if no dbspace name is
specified, the database is created in the root dbspace by default. In your create statement,
you can also specify what type of logging you want for the database.

To build a database, you must follow these steps:

1. Type the words CREATE DATABASE.

2. Provide the database name.

The following statement creates a database in the root dbspace:

CREATE DATABASE database1

The following two steps are enough to create the database:

1. Designate the dbspace where the database is to reside by using the IN
clause.

The following statement creates a database in a specific dbspace:

CREATE DATABASE database1 IN dbspace1

2. Specify the logging for the database.

INFORMIX-OnLine offers four types of transaction logging. They are

• None

• Unbuffered

• Buffered

• ANSI-Compliant

The database administrator can turn the transaction logging on and off at any time.
Sometimes when you perform maintenance or large inserts, you might choose to turn
logging off. Note that only the servers from INFORMIX-OnLine allow for logging to be
turned on and off.

The following statements specify the type of logging on the database at creation time:

CREATE DATABASE database1 WITH NO LOG
CREATE DATABASE database1 WITH LOG
CREATE DATABASE database1 IN dbspace1 WITH BUFFERED LOG
CREATE DATABASE database1 IN dbspace1 WITH LOG MODE ANSI

Note that you can add transaction logging to a no-log database by using the START
DATABASE statement. When you complete your CREATE DATABASE statement, that
becomes your current and selected database. Each database name must be unique within
your INFORMIX-OnLine system or instance. Additional statements you can use with the
database include DATABASE, START DATABASE, CLOSE DATABASE, and DROP DATABASE.

You use the DATABASE statement to open the database, whereas the START DATABASE
statement is used for specifying the log type or starting the transaction processing. You
use the CLOSE DATABASE statement to close the current database, and the DROP DATABASE
statement deletes the entire database including all data, indexes, and system catalog
information.

You can perform all the preceding database functions with the Informix DBaccess tool.
The tool is primarily used for accessing and manipulating data from a relational database.
Refer to Chapter 32 for information on the DBaccess tool.

You can create a database by entering statements interactively, or you can write
statements into a file to execute automatically. A utility called DBSCHEMA generates
SQL statements from the contents of your database and allows you to generate a
duplicate database. You use this type of utility when you want to create a testing or full
volume database that matches your existing production database. The DBSCHEMA
utility creates the SQL for the entire database including tables, indexes, and granted
privileges.

I covered the process of how you determine your database layout. As a review of this
process, the following list shows the steps you must complete and where to focus next:

1. Create a data model.

2. Perform the normalization process.

3. Use SQL to create the database.

4. Denormalize if necessary.

5. Start on table and index creation.

Next, you focus on the sizing requirements and how volumes can determine the
functioning of your database.

Size Requirements

When you create tables and the data volumes and users are minimal, the database is easy
to manage. As the tables grow larger and more users are concurrent, you begin the
process of how to measure and manage the growing OnLine system.

Data management is a large part of a successful OnLine environment. The following is a
list of functions involved in data management:

• Organization of the database on disk space

• Proper use of disk space

• Data access

INFORMIX-OnLine has its own procedures for managing the data on disk. When
working with INFORMIX-OnLine, you deal directly with disk storage. At the time of
table creation, you determine how much disk space is reserved. The data is stored in disk
pages. The disk pages are managed by the initial extent size and next extent size. When
you first create the table, the initial extent size is reserved; when the initial extent is full,
OnLine adds the next extent. The default for the initial and next extent size is eight pages.

There are many ways you relate to disk storage. The following section briefly describes
the different types of space.

Chunks

A chunk is a unit of disk or actual physical space that is used by Informix in the OnLine
system. A chunk can be either a raw device or a cooked file. When you structure your
OnLine system, you define your chunks using the following parameters: pathname,
offset, and size.

The pathname is the name of the raw device or cooked file that is used to create the
chunk. A raw device is the complete disk space or a portion of it that is managed totally
by Informix. The operating system has no control of that space and is not allowed to use
it. All reads and writes to that space are performed by Informix. An example of the
pathname for a raw device is /dev/rdsk. Cooked space is managed and maintained by
the operating system. All reads and writes must go through UNIX in a cook scenario. A
cooked file is a file that Informix uses to store information, but that is managed by UNIX.
An example of the pathname for a cooked file is /usr/informix/cooked/file1.

The offset parameter is the beginning point on the device that is used in your chunk. This
is specified in kilobytes.

The size parameter is the amount of space, also specified in kilobytes, that is used in the
device for the chunk you create. The amount of space specified in the size parameter
starts at the point where the offset was set.

Note that when you use a cooked device for chunks, you should use an offset of zero.

Pages

Pages are the basic unit of I/O that OnLine uses. There are data pages and index pages,
but you cannot store both data and indexes on the same page.

Extents

When you create a table, you allocate disk space in a unit called extents. An extent is the
amount of space in kilobytes that is allocated for a table to grow into. After an extent is
allocated, no other process or table can use that space. Each table has two extent sizes
associated with it. First is the EXTENT SIZE parameter, which is the first extent of disk
space that is allocated at the time the table is created. Second is the NEXT SIZE
parameter, which is the subsequent disk space extent added to the table. You can alter the
NEXT SIZE parameter with the ALTER TABLE statement.

The minimum size that an extent can be is four pages (8KB), and it must be in even
multiples of the page size of the current system. Also, when the table reaches 64 extents,
the system doubles the next extent size for each new extent from that point forward.
Every time the amount of extents passes a multiple of 64, the size is doubled again.
Informix automatically does this to limit the amount of extents allocated. But remember,
it is always best to keep the number of extents to a minimum. Reorganize the table by
unloading all the rows, deleting the table, re-creating the table, and then reloading the
rows. The key to this procedure is to set the extent size on the re-created table equal to
the size of all the original extents added together.

INFORMIX-OnLine also has a unit called a tablespace. When the extents for one given
table are logically grouped, this is known as a tablespace. A tablespace can contain one or
more extents.

dbspaces

A dbspace is a collection of chunks that are used for storing tables and databases. When a
dbspace is created, it must have at least one chunk, also known as the primary chunk. A
dbspace can consist of many chunks. After initial creation, you can add additional chunks
to the dbspace.

At the time you create your tables and databases, you can specify what dbspace you want
them to be placed in. If a dbspace comprises many chunks, you cannot specify what
chunk your tables are created on.

When the dbspace is created, space is automatically allocated to store system
information. An example of what is stored in this space is information to help track what
data is in the particular dbspace.

One table in shared memory is called the dbspaces table. This table is created by the
OnLine system to keep track of all the dbspaces that are created. The dbspaces table has
an entry for each dbspace created.

Blobspaces

Blobspaces, like dbspaces, are also collections of chunks, but they are used to store blob
(binary large object) data types. A blob data type holds items such as images, sounds, or
text files. A blobspace can hold blob data from one or more tables, but no additional
indexes or rows are stored. When you create your blobspace, you need to specify the size
of the blobpage, and pages throughout the blobspace must be the same size. The blobpage
is the unit of storage for the blob data types stored in the blobspace.

The reason for storing large blob data types in blobspaces is to achieve more efficient
processing. The blob values are not buffered in the buffer cache and are not written to the
logical logs on disk. The process keeps the before and after values on disk until you back
up the logical log file.

The dbspaces shared memory table, mentioned in the last section, contains entries for
blobspaces as well as standard dbspaces.

Root Dbspace

When creating an INFORMIX-OnLine system, you must have a root dbspace. The
primary chunk for the root dbspace is used to store the sysmaster database
(INFORMIX-OnLine Dynamic Server) and the physical and logical logs. The default
root name specified is rootdbs. The root dbspace is the area where all the system
information is located. This is a critical part of the OnLine environment.

It has always been recommended that you do not create tables in the root dbspace.

When you configure your OnLine system, you must calculate what is stored in the root
dbspace so that you have enough space allotted. The following list outlines the
components in the root dbspace:

• Physical log
• Logical logs
• OnLine system information
• Temporary tables (internal)

The root dbspace contains more system information than any other dbspace. The first 12
pages of the primary chunk in the root dbspace are automatically allocated for the OnLine
system information. Some of the data stored in the 12 reserve pages is as follows:

• dbspace pages
• Primary chunk pages
• Mirror chunk pages
• Checkpoint pages
• Archive pages

Size Requirement Considerations

When looking at size requirements for your OnLine system, there are many things to take
into consideration. First, you must look at your data model and decide the most
appropriate physical layout of the database. At this time, the data volume and data
processing information comes into play. You decide what type of architecture should be
implemented for your system.

The placement of data on disk components (raw devices) is a large part of the
architecture, along with your shared memory components. The shared memory plays a
large part when you cache data from disk.

If you configure an OnLine production environment, the best solution is to set up a
configuration worksheet to help size your OnLine environment. You can break down the
worksheet into the following groups to help set values for the new environment:

• Root dbspace configuration:
• Physical log
• Logical logs
• Root dbspace size
• Temporary table disk space
• Reserve pages
• Additional disk space:
• Primary chunks
• Mirror chunks
• Buffers
• Cleaners

This should give you at least a high-level overview of what you need to configure to
come up with the appropriate size requirements for your system.

Creating Tables

When creating a table, you must use the CREATE TABLE statement. You must define
several things such as the table name, which is unique within the database, and the
column names, which are unique within the table. Every column must have an associated
data type, and a column constraint is optional. You use the CREATE TABLE statement to
define the initial and next extents plus the locking method for the table.

Temporary table names must be different from existing tables within the current
database. You do not need uniquely defined temporary tables that might already exist and
are being used by other users.

The CREATE TABLE statement is used to create all tables defined in the data model. When
you create the table, you define the columns and supply the following information:

• Column name

• Data type for each column

• Primary key constraint on one or more columns and the UNIQUE constraints
for not allowing duplicates

• Foreign key constraints for one or more columns

• Not Null constraint

• Default value constraint

• Check constraint

• FRAGMENT BY option

• Extent option

• Lock mode option

• Logging option

This section reviews all the preceding options for the CREATE TABLE statement. Keep in
mind that putting constraints on columns of a table helps to establish the data integrity of
the table. For an in-depth look at constraints, refer to Chapter 17, "Managing Data
Integrity with Constraints."

Constraint Limitations

You have a few limitations on constraints when creating a table. You cannot define more
than 16 columns for a unique primary key. Also, the length of all the columns cannot
exceed 255 bytes.

When defining constraints on the column level, you are limited to defining only one.
When defining constraints on the table level, they can apply to single or multiple
columns.

Dropping and Adding Constraints

After you create your table using the CREATE TABLE statement, you must use the ALTER
TABLE statement to add or drop a constraint. Later in this chapter, the "Altering Tables"
section takes a more detailed look at the ALTER TABLE statement.

Defining a Unique Column

You define a unique constraint on a column or columns of a table to ensure that only
unique data is inserted into the table. You cannot insert any duplicate values as long as
the unique constraint is defined.

Defining a Primary and Foreign Key

The primary key is a single column or a group of columns that create a unique value for
each row of the table. Every table can have only one primary key, and it cannot contain a
column that is defined as unique. Note that a primary key cannot be defined as BYTE or
TEXT.

The foreign key establishes the relationship or dependencies of tables. The foreign key
references the primary or unique key of another table; each column defined in the foreign
key must exist in the primary or unique key it references. Note that a foreign key cannot
be defined as BYTE or TEXT.

Defining Check Constraints

You can define check constraints at the column or table level. At the column level, if a
row is to be inserted or updated and the conditions on a specific column are not met, an
error is returned. With a constraint defined on the table level, each column must meet the
conditions defined.

Table Storage

A table storage option on the CREATE TABLE statement allows you to specify where the
table of a certain database is to be stored. The clause used in the statement is IN
dbspace. This option is for INFORMIX-OnLine, and the specified dbspace must already

exist in your system. If a dbspace is not specified, then the table is created in the space
where the current database resides.

The purpose of using the IN dbspace clause is to enable you to control where the tables
are created. For example, if you create two tables and you want them to be placed on
different disk areas, you specify different dbspaces in the create statement.

Extent Option

When you create a table, you can specify in your statement the size of the first extent and
next extent you want to be defined for that table. The EXTENT SIZE and NEXT SIZE
options have a default of 8KB (or four pages).

Lock Mode Option

When you create a table, you can specify the lock mode of page-level or row-level
locking. Page-level locking is the default if nothing is specified, and this allows you to
lock an entire page of rows. Row-level locking allows concurrent processing at a row
level, but the number of locks could escalate when many rows at a time are locked. Row-
level locking does give you the highest level of concurrency, but the configuration must
be set up to avoid reaching the maximum number of locks.

Temporary Tables

Temporary tables last for the time that your application program is processing or until
your database is closed. A temporary table cannot have referential constraints placed on
any defined columns nor can any column of the table be referenced from another table. If
the user has connect privileges on the database, he can create a temporary table and build
indexes on that temporary table.

When creating your tables, the only elements that are necessary are a unique table name
within the database and unique column names within each table.

The following code segments show examples of CREATE TABLE statements:

CREATE TABLE department
 (deptno char(3) not null,
 deptname char(20) not null,
 mgrgrp char(10),
 location char(15),
 primary key (deptno)
);
CREATE TABLE department
 (deptno char(3) not null,
 deptname char(20) not null,
 mgrgrp char(10),
 location char(15),
 primary key (deptno,deptname)

)
 in dbspace1 extent size 24 next size 12;
CREATE TABLE project
 (projno char(8) not null,
 projname char(20) not null,
 department char(20),
 prjstart date,
 prjend date,
 vendor varchar(50,10)
)
 lock mode row;
CREATE TABLE accounts
 (acctno INTEGER,
 acct_type INTEGER,
 subven varchar(50,20)
REFERENCES project (vendor),
);
CREATE TEMP TABLE dba
 (lname char(20),
 fname char(20),
 manager char(20))
 WITH NO LOG;

Creating Views

You use the CREATE VIEW statement to create a new view with its definition based upon a
current table or another view of the database.

A view is also known as a synthetic table. You can query or update the view as if it is a
table. You must remember that in actuality, the table data is a view of what is stored in
the real table. Refer to Chapter 16, "Privileges and Security Issues," for an in-depth look
at views.

Views are created for many purposes:

• Restrict users to specific rows or columns of tables.

• Control the insert and update data of the table.

• Avoid redundancy of data.

A view acts just like any other table and consists of all rows and columns that are a result
of the select statement used at creation time. The data attributes for each column are
derived from the original table. The user must have the select privilege on the table in
order to create the view.

The statement used to create the view is stored in the Informix sysviews table. Each time
the view is referenced by a statement, the server performs the SELECT.

You can name each column at the time you do your CREATE VIEW statement, but if no
column names are specified, the names from the referenced tables are used. Keep in mind
that naming columns follows an all-or-none rule. If you are not going to name all the
columns of the view, you don't name any. Also, if some columns have duplicate names,
you must label each column name in the view statement.

You can use a view in all SQL statements that deal with data viewing and manipulation,
such as SELECT, INSERT, DELETE, or UPDATE. A view cannot be used in database layout
SQL statements such as the following:

• Alter Index
• Create Index
• Drop Index
• Alter Table
• Create Table
• Drop Table
• Lock Table
• Rename Table
• Unlock Table

There are additional restrictions when using views. Because a view is not a real table, you
cannot create an index , and the INTO TEMP, UNION, and ORDER BY functions cannot be
processed. A view is based on one or more tables, so it should always reflect the most
current changes of the tables.

You can perform updates and inserts on a view with certain restrictions. First, you can
update a view only if the columns are not derived from the select statement that creates
the view. An insert follows the same rules, and the view must be modifiable for any
function to complete.

The privileges on a view are checked at the time the CREATE VIEW statement is
processed. The authorization is checked from the table from which you want to create
your view. When a table is created, the grant to public is automatic, but that is not the
case with a view. If the view is modifiable, the database server grants delete, insert, and
update privileges.

The following code shows examples of two CREATE VIEW statements:

CREATE VIEW dept_view AS
 SELECT * FROM department where deptno = ABC
CREATE VIEW proj_view AS
 SELECT projno, projname FROM project

A view is a way to control the data that users can access. The authorization can control
who can modify the data and restrict users from accessing confidential data.

Altering Tables

You use the ALTER TABLE statement to make modifications to an existing table. The
following list outlines uses for the statement:

• Add columns.

• Drop columns.

• Modify data constraints on a column.

• Add data constraints to a column.

• Drop constraints on a column.

• Modify the NEXT SIZE parameter.

• Modify the LOCK MODE of table.

The next few pages review all these options for the ALTER TABLE statement.

ADD Clause

You use the ADD clause for the ALTER TABLE statement to add a column to an existing
table. You can add the column to the end of the table by default, or you can state a
BEFORE clause and the column name before which you want the new column placed.

When you add a column, the NOT NULL option is not allowed. Also, if the table being
altered contains data, you cannot define the new column as a primary or unique key.

DROP Clause

You use the DROP clause for the ALTER TABLE statement to drop an existing column of a
table. You state the DROP keyword with the name of the column to be dropped. Keep in
mind that when a column is dropped, all constraints associated with that column are also
dropped. The following summarizes the constraints dropped:

• Referential constraints

• Check constraints

• Single column constraints

• Primary or unique key constraints

• Multiple column constraints

When a column is dropped, the structure of associated tables can also be altered. This is
especially true when the primary key or referential constraints are altered.

MODIFY Clause

You use the MODIFY clause for the ALTER TABLE statement to change the data type of an
existing column, change the length of a column, or change the value to allow or not allow
nulls. When the data type is changed in an existing column, the data in the table is
automatically converted to the new data type.

When a column is modified, all previous values and attributes are also dropped. In the
MODIFY clause, you must list all attributes again if you want to retain what was previously
defined before the statement. As with the DROP clause, all single column and referential
constraints are dropped.

ADD CONSTRAINT Clause

You use the ADD CONSTRAINT clause for the ALTER TABLE statement to add a constraint
to a new or existing column. When a unique constraint is defined, the column must
contain only unique values. A unique name is also used for each constraint; if you do not
specify one, the database server gives you one by default. All constraint information is
stored in the system catalog table SYSCONSTRAINTS.

DROP CONSTRAINT Clause

You use the DROP CONSTRAINT clause of the ALTER TABLE statement to drop an existing
constraint. The statement uses the DROP CONSTRAINT keywords with the constraint name.
If you do not know the constraint name, you can query the SYSCONSTRAINTS system
catalog table.

If you drop a constraint that has a foreign key relation, the referential constraint is also
dropped.

MODIFY NEXT SIZE Clause

You use the MODIFY NEXT SIZE clause of the ALTER TABLE statement to change the size
of the next extent. When a table is created, the EXTENT SIZE and NEXT SIZE are included
in the statement. This clause allows you to modify only the NEXT SIZE value.

LOCK MODE Clause

You use the LOCK MODE clause of the ALTER TABLE statement to change the locking mode
of an existing table. The default at the time of the initial table creation is page-level
locking.

The following code contains examples of ALTER TABLE statements:

ALTER TABLE department
 ADD (deptcode char(10) NOT NULL
 BEFORE mgrgrp) ;
ALTER TABLE department
 DROP CONSTRAINT mgr_con ;
ALTER TABLE project
 MODIFY (department SMALLINT NOT NULL) ;
ALTER TABLE project LOCK MODE (ROW) ;

With the ALTER TABLE statement, you can use more than one of the described clauses in a
single statement. Also when altering a table with an associated view, be aware that the
view may become invalid.

Creating Indexes

When creating an index, you must use the CREATE INDEX statement. You can create an
index on one or more columns of the same table. At the time of the index creation, the
database server puts an exclusive lock on the entire table until the index build is
complete. With the create statement, you define an index name that is unique for that
table.

You have some options with the CREATE INDEX statement. First is the UNIQUE option.
The unique option prevents duplicates from being inserted into the table. Next is the
CLUSTER option. The cluster option orders the table by the design of the index. You are
allowed only one CLUSTER index on a physical table.

NOTE: The CREATE INDEX statement has additional keywords:

• You use the DISTINCT keyword exactly as you use the UNIQUE keyword. This
option does not allow duplicates in the table.

• The ASC keyword keeps the index in ascending order. ASC is the default if
not speci- fied in the create statement.

• The DESC keyword keeps the index in descending order.

The following code shows examples of the CREATE INDEX statement:

CREATE UNIQUE INDEX dep_ix1 ON department (deptno) ;
CREATE CLUSTER INDEX c_dep_ix1 ON department (deptno) ;

CREATE INDEX proj_ix1 ON project (projno DESC) ;

Altering Indexes

When altering an index, you must use the ALTER INDEX statement. There are only two
reasons to use the statement; one is to change the CLUSTER option of an existing index,
and one is to reorder the data by the existing index. For the alter statement to work, the
index must have been previously created with the CREATE INDEX statement and you must
have the proper permissions to perform the ALTER INDEX statement.

The TO CLUSTER option allows you to add clustering to an existing index. This forces all
existing data rows to reorder to comply with the indexed order. Any new inserts to the
table are placed in the clustered order. Inserts require more processing overhead, but a
clustered index provides the fastest queries. This does not work if there is already an
existing clustered index on the same table.

The TO NOT CLUSTER option drops the cluster option of the index. When this is done, the
table is not affected. Any new inserts are placed randomly. Searches require a little more
effort, but using this option is still faster than a non-indexed table.

The following code shows two examples of the ALTER INDEX statement:

ALTER INDEX dept_ix1 TO NOT CLUSTER ;
ALTER INDEX proj_ix1 TO CLUSTER ;

NOTE: Only one clustered index is allowed per physical table. You must drop an
existing clustered index if you want to add a new clustered index.

Privileges

A privilege is the authorization given for a database or table. You can control
authorizations by granting and revoking privileges to users. As stated, the two groups for
privileges are for the database and for individual tables. For more information on
privileges, refer to Chapter 16.

You use the GRANT statement to specify the privileges given on tables and views. In the
granting process, there is a grantor and a user. The grantor is the user who gives the
privileges to another user. A user is the receiver of the granted privileges.

Note that you can grant privileges to individual users or to PUBLIC. PUBLIC grants
privileges to users who currently use the tables or to users who will use them in the
future. When privileges are granted, they remain until the original grantor REVOKEs them.

Database-Level Privileges

There are three types of privileges on the database:

• Connect

• Resource

• Database administrator

The lowest level of database privileges is connect. The connect privilege allows the users
to query and modify tables. This privilege allows the following operations:

• SELECT, INSERT, UPDATE, and DELETE

• Create views

• Create temporary tables

• Execute stored procedures

NOTE: The user must have the appropriate table-level privileges, and if you do
not have the connect privilege, you cannot access the database.

The resource privilege has the same authorization as the connect privilege, but
additionally, it allows access and modification to permanent tables, indexes, and stored
procedures. The database administrator privileges are the highest level of database
authorization. When you create the database, you automatically become the
administrator. Every database has an owner, and with this privilege, you can create
objects that are owned by others.

Some of the functions that the database administrator privilege allows include

• DROP DATABASE and START DATABASE

• Alter extent size

• Drop or alter any object

• Create objects owned by other users

• Grant database privileges

Table-Level Privileges

There are seven table-level privileges. If you are the owner of the table (the person who
created the table), you have control of the table and receive all seven privileges. Note that
the DBA, even if he or she isn't the owner, also has all privileges on the table.

The following list contains a brief description of each of the seven privileges:

SELECT Privilege to name any column of a table in a SELECT statement
UPDATE Privilege to name any column in an UPDATE statement
INSERT Privilege to insert rows into a table
DELETE Privilege to delete rows from a table
ALTER Privilege to add or delete columns, add or delete table-level

constraints, and modify column data types
INDEX Privilege to create indexes (permanent) on a table
REFERENCES Privilege to reference columns in referential constraints

To grant a user all the preceding privileges, you use the ALL keyword in your GRANT
statement. Note that for creating permanent indexes or incorporating referential
constraints on your tables, you must have the resource privilege.

When a table is created, the database server automatically grants all privileges to PUBLIC.
In most instances, you then REVOKE all from PUBLIC and grant the table-level privileges
you want. An additional option or keyword is WITH GRANT OPTION. When a user is
granted privileges with this keyword, he is also given the authorization to grant those
same privileges to additional users.

Stored Procedures

Stored procedures, like tables, have privileges granted to PUBLIC when they are created.
The EXECUTE ON option allows you to grant users the capability to run a defined stored
procedure. For more information on stored procedures, refer to Chapter 14, "Managing
Data with Stored Procedures and Triggers."

Views

When you create a view, as the owner, you must grant all privileges to the users. Like the
table privileges, the view does not give an automatic grant to PUBLIC. To create a view,
you must have at least select privilege on the tables being used. For more information on
views, refer to Chapter 16.

If you want to see what privileges were granted for a table, you can select the information
from the SYSTABAUTH system catalog table.

The following code shows examples of privileges granted:

GRANT CONNECT ON database1 to PUBLIC;
GRANT SELECT ON department TO user1;
REVOKE ALL ON department FROM PUBLIC;
GRANT EXECUTE ON procedure_1 TO user1;

Integrity

When designing your database, try to define tables with minimum data redundancy. After
entities are defined, begin to develop their relationships. Your primary goal is to create an
efficient database with data integrity playing a large part of the process. For more
information, refer to Chapter 17, which is dedicated to data integrity.

Three types of data integrity are incorporated into the database design:

• Entity
• Semantic
• Referential

Entity Integrity

Every entity in a model represents a table. When the table is created, you must have a
primary key. The primary key of the table is the column or columns whose values are
different for every row of the table or are unique. This is called the entity integrity
constraint.

Semantic Integrity

Semantic integrity is used to ensure that each time data is entered into the table, the
values match what was defined for that column. Semantic integrity uses the following
constraints to ensure the values are all within the correct domain:

Data type Defines the values allowed to be stored in the column
Default value The default value that can be stored when no value was

inserted
Check
constraint

Conditions on the data that is inserted into the table

Referential Integrity

Referential integrity is the relationship that is built between tables. This process works
when the primary key of one table is found as the key of another table. This is known as
the foreign key. The foreign key actually establishes the relationship or dependencies
between the two tables.

You define the relationships using the CREATE TABLE and ALTER TABLE statements.
When the constraint is created, an exclusive lock is held on the referenced table until the
statement is complete.

Summary

This chapter discussed the fundamentals of database design starting with the three-step
process of naming entities, defining relationships, and listing attributes. These steps are
all part of defining a data model. When the logical model is complete, you start to define
your data objects into tables, columns, and rows.

The reasons for diagramming your data objects include providing documentation,
organizing information, identifying entities and relationships, and creating a logical
design layout. The process of determining your database is based on the data model that
was defined. You use SQL to create your database, tables, and additional objects from
your data model. This chapter also covered the following functions to implement the data
model:

• Creating tables

• Altering tables

• Creating indexes

• Altering indexes

• Data integrity and privileges

- 30 -

Data Management Using SQL
• Querying Data

o Multiple Table SELECT Statements
• Inserting Data

o Single Row Inserts
o Multiple Row Inserts
o INSERT Statement Within a Program
o INSERT Within a Cursor
o Inserting and Transactions
o Inserting with a View
o Insert Using Stored Procedures

• Updating Data
o Uniform Value Updates
o Selected Value Updates
o UPDATE Statement Within a Program
o Updating Within a Cursor
o Updating with a View

• Deleting Data
o DELETE Statement Within a Program
o Deleting Within a Cursor
o Deleting with a View

• Summary

by John McNally

This chapter discusses data management using the Structured Query Language (SQL).
SQL is the data access language used to communicate with the database manager. You
use SQL's data manipulation statements to view and store rows in a table, as well as
modify and delete these rows. Here are the statements you use:

• SELECT
• INSERT
• UPDATE
• DELETE

The SELECT statement is the definitive command found in SQL. Not only does it allow
you to see anything within the database, but it also helps the next three commands to be
more precise. You use the INSERT statement to store rows in a table. The statement can
add a row to an empty table or a table that already has populated data. You use the
UPDATE statement if you want to change any of the existing rows in a table. You use the
DELETE statement to delete one or more rows in a table. This chapter reviews the
execution of each statement.

Informix uses an enhanced version of the industry standard query language product.
Putting SQL statements into a program allows you to query a database as well as make
modifications to existing rows.

The following list outlines the types of data management functions that are discussed in
this chapter:

• Querying
• Inserting
• Updating

• Deleting

Querying Data

Using the SELECT statement is the primary way to query your database. It is the most
important SQL statement and can be the most complex. The SELECT statement does not
modify data in the database; you use it only to query the data. You can select from a
database table, a view, or the system catalog tables.

You can use the SELECT statement in the following ways:

• Retrieve data from a database.
• Create new rows with the INSERT statement.
• Update data with the UPDATE statement.

There are five SELECT statement clauses, even though only two clauses--SELECT and
FROM--are required. You must use the clauses in the following order:

• SELECT
• FROM
• WHERE
• ORDER BY
• INTO TEMP

Two additional clauses for more advanced queries are GROUP BY and HAVING.

To select from a database, you must have the CONNECT privilege to the database and the
SELECT privilege for any tables to be accessed.

You can run a query on a single table of a database to retrieve all or specific columns or
rows and order the data in different ways. If you specify an asterisk (*) in your select
statement, all the columns are returned in their defined order. You can specify which
columns you want by including the list of column names immediately after the SELECT
keyword in the statement. The order in which the columns are selected is the order in
which they are returned by default.

You can eliminate duplicate rows from being returned by using the DISTINCT keyword in
your SELECT statement. You can also use the UNIQUE keyword for the same purpose.

The following code shows an example of syntax:

SELECT * FROM table1
 SELECT column1, column2, column3 FROM table1

You use the WHERE clause of the SELECT statement for two specific purposes:

• Specify the criteria for searching specific rows.
• Create join conditions with multiple tables.

You can use many keywords and operators to define your search criteria:

Keywords Results in
BETWEEN Range of values
IN Subset of values
LIKE Variable text search
MATCHES Variable text search
IS NULL Search for NULL strings
IS NOT NULL Search for non-NULL strings

AND/OR/NOT Logical operators used to
connect two or more conditions

Relational Operators Description
= Equals

!= or <> Does not equal
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to

Arithmetic Operators Description
+ Addition
- Subtraction
* Multiplication
/ Division

In addition to using the LIKE and MATCHES
keywords, you can use a wildcard for variable
text search strings.

Use with LIKE Description
% Evaluates to 0 or more

characters
_ _ Evaluates to a single character

\ Specifies a literal for the next
character

Use with MATCHES Description
* Evaluates to 0 or more

characters
? Evaluates to a single character
[] Specifies valid values for a single

character or a range of values
\ Specifies a literal for the next

character

You can instruct the system to sort the selected data in a specific order by using the
ORDER BY clause on the SELECT statement. By default, data that is retrieved is sorted in
ascending order. You can add the DESC keyword to your SELECT statement to sort the data
in descending order. The ORDER BY column must be in the select list. Columns that are
frequently used with the ORDER BY clause should be indexed for best performance of the
query.

With the SELECT statement, you can use a display label to replace the default header on
derived data columns. The display label must start with a letter and can be a combination
of letters and numbers up to 18 characters in length.

You can use additional functions with the SELECT statement. You use aggregate functions
to summarize groups of selected rows in a table:

COUNT Counts the number of rows that are a result of the SELECT
statement

SUM Sums the value of a given numeric column
AVG Arithmetic means of a given numeric column
MAX Maximum value of a given column
MIN Minimum value of a given column

You can use the COUNT, SUM, and AVG functions in combination with the DISTINCT clause
in the SELECT statement.

The next set of functions is the time functions:

DAY Integer that represents the day
MONTH Integer that represents the month

WEEKDAY Integer that represents the day of the week (values 0 through 6, where 0
represents Sunday)

YEAR Four-digit integer that represents the year
MDY Returns the date in mm/dd/yyyy format
DATE Returns a date value
EXTEND Adjusts the precision of the DATE or DATETIME value
CURRENT Returns a date/time value that represents the current date and time

In addition to the aggregate and time functions, you can also use the following functions:

LENGTH Returns the length of a character column
USER Returns the login account name of the current user
TODAY Returns the system data
SITENAME Returns the server name for the INFORMIX-OnLine system (defined in

the onconfig file where the current database resides)
HEX Returns the hexadecimal encoding of an expression
ROUND Returns the rounded value of an expression
TRUNC Returns the truncated value of an expression

As mentioned earlier in this chapter, additional functionality for the SELECT statement is
found in the GROUP BY and HAVING clauses. The GROUP BY clause produces a single row
for each group of rows that have the same value in a given column. The data is sorted
into groups and then compressed into a single row for end results.

A GROUP BY clause does not order the result data. If you include an ORDER BY statement
in the select after the GROUP BY clause, the rows are sorted in the specified order.

The HAVING clause provides a filter for the grouped-by results. This works in conjunction
with the GROUP BY clause to apply conditions on the groups after they are formed. You do
not need to use a HAVING clause with a GROUP BY clause, but in most cases they appear in
the query together. For more information on the GROUP BY and HAVING clauses, refer to
Chapter 31, "Advanced SQL."

Multiple Table SELECT Statements

You can select data from two or more tables by using the SELECT statement with the FROM
and WHERE clauses. The SELECT clause lists the columns from each table that you want,
the FROM clause lists the tables you are selecting from, and the WHERE clause lists the
matching columns in order to join the tables.

A simple join gets the information from two or more tables with a basis of one column
for each table. A composite join is a join between two or more tables with two or more
columns in each table used for the relationship. The following is an example of a simple
join to get customer information from two tables:

SELECT * FROM customer_table, address_table
 WHERE customer_table.cust_num = address_table.cust_num;

Inserting Data

The SQL INSERT statement allows a user to enter a row or rows of values into a table.
The INSERT statement has two functions: The first is creating one single new row by
supplying the column values and the second is creating a group of new rows with values
derived from another table.

Single Row Inserts

Adding a single row is the simplest form of the INSERT statement. The statement creates
one new row in a table from a list of defined column values. You use a VALUES clause in
the statement, and the values to be inserted must have a one-to-one equivalence with the
columns of the table.

The following code shows an example of the syntax:

INSERT INTO table1
 VALUES (123, "ABC")

If you do not want to specify every column of the table where you insert a row, you can
list the column names after the table name and then supply the values for the columns
you list.

The VALUES clause accepts only constant values. You can use the following values:

• Literal numbers, date and time values, and interval values

• Strings of characters (quoted)

• NULL for null values

• TODAY for today's date

• CURRENT for the current date and time

• USER for the user's name

• DBSERVERNAME for the database server name

When inserting a value into a column, you might find that restrictions were placed on the
column. For example, some columns might not allow null values or duplicate values.
Also, a column restriction can specify the exact values that are allowed to be inserted.

One column in a table can be defined as a SERIAL data type. The database server
generates values for a serial column. When you specify 0 as the value, the database server
generates the next value in the sequence. Serial columns do not allow you to insert NULL
values.

When performing inserts, the database server makes conversions if necessary. For
example, when you insert a number or date into a character column, the server converts
the values to character strings. The database server can also convert between numeric and
character data types.

Multiple Row Inserts

For the more enhanced INSERT statements, you can replace the VALUES clause with a
SELECT statement. This option allows you to insert multiple rows of data with only one
statement. Using the SELECT clause in the INSERT statement has the following
restrictions:

• You cannot use the INTO clause.

• You cannot use the INTO TEMP clause.

• You cannot use the ORDER BY clause.

• You cannot use the same table in the INTO clause of the INSERT statement
and the FROM clause of the SELECT statement.

When inserting multiple rows, you have a risk of including invalid data, so the database
server terminates the statement if it reaches an invalid value.

INSERT Statement Within a Program

You can embed an INSERT statement in a program just as if you were performing any
simple SQL statement. An additional feature allows you to use host variables in
expressions for both the VALUES and WHERE clauses.

INSERT Within a Cursor

You can use the insert cursor to place multiple rows into a table. You use the PUT and
FLUSH statements to efficiently insert the rows. You create the cursor by declaring a
CURSOR FOR and INSERT statement, not a SELECT statement. When you define this type of
cursor, you cannot use it for fetching data--only for inserting data.

When the insert cursor is opened, a buffer is created in memory to store a block of rows
that were received from the program. They are passed to the database server when the
buffer is full, and the server inserts the rows into the table. This type of processing
decreases the amount of communication between the program and the database server.
The insert buffer is already defined at 2KB.

The following steps show what happens when an insert buffer is flushed:

• Determine that the buffer is full.

• The FLUSH statement is executed.

• The COMMIT WORK statement is executed.

• The CLOSE statement is executed (closes the cursor).

• The OPEN statement is executed (closes the cursor and reopens the cursor).

Inserting and Transactions

When you insert a row into a database without using transactions, you cannot
automatically recover the data if the insert fails, and some of the processing may have
already completed.

If you insert a row into a database with transactions and the insert fails, the database
server automatically rolls back any modifications that were made. Also, if you include a
ROLLBACK WORK statement with the insert, the modifications are rolled back if they are
not successful.

When using transactions, the row being inserted remains locked until the work is
committed. If you perform a large number of inserts, you might reach the limit of locks
allowed. You can avoid reaching the limit by locking the entire page of the table prior to
inserting the new rows.

Inserting with a View

You can insert rows into a view as long as the view is modifiable and you have the
privilege to do so. An insert is allowed as long as there are no derived columns. When
inserting, you must provide values for all the columns or the database server fails the
attempted insert. When a view has no derived columns, the insert function works exactly
as it does on a table.

A view can have restrictions that affect the insertion of rows. For example, when creating
a view, you can use a WITH CHECK OPTION on the statement, which forces the database
server to check that all rows meet the criteria defined in the statement (set by the WHERE
clause).

Insert Using Stored Procedures

Rows of data that are a result of a procedure call into a table can be inserted into another
table. When using this procedure, you must make sure all values match the values or data
types of the columns in the table you indicate.

Updating Data

You use the SQL UPDATE statement to change the values of one or more rows of a table.
The two forms of the UPDATE statement are uniform value updates and select value
updates.

To update data in a table, you must be the owner of the table or have the UPDATE privilege
for that table. If you update rows in a database without transactions and the update fails,
your database can be in a state with a half-processed update, and it is not rolled back. If
your database has transactions, you do the update with the ROLLBACK WORK statement,
which automatically rolls back any modifications if the statement fails or does not
completely finish processing.

When an update is processed, the database server acquires an update lock for the rows
you are updating. Update locks allow other users to read the row but do not allow them to
update or delete it. Just before the row is updated, the server places the shared update
lock to an exclusive lock, which prevents all users from reading or modifying the row
until the lock is released.

Keep in mind that for updates done on rows with data integrity enforced, you must make
the changes within the constraints of the defined column.

The UPDATE statement can end in a WHERE clause, which determines what rows are
affected. If you do not include a WHERE clause, then all rows of the table are modified.
The WHERE clause consists of standard search criteria.

Uniform Value Updates

Updating with uniform values happens when you use the SET keyword to add a value for
a column. The value is uniformly added to every row unless you state a WHERE clause to
be more specific on your UPDATE statement:

UPDATE table1
 SET field1 = ABC

The SET clause identifies each column to be changed and specifies the value that is used
in making the change. You can have any amount of single-column-to-single-expression
functions in an UPDATE statement.

You can use the NULL keyword as a column value with the UPDATE statement.

Selected Value Updates

Updating with selected values happens when you take a list of columns and set them to a
list of values. This method is basically the same as the first form of updates, but it assigns
bulk values to existing columns:

UPDATE table1
 SET (field1, field2, field3) = (`ABC, `DEF', `GHI')

UPDATE Statement Within a Program

You can embed the UPDATE statement in a program just as you set up the statement for
any other data-modifying SQL update.

Updating Within a Cursor

An update cursor allows you to update the current row or the most recently fetched row.
The reason you use the keyword UPDATE in the cursor is to let the database server know
that the program can update any row that it fetches. When you use the UPDATE keyword
in the cursor, the database server puts a higher level of locking on the fetched rows, as
compared to fetching a row with a cursor without the UPDATE keyword.

Updating with a View

You can update data through a view (a single table view only) if you have update
privilege on that particular view. To do this, the SELECT statement can only select from
one table and it cannot use any of the following functions:

• The DISTINCT keyword
• The GROUP BY clause
• A virtual column
• An aggregate value

When updating a table through a view, make sure you are aware of the view's definition.
For example, a view might contain duplicate rows where the table used in the SELECT
statement to create the view has only unique rows. You can also use data integrity
constraints to control the updates in the underlying table when the update values are not
as defined in the SELECT statement for the view.

Deleting Data

The SQL DELETE statement removes one or more rows from a table. If you use
transaction processing, you cannot recover the deleted rows after the statement is
committed. Also, when you delete a row, the row is locked for the duration of the
transaction. If a large number of rows are deleted, keep in mind that all rows are locked.

You can lock the entire table prior to deleting if you know you are processing a lot of
rows.

Using transaction logging while preparing for the DELETE statement can be very
beneficial. If you reach any kind of error during your statement, you can have a
ROLLBACK WORK clause that lets the database server put the database back to its original
state prior to the DELETE process before the work is committed. The advantage of using
transaction processing is that, regardless of what happens during your process, the
database is left in the original state if the statement cannot be completely processed
correctly.

When you delete data from a table, you must know the structure and constraints of the
database. If you delete rows from a table that has a dependent table, you must make sure
the values from the dependent table are also deleted. This process can be controlled with
the ON DELETE CASCADE constraint. This option, which is stated on the CREATE TABLE or
ALTER TABLE statement, causes deletes from a parent table to be also processed on the
child table.

First, you start by reviewing the statement for deleting all rows from a table. When a
DELETE statement is created, you specify the table name and, in most cases, a WHERE
clause. If the WHERE clause is not on the statement, all rows are automatically deleted
from the table.

If you are using INFORMIX-SQL or Informix DBaccess when you use the DELETE
statement without a WHERE clause, you are asked to confirm that you do want to delete all
rows in the existing table. Please note that if you use the DELETE clause in a program, you
are not asked for confirmation, and the DELETE processes automatically. The following
example deletes all rows from the specified table, which is table1:

DELETE FROM table1

The general syntax for a DELETE statement is simple, but you must be careful that you
accurately delete the rows that you want. The DELETE keyword identifies the operation
you are to perform. The FROM clause is next followed by the table name. The WHERE
clause identifies the rows to be deleted. The search conditions are the same as those in the
SELECT and UPDATE statements; they can be used to identify many rows, and therefore an
accurate deletion process takes place. The following example now deletes only the rows
from table1 that have a balance of zero:

DELETE FROM table1
 WHERE balance = 0;

You can uniquely specify a value in your DELETE statement with the WHERE clause to
guarantee that only the data meeting the criteria is deleted. This delete is based on the
unique constraints on the column of the table. You can also perform a delete on non-
unique or non-indexed columns, which might delete many rows from the table.

When you plan to delete rows from a table and you are not sure what the results will be, it
is suggested that you first run the query using the SELECT statement prior to the DELETE
so that you at least have an approximation of the end results.

DELETE Statement Within a Program

A program deletes rows from a table by executing the DELETE statement. The statement
can refer to specific rows or single a row out by using the WHERE clause. You can delete a
single row by using the last fetched row through a cursor.

The same rules apply in a program when table dependency occurs and you delete rows.

You can embed the DELETE statement in a program using INFORMIX-ESQL/C. The
statement always works directly on the selected database. You can also execute a
statement dynamically, and it works directly against the database to delete the specified
rows.

Deleting Within a Cursor

You can use a DELETE statement through a cursor to delete the last fetched row. A
program can also scan through a table and delete specific rows. Note that without
transaction logging on the database, the recovery process is not a simple one.

To delete from a table, a user must have the delete privilege on the table. The user may
have connect database privileges, which allow a DELETE statement to run, but he also
needs the table-level privilege.

Deleting with a View

You can use a modifiable view with the DELETE statement as if it is a table. The database
server handles the process of deleting the associated row of the underlying table.

To modify the data of a database, specific privileges must be granted to specific tables.
For example, the insert, delete, and update privileges are granted by the table owner. This
allows you a way to control the modification of your data.

You can use the DELETE statement to remove one or more rows of a table. You can use
the UPDATE statement to modify the contents of existing rows. You can use the INSERT
statement to add a single row or a block of rows to a table.

If data integrity constraints are on the database, the rules are applied when modifying the
data.

Summary

This chapter discussed how SQL can be the language used to communicate with the
database manager. You can use SQL statements such as SELECT, INSERT, DELETE, and
UPDATE to manipulate the data within the database.

The INSERT statement allows a user to enter a row or rows of values into a table. There
are single row inserts and multiple row inserts. The UPDATE statement changes the values
of one or more rows of a table. The two forms of UPDATE are uniform value updates and
select value updates. The DELETE statement removes one or more rows from a table. The
SELECT statement used by itself allows access to any amount of information stored within
the database. Combining the SELECT with the INSERT, UPDATE, or DELETE statements
provides a means to perform more specific data manipulations.

With each of the SQL statements, you can use many additional keywords and operators
for more explicit processing. Your statement can also range from a simple insert to a
mass delete of data. It is always recommended that you run a SELECT prior to processing
an INSERT, UPDATE, or DELETE so that you can be aware of the impact of the changes
prior to actually running the SQL statement.

- 31-

Advanced SQL
• Advanced Queries

o GROUP BY Clause
o HAVING Clause

• Simple Joins
• Self-Joins
• Outer-Joins
• SELECT Statements Using Subqueries
• Set Operations
• Optimization

o Query Optimizer
o SET EXPLAIN
o SET OPTIMIZATION
o UPDATE STATISTICS
o Temporary Tables

• Summary

by John McNally

This chapter discusses the management and use of advanced Structured Query Language
(SQL). SQL is used to communicate with the database manager. SQL also has a large
effect on the performance of the database. The preceding chapter discussed basic SELECT
statements, and this chapter describes more complex queries and data manipulation.

Advanced SQL consists of complex database queries. This includes table joins and
extensive subqueries within a SELECT statement. As your SQL commands become
complex, the need to optimize them will arise.

This chapter discusses

• Advanced queries
• Optimizing queries

Advanced Queries

You can use additional syntax with the SELECT statement for advanced or more powerful
SQL. The first two functions are GROUP BY and HAVING, which are used with the SELECT
statement.

GROUP BY Clause

The GROUP BY clause produces a single row of results for each group of rows (or set)
having the same values in a given column. The data is sorted into groups, and then all the
rows of like values are grouped into a single row. You cannot group BYTE or TEXT
columns because you must be able to sort, and that is not a normal function for these data
attributes.

You can use the GROUP BY clause with aggregate functions to produce summarized
information. A good time to use GROUP BY is when a query is needed to get a total of all
the employees in each department of a company.

The GROUP BY clause does not automatically order by the end result data. You can
include an ORDER BY statement within your query to sort the data being returned.

The following examples show SELECT statements with the GROUP BY clause:

SELECT column1
 FROM table1
 GROUP BY column1;
SELECT column1, column2, max(column3), min(column4)
 FROM table1
 GROUP BY column1, column2;
SELECT column1, avg(column2)
 FROM table1

 WHERE column1 = `ABC'
 GROUP BY column1;
SELECT dept_name, COUNT (*)_
 FROM employee_table
 GROUP BY dept_name;

HAVING Clause

You can use the HAVING clause in addition to the GROUP BY clause to add conditions to
groups after they are formed. You do not have to use the HAVING clause with the GROUP
BY clause, but you do use them together in most cases. The HAVING clause provides a
filter for the GROUP BY results. However, HAVING does not sort the output; ORDER BY does
that for you.

The HAVING condition must reflect a group-level value, something that is common to all
rows in the group. In most cases, it is necessary to specify a column function in the
HAVING clause. It is also possible to specify the name of a grouping column with a
condition that all rows must meet.

For example, using the same query used in the GROUP BY section, you might want to
produce a list of all the departments that are understaffed. To produce this list, add a
HAVING clause to check for departments that have fewer than five employees.

The following examples show SELECT statements with the HAVING clause:

SELECT column1, column2
 FROM table1
 GROUP BY column1, column2
 HAVING column2 > 0;
SELECT column1, avg(column2)
 FROM table1
 GROUP BY column1
 HAVING avg(column2) <
 (SELECT avg(column2)
 FROM table1);
SELECT dept_name, COUNT (*)_
 FROM employee_table
 GROUP BY dept_name
 HAVING COUNT (*) < 5;

Note that if you have a HAVING clause without a GROUP BY clause, the HAVING condition
applies to all rows that satisfy the search condition. This means that all rows that are
satisfied by the search conditions are returned in one single group.

Simple Joins

Sometimes you want data from more than one table. To retrieve the data from two or
more tables, you must enter additional information in your SELECT statement. The
following list outlines the step-by-step process for creating your statement:

1. In the SELECT statement, list all the columns you want from each of the
tables.

2. In the FROM clause, list all the tables you are selecting from.

3. In the WHERE clause, list all the columns to be matched from each table in
order to join the tables.

The following sample code shows a simple join:

SELECT *
 FROM table1, table2
 WHERE table1.column1 = table2.column2;
SELECT enrolledstudents.ssn, studentname, major,
gradepoints.currentaverage
 FROM enrolledstudents, gradepoints
 WHERE enrolledstudents.ssn = gradepoints.ssn;

When joining large tables, the best performance can be achieved when the user really
understands the meaning of the data, the relationship between the tables, and whether the
columns used in the join are indexed. If the columns used in the join are indexed, the
query is more efficient.

The two types of simple joins are equi-joins and natural joins. An equi-join is a join
based on matching values of the WHERE clause in the SELECT statement, which uses the =
operator. A natural join is the same as the equi-join with the duplicate columns
eliminated. The previous example, using the enrolledstudents and gradepoints tables, is
an example of a natural join because ssn is displayed only once. The following example
is the same query without any columns specified, but all columns from each table will be
shown due to the *. This query displays ssn twice--once from enrolledstudents and the
other from gradepoints, even though the ssn value is the same.

SELECT *
 FROM enrolledstudents, gradepoints
 WHERE enrolledstudents.ssn = gradepoints.ssn;

Joins using three or more tables with columns associated between them are considered
multiple table joins. You can perform multiple table joins as long as there is a connection
between the tables on one or more columns. If there is no connection but multiple tables
are used, you have just a basic query, such as SELECT * FROM table1, table2,
table2. A multiple table join can be an equi-join or a natural join.

The following code shows an example of a multiple table join using the same student
table example. Now the query is extended to include a description of each student's
major.

SELECT enrolledstudents.ssn, studentname, major,
majortable.desc,gradepoints.currentaverage
 FROM enrolledstudents, gradepoints, majortable
 WHERE enrolledstudents.ssn = gradepoints.ssn
 AND enrolledstudents.major = majortable.major;

Self-Joins

A self-join occurs when you join a table to itself. You can use a self-join if you want to
compare values in a column to other values of the same column. When doing a self-join,
you list the same table twice in the FROM clause assigning it an alias. The alias is then
used in the SELECT and WHERE clause. You can join a table to itself more than once,
depending on the resources available. The self-join is a very powerful join, but in large
tables it sometimes performs slowly, depending on your index strategy. Complicated self-
joins might perform better if you use a temporary table to store half the query, and then
use the original and the temporary table to perform the main part of the query.

The following sample shows a self-join. Assume that the current average of each student
is within the enrolledstudents table and not in a separate table as shown in the previous
example. This example pairs higher-average students with lower-average students within
the same major:

SELECT x.studentname, x.major, x.currentaverage.
 y.studentname, y.major, y.currentaverage
 FROM enrolledstudents x, enrolledstudents y
 WHERE x.major = y.major
 AND x.currentaverage > y.currentaverage
 ORDER BY x. major, x.currentaverage;

Outer-Joins

An outer-join is different from a simple join. In a simple join, the tables are treated
equally; in an outer-join, the joining tables establish a subordinate role to a distinct table
or set of tables. Unlike the simple join, where only matching data is displayed as output,
outer-joins use one table to drive the query against other tables. Think of a simple join as
saying, "show me what these tables (or table) have in common." An outer-join can be
thought of as saying, "out of these tables, show me everything about a specific table and
any related information from these other tables (or table)."

To specify the servant tables, use the OUTER keyword as part of the FROM statement, like
this:

FROM dominant-table OUTER servant-table

All of the other keywords and statements of the SELECT statement are the same as for any
other SELECT statement.

There are four types of outer-joins. The first type of outer-join involves two tables, with
the first table being the dominant table and the second being the servant. The query goes
through every row of the dominant table and displays its information. Any match with the
servant table is also displayed. For example, using the same student query, you might
want to display a report on every student enrolled and their major's full description. But
some students might not have chosen a major yet. In this example, the enrolledstudents
table will be the dominant table and the majortable will be the subservient table. The
results of this query will provide all students in the enrolledstudents table and any
students with majors will have a description included.

SELECT enrolledstudents.ssn, studentname, major, majortable.desc
 FROM enrolledstudents, OUTER majortable
 WHERE enrolledstudents.major = majortable.major;

Also known as a nested simple join, the second type of outer-join uses a third table, with
the second and third tables being joined and being the servants of the first table. The
dominant table is still completely used, but now only matches from the joined servers are
applied.

For example, reverse the previous example in which student information, average, and
major are displayed. Make the average table the dominant table so that all students and
their averages will be used. Make enrolledstudents the servants, and make majortable the
servers. Assume that you want to display student information only if the student has a
major; therefore, the join will be on the major field between the two tables.

SELECT x.ssn x.currentaverage, y.studentname, y.major, z.majordesc
 FROM gradepoints x OUTER (enrolledstudents y, majortable z)
 WHERE x.ssn = y.ssn
 AND y.major = z.major
 ORDER BY x.ssn;

The third type of outer-join, known as a nested outer-join, performs an outer-join on an
outer-join. In this case, a dominant and server comparison is performed, and then the
results of the comparison become the servant to another table. This way, using the last
example, you can make the enrolledstudents table the dominant table to the major table.
Therefore, all enrolledstudents with or without majors will be used as the servants of
gradepoints.

SELECT x.ssn x.currentaverage, y.studentname, y.major, z.majordesc
 FROM gradepoints x OUTER (enrolledstudents y, OUTER majortable
z)
 WHERE x.ssn = y.ssn
 AND y.major = z.major
 ORDER BY x.ssn;

The final type of outer-join uses a dominant table that is over two separate servant tables.
In this case, you don't have to join the two tables and use that combination as a servant.
For example, make the enrolledstudents table the dominant table, with gradepoints and

majortable as servants. The results will list all enrolledstudents, and any student with a
gradepoint average or major will have that information included in the results.

SELECT x.ssn x.currentaverage, y.studentname, y.major, z.majordesc
 FROM enrolledstudents x, OUTER gradepoints y, OUTER
majorytable z
 WHERE x.ssn = y.ssn
 AND x.major = z.major
 ORDER BY x.ssn;

SELECT Statements Using Subqueries

A subquery is a SELECT statement that is embedded within another SELECT statement (or
INSERT, DELETE, or UPDATE statement). Each subquery must include a SELECT and FROM
clause, which is inside parentheses and notifies the database server that this SELECT is to
be completed first.

The two types of subqueries are correlated and uncorrelated. A subquery is correlated
when the end product of the SELECT depends on the value produced by the outer SELECT
statement. This type of query must be executed for each value of the outer select. The
uncorrelated subquery is executed only once.

Many keywords introduce a subquery in the WHERE clause of a SELECT statement:

• ALL
• ANY
• IN
• EXISTS

The ALL keyword determines whether a comparison is true for all the values returned in
the subquery.

The ANY keyword determines whether a comparison is true for at least one of the values
returned in the subquery.

The IN keyword is a true value when it matches one or more values in the subquery.

The EXISTS keyword is a qualifier that is used when the outer SELECT in a subquery finds
an appropriate row.

The following code shows some examples using subqueries:

SELECT column1, column2, column3
 FROM table1
 WHERE column2 < ALL
 (SELECT column2 FROM table1
 WHERE column1 = 123);
SELECT column1, column2, column3
 FROM table1

 WHERE column2 IN
 (SELECT columna from table2
 WHERE columna IN (1, 2, 3));
SELECT majordesc
 FROM majortable
 WHERE major = ANY
 (SELECT major FROM enrolledstudents
 WHERE average > 3.5);

Set Operations

You can use three set operations to manipulate data: union, intersection, and difference.

The UNION keyword combines two queries into one combined query. You use the UNION
keyword between two SELECT statements. The function selects all the result rows from
both queries, removes all the duplicates, and returns the completed results. In order for a
UNION to be successful, each data item in the union must be of the same data type and,
when appropriate, the same size. For example, a union can't be made between a character
string of 10 and a character string of 30. This applies only to data type definition; the data
can be smaller, as long as it is defined as 10 characters, even though only 5 characters are
actually stored in that field.

You can use the UNION ALL keyword to make sure that all duplicate values remain in the
end results.

The following code shows the syntax:

SELECT column1
 FROM table1
UNION
SELECT column1
 FROM table2;

Continuing with the student theme, suppose that a college keeps tables of student
averages by semester, and a report is needed to see which students hold a B or higher
average for both the spring and fall semesters. Here's an example:

 SELECT ssn
 FROM gradepoints
 WHERE semester = "F97"
 AND average > 3.5
UNION
SELECT ssn
 FROM gradepoints
 WHERE semester = "S98"
 AND average > 3.5;

When two sets of rows from two tables produce an additional table containing only the
rows that were found in both tables, this is considered an intersection. Two different SQL

keywords can be used to produce an intersection--EXISTS and IN. Both keywords
produce the same results.

SELECT column1, column2,
 FROM table1
 WHERE EXISTS
 (SELECT *
 FROM table2
 WHERE table1.column1 = table2.column1);

When two sets of rows from two tables produce a table containing the rows that are in the
first set but not in the second set, that table is said to contain the difference. Difference is
considered to be the opposite of intersection. You can use the NOT EXISTS or NOT IN
keywords to produce the difference of two sets. The syntax is as follows:

SELECT column1, column2, column3
 FROM table1
 WHERE column2 NOT IN
 (SELECT column2 from table2);

You can use advanced queries to retrieve data from a relational database. You can use
additional clauses with the SELECT statement along with extensions of the simple join
process.

Optimization

The most important part of querying data is writing the SQL queries for optimum
performance. The key is to access your data in the most efficient way. Two ways to
optimize your queries are to read fewer rows and avoid sorts.

Query Optimizer

The optimizer is part of the database server that decides how a query should be
processed. It makes the decision about the most efficient way to access a table.

The following short list outlines functions used for querying your data that should be
considered carefully for optimization:

Table
joins

Two or more tables connected by one or more common
columns

Subquerie
s

SELECT statement used within a WHERE clause

ORDER BY Orders selected data
GROUP BY Groups the selected table data into sets
UNION Combines two queries into a single combined query

DISTINCT Eliminates duplicate rows from the results of the query

SQL statements are divided into many categories. The query optimization information
statements I discuss include the following:

• SET EXPLAIN
• SET OPTIMIZATION
• UPDATE STATISTICS

SET EXPLAIN

The SET EXPLAIN statement occurs when a query is initialized or when a cursor is
opened. To use the explain function, you issue a SET EXPLAIN ON statement. This puts
all the procedures and queries with their paths chosen by the optimizer into a file in the
directory named sqexplain.out.

The output file contains the query, the execution plan chosen by the database optimizer,
and an estimate of the amount of work that is done to process the query. The following
list shows the output from the SET EXPLAIN statement:

• Estimated number of rows returned

• Estimated cost

• Order in which the tables are accessed

• Type of access method the optimizer chooses for each table

• List of columns used for filtering

When the optimizer reads each table, it chooses a method. The following list outlines a
possible access path:

Sequential
scan

Sequentially reads rows

Index scan Scans indexes
Autoindex
path

Creates a temporary index at execution
time

Merge join Uses a sort merge join; includes filters
Sort scan Sort is processed on table scan prior to

join

The following code shows the syntax for the SET EXPLAIN statement:

Set EXPLAIN ON;
 SELECT field1, field2, field5 from table1;

 SELECT field1, field2, field3 form table1;
 Estimated Cost: 3
 Estimated # of Rows Returned: 50
 1) owner1.table1: SEQUENTIAL SCAN

SET OPTIMIZATION

The SET OPTIMIZATION statement specifies a high-level or low-level optimization of the
database server. The statement can be executed at any time but applies only to the current
database. The default is SET OPTIMIZATION HIGH when not specified.

Running either optimization level slows down your Informix server's performance. The
optimization process in the Informix server looks at every SQL statement as it is being
processed. A low setting of the optimizer saves processing overhead because it looks at
only the shortest processing scenarios for the SQL statement being optimized, especially
when dealing with joins. But using the low setting does not guarantee that the best
solution will be found. The high setting causes the most overhead and runs the longest
time when processing each SQL statement, but it will find the best possible solution.

The following code shows the syntax for the SET OPTIMIZATION statement:

SET OPTIMIZATION LOW;

UPDATE STATISTICS

The UPDATE STATISTICS statement updates the data in the system catalog tables that are
used for optimization strategies. The optimizer uses the system data to determine the
most efficient way to retrieve the requested data. The database server does not
automatically update this data, so UPDATE STATISTICS is a necessary function.

The UPDATE STATISTICS process can run for an entire database, a single table, or a
procedure. If you do not include a table or procedure name in your statement, the
procedure is done for the entire database by default.

You should update the statistics when an extensive amount of modifications are done on
the table or tables that are used in database procedures. You always want the optimizer to
have the most recent statistics on your database tables.

The following code shows the syntax for the UPDATE STATISTICS statement:

UPDATE STATISTICS;
 UPDATE STATISTICS FOR table1;
 UPDATE STATISTICS FOR PROCEDURE procedure1;

When querying your database, it is important that you know the definitions of all the
tables, views, and indexes. The data model can be helpful at this point. When the queries
are created, it is important to know the indexes built on the tables and the types of data
that are stored in each of the tables. Knowing this type of information can make the query
optimization more efficient.

After testing a query with the SET EXPLAIN statement, you can choose to look again at
the query and decide whether there is a simpler way to process the query. The following
list outlines possible solutions when looking at your query plan:

• Simplify sorts by using indexed columns.

• Avoid sequential access on large tables.

• Use composite indexes.

• Avoid correlated subqueries.

• Maintain indexes. (Run tbcheck and drop and re-create indexes after
extensive updating.)

• Avoid regular expressions (LIKE).

In most cases, the optimizer does not use an index when determining the best solution.
Because of this, having the optimizer on when running takes more time for SQL
processing to complete. Remember to turn off optimizing when it is not needed.

Temporary Tables

Using temporary tables can sometimes speed up queries. They can simplify work that the
optimizer has to do. The temporary tables are read sequentially, but the amount of data in
the table is less than in the primary tables. In addition, no sorts are necessary because
when the temporary table is created, the data is in the desired order.

The main things to keep in mind when querying your tables is to find out the fastest, most
efficient way to access the tables. Make sure that the database server avoids the
following:

• Avoid reading more pages from disk.

• Avoid reading sequentially.

• Avoid sorts, or if not possible, sort on fewer rows.

Summary

This chapter discussed how you can query and manipulate data in a database using more
advanced and complex queries. Advanced queries use additional syntax with the SELECT
statement. Two examples used the GROUP BY and HAVING clauses. The SQL language also
allows you to use the join functions, which select data from multiple tables within one
query. I reviewed simple joins, self-joins, and outer-joins.

In addition, I reviewed how you use subqueries. A subquery is a SELECT statement
embedded within another SELECT, DELETE, INSERT, or UPDATE statement. I also defined
keywords that introduce a subquery in the WHERE clause of a SELECT statement.

Finally, I discussed how the optimizer works when executing your query. The optimizer
can only be successful if the necessary information is supplied. The optimizer estimates
the most efficient way to access the tables of the current query.

- 32 -

SQL Tools
• Using DBaccess and ISQL
• DBaccess

o When Is DBaccess the Right Tool Set?
o Query Language
o Connection
o Database
o Table
o Session

• ISQL
o When Is ISQL the Right Tool Set?
o Form
o Report
o User-menu

• Summary

by Jan Richardson

This chapter reviews the DBaccess and ISQL utilities provided by Informix Software. In
this chapter, I discuss how to use these utilities in the day-to-day work environment. The

chapter addresses how to use each utility, what options are available with the utility, and
when the utility is the right tool for the job.

Because all Informix installations have access to the stores database, all the examples in
this chapter utilize this database. Wherever possible, the examples noted are alterations to
program examples provided with the Informix system. This way, you can easily enter the
code for testing on your own system.

Using DBaccess and ISQL

DBaccess and ISQL use the standard Informix menu types and keystrokes. To enter the
DBaccess tool, type dbaccess on the command line. If you know the database name you
want to access, you can specify it on the command line by typing dbaccess
databasename. To enter the ISQL tool, type isql on the command line. You can also
specify a database name when entering ISQL in the same manner as you do with
DBaccess. The rest of the examples in this section use DBaccess; note that movement in
ISQL uses the same keystrokes. Figure 32.1 shows the DBaccess main menu. The menu
options are listed across the top of the screen.

Figure 32.1.

The main DBaccess menu.

To select between options in DBaccess, you can press the spacebar or the right and left
arrow keys to move sequentially through the options. Figure 32.2 shows the effect of
pressing the spacebar once. After you select the correct option, press the Enter key. You
also can type the capital letter for the option you want; the main menu for that option is
then displayed. For example, pressing the T key displays the Table menu. This basic
method of menu movement is used in both DBaccess and ISQL.

Figure 32.2.

Moving between options on the DBaccess main menu.

When you enter DBaccess, your first task is to select a primary database. After you select
a database, you can access other databases by fully qualifying their database names and
table names. To fully qualify a database or table name, type
database@servername.tablename. You don't need to fully qualify table names in the
primary database. You can select a primary database on the command line when entering
DBaccess. If you do not, you can select the Database option and then select a database. If
you select an option that requires a database and none has been selected, you have to
select a database before proceeding any further.

When you're offered a list of files, tables, or databases to select from, you can move
through the list by using the arrow keys. All four arrow keys operate. If more than one

screen of options is available, use the arrow keys. A sample selection screen is shown in
Figure 32.3.

If you select an option you do not want, and no Exit option is displayed, you can back out
of the option by pressing Ctrl+C. You then return to the previously displayed menu. You
also can access the online help during a DBaccess or ISQL session by pressing Ctrl+W.

Figure 32.3.

A sample option selection screen in DBaccess.

DBaccess

DBaccess is a tool designed to enable you to access and manipulate the structure of the
database as well as the data within the database. It provides menu-driven access to basic
database functionality. DBaccess supports a query option to allow you to issue SQL
commands against the data in the database tables. It also supports altering tables through
a menu-driven environment. DBaccess supports most actions that can be performed
against a database table, including create, drop, alter, and fragment. DBaccess can
also be used to gather information about a table including the current table size, active
constraints, current triggers, indexes, and existing security privileges.

The specific functions supported depend on the release of the engine you're operating.
The options also vary depending on the type of engine running. The INFORMIX-SE
engine and the OnLine engine have different capabilities and, therefore, different options
within the DBaccess tool.

The environment variables set for your engine are active within DBaccess. You don't
need to set special variables for use with the tools; however, you might want to alter your
environment when using DBaccess. If you alter your environment variables for use with
DBaccess, remember that you might need to reset them to their original state when you
exit the tool.

For more information on DBaccess and its specific capabilities with your engine, consult
the Informix DBaccess User Manual for your database engine.

When Is DBaccess the Right Tool Set?

DBaccess is the right tool set for many database administrator (DBA) activities, including
database maintenance and table maintenance. By using the menu options, you can easily
perform these tasks. DBaccess automatically formats complicated SQL statements such
as alter table. It displays most statistics for a database table without requiring the
DBA to remember the correct options for the tbstat/onstat command. In general, the
purpose of the DBaccess tool is to make the syntax of table and database maintenance
less complicated.

DBaccess also allows you to create tables and databases rapidly. It provides a screen
interface so that you can enter the information for a new table. You no longer end up
frustrated while looking for a misplaced comma. The DBaccess process is performed step
by step, allowing the table to be created by selecting various options from a list. The main
errors that occur while you're creating a table using DBaccess are spelling mistakes in the
column names--and even they can be corrected rapidly if you use the same screen
interface.

You also can use DBaccess to test SQL statements rapidly. These statements can be tests
for an application or SQL statement to review data on the database. The results of the
query can be quickly obtained and reviewed. Often, using set explain from within a
program is difficult. Using DBaccess, you can set up set explain quickly to test the
query plan for a statement in a single execution manner.

DBaccess is not the appropriate tool if your goal is to create a report output from a query
or a data entry screen. It does not have formatting or screen-painting capabilities.

Query Language

The first option on the DBaccess main menu is Query language, as you saw in Figure
32.1. The main Query language menu is shown in Figure 32.4.

You can find this same Query language tool in the ISQL tools. The following options are
on this menu:

• New allows you to enter a new query by using a rudimentary text editor.

• Run submits the query currently visible on the screen to the engine for
execution.

• Modify allows you to modify the query currently visible on the screen by
using a rudimentary text editor.

• Use-editor allows you to specify a text editor to be used in creating and
editing SQL statements.

• Output allows you to send the results of the query to an output device, a
file, or another program.

• Save allows you to save the query currently visible on the screen to an
operating system file.

• Info allows you to select a table and display information about that table.

• Drop allows you to delete an operating system file storing a query
previously saved using the Save option.

• Exit returns you to the main DBaccess menu.

Figure 32.4.

The main Query language menu in DBaccess.

Practical uses for the Query language option abound. It is probably the most frequently
used option of either DBaccess or ISQL. The following sections cover some practical
examples of using the Query language menu option.

Example 1

An applications programmer needs to test an SQL query and determine whether it returns
the expected results without running an entire program. She types the query into the
Query language screen. The query is executed, and the results are reviewed on the screen.
The programmer can modify the query as many times as necessary, until the results are
accurate. The query can be saved in an operating system file. The programmer can later
access this file while she's editing the program and copy it directly into the source code.

Example 2

A user doesn't think a report is correct. The programmer can quickly enter SQL
commands into the Query language screen and check the data to determine whether the
report is accurate. If it is not, the programmer can save the queries used in operating
system files and compare them to the logic in the program to determine what caused the
discrepancy. The output of the Query language queries can be saved to an operating
system file using the Output option for comparison to the printed report.

Example 3

A DBA needs to update statistics on a database or table. He can type the SQL command
into the Query language screen and execute it. The DBA knows when the command is
completed because the screen is locked until the process is complete.

Example 4

A DBA needs to administer database security options. She types the appropriate grant
commands into the Query language screen, and she can run the commands against the
database.

Example 5

The results of a simple SQL query are sufficient to meet the request of a user for a report.
The application programmer can run the SQL query statement and output the results to a
file. This file can serve as the report.

Example 6

While the programmer is testing an SQL query against the database, an SQL error is
encountered, indicating an incorrect column name. The programmer can quickly jump to
the Info option and get the correct name for the column. Upon his return to the Query
language screen, the query in question is still on the screen, so he can modify it for the
correct column name. The query then can be reexecuted.

The preceding are just a few examples of using the Query language option of DBaccess
to assist the programmers or DBAs with their jobs. If you take the query capabilities even
further, you can write small programs and run them entirely from the Query language
screen. Listing 32.1 shows a small insert and correction program created and run in
Query language.

Listing 32.1. A sample database correction program using Query
language.
insert into customer
 values (0, "Jan", "Richdson", "Merry World", "1470 S. Bank",
 null, "Mississippi", "MO", "99876", "800-555-1234");
select *
 from customer
 where
 state = "MO";
update customer
 set lname = "Richardson"
 where
 lname = "Richdson";
select *
 from customer
 where
 state = "MO";

Query language executes each of the SQL statements in turn.

CAUTION: Query language displays a message after each SQL statement,
identifying the results of the SQL statement. For example, a message might read
1 row inserted. In the case of multiple SQL statements, such as Listing 32.1,
because the SQL statements execute immediately following each other, the final
return statement is the only one visible upon completion. In this example, you see
no update or insert messages; the only message visible is 1 row selected.

WARNING: The usefulness of this tool in analyzing and correcting database data
issues cannot be overstated. When you're using this tool, however, be aware that
you're bypassing safeguards built into an application, such as audit control, data
integrity, and data edits. Unless these items are constraints or triggers defined to
the database, data corruption can result from using the Query language tool. Any
changes you make using this tool, therefore, must be carefully thought-out and
executed.

Connection

The connection option of the main DBaccess menu is useful in connecting to alternative
database engines or servers. When you choose Connect, a list of valid connections or
servers is displayed. Simply select the connection you want. You are allowed to enter a
user ID and password for verification purposes. After successful validation of user ID and
password, you are connected. You can then access the databases valid to that connection
as if they were on the same machine and database server as when you initially entered
DBaccess.

This capability allows DBAs to do remote database administration. It also enables you to
run an SQL statement on multiple machines without requiring a direct login to the new
machine or database engine. This capability saves time. If your company has only a
single server, but both test and production database instances, you can use this connection
to access both environments without separate logins.

NOTE: This powerful option can also cause difficulties. You must be constantly
vigilant about what database and server you are connected to. DBaccess assists in
this task by displaying the connected database at all times, as shown in Figure
32.5.

Figure 32.5.

Identifying the active database and Informix instance.

Database

The Database option of DBaccess is primarily used by DBAs. Here are the primary uses
of this command:

• It prevents DBAs from needing to remember the details of the create
database command.

• It displays rudimentary statistics about a database.

• It allows DBAs to view stored procedures.

Creating a database by using DBaccess has two advantages. You don't need to remember
the exact syntax of the create database statement, and the system prompts you for the
dbspace. It is all too common to create a database and forget to specify a dbspace. As a
result, the database goes in the root database space. This location for a database is not
advisable. The Create option of Database always prompts for the dbspace.

The ability to view stored procedures is valuable. You can analyze the stored procedure
without having to remember the exact SQL syntax to retrieve the procedure from the
database. If a copy of the procedure is required, you can use cut and paste or command-
line options of DBaccess to place the stored procedure code in an operating system file.

Table

Undoubtedly, the second most important option of DBaccess is the Table option. Both
DBAs and programmers will find constant use for this option. Whether it is to look up a
table and column name or perform complex database maintenance, this option has
capabilities to perform the needed work. The various options of the Table selection under
Informix 7 include the following options, which have a hierarchy indicated by the letters
and numbers preceding the elements:

A. Create

 1. Add

 2. Modify

 3. Drop

 4. Table Options

 a. Storage

 c. Extent Size

 d. Next Size

 e. Lock Mode

 5. Constraints

 a. Primary

 b. Foreign

 c. Check

 d. Unique

 e. Defaults

B. Alter

 1. Add

 2. Modify

 3. Drop

 4. Table Options

 a. Storage

 b. Extent Size

 c. Next Size

 d. Lock Mode

 e. Rowids

 5. Constraints

 a. Primary

 b. Foreign

 c. Check

 d. Unique

 e. Defaults

C. Info

 1. Column

 2. Indexes

 3. Privileges

 4. Reference

 5. Status

 6. Constraints

 a. Reference

 b. Primary

 c. Check

 d. Unique

 e. Defaults

 7. Triggers

 8. Table

 9. Fragments

D. Drop

This list covers almost everything usually needed for a table. With the expanded
capabilities of DSA in the Informix arena, table maintenance has become a task requiring
a higher level of skill. Writing the syntax of an SQL statement to create a table can be as
complicated as writing an entire program. By using DBaccess, you can create and alter
tables without the daunting task of writing a syntactically correct SQL statement.

The Info option of DBaccess is read-only, and creating a new table using DBaccess
usually doesn't affect others on the system. Most of the potential complications of
DBaccess occur with the Alter table option. If you use DBaccess to modify a table, you
are prompted to build a new table or discard changes before you exit the Alter table
section. If you choose to build a new table, the system immediately tries to modify the
table in question based on the changes you made during the Alter table work session.
Selecting the build a new table option can pose several difficulties.

If you're modifying a table definition, the system actually executes an Alter table
command for the table selected. This command immediately modifies the table in the
database. If programs are run against this data, the programs could be affected by the
table change. Potentially, SQL errors can appear or erroneous results can occur if the
table change is not coordinated correctly with program modification.

If the table being modified is allocated to a production system, and users currently have
locks in the table, the modification might not succeed. Most modifications require a lock
on the table being modified. If the modification does not succeed, an error message
appears, and you are taken back to the Alter table session. You can then coordinate with
the individuals who have the table locks to attempt to get control of the table, or you can
cancel out of the Alter table session by choosing Exit and then Discard changes.

If a large amount of data appears in the table, and transaction logging is active, choosing
to build a new table can fail for many reasons. You can have insufficient work space to
create the new table schema and copy the data into the new table, or violations of triggers
or constraints can also occur within the database. The most serious problem is the long
transaction. If you have a great deal of data, enough to fill the allocated logical logs for
the system, the alteration will fail. If this happens, the only way to alter the table is to
stop transaction processing prior to altering the table. I strongly recommend that you do
not perform this procedure on a live database in production while users are continuing
normal operations. Turning off the transaction processing stops all logging during that
period, and the system might be unable to recover completely in the event of a database
or system problem.

As with any system change, all changes to tables should be thoroughly considered and
analyzed for their impact on both the database and the applications that access the
database. For example, adding a new column to or dropping an existing column from a
table might seem harmless; however, if an application program utilizes select * from
tablename, the select statement will probably fail because of a column and variable
mismatch. This failure will happen if the receiving variables or array are not set up to
match the new table definition.

Modifying an existing table column can also have unforeseen results. For example,
changing the length of a column can generate system issues. If the column is shortened,
DBaccess issues a warning message that data may be truncated. Lost data cannot be
recovered unless it has been backed up. Lengthening a field can cause truncation at
runtime in applications. If you lengthen a field to 25, and a screen or report displays only
20 characters, bad conclusions or decisions can be the result.

Therefore, although DBaccess makes the job of creating and altering tables significantly
easier than directly typing standard SQL statements, you must use DBaccess with the
same caution and care required of all system utilities. The danger is that because the
changes are more easily accomplished, they might be less thoroughly thought-out. You
must take care to ensure that these problems do not happen.

Session

The Session command displays information about the Informix session you're currently
connected to. Sample output is shown in Figure 32.6. This information can be valuable if
you're supporting a multihost or server environment in which different system
environments are supported by the different hosts or servers. This information helps you
keep straight what the settings are in the current environment.

Figure 32.6.

The results of an Informix 7 DBaccess Session command.

ISQL

INFORMIX-SQL, commonly known as ISQL, is a set of tools provided by Informix
Software to support developers. ISQL has a long history with Informix. These tools were
provided with Informix software products before the corporation was named Informix.
Prior to the advent of INFORMIX-4GL, they were the only fourth-generation tools
available through Informix.

In today's technological environment, these tools might seem crude and rudimentary.
They are. However, they still perform useful functions. When Report, SQL, Form, or the
User Menu will do the job, they are quick to use and efficient to run. The main ISQL
menu is shown in Figure 32.7.

Figure 32.7.

The main ISQL menu.

When Is ISQL the Right Tool Set?

ISQL is a set of tools, and each tool has its unique purpose. In general, ISQL is the right
set of tools when you need a quick prototype or a simple application.

The Report option invokes the ACE report generator. ACE is excellent for generating
quick reports. It supports SQL select statements, including the creation of temporary
tables. Some very complex SQL select logic is supported with ACE. It also contains good
report formatting capabilities with built-in control break logic for totals and subtotals. It
does have some limited logic capabilities, including temporary variables. I discuss these
elements in more detail later in this chapter.

The Form option creates Perform screens. Perform is a screen-generation utility. The
entry screens created by Perform can facilitate data validation, enable intelligent cursor
movement, and process multiple table relationships. Perform screens are, however,
limited in their capabilities to accomplish these tasks. They are excellent for quick data
maintenance screens for data entry tables such as state abbreviations. They are also
effective if the application requires no major logic supporting the data entry process. If
extensive logic is necessary, Perform has limitations. These limitations are discussed in
more detail later in this chapter.

The User-menu option creates quick, hierarchically based menu structures. They are
reasonably flexible and often sufficient for the menuing needs of a system. However, the
presentation of the menus is not customizable. Therefore, menus can present visual issues
to the look and feel of an application. For example, if the screen standard has the date and
time always displayed on line 23 in column 1, this standard can't be adhered to using
menus created with this utility.

ISQL is the right tool when you want to execute an SQL query from the operating
system. To execute a query from the command line, type

isql databasename -qc c_querycommandfile

When you specify your query command file, you must name it file.sql. Do not type
the .sql extension on the line; it is added by the system.

Form

The Form option displays a subordinate menu where Perform screens can be created and
edited. The Perform utility generates data entry screens. They are most effectively
utilized when the screen uses only fields from one table or where a definite master-detail
relationship exists between the multiple tables in a screen.

You can generate a simple Perform screen by choosing Generate from the menu and
selecting a table from the subsequent screen. Form will automatically create a default
data entry screen. In the stores database is a table named call_type. Listing 32.2
shows a generic generated form for the call_type table.

Listing 32.2. A generic form for the call_type table.
database stores7@test_tcp
screen size 24 by 80
{
call_code [a]
code_descr [f000]
}
end
tables
call_type
attributes
a = call_type.call_code;
f000 = call_type.code_descr;
end

The first line of Listing 32.2 specifies the database and server instance. Any table
included in this screen is assumed to be included in this database unless explicitly stated
otherwise. The second line specifies the screen size. This information is important
because the compile of the screen code will use this information to determine how to
process error message and multipage screens.

The opening brace ({) begins the screen description; it is ended by the closing brace (}).
Everything between these two symbols describes how the screen will appear to the user.
Everything will appear exactly as typed, except the items included in brackets ([]). These
items represent entry fields. The word in the [] points to the attributes section of the
code and is the field name for the database or screen field that will be displayed in this
position. The user will see the brackets, but not the field name inside the brackets. In this
example, the flow of the cursor on the screen is guided by the sequence of the fields. This

flow can be modified by using special keywords. The end marks the end of the screen
definition. If this were a multipage screen, the screens would be separated by

}

screen

{

where the closing brace (}) ends the first screen and the opening brace ({) begins the next
screen.

The tables section of the perform definition identifies all tables used in the screen. If the
author is not the owner, you should specify owner.tablename. You can alias your tables
in this section by using the syntax alias = owner.tablename. This syntax is extremely
useful in cutting the number of keystrokes required to complete the attributes section.
For example, if the owner and tablename are informix.cust_upd_yr, and they are
aliased as cuy, you need to type only cuy.columnname when accessing a column in the
cust_upd_yr table rather than type informix.cut_upd_yr.columnname.

The attributes section of the perform definition can be complex. Perform does not
have the flexibility of INFORMIX-4GL or the newer client/server development tools, but
it can do some editing. In this example, no editing is done. You simply map the field
identified as a to the database field call_type.call_code and the field identified as
f000 to call_type.code_descr. This way, you identify which database field is
displayed on the screen and which screen field is placed in a certain location on the
database.

To make this default screen format appear more polished, you, as the programmer, can
select the Modify option from the Form menu. ISQL displays a list of forms to edit. You
can select the form matching the name you specified when creating the default form in
the preceding step. Here, the code for the form you selected is placed into your editor's
buffer. You can then change the spacing, field title, form title, and so on to make the
screen appear according to the standards of your development team. You can also alter
the code for readability. Listing 32.3 shows a few simple changes made to the previously
generated screen code. Figure 32.8 shows how the modified form will appear on the
screen.

Listing 32.3. A modified generated entry screen.
database stores7@test_tcp
screen size 24 by 80
{
 CALL TYPE CODES
 Call Code: [a]
 Code Description: [f000]
}
end

tables
call_type
attributes
a = call_type.call_code;
f000 = call_type.code_descr;
end

Figure 32.8.

A Perform screen created using the Form menu.

Additional features can be added to this screen. Using the built-in functions, you can add
field edits to your screens. Here's a simple edit example:

a = call_type.call_code, include = ("A","B","C",1 to 9, "D" to "Q"),
 comments = "The valid entries are A - Q and 1 - 9".;

This code changes the screen performance by adding both edits and an informational
message to explain the reason an edit failed. The include option gives a list of valid
values to be included for the screen. Because no lowercase values are included in the list,
they are not valid in the entry field. You can add the upshift keyword to change any
entered lowercase letters into uppercase letters. The comments keyword specifies the
message to be displayed if the edits on this field fail. The default location for the message
to be displayed is the last line of the screen.

Several keyword options can be included in a field description. They are reviewed in
detail in the Informix Software manuals for your system. Some of the capabilities include
the following:

• Specifying a table to use in validating an entry using a verify join

• Automatically populating another field based on an entered field using a
lookup

• Specifying color for a field

• Specifying field default values

• Automatically downshifting or upshifting a field's values

• Formatting fields to appear in a certain manner without storing format
characters in the database

• Restricting viewing or entry on a field using invisible or noentry/noupdate

• Requiring an entry in a field

• Zero-filling a field

• Allowing a field to wrap its words automatically

The last section of the Perform screen is the instruction section. The composite section is
used most commonly when you have more than one table or when control blocks are to
be defined.

Two issues can affect screens involving more than one table; they must be addressed in
the instruction section. If you have more than one table, you might want to define a
composite join to ensure uniqueness. For example, to ensure uniqueness, you might need
to set up a composite to uniquely identify a line in an order that would include both the
order number and the item number. You must define such a composite so that it can be
used elsewhere in the screen definition. You might also need to define a master/detail
relationship between tables. Such a definition is required if Perform is to process a one-
to-many relationship between tables.

Control blocks allow more control over the screen processing. The valid control blocks
are before, after, on beginning, and on ending. You can use these blocks to define
activities to be done when a certain event occurs such as before editadd of
table.column. Although they're not a complete language, these control blocks do allow
minimal if-then-else processing. Note that a control block is performed only if the
event occurs. As a result, some code might be ignored in a screen. For example, if a user
stops entering data after the fourth field and presses Esc to process the screen, editadd,
editupdate, or remove on fields later than the fourth field will not be executed. The only
additional control block that is executed after the Esc is the on ending block. This
information is important when you're designing the screen. The before and after blocks
are executed only if the entry fields they are associated with are touched.

Although Perform screens can be functional and, with careful formatting and attribute
control, visually acceptable, the utility is probably not robust enough for major
applications development. It should be viewed as a simple, quick method of creating
uncomplicated data entry and query screens.

Report

The Report menu takes you into a submenu that allows you to generate, edit, compile,
and run ACE reports. The ACE report writer quickly formats simple reports. You can
enter a sequence of SQL statements that generate a final sorted output. This single output
thread is used as the input to the report formatting section of the report. Complex
selection logic can be supported if it can be accommodated using multiple select
statements and temporary tables to generate a final single output stream.

ACE does not support table updating. If the application requires the ability to update
tables, ACE is not the appropriate tool. ACE can do the selection and create an output file

that can be used as input to an update procedure, but updating within an ACE report is
not supported.

ACE does not support extensive logic. Although ACE does support if-then-else
constructs, its ability to do extensive logic handling is limited. ACE has a built-in limit of
SQL variables. It also has a tendency to fail on deeply nested if statements. I recommend
limiting complex nesting to five or six levels when using ACE. This way, you can
perform some advanced logic but limit that logic in extent.

ACE has a built-in totaling mechanism for control breaks. These control breaks must be
specified in the order by clause of the final SQL statement. Complex totaling can be
cumbersome in ACE. If totaling must be done on fields outside the control breaks, you
must use defined variables. The built-in limit can restrict the flexibility and quantity of
such totals.

You can generate a simple report program using the menus. Select Generate and then
give the report a name. Next, select the table for which you are reporting. The system
automatically generates a routine report that prints all lines in the table. Listing 32.4
shows such a sample generated report.

Listing 32.4. A generated default ACE report.
database stores7@test_tcp end
select
 catalog_num,
 stock_num,
 manu_code,
 cat_descr,
 cat_picture,
 cat_advert
from catalog end
format every row end

To run this report, choose Report|Run; then select the report name you used in generating
the report. See Figure 32.9 for a sample run of the report. This report continues to print
on the screen until it is complete. If you have more data than will appear onscreen, the
generated report allows the data to scroll off the screen.

Figure 32.9.

A sample run of a generated ACE report.

To make this report more usable, choose Forms|Modify. The following are quick
modifications you can make to the report to make it more usable:

• Prompt for input to limit the amount of data reported.
• Send the report to an operating system file rather than to the screen.
• Change the output format of the report to read across the page.

The new code for these quick modifications is shown in Listing 32.5.

Listing 32.5. A modified ACE report.
database stores7@test_tcp end
define
 variable begin_num integer
 variable end_num integer
end
input
 prompt for begin_num using "Enter beginning catalog number: "
 prompt for end_num using "Enter ending catalog number: "
end
output
 left margin 0
 right margin 132
 report to "catalog.out"
end
select
 catalog_num,
 stock_num,
 manu_code,
 cat_descr,
 cat_picture,
 cat_advert
from catalog end
format
 first page header
 print column 10,
"===",
 "=="
 print column 10, " Daily Catalog Report"
 print column 10,
"===",
 "=="
 skip 1 line
 print column 10, "FROM: ", begin_num,
 column 43, "RUN DATE: ", today using "mm/dd/yy"
 print column 10, " TO: ", end_num,
 column 43, "RUN TIME: ", time
 skip 1 line
 print column 2, "Cat Num",
 column 15, "Stock Num",
 column 35, "Man. Code",
 column 55, "Description"
 skip 1 line
on every row
 print column 1, catalog_num, column 15, stock_num,
 column 38, Manu_code, Column 55, cat_descr wordwrap
end

This report has been modified to accept input from the user running the report. Notice
that the input statements utilize both a prompting string and a variable. The variable
must be defined to the ACE report. When the report is run, the program prompts the user,
as shown in Figure 32.10. The prompts appear one at a time and must be answered before

the processing continues. ACE has no recovery capability. If the user answers the prompt
incorrectly, the program either runs or returns an error. Figure 32.11 shows the messages
returned to the user as the report runs. The message gives the user the name of the file
where the report is stored. If two people run the report at the same time, they will
overwrite each other's reports. ACE does not allow the user to specify the report output
file; consequently, it writes to the same filename on each run. Figure 32.12 shows the
output from an ACE report.

Figure 32.10.

A sample ACE report run with prompts.

Figure 32.11.

Sample runtime ACE report messages.

Figure 32.12.

A sample report created using the ACE report writer.

The ACE report language offers additional facilities and sophistication. Within ACE, the
following control blocks can be utilized:

• After Group Of
• Before Group Of
• First Page Header
• On Every Row
• On Last Row
• Page Header
• Page Trailer

These blocks combine to support most simple report requirements. In addition to the
control blocks, ACE supports many formatting options, aggregates, and structures. The
most important structures are while, for, and if-then-else. Also important are
aggregate functions. Here are some of them:

• Count
• Total
• Percent
• Average
• Minimum
• Maximum
• Total

Each of these aggregates is available on a group or report level. ACE has powerful
formatting options that provide a great deal of flexibility in determining the look of the
printed output.

ACE comes with no interactive debugging capabilities. To debug using ACE, you must
print variables and fields at special places in the code. Then you must run the report.
Your debugging statements are printed intermixed at the appropriate times with your
output report. Review these messages to debug the program.

ACE is a powerful tool for quick reports that do not require extensive logic. Used
appropriately, they can speed development time. ACE does have limitations, though.
Most problems or dissatisfaction occurs when ACE is used to create complex logic
reports. These types of reports are best created with another tool.

User-menu

By using the User-menu, you can quickly create a hierarchically based menu system. To
utilize the tool, your menuing design must be entirely based on a master menu/detail
menu relationship. Each entry on the main menu can be one of the following types:

• F: Run a form
• M: Call another menu
• P: Execute another program or operating system command
• Q: Execute an ISQL query or other command file
• R: Run a report
• S: Execute a script menu

Figure 32.13 shows the User-menu entry or modify screen. This screen has two separate
sections separated by a dashed line.

To toggle back and forth between the sections of the screen, press M for Master or D for
Detail.

The menus are stored in the database. You should have the menu structure designed
before entering the menu items. To begin entering the information, select the lowest level
menu and give it a name. This menu does not call any other subordinate menus.

Press M for Master, and then press A for Add. Type the name of the menu and the title
you want the user to see on the screen. The title can be long and descriptive; the name is
limited in length. The name is used only within by the menuing system to track
relationships between menus. Next, press the Esc key.

You have added your first menu. Next, add the individual items for the menu. It is best if
they already exist or if you at least know the exact names the called programs, reports,
procedures, and so on will have. You can always modify the menus, but planning ahead

is best. To begin entering the menu selections, press D for Detail. The cursor then moves
to the bottom half of the screen on Selection Number. Press A for Add. Then type the
selection number and selection type. Next, enter the selection text as you want it to
appear to the user. The final entry is the exact command string as it should be executed
from the operating system.

Figure 32.13.

The main User-menu entry/modification screen.

TIP: If your command string is too long, place it inside a shell script and call the
shell script.

Continue to enter your menu one item at a time. To test the current structure at any time,
exit from the entry modification screen and choose Run. Your menu is then displayed
onscreen. You can test your work immediately.

There is an inconsistency between the Perform screen and the User-menuing system. The
User- menuing system presents a standard menu interface, as shown in Figure 32.14,
whereas Perform screens present their options along the top of the screen. This difference
can cause confusion, especially if the options along the top of the screen also call
subordinate screens. I suggest that you keep menus consistent if they are employed in
your system. This means that the options in the Perform screens or 4GL programs should
be kept as options affecting only the displayed screen. This way, you can keep all menus
consistent and all screen options consistent.

Figure 32.14.

A sample User Menu.

The User-menu option is a great tool for creating menus quickly. Its flexibility in calling
any type of operating system program enhances its ability to support any type of
application developed in the UNIX environment.

Summary

Informix Software provides some basic tools with its systems that can assist programmers
and database administrators quite effectively in their jobs. These tools are not a substitute
for full application development tools, but they can assist and augment routine and simple
tasks.

DBaccess is a powerful tool for developers and database administrators. For the
developers, DBaccess provides a quick, efficient interface to test SQL statements and

obtain information about the tables and databases on the system. For database
administrators, DBaccess can save hours of frustration in writing add and alter table
statements manually.

ISQL provides application developers with rudimentary tools to do quick applications.
The tools do not support complex logic constructs, but they do a great job on simple,
straightforward data entry or query applications.

Using the User Menu is a quick, effective way to develop a menu system for any type of
UNIX-based application where text-based menus are acceptable. The entries are stored in
a database, making them easy to maintain.

- 33 -

Understanding the Informix Optimizer
• Understanding the Informix Optimizer

o What Is the Optimizer?
o How Does the Optimizer Make Its Decision?
o How Accurate Are Your Statistics?
o When Does the Engine Perform the Optimization?
o Suddenly Slow?
o Development Versus Production
o Controlling the Optimizer
o Obtaining Data Distribution for the Optimizer
o An UPDATE STATISTICS Strategy for OnLine DSA Version 7

• Examining the Optimizer's Choice
o Understanding the SET EXPLAIN Output

• SQL Query Quality Assurance and Optimization
• Summary

by Gavin Nour

This chapter explains the role of the Informix optimizer (including how to read the output
from SET EXPLAIN) and offers some tips to help improve SQL performance.

The best tool to use for optimizing a query or for the quality-assurance process is the
SQL command SET EXPLAIN ON.

You should remember first that although you can optimize the queries, proper database
design plays a major part in the query performance, and often, redesigning tables and
implementing an effective indexing strategy solves many problems. This chapter focuses
on the SET EXPLAIN ON option and explains how this command can help you optimize
queries. First you have to understand the Informix optimizer.

Understanding the Informix Optimizer

This section explains what the Informix optimizer is and gives some insight into how the
optimizer makes its decisions when executing a query.

What Is the Optimizer?

The optimizer is the part of the Informix engine that anticipates the best route to take
before running a given query. Because there are often many paths that can be taken to get
to the data, some paths take much longer than others. This is especially true when many
tables are involved in a join. Developers usually develop the query and then leave the
task of finding the best route to the optimizer and assume that the engine will use the best
method available. Unfortunately, because the optimizer does a good job most of the time,
we tend to forget that the engine does not always make the right decision. Sometimes, we
know more than the engine does and can see a better way of doing things. The output
from SET EXPLAIN ON explains how the optimizer chose to access the data. With this
information available, you might discover that the optimizer chose a path that is time
consuming, and you can take steps to restructure the query. Sometimes, a small alteration
influences the optimizer to take an alternative route. Other times, you realize that you can
add an index to improve performance, or you might just find that it is fine the way it is,
but you need to add more temporary space to cater for a sort.

How Does the Optimizer Make Its Decision?

The answer to this question is very complex. The main aim of the optimizer is to reduce
I/O by limiting the amount of data to search in order to obtain the requested data in the
most efficient way. The optimizer makes its decisions based on information in the system
catalogues. This information consists of

• The number of rows in each table used in the query (systables.nrows).

• How many pages are used for data and how many pages are used for
indexes (systables.npused).

• Whether columns values are unique (sysconstraints).

• What indexes exist (sysindexes).

• Whether the indexes are ascending or descending (sysindexes). (No
longer required in version 7 databases.)

• Whether the data is in the same order as the index--that is, clustered
(sysindexes.clust).

• How many levels are in an index (sysindexes.levels).

• What the second largest and second lowest values are for each column.
This gives the optimizer a rough idea of the range of values
(syscolumns.colmin and colmax). Version 7 can obtain more detail about
the distribution of data (sysdistrib).

Using all this information, the optimizer determines all possible routes and then weighs
each method with an estimated cost. The cost is based on several considerations including
disk access, CPU resources required, and network access. In the process, the optimizer
determines in what order to join tables, whether to perform sequential scans, whether it
should create temporary tables, and whether it can use an index for the select list, for the
filter, for the sort, or for a group by. After the optimizer selects a plan that it believes is
the most cost effective, it passes the query for processing, and if SET EXPLAIN ON is in
effect, the chosen method is recorded in a file.

To illustrate how important it is for the optimizer to have the right information available,
you can look at a very simple query and a decision that must be made by the optimizer to
perform a join.

Suppose you have two tables, one with 500,000 rows (tab2) and the other with 200 rows
(tab1), both with a unique index on the joining column. A simple select to find related
rows from the two tables is

SELECT * FROM tab1, tab2
WHERE tab1.col1=tab2.col2

If the optimizer chooses to select from the smaller table first and then join to the second
using the index, this would result in 1,000 disk reads. (Assume there is one row per page
and it takes three index reads and one data read per row in tab2--that is, 200 for tab1 +
200x4 for tab2.)

Suppose the optimizer did not have accurate information available about the number of
rows and the number of unique values and chose to select from tab2 first. This results in
two million reads! (Assume it takes just two index reads and one data read per row in
tab1--that is, 500,000 + 500,000x3.)

Of course, if the optimizer has even less accurate information, doesn't know about an
index, and uses a sequential scan for each row returned from tab1, the database would
have to perform around one billion reads (200x500,000)!

You can see from this example using a very simple query that the wrong information and
the wrong decision can have dramatic effects on performance, such as 1,000 reads versus
1,000,000,000 reads. If many tables are involved along with more filter conditions in the
WHERE clause, the decision process becomes much more complex and the importance of
accurate statistics is magnified.

How Accurate Are Your Statistics?

It is very important to remember that the information in the system catalogues used by
the optimizer is only updated when the UPDATE STATISTICS command is executed. The
optimizer is only as good as the information it is provided, so, rule number one is to
execute UPDATE STATISTICS as regularly as possible. You should execute UPDATE
STATISTICS more often for very dynamic tables than for tables that rarely change. If the
system catalogue information is out of date, the optimizer might make the wrong decision
and severe performance problems could be experienced when the query is executed. It is
surprising to see how many sites fail to update the system catalogue information.

You can execute UPDATE STATISTICS for the whole database, for individual tables, for
columns in a table, and for stored procedures.

Instead of relying on memory, consider automating the execution of UPDATE STATISTICS
(using the guidelines later in this chapter) every night via a cron command. Be careful
when you run the UPDATE STATISTICS command while other applications are running
because the system tables are momentarily locked when the catalogues are updated. This
can result in other processes receiving errors. Do not update unnecessarily, because the
UPDATE STATISTICS command can take a long time for large tables. For example,
updating statistics on large static tables every night is obviously an overkill when the
statistics written back to the system tables are going to be as they were before. Similarly,
if a table is rarely updated, consider updating the statistics for that table less frequently
than the suggested nightly automation.

When Does the Engine Perform the Optimization?

The optimization occurs whenever an SQL statement is prepared, providing there are no
host variables. If there are host variables, the optimizer does not have all the information
required until the variables are passed (when the cursor is opened), and in this case, the
optimization occurs on the OPEN statement. With standard SQL (that is, not prepared), the
query is optimized whenever it is executed. If an SQL statement is used repeatedly within
a program, it is best to PREPARE the SQL statement to improve performance. This way,
the SQL is only optimized once within a program instead of every time it is used (unless
specifically requested to re-optimize by using the re-optimization keyword). With stored

procedures, the SQL is optimized when the procedure is created or when UPDATE
STATISTICS is executed for that stored procedure.

Suddenly Slow?

Even after running UPDATE STATISTICS regularly in production, you may notice one day
that a query that previously took 10 minutes suddenly takes one hour. This change can be
the result of the optimizer choosing a new path based on new information in the system
catalogues. This may mean the query needs restructuring to influence the optimizer to
make a better decision. Because of this circumstance, you should have the capability to
use SET EXPLAIN ON for any program in production instead of being forced to recompile
the program to find out the query plan. Consider building a simple function into all
programs that enables you to either pass a parameter or set an environment variable to
turn SET EXPLAIN ON.

Development Versus Production

Remember, not only can the statistics used by the optimizer change, but also, if you test a
query in development on a small database, the statistics may be quite different from what
is in production. A query might appear to perform well in development, but once it is in
production, the optimizer might choose (rightly or wrongly) to take a totally different
route. The only way to get around this problem in the quality assurance process is to run
the query against a test database that is a similar size to the production database with the
same data. Alternatively (providing the database schemas are the same), one might
consider manually updating some of the columns in the system catalogue tables after
running UPDATE STATISTICS on the test database so the optimizer makes the same
decisions. However, this is definitely not recommended and Informix might not support
you if corruption results.

Controlling the Optimizer

The optimizer can be influenced by using the SET OPTIMIZATION command or by
altering the default setting of OPTCOMPIND, which are both described in the following
sections.

Optimization Level

Versions 5.x and later have the capability to influence how much information the engine
attempts to obtain. You can do this by using the command SET OPTIMIZATION HIGH or
LOW. HIGH (which is the default) causes the engine to examine all access paths, and LOW
causes the engine to eliminate less likely options at an earlier stage in order to improve
optimization time. LOW can be useful if many tables are used in a join (five or more)
because the optimization time can hinder performance. The downside to using
OPTIMIZATION LOW is that an access path may be eliminated too early when in fact it
could be the most suitable option.

OPTCOMPIND

Version 7 provides a little more control over the optimizer. Previous versions assumed
that if an index existed, it was the most cost-efficient access path. Now, you can specify
that you want the optimizer to compare the cost of an index read versus the cost of a table
scan so that the most cost-efficient path is chosen. You specify this by setting
OPTCOMPIND=2 (default). You can still emulate the functionality of previous versions by
setting OPTCOMPIND=0. Setting OPTCOMPIND=1 instructs the optimizer to work as it does
when set to 2 unless REPEATABLE READ is set, in which case it works like it does when set
to 0. This option exists because a sequential scan with repeatable read effectively places a
shared lock on the whole table (as it scans all rows) during the read. This situation is
usually undesirable!

Obtaining Data Distribution for the Optimizer

Beginning with version 6, Informix introduced data distribution analysis and storage to
help the optimizer make more informed decisions. Data distribution analysis gives the
optimizer a better understanding of the values contained in a column, such as how many
unique values are in each area of the table. This information is provided by sampling the
data in a column and storing information about sections of the table in various bins. This
information can be extremely valuable to the optimizer when dealing with large tables.
To generate distribution for a column, you use the UPDATE STATISTICS command. The
amount of data sampled is controlled by the keywords MEDIUM and HIGH--for example,
UPDATE STATISTICS HIGH FOR table(column). MEDIUM merely samples the data and is
very quick, whereas HIGH evaluates all the rows in the table and is therefore slower but
more accurate. LOW is like using previous versions of UPDATE STATISTICS and does not
obtain any distribution data at all. You can influence the distribution analysis further by
using the keyword RESOLUTION and by specifying a resolution value (number of bins)
and a confidence value (level of sampling). Refer to the manual for more information on
using these parameters.

An UPDATE STATISTICS Strategy for OnLine DSA Version 7

The recommended UPDATE STATISTICS strategy for Informix DSA version 7 is to
perform the following steps (in the same order):

1. Run UPDATE STATISTICS MEDIUM on all tables using DISTRIBUTIONS ONLY
without listing columns and using the default RESOLUTION parameters. If
you use a version before 7.10.UD1, it is better to actually list the columns
that do not head an index for better performance.

2. Run UPDATE STATISTICS HIGH for all columns that head an index or the
columns that are definitely part of a query. Execute a separate command
for each column.

3. Run UPDATE STATISTICS LOW for all other columns in composite indexes.

Step one is very fast because it only samples data but still gathers useful distribution
information. You use this step first to obtain information about all the columns that are
not in an index. From 7.10.UD1, it is not worth specifying each column due to the speed
of MEDIUM. Step two is to get as much distribution information as possible for all columns
that are important for query performance (such as joining columns). Because the index
can be used by UPDATE STATISTICS (in version 7), the statistics can be gathered
relatively quickly, but note that you should specify only one column at a time with HIGH
so that it can make use of an index. In the final step, the remaining columns in all the
indexes that are not at the beginning of the index can be referenced in the one statement
(per table) using the LOW parameter.

Do not re-run UPDATE STATISTICS for large static tables.

Please see the enclosed CD-ROM, which contains a program provided by Select
Software Solutions that will automate the generation of an UPDATE STATISTICS
command file using the preceding recommended guidelines.

When the UPDATE STATISTICS steps are complete, you can view any data distribution
profiles by using the -hd option with dbschema--for example, dbschema -d
databasename -hd tablename.

TIP: The preceding dbschema command is a very useful method to help you
determine a good fragmentation strategy.

Examining the Optimizer's Choice

When you are comfortable knowing that you supplied the optimizer with enough
information, you can see what query plan the Informix optimizer chose. To do this, use
SET EXPLAIN ON within the query or within the NewEra, 4GL, or ESQL program. When
this is set, the optimizer writes output for all queries (for the same process) to a file called
sqexplain.out in the current directory. (Usually, the filename and location depend on
the operating system and whether the query is executed on a remote host.) When the
query is submitted, it is at the point of no return. The only way to examine the optimizer
output without completing the query is to hit the interrupt key just after the query starts
(after the status line in DBaccess reads explain set).

The following code shows a typical SET EXPLAIN output:

QUERY:

select cust_id, order.* from orders, customers
where order_date > "01/12/1995" AND order_date < "01/01/1996"
AND customers.cust_id = orders.cust_id order by order_date DESC
Estimated Cost: 10
Estimated # of Rows Returned: 200
Temporary Files Required For: Order By
1) informix.orders: INDEX PATH
(1) Index keys: order_date
 Lower Index Filter: informix.orders.order_date > "01/12/1995"
 Upper Index Filter: informix.orders.order_date < "01/01/1996"
2) informix.customers: INDEX PATH
(1) Index keys: cust_id (Key-Only)
 Lower Index Filter: informix.customers.cust_id =
informix.orders.cust_id

Understanding the SET EXPLAIN Output

This section discusses each line of the preceding code in detail. Each code line is shown
in bold, with a detailed explanation following it.

Query:{LOW}

This section of the output shows the actual query that was optimized. LOW is displayed if
SET OPTIMIZATION is set to LOW. Note that sqexplain.out is appended to if the file
already exists.

Estimated Cost:

This value is simply a number the optimizer assigned to the chosen access method. The
value is not meaningful except to the optimizer because it bears no relationship to real
time. It cannot be compared to the estimated cost of other queries and is best ignored.
You can use it, however, to compare changes made for the same query (such as an index
change).

Estimated # of Rows Returned:

This is the optimizer's estimate based on information in the system catalogue tables.
Remember that the catalogue information is fairly limited (especially before version 7),
so this value is often inaccurate (more so if the query involves a join). In OnLine DSA
version 7, you can obtain distribution information for the data, which helps the optimizer
estimate the number of rows more accurately.

Temporary Files Required For: Order By | Group By

When this is displayed, there is a GROUP BY or an ORDER BY statement in the query, and
the optimizer determined that there is no corresponding index available to obtain the data
in the required order. A temporary file will be created to order the result set. This file
could be very large (depending on the size of tables), so check available disk space and
be aware of the effect this sort could have on performance. You cannot use indexes when

the columns to be sorted come from more than one table. Note that in version 7, the
optimizer can choose to traverse an index in the direction of the ORDER BY regardless of
whether the INDEX is in the same order as the ORDER BY. Before version 7, the capability
of the optimizer to use the index for an ORDER BY depended on whether the ASCENDING
and DESCENDING values on the index and the ORDER BY matched.

1) owner.table: INDEX PATH (Key-Only)

This is the table that the optimizer chose to read first (indicated by the 1). Subsequent
table accesses (for a nested loop join, for example) are displayed further down in the
explain output and are indicated by a higher number. For each row returned at this level,
the engine will query the tables at a lower level. INDEX PATH indicates an index will be
used to access this table.

The (Key-Only) notation (with OnLine only) indicates that only the index will be read
and the actual data value (row) will not be read from this table. Key-only access is
generally very efficient (before version DSA 7.2) due to the smaller size of the index
compared to the row. Not only is the read for the data row eliminated, but also more
index key values are likely to fit on the one page, which in turn reduces I/O. This type of
access is achieved only if no columns are selected from the same table. Avoid using
SELECT * if possible and select only the required columns. Note that with OnLine DSA
7.2, key-only reads are in fact slower in most cases due to the read-ahead capabilities.

(1)Indexkeys: column_name Lower Index Filter: owner.table.column > x
Upper Index Filter: owner.table.column < y

column_name is the name of the column to be used in the INDEX PATH read.

Lower Index Filter shows the first key value (x) where the index read will begin.

Upper Index Filter shows the key value (y) where the index read will stop.

1) owner.table: SEQUENTIAL SCAN (Serial, fragments: ALL)

In the preceding case, all rows will be read from this table using a sequential scan.

The section in parentheses relates to version 7. If Parallel is displayed instead of
Serial, the engine will perform a parallel scan. (This behavior is influenced by the
PDQPRIORITY setting.) The ALL notation indicates that all fragments must be scanned
because the optimizer cannot eliminate fragments after examining the WHERE predicates.
NONE indicates the opposite; that is, the optimizer eliminated all fragments and therefore
none must be examined. A number (or list of numbers) indicates that the engine will
examine only the fragments listed. (Numbers are relative to the order in the
sysfragments table.)

Pay special attention if the sequential scan is performed at a lower level in the query plan
(indicated by a higher number) because this could mean the whole table is scanned for

each row returned in a previous step. Often, this is one of the warning bells when
optimizing or performing quality assurance on a query. Sequential scans are not so bad
when they are for small tables or when they are in the first step of a query plan, providing
that the engine does not have to scan a large table to retrieve a fraction of the table.

AUTOINDEX PATH: owner.table.column

This statement is used more in version 4. To avoid sequential access, a temporary index
is built on the owner.table.column to perform a join. You see this statement if an index
does not exist on the join column, and it is generally an indication that you need a
permanent index.

SORT SCAN: owner.table.column

This statement is used in combination with a sequential scan when no index is available
on the join column. The owner.table.column will be sorted for later use with a join.

MERGE JOIN Merge Filters: owner.table.column = owner.table.column

A merge join is used to join the results of the two previous selections sets, which were
prepared for a join. After the join columns are obtained in the appropriate order (possibly
via a SORT SCAN if an index does not exist), the server sequentially reads both result sets
and merges them before accessing the rows. A merge join is considered faster than a
nested loop join in many cases.

DYNAMIC HASH JOIN (Build Outer) Dynamic Hash Filters: owner.tab1.col =
owner.tab2.column ...

In version 7 only, a hash join is used to join the two preceding tables in the explain
output. The Build Outer notation tells you which table is used first. The filter shows
how the tables will be joined. When some complex queries cannot use an index, the hash
join takes over. A hash join is also used instead of a sort-merge join and is considered
more efficient. Whereas a sort-merge join sorts both tables, a hash join typically sorts
only one. Hash joins are favored with large amounts of data, especially for parallel
database queries (PDQ) with fragmentation. Rows are placed in a hash table after using
an internal hash algorithm. The cost of a hash join can be lower than using an index,
especially when more than around 15 percent of data from a large table must be scanned.
When the data is not clustered (in a different order to the index), the cost of traversing the
index in addition to retrieving the actual rows (in a different order) is quite high
compared to a table scan with a hash join. OPTCOMPIND=2 (which is the default) causes
the optimizer to consider hash joins instead of an index. Note that OPTCOMPIND should be
set to 1 when REPEATABLE READ is used (and arguably should be the default).

SQL Query Quality Assurance and Optimization

The following paragraphs cover tips, warnings, some things to check, and some things to
avoid.

Avoid sequential scans on a large table if it is not in the first position of the query plan
because the whole table scan is repeated for every row in the preceding table. This can
severely affect performance. This not only affects the query in action but can also impact
other tasks by changing the recently used pages in shared memory (as it keeps reading the
whole table into shared memory). This increases disk I/O all around as other processes
are forced to read from disk. Consider adding an index if the query cannot be restructured
and performance is slow.

Avoid potentially large temporary sort files. They can consume all available CPU
resources, increase disk I/O, and consume all available disk space. Consider adding an
index on the columns being sorted. A hint: If the optimizer is not using an existing index
for the ORDER BY, this may be because the column being ordered is not in the WHERE
clause. In this case, you can influence the optimizer to use the index instead of creating a
temporary file by adding a "dummy" WHERE condition on the ORDER BY column (such as
AND order_num>=0). Before version 7, the index had to be in the same order as the
ORDER BY. When sort files are used, check the $PSORT_DBTEMP and $DBSPACETEMP
settings because these can help significantly to improve performance by enabling the
engine to use more than one disk for the sort file.

Some more complex correlated subqueries might need to be rewritten by joining one of
the permanent tables to a temporary table. Subqueries that make reference (in the WHERE
clause) to a selected column in the main query can severely affect performance. This
causes the subquery to execute repeatedly for each main table row. Be very cautious
when using statements such as EXISTS with large tables because logical logs can fill very
quickly in the process. Temporary table space is allocated and logged for each row in the
main table (even if no rows are returned in the final select). The worst effect of this is
filling the logs and restoring from an archive. You should rewrite correlated subqueries to
use a join wherever possible. Some more complex rewrites may involve joining to a
temporary table.

OR statements on different columns can prevent the optimizer from using an existing
index. If an index does exist and the optimizer chooses a sequential scan in the query
plan, consider using a UNION statement (one for each OR condition) to provide the
opportunity for the optimizer to use the index.

If the query is slow even when an INDEX PATH is chosen on all levels of the query plan,
do not assume the optimizer made the right decision. Check the query plan to see if the
tables are filtered in the right order. The aim is usually to eliminate as many rows as
possible in the early stages of the query, but unfortunately, the optimizer does not always
have enough information to do this correctly (especially in versions before 6). Using
UPDATE STATISTICS HIGH in version 6 and above gives the optimizer more information
about the data distribution so that the right tables are eliminated first. Also note that the
INDEX reads are not necessarily the best. For example, a sequential scan of a table can be
faster than an index scan if the data pages must be retrieved and the pages are not in the
same physical order.

Converting data types and comparing character columns is very expensive (for example,
tab.character_col=tab2.integer_col). If possible, consider changing the column
types to numeric. Remember that if the join columns are character types, the columns
must be compared byte-by-byte for each row. Although version 7 handles conversions
better, the cost of the conversion overhead is still not considered by the optimizer.

Look out for the WHERE predicates that might not be able to use indexes. These include
OR, LIKE, or MATCHES with a wildcard at the beginning (such as MATCHES "*NOUR"),
functions (such as MONTH, DAY, and LENGTH), negative expressions (such as != "NOUR"),
and non-initial substring searches (such as postcode[4,5]>10).

Except for very old versions of the engine, the order of tables in a SELECT list or the order
of elements in the WHERE clause do not have an effect; however, in some cases when the
optimizer believes the cost is the same for two different paths, the order of the statements
in the WHERE clause may have an effect. Some tricks have been suggested in the past
(such as repeating predicates in the WHERE clause) to force the optimizer to use a
particular index, but this is no longer recommended and does not work with future
versions. (In version 7, the optimizer query rewrite feature eliminates duplicates in the
WHERE clause.)

Avoid long transactions in logged databases. You probably know by now that long
transactions threaten to destroy your databases by filling the logical logs. Warning bells
should ring with the following statements: LOAD statements, INSERT INTO xx SELECT
yy FROM zz, and UPDATE or DELETE statements spanning many rows. Consider locking
the table in exclusive mode to avoid excessive lock usage (hindering performance and,
even worse, running out of locks).

Check the placement of WHERE conditions with joining columns to see if all combinations
of the WHERE predicate are included. For example, the WHERE predicate, tab1.x=tab2.x
and tab1.x >1000, would probably cause the optimizer to use the index on tab1.x, but
the index on tab2.x might be much more appropriate. Adding the condition and tab2.x
> 1000 gives the optimizer more choices to evaluate. Another example is
tab1.x=tab2.x AND tab2.x=tab3.x. The optimizer in version 5 does not consider
joining tab1 directly to tab3, so adding tab1.x=tab3.x again provides more choices.
Note that the optimizer in OnLine DSA V7 rewrites queries so that all possible
combinations are examined and these suggestions are not applicable.

Select only the columns required; this reduces the communication between the front end
and back end and reduces I/O. Avoid the temptation to use SELECT * (all columns) when
it is not required.

Use temporary tables when a subset of data is reselected with different WHERE predicates.
An example is a SELECT with the WHERE clause:

orderdate> "01/12/1995" and x=1

This might be followed by a SELECT with a WHERE clause:

orderdate> "01/12/1995" and x=2

In this case, if the table is very large, you could improve performance by first selecting all
rows WHERE orderdate>"01/12/1995" into a temporary table and then performing
subsequent selects on the temporary table.

Use temporary tables to influence the optimizer to take the route that you know is best.
You can do this by first selecting the rows you want from a large table into a temporary
table and then joining the temporary table to the rest of the tables. The optimizer might
use a different query plan, knowing that the temporary table is much smaller than the
original large table.

Consider creating indexes on temporary tables--an option that is often overlooked just
because the table is temporary.

When using temporary tables for subsequent selects with ORDER BYs, create the
temporary table using an ORDER BY. An example is SELECT x FROM y ORDER BY x
INTO TEMP temp_tab. This syntax is not available in earlier versions of the engine
(before 4.1).

Consider running UPDATE STATISTICS (within the application) for large temporary
tables. This option is often overlooked just because the table is temporary.

Use the WITH NO LOG statement when explicitly creating temporary tables; this helps per
formance by eliminating the overhead of writing to the logical logs. This also avoids the
possibility of creating a long transaction with a large temporary table. In version 7, you
can create temporary tables in a special dbspace that is not logged. Use this feature
whenever possible.

Time commands with the UNIX time or timex command, or use the following before
and after the query being tested or optimized:

SELECT CURRENT FROM systables WHERE tabid=1

When testing or timing queries, remember that the second time the query is executed, it is
much more likely to be faster because the pages read the first time are probably still in
memory. Be aware that this may distort the test results. Use tbstat -p to monitor disk
and buffer usage. When timing queries, consider restarting the instance between tests in
order to re-initialize shared memory.

The subject of Parallel Database Queries and fragmentation is a whole new book in its
own right. It is important to fragment the data in a way that makes it easy for the
optimizer to determine which fragments are active. Making the WHERE predicates clear

enough to enable the optimizer to eliminate fragments reduces I/O and enables
parallelism.

Summary

The Informix cost-based optimizer does an excellent job with what it is supposed to do--
that is, shielding you from the task of thinking about the best way to retrieve your data.
For this reason, you might often take it for granted. Just imagine if you had to make the
same complex decisions the optimizer does every time you want to access your data.
Nevertheless, it is important that you understand the optimizer and the consequences of
the decisions it makes. More importantly, you need to provide the optimizer with the
information it needs to perform its job effectively.

Informix is constantly refining the optimizer and finding new ways to improve
performance. Some of the comments made in this chapter may not apply to future
releases.

Part V - Application Development
• Chapter 34 - Application Development Introduction
• Chapter 35 - Introduction to 4GL
• Chapter 36 - 4GL Coding
• Chapter 37 - 4GL Development
• Chapter 38 - Advanced 4GL Development
• Chapter 39 - Introduction to NewEra
• Chapter 40 - NewEra Language
• Chapter 41 - The NewEra Development System

Chapter 42 - Serving Data on the WWW

- 34 -

Application Development Introduction
• Building an Application That Accesses an Informix Database
• Tools for Application Development

o Embedded SQL
o Informix's Fourth-Generation Language
o Informix's NewEra
o Open Database Connectivity
o Purchase

• Summary

by John McNally

This chapter provides

• A description of the types of applications that use Informix database
management systems (DBMS)

• A breakdown of batch and OLTP processing

• A definition of client/server architecture and how it relates batch and
OLTP processes to the Informix DBMS

• A description of tools available to build applications to access Informix
DBMSs

Building an Application That Accesses an Informix Database

The Informix DBMS is not a system created to satisfy the requirements of a small
application. The needs of a small application include the following:

• DBMS running on a desktop computer

• Application running on the same desktop computer

• Serving a single database user

Although an Informix DBMS can satisfy these requirements, it is a waste to use it in this
manner. The latest Informix DBMS, Parallel Server, was designed to satisfy the needs of
an entire business. These needs include

• Running on an open system (UNIX or Windows NT)

• Managing multiple databases of varying size

• Managing different databases in multiple locations

• Managing different parts of a database in different locations

• Handling multiple users and performing different tasks against the
database

The last item, handling multiple users who perform different tasks, is managed by the
application. An application can be one of two types: batch or OLTP.

A batch application is a process that performs non-user involved work. For example, a
company receives a daily file of names and addresses. A batch process reads this file,
changes the format and layout of the data, and then stores this rearranged data into the
database's tables. Whether the daily file contains 10 records or 10 million is not
important; the process to store the file's information does not require user intervention.
As shown in Figure 34.1, a batch process performs many tasks within a single
transaction. This means that a batch process does not commit each task's data to the
database until all its work is complete.

Figure 34.1.

A batch process accessing an Informix DBMS.

The other type of application is OLTP, or online transaction processing. An OLTP
process performs small tasks, usually one task per transaction. For example, instead of
receiving a file containing names and addresses once a day, an application is available for
users to type that information into a computer. After each name and address combination
is entered, it is stored in the database. As shown in Figure 34.2, each name and address
combination is stored by a single transaction containing only the one insert task.

Figure 34.2.

An OLTP process accessing an Informix DBMS.

An OLTP system and a client/server system can be confusing. A client/server system is
where the application programs, known as clients, must run as processes separate from
the programs that maintain and store the data, called servers. A client process does not
necessarily have to be running on a different machine from the server. It just has to be a
different process. The client/server relationship is possible only because the clients must
communicate with the server to access the data.

Because Informix DBMS is a server, any application accessing that server is considered a
client. An example of a non-client/server database system is one in which the program
maintaining the database also controls the user's access to that data, such as Microsoft
Access. To Informix DBMSs, all processes accessing the database, even if they perform
OLTP or batch processing, are considered clients. To clear some of the confusion, it is
best to refer to an application by the type of transaction it performs. The long multi-task
single transaction is referred to as a batch application or batch client, whereas the small
single task per transaction is referred to as an OLTP application or OLTP client.

In the business world, as shown in Figure 34.3, very few DBMSs are set up to deal with
only one type of client--batch or OLTP. The stored data is useful for many areas of the
business, and each of these business areas requires certain ways to use that data. This
requirement determines the types and multitude of clients needed. Usually, the system
has multiple OLTP clients that perform many different tasks. On that very same system
are multiple batch clients that also perform many different tasks. These batch and OLTP

clients may or may not access the database server at the same time. Administrators
usually like to separate OLTP and batch processing at different times of the day to
configure the system for the best throughput possible. Throughput is the time it takes to
perform a specific database task, such as adding an address.

Figure 34.3.

Multiple OLTP and batch processes accessing an Informix DBMS.

Throughput can also determine how OLTP clients are designed and developed.
Businesses with hundreds of OLTP clients might not want each of these clients to access
the database server at the same time. For example, an application is needed to manage
customer information. The database contains the customer's name, address, and phone
number. The client process must have the capability to view, add, change, or remove a
customer, which is a select, insert, update, or delete database-related task. The design of
the client depends on several factors:

• The amount of data per task or transaction

• The maximum expected size of the database

• The amount of client processes

• The processing speed and capacity of the network, client, and server
hardware and operating systems

In this example, the amount of data per task is very small, 50 bytes or less, and should
suffice for a customer's name, address, and phone number. For the database's size, an
average size is less than a gigabyte. The information needed and the database layouts
determine the overall size. Informix DBMSs can manage data and databases over a
terabyte, if needed. The amount of client processes also depends on the business' needs.
A company that sells a single product, one distinct computer game, might have one or
two people to enter addresses for catalog mailings. On the other hand, a company that
sells an entire line of business and entertainment software might have hundreds of people
entering addresses. Expected amounts of client work combined with the processing
capacity of the hardware and operating system for the clients and the server determine the
scalability of the system.

A system dealing with small-sized data transactions on an average-sized database,
running a few clients that actually do the data entry, running on an average-powered
machine, probably designs the clients as shown in Figure 34.4. This is an example of the
most basic client/server configuration, where the client process runs on the same machine
as the DBMS, using the same operating system and CPUs.

You can develop clients to perform different tasks. For example, you can develop two
clients that are used along with the original customer information OLTP client. You can

use this new OLTP process to track customer loyalty. Used by management, this new
process determines, at any time, the amount of customers added, deleted, or returned. The
other new process can be a batch client that produces mailing labels. If activity and data
size remain average to low, then all three clients can run on the same machine, as shown
in Figure 34.5. When the clients and the server run on the same machine, you have a
single-tier architecture.

When the single machine is unable to handle the processing required of it, the scalability
of the clients and the server become important. You might want to build applications to
run on remote machines that connect to the DBMS through a communications protocol
such as TCP/IP. In this way, the processing needed for the application is done on the
remote machine's CPU and operating system. As shown in Figure 34.6, the machine
running the DBMS is dedicated to the DBMS and batch processing. All OLTP
applications are run on either of the other servers running applications that handle
multiple users or on stand-alone workstations or PCs that handle single users. This
situation is known as a two-tier architecture.

Figure 34.4.

Multiple OLTP running on the same machine as the Informix DBMS.

Figure 34.5.

Multiple and different OLTP clients and a batch client running on the same machine as
the Informix DBMS.

If that is not enough to handle the expected workload of OLTP users, you can use other
techniques to spread out the CPU workload. Figure 34.7 shows a system that is
configured in a three-tier architecture.

Figure 34.6.

A two-tier configuration where multiple and different OLTP clients and batch clients
access the same Informix DBMS.

Figure 34.7.

A three-tier configuration where multiple and different OLTP clients and batch clients
access the same Informix DBMS.

Think of each tier in this architecture as one step to achieve a goal, with each step
requiring some work to be performed. Client applications run on stand-alone work
stations, where all the data is collected and used. When that client needs to store or
retrieve data from the database, it communicates with a server that is running a process
waiting for database requests. That middle process then arranges the request into the
format required of the Informix DBMS's database layout. This middle process creates

OLTP transactions and sends them to the machine running the DBMS. That machine uses
its CPUs to run the DBMS and process the transactions, processing in parallel as much as
possible. The DBMS sends the results to the middle server process, which can process the
results some more and then send the results back to the client.

For example, the client process wants all the information on a specific customer. It sends
a request for "all information on Customer X" to the middle server. The middle server
knows that "all information" means name, address, and phone numbers. The middle
process creates three transactions, one for each task: retrieve X's name, retrieve X's
address, and retrieve X's phone number. All three transactions are sent to the DBMS at
the same time. The DBMS processes all three in parallel and sends the results back to the
middle server as each task is completed. The middle sever takes the three individual
results, combines them into one result, and sends it back to the client.

Another way to spread out the processing across multiple machines is to have a
distributed database or even distributed database servers. The first has a single DBMS
that manages databases stored on different disk devices, as shown in Figure 34.8. This
spreads out the I/O activity required of each database to specific disk devices.

Figure 34.8.

A distributed database configuration using the same Informix DBMS.

The second method is to have multiple DBMSs on different machines, as shown in
Figure 34.9. That way, each DBMS is able to process more on its machine's CPU. These
two situations dictate how an application interacts with the databases and where it gets its
data, but any of the application situations mentioned previously work on either of these
distributed options or on a non-distributed option.

Figure 34.9.

A distributed Informix DBMS.

When developing applications to work with an Informix DBMS, it is best to determine
the workload required. Any of the situations previously discussed work with an Informix
DBMS and can be combined in many different ways. For example, a single DBMS with a
distributed database can have local OLTP and batch clients as well as two-tiered and
three-tiered clients. Always develop systems that are scalable to the needs of the
business. A well-built application can start out small and expand easily over the years.

Not only is it a good idea to put some thought into the type of client application that is
built, but also it may be wise to use one of the accepted methodologies for application
design.

Many different methodologies are available, so choose the one that best fits the size of
the application, business needs, available development resources, and time frame. Upon

completion of the client design and architecture, you must decide what tool to use to
actually develop the application.

Tools for Application Development

Informix and other vendors provide many tools to develop applications that access an
Informix DBMS. Choosing a development tool depends on the business's needs, the size
of the application to build, the available development resources, and the time frames and
knowledge base of developers.

Tools to choose from include

• Embedded SQL

• INFORMIX-4GL

• INFORMIX-NewEra

• Open Database Connectivity (ODBC) Tools

• Prebuilt applications

Embedded SQL

Embedded SQL is the process of embedding SQL statements among other statements in
many different programming languages and producing the same results as stand-alone
SQL.

The four embedded SQL products offered by Informix are

• INFORMIX-ESQL/C

• INFORMIX-ESQL/COBOL

• INFORMIX-ESQL/Ada

• INFORMIX-ESQL/FORTRAN

The ESQL products allow a programmer to use SQL for accessing and manipulating
databases from a third-generation language; they are INFORMIX-SQL application
program interfaces. In addition, I discuss

• What is ESQL?
• Uses of ESQL

What Is ESQL?

ESQL is the Informix Corporation abbreviation for embedded SQL. Embedded SQL is
the SQL statements that are embedded in the program. You can write the SQL statements
into the programs just as if they were a normal statement of the programming language.

Informix created an ESQL product for the following languages: C, COBOL, FORTRAN,
and Ada. These products work as application programming interfaces (APIs). The
following list shows the step-by-step processing procedures that the Informix APIs
follow:

1. You start with an ESQL source program containing embedded SQL.

2. The ESQL preprocessor is a program that locates the embedded SQL
statements within your source program and converts them into
procedures.

3. The new source program contains the converted procedures.

4. The source program runs through the language compiler.

5. After going through the language compiler, the source program is an
executable program after it links with the API procedures.

6. The SQL API is a library containing application programming interface
procedures.

After these processing steps are complete, the database server follows through with the
SQL statements. SQL API products allow you to embed SQL statements into the host
languages. SQL statements can be used two ways: static embedding or dynamic SQL.

Static embedding is the use of SQL statements as part of the source code, whereas
dynamic SQL is statements that are not part of the source code but are SQL statements
composed of a string of characters constructed at the time of execution. Dynamic SQL
can create SQL statements from the user input. After the input is received, the program
creates and stores the SQL statements. Next, it prepares a statement and has the database
server review it prior to execution. Note that a select statement that produces a single-row
response will process, but if multiple rows of data are to be returned, the server will
return an error code.

ESQL enables you to use statements that return one row of data or no data at all. If a
statement will return more than one row of data, a cursor is used. A cursor is a data
structure that processes the current query. The following list provides a brief description
of how a cursor is used to process your SQL statements:

1. DECLARE the cursor.

2. OPEN the cursor.

3. FETCH the data.

4. CLOSE the cursor.

The DECLARE statement specifies a cursor name and allocates storage for the associated
select statement. The OPEN cursor statement opens the cursor and starts the processing by
passing the select statement to the database server. The FETCH statement retrieves the
output data. The CLOSE statement closes the cursor after the last row is fetched. All of
these statements--DECLARE, OPEN, FETCH, and CLOSE--are used as part of the program.

A statement returning single rows of data or no data can be handled like standard
statements of the language. Statements returning more than one row of data are used with
a cursor. Static SQL statements can be used directly in the program and dynamic SQL
statements can be created at execution time.

The following code shows SQL statements embedded in a COBOL program:

EXEC SQL
 DELETE FROM table1
 WHERE field1 = fld-1
END-EXEC.

The following code shows SQL statements embedded in an Ada program:

EXEC SQL
 DELETE FROM table1
 WHERE field1 = $fld1;

The following code shows SQL statements embedded in a FORTRAN program:

EXEC SQL
 DELETE FROM table1
 WHERE field1 = :fld1

Uses of ESQL

The main use for embedded SQL (ESQL) is to allow SQL statements to be written into
programs as if they were the normal statements for that programming language. A
preprocessor translates the SQL statements into data structures for the specific source
programming language.

You can put SQL statements into programs written in other languages and the program
executes and retrieves data from the database.

The use of the DELETE, INSERT, and UPDATE SQL statements within your program
modifies the data in the database. The program can also create a cursor for updating,
inserting, or deleting rows of data. Remember that your program should be set up to
return errors while this type of processing is in the program.

The two additional uses for embedded SQL are

• Embedding data definition statements

• Embedding grant and revoke privileges

Data definition statements are used to create a database and define the structure. This
type of processing is usually not part of the program because a database is created only
once but updates are done many times. The selection of the database can be embedded as
part of the program's SQL code.

Granting and revoking privileges can also be embedded in your program. Grant and
revoke statements either give access or revoke access to a database or specific tables.
This allows you to control who can perform specific functions on your database. Because
the grant and revoke statements are performed so often, it is simpler to embed the
authorizations in a program.

Informix's Fourth-Generation Language

A fourth-generation language or 4GL is a simple-to-use, easy-to-learn programming
language. To develop with a 4GL, the developer does not have to be an expert
programmer. INFORMIX-4GL is a complete application development tool. When
building applications through INFORMIX-4GL, the developer can automatically create
an executable or code that can be incorporated into other C or COBOL programs.

INFORMIX-4GL was designed for database users to actually build their own
applications without learning how to be programmers. Using INFORMIX-4GL may be a
viable solution to meet a business's needs. Chapters 35 through 38, "Introduction to
4GL," "4GL Coding," "4GL Development," and "Advanced 4GL Development," provide
the insight on how to use INFORMIX-4GL for building applications.

Informix's NewEra

An even easier way to build applications to use an Informix DBMS is through Informix's
NewEra. NewEra is a graphical user interface or GUI, which is a front door into
INFORMIX-4GL. To build an application, all the coding is replaced by drag and drop
and point and click. INFORMIX-NewEra is a great tool to use for rapid application
development, especially in environments where applications are thrown away and
redeveloped. Chapters 39 through 41, "Introduction to NewEra," "NewEra Language,"
and "The NewEra Development System," provide a complete explanation of creating
applications using INFORMIX-NewEra.

Open Database Connectivity

ODBC, or Open Database Connectivity, is a Microsoft standard interface for generic
database access. An application programming interface (API), ODBC is a set of database
calls that can be used within application programs to access any database system. ODBC
doesn't care what type of database server is being used, as long as that database server
being accessed is ODBC-compliant. Any program written with ODBC calls should be
able to work with all of these database systems: Informix, Sybase, Oracle, Access, and
FoxPro.

Besides being ODBC ready, Informix provides three tools to make the development of
ODBC applications easier. Each of these tools uses ODBC to perform its specific tasks.
The three tools are

• INFORMIX-CLI

• INFORMIX-DCE/NET

• INFORMIX-Enterprise Gateway Manager

INFORMIX-CLI is another layer of calls around ODBC that allows SQL to be
dynamically run. Usually, SQL contained within application code must be compiled with
the code and be part of the application's executable. With CLI, which stands for call level
interface, SQL does not have to be preprocessed, but can be interactively submitted to
Informix at any time.

INFORMIX-DCE/NET, which stands for distributed computing environment/network,
allows ODBC-based clients, which can usually access local Informix database servers,
the ability to access remotely distributed Informix database servers.

INFORMIX-Enterprise Gateway Manager is very much like DCE/NET except it uses
ODBC to allow Informix-based clients the ability to access other database servers such as
Oracle or Sybase systems.

Purchase

Sometimes, the application a company needs is built by some other company. With
ODBC, more applications, even though they were written for Oracle or Sybase systems,
can now be easily ported and used with an Informix database. Usually, a consulting firm
creates a system for one company and then sells it to other companies, making minor
changes to meet the buying companies' special processing and database layouts. This is a
big decision to make with cost as the primary factor. Weigh the pros and cons carefully.
Just like buying a used car, you also purchase the problems. When buying a prebuilt
application, you get the bugs with it.

Summary

Having a DBMS on a computer system provides applications that are responsible for data
processing only, not data management. With a DBMS, there is one central process that
manages data and serves that data when requested. This allows the application developer
to concentrate on building efficient data processing programs.

When building an application, determining the type of process to build depends on the
requirements of the new application. Building a batch or OLTP process that accesses data
within a database is possible with an Informix DBMS. Informix DBMSs also allow for
different types of application architectures, such as local or remotely run clients.

Not only does the Informix server allow for different types of clients, but it also provides
tools to build these client applications. Informix provides tools to embed SQL within
programs written in C and COBOL. There are also Informix tools that build programs
using 4GL or GUI screens.

- 35 -

Introduction to 4GL
• What It Is and the Environment in Which It Works
• Compiled or Rapid Development System

o The Process of Creating Programs
o The Files Required and the Files Produced

• The Development Environment
o The Menu-Driven Environment (Programmer's Environment)
o The Command-Line Environment
o The Debugger

• Basic Language Features
o User Interaction: Windows, Forms, and Menus
o Programming Blocks
o Standard Language Constructs
o Screen I/O Language Constructs
o Database-Related Language Constructs
o Error-Handling Language Constructs

• Summary

by José Fortuny

This chapter is the first of a series of four chapters that introduce the INFORMIX-4GL
character-based development environment. This chapter is an overview of the features of
the 4GL development products of Informix and presents the basic language constructs as
well as the programmer's development and debugging environments. Chapter 36, "4GL
Coding," deals in detail with the components of the INFORMIX-4GL language, paying
particular attention to the specialized programming statements that Informix provides for
dealing with the database and the screen display of database-bound information. Chapter
37, "4GL Development," begins the discussion of issues of unique importance for the
software developer in 4GL: screens and reports. Database application developers write
programs to take input from the user who fills in the contents of a screen display. Later,
the data collected in the database is used to create reports to be displayed to the screen,
printed in a document, or transmitted electronically. Chapter 38, "Advanced 4GL
Development," continues the discussion of screens and reports initiated in Chapter 37 and
provides you with more complex screen designs and report layouts. Chapter 38 also
includes a discussion of error handling in INFORMIX-4GL and covers other, more
advanced, miscellaneous topics.

If you think of INFORMIX-4GL in terms of a language, Chapter 35 reviews its overall
framework and richness. Chapter 36 provides you with its basic vocabulary. Chapter 37
introduces the basic grammar of the language, and Chapter 38 discusses its advanced
grammar.

What It Is and the Environment in Which It Works

INFORMIX-4GL is a fourth-generation programming language that caters effectively to
the development of database applications with a character-based interface. INFORMIX-
4GL operates primarily on UNIX platforms, although there is also a PC-based version.

As a language, INFORMIX-4GL provides all the standard constructs of third-generation
languages: variable assignments, looping, testing, and flow of control, as well as a rich
collection of data types and programming statements for managing the interactions of a
user with an Informix database engine. In addition to the standard data types that you find
in most languages, such as integer and character, INFORMIX-4GL allows you to define
two exceptionally powerful data structures: the record and the array. The record data type
is a collection of members in which each member can have any valid Informix data type
(either a simple data type, another record, or an array). The array is a data structure of up
to three dimensions of values of the same data type; the values in an array can be any
simple Informix data type or records (an array of arrays is not allowed). The combination
of a record data type and an array of record data types is, as you see later, a most useful
data structure in representing and dealing with one-to-many relationships.

INFORMIX-4GL enables you to process database records one at a time, and some of
your programs might have a record-oriented structure in which you interact with the
database one record at a time. Because INFORMIX-4GL was designed to interface with
any of the Informix relational database engines, it supports direct SQL statements within
the code. This provides the developer the capability to request, in a single statement, that

the database engine process an active data set, a collection of rows that satisfy a common
set of criteria.

Because it was originally designed to operate in UNIX environments, INFORMIX-4GL
integrates well in such an environment. Like any other program, an INFORMIX-4GL
program can receive options and arguments from the command line when invoked and
can return exit codes to the environment upon termination. In addition, an INFORMIX-
4GL program can read the values of environment variables and behave appropriately
based on the values.

TIP: Suppose you define a UNIX environment variable that identifies the
database to use--for example, DBNAME=testdb--and your program is designed to
read and use this environment variable or is designed to receive an argument
from the command line when invoked. When you finish developing and testing
your code, no further changes to the code are required to place it into production.
The software accesses whatever database you set in the environment
(DBNAME=proddb) or pass to the program as an argument.

INFORMIX-4GL, as a product, comes equipped with the facilities required for assisting
application developers to design, code, and test software systems:

• A menu-driven development environment: the Developer's Environment.

• Command-line development facilities.

• An interactive debugger (available only with the Rapid Development
System).

Compiled or Rapid Development System

INFORMIX-4GL development licenses are available in two different versions: a
compiled version, distributed under the name INFORMIX-4GL, and an interpreted
version, named INFORMIX-4GL Rapid Development System (RDS). To match the two
development versions, Informix delivers runtime licenses for both products.

If you develop using INFORMIX-4GL, you produce an executable program file that runs
in the UNIX environment in which it is compiled. If you develop using INFORMIX-4GL
RDS, you produce a p-code file that is portable across machines and UNIX
environments; the runtime INFORMIX-4GL RDS can receive and execute a p-code file
created in another system that uses a development license of the same version. The
rationale for delivering compiled executables is speed; loading the compiled executable is
faster than loading the interpreted runner and p-code program. After the products are

loaded into memory, speed of execution does not favor decisively one product over the
other.

The programs written in both flavors of the development product are identical, and many
developers use the INFORMIX-4GL RDS environment to develop and debug code and,
when the software is ready, recompile the source with the INFORMIX-4GL product and
produce an executable file for distribution.

NOTE: There is actually a minor difference in the behavior of the compiled and
the interpreted versions of the language: The interpreted version initializes
variables automatically, but the compiled version does not. In any case, the
program should be in control of initializing variables appropriately, and the
difference in versions should otherwise not be noticeable.

CAUTION: If you develop in RDS and distribute compiled executables, do test
the compiled version as thoroughly as you did the interpreted version. Compiled
and interpreted identical versions of the product can have different bugs, and
they often do.

Debugging programs in INFORMIX-4GL RDS is a much easier task than in
INFORMIX-4GL. The former comes equipped with a debugger, whereas the latter does
not.

The Process of Creating Programs

Whether you use the compiled or the interpreted environments, the process of developing
and delivering software is essentially the same in both cases:

1. Design your program.

2. Create an ASCII file for each screen form in your program.

3. Compile each form and correct syntactical errors detected by the
compiler.

4. Create an ASCII file for each source code module in your program.

5. Compile each module and correct syntactical errors detected by the
compiler.

6. Define and compile the complete program.

7. Test, debug, and correct both syntax and logic.

You can accomplish these tasks within the UNIX shell, using editors to create the ASCII
files required and commands to compile and link the modules into a program, but it is
easier to accomplish them within the Programmer's Environment, a menu-driven
development environment provided by Informix. The Programmer's Environment
actually guides you through the process of creating and editing the required ASCII files
using the editor of your choice and compiling and linking the final program. If you work
with the RDS product, the Programmer's Environment also offers you debugging options.

The Files Required and the Files Produced

The directory that stores your program contains a mixture of files: source files for forms
and modules, compiled forms, object files or p-code for compiled modules, and
executables. All or some of these files can be present in the system at any one time. In
addition, while you are working in the development environment, the system creates
backup files of the code you are editing. To distinguish between files, Informix uses
different suffixes that identify the nature and contents of each file. Table 35.1 outlines the
list of possible file suffixes.

Table 35.1. File contents and identifying suffixes.
Suffi
x

Contents

per Form source code
4gl Module source code
err Error file for both forms and modules; contains source, errors, and

warnings
frm Compiled screen form
4go Interpreted module p-code
o Compiled module object
4gi Interpreted program p-code (concatenated .4go files)
4ge Compiled program
c C code source equivalent to 4GL source
ec Intermediate C source file
erc Object error; contains source and errors

pbr Form source code backup (Programmer's Environment)
fbm Form object backup (Programmer's Environment)
4bl Module source code backup (Programmer's Environment)
4bo Object backup (Programmer's Environment)
4be Program backup (Programmer's Environment)
4db Debugger initialization file

A typical directory listing containing a small application program is likely to look like the
image in Figure 35.1. Note that, at the moment the listing was taken, the module
main.4gl was open for editing; the corresponding backup files are displayed in the
listing.

Figure 35.1.

A listing of a typical program directory.

The Development Environment

The Development Environment

Informix provides two interfaces for developing applications: a menu-driven
environment, named the Programmer's Environment, and a command-line environment.

The Menu-Driven Environment (Programmer's Environment)

The Programmer's Environment is a menu-driven application development system that
caters to the entire process of creating programs. It facilitates the process by guiding the
developer through the steps required, from creating the ASCII files that contain forms
and source code modules, through the compilation and generation of objects, to the final
assembly of an executable program.

To invoke the Programmer's Environment, use the command i4gl if you use the
compiled version of the software or r4gl if you use the Rapid Development System.

The Programmer's Environment uses ring menus at every level. You can access the
various options of each ring menu by either typing the capital letter that identifies the
option or by moving the cursor with the space bar or the arrow keys and pressing the
Enter or Return key when the desired option is highlighted.

The main menu of the Programmer's Environment is displayed in Figure 35.2.

The options in the main menu functionally group the various tasks that are performed on
each component of a completed application program. You are provided with a submenu
to create and edit source code modules (Module), create and edit screen forms (Form),
and assemble modules into a complete program (Program), and if you installed
INFORMIX-SQL on your system, you can access its main menu (Query-language). All
menus and submenus in the Programmer's Environment offer an Exit option to navigate
through the menus or to terminate the development session.

Figure 35.2.

The Programmer's Environment main menu.

The Module submenu of the Programmer's Environment shows a slight difference
between the compiled and the RDS versions of INFORMIX-4GL. Figure 35.3 shows the
submenu for the RDS version.

Figure 35.3.

The Module submenu in the RDS version of the Programmer's Environment.

The options in the Module submenu allow you to create (New) or edit (Modify) a source
code module; when you make either of those selections, the system opens a window with
the editor you chose by setting the environment variable DBEDIT and loads the file to
modify if appropriate. Usually, the default editor is vi, but you can reset that variable to
emacs (DBEDIT=emacs), for instance. Make sure the editor you select to create source
code module files actually creates ASCII files that are free from formatting and printing
embedded controls. Other options in the Module submenu allow you to create an object
code file (Compile) for the source code module that you select, assemble the executable
file for the program you select (Program Compile), and execute the program located in
the working directory (Run). If you have the RDS version of the product, you can also
start the Debugger with the compiled program in the current directory (Debug). The
Debugger is not available with the compiled version of the product.

After New or Modify, when you exit the edit session of your source code module,
INFORMIX-4GL presents you with a submenu that offers you choices of actions to
execute on your edited file. This Modify Module submenu is displayed in Figure 35.4.

Figure 35.4.

The Modify Module submenu.

From the Modify Module submenu, you can create an object file (Compile), save the
code (Save and Exit), or do away with your modifications (Discard and Exit).

If you choose Compile, you see the submenu displayed in Figure 35.5.

Figure 35.5.

The Compile (1) Module submenu.

If your application has multiple source code modules to assemble into the finished
executable, you choose the option to create an object file (Object) for the current module.
If your program has only one source code module, the one about to be compiled, and
there are no other library objects to be linked into the program, then you choose to make
both the object code file and the executable file (Runable) at the same time.

If the compiler finds no errors in your code, it quietly places you back in the Modify
Module submenu with the Save-and-Exit option highlighted so that you can press Return
and accept it, saving the modified source code you just compiled. If the compiler
encounters errors in your source code module, it presents you with the Compile (2)
submenu, displayed in Figure 35.6.

Figure 35.6.

The Compile (2) Module submenu.

The most sensible option at this point is to fix the errors found (Correct), which places
you back in editing mode. This time, however, the edit file contains both your original
code as well as embedded error messages. These error messages highlight the compiler's
sense of where the error occurred (indicated by the up caret on the line immediately
below the error) and what the error was (with an error number so that you can refer to the
Informix Error Messages manual for an idea of how to solve the problem, and a brief
error description, which, for the most part, should be enough to correct the error). Figure
35.7 shows a sample error message.

When correcting errors in the module error file, you do not have to do anything about the
error messages that the compiler embedded in the file. The compiler removes them as
you exit the edit session, and they are no longer there when you save the contents of the
file.

Figure 35.7.

A sample module.err file.

TIP: Most of the time, INFORMIX-4GL is accurate at assessing where an error
in a source code module occurred. With statements that require a termination
clause that is missing, such as if...end if, while...end while, case...end case,
and so on, it does not know where the end of the statement should have been and
lists those errors at the end of the file. Errors of this kind can mask the location
of other errors. If you are presented with an error within your program that

makes no sense to you, check the end of the error file for possible statement
block terminators that are missing before you start correcting otherwise perfect
statements.

Figure 35.8 shows the Form submenu of the Programmer's Environment.

Figure 35.8.

The Programmer's Environment Form submenu.

The options in the Form submenu allow you to create (New) or edit (Modify) a form
source file; when you make either of those selections, the system opens a window with
the editor you chose by setting the environment variable DBEDIT and loads the file to
modify if appropriate. Other options of the Form submenu allow you to create a compiled
form file (Compile) for a form that you select or create a skeleton form that includes all
the columns from the tables you select (Generate).

After New or Modify, when you exit the edit session of your form source module,
INFORMIX-4GL presents you with a submenu that offers you choices of actions to
execute on the edited file. This Modify Form submenu is very similar to the Modify
Module submenu displayed in Figure 35.4. In fact, all the submenus described for
modules apply equally to forms; the Compile Form module is similar to the Compile (2)
Module displayed in Figure 35.6, and error messages found in the form error file look the
same as those displayed in Figure 35.7, except that the pipe symbol (|) is replaced by the
pound sign (#).

The Program submenu of the Programmer's Environment is somewhat different between
versions of INFORMIX-4GL. Figure 35.9 shows the submenu for the RDS version.

Figure 35.9.

The Program submenu for the RDS version of the Programmer's Environment.

The options in the Program submenu allow you to create (New) or alter (Modify)
program definitions--that is, define the component source code modules and objects that
make up the completed program. Other options in the Program submenu allow you to
assemble an executable file for the program you select (Compile) and execute the
program located in the working directory (Run) or just list the tasks required to create an
executable for the program you select (Planned Compile) without actually compiling and
linking the objects. You can also remove the definition of a Program from the database
(Drop in the compiled version or Undefine in the RDS version). If you have the RDS
version of the product, you can also start the Debugger with the compiled program in the
current directory (Debug).

NOTE: INFORMIX-4GL keeps program definitions in a database named
syspgm4gl. If your system runs multiple database engine instances, make sure
that your environment is set up properly to access the instance of the database
engine that stores syspgm4gl. When INFORMIX-4GL cannot find the syspgm4gl
database, it asks you whether it is permissible to create it.

The New Program or Modify Program submenus show a slight difference between the
compiled and the RDS versions of INFORMIX-4GL. Figure 35.10 shows the submenu
for the RDS.

Figure 35.10.

The New/Modify Program submenu for the RDS version.

The name of the program appears in the Program field and can be altered (Rename). In
the RDS version of the software, you can change the name of the RDS runner, which
displays in the Runner field and is used to execute the p-code (Program Runner). (By
default, it is fglgo but can be relinked to incorporate other objects, usually .o files,
instead of those provided by Informix.) There is no Runner in the compiled version of the
software because you link executables for the environment. In the RDS version of the
software, you can also change the name of the RDS debugger, which displays in the
Debugger field and is used to debug the p-code (Program Debugger). (By default, it is
fgldb but can be relinked to incorporate other objects, usually .o files, instead of those
provided by Informix.) You use the remaining options (4GL, Globals, and Other in the
RDS version of the software; 4GL, Other Source, Libraries and Compile Options in the
compiled version) to modify the appropriate entries in the multiline sections of the screen
form.

The Global Source and Globals Source Path section identifies the source code modules
that contain the definitions of the global variables in this program and the location of
those files. This section appears exclusively in the RDS version of the software. The 4gl
Source and 4gl Source Path section identifies the modules that are to be included in the
Program and linked into the p-code or executable as well as the location of those files.
The Other .4go and Other .4go Path section allows you to link into the p-code of the
Program module objects stored elsewhere (usually in libraries).

In the compiled version of the software, the Other Source/Ext and Other Source Path
allow you to link into the Program executable module sources (extension .c) or objects
(extension .o) stored elsewhere. Finally, you can include and link into the program
existing libraries (Libraries), and the compiler will automatically include the -l prefix.
The Compile Options entries will be passed to the compiler as typed.

The Command-Line Environment

In the command-line environment, the application developer creates first the ASCII files
that define the forms (.per files) and source code modules (.4gl files) that make up a
program. Usually, these files are created using an editor if the designer develops the
source code modules from scratch. These files can also be created using an application
generator that assists the developer in automating some of the repetitive tasks in
developing database applications.

TIP: All commands provided by Informix to invoke a product respond to the
argument -v by displaying the version of the product and its serial number. These
values are always required when you communicate with Informix technical
support for reporting and resolving problems.

Compiling Forms

When the source files for screen forms are available, they are compiled using the
form4gl command. The structure of this command is identical whether you use the
compiled version or the RDS version of INFORMIX-4GL. The command is invoked as
follows:

form4gl { [-l <screen lines of display (default = 24)>]
 [-c <display columns >]
 [-v]
 [-q] } <file name>.per

The options in this command are defined as follows:

• -l indicates the lines available on the terminal screen for displaying the
form.

• -c indicates the columns available on the terminal screen for displaying
the form.

• -v makes the compiler verify that the allocated display space for fields
matches the definitions of the fields.

• -q makes the compiler operate in silent mode; no messages are sent to the
terminal screen unless there are errors in compilation.

NOTE: To distinguish options and arguments that are required in a command line
or in a statement from those that are optional, I have enclosed the optional
arguments in square brackets ([]), whereas the required arguments are not

enclosed in brackets. I have used curly brackets ({}) to denote a grouping of
items, and pointed brackets (<>) to illustrate that the contents are to be filled in
as appropriate.

An alternative form of the form4gl command is used to generate default forms:

form4gl -d

Invoked in this manner, INFORMIX-4GL prompts the developer for the required
information: database to use, tables to include in the form, and name for the form. When
it is done, the system generates the corresponding .per and .frm files.

Compiling Source Code Modules

The commands to compile .4gl files are different in the two versions of INFORMIX-
4GL. In the RDS version, the command fglpc used to create object files (.4go files) is

fglpc { [-ansi]
 [-a]
 [-anyerr]
 [-p <pathname>] } <.4gl source code module> ...

The options in this command are defined as follows:

• -ansi makes the compiler check all SQL statements for ANSI compliance.

• -a makes the compiler check array bounds at runtime. (Use only for
debugging, because of its overhead.)

• -anyerr makes the runner set the status variable after evaluating
expressions (overriding the WHENEVER ERROR statement in the code).

• -p stores objects in the directory specified in <pathname>.

You can compile multiple .4go source code module files by including them in the list, or
you can use standard UNIX wildcards to specify the .4gl files to compile. If the
compilation is successful, the corresponding .4go files appear in the directory.
Otherwise, the appropriate .err files are placed in the current directory (or in the
directory indicated by the -p argument) and the developer receives a warning on the
terminal screen.

To collect all the object modules and concatenate them into a p-code executable file
(.4gi), use the UNIX command cat as follows:

cat <file name>.4go> ... <program name>.4gi

In the compiled version of the software, the object files are created by using the
command c4gl as follows:

c4gl { [-ansi]
 [-a]
 [-e]
 [-anyerr]
 [-args]
 [-o <program nam>.4ge] } <.4gl source code module> ...
 <.ec files> ...
 <.c files> ...
 <.o files> ...
 <library>

The options in this command are defined as follows:

• -ansi makes the compiler check all SQL statements for ANSI compliance.

• -a makes the compiler check array bounds at runtime. (Use only for
debugging because of its overhead.)

• -e makes the compiler perform only preprocessing steps; no compilation is
performed.

• -anyerr makes the runner set the status variable after evaluating
expressions (overriding the WHENEVER ERROR statement in the code).

• -args are other arguments that you want to use with the C compiler.

• -o <program name>.4ge is the name you want to give the executable. (By
default, it is a.out.)

• <.4gl source code module> is a list of source code module files to compile
and link into the program executable.

• <.ec files> is a list of ESQL/C files to compile and link into the program
executable.

• <.c files> is a list of C language source code files to compile and link into
the program executable.

• <.o files> is a list of object code files to link into the program executable.

• <library> is the name of the library to use in resolving function names
that are not part of INFORMIX-4GL or ESQL/C.

Executing Programs

To execute programs in the RDS version of the software, use the command fglgo as
follows:

fglgo { [-a]
 [-anyerr] } <program name>.4gi <program arguments>

The options in this command are defined as follows:

• -a makes the runner check array bounds at runtime.

• -anyerr makes the runner set the status variable after evaluating
expressions (overriding the WHENEVER ERROR statement in the code).

• <program name>.4gi is the name of the p-code program to execute.

• <program arguments> are command-line options and arguments that your
program was designed to receive at runtime.

To execute programs in the compiled version of the software, invoke it with the
following syntax:

<program name>.4ge <program arguments>

The options in this command are defined as follows:

• <program name>.4ge is the name of the executable file.

• <program arguments> are command-line options and arguments that your
program was designed to receive at runtime.

The Debugger

The Debugger is available only with the RDS version of INFORMIX-4GL. You can
invoke the Debugger within the Programmer's Environment or from the command-line as
follows:

fgldb { [-I <pathname>, ...]
 [-f <initfile>] } <program name>.4gi

The options in this command are defined as follows:

• -l <pathname> uses the directories specified in the <pathname> entries to
locate 4GL source code modules.

• -f <initfile> uses the file <initfile> as the initialization file for the
debugger and sets parameters for the debugging session.

• <program name>.4gi is the name of the p-code program to execute.

When it is invoked, the Debugger starts as displayed in Figure 35.11.

Figure 35.11.

The interactive Debugger screen with command and source windows.

The Debugger uses two screens to interact with the developer. An application screen is a
window that displays the running application. A debugger screen has two windows: a
source window that displays the listing of the source code module currently under review
(this window is displayed at the top of Figure 35.11) and a command window (at the
bottom of Figure 35.11), which allows the developer to issue commands to the Debugger
for various purposes. In Figure 35.11, the developer issued the command grow source
+3. Chapter 38 presents a more complete discussion of the Debugger.

Basic Language Features

The INFORMIX-4GL language was introduced in 1986, and it is a fourth-generation
language that is particularly suited to creating relational database applications. The
language includes standard SQL statements for accessing a relational database and
operating on tables and 4GL statements that operate on program variables stored in
memory. Statements in INFORMIX-4GL are case-insensitive except when included
within quotation marks as part of a string. Programs in INFORMIX-4GL are completely
free form; that is, the compiler ignores extra blank, tab, or newline characters. You can
use these characters to make programs more readable.

You can freely include comments in an INFORMIX-4GL program. Comments on a
single line are coded with the # (pound sign) in front of the comment string or with --
(two hyphens) in front of the comment string; anything from the # or -- to the end of the
line is treated as a comment. (Note that these comments needn't start at the beginning of a
line; they can begin at the end of a statement.) Comments that occupy more than one line
of text are enclosed between curly braces. The left brace ({) initiates a comment that can
span multiple lines of text and is terminated by the right brace (}).

User Interaction: Windows, Forms, and Menus

The major methods that INFORMIX-4GL provides for interacting with users on a
terminal screen are windows, forms, and menus. INFORMIX-4GL also provides other

minor methods for interacting with a user sitting at a terminal screen: prompts, messages,
and errors.

Windows

A window is a named rectangular area on the terminal screen. Windows can be opened
and closed. A list of open windows is kept by INFORMIX-4GL in the window stack. Of
all the open windows, the one that was last opened becomes the current window and is
placed on top of all others on the terminal screen. After you close the current window,
INFORMIX-4GL removes it from the terminal screen and from the top of the windows
stack and reinstates as the current window the one that was opened just prior. You can
programmatically switch the current window to another open window, and INFORMIX-
4GL moves the window you choose to the top of the stack and displays it on top of all
other open windows visible on the terminal screen.

All activity in your application occurs in the current window, and it is a good practice to
frame your windows with a border to make the separation between windows clear,
particularly when multiple windows are open and visible on the terminal screen. Figure
35.12 shows a screen with multiple windows.

Figure 35.12.

Application with multiple windows open.

Figure 35.12 shows four windows open and visible on the terminal screen. (More
windows could be open but completely hidden under other windows.) To frame each
window, a border was defined as an attribute of the window. Note that the error window
is the current window; Figure 35.12 shows the cursor on this window. At this point in the
application, the user can only input information in the current window; pressing the Enter
(Return) key continues processing.

Figure 35.12 illustrates the various components that a window can contain: forms, menus,
and prompts. The error window at the bottom of Figure 35.12 contains a prompt. The
visible input window (Location Contacts) contains a form. The largest window, at the
bottom of all windows and partially hidden by the input windows, contains a menu
labeled Actions, which is visible at the top of Figure 35.12.

Forms

A form is a collection of labels and input fields in which the user can input or edit
information that is stored in memory on program variables. Forms are the standard means
of entering information into the database. Figure 35.13 shows a screen form labeled
Input: Employer Locations.

Figure 35.13.

A screen form with multiple rows.

Figure 35.13 has labels, such as Code and Location Name, that appear above the input
fields they represent, and other labels, such as Address, City, St(ate), Phone, and Fax, that
appear to the left of the input fields they represent.

Forms can facilitate input of multiple records into a single table. (Figure 35.13 allows the
user to enter multiple locations for an employer.) Forms can also provide inputs of a
single record into a single table in the database. (Figure 35.14 allows the user to define
new employers into the system, one employer or record at a time.) They can also allow
the user to enter records in multiple tables at the same time. (Chapter 38 presents an
example of this technique.)

Figure 35.14.

Menu and screen form.

Menus

Menus provide users with a list of actions that, once selected, perform the task
represented by the choice. Figure 35.14 shows an example of a menu in INFORMIX-
4GL. The menu in Figure 35.14 is named Actions.

INFORMIX-4GL uses ring menus to display options. Ring menus use two lines to
display the menu options. The first line, called the menu line, displays the title of the
menu (Actions in Figure 35.14) and the options. The second line, named the menu help
line, displays a more verbose description of the menu option highlighted. (Nxt is the
option highlighted in Figure 35.14.) If the list of available options exceeds the screen
space to display them, INFORMIX-4GL displays an ellipsis (...) at the end of the line to
indicate that more options are available.

To select an option from the menu, the user can move to the desired option by using
either the arrow keys or the space bar and pressing Enter (or Return), at which time, the
program executes the code associated with the selected choice.

Users can also select and execute an option from the menu by typing the first letter of the
option. If multiple options start with the same letter (such as Del and deparTments in
Figure 35.14) and the user presses the letter d, INFORMIX-4GL cannot decide which is
the desired option and it displays a submenu with the options under contention in the
menu help line and keeps changing the options in this menu with every user keystroke
until there is a single option left. This option is then executed. In Figure 35.14, the user
must type three characters to break the tie between the Del and deparTments options. A
common practice in managing menu choices is to key each menu option on a different
character and display that character capitalized. Then the user types in the capital letter
associated with the desired option and the option is executed immediately. (Figure 35.14

illustrates this; pressing the letter t, capitalized in the option deparTments, the user
expects to immediately execute the code for that option.)

In addition to visible options, there can be two other types of options in a menu. Hidden
options are menu options that are disabled programmatically and cannot be executed
while hidden but can be redisplayed when they become active again. Invisible options are
options that are never displayed in the menu but are executed if the user presses the key
that activates them.

TIP: Many INFORMIX-4GL programs use an invisible option that allows the user
to execute a UNIX command and then return control to the application.
Typically, the bang (!) is the key that triggers this behavior to match its
counterpart in other UNIX commands. It is a good practice to include this hidden
option in your program.

Programming Blocks

An application usually consists of a collection of source code module files. Within each
source code module file, there can be one or many program blocks. A program block is a
collection of statements that are designed as a unit. The three types of program blocks in
an INFORMIX-4GL program are the MAIN, FUNCTION, and REPORT program blocks.
There must be only one MAIN block in any program, and the statements it includes must
be terminated by the END MAIN keywords. There can be many FUNCTION or REPORT
blocks, and for that reason, these are named and terminated: FUNCTION <function
name> ... END FUNCTION or REPORT <report name> ... END REPORT.

INFORMIX-4GL supports structured programming techniques, and it behooves you to
make extensive use of functions to encapsulate discrete, well-defined, single-purpose
tasks with a clearly defined set of arguments and return values. These can then be reused
in other applications that require the same functionality.

Within a program block, you can include INFORMIX-4GL statements, some of which
define statement blocks themselves and also require a termination clause. An example of
this type of statement is the CASE statement, which offers multiple branching capabilities.
The statement block starts with the keyword CASE and ends with the keywords END CASE.
Anything in between is part of the statement block.

CAUTION: Make sure you terminate the statement blocks! The compiler
becomes thoroughly confused if statement blocks are not terminated properly,
and it might list a large number of errors that are due to that omission and not to
the syntax of the statements deemed in error.

Standard Language Constructs

The INFORMIX-4GL command set includes all the standard statements that you expect
of any programming language: definitions and declarations, flow of control, compiler
directives, and storage management. The statements in the following lists are described in
detail in Chapters 36 and 37. Some of them are ignored altogether (for instance, GOTO and
LABEL) because they promote sloppy programming practices.

Definitions and Declarations

DEFINE

FUNCTION

MAIN

REPORT

Flow of Control

CALL

CASE

CONTINUE

END

EXIT

FINISH REPORT

FOR

FOREACH

GOTO

IF

LABEL

OUTPUT TO REPORT

RETURN

RUN

START REPORT

WHILE

4GL Compiler Directives

DATABASE

DEFER

GLOBALS

WHENEVER

Storage Management

INITIALIZE

LET

LOCATE

VALIDATE

Screen I/O Language Constructs

The INFORMIX-4GL command set includes a collection of statements designed to
facilitate screen and keyboard interactions. Note that all user's interactions occur between
the computer's memory and the screen or between the keyboard and the computer's
memory. The commands in the following list make those exchanges possible. The screen
I/O language constructs listed here are described in detail in Chapters 36 through 38:

CLEAR

CLOSE FORM

CLOSE WINDOW

CONSTRUCT

CURRENT WINDOW

DISPLAY

DISPLAY ARRAY

DISPLAY FORM

ERROR

INPUT

INPUT ARRAY

MENU

MESSAGE

OPEN FORM

OPEN WINDOW

OPTIONS

PROMPT

SCROLL

SLEEP

Database-Related Language Constructs

The INFORMIX-4GL command set includes all the SQL statements for data definition,
data manipulation, cursor management, dynamic management, query optimization, data
access, and data integrity. These statements were covered in the SQL sections of this
book (Chapters 26 through 29). The statements are used in the context of INFORMIX-
4GL programming in the three chapters following this one (Chapters 36 through 38).

Error-Handling Language Constructs

INFORMIX-4GL uses a global variable status and a global record SQLCA (SQL
communication area) to detect, record, and handle all exceptions in processing.

The global variable status indicates errors from SQL statements and interactive
statements. The global record SQLCA contains extensive information about the actions
carried out by the database engine and the errors and warnings encountered in executing
SQL statements and only SQL statements.

The SQLCA record is defined as follows:

DEFINE sqlca RECORD
 sqlcode integer,
 sqlerrm char(71),
 sqlerrp char(8),
 sqlerrd array[6] of integer,
 sqlwarn char(8)
END RECORD

The values contained in the SQLCA record are as follows:

sqlca.sqlcode 0 for a successful execution of the SQL statement.
NOTFOUND(100) For a successful SQL execution that returns no rows or runs

out of rows.
Negative number Error number after an unsuccessful SQL execution. The

variable status is set to sqlca.sqlcode.
sqlca.sqlerrm Not used.
sqlca.sqlerrp Not used.
sqlca.sqlerrd[1] Not used.
sqlca.sqlerrd[2] The serial value of the record inserted or the ISAM error

code.
sqlca.sqlerrd[3] Number of rows processed by the SQL statement.
sqlca.sqlerrd[4] Estimated CPU cost for the query.
sqlca.sqlerrd[5] Offset of the error into the SQL statement.
sqlca.sqlerrd[6] The rowid of the last row selected.
sqlca.sqlwarn[1] Blank if there are no other warnings; W if one of the other

array elements is set.
sqlca.sqlwarn[2] W if a value was truncated to fit into a char variable or for a

DATABASE statement, if this is a database with transactions.
sqlca.sqlwarn[3] W if an aggregate function encountered a NULL when evaluating

or for a DATABASE statement, if this database is ANSI-
compliant.

sqlca.sqlwarn[4] W if the number of items in the select list is not the same as the
number of variables in the into clause or for a DATABASE
statement, if this is an INFORMIX-OnLine database.

sqlca.sqlwarn[5] W if float-to-decimal conversion is used.
sqlca.sqlwarn[6] W if the DBANSIWARN variable is set and the last statement

executed is not ANSI-compliant.
sqlca.sqlwarn[7] Not used.
sqlca.sqlwarn[8] Not used.

Summary

This chapter has given you a broad perspective of the facilities that INFORMIX-4GL
provides for creating robust character-based applications. The next three chapters will

take you through an increasingly rich exploration of the use and application of the
language features introduced in this chapter. Enjoy the journey.

- 36 -

4GL Coding
• What Should an INFORMIX-4GL Program Do?
• Basic Program Design

o Directory Structure
o Libraries
o Common Forms and Modules

• Skeleton of an INFORMIX-4GL Program
o Database
o Globals
o Main
o Function
o Report

• Data Types, Operators, and Functions
o Variables Definition, Initialization, and Scope
o Data Types and Implicit Conversions
o Operators
o General-Purpose Library Functions

• Basic Programming Statements
o Assignment
o Display to Screen
o Prompts, Errors, and Messages
o Delays
o Testing and Looping
o System Variables
o Error Handling

• Basic INFORMIX-4GL User Interface
o Option Setting for the Overall Program
o Menus
o Help

• Processing Inputs to a Single Table One Record at a Time
o Defining Effective Screens
o Screen File Coding: Automatic Generation and Further Editing
o Screen File Coding: The Instructions Section

o Window Management
o Menu Options and Menu Definition
o First Encounter with Cursors
o Finding Records and Displaying Records
o Adding, Updating, and Deleting Records
o Useful Hidden Menu Options

• Summary

by José Fortuny

This chapter deals in detail with the components of the INFORMIX-4GL language and
their use, paying particular attention to the specialized programming statements that
INFORMIX-4GL provides for dealing with the database and the screen display of
database-bound information.

From this point, you deal with a sample application for a fictitious company that
specializes in recruiting long-haul truck drivers. This chapter uses two tables from this
company's database, named recruiters, to illustrate the basic principles of INFORMIX-
4GL program development. These tables are employers and states.

The database schema can be extracted from the database by using the utility dbschema,
which is provided with all Informix products. This is only one of a group of utilities
provided by Informix for the purpose of migrating data between databases or engines.
This utility creates an ASCII file that can be used to re-create the table with the same
structure it had originally. The dbschema command is used as follows:

dbschema {[-t <tabname>]
 [-s <user>]
 [-p <user>]
 -d <dbname>
 [-ss]
 [<filename>]}

The options in this command are defined as follows:

-t <tabname> is the name of the table to extract or the word <all> to generate the
schema for all tables in the database.

-s <user> generates create synonym statements for <user> or <all> for all users.

-p <user> generates grant statements to grant permissions to <user> or <all> for all
users.

-d <dbname> indicates the name of the database used to extract the schema files.

-ss generates server-specific syntax.

<filename> is the name of the ASCII file that receives the SQL statements generated. (It
is a good practice to name this file .SQL so that you can deal with it as you do any other
SQL script.)

NOTE: To distinguish options and arguments that are required in a command line
or in a statement from those that are optional, I have enclosed the optional
arguments in square brackets ([]), whereas the required arguments are not
enclosed in brackets. I have used curly brackets ({}) to denote a grouping of
items, and pointed brackets (<>) to illustrate that the contents are to be filled in
as appropriate.

The database schema for these tables is displayed in Listing 36.1.

Listing 36.1. Schema of employers and states tables.
{ TABLE "jose".employers row size = 179 number of columns = 16 index
size = 78 }
create table "jose".employers
 (
 empl_code serial not null constraint "jose".n103_18,
 employer char(35) not null constraint "jose".n103_19,
 add_line1 char(35),
 add_line2 char(35),
 city char(18),
 state char(2),
 zip char(5),
 phone char(10),
 trl_len char(2),
 freight char(10),
 area char(15),
 nbr_trks char(4),
 authority char(1),
 leased char(1),
 dac char(1),
 authorized char(1),
 primary key (empl_code) constraint "jose".pk_employers
);
revoke all on "jose".employers from "public";
create index "jose".ix100_2 on "jose".employers (employer);
create index "jose".ix100_16 on "jose".employers (authorized);
{ TABLE "jose".states row size = 17 number of columns = 2 index size =
9 }
create table "jose".states
 (
 state char(2) not null constraint "jose".n101_4,
 state_name char(15) not null constraint "jose".n101_5,
 primary key (state) constraint "jose".pk_states

);
revoke all on "jose".states from "public";

The schema for these tables shows all permissions revoked from "public". The database
administrator must grant connect permissions to the database and table permissions to the
appropriate users before these tables are accessible to users.

What Should an INFORMIX-4GL Program Do?

Generally, an INFORMIX-4GL program should have a discrete, focused purpose and
encompass only the tasks that are directly related either to the tables being processed or
to the functional business process that the software serves. Try to apply to INFORMIX-
4GL programs the same principles of normalization that you apply to relational
databases. In the same way you don't create a single table to represent all aspects of your
enterprise, you design the scope of your programs to facilitate the execution of a single
business process. The larger the scope of your program, the larger the executables the
compiler generates. Larger executables are slower to load into memory and usually more
cumbersome for the user to navigate. An application in this scenario becomes a collection
of limited, focused purpose programs, glued together by some form of menu system.

NOTE: It was once common practice to develop an application by first developing
an INFORMIX-4GL program that provided only a cascading menu system. When
the user selected a specific task from any of the submenus of this program, the
program executed a call to run the selected task in a subshell, while the menu
program went dormant waiting for its child to be completed. Current Informix
database engines count both programs as separate users because both hold
connections to the database engine. Keep this user count in mind when
determining your user licenses, or perhaps use a different menu management
strategy for your application.

In this chapter, you develop software to query and input data into the employers table.
The fictitious company that recruits long-haul drivers needs software to support multiple
business endeavors: managing potential employers, receiving applications from
prospective drivers, and verifying employment histories of prospective drivers. Your
application should strive to mimic the nature of your business and support each business
function with separate programs. One program collects the functionality to support all
tasks related to managing potential employers, and another program collects all
functionality to receive applications from prospective drivers. This is not to say that the
programs are completely isolated islands; the program that manages potential employers
is likely to offer a peek at the prospective drivers that an employer hired but is unlikely to
provide facilities for receiving new driver applications.

Basic Program Design

If you embrace the concepts that each program in your application should have a narrow,
defined focus and that programs should be structured and modular so component reuse is
facilitated, then it becomes important to organize the various programs, forms, and
components of your application in such a way that sharing those components is simple. In
this section, I suggest a directory structure that provides an adequate infrastructure in
support of these principles.

Directory Structure

A possible organization of the UNIX directory structure to support these criteria for
developing applications is as follows (with the indentation indicating hierarchy):

Application Directory
 Module Directory Module Directory System Library
 Program Directory Program Directory Module Library Module
Screens
 Module File #1 Module File #2 Module File #n

At the root of the tree is the application directory. This directory collects all the organized
components that make up the application. Directly under the application directory, you
find the module directories. A module directory contains a logical grouping of program
directories and libraries, which contain programs that cooperate to perform various tasks
of a business function. In the fictional company, the application directory could be named
corporate accounting. The module directories could be accounts receivable, operations,
general ledger, recruiting, and so on. The system library, located at this level in the
hierarchy, contains components: source code module files and objects and form source
files and objects that are used by all modules. For instance, the company-wide logo that is
displayed whenever a specific program is loaded is an example of a component located
here. Within the recruiting module, you might find a program directory named employers
(the example developed in this chapter) that collects all the functionality that is needed to
manage prospective employers. You might also have another program directory named
drivers that collects all the information about the truck drivers and provides the required
functionality to manage them: taking applications, verifying employment records,
verifying driving records, and so on.

In a directory structure like this, executable files (*.4gi or *.4ge) reside in the program
directories. Source and compiled screen forms (*.per and *.frm) reside also in program
directories but may be found in module screens directories and perhaps even in the
system library. Source code modules (*.4gl) and object modules (*.4go or *.o) are
located in the program directories, module libraries, and the system library. Each
program directory also contains the error log file for the program it defines. Defining a
program in any of the program directories requires that you identify the local globals file
and local source code modules and you include other objects that are located in
../<module library> or in ../../<system library>.

Executing a program in any program directory requires that your DBPATH variable point to
the directory where the executables are (usually the current directory), as well as to
directories that contain forms that are called by the program. The definition of DBPATH, in
this directory structure, becomes DBPATH=$DBPATH:.:../<module
screens>:../../<system library>.

Libraries

In this context, libraries are defined as repositories of functions or reports that perform a
specific task. These functions receive a collection of arguments and return a collection of
values without interacting with the calling program in any way other than through
arguments and returned values.

Libraries tend to be organized along the same criteria used to organize module
directories. There are multiple library directories, both at the module and system levels,
that collect similar types of objects. A library of error management routines collects all
error detection, error display, and reporting mechanisms, as well as adequate responses
depending on the severity of the runtime errors encountered. There may also be a library
of common database delivery functions that collects source code modules that are defined
to receive a key for a table and return some descriptive value from that table. (For
example, upon receiving an employee code, it returns a string that concatenates the first
name, middle initial, and last name of an employee with appropriate spacing.) There may
also be a library of conversion functions that perform numeric-to-string conversions and
vice versa while rounding or truncating the numeric values to the desired number of
decimal places. There may also be a library of string-manipulation functions that collect
functions that find substrings within a string or center or right justify a string.

Common Forms and Modules

In the context of a programming language that is designed to deal with database
information, common forms and modules are defined as repositories of functions that
perform a task that requires user and database interaction through query or input within a
form or prompt. These functions respond to the user's action by returning a collection of
values to the calling program. Common forms and modules tend to be organized within
libraries along the same criteria used to organize module directories.

Many business applications require that you provide users with pop-up, zoom, or drill-
down facilities to fill in values during data entry that have to exist in a parameter table.
For instance, in the fictitious company, while entering the code for a state in an employer
address, you want to make sure that the spelling of the state is correct and force the value
entered to be validated against a table of valid state codes. If the user does not remember
the state code or if he fails to provide a correct state code, you want to provide a pop-up
window that allows the user to view the valid state codes and select the appropriate value,
which is then returned to the calling program. The screen forms and source code modules
for this type of zooming operation is used throughout an application and become prime
candidates for a common library.

Accounting applications usually require the user to provide an account, or a pair of
accounts, for recording or posting a business transaction. A pop-up window for providing
the suggested defaults and allowing the user to alter the defaults is also a typical example
of a screen form and its processing source code that are candidates for placement in a
common access library.

Skeleton of an INFORMIX-4GL Program

The basic skeleton for an INFORMIX-4GL program consists of the following program
blocks (placed in a single source code module file or in multiple source code module
files):

[database <dbname>] --Required if the program interacts with a database
[globals] --Only one globals definition per program
 <global variable definition>
 end globals]
[globals "<file containing globals definitions>"]
 --Many global declarations per program
main --One, and only one, is required in a program
 <local variable definitions>
 <4GL statements>
 <function calls>
 <database interactions>
end main
[function <function name> (<parameters>) --A program may have many
functions
 <local variable definitions>
 <4GL statements>
 <function calls>
 <database interactions>
 [return <return variables>]
 end function]
[report <report name> (<parameters>) --A program may have many reports
 <local variable definitions>
 <4GL statements>
 <report statements>
 <function calls>

end report]

Each of these program blocks is defined in more detail in the following sections, except
for reports, which are covered in Chapter 37, "4GL Development."

Database

The database statement has the following syntax:

[database <dbname> [exclusive]]

The options in this command are defined as follows:

<dbname> is a database name on your database server.

[exclusive] opens the connection to the database in exclusive mode if there are no open
connections and prevents any other user from connecting to the database.

The database statement performs two functions. While developing the program, it
provides the compiler with a database to use when you define variables by reference to
database tables and columns. On execution, it opens a connection to a specific database
<dbname> and closes the connection to the database that was open prior to its execution.

The database name <dbname> used in this statement is a reference to a database in the
database server (dbservername) that is referenced by your environment
(INFORMIXSERVER setting). You may specify a different server and establish a connection
to a remote database by using the following notation <dbname>@<dbservername> or
`//<dbservername>/<dbname>' for the OnLine engine or
`//<dbservername>/<pathname>/<dbname>' or
`/<pathname>/<dbname>@<dbservername>' for the SE engine.

Examples of the database statement are

database recruiters
database recruiters@on_fort_tcp

Globals

The globals program block has two forms. The first version declares and defines the
program variables that have global scope throughout the program. The second version
identifies a file that contains global definitions to be used in the source code module that
includes the statement.

The syntax for the first version of the statement is

[globals
 <global variable definition>
 end globals]

It is useful to isolate the globals definitions in a source code module file that can then be
referenced by the second version of the statement. It is convenient to include the
database statement in the globals source code module so that it is inherited by the source
code modules that use the second version of the globals statement.

The syntax for the second version of the statement is

[globals "<file containing globals definitions>"]

An example of the globals.4gl file used for the fictitious company is provided in
Listing 36.2.

Listing 36.2. globals.4gl for the fictitious company.
database recruiters

globals

define p_employers record like employers.*,
 is_valid smallint
end globals

The keywords globals and end globals encapsulate the globals program block.
Within a globals program block, you include global variable definitions. Variable scope
is discussed further in the section "Variables Definition, Initialization, and Scope," later
in this chapter.

Main

The main program block is required in a program. A program must have only one main
program block. This is the starting point in the execution of an INFORMIX-4GL
program:

main
 <local variable definitions>
 <4GL statements>
 <function calls>
 <database interactions>
end main

The keywords main and end main encapsulate the main program block. Within the main
program block, you can include local variable definitions, function calls, and any other
valid 4GL statement. The main program block is usually kept very small and often
limited to managing the flow of control for the application.

An example of a main program block is

main
 call InitEnv()
 call FlowOfControl()
end main

This sample program first calls a function called InitEnv and then calls the function
FlowOfControl. The program then terminates when it reaches end main unless it was
terminated programmatically before reaching the end main statement.

Function

A function can be called within the main program block or within another function or
report program block. The syntax for the call to a function, if the function returns more
than one value, must be as follows:

call <function name> (<parameters>) [returning <return variables>]

The options are as follows:

<function name> identifies the function called.

<parameters> is a list of values or variables passed to the function as arguments.

<return variables> is a list of program variables that are loaded with the values
returned by the function to the calling program.

If a function returns a single value, the call statement can be used to invoke it, but the
function can also be invoked within another command-line argument without using the
keyword call.

For example, the function MakeName is defined to receive three arguments--first name,
middle initial, and last name--and return a concatenated string with the structure <Last
Name>, <First Name> <Middle Initial>. The function could be invoked as follows:

call MakeName(p_employee.fname, p_employee.mi, p_employee.lname)
 returning p_full_name

Because it returns a single value, the MakeName function could be invoked as part of a
statement involving other components, as follows:

let p_print_name = "Employee: ", MakeName(p_employee.fname,
p_employee.mi,
 p_employee.lname) clipped, " (", p_employee.emp_no, ")"

This statement concatenates the string "Employee: ", the string returned by the
MakeName function, removing trailing blanks (clipped), and it follows this with the
string " (", followed by the employee code, followed by the string ")".

A function definition has the following syntax:

[function <function name> (<parameters>)
 <local variable definitions>
 <4GL statements>
 <function calls>
 <database interactions>
 [return <return variables>]
 end function]

The options in this definition are covered in detail later in this chapter. As an example, I
define the function MakeName:

function MakeName (fn, mi, ln)
 define fn, mi, ln char(80),
 full_name char(256)

 let full_name = ln clipped, ", ", fn clipped, " ", mi
 return full_name
end function

The order of the arguments in the calling clause and in the function definition is
important because the first argument in the calling statement is passed to the first
parameter in the function. This function returns a single value and therefore can be called
in the two forms described. Functions that return multiple values can be invoked only by
means of the call statement.

TIP: The function program block is reentrant, thereby allowing recursive
programming; a function can call itself. INFORMIX-4GL manages the stack on
your behalf.

Report

The report program block defines the format of a report. A report must be started
(initialized) before it receives output and must be finished after all output is sent to the
report. To manage a report, you must use the following logical sequence of statements:

start report <report name> [to {[<file name>]
 [printer]
 [pipe <program name>]}

The options in this command are defined as follows:

<report name> is the specific report to initialize.

to is the destination of the report and supersedes the destination defined in the report
program block.

<file name> sends the output of the report to a file.

printer sends the output of the report to the default printer or the printer specified by
your LPDEST settings.

pipe <program name> sends the output of the report to be processed by the program
<program name>.

To continue with the example for function MakeName, you can initialize a report that
prints the name stored in variable p_print_name and sends its output to the command pg:

start report PrintName to pipe "pg"

After the report is initialized with the statement start report, the program sends
records to the report formatter within some form of a loop using the output to statement
as follows:

output to report <report name> (<parameters>)

The options in this command are defined as follows:

<report name> is the specific report to send the record to.

<parameters> is the list of variables or constants to be sent to the report formatter.

Within a loop, you invoke the output to report statement as follows:

let p_print_name = "Employee: ", MakeName(p_employee.fname,
p_employee.mi,
 p_employee.lname) clipped, " (", p_employee.emp_no, ")"
output to report PrintName (p_print_name)

The order of the arguments in the output to report and in the report definition is
important because the first parameter in the output to report statement is passed to
the first parameter in the report.

Finally, after all records are sent to the report, the report must be terminated with the
finish report statement as follows:

finish report <report name>

The options in this command are defined as follows:

<report name> is the specific report to finish.

After looping through all the employee records in the fictitious company that you want to
print, you issue a finish report statement as follows:

finish report PrintName

A report definition has the following syntax:

[report <report name> (<parameters>)
 <local variable definitions>
 <4GL statements>
 <report statements>
 <function calls>
 end report]

The options in this definition are covered in detail in Chapter 37. As an example, I define
the report PrintName with the simplest possible syntax in a report:

report PrintName (p_name)
 define p_name char(256)
 format every row
end report

Data Types, Operators, and Functions

Most of the data types available in INFORMIX-4GL are part of the basic set of data types
that Informix engines support. The basic data types that Informix provides with its
database engines were introduced in Chapter 30, "Data Management Using SQL." A
summary of those basic data types is included in Table 36.1 for easy reference.

Table 36.1. Basic Informix data types by engine.
Type and Structure S

E
OnLin
e

char (n) Y Y
character (n) Y Y
dec (precision, scale) Y Y
decimal (precision, scale) Y Y
double precision (float precision) Y Y
float (float precision) Y Y
int Y Y
integer Y Y
money (precision, scale) Y Y
numeric (precision, scale) Y Y
real Y Y
serial (starting number) Y Y
smallfloat Y Y
smallint Y Y
date Y Y
datetime <largest> to <smallest> <fraction precision> Y Y
interval <largest> to <smallest> <fraction precision> Y Y
byte in <tablespace or blobspace> N Y
text in <tablespace or blobspace> N Y
varchar (<maximum length>, <reserve length>) N Y

INFORMIX-4GL offers two additional data types that are unique to 4GL. The
declaration and definition of all data types is covered in detail in the next section. These
additional INFORMIX-4GL-only data types are listed here to complete the list of
available data types in INFORMIX-4GL:

record {[like <tabname>.*]
 [[<varname> like <tabname>.<colname>, ...]
 [<varname> <datatype>, ...]]}
end record
array "[" <integer count> [, <integer count> [, <integer count>]]
"]"
 of <non-array datatype>

See the next section for the definitions and examples of these two types of variables.

Variables Definition, Initialization, and Scope

Variables of all types are declared and their data type is identified in the define
statement as follows:

define <varname> <datatype> , ...

It is appropriate to apply to INFORMIX-4GL programs the same variable-naming
conventions that are applicable in other programming environments at your organization.
In lieu of any other naming conventions, a very simple naming arrangement uses a p_
prefix to identify program variables, an s_ prefix to define screen records in forms,
perhaps a pa_ prefix to identify program arrays, and an sa_ prefix to define screen
records in forms. A more comprehensive naming set is shown in Table 36.2.

Table 36.2. Variable naming standards.
Variable
Name

Used for

g_<varname> Global variables
p_<varname> Non-record program variables
r_<varname> Record program variables
a_<varname> Array program variables
ra_<varname> Array of record variables
s_<record> Screen record in form definitions
sa_<record> Screen array of records in form

definitions

No matter what your naming standards are, adherence to the standards greatly simplifies
both development and maintenance tasks.

Examples of variable definitions have already appeared earlier in this chapter. Here are
some more examples, particularly for record and array data types:

define p_print_name char(256),
 is_valid smallint,
 p_emp_count, p_counter integer

This declaration makes p_print_name a character string of a fixed 256-byte length. The
is_valid variable, defined as a small integer, does not follow the naming conventions
illustrated earlier, but in the environment, it is always used as a Boolean test, so it has
also become a standard. The variables p_emp_count and p_counter are both defined as
integers.

Variables can also match the data types of the columns in database tables that they
represent. The like keyword is used to match the declaration to a column data type as
follows. (Please refer to the schema files for the fictitious company example, listed at the
beginning of this chapter.)

define p_empl_code integer,
 p_employer like employers.employer,
 p_state like states.state

The p_empl_code variable is defined as an integer to match the serial data type that the
column employers.empl_code has. p_employer inherits the data type and attributes of
the employers.employer column, and p_state inherits from states.state. Because
there is no reference to a database engine, INFORMIX-4GL attempts to find these
variables in the database managed by the server defined by the INFORMIXSERVER setting
unless the database statement in your program specifically points to a remote database.
To specifically define a variable from a remote database, while most of your variables are
defined by the database in the database statement, use the same notation illustrated
when defining the database block:

define p_remote_empl_code like test@on_fort_tcp:employers.empl_code

test@on_fort_tcp uses the notation <database>@<dbservername>, and employers is the
name of the table sought. p_remote_empl_code refers to column employers.empl_code
in the database test in database server on_fort_tcp.

A record variable is a data structure that collects multiple members that can be addressed
collectively or individually. One of the frequent uses of a record variable is to match an
entire table definition in the database to a program variable in memory. This definition
looks like

define p_employers record like employers.*,
 p_states like states.*

The record variable p_employers has as many members as there are columns in the
employers table. You can address members in a record singly or in groups as follows:
p_employers.city refers to the element city of the record p_employers and is often
used in this form for testing, assigning, entering, or printing. p_employers.employer
through phone refers to all members included between the employer and phone in the
same sequence as they are defined in the database table and is often used in entering or
when fetching records from the database. p_employers.* refers to all members of the
record and is often used to enter or to retrieve records from the table.

You can also make up records for program-specific purposes and define their members
individually as follows:

define p_address record
 empl_code like employers.emp_code,
 state like employers.state,
 state_long_name like states.state_name,
 employee_count integer,
 regional_airport char(25)
 end record

This record inherits data types from two tables for part of its members and uses basic data
types for others.

A variable of type array is defined as follows:

define pa_calendar array [12] of date,
 pa_employers array [500] of record like employers.*

The pa_calendar is an array of up to 12 dates, but the array pa_employers may contain
up to 500 elements, each of which has a record data structure that matches that of the
table employers. To refer to a specific entry in an array, you indicate the position of the
member in the array (the first member is identified by 1) as in
pa_employers[100].empl_code, which refers to the empl_code value of the 100th
element of the array pa_employers.

To initialize variables, INFORMIX-4GL uses the statement initialize and at times the
assignment statement let (which is covered later). The syntax for initialize is

initialize <varname> to null

An example is

initialize p_employers.* to null
initialize p_states.state_code to null
initialize is_valid to null

You can define variables in three places in an INFORMIX-4GL program: in globals,
outside of any program block, or inside a program block (main, function, or report). The

scope of a variable is determined by the position of the define statement that declares it.
Variables declared in the globals program block are available and visible throughout an
entire program; their values can be altered anywhere and are preserved when the flow of
control moves from program block to program block. Variables declared inside a
program block, as in a function program block, are available and visible only within
that program block. Variables defined outside all program blocks within a source code
module are global to all functions and reports (and main) also defined in that source code
module. When the name of a local variable is the same as the name of a global variable,
the value of the local variable is used in preference over the value of the global variable
within the local function. In general, when name conflicts occur, the most local variable
wins.

Data Types and Implicit Conversions

INFORMIX-4GL supports assignments of variables of different data types and attempts
to convert them implicitly as best it can. If it fails, it issues an error message.

Conversion between numeric data types is successful if the destination can actually store
the value it receives. For instance, assigning an integer to a smallint fails if the magnitude
of the integer exceeds 32,767, the value of the largest smallint. Numeric conversion
always occurs within an arithmetic expression because INFORMIX-4GL performs all
arithmetic with decimal data types of differing precision and scale.

Conversion between numeric data types and character data types is also possible in both
directions. A numeric data type can be assigned to a character data type, and as long as
the character string is large enough, the conversion functions. When the character
variable is not large enough to receive the numeric value, truncation occurs and the
SQLCA record reports that action. Assigning a character data type to a numeric data type is
acceptable as long as the characters are numbers or proper punctuation, such as a comma,
period, or plus or minus sign.

Conversion between character data types of different size may result in truncation if the
destination character variable is smaller than the original.

Dates are stored as integer values in INFORMIX-4GL and can be assigned to an integer
variable without problems. The reverse assignment from integer to date is also possible.
Dates start at 1/1/1900 (integer value 1 represents 1/1/1900; an uninitialized date variable
is displayed as 12/31/1899). Values smaller than 1 yield dates earlier than 1/1/1900.
Dates can also be converted to character, and as long as a character variable contains a
valid date format, it converts properly to a date.

The most difficult conversions are from date or character to datetime and interval
variables. A date variable can be converted to a datetime variable, but if the precision of
the datetime is smaller than day, Informix fills the time units smaller than day with
zeroes. A better method to convert date variables to datetime variables is to use the
extend operator and manage the conversion in your own terms. A character variable can

be converted to a datetime as long as the format within the string matches the
expectations of the datetime for the precision in its definition. The character variable
requires a format like yyyy-mm-dd hh:mm:ss.fffff with a space between the date and
the time or the appropriate portion of this format that matches the precision of the
datetime variable. Converting character variables to interval variables requires the same
formatting as the conversion between character and datetime variables.

Operators

INFORMIX-4GL supports operators that are also valid in SQL, such as those shown in
Table 36.3.

Table 36.3. SQL operators supported in INFORMIX-4GL.
Operator Functional Description

Mathematical Operators
+ Unary plus and addition
- Unary minus and subtraction
* Multiplication
/ Division

Relational Operators
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
= Equal
<> Not equal
!= Not equal
[not] between Inclusive range

Boolean Operators
not Unary
and Conditional and
or Conditional or

String Operators
|| Concatenation
matches Pattern matching

like Pattern matching
Set Operators

[not] in Value contained (or not) in list
[not] exists True if at least one row is returned by

subquery
all True if all values returned by subquery are

true
any True if any values returned by subquery are

true
some True if some values returned by subquery are

true
Null Operators

is [not] null True if the argument is not null

In addition, INFORMIX-4GL also supports some operators that are not available in SQL.
These are listed in Table 36.4.

Table 36.4. Additional INFORMIX-4GL operators.
Operator Functional Description
** Exponentiation
mod Modulus (division remainder)
, Concatenate strings
clipped Clip trailing blanks from a string
using Format data for display or report

purposes

For example, the following statements result in the variable p_result receiving the value
8:

let p_value1 = 2
let p_value2 = 3
let p_result = p_value1 ** p_value2

In the following code, the variable p_result receives the value 3:

let p_value1 = 17
let p_value2 = 20
let p_result = p_value2 mod p_value1

In the following code, the character variable p_result receives the value "John Doe":

let p_string1 = "John "
let p_string2 = "Doe "
let p_result = p_string1 clipped, " ", p_string2

Formatting with the using operator allows you to display dates and numbers in the
format you specify. For date values, the using clause uses the strings identified in Table
36.5.

Table 36.5. Date formatting with using.
Strin
g

Results in a Display of

dd Day of the month from 1 to 31
ddd Day of the week: Sun, Mon, ...
mm Month of the year from 1 to 12
mmm Abbreviation of the month: Jan, Feb,

...
yy Two-digit year
yyyy Four-digit year

For example, to place the string Tue, Apr 15, 1997 in the character variable p_result,
you use a date variable p_date with the appropriate value, as in the following code:

let p_date = "4/15/97"
let p_result = p_date using "ddd, mmm dd, yyyy"

using is used extensively in reporting and display statements. To format numbers, the
using clause uses the strings identified in Table 36.6.

Table 36.6. Number formatting with using.
Strin
g

Results in a Display of

Number or blank
& Number or zero
* Number or asterisk
< Left justify and remove trailing blanks
, Display a comma if there is a number to the

left

. Display a period
- Display a minus if the value is negative
+ Display a plus or a minus for the value
() Display parentheses around a negative value
$ Display the dollar sign

For example, the value -12345.6789 is displayed as ($12345.68) using the string
"((((($&.&&)". More examples of the formatting that can be achieved with using
appear in Chapter 37.

General-Purpose Library Functions

INFORMIX-4GL provides functions that can be called from C programs, but those are
not covered here. The functions that can be called within a 4GL program are listed in
bold below, followed by a brief description of their functionality.

arg_val (<integer expression>)

Returns the argument in position <integer expression> from the command line. The
argument in position zero is the program name itself. The value in <integer
expression> must be between 0 and num_args(), the count of arguments.

arr_count ()

Returns the number of records entered into a program array.

arr_curr ()

Returns the number of the program array row that the cursor is on when entering or
displaying arrays.

ascii (<integer number>)

Converts the <integer number> argument into its corresponding ASCII character.

<character variable or text string> clipped

Removes trailing blanks from a character variable.

current [<larger datetime value> to <smaller datetime value>]

Returns the system date and time in the precision defined by its arguments.

date

Returns a string with the system date, by default, in the following format: weekday,
month, day, year. This default format can be changed with the using clause.

date (<character date expression> | <character datetime
expression> | <integer expression>)

Converts the argument into a date value.

day (<date expression>)

Extracts the day of the month from a date contained in <date expression> and returns
it as an integer value.

downshift (<character string> | <character variable>)

Returns a string with all uppercase characters in its argument replaced by lowercase
characters.

err_get (<integer expression>)

Returns a character string that contains the description for the error message in the
argument <integer expression>.

err_print (<integer expression>)

Displays in the error line the description for the error message in the argument <integer
expression>.

err_quit (<integer expression>)

Displays in the error line the description for the error message in the argument <integer
expression> and terminates the program.

errorlog (<character string> | <character variable>)

Places the contents of its argument in the error log file for this program.

extend (<date expression> |
 <datetime expression> [,
 <larger datetime value> to
 <smaller datetime value>])

Returns a datetime expression equivalent to the date or datetime argument with the
precision specified.

fgl_getenv (<character string> | <character variable>)

Returns a character string with the contents of the environment variable in its argument.

fgl_keyval (<special key character string>)

Returns the integer value of the key specified in its argument. It is used in connection
with fgl_lastkey().

fgl_lastkey ()

Returns the integer value of the last key the user pressed.

field_touched ({ <name of a screen form field> } [,...]) |
 <name of a screen record>.*|
 <name of a screen array>.*)

Returns True if any of the fields on a screen have been altered; otherwise, it returns
False. The function filters out keystrokes that do not alter the contents of the fields
visited.

get_fldbuf ({ <name of a screen form field> } [,...] |
 <name of a screen record>.* |
 <name of a screen array>.*)

Returns a string with the contents of the specified arguments.

infield ({ <name of a screen form field> } [,...] |
 <name of a screen record>.*|
 <name of a screen array>.*)

Returns True if the cursor is currently on the field indicated by the argument.

length (<character string> | <character variable>)

Returns the number of characters in the argument.

mdy (<month number>, <day number>, <year number>)

Returns a date value created with the integer arguments.

month (<date expression>)

Extracts the month from a date contained in <date expression> and returns it as an
integer value.

num_args ()

Returns the number of command-line arguments used when invoking the program.

scr_line ()

Returns the number of the screen array row that the cursor is on when entering or
displaying arrays.

set_count (<integer expression>)

Specifies that <integer expression> is the number of rows that have been loaded into
a program array.

showhelp (<help number>)

Displays a message in the help line whose contents are those of the item <help number>
in the current help file.

startlog (<error log file name> | <error log file pathname>)

Opens (and creates if necessary) an error log file named in its argument.

time

Returns a character string with the current reading of the system clock.

today

Returns a date value with the current system date.

<numeric expression> units <datetime unit>

Returns an interval data type with the value of <numeric expression> converted to the
unit of measure represented in <datetime unit>.

upshift (<character string> | <character variable>)

Returns a string with all lowercase characters in its argument replaced by uppercase
characters.

{ <numeric expression> | <date expression> } using "<format string>"

Formats the numeric or date expression as specified by the <format string>. Refer to
Tables 36.5 and 36.6.

weekday (<date expression> | <datetime expression>)

Returns a number that indicates the day of the week for its argument. Sunday is
represented by 0, Monday by 1, and so on.

year (<date expression>)

Extracts the year from a date contained in <date expression> and returns it as an
integer value.

The next section provides examples of the use of some of the functions described here.
Further examples appear in the next two chapters.

Basic Programming Statements

INFORMIX-4GL basic statements are presented in this section classified under various
logical groupings. Later in this chapter and the next, I introduce other, more specialized
statements that handle the functionality provided by the user interface.

Assignment

The assignment of a value to a variable is handled by the let statement with the
following syntax:

let <varname> = <expression>

Some examples of assignments are

let is_valid = true
let p_string = "Hello world!"
let p_date = today + 7
let p_weekday = weekday(today)

Display to Screen

To display a program variable to a specific location of the screen that is not related to
fields in a form, you use the display statement with an at clause with the following
syntax:

display <varname> [, ...]
 [at <row>, <column>
 [attribute (<attribute> [, ...])]]

The at clause places the displayed value in the location specified relative to the current
window. If the at clause is omitted, INFORMIX-4GL switches the display to line mode
and displays successive statements on consecutive lines. The attributes that can be used in
displays, prompts, and inputs are discussed in the section titled "Option Setting for the
Overall Program."

Some examples of the use of display are

display p_string at 1,1 attribute (red, blink)
display p_date using "Today's date is: mm/dd/yyyy" at 2,1 attribute
(reverse)

Prompts, Errors, and Messages

Prompts, errors, and messages are three forms of interactions that INFORMIX-4GL uses
to relate to a user outside a screen form.

To elicit a response from a user without using a form, you can use the prompt statement
with the following syntax:

prompt { <varname> | <string> } [,...]
 [attribute (<attribute> [,...])]
 for [char] <varname>
 [help <help number>]
 [attribute (<attribute> [,...])]
 [on key (<key> [,...])
 <4GL program statements> }
end prompt

There are two segments in the prompt statement: the question and the response. Each
may have separate attributes. In addition, the prompt statement can turn into a statement
block if you provide for logical checks to be performed in response to the on key clause,
triggered when the user presses certain keys.

Examples of the prompt statement and statement block are

prompt "Are you ready to continue? (y/n): " attribute (yellow)
 for char p_answer attribute (reverse)
prompt "Enter the employer to process: " attribute (yellow)
 for p_empl_code attribute (white)
 on key interrupt
 call process_exit()
end prompt

When the program needs to advise the user that she made an error, INFORMIX-4GL
provides the error statement to produce a beep on the terminal and display a message in
the error line of the display, by default in reverse video. The error line is cleared from the
screen as soon as the user presses a key. The syntax of the error statement is

error { <varname> | <string> } [,...]
 [attribute (<attribute> [,...])]

Examples of the error statement are as follows:

let error_line = "State ", p_employers.state,
 " is not valid; try again"
error error_line attribute(red)

When the program needs to advise the user that some action took place or provide some
information that confirms performed activity, you can use the message statement with the
following syntax:

message { <varname> | <string> } [,...]
 [attribute (<attribute> [,...])]

The message statement is an error without a beep that displays in the message line of
the screen.

Examples of the message statement are

let msg_line = "You shouldn't do that!"

and

message msg_line
message "Searching ... Please wait ... " attribute (blink, green)

Prompts, messages, and errors display by default in the allocated prompt line, message
line, and error line. The location of these lines can be changed using the options
statement. If you want to display these types of messages elsewhere in the form, you can
use a function program block to manage the display any way you want. For instance,
Listing 36.3 provides a sample of a simple function to handle the display of errors.

Listing 36.3. A function to manage displays of errors.

function error_display(my_error_line)

This function receives a local error message to display in a box

define my_error_line char(80),
 answer char(1)
 open window errwin at 22,2 with 2 rows, 78 columns
attribute(border,white)
 display "Error: " at 1,1
 display " ", my_error_line clipped, " " at 1,10 attribute(reverse)
 prompt "Press Return to Continue: " for answer
 close window errwin
return
end function

Delays

To hold the execution of a program for a certain number of seconds, use the sleep
statement as follows:

sleep <seconds>

Testing and Looping

INFORMIX-4GL offers two types of conditional tests (if and case statements) and two
types of standard loops (for and while loops). (INFORMIX-4GL also offers the

combination goto and label to manage flow of control, but its discussion is omitted.)
These operate like their counterparts in other programming languages.

The if and case statement blocks are the standard conditional two-way or multiple
branching blocks. The syntax of these statements is as follows:

if <Boolean expression>
then
 <4GL statements>
else
 <4GL statements>
end if
case [(<expression>)]
when <expression>
 { <4GL statements> | exit case } [,...]
[...]
[otherwise
 { <4GL statements> | exit case } [,...]]
end case

The syntax for the unconditional for loop is as follows:

for <integer variable> = <beginning integer expression>
to <ending integer expression>
 [step <integer increment>]
 { <4GL statements> |
 continue for |
 exit for }
end for

The for statement block is executed starting at the value <beginning integer
expression> as long as the <integer variable> is less than or equal to the <ending
integer expression>. Each iteration through the loop increases the <integer
variable> by the amount specified in the step <integer increment> clause. The
statements continue for and exit for within the body of the statement block provide
for further flow of control; if the continue for statement is reached, the program returns
to the for statement, bypassing all statements after the continue for. If the exit for
statement is reached, control flows to the statement following the end for statement.

The syntax for the conditional while loop is as follows:

while <Boolean expression>
 { <4GL statements> |
 continue while |
 exit while }
end while

The while statement block is executed as long as the <Boolean expression> evaluates
to True. The statements continue while and exit while within the body of the
statement block provide for further flow of control; if the continue while statement is

reached, the program returns to the while statement, bypassing all statements after the
continue while. If the exit while statement is reached, control flows to the statement
following the end while statement.

System Variables

The INFORMIX-4GL programming language provides two system-wide variables to
detect termination conditions within a program. The int_flag variable is set to true if
the user presses the interrupt key--by default, the Delete key. The quit_flag variable is
set to true if the user presses the quit key--by default, Ctrl+\. The interrupt key can be
redefined in the options statement.

In addition to the system variables discussed, INFORMIX-4GL also offers three system-
wide constants: false with an integer value of zero, true with an integer value of one,
and notfound with a value of 100. You can use these values in regular expressions.

Error Handling

By default, INFORMIX-4GL terminates a program's execution when it encounters an
error and displays a message to the terminal screen but does not record the reasons for
this termination anywhere. This is the lowest common denominator for handling errors in
INFORMIX-4GL.

One step up from doing nothing is error logging. If the developer implements error
logging, an error still terminates the program's execution, but the cause of the error and
the source code module location where the program aborted is recorded in the error log
file. Each error in the error log file is recorded in four lines: the date and time of the run
that caused the error, the location of the error, and the error code and description of the
error. Here is a sample error log file:

Date: 10/23/1996 Time: 10:19:10

Program error at "update.4gl", line number 11.

SQL statement error number -201.

A syntax error has occurred.

A higher level of error management is also provided. Using the whenever error
statement, the program is not terminated when an error occurs but rather transfers control
to a developer-provided error-handling routine.

Error management is covered in detail in Chapter 38.

Basic INFORMIX-4GL User Interface

The most common method by which an INFORMIX-4GL program interacts with a user
is through the use of menus and forms. A developer can control the way the overall
program behaves in this interaction by setting options and providing adequate help. The
design and development of forms is postponed until the next section. Here you deal with
options, menus, and help.

Option Setting for the Overall Program

It is important in any development project that the settings used for interacting with users
through screens, menus, and submenus be standardized and reflect your preferences
regarding the interface. The options statement allows you to define the look and feel of
the application. You can use the options statement more than once in a program and
effectively change the look and feel of different sections of the program. The definition
of the options statement is as follows, and the standard default values for each option
are included between parentheses in the definition as well:

options { comment line <window line number (last - 1)>
 error line <window line number (last)>
 form line <window line number (first + 2)>
 message line <window line number (first + 1)>
 menu line <window line number (first)>
 prompt line <window line number (first)>
 accept key <key name (escape)>
 delete key <key name (F2)>
 help key <key name (Control-w)>
 insert key <key name (F1)>
 next key <key name (F3)>
 previous key <key name (F4)>
 help file <help file name>
 display attribute (<attribute (normal)> [,...])
 input attribute (<attribute (normal)> [,...])
 input { wrap | no wrap (no wrap)}
 field order { constrained | unconstrained (constrained)}
 SQL interrupt { on | off (off)}

All options that indicate a line are referencing the position of the line from the top of the
container window. If you look at the defaults, you notice that the menu (two lines)
appears at the very top of the window; the form starts immediately below the menu. The
comment and message lines share the same space, the prompt line is at the very top, and
the error line is at the very bottom of the window.

The accept key terminates interaction with the screen input or display and accepts the
inputs. The first four function keys are used in managing arrays in a display: Insert allows
the user to insert a line above the cursor; delete allows the user to delete the line where
the cursor resides; next and previous navigate through an array one screen at a time,
forward and back.

Attributes that can be used in display and input are of three kinds: color, appearance, and
special effects. Available colors are black, blue, cyan, green, magenta, red, white, and
yellow; these are automatically mapped to bold, normal, or dim on monochrome screens.
Appearance attributes are normal, bold, dim, and invisible. Special effects are blink,
reverse, and underline. These attributes can be used in combination.

The option input defines the behavior of the input statement when the user reaches the
last field in a form. If it is wrap, the cursor moves to the first field in the form when the
user presses enter; if it is no wrap, pressing enter after the last field in the form is
equivalent to pressing the accept key, forcing input to be terminated.

The option field order defines the behavior of arrow keys during screen interactions. If
it is constrained, the cursor always moves in the order in which the fields have been
defined by the programmer, the down arrow takes the user to the next field, and the up
arrow takes the user to the previous field. If it is unconstrained, the arrows take the user
to the fields that logically are directly on the path of the selected arrow key: The up arrow
key moves the cursor to the field that is above the current field, and the down arrow key
moves the cursor to the field just below.

The option SQL interrupt allows the user to terminate the execution of an SQL query
prematurely if on or not if off. This is a very useful option whose default is
counterintuitive. You normally want this option turned on.

You can find an example of the option statement later in this chapter, in Listing 36.6.

Menus

Menus are at the core of the INFORMIX-4GL user interface and are used to provide the
user with a mechanism for selecting actions to perform. You could view them similar to
the way you view a case statement block--multibranching selections driven by the user
choices. The style of INFORMIX-4GL menus created using the menu statement block is
the ring menu style.

Ring menus use two lines to display the menu options. The first line, called the menu
line, displays the title of the menu and the options. The second line, named the menu help
line, displays a more verbose description of the menu option. If the list of available
options exceeds the screen space to display them, INFORMIX-4GL displays an ellipsis
(...) at the end of the line to indicate that there are more available options. Actually, an
ellipsis on either side of the menu indicates that there are more options to be displayed in
the direction the ellipsis points.

To select an option from the menu, the user can move the cursor over to the desired
option by using either the arrow keys or the spacebar and pressing Enter (or Return), at
which time the program executes the code associated with the selected choice.

Users can also select and execute an option from the menu by typing the first letter of the
option. If multiple options start with the same letter, INFORMIX-4GL can't decide which
is the desired option, and it displays a submenu with the options under contention in the
menu help line and keeps changing the options in this menu with every user keystroke
until a single option remains. This option is then executed. A common practice in
managing menu choices is to key each menu option on a different character and display
that character capitalized. Then the user types in the capital letter associated with the
desired option and the option is executed immediately.

In addition to visible options, two other types of options can be in a menu. Hidden
options are menu options that are disabled programmatically and cannot be executed
while hidden, but they can be redisplayed and then become active again. Invisible options
are options that will never be displayed in the menu but will be executed if the user
presses the key that activates them.

The syntax for the menu statement block is as follows:

menu <menu name>
 { [before menu] |
 command { [key (<command key> [,...])]
 [<command name>]
 ["<description>"]
 [help <help number>]
 }
 { [hide option { all | <command name> [,...]] |
 [show option { all | <command name> [,...]] |
 [next option <command name>] |
 [continue menu] |
 [exit menu] }
end menu

A menu statement block can have two types of clauses. The before menu clause is used
to execute a collection of statements while the menu is activated and before the user can
make any selections. The command clause is used to define the menu options that the user
can select. Within either of these two clauses, there can be four subclauses. The hide
option clause is used to deactivate menu options and render them inaccessible and
invisible. The show option is the opposite of the hide option clause. The next
option directs INFORMIX-4GL to highlight the option indicated upon exit from the
current menu option. The continue menu option stops processing the statements in the
current subclause and transfers control back to the menu statement for the user to make
another selection. Finally, the exit menu option transfers control to the statement
immediately after the menu control block ends (after the end menu statement).

A menu can contain invisible options, which are defined by using a command clause that
has a key but no name. These options are always available to a user, as long as the user
knows the keys that trigger the invisible option.

An example of a menu showing most of these options is provided in the section titled
"Menu Options and Menu Definition," later in this chapter.

Help

INFORMIX-4GL uses customizable help files to provide context-sensitive help for an
application. In addition, I have already discussed the use of the menu help line to provide
a more descriptive, one-line message about a menu option. Screen forms also provide a
method for displaying a one-line message regarding the contents of the field that the
cursor is on. Help files provide the most comprehensive method by far for providing help.

Beyond the three forms of help delivery indicated, you could devise a complete help
subsystem that stores help messages in database tables and triggers the appropriate
selections from those tables when the user requests it.

In this section, I cover the principles used in designing help files. A help file is an ASCII
file that mixes help messages (lines that start with a character other than the period or a
pound sign), comment lines (lines that start with a pound sign), and control lines (lines
that begin with a period and are followed by a number). The basic structure of a help file
is as follows:

.<help number>
<help message>
[...]

Here is an example:

Help message on menu selection Exit
.1
Pressing E, Q or X will exit the current menu
Help on Printer Selection
.2

Use this option to select a printer. A pop-up window will appear that lists ...

The help files created must be compiled using mkmessage, whose syntax is as follows:

mkmessage <ASCII help file> <executable help file>

The <executable help file> that the program will use is declared in the options
statement block in your application.

Help in your application can be invoked by using the clause help in statements that allow
it, like this:

help <help number>

This will display the message associated with <help number> when the user presses the
Help key, which is also declared in the options statement block. Help can also be
displayed, at the programmer's discretion, by calling the function showhelp at any time,
like this:

showhelp (<help number>)

Processing Inputs to a Single Table One Record at a Time

This section contains an annotated collection of source code modules and a screen form
source file that have been designed to carry you from the beginning of the development
process to the production of a complete data entry and query program.

The steps in developing this application are carried out in basically the same order that
you would use to develop any INFORMIX-4GL program. The steps follow this
sequence: First, you develop the form source file and compile it; later, you develop the
program. You start the program by defining the window that will frame the application
and developing the options and menu for managing the interactions with the form
defined. You then develop, one after another, the functions that support the menu options.
You start with the Find command and introduce Query-By-Example, cursors, and the
construct statement; after the data is retrieved, the display statement shows records on
the form. Along with the retrieval of records from the database, you develop the
mechanism for navigating through the records (with menu options Next and Previous).
Afterward, I introduce the input statement in support of the Add and Update menu
commands. Finally, the Delete menu option allows you to develop a submenu to confirm
the action.

The purpose of this example is to allow you to see the various statements in action. It has
been designed with training in mind. It is not intended to be robust enough for production
use; in fact, in many places you are told what is wrong with the software design, and you
are given alternative courses of action to implement as enhancements to the example.

The software presented here allows a user to input information into the employers table
and uses an interface composed of a menu and a form, as shown in Figure 36.1.
Developing software to handle all basic interactions within this interface is the goal in
this section.

Figure 36.1.

The application interface.

Interactions between the user and the database are normally carried out through screens
(or screen forms). The user queries the database by making selections on a screen and
inputs or updates data in a database table through changes in a screen.

A screen form is displayed within a window. The first two lines of the window are
normally devoted to displaying a menu associated with the screen form. A screen form
consists of labels and fields. Information input on screen fields or retrieved from the
database is stored in program variables; thus, there is always an interaction between the
user and the computer's memory, or between the disk storage and the computer's
memory, in order for the ultimate exchange between the user and the database to take
place.

Defining Effective Screens

Here are some ideas to consider when you are laying out the screen forms for your
application:

• Use window borders to delineate the screen and distinguish it from the rest
of the desktop.

• Use the largest possible area of terminal screen that you can spare to
define the form. Lay the screen out clearly. Do not crowd too much
information into a single screen; use multiple screens to collect all the
information required even if you're dealing with a single table.

• Place the menu at the top of the window and visually separate it from the
form. I use a dashed line in this example.

• Place a title in the form in a visible and always consistent position, toward
the top of the form. The title should make sense to the user. (A better
placement for the title than the one in this example, which wastes a lot of
space, is on the dashed line that divides the menu from the form--the third
line in the window, toward the left, and in red or bold.) Form titles should
always be consistently placed on the same spot.

• Wherever possible, try to use whole words as screen field labels. The labels
should use names that are part of the everyday vocabulary of the users. If
more description is needed, use the comment line associated with each
form field. Minimize the use of abbreviations, and use only abbreviations
that are commonplace.

• Align the fields and field labels in your screen form so that they form easily
distinguishable sections that collect common information. If the form has
multiple sections, provide a visible separation between the sections by
using either a blank line or a dashed line.

• Place a dashed line that spans the whole width of the window two lines up
from the bottom border of the window. Display messages, errors, and
other useful information on the line between the dashed line and the
bottom border of the window.

• If the form contains a one-to-many relationship, place the one part of the
relationship at the top of the form and the many rows at the bottom of the
form. Labels for the one part of the relationship appear to the left of the
fields; labels for the many part of the relationship appear at the top of the
fields.

• Arrange fields on the screen logically from top to bottom and left to right.
For the one part of a relationship, place the fields in a column; for the
many part of the relationship, place the fields of information in rows (like a
table). Do not confuse users by displaying fields in one order and have the
users input data in a different order.

Screen File Coding: Automatic Generation and Further Editing

Screen forms are defined in an ASCII file that is created using the following syntax:

database { <dbname> | formonly } [without null input]
screen [size <lines> [by <columns>]]
 "{" ["<field label>"] |
 [\g <graphics characters: -|pqbd> \g] |
 "[" <field tag> "]"
 "}"
end
tables
{ <tabname> | <table alias> = <tabname> }
end
attributes
<field tag> = { <tabname>.<colname> | formonly.<field name> }
 [<field attribute> [, ...]] ;
end
instructions
 [delimiters "<start><end>"]
 [screen record <record name> ["[" <array size> "]"]
 ({ <tabname>.* |
 <tabname>.<colname> through <tabname>.<colname> |
 <tabname>.<colname> , <tabname>.<colname>, ... }
)
end

Several sections make up a form. You must have one database section and one attributes
section; you could have multiple screen sections, at most one tables section, and at most
one instructions section.

The database section specifies the name of the database to work with, unless you use the
keyword formonly, in which case the fields on the screen cannot be defined by reference
to columns in database tables. If you specify without null input, the system requires
that you do not leave any fields of information null on the screen, and it fills the empty
fields with a default of blank or zero.

The screen section of the form definition lays out the form and optionally declares its
size. Within this section, you include labels, fields, and graphics characters. The fields are
enclosed between square brackets ([]) and are given a tag to associate the field on the
form with a column and a collection of attributes. A graphics character string on the
screen starts and ends with the sequence \g. To form the character to display, use the
following characters:

- creates a horizontal line.

| creates a vertical line.

p makes the upper left corner.

q makes the upper right corner.

b makes the lower left corner.

d makes the bottom right corner.

The tables section of the form definition identifies the database tables that are used in
this screen. If you declare a database formonly, you do not need to include the tables
section in your screen form file.

The attributes section relates the field tags on the screen section with either database
table columns or formonly columns and with other attributes. The attributes section
of a screen form can utilize the attributes that are described briefly under the following
bold headings.

autonext

When the end of the field is reached, automatically place the cursor in the next field.

color = <color attribute> [where <conditional expression>]

Display contents of the field in <color attribute> color when the condition in the
where clause is true. <color attribute> can be blink, underline, reverse, left,
white, yellow, magenta, red, cyan, green, blue, or black.

comments = "<comment>"

Display this message when the cursor enters the field.

default = <default value>

Insert this <default value> in the field on input.

display like <tabname>.<colname>

Display the contents of the field using the display attributes defined for the column
identified in <tabname>.<colname>.

downshift

Convert all characters input to lowercase.

format = "<format string>"

Format date or numeric field as follows: Date values are formatted using the same rules
that were specified in Table 36.5. To format numbers, use the pound sign and a period.
Pound signs indicate a position for a digit, and the period indicates the position of the
decimal point.

include = ({ <value> | <value> to <value> } [, ...])

Only accept values included in the list as input.

noentry

Do not allow data entry on this field.

picture = "<format string>"

Format strings as indicated by the <format string> mask. The mask can use the
following characters: # for numeric values, A for character values, X for any printable
character, and <other> for characters that will appear as is.

required

You must enter a value in this field.

reverse

Display field contents in reverse video.

type { <data type> [not null] | like [<tabname>.]<colname> }

Assign the data type indicated by <data type>, or use the data type like
<tabname>.<Colname> for this formonly field.

upshift

Convert all characters input to uppercase.

validate like <tabname>.<colname>

Use the validation rules defined for <tabname>.<colname> to check the data input in this
field.

verify

After input, make the user input the contents of this field a second time.

wordwrap [compress]

In a multiline field, make the system wrap long words to the next line. The compress
clause prevents extra blanks required for proper display to be included in the program
variables that are associated with the fields.

Screen File Coding: The Instructions Section

The instructions section of the form definition file allows you to redefine the field
delimiters, which are square brackets by default. It also allows you to declare and define
screen records with the screen record clause. Screen records are defined collections of
fields on the screen that can be referred to as a unit.

To initiate the process of laying out your form, you can use the Forms: Generate option
of INFORMIX-4GL to get a starting screen that includes all columns of table employers.
The resulting form generated by INFORMIX-4GL looks like the one in Listing 36.4.

Listing 36.4. The generated form.
database recruiters
screen size 24 by 80
{
empl_code [f000]
employer [f001]
add_line1 [f002]
add_line2 [f003]
city [f004]
state [a0]
zip [f005]
phone [f006]
trl_len [a1]
freight [f007]
area [f008]
nbr_trks [f009]
authority [a]
leased [b]
dac [c]
authorized [d]

}
end
tables
employers
attributes
f000 = employers.empl_code;
f001 = employers.employer;
f002 = employers.add_line1;
f003 = employers.add_line2;
f004 = employers.city;
a0 = employers.state;
f005 = employers.zip;
f006 = employers.phone;
a1 = employers.trl_len;
f007 = employers.freight;
f008 = employers.area;
f009 = employers.nbr_trks;
a = employers.authority;
b = employers.leased;
c = employers.dac;
d = employers.authorized;
end

This generated form includes all columns in the table (or tables you have selected), and it
labels each column with the column name. Using vi, or your editor of choice, Listing
36.5 displays the form layout that matches Figure 36.1.

Listing 36.5. The edited form.
DATABASE recruiters
SCREEN
{
-- Press Ctrl-w for
Help ----
 \gp--------------------------------q\g
 \g|\g Employer Information \g|\g
 \gb--------------------------------d\g
 Code:[f000] Name:[f001]
 Address:[f002]
 [f003]
 City:[f004] State:[a0] Zip: [f005
]
 Phone:[f006]
 Trailer Length:[a1] Authority:[a]
 Freight:[f007] Leased:[b]
 Area:[f008] DAC:[c]
 Number of Trucks:[f009] Authorized:[d]

}
END
TABLES
 employers
ATTRIBUTES
f000 = employers.empl_code, reverse, noentry;
f001 = employers.employer, required, upshift,

 comments = "Enter the Employer Business Name";
f002 = employers.add_line1,
 comments = "Enter the First Line of the Address";
f003 = employers.add_line2,
 comments = "Enter the Second Line of the Address";
f004 = employers.city, upshift, required,
 comments = "Enter the City for this Address";
a0 = employers.state, required, upshift,
 comments = "Enter the State for this Address";
f005 = employers.zip, required, picture = "#####",
 comments = "Enter the Zip Code for this Address";
f006 = employers.phone;
a1 = employers.trl_len;
f007 = employers.freight;
f008 = employers.area;
f009 = employers.nbr_trks;
a = employers.authority;
b = employers.leased;
c = employers.dac;
d = employers.authorized;
END
INSTRUCTIONS
 delimiters " "
 screen record s_employers(employers.empl_code,
 employers.employer,
 employers.add_line1,
 employers.add_line2,
 employers.city,
 employers.state,
 employers.zip,
 employers.phone,
 employers.trl_len,
 employers.freight,
 employers.area,
 employers.nbr_trks,
 employers.authority,
 employers.leased,
 employers.dac,
 employers.authorized)
END

This form design illustrates the use of graphics characters in the screen section of the
form. Graphics are used to furnish a title for the form. It also illustrates the use of the
required keyword, the upshift and downshift keywords, and the reverse, noentry,
comments, and picture keywords. The instructions section illustrates the use of the
delimiters clause, which in this instance removes the visible delimiters by making them
blank and defines a screen record.

To manage the use of forms in a program, INFORMIX-4GL provides the following three
statements:

open form <form name> from "<filename>"

This statement names the form <form name> and opens it with the contents of file
"<filename>", which must match a compiled form file. Note that this statement does not
display the form; it merely opens it and places it in the stack. From now on, refer to this
form as <form name> in the program. To display the form, use the following statement:

display form <form name> [attribute (<attribute> [, ...])]

In this statement, <attribute> can be reverse, blink underline, normal, bold, dim,
invisible, white, yellow, magenta, red, cyan, green, blue, or black. The form is
displayed within a container window, and if attributes are not provided, the form inherits
the attributes of the container window or, if those are missing, the attributes defined as
overall program options. The close form statement closes the form, and its syntax is as
follows:

close form <form name>

The use of forms is exemplified in Listing 36.6 in the next section.

Window Management

Windows are the standard containers for forms in INFORMIX-4GL programs, and the
following four statements in the language are used to manage them:

open window <window name> at <row>, <column>
 with { <rows> rows, <columns> columns |
 form "<form file>" }
 [attribute (<window attribute> [, ...])]

This statement names a window, opens it, positions it in row <row> and column
<column>, and displays it. The number of rows and columns for the display are either
defined in the with clause directly (<rows> rows, <columns> columns) or are
inherited from the form "<form file>" clause, which, if used, not only opens and
displays the window large enough to contain the form, but also opens and displays the
form in <form file>. The attributes in <window attribute> can be of three kinds: The
general window layout can be border, reverse, normal, bold, dim, or invisible. The
color can be white, yellow, magenta, red, cyan, green, blue, or black. The location of
contained objects can be prompt line <line number>, message line <line
number>, form line <line number>, or comment line <line number>. If attributes
are not provided, the window inherits the attributes defined as overall program options.

To activate a window that is not currently active but has already been opened, you use
this command:

current window <window name>

This statement places the window at the top of the window stack. All interactions
between the user and the program can occur only in the current window.

The following command, clear, performs the function that its name implies and can act
upon the whole screen, a named window, or the fields of a form individually or
collectively. Its syntax is as follows:

clear { screen | window <window name> | form [<form field name> [,
...]] }

When you are finished using a window, the close window statement removes it from
view and from the stack. The statement is used as follows:

close window <window name>

Note the use of these statements in main.4gl in Listing 36.6. For the definition of the
tables involved, refer to Listing 36.1. Global definitions are collected in Listing 36.2.

Listing 36.6. main.4gl.
globals "globals.4gl"

main

#- set run options
 defer interrupt
 options input wrap,
 input attribute (red),
 display attribute(red),
 sql interrupt on,
 field order unconstrained,
 message line last
#- capture errors to file errlog in current directory
 call startlog("errlog")
#- initialize global variables
 call init_vars()
#- open the main window and display employer form
 open window w_top at 2,2 with 22 rows, 78 columns
 attribute(border)
 open form f_employers from "employer"
 display form f_employers
#- display the menu and wait for user action
 menu "EMPLOYERS"
 command key ("!")
 call sh_unix()
 command "Find" "Find Employers"
 call find_it()
 next option "Next"
 command "Next" "View next Employer"
 call next_row()
 command "Previous" "View previous Employer"
 call previous_row()
 command "Add" "Add Employers"
 call add_it()
 command "Update" "Update Employers"
 call update_it()
 command "Delete" "Delete Employers"

 call delete_it()
 next option "Find"
 command key(Q,E,X) "Exit" "Exit the menu and the Program"
 exit menu
 end menu
#- clean up and leave
 close form f_employers
 close window w_top
 exit program
end main

function init_vars()

 initialize p_employers.* to null
 let is_valid = false
end function

Menu Options and Menu Definition

In Listing 36.6, the menu statement encapsulates all activity associated with each menu
choice within a subroutine call. This is typical in many INFORMIX-4GL programs,
which use main as the flow of control block.

Listing 36.6 does not use the before menu block or the hide menu and show menu
statements. If you want to manage the menu options dynamically, you hide all options in
the before menu clause, and use show menu to display the Find, Add, and Exit options.
After a successful Find, the show menu command could be used to activate the Next,
Previous, Update, and Delete options. After a successful Add, the show menu command
could be used to activate the Update and Delete options.

First Encounter with Cursors

The Find menu option in this trucking firm application (shown earlier in Figure 36.1)
probably will return multiple rows from the employers table. When a query has the
potential to return more than a single row from a table, you must manage the result set by
means of a cursor. The cursor allows you to access each row in the result set individually,
rather than as a block, by pointing to a row in the result set. Because, by nature, SQL is
designed to process a set of rows as a unit, cursors allow you to bridge the set-oriented
nature of SQL with the programmatic need to process rows one at a time. Think of a
cursor as a pointer to a row in the result set that a query has returned.

Because cursors are related to queries, this is a good time to introduce the sequence of
events that a program must follow to retrieve data from the database, display it on a
screen form, and eventually modify it. The steps are as follows:

1. Query-By-Example builds the where clause of the query with the
construct statement.

2. Build the complete SQL statement, using the where clause from step 1,
normally with the let and the concatenate operators and the clipped
keyword.

3. Preprocess the SQL statement prior to execution with the prepare
statement.

4. If the SQL statement is supported by the engine but not by your version
of 4GL, run the statement using the execute command.

5. If the query can return more than a single row from the database,
declare a cursor to retrieve the rows sequentially.

6. Now you can start retrieving rows in one of two scenarios: First, you can
explicitly open the cursor and fetch the records until you are done, and
then close the cursor and free the system resources the cursor took. Or,
second, you can initiate a foreach loop that automatically performs all of
the functions required for the retrieval.

7. When the data resides in program variables or program arrays, use
display to format it and display it on the screen form; use display array
if the display shows many rows simultaneously; or use output to report to
send it to a report.

8. To modify the data displayed on the screen or to add new information,
use input to edit and validate the data, or use input array if your screen
displays many rows for editing at any one time.

The various statements in the preceding list are described in detail here and illustrated
further with an example in the next section.

The Query-By-Example workhorse is the construct statement block. The syntax for the
construct statement can have four main forms, each of which can use a variety of
clauses. The main forms of the construct statement are listed first, followed by the
clauses that the construct statement block can contain:

{ construct by name <where string> on <tabname>.* |
 construct <where string> on <tabname>.<colname> [, ...]
 from <field name> [, ...] |
 construct <where string> on <tabname>.<colname> [, ...]
 from <screen record>.* |
 construct <where string> on <tabname>.<colname> [, ...]

 from <screen record>.<colname [, ...]
} attribute (<attribute> [, ...])
 { before construct
 { <4GL statements> }
 after construct
 { <4GL statements> }
 before field <field name>
 { <4GL statements> }
 after field <field name>
 { <4GL statements> }
 on key <special key>
 { <4GL statements> }
 next field { next | previous | <field name> }
 continue construct
 exit construct
 }
end construct

The construct statement builds a character variable, <where string>, that contains the
where clause that the user creates dynamically by entering criteria in the various fields of
the screen form. The clauses of the construct statement are the same as those of the input
statement and will be discussed in detail in relation to the input statement. Here's an
example of the construct statement:

construct by name where_clause on employers.*

The by name clause requires that the fields in the form and the columns of the table use
the same names for the same purpose, because it performs the pairing implicitly.
Alternatively, you can specify the matching of table columns and form fields as follows:

construct where_clause on employers.empl_code,
 employers.employer,
 employers.add_line1,
 employers.add_line2,
 employers.city,
 employers.state,
 employers.zip,
 employers.phone,
 employers.trl_len,
 employers.freight,
 employers.area,
 employers.nbr_trks,
 employers.authority,
 employers.leased,
 employers.dac,
 employers.authorized
 from s_employers.*

You can limit the screen fields that the construct statement will use (and the cursor will
visit) and, at the same time, limit the fields that the user can use in a query as follows:

construct where_clause on employers.state, employers.lease
 from s_employers.state, s_employers.lease

After building the <where clause> of the select statement that will be used to query
the database, you proceed to build the complete SQL statement by using the
concatenation operator as follows:

let sql_stmt = "select * from employers where ",
 where_clause clipped, " ",
 "order by empl_code"

The prepare statement is used to parse and validate a dynamic SQL statement. Its syntax
is as follows:

prepare <statement id> from { <SQL string> | <char variable> }

<statement id> is an identifier for the statement to be used in the declare to follow. The
prepare statement can operate on either a quoted string (<SQL string>) or on a
character variable. An example that continues in the footsteps of the previous example is

prepare statement_1 from sql_stmt

Another example of a prepare statement is

prepare statement_2 from
 "select * from employers where state = ? order by empl_code"

This prepare statement shows the use of placeholders (?) that will be provided a value
when the cursor is opened.

After the statement has been prepared, you declare a cursor with the following syntax:

declare <cursor name> [scroll] cursor [with hold] for
 { <select statement> [for update [of <colname> [, ...]]] |
 < insert statement> |
 <statement id> }

The cursor is given the name <cursor name>, and it can be declared for a <select
statement>, for an <insert statement>, or for a preprocessed <statement id>. If
rows will be retrieved only sequentially, you can use a regular cursor, but if you want to
navigate back and forth within the result set, you need to use the scroll clause to declare
a scroll cursor. By default, after you open a cursor in INFORMIX-4GL, the system closes
the cursor every time it completes a transaction. The with hold clause keeps the cursor
open after ending a transaction. If you intend to update the current row, use the for
update clause. Here are examples of a declare cursor statement:

declare c_employers scroll cursor with hold for statement_1
declare c_employers2 scroll cursor with hold for statement_2
 for update of freight
declare c_employers cursor for select * from employers order by
empl_code

Now that the cursor is declared, you need to activate its result set by using the open
statement, like this:

open <cursor name> [using <program var> [, ...]]

When the program invokes this statement, the server receives the SQL it represents for
the first time. The server performs error checking, sets the SQLCA variable, and stops
short of delivering the first row of the result set. If the select statement that was
prepared contained placeholders (question marks) for replacement by program variables
at execution time, the using clause delivers these variables to the open statement. Here
are examples of both forms of open statements:

open c_employers
let p_state = "MO"
open c_employers2 using p_state

Now that the cursor is open, you can start retrieving records and placing them in program
variables. The fetch statement serves this purpose, and its syntax is as follows:

fetch { next | previous | prior | first |
 last | current |
 relative <relative row number> |
 absolute <absolute row number>
 } <cursor name> [into <program var>]

A sequential cursor (one declared without the scroll clause) can perform only a fetch
next, but a scroll cursor can use any of the positioning clauses indicated earlier. (The
next and previous clauses are used in the example in Listing 36.7.) The record retrieved
by the fetch is placed in program variables listed in the into <program var> clause.
Here's an example of this statement:

fetch first c_employers into p_employers.*

After you are finished using the cursor, you need to close it and free the resources it
holds. The close statement uses the following syntax:

close <cursor name>

The free statement uses the following syntax:

free { <cursor name> | <statement id> }

An alternative to the open, fetch, and close combination is the foreach statement,
which performs all these functions on your behalf. The foreach statement is widely used
in reports or when loading static arrays, and it is discussed in that context in Chapter 37.

To display the data placed in program variables to the form on the screen, you use the
display statement as follows:

display { by name <var name> [, ...] }
 [attribute (<attribute> [, ...])] |
 <constant> [, ...] |
 <varname> [, ...]
[{ to { <form field name> [, ...] } |
 <screen record>["["<row number>"]"].*
 at <row>, <column> }
 [attribute (<attribute> [, ...])]
]

The display statement is used to display program variables onto screen fields. You can
also display a <constant> to a screen field. If the program variables and the screen fields
use the same names, you can use the by name clause; otherwise, you have to match the
program variable and the screen field to display it with the to clause. The at <row>,
<column> clause was covered earlier in this chapter.

Here are some examples of the display statement:

display by name p_employers.*
display p_employers.* to s_employers.*

To modify the program variables on the screen form and ultimately the database rows,
you use the input statement. This statement is discussed in the section titled "Adding,
Deleting, and Updating Records." Take some time to look at the find.4gl module in
Listing 36.7, which covers the entire process described here in function find_it().

Finding Records and Displaying Records

The Find menu option in Figure 36.1 is designed to allow the user to create a query
dynamically. After the user chooses the Find option, the cursor drops down to the form
and allows the user to specify the criteria desired for any of the displayed screen fields.
This process allows the user to create a Query-By-Example. A collection of characters is
available to build the Query-By-Example. These special characters are listed in Table
36.8.

Table 36.8. The Query-By-Example special characters.
Characte
r

Purpose

= Equal to (if followed by nothing will look for null
values)

> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to

<> Not equal to
!= Not equal to
: Between
.. Between datetimes or intervals
* Match zero or more of any character
? Match a single character
| Or
[] Create an include list; used with other operators
^ Not in the list within the brackets when in first

position

An example of some of these operators is provided in Figure 36.2.

Figure 36.2.

Query-By-Example.

In Figure 36.2, note that the query requests that the Code (empl_code) ranges between 1
and 100 (1:100), that the name has the letter F anywhere within it (*F*), that the first line
of the address is null (=), and that the Zip code is greater than 1000 (>1000). The user
expects that the menu options Next and Previous will allow navigation through the record
set that the query has returned. Listing 36.7 displays the code used in processing the
various functions required to retrieve and navigate through a set of records and display
these records on the screen.

After the user types in the selections on the form and presses the Accept Key, the
program processes the Query-By-Example, declares the cursor, opens it, fetches the first
record, and displays it. The option Next is highlighted in the menu, and the software
awaits user action. (Instead of automatically placing the highlight in the Next option after
a Find, a better approach would be to test whether the find returned any rows and, if it
did, suggest Next as the next menu option; otherwise, suggest Find or Add as the next
menu option.)

Listing 36.7. The find.4gl module.
globals "globals.4gl"

function find_it()

Gather search criteria, find the first employer and display it

 define where_clause char(512),
 sql_stmt char(1024)
#- clear form on the screen and initialize variables

 clear form
 let int_flag = false
call close_cursor_emp()
 initialize p_employers.* to null
#- replace menu with instructions for query-by-example
 display "" at 1,1
 display "" at 2,1
 display "Enter the Search Criteria for Selection ..." at 1,1
 attribute(green)
 display "Press Accept Key to Search, Cancel Key to Interrupt"
 at 2,1 attribute(yellow)
#- construct the query statement dynamically: the where_clause
#- variable will contain the query string based on the criteria
#- for selection that the user inputs
 construct where_clause on employers.empl_code,
 employers.employer,
 employers.add_line1,
 employers.add_line2,
 employers.city,
 employers.state,
 employers.zip,
 employers.phone,
 employers.trl_len,
 employers.freight,
 employers.area,
 employers.nbr_trks,
 employers.authority,
 employers.leased,
 employers.dac,
 employers.authorized
 from s_employers.*
#- if the user interrupted, cancel the query request and return to
#- the calling program after advising the user
 if int_flag
 then
 message " Search Cancelled at User Request "
 let int_flag = false
 return
 end if
#- proceed with the query: replace query-by-example instructions
#- by flashing message indicating search for records is proceeding
 display "" at 1,1
 display "" at 2,1
 display "Searching ..." at 1,1 attribute(green, blink)
#- construct the complete SQL statement to query the database:
#- include the select clause, the from clause, the dynamically
#- created where clause and an order by clause. Concatenate
#- those clauses into the program variable sql_stmt
 let sql_stmt = "select * from employers where ",
 where_clause clipped, " ",
 "order by empl_code"
#- prepare the SQL statement for execution, declare a cursor that
#- will represent the active set of rows returned by the engine
#- and activate the cursor by opening it
 prepare statement_1 from sql_stmt
 declare c_employers scroll cursor with hold for statement_1
 open c_employers

#- if the open has succeeded, retrieve the first row in the active
#- data set, place it in the program variable p_employers and
#- display this variable; otherwise handle the failure with an
#- error message that is descriptive of the type of failure
 if status = 0
 then
 fetch first c_employers into p_employers.*
 if status = 0
 then
 display p_employers.* to s_employers.*
 else
 if status = notfound
 then
 message "No employers satisfy search criteria"
 else
 error " Could not get employers information; ",
 "status ", status using "-<<<<<<<<<<"
 end if
 end if
 else
 error " Could not access employers information "
 end if
end function

function next_row()

fetch and display the next row

#- to display the next row, one must already be displayed
 if p_employers.empl_code is null
 then
 error " Must find first "
 return
 end if
#- retrieve the next row in the active set, place it in the program
#- variable p_employers and display this variable; otherwise handle
#- the failure with an error message that is descriptive of the
#- type of failure
 fetch next c_employers into p_employers.*
 if status = 0
 then
 display p_employers.* to s_employers.*
 else
 if status = notfound
 then
 message "Reached the end of the list"
 else
 error " Could not retrieve next employer "
 end if
 end if
 return
end function

function previous_row()

fetch and display the previous row

#- to display the previous row, one must already be displayed
 if p_employers.empl_code is null
 then
 error " Must find first "
 return
 end if
#- retrieve the previous row in the active set, place it in the
#- program variable p_employers and display this variable;
#- otherwise handle the failure with an error message that is
#- descriptive of the type of failure
 fetch previous c_employers into p_employers.*
 if status = 0
 then
 display p_employers.* to s_employers.*
 else
 if status = notfound
 then
 message "At the beginning of the list"
 else
 error " Could not retrieve previous employer "
 end if
 end if
 return
end function

Adding, Updating, and Deleting Records

When the user sees the contents of a record on the screen, the Update menu choice allows
the user to change the contents of that record and store the updated information in the
database. The Add menu choice allows the user to input a new record and store it in the
database. Both use the input statement with the following syntax:

input { by name <program var> [, ...] [without defaults]
 from { <form field name> } [, ...] |
 <screen record>.*
 [attribute (<attribute> [, ...])]
 before input
 { any 4GL statement }
 before field <form field name>
 { any 4GL statement }
 after field <form field name>
 { any 4GL statement }
 after input
 { any 4GL statement }
 on key (<special key>)
 { any 4GL statement }
 next field { next | previous | <form field name> }
 continue input
 exit input
end input

The input statement block permits the user to input or change data in the screen fields of
the form it is associated with. The options of this statement are as follows:

by name clause implicitly binds the screen fields to equally named program variables.

<program var> lists the program variables to input. (Normally a record variable is used.)

without defaults keeps the system from filling the screen fields with default values,
and instead it uses the current values of the <program var> variables.

from binds the <program var> to either a <form field name> or a <screen record>.
This is used instead of the by name clause.

before input causes INFORMIX-4GL to execute the statements in this clause before
allowing the user to input data onto the form.

before field <form field name> causes INFORMIX-4GL to execute the statements
in this clause as the cursor enters <form field name> and before allowing the user to
input data on the field.

after field <form field name> causes INFORMIX-4GL to execute the statements
in this clause as the cursor is about to leave <form field name>.

after input causes INFORMIX-4GL to execute the statements in this clause when the
user presses any of the keys that terminate input (Accept, Interrupt, or Quit) but before
input is actually terminated.

on key (<special key>) causes INFORMIX-4GL to execute the statements in this
clause when the user presses a <special key> that the system recognizes.

next field { next | previous | <form field name> } moves the screen cursor to
the appropriate selection.

continue input skips all statements in the current control block.

exit input terminates input and transfers control to the statement immediately
following the end input clause.

Here is an example of the input statement:

input p_employers without default from s_employers.* attribute(red)
before input
 if p_employers.empl_code is null
 then
 message "Beginning Input of a New Employer"
 else
 message "Altering Employer definition"
 end if
after input
 call validate_input() returning error_flag, field_name
 if error_flag

 then
 next field field_name
 end if
end input

More examples of the input statement are found in Listings 36.8 and 36.9, which
illustrate the after field and before field clauses. Examples are also found in
Chapters 37 and 38.

Although the sample code uses separate functions to add and update records so that the
input statement can be illustrated in two of its forms, normally only one module would
be designed to manage both add and update tasks with the same code. The Delete menu
choice allows the user to remove the current record from the database after the user is
asked to reconfirm the delete choice.

The contents of the add.4gl file appear in Listing 36.8. The contents of the update.4gl
file appear in Listing 36.9. The delete.4gl file is contained in Listing 36.10. Please
spend some time looking over the code in these three listings.

Listing 36.8. The add.4gl file.
globals "globals.4gl"

function add_it()

input row, validate and store

#- clear all fields in the form and initialize the variables
#- to input
 clear form
 let int_flag = false
 initialize p_employers.* to null
#- replace the menu with directives for the input
 display "" at 1,1
 display "" at 2,1
 display "Add a New Employer ..." at 1,1 attribute(green)
 display "Press Accept Key to Search, Cancel Key to Interrupt"
 at 2,1 attribute(yellow)
#- input the values for the employer, i.e., take keyboard input and
#- store it in memory in record variable p_employers
 input by name p_employers.*
#- perform tasks before the user is allowed to input a value in a
#- screen field
 before field add_line2
 if p_employers.add_line1 is null
 then
 next field next
 continue input -- this statement was
 -- redundant but was
 -- included for
 -- illustration
 end if
#- perform validations after the user has input a value in a

#- screen field
 after field state
 call valid_state(p_employers.state) returning is_valid
 if not is_valid
 then
 error " Not a valid State code; try again "
 next field state
 end if
 end input
#- for this example, ignore multiuser issues and transaction
#- management issues
#- input has terminated: if the user interrupted, tell the user,
#- otherwise insert the employers record and tell the user whether
#- the insert worked and, if it did, retrieve and display the
#- serial value assigned by the engine
 if int_flag
 then
 let int_flag = false
 error " Insert interrupted at user request "
 else
 let p_employers.empl_code = 0 -- Serial value: if set to
 -- zero, engine will assign
 insert into employers values (p_employers.*)
 if status = 0
 then
 let p_employers.empl_code = SQLCA.sqlerrd[2]
 display by name p_employers.empl_code
 message "Employer added"
 else
 error " Could not insert employer; status ", status, " "
 end if
 end if
 return
end function

Listing 36.9. The update.4gl file.
globals "globals.4gl"

function update_it()

update row, validate and store

 define p_old_employers record like employers.*
#- before updating a record, make sure one is already selected
 if p_employers.empl_code is null
 then
 error " Must find first "
 return
 end if
#- set the record variable p_old_employers to the current value of
#- p_employers; if the user cancels out, you will be able to reset
#- the old values to the screen
 let p_old_employers.* = p_employers.*
 let int_flag = false
#- replace the menu with directives for the input
 display "" at 1,1

 display "" at 2,1
 display "Update Employer ..." at 1,1 attribute(green)
 display "Press Accept Key to Search, Cancel Key to Interrupt"
 at 2,1 attribute(yellow)
#- input the values for the employer, i.e., take keyboard input and
#- store it in memory in record variable p_employers
 input by name p_employers.* without defaults
#- perform validations after the user has input a value in a
#- screen field
 after field state
 call valid_state(p_employers.state) returning is_valid
 if not is_valid
 then
 error " Not a valid State code; try again "
 next field state
 end if
 end input
#- for this example, ignore multiuser issues and transaction
#- management issues
#- input has terminated: if the user interrupted, tell the user,
#- reset the values of p_employers to the original values and
#- display them to the form; otherwise update the employers record
#- and tell the user whether the update worked
 if int_flag
 then
 let int_flag = false
 error " Update interrupted at user request "
 let p_employers.* = p_old_employers.*
 display by name p_employers.*
 else
 update employers
 set (employers.employer, employers.add_line1,
 employers.add_line2,
 employers.city, employers.state, employers.zip,
 employers.phone, employers.trl_len,
 employers.freight, employers.area,
 employers.nbr_trks, employers.authority,
 employers.leased, employers.dac,
 employers.authorized)
 = (p_employers.employer through p_employers.authorized)
 where empl_code = p_employers.empl_code
 if status = 0
 then
 message "Employer updated"
 else
 error " Could not insert employer; status ",
 status using "-<<<<<<<<<<", " "
 end if
 end if
 return
end function

Listing 36.10. The delete.4gl file.
globals "globals.4gl"

function delete_it()

prompt for confirmation and then act accordingly

 let int_flag = false
#- test that the user selected a record to be deleted; if no
#- records are displayed on the screen, error out
 if p_employers.empl_code is null
 then
 error " Must find first "
 return
 end if
#- display a new menu to confirm the deletion
 menu "Delete?"
 command "No" "Do not delete this employer"
 message "Deletion of employer cancelled"
 exit menu
 command "Yes" "Delete this employer"
 delete from employers
 where empl_code = p_employers.empl_code
 if status = 0
 then
 message "Employer deleted" attribute(reverse)
 clear form
 initialize p_employers.* to null
 else
 error " Could not delete employer "
 end if
 exit menu
 end menu
 return
end function

Note that the function delete_it() illustrates a generic mechanism for providing the
user with one more chance to change his mind before actually deleting the record from
the database. This mechanism develops a submenu for a menu option.

Useful Hidden Menu Options

The menu in Listing 36.6 starts with these command lines:

command key ("!")
 call sh_unix()

The user will not see a reference to the menu option triggered by the character ! on the
menu line, but if the user presses the key !, the system triggers a call to the function
sh_unix() in Listing 36.11. Listing 36.11 contains functions that are candidates for
placement in a library. Many programs are likely to use the sh_unix() function, and you
will also need to validate the State that a user inputs through the use of the
valid_state() function.

Listing 36.11. The options.4gl file.
globals "globals.4gl"

function sh_unix()

Prompt for command and execute it

 define unix_command char(80)
#- open UNIX prompt window and issue prompt showing a !
 open window w_unix at 23,2 with 1 rows, 78 columns
 attribute(border, white)
 prompt "! " for unix_command
#- no matter what the answer to the prompt, close the
#- UNIX prompt window
 close window w_unix
#- if the user issued an interrupt, reset the interrupt flag,
#- otherwise execute the command
 if int_flag
 then
 let int_flag = false
 else
 run unix_command
 end if
#- we're done, leave
 return
end function

function valid_state(p_state)

 define p_state like employers.state,
 state_count smallint
#- count the number of states that match the argument received
 select count(*) into state_count
 from states
 where state = p_state
#- for this example, we ignore errors in reading the states table
#- if the count of states returned by the query is 1, the state
#- exists and we return true, otherwise we return false to the
#- calling function
 if state_count = 1
 then
 return true
 else
 return false
 end if
end function

The combination of Listings 36.2 and 36.6 through 36.11 makes up the complete program
to run this application. Defining the modules main.4gl, add.4gl, update.4gl,
delete.4gl, and options.4gl, as well as the globals in globals.4gl in a Program
makes INFORMIX-4GL produce an executable that allows inputs into the employers
table. Listing 36.2 contains the form file that the program needs in order to operate.

Summary

This chapter has provided you with the basic concepts and constructs of the INFORMIX-
4GL language. In particular, you have been introduced to the main program blocks that
make up an INFORMIX-4GL application. In addition, you have learned the data types,
operators, functions, and statements that can be used to create an INFORMIX-4GL
program. The example developed in this chapter has illustrated the concepts covered and
has provided you with the framework for building a simple INFORMIX-4GL application
in which you input data into a single table in the database. The following two chapters
build upon and expand the concepts covered here.

- 37 -

4GL Development
• The Standard Components of Database Applications
• Screens and Screen Forms: A Primer

o Single Row, Single Table Management: Inputs
o Multiple Row, Single Table Displays: Browsers and Zooms

• Reports
o Report Design: A Primer
o The Report Driver and the Report Formatter
o Report Sections
o Control Blocks
o Grand Totals and Subtotals
o Formatting the Display

• Summary

by José Fortuny

This chapter expands on the concept of screen forms that was introduced in Chapter 36,
"4GL Coding," and introduces reports for the first time.

The Standard Components of Database Applications

Screens and reports are the two major tools that any database application developer relies
upon to interact with the database. This chapter discusses the standard, most common
screen types in use and the most typical report layouts. I explore some examples of
screens and reports and extend the reach of both to more complex inputs and reports in
the next chapter.

Screens and Screen Forms: A Primer

Forms are the basic method that a database application uses to collect and manage
information. Forms are the electronic counterpart of the paper documents that your
business uses to collect information. An order entry application in your computer is likely
to use a form that looks like its paper equivalent in your business; a customer data entry
form might look like your typical Rolodex card with more room to include other items.
Successful forms are those that feel comfortable to your company's employees and, at the
same time, facilitate and simplify their work. General guidelines for designing forms
were outlined in Chapter 36, but your best guide in designing effective forms is to listen
and pay attention to the comments that the users of your electronic documents make
about how they feel.

You typically find several screen form layouts in database applications in business:

• The header-only style represents one record of one table on the screen.

• The detail-only style displays a list of many records from a table.

• The header/detail style, sometimes called master/slave, represents a one-
to-many relationship, in which the screen displays one record of the
header table and zero or many records for the detail table.

Samples of these types of screen forms follow.

Figure 37.1 displays an employer record from a fictitious trucking company. The design,
coding, and usage of this form are discussed in the next section.

In business database applications, the header-only style of form has two main uses. The
most obvious use is a data capture for information to be stored in the database; the second
main use is to prompt the user for information that is required by a program but is not
stored by the database. Figure 37.1 represents an example of the former; the screen was
designed to collect and manage information that is stored in the employers table in the
recruiters database. If a table in the database contains so much information that it doesn't
fit on a single screen form, the program collects the required information by displaying
various forms in sequence but still uses the header-only layout for each form. On
occasion, if the database designer breaks a one-to-one relationship into two separate
tables (normalization indicates that these tables should be stored in a single table, but
efficiency might dictate otherwise), the screen might still collect information for both
tables in one form and the program might perform separate inserts, deletes, and updates
to the two tables involved.

Figure 37.1.

Header-only screen form.

Figure 37.2 displays a list of employers from a fictitious trucking company. The design,
coding, and usage of this form are introduced in the section titled "Multiple Row, Single
Table Displays: Browsers and Zooms," later in this chapter.

Figure 37.2.

Detail-only screen form.

In business database applications, the detail-only style of screen form has three main
uses. The most obvious use is as a data-capture mechanism for information to be stored in
the database, particularly when all the information required to fill one database record can
fit in a single row of the multi-row display. The second use of this type of form is
exemplified by Figure 37.2, which displays a browser for employers. A browser is a
scrollable list of all or some of the columns of database tables. The third use for this type
of form is to display a pop-up list of values that the user can choose. Forms that allow the
user to make a selection and display the results in a list are sometimes called zoom forms.
Zoom forms, which allow the user to cursor over the row desired, accept the user's
selection and return some values to the calling program.

Figure 37.3 displays a driver's work history. The top portion of the form identifies the
basic information for a driver and represents the "one" portion of the one-to-many
relationship. The bottom portion of the form, the work history section, displays the jobs
that this driver has held and represents the "many" part of the one-to-many relationship.
An example of this type of input is presented in Chapter 38, "Advanced 4GL
Development."

Figure 37.3.

Header/detail screen form.

Single Row, Single Table Management: Inputs

The contents of this section are based on the example introduced in the "Processing
Inputs to a Single Table One Record at a Time" section of Chapter 36. The code
presented here advances the programming effort closer toward production-caliber code,
although it still doesn't meet that target. Some of the enhancements that were
recommended for implementation in Chapter 36 are implemented here, and both a
browse and a zoom are implemented and discussed fully in the next section. You should
review the differences between the code included here and the code in the "Processing
Inputs to a Single Table One Record at a Time" section of Chapter 36. After each source
code module, I discuss the most salient differences between the two versions, and the
comments included in the listings themselves also emphasize the contrasts.

Listing 37.1 displays the contents of the modified screen form employers.

Listing 37.1. The employers.per screen form.
DATABASE recruiters
SCREEN
{

 Code:[f000] Name:[f001]
 Address:[f002]
 [f003]
 City:[f004]
 State:[a0] [sn]
 Zip:[f005] Phone:[f006]
 Trailer Length:[a1] Authority:[a]
 Freight:[f007] Leased:[b]
 Area:[f008] DAC:[c]
 Number of Trucks:[f009] Authorized:[d]

}
END
TABLES
 employers
 states
ATTRIBUTES
f000 = employers.empl_code, reverse, noentry;
f001 = employers.employer, required, upshift,
 comments = "Enter the Employer Business Name";
f002 = employers.add_line1,
 comments = "Enter the First Line of the Address";
f003 = employers.add_line2,
 comments = "Enter the Second Line of the Address";
f004 = employers.city, upshift, required,
 comments = "Enter the City for this Address";
a0 = employers.state, required, upshift,
 comments = "Enter the State for this Address";
sn = formonly.state_name type like states.state_name, noentry,
 color = cyan;
f005 = employers.zip, required, picture = "#####",
 comments = "Enter the Zip Code for this Address";
f006 = employers.phone;
a1 = employers.trl_len;
f007 = employers.freight;
f008 = employers.area;
f009 = employers.nbr_trks;
a = employers.authority;
b = employers.leased;
c = employers.dac;
d = employers.authorized;
END
INSTRUCTIONS
 delimiters " "
 screen record s_employers(employers.empl_code,
 employers.employer,
 employers.add_line1,
 employers.add_line2,
 employers.city,

 employers.state,
 employers.zip,
 employers.phone,
 employers.trl_len,
 employers.freight,
 employers.area,
 employers.nbr_trks,
 employers.authority,
 employers.leased,
 employers.dac,
 employers.authorized)
 screen record s_other(formonly.state_name)
END

The layout of the screen form is somewhat different from what it was in the "Screen File
Coding" section of Chapter 36. The main difference between the two instances of this
form design is the inclusion, in this form, of a formonly field state_name that displays
the name of the state selected by the user for the employer's address. This formonly field
was included in a new screen record s_other, which collects all such display-only fields.

The contents of globals.4gl are displayed in Listing 37.2.

Listing 37.2. The globals.4gl source code module file.
database recruiters

globals

define p_employers record like employers.*,
 p_old_employers record like employers.*,
 p_display record
 state_name like states.state_name
 end record,
 p_old_display record
 state_name like states.state_name
 end record,
 is_valid smallint,
 where_clause char(512),
 sql_stmt char(1024),
 error_msg char(70),
 u_employer smallint,
 go_to_field, p_dbname char(18),
 curr_row, total_rows integer
end globals

In this version of globals.4gl, a number of program variables that were local to
functions are now global. I included p_old versions of the program variables used for
input fields and display fields. The where_clause and sql_stmt variables can be shared
between different functions, particularly between find.4gl and browse.4gl, and the
remainder of the globals were incorporated to provide some added functionality.

Listing 37.3 provides the contents of main.4gl.

Listing 37.3. The main.4gl source code module file.
globals "globals.4gl"

main

#- define local variables
 define ret_code char(10)
#- set run options
 defer interrupt
 options input wrap,
 input attribute (red),
 display attribute(red),
 sql interrupt on,
 field order unconstrained,
 message line last,
 prompt line last
#- capture errors to file errlog in current directory
 call startlog("errlog")
#- open the main window
 open window w_top at 2,2 with 22 rows, 77 columns
 attribute(border)
#- verify database to use on this run: get the command line
#- parameter that follows -d; if provided, close the database
#- and open the new database
 call get_arg_pair("-d") returning p_dbname
 if p_dbname is null
 then
 let p_dbname = "recruiters"
 let error_msg = "No database selected; using recruiters"
 call error_display (error_msg)
 else
 close database
 database p_dbname
 if status <> 0
 then
 exit program
 end if
 end if
#- initialize global variables
 call init_vars()
#- open and display employer form
 open form f_employers from "employer"
 display form f_employers
 display " Employer Basic Information " at 3,4 attribute(red)
#- display the menu and wait for user action
 menu "EMPLOYERS"
 command key ("!")
 call sh_unix()
 command "Find" " Find Employers"
 call find_it()
 if p_employers.empl_code is not null
 then
 next option "Next"
 else
 next option "Find"
 end if

 command "Browse" " Display Employers in a Browse List"
 call browse()
 command "Next" " View next Employer"
 call next_row() returning ret_code
 case
 when ret_code = "last"
 next option "Previous"
 when ret_code = "findfirst"
 next option "Find"
 end case
 command "Previous" " View previous Employer"
 call previous_row() returning ret_code
 case
 when ret_code = "first"
 next option "Next"
 when ret_code = "findfirst"
 next option "Find"
 end case
 command "Add" " Add Employers"
 call add_it("A") returning ret_code
 if ret_code = "accept"
 then
 call insert_them("A")
 end if
 command "Update" " Update Employers"
 call add_it("U") returning ret_code
 if ret_code = "findfirst"
 then
 next option "Find"
 end if
 if ret_code = "accept"
 then
 call insert_them("U")
 end if
 command "Delete" " Delete Employers"
 call delete_it() returning ret_code
 if ret_code = "deleted"
 then
 next option "Find"
 end if
 command key(Q,E,X) "Exit" " Exit the menu and the Program"
 exit menu
 end menu
#- clean up and leave
 close form f_employers
 close window w_top
 exit program
end main

function init_vars()

 initialize p_employers.* to null
 initialize p_old_employers.* to null
 initialize p_display.* to null
 let is_valid = false
 initialize where_clause to null

 initialize sql_stmt to null
 initialize error_msg to null
 let u_employer = false
 initialize p_dbname to null
 initialize go_to_field to null
 let curr_row = 0
 let total_rows = 0
end function

The first difference between the main.4gl here and the one in Chapter 36 is the
introduction of a call to the function get_arg_pair to allow the code to receive the
database name as an argument through the command line and to use the default database
recruiters if it's omitted. The function get_arg_pair, an obvious candidate for the
system library, is included in the options.4gl source code module file, displayed later
in this section. The next major change is provided by the menu, which is responsive to
the return codes of the functions that the menu options call. For example, navigating with
the Next and Previous menu commands detects whether you invoked the command
without a selection and, if so, places the highlight on the Find command option. If the
user reaches the end of the list, the code switches the next option appropriately. Lastly,
note that the Add and Update options invoke the same function add_it, and the input and
database interactions are separated. add_it deals with the screen input and insert_them
handles the database interaction.

The add.4gl source code module file is displayed in Listing 37.4.

Listing 37.4. The add.4gl source code module file.
globals "globals.4gl"

function add_it(p_mode)

input row, validate and store

#- define local variables
 define p_mode char(1),
 ret_code char(10)
 let int_flag = false
 let u_employer = false
#- before updating a record, make sure one is already selected
 if p_mode = "U" and p_employers.empl_code is null
 then
 let error_msg = " Must find first "
 call error_display(error_msg)
 return "findfirst"
 end if
#- prepare the p_old_employers record and replace menu
#- with directives for input
 display "" at 1,1
 display "" at 2,1
 display "--------------------" at 21, 60 attribute(white)
case
#- when adding a new employer record
when p_mode = "A"

#- clear all fields in the form and initialize the variables
#- in the input clause (or on display) to null
 clear form
 initialize p_employers.* to null
 initialize p_old_employers.* to null
 initialize p_old_display.* to null
 display "Add a New Employer ..." at 1,1 attribute(green)
#- when updating the current employer record
when p_mode = "U"
#- set the p_old variables to the current values of the p_
#- variables.
#- If the user interrupts, we'll restore the p_old values
 let p_old_employers.* = p_employers.*
 let p_old_display.* = p_display.*
 display "Updating Employer ..." at 1,1 attribute(green)
end case
display "Press Accept Key to Search, Cancel Key to Interrupt"
 at 2,1 attribute(yellow)
#- input the values for the employer, i.e., take keyboard input and
#- store it in memory in record variable p_employers; the without
#- defaults clause preserves the p_employers current values
 input by name p_employers.* without defaults attribute(red)
#- perform validations after the user has input a value in a
#- screen field
 before field state
 display "(Zoom)" at 3,66 attribute(red)

 on key (control-z)
 case
 when infield (state)
 call zoom ("state")
 otherwise
 error "No zoom available for this field"
 end case
 after field state
 display "------" at 3,66 attribute(white)
 call valid_state(p_employers.state)
 returning is_valid, p_display.state_name
 if not is_valid
 then
 let error_msg = "Not a valid State code; try again"
 call error_display(error_msg)
 next field state
 else
 display by name p_display.state_name
 end if
 on key (accept)
 display "------" at 3,66 attribute(white)
 call check_employers(p_mode)
 returning is_valid, go_to_field
 if is_valid
 then
 let ret_code = "accept"
 let u_employer = true
 exit input
 else
 case

 when go_to_field = "employer"
 next field employer
 when go_to_field = "add_line1"
 next field add_line1
 when go_to_field = "city"
 next field city
 end case
 end if
 on key (interrupt)
 display "------" at 3,66 attribute(white)
 let ret_code = "interrupt"
 let u_employer = false
 exit input
 end input
#- for this example, ignore multiuser issues and transaction
#- management issues
#- input has terminated: if the user interrupted, tell the user,
#- otherwise insert the employers record and tell the user whether
#- the insert worked and, if it did, retrieve and display the
#- serial value assigned by the engine
 if int_flag
 then
 let int_flag = false
 let error_msg = " Insert interrupted at user request "
 call error_display(error_msg)
 let p_employers.* = p_old_employers.*
 display by name p_employers.*
 let p_display.* = p_old_display.*
 display by name p_display.*
 else
 let u_employer = true
 end if
 return ret_code
end function

function insert_them(p_mode)

#- define local variables
 define p_mode char(1),
 ret_code char(10)
 let int_flag = false
 if u_employer
 then
 case
 when p_mode = "A"
 let p_employers.empl_code = 0
 insert into employers values (p_employers.*)
 if status = 0
 then
 let p_employers.empl_code = sqlca.sqlerrd[2]
 display by name p_employers.empl_code
 message "Employer added"
 else
 let error_msg =
 " Could not insert employer; status ",
 status using "-<<<<<<<<<<"
 call error_display(error_msg)

 end if
 when p_mode = "U"
 update employers
 set (employer, add_line1, add_line2, city, state, zip,
 phone, trl_len, freight, area, nbr_trks,
 authority, leased, dac, authorized)
 = (p_employers.employer thru p_employers.authorized)
 where empl_code = p_employers.empl_code
 if status = 0
 then
 message "Employer updated"
 else
 let error_msg =
 " Could not update employer; status ",
 status using "-<<<<<<<<<<"
 call error_display(error_msg)
 end if
 otherwise
 let error_msg = " Mode ", p_mode, " is invalid; ",
 "no action taken"
 call error_display(error_msg)
 end case
 end if
 return
end function

function check_employers(p_mode)

define p_mode char(1)
#- This is the place to make final validations before the input
#- statement block ends and the data input by the user is accepted
#- as good enough to be stored.
#- The following are just a sample of validations that you might
#- include here. Generally, you would perform single field
#- validations in an after field clause, more than here (though
#- these are the examples included). After inputting all records
#- validations tend to evaluate the overall information in the
#- screen form and the relationship between different field
#- values (data consistency).
if p_employers.employer is null or p_employers.employer = " "
then
 return false, "employer"
end if
if p_employers.add_line1 is null or p_employers.add_line1 = " "
then
 return false, "add_line1"
end if
if p_employers.city is null or p_employers.city = " "
then
 return false, "city"
end if
return true, ""
end function

Note that the add_it function receives a flag, p_mode, that determines whether this call
deals with a new record or an existing one and acts accordingly when initializing program

variables and displaying the directives for input. Note also that the input statement uses
the clause without defaults, which tells the system not to initialize the input variables
with the default values defined in the form. In the input statement block, notice the
processing around the state field: The before field clause displays the string
"(Zoom)" on the line that separates the input directives from the form itself. This is to
indicate to the user that there is a pop-up window that he can invoke from the state
field. The on key (control-z) statement block actually manages the pop-up calls that
are possible in this application. If the user presses Ctrl+Z while the cursor is in the state
field (infield), then the flow of control jumps to the function zoom, which invokes the
right pop-up window. The after field clause, as well as the on key (accept) and on
key (interrupt) clauses, cover the string "(Zoom)" on the screen. Note that the
function add_it only sets the flag u_employer upon exit: It is set to true if the user exits
input wishing to update the employer record and false if the user exits input with an
interrupt. Notice that an interrupt causes the system to restore the p_ variables to the
values they had before the user changed them: p_old_.

The function insert_them also responds to the flag p_mode it receives that indicates
whether this is a new record or an update of an existing record.

The function check_employers was included more as a concept than as actual working
code. When the user presses the Accept key during input, this function is called to verify
and validate the fields the user input. Actually, the software performs validations field-
by-field as the user inputs information, but this is the last opportunity to evaluate the
consistency of the relationships of fields to one another before accepting the data for
storage. You can place this type of validation in the after input statement block if the
on key (accept) statement block is not used.

Note that this version of the software does not contain an update.4gl source code
module file because this work was included in the add.4gl file. This makes maintenance
of the code easier because there is only one place where you have to contend with the
input and update of the data (only one input statement).

The code for the find.4gl source code module appears in Listing 37.5.

Listing 37.5. The find.4gl source code module file.
globals "globals.4gl"

function prep_cursor()

#- prepare the SQL statement for execution, declare a cursor that
#- will represent the active set of rows returned by the engine
#- and activate the cursor by opening it
 prepare statement_1 from sql_stmt
 declare c_employers scroll cursor with hold for statement_1
 open c_employers
end function

function count_them()

 define sql_count char(512)
 let sql_count = "select count(*) from employers where ",
 where_clause clipped
 prepare statement_count from sql_count
 declare c_count cursor for statement_count
 open c_count
 fetch c_count into total_rows
 close c_count
 free c_count
 return
end function

function find_it()

Gather search criteria, find the first employer and display it

#- clear form on the screen and initialize variables
 clear form
 let int_flag = false
 let curr_row = 0
 let total_rows = 0
 initialize p_employers.* to null
 display "--------------------" at 21,60 attribute(white)
#- replace menu with instructions for query-by-example
 display "" at 1,1
 display "" at 2,1
 display "Enter the Search Criteria for Selection ..." at 1,1
 attribute(green)
 display "Press Accept Key to Search, Cancel Key to Interrupt"
 at 2,1 attribute(yellow)
#- construct the query statement dynamically: the where_clause
#- variable will contain the query string based on the criteria
#- for selection that the user inputs
 construct by name where_clause on employers.*
#- if the user interrupted, cancel the query request and return to
#- the calling program after advising the user
 if int_flag
 then
 message " Search Cancelled at User Request "
 let int_flag = false
 return
 end if
#- proceed with the query: replace query-by-example instructions
#- by flashing message indicating search for records is proceeding
 display "" at 1,1
 display "" at 2,1
 display "Searching ..." at 1,1 attribute(green, blink)
#- construct the complete SQL statement to query the database:
#- include the select clause, the from clause, the dynamically
#- created where clause and order by clause. Concatenate
#- those clauses into the program variable sql_stmt
 let sql_stmt = "select * from employers where ",
 where_clause clipped, " ",
 "order by empl_code"
#- count the records that match the query and prepare the cursor
#- and open it (this is now done in prep_cursor())

 call count_them()
 call prep_cursor()
#- if the open has succeeded, retrieve the first row in the active
#- data set, place it in the program variable p_employers and
#- display this variable; otherwise handle the failure with an
#- error message that is descriptive of the type of failure
 if status = 0
 then
 fetch first c_employers into p_employers.*
 if status = 0
 then
 let curr_row = 1
 display by name p_employers.*
 call valid_state(p_employers.state)
 returning is_valid, p_display.state_name
 display by name p_display.*
 call records (21,60, curr_row, total_rows)
 else
 if status = notfound
 then
 clear form
 message "No employers satisfy search criteria"
 else
 let error_msg = " Could not get employers ",
 "information; ",
 "status ", status using "-<<<<<<<<<<"
 call error_display(error_msg)
 end if
 end if
 else
 let error_msg = " Could not access employers ",
 "information; ",
 "status ", status using "-<<<<<<<<<<"
 call error_display(error_msg)
 end if
end function

function next_row()

fetch and display the next row

#- to display the next row, one must already be displayed
 if p_employers.empl_code is null
 then
 let error_msg = " Must find first "
 call error_display(error_msg)
 return "findfirst"
 end if
#- retrieve the next row in the active set, place it in the program
#- variable p_employers and display this variable; otherwise handle
#- the failure with an error message that is descriptive of the
#- type of failure
 fetch next c_employers into p_employers.*
 if status = 0
 then
 let curr_row = curr_row + 1
 display by name p_employers.*

 call valid_state(p_employers.state)
 returning is_valid, p_display.state_name
 display by name p_display.*
 call records (21,60, curr_row, total_rows)
 return "found"
 else
 if status = notfound
 then
 message "Reached the end of the list"
 return "last"
 else
 let error_msg = " Could not retrieve next employer; ",
 "status ", status using "-<<<<<<<<<<"
 call error_display(error_msg)
 return "error"
 end if
 end if
 return "ok"
end function

function previous_row()

fetch and display the previous row

#- to display the previous row, one must already be displayed
 if p_employers.empl_code is null
 then
 let error_msg = " Must find first "
 call error_display(error_msg)
 return "findfirst"
 end if
#- retrieve the previous row in the active set, place it in the
#- program variable p_employers and display this variable;
#- otherwise handle the failure with an error message that is
#- descriptive of the type of failure
 fetch previous c_employers into p_employers.*
 if status = 0
 then
 let curr_row = curr_row - 1
 display by name p_employers.*
 call valid_state(p_employers.state)
 returning is_valid, p_display.state_name
 display by name p_display.*
 call records (21,60, curr_row, total_rows)
 return "found"
 else
 if status = notfound
 then
 message "At the beginning of the list"
 return "first"
 else
 let error_msg = " Could not retrieve previous ",
 "employer; ",
 "status ", status using "-<<<<<<<<<<"
 call error_display(error_msg)
 return "error"
 end if

 end if
 return "ok"
end function

A number of changes were made between this version of the software and the version in
Chapter 36. First, the preparation of the cursor was encapsulated in the function
prep_cursor. Following the same logic, you could, and should, encapsulate the user's
query by example and separate it from the process of retrieving records from the
database. This is left as an exercise. If you look at function prep_cursor, you notice that
if you call the cursor by a generic name, rather than c_employers, you can utilize this
code unchanged in any program that requires preparing, declaring, and opening a cursor
(just about any database program you can imagine).

This version of the code is also designed to provide the user with a running tally of the
records the query returned and the position of the record displayed on the screen with
regard to the list returned. The function count_them uses the where_clause that the user
defined with query by example to actually count the records returned by the query that
retrieves the data. Now you see the reason for making the program variables associated
with the query global, although you see an alternative to this definition of scope later in
this section. The function records actually displays the current record count and the total
count of records on the screen. This function is actually defined in the options.4gl
source code module file because it is yet another candidate for a library. Note that the
function records was defined with four arguments: the row and column to display the
information, the current row's relative position in the list, and the total row counts, which
allows you to place this information anywhere on the current window.

Note that the other functions in find.4gl--next_row and previous_row--must be
modified in the same manner.

The delete.4gl source code module appears in Listing 37.6.

Listing 37.6. The delete.4gl source code module file.
globals "globals.4gl"

function delete_it()

prompt for confirmation and then act accordingly

#- define local variables
 define del_flag char(10)
 let int_flag = false
#- test that the user selected a record to be deleted; if no
#- records are displayed on the screen, error out
 if p_employers.empl_code is null
 then
 let error_msg = " Must find first "
 call error_display(error_msg)
 return "findfirst"
 end if

#- display a new menu to confirm the deletion
 menu "Delete?"
 command "No" "Do not delete this employer"
 message "Deletion of employer cancelled"
 let del_flag = "interrupt"
 exit menu
 command "Yes" "Delete this employer"
 delete from employers
 where empl_code = p_employers.empl_code
 if status = 0
 then
 message "Employer deleted" attribute(reverse)
 clear form
 initialize p_employers.* to null
 initialize p_display.* to null
 display "--------------------"
 at 21, 60 attribute(white)
 let del_flag = "deleted"
 else
 let error_msg = " Could not delete employer; ",
 "status ", status
 using "-<<<<<<<<<"
 call error_display(error_msg)
 let del_flag = "problem"
 end if
 exit menu
 end menu
 if int_flag
 then
 let int_flag = false
 return "interrupt"
 else
 return del_flag
 end if
end function

This code differs from that in Chapter 36 in the use of the return code. It is used only to
place the highlight in the Find menu option within main.4gl but could also be used to
automatically re-create the list of currently active records. In this source code module
file, like in all the others in this version of the software, I replaced the error statement of
INFORMIX-4GL with my own method for displaying errors through the use of the
function error_display, described later in options.4gl.

The source code module file options.4gl is shown in Listing 37.7.

Listing 37.7. The options.4gl source code module file.
globals "globals.4gl"

function sh_unix()

Prompt for command and execute it

 define unix_command char(80)
#- open UNIX prompt window and issue prompt showing a !

 open window w_unix at 23,2 with 1 rows, 78 columns
 attribute(border, white)
 prompt "! " for unix_command
#- no matter what the answer to the prompt, close the
#- UNIX prompt window
 close window w_unix
#- if the user issued an interrupt, reset the interrupt flag,
#- otherwise execute the command
 if int_flag
 then
 let int_flag = false
 else
 run unix_command
 end if
#- we're done, leave
 return
end function

function valid_state(p_state)

 define p_states record like states.*,
 p_state like employers.state
#- find the state that matches the argument received
 declare c_states cursor for
 select * into p_states.*
 from states
 where state = p_state
 open c_states
 fetch c_states
#- for this example, we ignore errors in reading the states table
 if status = 0
 then
 return true, p_states.state_name
 else
 return false, ""
 end if
end function

function records(p_row, p_column, this_row, total_rows)

define this_row, total_rows integer,
 i, p_length, p_row, p_column smallint,
 p_string char(20)
#- build the displayable information into p_string
 let p_string = "(", this_row using "<<<<<<<<<<", " of ",
 total_rows using "<<<<<<<<<<", ")"
#- stuff the remaining characters up to 20 with dashes
 let p_length = length(p_string) + 1
 for i = p_length to 20
 let p_string = p_string clipped, "-"
 end for
#- display the 20 character string in row p_row, column p_column
 display p_string at p_row, p_column attribute(white)
 return
end function

function get_arg_pair(arg)

#- this function parses the command line in search of argument
#- `arg' and, when found, returns the argument following it;
#- otherwise, it returns a null argument
 define
 arg char(20),
 arg_value char(512),
 n smallint,
 number_of_args smallint

 let arg_value = null
 let number_of_args = num_args() - 1

 for n = 1 to number_of_args
 if arg_val(n) = arg
 then
 let arg_value = arg_val(n + 1)
 exit for
 end if
 end for
 return arg_value
end function

function error_display(err_msg)

 define err_msg char(70), answer char(1)
 open window win_err at 22,3 with 2 rows, 76 columns
 attribute(border,white)
 display "Error: " at 1,2 attribute(red)
 let err_msg = " ", err_msg clipped, " ", ascii 7
 display err_msg at 1,10 attribute(reverse)
 prompt " Press [ENTER] to Continue: " for char answer
 close window win_err

 return
end function

I placed in options.4gl all the functions that are candidates for inclusion in a library.
Although the file contains a globals declaration, it is only there to bind the database to
the program variables in the function valid_states, and it could be replaced by the
database recruiters statement. All other functions included in options.4gl do not
require database binding. Pay special attention to the function get_arg_pair for the use
of the num_args and arg_val functions, which are part of the INFORMIX-4GL set that
allows your program to receive parameters or arguments from the command line.

The program requires two more source code module files, browse.4gl and zoom.4gl,
but these illustrate new concepts that I introduce in the next section, so they are listed
there.

Multiple Row, Single Table Displays: Browsers and Zooms

Many times, you need to display information retrieved from the database in the form of a
list that displays many rows at the same time, and you need to provide the user with the

capability to scroll through the list and perhaps select one row from the list to drop its
information back in the calling function. Zooms and browsers perform these functions.

A zoom is a window containing a form that allows the user to perform a query by
example, scroll through the list of retrieved rows, select one row to return the key value
(and perhaps other columns) to the calling program, and drop that information in the
program variable that matches the screen field where the user opened the zoom screen. A
browser is a window containing a form that allows the user to scroll through the list of
rows that satisfy the query that selected the records to retrieve in the main (top) window
of the application.

The first step in developing a browser or a zoom is to build the form that displays the
rows. Basically, the process is the same as that for developing the form to display a single
row from a table, but you need to develop a screen record array to reflect the number of
rows that are displayed in a screen of data. The two newly introduced forms now follow:
Listing 37.8 contains browser.per and Listing 37.9 displays z_state.per.

Listing 37.8. The browser.per form source file.
DATABASE recruiters
SCREEN
{

 \gp--------------------------------------q\g
 \g|\g Employer Information Browser \g|\g
 \gb--------------------------------------d\g
 Code Business Name City St Zip
D A
+--------+--------------------------------+------------------+--+----+-
+-+
[f000 |f001 |f004 |a0|f005
|c|d]
[f000 |f001 |f004 |a0|f005
|c|d]
[f000 |f001 |f004 |a0|f005
|c|d]
[f000 |f001 |f004 |a0|f005
|c|d]
[f000 |f001 |f004 |a0|f005
|c|d]
[f000 |f001 |f004 |a0|f005
|c|d]
[f000 |f001 |f004 |a0|f005
|c|d]
[f000 |f001 |f004 |a0|f005
|c|d]
[f000 |f001 |f004 |a0|f005
|c|d]
[f000 |f001 |f004 |a0|f005
|c|d]

}
END
TABLES
 employers
ATTRIBUTES
f000 = employers.empl_code;
f001 = employers.employer;
f004 = employers.city;
a0 = employers.state;
f005 = employers.zip;
c = employers.dac;
d = employers.authorized;
END
INSTRUCTIONS
 delimiters " "
 screen record s_browse[10](employers.empl_code,
 employers.employer,
 employers.city,
 employers.state,
 employers.zip,
 employers.dac,
 employers.authorized)
END

Here are two important items to note:

• When you design a screen, the square brackets ([]) represent the
boundaries that contain screen fields. When you display the information
within the application, each square bracket takes one space on the screen.
If screen space is at a premium, you can use the pipe symbol (|) to delimit
adjacent screen fields (it replaces the closing bracket from the first screen
field and the opening bracket from the second screen field), thus leaving
only one space to separate screen fields.

• To display (or input information) from a multi-record form, you need to
define a screen record array that differs from the screen records
introduced earlier only in the designation of how many records are to be
displayed on the screen following the screen record name.

Otherwise, screens for browsers and zooms can use the same features discussed in
Chapter 36 for all screens.

Listing 37.9. The z_state.per form source file.
DATABASE recruiters
SCREEN
{
--
 \gp------------q\g
 \g|\g States \g|\g
 \gb------------d\g

 Id. State
-----+---+---+--------------------+-----
 [a0] [f000]
 [a0] [f000]
 [a0] [f000]
 [a0] [f000]
 [a0] [f000]
 [a0] [f000]
 [a0] [f000]
 [a0] [f000]
 [a0] [f000]
 [a0] [f000]
--
}
END
TABLES
states
ATTRIBUTES
a0 = states.state, upshift;
f000 = states.state_name;
INSTRUCTIONS
 delimiters " "
 screen record s_states[10] (states.state, states.state_name)
END

To process the browse display, you only need to add another menu option for this
purpose (see Listing 37.3) and collect and display the browse information into the screen
array defined in the form.

Before you display the code that you developed for processing the browser, I introduce
the display array statement and the foreach loops that the code uses to display the
array and retrieve the data from the database.

NOTE: To distinguish options and arguments that are required in a command line
or in a statement from those that are optional, I have enclosed the optional
arguments in square brackets ([]), and the required arguments are not enclosed
in brackets. I use curly brackets ({}) to denote a grouping of items, and I use
pointed brackets (<>) to illustrate that the contents are to be filled in as
appropriate.

To display the data placed in program array variables to the form on the screen, you use
the display array statement as follows:

display array <array name> to <screen array>.*
 [attribute (<attribute> [, ...])]
 { [on key (key) [, ...]
 <4GL statements>
 exit display

 end display }

The options in this statement are

<array name> is the name of a program array.

<screen array> is the name of a screen array defined in the form that displays the
information.

(key) is one of the special keys that INFORMIX-4GL can recognize.

Listing 37.10 contains an example of the use of the display array in the code for the
browse.4gl source code module. An additional example appears in Listing 37.11.

To retrieve records sequentially from the database, an alternative to the open, fetch, and
close approach, discussed in various places earlier, you can use the foreach statement
block, which performs those functions on your behalf. Its syntax is

foreach <cursor name> [into <program var> [, ...]]
 { <4GL statements> |
 continue foreach |
 exit foreach }
end foreach

The options in this statement are

<cursor name> is the name of a cursor that is declared in the program.

<program var> is a list of program variables or arrays that receive the information
retrieved.

continue foreach skips execution of the statements following in the foreach statement
block and proceeds to retrieve the next record.

exit foreach sends control of the program to the statement just following the end
foreach clause.

end foreach delimits the foreach statement block.

Listing 37.10 contains an example of the use of the foreach statement in the code for the
browse.4gl source code module. Additional examples appear in Listing 37.11.

After reviewing the component parts that you use in managing this display, review the
overall programming logic for this process. For now, you only display information to a
screen array. This information is stored in memory in a program array. The process of
loading the array and displaying it is as follows:

1. Open the browse window with the appropriate browse form.

2. Display information on how to navigate through the window or a
navigation menu. (This is particularly useful if the array is large and you
provide a method for jumping to a certain row.)

3. Load the program array with data from the tables using a cursor and
some form of looping (probably a foreach loop because this operation is
sequential in nature).

4. Set the array count.

5. Close and free the browse cursor.

6. Display the array.

7. Upon user exit, close the window.

The code for managing the browser is displayed in Listing 37.10.

Listing 37.10. The browse.4gl source code module file.
globals "globals.4gl"
define max_rows, row_count smallint

function browse()

display array of employers in a list

define p_browse array[250] of record empl_code like
employers.empl_code,
 employer like employers.employer,
 city like employers.city,
 state like employers.state,
 zip like employers.zip,
 dac like employers.dac,
 authorized like
employers.authorized
 end record
if p_employers.empl_code is null
then
 let error_msg = " Must find first "
 call error_display (error_msg)
 return
end if
let max_rows = 250
#- open window with form and display guidelines for use
open window w_browse at 3,3 with form "browse" attribute(border, white)
display " Browse: Employers ... " at 1,1 attribute(red)

display " Accept or Cancel to Interrupt; Arrows, F3 F4 to move "
 at 2,1 attribute(yellow)
#- create a browse cursor to select the columns that fit in the
#- browse form
 let sql_stmt = "select empl_code, employer, city, state, zip, ",
 "dac, authorized ",
 "from employers where ",
 where_clause clipped, " ",
 "order by employer"
 prepare query_browse from sql_stmt
 declare c_browse cursor for query_browse
#- reinstate the sql_statement for the main cursor
 let sql_stmt = "select * from employers where ",
 where_clause clipped, " ",
 "order by empl_code"
#- fill in the array
 let row_count = 0
 foreach c_browse into p_browse[row_count + 1].*
 let row_count = row_count + 1
 if row_count >= max_rows
 then
 error " Employer List exceeds the limits of the display "
 exit foreach
 end if
 end foreach
 call set_count(row_count)
 close c_browse
 free c_browse
#- display the array
 display array p_browse to s_browse.*
 on key (accept)
 exit display
 on key (interrupt)
 let int_flag = false
 exit display
 end display
close window w_browse
return
end function

After the user decides to press Ctrl+Z to open the zoom window, the zoom function
determines which specific window and processing is required to deliver the information
to the calling screen field. The coding for the zoom function appears in zooms.4gl. Note
that the zoom function behaves as a switching mechanism; it receives a name and directs
the flow of the program to the right function.

The processing of the zoom functionality is, in general, as follows:

1. Open the zoom window with the appropriate zoom form.

2. Display information on how to prepare the query by example.

3. Construct a query by example on the first row of the screen array (or

construct by name).

4. Load the program array with data from the table using a cursor and
some form of looping (probably a foreach loop because this operation is
sequential in nature).

5. Set the array count.

6. Close and free the zoom cursor.

7. Display the array and information on how to navigate the array and how
to select a row to return to the calling program the value of the
appropriate key column.

8. Upon user exit, close the window.

9. Return null if the user interrupts the zoom selection of the values of the
key column in the row where the cursor was when the user accepted the
zoom selection.

The zooms.4gl file is contained in Listing 37.11.

Listing 37.11. The zooms.4gl source code module file.
globals "globals.4gl"
define sel_criteria char(512),
 sel_stmt char(1024),
 i, max_rows, row_count, row_selected smallint

function zoom(field_id)

define field_id char(18),
 p_old_state like employers.state
case
 when field_id = "state"
 let p_old_state = p_employers.state
 call z_state() returning p_employers.state
 if p_employers.state is null
 then
 let p_employers.state = p_old_state
 end if
 display by name p_employers.state
end case
return
end function

function z_state()

query, display and collect key pressed; return row or not

define p_state array[60] of record
 state like states.state,
 state_name like states.state_name
 end record
let max_rows = 60
#- open window with form and display header
open window w_state at 3,3 with form "z_state"
 attribute(border, white)
display " Zoom: States ... " at 1,1 attribute(red)
display " Accept to Search, Cancel to Interrupt "
 at 2,1 attribute(yellow)
#- construct the query and create the cursor
construct by name sel_criteria
 on states.state, states.state_name
 on key (interrupt)
 exit construct
 end construct
 if int_flag
 then
 let int_flag = false
 let error_msg = " No Criteria Identified for Selection "
 call error_display(error_msg)
 close window w_state
 let p_state[1].state = null
 return p_state[1].state
 else
 let sel_stmt = "select state, state_name from states ",
 "where ", sel_criteria clipped, " ",
 "order by state"
 display "" at 1,1
 display "" at 2,1
 display "Searching ... " at 1,1 attribute(green)
 end if
 prepare query1 from sel_stmt
 declare c_state cursor for query1
#- fill in the array
 let row_count = 0
 foreach c_state into p_state[row_count + 1].*
 let row_count = row_count + 1
 if row_count >= max_rows
 then
 let error_msg = " States exceed the limits of the ",
 "display "
 call error_display(error_msg)
 exit foreach
 end if
 end foreach
 call set_count(row_count)
 close c_state
 free c_state
display the array and receive selection
 display " Zoom: States ... Arrows, F3, F4 to move"
 at 1,1 attribute(red)
 display " Accept to Select, Cancel to Interrupt "
 at 2,1 attribute(yellow)

 display array p_state to s_states.*
 on key (interrupt)
 exit display
 end display
 if int_flag
 then
 let int_flag = false
 let error_msg = " No State Selected "
 call error_display(error_msg)
 close window w_state
 let p_state[1].state = null
 return p_state[1].state
 else
 let row_selected = arr_curr()
 close window w_state
 return p_state[row_selected].state
 end if
end function

Note that while the zoom function must be local to the program at hand, the z_state
function and corresponding form can become part of the libraries for your entire
application because they are fully encapsulated. The form that displays states and the
processing of the query and eventual return of a state to the calling function are common
throughout the system, no matter what the calling function requires this information for.
The zoom function, on the other hand, must be local to the current program because it
must deal with the display of the returned value in the current program.

Also note that both the browse.4gl and zooms.4gl source code modules use define
statements that are outside any program block, thereby making the defined variables
available in scope to all the functions within the source code module file.

Reports

Whether the software needs to produce invoices or deliver information for financial
analysis or sales statistics, reporting turns data into usable information. This section
introduces reports and report design and develops a complete example for use either as an
independent program or as another menu option for the example in the "Screens and
Screen Forms: A Primer" section, earlier in this chapter. The example presented here
follows the standard basic structure for a database report. The next chapter introduces
more report types and layouts that deviate from the standard and require special handling.

Report Design: A Primer

Unlike screen forms, which present themselves in three major layouts, report layouts
show a lot more variety. Reports in INFORMIX-4GL are a vehicle for both displaying
information in some form, such as screen, paper, and electronic transfer, and for posting
and batch processing data. Within the group of reports that display information, you can
distill some report layouts that you commonly find in business applications:

• Sequential, one-dimensional lists of similar content report rows, with
breaks provided by logical row groupings. An example of this report is an
invoice that lists, line after line, the items included in the sale and provides
a total section and a customer information and mailing section at the
header of the report. The lines of the report can also be separated in
blocks that represent items in different categories or different
departments and subtotals by category or department.

• Sequential listings of blocks of dissimilar report rows and reports with
multiple content sections. An example of this type of report is a sales
analysis report that displays multiple views of sales for each group. An
example is a report that displays, by company division, sales, inventory
movements, returns and pilferage, and commissions.

• Two-dimensional, matrix-like reports. These are very common to display
some activities against a timeline; the timeline is usually displayed
horizontally across the report, one column for each month, while the
activity, such as sales by division, is displayed vertically, with one division
in each row, producing a spreadsheet-like display.

The Report Driver and the Report Formatter

A report in INFORMIX-4GL usually consists of two distinct sections:

• The report driver gathers and manipulates data required by the report
and passes the organized data to the formatter.

• The report formatter (report program block) displays the data in the
proper layout and within the proper groupings.

The report driver is a regular INFORMIX-4GL function and is stored in a separate source
code module from the report formatter. If the report is not very extensive, the report
driver source code module contains main and whatever other functions are required to
collect and prepare the output data. Within the body of the report driver functions are
statements to start and finish the report and statements to pass data to the report:

start report <report name> [to {<file name> | pipe <program> | printer
}
finish report <report name>
output to report <report name> (<parameter list>)

These statements were already discussed at some length in the "Skeleton of an
INFORMIX-4GL Program: Report" section of Chapter 36. The report formatter structure
is discussed in detail in the next section.

Report Sections

The report formatter contains various sections, whose structure and syntax are as follows:

report <report name> (<parameters>)
 <parameter definitions>
 <local variable definitions>
 output
 top margin 3
 left margin 5
 right margin 132
 bottom margin 3
 page length 66
 report to screen
 order [external] by <variable> [, <variable>, ...]
 format
 <control blocks>
 <format statements>
end report

The first section of the report consists of definitions for the variables passed to the report
formatter by the output to report statement of the report driver and any other variable
definitions for local variables that are required to display the data in the report.

The second section of the report, the output section, defines the overall page layout of
the report and the default report destination, which can be overridden by the start
report statement in the report driver. The numbers included in each clause indicate the
defaults that INFORMIX-4GL uses if the clause is omitted.

The third section of the report, the order by clause, dictates how to sort the records in
the report and controls the sequence of execution of the various control blocks in the
report. If the external keyword is included, the report formatter assumes that the records
it receives are already sorted properly by the report driver. It is usually more efficient to
order the records as they are collected by the report driver than to hold them for sorting
until the report formatter receives all the records to be displayed.

The fourth section of the report, the format section, defines the layout of the display for
each control block.

The INFORMIX-4GL reporting system is based on the concept of processing each row of
output as it is received in the report formatter and completing the production of the report
with a single pass through the data. This processing holds true if the data was sorted in
the report driver or there are no aggregates in the report formatter; otherwise,
INFORMIX-4GL holds the data it needs (all output records passed for sorting or group
block output records for aggregate calculations) and processes it within a second pass.
Special reports that do not follow these conventions must be organized somewhat
differently.

Control Blocks

Control blocks structure the report layout within its various sections. Every report
statement in the format section must be executed within a control block. Table 37.1 lists
the available control blocks.

Table 37.1. INFORMIX-4GL report control blocks.
Control Block Executed When
first page
header Before the first record received is processed.

page header Before processing the first record displayed on each page (or
from page two onward if there is a first page header control
block).

before group
of <variable> Before processing the first record of a group for a <variable> in

the order by clause. If there are ties in processing before group
blocks, precedence in processing is dictated by dominance of the
<variable> in the sort list. Higher order variables in the order by
clause have their before group statement block execute before
lower order variables.

on every row For each record received by the report formatter.
after group
of <variable> After processing the last record of a group for a <variable> in

the order by clause. If there are ties in processing after group
blocks, precedence in processing is dictated by dominance of the
<variable> in the sort list. Lower order variables in the order by
clause have their after group statement block execute before
higher order variables.

page trailer After processing the last record displayed on each page.
on last row After processing the last record of the report.

Any valid INFORMIX-4GL statement can be executed within a control block, but reports
cannot embed SQL statements within them. (These must be executed by the report
driver.) In addition, Table 37.2 lists statements that are exclusive to INFORMIX-4GL
reports.

Table 37.2. INFORMIX-4GL report statements in control blocks.
Statement Purpose and Functionality
print [
<expression> [,
...] [;]]

Prints <expression> in the report; many <expression> items
can be concatenated with the , operator. Every print
statement is fully contained within a report line except when
the ; operator terminates the print statement to indicate

that the next print statement should continue the current
print line.

skip { <number of
lines> | to top
of page }

Inserts <number of lines> blank lines in the report or starts
a new page (to top of page) of the report.

need <number>
lines Either there are <number> lines still left on this page, in

which case the report continues printing on this page, or
there aren't, in which case the report continues printing on a
new page.

pause [
"<string>"] Used only when the report is displayed on the screen, it is

used to pause the display and show <string> on the screen.
print file
"<filename>" Inserts the contents of file <filename> in the report.

Within a print statement, an INFORMIX-4GL report can use the special operators listed
in Table 37.3.

Table 37.3. Print statements operators.
Operator Purpose and Functionality
ASCII <value> Returns the ASCII character represented by the number

<value>.
column <number> Starts printing whatever follows this operator in column

<number> from the left margin of the page. If the current
position on the line is already greater than <number>, this
operator is ignored.

lineno Returns the value of the line number the report is currently
printing.

pageno Returns the value of the page number the report is currently
printing.

<number>
space[s] Inserts as many blanks spaces as dictated by <number> in the

print line.
<character
string>
wordwrap

Wraps the contents of <character string> onto

[right margin
<number>] multiple printed lines and uses the temporary right margin

indicated by <number> or the actual page right margin if the
clause is omitted.

Grand Totals and Subtotals

Within a report block that signals the end of a group, you can use the following aggregate
report functions:

[group] { count (*) | percent (*) | { sum } (<expression>) }
 | avg
 | min
 | max
[where <where clause>]

Examples of these aggregates are included in the report code in the next section.

Formatting the Display

Using the example of the fictitious trucking firm, you are going to produce a report that
displays the employers' basic information ordered by state and alphabetically by
employer name within each state. After each state, you display the count of employers
contained within the state, and at the end of the report, you display the count of all the
employers listed. Also at the end of the report, you display the count of employers whose
phone is missing (null) and not missing. The report driver for this example is included in
Listing 37.12, and the report formatter is included in Listing 37.13.

Listing 37.12. The driver.4gl source code file.
database recruiters

main

#- define variables to collect data from the database
 define p_states record like states.*,
 p_employers record like employers.*
#- declare the cursor to collect data; at this point we're
#- including all employer records in the report but, if we
#- wanted to limit the query to user selected parameters,
#- this would be the place to prompt the user for those
#- parameters
 declare c_data cursor for
 select states.*, employers.*
 from states, employers
 where states.state = employers.state
 order by states.state, employers.employer
#- initialize the report
 start report rpt_employers to printer
#- fetch the data and loop until exhausted
 foreach c_data into p_states.*, p_employers.*
#- send data to the report formatter
 output to report rpt_employers (p_states.*, p_employers.*)
 end foreach
#- finish the report and flush the buffers
 finish report rpt_employers
#- we're done, quit
 exit program
end main

Note that instead of defining the report driver within a separate program, you could have
replaced a function for main and made this report another menu option in the
application discussed in the "Screens and Screen Forms: A Primer" section, earlier in this
chapter. If that were the case, you could replace the static cursor declaration with a
dynamic cursor declaration that uses the same where_clause that the find.4gl source
code module constructed.

Listing 37.13. The report.4gl source code file.
database recruiters

report rpt_employers (rpt_states, rpt_employers)

#- define report arguments and local variables
define rpt_states record like states.*,
 rpt_employers record like employers.*,
 i, j smallint
#- output section
output
 left margin 0
 right margin 80
 top margin 1
 bottom margin 3
 page length 66
 report to "report.out"
#- order by section
order external by rpt_states.state, rpt_employers.employer
#- format section
format
page header
 print column 1, "Listing of Employers by State",
 column 70, "Page ", pageno using "<<<"
 print column 1, "Run on ", today using "mm-dd-yyyy"
 skip 2 lines
 print column 5, "Code",
 column 20, "Employer",
 column 50, "City",
 column 69, "Phone Number"
 print column 1, "+--------+ +------------------",
 "--------------+ +-------------",
 "--+ +------------+"
page trailer
 print column 1, "------------------------------",
 "-------------------------------",
 "------------------"
 skip 1 line
 print column 70, "Page ", pageno using "<<<"
before group of rpt_states.state
 skip to top of page
 skip 2 lines
#- center the name of the state within the 24 column box we're
#- building
 let i = length(rpt_states.state_name)
 let j = ((24 - i) / 2) + 1
 print column 1, "********** ", rpt_states.state clipped,

 " **********"
 print column 1, "* ",
 column j, rpt_states.state_name clipped,
 column 23, " *"
 print column 1, "************************"
 skip 1 line
on every row
#- if the phone number is null, do not print it at all; otherwise
#- format the phone number by placing () around the area code and
#- the - in its proper place using substrings of the phone
#- column
 if rpt_employers.phone is null
 then
 print column 2, rpt_employers.empl_code using "#########",
 column 13, rpt_employers.employer clipped,
 column 48, rpt_employers.city clipped
 else
 print column 2, rpt_employers.empl_code using "#########",
 column 13, rpt_employers.employer clipped,
 column 48, rpt_employers.city clipped,
 column 66, "(", rpt_employers.phone[1,3], ") ",
 rpt_employers.phone[4,6], "-",
 rpt_employers.phone[7,10]
 end if
after group of rpt_states.state
 skip 2 lines
 print column 1, "Tally of employers in ",
 rpt_states.state_name clipped, " (",
 rpt_states.state clipped, ") is ",
 group count(*) using "<<<"
on last row
 need 8 lines
 skip 2 lines
 print column 1, "Employers without Phone Numbers: ",
 count(*) where rpt_employers.phone is null
 using "#####"
 print column 1, "Employers with Phone Numbers: ",
 count(*) where rpt_employers.phone is not null
 using "#####"
 print column 1, "Employers in this report: ",
 count(*) using "#####"
 skip 2 lines
 print column 1, "***** End of Report *****"
end report

Summary

This chapter formalized the description of the most common building blocks of an
INFORMIX-4GL application: screens and reports (particularly the latter). It expanded the
code provided in Chapter 36 that deals with Input Management and provided you with
new source code versions to compare and contrast with those in Chapter 36. The code is
not yet of production caliber, but it is moving in that direction. After the next chapter,
you should be able to revise it and convert it to a robust application.

- 38 -

Advanced 4GL Development
• Screen Inputs

o Multiple Row, Single Table Displays and Selections: Pop-Up
Window Selections

o Cursors Revisited and a Further Look at Query by Example
o Multiple Table Displays
o Master/Detail Relationships: Single Row Master Table and Multiple

Row Detail Table Inputs
• Reports

o Managing Multiple Report Destinations in a Single Report
o Producing Multiple Reports within a Single Program Module
o Multiple Section Reports
o Nonstandard Report Layouts

• Error Management
o Trapping Errors
o Generic Error Management
o Using the SQLCA Record and Its Components

• The 4GL Debugger
o The Debugging Environment
o Displaying the Contents of Program Variables and Arrays
o Breaks
o Traces
o Other Features

• Miscellaneous Topics
o Multiple Database Capable Programs
o Dealing with Multiple Databases in a Single Program
o The Interaction Between the UNIX Environment and a 4GL

Program
o Using SQL Within the 4GL Program
o Using C Functions in the 4GL Program
o Transaction Management and Staleness Alerts

• Summary

by José Fortuny

This chapter closes the series of four chapters devoted to INFORMIX-4GL programming.
I continue to develop the example that I have been using: the fictitious trucking company.
In this chapter, I expand inputs to the case of header/detail data entry environments, one
very common way to manage the inputs for the one-to-many relationships. To
accomplish this, you need to add another table to the database. This table, named depots,
will store information about the various locations each employer operates from; for each
employer, there will be zero or many depots. The schema for this table appears in Listing
38.1.

Listing 38.1. Schema of depots table.
{ TABLE "jose".depots row size = 148 number of columns = 9 index size =
88 }
create table "jose".depots
 (
 empl_code integer not null constraint "jose".n105_25,
 depot_code serial not null constraint "jose".n105_26,
 depot char(35) not null constraint "jose".n105_27,
 add_line1 char(35),
 add_line2 char(35),
 city char(18) not null constraint "jose".n105_28,
 state char(2) not null constraint "jose".n105_29,
 zip char(5) not null constraint "jose".n105_30,
 phone char(10) not null constraint "jose".n105_31,
 primary key (depot_code) constraint "jose".pk_depot
);
revoke all on "jose".depots from "public";
create index "jose".ix_depots_1 on "jose".depots (empl_code,depot);
alter table "jose".depots add constraint (foreign key (empl_code)
 references "jose".employers constraint "jose".fk_depot_1);

In this chapter, in addition to header/detail inputs, you also learn about a number of issues
that can't be classified as specifically as I have classified the subject matter so far but that,
nonetheless, merit consideration. The chapter covers advanced reporting issues, such as
managing multiple reports within a single program, and developing nonstandard report
layouts. In the previous three chapters, you have used the basic INFORMIX-4GL error
management and error reporting tools; this chapter introduces an alternative methodology
for error management, in which your program actually controls the way in which it wants
to deal with errors. I also introduce the salient features of the INFORMIX-4GL debugger
and issues dealing with the relationships of your program database to other databases and
to the UNIX environment around it.

Screen Inputs

Chapter 36, "4GL Coding," introduced inputs to a single table using a header-only form.
Chapter 37, "4GL Development," introduced displays of data coming from multiple
tables onto a header-only form, and it also introduced the management of multiline,
detail-only forms that listed multiple records from a single table. In particular, you looked
at browsers that just display records from a table and zooms that perform three duties:
They allow the user to perform a query by example to make a selection from the table;

then they display the list of records returned from the query (as browsers do); and,
finally, the user can make a selection of one of the records returned, and the selected
record, or portions of it, is returned to the calling program. I review zooms a bit further in
this section and the concepts underlying query by example before introducing the
header/detail inputs. The only input type not covered is that of inputs to a detail-only
screen, but such inputs are just a subset of the header/detail input and can be derived
easily from it.

Multiple Row, Single Table Displays and Selections: Pop-Up Window
Selections

The concept of zooms was introduced in Chapter 37. This section further analyzes the
programming of zooms. Listing 38.2 contains the file zooms.4gl, which allows the user
to zoom over the tables of states.

Listing 38.2. The zooms.4gl file.
globals "globals.4gl"
define sel_criteria char(512),
 sel_stmt char(1024),
 i, max_rows, row_count, row_selected smallint

function z_state()

query, display and collect key pressed; return row or not

define p_state array[60] of record
 state like states.state,
 state_name like states.state_name
 end record
whenever error continue
let max_rows = 60
#- open window with form and display header
open window w_state at 3,3 with form "z_state"
 attribute(border, white)
display " Zoom: States ... " at 1,1 attribute(red)
display " Accept to Search, Cancel to Interrupt "
 at 2,1 attribute(yellow)
#- construct the query and create the cursor
construct by name sel_criteria
 on states.state, states.state_name
 on key (interrupt)
 exit construct
 end construct
 if int_flag
 then
 let int_flag = false
 let error_msg = " No Criteria Identified for Selection "
 call error_display(error_msg)
 close window w_state
 let p_state[1].state = null
 return p_state[1].state
 else

 let sel_stmt = "select state, state_name from states ",
 "where ", sel_criteria clipped, " ",
 "order by state"
 display "" at 1,1
 display "" at 2,1
 display "Searching ... " at 1,1 attribute(green)
 end if
 prepare query1 from sel_stmt
 declare c_state cursor for query1
#- fill in the array
 let row_count = 0
 foreach c_state into p_state[row_count + 1].*
 let row_count = row_count + 1
 if row_count >= max_rows
 then
 let error_msg = " States exceed the limits of the ",
 "display "
 call error_display(error_msg)
 exit foreach
 end if
 end foreach
 call set_count(row_count)
 close c_state
 free c_state
display the array and receive selection
 display " Zoom: States ... Arrows, F3, F4 to move"
 at 1,1 attribute(red)
 display " Accept to Select, Cancel to Interrupt "
 at 2,1 attribute(yellow)
 display array p_state to s_states.*
 on key (interrupt)
 exit display
 end display
 if int_flag
 then
 let int_flag = false
 let error_msg = " No State Selected "
 call error_display(error_msg)
 close window w_state
 let p_state[1].state = null
 return p_state[1].state
 else
 let row_selected = arr_curr()
 close window w_state
 return p_state[row_selected].state
 end if
end function

function zoom(field_id)

define field_id char(18),
 p_old_state like employers.state
case
 when field_id = "state"
 let p_old_state = p_employers.state
 call z_state() returning p_employers.state
 if p_employers.state is null

 then
 let p_employers.state = p_old_state
 end if
 display by name p_employers.state
end case
return
end function

Please note that the first 25 lines of the program (just up to the construct section)
initialize the display and provide the user with directives on how to proceed. The next 25
lines of code first perform a query by example in the construct block, and either
terminate the zoom if the user cancels out or construct and declare the cursor that will
perform the retrieval of records from the database. Note that the function uses the first
two lines of the display to keep the user abreast of progress. Following the construct, the
array is filled with a standard foreach loop, and the records loaded onto the array are
specified with the set_count function . After the array is loaded, you place the user in
the display block. If the user cancels out, you return a null state; otherwise, when the
user accepts the row where the cursor is resting, you return the state identified in that
row:

let row_selected = arr_curr()
return p_state[row_selected].state

The function arr_curr is used to return the number (row_selected) of the program
record that is currently displayed in the screen array. That number is then used to retrieve
and return the state to the calling function.

The general processing of the zoom function was discussed at length in the "Multiple
Row, Single Table Displays: Browsers" section of Chapter 37, and it is summarized again
in the following steps:

1. Open the zoom window with the appropriate zoom form.

2. Display information on how to prepare the query by example.

3. Construct a query by example on the first row of the screen array
(alternatively, construct by name).

4. Load the program array with data from the table by using a cursor and
some form of looping (probably a foreach loop, because this operation is
sequential in nature).
5. Set the array count.

6. Close and free the zoom cursor.

7. Display the array and information on how to navigate the array, and
how to select a row to return to the calling program the value of the
appropriate key column.

8. Upon user exit, close the window.

9. Return null if the user interrupted the zoom selection or the values of
the key column in the row where the cursor was when the user accepted
the zoom selection.

Cursors Revisited and a Further Look at Query by Example

In all the examples covered so far--and even in the example discussed in the
"Master/Detail Relationships: Single Row Master Table and Multiple Row Detail Table
Inputs" section later in this chapter--the construct statement has been used with
columns of a single table. At this point, I want to introduce the new version of the
employers.per form that will be used in that upcoming section and develop construct
statements to illustrate more complex query by example setups.

When considering the form in Figure 38.1, you might conceive two types of queries. In
one, the user is allowed to make selections only on employer information and not on
employer depot information (that is, a query on the header portion of the form only). For
instance, find all employers whose headquarters office is located in Arkansas.
Alternatively, you might want to let your users make queries on the detail portion of the
form: for instance, find all employers that have a depot located in Iowa.
Let's examine the meaning of both queries in the context of the form that will display the
results.

If the query is on the header-only portion of the screen, your construct statement will
deal with the columns of table employers only and, when the first employer is retrieved,
your program will proceed to retrieve all depots for this employer. The construct
statement you are likely to use is construct by name where_clause on
employers.*, and the results you expect to see are all the depots for each employer, as
you scroll through the list of employers. In Figure 38.1, you see the depots of CLASSIC
CARRIER LINES, which is the first employer selected in a list of three retrieved (1 of 3).

Figure 38.1.

The employer header/detail input form.

If, on the other hand, you want to query both the header and the detail, you might find
users trying to define the following query: show me all depots in the state of
Iowa..., and they might expect to see only depots in Iowa listed on the screen. That is
not what this screen is designed for. Rather, it is designed to display all depots for an

employer. It represents the employer-to-depot relationship; it can't deal with the depot
portion of the relationship alone. (For that you could create a detail-only listing for depots
by state.) Thus, when the users query for Iowa in the detail, the query they are really
firing off is

show me all employers that have a depot in Iowa and, for those
employers

that do, show me all their depots, whether in Iowa or not

The construct statement you might use in this case is construct by name
where_clause on employers.*, depots.*, assuming that you allow them to query on
all the fields on the screen. (Note that although all the depot columns are displayed on the
screen, the construct statement doesn't really know, or care, and it still constructs the
where_clause variable properly.) With that where_clause, the sql_stmt you would
build is

let sql_stmt = "select * from employers where ",
 "employers.empl_code = depots.empl_code and ",
 where_clause clipped,
 "order by employers.empl_code"

You define the relationship between the two tables in the where clause
(employers.empl_code = depots.empl_code), and you select only the employer's
information that satisfies the query the user created in where_clause. After you have
retrieved the header (employers) rows, you will find all the detail (depots) rows that
belong to that employer and display them along with the employer information.

Multiple Table Displays

Typically, displays from multiple tables come in one of two flavors: header/detail
screens, which will be discussed further in the next section, and descriptions of coded
information in any type of screen form. In Chapter 37, Listing 37.1 displays a header-
only form (the previous version of employers.per) that displays the long name of the
state following the state two-letter code.

One of two methods is normally used to retrieve information from multiple tables
simultaneously: Either a query is defined that contains columns from the various tables,
or two queries are performed in sequence. The first query retrieves the information from
the primary table, and the second query uses the information retrieved to select the
required information from the second table, and so on. The latter was the strategy
followed in Listing 37.5 (in Chapter 37), whose relevant portion is displayed here:

fetch first c_employers into p_employers.*
 if status = 0
 then
 let curr_row = 1
 display by name p_employers.*

 call valid_state(p_employers.state)
 returning is_valid, p_display.state_name
 display by name p_display.*
 call records (21,60, curr_row, total_rows)

First, you retrieve information from table employers and, after you have the state code,
you use the function valid_state to retrieve the state_name. The only rationale for
doing this is that you already had the function valid_state defined and could actually
reuse it.

The alternative would have been to redefine the sql_stmt clause from

let sql_stmt = "select * from employers where ",
 where_clause clipped, " ",
 "order by empl_code"

to the following:

let sql_stmt = "select employers.*, states.state_name from employers,
states ",
 "where employers.state = states.state and ",
 where_clause clipped, " ",
 "order by empl_code"

The database engine would have retrieved the records in one pass.

Master/Detail Relationships: Single Row Master Table and Multiple Row
Detail Table Inputs

To input information into the screen form in Figure 38.1, you first need to define the form
source file. Listing 38.3 contains the employer.per source form file that matches the
display in Figure 38.1.

Listing 38.3. The employer.per source form file.
DATABASE recruiters
SCREEN
{

 Code:[f000] Name:[f001]
 Address:[f002]
 [f003]
 City:[f004] State:[a0] Zip:[f005] Phone:[f006]
 Trailer Length:[a1] Authority:[a]
 Freight:[f007] Leased:[b]
 Area:[f008] DAC:[c]
 Number of Trucks:[f009] Authorized:[d]
------------------------------ Depot Locations ------------------------

 Depot AddressPhone

 +------------------------+----------------------------------+---------
-+
 [d1 |d2 |d7
]
 [d3]
 [d4][d5][d6]
 [d1 |d2 |d7
]
 [d3]
 [d4][d5][d6]

}
END
TABLES
 employers
 depots
 states
ATTRIBUTES
f000 = employers.empl_code, reverse, noentry;
f001 = employers.employer, required, upshift,
 comments = "Enter the Employer Business Name";
f002 = employers.add_line1,
 comments = "Enter the First Line of the Address";
f003 = employers.add_line2,
 comments = "Enter the Second Line of the Address";
f004 = employers.city, upshift, required,
 comments = "Enter the City for this Address";
a0 = employers.state, required, upshift,
 comments = "Enter the State for this Address";
f005 = employers.zip, required, picture = "#####",
 comments = "Enter the Zip Code for this Address";
f006 = employers.phone;
a1 = employers.trl_len;
f007 = employers.freight;
f008 = employers.area;
f009 = employers.nbr_trks;
a = employers.authority;
b = employers.leased;
c = employers.dac;
d = employers.authorized;
d1 = depots.depot, comments = "Enter the Name of This Location";
d2 = depots.add_line1,
 comments = "Enter the First Line of the Address";
d3 = depots.add_line2,
 comments = "Enter the Second Line of the Address";
d4 = depots.city, upshift, required,
 comments = "Enter the City for this Address";
d5 = depots.state, required, upshift,
 comments = "Enter the State for this Address";
d6 = depots.zip, required, picture = "#####",
 comments = "Enter the Zip Code for this Address";
d7 = depots.phone;
END
INSTRUCTIONS
 delimiters " "
 screen record s_employers(employers.empl_code,

 employers.employer,
 employers.add_line1,
 employers.add_line2,
 employers.city,
 employers.state,
 employers.zip,
 employers.phone,
 employers.trl_len,
 employers.freight,
 employers.area,
 employers.nbr_trks,
 employers.authority,
 employers.leased,
 employers.dac,
 employers.authorized)
 screen record s_depots[2](depots.depot,
 depots.add_line1,
 depots.add_line2,
 depots.city,
 depots.state,
 depots.zip,
 depots.phone)
END

Other than its layout, the main feature to emphasize (which is not covered earlier) is the
definition of a screen record array s_depots with two rows of display.

To construct the program, use the same source code modules used in Chapter 37, which
are add.4gl, browse.4gl, delete.4gl, find.4gl, globals.4gl, main.4gl,
options.4gl, and zooms.4gl. The only source code modules that differ between the two
versions are add.4gl, delete.4gl, find.4gl, and globals.4gl. (main.4gl differs only
in the initialization of variables.) The source code modules that differ will be listed in this
section and the differences discussed. The most significant differences between these
source code modules and their previous counterparts are found in add.4gl, discussed last
in this section.

The globals.4gl source code module is displayed in Listing 38.4.

Listing 38.4. The globals.4gl source code module.
database recruiters

globals

define p_employers record like employers.*,
 p_old_employers record like employers.*,
 p_depots array[100] of record
 depot like depots.depot,
 add_line1 like depots.add_line1,
 add_line2 like depots.add_line2,
 city like depots.city,
 state like depots.state,
 zip like depots.zip,

 phone like depots.phone
 end record,
 p_depots_nv array[100] of record
 empl_code like depots.empl_code,
 depot_code like depots.depot_code
 end record,
 p_old_depots array[100] of record
 depot like depots.depot,
 add_line1 like depots.add_line1,
 add_line2 like depots.add_line2,
 city like depots.city,
 state like depots.state,
 zip like depots.zip,
 phone like depots.phone
 end record,
 p_old_depots_nv array[100] of record
 empl_code like depots.empl_code,
 depot_code like depots.depot_code
 end record,
 is_valid smallint,
 where_clause char(512),
 sql_stmt char(1024),
 error_msg char(70),
 u_employer smallint,
 go_to_field, p_dbname char(18),
 curr_row, total_rows, p_cur, s_cur, counted_rows,
 detail_rows integer
end globals

This version of globals.4gl contains definitions for the new variables required to input
the detail, p_depots, as well as to manage the columns from table depots that are not
displayed in the screen form, p_depots_nv, and their p_old versions. Note that these
variables have been defined as arrays of 100 records. In addition, two more counters--
detail_rows, used to define the maximum number of rows in the detail array (100), and
counted_rows, used as a counter for the actual rows loaded--are used to manage the
input and display of the newly introduced arrays.

The find.4gl source code module is displayed in Listing 38.5.

Listing 38.5. The find.4gl source code module.
globals "globals.4gl"

function prep_cursor()

#- prepare the SQL statement for execution, declare a cursor that
#- will represent the active set of rows returned by the engine
#- and activate the cursor by opening it
 whenever error continue
 prepare statement_1 from sql_stmt
 declare c_employers scroll cursor with hold for statement_1
 open c_employers
end function

function count_them()

 define sql_count char(512)
 let sql_count = "select count(*) from employers where ",
 where_clause clipped
 prepare statement_count from sql_count
 declare c_count cursor for statement_count
 open c_count
 fetch c_count into total_rows
 close c_count
 free c_count
 return
end function

function find_it()

Gather search criteria, find the first employer and display it

#- clear form on the screen and initialize variables
 clear form
 let int_flag = false
 let curr_row = 0
 let total_rows = 0
 initialize p_employers.* to null
 display "--------------------" at 21,60 attribute(white)
#- replace menu with instructions for query by example
 display "" at 1,1
 display "" at 2,1
 display "Enter the Search Criteria for Selection ..." at 1,1
 attribute(green)
 display "Press Accept Key to Search, Cancel Key to Interrupt"
 at 2,1 attribute(yellow)
#- construct the query statement dynamically: the where_clause
#- variable will contain the query string based on the criteria
#- for selection that the user inputs
 construct by name where_clause on employers.*
#- if the user interrupted, cancel the query request and return to
#- the calling program after advising the user
 if int_flag
 then
 message " Search Cancelled at User Request "
 let int_flag = false
 return
 end if
#- proceed with the query: replace query by example instructions
#- by flashing message indicating search for records is proceeding
 display "" at 1,1
 display "" at 2,1
 display "Searching ..." at 1,1 attribute(green, blink)
#- construct the complete SQL statement to query the database:
#- include the select clause, the from clause, the dynamically
#- created where clause and order by clause. Concatenate
#- those clauses into the program variable sql_stmt
 let sql_stmt = "select * from employers where ",
 where_clause clipped, " ",
 "order by empl_code"
#- count the records that match the query and prepare the cursor

#- and open it (this is now done in prep_cursor())
 call count_them()
 call prep_cursor()
#- if the open has succeeded, retrieve the first row in the active
#- data set, place it in the program variable p_employers and
#- display this variable; otherwise handle the failure with an
#- error message that is descriptive of the type of failure
 if status = 0
 then
 fetch first c_employers into p_employers.*
 if status = 0
 then
 let curr_row = 1
 display by name p_employers.*
 call find_detail(p_employers.empl_code, "D")
 call records (21,60, curr_row, total_rows)
 else
 if status = notfound
 then
 clear form
 message "No employers satisfy search criteria"
 else
 let error_msg = " Could not get employers ",
 "information; ",
 "status ", status using "-<<<<<<<<<<"

 call error_display(error_msg)
 end if
 end if
 else
 let error_msg = " Could not access employers ",
 "information; ",
 "status ", status using "-<<<<<<<<<<"
 call error_display(error_msg)
 end if
end function

function next_row()

fetch and display the next row

#- to display the next row, one must already be displayed
 if p_employers.empl_code is null
 then
 let error_msg = " Must find first "
 call error_display(error_msg)
 return "findfirst"
 end if
#- retrieve the next row in the active set, place it in the program
#- variable p_employers and display this variable; otherwise handle
#- the failure with an error message that is descriptive of the
#- type of failure
 fetch next c_employers into p_employers.*
 if status = 0
 then
 let curr_row = curr_row + 1
 display by name p_employers.*

 call find_detail(p_employers.empl_code, "D")
 call records (21,60, curr_row, total_rows)
 return "found"
 else
 if status = notfound
 then
 message "Reached the end of the list"
 return "last"
 else
 let error_msg = " Could not retrieve next employer; ",
 "status ", status using "-<<<<<<<<<<"
 call error_display(error_msg)
 return "error"
 end if
 end if
 return "ok"
end function

function previous_row()

fetch and display the previous row

#- to display the previous row, one must already be displayed
 if p_employers.empl_code is null
 then
 let error_msg = " Must find first "
 call error_display(error_msg)
 return "findfirst"
 end if
#- retrieve the previous row in the active set, place it in the
#- program variable p_employers and display this variable;
#- otherwise handle the failure with an error message that is
#- descriptive of the type of failure
 fetch previous c_employers into p_employers.*
 if status = 0
 then
 let curr_row = curr_row - 1
 display by name p_employers.*
 call find_detail(p_employers.empl_code, "D")
 call records (21,60, curr_row, total_rows)
 return "found"
 else
 if status = notfound
 then
 message "At the beginning of the list"
 return "first"
 else
 let error_msg = " Could not retrieve previous ",
 "employer; ",
 "status ", status using "-<<<<<<<<<<"
 call error_display(error_msg)
 return "error"
 end if
 end if
 return "ok"
end function

function find_detail(p_employer, p_mode)

get detail and display the array

define p_mode char(1),
 p_employer like employers.empl_code,
 depot_stmt char(1024),
 i smallint
#- initialize detail array clearing it from any previous values
let int_flag = false
for i = 1 to detail_rows
 initialize p_depots[i].* to null
 initialize p_depots_nv[i].* to null
end for
#- prepare the cursor to select based on empl_code and
#- load the detail array
let depot_stmt = "select * from depots where empl_code = ",
 p_employer,
 " order by empl_code, depot"
prepare depot_stmt from depot_stmt
declare c_depots scroll cursor with hold for depot_stmt
let i = 0
#- note that we're loading both the part of the depot row that is
#- displayed on the detail screen as well as the portion that is
#- not displayed (p_depots_nv)
foreach c_depots into p_depots_nv[i + 1].*, p_depots[i + 1].*
 let i = i + 1
 if i > detail_rows
 then
 let error_msg = " List Exceeds the limits of the display "
 call error_display(error_msg)
 let i = detail_rows
 exit foreach
 end if
end foreach
#- set the count of rows in the array
let counted_rows = i
call set_count(i)
close c_depots
free c_depots
case
 when p_mode = "D"
#- display the first screenful of the detail
 for i = 1 to 2
 display p_depots[i].depot,
 p_depots[i].add_line1,
 p_depots[i].add_line2,
 p_depots[i].city,
 p_depots[i].state,
 p_depots[i].zip,
 p_depots[i].phone
 to s_depots[i].depot,
 s_depots[i].add_line1,
 s_depots[i].add_line2,
 s_depots[i].city,
 s_depots[i].state,
 s_depots[i].zip,

 s_depots[i].phone
 end for
 otherwise
 let error_msg = " Display not specified "
 call error_display(error_msg)
end case
end function

The main difference between this version of find.4gl and the previous version in
Chapter 37 is due to the need to manage the detail rows. After an employer record is
fetched, you proceed to call the function find_detail, which defines its own cursor,
loads the arrays p_depots and p_depots_nv using a foreach clause, and then displays
the first screen full of detail rows (the first two rows). The structure of the function
find_detail is very similar to the structure of a zoom, but in the case of the detail, the
cursor is defined statically based on the key values provided by the header (employers).

An addition to this find.4gl source code module, which has not been introduced in this
example but rather left as a simple exercise, is the display of the count of rows retrieved
in the detail array. Note that the records function displays the position of the employers
record in the list of employers retrieved and the count of such employers. It could be
easily modified to display also the count of rows (counted_rows) that represent the
depots for the employer on the screen.

Note also that the construct statement you have used to define the main cursor that
retrieves employers is based solely on the employers table. Some discussion on this
subject was presented in the "Cursors Revisited and a Further Look at Query by
Example" section, earlier in this chapter. Additionally, when you have a header/detail
relationship displayed on the screen and you perform a query by example that includes
the detail, the cost of retrieving rows increases dramatically while the records returned
are only those of the header. It pays to experiment before providing a query by example
that includes the detail.

The delete.4gl source code module is displayed in Listing 38.6.

Listing 38.6. The delete.4gl source code module.
globals "globals.4gl"

function delete_it()

prompt for confirmation and then act accordingly

#- define local variables
 define del_flag char(10),
 i smallint
 whenever error continue
 let int_flag = false
#- test that the user selected a record to be deleted; if no
#- records are displayed on the screen, error out
 if p_employers.empl_code is null
 then

 let error_msg = " Must find first "
 call error_display(error_msg)
 return "findfirst"
 end if
#- display a new menu to confirm the deletion
 menu "Delete?"
 command "No" "Do not delete this employer"
 message "Deletion of employer cancelled"
 let del_flag = "interrupt"
 exit menu
 command "Yes" "Delete this employer"
#- whether you have set up referential integrity through the
#- DB engine or not, you should delete first the detail
#- records before deleting the header record
 delete from depots where empl_code =
 p_employers.empl_code
 if status = 0
 then
#- when the delete of the detail record has succeeded, then delete
#- the header record
 delete from employers
 where empl_code = p_employers.empl_code
 if status = 0
 then
 message "Employer deleted" attribute(reverse)
 clear form
 initialize p_employers.* to null
 for i = 1 to detail_rows
 initialize p_depots[i].* to null
 initialize p_depots_nv[i].* to null
 end for
 display "--------------------"
 at 21, 60 attribute(white)
 let del_flag = "deleted"
 else
 let error_msg = " Could not delete employer; ",
 "status ", status
 using "-<<<<<<<<<"
 call error_display(error_msg)
 let del_flag = "problem"
 end if
 exit menu
 else
 let error_msg = " Could not delete depots; ",
 "status ", status
 using "-<<<<<<<<<"
 call error_display(error_msg)
 let del_flag = "problem"
 end if
 end menu
 if int_flag
 then
 let int_flag = false
 return "interrupt"
 else
 return del_flag
 end if

end function

When dealing with a header/detail relationship, and whether or not the database tables are
handled with referential integrity managed by the database engine, you must process the
deletion of the depots (detail) before you process the deletion of the employer (header)
to avoid generating orphaned records. If referential integrity is enforced by the database
engine, that order of deletions will be required.

Before you learn about the code for the add.4gl source code module, I should introduce
the input array statement that the code uses to manage input to the detail array:

input array <program array variable> [without defaults]
from <screen record array>.*
 [help <number>] [attribute (<attribute> [, ...])]
 [{ before {input, row, insert, delete}
 { any 4GL statement }
 before field <form field name>
 { any 4GL statement }
 after field <form field name>
 { any 4GL statement }
 after {input, row, insert, delete}
 { any 4GL statement }
 on key (<special key>)
 { any 4GL statement }
 next field { next | previous | <form field name> }
 continue input
 exit input}]
end input

<program array variable> lists the program array variable to input (normally an array of
records is used).

without defaults keeps the system from filling the screen fields with default values
and instead uses the current values of the <program array variable> variables.

from binds the <program array variable> to a <screen record array>.

before input is executed before allowing the user to input data onto the form.

before row is executed the moment the cursor enters a row.

before insert is executed when the user is about to enter records onto a blank row
(first of the array, if the Insert key is pressed, or the next blank row at the end of the rows
currently filled).

before delete is executed after the user presses the Delete key but before actually
deleting the row.

before field <form field name> is executed as the cursor enters <form field
name> and before allowing the user to input data on the field.

after field <form field name> is executed as the cursor is about to leave <form
field name>.

after input is executed when the user presses any of the keys that terminate input
(Accept, Interrupt, or Quit) but before input is actually terminated.

after row is executed the moment the cursor leaves a row.

after insert is executed after the user has inserted a record on a blank row.

after delete is executed after the user presses the Delete key.

on key (<special key>) is executed when the user presses a <special key> that
the system recognizes.

next field { next | previous | <form field name> } moves the screen cursor to
the appropriate selection within the current screen array row.

continue input skips all statements in the current control block.

exit input terminates input and transfers control to the statement immediately
following the end input clause.

In executing clauses within the input array statement block, INFORMIX-4GL follows
this sequence:

1. before input

2. before row

3. before insert, before delete

4. before field

5. on key

6. after field

7. after insert, after delete

8. after row

9. after input

The add.4gl source code module is displayed in Listing 38.7.

Listing 38.7. The add.4gl source code module.
globals "globals.4gl"

function add_it(p_mode)

start input in the header and allow the user to jump to the
detail section by pressing the tab key

#- define local variables
define p_mode char(1),
 ret_code char(10),
 i smallint
#- before updating a record, make sure one is already selected
 whenever error continue
 if p_mode = "U" and p_employers.empl_code is null
 then
 let error_msg = " Must find first "
 call error_display(error_msg)
 return "findfirst"
 end if
#- initialize variables appropriately and display input directives
#- prepare the p_old_employers record and replace menu
#- with directives for input
 display "" at 1,1
 display "" at 2,1
 display "--------------------" at 21, 60 attribute(white)
case
#- when adding a new employer record
when p_mode = "A"
#- clear all fields in the form and initialize the variables in
#- the input clause to null; we need to do both header and detail
 clear form
 initialize p_employers.* to null
 initialize p_old_employers.* to null
 for i = 1 to detail_rows
 initialize p_depots[i].* to null
 initialize p_depots_nv[i].* to null
 end for
 display "Add a New Employer ..." at 1,1 attribute(green)
#- when updating the current employer record
when p_mode = "U"
#- set the p_old variables to the current values of the p
#- variables.
#- If the user interrupts, we'll restore the p_old values
 let p_old_employers.* = p_employers.*
 for i = 1 to detail_rows
 let p_old_depots[i].* = p_depots[i].*
 let p_old_depots_nv[i].* = p_depots_nv[i].*

 end for
 display "Updating Employer ..." at 1,1 attribute(green)
end case
display "Press Accept to Store, Cancel to Interrupt, ",
 "Tab to change Section, F3 & F4 or Arrows"
 at 2,1 attribute(yellow)
#- overall input while loop; to allow the user the ability to jump
#- from the header to the detail input, we set up a nested while
#- loop that has no conditions for termination unless one of the
#- while loops contained within it exits the outer while
while true
#- header while loop; when you exit with a tab, it will continue
#- execution within the outer loop; when you interrupt or accept
#- it will return control to the calling function
 while true
 call add_header(p_mode) returning ret_code
 case
 when ret_code = "tab"
 exit while
 when ret_code = "interrupt"
 let int_flag = false
 let error_msg =
 " Insert interrupted at user request "
 call error_display(error_msg)
 return ret_code
 when ret_code = "accept"
 call insert_them(p_mode) returning ret_code
 return ret_code
 end case
 end while
#- detail while loop; when you exit with a tab, it will continue
#- execution within the outer loop; when you interrupt or accept
#- it will return control to the calling function
 while true
 call add_detail(p_mode) returning ret_code
 case
 when ret_code = "tab"
 exit while
 when ret_code = "interrupt"
 let int_flag = false
 let error_msg =
 " Insert interrupted at user request "
 call error_display(error_msg)
 return ret_code
 when ret_code = "accept"
 call insert_them(p_mode) returning ret_code
 return ret_code
 end case
 end while
end while
end function

function add_header(p_mode)

input row, validate and store

#- define local variables

 define p_mode char(1),
 ret_code char(10),
 junk char(10), -- Placeholder for the state name
 -- which we don't display anymore
 i smallint
 let int_flag = false
 let u_employer = false
#- input the values for the employer, i.e., take keyboard input and
#- store it in memory in record variable p_employers; the without
#- defaults clause preserves the p_employers current values
 input by name p_employers.* without defaults attribute(red)
#- perform validations after the user has input a value in a
#- screen field
 before field state
 display "(Zoom)" at 3,66 attribute(red)
 on key (control-z)
 case
 when infield (state)
 call zoom ("state")
 otherwise
 error "No zoom available for this field"
 end case
 after field state
 display "------" at 3,66 attribute(white)
 call valid_state(p_employers.state)
 returning is_valid, junk
 if not is_valid
 then
 let error_msg = "Not a valid State code; try again"
 call error_display(error_msg)
 next field state
 else
 end if
 on key (accept)
 display "------" at 3,66 attribute(white)
 call check_employers(p_mode)
 returning is_valid, go_to_field
 if is_valid
 then
 let ret_code = "accept"
 exit input
 else
 case
 when go_to_field = "employer"
 next field employer
 when go_to_field = "add_line1"
 next field add_line1
 when go_to_field = "city"
 next field city
 end case
 end if
 on key (interrupt)
 display "------" at 3,66 attribute(white)
 let ret_code = "interrupt"
 exit input
#- when the user presses tha tab key, we want to exit input and go
#- edit the detail records

 on key (tab)
 display "------" at 3,66 attribute(white)
 call check_employers(p_mode)
 returning is_valid, go_to_field
 if is_valid
 then
 let ret_code = "tab"
 exit input
 else
 case
 when go_to_field = "employer"
 next field employer
 when go_to_field = "add_line1"
 next field add_line1
 when go_to_field = "city"
 next field city
 end case
 end if
 end input
#- for this example, ignore multiuser issues and transaction
#- management issues
#- input has terminated: if the user interrupted, tell the user,
#- otherwise, return the return code set at the appropriate on key
#- clause to continue processing
 if int_flag
 then
 let int_flag = false
 let u_employer = false
 let p_employers.* = p_old_employers.*
 display by name p_employers.*
 for i = 1 to detail_rows
 let p_depots[i].* = p_old_depots[i].*
 let p_depots_nv[i].* = p_old_depots_nv[i].*
 end for
#- display the first screenful of the detail
 for i = 1 to 2
 display p_depots[i].depot,
 p_depots[i].add_line1,
 p_depots[i].add_line2,
 p_depots[i].city,
 p_depots[i].state,
 p_depots[i].zip,
 p_depots[i].phone
 to s_depots[i].depot,
 s_depots[i].add_line1,
 s_depots[i].add_line2,
 s_depots[i].city,
 s_depots[i].state,
 s_depots[i].zip,
 s_depots[i].phone
 end for
 else
 let u_employer = true
 end if
 return ret_code
end function

function add_detail(p_mode)

input multiple rows in detail, validate and store
tab key is used to jump between the header and the detail

#- define local variables
define p_mode char(1),
 ret_code char(10),
 i smallint
#- input the values for the depots, i.e., take keyboard input and
#- store it in memory in record array p_depots; the without
#- defaults clause preserves the p_depots current values.
#- in an input array, Informix 4GL manages the array you are
#- inputting to automatically: if you insert a row, it will open
#- up the space and shift records in the array appropriately; but,
#- since we're keeping a parallel array of columns from table
#- depots which are not displayed in the array, we must manage
#- programatically the array p_depots_nv: notice the code when
#- inserts and deletes occur.
input array p_depots without defaults
from s_depots.* attribute(red)
 before row
#- keep track of the current array row and screen row the cursor
#- is now on
 let p_cur = arr_curr()
 let s_cur = scr_line()
 before insert
#- shift the p_depots_nv array up, from the current row to the end;
#- it is more convenient to start at the end and come down to the
#- current entry (note the use of the step -1 clause of the for
#- loop
 for i = detail_rows to p_cur step -1
 if p_depots_nv[i].depot_code is null
 then
 continue for
 else
 let p_depots_nv[i+1].* = p_depots_nv[i].*
 let p_old_depots_nv[i+1].* = p_old_depots_nv[i].*
 end if
 end for
 initialize p_depots_nv[p_cur].* to null
 initialize p_old_depots_nv[p_cur].* to null
 after insert
 let p_depots_nv[p_cur].empl_code = p_employers.empl_code
 let p_depots_nv[p_cur].depot_code = 0
 before delete
#- delete the current row from the database if it is not a new row
 if p_depots_nv[p_cur].depot_code is not null and
 p_depots_nv[p_cur].depot_code <> 0
 then
 delete from depots where depot_code =
 p_depots_nv[p_cur].depot_code
 if status <> 0
 then
 let error_msg = " Couldn't delete this row; ",
 "status ",
 status using "-<<<<<<<<<<"

 call error_display (error_msg)
 let ret_code = "interrupt"
 let int_flag = true
 exit input
 end if
 end if
#- shift the p_depots_nv array down, from the current row to the
#- end; since we're deleting the current row, we must close the gap
#- in the p_depots_nv array from the current row onwards. Informix
#- 4GL will automatically do this for the array in the input array
#- clause
 for i = p_cur to (detail_rows - 1)
 let p_depots_nv[i].empl_code =
 p_depots_nv[i+1].empl_code
 let p_depots_nv[i].depot_code =
 p_depots_nv[i+1].depot_code
 end for
 initialize p_depots_nv[detail_rows].* to null
 initialize p_old_depots_nv[detail_rows].* to null
#- when the user presses the tab key, we want to exit input and go
#- edit the header records
 on key (tab)
 call check_detail(p_mode) returning is_valid
 if is_valid
 then
 let ret_code = "tab"
 let p_depots_nv[p_cur].empl_code =
 p_employers.empl_code
 if p_depots_nv[p_cur].depot_code is null
 then
 let p_depots_nv[p_cur].depot_code = 0
 end if
 exit input
 else
 next field depot
 end if
 on key (accept)
 call check_detail(p_mode) returning is_valid
 if is_valid
 then
 let ret_code = "accept"
 let p_depots_nv[p_cur].empl_code =
 p_employers.empl_code
 if p_depots_nv[p_cur].depot_code is null
 then
 let p_depots_nv[p_cur].depot_code = 0
 end if
 exit input
 else
 next field depot
 end if
 on key (interrupt)
 for i = 1 to detail_rows
 let p_depots[i].* = p_old_depots[i].*
 let p_depots_nv[i].* = p_old_depots_nv[i].*
 end for
 let ret_code = "interrupt"

 exit input
end input
#- count the actual rows in the array; note that if the cursor is
#- on an empty row of the array, that row too is going to be
#- counted: you need to deal with this fact in storing records in
#- the database
let counted_rows = arr_count()
 if int_flag
 then
 let int_flag = false
 let u_employer = false
 let p_employers.* = p_old_employers.*
 display by name p_employers.*
 for i = 1 to detail_rows
 let p_depots[i].* = p_old_depots[i].*
 let p_depots_nv[i].* = p_old_depots_nv[i].*
 end for
#- display the first screenful of the detail
 for i = 1 to 2
 display p_depots[i].depot,
 p_depots[i].add_line1,
 p_depots[i].add_line2,
 p_depots[i].city,
 p_depots[i].state,
 p_depots[i].zip,
 p_depots[i].phone
 to s_depots[i].depot,
 s_depots[i].add_line1,
 s_depots[i].add_line2,
 s_depots[i].city,
 s_depots[i].state,
 s_depots[i].zip,
 s_depots[i].phone
 end for
 else
 let u_employer = true
 end if
 return ret_code
end function

function insert_them(p_mode)

#- define local variables
 define p_mode char(1),
 ret_code char(10),
 i smallint
 let int_flag = false
 let ret_code = "ok"
 if u_employer
 then
 case
 when p_mode = "A"
 let p_employers.empl_code = 0
 insert into employers values (p_employers.*)
 if status = 0
 then
 let p_employers.empl_code = sqlca.sqlerrd[2]

 display by name p_employers.empl_code
 for i = 1 to counted_rows
 insert into depots
 values (p_employers.empl_code, 0,
 p_depots[i].depot through
 p_depots[i].phone)
 if status <> 0
 then
 let error_msg = " Couldn't insert depot; ",
 "status ",
 status using "-<<<<<<<<<<"
 call error_display(error_msg)
 let ret_code = "failinsert"
 exit for
 end if
 end for
 if ret_code = "ok"
 then
 message "Employer added"
 end if
 else
 let error_msg =
 " Could not insert employer; status ",
 status using "-<<<<<<<<<<"
 call error_display(error_msg)
 end if
 when p_mode = "U"
 update employers set employers.* = p_employers.*
 where empl_code = p_employers.empl_code
 if status = 0
 then
 for i = 1 to counted_rows
#- even if we counted the last row as valid, if it does not have a
#- `depot' name, we will ignore it; the input array clause `after
#- field depot' should guarantee that the depot name is not left
#- empty if you want to store the record
 if p_depots[i].depot is null
 then
 let ret_code = "ok"
 exit for
 end if
#- the clue to distinguish between inserts and updates used here is
#- whether the depot_code in the parallel array p_depots_nv is null
#- (or zero), which means it wasn't retrieved with a Find, but
#- rather it is a new record to be inserted.
 if p_depots_nv[i].depot_code is null
 or p_depots_nv[i].depot_code = 0
 then
 insert into depots
 values (p_employers.empl_code, 0,
 p_depots[i].depot through
 p_depots[i].phone)
 if status <> 0
 then
 let error_msg = " Couldn't insert ",
 "depot; status ",
 status

 using "-<<<<<<<<<<"
 call error_display(error_msg)
 let ret_code = "failinsert"
 exit for
 end if
 else
 update depots set
 (empl_code, depot, add_line1, add_line2,
 city, state, zip, phone) =
 (p_employers.empl_code,
 p_depots[i].depot,
 p_depots[i].add_line1,
 p_depots[i].add_line2,
 p_depots[i].city,
 p_depots[i].state,
 p_depots[i].zip,
 p_depots[i].phone)
 where empl_code = p_employers.empl_code and
 depot_code =
 p_depots_nv[i].depot_code
 if status <> 0
 then
 let error_msg = " Couldn't update ",
 "depot; status ",
 status
 using "-<<<<<<<<<<"
 call error_display(error_msg)
 let ret_code = "failupdate"
 exit for
 end if
 end if
 end for
 if ret_code = "ok"
 then
 message "Employer updated"
 end if
 else
 let error_msg = " Could not update employer; ",
 "status ",
 status using "-<<<<<<<<<<"
 call error_display(error_msg)
 end if
 otherwise
 let error_msg = " Mode ", p_mode, " is invalid; ",
 "no action taken"
 call error_display(error_msg)
 end case
 end if
 return "ok"
end function

function check_employers(p_mode)

define p_mode char(1)
#- This is the place to make final validations before the input
#- statement block ends and the data input by the user is accepted
#- as good enough to be stored.

#- The following are just a sample of validations that you might
#- include here. Generally, you would perform single field
#- validations in an after field clause, more than here (though
#- these are the examples included). After inputting all records
#- validations tend to evaluate the overall information in the
#- screen form and the relationship between different field
#- values (data consistency).
if p_employers.employer is null or p_employers.employer = " "
then
 return false, "employer"
end if
if p_employers.add_line1 is null or p_employers.add_line1 = " "
then
 return false, "add_line1"
end if
if p_employers.city is null or p_employers.city = " "
then
 return false, "city"
end if
return true, ""
end function

function check_detail(p_mode)

define p_mode char(1)
#- this is just a stub function; appropriate validations should
#- be added to verify the detail input
return true
end function

The add.4gl source code module is fully commented; please review it carefully. A
number of features worth highlighting are discussed next.

The menu in main.4gl calls the function add_it, which consists essentially of two
sections: an initialization section that sets the values of the program variables and arrays
involved in input, and a looping section that manages jointly the input for both the
header and the detail. The overall structure of the looping section is as follows:

while true #- overall loop
 while true #- header processing loop
 {header processing statements}
 end while
 while true #- detail processing loop
 {detail processing statements}
 end while
end while

INFORMIX-4GL manages the input to the header in an input statement block and the
input to the detail in a separate input array statement block. To allow the user to jump
from one to the other, this example has selected the Tab key. After the user presses the
Tab key in either the header or the detail processing loops, an exit while occurs, and
the user is then sent to the other processing loop. Only when the user presses the Accept
or Interrupt keys in either processing loop is control returned to the calling function--in

this case, main. Note how the code for the on key (tab) section of the input and input
array statement blocks interacts with the while loops by returning a ret_code of "tab".

In the detail section, the input array statement block deals with all but two columns of
the depots table. The columns displayed in the array are input through the p_depots
array of records variable; the variables that are not input are managed by a parallel array
named p_depots_nv.

The input array statement block illustrates the use of a variety of input blocks: the
before row block to identify the current program array row and current screen array
row, and the before insert so that the program can expand the p_depots_nv array.
INFORMIX-4GL manages the array identified in the input array clause--in this case,
p_depots--automatically on your behalf, but it is up to you to manage the parallel array
p_depots_nv. The before insert clause gives you an example of how to perform that
task. The after insert block is used by the program to initialize the parallel program
array variables for the current row. (You are in insert mode, so it sets the empl_code to
the value in the header and the depot_code to zero because this is a serial column, and
you want the database engine to assign a value to it.) The before delete clause allows
you to manage the database interactions and the closure of the gap in the parallel array
p_depots_nv. The on key sections perform the same tasks they did in the previous
version of the software.

Note that the function insert_them now includes a section to manage the detail rows.
Often, when you are dealing with a header/detail input, the program deletes all the rows
of the detail table from the database and performs an insert of the rows in the detail
program array. That practice is acceptable when the table dealt with in the input array
block does not contain a serial column. If it does, it would not be a good practice to
renumber the primary key of those records every time you edit anything in any record.
Thus, this version of the software uses a combination of inserts and updates to manage
the detail table depots. If a record has a null or zero value in
p_depots_nv[i].depot_code, it must be a new record; otherwise, the foreach
operation in find.4gl would have returned the proper, non-zero, serial value for that
column. New records are inserted into the database, and existing records are updated.
Note that this method of management for the detail records requires that you delete
records of the depots table in the before delete clause; if you were using the method of
deleting all rows of the table and reinserting the filled rows of the program array, you
would not have to bother about managing deletes of depot records as you go along.

Reports

Reports are commonly used to perform multiple duties in INFORMIX-4GL. For
example, a report can be run with an edit argument at one time and later with a posting
argument--the former to be used for printing an edit report, and the latter to update the
database. In addition, reports are required to print in different locations, to display to a
screen, or, sometimes, to store data in an ASCII file. These reporting features are covered
in this section.

Managing Multiple Report Destinations in a Single Report

If you want your report to be managed differently depending on your needs at the time, it
is common to include in your reporting program menu a choice for Report destination
separate from the Find menu choice. The Find menu choice allows the user to set the
criteria for reporting, and the Report destination menu choice allows the user to select the
proper destination, which is then used in the start report <report name> to
<destination variable> statement to direct the report to the right location.

Producing Multiple Reports within a Single Program Module

A common practice in reporting programs, particularly those that also do postings
(database updates), is to report on the database interactions separately from the primary
report output. In other cases, the same data can be used to simultaneously produce a
variety of reports. It is possible to accomplish these tasks within a single reporting
program run by using the start report statement multiple times within the report driver
and by using the appropriate output to report commands to send the appropriate data
to each of the reports initialized. Normally, the primary report receives the data sorted by
the report driver, and the other reports have to run a two-pass sequence to sort the data
within the report formatter. Do not forget to use finish report for each of the reports
you initialized.

Multiple Section Reports

To produce a multiple section report--one in which multiple views of the data, each
formatted differently, are intermingled--requires that you modify the basic structures for
both the report driver and the report formatter, as follows:

1. In the report driver, declare a cursor for the table (or tables) that are
common throughout the report (and all of its sections).

2. Start the report and begin the foreach loop that retrieves data for the
cursor defined in the preceding step.

3. For each row returned, declare a new cursor for each type of statement
that needs to be printed.

4. Process each of these new cursors in order and pass to the report the
cursor type along with the information you want to print. Close and free
the cursors as appropriate.

5. In the report formatter, select what to print based on the cursor type
passed along with the data. Normally, a before group of <cursor type>

section will print the required headings.

6. Finish the report, and then close and free your main cursor.

Nonstandard Report Layouts

To produce a Matrix Report, one in which the output records received by the report
formatter must be printed across columns rather than row by row, requires that you
artificially flag the output records so that you can print the output in a group block
statement (after group of or on last row).

In the case of our fictitious company example, suppose that you want to produce a report
that prints the number of employers in each of four sections of the country (Eastern,
Central, Mountain, and Pacific) in a row with one column for each section of the country.
You would gather the records in the report and pass each record to the formatter. The
formatter would process only an on last row control block, in which a group count
with a where clause by section of the country would be used to fill a single print
statement with four values spaced out across the single row.

Similar concepts would apply to a two-dimensional table in which you have each
employer listed in a row showing the same four columns as before, which count the
number of depots each employer has in each section of the country. In this case, your
report driver would define a cursor ordered by employer and pass each record to the
formatter. The formatter would process an after group of employer control block, in
which a group count with a where clause by section of the country would be used to fill a
single print statement with four values for this employer spaced out across the single
row.

Error Management

Errors in INFORMIX-4GL programs crop up at various stages. Syntactical errors in
screen forms and source code modules are trapped and reported by the compiler. The
only exception to this rule is for prepared statements that are not interpreted by the
compiler but are passed to the engine for validation and execution at runtime. Errors that
occur at runtime are SQL errors or program execution 4GL errors. In your sample
programs, you have already been addressing some of the error management features that
INFORMIX-4GL offers. This section formalizes their use and introduces new error
management features.

Trapping Errors

By default, when INFORMIX-4GL encounters a fatal error during execution, it halts
execution of the program and returns control to the command line. In this exit process, it
reports the error number and description, as well as the line of the program that failed to
the terminal screen where the user may or may not have time to review it.

To alter this behavior, use the whenever error statement. This statement tends to be
used as a wrapper for the sections of code that you want to handle in a way other than the
default. The whenever error statement is a compiler directive rather than a command in
INFORMIX-4GL. It operates in the source code module where it is defined, and only
from the point at which it is defined. Its behavior continues until either the source code
module ends or the compiler encounters another whenever error statement. These are
the reasons for using it as a wrapper for the sections of code you want to handle your own
way. The syntax for this command is as follows:

whenever { [any] error
 sqlerror
 warning
 sqlwarning
 not found
 }
 { call <error handling function>
 continue
 stop
 }

The any clause in the whenever error command strengthens the behavior of the
detection: whenever error traps database and screen interaction errors; whenever any
error traps those errors and, in addition, errors in the execution of any 4GL expression.

Typical examples of this command are

whenever error call error_handler
whenever not found continue

The whenever error call error_handler clause is typically used at the top of every
source code module, so that you can manage the error trapping within a central function
named error_handler; whenever not found continue is placed before a select
statement so that you can handle the return of no rows locally. (Note that this select
statement must be followed by another whenever error call error_handler
command to reinstate the error-trapping behavior.)

Generic Error Management

In the examples, you have used two of the error management tools that INFORMIX-4GL
provides. You have used the status variable to detect SQL errors and not found
conditions, and you have also used the startlog function to record in an ASCII file the
runtime errors encountered.

In addition, you have displayed SQL errors within an error window that forces the user to
take notice before the program terminates. Actually, for these to work, you need to
include a whenever error continue command at the top of each of the source code
modules in the program. (These statements have been included in the listings in this
chapter for the first time.) Otherwise, an error will still terminate the program without

ever reaching the call to the error_display function. Try the program with and without
the whenever error clause and verify the behavior described.

To go beyond what you have already done, you would define your own function to
manage errors trapped during execution. If, instead of the clause whenever error
continue in your source code modules, you use the whenever error call
error_handler, INFORMIX-4GL will call the function error_handler whenever it
encounters an error and, upon entry into that function, the values of status and SQLCA
will still reflect the engine's recorded parameters for the statement that caused the error.

The function error_handler could simply use the errorlog, err_print, or err_quit
functions, or it could use the status and SQLCA variables to add some logic to the
program's execution.

Using the SQLCA Record and Its Components

Consider the following section of code for a generic error handling function:

function error_handler()
define em char(70),
 p_sqlcode integer
whenever error stop
let p_sqlcode = SQLCA.sqlcode
let int_flag = false
case (p_sqlcode)
 when 0
 exit case
 when notfound
 call error_display(" Row Not Found ")
 when -206
 call error_display(" Table doesn't exist; exiting program ")
 exit program
 when -242
 call error_display(" Table locked by another user; bailing out
")
 exit program
 ...
 otherwise
 let em = "Error: ", p_sqlcode using "-<<<<<<<<<<",
 "; can't decide what to do. Ask for help!"
 call error_display(em)
 exit program
end case

The components of the SQLCA record were discussed at length in the "Error Handling
Language Constructs" section of Chapter 35, "Introduction to 4GL." Any of its featured
values can be stored in a local variable and then used to decide what to do.

The 4GL Debugger

The Interactive Debugger was first introduced in Chapter 35. Programmer control is
provided through the Command window of the Debugger screen in which you can issue
commands to the Debugger to perform a variety of tasks discussed in the following
sections.

The debugger can be invoked from the command line or from the developer's
environment. In either case, the application developer can customize the way in which he
or she interacts with the debugger in various ways.

From outside of the debugger, the programmer can set the UNIX environment variable
DBSRC. DBSRC is defined in the same manner as PATH or DBPATH, as a concatenated series
of directories delimited by colons. When set, the debugger will have access to source
code modules in the directories specified by DBSRC. In addition, if the debugger is
invoked from the command line, the -I option provides for defining a search path for
source code modules in the same manner as the DBSRC variable is defined.

The Debugging Environment

From inside of the Debugger, the developer can customize the display parameters, source
code file search path, aliases, breakpoints, traces, and so on, and can store those settings
in a *.4gb file that can then be retrieved in the next session. Unless the developer
provides a name for this file, the file will be stored with the name of the program and the
extension .4db. To save the debugging environment for the next session, use the
command

write [break] [trace] [display] [aliases] [>> "<filename>"]

To retrieve the environment the next time around, use the command

read "<filename>"

<filename> is the name of the .4db file that will contain debugging setup directives. This
file is an ASCII file and can be edited manually. If omitted, the name of the program
followed by the extension .4db is used to store the debugging environment, and this
command will automatically be loaded in the next debugging session. A sample *.4db
file is shown in Listing 38.8.

Listing 38.8. The employers.4db debugging environment file.
alias f1 = help
alias f2 = step
alias f3 = step into
alias f4 = continue
alias f5 = run
alias f6 = list break trace
alias f7 = list

alias f8 = dump
alias f9 = exit
grow source 4
use = .,/u/eb/src/lib.4gm/common.4gs,/u/eb/src/lib.4gm/zooms.4gs
turn on autotoggle
turn off sourcetrace
turn on displaystops
turn on exitsource
turn off printdelay
timedelay source 1
timedelay command 0
list display

This listing reflects the grow source +4 command you used in Chapter 35, as well as
the DBSRC settings in the use command. The basic function keys have not been
modified, and the alias commands represent their default behavior. To start the
debugging session, press the F5 function key. If you had defined breaks, defined traces,
and then used write, the .4db file would reflect all of the settings that were active at the
time it was saved.

To use the debugger, the developer issues a run command, and the software switches to
the Application Screen and begins execution. When the developer wants to interrupt
execution and switch back to the Debugger screen, he presses the Interrupt key. From the
Debugger screen, after interrupting the program, the developer can view the contents of
the Application Screen by pressing Ctrl+T (and can switch back with another Ctrl+T).

The basic navigation and display functionality provided by the function keys can also be
achieved by using the following commands:

run
continue [{ interrupt | quit }]

If the developer wants to test the behavior of the program in response to an Interrupt or
a Quit, instead of using the F4 function key, he uses the continue interrupt or
continue quit command, and the program receives the signal and proceeds
accordingly. Otherwise, because Interrupt is trapped to transfer the view to the
Debugging screen, testing its behavior would be impossible.

step
list [break] [trace] [display]

The preceding code displays a list of active breaks, traces, or display parameters.

Often, you will want to see the source code in a specific module or function. As you start
the debugger, main will be displayed on the Source window of the Debugger screen. To
display the contents of another source code module or the contents of a specific function,
and to place the cursor in the Source window of the Debugging screen, you use the view
command:

view { <module: .4gl> | <function name> }

In the case of modules, you do not need to specify the .4gl extension. In this way, you
can view any function that is in the defined search path. The command view without
arguments will move the cursor to the Source window. Both the Source window and the
Command window have a scrollable display. You can use vi-like scrolling commands to
move forward and back through the two windows: Ctrl+F, Ctrl+D, Ctrl+B, and Ctrl+U.

Displaying the Contents of Program Variables and Arrays

To view the contents of program variables and arrays, use the following commands:

print <varname>

This command displays the contents of <varname> in the Command window. The
variable <varname> can be an array, but you need to limit the display to the row you want
to see by indexing it in the same way you do in the program; otherwise, the entire array
will be displayed.

print <expression> [>> "<filename>"]
dump [{ globals | all }] [>> "<filename>"]

The two preceding commands have the capability to print an <expression> or the
contents of the currently active variables to the Command window or to a file
<filename>.

Breaks

To stop execution of the program at predetermined points within the code, you use break
in one of its various forms.

The following version stops execution at line <line number> of the module that is
displayed in the Source window:

break <line number>

The following version stops execution at line <line number> of the module displayed in
the Source window if <condition> is true, and then executes <command>:

break <line number> [if <condition> ["{" <command> "}"]]

The following version stops execution at line <line number> of the function identified
by <function>:

break <function>[.<line number>]

The following version stops execution whenever <varname> changes value:

break <varname>

The following version stops execution whenever <varname> changes value if
<condition> is true, and then executes <command>:

break <varname> [if <condition> ["{" <command> "}"]]

The following version permanently removes the breakpoint identified by number <break
number>:

nobreak <break number>

The following version allows breakpoints and traces to be temporarily disabled and then
re-enabled:

enable { <break number> | <trace number> | all }
disable { <break number> | <trace number> | all }

Traces

Sometimes you want to know when a certain code line is executed, when a function is
invoked (and the value of the parameters passed), or when the value of a variable is
changed. To accomplish this, use the trace command:

trace <line number>
trace <function>[.<line number>]
trace <varname>
trace functions

Other Features

There are more commands in the Interactive debugger than those covered here, but the
preceding commands are the workhorses of your work. You have already seen some of
these miscellaneous commands, such as grow and alias, used earlier.

Miscellaneous Topics

By the time you reach this point, it might seem that there is nothing more for
INFORMIX-4GL to offer you. I can guarantee that you have missed some features that
will be important to you at one point or another. Some of those features that are used
often or just on occasion are discussed here.

Multiple Database Capable Programs

The sample program has already illustrated one method of using the same program with
different databases: Pass the database to use as an argument in the command line that
invokes the program. You could indeed provide a hidden menu option that would

perform the same task. It is important to plan your application in this way so that, at least,
you can use the same code for both testing and production, and you can use either
database at will.

Dealing with Multiple Databases in a Single Program

Your program might have to deal with tables of different databases at the same time. For
example, your local store updates its inventory and the central warehouse inventory at the
same time, or just places an order to the central warehouse if the item is not found
locally. To use multiple databases in a single program, all you have to do is declare
variables by defining the complete access to the remote database and use its tables in the
same manner. For example, to declare a record with the structure of a table in a remote
database named <remote database> that is handled by the server <remote server>,
use the following notation:

define p_remote record like <remote database>@<remote server>:<table
name>.*

You could declare cursors in a similar manner:

declare c_cursor cursor for
"select * from <remote database>@<remote server>:<table name> ...

Indeed, you could perform any database operation, particularly joins, between tables in
different databases within the same or different database servers. You might just need to
discuss your needs with your database administrator to make sure that your server and the
remote server are properly set up to network and share data.

The Interaction Between the UNIX Environment and a 4GL Program

A number of parameters that are required and/or useful for the adequate operation of
INFORMIX-4GL are set through the UNIX environment. For the development
environment to work, you must set at least the following variables: INFORMIXDIR, PATH,
INFORMIXTERM, TERM, and either INFORMIXSERVER and SQLEXEC for an SE database or
INFORMIXSERVER and ONCONFIG for an OnLine database (versions 6 and higher). In
addition to these required environment variables, it is useful to set some defaults for the
printer to direct output to, for your favorite editor, for the source code module path for the
debugger, and so on. Because the definition of these variables is normally initiated
through the system-wide profile or through the user profile, I recommend that you discuss
your needs with both the UNIX system administrator and the Database Administrator.

In addition to the INFORMIX-4GL interaction with the environment, your program can
also interact with the UNIX environment. You have already seen how you can pass
arguments to the program through the command line, and I also discussed the use of the
function fgl_getenv to retrieve the value of environment variables within your program.
Your program can also return an exit code through the exit program statement. This is
particularly useful if you call one INFORMIX-4GL program from within another. If the

called program returns an exit code, the caller can determine what course of action to
follow.

Using SQL Within the 4GL Program

The example that has been developed in these four chapters on INFORMIX-4GL has
made use of the two modes that you can utilize to make your program use SQL
statements: either directly by embedding the statement in your code, or through the use of
cursors (prepare, declare and either execute or foreach, or open and fetch).

If you use SQL directly in your code, the statement must not be a select statement; or, if
it is, the statement must return a single row at most. Otherwise, an error will occur.

Using C Functions in the 4GL Program

If you need to include C functions within your 4GL code, you need to link them into your
executable if you use the compiled version of INFORMIX-4GL; or you will have to
create a customized RDS runner and debugger if you are using the Rapid Development
System.

Transaction Management and Staleness Alerts

Although I have not made a big deal of this, rest assured that INFORMIX-4GL was
designed with transaction management in mind. The reason I have not made a big point
of it is that it is very simple to implement programmatically. To initiate a transaction, use
the begin work statement; follow it by the collection of SQL statements that must be
handled within the transaction as a unit; and end it with either a commit work or
rollback work statement.

If you consider the sample programs, both the delete.4gl and add.4gl source code
modules are candidates for using transaction management. You want to make sure that
you either delete both the depots and the employer records as a whole or delete none at
all, or that you update all the records for depots of an employer and the employer record
as a unit or don't update any. Thus, you wrap the section of code that performs the update
or the delete with the begin work and commit work clauses.

Both add.4gl and delete.4gl are also candidates for providing alerts for staleness.
Consider the user that triggered a Find and decided to go for coffee while the computer
retrieved the records, not knowing this database engine was much faster than what he was
used to. By the time he returns to Update a record, another user might have changed that
record, but the version displayed on the screen is the old version prior to changing. The
record is indeed stale. To remedy this and to lock the record, it is normal practice that,
when the user chooses an action that could result in database alterations (update or
delete), you define a new, more restrictive cursor that deals exclusively with the records
to update (a single employer and its depots) and that you declare it with the for update
clause, so that the engine will lock it on your behalf within a transaction. If the record is

locked, you know that another user is updating it; if it is not found, you know that another
user deleted it; if it is available, you lock it. After locking it, when you display its current
contents on the screen, you can also alert the user as to whether the previous version (by
now perhaps stored in the p_old variables) was different from the newly retrieved
version.

Summary

This chapter introduced you to the input of one-to-many relationships and showed you
how to manage the database interactions with multiple tables simultaneously. It also
showed you how to develop reports with complex structures. Those subjects cover the
greatest complexities that you are likely to encounter in developing business applications
with INFORMIX-4GL.

In addition, this chapter introduced you to the debugger and collected some odds and
ends that did not fit precisely under the previous headings.

You are now equipped to convert the code included in the last four chapters to production
caliber or to develop such code on your own. Enjoy the practice!

- 39 -

Introduction to NewEra
• What Is NewEra?
• Database Access
• GUI Development
• Enterprise-Wide Development
• Flexible Language
• Support for Large-Scale Project Management
• Summary

by Gordon Gielis

This chapter provides an overview of the NewEra development system. I identify the
major features of the development system so that you can make a more informed
judgment about whether NewEra is the product for your project.

What Is NewEra?

INFORMIX-NewEra is a simple, graphical, object-oriented software development system
designed for development of enterprise-wide, database-centric applications.

In developing the NewEra system, Informix has clearly focused on the corporate,
enterprise-wide database application paralleling the rising popularity of Informix
database products in the corporate marketplace. NewEra is well suited to cope with the
rapidly rising size and complexity of corporate databases. NewEra possesses a rich set of
database access options from industry-standard ODBC to high-performance embedded
SQL. One of the great strengths of NewEra is its flexibility: NewEra supports visual
RAD, structured or object-oriented development approaches, or a mixture of all three.

The major features of NewEra are

• Extensive database access capabilities

• Rapid development of graphical user interfaces

• Enterprise-wide development

• Flexible language

• Support for large-scale project management

The major features of NewEra are covered in more detail throughout the rest of this
chapter.

Database Access

NewEra is an application development system from a major relational database vendor,
so it comes as no surprise to learn that it has a very rich set of database access features.

Many client/server tools have limited database support mainly provided via the Open
Database Connectivity standard. Although ODBC provides a much needed industry
standard, it is too restrictive for many mission-critical applications. The amount and
complexity of data being stored in corporate databases is increasing dramatically.
NewEra provides high-performance solutions to very large database access problems, and
it fully supports the ODBC standard.

NewEra provides database access that

• Supports the ODBC standard

• Allows simultaneous connection to multiple databases

• Supports embedded SQL

• Distributes processing

• Includes database-aware grids

• Supports binary large objects

• Includes a fully featured Windows database

The NewEra development system provides a Microsoft ODBC interface to ODBC
drivers. This allows NewEra applications to connect to any database with an ODBC
standard driver. The ODBC interface is implemented as a collection of object-oriented
class libraries.

Application programmers are increasingly required to access data spread across the
enterprise in a number of disparate databases. NewEra supports simultaneous connection
to multiple databases.

The NewEra language allows Structured Query Language statements to be embedded
directly into the language. Embedded SQL can take advantage of all of the features of the
Informix database. Typically, it takes less effort to develop applications in embedded
SQL than with ODBC.

Database access and processing can be distributed across multiple database servers using
NewEra's application partitioning capabilities. The programmer can structure the
application so that processing occurs on the database server. This can vastly reduce
network traffic. In high-performance applications, the programmer can take advantage of
ESQL/C routines executing on the database server.

NewEra comes with a database-aware grid, called a supertable, with extensive database
access and update capabilities. Using a supertable, the programmer can construct fully
functional database applications with almost no coding. Supertables can take advantage
of the Informix database's capability to store formatting and presentation rules in the
database, considerably increasing productivity.

Informix was one of the first major database vendors to support binary large objects. The
NewEra language implements a number of object-oriented class libraries to assist in the
management of blob data types. NewEra has implemented both a Byte data type and a
Text data type.

The NewEra development system comes standard with an Informix version 6 database
for Windows. The version 6 database is a fully featured database supporting stored
procedures, triggers, and transaction logging. Users can store local or sensitive data on
the client PC while maintaining data integrity. Programmers are able to develop

applications on stand-alone or notebook PCs and distribute to client/server without any
code changes.

GUI Development

Development of graphical user interfaces is made easy with NewEra. Windows are
constructed visually with a variety of prebuilt graphical objects. The major features of
NewEra as a GUI development tool are as follows:

• A visual Window Painter

• Reuse of graphical objects

• Visual class library

• Business graphics library

• Microsoft Windows and Motif support

Central to the use of NewEra for GUI development is the Window Painter tool. The
Window Painter allows the programmer to "paint" event-driven windows visually using
the mouse to place the visual object. NewEra provides an assortment of GUI components
including buttons, list boxes, grids, and text fields. Each visual component can detect the
occurrence of an event, such as a mouse click from the user, and the NewEra Window
Painter supports this by allowing you to attach procedures to handle these events. The
Window Painter allows new window classes to be created or allows the current window
to inherit the properties of previously developed window classes.

Visual objects can be reused through object inheritance or through the use of reusable
object files. Reusable object files allow you to set a standard look and feel for use
throughout your project. Inheritance of Window properties from base class windows
reduces development time, improves consistency, and reduces errors.

The NewEra system comes with an extensive visual class library. The visual class library
comes complete with the following visual objects for use in developing windows:

• Buttons
• Radio buttons
• List boxes
• Combo list boxes
• Text fields
• Frames
• Menus
• Picture buttons

• Database-aware supertable (grid) and fields

Because it's a database-centric development system, the supertable objects come with a
rich set of features to assist in developing database access windows. Supertables support
optimistic or pessimistic locking, support master-detail relationships to more than one
level, and detect that changes have been made to the current data set by other users
(sometimes called "dirty data"). Supertables also come with an optional set of buttons
that initiate all of the common database activities such as query-by-forms, deletion, and
insertion. By using supertables, you are able to develop database applications directly
from the Window Painter with little coding.

Additionally, a number of graphical objects are available from third-party vendors,
including calendar, status, database-aware list boxes, and tab controls.

Also included standard with NewEra is the Business Graphics Class library. This
contains visual classes that make it easy to develop charts and graphs. The class supports
many graph and chart types that can be manipulated programmatically. Furthermore, the
charts can be bound to a database-aware grid, minimizing the amount of coding required.

Windows developed under NewEra can be deployed under Microsoft Windows or Motif
environments with no changes except for recompilation.

Enterprise-Wide Development

NewEra is a development system targeted for a large enterprise-wide system. The
sophisticated code reuse capabilities of NewEra yield maximum benefit in a planned
system with a coherent architecture. Enterprise-wide developments also need to support
heterogeneous environments in client operating systems, database management systems,
and user interface presentation systems. NewEra enables enterprise-wide developments
with these features:

• Support for both GUI and character-based presentation

• Scalable performance

• Both MS Windows and Motif runtime environments

• Access of databases from other vendors

Enterprises are not restricted to the administration offices. Many locations in the
enterprise are not suitable for deployment of a GUI system. Enterprises might need to
deploy computer interfaces to the point-of-sale, factory floor, hand-held stocktake units,
or truck fleets, to name a few. It is not always suitable or even possible to deploy the
typical GUI interface into these locations. The architect of the enterprise system is faced
with the problem of developing separate applications for deployment to these locations.
Often these "other" applications need to be developed in another programming system,

which increases the logistical problem. Ideally, the development system used for most of
the enterprises will support deployment into these, usually character-based interface,
environments. This maximizes code reuse. The NewEra development system supports a
character-based interface that allows deployment on character-based devices such as
VT100 terminals and hand-held data capture units.

Scalable performance is another major concern of the large enterprise. Network
bottlenecks are the main cause of poor performance for large enterprise applications.
NewEra supports application partitioning that allows parts of the application to be
executed on dedicated servers. The application server can be located near or on the
database server, minimizing network bottlenecks. This feature, together with the high-
performance database access, can greatly reduce the resource usage of applications.

Flexible Language

The NewEra language allows the programmer a number of approaches to the project of
application development. The programmer can choose an object-oriented, structured, or
mixed method of development. The choice depends upon the application requirements,
the size of the project, and requirements for extension and reuse of the project.

The NewEra language has these major features:

• Simple-to-use English-like 4GL syntax

• High-performance execution

• Object-oriented capabilities

• Capability to extend with third-party libraries

• Strong data typing

The NewEra language is a simple language. The developers of the language have
consciously tried to keep the number of language constructs to a minimum, to use self-
explanatory English-like syntax wherever possible, and to eliminate some of the
constructs that frequently cause errors in object-oriented programming.

A major source of errors when programming with some languages such as C occurs
because of the misuse of pointers. NewEra does not support pointers. NewEra replaces
the pointer with the reference variable. A reference variable refers to an object and can be
thought of as a "strongly typed" pointer to the object. The reference variable refers only
to a particular class (or its ancestors) of the object. The major difference between a
reference variable and a C-style pointer is that a NewEra reference variable cannot be
treated as an integer. You cannot cast a reference variable into an integer or perform
pointer arithmetic on reference variables, and you cannot access memory locations

directly through reference variables. This brings considerable improvements in code
reliability.

Memory management is a source of many errors in languages where the programmer is
required to handle it manually. Memory management in NewEra is automatic; memory is
allocated by the language when an object is created and is automatically deallocated by
the language when the object is no longer used.

NewEra can be used as an interpreted language, like Java, or a high-performance
compiled language. Compiling source code modules with an interpreted language is
typically quicker than machine code compilation, so NewEra is frequently used in
interpreted mode during development that is then machine code compiled for
deployment.

NewEra has all the capabilities central to the object-oriented technique. Inheritance,
polymorphism, and encapsulation are all supported. The programmer is able to think of
the application as a collection of cooperating objects rather than in terms of algorithms
and data storage structures. Each object can be responsible for all of its actions and states.
Object orientation allows the programmer to more clearly visualize the problem space,
increasing productivity and reducing the learning curve for new programmers.

You can extend the facilities of NewEra through the inclusion of class libraries developed
by a third-party or through the inclusion of functions written in a foreign language (such
as C++). This allows NewEra to be used to solve exotic problems such as process control
and document imaging.

Strong data typing at compile time minimizes errors and enforces a much more consistent
development style. Strong data typing prevents the programmer from accidentally casting
a variable into an incompatible variable. Class members must be explicitly declared,
allowing the compiler to do type declaration.

Support for Large-Scale Project Management

Large projects have different management requirements than small projects. Typically, a
large project will consist of a number of independent but cooperating programming
teams. To be effective, the repository for the project meta-data has to be located on a
central server accessible to all programmers. NewEra assists in the management of large
projects by providing the following:

• Tools to manage multiprogram projects

• Integration with version control software

• Library development

• Supporting dynamic link libraries

• An interactive visual debugger

• Graphical report writing

• Easy migration of existing INFORMIX-4GL code

• Platform-independent online help system

• Support for internationalization and NLS

The main project management tool provided by NewEra is the Application Builder. The
Application Builder allows you to create one or more projects, each project consisting of
one or more programs. The Application Builder is also the repository where the module
dependency of each program is defined. The Application Builder is thus a visual
replacement for the make file. Project and program definitions are all stored centrally in
an Informix database. The Application Builder integrates with widely used source code
control software such as PVCS.

The Application Builder allows the programmer to manage the creation of project
libraries. The programmer can create static or dynamic link libraries and include those
libraries in the dependencies of other programs. This allows the project management to
more easily divide the project into a group of small teams. Libraries can be exported
throughout the project or even to external customers with total source code security.

The application can be deployed as a collection of dynamic link libraries. This allows for
the project manager to ease the logistics of deploying the project's executables as well as
reducing the overall size of the project's executables. Upgrades and enhancements can be
confined to a small number of dynamic link libraries, reducing the burden of upgrades.

The NewEra interactive debugger assists maintenance programs to debug applications.
By using the interactive debugger, the programmer can set break points, determine the
value of variables, and visually monitor the operation of the program.

Typically, the development of reports consumes a significant portion of the project
resources. The NewEra development system includes the Informix ViewPoint report
writer, which allows you to visually develop reports. The ViewPoint system is more than
just a report writer, because it allows the developer to create "database objects" that are
meaningful to an end user. A large relational database is commonly highly normalized.
Normalized databases are good for data integrity but are very often unintelligible to end
users. The ViewPoint system allows the developer to overcome this problem by creating
superviews that correlate to business objects the end user can understand. A superview is
a sophisticated view on the database that can incorporate rules beyond the capability of
normal database views.

NewEra is compatible with most of the INFORMIX-4GL language, with the exception of
some screen interface statements. In fact, many INFORMIX-4GL functions and

applications can be used with minimal or no code changes. NewEra includes utilities that
can convert some INFORMIX-4GL screen files (*.per) into NewEra windows complete
with supertables. This can be invaluable when converting an existing INFORMIX-4GL
project to NewEra, because much of the business logic, including reports, can be
migrated. INFORMIX-4GL programmers can be quickly cross-trained to the NewEra
language.

Today's applications demand online help, and NewEra provides a platform-independent
help display system. The programmer can bind a help topic in the help file to any of the
visual objects in the application. NewEra also supports the Microsoft Windows help
system.

The NewEra development system provides class libraries and techniques to assist with
internationalization of your project. Translation strings can be stored in the database or in
operating system files. The class libraries are compatible with the Natural Language
Syntax of the Informix database server.

Summary

This chapter covered the capabilities of the NewEra development system and the types of
development projects to which NewEra is best suited.

NewEra is perfect for enterprise-wide, database-centric applications. Using NewEra, you
can perform the following tasks:

• Develop interface windows

• Interactively debug applications

• Distribute application logic across multiple servers

• Deploy your application to Microsoft Windows clients, Motif clients, or
character-based terminals

• Easily control build dependencies on large projects

- 40 -

NewEra Language
• Language Basics

o Simple Data Types
o User-Defined Data Types

o Program Blocks
o Scope of Reference
o Assignment, Expressions, and Comparisons
o Flow Control
o Functions
o INCLUDE Statement
o Constants
o Built-In Functions

• NewEra as an Object-Oriented Language
o Objects
o Classes
o Objects and Classes with NewEra
o Class Declaration
o Access Control for Class Members
o Class Implementation

• Using Objects and Classes in Consumer Code
o Variables Must Have Data Types
o Object Instantiation
o Class Inheritance
o More on Events

• Object Assignment
o Object Evaluation
o Object Destruction
o Objects and Functions
o Asserting the Class of an Object with Casting
o Object Lists
o Class Hierarchy and Associations
o Implicit Application Object
o Error Handling
o NewEra Code Error
o SQL Errors
o Object Errors

• Database Access
o Embedded SQL
o The Database Connection Object: ixSQLConnect
o The SQL Statement Object: ixSQLStmt
o The SQL Communication Area: ixSQLCA

• Stored Procedures
• Summary

by Gordon Gielis

The goal in this chapter is to investigate the features of the NewEra language and gain an
appreciation of how you, the programmer, can best use these features to develop
applications. NewEra is well equipped to support both structured programming and
object-oriented approaches to project development and, with NewEra's rich set of
database capabilities, is an ideal choice for commercial database projects.

NewEra is backward-compatible with most of the INFORMIX-4GL language, with the
exception of the screen I/O statements.

Language Basics

This section covers procedural language syntax and structure. Most programming
languages allow programmers to declare and assign values to variables and to divide a
program into named sections. NewEra has inherited the language syntax of the highly
successful INFORMIX-4GL.

Simple Data Types

Simple data types represent discrete items of data. Like most languages, NewEra supports
the standard data types such as integers and character strings. Through the Data Class
Library (DCL), NewEra also offers an assortment of object classes that provide
equivalent functionality to most of the simple data types. Although DCL objects are not
strictly simple data types, you can use them in place of simple data types. DCL objects
obey the rules of object declaration and usage. I describe objects and classes later in this
section. Table 40.1 lists the NewEra simple data types and their DCL equivalents.

Table 40.1. Simple data types.
Type DCL Equivalent Data Represented
SMALLINT BOOLEAN ixSmallInt Whole numbers between-32,767 and

+32,767 inclusive.
INTEGER INT ixInteger Whole numbers between-2,147,483,647 and

+2,147,483,647 inclusive.
SMALLFLOAT REAL ixSmallFloat A floating-point binary numberwith the

precision of a C float.
FLOAT DOUBLE
PRECISION

ixFloat A floating-point binary number with the
precision of a C double.

DECIMAL(p,s) DEC
NUMERIC

ixDecimal A fixed-point decimal number with
precision of p and scale of s.

MONEY(p,s) ixMoney A currency amount with precision of p and
scale of s.

DATE ixDate A calendar date.
DATETIME ixDateTime A point in time with a maximum precision

of YYYY-MM-DD HH:MM:SS.FFFFF. A
contiguous subset of this precision is
permissible; for example, you can specify
month to hour.

INTERVAL ixIntervalDF
ixIntervalYM An interval of time. Intervals can be

specified with two maximum precision
ranges, either from years to months, or
days to fractions of a second. A contig- uous
subset of either precision range is
permissible; for example, you can specify
hour to second

CHARACTER(n)
CHAR(n)

ixString A character string of fixed length n up to a
maximum of 32,767 characters.

VARCHAR(n) ixString A character string of variable length to a
maximum of n characters.

CHAR(*)VARCHAR(*) ixString A character string of unspecified length.
TEXT ixText A character string of any length.
BYTE ixByte A type of binary large object that is a string

of data.

Each variable in a NewEra program must be declared. Variables can be assigned an
initial value when they are declared. You declare variables by using the NewEra
VARIABLE statement. The following example declares a variable called p_counter, of
type INTEGER, and assigns an initial value of 20:

VARIABLE p_counter INTEGER = 20

You also can state the data type of a variable by reference to a database column. The
following example shows how to declare a variable p_var with the same type as the
column sams_column of table sams_table in the database called sams_database of the
server named sams_server:

VARIABLE p_var LIKE sams_database@sams_server:sams_table.sams_column

The server and database identification is not required when a default database has been
declared as discussed in the "Database Access" section later in this chapter. The

advantage of this feature is that it requires recompilation of the program only to keep the
program variable data type synchronized with the data type in the database.

User-Defined Data Types

The NewEra language includes three types of user-defined data types: records, arrays,
and user-defined classes.

Records allow you to group a collection of other variables and treat the collection as a
single unit, as shown in Listing 40.1. The record can consist of variables of differing
types including object references. The individual items in the record are referred to as
members of the record.

Listing 40.1. Declaring records.
VARIABLE sams_record RECORD
 part_1 INTEGER,
 part_2 CHAR(*)
 END RECORD
VARIABLE sams_database_record RECORD LIKE sams_table.*

Individual variables within the record can be referenced using dot notation. For example,
sams_record.part_1 refers to the integer in the record declared in Listing 40.1.

Arrays are ordered collections of homogeneous data types. The individual variables in the
array are called elements. Each element of an array can be referenced by its position in
the array starting at position 1. You also can declare arrays with multiple dimensions. The
elements of an array can also be record and object data types. The following example
declares an array of 10 elements, each of data type INTEGER:

VARIABLE sams_array[10] ARRAY OF INTEGER

The expression sams_array[1] references the first element of the array sams_array,
whereas sams_array[10] references the last, or tenth element. The following example
declares an array of 625 (5 * 5 * 5 * 5) elements, each of data type
sams_database_record:

VARIABLE sams_new_array[5,5,5,5] ARRAY OF RECORD sams_database_record.*

The expression sams_new_array[1,1,1,1] references the first element--in this case, a
record of sams_database_record type--in the array.

The memory used by a program for both arrays and records is allocated when the array or
record is declared. The memory usage of both arrays and records is therefore fixed while
the array or record is in scope. Arrays can have up to 32,767 elements for each
dimension.

Using user-defined classes, you can define objects that can provide all the facility of both
records and arrays. In fact, the user-defined classes may well have records or arrays, or
both, as part of their internal structure. You examine classes and objects in greater detail
later in this chapter.

Program Blocks

Programs can be divided into logical units called program blocks. The program blocks
supported by NewEra are FUNCTION, HANDLER, REPORT, and MAIN. The start of a program
block is identified by the appropriate keyword, and the end is identified by the same
keyword preceded by the END keyword.

In the MAIN program block, your program begins execution. Each program has only one
MAIN program block. The following example shows a MAIN program block:

01 MAIN
02 DISPLAY "Hello world"
03 END MAIN

Scope of Reference

In the preceding section, I discussed the data types available to you with NewEra and the
methods by which variables are declared. The other important issue to consider when
declaring a variable is the timing of variable declaration. The time at which the variable is
declared determines the scope of reference of the variable and the timing of memory
allocation for that variable.

NewEra supports three scopes of reference for variables of simple data types: local,
global, and module. A variable declared within a function, handler function, or report has
local scope of reference within that program block (functions, handlers, and reports are
discussed later in this chapter). Variables declared outside any function, handler function,
or report have module scope of reference within that module. In a program that consists
of more than one source code module, variables with module scope of reference in one
module have no scope of reference within other modules. You can declare a variable with
global scope of reference by using the keyword GLOBAL when declaring the variable.
Declaring a variable with global scope of reference in more than one source code module
allows that one variable to be shared between modules. In a program that consists of only
one source code module, there is no difference between module and global scope of
reference.

The scope of reference controls the timing of any memory allocation NewEra must make
for the variable. Variables of global and module scope of reference have memory
allocated for them when the program first starts. Variables of local scope have memory
allocated only when the function in which they are declared is executed. After execution
of the function ceases, memory for variables of local scope of reference is deallocated.

Variables that represent an object data type are subject to the same scope of resolution
rules as other variables; however, the memory allocation rules are different and are
discussed in detail in later sections.

Assignment, Expressions, and Comparisons

NewEra supports automatic type coercion of compatible data types. For example, you can
assign an integer to a decimal or an integer to a character successfully. Of course, if you
try to assign a character to an integer, an error will result.

NewEra supports assignment of values to variables using the = operator, as shown here:

LET sams_counter = 1
LET my_pay_packet = (number_hours / rate_per_hour) *
((1 - tax_rate) / 100)

This example sets the value of sams_counter to 1 and calculates the value of
my_pay_packet, respectively.

The three examples shown in the following code block result in the same value being
assigned to my_character. The third example illustrates the use of the concatenation
operator ||.

LET my_character = "now is the time for all good persons"
LET my_character = "now is the " , "time for all good persons"
LET my_character = "now is the " || "time for all good persons"

Variables can also be assigned value by the return of a call to a function, as shown here:

CALL my_function() RETURNING my_variable
LET my_variable = my_function()

The preceding statements are equivalent. I discuss functions in more detail later in this
chapter.

Variables also can be assigned value by an SQL operation, as in the following example:

SELECT my_column
 INTO my_variable
 FROM my_table

This example selects data from the my_column column in the my_table table and assigns
it to the variable my_variable.

Record type variables can be assigned one to the other, as shown in Listing 40.2, if each
of the members of the records is compatible for type conversion.

Listing 40.2. Assignment of records.
VARIABLE
 record_one RECORD
 item1 INTEGER,
 item2 INTEGER,
 item3 CHAR(10)
 END RECORD,
 record_two RECORD
 item4 INTEGER,
 item5 INTEGER,
 item6 INTEGER
 END RECORD
LET record_one.* = record_two.* O.K.
LET record_one.item1 THRU item2 = record_two.item4 THRU item5 O.K.
LET record_two.item6 = record_one.item3 FAIL

The third assignment in Listing 40.2 will fail because it attempts to assign the value of a
member of data type character to a member of data type integer.

Variables of an object data type can be assigned using the = operator; however, the
operation is fundamentally different in nature when applied to object data types. I discuss
object assignment in detail in a later section.

The values of variables must be compared, and NewEra supports a range of relational and
Boolean operators for this purpose. Relational and Boolean operators evaluate to an
integer value of 1 or 0 corresponding to TRUE and FALSE, respectively. TRUE and FALSE
have been declared as constants.

NewEra supports the keyword NULL, which is used to indicate an indeterminate or
unknown value. Comparisons involving variables with a NULL value always evaluate to
FALSE, with the exceptions of the IS NULL and IS NOT NULL operators. Table 40.2 lists
the relational and Boolean operators supported by NewEra.

Table 40.2. Comparison operators for simple data types.
Operator Function
= Evaluates to TRUE if the values of the operands are equivalent.
== Equivalent to the = operator.
< Evaluates to TRUE if the left operand is less than the right operand.
<= Evaluates to TRUE if the left operand is less than or equal to the

right operand.
> Evaluates to TRUE if the left operand is greater than the right

operand.
>= Evaluates to TRUE if the left operand is greater than or equal to the

right operand.

<> Evaluates to TRUE if the left operand is not equivalent to the right
operand.

NOT Logical inverse.
AND Logical intersection.
OR Logical union.
MATCHES Allows pattern matching using the ? and * wildcards. The ?

wildcard eliminates one position from the comparison. The *
wildcard eliminates an unspecified number of positions from the
comparison. Evaluates to TRUE if the pattern matches with the
appropriate eliminations made.

NOT MATCHES Logical inverse of MATCHES.
BETWEEN
<lower> AND
<upper>

Evaluates to TRUE if the value falls between <lower> and <upper>
inclusive.

IS NULL Evaluates to TRUE if the value is null.
IS NOT NULL Evaluates to FALSE if the value is null.

Flow Control

Flow control statements allow you to control the order of execution of statements in a
program. NewEra supports the flow control statements shown in Table 40.3.

Table 40.3. Flow control statements.
Statement Purpose
IF (expression) THEN
statement_one ELSE
statement_two END IF

The IF statement is used to make decisions. If the
(expression) evaluates to TRUE, then the
statement_one will be executed; otherwise,
statement_two will be executed. The ELSE
statement is optional.

CASE WHEN (expression_one)
statement_one WHEN

(expresson_two)

The CASE statement is used to make decisions. Each
expression is evaluated in order, and if it evaluates
to TRUE, it is executed. Control then passes to after
the END CASE statement.

OTHERWISE statement_two
END CASE The OTHERWISE statement is optional and is

executed only if all the preceding expressions
evaluate to FALSE. You can break out of a CASE
statement at any time by using an EXIT CASE

statement.
WHILE (expression)
statement_one
statement_two

The WHILE statement is an iteration control
statement that allows an unspecified number of
iterations.

CONTINUE WHILE
statement_three EXIT WHILE
END WHILE

The WHILE statement evaluates (expression) and,
if TRUE, the statements are executed. The WHILE
statement continues to execute until (expression)
evaluates to FALSE. The CONTINUE WHILE statement
allows the WHILE statement to be repeated without
executing the statements after the CONTINUE
WHILE. The EXIT WHILE statement causes control to
be passed to after the END WHILE statement.

FOR counter = start TO end
STEP number statement_one
CONTINUE FOR statement_two
EXIT FOR END FOR

The FOR statement is an iteration control statement
that allows for a specified number of iterations.
The FOR statement initially assigns the value of
start to counter and then executes the enclosed
statements. On subsequent iterations counter is
incremented by the value of number and if END FOR
is less than or equal to end, the enclosed statements
are executed. If counter exceeds end, then control
passes to after the END FOR statement. The EXIT
FOR and CONTINUE FOR statements operate in the
same way as the EXIT WHILE and CONTINUE WHILE
statements described previously.

GOTO label_name LABEL :
label_name You also can cause control to jump to a location

specified in the LABEL using the GOTO statement.
Only locations within the same module are
permitted.

Functions

Using functions, you can subdivide programs into more logical and manageable units.
The use of functions is crucial to the implementation of structured programming
techniques. Most languages allow the use of functions (sometimes called methods or
procedures); however, a language that claims to support structured programming
techniques should make the use of functions both easy and robust.

Features such as named arguments and default values for arguments increase the ease of
use of functions. Formal prototyping of a function allows the compiler to check the

validity of any calls made to a function, thereby increasing the robustness of the program.
Named function calls are permitted only for formally declared functions.

NewEra supports the function features mentioned here. An example of a function
prototype is shown in Listing 40.3.

Listing 40.3. Function prototype.
EXTERNAL FUNCTION GetAccountBalance
 (
 CustomerNumber INTEGER,
 AccountType CHAR(8) : "STANDARD"
)
 RETURNING MONEY(16,2)

This example declares a function called GetAccountBalance(). The function has been
declared as an external function. The external keyword indicates that the source code
for the function is in another module. The compiler does not complain if you include a
call to this function without declaring it as in the example, but in doing so, you are
forgoing allowing the compiler to check the arguments and return signature of the call to
the function. This approach is obviously so undesirable as to suggest that it would be
wise to include as a standard in any project that all functions used in a module are
formally declared. NewEra makes this easy with the INCLUDE statement discussed later in
this chapter.

NewEra allows you to declare a default value for a function argument. If you do not
provide this argument, the compiler substitutes the default value into the function call at
compile time.

The function in Listing 40.3 has been declared to accept two arguments: an integer called
CustomerNumber and a character string called AccountType. The arguments become
local variables within the source code for the function (in this case, in another module).
The function can be called by explicitly naming the arguments in the function call or by
calling the function with the arguments in the correct order, as Listing 40.4 illustrates.
(The example assumes that the function has been formally declared with a prototype.)

Listing 40.4. Function calls.
VARIABLE AccountBalance MONEY(16,2)
VARIABLE BadDateTime DATETIME YEAR TO SECOND
CALL GetAccountBalance(100, "STANDARD") RETURNING AccountBalance
CALL GetAccountBalance(CustomerNumber : 100, AccountType : "STANDARD")
 RETURNING AccountBalance
CALL GetAccountBalance(AccountType : "STANDARD", CustomerNumber : 100)
 RETURNING AccountBalance
CALL GetAccountBalance(100) RETURNING AccountBalance
CALL GetAccountBalance("STANDARD", 100) RETURNING AccountBalance FAIL
CALL GetAccountBalance(100, "STANDARD") RETURNING BadDateTime FAIL

In Listing 40.4, the first four calls are correct. In call number one, the position of each of
the variables correlates to the correct argument in the function. The second call makes
this explicit by naming the arguments. The third call demonstrates one of the strengths of
formal prototyping in that you are relieved from calling the function with the arguments
in the correct order. The fourth call is successful because the compiler knows to
substitute a default of "STANDARD" for the second argument. The fifth and sixth calls fail
to compile because the compiler checks the prototype of GetAccountBalance and
detects that the program is trying to assign incompatible variables. If you do not declare
the prototype, the compiler will not detect this defect.

TIP: A project of any significant size involves the development of several
functions that can be extensively reused throughout the project. I highly
recommend that the project managers devote some time to setting naming and
usage standards for functions in a project.

Functions can also be included as part of the definition of an object. This aspect of
functions is explained in the discussion of objects later in this chapter.

INCLUDE Statement

Prototyping of functions imposes some administrative overheads upon you, the
programmer. Most commercial applications consist of several source code modules,
increasing this administrative overhead dramatically. To alleviate this burden, NewEra
provides you with the INCLUDE compiler directive. The INCLUDE directive allows you to
name a file to be included in the source file at the line of the INCLUDE statement. In effect,
the source code file becomes one large source code module combining the original file
and the included file. You don't have access to this larger expanded file because it is
passed directly to the next phase of compilation. The INCLUDE statement will import the
included file regardless of content. It does not have to be a function declaration
statement; however, the expanded file has to be syntactically correct to pass through the
remaining steps of compilation.

When the compiler encounters an INCLUDE statement, it first looks for the file in the
current directory and then in the directories named in the include directories' pathway.
The include directories can be specified in the Application Builder, the Source Compiler,
or as a command-line option to either of the compilers. See the appropriate section for
details. Include files usually have a file type extension of 4gh--for example,
filename.4gh.

TIP: The INCLUDE statement thus allows programmers and system architects to
control the declaration of functions, variables, or even a collection of program

statements to be centralized into a small number of standard files. This capability
is particularly useful for standardizing issues such as error handling. The
compiler looks in the include directories in the order they are specified, so care
needs to be taken with naming conventions and include directory locations in the
project standards. Time spent developing a consistent use of include files will
yield significant efficiency gains, even on small projects.

Constants

The CONSTANT statement allows you to declare a name for a static or constant value, as in
this example:

CONSTANT
 Pi FLOAT = 3.1415926,
 DevelopersName = "MY_NAME"

The compiler substitutes the stipulated value for every occurrence of the constant in the
program. In this example, note that the second constant does not have a data type
declared. The NewEra compiler assumes a data type compatible with the stipulated value.
In this example, the constant DevelopersName is declared a character data type by the
compiler. A compilation error occurs if you attempt to assign a new value to a constant.

TIP: Constants are commonly used to make a source code module more readable,
more easily modified, and more reliable by reducing typing errors. Constants can
be declared within an include file that can be used to propagate the constant
throughout the project. Project managers should identify any constants applicable
to either the problem space of the project or the coding standards adopted and
publish these constants as an include file early in the project development cycle.

Built-In Functions

A built-in function is a function provided by the core NewEra language to perform
commonly used routines or functions. NewEra also provides an extensive number of
functions through the various class libraries that come standard; these functions are
covered in more detail in later sections. Table 40.4 lists the most important built-in
functions.

Table 40.4. Built-in functions.
Function Name Use
ARG_VAL(n) Returns the nth placed argument passed to the program.

DOWNSHIFT(char) Downshifts all characters in a string.
ERR_GET(n) Returns the Informix error text for error n.
ERRORLOG(char) Writes string char to the previously defined error file.
FGL_GETENV(char) Retrieves the value of the environment char from the

operating system.
FGL_KEYVAL(char) Returns the ASCII number for the key pressed by the user.

Includes such keys as Backspace, Tab, and Return.
LENGTH(char) Determines the number of characters in string char after

trimming trailing spaces.
MESSAGEBOX Displays a user dialog box with various user options.
NUM_ARGS() Returns the number of arguments passed to the program.
PACKROW() "Packs" a record of simple data types into an ixRow object.
PROMPTBOX() Displays a dialog window prompting the user to enter a string.
SHOWHELP(n) Invokes the help display system displaying item n.
SQLEXIT() Terminates the connection of an application to an Informix

server.
STARTLOG(char) Starts the error logging facility to error file char.
UNPACKROW "Unpacks" an ixRow object into a record of simple data types.
UPSHIFT(char) Upshifts all characters in the character string char.
TODAY Returns today's date.
MDY() Converts a numeric month, day, and year to a date.
CURRENT Returns the date and time of day from the system clock.
DAY(date) Returns an integer representing the day of the week for any

given date.
MONTH(date) Returns an integer representing the month of the year for any

given date.
YEAR(date) Returns an integer representing the year for any given date.
TIME Returns the current time of day from the system clock.
WEEKDAY(date) Returns an integer representing the day of the week for date.

NewEra also provides aggregate functions AVG(), COUNT(*), MAX(), MIN(), PERCENT(*),
and SUM(). These can be used only in REPORT program blocks.

NewEra as an Object-Oriented Language

What makes a language object oriented? Many languages, particularly those designed for
development of graphical user interfaces, use objects such as graphical widgets. Are these
languages object oriented? With an heroic programming effort and a rigorous adherence
to project standards, making a 3GL, such as C, behave like an object-oriented language
would be possible. However, most programmers would accept that C is not an object-
oriented language. Stroustrup, the designer of the C++ language, says this: If the term
"object-oriented language" means anything, it must mean a language that has
mechanisms that support the object-oriented style of programming well. There is an
important distinction here. A language is said to support a technique if it provides
facilities that make it convenient (reasonably easy, safe, and efficient) to use that style.
First, I should define the object-orientation technique. Object-oriented programming is a
technique that implements solutions as a collection of independent but cooperating
objects. An object is a unique instance of a complex data type. An object has behavior
characteristics specified by its class. Further, object-oriented programming allows objects
of new classes to be created that inherit some or all of the behavior characteristics of
objects of another class.

Important elements of the preceding definition are object, instance, class, and inherit. In
my opinion, all these important elements must be supported by a language for that
language to be object oriented. A language that uses objects but does not allow
inheritance of object characteristics is not object oriented but merely object based.

In the following chapter, you will learn that NewEra provides facilities that make it easy,
safe, and efficient to use objects, classes, and inheritance, and that NewEra is a fully
featured object-oriented programming language.

Objects

An object is a software construct that associates data structures with the operations
permissible with that data structure. Objects present a defined interface that controls the
permission of external processes to read or manipulate the object's data structure or
invoke the object's operations.

The process of associating data with operations is called encapsulation and is one of the
most exciting features of object-oriented programming. It is important to realize that the
public interface displayed by the object cannot reveal any of the internal data structure or
operations.

Classes

You can think of a class as a template or declaration for an object. A class defines the
structure and behavior of an object (that is, the data structure and the associated
operations, or functions, of an object). Booch describes a class like this: "A class is a set

of objects that share a common structure and a common behavior." The data structure and
associated operations of the class are called the members of the class.

Objects and Classes with NewEra

In this section, you begin to examine how to use objects and classes with NewEra. Figure
40.1 illustrates a simple module structure of a NewEra program that uses objects and
classes.

Figure 40.1.

Module structure.

You can follow these basic steps to use objects and classes in NewEra:

1. Design a class and declare it by using the CLASS statement. Usually, you
declare the class in a separate source module with a file type extension of
.4gh. This file is called the Class declaration file in Figure 40.1.

2. Develop the code that implements the class. This module contains the
code that implements the internal workings of the objects of the class. This
file is called the Class implementation file in Figure 40.1.

3. Develop the application that uses the object. The application need only concern
itself with the public interface presented by the object. These files are called
Consumer code files in Figure 40.1.

Both the class implementation and consumer code modules use the INCLUDE compiler
directive to reference the class definition. Before I discuss the details of each of these
steps, you should consider two important similarities that objects and simple data types
share. Both types of variables need to have their data type (or class) declared before being
used, and both objects and simple data types cannot be referenced by a program outside
their scope of reference.

Class Declaration

NewEra requires that every object variable have a declared class. The structure of the
class must be declared, traditionally in a class definition file as in Figure 40.1, so that the
compiler can check the use of the object within the implementation or consumer code. A
class declaration is achieved by the NewEra CLASS statement. The CLASS statement only
declares the class; it does not create any objects, does not allocate any memory, and
contains no executable statements. The class declaration contains only instructions used
by the compiler. You should examine the CLASS statement in detail because it is at the
core of object-oriented programming and design. Listing 40.5 declares a class called
Customer.

Listing 40.5. Class declaration.
01 CLASS Customer
02
03 FUNCTION Customer
04 (
05 aNumber INTEGER,
06 aName CHAR(32) : NULL
07)
08
09 CONSTANT
10 Good SMALLINT = 0,
11 Bad SMALLINT = 1
12
13 VARIABLE
14 Number INTEGER,
15 Name CHAR(32),
16 Status SMALLINT
17
18 SHARED VARIABLE
19 NumberOfObjects INTEGER
20
21 FUNCTION GetStatus() RETURNING SMALLINT
22 FUNCTION SetBadStatus() RETURNING VOID
23 FUNCTION SetGoodStatus() RETURNING VOID
24 SHARED FUNCTION GetNextNumber() RETURNING INTEGER
25
26 EVENT DatabaseWrite(Mode SMALLINT) RETURNING BOOLEAN
27
28 END CLASS

With the exception of EVENT and SHARED keywords, most of the statements that form the
class declaration in Listing 40.5 are familiar to you from structured programming
techniques. This use should not surprise you, because object-oriented techniques are an
extension of the information-hiding and modular-decomposition techniques already
recognized as good structured programming. In this sense, the transition to object-
oriented techniques is an evolutionary, not revolutionary, change. Next, I discuss each
element of the class declaration in detail.

The Constructor Function

The statement on line 03 of the class definition in Listing 40.5 is a FUNCTION statement
declaring a function called Customer. Note that the function has the same name as the
class and that the function does not have a return signature. This special function called
the constructor must be present in every class definition. This function is called when
consumer code creates a new object of this class. Creating a new object of a class is
called instantiation because it produces a new instance of an object of that class.
Remember that the class declaration is only declaring the prototype of any functions in
the class, not the actual function itself that is in the implementation file. Creation and
destruction of objects within the consumer code module are discussed in detail in a later
section.

Member Constants

Line 09 of Listing 40.5 declares a member constant. A member constant behaves just like
a normal constant with the compiler substituting the declared value of the constant at
compile time. A member constant of a class has module scope of reference and is
referenced using the class name and the module scope resolution operator. Consider the
following example from a consumer code module:

INCLUDE "customer.4gh"
VARIABLE p_local SMALLINT
LET p_local = Customer::Good

This code fragment assumes that the Customer class is declared in a file called
customer.4gh. The variable p_local is assigned the value of 0, which is the value of the
class constant.

Member Variables

Line 13 of Listing 40.5 declares three variables: Number as an integer, Name as a
char(32), and Status as a small integer. The example uses only a simple data type,
but the variables can be of any data type, including other classes such as the DCL classes
discussed earlier. The statement on this line declares the internal data structure of the
class. These variables are called the member variables of the class.

Member variables can be either normal, as are the member variables on line 13, or
shared, as in line 18. The SHARED statement modifies the scope of resolution of the
member variable. A normal member variable forms part of the data structure of the
object. One variable is located in memory for each object instantiated. A shared member
variable, on the other hand, is shared among all instances of objects of the class. Only one
variable is located in memory for all objects of the class. Operations on a shared member
variable by one object affect the value of the member variable for all objects.

Normal member variables of a class can be referenced using dot notation; for example,
implementation code can reference the Status member variable of an object of class
Customer as Customer.Status. This method is similar to the way in which the members
of a record are accessed.

Shared member variables do not belong to any particular object, but instead they belong
to the class as a whole. The syntax to reference a shared member variable is similar to
that used to reference member constants. The NumberOfObjects member variable of the
class Customer would be referenced as Customer::NumberOfObjects, as shown here:

INCLUDE "customer.4gh"
VARIABLE NumberOfObjects INTEGER
LET NumberOfObjects = Customer::NumberOfObjects

In this example, note that resolving the class scope of the shared member variable allows
you to use two variables of the same name without conflict.

Member Functions

The statement on line 21 of Listing 40.5 declares a function called GetStatus(). This
statement declares one of the operations permissible for objects of this class. These
functions are called the member functions of the class.

You can call a normal member function by using the dot notation similar to the way a
normal member variable is referenced, as shown in Listing 40.6.

Listing 40.6. Calling a member function.
INCLUDE "customer.4gh"
VARIABLE CustomerStatus SMALLINT
LET CustomerStatus = OurCustomer.GetStatus()
IF CustomerStatus = Customer::Good THEN
     ~~~ a good customer 
END IF 

You can modify the scope of member functions in the same way you do with member 
variables by using the SHARED statement. In Listing 40.5, line 24 is a member function 
declared as a shared member function. Thus, the function GetNextNumber() belongs to 
the class rather than to objects of the class. Shared member functions are called by 
resolving their scope to their class, like this: 

INCLUDE "customer.4gh" 
VARIABLE NextCustomerNumber INTEGER 
LET NextCustomerNumber = Customer::GetNextNumber() 

As the name suggests, you can use shared member functions for any functions that are 
specific to the class rather than objects of the class.  

Defining Events for a Class 

Line 26 of Listing 40.5 illustrates the declaration of an event called DatabaseWrite() 
for the Customer class. The declaration of an event is similar to the declaration of a 
normal member function. Events can accept arguments and have return signatures. 

Events behave very much like normal member functions. Events cannot be declared as 
shared. I discuss events more fully in a later section.  

Access Control for Class Members 

I said earlier that objects declare a public interface and control access to the objects' 
member variables and member functions. Part of the goal of object-oriented 
programming is information hiding, reducing the complexity of the solution to a 



collection of cooperating objects. The internal workings of each object are not relevant to 
the solution, only the external behavior of the object. Information hiding is achieved by 
access control. 

NewEra supports three levels of access for member variables and member functions: 
public, protected, and private. Access control statements modify the VARIABLE or 
FUNCTION statement. The following example declares the function GetStatus() as a 
protected function: 

PROTECTED FUNCTION GetStatus() RETURNING SMALLINT 

Public access allows any consumer code to reference the class member. Consumer code, 
therefore, can evaluate or assign value to public member variables, and that consumer 
code can call a public member function. The operations shown in the following example 
are legal from consumer code: 

CALL Customer.GetStatus() RETURNING CustomerStatus 
IF Customer.Status = 0 THEN 
     ~~~ good customer 
END IF

Protected access allows the member variables or functions to be referenced only from the
implementation code of the class or a class derived from the class. I will show you how to
derive a class in the "Inheritance" section. Essentially, declaring a class member as
protected prevents consumer code from operating on or referencing that class member
directly. Consumer code is forced to perform operations with the object only through the
class members declared as PUBLIC. Thus, the public class members form the public
interface of the object. The power and security that this capability gives the software
developer is quite remarkable.

With private access, the member variables or functions of a class can be referenced only
from the implementation code of the class. Private members cannot be referenced from
the implementation code of derived classes. Private access allows you to create "black
box" objects that cannot have the internal operation changed. Other programmers can
create new classes by inheritance and modify some of the behavior of the class, but
essential internal elements can remain inaccessible. I discuss more details about private
access in the "Inheritance" section of this chapter.

The access control statements are in addition to the scope modifier statements; for
example, you can declare a private shared member.

Class Implementation

In the preceding section, you declared the Customer class. The next step is to develop the
class implementation code. The class implementation code actually instantiates new
objects and performs the operations you have declared in the various member functions.

Listing 40.7 illustrates the class implementation code for the Customer class.

Listing 40.7. Class implementation.
01 INCLUDE "customer.4gh" # the class declaration (for the
compiler)
02
03 VARIABLE NumberOfObjects INTEGER # shared variables
"instantiated"
04
05 FUNCTION Customer::Customer # the implementation of the
constructor
06 (
07 aNumber INTEGER,
08 aName CHAR(32)
09)
10
11 LET SELF.Number = aNumber
12 LET SELF.Name = aName
13
14 END FUNCTION
15
16 FUNCTION Customer::GetStatus() RETURNING SMALLINT
17 RETURN SELF.Status
18 END FUNCTION
19
20 FUNCTION Customer::SetBadStatus() RETURNING VOID
21 LET SELF.Status = Customer::Bad
22 END FUNCTON
23
24 FUNCTION Customer::SetGoodStatus() RETURNING VOID
25 LET SELF.Status = Customer::Good
26 END FUNCTION
27
28 FUNCTION Customer::GetNextNumber() RETURNING INTEGER
29 VARIABLE NextNumber ixInteger
30 . . . do something - maybe SQL from database to set value of
NextNumber
31 RETURN NextNumber
32 END FUNCTION

Line 03 of Listing 40.7 illustrates the way in which shared member variables are
initialized. As you might recall, shared member variables are created only once for each
class.

Lines 05 through 14 define the constructor function. The main purpose of the constructor
in this example is to initialize the internal data structure. You are not limited to data
initialization; however, the constructor can perform almost any valid NewEra statement
including database access statements. In the example, the member variables Number and
Name are simple data types, and they are initialized by assigning the constructor
arguments to them. Alternatively, the constructor can instantiate other objects (that is,
call the other objects' constructor function) as part of its internal data structure.

An interesting feature is the use of the SELF qualifier to reference the object itself. Line
11 illustrates the way in which implementation code can refer to the object itself. This
qualification is not strictly necessary, because the compiler would have been able to
resolve the correct variable; however, it makes the code clearer.

The definition of the member functions starts on line 16. The member functions look very
much like normal functions, except that the function name is qualified by the class name.
The shared member function GetNextNumber() is defined on line 28. With the exception
of the SHARED keyword, it is not noticeably different from any of the other member
functions.

Using Objects and Classes in Consumer Code

In the two preceding sections, you declared the Customer class and defined the
implementation code for the class. Now you can get to the business end of the project and
see how you can use this simple class in some consumer code (that is, an application).

Listing 40.8 shows some consumer code that uses the Customer class.

Listing 40.8. Sample consumer code.
01 INCLUDE "customer.4gh"
02
03 MAIN # the entry point for the program
04
05 VARIABLE OurCustomer Customer # declare a variable named
OurCustomer
06 # of class Customer
07 VARIABLE NewNumber INTEGER # a program variable to hold the next
number
08
09 LET NewNumber = Customer::GetNextNumber() # gets the next customer
10 # number
11 LET OurCustomer = NEW Customer
12 (
13 aNumber : NewNumber # customer number
14)
15
16 CALL OurCustomer.SetGoodStatus() # we set the status of the customer
17
18
19 END MAIN

You have now created the first simple application. Listing 40.8 illustrates the use of the
MAIN statement on line 03; this statement indicates where program execution begins.

Variables Must Have Data Types

Each variable, including an object variable, is required to have a data type (or class). Line
05 of Listing 40.8 declares a variable named OurCustomer of class (data type) Customer.

The compiler knows about the permitted public interface of this class because you have
included the declaration of the class with the INCLUDE statement on line 01. You also
declare an integer called NewNumber.

Object Instantiation

An object is instantiated with the NEW statement combined with calling the constructor
function as illustrated in line 11 of Listing 40.8. Note that the constructor function has
been called with just the aNumber argument. The aName argument has been declared with
a default value, and therefore a value is not required (although in Listing 40.8, the
member variable Name will be assigned the default value of NULL).

When an object is instantiated, NewEra creates two memory structures: the object and a
reference variable. Figure 40.2 illustrates this concept.

Figure 40.2.

Object instantiation.

The reference variable is the variable OurCustomer in the example. It is called a
reference variable because this variable is the only way of accessing or referencing the
object itself. You see in a later section that an object can have more than one reference
variable. If you omit line 11 of Listing 40.8, the subsequent statement on line 16 (where a
member function of the object is called) fails because the object at that point does not
exist. (In fact, the program would not compile because the compiler would detect that the
object has not been created.) This is the major difference between declaring variables of
simple data types and reference variables. After the statement on line 07, the integer
variable NewNumber is available to be used throughout the program. In contrast, the
reference variable OurCustomer is available only after it has been declared and
instantiated (line 05 and line 11).

Now change the example as shown in Listing 40.9 to illustrate more clearly the
difference between declaring and instantiating reference variables.

Listing 40.9. Declaring and instantiating reference variables.
01 INCLUDE "customer.4gh"
02
03 MAIN # the entry point for the program
04
05 VARIABLE Counter INTEGER # a looping variable
06 VARIABLE CustomerArray ARRAY[5] OF Customer # an array of five
07 # customers
08 FOR Counter = 1 TO 5 # loop through all the elements of
the array
09 LET CustomerArray[Counter] = NEW Customer
10 (
11 aNumber : Counter # use
looping variable

12) # as
customer number
13 END FOR
14 END MAIN

In this example, you are populating an array with five elements, each of which is a
variable of class Customer. The statement on line 09 creates a new Customer variable for
each iteration of the FOR loop. At the end of the FOR loop, you have five quite separate
instances of a Customer reference variable in the array, each of which "points" to a
separate Customer object. Each of those Customer objects can be manipulated
independently of any of the other Customer objects.

Class Inheritance

One of the essential features of an object-oriented language is the ability to create new
classes that inherit some or all of the properties of an existing class. This feature is called
inheritance. Inheritance allows you to modify and extend the capability of applications
easily by incrementally improving the facilities offered by the applications' classes. New
application features can be built on a solid known foundation of the existing application.
Appropriately designed access control can minimize or even prohibit subsequent
development from altering the internal operations of the existing classes.

The best way to demonstrate this facility is by example. You can create a new class based
on the Customer class previously introduced. In this example, create a class of Customer
members who are students. You call this new class StudentCustomer. The
StudentCustomer class is a subclass of the Customer class. The class declaration
statement is shown in Listing 40.10.

Listing 40.10. Inheritance.
01 INCLUDE "customer.4gh"
02
03 CLASS StudentCustomer DERIVED FROM Customer
04
05 FUNCTION StudentCustomer
06 (
07 aNumber INTEGER,
08 aName CHAR(32),
09 aStudentNumber INTEGER
10 aCampus CHAR(32)
11)
12 PROTECTED VARIABLE
13 StudentNumber INTEGER,
14 Campus CHAR(32)
15
16 PUBLIC FUNCTION GetStudentNumber() RETURNING INTEGER
17 PUBLIC FUNCTION GetCampus() RETURNING CHAR(32)
18 PUBLIC FUNCTION SetBadStatus() RETURNING VOID
19 END CLASS

The compiler needs to know the declaration of the Customer class so that it can properly
declare the StudentCustomer class members. You therefore include the declaration of
the Customer class with the INCLUDE compiler directive on line 01.

The StudentCustomer class is declared on line 03 with the statement DERIVED FROM
qualifying the class that StudentCustomer derives from. The StudentCustomer class
inherits all the features of the Customer class.

The constructor of the StudentCustomer class is declared in lines 05 to 11. Note that the
prototype of the constructor has changed from that of the Customer class.

Lines 12 to 14 declare two member variables: StudentNumber and Campus. These two
new member variables are unique to the StudentCustomer class. StudentCustomer,
however, has five member variables; the StudentCustomer class inherits the three
member variables of the Customer class in addition to the two new member variables
declared here. New member variables cannot have the same name as inherited member
variables because the member variables will have the same scope within the new class.

Lines 16 and 17 declare two new member functions: GetStudentNumber() and
GetCampus(). These member functions are in addition to the member functions inherited
from the Customer class.

I said that inheritance allows the programmer to alter the behavior of the new class from
that of the old class. The example illustrates how you can change the behavior of member
functions. Line 18 declares a member function called SetBadStatus(); this is not a new
member function because this member function was declared in the Customer class. By
including another declaration in the StudentCustomer class, you are informing the
compiler that you intend to alter the behavior of the member function in the new class.
This method is called overriding the member function. The prototype of the overridden
function must not be changed. Unlike the other member functions you inherit from the
Customer class, you need to define a new implementation for the overridden member
function.

To complete the inherited class, you need to define the class implementation code, as
shown in Listing 40.11.

Listing 40.11. Implementation of subclass.
01 INCLUDE "studcust.4gh" # include class declaration for the
StudentCustomer
02
03 FUNCTION StudentCustomer::StudentCustomer # constructor
04 (
05 aNumber INTEGER,
06 aName CHAR(32),
07 aStudentNumber INTEGER,
08 aCampus CHAR(32)
09) : Customer

10 (
11 aNumber : aNumber,
12 aName : aName
13)
14 LET SELF.StudentNumber = aStudentNumber
15 LET SELF.Campus = aCampus
16 END FUNCTION
17
18 FUNCTION StudentCustomer::GetStudentNumber() RETURNING INTEGER
19 RETURN SELF.StudentNumber
20 END FUNCTION
21 FUNCTION StudentCustomer::GetCampus() RETURNING CHAR(32)
22 RETURN SELF.Campus
23 END FUNCTION
24 FUNCTION StudentCustomer::SetBadStatus() RETURNING VOID
25 VARIABLE MailCommand CHAR(*)
26 # send an e-mail to the student liaison officer (example
command only)
27 LET MailCommand = "mail liaison_officer" || SELF.Name
28 RUN MailCommand
29
30 CALL Customer::SetBadStatus()
31 END FUNCTION

The constructor of the StudentCustomer class calls the constructor of the Customer
class on line 09. Listing 40.11 also illustrates how you can override a function. Lines 24
to 31 define the function SetBadStatus(), which was also defined in the Customer
class. When the member function SetBadStatus() is called for an object of
StudentCustomer class, this code is executed. However, you can still call the
SetBadStatus() member function of the Customer class, as demonstrated on line 30
(although you do not need to do so). This way, you can either completely override the
operation of the member function or add additional steps to the existing function.

Inheritance is obviously a very powerful feature; it is used extensively by the NewEra
language itself to provide the Standard Class Libraries discussed in the next chapter. If
you do not derive a class from a specific class, NewEra derives the class from a class
called ixObject. The declaration of this "root" object is well documented in the NewEra
language reference, and members of this object provide many useful features that I
discuss further in the "Object Assignment" section of this chapter. In other words, you
also can define the class declaration of the Customer class as in the following example:

CLASS Customer DERIVED FROM ixObject

You can inherit new classes from inherited classes to as many levels as is appropriate for
the project under development. Each class extends or modifies the behavior of the class it
is derived from. The chain of inheritances is called the class hierarchy. Figure 40.3
illustrates a simple class hierarchy involving the Customer and StudentCustomer classes
and their descendants.

Figure 40.3.

Class hierarchy.

The NewEra language, in common with other high-level object-oriented languages such
as Java, does not support multiple inheritance. Multiple inheritance occurs when a class is
derived directly from more than one class. This limitation eliminates some problems that
arise through namespace conflicts. I discuss class hierarchy design further in a later
section.

More on Events

I briefly touched on events earlier in this chapter; now I will describe events in more
detail. You noted in the Class declaration section that the prototype of an event is similar
to the prototype of a member function. In fact, events are sometimes called reference
functions. The event is implemented (or handled) by a special function called a handler.
Except for the fact that it uses the HANDLER statement instead of the FUNCTION statement,
a handler is syntactically identical to a function. Why have events and handlers then? A
handler can be assigned (or bound) to handle an event at runtime. This behavior is
commonly called dynamic or late-binding. In contrast, the implementation code for a
function is bound to the member function at compile time.

Dynamic binding allows consumer or implementation code to change the handler that
handles a call to a member event during program execution. Classes that demonstrate
multiple behavior are said to be demonstrating polymorphic behavior. If no handler has
been assigned to an event, calls to that member event are effectively ignored.

In the following example, you make the Customer class change its behavior dynamically.
The consumer code should be able to make the Customer object write the values of its
member variables into a table called cust_table or to e-mail the details to another user.
You use the event mechanism to set up this example.

First, you need to define the implementation code that will perform each of the different
types of write. Then add the code shown in Listing 40.12 to the class implementation file
of the Customer class (customer.4gl).

Listing 40.12. Handler implementation.
01 HANDLER Customer::DoDatabaseWrite() RETURNING BOOLEAN
02 INSERT INTO cust_table_one (Number, Name)
03 VALUES(SELF.Number, SELF.Name)
04 RETURN TRUE
05 END HANDLER
06
07 HANDLER Customer::DoEmailWrite() RETURNING BOOLEAN
08 VARIABLE MailCommand CHAR(*)
09 # send an e-mail to another user; note simplified for clarity
10 LET MailCommand = "mail other_user " || SELF.Number || " " ||
SELF.Name
11 RUN MailCommand
12 RETURN TRUE

13 END HANDLER

You have defined the implementation code for the handlers, which, as you can see, are
very similar to function definitions. Note that the handlers must have the same prototype
as the event declaration.

Now look at the example of consumer code shown in Listing 40.13 that uses the event
mechanism.

Listing 40.13. Dynamic use of handlers.
01 IF p_database_write THEN
02 HANDLE OurCustomer.DatabaseWrite WITH
Customer::DoDatabaseWrite
03 ELSE
04 HANDLE OurCustomer.DatabaseWrite WITH Customer::DoEmailWrite
05 END IF
06 CALL OurCustomer.DatabaseWrite RETURNING p_database_write

In Listing 40.13, you see how you can dynamically bind different handlers to the event
DatabaseWrite. If the program variable p_database_write is TRUE (1), the event
DatabaseWrite is handled with Customer::DoDatabaseWrite. If p_database_write is
FALSE, the event DatabaseWrite is handled with Customer::DoEmailWrite.

In a simple example such as this one, you could have just as easily solved the problem
using a member function called DatabaseWrite accepting an argument that would
control whether the information was written to the database or e-mailed. However,
consider what would happen if you wanted to introduce a third option--perhaps a write to
a printer instead of the database. If you had chosen a member function, you would have
had to recode the member function, potentially introducing errors into what was a fully
debugged program. With the event mechanism, you merely have to define the handler for
the write to the printer and dynamically bind that handler to the event when required. A
further benefit is that the developer of the original handlers does not have to release the
source code for them. The existing class implementation need not be disturbed. As the
size of the project increases, the complexity of providing polymorphic behavior using
traditional functions and control flow statements imposes an unmanageable burden on the
project.

So far, you have used the CALL statement to execute an event. A CALL statement is a
synchronous execution of the event. An event executed in this manner behaves exactly
like a member function. Events can be executed asynchronously by using the POST
statement. Posted events are not executed immediately; instead, the event is placed in the
NewEra event queue, and the handler for the event is executed the next time NewEra is
waiting for user input. The consumer code that posted the event continues to execute the
statements after the POST statement. Using the Customer class example, you can post the
event DatabaseWrite() as shown here:

POST OurCustomer.DatabaseWrite()

Note that the POST statement does not expect any return data from the event, even though
the event was declared to return a Boolean. NewEra ignores any return from posted
events that, because the event handler has not yet executed, would be meaningless in any
case. Posting an event is useful in performing tasks that are not on the "critical path" of
program execution and can be deferred until the program is idle.

Object Assignment

You can assign simple data type variables to each other by using the = operator. How do
you assign values to objects?

Before considering this issue, remember that when an object is instantiated in NewEra, a
reference variable and the object are created. The reference variable points to the memory
location of the object. (In this sense, it is similar to the pointers used in C++.) The
important point to remember is that the variable and the object do in fact occupy two
different memory locations. Subject to certain rules, NewEra allows the reference
variable to be operated on independently of the object itself. NewEra does not allow you
to manipulate the objects independently of the reference variables. You can manipulate
the values contained within the member variables of the object only by using the member
function or events of the object.

Confused? Consider an example using objects of class ixString. An ixString is a class
that is provided by the Data Class Library. You first met the ixString when I discussed
simple data types. It is an object that you can use to replace simple character strings. The
ixString is widely used in all NewEra applications. In the following example, you
declare and instantiate three ixStrings:

VARIABLE FirstString ixString = NEW ixString("AAAAAA")
VARIABLE SecondString ixString = NEW ixString("BBBBBB")
VARIABLE ThirdString ixString = NEW ixString("CCCCCC")

Figure 40.4 illustrates the reference variables and objects created by the preceding
statements.

Figure 40.4.

Reference variables and objects.

Now you can assign the reference variable SecondString to the reference variable
FirstString, as shown in the following example:

LET FirstString = SecondString

Figure 40.5 illustrates the relationship between the reference variables and the objects
after the assignment statement shown in the preceding example.

Figure 40.5.

Memory structure after assignment.

As you can see, the object marked ixString one now has no reference variables
referring to it at all, but the object marked ixString two is referenced by both the
FirstString and the SecondString reference variables. The ixString one object is
effectively lost; it cannot be re-referenced, and therefore you cannot perform operations
on it. The ixString one object will have its memory deallocated when NewEra
performs garbage collection. (See the "Object Destruction" section later in this chapter.)

How can you change the value of the objects themselves? If the designer of the class
declared the member variables as PUBLIC, and the member variables are simple data
types, you can manipulate the member variables directly using dot (.) notation. However,
most designers specify member variables as PROTECTED to prevent uncontrolled
manipulation. In this case, to change the value of the objects, you must use member
functions declared for that purpose. If the designer of the class has not declared any
member functions to change the value, you simply cannot change the values. The
ixString class has been declared with a public member function setValueStr(), which
allows you to change the value of the ixString object. To change the value of object
"ixString two" to "XXXX", you enter the following changes:

CALL FirstString.setValueStr("XXXX")
OR;
CALL SecondString.setValueStr("XXXX")

Because both reference variables in the preceding example refer to the same object, both
statements have the same effect.

You have seen how you can use the = operator to copy one reference variable to another.
NewEra allows you to copy one object to another with the COPY operator.

There is more to copying objects than to copying reference variables, however. Recall
from the discussion of member variables that a member variable can be normal, meaning
a simple data type or a member variable can be a reference variable. When you copy an
object with a reference member variable, the reference member variable in the new object
is assigned the same value as the reference variable in the old object. This means that the
reference member variable in the new object points to or refers to the same underlying
object as the old object.

To demonstrate this behavior, in the following example you derive a new class called
IntegerString that inherits from the ixString class but adds a reference member
variable of class ixInteger. An ixInteger class is another DCL class that provides
integer-like properties. The class declaration of an IntegerString class is shown in
Listing 40.14.

Listing 40.14. A class with reference member variables.
CLASS IntegerString DERIVED FROM ixString

 FUNCTION IntegerString
 (
 aStringValue CHAR(*),
 aIntegerValue INTEGER
)
 PROTECTED VARIABLE IntegerValue ixInteger
 PUBLIC FUNCTION getIntegerValue() RETURNING INTEGER
 PUBLIC FUNCTION setIntegerValue(aInteger INTEGER) RETURNING VOID
END CLASS

The member variable IntegerValue is a reference member variable referring to an
object of class ixInteger.

Now you can instantiate two reference variables of class IntegerString using the NEW
statement, as shown here:

LET VariableOne = NEW IntegerString(aStringValue : "ONE", aIntegerValue
: 1)
LET VariableTwo = NEW IntegerString(aStringValue : "TWO", aIntegerValue
: 2)

The object structure shown in Figure 40.6 will result. The figure shows the two variables
together with the ixInteger reference member variables.

The constructor of the IntegerString objects (which you have not shown) instantiates
the IntegerValue reference member variables for each of the IntegerString objects.

Now examine what happens if you copy one of these variables to the other using the COPY
statement, as in the following example:

LET VariableOne = COPY VariableTwo

Figure 40.6.

Memory structure.

The object structure shown in Figure 40.7 will result. The normal member variables are
copied in the sense that new memory storage is allocated for them, but the reference
member variables are only assigned one to the other.

Figure 40.7.

Objects after a shallow COPY.

Copying a reference variable to another reference variable without copying the
underlying object is called shallow copying. This is the default behavior of NewEra
objects. The designer of the class can change this behavior if required. You can specify
two other types of copying for the reference member variables: null and deep. You do so

in the class declaration. For example, you can specify deep copying for the
IntegerValue reference variable in the example class, as shown in Listing 40.15.

Listing 40.15. Declaration of DEEP COPY.
CLASS IntegerString DERIVED FROM ixString
 FUNCTION IntegerString
 (
 aStringValue CHAR(*),
 aIntegerValue INTEGER DEEP COPY
)
 PROTECTED VARIABLE IntegerValue ixInteger
 PUBLIC FUNCTION getIntegerValue() RETURNING INTEGER
 PUBLIC FUNCTION setIntegerValue() RETURNING VOID
END CLASS

If you instantiate and copy the objects as shown here, it would result in the object
structure shown in Figure 40.8.

Figure 40.8.

Objects after a DEEP COPY.

If you had specified NULL COPY, this object structure would have resulted in the structure
shown in Figure 40.9.

Object Evaluation

You know that objects are accessed only through their reference variables. Objects
themselves are complex data types that can contain members that themselves are
reference variables. How then do you compare objects?

First, consider the operators that compare reference variables, as shown in Table 40.5.

Figure 40.9.

Objects after a NULL COPY.

Table 40.5. Reference variable comparison operators.
Operator Use

= or == Returns TRUE when two reference variables refer to the same object;
returns FALSE otherwise.

!= or <> Returns TRUE when two reference variables do not refer to the same
object; returns FALSE otherwise.

IS NULL Returns TRUE if the reference variable is null. In this case, the

reference variable has been declared, but the reference variable (and
therefore the object) has not been instantiated. Returns FALSE
otherwise.

IS NOT
NULL Returns TRUE if the reference variable is not null.

The operators in Table 40.5 do not compare the values held in the member variables of
the object. It is not possible to compare the values held in the member variables of the
objects unless the designer of the class has provided a member function specifically for
this purpose. Remembering this point is important when designing your own classes.

TIP: If the consumer code in your project needs to compare the values held in the
member variables of the objects you declare, you need to provide a member
function specifically for this purpose.

I mentioned that all NewEra classes ultimately derive from a base class called ixObject.
The ixObject class has a member function called isEqualTo. This member function
does a byte comparison of the member variables of each of the objects and returns TRUE if
the two objects contain the same values. Some of the standard classes that are provided
with NewEra, particularly the visual objects, cannot support a byte comparison, so this
member function is overridden to trigger a runtime error. (See the "Error Handling"
section.) Consequently, this member function might not work for all your user-defined
classes. Check the class library reference for each of the member variables you propose
in your class. You can override the isEqualTo() member function yourself to provide a
customized comparison. You use the isEqualTo() member function, like this:

IF ObjectOne.isEqualTo(ObjectTwo) THEN
 # values are equal
ELSE
 # values are different
END IF

The values contained in an object's member variables are not the only way the object can
be evaluated. Specifically, you might want to determine the following information about
an object:

• The class of the object

• The derivation of the object

• The data type, precision, and scale of a member variable of the object

To determine the class of an object, you use the member function getClass(). The
getClass() member function is another member function that all objects inherit from the
ixObject class. The getClass() member function returns a lowercase character string
containing the class name. For example, getClass() returns ixstring for an object of
the ixString class.

Sometimes you might want to know if a particular object is of a class derived from
another class. The ixObject class has a shared member function called
isClassDerivedFromClass(), which can be used to determine derivation, as shown in
Listing 40.16.

Listing 40.16. Determining class derivation.
IF ixObject::isClassDerivedFromClass(Object1.getClass(),
Object2.getClass()) THEN
 # Object1 is derived from Object2
ELSE
 # Object1 is not derived from Object2
END IF

Objects are often used to hold simple data type information such as integers and character
strings. As you have seen, NewEra provides the Data Class Library to provide such
functionality. The classes in the Data Class Library are derived from a class called
ixValue, which in turn is derived from the ixTypeInfo class (as well as the ixObject
class higher in the hierarchy). The ixTypeInfo class provides a member function,
getTypeCode(), that returns an integer value. The integer values returned by
getTypeCode() correspond to constants declared in the ixTypeInfo class. You can use
the getTypeCode() member function in the manner shown in Listing 40.17.

Listing 40.17. Use of getTypeCode().
CASE Object.getTypeCode()
WHEN ixTypeCode::SQLMoney
 # Object is of SQL money type
WHEN ixTypeCode::SQLInteger
WHEN ixTypeCode::SQLChar

Obviously, the ixTypeInfo member variables are only available to objects that have the
ixTypeInfo class somewhere in their class hierarchy. The ixTypeInfo class also
provides the getPrecision(), getScale(), and getLength() member functions that
allow you to examine the precision, scale, and length of the data type. For example, you
might want to know the number of the fractional positions (scale) of a decimal data type.

Object Destruction

You have seen how you can create a new object. How then are objects destroyed when
they are no longer required? For every object that is created, NewEra records the number
of reference variables that refer to the object. Periodically, NewEra examines all the
objects to find any that are no longer referenced (that is, the number of times the object is

referenced is zero). If an object is no longer used, NewEra automatically scavenges the
memory that the object uses. This process is commonly called automatic garbage
collection. You are relieved of the task of manually deallocating the memory for objects.
Memory deallocation is a source of many programmer errors in languages such as C++
where it is a manual task.

When a reference variable loses scope of reference permanently, NewEra decreases the
number of references for its object. If the number of references is zero, the memory for
the object is deallocated.

In certain circumstances, you might want to hasten the process of memory deallocation
by assigning the reference variables for an object with the value of NULL. This approach is
particularly useful for memory hungry objects such as those that contain byte or text
member variables.

Objects and Functions

A reference variable can be passed as an argument to a function. If a normal variable is
passed to a function, the argument becomes a local variable inside the function. This
process is commonly referred to as call by value. However, when a reference variable is
passed to a function, the reference variable still points to the same object. (That is, the
function does not make a copy of the object as discussed previously in the "Object
Assignment" section.) Any operations that are performed on the object persist after the
function has ceased execution. This process is commonly referred to as call by reference.

Calling by reference is useful in many operations. For example, in INFORMIX-4GL, you
cannot pass an array to a function as an argument. In NewEra, however, you can declare
a class that contains an array as a member variable and pass a reference variable for an
object of this class to the function. The individual elements of the array are then
accessible (depending on the access control rules of the class) within the function.

When a reference variable is passed to a function, the class of the reference variable is
checked against the prototype of the function. The class must be either the class named in
the function prototype or a class derived from the class named in the function prototype.
Inside the function, the reference variable behaves as if it references an object of the class
named in the function prototype. Consider the example shown in Listing 40.18 using the
IntegerString class you declared previously. Remember that the IntegerString class
has a member function called setIntegerValue().

Listing 40.18. Use of functions with objects.
01 MAIN
02
03 VARIABLE aChar CHAR(*)
04 VARIABLE AnIntegerString IntegerString = NEW IntegerString
05 (
06 aStringValue : "A",
07 aIntegerValue : 1

08)
09 . . .
10 CALL ExampleFunction(AnIxString : AnIntegerString) RETURNING
AnIntegerString
11
12 CALL AnIntegerString.getValueStr() RETURNING aChar
13 . . .
14 END MAIN
15
16 FUNCTION ExampleFunction(AnIxString ixString) RETURNING ixString
17 CALL AnIxString.setValueStr("B")
18 CALL AnIxString.setIntegerValue(2) # bad will fail
compile
17 END FUNCTION

Listing 40.18 calls a function named ExampleFunction on line 10. The prototype of this
function declares that it should be passed an ixString. However, you passed the
function a reference variable to the user-defined class IntegerString. An object can be
treated as if it is an object of one of its base classes. Because the object has inherited from
this base class, it can use all the member functions and variables of that base class.
However, inside the function, the object can be treated only as an object of class
ixString. If you attempt to access a member that belongs to the derived class
IntegerString, the compiler reports an error.

This feature of inherited classes is powerful. You can treat them as objects of the base
class or objects of their actual class depending on your goals. For example, you can be
assured that libraries defined to work with particular classes will also work with any
classes derived from those classes.

Functions that return a reference variable allow a shorthand notation that can reduce
errors and increase clarity. The ExampleFunction discussed in Listing 40.18 returns an
ixString reference variable. If you want to access the value of the ixString that is
returned by this function, you can use the notation shown in Listing 40.19.

Listing 40.19. Function call notation.
VARIABLE StringOne ixString = NEW ixString("A")
VARIABLE StringTwo ixString
VARIABLE aChar CHAR(*)
CALL ExampleFunction(AnIxString : StringOne) RETURNING StringTwo
CALL StringTwo.getValueStr() RETURNING aChar

The variable aChar has the value you are seeking.

Alternatively, you can use the following notation:

VARIABLE StringOne ixString = NEW ixString("A")
VARIABLE aChar CHAR(*)
CALL ExampleFunction(AnIxString : StringOne).getValueStr() RETURNING
aChar

Again, the aChar variable has the value you seek. NewEra evaluates the call to the
function ExampleFunction(AnIxString : StringOne) and determines that it returns a
reference variable to an ixString object. It knows this from the prototype of the
function. NewEra then calls the getValueStr() member function for the referenced
ixString object.

Asserting the Class of an Object with Casting

In the preceding section, you learned that an object reference can be treated as an object
of its declared class or an object of any class it is derived from. You frequently have an
object reference of a declared class that you know really refers to an object of a class
derived from the declared class. Object references like this are often obtained as the
return signatures of library functions.

Using the CAST operator, you can assert the actual class of the object rather than the
declared class.

Consider the following scenario: In the Visual Class Library that comes standard with
NewEra, you can find a number of visual object classes such as buttons and text boxes.
You use these visual objects to create graphical user interfaces. Each visual object is
placed within a window. It is often useful for a visual object to access its window, so
each object in the Visual Class Library has a member function called getWindow(). The
getWindow() function returns a reference to an ixWindow class object. (ixWindow is the
NewEra window class.) In most sophisticated applications, creating a number of user-
defined classes derived from the ixWindow class is common. The user-defined classes
can display a company logo or standard menu, for example.

In the following example, you declare a window class called OurWindow that derives
from ixWindow. The OurWindow class has a member function called DisplayLogo(). A
button object called OurButton placed in this window gets a reference to the window by
calling its getWindow() member function. However, the prototype of the getWindow()
member function declares the class of the reference variable it returns as an ixWindow
class. If you enter the statement shown in the following example, the compiler evaluates
OurButton.getWindow() and determines that it returns a reference variable to an object
of class ixWindow:

CALL OurButton.getWindow().DisplayLogo()

The problem is that the ixWindow class does not have a member function called
DisplayLogo(). The compiler then returns an error. The casting operator overcomes this
problem by allowing you to recast the object reference temporarily to a derived class.
You use the CAST operator as shown here:

CALL (OurButton.getWindow() CAST OurWindow).DisplayLogo()

Here, the compiler is instructed to assert the class of OurButton.getWindow() to the
OurWindow class, thus allowing you to use the DisplayLogo() member function.

The following are some important points about casting:

• The CAST operation does not change the declared class of the reference
variable permanently. If you want to call the DisplayLogo() member
function again, you have to perform another CAST operation.

• The CAST operation does not create memory structures that are not
available. You cannot change the object to a derived class with a CAST
operation. Remembering the Customer and StudentCustomer classes, if an
object is created as a Customer class object, then a CAST does not turn it
into a StudentCustomer. If you cast a Customer object into a
StudentCustomer class and try to use the getCampus() member function,
you receive an error because the memory structure that supports the
getCampus() member function does not exist! Casting asserts only the true
class of the object.

• The CAST operation is safe to use. If you attempt an invalid CAST operation,
the cast returns a NULL reference. If you cast a StudentCustomer as an
IntegerString, the cast returns a NULL error, not a runtime error.
(However, if you attempt to access a member of a NULL reference variable,
you receive the ubiquitous -1392 error.) Testing for NULL after each cast
using the isNull() member function (inherited from ixObject) would be
wise.

Object Lists

NewEra provides facilities to manage lists of objects with the ixVector class. The
ixVector class is one of the really neat features of the NewEra language; it combines
and surpasses the features of linked lists and arrays.

An ixVector is a one-dimensional, dynamic vector of object references. Figure 40.10
illustrates the concept.

Figure 40.10.

ixVector.

An ixVector is declared and instantiated as follows:

VARIABLE OurList ixVector = NEW ixVector()

Informix has implemented the ixVector as a class, allowing you to create your own
classes inheriting some or all of the behavior of the ixVector. For example, you can
implement a class that accepts only reference variables for Customer class objects.

The standard ixVector class provides member functions to help manage the list. The
functions shown in Table 40.6 are the most important.

Table 40.6. Important member functions of ixVector.
Member
Function

Purpose

getCount() Returns the number of positions in the ixVector occupied by
items (reference variable).

getSize() Returns the total number of available positions in the ixVector.
Not all positions need be occupied.

Insert(pos,
elem) Inserts a reference variable for elem at the position specified by

pos. All positions greater than this are shuffled up one position.
Delete(pos) Deletes the reference variable at the position specified by pos. All

positions greater than this are shuffled down one position.
DeleteAll() Deletes all the reference variables in the ixVector.
Get(pos) Returns the reference variable at the position specified by pos.

(Note that in this case, the CAST operator is often used to assert
the declared class of the reference variable.)

set(pos,
elem) Assigns the reference variable at pos to elem.

The ixVector can provide multidimensional array-like behavior. The reference variables
managed by the ixVector can be reference variables pointing to other ixVectors.
Therefore, you can easily create an array of ixVectors to manage a custom object
structure. The array structure does not have to be regular and can assume a schema as
shown in Figure 40.11.

Figure 40.11.

Irregular ixVector array.

The ixVector manages memory dynamically, unlike an array, and can be passed by
reference to functions.

NewEra provides two more list management classes that are derived from the ixVector:
the ixRow and the ixRowArray class. The ixRow is a list of reference variables whose
class has been derived from the ixValue class. Recall that the ixValue class of objects

contains SQL data types only. The ixRow is used predominantly for database access. The
ixRowArray class implements an array of ixRow objects. I discuss both of these classes in
more detail in the "Database Access" section.

Class Hierarchy and Associations

NewEra provides three types of object associations with which you can develop your
class hierarchy:

• Inheritance
• Using
• Containment

I have discussed Inheritance associations, so now you can look at the other association
types.

In a Using association, one object uses the public interface of another object. When
designing your class hierarchy, you must develop a procedure for mapping the calls to an
objects' members by other objects. Doing so is particularly important if you're allocating
responsibility for developing the classes among separate programming teams.

In the Containment association, a class uses another class as a member. You saw this
association with the IntegerString example. You can use Containment associations to
declare classes that combine the behaviors of two or more classes. Consider the example
shown in Figure 40.12.

Figure 40.12.

Containment.

In this example, you see two declared classes, boat and airplane, which inherit from
the ancestor called vehicle. Each of these classes has been given custom class members
specific to its nature. What if you discover (maybe some time later) that you also have a
hybrid object called a flying boat that has the behaviors of both the boat and
airplane classes? You could inherit directly from the vehicle class, but then you would
have to re-include the members from both the boat class and the airplane class. As well
as being a lot of work, this approach introduces the possibility of inconsistencies between
the old members and the re-included members.

A possible way around this dilemma is to declare one or both of the boat and airplane
classes as members of the new class. These classes should be referenced in the
constructor of the flying boat class if required. You might want to make these member
variables protected, so you need to provide a public interface to access them. Listing
40.20 shows this pseudo-code.

Listing 40.20. Containment.
01 INCLUDE "boat.4gh"
02 INCLUDE "airplane.4gh"
03
04 CLASS FlyingBoat
05
06 FUNCTION FlyingBoat
07 (
08 aBoat Boat,
09 aAirplane Airplane
10)
11
12 PROTECTED VARIABLE aBoat Boat
13 PROTECTED VARIABLE aAirplane Airplane
14
15 PUBLIC FUNCTION GetBoat() RETURNING Boat
16 PUBLIC FUNCTION GetAirplane() RETURNING Airplane
17
18 END CLASS

This compound class can then demonstrate the behavior of both the boat and airplane
classes. To access a boat member, you call the GetBoat() member function and then the
required boat member. For example, you would use CALL
MyFlyingBoat.GetBoat().ABoatMemberFunction() (assuming the
ABoatMemberFunction() has been declared PUBLIC). This sort of arrangement is good
for imitating multiple inheritance hierarchies.

Implicit Application Object

NewEra provides an implicit application object defined by the class ixApp. The ixApp
class contains shared member functions that provide application and system-level
functions. For example, the ixApp class provides the shared member function
ixApp::setCursor(), which sets the appearance of the screen cursor. All the members
of the ixApp class are shared, so you don't need to instantiate an ixApp object.

Error Handling

NewEra provides a number of mechanisms to handle errors. Three main classes of errors
and warnings with NewEra are categorized as follows:

• NewEra code errors are caused by the incorrect execution of some code.

• SQL database errors occur because of some problem with the database
engine or the SQL statement sent to the database for execution.

• Object errors occur when a problem occurs with the execution or use of an
object member.

The NewEra language supports a GLOBAL variable called STATUS that is set to the return
status of the last operation.

NewEra Code Error

NewEra code errors are either fatal or non-fatal. A fatal error cannot be ignored and
always causes termination of your program (meaning that a fatal error cannot be
trapped). An example of a fatal error is -1319: The NewEra program has run out of
run-time data memory space. NewEra usually displays a message dialog window
advising you of a fatal error.

Non-fatal errors (and warnings) can be further divided into four groups: SQL, Screen I/O,
Validation, and Expression. I deal with SQL errors in the next section.

Screen and I/O errors and warnings occur when NewEra attempts to access a system
resource, such as an operating system file, and is not successful.

Validation errors and warnings could occur when the program tries to assert the type of a
variable against the data type stored in the syscolval table of an Informix database. This
table allows you to include discrete values for a database column. In the following
example, the codes for the U.S. states are included in the syscolval table entry for
state.state_code. To pass the VALIDATE statement on line 03, the value of
p_state_code must be one of the state codes.

01 VARIABLE p_state_code LIKE state.state_code
02
03 VALIDATE p_state_code LIKE state.state_code

Expression errors and warnings might occur when an expression used in the program
violates a language rule. A good example is a situation in which a program attempts to
divide by zero.

The WHENEVER Directive

NewEra allows you to deal with code errors with the WHENEVER compiler directive. The
WHENEVER directive must occur within a program block. The WHENEVER directive is
followed by two keywords; the first indicates the runtime condition you're trapping and
the action to take. The WHENEVER directive has the syntax shown in the following
example:

WHENEVER <run-time condition> <action>

Table 40.7 summarizes the options for runtime conditions.

Table 40.7. WHENEVER runtime conditions.
Directive Runtime

Condition
Purpose

WHENEVER ERROR Traps any errors except Expression
errors.

 ANY ERROR Traps all errors including Expression
errors.

 WARNING Traps all warnings.

Using the WHENEVER directive, you also can specify an action to take if the program
encounters the specified runtime condition. The actions shown in Table 40.8 are
supported.

Table 40.8. WHENEVER action options.
Option Use
CONTINUE The program is to continue operation.
STOP The program is to terminate upon error.
CALL function() The program should call function() when an error is

encountered.
GOTO label The program should go to the label named label.

Error Logging

NewEra also supports logging of errors with the ERRORLOG() built-in function. The
ERRORLOG() function writes the error message to an operating system file. The date and
time of the error are also written. To use the ERRORLOG() function, you must have already
specified the operating system file. You do so with the STARTLOG(filename) function.
STARTLOG() creates the file if it does not already exist. Obviously, STARTLOG() requires
that you have operating system permission to write to the file specified.

Warnings are not automatically logged.

SQL Errors

Embedded SQL errors are handled with the WHENEVER directive in a similar fashion to
NewEra code errors. You can specify other runtime conditions reflecting the different
nature of SQL operations. Table 40.9 lists the SQL runtime conditions you can trap.

Table 40.9. SQL WHENEVER runtime conditions.
Runtime
Condition

Use

NOT FOUND Used to trap an SQL operation that does not find any rows in the
database or a cursor that has reached the last row.

SQLERROR Used to trap SQL errors that have occurred in the database.
SQLWARNING Used to trap warnings issued from the database.

When you're using ODBC, errors are trapped automatically by the ODBC interface
classes. The ODBC interface classes provide member functions that allow you to
determine the nature of the error or warning.

NewEra also supports the SQLCA global record. The SQLCA stores information about
the status of the last SQL operation. You can have only one SQLCA global record. If
you're using ODBC, the SQLCA record applies to the implicit connection. NewEra also
supplies an object-based equivalent called the ixSQLCA class. See the section on this class
later in the chapter for details.

For database operations, the SQLCA.SQLCODE member is equivalent to the STATUS global
variable.

TIP: Always using the SQLCA.SQLCODE member to check database operations
rather than the STATUS is a good practice because it is a more consistent
approach.

Object Errors

The standard member functions of an object from the Informix Standard Classes are
external to the NewEra language. The member functions can be written in C++ or even
assembler language. Therefore, you can use NewEra error handling for errors within
these member functions. NewEra provides an event-based solution for handling runtime
errors from these member functions.

An error within a standard member function of the Informix Standard Classes calls an
event named rtError(). This event has a default handler function called
ixApp::uponRtError(). The ixApp::uponRtError() calls ixApp::showRtError(),
which displays a dialog window with error information. You can provide an alternative
handler for this event to perform additional tasks such as logging the error message to an
operating system file.

If you declare a custom class and implement the member functions in NewEra, you can
still use the error-handling facilities discussed previously.

TIP: In a large client/server environment, consider locating the error log file on a
shared network hard disk or partitioning the error-logging object onto a central
server. This way, you can monitor only one error file instead of one on each PC.
Of course, you still will need to handle the occasional network error.

Database Access

The NewEra language is database-centric, providing a rich set of facilities for database
access. The choice of database access technique is dictated by the size of and flexibility
required of the application.

NewEra provides the Connectivity Class Library, which provides an object-oriented,
vendor-independent mechanism for accessing databases. The Connectivity Class Library
has two versions: CCL/Informix and CCL/ODBC. The two versions are very similar,
with the exception that CCL/ODBC extends the functionality provided in CCL/Informix
to enable you to examine meta-data about the database. Using the Connectivity Class
Library, you can connect to one or more databases simultaneously.

The Connectivity Class Library consists of three classes: the ixSQLCA class, the
ixSQLConnect class, and the ixSQLStmt class.

The ixSQLCA class declares an object that provides the same facilities as the SQLCA
record discussed in the preceding section. You can examine the value of members of this
object to determine the status of any database operations. You can create an ixSQLCA
object for each database connection.

Objects of class ixSQLConnect provide members that allow you to connect to and
disconnect from databases. Objects of class ixSQLConnect also allow you to manage
transactions, isolation options, and cancellation options.

Objects of the ixSQLStmt class provide members that allow you to manage SQL
statements and cursors. You can prepare and execute SQL statements, declare named
cursors, and execute most Database Definition statements.

Embedded SQL

NewEra allows you to embed SQL commands directly into the language. You can use the
SELECT, UPDATE, DELETE, INSERT, and EXECUTE commands to manipulate the database
directly from your application. NewEra also supports embedded Database Definition
Language statements such as CREATE TABLE.

Embedded SQL is undoubtedly the easiest database access method. It is also very
familiar to INFORMIX-4GL programmers. Unfortunately, you cannot access ODBC data
sources using embedded SQL.

NewEra's embedded SQL also supports scroll cursors.

The Database Connection Object: ixSQLConnect

Objects of the ixSQLConnect class provide capabilities that allow you to connect to
databases, set database options, and manage transactions. The CCL/ODBC version also
allows you to obtain table and column information from the database (meta-data). The
ixSQLConnect class declaration includes several constants corresponding to data types
and occurrences in the ODBC standard.

Connecting to a Database

You create an ixSQLConnect object in the usual way for an object, as you see in the
following example:

INCLUDE "ixconno.4gh"
VARIABLE MyConnection ixSQLConnect
LET MyConnection = NEW ixSQLConnect()

The connection object is created in the preceding example, but it has not yet been
connected to a database. To do so, you must call the connect() member function. The
code fragment in Listing 40.21 shows a call to the connect member function.

Listing 40.21. Database connect.
01 CALL MyConnection.connect
02 (
03 SourceName : "MY_DATABASE",
04 UserId : "MY_NAME",
05 authorization : "PASSWORD"
06)
07 IF MyConnection.getODBCErrorCode() != ixSQLConnect::SQL_Success
THEN
08 # an error connecting
09 END IF

Here, the SourceName indicates the ODBC data source that you want to connect to.
(ODBC data sources are usually databases but not always.) You must establish the data
source by using the ODBC manager (in the ODBC Manager for Microsoft Windows) or
an Informix database connection available through I-Net. The UserId and
authorization parameters are optional and are required only if the data source requires
them.

The connect() member function has no return. You check for errors by calling the
getODBCErrorCode() member function to check for errors. Line 07 of Listing 40.21
demonstrates how you check for connection errors.

Connecting to an ODBC data source is sometimes a little more complicated than in the
preceding example. The ODBC standard caters to many different types of databases.
Some of these databases have different connection requirements. The ODBC driver
manager allows you to interrogate the data sources available and the connection
requirements for each of these drivers. The ixSQLConnect class supports this capability
with two member functions: browseConnect() and driverConnect().

The syntax of the browseConnect() member function is browseConnect(connStrIn
CHAR(*)) RETURNING CHAR(*). The connStrIn element must contain the data source
name in the ODBC format DSN=data source name. The function loads the ODBC driver
for this data source (previously set by the ODBC manager) and interrogates the driver for
the information it requires. BrowseConnect() returns a string that contains login
attributes. For example, it might return DB=MY_DATABASE; UID=?; PWD=*?. The question
mark indicates that the attribute has an unknown value; an asterisk followed by a question
mark indicates an optional unknown value. Most of the ODBC driver developers have
used similar labels for login attributes. The browseConnect() member function allows
you to create a customized login dialog window for a data source.

The syntax of the driverConnect() member function is

driverConnect(window ixWindow, connStrIn CHAR(*), ÂdriverCompletion
INTEGER) RETURNING CHAR(*)

Using this function, you can request a connection to a data source. If the connStrIn
string does not contain sufficient information for the ODBC driver manager to make the
data source connection, the ODBC driver manager displays a dialog window to request
the missing login attribute. The driverCompletion parameter controls the manner in
which the ODBC driver manager operates the login window.

Implicit Connection

When a NewEra program begins execution, NewEra automatically creates an
ixSQLConnect object. This process is called the implicit connection. The ixSQLConnect
class has a shared member function called getImplicitConnection() that returns a
reference to this connection. The implicit connection is only instantiated automatically;
you must still attempt to connect it to a data source.

Setting Database Options

NewEra allows you to control the behavior of any of the database connections you have
made. You control the behavior by setting database options through the

setConnectOption() member function of the connection. The prototype of this member
is

setConnectOption(option SMALLINT, param ixValue) RETURNING VOID

You call this member function, passing it an option number and an ixValue containing a
valid value for the option. The eight options shown in Table 40.10 are supported.

Table 40.10. ODBC connection options.
Option Use
SQL_Access_Mode Allows you to make the database connection either

READ/WRITE or READ ONLY. The valid values are defined by
two class constants:

ixSQLConnect::SQL_Mode_Read_Write

ixSQLConnect::SQL_Mode_Read_Only

SQL_Autocommit Allows you to specify that database operations performed
on this connection automatically commit. Valid values are

1 = On

2 = Off (default)

SQL_Txn_Isolation Specifies the isolation level you want for this database
connection. Valid values are

ixSQLConnect::SQL_Txn_Uncommitted

ixSQLConnect::SQL_Txn_Committed

ixSQLConnect::SQL_Txn_Repeatable_Read

ixSQLConnect::SQL_Serializable

ixSQLConnect::SQL_Versioning

SQL_Login_Timeout Specifies the number of seconds you will allow for a login
request to succeed. The default is 15. A value of zero
indicates an indefinite wait.

SQL_Opt_Trace ODBC allows you to write certain trace information to a
log file. Valid values are

1 = On

2 = Off (default)
SQL_Opt_Tracefile The log file for an ODBC trace. Defaults to sql.log.
SQL_Translate_DLL Specifies the name of the DLL that contains character

translation functions.
SQL_Translate_Option Specifies the current translation option. Valid values are

determined by the developer of the translation DLL.

You set a database option after you instantiate a connection object and successfully
connect the object to a data source. You can change database options at any time during
your program. The ixSQLConnect class provides a member function,
getConnectOption(), that allows you to determine the currently selected options for a
database connection.

Transaction Management

In the "Setting Database Options" section of this chapter, you learned how to set some
default transaction- and isolation-level behaviors. The ixSQLConnect class also enables
you to manage explicit transactions. Transactions are managed with the transact()
member function. The prototype of this member function is

transact(mode SMALLINT : ixSQLConnect::SQL_Commit) RETURNING VOID

The mode can be one of two values: ixSQLConnect::SQL_Commit or
ixSQLConnect::SQL_Rollback, which commit and roll back the transaction,
respectively. You don't need to explicitly declare the beginning of a transaction because a
transaction is declared after each call to transact(), as shown in Listing 40.22.

Listing 40.22. A connection example.
01 VARIABLE MyConnection ixSQLConnect = NEW ixSQLConnect()
02 VARIABLE MyStatement ixSQLStmt
03
04 CALL MyConnection.connect("my_database")
05 LET MyStatement = NEW ixSQLStmt(MyConnection) # see next
section
06 # for ixSQLStmt discussion
07 CALL MyStatement.execDirect("DELETE FROM my_table")
08
09 IF MyStatement.getODBCErrorCode() < ixSQLConnect::SQL_Success THEN
10 CALL MyConnection.transact(mode : ixSQLConnect::SQL_Rollback
11 ELSE
12 CALL MyConnection.transact(mode : ixSQLConnect::SQL_Commit)
13 END IF
14
15 # we are automatically back in a transaction

WARNING: Do not issue BEGIN WORK, COMMIT WORK, or ROLLBACK WORK statements
using the execute() or execDirect() member functions of ixSQLStmt. If you're
explicitly managing transactions, you must use transact().

Disconnecting from a Data Source

You can disconnect from a data source by using the disconnect() member function.
This function does not destroy the ixSQLConnect object; this object is subject to the
normal referencing rules of objects. Any ixSQLStmt objects you have created using this
connection will become invalid (because they no longer have a database connection).

WARNING: Disconnecting from a data source rolls back any pending
transactions.

Canceling an SQL Operation

Using the CCL/Informix version, you can cancel SQL operations. You can also set
cancellation options so that all SQL operations that exceed a predefined time limit are
canceled. A modal dialog window is displayed when an SQL operation is canceled, and
you can control the text displayed in this window. The member functions involved are
cancel(), getAutoCancel(), getCancelMode(), getCancelText(),
getCancelTimeout(), isCancelAllowed(), setAutoCancel(), setCancelMode(),
setCancelText(), and setCancelTimeout().

TIP: Always set a maximum time limit on an SQL operation. You can declare a
class of connection objects that have the project default time-out set by their
constructor.

Meta-data

Using the CCL/ODBC, you can interrogate the data source to determine the names of
tables and names and data types of columns. The ixSQLConnect class offers a number of
member functions for this purpose. Table 40.11 summarizes the major meta-data
functions and their uses.

Table 40.11. Meta-data functions.
Member
Function

Use

tables Allows you to determine the names of all the tables in the data
source. You can search for tables by table name, table owner, and
table type. The function supports character string matching. This
function returns an ixSQLStmt object that is already prepared and
executed. This ixSQLStmt object allows you to fetch rows of data
describing the tables (see the "Using ixSQLStmt" section for
specific details on fetching data rows).

columns Allows you to determine the name and data type of columns in the
data source. You can search for columns similar to the way you
search for tables. Similarly, this function returns an ixSQLStmt
object that you can use to fetch the column information.

getTypeInfo Allows you to determine the data type information supported by
the data source. You pass an argument to this function specifying
the ODBC data type of interest. Class constants have been
declared for the ODBC data types. This function returns an
ixSQLStmt object that allows you to fetch the information.

getInfo Along with getTypeInfo, provides information about the
getFunctions ODBC facilities supported by the ODBC driver.

Error Detection

The ixSQLConnect class provides the SQLError() member function that returns error
and warning information about the last database operation. You pass to the SQLError()
function the ixSQLStmt object that performed the last operation. SQLError() returns the
ODBC SQLState, the native error code from the database server, and the native error
message from the database server.

The SQL Statement Object: ixSQLStmt

Using the ixSQLStmt class, you can perform database operations. Objects of the
ixSQLStmt class are used to replace embedded SQL commands. Remember that they are
objects and subject to the same declaration, instantiation, and scope rules as other objects.

Using ixSQLStmt

The constructor of the ixSQLStmt class has the following prototype: ixSQLStmt(conn :
ixSQLConnect : NULL). You cannot use an ixSQLStmt object without a valid
connection. However, the constructor of the ixSQLStmt allows a NULL value. This device
merely accesses the SQLError() member function of the ixSQLConnect object. (Recall
that the SQLError() member function requires an ixSQLStmt object.)

Listing 40.23 demonstrates the instantiation and use of an ixSQLStmt object.

Listing 40.23. ixSQLStmt example.
00 INCLUDE SYSTEM "ixstring.4gh"
01 INCLUDE SYSTEM "ixstmto.4gh" # declaration file ixSQLstmt
02 INCLUDE SYSTEM "ixconno.4gh" # declaration file
ixSQLConnect
03 INCLUDE SYSTEM "ixrow.4gh" # declaration file ixRow
04 INCLUDE SYSTEM "ixrowar.4gh" # declaration file ixRowArray
05
06 VARIABLE stmtSelect ixSQLStmt = NEW ixSQLStmt(conn :
ixSQLConnect::getImplicitConnection())
07 VARIABLE rwData ixRow
08 VARIABLE rarData ixRowArray
09 VARIABLE SQLState, NativeMessage CHAR(*)
10 VARIABLE Counter INTEGER = 0
11 VARIABLE ErrorCode INTEGER
12
13 CALL stmtSelect.Prepare(stmt : "SELECT * FROM my_table WHERE my_col
= ? ")
14 IF stmtSelect.getODBCErrorCode() != ixSQLStmt::SQL_Success THEN
15 -- an error occurred preparing the statement
16 END IF
17
18 LET rwData = stmtSelect.allocateRow() # instantiates ixRow with
correct number of
19 # values
20 LET rarData = NEW ixRowArray(rowSchema : rwData) # creates an
ixRowArray with rows like the
21 # ixRow
22
23 CALL STMTselect.setParam(n : 1, val : NEW
ixString("MY_MATCHING_VALUE"))
24
25 CALL stmtSelect.execute()
26 IF stmtSelect.getODBCErrorCode() != ixSQLStmt::SQL_Success THEN
27 -- an error occurred executing the statement
28 CALL
ixSQLConnect::getImplicitConnection().SQLError(stmtSelect)
29 RETURNING SQLState, ErrorCode, NativeMessage
30 END IF
31
32 WHILE Counter < 100 # we shall have a maximum of 100 rows
fetched
33 CALL stmtSelect.fetchInto(oldRow : rwData)
34 IF stmtSelect.getODBCErrorCode() != ixSQLStmt::SQL_Success THEN
35 EXIT WHILE
36 ELSE
37 LET Counter = Counter + 1
38 IF rarData.insertRow(theRow : COPY rwData) = 0 THEN
39 -- error inserting into row array
40 END IF
41 END IF
42 END WHILE

Listing 40.23 instantiates an ixSQLStmt object and then executes an SQL SELECT
statement. The ixSQLStmt object fetches data into an ixRow, which you then use to create
an ixRowArray.

I touched on ixRows and ixRowArrays in the section on ixVectors. An ixRow is a class
that inherits from the ixVector class. The ixRow accepts only ixValue references. (An
ixValue object equates to SQL data types.) The ixRowArray is a class derived from the
ixVector class, which accepts only references to ixRow objects. All the ixRows in an
ixRowArray must have the same rowSchema. The ixRowArray is therefore similar to a
standard two-dimensional array of SQL data types. (The ixRowArray has a number of
other facilities that make it very useful.)

Listing 40.23, therefore, uses an ixSQLStmt to fetch data and populate an ixRowArray.

Lines 00 to 04 declare the classes to be used in the example. The ixSQLStmt object is
instantiated on line 06. Note that you're using the implicit connection in this example.
Lines 06 to 11 declare the variables to be used, including the ixRow and ixRowArray.

In line 13, you call the member function prepare(). This function accepts a CHAR(*),
which is the SQL operation you want to execute. You prepare an SQL statement with a
placeholder denoted by the question mark. The SQL statement is checked for validity
against the database. It is possible that you have made an error in the SQL. Therefore,
you must check whether the prepare statement was successful. You do so by calling the
getODBCErrorCode() member function. This member function returns a smallint for
which valid constants have been declared in the ixSQLStmt class. Table 40.12 lists the
return values.

Table 40.12. ODBC error codes.
SQL_Success The database operation executed successfully.
SQL_Success_With_Info The database operation executed successfully but with

information.
SQL_No_Data_Found No data matches the WHERE criteria entered.
SQL_Error The database operation failed.
SQL_Invalid_Handle The operation failed because of an internal ODBC error.
SQL_Still_Executing An asynchronous operation is still executing.
SQL_Need_Data The driver requires parameter data values.

On line 18, you call the allocateRow() member function that instantiates an ixRow
object with the correct number and type of ixValue objects to receive the result of the
SQL operation. On line 20, you instantiate an ixRowArray object. The constructor of the
ixRowArray accepts an ixRow, and this schema is used for all ixRows in the ixRowArray.

Line 23 illustrates how you set parameter values for any placeholders. In the example,
you substitute the string "MY_MATCHING_VALUE" for the "?" in the SQL statement. The
SQL statement would then read

"SELECT * FROM my_table WHERE my_col = "MY_MATCHING_VALUE""

You can reset the parameters and reuse the ixSQLStmt object without preparing the SQL
statement again (as in line 13) if required.

Line 25 executes the SQL statement. If your SQL statement does not return any data, all
you need to do is check the status of the database operation. However, this example
fetches some data, and you begin to do this on line 33 by calling the fetchInto()
function. Because you anticipate multiple rows, you place the fetch into a WHILE loop
that fetches data into an ixRow and then inserts the ixRow into the ixRowArray (line 38).
The ixSQLStmt class provides both the fetch() and fetchInto() member functions.
The fetch() function instantiates a new ixRow object each time it is called, whereas
fetchInto() updates the values in the nominated ixRow. If you're expecting multiple
rows of data, fetchInto() is faster.

Line 28 illustrates the use of the SQLError() function (of the connection object) to
retrieve error information from the database server.

That's all there is to using the ixSQLStmt class! As you can see, there is a fair bit more to
this operation than to the equivalent operation in embedded SQL. That's the price you
have to pay to achieve multi-database access. This process is not quite as bad as it might
seem, however. Note that most of the variables in Listing 40.23 are reference variables
and, therefore, can be passed by reference into and out of a function. A single function in
your application can handle the execution and error checking for all SQL operations.

TIP: Develop a SHARED application function that executes all the SQL statements.
Error checking (and logging) can get quite involved and could become tedious if
not modularized.

Parameters for Prepared Statements

You have seen how you can set parameters using setParam(). You can also use the
setParams() function. The prototype is

setParams(rowParams ixRow) RETURNING VOID

This function is slightly more efficient but, importantly, allows you to set all the
parameters in a generic fashion (meaning that one function can set a multiple number of
parameters).

Database Cursors

The ixSQLStmt class supports named cursors. You can set a name for an ixSQLStmt
object by calling the setCursorName() member function. The prototype is

setCursorName(name CHAR(*)) RETURNING VOID

You can determine the cursor name of an ixSQLStmt using the getCursorName()
member function. NewEra assigns a default cursor name. You must call
setCursorName() prior to prepare() or execDirect().

Named cursors are particularly useful when you're using a FOR UPDATE statement in your
SQL. They allow you to issue an update SQL statement utilizing the WHERE CURRENT OF
cursor_name syntax.

The SQL Communication Area: ixSQLCA

You do not call the constructor of the ixSQLCA object directly; the constructor is called
by the getSQLCA() member function of the ixSQLConnect class. An ixSQLCA object is
meaningless unless it is associated with a database connection (ixSQLConnect).

The ixSQLCA has the members shown in Table 40.13.

Table 40.13. ixSQLCA members.
Members Use
SQLAWARN The SQLAWARN member variable is an eight-place character string.

Normally, all characters are blank. However, after certain database
operations, some of the characters can be set to "W" (for warning). If
any of the characters are set to "W", the first character, SQLAWARN[1], is
set to "W". So you can test for this first.

 SQLAWARN[2] is set if a database with transactions is opened or a data
value is truncated to fit a character.

 SQLAWARN[3] is set if an ANSI-compliant database is opened or a NULL is
encountered in an SQL statement.

 SQLAWARN[4] is set if an INFORMIX-OnLine database is opened or the
number of data values in an SQL select is not the same as the number
of INTO variables.

 SQLAWARN[5] is set if a float-to-decimal conversion occurs.

 SQLAWARN[6] is set when an extension to the ANSI/ISO standard is
executed, and the DBANSIWARN environment variable is set.

 SQLAWARN[7] and SQLAWARN[8] are not used.
SQLCODE An integer that records the status code of the last SQL operation. A

value of zero indicates a successful operation. A value of 100(NOTFOUND)
indicates that a SELECT operation found no rows. A negative value
indicates a failure.

SQLERRD An array of six integers.

 SQLERRD[1] is not used.

 SQLERRD[2] is set to the last ISAM error code or serial number
generated by the SQL operation.

 SQLERRD[3] is the number of rows processed.

 SQLERRD[4] is the estimated CPU cost for the query.

 SQLERRD[5] is the offset of the error into the SQL statement.

 SQLERRD[6] is the ROWID of the last row.
SQLERRM Not used.
SQLERRP Not used.

The implicit connection object is automatically assigned the global record SQLCA (not
an ixSQLCA object). You can create an ixSQLCA object for the implicit connection if
required.

If you have previously created an ixSQLCA object for a connection, it is not automatically
updated after a database operation. After a database operation, you need to create an
ixSQLCA object by calling getSQLCA() for the ixSQLConnect object that you want to
test.

Stored Procedures

Stored procedures are executed like any other SQL statements using either embedded
SQL statements or ixSQLStmt objects. Stored procedures are important to the
client/server application. Most client/server applications make extensive use of stored
procedures to minimize network traffic.

TIP: Informix stored procedures support named parameters, and I recommend
that all stored procedures be used with them.

Summary

This chapter covered the basic syntax of the NewEra language. You learned about
NewEra as a procedural language and as an object-oriented language. You saw that
NewEra supports both procedural and object-oriented styles of development.

Finally, because NewEra is a database-centric language, you learned about the facilities
NewEra provides for database access.

- 41 -

The NewEra Development System
• Window Development with NewEra

o Window Basics
o The NewEra Window Painter
o Code Generated by the Window Painter
o SuperViews
o SuperTables
o Visual Objects

• The Application Builder
o Creating a Project
o Creating a Program and Project Maintenance
o Program Maintenance
o Generating a Makefile
o Building a Project
o Options

• The Source Compiler
• The Interactive Debugger

o Executing the Program
o Stepping Through Code One Line at a Time
o Stepping into a Function
o Locating Source Code
o Breakpoints
o Choosing a Source Code Module
o Inspecting Variables
o Searching Through Source Code
o Project Development

• The Application Launcher
• The Help Compiler

• Reports
• Application Partitioning
• OLE Objects
• OLE Automation Servers
• Summary

by Gordon Gielis

This chapter describes the development tools you can use to implement the features of the
NewEra language (which were discussed in the preceding chapter).

The NewEra development system consists of the following seven tools:

• Window Painter: A graphical tool that enables you to develop event-driven
windows. You can use the Window Painter to place visual components,
such as buttons and text fields, in the window. You also can attach code
procedures to handle any of the supported window events. You can use the
Window Painter to create new classes of windows to extend the properties
of an existing window to meet specific requirements.

• Application Builder: A project-management tool that provides a visual
interface to a project's dependency structure. You can use this tool to
control the module structure of a project and to define INCLUDE
directories, compilation types, and the libraries to include in the project.

• Source Compiler: Controls the compilation of source modules. Source can
be compiled into C code object files or Informix p-code object files. The
Source Compiler also controls any special instructions you need to pass to
the Informix compiler or to the C compiler.

• Interactive Debugger: A tool you can use to visually check the execution of
your program. You can use the Interactive Debugger to step through your
code one line at a time, set break points, and examine the value of
variables in your program.

• SuperView Editor: Defines SuperViews in an Informix database. A
SuperView is a mechanism used to simplify the complexities of a highly
normalized database. What the user understands as a single business
object might be contained in a number of tables. The user might
understand the customer business object to have attributes such as the

name, phone number, and address, for example. If the attributes were all
stored in the one table, this would not present a great problem; however, a
normalized database might store these attributes in a number of tables.
The user then would need to understand the relational concept of joins to
be able to extract the customer information. Obviously, this method is
undesirable and subject to error. By using SuperViews, you can create
views into the database that denormalize the database for the user (and
other programmers). SuperViews are more than just database views,
though, because they allow formatting information and some business rules
to be incorporated into their definition.

• Application Launcher: Provides a convenient method for invoking your
programs. Controls any runtime arguments that need to be sent to your
program, such as the resource files or dynamic link libraries (DLLs)
required.

• Help Compiler: A command-line tool that compiles a text Help file into a
format suitable to be presented by the NewEra Help browser. The
NewEra Help browser is a platform-independent Help system. NewEra
also supports Microsoft Help files for Microsoft Windows applications.

Window Development with NewEra

Most NewEra projects require the development of graphical user interfaces. This section
explores the tools that NewEra provides to develop graphical interfaces. The following
topics are covered:

• The general characteristics of windows interfaces

• The NewEra Window Painter, which allows you to visually construct your
window

• Relating the code generated by the Window Painter to the NewEra object
implementation method

• Visual database access objects provided by NewEra

• Standard visual components provided by NewEra

Window Basics

Window development with NewEra is centered around an object-oriented window class
called the ixWindow class. All windows you develop in NewEra are derived from

ixWindow. It is important to remember that NewEra is a cross-platform system, so
although windows under Motif and windows under MS-Windows share much in
common, differences exist in the way some visual objects are presented and activated.
Figure 41.1 shows a basic ixWindow class, and Table 41.1 lists the significant
components of this window class.

FIGURE 41.1.

An ixWindow class.

Table 41.1. Basic window items.
Component Function

Title Describes the window to the user--for example,
SamsWindow

Control box Controls the minimizing and maximizing of the window

Maximize
button

Increases the window to its maximum size

Minimize
button

Decreases the window size to an icon onscreen

Border Contains the window; borders come in various thicknesses

Window area The area of the window in which the visual controls are
placed

A major difference between GUI windows and the windows provided by procedural
languages, such as INFORMIX-4GL, is that the GUI window is event-driven. This means
that the window responds to user-initiated events such as a mouse click, and the window
has only limited control over the order of user-initiated events. A GUI window, for
example, cannot control where the user next clicks the mouse cursor in the window.
Contrast this with the INFORMIX-4GL window, in which the programmer has total
control over the position of the cursor. It is the duty of the programmer to ensure that all
necessary user-initiated events are responded to correctly. This has obvious consequences
for the structure of the window program; the program no longer can call functions in a
strictly sequential fashion and control at all times the position of the user in the program.
Window programs achieve this change in the flow of control by using the message loop.
Listing 41.1 shows the declaration and instantiation of a window under NewEra.

Listing 41.1. A message loop.
1 MAIN
2 LET SamsWindow = NEW ixWindow()
3 CALL SamsWindow.open()
4 RETURN

5 END MAIN The MAIN...END MAIN program block constitutes the message loop.
Conceptually, the program loops through this program block by entering the event-driven
window SamsWindow and waiting for user-initiated events. After it receives an event, the
program re-enters the message loop and passes the event back to SamsWindow, which then
responds to the event. The macro RETURN on line 4 tells the compiler that this MAIN
program block should behave as a message loop. NewEra does not redeclare and
instantiate the window on every iteration. (I use the word conceptually here because this
is a simplification of the process. This is a good example of how NewEra makes window
programming easy. Compare the code in Listing 41.1 with the message-loop code in a
Visual C++ program, and you will appreciate the simplicity of NewEra.)

Windows come in four types under NewEra:

• Modal dialog box: A dialog box is a box that is initiated from another
window and displays information to or requests input from the user. A
dialog box is said to be contained by the other window. A modal dialog box
is a dialog box that traps focus; users must deal with this box and cannot go
back to the original window until they close the modal dialog box.

• Non-modal dialog box: This dialog box enables users to return to the
previous window without having to first close the non-modal dialog box.

• Top window: This is a window that does not have a containing window. Top
windows, therefore, are modeless.

• Main top window: This is a top window that closes all other windows and
quits the application when it is closed.

A NewEra window is an object of an ixWindow class (or a class inherited from
ixWindow). You can treat NewEra window classes like other object classes. You can
inherit a new class from an existing class, add new member variables and functions, and
override existing member functions. You can build business rules and data structures into
the window class. You will see in the next section how the Window Painter makes these
tasks easy.

The ixWindow class is the container of all other visual objects. When you paint a visual
object onto an ixWindow, that object becomes a PUBLIC member variable of the
ixWindow. Table 41.2 lists the important member functions that come with the ixWindow
class.

Table 41.2. ixWindow member functions.
Member Function Use
close Closes the window. The window no longer is available for use.

getWindow Returns a reference variable to the window. The reference
variable is of type ixWindow, and you might need to CAST it to
the class of your window to access custom members.

hide Makes the window invisible to the user. You cannot hide modal
dialog boxes.

ixWindow
(constructor) NewEra enables you to extend the constructor to provide

custom behavior. Typically, you might want to perform some
security validations, such as checking to make sure that the
user has permission to use this window.

minimize Reduces the display of the window to an icon onscreen.
open Opens the window.
restore Restores a minimized window to its former size on the user's

screen.
setTitle Sets the text displayed in the title of the window.
show Makes the window visible to the user.
start An event called from open. Typically, you can use the handler

for this event to perform initialization tasks, such as populating
a listbox with database values.

The NewEra Window Painter

You use the Window Painter to develop windows, dialog boxes, and their attached
menus. (See Figure 41.2.) You can use the Window Painter to visually place objects, such
as buttons and listboxes, on your window. You can set properties for the visual objects
you are using, and you can attach code procedures to the event handlers of those objects.

FIGURE 41.2.

The Window Painter.

You also can use the Window Painter to declare new window classes to extend the
behavior of existing window classes through inheritance.

When you save your work, the Window Painter generates a Windows Intermediate File
(WIF), a 4GH class declaration file, and a 4GL implementation code file for the window
you have painted. You should not edit the WIF file directly, because it is overwritten
each time you save your work in the Window Painter.

Table 41.3 lists the options on the Window Painter menu.

Table 41.3. The Window Painter menu options.
Menu Option Function

File New Creates a new ixWindow.

 Open Opens an existing ixWindow.

 Close Closes a current ixWindow.

 Save, Save As Saves the current ixWindow into a file with the existing
name or a new name.

 Revert to
Saved

Retrieves last saved version.

 Print Setup Enables you to choose printing options such as paper size
and page orientations.

 Print Prints an image of the ixWindow.

 Exit Closes the Window Painter.

Edit Undo, Redo Undoes/redoes the last operation.

 Cut, Copy,
Paste

Enables you to perform standard Clipboard operations.

 Delete/Clear Deletes the currently selected visual object.

 Select All Selects all the visual objects.

 Export ROF Exports the currently selected visual object as a reusable
object file (ROF).

 Import ROF Imports a previously exported ROF.

 SuperTable Invokes the SuperTable Editor.

 Menu Invokes the Menu Editor.

Arrang
e

Align Objects Invokes the Alignment dialog box for the selected visual
objects.

 Bring to
Front

Enables you to paint visual objects over the top of other
visual objects. If you select a visual object that lies under
another and then use this option, the lower object is
displayed on top.

 Send to Back The reverse of the Bring to Front option. If you select a
visual object that lies over another object and then use
this option, the lower object is displayed on top.

 Lock Object Locks the selected visual object and prevents the object
from being moved inadvertently.

 Unlock Object Enables you to move an object that was previously locked.

Windo
w

Show
Properties

Invokes the Properties dialog box for the selected visual
object.

 Show Code Invokes the Code window for the selected visual object.

 Show Tool
Palette

Shows/hides the tool palette.

 Show
Command
Bar

Shows/hides the command bar.

 Preferences Invokes the Preferences dialog box so that you can set
system options.

 Rulers &
Grids

Invokes the Rulers & Grids dialog box.

 Refresh ROF Updates all the ROFs in ixWindow to the latest version.

 Arrange
Windows

Enables you to specify tiled, stacked, side-by-side, or
cascaded display.

Help Invokes the standard window Help options.

You can access some of the Window Painter menu options by using the toolbar. Figure
41.3 shows the toolbar in a horizontal configuration and includes callouts to the
associated dialog boxes.

FIGURE 41.3.

The toolbar.

The Properties Dialog Box

You use the Properties dialog box to set the properties of visual objects. You access the
Properties dialog box by selecting the visual object (in this case, the window) and
clicking the Properties button on the toolbar, choosing Window|Show Properties, or
pressing Shift+F2.

The properties correspond to some of the PUBLIC member variables of the visual object.
Figure 41.4 shows the Properties dialog box for the sample SamsWindow window.

FIGURE 41.4.

The Properties dialog box.

The Properties dialog box for ixWindow has five sections. Each of these sections has a
group of properties for the window. Remember that the properties equate to some of the
member variables of the window class. The Properties sections are as follows:

• General: Contains properties of the ixWindow, such as the Name and Class
of the ixWindow. This section is described in detail in Table 41.4.

• Location: Contains the Top, Left, Width, and Height properties, which
control the location and size of the window.

• Format: Contains properties that control how the window is displayed--for
example, the background color of the window.

• Database: Indicates the database to which the window is connected. The
window does not need a database; however, if you want to include
SuperTables that refer to a particular database, this is the section in which
to specify the database.

• Entry: Specifies whether the window can receive data entry.

Figure 41.5 shows the Properties dialog box with the General section expanded.

FIGURE 41.5.

The General section of the Properties dialog box.

As you can see, the General section contains quite a few properties. These properties are
listed in Table 41.4.

Table 41.4. The ixWindow General properties.
Property Use
title Controls the text displayed in the title of the window. Note

the Pen-in-Hand icon. This indicates that you have changed
this property from the system default.

name Specifies the name of the window. Used when instantiating a
new window.

windowStyle Specifies the type of window. The sample window is a
mainTop window. Note the PC icon, which indicates that this
is the system default for this property.

icon Specifies the file containing the icon displayed when the
user minimizes this window.

containingWindow Specifies the window from which this window is initiated.
This window is a mainTop window and, therefore, is not
initiated from any other window. Note the lock on this
property, which tells you that you cannot change this
property. Remember that modal dialog boxes are initiated
from other windows.

shown Specifies TRUE for a visible window and FALSE for a hidden
window.

classname Specifies the name of the class of this window. You can
create a new class of window by using the Window Painter.
This is where you specify the name of the new class.

derivedFrom You can inherit the behavior of another class for your new
class. In this chapter's example, this window is the
wnSamsWindowCls class, which inherits from ixWindow. You
could inherit from another class, however, that you declared
previously. In this way, you could create base windows for
your project with standard functions.

theStartUp Specifies TRUE if this is the first window to be displayed by
your application; specifies FALSE if it is not. If TRUE, NewEra
generates a MAIN program block similar to the earlier
sample block.

helpFile Specifies the file containing the online Help for this window.
helpNum Specifies the number of the Help item in the Help file

related to this window.
topicName Specifies the topic within the Help file for this window.

direction,
menuDirection,

Determine the behavior of the keyboard, menus, and

and
titleReadingOrder

titles. These properties help support the inter-

 nationalization of your software.

Changing a property is merely a matter of double-clicking the property and then changing
the value in the textbox near the top of the Properties dialog box. If only a small number
of permitted values exists, the textbox is replaced with a listbox.

The Code Window

Code usually must be attached to the event handlers of an event-driven window. The
Window Painter enables you to do this by using the Code window, as shown in Figure
41.6. You access the Code window by double-clicking the visual object, clicking the
Code button on the toolbar, choosing Window|Show Code, or pressing F2.

FIGURE 41.6.

The Code window.

You can enter code for each of the events for the selected visual object in the Code
window. Different visual objects have different events; for example, a button has an
ACTIVATE event that ixWindow does not. The code you enter in the Code window
becomes the HANDLER code for the event selected. You do not need to type the HANDLER
and END HANDLER statements, because NewEra writes those for you.

Using the Code window is different for ixWindow objects than for other visual objects.
Because ixWindow is the base for all GUI development, the Code window enables you to
enter statements that extend the class of the window under development. These
extensions are not handlers for events but are accessible through the Code window for
ease of use. Figure 41.6 shows the pre_body section of the wnSamsWindow ixWindow.
You will examine the code sections for ixWindow in some detail. Table 41.5 lists the
most important Code window sections for ixWindow.

Table 41.5. Code sections for ixWindow.
Event Use
class_extension Code entered here extends the class declaration of the

window. You could declare a PUBLIC function called
checkPassword(), for example, that would be called to
check a password. The Window Painter generates a class
declaration file exactly as you would if you were
declaring a custom class yourself. Any members declared
here are included in that definition file.

click An event initiated when the user clicks the mouse in the
window. Code entered here is executed in response to
that event.

constructor_extension Code entered here extends the constructor. This code is
executed immediately after the constructor is executed
(when the window is instantiated).

finish This code is executed after the window is closed. The

close event calls the finish event.
pre_body This is where you can enter the implementation code for

the window. If your window does not declare any new
member functions, you are not required to enter
anything here. If you have declared member functions in
the class_extension sections, this is where you can
enter the implementation code for these member
functions.

pre_header This is where you declare the dependencies for this
window. If your window is going to reference custom
classes, you need to include the declaration of their class
types (just as you would for any class declaration).
Standard visual classes, such as ixButton and ixListBox,
that you can paint on your window using the Window
Painter are handled by the Window Painter; you do not
need to declare them here. Typically, this section has a
series of INCLUDE compiler directives referencing the
declaration files of the custom classes.

start This event is initiated when the window is opened. You
could include code here, for example, to populate
listboxes from the database.

TIP: Entering code into the pre_body section of the Code window can become
unmanageable if the code becomes very large. Consider locating the
implementation code that usually is located in the pre_body section in a separate
source code module. You then must include this module in the project definition
by using the Application Builder.

The Code window for visual objects other than ixWindow enables you to enter the code to
be executed for the event selected. Figure 41.7 shows the Code window used to enter the
ACTIVATE event-handler code for the ixButton bnCancel.

FIGURE 41.7.

The Code window for an ixButton.

This handler calls the close() member function of wnSamsWindow. It demonstrates the
use of the getWindow() member function of the bnCancel ixButton to return a
reference variable (pointer) to wnSamsWindow.

The Menu Editor

Most, if not all, windows require a menu. You can use the NewEra Menu Editor to design
a menu for your window. You can access the Menu Editor by clicking the Menu Editor
button on the toolbar, choosing Edit|Menu, or pressing Ctrl+M. Figure 41.8 shows the
Menu Editor used to develop the menu for wnSamsWindow.

You can use the Menu Editor to create menus and nested submenus. You can attach code
to handle the ACTIVATE event for each menu item. Menu items can be enabled or
disabled, checked or unchecked. You also can define accelerator keys for each submenu
item.

When you inherit from a window class that has a menu defined, the new window class
has the menu from the ancestor class. If you define new menu items for the new window
class, the new options appear to the right of the menu options from the ancestor class.

Code Generated by the Window Painter

The Window Painter generates the class declaration file (*.4gh) and the class
implementation file (*.4gl) for the window you have painted.

FIGURE 41.8.

The Menu Editor.

The Class Declaration File

Listing 41.2 shows the class declaration file generated by the Window Painter for
wnSamsWindowCls.

Listing 41.2. The class declaration generated by the Window Painter.
01 INCLUDE SYSTEM "ixrow.4gh"
02 INCLUDE SYSTEM "ixwindow.4gh"
03 INCLUDE SYSTEM "ixbutton.4gh"
04 INCLUDE SYSTEM "ixlstbox.4gh"
05
06 INCLUDE SYSTEM "ix4gl.4gh" # for the messageBox function
07 INCLUDE "myapp.4gh" # includes the class MyApp used in the
constructor
08
09 CLASS wnSamsWindowCls DERIVED FROM ixWindow
10 FUNCTION wnSamsWindowCls(
11 geometry ixGeometry : NEW ixGeometry(
12 top : 0,
13 left : 0,
14 height : 6225,
15 width : 8160
16),
17 appearance ixAppearance : NULL,

18 topicName CHAR(*) : NULL,
19 containingWindow ixWindow : NULL,
20 icon CHAR(*) : NULL,
21 windowStyle SMALLINT : ixWindow::mainTop,
22 enabled BOOLEAN : TRUE,
23 title CHAR(*) : "SamsWindow",
24 helpFile CHAR(*) : NULL,
25 name CHAR(*) : "wnSamsWindow",
26 helpNum INTEGER : 0,
27 shown BOOLEAN : TRUE,
28 source BOOLEAN : TRUE
29)
30 PUBLIC VARIABLE
31 mnFile ixMenu,
32 bnCancel ixButton,
33 bnOk ixButton,
34 lbOptions ixListBox
35
36 PUBLIC FUNCTION GetPassword() RETURNING VOID
37

38 END CLASS -- wnSamsWindowCls As you can see in Listing 41.2, wnSamsWindowCls
is a class derived from the ixWindow class to which you have added some custom
members. It is an object class and can be treated in much the same way as any object
class, as discussed in the preceding chapter.

Lines 1 through 4 declare some INCLUDE files. These files are included by the Window
Painter when you paint the visual objects on your window.

Lines 6 and 7 declare some INCLUDE files as well. These files were included by you in the
pre_header section of the Code window. In this way, you can access members of these
classes.

Line 9 begins the constructor declaration. The name of the class, wnSamsWindowCls, was
defined in the Window Painter Properties dialog box. Most of the properties of
wnSamsWindowCls--for example, windowStyle--are defined in the Properties dialog box
(or by sizing the window with the mouse).

Line 30 shows how the visual objects you painted with the Window Painter become a
PUBLIC member variable of the wnSamsWindowCls class. In this example, you painted
four visual objects: one ixMenu, two ixButtons, and an ixListBox. You assigned names
to those visual objects by using the Properties dialog box for each object. Those names
become the names of the member variables.

In the class_extension section of the Window Painter, you declared a PUBLIC member
function called GetPassword(). This member function is shown on line 36.

The Implementation File

The Window Painter generates the class implementation file (*.4gl), as shown in Listing
41.3.

Listing 41.3. Class implementation generated by the Window Painter.
001 INCLUDE "test.4gh"
002
003 FORWARD wnSamsWindowCls
004
005 FUNCTION wnSamsWindowCls::GetPassword() RETURNING VOID
006 # code to get password.
007 END FUNCTION
008
009 HANDLER wnSamsWindowCls::wnSamsWindow_start() RETURNING VOID
010 # Some start logic
011 END HANDLER -- wnSamsWindowCls::wnSamsWindow_start
012
013 HANDLER ixButton::wnSamsWindow_bnCancel_activate() RETURNING VOID
014 VARIABLE blnResult BOOLEAN
015
016 CALL SELF.getWindow().close() RETURNING blnResult
017
018 IF NOT blnResult THEN
019 CALL messageBox
020 (
021 title : NEW ixString("CANCEL FAILURE"),
022 message : NEW ixString("Could not close SamsWindow")
023)
024 RETURNING blnResult
025 END IF
026 END HANDLER -- ixButton::wnSamsWindow_bnCancel_activate
027
028 FUNCTION wnSamsWindowCls::wnSamsWindowCls(
029 geometry ixGeometry,
030 appearance ixAppearance,
031 topicName CHAR(*),
032 containingWindow ixWindow,
033 icon CHAR(*),
034 windowStyle SMALLINT,
035 enabled BOOLEAN,
036 title CHAR(*),
037 helpFile CHAR(*),
038 name CHAR(*),
039 helpNum INTEGER,
040 shown BOOLEAN,
041 source BOOLEAN
042)
043 : ixWindow(
044 containingWindow :
containingWindow,
045 name : name,
046 enabled : enabled,
047 shown : shown,
048 helpNum : helpNum,

049 geometry : geometry,
050 appearance : appearance,
051 helpFile : helpFile,
052 title : title,
053 icon : icon,
054 windowStyle : windowStyle,
055 topicName : topicName,
056 source : source
057)
058
059 VARIABLE itemList ixVector
060 VARIABLE includeTable ixRow
061 VARIABLE result INTEGER
062 LET result = 0
063
064 HANDLE start WITH wnSamsWindowCls::wnSamsWindow_start
065 -- Begin ixButton bnCancel
066 LET bnCancel = NEW ixButton(
067 geometry : NEW ixGeometry(
068 top :
1620,
069 left :
5730,
070 height :
495,
071 width :
1590
072),
073 appearance : NULL,
074 tabIndex : NULL,
075 tabEnabled : TRUE,
076 enabled : TRUE,
077 title : "Cancel",
078 theDefault : FALSE,
079 name : "bnCancel",
080 helpNum : 0,
081 shown : TRUE,
082 container : SELF
083)
084 HANDLE bnCancel.activate WITH
ixButton::wnSamsWindow_bnCancel_activate
085 -- End ixButton bnCancel
086 -- Begin ixButton bnOk
087 LET bnOk = NEW ixButton(
088 geometry : NEW ixGeometry(
089 top : 840,
090 left :
5730,
091 height :
495,
092 width :
1590
093),
094 appearance : NULL,
095 tabIndex : NULL,
096 tabEnabled : TRUE,
097 enabled : TRUE,

098 title : "OK",
099 theDefault : FALSE,
100 name : "bnOk",
101 helpNum : 0,
102 shown : TRUE,
103 container : SELF
104)
105 -- End ixButton bnOk
106 -- Begin ixListBox lbOptions
107 LET itemList = NEW ixVector()
108 LET result = itemList.insert(NEW ixString("ListItem1"))
109 LET result = itemList.insert(NEW ixString("ListItem2"))
110 LET result = itemList.insert(NEW ixString("ListItem3"))
111 LET lbOptions = NEW ixListBox(
112 geometry : NEW ixGeometry(
113 top :
990,
114 left :
585,
115 height
: 1740,
116 width :
2505
117),
118 appearance : NULL,
119 tabIndex : NULL,
120 tabEnabled : TRUE,
121 enabled : TRUE,
122 sorted : TRUE,
123 itemList : itemList,
124 style : ixListBox::singleSelect,
125 name : "lbOptions",
126 helpNum : 0,
127 shown : TRUE,
128 container : SELF
129)
130 -- End ixListBox lbOptions
131 -- Begin ixMenu mnFile
132 LET mnFile = NEW ixMenu(
133 appearance : NULL,
134 enabled : TRUE,
135 accelerator : NULL,
136 title : "File",
137 checkState : ixMenu::notACheck,
138 name : "mnFile",
139 helpNum : 0,
140 parentMenu : SELF.getMenuBar()
141)
142 -- End ixMenu mnFile
143 CALL MyApp::SecurityCheck()

144 END FUNCTION -- wnSamsWindowCls::wnSamsWindowCls This file defines the
implementation code for the wnSamsWindowCls constructor and the implementation code
for any custom member functions.

Line 1 includes the class declaration file test.4gh. The compiler uses the declaration file
to check the prototype and access permissions for any custom members. Line 3 illustrates
the use of the FORWARD class_name statement. This keyword instructs the compiler that
the declaration of the class class_name will follow. It is not needed in this example,
because the wnSamsWindowCls class was declared by the INCLUDE "test.4gh"
statement.

Lines 5 through 7 define the custom member function GetPassword() that was declared
as a member of wnSamsWindowCls. This is the code you entered into the pre_body
section of the Code window for wnSamsWindow.

Lines 9 through 11 show the code you entered in the Code window for the start event of
wnSamsWindow. Note that the Window Painter automatically provided the HANDLER and
END HANDLER definition. All you have to provide is the implementation code. Similarly,
lines 16 through 26 show the code you entered for the ACTIVATE event of the bnCancel
ixButton. You call the close() member function of the containing window for the
bnCancel ixButton. You get a reference to the containing window by calling the
getWindow() member function of bnCancel.

Lines 28 through 132 define the constructor for wnSamsWindowCls. Like all derived
classes, the constructor calls the constructor for its ancestor class--in this case, ixWindow.
The ixWindow constructor is called on lines 43 through 57.

Lines 59 through 62 declare some variables: itemList, includeTable, and result.
These variables are used by the ixListBox class and are declared automatically by the
Window Painter whenever you paint an ixListBox.

Line 64 shows how you bind the start event with the
wnSamsWindowCls::wnSamsWindowCls handler. This is done automatically whenever
you enter some code into the start section of the Code window. For any event, if the
Window Painter detects that you have entered code into an event handler, it automatically
binds the event to the event handler. If you do not enter any code, no handler is generated
and no binding takes place.

Lines 65 through 105 show how the member variables bnOk and bnCancel are
instantiated. Each of these members is instantiated like any other object with the NEW
statement and a call to the appropriate constructor function.

Lines 106 through 130 show the instantiation of the lbOptions member variable. This
variable is an ixListBox. In the Properties dialog box of this visual object, you can
specify the initial items in the list (ListItem1, ListItem2, and ListItem3, for example).
The ixVector named itemList is populated with ixStrings with each of these values.
The itemList ixVector then is passed as one of the parameters to the constructor of the
ixListBox. The ixListBox constructor inserts the values into its list.

NOTE: The ixListBox class provides member functions to insert and delete items
from its list. Listing 41.3 shows how you can accomplish this as part of the
ixListBox constructor, however.

Lines 131 through 142 show the instantiation of the mnFile ixMenu.

Finally, on line 143, the constructor executes any statements included in the
constructor_extension section of the Code window. In this example, the
SecurityCheck() member function is called. This function is a member of the MyApp
class, which was included on line 7 of the class declaration file. (The implementation of
this function is in the implementation file of the MyApp class.)

SuperViews

SuperViews enable you, as a developer, to hide the complexities of the database from the
user. You can aggregate data from more than one table into one view. You can rename
columns and tables to be more user-friendly. You also can specify data ranges and
presentation formats.

SuperViews can be used by SuperTables (see the next section) and by the ViewPoint-Pro
report writing tool. In NewEra 2.20, SuperViews are created by using the ViewPoint-Pro
system. Future versions of NewEra will incorporate the SuperView Editor directly into
the Window Painter.

Figure 41.9 shows the SuperView Editor used to create a SuperView that combines two
tables associated in a one-to-one relationship. The SuperView name is SamsSuperView.
Additionally, you can define the sort order of the SuperView.

FIGURE 41.9.

The SuperView Editor.

SuperTables

The SuperTable is a data-aware visual object that provides sophisticated database
manipulation and query capabilities. SuperTables come in two types: free-form
SuperTables and grid-form SuperTables. A free-form SuperTable presents a simple form
to the user, whereas a grid-form SuperTable presents a scrolling grid.

Two or more SuperTables can be made to coordinate their database activities to support
master-detail table manipulations. SuperTables are object-oriented classes and can be
manipulated programmatically like any other object variable. You also can declare your
own classes derived from SuperTables to provide customized behaviors.

SuperTables come with a collection of buttons that are precoded to perform standard
database operations, such as updating and deleting. SuperTables do not need to be
displayed; you can use invisible SuperTables to drive reports and perform database
manipulations.

SuperTables prepare statements for the SQL operations you require. These SQL
statements then are executed by ixSQLStmt objects. These SQL statements can be
manipulated programmatically.

SuperTables are objects of the ixSuperTable or ixMDSuperTable class. The
ixMDSuperTable class inherits from the ixSuperTable class and adds master-detail
support. A SuperTable usually relates to a table, database view, or SuperView.

A SuperTable is also a visual container (inheriting from the ixVisualContainer class),
so it can contain other visual objects. SuperTables almost always contain SuperFields. A
SuperField is a visual object of class ixSuperField or ixMDSuperField. The SuperField
enables users to enter data or query strings. The SuperField usually relates to a column in
a table or SuperView, although manual SuperFields are allowed. SuperTables are divided
logically into a number of cells. In a free-form SuperTable, a SuperField represents a cell
in the SuperTable. In a grid-form SuperTable, a SuperField represents a column of cells
in the SuperTable. Each cell maintains a change state; the SuperField knows whether it
has been changed, created, or flagged for deletion by the user.

The SuperTable maintains a collection of ixRow objects that represent the data or query
rows of the SuperTable. When the user requests that the SuperTable save the database
operations the user has requested, the SuperTable examines this collection and prepares
the appropriate SQL operations for each row. In a grid-form SuperTable, for example, the
user can add some new rows and then delete some old rows. The SuperTable stores these
changes internally in ixRows (in an ixRowArray) until the user asks the SuperTable to
save itself.

SuperTable Properties, Functions, and Events

Like most classes, SuperTables and SuperFields have member variables (properties),
member functions, and events. Tables 41.6 through 41.11 list the most important
properties, functions, and events. SuperTables have a large number of functions and
events. The way in which these functions and events are used depends on the database
operation being requested. A complete discussion of these members is beyond the scope
of this book; I thoroughly recommend that you spend some time investigating these
members in the NewEra documentation.

Table 41.6. SuperTable properties.
Property Use
deleteStmt An ixSQLStmt object. This object encapsulates the DELETE

SQL to be used by the SuperTable.
insertStmt An ixSQLStmt object. This object encapsulates the INSERT

SQL to be used by the SuperTable.
lockStmt An ixSQLStmt object. This object encapsulates the SQL to be

used by the SuperTable to lock a database row.
maxRows Specifies the maximum number of rows you want a SELECT

operation to fetch from the database.
selectFilterPart Specifies the WHERE clause of your SQL.
selectFromPart Indicates the database table that the SuperTable accesses.

You can specify more than one table.
selectJoinPart Specifies the join clause between the tables.
selectOrderByPart Specifies the order by clause of your SQL.
selectStmt An ixSQLStmt object. This object encapsulates the SELECT

SQL to be used by the SuperTable.
updateStmt An ixSQLStmt object. This object encapsulates the UPDATE

SQL to be used by the SuperTable.

Many member functions are required to provide the sophisticated behavior of the
SuperTable. Table 41.7 summarizes some of the more important SuperTable functions.

Table 41.7. SuperTable functions.
Function Use
acceptRow Checks the validity of the data in each of the

SuperFields (cells).
addDetailSuperTable Links another SuperTable to this SuperTable as a

detail table.
apply Causes the SuperTable to attempt to update,

insert, or delete each of the modified rows.
apply() calls acceptRow() and then
applyRowSQL().

applyMasters. Causes the master SuperTable to apply itself.
Because the foreign keys in a detail SuperTable
are based on the primary keys of the master
SuperTable, the master SuperTable must be
applied before the detail SuperTable

buildDeleteStr,
buildInsertStr,
buildLockStr,
buildSelectStr,
buildUpdateStr

Build the various SQL statements. These
functions generally call lower-level functions that
provide the various components of the SQL. For
example, buildInsertStr() calls
getUpdateTable() to obtain the name of the
table for INSERT.

BuildFilterPart Builds the WHERE part of your SELECT statement.
SuperTables enable users to enter wildcard
matching. This function translates those
wildcards into SQL syntax.

doSQLDelete, doSQLFetch One or more of these functions are called by the
doSQLUpdate apply () and retrieve() functions,
depending on the doSQLInsert operations
requested by the user.

getCellBuffer Returns the editing buffer of the current cell
(SuperField).

getChangeFlag Returns a flag to indicate whether a particular
row in the SuperTable has been changed, deleted,
or newly created.

getNumStoredRows Returns the number of rows fetched by the
SuperTable.

getSuperField SuperFields are contained within the SuperTable,
but they are not members of the SuperTable.
SuperFields, like all visual objects, are members
of ixWindow. To reference a SuperField from a
SuperTable, you use getSuperField().

retrieve Causes the SuperTable to fetch data from the
database. The retrieve() function can rebuild
the SQL statement from user input or accept a
programmatically specified SQL.

revert Voids any changes made by the user to the data
prior to an apply().

setCellValue Sets the value of the current cell.

A lot of the functions described in this chapter are called by the handler for various
SuperTable events. SuperTables are designed this way to enable you to easily modify
their behavior. Table 41.8 lists some of the more important events.

Table 41.8. SuperTable events.
Event Use

afterApply,
beforeApply

Called before and after each row is applied to the
database.

AfterRow, beforeRow Called before and after each row becomes the row with the
current cell.

maxRowsExceeded Called when the number of rows fetched exceeds the value
of the maxRows member variable. You can provide a
handler to this event that enables the user to continue or
cancel.

SQLDelete,
SQLFetch,
SQLUpdate,
SQLInsert,

Call the appropriate function. When a SuperTable applies
changes to a row in the database, it compares the row
currently in the database with the row it originally fetched
from the database (not applicable to INSERT opera-
staleDatations). If there is a difference, it indicates that
another process has changed the database row since it was
fetched. This change probably was by another user. You
can develop a handler for this event to prevent overwriting
the other users' changes.

An ixSuperField is a visual object that combines display characteristics, such as
background color and font, with system catalog information from the associated database
column. SuperFields always are contained by a SuperTable.

SuperFields also can be used independently of a database column, in which case you
need to specify the data characteristics manually. Manual SuperFields enable you to
display aggregate fields--for example, the total of a column in a grid SuperTable.

Table 41.9. SuperField properties.
Property Use
includeTable Lists valid values for the SuperField.
required Indicates that the SuperField requires a value when in data-entry

mode.
useIncludes Indicates that the SuperField requires a value from the

includeTable.
verify Forces users to enter input twice when in data-entry mode.

Table 41.10. SuperField functions.
Function Use
focus Sets keyboard focus to the SuperField.
getSQLRole Returns the SQL role of the SuperField. Valid values are updateRole,

noUpdateRole, expressionRole, and noRole. The SQL role
determines whether the SuperField takes part in the creation of SQL
statements.

getText Gets the displayed text of the SuperField.
setText Sets the displayed text of the SuperField.

Table 41.11. SuperField events.
Event Use

afterCell, Called before and after the Cell becomes the current cell.
beforeCell
cellKeyPress Called after the user presses a key. Enables you to intercept

the user's keystrokes.
conversionFailed Indicates that the user entered an inappropriate value

(entered a character into an integer SuperField, for example).
includeFailed Indicates that the value entered by the user is not in the

include table.
requiredFailed Indicates that the user should have entered a value.
userValidateData Called after the cell ceases to be the current cell. The handler

for this event is where you would place code to check the
values entered by the user against your business rules.

verifyFailed Indicates that the user failed to enter the same value twice.

Developing with SuperTables

SuperTables are visual objects painted onto a window by using the SuperTable Editor of
the Window Painter. SuperTables can be used independently of SuperViews. A
SuperTable can be associated directly with database tables or with a SuperView.

You can access the SuperTable Editor by clicking the SuperTable Editor button on the
toolbar, choosing Edit|SuperTable, or pressing Ctrl+T. Figure 41.10 shows the
SuperTable Editor.

FIGURE 41.10.

The SuperTable Editor.

Painting a SuperTable is easy. Just follow these steps:

1. Ensure that the ixWindow database property is set to the database to
which you want to connect.

2. Click the SuperTable button on the toolbar for the type of SuperTable
you want.

3. Draw the area on the window to be occupied by the SuperTable. The
SuperTable Editor appears.

4. Select the table (or SuperView), the columns, and any SuperTable
buttons you want. The columns you select are automatically assigned the
data type of the column in the database you have selected. You can click
the Select button to include the columns and buttons you have chosen.

5. Click the Done button to exit the SuperTable Editor.

6. Position the SuperFields with the mouse, change properties, and add
handler code for various events.

The SuperTable being created in Figure 41.10 is a single table. SuperTables also support
master-detail relationships.

Master-Detail SuperTables

NewEra automatically creates master and detail SuperTables based on master-detail
SuperViews. Use the SuperView Editor in ViewPoint-Pro to create a master-detail
SuperView. Select this SuperView and the required columns in the SuperTable Editor,
and NewEra creates the appropriate SuperTables. Figure 41.11 shows a master-detail
SuperTable.

FIGURE 41.11.

A master-detail SuperTable.

TIP: Remember that SuperFields and SuperTables are objects and, therefore,
are addressed through reference variables. A reference variable can be passed
into a generic function or passed to a member function of another ixWindow. In

this way, your program easily can reference SuperFields and SuperTables in
another window.

Visual Objects

So far, you have looked at the NewEra window, SuperTables, and SuperViews. NewEra
also provides a number of standard visual objects. All the visual objects provided by
NewEra are object-oriented classes that enable you to modify and extend their behavior
quite easily. Like other objects, visual objects need to be instantiated by calling their
constructor function. The NewEra Window Painter automatically generates this code for
visual objects you have painted. You can instantiate a visual object programmatically,
however. Listing 41.4 shows the constructor function for an ixButton visual object.

Listing 41.4. ixButton instantiation.
01 -- Begin ixButton bnSamsButton
02 LET bnSamsButton = NEW ixButton(
03 geometry : NEW ixGeometry(
04 top : 885,
05 left : 810,
06 height :
705,
07 width : 1605
08),
09 appearance : NULL,
10 enabled : TRUE,
11 title : "Button",
12 tabIndex : NULL,
13 tabEnabled : TRUE,
14 theDefault : FALSE,
15 name : "bnSamsButton",
16 helpNum : 0,
17 shown : TRUE,
18 container : SELF # the name of the
containing object
19)

20 -- End ixButton bnSamsButton Listing 41.4 illustrates some of the common
features of NewEra visual objects. NewEra controls the initial size of a visual object
(height, width, top, and left) by passing an ixGeometry variable to the constructor of the
visual object. The ixGeometry variable is itself an object. The container parameter
indicates the name of the visual container for the button (for example, the ixWindow if the
ixButton is painted directly onto the Window).

The visual objects--ixFrame, ixSuperTable, and, of course, ixWindow--can act as visual
containers for other visual objects. In other words, you can place a visual object into one
of these visual objects, and it will be displayed on top. Any visual object that can act as a
container must be derived from the abstract ixVisualContainer class.

You can paint visual objects onto a window by using the Window Painter; you also can
create visual objects programmatically.

The following visual objects are supplied by NewEra: ixBox

ixButton

ixCheckBox

ixEditListBox

ixFrame

ixLabel

ixLine

ixListBox

ixPictureButton

ixRadioButton ixTextBox

ixBox

The ixBox class provides a way of drawing rectangular boxes on your window.
Typically, this allows a grouping of visual objects. The ixBox cannot act as a visual
container (even though it might look as though it does).

ixButton

The ixButton class provides a GUI button. A button can display a title. You activate a
NewEra button by clicking it or pressing the space bar.

ixCheckBox

The ixCheckBox displays as a toggle. It has a state: checked or unchecked. The
ixCheckBox appears as a checkmark in a small box, a dot in a round object, or an
inversion of a three- dimensional button's shadow, depending on the GUI platform.

The ixCheckBox usually has a text label to the right that describes the purpose of the
object.

ixEditListBox

The ixEditListBox is similar to the ixListBox, except that users can type in a value
that is not in the list. This capability enables you to provide a standard set of values in the
list, while still giving users the flexibility they need to enter other values.

ixFrame

The ixFrame is a visual container that can contain other visual objects. The ixFrame can
have a visible border. An ixFrame can be visible or hidden. You can use an ixFrame to
provide tab- and wizard-style windows. The Application Framework Class Library
contains classes derived from the ixFrame that provide special capabilities, such as 3D
effects.

TIP: The ixFrame provides an easy way to handle a group of visual objects as a
collection. In a complicated window, you might want to show or hide different
groups of visual objects as the user performs tasks. I find it useful to create an
ixFrame with nearly every window I develop. Typically, simple windows evolve
into complicated windows. Containing all the visual objects in an ixFrame makes it
easy to add an ixFrame with another group of visual objects.

ixLabel

The ixLabel class enables you to place static text on your window. The text displayed by
the ixLabel can be changed programmatically. The ixLabel wraps text but does not
automatically resize the label to fit; you must do this programmatically.

ixLine

The ixLine enables you to draw lines on your window (or within another visual
container).

ixListBox

The listbox displays a vertical list of items. Listboxes can be drop-down boxes or fixed-
size boxes. You can declare a listbox as single select, where the user can select only one
item from the list, or multiselect, where the user can select one or more items from the
list.

ixPictureButton

The ixPictureButton is similar to the ixButton, except that it displays bitmap pictures
instead of title text. You generally need to supply three versions of the bitmap picture: an
up version, a down or pressed version, and a disabled version.

WARNING: Differences in the platform and the resolution used might cause
problems, so you might need to develop bitmap pictures for each environment.
You will need to dynamically load the correct bitmaps.

ixRadioButton

The ixRadioButton is similar to the ixCheckBox, because it is a toggle. The difference
is that only one ixRadioButton in any visual container can be selected at a time. If the
user selects one ixRadioButton, all other ixRadioButtons in the visual container
automatically are unselected. The appearance of the ixRadioButton varies between
platforms.

ixTextBox

The ixTextBox is a visual object that enables users to enter characters. The ixTextBox
supports the standard Cut and Paste operations for the platform used.

The ixTextBox also operates in both single-line and multiline mode. In single-line mode,
characters are accepted up to the maxChars member variable. In multiline mode,
ixTextBox draws a vertical scrollbar to the right. You can embed Tab (Ctrl+I) or newline
characters (\n\r under Microsoft Windows and \n under Motif).

Reusable Object Files

Reusable object files (ROFs) enable you to create a library of visual objects for reuse
throughout your project. A ROF can consist of one or more visual objects. To create a
ROF, you first paint the visual objects onto a window. You then select the visual objects
with the mouse and choose Edit|Export ROF from the Window Painter. A File dialog box
appears so that you can save the ROF to an operating system file (and the file is given the
extension .rof).

To include a ROF in a window, choose Edit|Import ROF and then select the ROF file; the
visual objects then are painted onto your form. If you change the ROF, you must refresh
the imported ROF by choosing Window|Refresh ROF from the Window Painter.

TIP: If your window contains a large number of controls or accesses the database,
it might draw slowly when it first opens. It sometimes is useful to declare the
window as not shown when painting it in the Window Painter and then to call the
Show() member function after instantiating and opening the window in your
application. The time taken is usually the same, but the process looks better.

The Application Builder

A project consists of one or more programs. Each program consists of one or more source
code modules. Additionally, each program may require linking to static or dynamic
libraries.

The Application Builder helps you manage projects and the programs contained in them.
The Application Builder stores all this information in an Informix database. This database
can reside on a server accessible to all members of the development team.

The Application Builder provides the visual interface shown in Figure 41.12. The project
in this figure consists of two programs, imaginatively called prog_1 and prog_2.

FIGURE 41.12.

The Application Builder.

Creating a Project

You can create a project by pressing Ctrl+N or choosing File|New Project. The
Application Builder then displays a dialog box similar to the one shown in Figure 41.13.
Here, you specify the name and the working directory of the project.

FIGURE 41.13.

The New Project dialog box.

The Application Builder saves this initial definition of the project to the syspgm4gl
database. The server on which the syspgm4gl database is located is dictated by the I-Net
settings (see your installation guide) and can be on the local PC or a central server.

Creating a Program and Project Maintenance

When you create a project, a default program is created with the same name as the
project. In this chapter, I have created a project called Sams that now contains a program
called Sams. You can rename this program if required, or you can create new programs.
Just choose the Project Maintenance option by pressing Ctrl+J or choosing File|Project
Maintenance. The Project Maintenance dialog box appears, as shown in Figure 41.14.

FIGURE 41.14.

The Project Maintenance dialog box.

You can use the Project Maintenance dialog box to easily control the programs in your
project. You can perform the following tasks:

• Import a program from another project. The Existing Projects and
Programs sections show you all the other projects and programs in the
syspgm4gl database.

• Rename a program in your project to another name.

• Remove a program from your project.

• Create a program in your project.

The programs currently in your project are listed in the Current Programs listbox.

In the Program Options section of the Project Maintenance dialog box, you can specify
makefile options and the current working directory. The makefile is written to the
project's working directory.

Program Maintenance

Each program in the Sams project consists of one or more modules--usually, but not
always, of source code. You can use the Program Maintenance dialog box to specify the
source code modules that make up each program. (See Figure 41.15.)

FIGURE 41.15.

The Program Maintenance dialog box.

You can use the Program Maintenance dialog box to add and remove modules from the
definition of the program. The available modules are listed in the Files listbox. This
listbox not only displays NewEra source code modules (*.4gl) but also C source, object
files, resource files, and libraries. You also can browse to other directories and drives to
include modules.

You can define the module dependency of the program by highlighting the module and
then clicking the Add or Remove buttons. The modules on which the program is
dependent are listed in the Files in Program section. After you define the program, click
OK to save the definition; you then are returned to the main Application Builder window.
You must repeat this procedure for every program in your project. If you imported a
program from another project, you might not need to change the module dependency of
the program.

Finally, you need to declare the type of the program. You do this from the main
Application Builder window. Figure 41.16 shows the Sams project, which consists of two
programs: sams_1 and sams_2. Note that the sams_1 program consists of four source
code modules. For each program in the project, you need to declare the type of the
program and any program options; you do this in the Program Type and Program Options
sections.

Program Types

Four program types exist:

• p-code executable: Produces an interpreted executable program that must
be executed by using the INFORMIX-NewEra pseudocode runner. The file
extension for this type is *.4gl. This is the type of program required for
the Interactive Debugger.

• C code executable: Produces an executable program. The file extension for
this type is *.exe.

• C code dynamic link library: Creates a DLL. DLLs can be shared between
runtime applications. Many developers of components or class libraries
distribute their products as one or more DLLs.

• C code static link library: Creates a static library. Static libraries are linked
to other programs.

FIGURE 41.16.

Program types.

Program Options

You use the Program Options section to declare options to pass to the NewEra compiler
and to the C compiler (if any). The Application Builder enables you to set these options
and passes them to the appropriate compiler when you request a build. (See "The Source
Compiler," later in this chapter, for details of these options.)

You can declare the location of any libraries you want to link to the program. In the
Runner Options field, you declare any arguments to be passed to the NewEra pseudocode
runner.

Generating a Makefile

You set the dependencies of the project and its constituent programs so that the
Application Builder can generate a makefile. A makefile is a file that contains
compilation instructions for the make utility. The make utility is invoked with a target
name as an argument. The target name is one of your programs with the appropriate
extension. In the Sams example, the first target of the project is sams_1.4gi.

The makefile contains a series of rules on how to create the target. It also contains the
modules on which the target depends. In the Sams example, the target sams_1.4gi
depends on the source code modules test.4gl, test1.4gl, test2.4gl, and test4.4gl.
The make utility checks the date and time of modification of each of these files. If the
module has been altered since the last time the target was built, the make utility invokes
the appropriate build rule (usually, recompiling the module).

The objective of the makefile is to automatically include the latest modifications to the
program. In a complex project, this would be very error-prone if it was a manual task--
particularly if there were a number of programmers.

The Application Builder generates the makefile for you if you choose Actions|Generate
Makefile. The Application Builder also regenerates the makefile when you change the
project definition by using the Program Maintenance or Project Maintenance dialog box.

WARNING: If your project has source code stored on a network server, ensure
that the system clock on the server is synchronized with the clock on your PC
(and every other programmer's PC). Otherwise, the timestamp on the files could
cause incorrect builds.

Building a Project

You can build a project with the Application Builder by pressing Shift+F8, choosing
Actions|Build Project, or clicking the Build button on the toolbar. The Application
Builder then invokes the make utility. For a large project, a build can take a long time, so
the Application Builder enables you to selectively build each program within the project.
You also can compile each module separately. All these options are located on the Action
menu.

The Application Builder produces a log of the build that you can review by choosing
Action|Review Build. If a build is unsuccessful, you can use this log to determine the
error. Usually, the error is caused by a syntax error in one of the source code modules,
but it also could be caused by a linking error.

You can cancel a build in progress by pressing Alt+F9, choosing Action|Cancel Build, or
clicking the Cancel Build button on the toolbar.

Options

You can use the Application Builder to create templates for projects and programs. The
program template declares a default program type and default NewEra and C compiler
options. You also can specify project preferences by using the Preferences dialog box.
Figure 41.17 shows the Application Builder options.

FIGURE 41.17.

The Application Builder options.

You use the Application Builder dialog box to specify a text editor for source code files
and a make utility. You can specify the directory where intermediate files, such as *.4go
and *.obj, are created.

Generally, the Application Builder does not recheck dependencies on every build.
Dependency checking usually is performed only after you have altered the project
definition with the Program or Project Maintenance dialog box or after you have
generated a makefile. You can alter project dependencies by editing a source code
module and including an INCLUDE statement to another source code or declaration
module. Ideally, the Application Builder would check dependencies on every build;
unfortunately, for a large project, dependency checking is very time consuming.

TIP: Set a project standard to periodically have the Application Builder check the
dependencies of the project--especially if a number of programmers are working
on the project.

The Source Compiler

NewEra provides a visual interface to the two compilers (pseudocode and C code) that
come standard with NewEra. The Source Compiler is a tool that enables you to compile a
source code module directly without recompiling the entire program or project. (See
Figure 41.18.) The Source Compiler generally is used by programmers in the early stages
of development.

You can use the Source Compiler to compile your code into pseudocode or a C object
file. You can specify any arguments for the NewEra compiler and the C compiler. Table
41.12 lists some of the most important Source Compiler options.

FIGURE 41.18.

The Source Compiler.

Table 41.12. Source Compiler options.
MS Windows

Motif
Use

H H Searches path for INCLUDE files
A a Performs array bounds checking
ANYERR anyerr Sets global variable STATUS after expressions
ANSI ansi Checks SQL statements for ANSI compliance
DCURSOR dcursor Uses dynamic cursors
GLOBAL global Uses global cursors
SCURSOR scursor Uses static cursors
Z z Allows a variable number of arguments to informal

functions

You also can invoke each of the compilers from the command line.

The Interactive Debugger

The NewEra Interactive Debugger enables you to visually inspect the operation of your
program. You can use the Interactive Debugger to perform these tasks:

• Set breakpoints in your code.

• Ignore breakpoints.

• Examine the value of variables.

• Step into or over functions.

• View the status of operations, including SQL operations.

You must compile your program into pseudocode to use the Interactive Debugger. You
cannot examine step-through C code or NewEra built-in functions.

When you start the Interactive Debugger, you see the dialog box shown in Figure 41.19.

FIGURE 41.19.

The Interactive Debugger.

This dialog box enables you to select the program you want to debug. You can type the
program name into the App Name field, or you can search for the program by using the
Browse option. Pseudocode programs have a file extension of *.4go or *.4gi.

You use the Program Options field to specify options to be passed to your program. You
can indicate DLLs to load with the -u <dll_name> option, any resource files with the -
res <resource_file> option, and any other arguments you need.

After you choose the program and click the Run button, you see the window shown in
Figure 41.20.

FIGURE 41.20.

The Interactive Debugger main window.

This is the Interactive Debugger main window. It offers options to set breakpoints,
remove breakpoints, step through the code one line at a time, inspect the value of
variables, and continue the execution of the program without stopping.

Executing the Program

You can execute the program by pressing F3, choosing Debug|Run, or clicking the Run
button on the toolbar. The program executes until the next breakpoint or until a statement
returns an error status.

The currently executing line of the program is indicated by the program pointer, which is
a greater than (>) symbol to the left of the source code in the source code area.

Stepping Through Code One Line at a Time

Often, you will want to step through the code one line at a time. You can do this by
pressing F5, choosing Debug|Step, or clicking the Step button on the toolbar.

Stepping into a Function

When your code calls a function, the Interactive Debugger does not automatically step
into the function. You need to instruct the Interactive Debugger to do this by pressing F6,
choosing Debug|Step In, or clicking the Step In button on the toolbar.

If you previously set a breakpoint in the function, execution stops at that breakpoint, and
the source code of the function is displayed in the source code area.

You can step into only functions that have been compiled to pseudocode and for which
you have a source. You cannot step into functions contained within DLLs, custom runner
functions, or NewEra built-in functions. If a source code module has an INCLUDE file that

contains executable statements (not just a CLASS definition, for example), you can step
into the included file just as you can a function.

Locating Source Code

The Interactive Debugger looks in the current working directory for source code files. If
it does not find the source code files, it looks in the directories specified by the DBSRC
environment variable. If the source code files are not found, the Interactive Debugger
displays a dialog box with a message that it could not find the source code file. You can
use this dialog box to specify a particular source code file for the Interactive Debugger to
use.

Breakpoints

A breakpoint is a line in the source code module at which you want execution to stop or
break. You set a breakpoint by placing the cursor on the required line and pressing
Ctrl+B, choosing Debug|Break On Line, or clicking the Breakpoint button on the toolbar.
When a breakpoint is set, a B is displayed at the left of the source code line in the source
code area.

When execution of the program reaches the line of the breakpoint, the program stops
execution, and the source module with the breakpoint is displayed in the source code
area.

You can remove a breakpoint by placing the cursor on the source code line that contains
the breakpoint and pressing Ctrl+B, choosing Debug|Break On Line, or clicking the
Breakpoint button on the toolbar. The B no longer appears at the left of the source code
line. You also can remove all breakpoints by pressing Ctrl+R or choosing Debug|Remove
All Breakpoints.

By default, the Interactive Debugger breaks on all SQL errors. You can stop this action
by toggling the Debug|Stop On SQL Errors option. Similarly, you can toggle the
Interactive Debugger to stop or not stop on all SQL warnings.

Choosing a Source Code Module

Most programs consist of a number of source code modules. The Interactive Debugger
enables you to select one of these modules by pressing Ctrl+M, choosing Search|Go To
Source, or clicking the Go To Source button on the toolbar. A dialog box with all the
source code modules appears. You then can select the required module. The source of
this module is displayed in the source code area.

You can return to the source code module that contains the program pointer by pressing
Alt+S+G, choosing Search|Go To Program Pointer, or clicking the Go To Program
Pointer button on the toolbar.

Inspecting Variables

You can examine the value of most simple data types by highlighting the variable and
pressing Ctrl+I, choosing Debug|Inspect Variable, or pressing the Inspect Variable button
on the toolbar. The Variable Inspector dialog box appears, as shown in Figure 41.21.

You can display only the value of variables that are in scope. If the source code module
contains more than one function, for example, and you select a local variable from a
function other than the inspected function (the currently executing function), you receive
an error.

FIGURE 41.21.

The Variable Inspector dialog box.

If the variable you selected is a reference variable, the variable inspector details the
members of the inspected variable, as shown in Figure 41.22.

FIGURE 41.22.

Inspecting a reference variable.

If the inspected variable is a record, the Variable Inspector displays the nature of the
members of the record. You can select the members of the record individually.

Searching Through Source Code

At times, you will need to search through source code modules looking for a particular
statement or variable. The Interactive Debugger enables you to do this by pressing
Ctrl+F, choosing Search|Find, or clicking the Find button on the toolbar. A dialog box
appears in which you can enter the search string. You can specify a search that is not
case-sensitive.

After you enter a search string, you can find the next occurrence of that string by pressing
Ctrl+G, choosing Search|Find Again, or clicking the Find Again button on the toolbar.

Project Development

The Interactive Debugger is particularly useful when application coding begins to help
examine program logic. It is again very useful when trying to correct subtle data-related
bugs. Because the debugger works only with pseudocode, this capability has implications
for the way in which projects are developed.

Generally, it is more efficient to develop the program in pseudocode initially and then to
compile to C code for testing. Not only can you use the Interactive Debugger during
development, but pseudocode generally compiles faster than C code.

After the program deploys, it often is very useful to be able to step through the program
to find bugs caused by unexpected or missing data.

TIP: If possible, it is handy to have a pseudocode version of the final application.
This makes maintenance debugging more efficient.

The Application Launcher

You use the Application Launcher to execute your programs. (See Figure 41.23.) The
Application Launcher is a tool for the programmer; typically, deployed applications are
started from an icon in the Window Manager (or the Program Manager in Microsoft
Windows). You can use the Application Launcher to specify a runtime argument to be
passed to your program.

FIGURE 41.23.

The Application Launcher.

The Help Compiler

NewEra provides a platform-independent Help system and supports the Microsoft Help
system.

You declare the Help system you are using by setting the value of the helpStyle
member variable of the ixApp application object. Each visual container has two member
variables--helpFile and helpNum--that enable you to specify the help to be displayed for
that object. Each visual object has a member variable, helpNum, that specifies the Help
number for this object.

You display the Help item by calling the displayHelp() member function of the visual
object. Depending on the Help style selected, the Help item is displayed by using the
NewEra Help Viewer or the System Help Viewer. DisplayHelp() uses the Help number
for the visual object and the helpFile for the visual object's container to find the
appropriate Help item. If the visual object does not have a Help number, displayHelp()
uses the helpNum of the container. If the container does not have a Help number,
displayHelp() uses the application's Help number.

The Help Compiler compiles a text file into a file suitable for use by the NewEra Help
Viewer. (See Figure 41.24.) Preparation of System Help files (such as Microsoft Help)
are system- dependent. You can embed compiler directives into the text file and
conditionally compile the Help file. This capability enables you to create platform- (or
version-) dependent help by using one source file.

FIGURE 41.24.

The Help Compiler.

Reports

Reports are a significant task in almost every project. You can develop reports in one of
three ways:

• Generating character-based reports developed with the NewEra language

• Using the ViewPoint-Pro report writing tool

• Using third-party report writing tools

The NewEra language inherits all the report writing capabilities of the INFORMIX-4GL.
You can use the REPORT function of NewEra to format and output reports to files or
printers. The REPORT function only directly supports ASCII character reports. If you want
to include graphics, you need to embed the appropriate commands into the report file.
This style of report is ideal for producing large, character-based reports.

The NewEra development system comes with the ViewPoint-Pro product. ViewPoint-Pro
enables you (or your users) to visually develop reports. You easily can draw graphics and
embed images. ViewPoint-Pro reports are based on SuperViews and Query objects that
ViewPoint enables you to define. NewEra integrates with the ViewPoint system to enable
you to generate reports. The ViewPoint-Pro system also enables you to define data query
and input forms. These forms again are based on SuperViews, including master-detail
SuperViews.

NewEra is an extensible system; you can use class libraries from tool vendors to provide
you with report writing capabilities. The widely used Crystal Reports product provides
NewEra-compatible class libraries.

Application Partitioning

Application partitioning probably is the best feature of the NewEra development system.
Application partitioning enables you to distribute processing to a number of servers. Your
application can access resources on the most appropriate server. It makes sense to locate
a database-intensive application as close to the database (in a network sense) as possible.
Not only does this reduce network traffic, but it can reduce database contention
significantly, which is important for OLTP.

Application partitioning services are provided by three classes from the Application
Server Class Library: ixASRequestMgr, ixASRequestor, and ixASResponder.

Application partitioning is simple in implementation but requires deep thought when
designing the class hierarchy. Two main differences exist when designing a normal class
hierarchy versus a class hierarchy that uses application partitioning:

• The partitioned classes (Requestor and Responder) must be directly
derived from the ixASRequestor or ixASResponder classes. This fact has
obvious implications for the nature of the class hierarchy.

• The interface across the network between the Requestor and Responder
objects can pass only a subset of simple data types. You cannot pass an
object across the network interface--for example, an ixString. Objects are
accessed only via their reference variables; programs cannot access
memory locations on remote computers. The interface presented by
application partitioning closely parallels that provided by OLE Automation
servers.

NewEra 3.0 provides a Partition Class Wizard that generates a Responder and
Requestor class from one of your classes. This major improvement removes most of the
drudgery of application partitioning.

TIP: Depending on the degree to which you want to partition your application,
you might consider developing interface classes. An interface class manages the
interface in that part of your application running on the server. This capability
enables you to develop your application with a normal, object-oriented class
hierarchy that inherits from as many classes as appropriate and uses reference
members in the class PUBLIC interfaces.

The interface classes would call the member functions of the applications' objects and
translate the function signatures into simple data types so that they could be passed across
the partition (network).

OLE Objects

OLE objects will be supported by NewEra 3.0+. OLE objects are black-box components
written to the Common Object Model standard. Many third-party vendors offer OLE
components. OLE objects can provide many services, from document management to
data capture.

The most common use of OLE components probably is to improve the appearance of
your window. A complete list of available OLE objects is beyond the scope of this book,
but the following are some of the important visual objects you can provide via OLE:

• Outlines (used in the File Manager under Microsoft Windows)

• Tab controls

• Grids and spreadsheets

• Floating toolbars

OLE Automation Servers

An OLE Automation server is an OLE object that can request services from other
applications. NewEra enables you to create your own OLE Automation servers that can
request services from partitioned NewEra applications. Because OLE objects are
developed according to the COM standard, any OLE-compliant application can use the
NewEra OLE Automation server. This feature enables you to provide services from your
NewEra application to a diverse assortment of client tools. User interfaces written in
Visual Basic, or office tools such as Word and Excel, can access services from your
NewEra application through the inclusion of your OLE Automation server.

The Partition Class Wizard enables you to choose between creating a normal ASCL
partition (see "Application Partitioning," earlier in this chapter) and an OLE Automation
server. The wizard then generates the C++ code necessary to create the OLE server. The
COM standard allows only particular data types; however, the Partition Class Wizard
handles the translation between the NewEra data types and the data types required by the
COM standard. The interface you define is restricted to using only simple data types.
(Blobs are not permitted.)

OLE Automation servers enable you to construct genuine, enterprise-wide database
solutions. You can develop flexible, object-oriented applications executing on dedicated
servers and distribute application services to almost every desktop tool in a controlled
manner.

Summary

This chapter presented the NewEra Development System, focusing on the tools NewEra
provides to develop applications. You learned about the relationship between the tools,
particularly the Window Painter and the NewEra language syntax discussed in Chapter
40, "NewEra Language."

Finally, the chapter presented an overview of application partitioning and OLE
automation--two important technologies that will become increasingly important to the
software development strategies of large enterprises.

- 42 -

Serving Data on the WWW
• Internet and World Wide Web History

o Internet
o The World Wide Web Yesterday
o The World Wide Web Today

• One Interface for Applications: The Browser
• The Basics: What Makes Browser-Enabled Technologies Work

o OSI Reference Model
o TCP/IP
o Internet Protocols
o Domain Name Service (DNS)
o Hypertext Transfer Protocol (HTTP)
o The Browser
o The Web Server

• Objects: Another New Web Paradigm
• A Web Application Overview

o Types of Web Applications: Internet, Intranet, Extranet
o HTML
o Get and Post Methods and the url_query_string
o Web Pages On-the-Fly
o Interaction Between Browsers and Servers
o Adding an Application to a Web Site
o Connection States
o CGI: The Good Old-Fashioned Way
o Java
o JavaScript
o ActiveX
o Third-Party Tools

• The Next Generation: Informix Universal Web Architecture (IUWA)
o Intelligent Web Applications
o Informix Universal Web Connect
o Java Support
o Universal Tools Strategy and Data Director
o Universal Server and the Web DataBlade
o Partner Support

• Summary

by Ron M. Flannery

There is just no way to avoid hearing about the Internet and how it will be the solution to
everyone's business and personal needs. The World Wide Web--which I will hereafter
call the Web or WWW--exploded onto the scene in an incredibly short period of time and
helped create this love for the Internet. This chapter gives you an understanding of what's
behind Web applications and how you can make them interact with Informix databases.

The methodologies involved in creating Web applications are changing. Web application
development is moving toward a very open, object-oriented approach. This chapter
describes new and existing methodologies, as well as how Informix is changing with the
Web.

This chapter begins with histories of the Internet and Web and describes how they
evolved into what they are today. You'll then examine some of the specific pieces that
make Web applications work, including TCP/IP, DNS, browsers, Web servers, HTTP,
and HTML. After that, you'll look at an analysis of some of the new standards driving the
Web: CORBA, IIOP, and DCOM. Then you'll get into the specifics of creating Web-
enabled database applications by using the following:

• CGI--using Perl, INFORMIX-4GL, and ESQL/C
• Java
• JavaScript
• ActiveX
• Third-party tools

The chapter concludes with a discussion of the future of Informix Web-enabled
applications: the Informix Universal Web Architecture (IUWA). Informix has created this
architecture to meet the open standards of the Web. This chapter helps you prepare for
the future of Informix and the Web.

Internet and World Wide Web History

The Internet and the World Wide Web have pretty much become one and the same as far
as most people are concerned. But they are different. Here is a brief history of both.

Internet

Back in the late 1950s, the Advanced Research Projects Agency (ARPA) was created
within the United States Department of Defense (DoD). This agency was created to help
establish the United States as the leader in technology and science. In 1969, ARPANET
was created as an experiment in networking remote computers. A handful of computers

were connected successfully. The experiment actually was performed to help enable
communications between military sites in case of nuclear attack!

The communications protocols on the Internet place the responsibility of communication
between the computers, not the network. The network is not considered reliable. Thus, if
a portion of the network were interrupted, communications theoretically could continue
between computers; the communication would just need to follow a different path.

As people began to see the power of such a system, the Internet became more and more
developed. More universities and government agencies were connected, and more people
heard about it. In the early 1980s, TCP and IP were established formally as standards by
which computers could communicate. Then the Internet exploded and started moving
toward where it is today.

NOTE: Many great references on the history of the Internet and World Wide
Web are available. This text is not meant to give a detailed history. If you are
interested in more information, it is freely available on the Internet and World
Wide Web and through many great books.

So what makes the Internet work? It is basically a global network of networks connected
through telephone lines, high-speed network cables, and about anything else imaginable.
But it still is designed to provide the "reliable communication" standard established way
back in 1969. Figure 42.1 shows a high-level overview of the Internet.

FIGURE 42.1.

An overview of the Internet.

As the Internet grew, it became more and more connected to other networks and soon
began to grow at an incredible rate. It still didn't enable a lot of business communication
and advertising. Many people knew about the Internet but didn't understand it, feared it,
or thought it was too much trouble. Enter the World Wide Web.

The World Wide Web Yesterday

The Internet was based mostly on command-line interfaces such as Telnet, Gopher, and
FTP. As powerful as these interfaces are, they still aren't the most user-friendly ways to
do things.

In 1990, the first Web browser was developed at the European Laboratory for Particle
Physics (CERN). The browser was designed as a way to efficiently transport ideas and
information. The browser read hypertext as its means for displaying information.

Hypertext is what is behind Web pages. It is based on the concept of linking to other
information when it is desired. The language created to implement hypertext is the
Hypertext Markup Language (HTML). The links to other documents are hyperlinks. The
original Web browsers allowed simple interaction based on these hyperlinks. By using
hyperlinks, the CERN researchers were able to easily cross-reference documents needed
in their research.

In 1993, a group from the National Center for Supercomputing Applications (NCSA)
developed Mosaic. Mosaic ran on many types of computers, which made it available to
many more people. This multiplatform capability, in fact, gives the Web much of its
power today. Mosaic also added the capability to process images, videos, and sound.

After that, Netscape created Navigator, and the Web began its incredible ascent. Many
companies began making browsers, and the Web basically exploded. In 1996, Microsoft
jumped on the bandwagon, essentially bringing Web browsing to any user's desktop for
free.

A major strength of using the Web is the capability of browsers to make information
easily available. Users do not need to be familiar with what some people consider cryptic
utilities (FTP, for example); they just need to know how to use their browsers. Not only
that, but browsers added the capability to embed pictures, sounds, and more. These
capabilities are what really caused the Web to explode.

The World Wide Web Today

The rest is history... I probably don't need to describe the presence of the Web in today's
world. It is everywhere. On commercials. On business cards. On brochures. People and
companies use Web pages for everything from personal Web pages to full-blown,
multimillion-dollar Web catalog applications.

In today's business world, the Web has become the world's biggest marketing tool. It is
fairly simple to create a Web site available for the whole world to see. If people want to
find out about your company, they no longer have to call a phone number and navigate
through a maze of people and menus, and they don't need to read marketing pamphlets.
They just need to go to your company's Web site, where all the information on your
company is freely available. It is so easy.

The Web has become a big part of our everyday lives. It will continue to grow at an
incredible rate. A major portion of this growth will be for business-related applications--
not only for marketing companies, but also for increasing company communications
(intranets, for example). That's where Informix comes into the picture, and that's why I'm
writing this chapter.

One Interface for Applications: The Browser

You should remember a very important concept when looking at Web applications:
Applications that use a browser as a front-end do not have to run on the Internet!

I need to make a very important clarification. This chapter will describe how to build
applications that can be used with a Web browser front-end. This does not mean that the
application has to use the World Wide Web. The Web pages to which you are connecting
can be on your hard drive, the network in your office, a wide area network (WAN) that
uses phone lines, or the World Wide Web. The common thread is the Web browser. For
this reason, you can refer to the applications you develop as browser-enabled
applications rather than Web applications. Both descriptions are used interchangeably in
this chapter.

Because of the flexibility of internetworking and other standards, you can build an
application that runs on one interface: the Web browser. The back-end application can be
connected via anything that supports the proper protocols; Figure 42.2 illustrates this
concept.

FIGURE 42.2.

The browser as one interface.

Think about how easy the capability to build an application that runs on one interface
makes application development and deployment. Any computer with the proper Web
browser can run a browser-enabled application. This capability eliminates the need to
develop different interfaces for each different operating system in your company; the
browser companies do that for you. Less training is necessary, fewer installation
problems occur, and no separate support staff is needed for each application. The
flexibility and cost savings can be enormous.

The Basics: What Makes Browser-Enabled Technologies Work

The Web still is much like a "black box" to many people, and that really is all it needs to
be to many of its users. To fully understand how to create browser-enabled applications,
though, you need to get under the covers a little and understand some of the basics.

OSI Reference Model

The Open Systems Interconnect (OSI) Reference Model is a common reference for
describing network communications. It is made up of seven layers. The model defines
communications protocols within and between each of the layers. Using these layers,
end-to-end network connections can be made. For example, when you initiate a
connection to a Web site, the OSI reference model defines how the data is exchanged
between your computer and the target computer. When describing Internet

communications, the OSI Reference Model is generally split into the following four
layers:

• Application Layer: Applications and processes that you directly access
(Web browsers, for example).

• Host-to-Host Transport (TCP) Layer: Ensures that the message is
properly transported between computers.

• Internet (IP) Layer: Handles the routing of data.

• Network Access Layer: Defines transportation on the physical networks.

All layers of the model are used in Internet communications, but the portions of the OSI
Reference Model that you will hear the most about are TCP and IP.

TCP/IP

The basic means of electronically transporting data on the Internet is by using the
Transmission Control Protocol/Internet Protocol (TCP/IP). TCP and IP work on two
different layers of the OSI Reference Model (Transport and Internet). Together, these
protocols allow reliable transmissions between different types of computers. TCP/IP
ensures that data packets arrive at their destinations (if at all possible), even if the packets
need to be re-sent. This capability is the glue that supports reliable communications over
the Internet and any other TCP/IP network.

Think about it: When you send an e-mail message to someone, do you think it always
gets there the first time? The path it takes and the amount of times it is sent often vary.

TCP/IP is defined for many computing platforms (UNIX, for example). Any computer
that "talks" TCP/IP can communicate with any other computer. TCP/IP opens the door to
company-wide and worldwide communications. Standards are very important in allowing
computers to communicate.

Internet Protocols

The Internet was built on many different services (or protocols)--the most important is
TCP/IP. As mentioned, TCP and IP work on two different layers of the OSI Reference
Model. These layers are used to transport data. Another layer, known as the Application
layer, includes protocols that use TCP/IP as their transport mechanisms. Some of these
protocols follow:

• File Transfer Protocol (FTP)

• Network News Transfer Protocol (NNTP)

• Simple Mail Transfer Protocol (SMTP)

• Remote Login (Telnet)

• Gopher

• Domain Name Service (DNS)

• Hypertext Transfer Protocol (HTTP)

• Internet Inter-ORB Protocol (IIOP)

These and other protocols help facilitate different types of communications by setting
standards. In fact, the Internet moved happily along for about 20 years or so simply by
using many of these protocols. They enabled worldwide communications and were fairly
easy to use. Not only do these protocols have their own standard commands (FTP, for
example), but they can be used as part of a Uniform Resource Locator (URL) in a
browser (ftp://ftp.microsoft.com, for example).

Domain Name Service (DNS)

DNS is the lookup mechanism for TCP/IP communications. It is software that can reside
on a local network server or on the Internet. It translates the IP address (1.1.1.1, for
example) or domain name (www.microsoft.com, for example) so that your computer can
determine how to find the requested server. DNS does this by maintaining host tables,
which it coordinates through other DNS servers.

Hypertext Transfer Protocol (HTTP)

When Web browsers first became available, they too needed a standard way to
communicate, so the Hypertext Transfer Protocol (HTTP) was created.

Of course, you know about HTTP from your Web browsing. Basically, it is just another
protocol that enables any Web browser to connect to a Web server. HTTP is the standard
protocol used between a browser and a Web server. (There are other ways to handle
browser-to-server communications. See "Objects: Another New Web Paradigm," later in
this chapter.)

Web browsers generally use HTTP to communicate with their target destination but do
allow other protocols (FTP, for example). The protocol for the browser's current
connection is defined in the URL. Here is the format of a URL; the [..] notation
indicates optional infor-mation:

protocol://server[/pathname][:port][url_query_string]

Table 42.1 explains the elements of the URL.

Table 42.1. Anatomy of a URL.
Element Specifies
protocol The protocol to use. Each browser inherently handles http.

Browsers use different methods to handle other protocols,
such as FTP and Telnet. Most browsers support other common
protocols but enable you to use an external application
(Telnet, for example).

server The server that contains the Web page. This server is found
using DNS and can exist on any network to which you are
attached (Internet, LAN, WAN, and so on). Note that, with
some URLs (files, for example), the server can be a path to
your local hard drive.

pathname The pathname of the Web page on the server. Usually, the
pathname is an HTML file or an executable program that
dynamically processes your requests. If pathname is a
directory, browsers look for index.htm, index.html, and
default.asp by default.

port The well-known port on which to connect. Port is a TCP/IP
concept that defines a unique port number for each type of
communication. The port for HTTP is 80, for example.
Usually, you will not need to supply the port parameter, but it
is here for reference. You also can create user-defined ports
to enable applications.

url_query_string A string of characters used as input to the Web page. You
often see this string after submitting a Web page. Query
strings are discussed in the "Get and Post Methods and the
url_query_string" section, later in this chapter.

The Browser

As you learned earlier in this chapter, one of the most powerful aspects of creating a
Web- enabled application is having one front-end: the browser.

Web browsers communicate with Web servers by using HTTP. HTTP is a two-way
communication ending with the Web server returning an HTML-formatted page back to
the browser. The browser then simply processes and displays the page. The browser also
must be able to process different extended tags, such as those specifying Java, JavaScript,
and others. It also must download images, sounds, and other things. That's all there is to
it.

The current most popular Web browsers are Netscape Navigator and Microsoft Internet
Explorer. Navigator is credited with being the browser that got the world excited about
the Web. Explorer is a late entry by Microsoft in its effort to embrace the Internet.

Both browsers are very powerful and are changing at an incredible rate. Not long ago,
many browsers were available, but the rate at which Navigator and Internet Explorer have
developed has made it almost impossible for other browsers to keep up. Internet Explorer
is free and now is bundled with Office 97. Navigator is not free, but it is being offered
with a bundle of products by Netscape (Communicator). The competition between the
two browsers is intense, which is great for the rest of the market; this competition makes
the browsers better and better.

Another class of browsers consists of character-based browsers. One of the more popular
text-based browsers is Lynx. Lynx is freely available on the Internet. The advantage of
text-based browsers is that they save the download time associated with images and other
extensions. On the downside, they don't support many of the tags that can make your
applications more powerful.

Both Netscape and Microsoft create HTML extensions, which make the language more
powerful. It is amazing how much has been added in the last year alone. To remain
competitive, both browsers have had to incorporate each other's extensions. Generally,
the browsers can process most of the same operations, although lag periods sometimes
exist.

TIP: Be sure not to overuse proprietary extensions created by Netscape or
Microsoft unless you are sure that all your users have the necessary browser.
Both browsers eventually support the same tags, but you need to consider which
versions are available to your users. One of the most powerful aspects of browser-
enabled applications is that any computer with the proper browser can run them.
This certainly is not to say that you shouldn't use the HTML extensions! They can
be very powerful and save a great deal of time. Just be careful.

In the context of this chapter, then, the browser is the front-end to the applications you
create. You will learn to write browser-enabled applications that can be accessed with
just about any current browser. The applications can communicate with databases such as
Informix.

The Web Server

A Web server is the software that processes Web communications. It uses HTTP to
translate requests from a browser into useful information. The server provides all the
services needed to support Web-enabled applications. Any time you access a Web page

using HTTP, your browser initially talks to a Web server. Figure 42.3 shows a diagram of
where a Web server fits into Web applications.

FIGURE 42.3.

A Web server managing communications.

The following are some of the tasks a Web server enables you to perform:

• Processing HTTP requests from a browser

• Managing files used in Web applications

• Providing security

• Providing encryption

Here are some of the more popular Web servers:

• CERN (free)

• NCSA (free)

• Apache (free)

• Netscape FastTrack (comes integrated with Informix workgroup servers)

• Netscape Enterprise server

• O'Reilly

• Microsoft Internet Information Server (IIS)

• Jigsaw (written in Java and free)

The functionality of these servers varies quite a bit. The CERN and NCSA servers are
free and have been around for a long time. The Apache server--a more recent free Web
server--has been classified as the most common server on the Web. Microsoft's IIS is
bundled with its NT 4.0 operating system, which makes it an attractive option. Netscape's
servers often are considered more open to standards. The Jigsaw Web server--one of the
most common--is free and very open to evolving standards, because it is written
completely in Java. As you should with anything else on the Internet, it is best to do some
research and evaluate the strengths and weaknesses of the products and how they fit your
needs.

It is important to note that the Netscape and Microsoft servers provide NSAPI and ISAPI,
respectively. These are application program interfaces (APIs) that enable software
vendors and developers to communicate directly with the server. This capability creates
more efficient applications.

Objects: Another New Web Paradigm

As the age of Web computing evolves, so does the way we develop applications. In this
section, you'll be introduced to objects and how they relate to the Web. Objects are
becoming an integral part of Web-oriented computer applications. This section discusses
some of the new ways of communicating via the Web: Common Object Request Broker
Architecture (CORBA) and Distributed Component Object Model (DCOM).

The concept of object-oriented programming has been around for some time. In a
nutshell, object-oriented programming deals with reusing things. Objects are based on
other objects and inherit their properties. They can communicate with each other via
well-defined methods. In the open world of the Internet and the World Wide Web, such
communications are essential. CORBA and DCOM provide TCP/IP busses that define
how different objects on a network communicate without really knowing about each
others' underlying program structures.

The two distinct methods of providing these object communications today are CORBA
and DCOM. CORBA is the product of the Object Management Group (OMG), which is a
group of hundreds of companies hoping to develop open standards; DCOM is the product
of Microsoft.

NOTE: CORBA/DCOM is probably the biggest example to date of "Microsoft
versus everyone else." CORBA was developed as an open standard by almost all
the major hardware and software vendors. DCOM often is considered Microsoft's
way of trying to retain control of the data-processing world. Many people believe
that the computing industry really wants to move toward open standards,
whereas Microsoft continues to try to do things its way.

To Microsoft's credit, it has developed a strong DCOM following and has demonstrated
that DCOM is a viable standard for network and Internet communications. And this
standard certainly enables the legion of Microsoft-aware developers (Visual Basic and
Visual C++, for example) to easily adapt to DCOM. CORBA, on the other hand, is very
much dedicated to all computing platforms. Be sure to take your target environment and
future needs into account when deciding how to implement your application.

At the core of these two methodologies is the concept of objects being able to
communicate with each other, regardless of the language in which they are written.

Objects communicate with each other via standard interfaces that define the properties of
the object. Interface definition languages (IDLs) can be used to invoke other objects. It
also is very important to note that the objects do not have to be on the same computer or
network; they can be anywhere. Think about how this fits in with the goal of the World
Wide Web: worldwide, open communications.

The CORBA and DCOM architectures enable objects to find out about each other,
including the methods they support and the objects they provide. Each object must be
able to provide information about its properties and can dynamically obtain information
about other objects available to it.

The CORBA standard now includes Internet Inter-ORB Protocol (IIOP). IIOP is
basically TCP/IP with CORBA-controlling communications. IIOP enables CORBA for
the Internet. In fact, quite a few people are predicting that IIOP will replace HTTP,
considering IIOP's power and open operability.

So what does all of this mean to you and your Web programming? It means a lot, and it
probably will have a major impact on how you work with applications in the future.
Think about how easy life would be if applications didn't really need to know the details
of other applications; they just spoke the same "language." They could find out about
each other dynamically. This capability is really at the core of the computing world of the
future. If you don't know about this methodology now, you will.

Informix is very supportive of these open standards. The Informix Universal Web
Architecture is supportive of both CORBA and DCOM. (For more information, see "The
Next Generation: Informix Universal Web Architecture," later in this chapter.)

Again, coverage on everything about every Web development technique is beyond the
scope of this book. This chapter gives you a high-level overview of the direction of Web-
enabled computing. You easily can find detailed references on any of these
methodologies via the Web or books. The future direction of Web computing is very
exciting, and this chapter will try to help you "ride the right wave." Here are some URLs
that will provide you with all the information you'll need:

For CORBA and IIOP:
http://www.omg.org
http://www.w3.org/pub/WWW/

http://www.netscape.com

For DCOM:
http://www.microsoft.com

A Web Application Overview

Now it's time to plug in the pieces that have been described and to explain how a Web-
enabled application works.

Types of Web Applications: Internet, Intranet, Extranet

Table 42.2 provides an overview of three of the most common types of Web applications.
The Web development methodologies described in this chapter are excellent ways to
create all these applications.

Table 42.2. Common types of Web applications.
Type of Web
Application

Description

Public/Internet Generally, this is the type of application that links customers to a
company via the World Wide Web (a Web site, for example).
This type of application is provided to help market the company
and sell its products.

Intranet An intranet is created to enable internal communications within
a company, whether it is in one building or across the world.
Providing electronic communications (e-mail and document
management, for example) within a company can result in
enormous cost savings. To enable its communications, an intranet
uses networks and possibly the Internet.

Extranet An extranet is a kind of hybrid between a public application and
an intranet. Companies can allow customers to access limited
portions of their intranet--generally, to get information on
products and services.

HTML

HyperText Markup Language (HTML) is the language used by the Web. Any page
accessed by the familiar http:// is written in HTML; it is the language used in HTTP
communications. You will need to write the Web pages you create for database
applications in HTML.

HTML is the language of hypertext. As mentioned earlier, hypertext enables you to
include hyperlinks, which can embed graphics, sounds, links to other Web pages,
programs (Java and others), and various specialized formatting commands (boldface, for
example) within a Web page.

A very important thing to remember is that HTML is just ASCII text; you don't need a
word processing program. HTML is ASCII text with a few hypertext commands in it.
Many HTML authoring tools also are available that help simplify Web page creation.

HTML is based on tags. Tags are markers within the text of the Web page that have
special meaning. A tag begins with <TAGNAME> and usually ends with </TAGNAME>. When

a browser encounters a tag, it knows that it will begin the processing associated with that
tag. Tags also can be embedded within other tags. HTML ignores tags that it doesn't
know about. Remember that the browser makers--particularly, Microsoft and Netscape--
add their own HTML extensions, so a particular extension won't always be handled by
your current browser.

Listing 42.1 shows the bare-bones format of a Web page.

Listing 42.1. The basic format of a Web page.
<HTML>
<HEAD>
<TITLE>Title to a Simple Web Page</TITLE>
</HEAD>
<BODY>
<H1>Basic Web Page</H1>
This simple Web page shows you the basics of HTML and how to use it.
It helps you build on HTML so that you can use it to access Informix
databases.
</BODY>
</HTML>

Figure 42.4 shows what Listing 42.1 looks like when displayed on a browser.

The simple example in Listing 42.1 displays the four required tags in an HTML
document:

HTML This must be the first thing in an HTML document. It tells the
browser that this is indeed an HTML document.

HEAD and
BODY

Every HTML document is divided into a title and body. These tags tell
the browser which is which.

TITLE This is the title that appears at the top of your Web browser when you
are looking at the Web page.

FIGURE 42.4.

A basic Web page.

Simple enough? Okay, let's jump right to the good stuff. The example used here is an e-
mail list for Sams Publishing and includes last name, first name, e-mail address,
occupation, and mailing list. Listing 42.2 shows the HTML behind the page.

NOTE: If you are not familiar with HTML, you can just focus on the basics at this
point. The goal of this chapter is not to make you an expert at HTML; many
detailed references exist on that subject. This example demonstrates how to use

values entered from the screen. Don't be concerned with the formatting details.
As a programmer, the only values you really need to understand in the form in
Listing 42.2 are FORM ACTION, NAME, OPTION, and VALUE.

Listing 42.2. HTML for the sample application.
<HTML>
<HEAD>
<TITLE>Sams E-Mail list</TITLE>
</HEAD>
<BODY>
<H1>Sams E-Mail List</H1>
<FORM ACTION="URL_to_your_program">
<P>To become a part of our exciting new E-Mail list, enter the fields
below and click the "Submit" button below.</P>
<TABLE COLS=2 BORDER=0>
<TR><TD ALIGN=right>Last Name:</TD>
 <TD COLSPAN=5><INPUT TYPE=text NAME="last_name" SIZE=40></TD></TR>
<TR><TD ALIGN=right>First Name:</TD>
 <TD COLSPAN=5><INPUT TYPE=text NAME="first_name" SIZE=40></TD></TR>
<TR><TD ALIGN=right>E-Mail:</TD>
 <TD COLSPAN=5><INPUT TYPE=text NAME="email" SIZE=40></TD></TR>
<TR><TD ALIGN=right>Occupation:</TD>
 <TD><SELECT NAME="occupation"><OPTION>Programmer
<OPTION>Consultant<OPTION>Manager<OPTION>Writer<OPTION>
Owner/CEO<OPTION>Student<OPTION>Other</SELECT></TD></TR>
</TABLE>
<P>
Select Mailing List:
<INPUT TYPE="RADIO" NAME="which_list" VALUE="weekly">Weekly
<INPUT TYPE="RADIO" NAME="which_list" VALUE="monthly">Monthly

<INPUT TYPE="submit" VALUE="Submit"><INPUT TYPE="reset"></FORM>
</BODY>
</HTML>

Figure 42.5 shows what Listing 42.2 looks like when displayed on a browser.

FIGURE 42.5.

The Web page for the e-mail list.

How's that? Now it's starting to get fun! The following tags are used in Listing 42.2:

• TABLE: Tells the browser that the text until the </TABLE> tag should be
formatted as a table. For the purpose of this example, TABLE simply lines
up the text-entry fields on the form, making them more presentable on-
screen. The ALIGN, SIZE, TR, and TD tags describe the formatting of the
individual fields (Last Name, for example).

• INPUT TYPE=TEXT...: Creates a text field for data entry by the user (First
Name, for example).

• SELECT...: Creates a drop-down list of items for the user to select.

• INPUT TYPE=RADIO: Creates radio buttons, which allow only one button to
be selected at a time.

You will need to understand the following tags in order to create applications:

• FORM ACTION="URL.." and INPUT TYPE="submit"...: Specify that clicking
the Submit button directs the browser to URL_to_your_program, which is
generally an executable program of some type.

• NAME: The name of the variable that will be used in your program. This
name is assigned and passed to your program via the url_query_string
portion of the URL, which helps you determine the value of the items
entered on-screen. If you are using a Perl program for the value
URL_to_your_program, for example, the Perl program needs to parse the
url_query_string variables.

• OPTION and VALUE: For the radio button display, OPTION describes the actual
value that will be assigned to the NAME field. VALUE does the same for a
drop-down list. If the user selects Programmer for Occupation, for
example, the value of the Occupation variable is Programmer.

Get and Post Methods and the url_query_string

You've almost certainly seen something like

?last_name=your_last_name&first_name=your_firstname

appended to the end (url_query_string) of a URL. These are the name/value pairs. The
question mark (?) separates the rest of the URL with the url_query_string, the
ampersand (&) indicates a new name/value pair, and the equal sign (=) indicates the value
for a NAME field on a form. Also, a plus sign (+) indicates a space. These values are used
by Web applications to do their processing. For example, the url_query_string in
Listing 42.2 could be something like this:

?first_name=Ed&last_name=Smith&email=esmith@abcdef.com&occupation=
Writer&which_list=monthly

After you click the Submit button, the Web server automatically creates this string and
then sends it back to your CGI program (URL_to_your_program, in this example). This

string is known as URI-encoded data. Data can be sent to a CGI application by one of
two methods: Get or Post. Each method handles the url_query_string a little
differently. Here is a brief summary of each method:

• Get: The Get method places the values of the FORM into an operating system
environment variable called QUERY_STRING. The Get method is the default
method for the <FORM> tag. In this case, after you click the Submit button,
the browser appends the url_query_string to the URL that runs your CGI
program. This string is separated from the rest of the URL by the question
mark (?) character. Get has its advantages, but it has its disadvantages as
well. The length of an input buffer (in this case, the value of QUERY_STRING)
might have a size limit on the operating system, for example. Post is
considered a better method.

• Post: The Post method uses the standard input (stdin on UNIX) of the
operating system to send its data. The main advantage of this method is
that all the user's query data is sent on standard input; it isn't confined by
the limitations of Post, and it generally is more efficient. There is no limit
on the amount of data that can be sent via the Post method.

Web Pages On-the-Fly

Take another look at Listing 42.2. That HTML code displays the Web page in Figure
42.5. If you are familiar with programming languages, ask yourself this question: Can I
create a program to print that HTML code?

Of course you can! This is how Web page development is done. The program driving the
application simply creates HTML code to communicate with the Web browser. The
HTML created in Listing 42.2 just as easily could have been created by a program. This
capability is called creating Web pages on-the-fly or creating dynamic Web pages. A Web
page on-the-fly is simply a Web page created by some application program. These
programs read values passed by the browser as input and then format and send the
appropriate HTML back to the browser.

The HTML in Listing 42.2 theoretically could be created by someone typing the HTML
directly into an editor. Because that isn't really practical in an online application, though,
Web applications were developed. A program processes what the user inputs on the Web
page, formats a new page, and sends it back. With that in mind, take a look at how
dynamic, on-the-fly Web pages are created.

Interaction Between Browsers and Servers

A browser-enabled application works as shown in Figure 42.6. The steps involved are as
follows:

1. Type a URL in the browser and press Enter. To get to Netscape's
products page, for example, enter the URL
http://www.netscape.com/comprod/index.html. To connect to any URL,
of course, you need to have established the proper network or Internet
connection.

2. The DNS on your network or the Internet helps you find the URL.
Remember that the URL consists of the protocol (http), server
(www.netscape.com), and pathname (/comprod/index.html). If any part of
the URL is not found, you see the dreaded Server not found error
message.

3. The browser sends a command to the server to get the Web page
(Contacting host in Netscape) and waits for the reply (Host contacted.
Waiting for reply.).

4. This is when a custom Web application can come into the picture. If the
URL represents a program, it processes the page on-the-fly and formats a
new page. If the URL is simply another HTML page, that page is used. In
either case, the Web server sends the HTML-formatted page to the
browser.

5. The browser parses the HTML page, following this process:

o The browser processes any HTML commands that it knows about; it
ignores any unknown HTML tags.

o Some HTML commands require the browser to download
something more from the Web server. The <IMG..> tag, for
example, inserts an image. If one of these tags exist, the Web site is
contacted by the browser and is asked to send the image.

o If one of the commands specifies that a Java, ActiveX, or other
component is involved, it is downloaded and executed by the
browser.

o If some type of HTML-embedded scripting language exists
(JavaScript or ActiveScript, for example), it is run by the browser.

o After all these steps are complete, the browser and Web server
acknowledge each other (Document: done in Netscape).

In fact, this browser process more or less describes the interaction of any Web
application. In a simple Web application, if no user input is required, the pages sent back
to the user are simply HTML files. If that is all your application needs, life can be much
simpler. If not, read on.

FIGURE 42.6.

Interaction between a Web browser and an application.

Adding an Application to a Web Site

An interactive Web application enables intelligent communications between the browser
and the application. The application is created on-the-fly, based on the data the user
supplies. This occurs in step 4 in the preceding section. Instead of sending back a simple
Web page, the program does some custom processing and sends back a new page.

Creating an interactive Web site requires some type of software intervention. This
intervention can be via custom-written software or third-party products. The rest of this
chapter discusses the current ways to create an interactive Web site. Again, the basis of
an interactive Web application is simple: The user enters data in a browser, the browser
sends it to the Web server, the Web server sends it to the application, and the application
processes it and sends back a new Web page. The data sent back can be obtained from the
following:

• A normal system file (a flat file with user names, for example)

• A database, such as Informix

• The program itself (it can dynamically generate the data for a Web page
without accessing a database)

The paradigm presented in Figure 42.6 now can be extended to include the software
layer.

This architecture is very much like the proverbial black box; the user sends a request to a
Web page, and it comes back as a new, usable Web page. This section examines what is
inside the black box. With the incredible rate of change in Web-enabled applications, the
black box can consist of various items. Informix has greatly simplified this process with
the Informix Universal Web Connect (IUWC), but for now, this section focuses on
performing this process with existing applications that are not IUWC-enabled. The
IUWC is described in detail later in this chapter.

Connection States

One of the important considerations of a Web-enabled application is the state of the
connection. The state describes the communication between the browser and the
application. The types of connections are stateless and stateful.

Stateless Connections

HTTP is a connectionless protocol or stateless connection. This means that when a
browser sends a Web page, it connects to the Web server, gets the page it wants, and then
says goodbye. If the user then selects something else on the Web page, it is as though this
is the first time she accessed the page; the Web server has no record of who she was or
what she last did.

A stateless connection is sufficient in many cases. If your application is a read-only
application with only queries and static HTML files, there is no need to maintain the
state. A customer might want to search for all widgets your company produces, for
example. The search simply returns information; it does not need to maintain a
connection. As Web applications are evolving, though, the need to maintain state is
becoming more important.

Stateful Connections

A stateful connection maintains an open communication between browser and Web
server. The Web server remembers the user and what he or she did last. Generally
speaking, this applies only to Web applications with a back-end database. Stateful
connections are important for the following reasons:

• They preserve the user's place in an active data set.

• They enable users to lock rows for update.

• They provide greater efficiency. The browser does not need to reestablish
the connection to the database for each new action; the connection
remains open.

One good example of the need for stateful connections is an OLTP application. Users
query rows they will be updating. It is important that they maintain a shared lock on the
row. A stateful connection can provide this maintenance. If the proper locking
mechanism is used, other users will not be able to update the row. After the user updates
the row and clicks the Submit button, the open database connection already has access to
the row and updates it. Even in this situation, it might be best to implement some type of
time-out strategy; if the user disconnects or doesn't do anything for a certain amount of
time, free the row for updating.

WARNING: The methods for maintaining stateful connections are very new. A
lot of hype exists, and a lot of companies claim that they fully implement stateful
connections. With stateful connections--and just about any Web technology--be
sure to look under the covers and make absolutely sure that they will work in
your environment.

Efficiency is an important consideration in a stateful environment. Reattaching to a
database--even in a read-only environment--can create high overhead. If the connection
already is established, it greatly improves performance. If not, the Web server needs to
reestablish the connection and run the proper system processes and programs.

The stateful environment generally is implemented via ports. A port is a TCP/IP concept
that defines a communications channel. A process establishes a port number that is used
by the process. A port can be used in various ways. Many well-known ports are
predefined (FTP, for example), and user-defined ports can be used to establish
communications.

You can establish a stateful connection in several ways; generally, the first two methods
are the most reliable:

• TP Monitor or CORBA: A TP Monitor runs on the server and efficiently
manages connections. It also helps balance transaction loads. CORBA can
perform these tasks inherently and might replace TP Monitors in the not-
so-distant future.

• Vendor software: Many vendors supply software that enables stateful
connections. Informix Universal Web Connect (IUWC) and Prolific's
JAMWEB are two such packages.

• Cookies: A Netcape cookie (also supported in Microsoft) can be used to
track user activity. The cookie is exchanged between the Web server and
the browser and provides users with a unique identifier. Programs need to
track cookies in order to be effective.

• Custom programming: You can use programming methods to establish and
maintain a connection. You can do this fairly easily in Java.

It is important to consider the state required for your application and to program your
application accordingly. The IUWC is a particularly efficient way of doing this; it works
very closely with Informix databases and provides all the hooks you need. If the IUWC is
not available, you need to consider the other methods.

CGI: The Good Old-Fashioned Way

Common Gateway Interface (CGI) is a fairly straightforward way to create Web-enabled
applications. Refer to Figure 42.6; the process in step 4 can be CGI. CGI is a protocol
that forks operating system processes on a Web server. These processes can be any
program that is executable on the Web server, including these:

• Perl
• Shell scripts (sh, ksh, bash, and csh, for example)
• TCL
• C, C++, and so on
• INFORMIX-4GL

The Web browser (user) sends data to the Web server, which in turn sends the data to the
CGI program named in FORM ACTION. The data can be sent via the Get or Post method.
The program parses the url_query_string using the method. Refer to Listing 42.2 for
examples. After the program parses the data, it can access a database if necessary and
pass the results back to the Web browser. Sound easy? It is. In fact, CGI applications are
an excellent alternative for creating simple Web applications. CGI applications also can
create powerful Web applications, but with a cost (discussed in the next paragraph). CGI
applications don't require any additional software--other than the language--and can be
programmed to handle a variety of needs.

Of course, CGI does not address the issues of state and performance. Because the CGI
process is invoked by the Web server, it must reconnect with the database for each
request. This necessity not only hurts performance but makes it very difficult to maintain
state. If state and performance are issues, they can be addressed by the means described
in "Stateful Connections," earlier in this chapter. Sometimes, it might be easiest,
however, to use a method other than CGI or to use IUWC to create your applications.

Perl

The Perl language was created by Larry Wall and is freely available on the Internet. It is a
very powerful language that is similar to a hybrid of C, Shell scripts, awk, sed, and other
UNIX commands. Perl can run on UNIX and DOS/Windows platforms. Because of its
flexibility, Perl is very popular for Web applications. You can find a great deal of
information on Perl at its official Web site at

http://www.perl.com/perl/index.html

TIP: A Perl library is available for Informix at
http://iamwww.unibe.ch/~scg/FreeDB/FreeDB.60.html

The Perl/C-ISAM library is located at

http://iamwww.unibe.ch/~scg/FreeDB/FreeDB.54.html

This includes all libraries necessary to connect to an Informix database through Perl
scripts.

Now take a look at a sample CGI application using Perl. This sample goes back to the
sample application presented in Listing 42.2. Change the HTML line

<FORM ACTION="URL_to_your_program">

to

<FORM ACTION="/cgi-bin/maillist.pl">

Now, after the user fills in the information and clicks the Submit button, the operating
system runs the program maillist.pl, which is shown in Listing 42.3. This program is
an example of interfacing with a flat file on the Web server. This program creates a
delimited file with the fields the user entered on-screen. To see how to perform database
access, take a look at the Perl libraries in the previous Tip box, or see Listing 42.4 for an
INFORMIX-4GL example.

Listing 42.3. A sample Perl CGI program.
#!/usr/local/bin/perl
require `my-lib.pl';
&ParseQueryString(*in);
print "Content-type: text/html\n\n";
open(datafile,">>/data/email_list.dat");
print datafile "$in{`first_name'}\|";
print datafile "$in{`last_name'}\|";
print datafile "$in{`email'}\|";
print datafile "$in{`occupation'}\|";
print datafile "$in{`which_list'}\|";
close(datafile);
print "<HTML>\n";
print "<HEAD><TITLE>Survey Complete</TITLE></HEAD>\n";
print "<BODY>\n";
print "<CENTER><H1>Thank you!</H1>\n";
print "<P>Your request has been processed.
Watch for your first E-Mail soon!</P></CENTER>\n";
print "</BODY>\n";
print "</HTML>\n";
....

After the user clicks the Submit button on the form, the browser places the values into the
url_query_string and sends the string to the Web server, which passes it to the Perl
program via the Get method. The function ParseQueryString parses the name/value
pairs and places them into the appropriate Perl variables. (Note that ParseQueryString
must be in my-lib.pl. Numerous HTML url_query_string parsers exist on the Web.)
The line print datafile "$in.. prints the variables to the file. The print "<HTML>"
block prints a thank-you page on-the-fly and sends it back to the browser.

It's not pretty, but it works! Seriously, though, Perl is a very good language for
implementing CGI applications. It has a great deal of power and flexibility and provides
database hooks. Again, you can manage state in other ways.

This is a simple example of how to use CGI. You can develop full-blown Web sites by
extending this architecture. You can create a similar form to query an Informix database
and process data accordingly, for example. Because Perl is a programming language, it
basically can be programmed to do anything.

Many examples of this type of CGI application exist on the Web. This chapter is not
intended to give you the nitty-gritty details; it provides a high-level overview and
explains the concepts. Many other references are available that focus more on this area,
including Teach Yourself CGI Programming with Perl in a Week, published by Sams.net.

INFORMIX-4GL, C, and Other Languages

Remember that you can use any executable program as a CGI program. Your program
just must be able to read and process values sent by the Web server. Languages that can
be compiled, such as C and INFORMIX-4GL, therefore can greatly simplify Web
application development.

C has more functionality than Perl, but it requires more programming knowledge and a C
compiler. Although writing in C tends to be more complicated than writing in Perl, it
might be worth the effort. Many Web application tools (including Informix) provide a
rich variety of API libraries for C programming. This greatly enhances what can be done.

INFORMIX-4GL and NewEra are very easy to use and can perhaps be easier to
implement than C.

Informix provides Webkits to allow CGI programs to be created in ESQL/C, 4GL, and
NewEra. The Webkits, which you can download from Informix's Web site, provide many
of the hooks you will need to interact with a Web application. The Webkits enable you to
create a program and use it as a CGI process to talk to your database. The program
processes the variables and prints the new Web page; it then sends the data to the Web
server, which sends the page back to the Web browser.

You can find the Webkits at

http://www.informix.com/informix/products/dlprod/Webkits/docentry.htm

The Webkits are free to registered users of Informix products.

The example in Listing 42.4 shows how to use some of the functions in the 4GL Webkit.
An ESQL/C program would be very much the same, except it would use C conventions.
For this example, assume that someone is using the HTML form created by Listing 42.2.
The user enters a first name, last name, e-mail address, occupation, and choice of mailing

list. In the form, the value URL_to_your_program is replaced by the pathname to a
compiled version of the 4GL program shown in Listing 42.4. In this case, the e-mail list
from the example is stored in the email_list table.

Listing 42.4. A sample 4GL CGI program.
database mailing_list
main
 whenever error call html_error_msg()
....
 call init()
 callget_and_insert_values()
end main
...
function init()
perform initialization functions
icgi_start initializes the structure that helps get values
of environment variables and HTML form fields
 if (icgi_start() == 0) then
 call html_error_msg("")
end if
.. perform other initialization functions ... see documentation
for complete details..
end function # init()
function get_and_insert_values()
this function will read values that the user entered from the Web
page,
insert them into the email_list table, and then create a new HTML
page
that thanks the user.
define input rec.. email_list table
define p_email_list record like email_list.*
icgi_getvalue will return values of fields that the user
entered on the HTML form.
the following statements populate the p_email_list RECORD
 let p_email_list.first_name = icgi_getvalue("first_name")
 let p_email_list.last_name = icgi_getvalue("last_name")
 let p_email_list.email = icgi_getvalue("email")
 let p_email_list.occupation = icgi_getvalue("occupation")
 let p_survey.which_list = icgi_getvalue("which_list")
check if user exists and do other error checking...
 select COUNT(*) into user_count
 from email_list
 where last_name = p_email_list.last_name
 and first_name = p_email_list.first_name
 and email = p_email_list.email
 if user_count > 0 THEN
 call html_error_msg("E-Mail record already exists!")
 end if
insert the rows into your E-Mail table
 insert into email_list values (p_email_list.*)
 IF sqlca.sqlcode != 0 then
 let err_msg = err_get(sqlca.sqlcode)
 call html_error_msg(err_msg)
 end if
Now display a thank you page for the user

 call icgi_print_text("<HTML><HEAD>")
 call icgi_print_text("<TITLE>Survey Complete</TITLE>")
 call icgi_print_text("</HEAD><BODY>")
 call icgi_print_text("<H1>Thank you!</H1>")
 call icgi_print_text ("Your request has been processed. Watch for
your first E-Mail soon!")
 call icgi_print_text("</BODY></HTML>")

end function # get_and_insert_values
function html_error_msg(msg)
this function will format and display an error message
define msg char(80)
 if msg is null then
 let msg = "Unknown error."
 end if
 call icgi_print_text("<HTML><HEAD>")
 call icgi_print_text("<TITLE>Survey Error</TITLE>")
 call icgi_print_text("</HEAD><BODY>")
 call icgi_print_text("<H1>Error Occurred!</H1>")
 call icgi_print_text(msg)
 call icgi_print_text("</BODY></HTML>")
end function # html_error_msg

If no errors occur, this program creates an HTML page that produces the output shown in
Figure 42.7. If an error occurs, the function html_error_msg() is called, and a similar
HTML form is displayed, except that it contains the error message.

FIGURE 42.7.

A page dynamically generated by 4GL Webkit.

The method used in this example is very similar to that used in other CGI programs. The
program uses its CGI method to read the values, process them, interact with the database,
and return a new page to the user. For this sample, try to think of ways you can add more
to the Web page returned to the user. You probably would print a link back to the home
Web site or calculate a date when the user will next receive an e-mail message from the
mailing list. This is how Web pages can be turned into interactive applications.

CGI Summary

The procedures used to create CGI programs are fairly straightforward. If you are
familiar with a language and you have some type of CGI support for it, it might be a good
way to implement your Web site. Just be sure to consider the strengths and weaknesses of
CGI.

Java

Java is a programming language that enables object-oriented, platform-independent
communications. Any computer that supports Java can run a Java program. This is
exactly what the Web is about: open communications with computers around the world.

Java is an excellent solution for writing Web applications, because it was built from the
ground up with the concept write once, run anywhere in mind.

Java is developing a very widespread acceptance. A good number of software and
hardware vendors are very supportive of this open aspect of Java. Java is considered an
excellent threat to the Microsoft behemoth; it enables you to create platform-independent
programs in a powerful, object-oriented language. Microsoft responded with ActiveX,
which is discussed later in this chapter in the "ActiveX" section.

One of the big selling points of Java is its security features. Through a variety of
methods, Java protects the local computer from malicious programs. Any Java program
(applet) downloaded to a user's computer must go through a battery of security checks
before it can be executed. In addition, programs are prevented from accessing the user's
hard drive and other system resources.

You can use Java to create two types of executables--applets and applications:

• Applets: Applets are Java programs that can run on any Java virtual
machine (a browser, for example). When a Web browser encounters an
<APPLET> tag, it first verifies that the applet meets Java's security
requirements and then downloads the applet. Java then can execute the
applet in one of two ways: through an interpreter that runs the byte codes
directly or after using a just-in-time (JIT) compiler. One of the main
shortcomings of Java is that it is inherently slower than compiled
programs. The applets have to be interpreted, because they can run on
any computer with a Java virtual machine. JIT compilers translate the
byte codes into native code, which greatly increases execution time.

• Applications: Java also can create stand-alone applications that typically
run on any computer with a Java virtual machine. One advantage of
applications is that they run on the server and don't need to be
downloaded across the network or Internet. This method, in turn, saves an
extra browser-to-server connection. Figures 42.8 and 42.9 illustrate how
Java applets and applications work.

FIGURE 42.8.

Executing Java applets.

FIGURE 42.9.

Executing Java applications.

The Java libraries are a set of packages. In Java, a package is something that groups
different classes that have various specific functions. The Abstract Windowing Toolkit
(AWT) package, for example, includes classes that help create the user interface. Some of
the classes in the AWT follow:

• Event: Describes some type of GUI event

• Frame: Allows creation of an application window

• Graphics: Defines methods for imaging, line drawing, and other graphics

Within individual Java classes are methods, which basically make things happen within
that class. The graphics class has a method called drawPolygon (guess what that does?),
for example. Likewise, every other class in Java provides similar functionality. It is easy
to see the true object-oriented nature of each class.

TIP: Java was built with the Internet and World Wide Web very much in mind. It
is very easy to get information on Java, including white papers, sample programs,
and tutorials. Two good starting places are www.javasoft.com and
www.gamelan.com. These two sites not only have very comprehensive information
and examples, but they also provide links to an enormous number of sites.

Java also is very supportive of CORBA and IIOP. (See "Objects: Another New Web
Paradigm," earlier in this chapter.) This support enables you to communicate with other
IIOP-compliant objects on your hard drive, local network, or the Internet. Java talks to
objects written in other languages, and vice versa.

JDBC

Java can communicate with databases such as Informix by using the Java Database
Connection (JDBC) API, which is a set of Java classes. Informix was one of the
developers of the JDBC specification. JDBC is a lot like ODBC, which enables programs
to communicate with various back-end databases. JDBC has added many new hooks that
just weren't considered when ODBC was created, though. JDBC enables you to use the
power of Java to create fully interactive, Web-enabled database applications. Many
people consider JDBC to be a much improved and more open version of ODBC. JDBC is
available in version 1.1 of the Java Development Kit (JDK).

A number of JDBC drivers are in various stages of availability. JDBC provides a JDBC-
ODBC bridge that enables you to use existing ODBC drivers when no JDBC driver is
available. Because Informix was involved with creating the JDBC specification, JDBC
drivers are available for Informix. Companies that provide JDBC drivers include

Visigenic, Intersolv, OpenLink, and I-Kinetics. Check the Web to find out about the
availability of JDBC drivers.

Informix and Java

Informix is embracing Java and Internet standards head-on. This is evidenced by its
Universal Web Architecture, Data Director for Java, and Universal Tools strategy. (See
the section "The Next Generation: Informix Universal Web Architecture," later in this
chapter.) For now, though, you can use Java and JDBC to connect to databases that aren't
IUWC-enabled.

As you probably can see, many companies (Sun, Netscape, and Informix, for example)
are supporting a worldwide, open computing environment. This will change the way
databases are created, applications are written, and business is conducted.

JavaScript

JavaScript is a scripting language created by the king of open Web standards: Netscape.
It is a language somewhat similar to Java in its syntax and object orientation. JavaScript
does have one big difference when compared to Java: JavaScript is a scripting language
that is functional only as part of an HTML-formatted Web page. Also, JavaScript requires
no special tools, whereas Java is a full-fledged language that requires a development tool
(JDK) and a compiler. You develop and then test JavaScript by running it in a Web
browser.

The two ways to create JavaScript are client-side and server-side:

• Client-side (browser): Client-side JavaScript is embedded as part of an
HTML Web page. It is specified by a tag starting with <SCRIPT
LANGUAGE="JavaScript"> and ending with </SCRIPT>. Everything in the
middle is the actual JavaScript code. You can use client-side Java very
effectively to perform operations that save an extra interaction with the
Web server. Client-side JavaScript provides many functions that are
provided in Java, but it involves less overhead than downloading a Java
applet. (It's already in the HTML that makes up the Web page.) These
client-side functions include confirmation windows, forms, warning
messages, drop-down menus, and arrays.

• Another very important use for JavaScript is performing client-side, data-
entry validation. A data-entry form that accepts user input, for example,
might need to verify different values on-screen. Instead of having the user
submit the form, send it to the Web server, and wait for a reply, the
validation is performed on the client side before sending the form to the
Web server.

• Here is a brief example of some JavaScript code that verifies that the
salary entered on the form is greater than 1,000 and less than 100,000:

if ((obj.salary < 1000) || (obj.salary > 100000))
 alert("Invalid Salary: Must be between 1000 and 100000")

• Server-side: Server-side JavaScript is stored as part of an HTML page
between the <SERVER> and </SERVER> tags. This type of JavaScript typically
is used to perform database operations such as inserts and updates. This
JavaScript is executed on the database server, which moves the processing
to the server and eliminates an extra browser-server connection. Informix
and Netscape provide native connections to Informix databases through
JavaScript on a Netscape server. For example, Netscape LiveWire
products at

http://www.netscape.com/comprod/products/tools/livewire_datasheet.html

• provide native Informix connections and the capability to create
JavaScript database applications. In fact, many third-party Web
development products create applications that use JavaScript.

Netscape supplies the AppFoundary as part of its SuiteSpot package. AppFoundary also
is available for free at www.netscape.com and includes code samples of real-world
JavaScript applications.

JavaScript has many advantages but also some shortcomings. It isn't as robust a language
as Java, for example. Also, all the JavaScript program code easily can be viewed by
looking at the HTML code behind a Web page; this capability brings up obvious security
concerns, although it can be prevented by creating server-side applications. Nonetheless,
JavaScript has its advantages, it definitely has its applications, and you don't need to be a
programmer to use it.

ActiveX

Not known for letting others steal its thunder, Microsoft developed its own Internet
strategy. Internet Explorer was developed to place Microsoft back on the desktop as the
browser. In fact, Microsoft's whole Office 97 was created as an Internet-aware desktop.
ActiveX is the technology Microsoft created to enable distributed applications such as
those on the Web.

ActiveX is basically an extension of Microsoft's OLE2 technology. In a nutshell, ActiveX
enables objects to communicate with each other as though they were all right on the
user's PC. ActiveX now uses DCOM as its transport mechanism. (See the
section"Objects: Another New Web Paradigm," earlier in this chapter.) An object is used
as a proxy to make any other object appear to be local, whether it is on the user's hard

drive, local network, or the Internet. These objects are referred to as controls. ActiveX
controls can be written in any language that can create them. Figure 42.10 shows how
ActiveX controls interact.

FIGURE 42.10.

ActiveX controls.

ActiveX objects currently are supported only on Microsoft platforms such as Windows
95 and NT. This limited support is both an advantage and a disadvantage. It definitely
can provide quicker execution time in most cases; ActiveX controls are compiled
programs for their native (Microsoft) platforms. The open nature of the Internet is
somewhat defeated, though. In its defense, Microsoft--through third parties--is
developing ActiveX capabilities for UNIX and other platforms.

One other diversion from open Internet standards is Microsoft's insistence on using COM
and DCOM. COM and DCOM also are very proprietary and different from CORBA. The
APIs are different and provide good connectivity on Microsoft-enabled products but
again digress from commonly accepted Web standards. This fact might change soon;
methods might be available that allow DCOM and CORBA to communicate.

Security is a big concern with ActiveX. If the user allows a control to download, it can
virtually take control of the PC. Microsoft currently handles this by digitally signing
ActiveX controls. This mechanism simply tells the browser that this control has not been
changed since it was last registered; it does not guarantee that it won't do anything
destructive. This might not be an issue on company networks, but it definitely is a
consideration for Web applications. Watch www.microsoft.com for changes in how
ActiveX handles security.

Something that definitely works in Microsoft's favor is the large number of developers
that can create ActiveX controls using programming languages they already know, such
as Visual C++ and Visual Basic. In addition, a great number of vendors (Powersoft
Powerbuilder, for example) have added the capability to generate ActiveX controls right
from their products. So ActiveX is definitely a viable alternative to creating Web-enabled
applications.

The speed of execution is another advantage of using ActiveX. Because controls are
compiled into native object code, their execution time can be much faster than Java. This
issue has been addressed somewhat with Java JIT compilers, but it is still a consideration.

ActiveX controls can use ODBC and native methods to interact with Informix databases.
After users are connected to the proper database-enabled control, database
communications can occur.

Major software vendors are allowing ActiveX controls to be created directly from their
products (Borland Delphi, for example). These controls then would allow access to

various databases across the network or Internet. This capability definitely shows that
ActiveX works and is making its mark in the software community. Just like everything
else discussed in this chapter, though, all factors must be considered before deciding on a
development method.

Third-Party Tools

Many third-party tools are available that empower the creation of Web-enabled database
applications. There are many advantages to using these tools:

• They offer you simple ways to create controls, such as buttons and data-
entry fields.

• They give you a one-step process to generate a basic form that can be
customized.

• They enable you to create a form simply by using drag-and-drop
procedures.

• They eliminate the need to "start at ground zero."

Available tools can create applications in many ways. Applications can be CGI
(JavaScript and Perl, for example), Java, and proprietary HTML (processed by the
product on the Web server). Here is a list of some of these tools:

• Borland IntraBuilder

• Allaire Cold Fusion

• Prolifics JAM and JAM/Web

• Netscape LiveWire Pro (includes Informix Workgroup Server)

Here are some tools that enable Java development:

• Informix Data Director for Java

• Microsoft J++

• Symantec Visual Café (Symantec is now partnered with Informix)

• NetDynamics

A common feature is a screen painter that enables you to drag and drop data fields and
controls (OK buttons, for example) onto screens. After you create a form, it has all the

basic code to get users up and running. Generally, you will need to perform
modifications, but your form certainly can provide a good start.

Many of these tools include a server component that runs right on the Web server. The
server can manage state and more efficient connections. Also, for products that provide
HTML extensions (Informix Web DataBlade and Web Connect, for example), the server
component interprets the page, adding functionality.

The Next Generation: Informix Universal Web Architecture
(IUWA)

Informix always has stayed on the leading edge of technology, which helps explain its
phenomenal growth rate and acceptance in the industry. The IUWA is the latest example
of Informix staying on top of technology. Informix recognizes the importance of Web-
enabled technologies to the future of data processing and is building it into each of its
products.

The IUWA allows much easier creation of Web applications for Informix databases.
IUWA can work with all the methods described earlier--CGI, Java, JavaScript, ActiveX,
and third-party tools. IUWA adds a wrapper that allows easy deployment of browser-
enabled applications based on open standards. The architecture includes the following
elements, some of which are described in the following sections:

• Informix Universal Web Connect: The glue that enables IUWA to create
Web applications based on open standards. Web Connect allows for the
necessary connectivity between all the pieces and enables various Web
technologies. This includes push technology, which allows pushing of data
to the user's desktop without the user actively having to get the data.

• Java support: Enables developers to use Java on the client, middleware, or
server level.

• Data Director: Allows developers to use Visual Café and other tools to
create Java- and ActiveX-enabled applications for Informix databases.

• Informix Web DataBlade: Enables users to easily create dynamic Web
applications and Web pages on-the-fly.

• Partner support: Many third-party developers are using the IUWA API to
build hooks into their Web development products.

• Web solution specialists: Consulting organizations that help deliver custom
Web applications to customers.

• Electronic commerce: Informix is partnering with many companies that
offer electronic commerce, providing solutions using IUWA and
DataBlades.

You can use IUWA with the complete line of Informix DSA-enabled products: Universal
Server, OnLine Dynamic Server, OnLine Workgroup Server, OnLine Workstation, and
XPS. Any one of these database servers can be very much Web-enabled by using IUWA.
IUWA can work with Java/IIOP and ActiveX components.

It is important to note how Informix is embracing the workgroup world, which generally
covers the small- to mid-sized applications. OnLine Workgroup Server and OnLine
Workstation are two excellent solutions for this type of environment. Both are based on
the Dynamic Scalable Architecture that is the basis for most Informix servers, but they
are not as complex as OnLine Dynamic Server. These products are powerful yet easy to
administer, and they come Web-enabled. Informix is providing these products for both
UNIX and NT environments. Of course, OnLine Dynamic Server also is available for
these platforms.

Informix has developed a strong relationship with Netscape. This includes the bundling
of Netscape servers and development products (FastTrack Server and LiveWire Pro, for
example) with workgroup products--and vice versa. This relationship is important
because Netscape--as much as anyone--supports the open nature of Web-enabled
applications.

Intelligent Web Applications

The main focus of IUWA is the creation of intelligent Web applications. Basically, this
means products that have interactive Web applications as their core. Some intelligent
Web applications follow:

• Easily managed Web site content: Because most or all of the Web site
(HTML files, for example) is actually in the database, it is easy to add to or
change.

• Custom content: The content of Web sites can be tailored to the users.
After a user enters a Web site, he or she can enter some basic information.
After that, the Web site can track the user's preferences and tailor
content accordingly.

• Broadcast and subscribe: Broadcast or push technology is the capability to
send up-to-date information on products. If users subscribe to a service
(catalog pricing, for example), the Web site can e-mail changes to them.

• Intelligent query: Users can query Web applications based on content such
as pictures and documents. A query can include elements such as
demographics and color. The Web site will be able to parse the query and
provide the appropriate content.

Informix Universal Web Connect

The Informix Universal Web Connect (IUWC) is a framework that makes it easy to build
database-enabled Web applications. It handles many basic Web application issues, such
as state, scalability (adding many users), and open standards. IUWC enables just about
any type of Web application (Java and CGI, for example) to interact with the database.
Figure 42.11 shows IUWC communicating with an INFORMIX-Universal Server
database.

FIGURE 42.11.

The Informix Universal Web Connect.

The IUWC provides a type of middleware that enables Web pages to be stored in the
database and exploded into HTML when needed. Every time a Web page is extracted
from the database, all dynamic portions of the Web page are read and interpreted by
IUWC. Everything on a Web site can be stored in an Informix database, including Web
pages, pictures, and Java applets.

Much of the IUWC's architecture is derived from INFORMIX-Universal Server
(formerly Illustra) and its DataBlade modules. Informix is working toward an all-
Universal Server environment in the future, and the IUWC provides an easy upgrade
path.

Here are some of the key features of the IUWC:

• Maintaining state: As described earlier, a major consideration is
maintaining state, meaning a connection to the database. In an interactive,
online application, the database state must be maintained for elements
such as cursors. This capability is built into the IUWC.

• Web servers: The IUWC works with any HTTP-based Web server,
including Microsoft, CERN, and Netscape. Programs are vendor-
independent, enabling them to be transferred easily to other Web servers.

• Web driver: The Web driver will pull HTML pages, images, and other
information out of the database, exploding them into a full-blown Web
page. This is much like the Web DataBlade.

The Web driver is a process that runs on the server. It exists in shared memory and can
communicate with a Web server by using native Netscape API (NSAPI), native Microsoft
API (ISAPI), or CGI. Of course, NSAPI and ISAPI provide quicker response time.

The Web driver is called like a CGI program. The URL points to Webdriver, which is the
executable portion of IUWC. A url_query_string can be placed at the end of the URL
(www.informix.com/cgi-bin/Webdrive?MIVal=main, for example). It is typical to see
?MIVal=main or some such thing on the Informix Web site. Any string starting with
MIVal tells Webdriver to look for a Web page in the database; in this case, it is the page
with main as its unique key. Figure 42.12 demonstrates this process.

As mentioned, these Web pages are stored in the database. The Web page in this example
is created in HTML and can include tags that begin with <?MI. When submitted to the
Web driver, all tags beginning with <?MI are exploded and executed in the database,
returning a formatted HTML page to the server. When included as part of a Web page,
for example, the <?MISQL tag in Listing 42.5 performs an insert into the database by
using the values the user entered on the form ($FIRST_NAME, for example):

Listing 42.5. Using Webdriver to perform an insert into the database.
<?MISQL SQL=
 "insert into email_list
 (first_name,last_name,email,occupation,which_list)
 values (`$FIRST_NAME','$LAST_NAME',
 `$EMAIL','$OCCUPATION','$WHICH_LIST'); ">
<?/MISQL>

FIGURE 42.12.

The steps involved in using the Web driver.

Note that the code between the <?MISQL> and </MISQL> tags is what is executed. The
Web driver looks for these special tags and executes them. Listing 42.6 shows a select
statement. This statement also can be embedded in the Web page and create a nicely
formatted HTML table by using the HTML <TR> and <TD> tags. An embedded select
statement is used in Listing 42.6.

Listing 42.6. Using Webdriver for select.
<?MISQL SQL=
 "select first_name,last_name,email from email_list order by
last_name,first_name;" >
<?/MISQL>

Java Support

The IUWC is very supportive of Java. In fact, it enables you to create Web logic in Java
and to execute it on the Web browser, a middle layer, or the Web server. This capability

supports easy programming of Web sites based on Java. The IUWC also has built-in
support for CORBA standards.

Universal Tools Strategy and Data Director

The Informix Universal Tools Strategy makes it fast and easy to develop applications for
Informix's database servers. Data Director is a drag-and-drop Web development
environment. Using Universal Tools Strategy in conjunction with Data Director allows
using various third-party tools to create Web-enabled applications. These tools can use
Java, ActiveX, and other methodologies to create applications, which greatly enhances
application development.

Universal Server and the Web DataBlade

The INFORMIX-Universal Server (IUS) is the object-relational database management
system (ORDBMS) that is one of the major keys to Informix's future direction; it is
covered in detail in Chapter 8, "INFORMIX-Universal Server." IUS is a combination of
an object-oriented database and a relational database. An ORDBMS enables you to use a
mixture of data types in the same database. These data types can be standard relational
data, videos, pictures, audio, Java, and Web pages. The IUWC uses many of the same
concepts as IUS. Eventually, all of Informix's database will be Universal Server-enabled.

The Web DataBlade is Universal Server's key to creating Web applications. DataBlade
runs only on Universal Server and supports embedded HTML tags that can be parsed to
create custom Web pages. DataBlade is very much like the Web driver and the
architecture shown in Fig- ure 42.12.

Partner Support

Because IUWA is an open architecture, any software vendor can create hooks into it via
the API interfaces. This is done through C programs. Many application development
vendors, including HAHT Software, Bluestone, and NetDynamics, provide integration
with IUWC, enabling you to write Informix applications using their products.

NOTE: Writing a chapter on Web applications definitely supports the cliché about
trying to hit a moving target. The Web--and the ways of using it--is changing at
breakneck speed. Informix changes with the Web. To keep up with the latest
enhancements to the IUWA, keep an eye on www.informix.com. The following
URLs specifically discuss Universal Tools and Data Director:
http://www.informix.com/informix/products/tools/comptool/ddjava.htm
http://www.informix.com/informix/products/tools/index.htm

The Universal Web Architecture is a big part of Informix's plans for the future. It helps
simplify the creation of dynamic Web applications. Also, Informix Universal Web
Connect is very efficient at managing the database connection between the Web driver
and the Web server. It helps fit your application's development into emerging, open
standards.

Summary

This chapter presented many of the ever-changing ways to develop browser-enabled
applications. Remember that a browser-enabled application simply is an application that
uses a browser as a front-end; it doesn't have to be on the Internet. In this chapter, you
learned ways to use many popular technologies to implement Web applications. These
ways work now and will continue to work in the future. You then examined the new
Informix Universal Web Architecture, which helps pull all the other technologies
together.

Objects are becoming a very big part of the future of technology. They enable
applications to communicate with each other. Objects on the Web are enabled through
CORBA and DCOM. The data-processing world is becoming very open to industry-wide
standards, and CORBA and DCOM are two examples.

The Web and its related technologies are ever changing. It is almost impossible to keep
up with them. But they are now a part of life in the data-processing world, and it is
important to understand their power. Data processing is a very exciting field, and one
thing is certain: There is never a dull moment. I encourage you to keep moving forward
with Informix and technology, and use the best technologies to create your applications,
now and in the future.

Part VI - Data Modeling
• Chapter 43 - Model-Driven Development for the Informix RDBMS
• Chapter 44 - Designing and Implementing SuperViews for INFORMIX-NewEra
• Chapter 45 - Modeling Types for INFORMIX-Universal Server

- 43 -

Model-Driven Development for the
Informix RDBMS

• Why Model?
• Uses for a Model
• Notations

• The Various Models
• Primary Concepts in a Relational Information Model

o Table and Column
o Connectors
o Two Common Problems

• Implementing Models in INFORMIX-OnLine
o Create and Generate Physical Names
o Specify Domains and Data Types for Columns
o Specifying Foreign Keys

• Summary

by Jim Prajesh

This chapter discusses the need for modeling and then outlines the most important
concepts in modeling and how modeling relates to building a database application. I also
look at how these models can be implemented in Informix RDBMS and provide various
tricks (theoretically accurate, of course) I picked up over the years of training people and
implementing model-based solutions. Even advanced modelers will find the concepts in
this chapter useful. Due to the fact that in most cases, people have limited time to become
efficient in modeling, I developed some techniques that teach people all the aspects of
modeling in a short time. To achieve this, instead of teaching people how to build
models, I describe how to tell whether a model is a good one. When you know this, you
can build models using the most convenient approaches. I discuss the structures that you
need to build good models and how to implement these concepts in INFORMIX-OnLine.
A list of possible approaches to collect data for building models is provided at the end of
this chapter. I have not covered concepts directly related to information modeling, such
as procedures, triggers, physical constructs such as dbspaces, table fragmentation
expression, and so on.

Although there are many types of models, this chapter focuses on information modeling,
which is sometimes referred to as data modeling or structural modeling. The next two
chapters build on the concepts described in this chapter. I made each section independent
and modular so that it is easy for you to refer to each section without reading the whole
chapter.

All the examples (including the diagrams and the code listings) in this chapter were
created with the SILVERRUN Relational Data Modeler (SR-RDM) tool version 2.4.4.
This tool is developed and supported by SILVERRUN Technologies, Inc. A trial version
of this tool is provided on the CD-ROM that comes with this book.

Why Model?

Models are a way to describe and document any system--whether it is a car, a building,
your applications, systems, databases, and so on--before it is actually built. There are
many ways of representing models. The most accurate models are mathematical
equations, and the most ambiguous models are textual or verbal definitions (which is why
legal documents are so long and use terms nobody understands). I use something in
between by utilizing graphical models of the database applications. This approach is a
good compromise between the two extreme types of models. You don't need to be a
mathematician to decipher the models or try to guess what the designer was actually
trying to say in long, drawn-out memos. In my case, a model is to a database what an
architect's blueprint is to a building. Although most of us wouldn't even think of building
a house without having a professional draw the plans, many managers don't seem to care
if a model of an application is created. I do blame management for not insisting on
models for every application built, purchased, or modified. This is one of the primary
reasons why most organizations don't have any idea about what information they have or
provide support for new or changing business needs. Those of us who took business
courses were told that an organization has four types of assets--money, people,
technology, and information. Modeling as discussed in this chapter helps you focus on
the information asset. It helps you track what information your organization has, does not
have, will need, and so on.

Uses for a Model

Because an information model is an abstract representation of your data, you can use it
primarily for four purposes:

• As a blueprint for designing, validating, and implementing new
applications: Building models for your applications helps you conceptualize
the design and eliminate most, if not all, functional bugs. It is easier for
peers and users to validate models as opposed to your SQL script. Building
models also allows for validation of concepts before the model is
implemented as an application, thus minimizing functional problems later
on.

• As a reference model when purchasing packages: This is a very important
reason for building models. When I ask managers why they don't build
models, on plenty of occasions they tell me that they don't need them
because they usually purchase packages. It is in this situation that you
absolutely must have models. The two high-level steps require you to first
build a model of what your organization currently uses and needs in the
package, and this, of course, assumes that you gather the requirements of
all the potential users of the package. You then compare your model to the
model of the application and see if the package supports your needs. This

exercise also tells you how much customization of the package, if any, is
required. After the most appropriate package is selected, the models help
you migrate the data from your existing system to the new package. I also
find that this approach is a lot more objective than determining whether a
package supports your needs based on the sales presentation or the type of
restaurant the salesperson takes you to for lunch. I know your salesperson
might not try to cover the deficiencies in the package with a fancy
multimedia presentation, but you are still better off with a more scientific
approach.

• For migrating between databases: Assuming you use a CASE tool (which
you should) when you want to migrate between DBMSs or between
different versions of the same DBMS, you should reverse-engineer the old
application to create an "as is" model, make appropriate changes, and
then use the new model to generate code for the new DBMS. A lot of the
syntax conversion is usually handled by the CASE tool. One of the main
reasons that people switch to a new DBMS is because the current DBMS
might not have the technology to handle the needs of the organization any
more. For example, if a DBMS does not provide record-level locking (in
this day and age, there are mainstream databases that do not have record-
level locking) and you are not able to support your users because of this, it
might be time to switch. Also, you might want to take advantage of some
new features in a new release of your existing DBMS. For example,
Informix version 5 did not support declarative referential integrity
specification, and INFORMIX-OnLine version 7 does. It is a lot easier to
reverse an Informix 5 database into a CASE tool, assign referential
integrity rules, take advantage of new data types, and generate
INFORMIX-OnLine 7 compliant DDL than to manually apply these
changes. As an additional bonus, in the process, your database gets
documented. Because these models are technology-independent (except
for the physical constructs such as dbspaces, table fragmentation rules, and
so on), these models last forever. In most organizations that use model-
driven development, switching to new databases or to new technology is
pretty painless.

• As an inventory of your information asset: This inventory can let the
organization know whether the information needed to perform a certain
function (such as a new marketing campaign) is available. This can also
form the basis of building specific types of applications such as data
warehouses and data marts ("star" schemas).

Notations

Before I discuss the modeling concepts, let's begin with a brief discussion of the various
notations used in modeling. In the models you examine, I use pictorial representations of
physical concepts. The type of graphical representation used is generally referred to as
the notation. Although many experienced modelers would tell you that the notation used
does not really matter, I beg to differ. Because the models are used by people new to
modeling and nontechnical people, the notation should be simple enough for people to
understand but comprehensive enough to represent a wide variety of business rules. The
notation should avoid using cryptic symbols whenever possible. Keeping these factors in
mind, I chose a notation based on the methodology called Datarun.

I clarify my point with a comparison between Information Engineering (a popular
notation as defined by Clive Finkelstein) and Datarun. I'll define three business rules and
compare the representations using Information Engineering and Datarun notations:

• You need to keep track of the following properties for a television series:
the series number, the series name, the season, and the name of the
current producer.

• You also need to keep track of the episodes for the series and keep track
of the series number and the date planned to air.

• A series must have at least one episode but can have a maximum of 22
episodes.

As you can see in Figure 43.1, the Information Engineering notation tells you the series
must have at least one but can have many episodes. It is not clear from the diagram what
properties each one of the entities has. The business rule specifying that a series can have
a maximum of 22 episodes cannot be specified in the diagram. In the Datarun notation in
Figure 43.2, the properties of the entities and the business rule are explicitly specified.
Because it is the properties of an entity that can hold values, it is very important to see
them. Also, specific business rules can be shown. I have also found that people new to
modeling and nontechnical people find the Datarun notation easier to read and
understand. Please remember that both notations represent the same business concepts;
the difference is in the amount of information shown and the amount of information that
you must specify in textual descriptions.

Figure 43.1.

A representation of the rules in Information Engineering notation.

Figure 43.2.

A representation of rules using Datarun notation.

The Various Models

The rest of the chapter deals with certain rules that you must follow to ensure that your
relational information model (RIM) is of good quality. It is best to stick to these rules
when you initially build the models. If for some reason (usually performance reasons)
you want to violate these rules, you can do it for your physical implementation. This way,
your model is stable. Some methodologies separate these two types of models; the ideal
model that obeys the rules of modeling is sometimes referred to as the logical model, and
the model that is optimized for physical implementation is called the physical model. I
believe that in most cases while using a database such as INFORMIX-OnLine, it is not
necessary to have two separate models with different structures. Because of the high
performance of the database engine, the need to denormalize is minimized. There are
other reasons to have separate logical and physical models. One good reason is when you
must have multiple physical implementations of the same information in multiple sites in
your organization. In this case, the physical model could contain information such as
dbspaces and table fragmentation rules for each site, but the logical structure is the same.

Additionally, most methodologies also propose the need for a high-level business data
model, sometimes referred to as a conceptual data model or an entity relationship model.
In this case, you end up with three levels of models: conceptual, logical, and physical.
This schema is usually referred to as the three-schema architecture. You can use the
models in this chapter as logical and physical models but not conceptual models.

Primary Concepts in a Relational Information Model

At the semantic level, the information models for relational databases such as
INFORMIX-OnLine are referred to as relational information models. Primarily, four
basic concepts make up the relational information model (RIM). Some of the names are
similar to what you already know from your DBMS experience:

• Table

• Column

• Primary keys and Alternate keys

• Connector

Additional concepts are used to implement the models in INFORMIX-OnLine. Concepts
such as foreign keys are used to implement connectors. Additionally, rules govern the
basic concepts. For example, the rule that tells you what values are allowed for a column
is known as the domain, and rules governing the connectors are known as referential
integrity constraints. I examine these additional concepts in the section "Implementing
Models in INFORMIX-OnLine," later in this chapter.

Table and Column

Syntactically, the concept of a table is the same as the table in any SQL DBMS.
Essentially, it is used to define a group of columns. In RIM, a table has some specific
rules that must be met before it can be defined as a table. As in all modeling, some of
these rules are semantic whereas others are syntactic. In RIM, for a table to be correct, it
must meet the following conditions:

• Relevancy
• Uniformity
• Identifiability
• Single-valued columns

Relevancy

The relevancy rule essentially asks whether this table or concept is necessary for the
organization. Another way of putting it is to ask whether the organization is willing to
spend money to keep track of this table. At this stage in modeling, it is not very
expensive to put it in. You should also consider what information you want to track.

Uniformity

Uniformity is an often-ignored but important rule. This rule states that all the attributes
should be applicable to all instances of the concept represented by the table.

For example, in Figure 43.3, not all columns are applicable for all employees. This is a
violation of this rule.

Figure 43.3.

A table in which all attributes are not applicable for all instances.

It is easy to fix the situation where all attributes are not applicable by splitting the
columns that belong to trainees into another table, as shown in Figure 43.4.

Figure 43.4.

The results of decomposing a table.

In Figure 43.4, it is very clear which columns are applicable to all employees and which
columns are applicable to trainees. Clarity is one of the goals in RIM. There has to be a
connector between the two tables. Depending on the business rule, the type of connector
might be different. I discuss the options in the "Connectors" section of this chapter.

Identifiability

A table can have any number of rows. The identifiability rule states that there must be a
way to tell the rows of a table apart. You use a column or a group of columns to make the
instances unique. This column or group of columns forms the primary key of the table. In
addition to the fact that the primary key has to be unique, the columns of the primary key
cannot have null values. This makes sense because if they have null values, you cannot
tell them apart. In Datarun notation (and most other notations), the columns composing
the primary key are underlined.

In Figure 43.5, the columns author first-name, author last-name, and author initials
together make up the primary key.

Figure 43.5.

Specification of primary key.

Sometimes, there might be more than one way of identifying an instance of a table. In
that case, one of the column groups becomes the primary key, and the others become
alternate keys. Alternate keys are denoted by numbers in carats, as shown in Figure 43.6.

Figure 43.6.

An example of columns used as alternate keys.

Additionally, you might use a column in multiple key combinations at the same time. In
the example in Figure 43.7, the employee last name is part of the first alternate key
combination (along with employee phone) and part of the second alternate key
combination (along with employee birthday).

Figure 43.7.

A column participating in multiple key combinations.

It makes sense to pick primary keys that don't change. As you see later, I use the primary
keys to create links with other tables (foreign keys). You are a lot better off if you don't
have to re-establish the foreign keys. This is the reason that a lot of organizations ask
their developers to use meaningless codes as primary keys. Because they don't have any
meaning, there is no reason for them to change. These meaningless codes are sometimes
referred to as surrogate keys. Databases such as INFORMIX-OnLine make it easy to use
surrogate keys with specific data types such as serial to help create serial numbers for
your primary keys.

Connectors

Connectors are used to represent relationships between tables. In RIM, all relationships
are binary. This means that at one time, only two tables can be related. Because there can
only be two tables related, a line is a convenient way to represent connectors.
Additionally, the RIM supports only what is usually referred to as one-to-many
connectors (one-to-one connectors are a subset of one-to-many). This implies that all
your other relationships must be reduced to one-to-many. You will see how to represent
various situations that you might encounter.

One-to-Many Binary Connector

One-to-many binary connectors are the most common connectors. These are called one-
to-many because the maximum connector on one end is N (for many), and the maximum
connector on the other end is 1. The following two examples are considered one-to-many,
even though the minimum connectivities are different. An example of a one-to-many
connector is shown in Figure 43.8.

Figure 43.8.

A one-to-many connector.

One-to-One Binary Connector

In the example in Figure 43.9, the maximum connectivities on both directions are 1--
hence the name one-to-one connector.

Figure 43.9.

A one-to-one connector.

This example depicts the fact that not all customers have credit accounts, and if they do,
they can have only one credit account. You can examine other variations of one-to-one
connectors in the "Columns in One-to-Many Relationship Tables" section, later in this
chapter.

One-to-Many Recursive Connector

At times, a table might be related to itself. The one-to-many recursive connector structure
is used to represent hierarchical structures such as organizational charts and family trees.

Figure 43.10 indicates that an employee does not have to have a supervisor (for
employees at the top of the organizational chart) but can have at most one supervisor. The
recursive connector indicates that the supervisor is also an employee. An employee might
supervise no employees (for employees at the bottom of the organizational chart or, as
one of my clients calls us, individual contributors). This structure works only for
hierarchical organizations. For matrix structures and other organizational structures, you
need a different structure for the data model.

Figure 43.10.

A recursive connector.

Key Dependency

Before you proceed to the more complex relationships, you need to understand the
concept of key dependency. In all the examples of tables you have seen so far, all the
tables had their own primary keys. Sometimes, a table does not have its own key, and
other times, a table's key is not enough for uniqueness. In these situations, you use key
dependencies. For example, in Figure 43.11, you can say that line number is not unique
(because every order has a line number 1).

Figure 43.11.

The key of order line is not unique.

Within the context of an order, the line number is unique. In other words, if the primary
key of order line is the combination of the primary key of order (order number) and the
primary key of order line (line number), then the key is unique. In the notation, the way
you specify that a table is dependent on another table is by underlining the 1,1
connectivity. You use underlines because that is the same symbol you use to denote a
primary key. Essentially, Figure 43.12 is specifying that the order line gets its key from
the order table.

Figure 43.12.

Key dependency.

In the notation, you should not type in the order number column in the order line table. In
RIM, columns are local to a table. It is obvious in Figure 43.13 that the two columns
called Name in the tables represent totally different facts.

Figure 43.13.

An example of "same" columns.

One Name column represents the employee's name and the other represents the vendor's
name. The fact that they are in different boxes (tables) makes it easy for most people to
understand this. Extending the same logic to the example in Figure 43.11, if you type an
order number into the order line table, it is not the same order number as the one from the
order table. Of course, after you generate foreign keys for order line, you have order
number as part of the primary key as well as the foreign key.

You have seen how to depict tables that get their keys from other tables. You are ready to
go on to more complex relationships.

Many-to-Many Relationship

A many-to-many relationship occurs when the maximum connectivity for both tables
linked by the connector is N. If you want to represent the fact that a customer can own
many bank accounts and a bank account can be owned by many customers (joint
accounts), you cannot model it as shown in Figure 43.14.

Figure 43.14.

The wrong way of representing many- to-many relationships in RIM.

This structure cannot be implemented in relational databases. The only type of connectors
that can be implemented in a relational database are ones with one-to-many
connectivities. Remember that one-to-one connectivities are a subset of one-to-many
connectivities. The reason for this limitation is obvious when you get to the section on
foreign keys. The bottom line is that many-to-many connectivities must be reduced to
one-to-many connectivities so that you can implement the models in a relational DBMS.

The way you should depict the model in Figure 43.14 is to change the many-to-many
connectivities to two one-to-many connectors and represent them as shown in Figure
43.15.

Figure 43.15.

Representing many- to-many relationships.

What you do is "reduce" the many-to-many connectivity to two one-to-many connectors.
You can now implement this structure without any problem. The new table introduced as
a result of trying to resolve the many-to-many relationship is referred to as a relationship
table. It is also sometimes called an intersection table. A relationship table does not have
its own keys. As denoted by the key dependency, the key of the relationship table is a
combination of customer ID (the primary key of customer) and account number (the
primary key of account). This is usually the case in many-to-many relationships. A
relationship table does not have its own keys but inherits the keys from the tables it is
related to.

Ternary Relationship

You can use the concept of relationship tables to reduce ternary (or three-way)
relationships, too. Suppose you want to specify that an employee can be involved in zero
or many projects and zero or many activities. A project must have at least one employee
and one activity but can have many employees and many activities. An activity can have
zero or many employees and can be used for zero or many projects. You can use a
relationship table and specify it as shown in Figure 43.16.

The same concept can be extended to four-way relationships and n-way or n-nary
relationships.

Figure 43.16.

A ternary relationship.

Columns in Many-to-Many Relationship Tables

Sometimes, there are columns whose values are defined by information in more than one
table. In Figure 43.15, if you assume that different customers can own different
percentages of the account, you need a column called percent owned in the model. You
cannot put this new column into the customer table because a customer can own many
accounts. You cannot put this into the account table because an account can be owned by
many customers. The most appropriate table in which to include this column is the
relationship table Acct-Ownership. In summary, the columns that go into the relationship
table are columns that are dependent on all the tables connected to the relationship table.
In Figure 43.17, the column percent owned is put into the relationship table.

Figure 43.17.

Column in relation-ship table.

For the ternary relationship shown in Figure 43.16, if you want to keep track of the
number of hours an employee spent on a project doing a particular activity, you can add a
column called number of hours in the relationship table assignment. Figure 43.18
illustrates this.

Figure 43.18.

A column in the ternary relationship.

The key point to remember when using columns in relationship tables is to make sure that
the column is dependent to all the tables linked to the relationship table.

Columns in One-to-Many Relationship Tables

Sometimes, it is necessary to use relationship tables in one-to-many connectivities. This
is usually best when you have a minimum connectivity of 0 on both ends of the
connector. For example, a business rule states that an employee might be involved in, at
most, one project but need not be involved in any project. Also, a project could have no
employees assigned (before the project is initiated) but could have many employees
assigned. You want to keep track of two columns--date assigned to project and date done
with project. Remember that these dates are valid only for employees assigned to project.
You cannot put them into the employee table because of the uniformity rule. You also

cannot put them into the project table because a project can have multiple employees
assigned. Figure 43.19 illustrates the correct way of modeling this.

Figure 43.19.

A one-to-many relationship table with columns.

As you can see from Figure 43.19, it is very clear what columns are applicable to all
employees and what columns are applicable to employees assigned to a project. In other
words, it is obvious which columns are applicable if the relationship happens.

I have seen several cases where experienced modelers put the columns that I have in the
relationship table into the employee table. There are a couple of problems with this. One
is the clarity of the model. In the model, it is not clear which columns apply to all
employees and which ones apply to just employees involved in a project. The other issue
is that every application accessing the data must be aware of the fact that these two
columns do not apply to all employees but only to employees assigned to a project. If 20
applications access this database (which is possible with data warehouse applications),
every one of these applications must be aware that the two columns are not applicable for
every instance of the table.

Also note that in Figure 43.19, the relationship table is dependent on only the employee
table for its key. Because an employee can be involved in at most one project (I wish this
were true in my company), the employee ID is enough to make the key of Emp-
assignment unique. If the rules are different and you say that an employee can be
involved in many projects, the key of the relationship table is key-dependent on both
tables.

Many-to-Many Recursive Relationship

The next sample relationship is very similar to the many-to-many relationship you saw in
Figure 43.15, Figure 43.17, and Figure 43.18, but the relationship is recursive. This can
define any type of multidimensional structures such as matrix organizations, bill of
materials structures, project team compositions, and so on. Suppose you want to define a
table of products that can be used to make other products. If you want to track how many
units of each product are used to manufacture other products, you can use a structure
similar to the one defined in Figure 43.20.

Figure 43.20.

A many-to-many recursive relationship.

A similar structure can model "matrix" organizations and other complex structures. These
structures are extremely flexible for keeping track of various combinations and
permutations of relationships.

You can add a lot more flexibility to these recursive relationships by creating another
table that keeps track of relationship types--for example, if you want to track all types of
relationships among employees. The relationship might be a reporting relationship, a
project member relationship, a sibling relationship, the fact that an employee changed his
name, a spousal relationship, and so on. Adding a time factor to the key structure also
helps you keep track of changes in relationships over time. Figure 43.21 gives you a
structure that helps with these requirements.

Figure 43.21.

The structure to support any type of relationship between employees.

This structure supports any type of relationship between employees. If you need to track
a type of relationship that does not currently exist in the organization, all you need to do
is add another row in the relationship table. You do not have to change the structure of
your model, which implies that you do not have to alter the structure of your database.

If you want to track the relationships among employees over time, you have to make the
relationship start-date column part of the key.

Subtypes (Specialization)

The concept of subtypes has become very popular in information modeling. Subtypes are
used when you have some columns that are common to all instances of a table and other
columns that are applicable only under certain situations. Another reason to use subtypes
might be to keep track of various states of a table. I start with the most classical of
subtype structures and then examine some variations. I discuss a couple of issues. The
tables involved are usually referred to as subtypes or supertypes. The type of relationship
is referred to as specialization or generalization, depending on which direction you are
going. When you create subtypes from the columns of the supertype table, it is usually
referred to as specialization. If you create the supertype table by picking the common
columns from a group of tables, the process is called generalization. Either way, you end
up with a special type of relationship that you use a little triangle to represent. (See
Figure 43.22.) The triangle indicates that the relationship between the involved tables is a
supertype/subtype relationship. The supertype is also referred to as the generic table
because it contains the common columns. The subtypes are referred to as specialized
tables because they contain the specific columns applicable for each specialization. It is
important to understand the connectivities associated with specialization.

If you want to keep track of employees and certain employees have some specific
columns that are not applicable to all employees, a subtype/supertype structure is the
most appropriate.

Figure 43.22 indicates that all employees have an employee ID, employee name, and
employee title. It also indicates that a manager has two specific columns--budget and
sales quota--that are applicable only to managers. For consultants, you are interested in

keeping track of the rate, unit for rate, and tax ID. You do not have specific attributes for
a regular employee.

Figure 43.22.

An example of a subtype structure.

A note on the specialization connectivities: You put them in slashes just to graphically
differentiate these connectivities from other connectivities. In Figure 43.22, the minimum
connectivity of 1 indicates that all employees are a regular employee, a manager, or a
consultant. The maximum connectivity of 1 indicates that an employee can be only one
of the three options.

A regular employee does not have any additional columns. In this case, it does not make
sense to keep an empty table in the model. If you remove the empty entity, you must
update the connectivities of the specialization to be optional. Figure 43.23 is the new
model.

Figure 43.23.

Optional subtypes.

The minimum connectivity of 0 for the supertype/subtype relationship implies that an
employee need not be a manager or a consultant. The maximum connectivity of 1
specifies that you can either be a manager or a consultant but not both.

Change the rules once more and say that an employee can be a manager and a consultant
at the same time. Again, all you have to do is change the connectivities to reflect the new
rules. Figure 43.24 shows the result of the change.

Figure 43.24.

A subtype with a maximum connectivity greater than 1.

The ease with which you can change the business rules is also a testimonial to the
notation I chose. In most notations, you cannot depict these variations in rules for
subtypes.

Conditional Connectors (Mutually Exclusive Connector)

At times, you need a mutually exclusive connector. This is used when you have a choice
of using connectors with more than one table, but you have some restrictions on how a
table can be connected to the other. For example, if an order can be placed by a customer
or an employee but not both at the same time, this qualifies as a mutually exclusive
connector. Again, you use the connectivities to clarify the rules.

Figure 43.25 indicates that an order must belong to an employee or customer (minimum
connectivity is 1) and the order can belong to either a customer or an employee (the
maximum connectivity for the conditional is 1). To differentiate the conditional
connectivities from the others, you put them in brackets. If the maximum connectivity for
the connector is 1, the relationship is said to be mutually exclusive. If the maximum
connectivity is more than one, the relationship is mutually inclusive. Because this
notation can be used to support both mutually inclusive and exclusive relationships, you
cannot call the relationship mutually exclusive. An example of a conditional connector is
shown in Figure 43.25.

Figure 43.25.

A conditional connector.

Two Common Problems

Before I discuss the things you need to do to implement these models in INFORMIX-
OnLine, I want to discuss two concepts I have seen a lot of my clients struggle with.

Multiple Connectors Between the Same Tables

It is possible to have multiple business relationships between the same table. In that case,
you need multiple connectors between the same tables. As an example, suppose you want
to document the fact that a department can have many employees. Assuming that
department heads are also employees, keeping track of the department head warrants
another connector between the two tables involved. Figure 43.26 illustrates this.

Figure 43.26.

Multiple connectors between the same tables.

In Figure 43.26, the connectivities are different for each connector. Sometimes this is not
the case. For an order, if you want to keep track of the salesperson (who is an employee),
the shipper (who is an employee), and the person who authorized the order, then you
need three connectors between the same set of tables, as shown in Figure 43.27.

Figure 43.27.

Another example of multiple connectors between the same tables.

In this case, the connectivities are the same between the tables, so it is very important to
label the connectors.

Modeling Reality

While modeling, it is important to remember that the only way you get quality models
that are stable is by making sure you model reality or facts. This is not as easy as it
sounds. Most database systems I encounter use different tables for storing information
about customers and vendors. When a customer is also a vendor, such as when I teach a
class at the bank where I have my accounts, I end up repeating the same information such
as name, address, phone, and so on. This is not necessary if the information was modeled
and implemented correctly. Suppose that in the model I am represented as a person with
columns such as name, address, phone, and so on and stored only once. Then, I have a
role as a customer and another role as a vendor. I do not have to repeat the personal
information for every role I take. Reality-based modeling is not hard to pick up, but you
have to change the way you think about things around you. In most cases, our thinking
comes from an application perspective probably because that is how our deadlines are
based. When you look at things from an application perspective, you have a skewed view
of things. Take things outside of the application context and you are on your way to
building good models. This is one instance where taking things out of context helps. Do
not confuse the view I am asking you to take with the scope of the models. In most cases,
the scope of the model might be for the project but your view is global. In other words,
you are concerned about the tables needed for the project, but you model them with an
organizational perspective.

Implementing Models in INFORMIX-OnLine

The hard part is building the models using the concepts discussed previously. When the
semantic part is done, you have to follow a few steps to implement the model in
INFORMIX-OnLine. The following steps are usually automated by most CASE tools.
The order of these tasks is not important:

• Create physical names for tables and columns.

• Create domains and data types for columns.

• Specify foreign keys.

• Create indexes if necessary.

• Add referential integrity constraints.

• Create triggers and procedures if needed.

• Add physical constructs such as dbspaces for tables and indexes,
fragmentation clause for tables and indexes, extent size for tables, lock
mode, and so on.

• Generate the DDL.

For the purposes of this chapter, I discuss the concepts of physical names, domains and
data types, foreign keys, and some DDL that can be generated. For the purposes of this
chapter, I do not discuss specifying referential integrity (other than foreign keys),
triggers, procedures, and the physical constructs.

Create and Generate Physical Names

Syntactically physical names should obey the length limitations of the RDBMS and use
only legal characters (no spaces). Additionally, most organizations have some standard
abbreviations that are used in constructing the physical names. For example, the
organization might have a list of abbreviations such as those provided in Table 43.1.

Table 43.1. Abbreviation list.
Word Abbreviatio

n

Customer Cust

Number Num

Organizatio
n

Org

Employee Emp

Departmen
t

Dept

Address Addr

Account Acct

A column in the model that is named account number has a physical name of acct_num.

Specify Domains and Data Types for Columns

In this step, you specify the length, precision, null or not null status, default value, and
list of values or range of values for all columns. These can be specified as domains,
which are reusable across the organization. After you specify the domains, you can
specify the data types to be used with the domains. After you specify the domains, data
types, and physical names, your employee table might look like the one in Figure 43.28.

Figure 43.28.

A table with physical names, domains, and data types.

Listing 43.1 contains the corresponding DDL code generated.

Listing 43.1. DDL generated.
CREATE TABLE EMP
 (
 emp_id SERIAL NOT NULL,
 emp_name CHAR(40),
 emp_title CHAR(40),
 PRIMARY KEY (emp_id)
 CONSTRAINT emp_pri
);

Specifying Foreign Keys

One way of looking at a foreign key is as a physical implementation of the connector. In
the database, the way you specify that a table is connected to another is by using a foreign
key. In the model, you specify that a table is connected to another by using a connector.
When you have the graphical connectors, you can generate foreign keys based on the
connectivities. Figure 43.29 shows a model fragment without a foreign key.

Figure 43.29.

Tables with no foreign key.

Figure 43.30 shows the model with a foreign key generated.

Figure 43.30.

Tables with a foreign key.

To graphically differentiate the foreign keys from other columns, you use a prefix of FK.
I now illustrate the fact that the foreign key implements the functionality of the
connectivity. The minimum connectivity of 1 for the EMP (employee) table says that an
employee must belong to a department. This is implemented by making the foreign key
dept_id not null. The maximum connectivity of 1 is implemented by the fact that you
have one column. The maximum connectivity of N from the DEPT (department) table is
implemented by making the foreign key dept_id not unique.

Listing 43.2 shows the code fragment generated for the two tables and the foreign key
shown in Figure 43.30.

Listing 43.2. DDL generated for foreign key.
--
--CREATE TABLE DEPT
--
CREATE TABLE DEPT
 (
 dept_id SERIAL NOT NULL,

 dept_name CHAR(40),
 PRIMARY KEY (dept_id)
 CONSTRAINT pri_dept
);
--
--CREATE TABLE EMP
--
CREATE TABLE EMP
 (
 emp_id SERIAL NOT NULL,
 emp_name CHAR(40),
 emp_title CHAR(40),
 dept_id INTEGER NOT NULL,
 PRIMARY KEY (emp_id)
 CONSTRAINT emp_pri
);
--**
-- FOREIGN KEY CONSTRAINT STATEMENTS
--**
--
--ADD FOREIGN KEY CONSTRAINT works_for
--ON TABLE EMP
--
ALTER TABLE EMP
 ADD CONSTRAINT
 (
 FOREIGN KEY (dept_id)
 REFERENCES DEPT
 CONSTRAINT works_for
);

Foreign Keys for Many-to-Many Relationships

When you create foreign keys for many-to-many relationships, the foreign key is also the
primary key for the relationship table. Figure 43.31 shows a graphical representation.

Figure 43.31.

Foreign keys for a many-to-many relationship.

Listing 43.3 shows the code fragment generated from the model in Figure 43.31.

Listing 43.3. DDL generated for many-to-many relationship.
--
--CREATE TABLE acct_ownership
--
CREATE TABLE acct_ownership
 (
 acct_num INT NOT NULL,
 cust_id INT NOT NULL,
 percent_owned FLOAT(3),
 PRIMARY KEY (acct_num, cust_id)
 CONSTRAINT pri_acct_own

);
--
--CREATE TABLE BANK_ACCT
--
CREATE TABLE BANK_ACCT
 (
 acct_num SERIAL NOT NULL,
 acct_date_open DATE,
 PRIMARY KEY (acct_num)
 CONSTRAINT pri_acct
);
--
--CREATE TABLE CUST
--
CREATE TABLE CUST
 (
 cust_id SERIAL NOT NULL,
 cust_name CHAR(40),
 PRIMARY KEY (cust_id)
 CONSTRAINT pri_cust
);
--**
-- FOREIGN KEY CONSTRAINT STATEMENTS
--**
--
--ADD FOREIGN KEY CONSTRAINT foreign_cust
--ON TABLE acct_ownership
--
ALTER TABLE acct_ownership
 ADD CONSTRAINT
 (
 FOREIGN KEY (cust_id)
 REFERENCES CUST
 CONSTRAINT foreign_cust
);
--
--ADD FOREIGN KEY CONSTRAINT for_bank_acct
--ON TABLE acct_ownership
--
ALTER TABLE acct_ownership
 ADD CONSTRAINT
 (
 FOREIGN KEY (acct_num)
 REFERENCES BANK_ACCT
 CONSTRAINT for_bank_acct
);

Similar rules apply for ternary relationships. Figure 43.32 shows a ternary relationship
with foreign keys.

Foreign Keys for Subtypes

To implement subtypes, you need to add a type discriminator column. Additionally, you
can use the primary key of the supertype as the primary key of the subtypes. The

combination of the type discriminator columns and the foreign key allows you to
implement this concept in any RDBMS. A representation of subtypes is shown in Figure
43.33.

The type discriminator indicates whether the employee is a manager, a consultant, or a
regular employee. If the employee is a manager, you access the manager table, and
because you use the same primary key as the employee table, you can use the key to look
up the information for the appropriate manager.

Figure 43.32.

A ternary relationship with foreign keys.

In cases when the maximum connectivity for the subtype relationship is more than one, it
is easier to use more than one type discriminator to support all possible permutations of
the subtypes. Figure 43.34 illustrates this.

According to the connectivities, an employee can be a manager, a consultant, both, or
neither; using the two discriminator columns with boolean values satisfies all the possible
conditions.

Foreign Keys for Conditional Connectors

To implement conditional connectors, you use another technique with foreign keys.
Figure 43.35 illustrates the example you used earlier with foreign keys generated by
SILVERRUN-RDM.

Figure 43.33.

Subtypes with foreign keys.

Figure 43.34.

Foreign keys for subtypes with maximum connect- ivity greater than 1.

Figure 43.35.

A conditional connector with foreign keys.

In this case, you use the choice discriminator column emp or cust to indicate whether the
order is for an employee or the customer. If the choice discriminator indicates that the
order is for a customer, the foreign key Order.Customer Id indicates which customer
the order belongs to. If the choice discriminator indicates that the order is for an
employee, the foreign key Order.Employee Id indicates which employee the order
belongs to. Because this is a mutually exclusive connector, one of the foreign keys has a

null value. This can be enforced easily with a constraint on the choice discriminator
column.

Summary

This chapter discussed the major constructs in information modeling, which include
tables, columns, primary keys, foreign keys and alternate keys, connectors, subtypes, and
conditional connectors. I provided some sound techniques for putting together models
using these concepts. If the model is a good one, implementing, maintaining, and
enhancing your databases is easy. Although I did not discuss the theories behind these
concepts, the techniques were tried and proven over the years at various organizations
around the world. I am sure they will help you and your organization. Extensions to these
concepts are sometimes referred to as extended relational modeling, which I did not
discuss in this chapter.

- 44 -

Designing and Implementing SuperViews
for INFORMIX-NewEra

• A View of a SuperView
• Approaches to Building SuperViews
• Using SILVERRUN for Designing, Creating, and Implementing

SuperViews
o Building and Implementing SuperViews Using SR-RDM
o Defining the Database Structure
o Defining the SuperView Structure

• Summary

by Jim Prajesh

This chapter discusses the concepts behind designing SuperViews and also shows how to
create and implement SuperViews using the SILVERRUN Relational Data Modeler
(RDM) CASE tool. Because this is the only graphical SuperView designer that supports
graphical design and generation and validation of both INFORMIX-OnLine and
SuperViews, I used this tool to demonstrate the concepts involved with SuperViews. This
chapter also builds on the concepts introduced in Chapter 43, "Model-Driven
Development for the Informix RDBMS."

A View of a SuperView

A SuperView is a database-aware layer that provides an efficient online link between the
client layer (forms, reports, and queries) and the database. This layer is needed to build
enterprise-scale applications for various reasons. The information needed to build a form
or a report might not be the same as the information stored in the database. For example,
a form usually requires a subset of the information stored in the table. Additionally, the
information needed for the form might come from multiple databases. A separate layer
allows you to integrate data from multiple sources into a form, report, or query. To clarify
the content of the client objects, you might need to use descriptive labels, lookup values,
and so on. This can also be done at the SuperView level. You might need to create a
different set of non-key joins for the form. It does not make sense to keep all these non-
key connectors at the database level. From a maintenance perspective, it is best to keep
only the primary key and foreign key joins at the database level and define other types of
connectors at the SuperView level. Additionally, you might need to keep track of some
extended attributes for displaying input. For these practical reasons, it makes sense to
have this layer to build screen-based applications. Functionally, the SuperView provides
the middle layer in a three-tier client/server application. Figure 44.1 provides a simplistic
approach to looking at SuperViews and their usefulness in screen-based applications.

Figure 44.1.

A SuperView's role in application development.

Approaches to Building SuperViews

Based on the discussion in the previous paragraph, it should be obvious that a SuperView
is a denormalized view of the database. You can also consider screens and reports as
denormalized views of the database. You can take two approaches to come up with
SuperViews and databases:

• View integration
• Database driven

One approach is to build the SuperViews (based on user needs) and then normalize the
views and create the database structure. This is the approach in which a consultant visits
all the users and spends months collecting each one of the user's views. When you have
all the views, you then figure out what the users intend to do with the views, normalize
the views, and create the database structure. This approach is sometimes referred to as
view integration. A lot of the RAD-based (rapid application development) methodologies
use this concept. Although RAD-based approaches might seem faster, primarily because
you see screens first and therefore have the impression that something is delivered, the
quality of the systems and the underlying database is usually compromised. You don't
have a stable database structure and usually have to change the database structure every
time a new user requests a new screen or a new report.

Although it might seem faster when you develop the first prototype or application, in the
long run, you pay for this in database maintenance because of two reasons. One reason
for the maintenance is that the data structure in the database might not be complete, and
you have to modify the structure with new screens or SuperViews. Another reason is that
organizations that use view integration to build databases tend to have many more tables
than are necessary. The tables are built from an application perspective and do not
support applications other than the ones they were designed for. When they need new
functionality, most developers just add the tables they need when an existing table might
suffice; either they did not know that an existing table could be used or they did not want
the hassle of modifying the table structure and then modifying all the applications that
use that table.

For example, I once found 65 tables in a human resources system used to maintain
information about employees, but if they had designed the database correctly, they would
have needed only 15 or 17 tables. Imagine the unnecessary amount of resources an
organization spends in terms of people, money, time, hardware, and software because
nobody bothers to come up with an integrated design. I only mentioned one small subject
area within a system. Rapid does not necessarily mean quality and longevity, and a
cleaner approach does not mean slow. Of course, you don't see any screens in the first
two days of the project, but there is a lot more to a system than screens. The primary
reason that rapid prototyping approaches fail is that when you build views, you look at
the data from one person's or one application's perspective and not from an organizational
perspective.

In the database-driven approach, you first model the database structure using the concepts
and techniques described in Chapter 43. When you have that model, you can select the
tables and connectors needed for a SuperView and separate them into a work area
(referred to as subschema in SILVERRUN-RDM). You then modify the structure to
remove columns you don't need and add other information such as labels. Because the
database model is built with an organizational perspective, adding new SuperViews
should not affect any changes in the database structure. This approach is also faster, and
you end up with better systems.

Using SILVERRUN for Designing, Creating, and Implementing
SuperViews

Although NewEra provides ViewPoint Pro as a tool to build SuperViews, I found
SILVERRUN-RDM (SR-RDM) a lot easier and more flexible for complex systems. Here
are some of the reasons for using SILVERRUN instead of ViewPoint Pro:

• SR-RDM provides a graphical representation of the database and the
SuperView. This is a user-friendly way of defining SuperViews and also
saves a lot of typing, which is especially useful for bad typists such as
myself and most of my colleagues.

• SR-RDM provides a special work mode for INFORMIX-NewEra. When
you select this work mode, the tool changes the menu structures and menu
content with NewEra-specific information. This makes it easy for those of
us familiar with NewEra concepts and cuts down on the learning curve
tremendously.

• In SR-RDM, it is not necessary to redefine the relationships that already
exist at the database level. If you build SuperViews directly in ViewPoint
Pro, you end up redefining all the relationships again. In SR-RDM, you add
only information you absolutely need at the SuperView level. If you did not
design the database in SR-RDM, you can easily reverse-engineer an
existing database, automatically bringing the existing relationships into
SR-RDM. This is still a lot faster than creating them manually for each
SuperView.

• The information about SuperView is represented in a concise format and
is easy to understand, even for nontechnical folks. This makes it easy to
validate the screen or report content before actually building it.

• When you design SuperViews, SR-RDM is not connected to NewEra
dynamically. This makes the design phase faster and allows you to be more
creative. After you are done with the design, you can connect to the
database and create the SuperViews automatically.

• SR-RDM validates the SuperViews to make sure that they run against the
specified database while respecting all the referential integrity rules. This
synchronization is difficult to achieve in ViewPoint Pro.

Building and Implementing SuperViews Using SR-RDM

This section discusses the steps needed to design and implement SuperViews. The
hardest part is coming up with the good model for the database layer. You can use the
concepts described in Chapter 43; then, creating and implementing SuperViews is pretty
close to trivial:

1. Have the database structure defined in SR-RDM.

2. Define the database-extended attributes.

3. Create non-key relationships, reorder columns, and add table or column
comments if necessary.

4. Create SuperViews by selecting necessary tables.

5. Add SuperView-specific information such as specifying master tables,
specifying SuperView-specific relationships, denormalizing columns, hiding
columns not needed, and assigning SuperView-level extended attributes.

6. Verify SuperViews.

7. Transfer SuperViews from SR-RDM to Informix.

Defining the Database Structure

There are many ways you can design the database structure in SR-RDM. In this section, I
discuss two of them. One way is to type the tables and columns into the tool. If you use
an existing database to build NewEra applications, you should reverse-engineer the
database into SR-RDM using the reverse-engineering facility that comes with
SILVERRUN. If you create the model yourself, you should work in the RDM mode.
Figure 44.2 shows the possible modes you could choose. For more help in creating tables,
columns, connectors, and so on, refer to the documentation that is part of the help files
installed with the version of SR-RDM included on the CD-ROM accompanying this
book. Note that although SR-RDM allows for a number of various notations, I used the
notation discussed in Chapter 43.

Assuming that you built the generic data model, you can now switch to the NewEra work
mode to put NewEra-specific information into the model. After you switch the work
mode, the tools palette and some of the menu options change. As you enter only the New
Era-specific information, note that the palette is much smaller when in NewEra mode.
Notice the changes in Figure 44.3.

Figure 44.2.

Different work modes in SR-RDM.

Figure 44.3.

After switching to NewEra mode in SR-RDM.

Please note that this level is the database level. This is evident by the DB on the tools
palette. Figure 44.4 provides a summary of the tools in the tools palette for NewEra.

Figure 44.4.

Details of the tools palette.

After you switch to the NewEra mode, you can then add the NewEra-specific
information. You can do this by double-clicking a table or connector or accessing the

NewEra menu option. When you access the NewEra menu options, you notice that in
Figure 44.5, certain options are grayed out. These options are available only at the
SuperView level.

Figure 44.5.

Details of the NewEra menu.

Putting in the Extended Attributes

Now you are ready to enter the NewEra-specific attributes. These are primarily NewEra
aliases for tables, columns, and connectors (which are now called relationships), form
properties, input and display attributes, and possible values for a column.

Table Aliases At the table level, you can assign a corresponding NewEra alias for a
table. By default in SR-RDM, the NewEra alias is the same as the name of the table in the
database. Of course, you can change it by typing a new name. The screen for entering
table aliases is shown in Fig- ure 44.6.

Figure 44.6.

The screen for entering table aliases.

Column Aliases, Labels, and Titles To enter the aliases, labels, and titles for columns,
select the NewEra|Form Properties menu option. You get a list of the columns in your
database schema, such as the one shown in Fig-ure 44.7.

Figure 44.7.

The screen for entering column aliases, labels, and titles.

Notice that SR-RDM provides the default values for these concepts. You need to type in
only the ones you want to change. To change the descriptors for the column, select the
columns, enter the appropriate information, and click the Modify button.

Default Display Rules Specify the display rules for the columns if necessary. Specifying
the display rules at this level gives you the default rules for the SuperView level. Select a
column from the screen in Figure 44.8, and from the drop-down menu, pick default
display attributes.

Figure 44.8.

The screen for accessing the default display rules for columns.

After you select this, you can enter the default display options. These options are also
carried over to the SuperView level and can be overridden either by certain conditions or

at the SuperView level. Figure 44.9 shows the options available for the default display
properties.

Figure 44.9.

The screen for entering the default display rules for columns.

To enter your preference for the various options, uncheck the boxes and put in the various
values for font, color, format, size, and so on. If the checkbox is checked, the default
preferences in ViewPoint Pro are used.

Conditional Display Rules For each column in the database level, you might want to
specify some value-based display options, called conditional display rules. For example,
you might want to specify that if the customer is from NY state, the color should be set to
red. Figure 44.10 shows you how to specify this in SR-RDM.

Figure 44.10.

Conditional display rules for columns.

These rules are useful to visually distinguish certain columns for various reasons. For
example, you might need to charge sales tax for NY residents only. Using a different
color might make it easy for the data entry person to remember this.

Input Attributes and Possible Values for Columns Input attributes and possible values
can also be kept as NewEra-specific attributes so that all SuperViews can use the same
rules for columns. You can enter them into SR-RDM and reuse them at the SuperView
level. Figure 44.11 shows the panel to enter the input attributes.

Define Global Non-Key Relationships If you believe that non-key relationships will be
used, you can specify them at the database level. This way, you do not have to specify the
same rule for each SuperView. For example, if you never want to look at parts whose
price is less than the cost (I am not saying this rule makes sense), you might want to
specify this as a rule at the database level using non-key relationships. In SR-RDM, a
primary key and foreign key relationship is denoted by a solid line and a non-key
relationship is denoted by a dotted line. Figure 44.12 shows an example of a non-key
relationship.

Figure 44.11.

Input attributes for columns.

Figure 44.12.

Non-key relationships are indicated with dotted lines.

You can then specify the rules for the non-key relationships by double-clicking the
connector. After you do that, you see the screen shown in Figure 44.13 where you can
specify the join conditions.

Figure 44.13.

Specify the non-key relationship conditions.

Transfer Extended Attributes from and to Informix After you enter all the default
properties you might need for the SuperView, you can then transfer these rules to the
Informix database so that these attributes appear in ViewPoint Pro. Similarly, if the
database already has extended attributes, you can just reverse them into your model. You
need the ODBC drivers for Informix to make the connection so that you can forward or
reverse the extended attributes. To get to the connection screen shown in Figure 44.14,
select NewEra|Synchronize.

Figure 44.14.

Connecting to the database and transferring extended attributes from and to SR-RDM.

Defining the SuperView Structure

In this section, you see how to create SuperViews in SR-RDM, how to enter SuperView-
specific information, and how to update the database to transfer the SuperViews to the
database so that you can paint screens and reports based on the SuperViews.

Creating a SuperView

To create a SuperView, you first must select all the tables and connectors you use in the
SuperView. You can use a special tool to select an object and its neighboring elements.
This tool and the result of the selection are shown in Figure 44.15.

Figure 44.15.

Selecting objects that go into a SuperView.

Then you click the Create SuperView icon. SR-RDM prompts you for the name of the
SuperView. You can provide a name for the SuperView, and you have a schema with just
the objects you selected for the SuperView. See Figure 44.16 for the result of creating a
graphical SuperView.

Note that the tools palette changed, and there are tools you might need at the SuperView
level. Figure 44.17 gives you a summary of the tools palette for the SuperView level.

Adding Details to a SuperView

You are now ready to add some SuperView-specific information. Some of the
information is similar to the information at the database level. You might need to specify
similar information at this level if it is different from the database level. For example,
suppose that for most cases, you want the input format for currency to have two places
after the decimal points, but in one case, you want five places after the decimal point.
You should specify the column with two places after the decimal point at the database
level and override it for one SuperView that needs a higher level of precision.

Figure 44.16.

A graphical representation of a SuperView.

Figure 44.17.

The SuperView tools palette.

Specifying the Master Table in a SuperView When you first create a SuperView, no
master table is selected. You have to manually specify the master table and SR-RDM
figures out the children table levels automatically. You choose the master table by using
the Master Table tool and clicking the master table. After you do this, SR-RDM puts an
M next to the name of the table to graphically denote which table is the master as well as
the different levels. Figure 44.18 shows the results after picking the master table.

The master table and the tables with the levels L1 through Ln are considered anchor
tables. Tables numbered N1 through Nn are considered neighbor tables.

Figure 44.18.

The SuperView table hierarchy displayed.

Specifying Hidden Columns and Sort Order for a Column In a SuperView, you need
not use all the columns in a table. In SR-RDM you can hide a column at the SuperView
level. When a column is hidden, it is not available to the screen painter. Using the Hide
column tool, you just click the columns you want to hide. Figure 44.19 shows the
graphical representation of columns not used in the screen.

Figure 44.19.

The customer table has the address2 and country columns hidden (denoted by a prefix
H).

You can also delete a column from the SuperView. Deleting a column in the SuperView
is irreversible. If a column is deleted and you want it back, you have to bring the whole

table into the SuperView and specify the column rules again. If you want to unhide a
column, all you need to do is click the column with the same tool.

To specify the sort order for columns, use the Sort Columns tool. The default sort order is
ascending. To change it to descending, click the right mouse button on the icon, pick the
descending icon, and tag the columns in the order you want. Figure 44.20 shows that in
the customer table, lname and fname are sorted by ascending order.

Figure 44.20.

Displaying the sort order for the columns.

In Figure 44.20, you see that in the customer table, the sort order is lname and then fname
by the numbers. The suffix of A indicates that it is an ascending sort. In the sales header
table, the sort for sales_date is descending.

Copying Columns from Neighbor Tables into Anchor Tables The only columns
available for screens and reports from a SuperView are the columns in the anchor tables.
If you want columns from the neighbor tables, you must copy the desired columns into
the anchor tables using the Derive by Copy tool. Figure 44.21 shows the tool and the fact
that the sales_items table has two columns from the parts table.

Figure 44.21.

Copied columns from neighbor tables into anchor tables.

Specifying Other Rules at the SuperView Level Other rules such as display attributes,
input attributes, possible values, conditional display rules, labels, titles, and NewEra
aliases can be specified or overridden exactly the way you did it at the database level.
Refer to the "Putting in the Extended Attributes" section, earlier in the chapter, for this
information.

Verifying and Generating the SuperView I highly recommend that you verify the
SuperView to make sure that you will not have problems when you implement it. SR-
RDM has a menu option that performs this task for you. If there are errors, a log file is
generated. You can then view or print this file.

Duplicating SuperViews Sometimes, you might have multiple SuperViews that use the
same tables and connectors but might have some small differences. These differences
might be the columns that are hidden, a different sort order, or other minor differences. In
these situations, it might be easier to make a copy of an existing SuperView and then
make the minor changes as opposed to creating a SuperView from the beginning. To do
this, while you are in the SuperView you want duplicated, just click the Duplicate
SuperView icon. SR-RDM asks you for the name of a new SuperView and then copies
the existing SuperView as a new one.

Deleting SuperViews To delete a SuperView, you must go to the database level, select
NewEra|SuperViews, and delete the one you do not want. Figure 44.22 shows the screen
to do this.

Figure 44.22.

Deleting SuperViews from SR-RDM.

Updating SuperViews in the Informix Database

When you are satisfied with the design of the SuperView, it is time to implement the
SuperView in Informix. Again, you use an ODBC connection to connect to the database.
When you are connected to the database, you have the option of generating selected
SuperViews in the Informix database. This interface also provides a list of the existing
SuperViews, which can then be reverse-engineered into SR-RDM. You can also delete
SuperViews from Informix using the screen in Figure 44.23.

Figure 44.23.

Implementing SuperViews from SR-RDM.

Summary

This chapter discussed the need for and the uses of SuperViews in Informix database
management systems. Although the concept of the SuperView is powerful, it is not very
easy to create one manually. Using SR-RDM makes it easy to create SuperViews and
update the database. This way, when you are ready to build the interfaces, you already
have the SuperViews on which you can build the screens and reports. All in all, the SR-
RDM tool provides an efficient way for designing and implementing SuperViews.

- 45 -

Modeling Types for INFORMIX-
Universal Server

• What Is INFORMIX-Universal Server?
• Advantages of INFORMIX-Universal Server
• Concepts and Modeling for Universal Server

o Built-In Types
o Row Types
o Opaque Types
o Collections

• Creating Tables in INFORMIX-Universal Server
o Defining Typed Tables
o Defining Tables with Row Types

• Summary

by Jim Prajesh

What Is INFORMIX-Universal Server?

In this chapter, I briefly discuss the major concepts you need to understand to build
models and generate code for INFORMIX-Universal Server. The INFORMIX-Universal
Server (from now on referred to as IUS) is the first of what is expected to be the "next
wave" of data storage and retrieval technology. The database technology used is usually
called Object Relational Databases. As you will see in the following sections (assuming
you continue to read on), this technology enables you to use concepts that you are already
familiar with in relational technology and additionally has support for certain concepts
from object-oriented techniques. The SQL committee, ANSI, and ISO will include these
concepts in the standard currently called SQL3. As was the case with SQL-92, vendors
will come out with databases using the new "standard" before the standard is officially
published.

Because I discuss some concepts used in object orientation in this chapter, I use a
notation called Unified Modeling Language (UML) for the diagrams. This notation is
becoming the de facto standard for modeling object-oriented concepts and is initially
being defined by the Rational Corporation. I used the SILVERRUN tool to create the
diagrams used in this chapter.

Advantages of INFORMIX-Universal Server

In INFORMIX-Universal Server, you can still use the concepts that you use in standard
relational technology. This capability is a big advantage because it implies that you do
not have to rebuild your existing systems. Because backward compatibility with existing
systems and support for building new systems with the older technology will be
maintained, the cost of taking advantage of the Object Relational technology in terms of
retraining employees can be spread out over time, implying that all your staff need not go
to weeks of classes because you upgraded your database. Additionally, the cost
(including time) of migrating to the new technology can be tied into new systems being
built as opposed to the costs of going back and rebuilding old systems just to take
advantage of the new technology. Of course, using this new technology also implies that
systems built using the new technology can coexist with new systems.

To take full advantage of the new capabilities of the technology, you will have to
understand some new concepts and how they can be implemented. One of the important

advantages in INFORMIX-Universal Server is the support for extensible data types.
Extensible data types along with user-definable functions for the new data types simplify
your database definitions. Another important advantage is the support for DataBlades.
DataBlade modules allow you to reuse sets of extended data types. Therefore,
organizations can easily reuse these types while building new systems and also purchase
predefined industry data types or create project- specific extended data types and use
them, thus saving the cost and trouble of creating their own extensions to the basic data
types. If your organization needs to store and retrieve movies, for example, you need
special data types to support multimedia information. If a DataBlade vendor already has
these types, you can just purchase them. Although purchasing and plugging in industry-
specific data types and associated functions will become commonplace, at the time of this
writing Informix is the only major database vendor that has this technology available.

A number of vendors are already providing DataBlade modules for specialized purposes
such as the following:

• Statistical functions that come with predefined functions for financial risk
management, returns on various types of financial instruments, and so on

• Text access and retrieval with functions to make rapid retrieval and
storage of text data easier

• 2D and 3D spatial functions that can be used for various purposes,
including Geographical Information Systems (GIS) and seismology

• Web-specific types and functions providing support for dynamically
creating, updating, and retrieving Web content such as HTML and Java
applets

• Image storage and retrieval for managing multimedia information in
industries such as desktop publishing, digital studios, and multimedia
production facilities

• Audio information storage, analysis, and retrieval of sound for industries
such as the music and television industry

• Modules with customized data types and functions for time series analysis
such as performance of the stock market over time

• Various modules for managing lists, including merge and purge
functionality to help maintain mailing and other lists

Because the DataBlade modules not only provide data types but also come with
necessary functions, the complexity of your application will be reduced greatly. Most
modules are also optimized for performance.

Concepts and Modeling for Universal Server

Chapter 43, "Model-Driven Development for the Informix RDBMS," describes modeling
for INFORMIX-OnLine/SE Relational Database Management systems. In that chapter,
you learned about modeling occurrences of business concepts. One of the problems with
that approach is the lack of support for reuse. For example, you want to define an
Employee table. If another table has the same properties as the Employee table, however,
you still have to re- create the new table even though you have already defined a similar
table. In some cases, you can use the LIKE clause, but it is not an efficient mechanism.

In the Object Relational world, you can define a data type called "employee type" that
has the necessary attributes of an employee, and then you can reuse this extended data
type for defining tables that have similar properties of an employee. Functions related to
the new data type can also be defined. Of course, the extended data types can also be
used to define the data types of columns. Essentially, you're switching from modeling
organizational entities to organizational types. Also, existing types can be extended to
create new types. So while you're building applications using this new technology, you
are always looking to reuse and extend existing types. Extending existing types is
obviously easier than creating new ones. In this chapter, you will look at the various
types of data types supported in INFORMIX-Universal Server and how to model them.
You will also look at how to specify tables using the new data types.

You need to understand and model certain specific definitions. You can create the
following different types of data types in the INFORMIX-Universal Server:

Built-in data types: These types are equivalent to the data types relational database
management system (DBMS). They are types such as CHARACTER, INTEGER, FLOAT, and
so on.

• Row types: A row type is composed of a set of fields, each of which can be
of any data type (including opaque types), not only of built-in or other row
types.

• Opaque types: These extended data types are defined in an external
language such as C and registered in the IUS system catalog and can be
used whenever this type is needed. Support functions for this type have to
be created (at least for now) using the C language and created outside the
database.

• Collection data types: You can define three types of collections: sets, lists,
and multisets.

Figure 45.1 shows the hierarchy of types supported in IUS; I used the UML notation to
create this figure. The arrow with the open arrowhead tells you that the object at the tail
of the arrow is a subtype of the object to which the arrowhead is attached. Note that all
the user-defined types can be created from other user-defined types. You might find some
restrictions on how certain user-defined types can be used to define other types.

Figure 45.1.

Type hierarchy in INFORMIX-Universal Server.

Figure 45.1 describes the topology of types supported by IUS. The actual types are the
ones listed in the leaf nodes. The other nodes are semantical categories.

Most CASE tools supporting IUS can reverse-engineer existing libraries of types, so you
will have them available for creating new types, modifying existing types, and assigning
tables and columns to the new types created.

Built-In Types

Built-in types are provided by the databases. They are also sometimes called simple
types. Examples of this type are CHARACTER, INTEGER, NUMERIC, SERIAL, and so on. You
cannot modify these types. They give you a basic set of types to start from. The
operations that can be performed on these types are also fixed. These data types can be
modeled as objects with a specific flag telling you that they are built-in types. You can
use these types for creating row types. It is conceivable that you might want to add
functions to the built-in types. Figure 45.2 shows one way of specifying built-in types as
objects.

Figure 45.2.

A graphical representation of built-in types.

Functions

IUS, which allows you to specify functions and procedures, differentiates between the
two. Functions return one or more values, whereas procedures don't. Functions can be
stored in the database when created using Stored Procedure Language (SPL), or they can
be stored external to the database. External functions are usually written in the C
language. Among other things, functions can be used to specify the rules associated with
the extended data types discussed in the following sections. Functions are not explicitly
attached to the types like you do methods (operations or services) in object-oriented
systems. However, using the SILVERRUN tool, the functions can be dynamically linked
to extended types by the parameters these functions use. I discuss this subject further in
the sections on the various types.

Row Types

Row types are stored within the database. They can be created using built-in types or
other row types. They also can be created as subtypes of other row types. You can use a
row type to define either a row or a table. Figure 45.3 shows a graphical representation of
a row data type that uses a combination of built-in types and other row types.

Figure 45.3.

An example of a row type created using other types.

In Figure 45.3, you can see that a row type can be created using built-in types as well as
other row types. This capability saves you a lot of time in defining new types. You have
to specify only how the new type is different from the old type.

You can create other row types as subtypes of other row types because subtypes inherit
the properties (including functions) of the supertypes. For this reason, you can easily
create specialized, predefined types for specific purposes without re-creating the whole
type. For the new row type created as a subtype, you just have to add the new properties
and the types associated with the new properties. Figure 45.4 shows a row type created as
a subtype of another row type.

Figure 45.4.

A row type inheriting from another row type.

In Figure 45.4, the employee type is a subtype of a person. In the employee type
definition, therefore, you need only add the properties specific to the employee that are
not in the definition of person.

Of course, you might have many levels of inheritance, as shown in Figure 45.5.

Figure 45.5.

Subtype hierarchy for row types.

A row type can theoretically be inherited from multiple supertypes. This capability is
called multiple inheritance. Multiple inheritance is not supported in the current version of
INFORMIX-Universal Server; it will, however, be supported in a future version of IUS.

After you design the row types, you have to create the types in IUS. A minimal syntax for
specifying the row types is shown in Listing 45.1.

Listing 45.1. Creating row types.
CREATE ROW TYPE manager type
(
budget amount
quota integer
)

UNDER employee type

Functions for Row Types

Row types can have functions associated with them. These functions define the rules
specific to the type. You can specify the functions using SPL. In this case, they are stored
in the database, or they can be specified as "external." For external functions, the actual
code is not stored in the database. A reference and the path to the function are stored in
the database.

A function can be used by multiple types if needed. Assuming functions are designed for
reusability, you get a lot more flexibility than if functions were local to a type. Figure
45.6 shows the representation of functions for the types.

Figure 45.6.

Row types with functions.

Note that in Figure 45.6 some functions are specified for more than one type. In this case,
the function at the leaf (lowest) level is the one that is executed.

Opaque Types

Opaque types are defined outside the DBMS, but a list of the types and the reference to
the paths are kept in the database. Only the parameters and the path where the function is
stored are kept in the database. The data type is not visible to the database, hence the
name opaque. The functions used with opaque types have to be written in the C language.
This function is registered in the database using the CREATE FUNCTION statement, but
during execution, the executable stored outside the database is executed.

Collections

Any type can be defined as a collection. IUS has three types of collections.

• Set: This collection is an unordered group of values that are distinct.

• Multiset: This collection is an unordered group of values that can have
duplicates in the values.

• List: This collection is an ordered set of values.

The syntax for defining a row or a row type is shown in Figure 45.7.

Figure 45.7.

Type definition with collections.

Creating Tables in INFORMIX-Universal Server

You can create two types of tables in IUS:

• Typed tables are tables that are defined by a row data type.

• Untyped tables are created the same way you create tables in INFORMIX-
OnLine or INFORMIX-SE. All the columns have to be defined explicitly,
and the built-in data types are used to define the characteristics of the
columns.

I don't discuss creating untyped tables in this section, but it's nice to know that you can
still use the techniques you're already familiar with if you need to. These techniques are
discussed in Chapter 43.

Defining Typed Tables

After you define an extended data type, you can define a table name and assign it to a
row type. This process makes defining a table extremely simple. Because the functions
are also defined in the extended data type, you do not have to redefine them for every
table created using the extended data type. Currently in IUS, one of the limitations is that
the typed tables cannot have any additional columns defined. Listing 45.2 shows the
syntax for specifying a typed table. Note that I have used a "logical" name to help you
relate to the preceding examples, but in actuality, you have to use a syntactically correct
name.

Listing 45.2. Creating a typed table.
CREATE TABLE person OF TYPE person type;

As you can see, the amount of work needed to create a table is minimal. Most of the work
is done in designing the types. But the types can be designed once and reused with little
or no modifications. If you want to create an employee table, for example, the syntax
would be as shown in Listing 45.3

Listing 45.3. Creating an employee table.
CREATE TABLE employee OF TYPE employee type;

Now, if you want the database to maintain a supertype-subtype relationship between the
tables, you have to change the syntax slightly to specify the relationships between the
tables, as shown in Listing 45.4.

Listing 45.4. Specifying a supertype-subtype hierarchy.
CREATE TABLE employee OF TYPE employee type
UNDER person;

Of course, the supertype table has to exist. You also can add extensions to the syntax,
such as specifications for fragmentation expression and check constraints. These syntax
rules are not covered in this chapter.

Defining Tables with Row Types

In this section, I briefly discuss the use of a row type to define columns. This capability
gives you some flexibility in using the types because you can add additional columns to
the table that is defined using relational technology. This capability also allows you to
modify existing tables to have typed rows first and then eventually to have typed tables.
Listing 45.5 gives an example of using row types for columns.

Listing 45.5. Using row types for columns.
CREATE TABLE vendor
(
vendor_name VARCHAR(30)
vendor-address address type
vendor status CHAR(1)
)

The example in Listing 45.5 uses the address type for the definition of a row. In reality,
this row might contain more than one column if the row type is a composite row type.

Summary

Having the ability to create types or plug in predefined types gives your organization
much needed flexibility in keeping track of your information. Allowing for typed tables
enables organizations to reuse designs created by various people (internal or external to
the organization). The next issue will be keeping track of the types that were created. A
good modeling tool will help you keep track of the types you or anybody else has
previously defined and documented. A combination of a good modeling tool, people with
good design background, and INFORMIX-Universal Server will provide your
organization with a flexible way of managing your information assets, no matter what
format your information is in.

Part VII - Appendixes
Appendix A - Finding Help

- Appendix A -

Finding Help
• Electronic Help

o Informix Answers OnLine
o Internet News
o Informix E-Mail List
o The Fourgen Mailing List
o International Informix User Group
o More Web Sites

• Printed Help
o Books
o Periodicals

• Help You Can Talk To!
o TechSupport
o Training
o Local User Groups
o User Conferences

• Summary

by Kerry Sainsbury

There are times when you've been working with an Informix problem all day, and
nothing seems to be going right. Your database is crawling and your programs keep
giving some strange error code that you just can't understand. People are demanding
action, and they're demanding it now.

This appendix provides you with sources of Informix information that can help you out if
you're in a genuine crisis or, preferably, keep you so well informed that you'll be able to
preempt any problems before they arise at your site.

Electronic Help

Often the most up-to-date information can be found electronically via the World Wide
Web or Internet newsgroups. This information is generally provided by real-world users
of Informix products, so you tend to get honest responses to questions, rather than
precooked marketing presentations.

Informix Answers OnLine

Informix Answers OnLine is Informix's official online technical support area, which is
broken down into sections dedicated to Support, Publications, and Training. Because it is
run by the technical support people, you'll find most of the information here to be
genuinely useful (or at least interesting).

You can find Informix Answers OnLine at the following address:

http://www.informix.com/answers/

NOTE: All of the useful information provided within Informix Answers OnLine
(IOL) is free to Informix users with a current support contract. IOL is also
available on compact disc. Contact your local Informix representative for more
information.

Product Alerts

Alerts are serious bugs that you urgently need to know about. Fortunately, these are few
and far between, and they are usually so obscure that you wonder how anybody ever
found them in the first place. Still, it's nice to know that Informix is honest enough to tell
people about them, rather than bury its head in the sand and hope the problems go away.

Product Defects

Informix provides a search engine designed to help you identify Informix bugs. If you're
having a strange problem that you can't explain, it can be very comforting to discover that
it's a known bug. Often, you can use a workaround to avoid the bug, or you'll find a note
indicating which version of the product the bug has been fixed in--so that, if possible, you
can upgrade to that release.

Product Life-Cycle

If you ever have a question about Informix's plans for your tool of choice (for example, is
INFORMIX-4GL a dead language?), this is the company's official word on the subject.
Informix places each product in a category representing Informix's level of support, and it
puts a date at which it will descend to the next level of disinterest.

Porting Information

Occasionally, you read about the latest version of an Informix product, and you get
excited about the new features that will be available in that release. This is the time to
turn to the Porting Information section of Informix Answers OnLine to find out when the
version will become available on your hardware.

TIP: Like most things in the computer industry, you're usually better off not
being among the first to get a new major release of a product. It's often better to
let other people, on the "bleeding edge," find the bugs for you.

Other Documentation

Also available within Informix Answers OnLine is a variety of additional documentation
in the form of release notes and information specific to particular hardware platforms.
This can be invaluable when you're in the process of considering whether to upgrade, and
the people inside Informix's marketing department aren't able to supply the technical
detail you need.

Internet News

The prime electronic source for Informix-related information is definitely the Internet
newsgroup (or, more properly, the Usenet newsgroup) comp.databases.informix.

This newsgroup harbors hundreds of experienced Informix professionals prepared to help
one another solve Informix problems and discuss Informix in general.

It's here where people discuss topics such as "Is it better to use INFORMIX-OnLine
mirroring, HP-UX mirroring, or Hardware mirroring?" (It's also where people ask
"What's mirroring?") This is a very friendly newsgroup, with plenty of people prepared to
help newcomers to Informix.

Point your Web browser to news://comp.databases.informix.

Informix E-Mail List

If you don't have access to newsgroups, you'll be pleased to know that all the information
that appears in comp.databases.informix is also available via an e-mail mailing list,
which is run by Walt Hultgren.

In order to subscribe, send an e-mail to informix-list-request@rmy.emory.edu, and
include your contact information. This e-mail will be handled by a real person, so there
are no special instructions that you need to include. Just be courteous!

NOTE: This list generates approximately 1,100 to 1,200 messages a month, so if
you're in the habit of taking long vacations, be prepared for some information
overload when you get back.

The Fourgen Mailing List

A mailing list is dedicated to helping people use the INFORMIX-4GL-based CASE tool
Fourgen.

NOTE: This product was also sold directly by Informix under the name Informix-
FORMS for a time.

To subscribe to the mailing list, send an e-mail to 4gen-list-request@garpac.com,
with the command subscribe <your email address here> in the body of the
message.

After you have subscribed, you can post to the list by sending an e-mail to 4gen-
list@garpac.com.

If you send a message to the list, you are automatically subscribed.

This list is maintained by Clay Irving (at the addresses clay@panix.com and
http://www.panix.com/~clay).

International Informix User Group

The International Informix User Group (IIUG) is an organization that attempts to be a
"one-stop shop" for individual Informix users and Informix User Groups. In addition to
technical information, the group can also put you in touch with your local user group, or
provide you with a kit to help you establish one in your area.

NOTE: In addition to help, the IIUG provides a direct channel to the Informix
Head Office for issues users feel are important. The group procures training and
conference discounts for members and generally does what it can to make
Informix users and user groups happy. Currently, membership in the IIUG is
free.

Among other things, IIUG's Web site, at http://www.iiug.org, includes the items
covered in the following sections.

Free Software

The IIUG provides a home to the largest collection of Informix-related software on the
Internet. INFORMIX-4GL code generators, database utilities, 4GL menu routines, and
more are all available to Informix users.

Technical Documents

A comprehensive collection of technical articles related to Informix products is available
at the IIUG. Many of the articles that appear here go on to be featured in magazines or

books, so this is a great way to stay ahead of your colleagues. Conversely, if you've got
some information you want to share with the world, this is the place to put it.

Search Engine for comp.databases.informix

The IIUG archives all postings that are sent through the comp.databases.informix
newsgroup, and it makes available an engine capable of keyword searches through those
messages. Often, you're not the first person to encounter a particular problem, so a search
here can find the answer instantly--which is better than having to repeat the question on
comp.databases.informix and wait for a reply.

More Web Sites

The IIUG isn't the only Web site with Informix-related material. The better ones are
listed in this section.

www.access.digex.net/~waiug/

The Washington Area User Group is a well-established group and has one of the best
collections of articles to be found anywhere.

www.dataspace.com.au

This Australian site contains a good collection of articles, including some related to
Informix's competitors, which can make for interesting reading.

www.mindspring.com/~tschaefe

Tim Schaefer's site is home for his collection of 4GL utilities, which includes code
generators and tools to assist in the use of "troff" to generate high-quality reports with
4GL. These are all available without charge.

A new feature is a monthly Informix e-zine that shows great promise.

www.ece.vill.edu/~dave/Free

Dave Snyder's site is another home for Informix utilities, including a product that can
create an entire 4GL maintenance program for a given table and a handy little tool called
"vie," which greatly increases your productivity when editing 4GL error files.

www.rl.is/~john/pow4gl.html

This is the home of Power-4GL, a library of INFORMIX-4GL routines designed to make
your coding quicker, easier, and more productive. Although this is a commercial product,
a Power-4GL-Lite is available for free, and it includes full source code.

www.inquiry.com/techtips/info_pro/

This is the home of "Ask the Informix Expert." At the time of writing, this is a very new
service, and it's unclear how many people know that it exists. However, it's a great idea as
long as it can keep up with the potential demand.

The people answering the questions are genuinely "Informix Experts," so it should be a
good source of quality answers. The service is free.

Printed Help

If you're electronically challenged, or if you like the idea of pulverizing trees, then a
number of printed publications are available that should help satisfy your needs.

Books

A growing number of Informix books (including this one) are available in your local
bookstore. Most of these books are well-written and worth investigating. Here is a short
list:

• Elizabeth Suto. Informix Press. ISBN: 0-13-239237-2.

• Elizabeth Suto. Informix Press. ISBN: 0-13-124322-5.

• Cathy Kipp. Informix Press. ISBN: 0-13-149394-9.

• Joe Lumbley. Informix Press. ISBN: 0-13-124314-4.

• Art Taylor. Informix Press. ISBN: 0-13-301318-9.

• Robert D. Schneider. Informix Press. ISBN: 0-13-149238-1.

• Michael L. Gonzales. Informix Press. ISBN: 0-13-206723-4.

• Art Taylor and Tony Lacy-Thompson. Informix Press. ISBN: 0-13-209248-
4.

• Jonathan Leffler. ISBN: 0-201-56509-9.

• Paul R. Allen, Joseph J. Bambara, and Richard J. Bambara. McGraw-Hill.
ISBN: 0-07-913056-9.

Periodicals

In addition to the mainstream periodicals, such as or , there are also some Informix-
specific publications (most of which are published by Informix itself).

Informix Systems Journal (ISJ)

ISJ is an independent magazine that tends to be published somewhat irregularly. The
content is generally good, however, and the magazine's current policy of free
subscriptions is certainly attractive.

For more information, contact the editor, Tom Bondur, via e-mail at
73311.3553@compuserve.com, or at the following address:

Informix Systems Journal

40087 Mission Boulevard, Suite 167

Fremont, CA 94539-3680

phone: 800-943-9300

TechNotes

This is Informix's official vehicle for technical articles. Content is provided not only by
Informix employees, but also by general members of the Informix community. The
quality of articles is variable, ranging from excellent technical detail to blatant marketing
propaganda--with more recent issues leaning toward the latter.

is available for free to users maintaining INFORMIX-OpenLine and "Regency" support
agreements. Contact your local Informix office for more information.

TIP: If you're surprised that you've never heard of this magazine, and you know
that you have a support agreement, check whether the magazine is being sent to
the person in your organization who ordered Informix. It is quite common to find
somebody in your administration department with a great pile of TechNotes on a
shelf collecting dust.

The Informix Solutions Guide

This publication, which is also available at Informix's Web site and on CD-ROM, is a
guide to providers of products that in some way complement Informix's tools and
databases. This includes CASE tools, code generators, programs to translate from 4GL to
NewEra, consultancy companies, complete INFORMIX-4GL Manufacturing packages,

and a myriad of other products. If you're looking for a quick fix, you might be able to
find it here.

Other Informix Publications

Informix produces two other periodicals, and , which provide general Informix
information in a glossy newsletter style. Contact your local Informix office to see
whether these are available in your area; in most places, a subscription is available at no
charge.

Help You Can Talk To!

Occasionally, reading books and Web sites just isn't enough. To express a problem
clearly, sometimes you need to speak to real people. Talking to real people is pleasant in
other ways, too.

TechSupport

The least entertaining but most useful people to tell your problems to are the people who
are paid by Informix to help you. The Informix TechSupport people have access to an
awesome amount of accumulated knowledge, as well as access to the people who actually
write the database engines and programming languages we use. If your database explodes
in a ball of flames, these are the guys and gals you can rely on to dial in and get you
going again as soon as possible.

Training

Although there is no alternative to experience and to reading the Informix manuals, a
good way to get a jump-start on a new product is to attend an Informix training course.
Some third-party companies also run Informix training courses, which can be as good or
better than the official Informix ones. Talk to other Informix users in your community to
learn whether any such classes are available to you.

TIP: Sometimes, it can be a good idea to attend a training course before you
decide whether you want to use a product. You can often learn a great deal more
with a bit of hands-on experience and quiet interrogation of your trainer than you
learn by just reading a product's sales literature.

Local User Groups

Local User Groups usually meet every few months, and they generally try to provide
members with useful information that is somehow connected to Informix. This might be
somebody giving a demonstration of their latest product, an explanation of how the

Informix Optimizer works, or a case study of how a user implemented a data warehouse
at his site.

User Groups vary widely in their facilities. Some charge membership dues, provide
regular newsletters, organize training classes, and hold miniature conferences. Others are
less structured.

One of the major benefits of any user group is simply getting together with like-minded
professionals in your area and talking with them. It's a great way to stay up-to-date with
local events, and it's a good way to meet interesting people.

A listing of current User Groups appears in Table A.1. If none of the groups looks local
to you, contact Informix's User Group Liaison (usergrp@informix.com) for more help.
They can always send out their information pack to help you set up your own group.

Table A.1. Informix User Groups around the world.

Australia Canberra Dominic
Lancaster

6.243.6590 dlancaster@das.gov.au

Australia NSW Gavin
Nour

0419.803.113 nourg@acslink.net.au

Australia Victoria Tony
Moore

3.98.94.2500 agm@labsys.com.au

Australia Perth Peter
Fillery

9.351.7685 fillery@BA1.curtin.edu.au

Belgium/Luxembou
rg

Dominiqu
e Wilms

2.255.0909 dw@maxon.be

Canada, Ontario Shawn
Dagg

613.782.2237 sdagg@bradson.com

Denmark Thomas
Keller

4.289.4999 keller@uniware.dk

Germany Bernd
Langer

525.113.5824 100042.2455@compuserve.com

Great Britain Malcolm
Weallans

181.421.1227 PBarnett@CIX.Compulink.co.UK

Italy Ivan
Zoratti

26.604.8423 asitaly@mbox.vol.it

The Netherlands Mr
Steins-

73.692.1692 j.steins.bisschop@spc.nl

Bisschop

Norway Nils
Myklebust

2.205.3156 Nils.Myklebust@ccmail.telemax.n

o

Philippines Jonash
Santa Ana

2.811.5470

Sweden Bjorn
Gustavsso
n

13.145.200 bjorn@kloster.se

Switzerland Felix
Schenker

62.834.1500

U.A.E. Nitasha
Kohli

659.9848 Infodsh@emirates.net.ae

West Indies Simone
De Sousa

636.2878 sds@opus-networx.com

USA Arizona Bob
Baskett

602.244.4796 rzbj40@email.sps.mot.com

USA CA, North Federico
Hubbard

408.366.9745 fred@infosoft.com

USA CA, South Sandee
Gilbert

310.320.4300 dgc@ix.netcom.com

USA Colorado Cathy
Kipp

970.226.0240 ckipp@verinet.com

USA FL, South Bruce
Hard

407.750.5238 bocadbsi@ugn.com

USA Georgia Walt
Hultgren

404.727.0648 walt@rmy.emory.edu

USA Illinois Maria
Lupetin

708.390.6660 102216.2713@CompuServe.com

USA Indiana Frank
Catrine

513.985.6004 frankc@collegeview.com

USA Kansas Orv
Einsiedel

913.345.6370 orv@igate.sprint.com

USA Kentucky Frank
Catrine

513.985.6004 frankc@collegeview.com

USA Michigan Ron 313.464.3700 rflannery@zenacomp.com

Flannery

USA Minnesota John Hite 612.333.3164

USA Missouri Jan
Richardso
n

314.838.8527 jr4676@strydr.com

USA Nebraska Kevin
Graham

402.491.2658 Kevin_Graham@firstdata.com

USA New England Stuart
Litel

617.527.4551 slitel@netcom.com

USA New Jersey Ronald
Wanat

908.469.4070 ronw@summitdata.com

USA New York Steve
Husiak

212.753.3920 husiak@informix.com

USA North Carolina Tim
Howerton

910.625.9198 timh@summitdata.com

USA Ohio Frank
Catrine

513.985.6004 frankc@collegeview.com

USA Oregon Rick
Crecson

503.639.0816 PNIUG@meridiangroup.com

USA PA,
Philadelphia

Laurence
Sigmond

215.848.8889 larry@logsys.com

USA PA, West Joseph
Wynn

412.562.0900 wynn@aii.edu

USA TX, Austin Christine
Schramm

512.795.6213 christine_schramm@bmc.com

USA TX, North Leo Liu 214.985.6384 leo@pagenet.com

USA Utah Carlton
Doe

801.572.6165 dbaresrc@xmission.com

USA Washington John
Waltersi

206.635.0709 john.walters@asix.com

USA Washington
D.C.

Lester
Knutsen

703.256.0267 lester@access.digex.net

USA Wisconsin Sally
Koskinam

612.449.6632 sallyk@informix.com

The latest user group information can be found at

http://www.informix.com/informix/corpinfo/usrgrups/usrgrups.htm

User Conferences

Every year Informix holds the Informix World-Wide User Conference in the United
States. This event runs for three or four days, and it includes a great deal of Informix
information targeted at everybody from your company's directors to the technical staff on
the front line. Sessions run for about 45 minutes, in one of three broad themes (which are
outlined in the following sections).

The conference also features a trade show, housing exhibits from companies with
products that complement Informix's products. Being able to talk to these companies
directly and get some hands-on experience with their products is far more efficient than
pondering glossy brochures and magazine articles.

Similar, but smaller, events also run irregularly outside the U.S.

Theme One: The Future

Informix talks about where it is going and what its plans are for the next year or two.
There are discussions on the latest technologies and how they fit into Informix's future.
It's all quite good stuff, designed to let you know that Informix is aware of current trends
and hasn't gone to sleep just yet.

Theme Two: Case Studies

Informix clients get on stage and talk about their experiences with a tool or technique.
Subjects might include "Converting from 4GL to NewEra," "How we implemented a
Data Warehouse," or "Making Informix talk to Borland's Delphi."

These sessions can be immensely useful because the people giving the presentations have
actually done the job. Therefore, they can talk about the subject at a practical level rather
than a conceptual one.

Theme Three: Technical Information

These sessions provide the real technical "meat" for developers and DBAs. Information
on database tuning, how to generate Web pages using 4GL, and NewEra coding
techniques would appear here. These are almost like miniature training courses, and they
are usually well worth the effort of attending.

Summary

You can find plenty of help out there when you need it. The best free help is probably the
comp.databases.informix newsgroup or the International Informix User Group's
home page at www.iiug.org.

Don't forget to keep up-to-date with Informix itself, either directly via its publications or
through your local user group. And if you can get to one of Informix's World-Wide User
Conferences, you'll run into more help than you can shake a stick at. Good luck!

	Informix Unleashed
	Introduction
	PART I – INTRODUCTION
	chapter 1 : Informix Company Overview
	Informix Software, Inc.
	Summary

	chapter 2 : Informix's Future Direction
	Informix: Always on the Leading Edge
	High-Level Direction
	Where Is Technology Going?
	Creating the Future: Informix Products
	Summary

	chapter 3 :Database Concepts
	Data Management Concepts
	Summary

	Part II - Informix Environments
	chapter 4 : Informix Environment Introduction
	Range of Environments
	Summary

	chapter 5 : INFORMIX-Standard Engine
	What Is INFORMIX-Standard Engine?
	Uses
	Limitations
	System Architecture
	Summary

	chapter 6 : INFORMIX-OnLine
	What Is INFORMIX-OnLine?
	Uses
	Limitations
	Differences Between INFORMIX-Standard Engine and INFORMIXOnLine
	Two-Process System Architecture
	Networking with INFORMIX-NET and INFORMIX-STAR
	Using INFORMIX-STAR and INFORMIX-NET Together
	Summary

	chapter 7 : INFORMIX-OnLine Dynamic Server
	What Is OnLine Dynamic Server?
	Uses
	Limitations
	Differences Between OnLine and OnLine Dynamic Server
	Multithreaded Architecture
	Dynamic Server's Client/Server Configuration
	Summary

	chapter 8 : INFORMIX-Universal Server
	Overview
	Configuration Changes
	Application Programming Interfaces
	User-Defined Routines
	Data Types
	Access Methods
	Developing DataBlades
	Tools and Utilities
	The Informix Web DataBlade
	Summary

	Part III - Informix Administration
	chapter 9 : Administration Introduction
	Being a DBA
	Types of DBAs
	Tasks of DBAs
	Interaction Between the DBA and the Developer
	Interaction Between the DBA and the User
	Summary

	chapter 10 :Installing an Informix Environment
	Preparing to Install the INFORMIX-OnLine Product Family
	Installing Informix Products
	Bringing the Informix Database Server OnLine
	Customizing Your Informix Environment
	Upgrading the Informix Version
	Problems You Might Encounter
	Summary

	chapter 11 : Configuring the Informix Environment
	Message and Log Files
	Connectivity Files
	The Root dbspace
	Estimating the Size of the Root dbspace
	Initializing the OnLine Engine
	Creating Additional dbspaces
	Mirroring Strategy
	Managing the Logs
	Informix Temp Space
	A Sample onconfig File
	Starting and Stopping the OnLine Engine
	Using Informix ON-Monitor
	Summary

	chapter 12 : Incorporating a Database in Your Onformix Environment
	Designing the Database
	Database Design Considerations
	Populating the Database
	Monitoring, Tuning, and Configuring
	Ongoing Maintenance
	Summary

	chapter 13 : Advanced Configurations
	Introduction
	The Informix ONCONFIG File
	Memory Utilization
	CPU Utilization
	Disk and I/O Utilization
	Temp Tables and Sorting
	Multiple Instances
	Multiple Database Servers
	Monitoring
	Summary

	chapter 14 : Managing Data with Stored Procedures and Triggers
	Stored Procedures
	Triggers
	Summary

	chapter 15 : Managing Data with Locking
	Introduction to Locking
	Lock Types
	Lock Levels
	Isolation Levels
	Lock Modes
	Locking Efficiency
	Lock Tracking
	Summary

	chapter 16 : Privileges and Security Issues
	Introduction to Privileges
	Privileges
	Stored Procedures and Triggers
	Views
	Operating System
	Summary

	chapter 17 : Managing Data Integrity with Constraints
	Introduction to Data Integrity and Constraints
	Semantic Integrity
	Entity Integrity
	Referential Integrity
	Constraint Modes
	Summary

	chapter 18 ; Managing Data Backups
	Why Make Backups?
	Terminology
	OnBar Backup and Restore System
	The ontape Utility
	Summary

	chapter 19 : Parallel Database Query
	What Is PDQ?
	Overview of PDQ Architecture
	Applications Supported in Informix DSA
	PDQ Administration
	PDQ and Stored Procedures
	Who Controls PDQ Resources?
	Understanding the SET EXPLAIN Functionality
	Summary

	chapter 20 : Data and Index Fragmentation
	Reasons to Fragment
	Reasons Not to Fragment
	Physical Storage of Informix Databases
	Standard Engine Data Distribution
	OnLine Data Distribution
	DSA Data Fragmentation
	XPS Data Fragmentation
	Index Fragmentation
	Modifying Fragmentation Strategies
	Summary

	chapter 23 : Tuning Your Informix Environment
	Tuning Your Efforts
	Tuning Your Informix Instance
	Tuning Your Informix Database
	Tuning Your Informix Operations
	Tuning Your Informix Application
	Summary

	chapter 24 : Anticipating Future Growth
	Today and Tomorrow
	Project Roles
	Planning Checklist
	Question Checklist
	The Pieces: Technology
	Examples
	Summary

	chapter 25 : The INFORMIX-Enterprise Gateway Manager
	Enterprise Gateway Manager Installation and Configuration
	The egmdba Utility
	Summary

	chapter 26 : Problem Handling
	Dealing with the Pressure
	Determining the Source of the Problem
	Confining a Problem
	Using the "Hotline"
	Recovering the Production Environment
	Success
	Summary

	Part IV - Informix Database Development
	chapter 27 : Informix Development Introduction
	Database Design Concepts and Terminology
	Entity Relationship Diagrams
	Normalization
	Logical to Physical Design
	Summary

	chapter 28 : INFORMIX-SQL
	What Is SQL?
	History
	Uses of SQL
	The SQL Query
	Modifying SQL Statements
	Privilege SQL Statements
	Referential Integrity SQL Statements
	Embedded SQL Statements
	Summary

	chapter 29 : Creating a Database Using SQL
	Determining the Database Layout
	Size Requirements
	Creating Tables
	Altering Tables
	Creating Indexes
	Altering Indexes
	Privileges
	Integrity
	Summary

	chapter 30 : Data Management Using SQL
	Querying Data
	Inserting Data
	Updating Data
	Deleting Data
	Summary

	chapter 31 : Advanced SQL
	Advanced Queries
	Simple Joins
	Self-Joins
	Outer-Joins
	Set Operations
	Optimization
	Summary

	chapter 32
	Using DBaccess and ISQL
	DBaccess
	ISQL
	Summary

	chapter 33 : Understanding the Informix Optimizer
	Understanding the Informix Optimizer
	Examining the Optimizer's Choice
	SQL Query Quality Assurance and Optimization
	Summary

	Part V - Application Development
	chapter 34 : Application Development Introduction
	Building an Application That Accesses an Informix Database
	Tools for Application Development
	Summary

	chapter 35 : Introduction to 4GL
	What It Is and the Environment in Which It Works
	Compiled or Rapid Development System
	The Development Environment
	Compiling Forms
	Basic Language Features
	Summary

	chapter 36 : 4GL Coding
	Listing 36.1. Schema of employers and states tables.
	Listing 36.2. globals.4gl for the fictitious company.
	Listing 36.3. A function to manage displays of errors.
	Listing 36.4. The generated form.
	Listing 36.5. The edited form.
	Listing 36.6. main.4gl.
	Listing 36.7. The find.4gl module.
	Listing 36.8. The add.4gl file.
	Listing 36.9. The update.4gl file.
	Listing 36.10. The delete.4gl fi
	Listing 36.11. The options.4gl file.
	Summary

	chapter 37 : 4GL Development
	The Standard Components of Database Applications
	Screens and Screen Forms: A Primer
	Listing 37.1. The employers.per screen form.
	Listing 37.2. The globals.4gl source code module file.
	Listing 37.3. The main.4gl source code module file.
	Listing 37.4. The add.4gl source code module file.
	Listing 37.5. The find.4gl source code module file.
	Listing 37.6. The delete.4gl source code module file.
	Listing 37.7. The options.4gl source code module file.
	Listing 37.8. The browser.per form source file.
	Listing 37.9. The z_state.per form source file.
	Listing 37.10. The browse.4gl source code module file.
	Listing 37.11. The zooms.4gl source code module file.
	Listing 37.12. The driver.4gl source code file.
	Listing 37.13. The report.4gl source code file.
	Summary

	chapter 38 : Advanced 4GL Development
	Listing 38.1. Schema of depots table.
	Listing 38.2. The zooms.4gl file.
	Listing 38.3. The employer.per source form file.
	Listing 38.4. The globals.4gl source code module.
	Listing 38.5. The find.4gl source code module.
	Listing 38.6. The delete.4gl source code module.
	Listing 38.7. The add.4gl source code module.
	Listing 38.8. The employers.4db debugging environment file.
	Summary

	chapter 39 : Introduction to NewEra
	What Is NewEra?
	Database Access
	GUI Development
	Enterprise-Wide Development
	Flexible Language
	Support for Large-Scale Project Management
	Summary

	chapter 40 : NewEra Language
	Language Basics
	Listing 40.1. Declaring records.
	Listing 40.2. Assignment of records.
	Listing 40.3. Function prototype.
	Listing 40.4. Function calls.
	Listing 40.5. Class declaration.
	Listing 40.6. Calling a member function.
	Listing 40.7. Class implementation.
	Listing 40.8. Sample consumer code.
	Listing 40.9. Declaring and instantiating reference variables.
	Listing 40.10. Inheritance.
	Listing 40.11. Implementation of subclass.
	Listing 40.14. A class with reference member variables.
	Listing 40.12. Handler implementation.
	Listing 40.13. Dynamic use of handlers.
	Listing 40.14. A class with reference member variables.
	Listing 40.15. Declaration of DEEP COPY.
	Listing 40.16. Determining class derivation.
	Listing 40.17. Use of getTypeCode().
	Listing 40.18. Use of functions with objects.
	Listing 40.19. Function call notation.
	Listing 40.20. Containment.
	Listing 40.21. Database connect.
	Listing 40.22. A connection example.
	Listing 40.23. ixSQLStmt example.
	Summary

	chapter 41 : The NewEra Development System
	Window Development with NewEra
	The Application Builder
	The Source Compiler
	The Interactive Debugger
	The Application Launcher
	Reports
	Application Partitioning
	OLE Automation Servers
	Summary

	chapter 42 : Serving Data on the WWW
	Internet and World Wide Web History
	One Interface for Applications: The Browser
	The Basics: What Makes Browser-Enabled Technologies Work
	Objects: Another New Web Paradigm
	The Next Generation: Informix Universal Web Architecture(IUWA)
	Summary

	Part VI - Data Modeling
	chapter 43 : Model-Driven Development for the Informix RDBMS
	Why Model?
	Uses for a Model
	Notations
	The Various Models
	Primary Concepts in a Relational Information Model
	Implementing Models in INFORMIX-OnLine
	Summary

	chapter 44 : Designing and Implementing SuperViews for Informix - New Era
	A View of a SuperView
	Approaches to Building SuperViews
	Using SILVERRUN for Designing, Creating, and Implementing Super Views
	Summary

	chapter 45 : Modeling Types for INFORMIX - Universal Server
	What Is INFORMIX-Universal Server?
	Advantages of INFORMIX-Universal Server
	Concepts and Modeling for Universal Server
	Creating Tables in INFORMIX-Universal Server
	Summary

	Part VII - Appendixes
	Electronic Help
	Printed Help
	Help You Can Talk To!
	Summary

