
Java™ Message Service API
Tutorial

by Kim Haase

Sun Microsystems, Inc.

Copyright  2002 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product
that is described in this document. In particular, and without limitation, these intellectual property rights
may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more addi-
tional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use,
copying, distribution, and decompilation. No part of the product or of this document may be reproduced
in any form by any means without prior written authorization of Sun and its licensors, if any.

Unless otherwise licensed, software code in all technical materials herein (including articles, FAQs,
samples) is provided under this License: http://developer.java.sun.com/berkeley_license.html.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, J2EE, J2SE, Java Naming and
Directory Interface, Enterprise JavaBeans, EJB, JavaServer Pages, and JSP are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered
trademark in the United States and other countries, exclusively licensed through X/Open Company,
Ltd.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR FOR A PARTICULAR PURPOSE OR NON-INFRINGE-
MENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID.

http://www.sun.com/patents
http://developer.java.sun.com/berkeley_license.html

Contents
1 Overview .9
1.1 What Is Messaging? . 9
1.2 What Is the JMS API? . 10
1.3 When Can You Use the JMS API?. 11
1.4 How Does the JMS API Work with the J2EE™ Platform?. 12

2 Basic JMS API Concepts .15
2.1 JMS API Architecture . 15
2.2 Messaging Domains . 16

 2.2.1 Point-to-Point Messaging Domain. 17
 2.2.2 Publish/Subscribe Messaging Domain 17

2.3 Message Consumption . 19

3 The JMS API Programming Model .21
3.1 Administered Objects . 22

 3.1.1 Connection Factories . 23
 3.1.2 Destinations . 24

3.2 Connections . 24
3.3 Sessions . 25
3.4 Message Producers . 26
3.5 Message Consumers . 27

 3.5.1 Message Listeners . 28
 3.5.2 Message Selectors . 29

3.6 Messages. 29
 3.6.1 Message Headers . 29
 3.6.2 Message Properties . 30
 3.6.3 Message Bodies . 31

3.7 Exception Handling . 32
iii

iv
4 Writing Simple JMS Client Applications .33
4.1 Setting Your Environment for Running Applications 34
4.2 A Simple Point-to-Point Example . 35

 4.2.1 Writing the PTP Client Programs . 35
 4.2.2 Compiling the PTP Clients . 43
 4.2.3 Starting the JMS Provider . 43
 4.2.4 Creating the JMS Administered Objects 43
 4.2.5 Running the PTP Clients . 44
 4.2.6 Deleting the Queue . 45

4.3 A Simple Publish/Subscribe Example . 45
 4.3.1 Writing the Pub/Sub Client Programs 45
 4.3.2 Compiling the Pub/Sub Clients . 54
 4.3.3 Starting the JMS Provider . 54
 4.3.4 Creating the JMS Administered Objects 55
 4.3.5 Running the Pub/Sub Clients. 55
 4.3.6 Deleting the Topic and Stopping the Server 56

4.4 Running JMS Client Programs on Multiple Systems. 57
 4.4.1 Communicating Between Two J2EE Servers 57
 4.4.2 Communicating Between a J2EE Server and a System

Not Running a J2EE Server . 58

5 Creating Robust JMS Applications .61
5.1 Using Basic Reliability Mechanisms . 62

 5.1.1 Controlling Message Acknowledgment. 62
 5.1.2 Specifying Message Persistence . 64
 5.1.3 Setting Message Priority Levels . 65
 5.1.4 Allowing Messages to Expire . 65
 5.1.5 Creating Temporary Destinations . 66

5.2 Using Advanced Reliability Mechanisms . 66
 5.2.1 Creating Durable Subscriptions . 67
 5.2.2 Using JMS API Local Transactions. 70

6 Using the JMS API in a J2EE Application 73
6.1 Using Enterprise Beans to Produce and to Synchronously Receive

Messages . 73
 6.1.1 Administered Objects . 74
 6.1.2 Resource Management. 74
 6.1.3 Transactions . 75

6.2 Using Message-Driven Beans . 75
6.3 Managing Distributed Transactions . 77

v

6.4 Using the JMS API with Application Clients and Web Components 80

7 A Simple J2EE Application that Uses the JMS API81
7.1 Writing and Compiling the Application Components 82

 7.1.1 Coding the Application Client: SimpleClient.java 83
 7.1.2 Coding the Message-Driven Bean: MessageBean.java 85
 7.1.3 Compiling the Source Files . 88

7.2 Creating and Packaging the Application . 88
 7.2.1 Starting the J2EE Server and the Deploytool. 89
 7.2.2 Creating a Queue . 89
 7.2.3 Creating the J2EE Application. 90
 7.2.4 Packaging the Application Client . 90
 7.2.5 Packaging the Message-Driven Bean 93
 7.2.6 Checking the JNDI Names. 96

7.3 Deploying and Running the Application . 96
 7.3.1 Looking at the Deployment Descriptor 97
 7.3.2 Adding the Server . 99
 7.3.3 Deploying the Application . 99
 7.3.4 Running the Client . 100
 7.3.5 Undeploying the Application . 101
 7.3.6 Removing the Application and Stopping the Server 101

8 A J2EE Application that Uses the JMS API with a Session
Bean .103
8.1 Writing and Compiling the Application Components 104

 8.1.1 Coding the Application Client: MyAppClient.java 105
 8.1.2 Coding the Publisher Session Bean 106
 8.1.3 Coding the Message-Driven Bean: MessageBean.java . . . 112
 8.1.4 Compiling the Source Files . 114

8.2 Creating and Packaging the Application . 115
 8.2.1 Starting the J2EE Server and the Deploytool. 115
 8.2.2 Creating a Topic. 116
 8.2.3 Creating a Connection Factory . 116
 8.2.4 Creating the J2EE Application. 117
 8.2.5 Packaging the Application Client 117
 8.2.6 Packaging the Session Bean. 119
 8.2.7 Packaging the Message-Driven Bean 121
 8.2.8 Specifying the JNDI Names. 123

8.3 Deploying and Running the Application . 124
 8.3.1 Adding the Server . 124

vi
 8.3.2 Deploying the Application. 125
 8.3.3 Running the Client . 125
 8.3.4 Undeploying the Application. 126
 8.3.5 Removing the Application and Stopping the Server 126

9 A J2EE Application that Uses the JMS API with an Entity
Bean .129
9.1 Overview of the Human Resources Application 130
9.2 Writing and Compiling the Application Components 131

 9.2.1 Coding the Application Client:
HumanResourceClient.java. 132

 9.2.2 Coding the Message-Driven Beans 138
 9.2.3 Coding the Entity Bean . 151
 9.2.4 Compiling the Source Files . 161

9.3 Creating and Packaging the Application . 161
 9.3.1 Starting the J2EE Server and the Deploytool 162
 9.3.2 Creating a Queue . 162
 9.3.3 Starting the Cloudscape Database Server 163
 9.3.4 Creating the J2EE Application . 163
 9.3.5 Packaging the Application Client 163
 9.3.6 Packaging the Equipment Message-Driven Bean 166
 9.3.7 Packaging the Office Message-Driven Bean 169
 9.3.8 Packaging the Schedule Message-Driven Bean. 171
 9.3.9 Packaging the Entity Bean. 173
 9.3.10 Specifying the Entity Bean Deployment Settings 175
 9.3.11 Specifying the JNDI Names . 176

9.4 Deploying and Running the Application . 177
 9.4.1 Adding the Server . 177
 9.4.2 Deploying the Application. 178
 9.4.3 Running the Client . 178
 9.4.4 Undeploying the Application. 179
 9.4.5 Removing the Application and Stopping the Server 179

10 An Application Example that Uses Two J2EE Servers.181
10.1 Overview of the Applications. 182
10.2 Writing and Compiling the Application Components 183

 10.2.1 Coding the Application Client:
MultiAppServerRequester.java . 183

 10.2.2 Coding the Message-Driven Bean: ReplyMsgBean.java . . 190
 10.2.3 Compiling the Source Files . 194

vii
10.3 Creating and Packaging the Application . 194
 10.3.1 Starting the J2EE Servers and the Deploytool 195
 10.3.2 Creating a Connection Factory . 195
 10.3.3 Creating the First J2EE Application 196
 10.3.4 Packaging the Application Client 197
 10.3.5 Creating the Second J2EE Application 200
 10.3.6 Packaging the Message-Driven Bean 200
 10.3.7 Checking the JNDI Names. 203

10.4 Deploying and Running the Applications . 204
 10.4.1 Adding the Server . 204
 10.4.2 Deploying the Applications . 205
 10.4.3 Running the Client . 206
 10.4.4 Undeploying the Applications . 206
 10.4.5 Removing the Applications and Stopping the Servers . . . 207

10.5 Accessing a J2EE Application from a Remote System that Is Not
Running a J2EE Server. 207
 10.5.1 Accessing a J2EE Application from a Standalone Client . 207
 10.5.2 Using runclient to Access a Remote Application Client . 214

Appendix A: JMS Client Examples . 215
A.1 Durable Subscriptions . 215
A.2 Transactions . 225
A.3 Acknowledgment Modes . 250
A.4 Utility Class . 264

C H A P T E R 1

Overview

THIS overview of the Java™ Message Service Application Programming Interface
(the JMS API) answers the following questions.

• What is messaging?

• What is the JMS API?

• How can you use the JMS API?

• How does the JMS API work with the Java 2 Platform, Enterprise Edition
(J2EE™ platform)?

1.1 What Is Messaging?

Messaging is a method of communication between software components or applica-
tions. A messaging system is a peer-to-peer facility: A messaging client can send
messages to, and receive messages from, any other client. Each client connects to a
messaging agent that provides facilities for creating, sending, receiving, and reading
messages.

Messaging enables distributed communication that is loosely coupled. A com-
ponent sends a message to a destination, and the recipient can retrieve the
message from the destination. However, the sender and the receiver do not have to
be available at the same time in order to communicate. In fact, the sender does not
need to know anything about the receiver; nor does the receiver need to know any-
thing about the sender. The sender and the receiver need to know only what
message format and what destination to use. In this respect, messaging differs
9

CHAPTER 1 OVERVIEW10
from tightly coupled technologies, such as Remote Method Invocation (RMI),
which require an application to know a remote application’s methods.

Messaging also differs from electronic mail (e-mail), which is a method of
communication between people or between software applications and people.
Messaging is used for communication between software applications or software
components.

1.2 What Is the JMS API?

The Java Message Service is a Java API that allows applications to create, send,
receive, and read messages. Designed by Sun and several partner companies, the
JMS API defines a common set of interfaces and associated semantics that allow
programs written in the Java programming language to communicate with other
messaging implementations.

The JMS API minimizes the set of concepts a programmer must learn to use
messaging products but provides enough features to support sophisticated mes-
saging applications. It also strives to maximize the portability of JMS applications
across JMS providers in the same messaging domain.

The JMS API enables communication that is not only loosely coupled but also

• Asynchronous. A JMS provider can deliver messages to a client as they ar-
rive; a client does not have to request messages in order to receive them.

• Reliable. The JMS API can ensure that a message is delivered once and only
once. Lower levels of reliability are available for applications that can afford
to miss messages or to receive duplicate messages.

The JMS Specification was first published in August 1998. The latest version
of the JMS Specification is Version 1.0.2b, which was released in August 2001.
You can download a copy of the Specification from the JMS Web site, http://
java.sun.com/products/jms/.

WHEN CAN YOU USE THE JMS API? 11
1.3 When Can You Use the JMS API?

An enterprise application provider is likely to choose a messaging API over a tightly
coupled API, such as Remote Procedure Call (RPC), under the following
circumstances.

• The provider wants the components not to depend on information about other
components’ interfaces, so that components can be easily replaced.

• The provider wants the application to run whether or not all components are
up and running simultaneously.

• The application business model allows a component to send information to
another and to continue to operate without receiving an immediate response.

For example, components of an enterprise application for an automobile man-
ufacturer can use the JMS API in situations like these.

• The inventory component can send a message to the factory component when
the inventory level for a product goes below a certain level, so the factory can
make more cars.

• The factory component can send a message to the parts components so that
the factory can assemble the parts it needs.

• The parts components in turn can send messages to their own inventory and
order components to update their inventories and to order new parts from
suppliers.

• Both the factory and the parts components can send messages to the account-
ing component to update their budget numbers.

• The business can publish updated catalog items to its sales force.

Using messaging for these tasks allows the various components to interact
with one another efficiently, without tying up network or other resources.
Figure 1.1 illustrates how this simple example might work.

CHAPTER 1 OVERVIEW12
.

Figure 1.1 Messaging in an Enterprise Application

Manufacturing is only one example of how an enterprise can use the JMS
API. Retail applications, financial services applications, health services applica-
tions, and many others can make use of messaging.

1.4 How Does the JMS API Work with the J2EE™ Platform?

When the JMS API was introduced in 1998, its most important purpose was to
allow Java applications to access existing messaging-oriented middleware (MOM)
systems, such as MQSeries from IBM. Since that time, many vendors have adopted
and implemented the JMS API, so that a JMS product can now provide a complete
messaging capability for an enterprise.

At the 1.2 release of the J2EE platform, a service provider based on J2EE
technology (“J2EE provider”) was required to provide the JMS API interfaces but
was not required to implement them. Now, with the 1.3 release of the J2EE plat-
form (“the J2EE 1.3 platform”), the JMS API is an integral part of the platform,
and application developers can use messaging with components using J2EE APIs
(“J2EE components”).

The JMS API in the J2EE 1.3 platform has the following features.

• Application clients, Enterprise JavaBeans (EJB™) components, and Web
components can send or synchronously receive a JMS message. Application

HOW DOES THE JMS API WORK WITH THE J2EE™ PLATFORM? 13
clients can in addition receive JMS messages asynchronously. (Applets, how-
ever, are not required to support the JMS API.)

• A new kind of enterprise bean, the message-driven bean, enables the asyn-
chronous consumption of messages. A JMS provider may optionally imple-
ment concurrent processing of messages by message-driven beans.

• Message sends and receives can participate in distributed transactions.

The addition of the JMS API enhances the J2EE platform by simplifying
enterprise development, allowing loosely coupled, reliable, asynchronous interac-
tions among J2EE components and legacy systems capable of messaging. A
developer can easily add new behavior to a J2EE application with existing busi-
ness events by adding a new message-driven bean to operate on specific business
events. The J2EE platform’s EJB container architecture, moreover, enhances the
JMS API by providing support for distributed transactions and allowing for the
concurrent consumption of messages.

Another technology new to the J2EE 1.3 platform, the J2EE Connector Archi-
tecture, provides tight integration between J2EE applications and existing Enter-
prise Information (EIS) systems. The JMS API, on the other hand, allows for a
very loosely coupled interaction between J2EE applications and existing EIS
systems.

C H A P T E R 2

Basic JMS API Concepts

THIS chapter introduces the most basic JMS API concepts, the ones you must
know to get started writing simple JMS client applications:

• JMS API architecture

• Messaging domains

• Message consumption

The next chapter introduces the JMS API programming model. Later chapters
cover more advanced concepts, including the ones you need to write J2EE appli-
cations that use message-driven beans.

2.1 JMS API Architecture

A JMS application is composed of the following parts.

• A JMS provider is a messaging system that implements the JMS interfaces
and provides administrative and control features. An implementation of the
J2EE platform at release 1.3 includes a JMS provider.

• JMS clients are the programs or components, written in the Java programming
language, that produce and consume messages.

• Messages are the objects that communicate information between JMS clients.

• Administered objects are preconfigured JMS objects created by an administra-
tor for the use of clients. The two kinds of administered objects are destina-
tions and connection factories, which are described in Section 3.1 on page 22.
15

CHAPTER 2 BASIC JMS API CONCEPTS16
• Native clients are programs that use a messaging product’s native client API
instead of the JMS API. An application first created before the JMS API be-
came available and subsequently modified is likely to include both JMS and
native clients.

Figure 2.1 illustrates the way these parts interact. Administrative tools allow
you to bind destinations and connection factories into a Java Naming and Direc-
tory Interface™ (JNDI) API namespace. A JMS client can then look up the admin-
istered objects in the namespace and then establish a logical connection to the
same objects through the JMS provider.

Figure 2.1 JMS API Architecture

2.2 Messaging Domains

Before the JMS API existed, most messaging products supported either the point-to-
point or the publish/subscribe approach to messaging. The JMS Specification pro-
vides a separate domain for each approach and defines compliance for each domain.
A standalone JMS provider may implement one or both domains. A J2EE provider
must implement both domains.

In fact, most current implementations of the JMS API provide support for
both the point-to-point and the publish/subscribe domains, and some JMS clients
combine the use of both domains in a single application. In this way, the JMS API
has extended the power and flexibility of messaging products.

MESSAGING DOMAINS 17
2.2.1 Point-to-Point Messaging Domain

A point-to-point (PTP) product or application is built around the concept of message
queues, senders, and receivers. Each message is addressed to a specific queue, and
receiving clients extract messages from the queue(s) established to hold their mes-
sages. Queues retain all messages sent to them until the messages are consumed or
until the messages expire.

PTP messaging has the following characteristics and is illustrated in
Figure 2.2.

Figure 2.2 Point-to-Point Messaging

• Each message has only one consumer.

• A sender and a receiver of a message have no timing dependencies. The re-
ceiver can fetch the message whether or not it was running when the client
sent the message.

• The receiver acknowledges the successful processing of a message.

Use PTP messaging when every message you send must be processed successfully
by one consumer.

2.2.2 Publish/Subscribe Messaging Domain

In a publish/subscribe (pub/sub) product or application, clients address messages to
a topic. Publishers and subscribers are generally anonymous and may dynamically
publish or subscribe to the content hierarchy. The system takes care of distributing
the messages arriving from a topic’s multiple publishers to its multiple subscribers.
Topics retain messages only as long as it takes to distribute them to current
subscribers.

CHAPTER 2 BASIC JMS API CONCEPTS18
Pub/sub messaging has the following characteristics.

• Each message may have multiple consumers.

• Publishers and subscribers have a timing dependency. A client that subscribes
to a topic can consume only messages published after the client has created a
subscription, and the subscriber must continue to be active in order for it to
consume messages.

The JMS API relaxes this timing dependency to some extent by allowing
clients to create durable subscriptions. Durable subscriptions can receive mes-
sages sent while the subscribers are not active. Durable subscriptions provide the
flexibility and reliability of queues but still allow clients to send messages to many
recipients. For more information about durable subscriptions, see Section 5.2.1 on
page 67.

Use pub/sub messaging when each message can be processed by zero, one, or
many consumers. Figure 2.3 illustrates pub/sub messaging.

Figure 2.3 Publish/Subscribe Messaging

MESSAGE CONSUMPTION 19
2.3 Message Consumption

Messaging products are inherently asynchronous in that no fundamental timing
dependency exists between the production and the consumption of a message. How-
ever, the JMS Specification uses this term in a more precise sense. Messages can be
consumed in either of two ways:

• Synchronously. A subscriber or a receiver explicitly fetches the message
from the destination by calling the receive method. The receive method can
block until a message arrives or can time out if a message does not arrive
within a specified time limit.

• Asynchronously. A client can register a message listener with a consumer. A
message listener is similar to an event listener. Whenever a message arrives at
the destination, the JMS provider delivers the message by calling the lis-
tener’s onMessage method, which acts on the contents of the message.

C H A P T E R 3

The JMS API Programming

Model

THE basic building blocks of a JMS application consist of

• Administered objects: connection factories and destinations

• Connections

• Sessions

• Message producers

• Message consumers

• Messages

Figure 3.1 shows how all these objects fit together in a JMS client application.
21

CHAPTER 3 THE JMS API PROGRAMMING MODEL22
Figure 3.1 The JMS API Programming Model

This chapter describes all these objects briefly and provides sample com-
mands and code snippets that show how to create and use the objects. The last
section briefly describes JMS API exception handling.

Examples that show how to combine all these objects in applications appear
in later chapters. For more details, see the JMS API documentation, which you
can download from the JMS Web site, http://java.sun.com/products/jms/.

3.1 Administered Objects

Two parts of a JMS application—destinations and connection factories—are best
maintained administratively rather than programmatically. The technology underly-
ing these objects is likely to be very different from one implementation of the JMS
API to another. Therefore, the management of these objects belongs with other
administrative tasks that vary from provider to provider.

JMS clients access these objects through interfaces that are portable, so a
client application can run with little or no change on more than one implementa-
tion of the JMS API. Ordinarily, an administrator configures administered objects
in a Java Naming and Directory Interface (JNDI) API namespace, and JMS clients

ADMINISTERED OBJECTS 23
then look them up, using the JNDI API. J2EE applications always use the JNDI
API.

With the J2EE Software Development Kit (SDK) version 1.3.1, you use a tool
called j2eeadmin to perform administrative tasks. For help on the tool, type
j2eeadmin with no arguments.

3.1.1 Connection Factories

A connection factory is the object a client uses to create a connection with a pro-
vider. A connection factory encapsulates a set of connection configuration parame-
ters that has been defined by an administrator. A pair of connection factories come
preconfigured with the J2EE SDK and are accessible as soon as you start the ser-
vice. Each connection factory is an instance of either the QueueConnectionFactory

or the TopicConnectionFactory interface.
With the J2EE SDK, for example, you can use the default connection factory

objects, named QueueConnectionFactory and TopicConnectionFactory, to create
connections. You can also create new connection factories by using the following
commands:

j2eeadmin -addJmsFactory jndi_name queue

j2eeadmin -addJmsFactory jndi_name topic

At the beginning of a JMS client program, you usually perform a JNDI API
lookup of the connection factory. For example, the following code fragment
obtains an InitialContext object and uses it to look up the QueueConnection-

Factory and the TopicConnectionFactory by name:

Context ctx = new InitialContext();

QueueConnectionFactory queueConnectionFactory =

 (QueueConnectionFactory) ctx.lookup("QueueConnectionFactory");

TopicConnectionFactory topicConnectionFactory =

 (TopicConnectionFactory) ctx.lookup("TopicConnectionFactory");

Calling the InitialContext method with no parameters results in a search of
the current classpath for a vendor-specific file named jndi.properties. This file
indicates which JNDI API implementation to use and which namespace to use.

CHAPTER 3 THE JMS API PROGRAMMING MODEL24
3.1.2 Destinations

A destination is the object a client uses to specify the target of messages it produces
and the source of messages it consumes. In the PTP messaging domain, destinations
are called queues, and you use the following J2EE SDK command to create them:

j2eeadmin -addJmsDestination queue_name queue

In the pub/sub messaging domain, destinations are called topics, and you use the
following J2EE SDK command to create them:

j2eeadmin -addJmsDestination topic_name topic

A JMS application may use multiple queues and/or topics.
In addition to looking up a connection factory, you usually look up a destina-

tion. For example, the following line of code performs a JNDI API lookup of the
previously created topic MyTopic and assigns it to a Topic object:

Topic myTopic = (Topic) ctx.lookup("MyTopic");

The following line of code looks up a queue named MyQueue and assigns it to a
Queue object:

Queue myQueue = (Queue) ctx.lookup("MyQueue");

3.2 Connections

A connection encapsulates a virtual connection with a JMS provider. A connection
could represent an open TCP/IP socket between a client and a provider service
daemon. You use a connection to create one or more sessions.

Like connection factories, connections come in two forms, implementing
either the QueueConnection or the TopicConnection interface. For example, once
you have a QueueConnectionFactory or a TopicConnectionFactory object, you
can use it to create a connection:

QueueConnection queueConnection =

 queueConnectionFactory.createQueueConnection();

SESSIONS 25
TopicConnection topicConnection =

 topicConnectionFactory.createTopicConnection();

When an application completes, you need to close any connections that you
have created. Failure to close a connection can cause resources not to be released
by the JMS provider. Closing a connection also closes its sessions and their
message producers and message consumers.

queueConnection.close();

topicConnection.close();

Before your application can consume messages, you must call the connec-
tion’s start method; for details, see Section 3.5 on page 27. If you want to stop
message delivery temporarily without closing the connection, you call the stop

method.

3.3 Sessions

A session is a single-threaded context for producing and consuming messages. You
use sessions to create message producers, message consumers, and messages. Ses-
sions serialize the execution of message listeners; for details, see Section 3.5.1 on
page 28.

A session provides a transactional context with which to group a set of sends
and receives into an atomic unit of work. For details, see Section 5.2.2 on page 70.

Sessions, like connections, come in two forms, implementing either the
QueueSession or the TopicSession interface. For example, if you created a Topic-

Connection object, you use it to create a TopicSession:

TopicSession topicSession =

 topicConnection.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

The first argument means that the session is not transacted; the second means
that the session automatically acknowledges messages when they have been
received successfully. (For more information, see Section 5.1.1 on page 62.)

CHAPTER 3 THE JMS API PROGRAMMING MODEL26
Similarly, you use a QueueConnection object to create a QueueSession:

QueueSession queueSession =

 queueConnection.createQueueSession(true, 0);

Here, the first argument means that the session is transacted; the second indicates
that message acknowledgment is not specified for transacted sessions.

3.4 Message Producers

A message producer is an object created by a session and is used for sending mes-
sages to a destination. The PTP form of a message producer implements the Queue-

Sender interface. The pub/sub form implements the TopicPublisher interface.
For example, you use a QueueSession to create a sender for the queue

myQueue, and you use a TopicSession to create a publisher for the topic myTopic:

QueueSender queueSender = queueSession.createSender(myQueue);

TopicPublisher topicPublisher =

 topicSession.createPublisher(myTopic);

You can create an unidentified producer by specifying null as the argument to
createSender or createPublisher. With an unidentified producer, you can wait to
specify which destination to send the message to until you send or publish a
message.

Once you have created a message producer, you can use it to send messages.
(You have to create the messages first; see Section 3.6 on page 29.) With a Queue-

Sender, you use the send method:

queueSender.send(message);

With a TopicPublisher, you use the publish method:

topicPublisher.publish(message);

If you created an unidentified producer, use the overloaded send or publish method
that specifies the destination as the first parameter.

MESSAGE CONSUMERS 27
3.5 Message Consumers

A message consumer is an object created by a session and is used for receiving mes-
sages sent to a destination. A message consumer allows a JMS client to register
interest in a destination with a JMS provider. The JMS provider manages the deliv-
ery of messages from a destination to the registered consumers of the destination.

The PTP form of message consumer implements the QueueReceiver interface.
The pub/sub form implements the TopicSubscriber interface.

For example, you use a QueueSession to create a receiver for the queue
myQueue, and you use a TopicSession to create a subscriber for the topic myTopic:

QueueReceiver queueReceiver = queueSession.createReceiver(myQueue);

TopicSubscriber topicSubscriber =

 topicSession.createSubscriber(myTopic);

You use the TopicSession.createDurableSubscriber method to create a
durable topic subscriber. For details, see Section 5.2.1 on page 67.

Once you have created a message consumer, it becomes active, and you can
use it to receive messages. You can use the close method for a QueueReceiver or
a TopicSubscriber to make the message consumer inactive. Message delivery
does not begin until you start the connection you created by calling the start

method (see Section 3.2 on page 24).
With either a QueueReceiver or a TopicSubscriber, you use the receive

method to consume a message synchronously. You can use this method at any
time after you call the start method:

queueConnection.start();

Message m = queueReceiver.receive();

topicConnection.start();

Message m = topicSubscriber.receive(1000); // time out after a second

To consume a message asynchronously, you use a message listener, described in
Section 3.5.1 on page 28.

CHAPTER 3 THE JMS API PROGRAMMING MODEL28
3.5.1 Message Listeners

A message listener is an object that acts as an asynchronous event handler for mes-
sages. This object implements the MessageListener interface, which contains one
method, onMessage. In the onMessage method, you define the actions to be taken
when a message arrives.

You register the message listener with a specific QueueReceiver or TopicSub-
scriber by using the setMessageListener method. For example, if you define a
class named TopicListener that implements the MessageListener interface, you
can register the message listener as follows:

TopicListener topicListener = new TopicListener();

topicSubscriber.setMessageListener(topicListener);

After you register the message listener, you call the start method on the
QueueConnection or the TopicConnection to begin message delivery. (If you call
start before you register the message listener, you are likely to miss messages.)

Once message delivery begins, the message consumer automatically calls the
message listener’s onMessage method whenever a message is delivered. The
onMessage method takes one argument of type Message, which the method can
cast to any of the other message types (see Section 3.6.3 on page 31).

A message listener is not specific to a particular destination type. The same
listener can obtain messages from either a queue or a topic, depending on whether
the listener is set by a QueueReceiver or a TopicSubscriber object. A message lis-
tener does, however, usually expect a specific message type and format. Moreover,
if it needs to reply to messages, a message listener must either assume a particular
destination type or obtain the destination type of the message and create a pro-
ducer for that destination type.

Your onMessage method should handle all exceptions. It must not throw
checked exceptions, and throwing a RuntimeException, though possible, is con-
sidered a programming error.

The session used to create the message consumer serializes the execution of
all message listeners registered with the session. At any time, only one of the ses-
sion’s message listeners is running.

In the J2EE 1.3 platform, a message-driven bean is a special kind of message
listener. For details, see Section 6.2 on page 75.

MESSAGES 29
3.5.2 Message Selectors

If your messaging application needs to filter the messages it receives, you can use a
JMS API message selector, which allows a message consumer to specify the mes-
sages it is interested in. Message selectors assign the work of filtering messages to
the JMS provider rather than to the application. For an example of the use of a
message selector, see Chapter 8.

A message selector is a String that contains an expression. The syntax of the
expression is based on a subset of the SQL92 conditional expression syntax. The
createReceiver, createSubscriber, and createDurableSubscriber methods
each have a form that allows you to specify a message selector as an argument
when you create a message consumer.

The message consumer then receives only messages whose headers and prop-
erties match the selector. (See Section 3.6.1 on page 29 and Section 3.6.2 on
page 30.) A message selector cannot select messages on the basis of the content of
the message body.

3.6 Messages

The ultimate purpose of a JMS application is to produce and to consume messages
that can then be used by other software applications. JMS messages have a basic
format that is simple but highly flexible, allowing you to create messages that match
formats used by non-JMS applications on heterogeneous platforms.

A JMS message has three parts:

• A header

• Properties (optional)

• A body (optional)

For complete documentation of message headers, properties, and bodies, see the
documentation of the Message interface in Chapter 25.

3.6.1 Message Headers

A JMS message header contains a number of predefined fields that contain values
that both clients and providers use to identify and to route messages. (Table 3.1 lists
the JMS message header fields and indicates how their values are set.) For example,

CHAPTER 3 THE JMS API PROGRAMMING MODEL30
every message has a unique identifier, represented in the header field JMSMessageID.
The value of another header field, JMSDestination, represents the queue or the topic
to which the message is sent. Other fields include a timestamp and a priority level.

Each header field has associated setter and getter methods, which are docu-
mented in the description of the Message interface. Some header fields are
intended to be set by a client, but many are set automatically by the send or the
publish method, which overrides any client-set values.

3.6.2 Message Properties

You can create and set properties for messages if you need values in addition to
those provided by the header fields. You can use properties to provide compatibility
with other messaging systems, or you can use them to create message selectors (see
Section 3.5.2 on page 29). For an example of setting a property to be used as a
message selector, see Section 8.1.2.3 on page 108.

The JMS API provides some predefined property names that a provider may
support. The use of either predefined properties or user-defined properties is
optional.

Table 3.1: How JMS Message Header Field Values Are Set

Header Field Set By

JMSDestination send or publish method

JMSDeliveryMode send or publish method

JMSExpiration send or publish method

JMSPriority send or publish method

JMSMessageID send or publish method

JMSTimestamp send or publish method

JMSCorrelationID Client

JMSReplyTo Client

JMSType Client

JMSRedelivered JMS provider

MESSAGES 31
3.6.3 Message Bodies

The JMS API defines five message body formats, also called message types, which
allow you to send and to receive data in many different forms and provide compati-
bility with existing messaging formats. Table 3.2 describes these message types.

The JMS API provides methods for creating messages of each type and for
filling in their contents. For example, to create and send a TextMessage to a queue,
you might use the following statements:

TextMessage message = queueSession.createTextMessage();

message.setText(msg_text); // msg_text is a String

queueSender.send(message);

At the consuming end, a message arrives as a generic Message object and must
be cast to the appropriate message type. You can use one or more getter methods

Table 3.2: JMS Message Types

Message Type Body Contains

TextMessage A java.lang.String object (for example, the contents of an
Extensible Markup Language file).

MapMessage A set of name/value pairs, with names as String objects and
values as primitive types in the Java programming language. The
entries can be accessed sequentially by enumerator or randomly
by name. The order of the entries is undefined.

BytesMessage A stream of uninterpreted bytes. This message type is for liter-
ally encoding a body to match an existing message format.

StreamMessage A stream of primitive values in the Java programming language,
filled and read sequentially.

ObjectMessage A Serializable object in the Java programming language.

Message Nothing. Composed of header fields and properties only. This
message type is useful when a message body is not required.

CHAPTER 3 THE JMS API PROGRAMMING MODEL32
to extract the message contents. The following code fragment uses the getText

method:

Message m = queueReceiver.receive();

if (m instanceof TextMessage) {

 TextMessage message = (TextMessage) m;

 System.out.println("Reading message: " + message.getText());

} else {

 // Handle error

}

3.7 Exception Handling

The root class for exceptions thrown by JMS API methods is JMSException. Catch-
ing JMSException provides a generic way of handling all exceptions related to the
JMS API. The JMSException class includes the following subclasses:

• IllegalStateException

• InvalidClientIDException

• InvalidDestinationException

• InvalidSelectorException

• JMSSecurityException

• MessageEOFException

• MessageFormatException

• MessageNotReadableException

• MessageNotWriteableException

• ResourceAllocationException

• TransactionInProgressException

• TransactionRolledBackException

All the examples in this book catch and handle JMSException when it is appropriate
to do so.

C H A P T E R 4

Writing Simple JMS Client

Applications

THIS chapter shows how to create and to run simple JMS client programs. A
J2EE application client commonly accesses J2EE components installed in a server
based on J2EE technology (“J2EE server”). The clients in this chapter, however, are
simple standalone programs that run outside the server as class files. The clients
demonstrate the basic tasks that a JMS application must perform:

• Creating a connection and a session

• Creating message producers and consumers

• Sending and receiving messages

In a J2EE application, some of these tasks are performed, in whole or in part,
by the EJB container. If you learn about these tasks, you will have a good basis for
understanding how a JMS application works on the J2EE platform.

The chapter covers the following topics:

• Setting your environment to run J2EE clients and applications

• A point-to-point example that uses synchronous receives

• A publish/subscribe example that uses a message listener

• Running JMS client programs on multiple systems

Each example consists of two programs: one that sends messages and one that
receives them. You can run the programs in two terminal windows.
33

CHAPTER 4 WRITING SIMPLE JMS CLIENT APPLICATIONS34
When you write a JMS application to run in a J2EE component, you use many
of the same methods in much the same sequence as you do for a JMS client pro-
gram. However, there are some significant differences. Chapter 6 describes these
differences, and the following chapters provide examples that illustrate them.

4.1 Setting Your Environment for Running Applications

Before you can run the examples, you need to make sure that your environment is
set appropriately. Table 4.1 shows how to set the environment variables needed to
run J2EE applications on Microsoft Windows and UNIX platforms.

Table 4.1: Environment Settings for Compiling and Running
J2EE Applications

Platform Variable Name Values

Microsoft Windows %JAVA_HOME% Directory in which the Java 2 SDK, Stan-
dard Edition, version 1.3.1, is installed

%J2EE_HOME% Directory in which the J2EE SDK 1.3.1 is
installed, usually C:\j2sdkee1.3.1

%CLASSPATH% Include the following:
.;%J2EE_HOME%\lib\j2ee.jar;
%J2EE_HOME%\lib\locale

%PATH% Include %J2EE_HOME%\bin

UNIX $JAVA_HOME Directory in which the Java 2 SDK, Stan-
dard Edition, version 1.3.1, is installed

$J2EE_HOME Directory in which the J2EE SDK 1.3.1 is
installed, usually $HOME/j2sdkee1.3.1

$CLASSPATH Include the following:
.:$J2EE_HOME/lib/j2ee.jar:
$J2EE_HOME/lib/locale

$PATH Include $J2EE_HOME/bin

A SIMPLE POINT-TO-POINT EXAMPLE 35
The appendix provides more examples of client programs that demonstrate
additional features of the JMS API. You can download still more examples of
JMS client programs from the JMS API Web site, http://java.sun.com/prod-
ucts/jms/. If you downloaded the tutorial examples as described in the preface,
you will find the examples for this chapter in the directory jms_tutorial/exam-

ples/simple (on UNIX systems) or jms_tutorial\examples\simple (on
Microsoft Windows systems).

4.2 A Simple Point-to-Point Example

This section describes the sending and receiving programs in a PTP example that
uses the receive method to consume messages synchronously. This section then
explains how to compile and run the programs, using the J2EE SDK 1.3.1.

4.2.1 Writing the PTP Client Programs

The sending program, SimpleQueueSender.java, performs the following steps:

1. Performs a Java Naming and Directory Interface (JNDI) API lookup of the
QueueConnectionFactory and queue

2. Creates a connection and a session

3. Creates a QueueSender

4. Creates a TextMessage

5. Sends one or more messages to the queue

6. Sends a control message to indicate the end of the message stream

7. Closes the connection in a finally block, automatically closing the session
and QueueSender

The receiving program, SimpleQueueReceiver.java, performs the following
steps:

1. Performs a JNDI API lookup of the QueueConnectionFactory and queue

2. Creates a connection and a session

3. Creates a QueueReceiver

CHAPTER 4 WRITING SIMPLE JMS CLIENT APPLICATIONS36
4. Starts the connection, causing message delivery to begin

5. Receives the messages sent to the queue until the end-of-message-stream con-
trol message is received

6. Closes the connection in a finally block, automatically closing the session
and QueueReceiver

The receive method can be used in several ways to perform a synchronous
receive. If you specify no arguments or an argument of 0, the method blocks
indefinitely until a message arrives:

Message m = queueReceiver.receive();

Message m = queueReceiver.receive(0);

For a simple client program, this may not matter. But if you do not want your
program to consume system resources unnecessarily, use a timed synchronous
receive. Do one of the following:

• Call the receive method with a timeout argument greater than 0:

Message m = queueReceiver.receive(1); // 1 millisecond

• Call the receiveNoWait method, which receives a message only if one is
available:

Message m = queueReceiver.receiveNoWait();

The SimpleQueueReceiver program uses an indefinite while loop to receive
messages, calling receive with a timeout argument. Calling receiveNoWait

would have the same effect.
The following subsections show the two programs:

• SimpleQueueSender.java

• SimpleQueueReceiver.java

A SIMPLE POINT-TO-POINT EXAMPLE 37
4.2.1.1 Sending Messages to a Queue: SimpleQueueSender.java

The sending program is SimpleQueueSender.java.

/**

 * The SimpleQueueSender class consists only of a main method,

 * which sends several messages to a queue.

 *

 * Run this program in conjunction with SimpleQueueReceiver.

 * Specify a queue name on the command line when you run the

 * program. By default, the program sends one message. Specify

 * a number after the queue name to send that number of messages.

 */

import javax.jms.*;

import javax.naming.*;

public class SimpleQueueSender {

 /**

 * Main method.

 *

 * @param args the queue used by the example and,

 * optionally, the number of messages to send

 */

 public static void main(String[] args) {

 String queueName = null;

 Context jndiContext = null;

 QueueConnectionFactory queueConnectionFactory = null;

 QueueConnection queueConnection = null;

 QueueSession queueSession = null;

 Queue queue = null;

 QueueSender queueSender = null;

 TextMessage message = null;

 final int NUM_MSGS;

CHAPTER 4 WRITING SIMPLE JMS CLIENT APPLICATIONS38
 if ((args.length < 1) || (args.length > 2)) {

 System.out.println("Usage: java SimpleQueueSender " +

 "<queue-name> [<number-of-messages>]");

 System.exit(1);

 }

 queueName = new String(args[0]);

 System.out.println("Queue name is " + queueName);

 if (args.length == 2){

 NUM_MSGS = (new Integer(args[1])).intValue();

 } else {

 NUM_MSGS = 1;

 }

 /*

 * Create a JNDI API InitialContext object if none exists

 * yet.

 */

 try {

 jndiContext = new InitialContext();

 } catch (NamingException e) {

 System.out.println("Could not create JNDI API " +

 "context: " + e.toString());

 System.exit(1);

 }

 /*

 * Look up connection factory and queue. If either does

 * not exist, exit.

 */

 try {

 queueConnectionFactory = (QueueConnectionFactory)

 jndiContext.lookup("QueueConnectionFactory");

 queue = (Queue) jndiContext.lookup(queueName);

 } catch (NamingException e) {

 System.out.println("JNDI API lookup failed: " +

 e.toString());

 System.exit(1);

A SIMPLE POINT-TO-POINT EXAMPLE 39
 }

 /*

 * Create connection.

 * Create session from connection; false means session is

 * not transacted.

 * Create sender and text message.

 * Send messages, varying text slightly.

 * Send end-of-messages message.

 * Finally, close connection.

 */

 try {

 queueConnection =

 queueConnectionFactory.createQueueConnection();

 queueSession =

 queueConnection.createQueueSession(false,

 Session.AUTO_ACKNOWLEDGE);

 queueSender = queueSession.createSender(queue);

 message = queueSession.createTextMessage();

 for (int i = 0; i < NUM_MSGS; i++) {

 message.setText("This is message " + (i + 1));

 System.out.println("Sending message: " +

 message.getText());

 queueSender.send(message);

 }

 /*

 * Send a non-text control message indicating end of

 * messages.

 */

 queueSender.send(queueSession.createMessage());

 } catch (JMSException e) {

 System.out.println("Exception occurred: " +

 e.toString());

 } finally {

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException e) {}

CHAPTER 4 WRITING SIMPLE JMS CLIENT APPLICATIONS40
 }

 }

 }

}

Code Example 4.1 SimpleQueueSender.java

4.2.1.2 Receiving Messages from a Queue: SimpleQueueReceiver.java

The receiving program is SimpleQueueReceiver.java.

/**

 * The SimpleQueueReceiver class consists only of a main method,

 * which fetches one or more messages from a queue using

 * synchronous message delivery. Run this program in conjunction

 * with SimpleQueueSender. Specify a queue name on the command

 * line when you run the program.

 */

import javax.jms.*;

import javax.naming.*;

public class SimpleQueueReceiver {

 /**

 * Main method.

 *

 * @param args the queue used by the example

 */

 public static void main(String[] args) {

 String queueName = null;

 Context jndiContext = null;

 QueueConnectionFactory queueConnectionFactory = null;

 QueueConnection queueConnection = null;

 QueueSession queueSession = null;

 Queue queue = null;

A SIMPLE POINT-TO-POINT EXAMPLE 41
 QueueReceiver queueReceiver = null;

 TextMessage message = null;

 /*

 * Read queue name from command line and display it.

 */

 if (args.length != 1) {

 System.out.println("Usage: java " +

 "SimpleQueueReceiver <queue-name>");

 System.exit(1);

 }

 queueName = new String(args[0]);

 System.out.println("Queue name is " + queueName);

 /*

 * Create a JNDI API InitialContext object if none exists

 * yet.

 */

 try {

 jndiContext = new InitialContext();

 } catch (NamingException e) {

 System.out.println("Could not create JNDI API " +

 "context: " + e.toString());

 System.exit(1);

 }

 /*

 * Look up connection factory and queue. If either does

 * not exist, exit.

 */

 try {

 queueConnectionFactory = (QueueConnectionFactory)

 jndiContext.lookup("QueueConnectionFactory");

 queue = (Queue) jndiContext.lookup(queueName);

 } catch (NamingException e) {

 System.out.println("JNDI API lookup failed: " +

 e.toString());

 System.exit(1);

 }

CHAPTER 4 WRITING SIMPLE JMS CLIENT APPLICATIONS42
 /*

 * Create connection.

 * Create session from connection; false means session is

 * not transacted.

 * Create receiver, then start message delivery.

 * Receive all text messages from queue until

 * a non-text message is received indicating end of

 * message stream.

 * Close connection.

 */

 try {

 queueConnection =

 queueConnectionFactory.createQueueConnection();

 queueSession =

 queueConnection.createQueueSession(false,

 Session.AUTO_ACKNOWLEDGE);

 queueReceiver = queueSession.createReceiver(queue);

 queueConnection.start();

 while (true) {

 Message m = queueReceiver.receive(1);

 if (m != null) {

 if (m instanceof TextMessage) {

 message = (TextMessage) m;

 System.out.println("Reading message: " +

 message.getText());

 } else {

 break;

 }

 }

 }

 } catch (JMSException e) {

 System.out.println("Exception occurred: " +

 e.toString());

 } finally {

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException e) {}

 }

A SIMPLE POINT-TO-POINT EXAMPLE 43
 }

 }

}

Code Example 4.2 SimpleQueueReceiver.java

4.2.2 Compiling the PTP Clients

To compile the PTP example, do the following.

1. Make sure that you have set the environment variables shown in Table 4.1 on
page 34.

2. At a command line prompt, compile the two source files:

javac SimpleQueueSender.java

javac SimpleQueueReceiver.java

4.2.3 Starting the JMS Provider

When you use the J2EE SDK 1.3.1, your JMS provider is the SDK. At another
command line prompt, start the J2EE server as follows:

j2ee -verbose

Wait until the server displays the message “J2EE server startup complete.”

4.2.4 Creating the JMS Administered Objects

In the window in which you compiled the clients, use the j2eeadmin command to
create a queue named MyQueue. The last argument tells the command what kind of
destination to create.

j2eeadmin -addJmsDestination MyQueue queue

To make sure that the queue has been created, use the following command:

j2eeadmin -listJmsDestination

CHAPTER 4 WRITING SIMPLE JMS CLIENT APPLICATIONS44
This example uses the default QueueConnectionFactory object supplied with
the J2EE SDK 1.3.1. With a different J2EE product, you might need to create a
connection factory yourself.

4.2.5 Running the PTP Clients

Run the clients as follows.

1. Run the SimpleQueueSender program, sending three messages. You need to
define a value for jms.properties.

■ On a Microsoft Windows system, type the following command on a single
line:

java -Djms.properties=%J2EE_HOME%\config\jms_client.properties

SimpleQueueSender MyQueue 3

■ On a UNIX system, type the following command on a single line:

java -Djms.properties=$J2EE_HOME/config/jms_client.properties

SimpleQueueSender MyQueue 3

The output of the program looks like this:

Queue name is MyQueue

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

2. In the same window, run the SimpleQueueReceiver program, specifying the
queue name. The java commands look like this:

■ Microsoft Windows systems:

java -Djms.properties=%J2EE_HOME%\config\jms_client.properties

SimpleQueueReceiver MyQueue

■ UNIX systems:

java -Djms.properties=$J2EE_HOME/config/jms_client.properties

SimpleQueueReceiver MyQueue

A SIMPLE PUBLISH/SUBSCRIBE EXAMPLE 45
The output of the program looks like this:

Queue name is MyQueue

Reading message: This is message 1

Reading message: This is message 2

Reading message: This is message 3

3. Now try running the programs in the opposite order. Start the SimpleQueue-

Receiver program. It displays the queue name and then appears to hang, wait-
ing for messages.

4. In a different terminal window, run the SimpleQueueSender program. When
the messages have been sent, the SimpleQueueReceiver program receives
them and exits.

4.2.6 Deleting the Queue

You can delete the queue you created as follows:

j2eeadmin -removeJmsDestination MyQueue

You will use it again in Section 4.4.1 on page 57, however.

4.3 A Simple Publish/Subscribe Example

This section describes the publishing and subscribing programs in a pub/sub
example that uses a message listener to consume messages asynchronously. This
section then explains how to compile and run the programs, using the J2EE SDK
1.3.1.

4.3.1 Writing the Pub/Sub Client Programs

The publishing program, SimpleTopicPublisher.java, performs the following
steps:

1. Performs a JNDI API lookup of the TopicConnectionFactory and topic

2. Creates a connection and a session

3. Creates a TopicPublisher

CHAPTER 4 WRITING SIMPLE JMS CLIENT APPLICATIONS46
4. Creates a TextMessage

5. Publishes one or more messages to the topic

6. Closes the connection, which automatically closes the session and Topic-

Publisher

The receiving program, SimpleTopicSubscriber.java, performs the follow-
ing steps:

1. Performs a JNDI API lookup of the TopicConnectionFactory and topic

2. Creates a connection and a session

3. Creates a TopicSubscriber

4. Creates an instance of the TextListener class and registers it as the message
listener for the TopicSubscriber

5. Starts the connection, causing message delivery to begin

6. Listens for the messages published to the topic, stopping when the user enters
the character q or Q

7. Closes the connection, which automatically closes the session and TopicSub-

scriber

The message listener, TextListener.java, follows these steps:

1. When a message arrives, the onMessage method is called automatically.

2. The onMessage method converts the incoming message to a TextMessage and
displays its content.

The following subsections show the three source files:

• SimpleTopicPublisher.java

• SimpleTopicSubscriber.java

• TextListener.java

A SIMPLE PUBLISH/SUBSCRIBE EXAMPLE 47
4.3.1.1 Publishing Messages to a Topic: SimpleTopicPublisher.java

The publisher program is SimpleTopicPublisher.java.

/**

 * The SimpleTopicPublisher class consists only of a main method,

 * which publishes several messages to a topic.

 *

 * Run this program in conjunction with SimpleTopicSubscriber.

 * Specify a topic name on the command line when you run the

 * program. By default, the program sends one message.

 * Specify a number after the topic name to send that number

 * of messages.

 */

import javax.jms.*;

import javax.naming.*;

public class SimpleTopicPublisher {

 /**

 * Main method.

 *

 * @param args the topic used by the example and,

 * optionally, the number of messages to send

 */

 public static void main(String[] args) {

 String topicName = null;

 Context jndiContext = null;

 TopicConnectionFactory topicConnectionFactory = null;

 TopicConnection topicConnection = null;

 TopicSession topicSession = null;

 Topic topic = null;

 TopicPublisher topicPublisher = null;

 TextMessage message = null;

 final int NUM_MSGS;

 if ((args.length < 1) || (args.length > 2)) {

 System.out.println("Usage: java " +

CHAPTER 4 WRITING SIMPLE JMS CLIENT APPLICATIONS48
 "SimpleTopicPublisher <topic-name> " +

 "[<number-of-messages>]");

 System.exit(1);

 }

 topicName = new String(args[0]);

 System.out.println("Topic name is " + topicName);

 if (args.length == 2){

 NUM_MSGS = (new Integer(args[1])).intValue();

 } else {

 NUM_MSGS = 1;

 }

 /*

 * Create a JNDI API InitialContext object if none exists

 * yet.

 */

 try {

 jndiContext = new InitialContext();

 } catch (NamingException e) {

 System.out.println("Could not create JNDI API " +

 "context: " + e.toString());

 e.printStackTrace();

 System.exit(1);

 }

 /*

 * Look up connection factory and topic. If either does

 * not exist, exit.

 */

 try {

 topicConnectionFactory = (TopicConnectionFactory)

 jndiContext.lookup("TopicConnectionFactory");

 topic = (Topic) jndiContext.lookup(topicName);

 } catch (NamingException e) {

 System.out.println("JNDI API lookup failed: " +

 e.toString());

 e.printStackTrace();

 System.exit(1);

 }

A SIMPLE PUBLISH/SUBSCRIBE EXAMPLE 49
 /*

 * Create connection.

 * Create session from connection; false means session is

 * not transacted.

 * Create publisher and text message.

 * Send messages, varying text slightly.

 * Finally, close connection.

 */

 try {

 topicConnection =

 topicConnectionFactory.createTopicConnection();

 topicSession =

 topicConnection.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

 topicPublisher = topicSession.createPublisher(topic);

 message = topicSession.createTextMessage();

 for (int i = 0; i < NUM_MSGS; i++) {

 message.setText("This is message " + (i + 1));

 System.out.println("Publishing message: " +

 message.getText());

 topicPublisher.publish(message);

 }

 } catch (JMSException e) {

 System.out.println("Exception occurred: " +

 e.toString());

 } finally {

 if (topicConnection != null) {

 try {

 topicConnection.close();

 } catch (JMSException e) {}

 }

 }

 }

}

Code Example 4.3 SimpleTopicPublisher.java

CHAPTER 4 WRITING SIMPLE JMS CLIENT APPLICATIONS50
4.3.1.2 Receiving Messages Asynchronously: SimpleTopicSubscriber.java

The subscriber program is SimpleTopicSubscriber.java.

/**

 * The SimpleTopicSubscriber class consists only of a main

 * method, which receives one or more messages from a topic using

 * asynchronous message delivery. It uses the message listener

 * TextListener. Run this program in conjunction with

 * SimpleTopicPublisher.

 *

 * Specify a topic name on the command line when you run the

 * program. To end the program, enter Q or q on the command line.

 */

import javax.jms.*;

import javax.naming.*;

import java.io.*;

public class SimpleTopicSubscriber {

 /**

 * Main method.

 *

 * @param args the topic used by the example

 */

 public static void main(String[] args) {

 String topicName = null;

 Context jndiContext = null;

 TopicConnectionFactory topicConnectionFactory = null;

 TopicConnection topicConnection = null;

 TopicSession topicSession = null;

 Topic topic = null;

 TopicSubscriber topicSubscriber = null;

 TextListener topicListener = null;

 TextMessage message = null;

 InputStreamReader inputStreamReader = null;

 char answer = '\0';

A SIMPLE PUBLISH/SUBSCRIBE EXAMPLE 51
 /*

 * Read topic name from command line and display it.

 */

 if (args.length != 1) {

 System.out.println("Usage: java " +

 "SimpleTopicSubscriber <topic-name>");

 System.exit(1);

 }

 topicName = new String(args[0]);

 System.out.println("Topic name is " + topicName);

 /*

 * Create a JNDI API InitialContext object if none exists

 * yet.

 */

 try {

 jndiContext = new InitialContext();

 } catch (NamingException e) {

 System.out.println("Could not create JNDI API " +

 "context: " + e.toString());

 e.printStackTrace();

 System.exit(1);

 }

 /*

 * Look up connection factory and topic. If either does

 * not exist, exit.

 */

 try {

 topicConnectionFactory = (TopicConnectionFactory)

 jndiContext.lookup("TopicConnectionFactory");

 topic = (Topic) jndiContext.lookup(topicName);

 } catch (NamingException e) {

 System.out.println("JNDI API lookup failed: " +

 e.toString());

 e.printStackTrace();

 System.exit(1);

 }

CHAPTER 4 WRITING SIMPLE JMS CLIENT APPLICATIONS52
 /*

 * Create connection.

 * Create session from connection; false means session is

 * not transacted.

 * Create subscriber.

 * Register message listener (TextListener).

 * Receive text messages from topic.

 * When all messages have been received, enter Q to quit.

 * Close connection.

 */

 try {

 topicConnection =

 topicConnectionFactory.createTopicConnection();

 topicSession =

 topicConnection.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

 topicSubscriber =

 topicSession.createSubscriber(topic);

 topicListener = new TextListener();

 topicSubscriber.setMessageListener(topicListener);

 topicConnection.start();

 System.out.println("To end program, enter Q or q, " +

 "then <return>");

 inputStreamReader = new InputStreamReader(System.in);

 while (!((answer == 'q') || (answer == 'Q'))) {

 try {

 answer = (char) inputStreamReader.read();

 } catch (IOException e) {

 System.out.println("I/O exception: "

 + e.toString());

 }

 }

 } catch (JMSException e) {

 System.out.println("Exception occurred: " +

 e.toString());

 } finally {

 if (topicConnection != null) {

 try {

 topicConnection.close();

A SIMPLE PUBLISH/SUBSCRIBE EXAMPLE 53
 } catch (JMSException e) {}

 }

 }

 }

}

Code Example 4.4 SimpleTopicSubscriber.java

4.3.1.3 The Message Listener: TextListener.java

The message listener is TextListener.java.

/**

 * The TextListener class implements the MessageListener

 * interface by defining an onMessage method that displays

 * the contents of a TextMessage.

 *

 * This class acts as the listener for the SimpleTopicSubscriber

 * class.

 */

import javax.jms.*;

public class TextListener implements MessageListener {

 /**

 * Casts the message to a TextMessage and displays its text.

 *

 * @param message the incoming message

 */

 public void onMessage(Message message) {

 TextMessage msg = null;

 try {

 if (message instanceof TextMessage) {

 msg = (TextMessage) message;

CHAPTER 4 WRITING SIMPLE JMS CLIENT APPLICATIONS54
 System.out.println("Reading message: " +

 msg.getText());

 } else {

 System.out.println("Message of wrong type: " +

 message.getClass().getName());

 }

 } catch (JMSException e) {

 System.out.println("JMSException in onMessage(): " +

 e.toString());

 } catch (Throwable t) {

 System.out.println("Exception in onMessage():" +

 t.getMessage());

 }

 }

}

Code Example 4.5 TextListener.java

4.3.2 Compiling the Pub/Sub Clients

To compile the pub/sub example, do the following.

1. Make sure that you have set the environment variables shown in Table 4.1 on
page 34.

2. Compile the programs and the message listener class:

javac SimpleTopicPublisher.java

javac SimpleTopicSubscriber.java

javac TextListener.java

4.3.3 Starting the JMS Provider

If you did not do so before, start the J2EE server in another terminal window:

j2ee -verbose

Wait until the server displays the message “J2EE server startup complete.”

A SIMPLE PUBLISH/SUBSCRIBE EXAMPLE 55
4.3.4 Creating the JMS Administered Objects

In the window in which you compiled the clients, use the j2eeadmin command to
create a topic named MyTopic. The last argument tells the command what kind of
destination to create.

j2eeadmin -addJmsDestination MyTopic topic

To verify that the queue has been created, use the following command:

j2eeadmin -listJmsDestination

This example uses the default TopicConnectionFactory object supplied with
the J2EE SDK 1.3.1. With a different J2EE product, you might need to create a
connection factory.

4.3.5 Running the Pub/Sub Clients

Run the clients as follows.

1. Run the SimpleTopicSubscriber program, specifying the topic name. You
need to define a value for jms.properties.

■ On a Microsoft Windows system, type the following command on a single
line:

java -Djms.properties=%J2EE_HOME%\config\jms_client.properties

SimpleTopicSubscriber MyTopic

■ On a UNIX system, type the following command on a single line:

java -Djms.properties=$J2EE_HOME/config/jms_client.properties

SimpleTopicSubscriber MyTopic

The program displays the following lines and appears to hang:

Topic name is MyTopic

To end program, enter Q or q, then <return>

CHAPTER 4 WRITING SIMPLE JMS CLIENT APPLICATIONS56
2. In another terminal window, run the SimpleTopicPublisher program, pub-
lishing three messages. The java commands look like this:

■ Microsoft Windows systems:

java -Djms.properties=%J2EE_HOME%\config\jms_client.properties

SimpleTopicPublisher MyTopic 3

■ UNIX systems:

java -Djms.properties=$J2EE_HOME/config/jms_client.properties

SimpleTopicPublisher MyTopic 3

The output of the program looks like this:

Topic name is MyTopic

Publishing message: This is message 1

Publishing message: This is message 2

Publishing message: This is message 3

In the other window, the program displays the following:

Reading message: This is message 1

Reading message: This is message 2

Reading message: This is message 3

Enter Q or q to stop the program.

4.3.6 Deleting the Topic and Stopping the Server

1. You can delete the topic you created as follows:

j2eeadmin -removeJmsDestination MyTopic

You will use it again in Section 4.4.2 on page 58, however.

2. If you wish, you can stop the J2EE server as well:

j2ee -stop

RUNNING JMS CLIENT PROGRAMS ON MULTIPLE SYSTEMS 57
4.4 Running JMS Client Programs on Multiple Systems

JMS client programs can communicate with each other when they are running on
different systems in a network. The systems must be visible to each other by
name—the UNIX host name or the Microsoft Windows computer name—and must
both be running the J2EE server.

This section explains how to produce and to consume messages in two differ-
ent situations:

• When a J2EE server is running on both systems

• When a J2EE server is running on only one system

4.4.1 Communicating Between Two J2EE Servers

Suppose that you want to run the SimpleQueueSender program on one system, mars,
and the SimpleQueueReceiver program on another system, earth. To do so, follow
these steps.

1. Start the J2EE server on both systems. Enter the following command in a ter-
minal window on each system:

j2ee -verbose

2. On earth, create a QueueConnectionFactory object, using a command like the
following:

j2eeadmin -addJmsFactory jms/EarthQCF queue

3. On mars, create a connection factory with the same name that points to the
server on earth. Enter, on one line, a command like the following:

j2eeadmin -addJmsFactory jms/EarthQCF queue -props

url=corbaname:iiop:earth:1050#earth

4. In each source program, change the line that looks up the connection factory
so that it refers to the new connection factory:

queueConnectionFactory =

 (QueueConnectionFactory) jndiContext.lookup("jms/EarthQCF");

CHAPTER 4 WRITING SIMPLE JMS CLIENT APPLICATIONS58
5. Recompile the programs; then run them by using the instructions in
Section 4.2.5 on page 44. Because both connection factories have the same
name, you can run either the sender or the receiver on either system. (Note: A
bug in the JMS provider in the J2EE SDK may cause a runtime failure to cre-
ate a connection to systems that use the Dynamic Host Configuration Protocol
[DHCP] to obtain an IP address.)

You can run the pub/sub example in the same way by creating a Topic-

ConnectionFactory object on both systems. For an example showing how to
deploy J2EE applications on two different systems, see Chapter 10.

4.4.2 Communicating Between a J2EE Server and a System Not Running
a J2EE Server

In order for two standalone client programs to communicate, both must have the
J2EE SDK installed locally. However, the J2EE server does not have to be running
on both systems. Suppose that you want to run the SimpleTopicPublisher and the
SimpleTopicSubscriber programs on two systems called earth and mars, as in
Section 4.4.1, but that the J2EE server will be running only on earth. To specify the
system running the server, you can either

• Use the command line, which allows you to access different applications on
different servers for maximum flexibility

• Set a configurable property, which allows applications to run only on the sys-
tem specified in the property

When the server is running only on the remote system, you do not have to create a
connection factory on the local system that refers to the remote system.

The procedure for using the command line is as follows:

1. Start the J2EE server on earth:

j2ee -verbose

2. Set the J2EE_HOME environment variable and the classpath on mars so that they
point to the J2EE SDK 1.3.1 installation on mars (see Table 4.1 on page 34).

RUNNING JMS CLIENT PROGRAMS ON MULTIPLE SYSTEMS 59
3. To access a client program on a system running the server from a client pro-
gram on a system not running the server, use the following option, where
hostname is the name of the system running the J2EE server:

-Dorg.omg.CORBA.ORBInitialHost=hostname

This option allows you to access the naming service on the remote system.
For example, if the server is running on earth, use a command like the fol-
lowing to run the SimpleTopicSubscriber program on mars. Make sure that
the destination you specify exists on the server running on earth.

■ On a Microsoft Windows system, type the following command on a single
line:

java -Djms.properties=%J2EE_HOME%\config\jms_client.properties

-Dorg.omg.CORBA.ORBInitialHost=earth SimpleTopicSubscriber MyTopic

■ On a UNIX system, type the following command on a single line:

java -Djms.properties=$J2EE_HOME/config/jms_client.properties

-Dorg.omg.CORBA.ORBInitialHost=earth SimpleTopicSubscriber MyTopic

If all the remote programs you need to access are on the same system, you can
edit the file %J2EE_HOME%\config\orb.properties (on Microsoft Windows sys-
tems) or $J2EE_HOME/config/orb.properties (on UNIX systems) on the local
system. The second line of this file looks like this:

host=localhost

Change localhost to the name of the system on which the J2EE server is
running—for example, earth:

host=earth

You can now run the client program as before, but you do not need to specify the
option -Dorg.omg.CORBA.ORBInitialHost.

C H A P T E R 5

Creating Robust JMS

Applications

THIS chapter explains how to use features of the JMS API to achieve the level of
reliability and performance your application requires. Many JMS applications
cannot tolerate dropped or duplicate messages and require that every message be
received once and only once.

The most reliable way to produce a message is to send a PERSISTENT message
within a transaction. JMS messages are PERSISTENT by default. A transaction is a
unit of work into which you can group a series of operations, such as message
sends and receives, so that the operations either all succeed or all fail. For details,
see Section 5.1.2 on page 64 and Section 5.2.2 on page 70.

The most reliable way to consume a message is to do so within a transaction,
either from a nontemporary queue—in the PTP messaging domain—or from a
durable subscription—in the pub/sub messaging domain. For details, see
Section 5.1.5 on page 66, Section 5.2.1 on page 67, and Section 5.2.2 on page 70.

For other applications, a lower level of reliability can reduce overhead and
improve performance. You can send messages with varying priority levels—see
Section 5.1.3 on page 65—and you can set them to expire after a certain length of
time (see Section 5.1.4 on page 65).

The JMS API provides several ways to achieve various kinds and degrees of
reliability. This chapter divides them into two categories:

• Basic reliability mechanisms

• Advanced reliability mechanisms
61

CHAPTER 5 CREATING ROBUST JMS APPLICATIONS62
The following sections describe these features as they apply to JMS clients.
Some of the features work differently in J2EE applications; in these cases, the dif-
ferences are noted here and are explained in detail in Chapter 6.

5.1 Using Basic Reliability Mechanisms

The basic mechanisms for achieving or affecting reliable message delivery are as
follows:

• Controlling message acknowledgment. You can specify various levels of
control over message acknowledgment.

• Specifying message persistence. You can specify that messages are persis-
tent, meaning that they must not be lost in the event of a provider failure.

• Setting message priority levels. You can set various priority levels for mes-
sages, which can affect the order in which the messages are delivered.

• Allowing messages to expire. You can specify an expiration time for mes-
sages, so that they will not be delivered if they are obsolete.

• Creating temporary destinations. You can create temporary destinations
that last only for the duration of the connection in which they are created.

5.1.1 Controlling Message Acknowledgment

Until a JMS message has been acknowledged, it is not considered to be successfully
consumed. The successful consumption of a message ordinarily takes place in three
stages.

1. The client receives the message.

2. The client processes the message.

3. The message is acknowledged. Acknowledgment is initiated either by the
JMS provider or by the client, depending on the session acknowledgment
mode.

In transacted sessions (see Section 5.2.2 on page 70), acknowledgment
happens automatically when a transaction is committed. If a transaction is rolled
back, all consumed messages are redelivered.

USING BASIC RELIABILITY MECHANISMS 63
In nontransacted sessions, when and how a message is acknowledged depends
on the value specified as the second argument of the createQueueSession or
createTopicSession method. The three possible argument values are:

• Session.AUTO_ACKNOWLEDGE. The session automatically acknowledges a cli-
ent’s receipt of a message either when the client has successfully returned
from a call to receive or when the MessageListener it has called to process
the message returns successfully. A synchronous receive in an
AUTO_ACKNOWLEDGE session is the one exception to the rule that message con-
sumption is a three-stage process. In this case, the receipt and acknowledg-
ment take place in one step, followed by the processing of the message.

• Session.CLIENT_ACKNOWLEDGE. A client acknowledges a message by calling
the message’s acknowledge method. In this mode, acknowledgment takes
place on the session level: Acknowledging a consumed message automati-
cally acknowledges the receipt of all messages that have been consumed by
its session. For example, if a message consumer consumes ten messages and
then acknowledges the fifth message delivered, all ten messages are
acknowledged.

• Session.DUPS_OK_ACKNOWLEDGE. This option instructs the session to lazily ac-
knowledge the delivery of messages. This is likely to result in the delivery of
some duplicate messages if the JMS provider fails, so it should be used only
by consumers that can tolerate duplicate messages. (If it redelivers a message,
the JMS provider must set the value of the JMSRedelivered message header to
true.) This option can reduce session overhead by minimizing the work the
session does to prevent duplicates.

If messages have been received but not acknowledged when a QueueSession

terminates, the JMS provider retains them and redelivers them when a consumer
next accesses the queue. The provider also retains unacknowledged messages for
a terminated TopicSession with a durable TopicSubscriber. (See Section 5.2.1
on page 67.) Unacknowledged messages for a nondurable TopicSubscriber are
dropped when the session is closed.

If you use a queue or a durable subscription, you can use the
Session.recover method to stop a nontransacted session and restart it with its
first unacknowledged message. In effect, the session’s series of delivered mes-
sages is reset to the point after its last acknowledged message. The messages it
now delivers may be different from those that were originally delivered, if

CHAPTER 5 CREATING ROBUST JMS APPLICATIONS64
messages have expired or higher-priority messages have arrived. For a nondurable
TopicSubscriber, the provider may drop unacknowledged messages when its
session is recovered.

The sample program in Section A.3 on page 250 demonstrates two ways to
ensure that a message will not be acknowledged until processing of the message is
complete.

5.1.2 Specifying Message Persistence

The JMS API supports two delivery modes for messages to specify whether mes-
sages are lost if the JMS provider fails. These delivery modes are fields of the
DeliveryMode interface.

• The PERSISTENT delivery mode, which is the default, instructs the JMS pro-
vider to take extra care to ensure that a message is not lost in transit in case of
a JMS provider failure. A message sent with this delivery mode is logged to
stable storage when it is sent.

• The NON_PERSISTENT delivery mode does not require the JMS provider to
store the message or otherwise guarantee that it is not lost if the provider fails.

You can specify the delivery mode in either of two ways.

• You can use the setDeliveryMode method of the MessageProducer inter-
face—the parent of the QueueSender and the TopicPublisher interfaces—to
set the delivery mode for all messages sent by that producer.

• You can use the long form of the send or the publish method to set the deliv-
ery mode for a specific message. The second argument sets the delivery
mode. For example, the following publish call sets the delivery mode for
message to NON_PERSISTENT:

topicPublisher.publish(message, DeliveryMode.NON_PERSISTENT, 3,

 10000);

The third and fourth arguments set the priority level and expiration time, which
are described in the next two subsections.

If you do not specify a delivery mode, the default is PERSISTENT. Using the
NON_PERSISTENT delivery mode may improve performance and reduce storage

USING BASIC RELIABILITY MECHANISMS 65
overhead, but you should use it only if your application can afford to miss
messages.

5.1.3 Setting Message Priority Levels

You can use message priority levels to instruct the JMS provider to deliver urgent
messages first. You can set the priority level in either of two ways.

• You can use the setPriority method of the MessageProducer interface to set
the priority level for all messages sent by that producer.

• You can use the long form of the send or the publish method to set the prior-
ity level for a specific message. The third argument sets the priority level. For
example, the following publish call sets the priority level for message to 3:

topicPublisher.publish(message, DeliveryMode.NON_PERSISTENT, 3,

 10000);

The ten levels of priority range from 0 (lowest) to 9 (highest). If you do not
specify a priority level, the default level is 4. A JMS provider tries to deliver
higher-priority messages before lower-priority ones but does not have to deliver
messages in exact order of priority.

5.1.4 Allowing Messages to Expire

By default, a message never expires. If a message will become obsolete after a
certain period, however, you may want to set an expiration time. You can do this in
either of two ways.

• You can use the setTimeToLive method of the MessageProducer interface to
set a default expiration time for all messages sent by that producer.

• You can use the long form of the send or the publish method to set an expira-
tion time for a specific message. The fourth argument sets the expiration time
in milliseconds. For example, the following publish call sets a time to live of
10 seconds:

topicPublisher.publish(message, DeliveryMode.NON_PERSISTENT, 3,

 10000);

CHAPTER 5 CREATING ROBUST JMS APPLICATIONS66
If the specified timeToLive value is 0, the message never expires.
When the message is published, the specified timeToLive is added to the

current time to give the expiration time. Any message not delivered before the
specified expiration time is destroyed. The destruction of obsolete messages con-
serves storage and computing resources.

5.1.5 Creating Temporary Destinations

Normally, you create JMS destinations—queues and topics—administratively rather
than programmatically. Your JMS or J2EE provider includes a tool that you use to
create and to remove destinations, and it is common for destinations to be long
lasting.

The JMS API also enables you to create destinations—TemporaryQueue and
TemporaryTopic objects—that last only for the duration of the connection in
which they are created. You create these destinations dynamically, using the
QueueSession.createTemporaryQueue and the TopicSession.createTemporary-

Topic methods.
The only message consumers that can consume from a temporary destination

are those created by the same connection that created the destination. Any
message producer can send to the temporary destination. If you close the connec-
tion that a temporary destination belongs to, the destination is closed and its con-
tents lost.

You can use temporary destinations to implement a simple request/reply
mechanism. If you create a temporary destination and specify it as the value of the
JMSReplyTo message header field when you send a message, the consumer of the
message can use the value of the JMSReplyTo field as the destination to which it
sends a reply and can also reference the original request by setting the
JMSCorrelationID header field of the reply message to the value of the
JMSMessageID header field of the request. For examples, see Chapters 9 and 10.

5.2 Using Advanced Reliability Mechanisms

The more advanced mechanisms for achieving reliable message delivery are the
following:

• Creating durable subscriptions. You can create durable topic subscriptions,
which receive messages published while the subscriber is not active. Durable

USING ADVANCED RELIABILITY MECHANISMS 67
subscriptions offer the reliability of queues to the publish/subscribe message
domain.

• Using local transactions. You can use local transactions, which allow you to
group a series of sends and receives into an atomic unit of work. Transactions
are rolled back if they fail at any time.

5.2.1 Creating Durable Subscriptions

To make sure that a pub/sub application receives all published messages, use
PERSISTENT delivery mode for the publishers. In addition, use durable subscriptions
for the subscribers.

The TopicSession.createSubscriber method creates a nondurable sub-
scriber. A nondurable subscriber can receive only messages that are published
while it is active.

At the cost of higher overhead, you can use the TopicSession.create-

DurableSubscriber method to create a durable subscriber. A durable subscription
can have only one active subscriber at a time.

A durable subscriber registers a durable subscription with a unique identity
that is retained by the JMS provider. Subsequent subscriber objects with the same
identity resume the subscription in the state in which it was left by the previous
subscriber. If a durable subscription has no active subscriber, the JMS provider
retains the subscription’s messages until they are received by the subscription or
until they expire.

You establish the unique identity of a durable subscriber by setting the
following:

• A client ID for the connection

• A topic and a subscription name for the subscriber

You set the client ID administratively for a client-specific connection factory
using the j2eeadmin command. For example:

j2eeadmin -addJmsFactory MY_CON_FAC topic -props clientID=MyID

CHAPTER 5 CREATING ROBUST JMS APPLICATIONS68
After using this connection factory to create the connection and the session,
you call the createDurableSubscriber method with two arguments—the topic
and a string that specifies the name of the subscription:

String subName = "MySub";

TopicSubscriber topicSubscriber =

 topicSession.createDurableSubscriber(myTopic, subName);

The subscriber becomes active after you start the TopicConnection. Later on,
you might close the TopicSubscriber:

topicSubscriber.close();

The JMS provider stores the messages published to the topic, as it would store
messages sent to a queue. If the program or another application calls create-

DurableSubscriber with the same connection factory and its client ID, the same
topic, and the same subscription name, the subscription is reactivated, and the
JMS provider delivers the messages that were published while the subscriber was
inactive.

To delete a durable subscription, first close the subscriber, and then use the
unsubscribe method, with the subscription name as the argument:

topicSubscriber.close();

topicSession.unsubscribe("MySub");

The unsubscribe method deletes the state that the provider maintains for the
subscriber.

Figures 5.1 and 5.2 show the difference between a nondurable and a durable
subscriber. With an ordinary, nondurable, subscriber, the subscriber and the sub-
scription are coterminous and, in effect, identical. When a subscriber is closed, the
subscription ends as well. Here, create stands for a call to TopicSession.create-

Subscriber, and close stands for a call to TopicSubscriber.close. Any messages
published to the topic between the time of the first close and the time of the
second create are not consumed by the subscriber. In Figure 5.1, the subscriber
consumes messages M1, M2, M5, and M6, but messages M3 and M4 are lost.

USING ADVANCED RELIABILITY MECHANISMS 69
Figure 5.1 Nondurable Subscribers and Subscriptions

With a durable subscriber, the subscriber can be closed and recreated, but the
subscription continues to exist and to hold messages until the application calls the
unsubscribe method. In Figure 5.2, create stands for a call to TopicSes-

sion.createDurableSubscriber, close stands for a call to TopicSub-

scriber.close, and unsubscribe stands for a call to TopicSession.unsubscribe.
Messages published while the subscriber is closed are received when the sub-
scriber is created again. So even though messages M2, M4, and M5 arrive while
the subscriber is closed, they are not lost.

Figure 5.2 A Durable Subscriber and Subscription

See Chapter 8 for an example of a J2EE application that uses durable sub-
scriptions. See Section A.1 on page 215 for an example of a client application that
uses durable subscriptions.

CHAPTER 5 CREATING ROBUST JMS APPLICATIONS70
5.2.2 Using JMS API Local Transactions

You can group a series of operations together into an atomic unit of work called a
transaction. If any one of the operations fails, the transaction can be rolled back, and
the operations can be attempted again from the beginning. If all the operations suc-
ceed, the transaction can be committed.

In a JMS client, you can use local transactions to group message sends and
receives. The JMS API Session interface provides commit and rollback methods
that you can use in a JMS client. A transaction commit means that all produced
messages are sent and all consumed messages are acknowledged. A transaction
rollback means that all produced messages are destroyed and all consumed mes-
sages are recovered and redelivered unless they have expired (see Section 5.1.4 on
page 65).

A transacted session is always involved in a transaction. As soon as the
commit or the rollback method is called, one transaction ends and another trans-
action begins. Closing a transacted session rolls back its transaction in progress,
including any pending sends and receives.

In an Enterprise JavaBeans component, you cannot use the Session.commit

and Session.rollback methods. Instead, you use distributed transactions, which
are described in Chapter 6.

You can combine several sends and receives in a single JMS API local trans-
action. If you do so, you need to be careful about the order of the operations. You
will have no problems if the transaction consists of all sends or all receives or if
the receives come before the sends. But if you try to use a request-reply mecha-
nism, whereby you send a message and then try to receive a reply to the sent
message in the same transaction, the program will hang, because the send cannot
take place until the transaction is committed. Because a message sent during a
transaction is not actually sent until the transaction is committed, the transaction
cannot contain any receives that depend on that message’s having been sent.

It is also important to note that the production and the consumption of a
message cannot both be part of the same transaction. The reason is that the trans-
actions take place between the clients and the JMS provider, which intervenes
between the production and the consumption of the message. Figure 5.3 illustrates
this interaction.

USING ADVANCED RELIABILITY MECHANISMS 71
Figure 5.3 Using JMS API Local Transactions

The sending of one or more messages to a queue by Client 1 can form a single
transaction, because it forms a single set of interactions with the JMS provider.
Similarly, the receiving of one or more messages from the queue by Client 2 also
forms a single transaction. But because the two clients have no direct interaction,
no transactions take place between them. Another way of putting this is that the
act of producing and/or consuming messages in a session can be transactional, but
the act of producing and consuming a specific message across different sessions
cannot be transactional.

This is the fundamental difference between messaging and synchronized pro-
cessing. Instead of tightly coupling the sending and receiving of data, message
producers and consumers use an alternative approach to reliability, one that is
built on a JMS provider’s ability to supply a once-and-only-once message delivery
guarantee.

When you create a session, you specify whether it is transacted. The first
argument to the createQueueSession and the createTopicSession methods is a
boolean value. A value of true means that the session is transacted; a value of
false means that it is not transacted. The second argument to these methods is the
acknowledgment mode, which is relevant only to nontransacted sessions (see
Section 5.1.1 on page 62). If the session is transacted, the second argument is
ignored, so it is a good idea to specify 0 to make the meaning of your code clear.
For example:

topicSession = topicConnection.createTopicSession(true, 0);

Because the commit and the rollback methods for local transactions are asso-
ciated with the session, you cannot combine queue and topic operations in a single
transaction. For example, you cannot receive a message from a queue and then
publish a related message to a topic in the same transaction, because the Queue-

Receiver and the TopicPublisher are associated with a QueueSession and a

CHAPTER 5 CREATING ROBUST JMS APPLICATIONS72
TopicSession, respectively. You can, however, receive from one queue and send
to another queue in the same transaction, assuming that you use the same Queue-

Session to create the QueueReceiver and the QueueSender. You can pass a client
program’s session to a message listener’s constructor function and use it to create
a message producer, so that you can use the same session for receives and sends in
asynchronous message consumers. For an example of the use of JMS API local
transactions, see Section A.2 on page 225.

C H A P T E R 6

Using the JMS API in a J2EE

Application

THIS chapter describes the ways in which using the JMS API in a J2EE applica-
tion differs from using it in a standalone client application:

• Using enterprise beans to produce and to synchronously receive messages

• Using message-driven beans to receive messages asynchronously

• Managing distributed transactions

• Using application clients and Web components

This chapter assumes that you have some knowledge of the J2EE platform
and J2EE components. If you have not already done so, you may wish to read the
J2EE Tutorial (http://java.sun.com/j2ee/tutorial/) or the Java 2 Platform,
Enterprise Edition Specification, v1.3 (available from http://java.sun.com/

j2ee/download.html).

6.1 Using Enterprise Beans to Produce and to Synchronously
Receive Messages

A J2EE application that produces messages or synchronously receives them may
use any kind of enterprise bean to perform these operations. The example in
Chapter 8 uses a stateless session bean to publish messages to a topic.

Because a blocking synchronous receive ties up server resources, it is not a
good programming practice to use such a receive call in an enterprise bean.
73

CHAPTER 6 USING THE JMS API IN A J2EE APPLICATION74
Instead, use a timed synchronous receive, or use a message-driven bean to receive
messages asynchronously. For details about blocking and timed synchronous
receives, see Section 4.2.1 on page 35.

Using the JMS API in a J2EE application is in many ways similar to using it
in a standalone client. The main differences are in administered objects, resource
management, and transactions.

6.1.1 Administered Objects

The Platform Specification recommends that you use java:comp/env/jms as the
environment subcontext for Java Naming and Directory Interface (JNDI) API
lookups of connection factories and destinations. With the J2EE SDK 1.3.1, you use
the Application Deployment Tool, commonly known as the deploytool, to specify
JNDI API names that correspond to those in your source code.

Instead of looking up a JMS API connection factory or destination each time
it is used in a method, it is recommended that you look up these instances once in
the enterprise bean’s ejbCreate method and cache them for the lifetime of the
enterprise bean.

6.1.2 Resource Management

A JMS API resource is a JMS API connection or a JMS API session. In general, it is
important to release JMS resources when they are no longer being used. Here are
some useful practices to follow.

• If you wish to maintain a JMS API resource only for the life span of a busi-
ness method, it is a good idea to close the resource in a finally block within
the method.

• If you would like to maintain a JMS API resource for the life span of an enter-
prise bean instance, it is a good idea to use the component’s ejbCreate
method to create the resource and to use the component’s ejbRemove method
to close the resource. If you use a stateful session bean or an entity bean and
you wish to maintain the JMS API resource in a cached state, you must close
the resource in the ejbPassivate method and set its value to null, and you
must create it again in the ejbActivate method.

USING MESSAGE-DRIVEN BEANS 75
6.1.3 Transactions

Instead of using local transactions, you use the deploytool to specify container-
managed transactions for bean methods that perform sends and receives, allowing
the EJB container to handle transaction demarcation. (You can use bean-managed
transactions and the javax.transaction.UserTransaction interface’s transaction
demarcation methods, but you should do so only if your application has special
requirements and you are an expert in using transactions. Usually, container-
managed transactions produce the most efficient and correct behavior.)

6.2 Using Message-Driven Beans

As we noted in Section 1.4 on page 12, the J2EE platform supports a new kind of
enterprise bean, the message-driven bean, which allows J2EE applications to
process JMS messages asynchronously. Session beans and entity beans allow you to
send messages and to receive them synchronously but not asynchronously.

A message-driven bean is a message listener that can reliably consume mes-
sages from a queue or a durable subscription. The messages may be sent by any
J2EE component—from an application client, another enterprise bean, or a Web
component—or from an application or a system that does not use J2EE
technology.

Like a message listener in a standalone JMS client, a message-driven bean
contains an onMessage method that is called automatically when a message
arrives. Like a message listener, a message-driven bean class may implement
helper methods invoked by the onMessage method to aid in message processing.

A message-driven bean differs from a standalone client’s message listener in
five ways, however.

• The EJB container automatically performs several setup tasks that a stand-
alone client has to do:

■ Creating a message consumer (a QueueReceiver or a TopicSubscriber) to
receive the messages. You associate the message-driven bean with a desti-
nation and a connection factory at deployment time. If you want to specify a
durable subscription or use a message selector, you do this at deployment
time also.

■ Registering the message listener. (You must not call setMessageListener.)

CHAPTER 6 USING THE JMS API IN A J2EE APPLICATION76
■ Specifying a message acknowledgment mode. (For details, see Section 6.3
on page 77.)

• Your bean class must implement the javax.ejb.MessageDrivenBean and the
javax.jms.MessageListener interfaces.

• Your bean class must implement the ejbCreate method in addition to the
onMessage method. The method has the following signature:

public void ejbCreate() {}

If your message-driven bean produces messages or does synchronous receives
from another destination, you use its ejbCreate method to look up JMS API
connection factories and destinations and to create the JMS API connection.

• Your bean class must implement an ejbRemove method. The method has the
following signature:

public void ejbRemove() {}

If you used the message-driven bean’s ejbCreate method to create the JMS
API connection, you ordinarily use the ejbRemove method to close the
connection.

• Your bean class must implement the setMessageDrivenContext method. A
MessageDrivenContext object provides some additional methods that you can
use for transaction management. The method has the following signature:

public void setMessageDrivenContext(MessageDrivenContext mdc) {}

See Section 7.1.2 on page 85 for a simple example of a message-driven bean.
The main difference between a message-driven bean and other enterprise

beans is that a message-driven bean has no home or remote interface. Rather, it
has only a bean class.

A message-driven bean is similar in some ways to a stateless session bean: its
instances are relatively short-lived and retain no state for a specific client. The
instance variables of the message-driven bean instance can contain some state
across the handling of client messages: for example, a JMS API connection, an
open database connection, or an object reference to an enterprise bean object.

Like a stateless session bean, a message-driven bean can have many inter-
changeable instances running at the same time. The container can pool these

MANAGING DISTRIBUTED TRANSACTIONS 77
instances to allow streams of messages to be processed concurrently. Concurrency
can affect the order in which messages are delivered, so you should write your
application to handle messages that arrive out of sequence.

To create a new instance of a message-driven bean, the container instantiates
the bean and then

1. Calls the setMessageDrivenContext method to pass the context object to the
instance

2. Calls the instance’s ejbCreate method

Figure 6.1 shows the life cycle of a message-driven bean.

Figure 6.1 Life Cycle of a Message-Driven Bean

6.3 Managing Distributed Transactions

JMS client applications use JMS API local transactions, described in Section 5.2.2
on page 70, which allow the grouping of sends and receives within a specific JMS
session. J2EE applications commonly use distributed transactions in order to ensure
the integrity of accesses to external resources. For example, distributed transactions
allow multiple applications to perform atomic updates on the same database, and
they allow a single application to perform atomic updates on multiple databases.

In a J2EE application that uses the JMS API, you can use transactions to
combine message sends or receives with database updates and other resource
manager operations. You can access resources from multiple application

CHAPTER 6 USING THE JMS API IN A J2EE APPLICATION78
components within a single transaction. For example, a servlet may start a transac-
tion, access multiple databases, invoke an enterprise bean that sends a JMS mes-
sage, invoke another enterprise bean that modifies an EIS system using the
Connector architecture, and finally commit the transaction. Your application
cannot, however, both send a JMS message and receive a reply to it within the
same transaction; the restriction described in Section 5.2.2 on page 70 still applies.

Distributed transactions can be either of two kinds:

• Container-managed transactions. The EJB container controls the integrity
of your transactions without your having to call commit or rollback.
Container-managed transactions are recommended for J2EE applications that
use the JMS API. You can specify appropriate transaction attributes for your
enterprise bean methods.

Use the Required transaction attribute to ensure that a method is always part
of a transaction. If a transaction is in progress when the method is called, the
method will be part of that transaction; if not, a new transaction will be started
before the method is called and will be committed when the method returns.

• Bean-managed transactions. You can use these in conjunction with the
javax.transaction.UserTransaction interface, which provides its own
commit and rollback methods that you can use to delimit transaction
boundaries.

You can use either container-managed transactions or bean-managed transactions
with message-driven beans.

To ensure that all messages are received and handled within the context of a
transaction, use container-managed transactions and specify the Required transac-
tion attribute for the onMessage method. This means that a new transaction will be
started before the method is called and will be committed when the method
returns. An onMessage call is always a separate transaction, because there is never
a transaction in progress when the method is called.

MANAGING DISTRIBUTED TRANSACTIONS 79
When you use container-managed transactions, you can call the following
MessageDrivenContext methods:

• setRollbackOnly. Use this method for error handling. If an exception occurs,
setRollbackOnly marks the current transaction so that the only possible out-
come of the transaction is a rollback.

• getRollbackOnly. Use this method to test whether the current transaction has
been marked for rollback.

If you use bean-managed transactions, the delivery of a message to the
onMessage method takes place outside of the distributed transaction context. The
transaction begins when you call the UserTransaction.begin method within the
onMessage method and ends when you call UserTransaction.commit. If you call
UserTransaction.rollback, the message is not redelivered, whereas calling set-

RollbackOnly for container-managed transactions does cause a message to be
redelivered.

Neither the JMS API Specification nor the Enterprise JavaBeans Specification
(available from http://java.sun.com/products/ejb/) specifies how to handle
calls to JMS API methods outside transaction boundaries. The Enterprise
JavaBeans Specification does state that the EJB container is responsible for
acknowledging a message that is successfully processed by the onMessage method
of a message-driven bean that uses bean-managed transactions. Using bean-
managed transactions allows you to process the message by using more than one
transaction or to have some parts of the message processing take place outside a
transaction context. In most cases, however, container-managed transactions
provide greater reliability and are therefore preferable.

When you create a session in an enterprise bean, the container ignores the
arguments you specify, because it manages all transactional properties for enter-
prise beans. It is still a good idea to specify arguments of true and 0 to the
createQueueSession or the createTopicSession method to make this situation
clear:

queueSession = queueConnection.createQueueSession(true, 0);

When you use container-managed transactions, you usually specify the
Required transaction attribute for your enterprise bean’s business methods.

CHAPTER 6 USING THE JMS API IN A J2EE APPLICATION80
You do not specify a message acknowledgment mode when you create a
message-driven bean that uses container-managed transactions. The container
acknowledges the message automatically when it commits the transaction.

If a message-driven bean uses bean-managed transactions, the message
receipt cannot be part of the bean-managed transaction, so the container acknowl-
edges the message outside of the transaction. When you package a message-
driven bean using the deploytool, the Message-Driven Bean Settings dialog box
allows you to specify the acknowledgment mode, which can be either
AUTO_ACKNOWLEDGE (the default) or DUPS_OK_ACKNOWLEDGE.

If the onMessage method throws a RuntimeException, the container does not
acknowledge processing the message. In that case, the JMS provider will redeliver
the unacknowledged message in the future.

6.4 Using the JMS API with Application Clients and Web
Components

An application client can use the JMS API in much the same way a standalone client
program does. It can produce messages, and it can consume messages by using
either synchronous receives or message listeners. See Chapter 7 for an example of
an application client that produces messages; see Chapters 9 and 10 for examples of
using application clients to produce and to consume messages.

The J2EE Platform Specification does not define how Web components
implement a JMS provider. In the J2EE SDK 1.3.1, a Web component—one that
uses either the Java Servlet API or JavaServerPages™ (JSP™) technology—may
send messages and consume them synchronously but may not consume them
asynchronously.

Because a blocking synchronous receive ties up server resources, it is not a
good programming practice to use such a receive call in a Web component.
Instead, use a timed synchronous receive. For details about blocking and timed
synchronous receives, see Section 4.2.1 on page 35.

C H A P T E R 7

A Simple J2EE Application

that Uses the JMS API

THIS chapter explains how to write, compile, package, deploy, and run a simple
J2EE application that uses the JMS API. The application in this chapter uses the fol-
lowing components:

• An application client that sends several messages to a queue

• A message-driven bean that asynchronously receives and processes the
messages

The chapter covers the following topics:

• Writing and compiling the application components

• Creating and packaging the application

• Deploying and running the application

If you downloaded the tutorial examples as described in the preface, you will
find the source code files for this chapter in jms_tutorial/examples/client_mdb

(on UNIX systems) or jms_tutorial\examples\client_mdb (on Microsoft
Windows systems). The directory ear_files in the examples directory contains a
built application called SampleMDBApp.ear. If you run into difficulty at any time,
you can open this file in the deploytool and compare that file to your own version.
81

CHAPTER 7 A SIMPLE J2EE APPLICATION THAT USES THE JMS API82
7.1 Writing and Compiling the Application Components

The first and simplest application contains the following components:

• An application client that sends several messages to a queue

• A message-driven bean that asynchronously receives and processes the
messages

Figure 7.1 illustrates the structure of this application.

Figure 7.1 A Simple J2EE Application: Client to Message-Driven Bean

The application client sends messages to the queue, which is created adminis-
tratively, using the j2eeadmin command. The JMS provider—in this case, the
J2EE server—delivers the messages to the message-driven bean instances, which
then process the messages.

Writing and compiling the components of this application involve

• Coding the application client

• Coding the message-driven bean

• Compiling the source files

WRITING AND COMPILING THE APPLICATION COMPONENTS 83
7.1.1 Coding the Application Client: SimpleClient.java

The application client class, SimpleClient.java, is almost identical to Simple-

QueueSender.java in Section 4.2.1.1 on page 37. The only significant differences
are as follows.

• You do not specify the queue name on the command line. Instead, the client
obtains the queue name through a Java Naming and Directory Interface
(JNDI) API lookup.

• You do not specify the number of messages on the command line; the number
of messages is set at 3 for simplicity, and no end-of-messages message is sent.

• The JNDI API lookup uses the java:/comp/env/jms naming context.

import javax.jms.*;

import javax.naming.*;

/**

 * The SimpleClient class sends several messages to a queue.

 */

public class SimpleClient {

 /**

 * Main method.

 */

 public static void main(String[] args) {

 Context jndiContext = null;

 QueueConnectionFactory queueConnectionFactory = null;

 QueueConnection queueConnection = null;

 QueueSession queueSession = null;

 Queue queue = null;

 QueueSender queueSender = null;

 TextMessage message = null;

 final int NUM_MSGS = 3;

 /*

 * Create a JNDI API InitialContext object.

 */

CHAPTER 7 A SIMPLE J2EE APPLICATION THAT USES THE JMS API84
 try {

 jndiContext = new InitialContext();

 } catch (NamingException e) {

 System.out.println("Could not create JNDI API " +

 "context: " + e.toString());

 System.exit(1);

 }

 /*

 * Look up connection factory and queue. If either does

 * not exist, exit.

 */

 try {

 queueConnectionFactory = (QueueConnectionFactory)

jndiContext.lookup("java:comp/env/jms/MyQueueConnectionFactory");

 queue = (Queue)

 jndiContext.lookup("java:comp/env/jms/QueueName");

 } catch (NamingException e) {

 System.out.println("JNDI API lookup failed: " +

 e.toString());

 System.exit(1);

 }

 /*

 * Create connection.

 * Create session from connection; false means session is

 * not transacted.

 * Create sender and text message.

 * Send messages, varying text slightly.

 * Finally, close connection.

 */

 try {

 queueConnection =

 queueConnectionFactory.createQueueConnection();

 queueSession =

 queueConnection.createQueueSession(false,

 Session.AUTO_ACKNOWLEDGE);

 queueSender = queueSession.createSender(queue);

 message = queueSession.createTextMessage();

WRITING AND COMPILING THE APPLICATION COMPONENTS 85
 for (int i = 0; i < NUM_MSGS; i++) {

 message.setText("This is message " + (i + 1));

 System.out.println("Sending message: " +

 message.getText());

 queueSender.send(message);

 }

 } catch (JMSException e) {

 System.out.println("Exception occurred: " +

 e.toString());

 } finally {

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException e) {}

 }

 System.exit(0);

 }

 }

}

Code Example 7.1 SimpleClient.java

7.1.2 Coding the Message-Driven Bean: MessageBean.java

The message-driven bean class, MessageBean.java, implements the methods set-

MessageDrivenContext, ejbCreate, onMessage, and ejbRemove. The onMessage

method, almost identical to that of TextListener.java in Section 4.3.1.3 on
page 53, casts the incoming message to a TextMessage and displays the text. The
only significant difference is that it calls the MessageDrivenContext.setRollback-

Only method in case of an exception. This method rolls back the transaction so that
the message will be redelivered.

import javax.ejb.*;

import javax.naming.*;

import javax.jms.*;

CHAPTER 7 A SIMPLE J2EE APPLICATION THAT USES THE JMS API86
/**

 * The MessageBean class is a message-driven bean. It implements

 * the javax.ejb.MessageDrivenBean and javax.jms.MessageListener

 * interfaces. It is defined as public (but not final or

 * abstract). It defines a constructor and the methods

 * setMessageDrivenContext, ejbCreate, onMessage, and

 * ejbRemove.

 */

public class MessageBean implements MessageDrivenBean,

 MessageListener {

 private transient MessageDrivenContext mdc = null;

 private Context context;

 /**

 * Constructor, which is public and takes no arguments.

 */

 public MessageBean() {

 System.out.println("In MessageBean.MessageBean()");

 }

 /**

 * setMessageDrivenContext method, declared as public (but

 * not final or static), with a return type of void, and

 * with one argument of type javax.ejb.MessageDrivenContext.

 *

 * @param mdc the context to set

 */

 public void setMessageDrivenContext(MessageDrivenContext mdc)

 {

 System.out.println("In " +

 "MessageBean.setMessageDrivenContext()");

 this.mdc = mdc;

 }

 /**

 * ejbCreate method, declared as public (but not final or

 * static), with a return type of void, and with no

 * arguments.

WRITING AND COMPILING THE APPLICATION COMPONENTS 87
 */

 public void ejbCreate() {

 System.out.println("In MessageBean.ejbCreate()");

 }

 /**

 * onMessage method, declared as public (but not final or

 * static), with a return type of void, and with one argument

 * of type javax.jms.Message.

 *

 * Casts the incoming Message to a TextMessage and displays

 * the text.

 *

 * @param inMessage the incoming message

 */

 public void onMessage(Message inMessage) {

 TextMessage msg = null;

 try {

 if (inMessage instanceof TextMessage) {

 msg = (TextMessage) inMessage;

 System.out.println("MESSAGE BEAN: Message " +

 "received: " + msg.getText());

 } else {

 System.out.println("Message of wrong type: " +

 inMessage.getClass().getName());

 }

 } catch (JMSException e) {

 System.err.println("MessageBean.onMessage: " +

 "JMSException: " + e.toString());

 mdc.setRollbackOnly();

 } catch (Throwable te) {

 System.err.println("MessageBean.onMessage: " +

 "Exception: " + te.toString());

 }

 }

CHAPTER 7 A SIMPLE J2EE APPLICATION THAT USES THE JMS API88
 /**

 * ejbRemove method, declared as public (but not final or

 * static), with a return type of void, and with no

 * arguments.

 */

 public void ejbRemove() {

 System.out.println("In MessageBean.remove()");

 }

}

Code Example 7.2 MessageBean.java

7.1.3 Compiling the Source Files

To compile the files in the application, go to the client_mdb directory and do the
following.

1. Make sure that you have set the environment variables shown in Table 4.1 on
page 34: JAVA_HOME, J2EE_HOME, CLASSPATH, and PATH.

2. At a command line prompt, compile the source files:

javac *.java

7.2 Creating and Packaging the Application

Creating and packaging this application involve several steps:

1. Starting the J2EE server and the Application Deployment Tool

2. Creating a queue

3. Creating the J2EE application

4. Packaging the application client

5. Packaging the message-driven bean

6. Checking the JNDI API names (“JNDI names”)

CREATING AND PACKAGING THE APPLICATION 89
7.2.1 Starting the J2EE Server and the Deploytool

Before you can create and package the application, you must start the J2EE server
and the deploytool. Follow these steps.

1. At the command line prompt, start the J2EE server:

j2ee -verbose

Wait until the server displays the message “J2EE server startup complete.”

(To stop the server, type j2ee -stop.)

2. At another command line prompt, start the deploytool:

deploytool

(To access the tool’s context-sensitive help, press F1.)

7.2.2 Creating a Queue

In Section 4.2.4 on page 43, you used the j2eeadmin command to create a queue.
This time, you will create it by using the deploytool, as follows.

1. In the deploytool, select the Tools menu.

2. From the Tools menu, choose Server Configuration.

3. Under the JMS folder, select Destinations.

4. In the JMS Queue Destinations area, click Add.

5. In the text field, enter jms/MyQueue. (We will observe the J2EE convention of
placing the queue in the jms namespace.)

6. Click OK.

7. Verify that the queue was created:

j2eeadmin -listJmsDestination

CHAPTER 7 A SIMPLE J2EE APPLICATION THAT USES THE JMS API90
7.2.3 Creating the J2EE Application

Create a new J2EE application called MDBApp and store it in the file named
MDBApp.ear. Follow these steps.

1. In the deploytool, select the File menu.

2. From the File menu, choose New ➞ Application.

3. Click Browse next to the Application File Name field and use the file chooser
to locate the directory client_mdb.

4. In the File Name field, enter MDBApp.

5. Click New Application.

6. Click OK.

A diamond icon labeled MDBApp appears in the tree view on the left side of the
deploytool window. The full path name of MDBApp.ear appears in the General
tabbed pane on the right side.

7.2.4 Packaging the Application Client

In this section, you will run the New Application Client Wizard of the deploytool to
package the application client. The New Application Client Wizard does the
following:

• Identifies the application toward which the client is targeted

• Identifies the main class for the application client

• Identifies the queue and the connection factory referenced by the application
client

To start the New Application Client Wizard, follow these steps.

1. In the tree view, select MDBApp.

2. From the File menu, choose New ➞ Application Client. The wizard displays a
series of dialog boxes.

CREATING AND PACKAGING THE APPLICATION 91
7.2.4.1 Introduction Dialog Box

1. Read this explanatory text for an overview of the wizard’s features.

2. Click Next.

7.2.4.2 JAR File Contents Dialog Box

1. In the combo box labeled Create Archive Within Application, select MDBApp.

2. Click the Edit button next to the Contents text area.

3. In the dialog box Edit Contents of <Application Client>, choose the
client_mdb directory. If the directory is not already in the Starting Directory
field, type it in the field, or locate it by browsing through the Available Files
tree.

4. Select SimpleClient.class from the Available Files tree area and click Add.

5. Click OK.

6. Click Next.

7.2.4.3 General Dialog Box

1. Verify that the Main Class and the Display Name are both SimpleClient.

2. In the Callback Handler Class combo box, verify that container-managed au-
thentication is selected.

3. Click Next.

7.2.4.4 Environment Entries Dialog Box

Click Next.

7.2.4.5 Enterprise Bean References Dialog Box

Click Next.

CHAPTER 7 A SIMPLE J2EE APPLICATION THAT USES THE JMS API92
7.2.4.6 Resource References Dialog Box

In this dialog box, you associate the JNDI API context name for the connection
factory in the SimpleClient.java source file with the name of the Queue-

ConnectionFactory. You also specify container authentication for the connection
factory resource, defining the user name and the password that the user must enter in
order to be able to create a connection. Follow these steps.

1. Click Add.

2. In the Coded Name field, enter jms/MyQueueConnectionFactory—the logical
name referenced by SimpleClient.

3. In the Type field, select javax.jms.QueueConnectionFactory.

4. In the Authentication field, select Container.

5. In the Sharable field, make sure that the checkbox is checked. This allows the
container to optimize connections.

6. In the JNDI Name field, enter jms/QueueConnectionFactory.

7. In the User Name field, enter j2ee.

8. In the Password field, enter j2ee.

9. Click Next.

7.2.4.7 JMS Destination References Dialog Box

In this dialog box, you associate the JNDI API context name for the queue in the
SimpleClient.java source file with the name of the queue you created using
j2eeadmin. Follow these steps.

1. Click Add.

2. In the Coded Name field, enter jms/QueueName—the logical name referenced
by SimpleClient.

3. In the Type field, select javax.jms.Queue.

4. In the JNDI Name field, enter jms/MyQueue.

5. Click Next.

CREATING AND PACKAGING THE APPLICATION 93
7.2.4.8 Review Settings Dialog Box

1. Check the settings for the deployment descriptor.

2. Click Finish.

7.2.5 Packaging the Message-Driven Bean

In this section, you will run the New Enterprise Bean Wizard of the deploytool to
perform these tasks:

• Create the bean’s deployment descriptor

• Package the deployment descriptor and the bean class in an enterprise bean
JAR file

• Insert the enterprise bean JAR file into the application’s MDBApp.ear file

To start the New Enterprise Bean Wizard, follow these steps.

1. In the tree view, select MDBApp.

2. From the File menu, choose New ➞ Enterprise Bean. The wizard displays a
series of dialog boxes.

7.2.5.1 Introduction Dialog Box

Click Next.

7.2.5.2 EJB JAR Dialog Box

1. In the combo box labeled JAR File Location, verify that Create New JAR File
in Application and MDBApp are selected.

2. In the JAR Display Name field, verify that the name is Ejb1, the default dis-
play name. Representing the enterprise bean JAR file that contains the bean,
this name will be displayed in the tree view.

3. Click the Edit button next to the Contents text area.

4. In the dialog box Edit Contents of Ejb1, choose the client_mdb directory. If
the directory is not already in the Starting Directory field, type it in the field,
or locate it by browsing through the Available Files tree.

CHAPTER 7 A SIMPLE J2EE APPLICATION THAT USES THE JMS API94
5. Select the MessageBean.class file from the Available Files tree area and click
Add.

6. Click OK.

7. Click Next.

7.2.5.3 General Dialog Box

1. In the Bean Type combo box, select the Message-Driven radio button.

2. Under Enterprise Bean Class, select MessageBean. The combo boxes for the
local and remote interfaces are grayed out.

3. In the Enterprise Bean Name field, enter MessageBean. This name will repre-
sent the message-driven bean in the tree view. The display name does not
have to be different from the bean class name.

4. Click Next.

7.2.5.4 Transaction Management Dialog Box

In this dialog box, you specify how transactions for the onMessage method should
be handled. Although an ordinary enterprise bean has six possible transaction
attributes, a message-driven bean has only two. (The others are meaningful only if
there might be a preexisting transaction context, which doesn’t exist for a message-
driven bean.) Follow these steps.

1. Select the Container-Managed radio button.

2. In the Transaction Attribute field opposite the onMessage method, verify that
Required is selected.

3. Click Next.

7.2.5.5 Message-Driven Bean Settings Dialog Box

In this dialog box, you specify the deployment properties for the bean. Because you
are using container-managed transactions, the Acknowledgment field is grayed
out. Follow these steps.

1. In the Destination Type combo box, select Queue.

2. In the Destination field, select jms/MyQueue.

CREATING AND PACKAGING THE APPLICATION 95
3. In the Connection Factory field, select jms/QueueConnectionFactory.

4. Click Next.

7.2.5.6 Environment Entries Dialog Box

Click Next.

7.2.5.7 Enterprise Bean References Dialog Box

Click Next.

7.2.5.8 Resource References Dialog Box

Click Next. (You do not need to specify the connection factory for the message-
driven bean, because it is not referred to in the message-driven bean code. You spec-
ified the connection factory in the Message-Driven Bean Settings dialog box.)

7.2.5.9 Resource Environment References Dialog Box

Click Next. (You do not need to specify the queue name here, because it is not
referred to in the message-driven bean code. You specified it in the Message-Driven
Bean Settings dialog box.)

7.2.5.10 Security Dialog Box

Use the default Security Identity setting for a message-driven bean, Run As Speci-
fied Role. Click Next.

7.2.5.11 Review Settings Dialog Box

1. Check the settings for the deployment descriptor.

2. Click Finish.

CHAPTER 7 A SIMPLE J2EE APPLICATION THAT USES THE JMS API96
7.2.6 Checking the JNDI Names

Verify that the JNDI names for the application components are correct.

• You give the JNDI name of the destination—in this case, the queue—to the
message-driven bean component.

• You check to make sure that the context names for the connection factory and
the destination are correctly matched to their JNDI names.

1. In the tree view, select the MDBApp application.

2. Select the JNDI Names tabbed pane.

3. Verify that the JNDI names appear as shown in Tables 7.1 and 7.2.

7.3 Deploying and Running the Application

Deploying and running this application involve several steps:

1. Looking at the deployment descriptor

2. Adding the server, if necessary

3. Deploying the application

4. Running the client

Table 7.1: Application Pane

Component Type Component JNDI Name

EJB MessageBean jms/MyQueue

Table 7.2: References Pane

Ref. Type Referenced By Reference Name JNDI Name

Resource SimpleClient jms/MyQueue-
ConnectionFactory

jms/Queue-
ConnectionFactory

Env Resource SimpleClient jms/QueueName jms/MyQueue

DEPLOYING AND RUNNING THE APPLICATION 97
5. Undeploying the application

6. Removing the application and stopping the server

7.3.1 Looking at the Deployment Descriptor

As you package an application, the deploytool creates a deployment descriptor in
accordance with the packaging choices you make. To see some of the JMS API-
related elements of the enterprise bean deployment descriptor, follow these steps.

1. Select Ejb1 in the tree view.

2. Choose Descriptor Viewer from the Tools menu.

3. Select SimpleClient in the tree view and repeat step 2.

In the Deployment Descriptor Viewer window, click Save As if you want to save the
contents as an XML file for future reference. Table 7.3 describes the elements that
are related to the JMS API.

(continued)

Table 7.3: JMS API-Related Deployment Descriptor Elements

Element Name Description

<message-driven> Declares a message-driven bean.

<message-selector> Specifies the JMS API message selector to be used in
determining which messages a message-driven bean is to
receive.

<message-driven-
destination>

Tells the Deployer whether a message-driven bean is
intended for a queue or a topic, and if it is intended for a
topic, whether the subscription is durable. Contains the
element <destination-type> and optionally, for topics,
<subscription-durability>.

<destination-type> Specifies the type of the JMS API destination (either
javax.jms.Queue or javax.jms.Topic). In this case,
the value is javax.jms.Queue.

CHAPTER 7 A SIMPLE J2EE APPLICATION THAT USES THE JMS API98
Table 7.3: JMS API-Related Deployment Descriptor Elements (Cont.)

Element Name Description

<subscription-
durability>

Optionally specifies whether a topic subscription is
intended to be durable or nondurable.

<resource-env-ref> Declares an enterprise bean’s reference to an adminis-
tered object associated with a resource in the enterprise
bean’s environment—in this case, a JMS API destination.
Contains the elements <resource-env-ref-name> and
<resource-env-ref-type>.

<resource-env-ref-
name>

Specifies the name of a resource environment reference;
its value is the environment entry name used in the enter-
prise bean code—in this case, jms/QueueName.

<resource-env-ref-
type>

Specifies the type of a resource environment reference—
in this case, javax.jms.Queue.

<resource-ref> Contains a declaration of the enterprise bean’s reference
to an external resource—in this case, a JMS API connec-
tion factory. Contains the elements <res-ref-name>,
<res-type>, and <res-auth>.

<res-ref-name> Specifies the name of a resource manager connection fac-
tory reference—in this case, jms/MyQueueConnection-
Factory.

<res-type> Specifies the type of the data source—in this case,
javax.jms.QueueConnectionFactory.

<res-auth> Specifies whether the enterprise bean code signs on pro-
grammatically to the resource manager (Application) or
whether the Container will sign on to the resource man-
ager on behalf of the bean. In the latter case, the Con-
tainer uses information that is supplied by the Deployer.

<res-sharing-scope> Specifies whether connections obtained through the given
resource manager connection factory reference can be
shared. In this case, the value is Shareable.

DEPLOYING AND RUNNING THE APPLICATION 99
7.3.2 Adding the Server

Before you can deploy the application, you must make available to the deploytool
the J2EE server you started in Section 7.2.1 on page 89. Because you started the
J2EE server before you started the deploytool, the server, named localhost, proba-
bly appears in the tree under Servers. If it does not, do the following.

1. From the File menu, choose Add Server.

2. In the Add Server dialog box, enter localhost in the Server Name field.

3. Click OK. A localhost node appears under Servers in the tree view.

7.3.3 Deploying the Application

You have now created an application that consists of an application client and a
message-driven bean. To deploy the application, perform the following steps.

1. From the File menu, choose Save to save the application.

2. From the Tools menu, choose Deploy.

3. In the Introduction dialog box, verify that the Object to Deploy selection is
MDBApp and that the Target Server selection is localhost.

4. Click Next.

5. In the JNDI Names dialog box, verify that the JNDI names are correct.

6. Click Next.

7. Click Finish.

8. In the Deployment Progress dialog box, click OK when the “Deployment of
MDBApp is complete” message appears.

9. In the tree view, expand Servers and select localhost. Verify that MDBApp is
deployed.

CHAPTER 7 A SIMPLE J2EE APPLICATION THAT USES THE JMS API100
7.3.4 Running the Client

To run the client, you use the MDBApp.ear file that you created in Section 7.2.3 on
page 90. Make sure that you are in the directory client_mdb. Then perform the fol-
lowing steps.

1. At the command line prompt, enter the following:

runclient -client MDBApp.ear -name SimpleClient

2. When the Login for user: dialog box appears, enter j2ee for the user name and
j2ee for the password.

3. Click OK.

The client program runs in the command window, generating output that
looks like this:

Binding name:'java:comp/env/jms/QueueName'

Binding name:'java:comp/env/jms/MyQueueConnectionFactory'

Java(TM) Message Service 1.0.2 Reference Implementation (build b14)

Sending message: This is message 1

Sending message: This is message 2

Sending message: This is message 3

Unbinding name:'java:comp/env/jms/QueueName'

Unbinding name:'java:comp/env/jms/MyQueueConnectionFactory'

Output from the application appears in the window in which you started the
J2EE server. By default, the server creates three instances of the MessageBean to
receive messages.

In MessageBean.MessageBean()

In MessageBean.setMessageDrivenContext()

In MessageBean.ejbCreate()

MESSAGE BEAN: Message received: This is message 1

In MessageBean.MessageBean()

In MessageBean.setMessageDrivenContext()

In MessageBean.ejbCreate()

In MessageBean.MessageBean()

In MessageBean.setMessageDrivenContext()

DEPLOYING AND RUNNING THE APPLICATION 101
In MessageBean.ejbCreate()

MESSAGE BEAN: Message received: This is message 2

MESSAGE BEAN: Message received: This is message 3

7.3.5 Undeploying the Application

To undeploy the J2EE application, follow these steps.

1. In the tree view, select localhost.

2. Select MDBApp in the Deployed Objects area.

3. Click Undeploy.

4. Answer Yes in the confirmation dialog.

7.3.6 Removing the Application and Stopping the Server

To remove the application from the deploytool, follow these steps.

1. Select MDBApp in the tree view.

2. Select Close from the File menu.

To delete the queue you created, enter the following at the command line
prompt:

j2eeadmin -removeJmsDestination jms/MyQueue

To stop the J2EE server, use the following command:

j2ee -stop

To exit the deploytool, choose Exit from the File menu.

C H A P T E R 8

A J2EE Application that Uses

the JMS API with a Session
Bean

THIS chapter explains how to write, compile, package, deploy, and run a J2EE
application that uses the JMS API in conjunction with a session bean. The applica-
tion contains the following components:

• An application client that calls an enterprise bean

• A session bean that publishes several messages to a topic

• A message-driven bean that receives and processes the messages, using a du-
rable topic subscriber and a message selector

The chapter covers the following topics:

• Writing and compiling the application components

• Creating and packaging the application

• Deploying and running the application

If you downloaded the tutorial examples as described in the preface, you will
find the source code files for this chapter in jms_tutorial/examples/

client_ses_mdb (on UNIX systems) or jms_tutorial\examples\client_ses_mdb
(on Microsoft Windows systems). The directory ear_files in the examples direc-
tory contains a built application called SamplePubSubApp.ear. If you run into
103

CHAPTER 8 A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN104
difficulty at any time, you can open this file in the deploytool and compare that
file to your own version.

8.1 Writing and Compiling the Application Components

This application demonstrates how to send messages from an enterprise bean—in
this case, a session bean—rather than from an application client, as in the example
in Chapter 7. Figure 8.1 illustrates the structure of this application.

Figure 8.1 A J2EE Application: Client to Session Bean to Message-Driven Bean

The Publisher enterprise bean in this example is the enterprise-application
equivalent of a wire-service news feed that categorizes news events into six news
categories. The message-driven bean could represent a newsroom, where the
Sports desk, for example, would set up a subscription for all news events pertain-
ing to sports news.

The application client in the example obtains a handle to the Publisher enter-
prise bean’s home interface and calls the enterprise bean’s business method. The
enterprise bean creates 18 text messages. For each message, it sets a String prop-
erty randomly to one of six values representing the news categories and then pub-
lishes the message to a topic. The message-driven bean uses a message selector
for the property to limit which of the published messages it receives.

WRITING AND COMPILING THE APPLICATION COMPONENTS 105
Writing and compiling the components of the application involve

• Coding the application client

• Coding the Publisher session bean

• Coding the message-driven bean

• Compiling the source files

8.1.1 Coding the Application Client: MyAppClient.java

The application client program, MyAppClient.java, performs no JMS API opera-
tions and so is simpler than the client program in Chapter 7. The program obtains a
handle to the Publisher enterprise bean’s home interface, using the Java Naming
and Directory Interface (JNDI) API naming context java:comp/env. The program
then creates an instance of the bean and calls the bean’s business method twice.

import javax.ejb.EJBHome;

import javax.naming.*;

import javax.rmi.PortableRemoteObject;

import javax.jms.*;

/**

 * The MyAppClient class is the client program for this J2EE

 * application. It obtains a reference to the home interface

 * of the Publisher enterprise bean and creates an instance of

 * the bean. After calling the publisher's publishNews method

 * twice, it removes the bean.

 */

public class MyAppClient {

 public static void main (String[] args) {

 MyAppClient client = new MyAppClient();

 client.doTest();

 System.exit(0);

 }

 public void doTest() {

CHAPTER 8 A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN106
 try {

 Context ic = new InitialContext();

 System.out.println("Looking up EJB reference");

 java.lang.Object objref =

 ic.lookup("java:comp/env/ejb/MyEjbReference");

 System.err.println("Looked up home");

 PublisherHome pubHome = (PublisherHome)

 PortableRemoteObject.narrow(objref,

 PublisherHome.class);

 System.err.println("Narrowed home");

 /*

 * Create bean instance, invoke business method

 * twice, and remove bean instance.

 */

 Publisher phr = pubHome.create();

 System.err.println("Got the EJB");

 phr.publishNews();

 phr.publishNews();

 phr.remove();

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

}

Code Example 8.1 MyAppClient.java

8.1.2 Coding the Publisher Session Bean

The Publisher bean is a stateless session bean with one create method and one busi-
ness method. The Publisher bean uses remote interfaces rather than local interfaces
because it is accessed from outside the EJB container.

WRITING AND COMPILING THE APPLICATION COMPONENTS 107
8.1.2.1 The Remote Home Interface: PublisherHome.java

The remote home interface source file is PublisherHome.java.

import java.rmi.RemoteException;

import javax.ejb.EJBHome;

import javax.ejb.CreateException;

/**

 * Home interface for Publisher enterprise bean.

 */

public interface PublisherHome extends EJBHome {

 Publisher create() throws RemoteException, CreateException;

}

Code Example 8.2 PublisherHome.java

8.1.2.2 The Remote Interface: Publisher.java

The remote interface, Publisher.java, declares a single business method,
publishNews.

import javax.ejb.*;

import java.rmi.RemoteException;

/**

 * Remote interface for Publisher enterprise bean. Declares one

 * business method.

 */

public interface Publisher extends EJBObject {

 void publishNews() throws RemoteException;

CHAPTER 8 A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN108
}

Code Example 8.3 Publisher.java

8.1.2.3 The Bean Class: PublisherBean.java

The bean class, PublisherBean.java, implements the publishNews method and its
helper method chooseType. The bean class also implements the required methods
ejbCreate, setSessionContext, ejbRemove, ejbActivate, and ejbPassivate.

The ejbCreate method of the bean class allocates resources—in this case, by
looking up the TopicConnectionFactory and the topic and creating the Topic-

Connection. The business method publishNews creates a TopicSession and a
TopicPublisher and publishes the messages.

The ejbRemove method must deallocate the resources that were allocated by
the ejbCreate method. In this case, the ejbRemove method closes the Topic-

Connection.

import java.rmi.RemoteException;

import java.util.*;

import javax.ejb.*;

import javax.naming.*;

import javax.jms.*;

/**

 * Bean class for Publisher enterprise bean. Defines publishNews

 * business method as well as required methods for a stateless

 * session bean.

 */

public class PublisherBean implements SessionBean {

 SessionContext sc = null;

 TopicConnection topicConnection = null;

 Topic topic = null;

 final static String messageTypes[] = {"Nation/World",

 "Metro/Region", "Business", "Sports", "Living/Arts",

 "Opinion"};

WRITING AND COMPILING THE APPLICATION COMPONENTS 109
 public PublisherBean() {

 System.out.println("In PublisherBean() (constructor)");

 }

 /**

 * Sets the associated session context. The container calls

 * this method after the instance creation.

 */

 public void setSessionContext(SessionContext sc) {

 this.sc = sc;

 }

 /**

 * Instantiates the enterprise bean. Creates the

 * TopicConnection and looks up the topic.

 */

 public void ejbCreate() {

 Context context = null;

 TopicConnectionFactory topicConnectionFactory = null;

 System.out.println("In PublisherBean.ejbCreate()");

 try {

 context = new InitialContext();

 topic = (Topic)

 context.lookup("java:comp/env/jms/TopicName");

 // Create a TopicConnection

 topicConnectionFactory = (TopicConnectionFactory)

 context.lookup("java:comp/env/jms/MyTopicConnectionFactory");

 topicConnection =

 topicConnectionFactory.createTopicConnection();

 } catch (Throwable t) {

 // JMSException or NamingException could be thrown

 System.err.println("PublisherBean.ejbCreate:" +

 "Exception: " + t.toString());

 }

 }

 /**

CHAPTER 8 A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN110
 * Chooses a message type by using the random number

 * generator found in java.util. Called by publishNews().

 *

 * @return the String representing the message type

 */

 private String chooseType() {

 int whichMsg;

 Random rgen = new Random();

 whichMsg = rgen.nextInt(messageTypes.length);

 return messageTypes[whichMsg];

 }

 /**

 * Creates TopicSession, publisher, and message. Publishes

 * messages after setting their NewsType property and using

 * the property value as the message text. Messages are

 * received by MessageBean, a message-driven bean that uses a

 * message selector to retrieve messages whose NewsType

 * property has certain values.

 */

 public void publishNews() throws EJBException {

 TopicSession topicSession = null;

 TopicPublisher topicPublisher = null;

 TextMessage message = null;

 int numMsgs = messageTypes.length * 3;

 String messageType = null;

 try {

 topicSession =

 topicConnection.createTopicSession(true, 0);

 topicPublisher = topicSession.createPublisher(topic);

 message = topicSession.createTextMessage();

 for (int i = 0; i < numMsgs; i++) {

 messageType = chooseType();

 message.setStringProperty("NewsType",

 messageType);

 message.setText("Item " + i + ": " +

 messageType);

WRITING AND COMPILING THE APPLICATION COMPONENTS 111
 System.out.println("PUBLISHER: Setting " +

 "message text to: " + message.getText());

 topicPublisher.publish(message);

 }

 } catch (Throwable t) {

 // JMSException could be thrown

 System.err.println("PublisherBean.publishNews: " +

 "Exception: " + t.toString());

 sc.setRollbackOnly();

 } finally {

 if (topicSession != null) {

 try {

 topicSession.close();

 } catch (JMSException e) {}

 }

 }

 }

 /**

 * Closes the TopicConnection.

 */

 public void ejbRemove() throws RemoteException {

 System.out.println("In PublisherBean.ejbRemove()");

 if (topicConnection != null) {

 try {

 topicConnection.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

 public void ejbActivate() {}

 public void ejbPassivate() {}

}

Code Example 8.4 PublisherBean.java

CHAPTER 8 A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN112
8.1.3 Coding the Message-Driven Bean: MessageBean.java

The message-driven bean class, MessageBean.java, is identical to the one in
Section 7.1.2 on page 85.

import javax.ejb.*;

import javax.naming.*;

import javax.jms.*;

/**

 * The MessageBean class is a message-driven bean. It implements

 * the javax.ejb.MessageDrivenBean and javax.jms.MessageListener

 * interfaces. It is defined as public (but not final or

 * abstract). It defines a constructor and the methods

 * setMessageDrivenContext, ejbCreate, onMessage, and

 * ejbRemove.

*/

public class MessageBean implements MessageDrivenBean,

 MessageListener {

 private transient MessageDrivenContext mdc = null;

 private Context context;

 /**

 * Constructor, which is public and takes no arguments.

 */

 public MessageBean() {

 System.out.println("In MessageBean.MessageBean()");

 }

 /**

 * setMessageDrivenContext method, declared as public (but

 * not final or static), with a return type of void, and

 * with one argument of type javax.ejb.MessageDrivenContext.

 *

 * @param mdc the context to set

 */

WRITING AND COMPILING THE APPLICATION COMPONENTS 113
 public void setMessageDrivenContext(MessageDrivenContext mdc)

 {

 System.out.println("In " +

 "MessageBean.setMessageDrivenContext()");

 this.mdc = mdc;

 }

 /**

 * ejbCreate method, declared as public (but not final or

 * static), with a return type of void, and with no

 * arguments.

 */

 public void ejbCreate() {

 System.out.println("In MessageBean.ejbCreate()");

 }

 /**

 * onMessage method, declared as public (but not final or

 * static), with a return type of void, and with one argument

 * of type javax.jms.Message.

 *

 * Casts the incoming Message to a TextMessage and displays

 * the text.

 *

 * @param inMessage the incoming message

 */

 public void onMessage(Message inMessage) {

 TextMessage msg = null;

 try {

 if (inMessage instanceof TextMessage) {

 msg = (TextMessage) inMessage;

 System.out.println("MESSAGE BEAN: Message " +

 "received: " + msg.getText());

 } else {

 System.out.println("Message of wrong type: " +

 inMessage.getClass().getName());

CHAPTER 8 A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN114
 }

 } catch (JMSException e) {

 System.err.println("MessageBean.onMessage: " +

 "JMSException: " + e.toString());

 mdc.setRollbackOnly();

 } catch (Throwable te) {

 System.err.println("MessageBean.onMessage: " +

 "Exception: " + te.toString());

 }

 }

 /**

 * ejbRemove method, declared as public (but not final or

 * static), with a return type of void, and with no

 * arguments.

 */

 public void ejbRemove() {

 System.out.println("In MessageBean.remove()");

 }

}

Code Example 8.5 MessageBean.java

8.1.4 Compiling the Source Files

To compile all the files in the application, go to the directory client_ses_mdb and
do the following.

1. Make sure that you have set the environment variables shown in Table 4.1 on
page 34: JAVA_HOME, J2EE_HOME, CLASSPATH, and PATH.

2. At a command line prompt, compile the source files:

javac *.java

CREATING AND PACKAGING THE APPLICATION 115
8.2 Creating and Packaging the Application

Creating and packaging this application involve several steps:

1. Starting the J2EE server and the deploytool*

2. Creating a topic

3. Creating a connection factory

4. Creating the J2EE application

5. Packaging the application client

6. Packaging the session bean

7. Packaging the message-driven bean

8. Specifying the JNDI names

Step 1, marked with an asterisk (*), is not needed if the server and deploytool are
still running.

8.2.1 Starting the J2EE Server and the Deploytool

Before you can create and package the application, you must start the J2EE server
and the deploytool. Follow these steps.

1. At the command line prompt, start the J2EE server:

j2ee -verbose

Wait until the server displays the message “J2EE server startup complete.”

(To stop the server, type j2ee -stop.)

2. At another command line prompt, start the deploytool:

deploytool

(To access the tool’s context-sensitive help, press F1.)

CHAPTER 8 A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN116
8.2.2 Creating a Topic

In Section 4.3.4 on page 55, you used the j2eeadmin command to create a topic.
This time, you will create the topic by using the deploytool. Follow these steps.

1. In the deploytool, select the Tools menu.

2. From the Tools menu, choose Server Configuration.

3. Under the JMS folder, select Destinations.

4. In the JMS Topic Destinations area, click Add.

5. In the text field, enter jms/MyTopic. (We will observe the J2EE convention of
placing the topic in the jms namespace.)

6. Click OK.

7. If you wish, you can verify that the topic was created:

j2eeadmin -listJmsDestination

8.2.3 Creating a Connection Factory

For this application, you create a new connection factory. This application will use a
durable subscriber, so you need a connection factory that has a client ID. (For more
information, see Section 5.2.1 on page 67.) Follow these steps.

1. At the command line prompt, enter the following command (all on one line):

j2eeadmin -addJmsFactory jms/DurableTopicCF topic -props

clientID=MyID

2. Verify that the connection factory was created:

j2eeadmin -listJmsFactory

You can also create connection factories by using the deploytool’s Server Configura-
tion dialog.

CREATING AND PACKAGING THE APPLICATION 117
8.2.4 Creating the J2EE Application

Create a new J2EE application called PubSubApp and store it in the file named
PubSubApp.ear. Follow these steps.

1. In the deploytool, select the File menu.

2. From the File menu, choose New ➞ Application.

3. Click Browse next to the Application File Name field and use the file chooser
to locate the directory client_ses_mdb.

4. In the File Name field, enter PubSubApp.

5. Click New Application.

6. Click OK.

A diamond icon labeled PubSubApp appears in the tree view on the left side of
the deploytool window. The full path name of PubSubApp.ear appears in the
General tabbed pane on the right side.

8.2.5 Packaging the Application Client

In this section, you will run the New Application Client Wizard of the deploytool to
package the application client. To start the New Application Client Wizard, follow
these steps.

1. In the tree view, select PubSubApp.

2. From the File menu, choose New ➞ Application Client. The wizard displays a
series of dialog boxes.

8.2.5.1 Introduction Dialog Box

Click Next.

8.2.5.2 JAR File Contents Dialog Box

1. In the combo box labeled Create Archive Within Application, select
PubSubApp.

2. Click the Edit button next to the Contents text area.

CHAPTER 8 A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN118
3. In the dialog box Edit Contents of <Application Client>, choose the
client_ses_mdb directory. If the directory is not already in the Starting Direc-
tory field, type it in the field, or locate it by browsing through the Available
Files tree.

4. Select the MyAppClient.class file from the Available Files tree area and click
Add.

5. Click OK.

6. Click Next.

8.2.5.3 General Dialog Box

1. In the Application Client combo box, select MyAppClient in the Main Class
field, and enter MyAppClient in the Display Name field.

2. In the Callback Handler Class combo box, verify that container-managed au-
thentication is selected.

3. Click Next.

8.2.5.4 Environment Entries Dialog Box

Click Next.

8.2.5.5 Enterprise Bean References Dialog Box

In this dialog box, you associate the JNDI API context name for the EJB reference
in the MyAppClient.java source file with the home and remote interfaces of the
Publisher enterprise bean. Follow these steps.

1. Click Add.

2. In the Coded Name column, enter ejb/MyEjbReference.

3. In the Type column, select Session.

4. In the Interfaces column, select Remote.

5. In the Home Interface column, enter PublisherHome.

6. In the Local/Remote Interface column, enter Publisher.

CREATING AND PACKAGING THE APPLICATION 119
7. In the Deployment Settings combo box, select JNDI Name. In the JNDI Name
field, enter MyPublisher.

8. Click Finish. You do not need to enter anything in the other dialog boxes.

8.2.6 Packaging the Session Bean

In this section, you will run the New Enterprise Bean Wizard of the deploytool to
package the session bean. Follow these steps.

1. In the tree view, select PubSubApp.

2. From the File menu, choose New ➞ Enterprise Bean. The wizard displays a
series of dialog boxes.

8.2.6.1 Introduction Dialog Box

Click Next.

8.2.6.2 EJB JAR Dialog Box

1. In the combo box labeled JAR File Location, verify that Create New JAR File
in Application and PubSubApp are selected.

2. In the JAR Display Name field, verify that the name is Ejb1, the default dis-
play name. Representing the enterprise bean JAR file that contains the bean,
this name will be displayed in the tree view.

3. Click the Edit button next to the Contents text area.

4. In the dialog box Edit Contents of Ejb1, choose the client_ses_mdb direc-
tory. If the directory is not already in the Starting Directory field, type it in the
field, or locate it by browsing through the Available Files tree.

5. Select the files Publisher.class, PublisherBean.class, and
PublisherHome.class from the Available Files tree area and click Add.

6. Click OK.

7. Click Next.

CHAPTER 8 A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN120
8.2.6.3 General Dialog Box

1. In the Bean Type combo box, select the Session radio button.

2. Select the Stateless radio button.

3. In the Enterprise Bean Class combo box, select PublisherBean.

4. In the Enterprise Bean Name field, enter PublisherEJB.

5. In the Remote Interfaces combo box, select PublisherHome for Remote Home
Interface and Publisher for Remote Interface. Ignore the Local Interfaces
combo box.

6. Click Next.

8.2.6.4 Transaction Management Dialog Box

1. Select the Container-Managed radio button.

2. In the Transaction Attribute field opposite the publishNews method, verify
that Required is selected.

3. Click Next.

8.2.6.5 Environment Entries Dialog Box

Click Next.

8.2.6.6 Enterprise Bean References Dialog Box

Click Next.

8.2.6.7 Resource References Dialog Box

1. Click Add.

2. In the Coded Name field, enter jms/MyTopicConnectionFactory.

3. In the Type field, select javax.jms.TopicConnectionFactory.

4. In the Authentication field, select Container.

5. In the JNDI Name field, enter jms/DurableTopicCF.

6. In the User Name field, enter j2ee.

CREATING AND PACKAGING THE APPLICATION 121
7. In the Password field, enter j2ee.

8. Click Next.

8.2.6.8 Resource Environment References Dialog Box

1. Click Add.

2. In the Coded Name field, enter jms/TopicName—the logical name referenced
by the PublisherBean.

3. In the Type field, select javax.jms.Topic.

4. In the JNDI Name field, enter jms/MyTopic.

5. Click Next.

8.2.6.9 Security Dialog Box

Use the default Security Identity setting for a session or an entity bean, Use Caller
ID. Click Next.

8.2.6.10 Review Settings Dialog Box

1. Check the settings for the deployment descriptor.

2. Click Finish.

8.2.7 Packaging the Message-Driven Bean

In this section, you will run the New Enterprise Bean Wizard of the deploytool to
package the message-driven bean. To start the New Enterprise Bean Wizard, follow
these steps.

1. In the tree view, select PubSubApp.

2. From the File menu, choose New ➞ Enterprise Bean. The wizard displays a
series of dialog boxes.

8.2.7.1 Introduction Dialog Box

Click Next.

CHAPTER 8 A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN122
8.2.7.2 EJB JAR Dialog Box

1. In the combo box labeled JAR File Location, verify that Create New JAR File
in Application and PubSubApp are selected.

2. In the JAR Display Name field, verify that the name is Ejb2, the default dis-
play name.

3. Click the Edit button next to the Contents text area.

4. In the dialog box Edit Contents of Ejb2, choose the client_ses_mdb direc-
tory. If the directory is not already in the Starting Directory field, type it in the
field, or locate it by browsing through the Available Files tree.

5. Select the MessageBean.class file from the Available Files tree area and click
Add.

6. Click OK.

7. Click Next.

8.2.7.3 General Dialog Box

1. In the Bean Type combo box, select the Message-Driven radio button.

2. In the Enterprise Bean Class combo box, select MessageBean.

3. In the Enterprise Bean Name field, enter MessageBean.

4. Click Next.

8.2.7.4 Transaction Management Dialog Box

1. Select the Container-Managed radio button.

2. In the Transaction Type field opposite the onMessage method, verify that Re-
quired is selected.

3. Click Next.

8.2.7.5 Message-Driven Bean Settings Dialog Box

1. In the Destination Type combo box, select Topic.

2. Check the Durable Subscriber checkbox.

CREATING AND PACKAGING THE APPLICATION 123
3. In the Subscription Name field, enter MySub.

4. In the Destination field, select jms/MyTopic.

5. In the Connection Factory field, select jms/DurableTopicCF.

6. In the JMS Message Selector field, enter the following exactly as shown:

NewsType = 'Opinion' OR NewsType = 'Sports'

This will cause the message-driven bean to receive only messages whose
NewsType property is set to one of these values.

7. Click Finish. You do not need to enter anything in the other dialog boxes.

8.2.8 Specifying the JNDI Names

Verify that the JNDI names are correct, and add one for the PublisherEJB compo-
nent. Follow these steps.

1. In the tree view, select the PubSubApp application.

2. Select the JNDI Names tabbed pane.

3. Make sure that the JNDI names appear as shown in Tables 8.1 and 8.2. You
will need to enter MyPublisher as the JNDI name for the PublisherEJB

component.

Table 8.1: Application Pane

Component Type Component JNDI Name

EJB MessageBean jms/MyTopic

EJB PublisherEJB MyPublisher

CHAPTER 8 A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN124
8.3 Deploying and Running the Application

Deploying and running this application involve several steps:

1. Adding the server, if necessary

2. Deploying the application

3. Running the client

4. Undeploying the application

5. Removing the application and stopping the server

8.3.1 Adding the Server

Before you can deploy the application, you must make available to the deploytool
the J2EE server you started in Section 8.2.1 on page 115. Because you started the
J2EE server before you started the deploytool, the server, named localhost, proba-
bly appears in the tree under Servers. If it does not, do the following.

1. From the File menu, choose Add Server.

2. In the Add Server dialog box, enter localhost in the Server Name field.

3. Click OK. A localhost node appears under Servers in the tree view.

Table 8.2: References Pane

Ref. Type Referenced By Reference Name JNDI Name

Resource PublisherEJB jms/MyTopic-
ConnectionFactory

jms/DurableTopicCF

Env Resource PublisherEJB jms/TopicName jms/MyTopic

EJB Ref MyAppClient ejb/MyEjbReference MyPublisher

DEPLOYING AND RUNNING THE APPLICATION 125
8.3.2 Deploying the Application

To deploy the application, perform the following steps.

1. From the File menu, choose Save to save the application.

2. From the Tools menu, choose Deploy.

3. In the Introduction dialog box, verify that the Object to Deploy selection is
PubSubApp and that the Target Server selection is localhost.

4. Click Next.

5. In the JNDI Names dialog box, verify that the JNDI names are correct.

6. Click Next.

7. Click Finish.

8. In the Deployment Progress dialog box, click OK when the “Deployment of
PubSubApp is complete” message appears.

9. In the tree view, expand Servers and select localhost. Verify that PubSubApp
is deployed.

8.3.3 Running the Client

To run the client, perform the following steps.

1. At the command line prompt, enter the following:

runclient -client PubSubApp.ear -name MyAppClient -textauth

2. At the login prompts, enter j2ee as the user name and j2ee as the password.

3. Click OK.

The client program runs in the command window and has output that looks
like this:

Binding name:‘java:comp/env/ejb/MyEjbReference‘

Looking up EJB reference

Looked up home

Narrowed home

CHAPTER 8 A J2EE APPLICATION THAT USES THE JMS API WITH A SESSION BEAN126
Got the EJB

Unbinding name:‘java:comp/env/ejb/MyEjbReference‘

Output from the application appears in the window in which you started the
J2EE server. Suppose that the last few messages from the Publisher session bean
look like this:

PUBLISHER: Setting message text to: Item 13: Opinion

PUBLISHER: Setting message text to: Item 14: Sports

PUBLISHER: Setting message text to: Item 15: Nation/World

PUBLISHER: Setting message text to: Item 16: Living/Arts

PUBLISHER: Setting message text to: Item 17: Opinion

Because of the message selector, the last few messages received by the
message-driven bean will look like this:

MESSAGE BEAN: Message received: Item 13: Opinion

MESSAGE BEAN: Message received: Item 14: Sports

MESSAGE BEAN: Message received: Item 17: Opinion

8.3.4 Undeploying the Application

To undeploy the J2EE application, follow these steps.

1. In the tree view, select localhost.

2. Select PubSubApp in the Deployed Objects area.

3. Click Undeploy.

4. Answer Yes in the confirmation dialog.

8.3.5 Removing the Application and Stopping the Server

To remove the application from the deploytool, follow these steps.

1. Select PubSubApp in the tree view.

2. Select Close from the File menu.

DEPLOYING AND RUNNING THE APPLICATION 127
To delete the topic you created, enter the following at the command line
prompt:

j2eeadmin -removeJmsDestination jms/MyTopic

To delete the connection factory you created, enter the following:

j2eeadmin -removeJmsFactory jms/DurableTopicCF

To stop the J2EE server, use the following command:

j2ee -stop

C H A P T E R 9

A J2EE Application that Uses

the JMS API with an Entity
Bean

THIS chapter explains how to write, compile, package, deploy, and run a J2EE
application that uses the JMS API with an entity bean. The application uses the fol-
lowing components:

• An application client that both sends and receives messages

• Three message-driven beans

• An entity bean that uses container-managed persistence

The chapter covers the following topics:

• An overview of the application

• Writing and compiling the application components

• Creating and packaging the application

• Deploying and running the application

If you downloaded the tutorial examples as described in the preface, you will
find the source code files for this chapter in jms_tutorial/examples/

client_mdb_ent (on UNIX systems) or jms_tutorial\examples\client_mdb_ent
(on Microsoft Windows systems). The directory ear_files in the examples
129

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN130
directory contains a built application called SampleNewHireApp.ear. If you run
into difficulty at any time, you can open this file in the deploytool and compare
that file to your own version.

9.1 Overview of the Human Resources Application

This application simulates, in a simplified way, the work flow of a company’s
human resources (HR) department when it processes a new hire. This application
also demonstrates how to use the J2EE platform to accomplish a task that many
JMS client applications perform.

A JMS client must often wait for several messages from various sources. It
then uses the information in all these messages to assemble a message that it then
sends to another destination. (The common term for this process is joining mes-
sages.) Such a task must be transactional, with all the receives and the send as a
single transaction. If all the messages are not received successfully, the transaction
can be rolled back. For a client example that illustrates this task, see Section A.2
on page 225.

A message-driven bean can process only one message at a time in a transac-
tion. To provide the ability to join messages, a J2EE application can have the
message-driven bean store the interim information in an entity bean. The entity
bean can then determine whether all the information has been received; when it
has, the entity bean can create and send the message to the other destination. Once
it has completed its task, the entity bean can be removed.

The basic steps of the application are as follows.

1. The HR department’s application client generates an employee ID for each
new hire and then publishes a message containing the new hire’s name and
employee ID. The client then creates a temporary queue with a message lis-
tener that waits for a reply to the message.

2. Two message-driven beans process each message: One bean assigns the new
hire’s office number, and one bean assigns the new hire’s equipment. The first
bean to process the message creates an entity bean to store the information it
has generated. The second bean locates the existing entity bean and adds its
information.

3. When both the office and the equipment have been assigned, the entity bean
sends to the reply queue a message describing the assignments. The applica-
tion client’s message listener retrieves the information. The entity bean also

WRITING AND COMPILING THE APPLICATION COMPONENTS 131
sends to a Schedule queue a message that contains a reference to the entity
bean.

4. The Schedule message-driven bean receives the message from the entity
bean. This message serves as a notification that the entity bean has finished
joining all messages. The message contains the primary key to look up the en-
tity bean instance that aggregates the data of the joined messages. The
message-driven bean accesses information from the entity bean to complete
its task and then removes the entity bean instance.

Figure 9.1 illustrates the structure of this application. An actual HR application
would have more components, of course; other beans could set up payroll and bene-
fits records, schedule orientation, and so on.

Figure 9.1 A J2EE Application: Client to Message-Driven Beans to Entity Beans

9.2 Writing and Compiling the Application Components

Writing and compiling the components of the application involve

• Coding the application client

• Coding the message-driven beans

• Coding the entity bean

• Compiling the source files

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN132
9.2.1 Coding the Application Client: HumanResourceClient.java

The application client program, HumanResourceClient.java, performs the follow-
ing steps:

1. Uses the Java Naming and Directory Interface (JNDI) API naming context
java:comp/env to look up a TopicConnectionFactory, a QueueConnection-

Factory, and a topic

2. Creates a TemporaryQueue to receive notification of processing that occurs,
based on new-hire events it has published

3. Creates a QueueReceiver for the TemporaryQueue, sets the QueueReceiver’s
message listener, and starts the connection

4. Creates a TopicPublisher and a MapMessage

5. Creates five new employees with randomly generated names, positions, and
ID numbers (in sequence) and publishes five messages containing this
information

The message listener, HRListener, waits for messages that contain the
assigned office and equipment for each employee. When a message arrives, the
message listener displays the information received and checks to see whether all
five messages have arrived yet. When they have, the message listener notifies the
main program, which then exits.

import javax.jms.*;

import javax.naming.*;

import java.util.*;

/**

 * The HumanResourceClient class is the client program for this

 * J2EE application. It publishes a message describing a new

 * hire business event that other departments can act upon. It

 * also listens for a message reporting the completion of the

 * other departments' actions and displays the results.

*/

public class HumanResourceClient {

 static Object waitUntilDone = new Object();

WRITING AND COMPILING THE APPLICATION COMPONENTS 133
 static SortedSet outstandingRequests =

 Collections.synchronizedSortedSet(new TreeSet());

 public static void main (String[] args) {

 InitialContext ic = null;

 TopicConnectionFactory topicConnectionFactory = null;

 TopicConnection tConnection = null;

 TopicSession tSession = null;

 Topic pubTopic = null;

 TopicPublisher tPublisher = null;

 MapMessage message = null;

 QueueConnectionFactory queueConnectionFactory = null;

 QueueConnection qConnection = null;

 QueueSession qSession = null;

 Queue replyQueue = null;

 QueueReceiver qReceiver = null;

 /*

 * Create a JNDI API InitialContext object.

 */

 try {

 ic = new InitialContext();

 } catch (NamingException e) {

 System.err.println("HumanResourceClient: " +

 "Could not create JNDI API context: " +

 e.toString());

 System.exit(1);

 }

 /*

 * Look up connection factories and topic. If any do not

 * exist, exit.

 */

 try {

 topicConnectionFactory = (TopicConnectionFactory)

 ic.lookup("java:comp/env/jms/TopicConnectionFactory");

 pubTopic =

 (Topic) ic.lookup("java:comp/env/jms/NewHireTopic");

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN134
 queueConnectionFactory = (QueueConnectionFactory)

 ic.lookup("java:comp/env/jms/QueueConnectionFactory");

 } catch (NamingException e) {

 System.err.println("HumanResourceClient: " +

 "JNDI API lookup failed: " + e.toString());

 System.exit(1);

 }

 /*

 * Create topic and queue connections.

 * Create sessions from connections for the publisher

 * and receiver; false means session is not

 * transacted.

 * Create temporary queue and receiver, set message

 * listener, and start connection.

 * Create publisher and MapMessage.

 * Publish new hire business events.

 * Wait for all messages to be processed.

 * Finally, close connection.

 */

 try {

 Random rand = new Random();

 int nextHireID = rand.nextInt(100);

 String[] positions = { "Programmer",

 "Senior Programmer", "Manager", "Director" };

 String[] firstNames = { "Fred", "Robert", "Tom",

 "Steve", "Alfred", "Joe", "Jack", "Harry",

 "Bill", "Gertrude", "Jenny", "Polly", "Ethel",

 "Mary", "Betsy", "Carol", "Edna", "Gwen" };

 String[] lastNames = { "Astaire", "Preston", "Tudor",

 "Stuart", "Drake", "Jones", "Windsor",

 "Hapsburg", "Robinson", "Lawrence", "Wren",

 "Parrott", "Waters", "Martin", "Blair",

 "Bourbon", "Merman", "Verdon" };

 tConnection =

 topicConnectionFactory.createTopicConnection();

WRITING AND COMPILING THE APPLICATION COMPONENTS 135
 tSession = tConnection.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

 qConnection =

 queueConnectionFactory.createQueueConnection();

 qSession = qConnection.createQueueSession(false,

 Session.AUTO_ACKNOWLEDGE);

 replyQueue = qSession.createTemporaryQueue();

 qReceiver = qSession.createReceiver(replyQueue);

 qReceiver.setMessageListener(new HRListener());

 qConnection.start();

 tPublisher = tSession.createPublisher(pubTopic);

 message = tSession.createMapMessage();

 message.setJMSReplyTo(replyQueue);

 for (int i = 0; i < 5; i++) {

 int currentHireID = nextHireID++;

 String.valueOf(currentHireID));

 message.setString("Name",

 firstNames[rand.nextInt(firstNames.length)]

 + " " +

 lastNames[rand.nextInt(lastNames.length)]);

 message.setString("Position",

 positions[rand.nextInt(positions.length)]);

 System.out.println("PUBLISHER: Setting hire " +

 "ID to " + message.getString("HireID") +

 ", name " + message.getString("Name") +

 ", position " +

 message.getString("Position"));

 tPublisher.publish(message);

 outstandingRequests.add(new Integer(currentHireID));

 }

 System.out.println("Waiting for " +

 outstandingRequests.size() + " message(s)");

 synchronized (waitUntilDone) {

 waitUntilDone.wait();

 }

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN136
 } catch (Exception e) {

 System.err.println("HumanResourceClient: " +

 "Exception: " + e.toString());

 } finally {

 if (tConnection != null) {

 try {

 tConnection.close();

 } catch (Exception e) {

 System.err.println("HumanResourceClient: " +

 "Close exception: " + e.toString());

 }

 }

 if (qConnection != null) {

 try {

 qConnection.close();

 } catch (Exception e) {

 System.out.println("HumanResourceClient: " +

 "Close exception: " +

 e.toString());

 }

 }

 System.exit(0);

 }

 }

 /**

 * The HRListener class implements the MessageListener

 * interface by defining an onMessage method.

 */

 static class HRListener implements MessageListener {

 /**

 * onMessage method, which displays the contents of a

 * MapMessage describing the results of processing the

 * new employee, then removes the employee ID from the

 * list of outstanding requests.

 *

 * @param message the incoming message

 */

WRITING AND COMPILING THE APPLICATION COMPONENTS 137
 public void onMessage(Message message) {

 MapMessage msg = (MapMessage) message;

 try {

 System.out.println("New hire event processed:");

 Integer id =

 Integer.valueOf(msg.getString("employeeId"));

 System.out.println(" Name: " +

 msg.getString("employeeName"));

 System.out.println(" Equipment: " +

 msg.getString("equipmentList"));

 System.out.println(" Office number: " +

 msg.getString("officeNumber"));

 outstandingRequests.remove(id);

 } catch (JMSException je) {

 System.out.println("HRListener.onMessage(): " +

 "Exception: " + je.toString());

 }

 if (outstandingRequests.size() == 0) {

 synchronized(waitUntilDone) {

 waitUntilDone.notify();

 }

 } else {

 System.out.println("Waiting for " +

 outstandingRequests.size() + " message(s)");

 }

 }

 }

}

Code Example 9.1 HumanResourceClient.java

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN138
9.2.2 Coding the Message-Driven Beans

This example uses three message-driven beans. Two of them, ReserveEquipment-
MsgBean.java and ReserveOfficeMsgBean.java, take the following steps.

1. The ejbCreate method gets a handle to the home interface of the entity bean.

2. The onMessage method retrieves the information in the message. The
ReserveEquipmentMsgBean’s onMessage method chooses equipment, based on
the new hire’s position; the ReserveOfficeMsgBean’s onMessage method ran-
domly generates an office number.

3. After a slight delay to simulate real-world processing hitches, the onMessage

method calls a helper method, compose.

4. The compose method either creates or finds, by primary key, the SetupOffice

entity bean and uses it to store the equipment or the office information in the
database.

import java.io.Serializable;

import java.rmi.RemoteException;

import javax.rmi.PortableRemoteObject;

import javax.ejb.*;

import javax.naming.*;

import javax.jms.*;

import java.util.Random;

/**

 * The ReserveEquipmentMsgBean class is a message-driven bean.

 * It implements the javax.ejb.MessageDrivenBean and

 * javax.jms.MessageListener interfaces. It is defined as public

 * (but not final or abstract). It defines a constructor and the

 * methods ejbCreate, onMessage, setMessageDrivenContext, and

 * ejbRemove.

 */

public class ReserveEquipmentMsgBean implements

 MessageDrivenBean, MessageListener {

 private transient MessageDrivenContext mdc = null;

 private SetupOfficeLocalHome soLocalHome = null;

 private Random processingTime = new Random();

WRITING AND COMPILING THE APPLICATION COMPONENTS 139
 /**

 * Constructor, which is public and takes no arguments.

 */

 public ReserveEquipmentMsgBean() {

 System.out.println("In " +

 "ReserveEquipmentMsgBean.ReserveEquipmentMsgBean()");

 }

 /**

 * setMessageDrivenContext method, declared as public (but

 * not final or static), with a return type of void, and with

 * one argument of type javax.ejb.MessageDrivenContext.

 *

 * @param mdc the context to set

 */

 public void setMessageDrivenContext(MessageDrivenContext mdc)

 {

 System.out.println("In " +

 "ReserveEquipmentMsgBean.setMessageDrivenContext()");

 this.mdc = mdc;

 }

 /**

 * ejbCreate method, declared as public (but not final or

 * static), with a return type of void, and with no

 * arguments. It looks up the entity bean and gets a handle

 * to its home interface.

 */

 public void ejbCreate() {

 System.out.println("In " +

 "ReserveEquipmentMsgBean.ejbCreate()");

 try {

 Context initial = new InitialContext();

 Object objref =

 initial.lookup("java:comp/env/ejb/MyEjbReference");

 soLocalHome = (SetupOfficeLocalHome)

 PortableRemoteObject.narrow(objref,

 SetupOfficeLocalHome.class);

 } catch (Exception ex) {

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN140
 System.err.println("ReserveEquipmentMsgBean." +

 "ejbCreate: Exception: " + ex.toString());

 }

 }

 /**

 * onMessage method, declared as public (but not final or

 * static), with a return type of void, and with one argument

 * of type javax.jms.Message.

 *

 * Casts the incoming Message to a MapMessage, retrieves its

 * contents, and assigns equipment appropriate to the new

 * hire's position. Calls the compose method to store the

 * information in the entity bean.

 *

 * @param inMessage the incoming message

 */

 public void onMessage(Message inMessage) {

 MapMessage msg = null;

 String key = null;

 String name = null;

 String position = null;

 String equipmentList = null;

 try {

 if (inMessage instanceof MapMessage) {

 msg = (MapMessage) inMessage;

 System.out.println(" ReserveEquipmentMsgBean:" +

 " Message received.");

 key = msg.getString("HireID");

 name = msg.getString("Name");

 position = msg.getString("Position");

 if (position.equals("Programmer")) {

 equipmentList = "Desktop System";

 } else if (position.equals("Senior Programmer")){

 equipmentList = "Laptop";

 } else if (position.equals("Manager")) {

 equipmentList = "Pager";

WRITING AND COMPILING THE APPLICATION COMPONENTS 141
 } else if (position.equals("Director")) {

 equipmentList = "Java Phone";

 } else {

 equipmentList = "Baton";

 }

// Simulate processing time taking 1 to 10 seconds.

 Thread.sleep(processingTime.nextInt(10) * 1000);

 compose(key, name, equipmentList, msg);

 } else {

 System.err.println("Message of wrong type: " +

 inMessage.getClass().getName());

 }

 } catch (JMSException e) {

 System.err.println("ReserveEquipmentMsgBean." +

 "onMessage: JMSException: " + e.toString());

 mdc.setRollbackOnly();

 } catch (Throwable te) {

 System.err.println("ReserveEquipmentMsgBean." +

 "onMessage: Exception: " + te.toString());

 }

 }

 /**

 * compose method, helper to onMessage method.

 *

 * Locates the row of the database represented by the primary

 * key and adds the equipment allocated for the new hire.

 *

 * @param key employee ID, primary key

 * @param name employee name

 * @param equipmentList equipment allocated based on position

 * @param msg the message received

 */

 void compose (String key, String name, String equipmentList,

 Message msg) {

 int num = 0;

 SetupOffice so = null;

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN142
 try {

 try {

 so = soLocalHome.findByPrimaryKey(key);

 System.out.println(" ReserveEquipmentMsgBean:" +

 " Found join entity bean for employeeId " +

 key);

 } catch (ObjectNotFoundException onfe) {

 System.err.println(" ReserveEquipmentMsgBean:" +

 " Creating join entity bean for " +

 " employeeId " + key);

 so = soLocalHome.createLocal(key, name);

 }

 so.doEquipmentList(equipmentList, msg);

 System.out.println(" ReserveEquipmentMsgBean: " +

 "employeeId " + key + " (" +

 so.getEmployeeName() + ") has the following " +

 "equipment: " + so.getEquipmentList());

 } catch (Exception ex) {

 System.err.println(" ReserveEquipmentMsgBean." +

 "compose: Exception: " + ex.toString());

 mdc.setRollbackOnly();

 }

 }

 /**

 * ejbRemove method, declared as public (but not final or

 * static), with a return type of void, and with no

 * arguments.

 */

 public void ejbRemove() {

 System.out.println("In " +

 "ReserveEquipmentMsgBean.ejbRemove()");

 }

}

Code Example 9.2 ReserveEquipmentMsgBean.java

WRITING AND COMPILING THE APPLICATION COMPONENTS 143
import java.io.Serializable;

import java.rmi.RemoteException;

import javax.rmi.PortableRemoteObject;

import javax.ejb.*;

import javax.naming.*;

import javax.jms.*;

import java.util.Random;

/**

 * The ReserveOfficeMsgBean class is a message-driven bean. It

 * implements the javax.ejb.MessageDrivenBean and

 * javax.jms.MessageListener interfaces. It is defined as public

 * (but not final or abstract). It defines a constructor and the

 * methods ejbCreate, onMessage, setMessageDrivenContext, and

 * ejbRemove.

 */

public class ReserveOfficeMsgBean implements MessageDrivenBean,

 MessageListener {

 private transient MessageDrivenContext mdc = null;

 private SetupOfficeLocalHome soLocalHome = null;

 private Random processingTime = new Random();

 /**

 * Constructor, which is public and takes no arguments.

 */

 public ReserveOfficeMsgBean() {

 System.out.println("In " +

 "ReserveOfficeMsgBean.ReserveOfficeMsgBean()");

 }

 /**

 * setMessageDrivenContext method, declared as public (but

 * not final or static), with a return type of void, and with

 * one argument of type javax.ejb.MessageDrivenContext.

 *

 * @param mdc the context to set

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN144
 */

 public void setMessageDrivenContext(MessageDrivenContext mdc)

 {

 System.out.println("In " +

 "ReserveOfficeMsgBean.setMessageDrivenContext()");

 this.mdc = mdc;

 }

 /**

 * ejbCreate method, declared as public (but not final or

 * static), with a return type of void, and with no

 * arguments. It looks up the entity bean and gets a handle

 * to its home interface.

 */

 public void ejbCreate() {

 System.out.println("In " +

 "ReserveOfficeMsgBean.ejbCreate()");

 try {

 Context initial = new InitialContext();

 Object objref =

 initial.lookup("java:comp/env/ejb/MyEjbReference");

 soLocalHome = (SetupOfficeLocalHome)

 PortableRemoteObject.narrow(objref,

 SetupOfficeLocalHome.class);

 } catch (Exception ex) {

 System.err.println("ReserveOfficeMsgBean." +

 "ejbCreate: Exception: " + ex.toString());

 }

 }

 /**

 * onMessage method, declared as public (but not final or

 * static), with a return type of void, and with one argument

 * of type javax.jms.Message.

 *

 * Casts the incoming Message to a MapMessage, retrieves its

 * contents, and assigns the new hire to an office. Calls the

 * compose method to store the information in the entity

 * bean.

WRITING AND COMPILING THE APPLICATION COMPONENTS 145
 *

 * @param inMessage the incoming message

 */

 public void onMessage(Message inMessage) {

 MapMessage msg = null;

 String key = null;

 String name = null;

 String position = null;

 int officeNumber = 0;

 try {

 if (inMessage instanceof MapMessage) {

 msg = (MapMessage) inMessage;

 System.out.println(" >>> ReserveOfficeMsgBean:" +

 " Message received.");

 key = msg.getString("HireID");

 name = msg.getString("Name");

 position = msg.getString("Position");

 officeNumber = new Random().nextInt(300) + 1;

// Simulate processing time taking 1 to 10 seconds.

 Thread.sleep(processingTime.nextInt(10) * 1000);

 compose(key, name, officeNumber, msg);

 } else {

 System.err.println("Message of wrong type: " +

 inMessage.getClass().getName());

 }

 } catch (JMSException e) {

 System.err.println("ReserveOfficeMsgBean." +

 "onMessage: JMSException: " + e.toString());

 mdc.setRollbackOnly();

 } catch (Throwable te) {

 System.err.println("ReserveOfficeMsgBean." +

 "onMessage: Exception: " + te.toString());

 }

 }

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN146
 /**

 * compose method, helper to onMessage method.

 *

 * Locates the row of the database represented by the primary

 * key and adds the office number allocated for the new hire.

 *

 * @param key employee ID, primary key

 * @param name employee name

 * @param officeNumber office number

 * @param msg the message received

 */

 void compose (String key, String name, int officeNumber,

 Message msg) {

 int num = 0;

 SetupOffice so = null;

 try {

 try {

 so = soLocalHome.findByPrimaryKey(key);

 System.out.println(" ReserveOfficeMsgBean: " +

 "Found join entity bean for employeeId " +

 key);

 } catch (ObjectNotFoundException onfe) {

 System.out.println(" ReserveOfficeMsgBean: " +

 "Creating join entity bean for " +

 "employeeId " + key);

 so = soLocalHome.createLocal(key, name);

 }

 so.doOfficeNumber(officeNumber, msg);

 System.out.println(" ReserveOfficeMsgBean: " +

 "employeeId " + key + " (" +

 so.getEmployeeName() + ") has the following " +

 "office: " + so.getOfficeNumber());

 } catch (Exception ex) {

 System.err.println(" ReserveOfficeMsgBean." +

 "compose: Exception: " + ex.toString());

 mdc.setRollbackOnly();

 }

 }

WRITING AND COMPILING THE APPLICATION COMPONENTS 147
 /**

 * ejbRemove method, declared as public (but not final or

 * static), with a return type of void, and with no

 * arguments.

 */

 public void ejbRemove() {

 System.out.println("In " +

 "ReserveOfficeMsgBean.ejbRemove()");

 }

}

Code Example 9.3 ReserveOfficeMsgBean.java

The third message-driven bean, ScheduleMsgBean.java, is notified when the
SetupOfficeBean entity bean instance has aggregated data from all messages
needed to set up an office. The message contains the primary key to look up the
correct composite entity bean instance. The ScheduleMsgBean’s onMessage

method then schedules the office setup, based on the information aggregated in
the entity bean instance. Finally, the ScheduleMsgBean’s onMessage method
removes the entity bean instance.

import java.rmi.RemoteException;

import javax.rmi.PortableRemoteObject;

import javax.ejb.*;

import javax.naming.*;

import javax.jms.*;

import java.util.Random;

/**

 * The ScheduleMsgBean class is a message-driven bean.

 * It implements the javax.ejb.MessageDrivenBean and

 * javax.jms.MessageListener interfaces. It is defined as public

 * (but not final or abstract). It defines a constructor and the

 * methods ejbCreate, onMessage, setMessageDrivenContext, and

 * ejbRemove.

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN148
 */

public class ScheduleMsgBean implements MessageDrivenBean,

 MessageListener {

 private transient MessageDrivenContext mdc = null;

 private SetupOfficeLocalHome soLocalHome = null;

 /**

 * Constructor, which is public and takes no arguments.

 */

 public ScheduleMsgBean() {

 System.out.println("In " +

 "ScheduleMsgBean.ScheduleMsgBean()");

 }

 /**

 * setMessageDrivenContext method, declared as public (but

 * not final or static), with a return type of void, and with

 * one argument of type javax.ejb.MessageDrivenContext.

 *

 * @param mdc the context to set

 */

 public void setMessageDrivenContext(MessageDrivenContext mdc)

 {

 System.out.println("In " +

 "ScheduleMsgBean.setMessageDrivenContext()");

 this.mdc = mdc;

 }

 /**

 * ejbCreate method, declared as public (but not final or

 * static), with a return type of void, and with no arguments.

 * It looks up the entity bean and gets a handle to its home

 * interface.

 */

 public void ejbCreate() {

 System.out.println("In ScheduleMsgBean.ejbCreate()");

WRITING AND COMPILING THE APPLICATION COMPONENTS 149
 try {

 Context initial = new InitialContext();

 Object objref =

 initial.lookup("java:comp/env/ejb/CompositeEjbReference");

 soLocalHome = (SetupOfficeLocalHome)

 PortableRemoteObject.narrow(objref,

 SetupOfficeLocalHome.class);

 } catch (Exception ex) {

 System.err.println("ScheduleMsgBean.ejbCreate: " +

 "Exception: " + ex.toString());

 }

 }

 /**

 * onMessage method, declared as public (but not final or

 * static), with a return type of void, and with one argument

 * of type javax.jms.Message.

 *

 * Casts the incoming Message to a TextMessage, retrieves its

 * handle to the SetupOffice entity bean, and schedules

 * office setup based on information joined in the entity

 * bean. When finished with data, deletes the entity bean.

 *

 * @param inMessage the incoming message

 */

 public void onMessage(Message inMessage) {

 String key = null;

 SetupOffice setupOffice = null;

 try {

 if (inMessage instanceof TextMessage) {

 System.out.println(" ScheduleMsgBean:" +

 " Message received.");

 key = ((TextMessage)inMessage).getText();

 System.out.println(" ScheduleMsgBean: " +

 "Looking up SetupOffice bean by primary " +

 "key=" + key);

 setupOffice = soLocalHome.findByPrimaryKey(key);

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN150
 /*

 * Schedule office setup using contents of

 * SetupOffice entity bean.

 */

 System.out.println(" ScheduleMsgBean: " +

 "SCHEDULE employeeId=" +

 setupOffice.getEmployeeId() + ", Name=" +

 setupOffice.getEmployeeName() +

 " to be set up in office #" +

 setupOffice.getOfficeNumber() + " with " +

 setupOffice.getEquipmentList());

 // All done. Remove SetupOffice entity bean.

 setupOffice.remove();

 } else {

 System.err.println("Message of wrong type: " +

 inMessage.getClass().getName());

 }

 } catch (JMSException e) {

 System.err.println("ScheduleMsgBean.onMessage: " +

 "JMSException: " + e.toString());

 mdc.setRollbackOnly();

 } catch (Throwable te) {

 System.err.println("ScheduleMsgBean.onMessage: " +

 "Exception: " + te.toString());

 }

 }

 /**

 * ejbRemove method, declared as public (but not final or

 * static), with a return type of void, and with no

 * arguments.

 */

 public void ejbRemove() {

 System.out.println("In ScheduleMsgBean.ejbRemove()");

 }

WRITING AND COMPILING THE APPLICATION COMPONENTS 151
}

Code Example 9.4 ScheduleMsgBean.java

9.2.3 Coding the Entity Bean

The SetupOffice bean is an entity bean that uses a local interface. The local inter-
face allows the entity bean and the message-driven beans to be packaged in the same
EJB JAR file for maximum efficiency. The entity bean has these components:

• The local home interface, SetupOfficeLocalHome.java

• The local interface, SetupOffice.java

• The bean class, SetupOfficeBean.java

9.2.3.1 The Local Home Interface: SetupOfficeLocalHome.java

The local home interface source file is SetupOfficeLocalHome.java. It declares the
create method, called createLocal for a bean that uses a local interface, and one
finder method, findByPrimaryKey.

import java.rmi.RemoteException;

import java.util.Collection;

import javax.ejb.*;

public interface SetupOfficeLocalHome extends EJBLocalHome {

 public SetupOffice createLocal(String hireID, String name)

 throws CreateException;

 public SetupOffice findByPrimaryKey(String hireID)

 throws FinderException;

}

Code Example 9.5 SetupOfficeLocalHome.java

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN152
9.2.3.2 The Local Interface: SetupOffice.java

The local interface, SetupOffice.java, declares several business methods that get
and manipulate new-hire data.

import javax.ejb.*;

import javax.jms.*;

public interface SetupOffice extends EJBLocalObject {

 public String getEmployeeId();

 public String getEmployeeName();

 public String getEquipmentList();

 public int getOfficeNumber();

 public void doEquipmentList(String list, Message msg)

 throws JMSException;

 public void doOfficeNumber(int number, Message msg)

 throws JMSException;

}

Code Example 9.6 SetupOffice.java

9.2.3.3 The Bean Class: SetupOfficeBean.java

The bean class, SetupOfficeBean.java, implements the business methods and their
helper method, checkIfSetupComplete. The bean class also implements the
required methods ejbCreateLocal, ejbPostCreateLocal, setEntityContext,
unsetEntityContext, ejbRemove, ejbActivate, ejbPassivate, ejbLoad, and ejb-

Store. The ejbFindByPrimaryKey method is generated automatically.
The only methods called by the message-driven beans are the business

methods declared in the local interface, the findByPrimaryKey method, and the
createLocal method. The entity bean uses container-managed persistence, so all
database calls are generated automatically.

WRITING AND COMPILING THE APPLICATION COMPONENTS 153
import java.io.*;

import java.util.*;

import javax.ejb.*;

import javax.naming.*;

import javax.jms.*;

/**

 * The SetupOfficeBean class implements the business methods of

 * the entity bean. Because the bean uses version 2.0 of

 * container-managed persistence, the bean class and the

 * accessor methods for fields to be persisted are all declared

 * abstract.

 */

public abstract class SetupOfficeBean implements EntityBean {

 abstract public String getEmployeeId();

 abstract public void setEmployeeId(String id);

 abstract public String getEmployeeName();

 abstract public void setEmployeeName(String name);

 abstract public int getOfficeNumber();

 abstract public void setOfficeNumber(int officeNum);

 abstract public String getEquipmentList();

 abstract public void setEquipmentList(String equip);

 abstract public byte[] getSerializedReplyDestination();

 abstract public void setSerializedReplyDestination(byte[]

 byteArray);

 abstract public String getReplyCorrelationMsgId();

 abstract public void setReplyCorrelationMsgId(String msgId);

 /*

 * There should be a list of replies for each message being

 * joined. This example is joining the work of separate

 * departments on the same original request, so it is all

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN154
 * right to have only one reply destination. In theory, this

 * should be a set of destinations, with one reply for each

 * unique destination.

 *

 * Because a Destination is not a data type that can be

 * persisted, the persisted field is a byte array,

 * serializedReplyDestination, that is created and accessed

 * with the setReplyDestination and getReplyDestination

 * methods.

 */

 transient private Destination replyDestination;

 transient private Queue scheduleQueue;

 transient private QueueConnection queueConnection;

 private EntityContext context;

 /**

 * The getReplyDestination method extracts the

 * replyDestination from the serialized version that is

 * persisted, using a ByteArrayInputStream and

 * ObjectInputStream to read the object and casting it to a

 * Destination object.

 *

 * @return the reply destination

 */

 private Destination getReplyDestination() {

 ByteArrayInputStream bais = null;

 ObjectInputStream ois = null;

 byte[] srd = null;

 srd = getSerializedReplyDestination();

 if (replyDestination == null && srd != null) {

 try {

 bais = new ByteArrayInputStream(srd);

 ois = new ObjectInputStream(bais);

 replyDestination = (Destination)ois.readObject();

 ois.close();

 } catch (IOException io) {

 } catch (ClassNotFoundException cnfe) {}

WRITING AND COMPILING THE APPLICATION COMPONENTS 155
 }

 return replyDestination;

 }

 /**

 * The setReplyDestination method serializes the reply

 * destination so that it can be persisted. It uses a

 * ByteArrayOutputStream and an ObjectOutputStream.

 *

 * @param replyDestination the reply destination

 */

 private void setReplyDestination(Destination

 replyDestination) {

 ByteArrayOutputStream baos = null;

 ObjectOutputStream oos = null;

 this.replyDestination = replyDestination;

 try {

 baos = new ByteArrayOutputStream();

 oos = new ObjectOutputStream(baos);

 oos.writeObject(replyDestination);

 oos.close();

 setSerializedReplyDestination(baos.toByteArray());

 } catch (IOException io) {

 }

 }

 /**

 * The doEquipmentList method stores the assigned equipment

 * in the database and retrieves the reply destination, then

 * determines if setup is complete.

 *

 * @param list assigned equipment

 * @param msg the message received

 */

 public void doEquipmentList(String list, Message msg)

 throws JMSException {

 setEquipmentList(list);

 setReplyDestination(msg.getJMSReplyTo());

 setReplyCorrelationMsgId(msg.getJMSMessageID());

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN156
 System.out.println(" SetupOfficeBean." +

 "doEquipmentList: equipment is " +

 getEquipmentList() + " (office number " +

 getOfficeNumber() + ")");

 checkIfSetupComplete();

 }

 /**

 * The doOfficeNumber method stores the assigned office

 * number in the database and retrieves the reply

 * destination, then determines if setup is complete.

 *

 * @param officeNum assigned office

 * @param msg the message received

 */

 public void doOfficeNumber(int officeNum, Message msg)

 throws JMSException {

 setOfficeNumber(officeNum);

 setReplyDestination(msg.getJMSReplyTo());

 setReplyCorrelationMsgId(msg.getJMSMessageID());

 System.out.println(" SetupOfficeBean." +

 "doOfficeNumber: office number is " +

 getOfficeNumber() + " (equipment " +

 getEquipmentList() + ")");

 checkIfSetupComplete();

 }

 /**

 * The checkIfSetupComplete method determines whether

 * both the office and the equipment have been assigned. If

 * so, it sends messages to the schedule queue and the reply

 * queue with the information about the assignments.

 */

 private void checkIfSetupComplete() {

 QueueConnection qCon = null;

 QueueSession qSession = null;

 QueueSender qSender = null;

 TextMessage schedMsg = null;

WRITING AND COMPILING THE APPLICATION COMPONENTS 157
 MapMessage replyMsg = null;

 if (getEquipmentList() != null &&

 getOfficeNumber() != -1) {

 System.out.println(" SetupOfficeBean." +

 "checkIfSetupComplete: SCHEDULE" +

 " employeeId=" + getEmployeeId() + ", Name=" +

 getEmployeeName() + " to be set up in office #" +

 getOfficeNumber() + " with " +

 getEquipmentList());

 try {

 qCon = getQueueConnection();

 } catch (Exception ex) {

 throw new EJBException("Unable to connect to " +

 "JMS provider: " + ex.toString());

 }

 try {

 /*

 * Compose and send message to schedule office

 * setup queue.

 */

 qSession = qCon.createQueueSession(true, 0);

 qSender = qSession.createSender(null);

 schedMsg =

 qSession.createTextMessage(getEmployeeId());

 qSender.send(scheduleQueue, schedMsg);

 /*

 * Send reply to messages aggregated by this

 * composite entity bean.

 */

 replyMsg = qSession.createMapMessage();

 replyMsg.setString("employeeId",

 getEmployeeId());

 replyMsg.setString("employeeName",

 getEmployeeName());

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN158
 replyMsg.setString("equipmentList",

 getEquipmentList());

 replyMsg.setInt("officeNumber",

 getOfficeNumber());

 replyMsg.setJMSCorrelationID(getReplyCorrelationMsgId());

 qSender.send((Queue)getReplyDestination(),

 replyMsg);

 } catch (JMSException je) {

 System.err.println("SetupOfficeBean." +

 "checkIfSetupComplete: " + "JMSException: " +

 je.toString());

 }

 }

 }

 /**

 * ejbCreateLocal method, declared as public (but not final

 * or static). Stores the available information about the

 * new hire in the database.

 *

 * @param newhireID ID assigned to the new hire

 * @param name name of the new hire

 *

 * @return null (required for CMP 2.0)

 */

 public String ejbCreateLocal(String newhireID, String name)

 throws CreateException {

 setEmployeeId(newhireID);

 setEmployeeName(name);

 setEquipmentList(null);

 setOfficeNumber(-1);

 this.queueConnection = null;

 return null;

 }

 public void ejbRemove() {

 closeQueueConnection();

WRITING AND COMPILING THE APPLICATION COMPONENTS 159
 System.out.println(" SetupOfficeBean.ejbRemove: " +

 "REMOVING SetupOffice bean employeeId=" +

 getEmployeeId() + ", Name=" + getEmployeeName());

 }

 public void setEntityContext(EntityContext context) {

 this.context = context;

 }

 public void unsetEntityContext() {

 this.context = null;

 }

 public void ejbActivate() {

 setEmployeeId((String) context.getPrimaryKey());

 }

 public void ejbPassivate() {

 setEmployeeId(null);

 closeQueueConnection();

 }

 public void ejbLoad() {}

 public void ejbStore() {}

public void ejbPostCreateLocal(String newhireID, String name) {}

 /**

 * The getQueueConnection method, called by the

 * checkIfSetupComplete method, looks up the schedule queue

 * and connection factory and creates a QueueConnection.

 *

 * @return a QueueConnection object

 */

 private QueueConnection getQueueConnection()

 throws NamingException, JMSException {

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN160
 if (queueConnection == null) {

 InitialContext ic = new InitialContext();

 QueueConnectionFactory queueConnectionFactory =

 (QueueConnectionFactory)

 ic.lookup("java:comp/env/jms/QueueConnectionFactory");

 scheduleQueue =

 (Queue) ic.lookup("java:comp/env/jms/ScheduleQueue");

 queueConnection =

 queueConnectionFactory.createQueueConnection();

 }

 return queueConnection;

 }

 /**

 * The closeQueueConnection method, called by the ejbRemove

 * and ejbPassivate methods, closes the QueueConnection that

 * was created by the getQueueConnection method.

 */

 private void closeQueueConnection() {

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException je) {

 System.err.println("SetupOfficeBean." +

 "closeQueueConnection: JMSException: " +

 je.toString());

 }

 queueConnection = null;

 }

 }

}

Code Example 9.7 SetupOfficeBean.java

CREATING AND PACKAGING THE APPLICATION 161
9.2.4 Compiling the Source Files

To compile all the files in the application, go to the directory client_mdb_ent and
do the following.

1. Make sure that you have set the environment variables shown in Table 4.1 on
page 34: JAVA_HOME, J2EE_HOME, CLASSPATH, and PATH.

2. At a command line prompt, compile the source files:

javac *.java

9.3 Creating and Packaging the Application

Creating and packaging this application involve several steps:

1. Starting the J2EE server and the deploytool*

2. Creating a queue

3. Starting the Cloudscape database server

4. Creating the J2EE application

5. Packaging the application client

6. Packaging the Equipment message-driven bean

7. Packaging the Office message-driven bean

8. Packaging the Schedule message-driven bean

9. Packaging the entity bean

10. Specifying the entity bean deployment settings

11. Specifying the JNDI names

Step 1, marked with an asterisk (*), is not needed if the server and the deploytool are
running.

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN162
9.3.1 Starting the J2EE Server and the Deploytool

Before you can create and package the application, you must start the J2EE server
and the deploytool. Follow these steps.

1. At the command line prompt, start the J2EE server:

j2ee -verbose

Wait until the server displays the message “J2EE server startup complete.”

(To stop the server, type j2ee -stop.)

2. At another command line prompt, start the deploytool:

deploytool

(To access the tool’s context-sensitive help, press F1.)

9.3.2 Creating a Queue

For this application, you publish messages by using one of the topics that the J2EE
server creates automatically. You create a queue to process the notification that the
composite entity bean has aggregated the group of related messages that it was join-
ing. Follow these steps.

1. In the deploytool, select the Tools menu.

2. From the Tools menu, choose Server Configuration.

3. Under the JMS folder, select Destinations.

4. In the JMS Queue Destinations area, click Add.

5. In the text field, enter jms/ScheduleQueue.

6. Click OK.

7. If you wish, you can verify that the queue was created:

j2eeadmin -listJmsDestination

CREATING AND PACKAGING THE APPLICATION 163
9.3.3 Starting the Cloudscape Database Server

The Cloudscape software is included with the J2EE SDK download bundle. You
may also run this example with databases provided by other vendors.

From the command line prompt, run the Cloudscape database server:

cloudscape -start

9.3.4 Creating the J2EE Application

Create a new J2EE application, called NewHireApp, and store it in the file named
NewHireApp.ear. Follow these steps.

1. In the deploytool, select the File menu.

2. From the File menu, choose New ➞ Application.

3. Click Browse next to the Application File Name field, and use the file chooser
to locate the directory client_mdb_ent.

4. In the File Name field, enter NewHireApp.

5. Click New Application.

6. Click OK.

A diamond icon labeled NewHireApp appears in the tree view on the left side
of the deploytool window. The full path name of NewHireApp.ear appears in the
General tabbed pane on the right side.

9.3.5 Packaging the Application Client

In this section, you will run the New Application Client Wizard of the deploytool to
package the application client. To start the New Application Client Wizard, follow
these steps.

1. In the tree view, select NewHireApp.

2. From the File menu, choose New ➞ Application Client. The wizard displays a
series of dialog boxes.

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN164
9.3.5.1 Introduction Dialog Box

Click Next.

9.3.5.2 JAR File Contents Dialog Box

1. In the combo box labeled Create Archive Within Application, select
NewHireApp.

2. Click the Edit button next to the Contents text area.

3. In the dialog box Edit Contents of <Application Client>, choose the
client_mdb_ent directory. If the directory is not already in the Starting Direc-
tory field, type it in the field, or locate it by browsing through the Available
Files tree.

4. Select HumanResourceClient.class and HumanResourceClient$HRLis-

tener.class from the Available Files tree area and click Add.

5. Click OK.

6. Click Next.

9.3.5.3 General Dialog Box

1. In the Application Client combo box, select HumanResourceClient in the
Main Class field, and enter HumanResourceClient in the Display Name field.

2. In the Callback Handler Class combo box, verify that container-managed au-
thentication is selected.

3. Click Next.

9.3.5.4 Environment Entries Dialog Box

Click Next.

9.3.5.5 Enterprise Bean References Dialog Box

Click Next.

CREATING AND PACKAGING THE APPLICATION 165
9.3.5.6 Resource References Dialog Box

In this dialog box, you associate the JNDI API context names for the connection
factories in the HumanResourceClient.java source file with the names of the
TopicConnectionFactory and the QueueConnectionFactory. You also specify con-
tainer authentication for the connection factory resources, defining the user name
and the password that the user must enter in order to be able to create a connection.
Follow these steps.

1. Click Add.

2. In the Coded Name field, enter jms/TopicConnectionFactory—the logical
name referenced by HumanResourceClient.

3. In the Type field, select javax.jms.TopicConnectionFactory.

4. In the Authentication field, select Container.

5. In the Sharable field, make sure that the checkbox is selected. This allows the
container to optimize connections.

6. In the JNDI Name field, enter jms/TopicConnectionFactory.

7. In the User Name field, enter j2ee.

8. In the Password field, enter j2ee.

9. Click Add.

10. In the Coded Name field, enter jms/QueueConnectionFactory—the logical
name referenced by HumanResourceClient.

11. In the Type field, select javax.jms.QueueConnectionFactory.

12. In the Authentication field, select Container.

13. In the Sharable field, make sure that the checkbox is selected.

14. In the JNDI Name field, enter jms/QueueConnectionFactory.

15. In the User Name field, enter j2ee. (If the user name and the password appear
to be filled in already, make sure that you follow the instructions at the end of
Section 9.3.5.8 after you exit the Wizard.)

16. In the Password field, enter j2ee.

17. Click Next.

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN166
9.3.5.7 JMS Destination References Dialog Box

In this dialog box, you associate the JNDI API context name for the topic in the
HumanResourceClient.java source file with the name of the default topic. You do
not specify the queue, because it is a temporary queue created programmatically
rather than administratively and does not have to be specified in the deployment
descriptor. Follow these steps.

1. Click Add.

2. In the Coded Name field, enter jms/NewHireTopic—the logical name for the
publisher topic referenced by HumanResourceClient.

3. In the Type field, select javax.jms.Topic.

4. In the JNDI Name field, enter jms/Topic (the default topic).

5. Click Next.

9.3.5.8 Review Settings Dialog Box

1. Check the settings for the deployment descriptor.

2. Click Finish.

After you exit the Wizard, do the following.

1. Select the HumanResourceClient node in the tree.

2. Select the Resource Refs tabbed pane.

3. Select the second entry in the table, jms/QueueConnectionFactory.

4. See whether the User Name and Password fields are filled in. If they are
blank, enter j2ee in each field.

5. Choose Save from the File menu to save the application.

9.3.6 Packaging the Equipment Message-Driven Bean

In this section, you will run the New Enterprise Bean Wizard of the deploytool to
package the first message-driven bean. To start the New Enterprise Bean Wizard,
follow these steps.

CREATING AND PACKAGING THE APPLICATION 167
1. In the tree view, select NewHireApp.

2. From the File menu, choose New ➞ Enterprise Bean. The wizard displays a
series of dialog boxes.

9.3.6.1 Introduction Dialog Box

Click Next.

9.3.6.2 EJB JAR Dialog Box

1. In the combo box labeled JAR File Location, verify that Create New JAR File
in Application and NewHireApp are selected.

2. In the JAR Display Name field, verify that the name is Ejb1, the default dis-
play name. Representing the enterprise bean JAR file that contains the bean,
this name will be displayed in the tree view.

3. Click the Edit button next to the Contents text area.

4. In the dialog box Edit Contents of Ejb1, choose the client_mdb_ent direc-
tory. If the directory is not already in the Starting Directory field, type it in the
field, or locate it by browsing through the Available Files tree.

5. Select the ReserveEquipmentMsgBean.class file from the Available Files tree
area and click Add.

6. Click OK.

7. Click Next.

9.3.6.3 General Dialog Box

1. In the Bean Type combo box, select the Message-Driven radio button.

2. Under Enterprise Bean Class, select ReserveEquipmentMsgBean.

3. In the Enterprise Bean Name field, enter EquipmentMDB.

4. Click Next.

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN168
9.3.6.4 Transaction Management Dialog Box

1. Select the Container-Managed radio button.

2. In the Transaction Attribute field opposite the onMessage method, verify that
Required is selected.

3. Click Next.

9.3.6.5 Message-Driven Bean Settings Dialog Box

1. In the Destination Type combo box, select Topic.

2. In the Destination field, select jms/Topic.

3. In the Connection Factory field, select jms/TopicConnectionFactory.

4. Click Next.

9.3.6.6 Environment Entries Dialog Box

Click Next.

9.3.6.7 Enterprise Bean References Dialog Box

1. Click Add.

2. In the Coded Name column, enter ejb/MyEjbReference.

3. In the Type column, select Entity.

4. In the Interfaces column, select Local.

5. In the Home Interface column, enter SetupOfficeLocalHome.

6. In the Local/Remote Interface column, enter SetupOffice.

7. In the Deployment Settings combo box, select Enterprise Bean Name. In the
Enterprise Bean Name field, enter SetupOfficeEJB.

8. Click Finish. You do not need to enter anything in the other dialog boxes.

CREATING AND PACKAGING THE APPLICATION 169
9.3.7 Packaging the Office Message-Driven Bean

In this section, you will run the New Enterprise Bean Wizard of the deploytool to
package the second message-driven bean. To start the New Enterprise Bean Wizard,
follow these steps.

1. In the tree view, select NewHireApp.

2. From the File menu, choose New ➞ Enterprise Bean.

9.3.7.1 Introduction Dialog Box

Click Next.

9.3.7.2 EJB JAR Dialog Box

1. In the combo box labeled JAR File Location, select Add to Existing JAR File
and select Ejb1 (NewHireApp).

2. Click the Edit button next to the Contents text area.

3. In the dialog box Edit Contents of Ejb1, choose the directory
client_mdb_ent. If the directory is not already in the Starting Directory field,
type it in the field, or locate it by browsing through the Available Files tree.

4. Select the ReserveOfficeMsgBean.class file from the Available Files tree
area and click Add.

5. Click OK.

6. Click Next.

9.3.7.3 General Dialog Box

1. In the Bean Type combo box, select the Message-Driven radio button.

2. Under Enterprise Bean Class, select ReserveOfficeMsgBean. The combo
boxes for the local and remote interfaces are grayed out.

3. In the Enterprise Bean Name field, enter OfficeMDB. This name will represent
the message-driven bean in the tree view.

4. Click Next.

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN170
9.3.7.4 Transaction Management Dialog Box

1. Select the Container-Managed radio button.

2. In the Transaction Attribute field opposite the onMessage method, verify that
Required is selected.

3. Click Next.

9.3.7.5 Message-Driven Bean Settings Dialog Box

1. In the Destination Type combo box, select Topic.

2. In the Destination field, select jms/Topic.

3. In the Connection Factory field, select jms/TopicConnectionFactory.

4. Click Next.

9.3.7.6 Environment Entries Dialog Box

Click Next.

9.3.7.7 Enterprise Bean References Dialog Box

1. Click Add.

2. In the Coded Name column, enter ejb/MyEjbReference.

3. In the Type column, select Entity.

4. In the Interfaces column, select Local.

5. In the Home Interface column, enter SetupOfficeLocalHome.

6. In the Local/Remote Interface column, enter SetupOffice.

7. In the Deployment Settings combo box, select Enterprise Bean Name. In the
Enterprise Bean Name field, enter SetupOfficeEJB.

8. Click Finish. You do not need to enter anything in the other dialog boxes.

CREATING AND PACKAGING THE APPLICATION 171
9.3.8 Packaging the Schedule Message-Driven Bean

In this section, you will run the New Enterprise Bean Wizard of the deploytool to
package the third message-driven bean. To start the New Enterprise Bean Wizard,
follow these steps.

1. In the tree view, select NewHireApp.

2. From the File menu, choose New ➞ Enterprise Bean.

9.3.8.1 Introduction Dialog Box

Click Next.

9.3.8.2 EJB JAR Dialog Box

1. In the combo box labeled JAR File Location, select Add to Existing JAR File
and select Ejb1 (NewHireApp).

2. Click the Edit button next to the Contents text area.

3. In the dialog box Edit Contents of Ejb1, choose the directory
client_mdb_ent. If the directory is not already in the Starting Directory field,
type it in the field, or locate it by browsing through the Available Files tree.

4. Select the ScheduleMsgBean.class file from the Available Files tree area and
click Add.

5. Click OK.

6. Click Next.

9.3.8.3 General Dialog Box

1. In the Bean Type combo box, select the Message-Driven radio button.

2. Under Enterprise Bean Class, select ScheduleMsgBean. The combo boxes for
the local and remote interfaces are grayed out.

3. In the Enterprise Bean Name field, enter ScheduleMDB. This name will repre-
sent the message-driven bean in the tree view.

4. Click Next.

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN172
9.3.8.4 Transaction Management Dialog Box

1. Select the Container-Managed radio button.

2. In the Transaction Attribute field opposite the onMessage method, verify that
Required is selected.

3. Click Next.

9.3.8.5 Message-Driven Bean Settings Dialog Box

1. In the Destination Type combo box, select Queue.

2. In the Destination field, select jms/ScheduleQueue.

3. In the Connection Factory field, select jms/QueueConnectionFactory.

4. Click Next.

9.3.8.6 Environment Entries Dialog Box

Click Next.

9.3.8.7 Enterprise Bean References Dialog Box

1. Click Add.

2. In the Coded Name column, enter ejb/CompositeEjbReference.

3. In the Type column, select Entity.

4. In the Interfaces column, select Local.

5. In the Home Interface column, enter SetupOfficeLocalHome.

6. In the Local/Remote Interface column, enter SetupOffice.

7. In the Deployment Settings combo box, select Enterprise Bean Name. In the
Enterprise Bean Name field, enter SetupOfficeEJB.

8. Click Finish. You do not need to enter anything in the other dialog boxes.

CREATING AND PACKAGING THE APPLICATION 173
9.3.9 Packaging the Entity Bean

In this section, you will run the New Enterprise Bean Wizard of the deploytool to
package the entity bean. To start the New Enterprise Bean Wizard, follow these
steps.

1. In the tree view, select NewHireApp.

2. From the File menu, choose New ➞ Enterprise Bean.

9.3.9.1 Introduction Dialog Box

Click Next.

9.3.9.2 EJB JAR Dialog Box

1. In the combo box labeled JAR File Location, select Add to Existing JAR File
and select Ejb1 (NewHireApp).

2. Click the Edit button next to the Contents text area.

3. In the dialog box Edit Contents of Ejb1, choose the directory
client_mdb_ent. If the directory is not already in the Starting Directory field,
type it in the field, or locate it by browsing through the Available Files tree.

4. Select the following files from the Available Files tree area and click Add:
SetupOfficeLocalHome.class, SetupOffice.class, and SetupOffice-

Bean.class.

5. Click OK.

6. Click Next.

9.3.9.3 General Dialog Box

1. In the Bean Type combo box, select the Entity radio button.

2. In the Enterprise Bean Class combo box, select SetupOfficeBean.

3. In the Enterprise Bean Name field, enter SetupOfficeEJB.

4. In the Local Interfaces combo box, select SetupOfficeLocalHome for Local
Home Interface and SetupOffice for Local Interface.

5. Click Next.

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN174
9.3.9.4 Entity Settings Dialog Box

1. Select the radio button labeled Container managed persistence (2.0).

2. Select the checkboxes next to all six fields in the Fields To Be Persisted area:
employeeId, employeeName, equipmentList, officeNumber, serialized-
ReplyDestination, and replyCorrelationMsgId.

3. In the Abstract Schema Name field, enter SetupOfficeSchema.

4. In the Primary Key Class field, enter java.lang.String.

5. In the Primary Key Field Name field, select employeeId.

6. Click Next.

9.3.9.5 Transaction Management Dialog Box

1. Select the Container-Managed radio button.

2. For all methods, verify that Required is set in the Transaction Attribute col-
umn opposite the Local and Local Home radio buttons.

3. Click Next.

9.3.9.6 Environment Entries Dialog Box

Click Next.

9.3.9.7 Enterprise Bean References Dialog Box

Click Next.

9.3.9.8 Resource References Dialog Box

In this dialog box, you specify the connection factory for the Schedule queue and for
the reply. Follow these steps.

1. Click Add.

2. In the Coded Name field, enter jms/QueueConnectionFactory.

3. In the Type field, select javax.jms.QueueConnectionFactory.

4. In the Authentication field, select Container.

CREATING AND PACKAGING THE APPLICATION 175
5. In the Sharable field, make sure that the checkbox is selected.

6. In the JNDI Name field, enter jms/QueueConnectionFactory.

7. In the User Name field, enter j2ee.

8. In the Password field, enter j2ee.

9. Click Next.

9.3.9.9 Resource Environment References Dialog Box

1. Click Add.

2. In the Coded Name field, enter jms/ScheduleQueue—the logical name refer-
enced by SetupOfficeBean.

3. In the Type field, select javax.jms.Queue.

4. In the JNDI Name field, enter jms/ScheduleQueue.

5. Click Next.

9.3.9.10 Security Dialog Box

Use the default Security Identity setting for a session or entity bean, Use Caller ID.
Click Next.

9.3.9.11 Review Settings Dialog Box

1. Check the settings for the deployment descriptor.

2. Click Finish.

9.3.10 Specifying the Entity Bean Deployment Settings

Generate the SQL for the entity bean and create the table. Follow these steps.

1. In the tree view, select the SetupOfficeEJB entity bean.

2. Select the Entity tabbed pane.

3. Click Deployment Settings.

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN176
4. In the Deployment Settings dialog box, perform these steps.

a. In the Database Table combo box, select the two checkboxes labeled
Create table on deploy and Delete table on undeploy.

b. Click Database Settings.

c. In the Deployment Settings dialog box that appears, enter jdbc/

Cloudscape in the Database JNDI Name field. Do not enter a user name or
a password.

d. Click OK.

e. Click Generate Default SQL.

f. When the SQL Generation Complete dialog appears, click OK.

g. Click OK in the dialog box.

5. Choose Save from the File menu to save the application.

9.3.11 Specifying the JNDI Names

Verify that the JNDI names are correct, and add one for the SetupOfficeEJB com-
ponent. Follow these steps.

1. In the tree view, select the NewHireApp application.

2. Select the JNDI Names tabbed pane.

3. Make sure that the JNDI names appear as shown in Tables 9.1 and 9.2. You
will need to enter SetupOfficeEJB as the JNDI name for the SetupOfficeEJB

component.

Table 9.1: Application Pane

Component Type Component JNDI Name

EJB SetupOfficeEJB SetupOfficeEJB

EJB EquipmentMDB jms/Topic

EJB OfficeMDB jms/Topic

EJB ScheduleMDB jms/ScheduleQueue

DEPLOYING AND RUNNING THE APPLICATION 177
9.4 Deploying and Running the Application

Deploying and running the application involve several steps:

1. Adding the server, if necessary

2. Deploying the application

3. Running the client

4. Undeploying the application

5. Removing the application and stopping the server

9.4.1 Adding the Server

Before you can deploy the application, you must make available to the deploytool
the J2EE server you started in Section 9.3.1 on page 162. Because you started the
J2EE server before you started the deploytool, the server, named localhost, proba-
bly appears in the tree under Servers. If it does not, do the following.

1. From the File menu, choose Add Server.

2. In the Add Server dialog box, enter localhost in the Server Name field.

3. Click OK. A localhost node appears under Servers in the tree view.

Table 9.2: References Pane

Ref. Type Referenced By Reference Name JNDI Name

Resource SetupOfficeEJB jms/Queue-
ConnectionFactory

jms/Queue-
ConnectionFactory

Env Resource SetupOfficeEJB jms/ScheduleQueue jms/ScheduleQueue

Resource HumanResource-
Client

jms/Topic-
ConnectionFactory

jms/Topic-
ConnectionFactory

Resource HumanResource-
Client

jms/Queue-
ConnectionFactory

jms/Queue-
ConnectionFactory

Env Resource HumanResource-
Client

jms/NewHireTopic jms/Topic

Resource EJB1[CMP] jdbc/Cloudscape

CHAPTER 9 A J2EE APPLICATION THAT USES THE JMS API WITH AN ENTITY BEAN178
9.4.2 Deploying the Application

To deploy the application, perform the following steps.

1. From the File menu, choose Save to save the application.

2. From the Tools menu, choose Deploy.

3. In the Introduction dialog box, verify that the Object to Deploy selection is
NewHireApp and that the Target Server selection is localhost.

4. Click Next.

5. In the JNDI Names dialog box, verify that the JNDI names are correct.

6. Click Next.

7. Click Finish.

8. In the Deployment Progress dialog box, click OK when the “Deployment of
NewHireApp is complete” message appears.

9. In the tree view, expand Servers and select localhost. Verify that
NewHireApp is deployed.

9.4.3 Running the Client

To run the client, perform the following steps.

1. At the command line prompt, enter the following:

runclient -client NewHireApp.ear -name HumanResourceClient -textauth

2. At the login prompts, enter j2ee as the user name and j2ee as the password.

3. Click OK.

The client program runs in the command window, and output from the application
appears in the window in which you started the J2EE server.

DEPLOYING AND RUNNING THE APPLICATION 179
9.4.4 Undeploying the Application

To undeploy the J2EE application, follow these steps.

1. In the tree view, select localhost.

2. Select NewHireApp in the Deployed Objects area.

3. Click Undeploy.

4. Answer Yes in the confirmation dialog.

9.4.5 Removing the Application and Stopping the Server

To remove the application from the deploytool, follow these steps.

1. Select NewHireApp in the tree view.

2. Select Close from the File menu.

To delete the queue you created, enter the following at the command line
prompt:

j2eeadmin -removeJmsDestination jms/ScheduleQueue

To stop the J2EE server, use the following command:

j2ee -stop

To stop the Cloudscape database server, use the following command:

cloudscape -stop

To exit the deploytool, choose Exit from the File menu.

C H A P T E R 10

An Application Example that

Uses Two J2EE Servers

THIS chapter explains how to write, compile, package, deploy, and run a pair of
J2EE applications that use the JMS API and run on two J2EE servers. A common
practice is to deploy different components of an enterprise application on different
systems within a company, and this example illustrates on a small scale how to do
this for an application that uses the JMS API.

The applications use the following components:

• An application client that uses two connection factories—one ordinary one
and one that is configured to communicate with the remote server—to create
two publishers and two subscribers and to publish and to consume messages

• A message-driven bean that is deployed twice—once on the local server and
once on the remote one—to process the messages and to send replies

In this chapter, the term local server means the server on which the applica-
tion client is deployed. The term remote server means the server on which only
the message-driven bean is deployed.

Another possible situation is that an application deployed on a J2EE server
must be accessed from another system on which no J2EE server is running. The
last section of this chapter discusses how to handle this situation.

The chapter covers the following topics:

• An overview of the applications

• Writing and compiling the application components
181

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS182
• Creating and packaging the applications

• Deploying and running the applications

• Accessing a J2EE application from a remote system that is not running a J2EE
server

If you downloaded the tutorial examples as described in the preface, you will
find the source code files for this chapter in jms_tutorial/examples/

multi_server (on UNIX systems) or jms_tutorial\examples\multi_server (on
Microsoft Windows systems). The directory ear_files in the examples directory
contains two built applications, called SampleMultiApp.ear and SampleReply-

BeanApp.ear. If you run into difficulty at any time, you can open one of these files
in the deploytool and compare that file to your own version.

10.1 Overview of the Applications

This pair of applications is somewhat similar to the application in Chapter 7 in that
the only components are a client and a message-driven bean. However, the applica-
tions here use these components in more complex ways. One application consists of
the application client. The other application contains only the message-driven bean
and is deployed twice, once on each server.

The basic steps of the applications are as follows.

1. The administrator starts two J2EE servers.

2. On the local server, the administrator creates a connection factory to commu-
nicate with the remote server.

3. The application client uses two connection factories—a preconfigured one
and the one just created—to create two connections, sessions, publishers, and
subscribers. Each publisher publishes five messages.

4. The local and the remote message-driven beans each receive five messages
and send replies.

5. The client’s message listener consumes the replies.

Figure 10.1 illustrates the structure of this application.

WRITING AND COMPILING THE APPLICATION COMPONENTS 183
Figure 10.1 A J2EE Two-Server Application

10.2 Writing and Compiling the Application Components

Writing and compiling the components of the applications involve

• Coding the application client

• Coding the message-driven bean

• Compiling the source files

10.2.1 Coding the Application Client: MultiAppServerRequester.java

The application client class, MultiAppServerRequester.java, does the following.

1. It uses the Java Naming and Directory Interface (JNDI) API naming context
java:comp/env to look up two connection factories and a topic.

2. For each connection factory, it creates a connection, a publisher session, a
publisher, a subscriber session, a subscriber, and a temporary topic for replies.

3. Each subscriber sets its message listener, ReplyListener, and starts the
connection.

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS184
4. Each publisher publishes five messages and creates a list of the messages the
listener should expect.

5. When each reply arrives, the message listener displays its contents and re-
moves it from the list of expected messages.

6. When all the messages have arrived, the client exits.

import javax.jms.*;

import javax.naming.*;

import java.util.*;

/**

 * The MultiAppServerRequester class is the client program for

 * this J2EE application. It publishes a message to two

 * different JMS providers and waits for a reply.

 */

public class MultiAppServerRequester {

 static Object waitUntilDone = new Object();

 static SortedSet outstandingRequests1 =

 Collections.synchronizedSortedSet(new TreeSet());

 static SortedSet outstandingRequests2 =

 Collections.synchronizedSortedSet(new TreeSet());

 public static void main (String[] args) {

 InitialContext ic = null;

 TopicConnectionFactory tcf1 = null; // App Server 1

 TopicConnectionFactory tcf2 = null; // App Server 2

 TopicConnection tc1 = null;

 TopicConnection tc2 = null;

 TopicSession pubSession1 = null;

 TopicSession pubSession2 = null;

 TopicPublisher topicPublisher1 = null;

 TopicPublisher topicPublisher2 = null;

 Topic pTopic = null;

 TemporaryTopic replyTopic1 = null;

 TemporaryTopic replyTopic2 = null;

 TopicSession subSession1 = null;

 TopicSession subSession2 = null;

WRITING AND COMPILING THE APPLICATION COMPONENTS 185
 TopicSubscriber topicSubscriber1 = null;

 TopicSubscriber topicSubscriber2 = null;

 TextMessage message = null;

 /*

 * Create a JNDI API InitialContext object.

 */

 try {

 ic = new InitialContext();

 } catch (NamingException e) {

 System.err.println("Could not create JNDI API " +

 "context: " + e.toString());

 e.printStackTrace();

 System.exit(1);

 }

 /*

 * Look up connection factories and topic. If any do not

 * exist, exit.

 */

 try {

 tcf1 = (TopicConnectionFactory)

 ic.lookup("java:comp/env/jms/TopicConnectionFactory1");

 tcf2 = (TopicConnectionFactory)

 ic.lookup("java:comp/env/jms/TopicConnectionFactory2");

 pTopic = (Topic) ic.lookup("java:comp/env/jms/PTopic");

 } catch (NamingException e) {

 System.err.println("JNDI API lookup failed: " +

 e.toString());

 e.printStackTrace();

 System.exit(1);

 }

 try {

 // Create two TopicConnections.

 tc1 = tcf1.createTopicConnection();

 tc2 = tcf2.createTopicConnection();

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS186
 // Create TopicSessions for publishers.

 pubSession1 =

 tc1.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

 pubSession2 =

 tc2.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

 // Create temporary topics for replies.

 replyTopic1 = pubSession1.createTemporaryTopic();

 replyTopic2 = pubSession2.createTemporaryTopic();

 // Create TopicSessions for subscribers.

 subSession1 =

 tc1.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

 subSession2 =

 tc2.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

 /*

 * Create subscribers, set message listeners, and

 * start connections.

 */

 topicSubscriber1 =

 subSession1.createSubscriber(replyTopic1);

 topicSubscriber2 =

 subSession2.createSubscriber(replyTopic2);

 topicSubscriber1.setMessageListener(new

 ReplyListener(outstandingRequests1));

 topicSubscriber2.setMessageListener(new

 ReplyListener(outstandingRequests2));

 tc1.start();

 tc2.start();

 // Create publishers.

 topicPublisher1 =

 pubSession1.createPublisher(pTopic);

WRITING AND COMPILING THE APPLICATION COMPONENTS 187
 topicPublisher2 =

 pubSession2.createPublisher(pTopic);

 /*

 * Create and send two sets of messages, one set to

 * each app server, at 1.5-second intervals. For

 * each message, set the JMSReplyTo message header to

 * a reply topic, and set an id property. Add the

 * message ID to the list of outstanding requests for

 * the message listener.

 */

 message = pubSession1.createTextMessage();

 int id = 1;

 for (int i = 0; i < 5; i++) {

 message.setJMSReplyTo(replyTopic1);

 message.setIntProperty("id", id);

 message.setText("text: id=" + id +

 " to local app server");

 topicPublisher1.publish(message);

 System.out.println("Published message: " +

 message.getText());

 outstandingRequests1.add(message.getJMSMessageID());

 id++;

 Thread.sleep(1500);

 message.setJMSReplyTo(replyTopic2);

 message.setIntProperty("id", id);

 message.setText("text: id=" + id +

 " to remote app server");

 try {

 topicPublisher2.publish(message);

 System.out.println("Published message: " +

 message.getText());

 outstandingRequests2.add(message.getJMSMessageID());

 } catch (Exception e) {

 System.err.println("Exception: Caught " +

 "failed publish to " +

 "topicConnectionFactory2");

 e.printStackTrace();

 }

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS188
 id++;

 Thread.sleep(1500);

 }

 /*

 * Wait for replies.

 */

 System.out.println("Waiting for " +

 outstandingRequests1.size() + " message(s) " +

 "from local app server");

 System.out.println("Waiting for " +

 outstandingRequests2.size() + " message(s) " +

 "from remote app server");

 while (outstandingRequests1.size() > 0 ||

 outstandingRequests2.size() > 0) {

 synchronized (waitUntilDone) {

 waitUntilDone.wait();

 }

 }

 System.out.println("Finished");

 } catch (Exception e) {

 System.err.println("Exception occurred: " +

 e.toString());

 e.printStackTrace();

 } finally {

 System.out.println("Closing connection 1");

 if (tc1 != null) {

 try {

 tc1.close();

 } catch (Exception e) {

 System.err.println("Error closing " +

 "connection 1: " + e.toString());

 }

 }

 System.out.println("Closing connection 2");

 if (tc2 != null) {

 try {

 tc2.close();

WRITING AND COMPILING THE APPLICATION COMPONENTS 189
 } catch (Exception e) {

 System.err.println("Error closing " +

 "connection 2: " + e.toString());

 }

 }

 System.exit(0);

 }

 }

 /**

 * The ReplyListener class is instantiated with a set of

 * outstanding requests.

 */

 static class ReplyListener implements MessageListener {

 SortedSet outstandingRequests = null;

 /**

 * Constructor for ReplyListener class.

 *

 * @param outstandingRequests set of outstanding

 * requests

 */

 ReplyListener(SortedSet outstandingRequests) {

 this.outstandingRequests = outstandingRequests;

 }

 /**

 * onMessage method, which displays the contents of the

 * id property and text and uses the JMSCorrelationID to

 * remove from the list of outstanding requests the

 * message to which this message is a reply. If this is

 * the last message, it notifies the client.

 *

 * @param message the incoming message

 */

 public void onMessage(Message message) {

 TextMessage tmsg = (TextMessage) message;

 String txt = null;

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS190
 int id = 0;

 String correlationID = null;

 try {

 id = tmsg.getIntProperty("id");

 txt = tmsg.getText();

 correlationID = tmsg.getJMSCorrelationID();

 } catch (JMSException e) {

 System.err.println("ReplyListener.onMessage: " +

 "JMSException: " + e.toString());

 }

 System.out.println("ReplyListener: Received " +

 "message: id=" + id + ", text=" + txt);

 outstandingRequests.remove(correlationID);

 if (outstandingRequests.size() == 0) {

 synchronized(waitUntilDone) {

 waitUntilDone.notify();

 }

 } else {

 System.out.println("ReplyListener: Waiting " +

 "for " + outstandingRequests.size() +

 " message(s)");

 }

 }

 }

}

Code Example 10.1 MultiAppServerRequester.java

10.2.2 Coding the Message-Driven Bean: ReplyMsgBean.java

The onMessage method of the message-driven bean class, ReplyMsgBean.java, does
the following:

1. Casts the incoming message to a TextMessage and displays the text

2. Creates a connection, session, and publisher for the reply message

WRITING AND COMPILING THE APPLICATION COMPONENTS 191
3. Publishes the message to the reply topic

4. Closes the connection

import javax.ejb.*;

import javax.naming.*;

import javax.jms.*;

/**

 * The ReplyMsgBean class is a message-driven bean. It

 * implements the javax.ejb.MessageDrivenBean and

 * javax.jms.MessageListener interfaces. It is defined as public

 * (but not final or abstract). It defines a constructor and the

 * methods ejbCreate, onMessage, setMessageDrivenContext, and

 * ejbRemove.

 */

public class ReplyMsgBean implements MessageDrivenBean,

 MessageListener {

 private transient MessageDrivenContext mdc = null;

 private transient TopicConnectionFactory tcf = null;

 /**

 * Constructor, which is public and takes no arguments.

 */

 public ReplyMsgBean() {

 System.out.println("In " +

 "ReplyMsgBean.ReplyMsgBean()");

 }

 /**

 * setMessageDrivenContext method, declared as public (but

 * not final or static), with a return type of void, and

 * with one argument of type javax.ejb.MessageDrivenContext.

 *

 * @param mdc the context to set

 */

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS192
 public void setMessageDrivenContext(MessageDrivenContext mdc)

 {

 System.out.println("In " +

 "ReplyMsgBean.setMessageDrivenContext()");

 this.mdc = mdc;

 }

 /**

 * ejbCreate method, declared as public (but not final or

 * static), with a return type of void, and with no

 * arguments. It looks up the topic connection factory.

 */

 public void ejbCreate() {

 System.out.println("In ReplyMsgBean.ejbCreate()");

 try {

 Context initial = new InitialContext();

 tcf = (TopicConnectionFactory)

 initial.lookup("java:comp/env/jms/TopicConnectionFactory");

 } catch (Exception ex) {

 System.err.println("ReplyMsgBean.ejbCreate: " +

 "Exception: " + ex.toString());

 }

 }

 /**

 * onMessage method, declared as public (but not final or

 * static), with a return type of void, and with one argument

 * of type javax.jms.Message.

 *

 * It displays the contents of the message and creates a

 * connection, session, and publisher for the reply, using

 * the JMSReplyTo field of the incoming message as the

 * destination. It creates and publishes a reply message,

 * setting the JMSCorrelationID header field to the message

 * ID of the incoming message, and the id property to that of

 * the incoming message. It then closes the topic

 * connection.

 *

 * @param inMessagethe incoming message

WRITING AND COMPILING THE APPLICATION COMPONENTS 193
 */

 public void onMessage(Message inMessage) {

 TextMessage msg = null;

 TopicConnection tc = null;

 TopicSession ts = null;

 TopicPublisher tp = null;

 TextMessage replyMsg = null;

 try {

 if (inMessage instanceof TextMessage) {

 msg = (TextMessage) inMessage;

 System.out.println(" ReplyMsgBean: " +

 "Received message: " + msg.getText());

 tc = tcf.createTopicConnection();

 ts = tc.createTopicSession(true, 0);

 tp =

 ts.createPublisher((Topic)msg.getJMSReplyTo());

 replyMsg =

 ts.createTextMessage("ReplyMsgBean " +

 "processed message: " + msg.getText());

 replyMsg.setJMSCorrelationID(msg.getJMSMessageID());

 replyMsg.setIntProperty("id",

 msg.getIntProperty("id"));

 tp.publish(replyMsg);

 tc.close();

 } else {

 System.err.println("Message of wrong type: " +

 inMessage.getClass().getName());

 }

 } catch (JMSException e) {

 System.err.println("ReplyMsgBean.onMessage: " +

 "JMSException: " + e.toString());

 } catch (Throwable te) {

 System.err.println("ReplyMsgBean.onMessage: " +

 "Exception: " + te.toString());

 }

 }

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS194
 /**

 * ejbRemove method, declared as public (but not final or

 * static), with a return type of void, and with no

 * arguments.

 */

 public void ejbRemove() {

 System.out.println("In ReplyMsgBean.ejbRemove()");

 }

}

Code Example 10.2 ReplyMsgBean.java

10.2.3 Compiling the Source Files

To compile the files in the application, go to the directory multi_server and do the
following.

1. Make sure that you have set the environment variables shown in Table 4.1 on
page 34: JAVA_HOME, J2EE_HOME, CLASSPATH, and PATH.

2. At a command line prompt, compile the source files:

javac MultiAppServerRequester.java

javac ReplyMsgBean.java

10.3 Creating and Packaging the Application

Creating and packaging this application involve several steps:

1. Starting the J2EE servers and the deploytool

2. Creating a connection factory

3. Creating the first J2EE application

4. Packaging the application client

5. Creating the second J2EE application

CREATING AND PACKAGING THE APPLICATION 195
6. Packaging the message-driven bean

7. Checking the JNDI names

10.3.1 Starting the J2EE Servers and the Deploytool

Before you can create and package the application, you must start the local and
remote J2EE servers and the deploytool. Follow these steps.

1. At a command line prompt on the local system, start the J2EE server:

j2ee -verbose

Wait until the server displays the message “J2EE server startup complete.”

(To stop the server, type j2ee -stop.)

2. At another command line prompt on the local system, start the deploytool:

deploytool

(To access the tool’s context-sensitive help, press F1.)

3. At a command line prompt on the remote system, start the J2EE server:

j2ee -verbose

10.3.2 Creating a Connection Factory

For this example, you create on the local system a connection factory that allows the
client to communicate with the remote server. If you downloaded the tutorial exam-
ples as described in the preface, you will find in the multi_server directory a
Microsoft Windows script called setup.bat and a UNIX script called setup.sh.
You can use one of these scripts to create the connection factory on the local system.
The command in setup.bat looks like this:

call j2eeadmin -addJmsFactory jms/RemoteTCF topic -props

url=corbaname:iiop:%1:1050#%1

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS196
The UNIX command in setup.sh looks like this:

#!/bin/sh -x

j2eeadmin -addJmsFactory jms/RemoteTCF topic -props

url=corbaname:iiop:$1:1050#$1

1. To run the script, specify the name of the remote server as an argument. Use
the host name that is visible to you on your network; do not use an IP address.
For example, if the remote system is named mars, enter the following:

setup.bat mars

or

setup.sh mars

2. Verify that the connection factory was created:

j2eeadmin -listJmsFactory

One line of the output looks like this (it appears on one line):

< JMS Cnx Factory : jms/RemoteTCF , Topic ,

[url=corbaname:iiop:mars:1050#mars] >

10.3.3 Creating the First J2EE Application

Create a new J2EE application called MultiApp and store it in the file named
MultiApp.ear. Follow these steps.

1. In the deploytool, select the File menu.

2. From the File menu, choose New ➞ Application.

3. Click Browse next to the Application File Name field, and use the file chooser
to locate the directory multi_server.

4. In the File Name field, enter MultiApp.

5. Click New Application.

6. Click OK.

CREATING AND PACKAGING THE APPLICATION 197
A diamond icon labeled MultiApp appears in the tree view on the left side of
the deploytool window. The full path name of MultiApp.ear appears in the
General tabbed pane on the right side.

10.3.4 Packaging the Application Client

In this section, you will run the New Application Client Wizard of the deploytool to
package the application client. To start the New Application Client Wizard, follow
these steps.

1. In the tree view, select MultiApp.

2. From the File menu, choose New ➞ Application Client. The wizard displays a
series of dialog boxes.

10.3.4.1 Introduction Dialog Box

Click Next.

10.3.4.2 JAR File Contents Dialog Box

1. In the combo box labeled Create Archive Within Application, select
MultiApp.

2. Click the Edit button next to the Contents text area.

3. In the dialog box Edit Contents of <Application Client>, choose the
multi_server directory. If the directory is not already in the Starting Direc-
tory field, type it in the field, or locate it by browsing through the Available
Files tree.

4. Select MultiAppServerRequester.class and MultiAppServerRequester$Re-

plyListener.class from the Available Files tree area and click Add.

5. Click OK.

6. Click Next.

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS198
10.3.4.3 General Dialog Box

1. In the Application Client combo box, select MultiAppServerRequester in the
Main Class field, and enter MultiAppServerRequester in the Display Name
field.

2. In the Callback Handler Class combo box, verify that container-managed au-
thentication is selected.

3. Click Next.

10.3.4.4 Environment Entries Dialog Box

Click Next.

10.3.4.5 Enterprise Bean References Dialog Box

Click Next.

10.3.4.6 Resource References Dialog Box

In this dialog box, you associate the JNDI API context names for the connection
factories in the MultiAppServerRequester.java source file with the names of the
local and remote connection factories. You also specify container authentication for
the connection factory resources, defining the user name and the password that the
user must enter in order to be able to create a connection. Follow these steps.

1. Click Add.

2. In the Coded Name field, enter jms/TopicConnectionFactory1—the first log-
ical name referenced by MultiAppServerRequester.

3. In the Type field, select javax.jms.TopicConnectionFactory.

4. In the Authentication field, select Container.

5. In the Sharable field, make sure that the checkbox is selected. This allows the
container to optimize connections.

6. In the JNDI Name field, enter jms/TopicConnectionFactory.

7. In the User Name field, enter j2ee.

8. In the Password field, enter j2ee.

9. Click Add.

CREATING AND PACKAGING THE APPLICATION 199
10. In the Coded Name field, enter jms/TopicConnectionFactory2—the other
logical name referenced by MultiAppServerRequester.

11. In the Type field, select javax.jms.TopicConnectionFactory.

12. In the Authentication field, select Container.

13. In the Sharable field, make sure that the checkbox is selected.

14. In the JNDI Name field, enter jms/RemoteTCF.

15. In the User Name field, enter j2ee. (If the user name and the password appear
to be filled in already, make sure that you follow the instructions at the end of
Section 10.3.4.8 after you exit the Wizard.)

16. In the Password field, enter j2ee.

17. Click Next.

10.3.4.7 JMS Destination References Dialog Box

In this dialog box, you associate the JNDI API context name for the topic in the
MultiAppServerRequester.java source file with the name of the default topic. The
client code also uses a reply topic, but it is a temporary topic created programmati-
cally rather than administratively and does not have to be specified in the deploy-
ment descriptor. Follow these steps.

1. Click Add.

2. In the Coded Name field, enter jms/PTopic—the logical name for the pub-
lisher topic referenced by MultiAppServerRequester.

3. In the Type field, select javax.jms.Topic.

4. In the JNDI Name field, enter jms/Topic—the preconfigured topic.

5. Click Next.

10.3.4.8 Review Settings Dialog Box

1. Check the settings for the deployment descriptor.

2. Click Finish.

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS200
After you exit the Wizard, do the following.

1. Select the MultiAppServerRequester node in the tree.

2. Select the Resource Refs tabbed pane.

3. Select the second entry in the table, jms/TopicConnectionFactory2.

4. If the User Name and the Password fields are blank, enter j2ee in each field.

5. Choose Save from the File menu to save the application.

10.3.5 Creating the Second J2EE Application

Create a new J2EE application, called ReplyBeanApp, and store it in the file named
ReplyBeanApp.ear. Follow these steps.

1. In the deploytool, select the File menu.

2. From the File menu, choose New ➞ Application.

3. Click Browse next to the Application File Name field, and use the file chooser
to locate the directory multi_server.

4. In the File Name field, enter ReplyBeanApp.

5. Click New Application.

6. Click OK.

A diamond icon labeled ReplyBeanApp appears in the tree view on the left side
of the deploytool window. The full path name of ReplyBeanApp.ear appears in the
General tabbed pane on the right side.

10.3.6 Packaging the Message-Driven Bean

In this section, you will run the New Enterprise Bean Wizard of the deploytool to
package the message-driven bean. To start the New Enterprise Bean Wizard, follow
these steps.

1. In the tree view, select ReplyBeanApp.

2. From the File menu, choose New ➞ Enterprise Bean.

CREATING AND PACKAGING THE APPLICATION 201
10.3.6.1 Introduction Dialog Box

Click Next.

10.3.6.2 EJB JAR Dialog Box

1. In the combo box labeled JAR File Location, verify that Create New JAR File
in Application and ReplyBeanApp are selected.

2. In the JAR Display Name field, verify that the name is Ejb1, the default dis-
play name.

3. Click the Edit button next to the Contents text area.

4. In the dialog box Edit Contents of Ejb1, choose the multi_server directory. If
the directory is not already in the Starting Directory field, type it in the field,
or locate it by browsing through the Available Files tree.

5. Select the ReplyMsgBean.class file from the Available Files tree area and
click Add.

6. Click OK.

7. Click Next.

10.3.6.3 General Dialog Box

1. In the Bean Type combo box, select the Message-Driven radio button.

2. Under Enterprise Bean Class, select ReplyMsgBean. The combo boxes for the
local and remote interfaces are grayed out.

3. In the Enterprise Bean Name field, enter ReplyMDB. This name will represent
the message-driven bean in the tree view.

4. Click Next.

10.3.6.4 Transaction Management Dialog Box

1. Select the Container-Managed radio button.

2. In the Transaction Attribute field opposite the onMessage method, verify that
Required is selected.

3. Click Next.

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS202
10.3.6.5 Message-Driven Bean Settings Dialog Box

1. In the Destination Type combo box, select Topic.

2. In the Destination field, select jms/Topic.

3. In the Connection Factory field, select jms/TopicConnectionFactory.

4. Click Next.

10.3.6.6 Environment Entries Dialog Box

Click Next.

10.3.6.7 Enterprise Bean References Dialog Box

Click Next.

10.3.6.8 Resource References Dialog Box

1. Click Add.

2. In the Coded Name field, enter jms/TopicConnectionFactory.

3. In the Type field, select javax.jms.TopicConnectionFactory.

4. In the Authentication field, select Container.

5. In the JNDI Name field, enter jms/TopicConnectionFactory.

6. In the User Name field, enter j2ee.

7. In the Password field, enter j2ee.

8. Click Finish. You do not need to enter anything in the other dialog boxes.

CREATING AND PACKAGING THE APPLICATION 203
10.3.7 Checking the JNDI Names

Verify that the JNDI names for the application components are correct. To do so, do
the following.

1. In the tree view, select the MultiApp application.

2. Select the JNDI Names tabbed pane.

3. Verify that the JNDI names appear as shown in Table 10.1.

4. In the tree view, select the ReplyBeanApp application.

5. Select the JNDI Names tabbed pane.

6. Verify that the JNDI names appear as shown in Tables 10.2 and 10.3.

Table 10.1: References Pane

Ref. Type Referenced By Reference Name JNDI Name

Resource MultiAppServer-
Requester

jms/Topic-
ConnectionFactory1

jms/Topic-
ConnectionFactory

Resource MultiAppServer-
Requester

jms/Topic-
ConnectionFactory2

jms/RemoteTCF

Env Resource MultiAppServer-
Requester

jms/PTopic jms/Topic

Table 10.2: Application Pane

Component Type Component JNDI Name

EJB ReplyMDB jms/Topic

Table 10.3: References Pane

Ref. Type Referenced By Reference Name JNDI Name

Resource ReplyMDB jms/Topic-
ConnectionFactory

jms/Topic-
ConnectionFactory

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS204
10.4 Deploying and Running the Applications

Deploying and running this application involve several steps:

1. Adding the server

2. Deploying the applications

3. Running the client

4. Undeploying the applications

5. Removing the applications and stopping the server

10.4.1 Adding the Server

Before you can deploy the application, you must make available to the deploytool
both the J2EE servers you started in Section 10.3.1 on page 195. To add the remote
server, follow these steps.

1. From the File menu, choose Add Server.

2. In the Add Server dialog box, enter the name of the remote system in the
Server Name field. Use the same name you specified when you ran the setup

script in Section 10.3.2 on page 195.

3. Click OK.

A node with the name of the remote system appears under Servers in the tree view.
Because you started the local J2EE server before you started the deploytool,

the server, named localhost, probably appears in the tree under Servers. If it
does not, do the following.

1. From the File menu, choose Add Server.

2. In the Add Server dialog box, enter localhost in the Server Name field.

3. Click OK.

The localhost node appears under Servers in the tree view.

DEPLOYING AND RUNNING THE APPLICATIONS 205
10.4.2 Deploying the Applications

To deploy the MultiApp application, perform the following steps.

1. In the tree view, select the MultiApp application.

2. From the Tools menu, choose Deploy.

3. In the Introduction dialog box, verify that the Object to Deploy selection is
MultiApp, and select localhost as the Target Server.

4. Click Next.

5. In the JNDI Names dialog box, verify that the JNDI names are correct.

6. Click Next.

7. Click Finish.

8. In the Deployment Progress dialog box, click OK when the “Deployment of
MultiApp is complete” message appears.

9. In the tree view, expand Servers and select the host name. Verify that
MultiApp is deployed.

To deploy the ReplyBeanApp application on the local server, perform the fol-
lowing steps.

1. In the tree view, select the ReplyBeanApp application.

2. From the Tools menu, choose Deploy.

3. In the Introduction dialog box, verify that the Object to Deploy selection is
ReplyBeanApp, and select the local server as the Target Server.

4. Click Next.

5. In the JNDI Names dialog box, verify that the JNDI names are correct.

6. Click Next.

7. Click Finish.

8. In the Deployment Progress dialog box, click OK when the “Deployment of
ReplyBeanApp is complete” message appears.

9. In the tree view, expand Servers and select the host name. Verify that
ReplyBeanApp is deployed.

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS206
10. Repeat steps 1–9 for the remote server, selecting the remote server as the Tar-
get Server in step 3.

10.4.3 Running the Client

To run the client, perform the following steps.

1. At a command line prompt on the local system, enter the following on one
line:

runclient -client MultiApp.ear -name MultiAppServerRequester

-textauth

2. At the login prompts, enter j2ee as the user name and j2ee as the password.

3. Click OK.

The client program runs in the command window. Output from the message-
driven beans appears on both the local and the remote systems, in the windows in
which you started each J2EE server.

10.4.4 Undeploying the Applications

To undeploy the J2EE applications, follow these steps.

1. In the tree view, select localhost under Servers.

2. Select MultiApp in the Deployed Objects area.

3. Click Undeploy.

4. Answer Yes in the confirmation dialog.

5. Repeat steps 1–4 for ReplyBeanApp on both the local and the remote servers.

ACCESSING A J2EE APPLICATION FROM A REMOTE SYSTEM THAT IS NOT RUNNING A J2EE SERVER 207
10.4.5 Removing the Applications and Stopping the Servers

To remove the applications from the deploytool, follow these steps.

1. Select MultiApp in the tree view.

2. Select Close from the File menu.

3. Repeat these steps for ReplyBeanApp.

To delete the connection factory you created, enter the following at a
command line prompt on the local system:

j2eeadmin -removeJmsFactory jms/RemoteTCF

To stop the J2EE servers, use the following command on each system:

j2ee -stop

To exit the deploytool, choose Exit from the File menu.

10.5 Accessing a J2EE Application from a Remote System that
Is Not Running a J2EE Server

To run an application installed on a J2EE server from a system that is not running a
J2EE server, you perform tasks similar to those described in Section 4.4.2 on
page 58. Again, the J2EE SDK must be installed on both systems. You may also
want to use the runclient command to run an application client installed on a
remote system.

This section describes both of these situations:

• Accessing a J2EE application from a standalone client

• Using runclient to access a remote application client

10.5.1 Accessing a J2EE Application from a Standalone Client

You can run a standalone client that uses messages to communicate with a J2EE
application. For example, you can use the deploytool to deploy the ReplyBeanApp

application on a system running the J2EE server, then use a standalone client to

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS208
publish messages to the topic that the ReplyMsgBean is listening on and receive
replies on a temporary topic.

For example, suppose that the ReplyBeanApp application is deployed on the
server running on the system earth, and suppose that the standalone client is
named PubSub and will run on the system mars. Section 10.5.1.1 shows the client
program.

To specify the remote system on the command line, you use a command line
just like the one in Section 4.4.2 (you do so after setting your environment vari-
ables as shown in Table 4.1 on page 34).

• On a Microsoft Windows system, type the following command on a single
line:

java -Djms.properties=%J2EE_HOME%\config\jms_client.properties

-Dorg.omg.CORBA.ORBInitialHost=earth PubSub jms/Topic

• On a UNIX system, type the following command on a single line:

java -Djms.properties=$J2EE_HOME/config/jms_client.properties

-Dorg.omg.CORBA.ORBInitialHost=earth PubSub jms/Topic

If all the remote applications you need to access are deployed on the same
server, you can edit the file %J2EE_HOME%\config\orb.properties (on Microsoft
Windows systems) or $J2EE_HOME/config/orb.properties (on UNIX systems)
on the local system. The second line of this file looks like this:

host=localhost

Change localhost to the name of the system on which the remote applica-
tions are deployed (for example, earth):

host=earth

You can now run the client program as before, but you do not need to specify
the option -Dorg.omg.CORBA.ORBInitialHost.

ACCESSING A J2EE APPLICATION FROM A REMOTE SYSTEM THAT IS NOT RUNNING A J2EE SERVER 209
10.5.1.1 The Sample Client Program: PubSub.java

The sample client program PubSub.java can publish messages to a topic that the
ReplyMsgBean is listening on and receive the message bean’s replies.

/**

 * The PubSub class consists of

 *

 * - A main method, which publishes several messages to a topic

 * and creates a subscriber and a temporary topic on which

 * to receive replies

 * - A TextListener class that receives the replies

 *

 * Run this program in conjunction with ReplyBeanApp.

 * Specify a topic name on the command line when you run the

 * program. By default, the program sends one message.

 * Specify a number after the topic name to send that number

 * of messages.

 *

 * To end the program, enter Q or q on the command line.

 */

import javax.jms.*;

import javax.naming.*;

import java.io.*;

public class PubSub {

 /**

 * Main method.

 *

 * @param args the topic used by the example and,

 * optionally, the number of messages to send

 */

 public static void main(String[] args) {

 String topicName = null;

 Context jndiContext = null;

 TopicConnectionFactory topicConnectionFactory = null;

 TopicConnection topicConnection = null;

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS210
 TopicSession topicSession = null;

 Topic topic = null;

 Topic replyTopic = null;

 TopicPublisher topicPublisher = null;

 TopicSubscriber topicSubscriber = null;

 TextMessage message = null;

 InputStreamReader inputStreamReader = null;

 char answer = '\0';

 final int NUM_MSGS;

 if ((args.length < 1) || (args.length > 2)) {

 System.out.println("Usage: java " +

 "PubSub <topic-name> " +

 "[<number-of-messages>]");

 System.exit(1);

 }

 topicName = new String(args[0]);

 System.out.println("Topic name is " + topicName);

 if (args.length == 2){

 NUM_MSGS = (new Integer(args[1])).intValue();

 } else {

 NUM_MSGS = 1;

 }

 /*

 * Create a JNDI API InitialContext object if none exists

 * yet.

 */

 try {

 jndiContext = new InitialContext();

 } catch (NamingException e) {

 System.out.println("Could not create JNDI API " +

 "context: " + e.toString());

 e.printStackTrace();

 System.exit(1);

 }

 /*

 * Look up connection factory and topic. If either does

ACCESSING A J2EE APPLICATION FROM A REMOTE SYSTEM THAT IS NOT RUNNING A J2EE SERVER 211
 * not exist, exit.

 */

 try {

 topicConnectionFactory = (TopicConnectionFactory)

 jndiContext.lookup("jms/TopicConnectionFactory");

 topic = (Topic) jndiContext.lookup(topicName);

 } catch (NamingException e) {

 System.out.println("JNDI API lookup failed: " +

 e.toString());

 e.printStackTrace();

 System.exit(1);

 }

 /*

 * Create connection.

 * Create session from connection; false means session is

 * not transacted.

 * Create publisher, temporary topic, and text message,

 * setting JMSReplyTo field to temporary topic and

 * setting an id property.

 * Send messages, varying text slightly.

 * Create subscriber and set message listener to receive

 * replies.

 * When all messages have been received, enter Q to quit.

 * Finally, close connection.

 */

 try {

 topicConnection =

 topicConnectionFactory.createTopicConnection();

 topicSession =

 topicConnection.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

 topicPublisher = topicSession.createPublisher(topic);

 replyTopic = topicSession.createTemporaryTopic();

 message = topicSession.createTextMessage();

 message.setJMSReplyTo(replyTopic);

 int id = 1;

 for (int i = 0; i < NUM_MSGS; i++) {

 message.setText("This is message " + id);

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS212
 message.setIntProperty("id", id);

 System.out.println("Publishing message: " +

 message.getText());

 topicPublisher.publish(message);

 id++;

 }

 topicSubscriber =

 topicSession.createSubscriber(replyTopic);

 topicSubscriber.setMessageListener(new TextListener());

 topicConnection.start();

 System.out.println("To end program, enter Q or q, " +

 "then <return>");

 inputStreamReader = new InputStreamReader(System.in);

 while (!((answer == 'q') || (answer == 'Q'))) {

 try {

 answer = (char) inputStreamReader.read();

 } catch (IOException e) {

 System.out.println("I/O exception: "

 + e.toString());

 }

 }

 } catch (JMSException e) {

 System.out.println("Exception occurred: " +

 e.toString());

 } finally {

 if (topicConnection != null) {

 try {

 topicConnection.close();

 } catch (JMSException e) {}

 }

 }

 }

 /**

 * The TextListener class implements the MessageListener

 * interface by defining an onMessage method that displays

 * the contents and id property of a TextMessage.

 *

ACCESSING A J2EE APPLICATION FROM A REMOTE SYSTEM THAT IS NOT RUNNING A J2EE SERVER 213
 * This class acts as the listener for the PubSub

 * class.

 */

 static class TextListener implements MessageListener {

 /**

 * Casts the message to a TextMessage and displays its

 * text.

 *

 * @param message the incoming message

 */

 public void onMessage(Message message) {

 TextMessage msg = null;

 String txt = null;

 int id = 0;

 try {

 if (message instanceof TextMessage) {

 msg = (TextMessage) message;

 id = msg.getIntProperty("id");

 txt = msg.getText();

 System.out.println("Reading message: id=" +

 id + ", text=" + txt);

 } else {

 System.out.println("Message of wrong type: "

 + message.getClass().getName());

 }

 } catch (JMSException e) {

 System.out.println("JMSException in onMessage():"

 + e.toString());

 } catch (Throwable t) {

 System.out.println("Exception in onMessage():" +

 t.getMessage());

 }

 }

 }

CHAPTER 10 AN APPLICATION EXAMPLE THAT USES TWO J2EE SERVERS214
}

Code Example 10.3 PubSub.java

10.5.2 Using runclient to Access a Remote Application Client

If you need to run a J2EE application that contains an application client and that is
deployed on a remote system, you can use the runclient command to do so. For
example, if you deploy both ReplyBeanApp and MultiApp on the server running on
earth, the steps are as follows.

1. Make sure that the multi_server directory on earth is accessible to you via
the file system so that the runclient command can find it.

2. Follow the instructions in Section 10.3.2 on page 195 and create on mars a
connection factory that will refer to the corresponding connection factory on
earth.

3. Set the host property in the orb.properties file in the J2EE SDK on mars, as
described in Section 10.5.1, because the runclient command does not allow
you to specify the ORBInitialHost value:

host=earth

4. Go to the multi_server directory on earth—or specify the complete path to
the MultiApp.ear file—and issue the runclient command (on one line):

runclient -client MultiApp.ear -name MultiAppServerRequester

-textauth

A P P E N D I X A

JMS Client Examples

THIS appendix contains a number of sample programs that illustrate JMS API
concepts and features. The samples are as follows:

• DurableSubscriberExample.java, a program that illustrates the use of dura-
ble subscriptions

• TransactedExample.java, a program that shows how to use transactions in
standalone applications

• AckEquivExample.java, a program that illustrates acknowledgment modes

• SampleUtilities.java, a utility class containing methods called by the other
sample programs

The programs are all self-contained threaded applications. The programs
include producer and consumer classes that send and receive messages. If you
downloaded the tutorial examples as described in the preface, you will find the
examples for this chapter in the directory jms_tutorial/examples/appendix (on
UNIX systems) or jms_tutorial\examples\appendix (on Microsoft Windows
systems). You can compile and run the examples using the instructions in
Chapter 4.

A.1 Durable Subscriptions

The DurableSubscriberExample.java program shows how durable subscriptions
work. It demonstrates that a durable subscription is active even when the subscriber
is not active. The program contains a DurableSubscriber class, a
215

JMS CLIENT EXAMPLES216
MultiplePublisher class, a main method, and a method that instantiates the classes
and calls their methods in sequence.

The program begins like any publish/subscribe program: The subscriber
starts, the publisher publishes some messages, and the subscriber receives them.
At this point, the subscriber closes itself. The publisher then publishes some mes-
sages while the subscriber is not active. The subscriber then restarts and receives
the messages.

Before you run this program, create a connection factory with a client ID. You
can use a command similar to the one shown in Section 8.2.3 on page 116. Then
specify the connection factory name and the topic name on the command line
when you run the program, as in the following sample command, which should all
be on one line, for a Microsoft Windows system:

java -Djms.properties=%J2EE_HOME%\config\jms_client.properties

DurableSubscriberExample DurableTopicCF jms/Topic

The output looks something like this:

Connection factory name is DurableTopicCF

Topic name is jms/Topic

Java(TM) Message Service 1.0.2 Reference Implementation (build b14)

Starting subscriber

PUBLISHER: Publishing message: Here is a message 1

PUBLISHER: Publishing message: Here is a message 2

PUBLISHER: Publishing message: Here is a message 3

SUBSCRIBER: Reading message: Here is a message 1

SUBSCRIBER: Reading message: Here is a message 2

SUBSCRIBER: Reading message: Here is a message 3

Closing subscriber

PUBLISHER: Publishing message: Here is a message 4

PUBLISHER: Publishing message: Here is a message 5

PUBLISHER: Publishing message: Here is a message 6

Starting subscriber

SUBSCRIBER: Reading message: Here is a message 4

SUBSCRIBER: Reading message: Here is a message 5

SUBSCRIBER: Reading message: Here is a message 6

Closing subscriber

Unsubscribing from durable subscription

DURABLE SUBSCRIPTIONS 217
import javax.naming.*;

import javax.jms.*;

public class DurableSubscriberExample {

 String conFacName = null;

 String topicName = null;

 static int startindex = 0;

 /**

 * The DurableSubscriber class contains a constructor, a

 * startSubscriber method, a closeSubscriber method, and a

 * finish method.

 *

 * The class fetches messages asynchronously, using a message

 * listener, TextListener.

 */

 public class DurableSubscriber {

 Context jndiContext = null;

 TopicConnectionFactory topicConnectionFactory = null;

 TopicConnection topicConnection = null;

 TopicSession topicSession = null;

 Topic topic = null;

 TopicSubscriber topicSubscriber = null;

 TextListener topicListener = null;

 /**

 * The TextListener class implements the MessageListener

 * interface by defining an onMessage method for the

 * DurableSubscriber class.

 */

 private class TextListener implements MessageListener {

 final SampleUtilities.DoneLatch monitor =

 new SampleUtilities.DoneLatch();

 /**

 * Casts the message to a TextMessage and displays

 * its text. A non-text message is interpreted as the

JMS CLIENT EXAMPLES218
 * end of the message stream, and the message

 * listener sets its monitor state to all done

 * processing messages.

 *

 * @param message the incoming message

 */

 public void onMessage(Message message) {

 if (message instanceof TextMessage) {

 TextMessage msg = (TextMessage) message;

 try {

 System.out.println("SUBSCRIBER: " +

 "Reading message: " + msg.getText());

 } catch (JMSException e) {

 System.err.println("Exception in " +

 "onMessage(): " + e.toString());

 }

 } else {

 monitor.allDone();

 }

 }

 }

 /**

 * Constructor: looks up a connection factory and topic

 * and creates a connection and session.

 */

 public DurableSubscriber() {

 /*

 * Create a JNDI API InitialContext object if none

 * exists yet.

 */

 try {

 jndiContext = new InitialContext();

 } catch (NamingException e) {

 System.err.println("Could not create JNDI API " +

 "context: " + e.toString());

DURABLE SUBSCRIPTIONS 219
 System.exit(1);

 }

 /*

 * Look up connection factory and topic. If either

 * does not exist, exit.

 */

 try {

 topicConnectionFactory = (TopicConnectionFactory)

 jndiContext.lookup(conFacName);

 } catch (NamingException e) {

 System.err.println("JNDI API lookup failed: " +

 e.toString());

 System.exit(1);

 }

 try {

 topicConnection =

 topicConnectionFactory.createTopicConnection();

 topicSession =

 topicConnection.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

 topic = SampleUtilities.getTopic(topicName,

 topicSession);

 } catch (Exception e) {

 System.err.println("Connection problem: " +

 e.toString());

 if (topicConnection != null) {

 try {

 topicConnection.close();

 } catch (JMSException ee) {}

 }

 System.exit(1);

 }

 }

 /**

 * Stops connection, then creates durable subscriber,

 * registers message listener (TextListener), and starts

JMS CLIENT EXAMPLES220
 * message delivery; listener displays the messages

 * obtained.

 */

 public void startSubscriber() {

 try {

 System.out.println("Starting subscriber");

 topicConnection.stop();

 topicSubscriber =

 topicSession.createDurableSubscriber(topic,

 "MakeItLast");

 topicListener = new TextListener();

 topicSubscriber.setMessageListener(topicListener);

 topicConnection.start();

 } catch (JMSException e) {

 System.err.println("Exception occurred: " +

 e.toString());

 }

 }

 /**

 * Blocks until publisher issues a control message

 * indicating end of publish stream, then closes

 * subscriber.

 */

 public void closeSubscriber() {

 try {

 topicListener.monitor.waitTillDone();

 System.out.println("Closing subscriber");

 topicSubscriber.close();

 } catch (JMSException e) {

 System.err.println("Exception occurred: " +

 e.toString());

 }

 }

 /**

 * Closes the connection.

 */

DURABLE SUBSCRIPTIONS 221
 public void finish() {

 if (topicConnection != null) {

 try {

 System.out.println("Unsubscribing from " +

 "durable subscription");

 topicSession.unsubscribe("MakeItLast");

 topicConnection.close();

 } catch (JMSException e) {}

 }

 }

 }

 /**

 * The MultiplePublisher class publishes several messages to

 * a topic. It contains a constructor, a publishMessages

 * method, and a finish method.

 */

 public class MultiplePublisher {

 TopicConnection topicConnection = null;

 TopicSession topicSession = null;

 Topic topic = null;

 TopicPublisher topicPublisher = null;

 /**

 * Constructor: looks up a connection factory and topic

 * and creates a connection, session, and publisher.

 */

 public MultiplePublisher() {

 TopicConnectionFactory topicConnectionFactory = null;

 try {

 topicConnectionFactory =

 SampleUtilities.getTopicConnectionFactory();

 topicConnection =

 topicConnectionFactory.createTopicConnection();

 topicSession =

 topicConnection.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

JMS CLIENT EXAMPLES222
 topic =

 SampleUtilities.getTopic(topicName,

 topicSession);

 topicPublisher =

 topicSession.createPublisher(topic);

 } catch (Exception e) {

 System.err.println("Connection problem: " +

 e.toString());

 if (topicConnection != null) {

 try {

 topicConnection.close();

 } catch (JMSException ee) {}

 }

 System.exit(1);

 }

 }

 /**

 * Creates text message.

 * Sends some messages, varying text slightly.

 * Messages must be persistent.

 */

 public void publishMessages() {

 TextMessage message = null;

 int i;

 final int NUMMSGS = 3;

 final String MSG_TEXT =

 new String("Here is a message");

 try {

 message = topicSession.createTextMessage();

 for (i = startindex;

 i < startindex + NUMMSGS; i++) {

 message.setText(MSG_TEXT + " " + (i + 1));

 System.out.println("PUBLISHER: Publishing " +

 "message: " + message.getText());

 topicPublisher.publish(message);

 }

DURABLE SUBSCRIPTIONS 223
 /*

 * Send a non-text control message indicating end

 * of messages.

 */

 topicPublisher.publish(topicSession.createMessage());

 startindex = i;

 } catch (JMSException e) {

 System.err.println("Exception occurred: " +

 e.toString());

 }

 }

 /**

 * Closes the connection.

 */

 public void finish() {

 if (topicConnection != null) {

 try {

 topicConnection.close();

 } catch (JMSException e) {}

 }

 }

 }

 /**

 * Instantiates the subscriber and publisher classes.

 * Starts the subscriber; the publisher publishes some

 * messages.

 * Closes the subscriber; while it is closed, the publisher

 * publishes some more messages.

 * Restarts the subscriber and fetches the messages.

 * Finally, closes the connections.

 */

 public void run_program() {

 DurableSubscriber durableSubscriber =

 new DurableSubscriber();

 MultiplePublisher multiplePublisher =

 new MultiplePublisher();

JMS CLIENT EXAMPLES224
 durableSubscriber.startSubscriber();

 multiplePublisher.publishMessages();

 durableSubscriber.closeSubscriber();

 multiplePublisher.publishMessages();

 durableSubscriber.startSubscriber();

 durableSubscriber.closeSubscriber();

 multiplePublisher.finish();

 durableSubscriber.finish();

 }

 /**

 * Reads the topic name from the command line, then calls the

 * run_program method.

 *

 * @param args the topic used by the example

 */

 public static void main(String[] args) {

 DurableSubscriberExample dse =

 new DurableSubscriberExample();

 if (args.length != 2) {

 System.out.println("Usage: java " +

 "DurableSubscriberExample " +

 "<connection_factory_name> <topic_name>");

 System.exit(1);

}

dse.conFacName = new String(args[0]);

 System.out.println("Connection factory name is " +

 dse.conFacName);

 dse.topicName = new String(args[1]);

 System.out.println("Topic name is " + dse.topicName);

dse.run_program();

 }

}

Code Example A.1 DurableSubscriberExample.java

TRANSACTIONS 225
A.2 Transactions

The TransactedExample.java program demonstrates the use of transactions in a
JMS client application. The program represents a highly simplified e-Commerce
application, in which the following things happen.

1. A retailer sends a message to the vendor order queue, ordering a quantity of
computers, and waits for the vendor’s reply.

2. The vendor receives the retailer’s order message and places an order message
into each of its suppliers’ order queues, all in one transaction. This JMS trans-
action combines one synchronous receive with multiple sends.

3. One supplier receives the order from its order queue, checks its inventory, and
sends the items ordered to the destination named in the order message’s
JMSReplyTo field. If it does not have enough in stock, the supplier sends what
it has. The synchronous receive and the send take place in one JMS
transaction.

4. The other supplier receives the order from its order queue, checks its inven-
tory, and sends the items ordered to the destination named in the order mes-
sage’s JMSReplyTo field. If it does not have enough in stock, the supplier
sends what it has. The synchronous receive and the send take place in one
JMS transaction.

5. The vendor receives the replies from the suppliers from its confirmation
queue and updates the state of the order. Messages are processed by an asyn-
chronous message listener; this step illustrates using JMS transactions with a
message listener.

6. When all outstanding replies are processed for a given order, the vendor sends
a message notifying the retailer whether it can fulfill the order.

7. The retailer receives the message from the vendor.

Figure A.1 illustrates these steps.

JMS CLIENT EXAMPLES226
Figure A.1 Transactions: JMS Client Example

The program contains five classes: Retailer, Vendor, GenericSupplier,
VendorMessageListener, and Order. The program also contains a main method
and a method that runs the threads of the Retail, Vendor, and two supplier classes.

All the messages use the MapMessage message type. Synchronous receives are
used for all message reception except for the case of the vendor processing the
replies of the suppliers. These replies are processed asynchronously and demon-
strate how to use transactions within a message listener.

At random intervals, the Vendor class throws an exception to simulate a data-
base problem and cause a rollback.

All classes except Retailer use transacted sessions.
The program uses five queues. Before you run the program, create the queues

and name them A, B, C, D and E.
When you run the program, specify on the command line the number of com-

puters to be ordered. For example, on a Microsoft Windows system:

java -Djms.properties=%J2EE_HOME%\config\jms_client.properties

TransactedExample 3

TRANSACTIONS 227
The output looks something like this:

Quantity to be ordered is 3

Java(TM) Message Service 1.0.2 Reference Implementation (build b14)

Java(TM) Message Service 1.0.2 Reference Implementation (build b14)

Java(TM) Message Service 1.0.2 Reference Implementation (build b14)

Java(TM) Message Service 1.0.2 Reference Implementation (build b14)

Retailer: ordered 3 computer(s)

Vendor: JMSException occurred: javax.jms.JMSException: Simulated

database concurrent access exception

javax.jms.JMSException: Simulated database concurrent access excep-

tion at TransactedExample$Vendor.run(TransactedExample.java:300)

 Vendor: rolled back transaction 1

Vendor: Retailer ordered 3 Computer(s)

Vendor: ordered 3 Monitor(s)

Vendor: ordered 3 Hard Drive(s)

Hard Drive Supplier: Vendor ordered 3 Hard Drive(s)

Hard Drive Supplier: sent 3 Hard Drive(s)

 Vendor: committed transaction 1

Monitor Supplier: Vendor ordered 3 Monitor(s)

Monitor Supplier: sent 3 Monitor(s)

 Hard Drive Supplier: committed transaction

 Monitor Supplier: committed transaction

Vendor: Completed processing for order 1

Vendor: sent 3 computer(s)

 Vendor: committed transaction 2

Retailer: Order filled

Retailer: placing another order

Retailer: ordered 6 computer(s)

Vendor: Retailer ordered 6 Computer(s)

Vendor: ordered 6 Monitor(s)

Vendor: ordered 6 Hard Drive(s)

 Vendor: committed transaction 1

Monitor Supplier: Vendor ordered 6 Monitor(s)

Hard Drive Supplier: Vendor ordered 6 Hard Drive(s)

Hard Drive Supplier: sent 6 Hard Drive(s)

Monitor Supplier: sent 0 Monitor(s)

 Monitor Supplier: committed transaction

 Hard Drive Supplier: committed transaction

JMS CLIENT EXAMPLES228
Vendor: Completed processing for order 2

Vendor: unable to send 6 computer(s)

 Vendor: committed transaction 2

Retailer: Order not filled

import java.util.*;

import javax.jms.*;

public class TransactedExample {

 public static String vendorOrderQueueName = null;

 public static String retailerConfirmQueueName = null;

 public static String monitorOrderQueueName = null;

 public static String storageOrderQueueName = null;

 public static String vendorConfirmQueueName = null;

 /**

 * The Retailer class orders a number of computers by sending

 * a message to a vendor. It then waits for the order to be

 * confirmed.

 *

 * In this example, the Retailer places two orders, one for

 * the quantity specified on the command line and one for

 * twice that number.

 *

 * This class does not use transactions.

 */

 public static class Retailer extends Thread {

 int quantity = 0;

 /**

 * Constructor. Instantiates the retailer with the

 * quantity of computers being ordered.

 *

 * @param q the quantity specified in the program

 * arguments

 */

TRANSACTIONS 229
 public Retailer(int q) {

 quantity = q;

 }

 /**

 * Runs the thread.

 */

 public void run() {

 QueueConnectionFactory queueConnectionFactory = null;

 QueueConnection queueConnection = null;

 QueueSession queueSession = null;

 Queue vendorOrderQueue = null;

 Queue retailerConfirmQueue = null;

 QueueSender queueSender = null;

 MapMessage outMessage = null;

 QueueReceiver orderConfirmReceiver = null;

 MapMessage inMessage = null;

 try {

 queueConnectionFactory =

 SampleUtilities.getQueueConnectionFactory();

 queueConnection =

 queueConnectionFactory.createQueueConnection();

 queueSession =

 queueConnection.createQueueSession(false,

 Session.AUTO_ACKNOWLEDGE);

 vendorOrderQueue =

 SampleUtilities.getQueue(vendorOrderQueueName,

 queueSession);

 retailerConfirmQueue =

 SampleUtilities.getQueue(retailerConfirmQueueName,

 queueSession);

 } catch (Exception e) {

 System.err.println("Connection problem: " +

 e.toString());

 System.err.println("Program assumes five " +

 "queues named A B C D E");

JMS CLIENT EXAMPLES230
 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException ee) {}

 }

 System.exit(1);

 }

 /*

 * Create non-transacted session and sender for

 * vendor order queue.

 * Create message to vendor, setting item and

 * quantity values.

 * Send message.

 * Create receiver for retailer confirmation queue.

 * Get message and report result.

 * Send an end-of-message-stream message so vendor

 * will stop processing orders.

 */

 try {

 queueSender =

 queueSession.createSender(vendorOrderQueue);

 outMessage = queueSession.createMapMessage();

 outMessage.setString("Item", "Computer(s)");

 outMessage.setInt("Quantity", quantity);

 outMessage.setJMSReplyTo(retailerConfirmQueue);

 queueSender.send(outMessage);

 System.out.println("Retailer: ordered " +

 quantity + " computer(s)");

 orderConfirmReceiver =

 queueSession.createReceiver(retailerConfirmQueue);

 queueConnection.start();

 inMessage =

 (MapMessage) orderConfirmReceiver.receive();

 if (inMessage.getBoolean("OrderAccepted")

 == true) {

 System.out.println("Retailer: Order filled");

 } else {

TRANSACTIONS 231
 System.out.println("Retailer: Order not " +

 "filled");

 }

 System.out.println("Retailer: placing another " +

 "order");

 outMessage.setInt("Quantity", quantity * 2);

 queueSender.send(outMessage);

 System.out.println("Retailer: ordered " +

 outMessage.getInt("Quantity") +

 " computer(s)");

 inMessage =

 (MapMessage) orderConfirmReceiver.receive();

 if (inMessage.getBoolean("OrderAccepted")

 == true) {

 System.out.println("Retailer: Order filled");

 } else {

 System.out.println("Retailer: Order not " +

 "filled");

 }

 /*

 * Send a non-text control message indicating end

 * of messages.

 */

 queueSender.send(queueSession.createMessage());

 } catch (Exception e) {

 System.err.println("Retailer: Exception " +

 "occurred: " + e.toString());

 e.printStackTrace();

 } finally {

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException e) {}

 }

 }

 }

 }

JMS CLIENT EXAMPLES232
 /**

 * The Vendor class uses one transaction to receive the

 * computer order from the retailer and order the needed

 * number of monitors and disk drives from its suppliers.

 * At random intervals, it throws an exception to simulate a

 * database problem and cause a rollback.

 *

 * The class uses an asynchronous message listener to process

 * replies from suppliers. When all outstanding supplier

 * inquiries complete, it sends a message to the Retailer

 * accepting or refusing the order.

 */

 public static class Vendor extends Thread {

 Random rgen = new Random();

 int throwException = 1;

 /**

 * Runs the thread.

 */

 public void run() {

 QueueConnectionFactory queueConnectionFactory = null;

 QueueConnection queueConnection = null;

 QueueSession queueSession = null;

 QueueSession asyncQueueSession = null;

 Queue vendorOrderQueue = null;

 Queue monitorOrderQueue = null;

 Queue storageOrderQueue = null;

 Queue vendorConfirmQueue = null;

 QueueReceiver vendorOrderQueueReceiver = null;

 QueueSender monitorOrderQueueSender = null;

 QueueSender storageOrderQueueSender = null;

 MapMessage orderMessage = null;

 QueueReceiver vendorConfirmQueueReceiver = null;

 VendorMessageListener listener = null;

 Message inMessage = null;

 MapMessage vendorOrderMessage = null;

 Message endOfMessageStream = null;

 Order order = null;

 int quantity = 0;

TRANSACTIONS 233
 try {

 queueConnectionFactory =

 SampleUtilities.getQueueConnectionFactory();

 queueConnection =

 queueConnectionFactory.createQueueConnection();

 queueSession =

 queueConnection.createQueueSession(true, 0);

 asyncQueueSession =

 queueConnection.createQueueSession(true, 0);

 vendorOrderQueue =

 SampleUtilities.getQueue(vendorOrderQueueName,

 queueSession);

 monitorOrderQueue =

 SampleUtilities.getQueue(monitorOrderQueueName,

 queueSession);

 storageOrderQueue =

 SampleUtilities.getQueue(storageOrderQueueName,

 queueSession);

 vendorConfirmQueue =

 SampleUtilities.getQueue(vendorConfirmQueueName,

 queueSession);

 } catch (Exception e) {

 System.err.println("Connection problem: " +

 e.toString());

 System.err.println("Program assumes five " +

 "queues named A B C D E");

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException ee) {}

 }

 System.exit(1);

 }

 try {

 /*

 * Create receiver for vendor order queue, sender

 * for supplier order queues, and message to send

 * to suppliers.

JMS CLIENT EXAMPLES234
 */

 vendorOrderQueueReceiver =

 queueSession.createReceiver(vendorOrderQueue);

 monitorOrderQueueSender =

 queueSession.createSender(monitorOrderQueue);

 storageOrderQueueSender =

 queueSession.createSender(storageOrderQueue);

 orderMessage = queueSession.createMapMessage();

 /*

 * Configure an asynchronous message listener to

 * process supplier replies to inquiries for

 * parts to fill order. Start delivery.

 */

 vendorConfirmQueueReceiver =

 asyncQueueSession.createReceiver(vendorConfirmQueue);

 listener =

 new VendorMessageListener(asyncQueueSession,

 2);

 vendorConfirmQueueReceiver.setMessageListener(listener);

 queueConnection.start();

 /*

 * Process orders in vendor order queue.

 * Use one transaction to receive order from

 * order queue and send messages to suppliers'

 * order queues to order components to fulfill

 * the order placed with the vendor.

 */

 while (true) {

 try {

 // Receive an order from a retailer.

 inMessage =

 vendorOrderQueueReceiver.receive();

 if (inMessage instanceof MapMessage) {

 vendorOrderMessage =

 (MapMessage) inMessage;

 } else {

TRANSACTIONS 235
 /*

 * Message is an end-of-message-

 * stream message from retailer.

 * Send similar messages to

 * suppliers, then break out of

 * processing loop.

 */

 endOfMessageStream =

 queueSession.createMessage();

 endOfMessageStream.setJMSReplyTo(vendorConfirmQueue);

 monitorOrderQueueSender.send(endOfMessageStream);

 storageOrderQueueSender.send(endOfMessageStream);

 queueSession.commit();

 break;

 }

 /*

 * A real application would check an

 * inventory database and order only the

 * quantities needed. Throw an exception

 * every few times to simulate a database

 * concurrent-access exception and cause

 * a rollback.

 */

 if (rgen.nextInt(3) == throwException) {

 throw new JMSException("Simulated " +

 "database concurrent access " +

 "exception");

 }

 /*

 * Record retailer order as a pending

 * order.

 */

 order = new Order(vendorOrderMessage);

 /*

 * Set order number and reply queue for

 * outgoing message.

JMS CLIENT EXAMPLES236
 */

 orderMessage.setInt("VendorOrderNumber",

 order.orderNumber);

 orderMessage.setJMSReplyTo(vendorConfirmQueue);

 quantity = vendorOrderMessage.getInt("Quantity");

 System.out.println("Vendor: Retailer " +

 "ordered " + quantity + " " +

 vendorOrderMessage.getString("Item"));

 // Send message to monitor supplier.

 orderMessage.setString("Item",

 "Monitor");

 orderMessage.setInt("Quantity",

 quantity);

 monitorOrderQueueSender.send(orderMessage);

 System.out.println("Vendor: ordered " +

 quantity + " " +

 orderMessage.getString("Item") +

 "(s)");

 /*

 * Reuse message to send to storage

 * supplier, changing only item name.

 */

 orderMessage.setString("Item",

 "Hard Drive");

 storageOrderQueueSender.send(orderMessage);

 System.out.println("Vendor: ordered " +

 quantity + " " +

 orderMessage.getString("Item") +

 "(s)");

 // Commit session.

 queueSession.commit();

 System.out.println(" Vendor: " +

 "committed transaction 1");

 } catch(JMSException e) {

 System.err.println("Vendor: " +

 "JMSException occurred: " +

TRANSACTIONS 237
 e.toString());

 e.printStackTrace();

 queueSession.rollback();

 System.err.println(" Vendor: rolled " +

 "back transaction 1");

 }

 }

 // Wait till suppliers get back with answers.

 listener.monitor.waitTillDone();

 } catch (JMSException e) {

 System.err.println("Vendor: Exception " +

 "occurred: " + e.toString());

 e.printStackTrace();

 } finally {

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException e) {}

 }

 }

 }

 }

 /**

 * The Order class represents a Retailer order placed with a

 * Vendor. It maintains a table of pending orders.

 */

 public static class Order {

 private static Hashtable pendingOrders = new Hashtable();

 private static int nextOrderNumber = 1;

 private static final int PENDING_STATUS = 1;

 private static final int CANCELLED_STATUS = 2;

 private static final int FULFILLED_STATUS = 3;

 int status;

 public final int orderNumber;

 public int quantity;

 // Original order from retailer

JMS CLIENT EXAMPLES238
 public final MapMessage order;

 // Reply from supplier

 public MapMessage monitor = null;

 // Reply from supplier

 public MapMessage storage = null;

 /**

 * Returns the next order number and increments the

 * static variable that holds this value.

 *

 * @return the next order number

 */

 private static int getNextOrderNumber() {

 int result = nextOrderNumber;

 nextOrderNumber++;

 return result;

 }

 /**

 * Constructor. Sets order number; sets order and

 * quantity from incoming message. Sets status to

 * pending, and adds order to hash table of pending

 * orders.

 *

 * @param order the message containing the order

 */

 public Order(MapMessage order) {

 this.orderNumber = getNextOrderNumber();

 this.order = order;

 try {

 this.quantity = order.getInt("Quantity");

 } catch (JMSException je) {

 System.err.println("Unexpected error. Message " +

 "missing Quantity");

 this.quantity = 0;

 }

 status = PENDING_STATUS;

 pendingOrders.put(new Integer(orderNumber), this);

 }

TRANSACTIONS 239
 /**

 * Returns the number of orders in the hash table.

 *

 * @return the number of pending orders

 */

 public static int outstandingOrders() {

 return pendingOrders.size();

 }

 /**

 * Returns the order corresponding to a given order

 * number.

 *

 * @param orderNumber the number of the requested order

 * @return the requested order

 */

 public static Order getOrder(int orderNumber) {

 return (Order)

 pendingOrders.get(new Integer(orderNumber));

 }

 /**

 * Called by the onMessage method of the

 * VendorMessageListener class to process a reply from

 * a supplier to the Vendor.

 *

 * @param component the message from the supplier

 * @return the order with updated status

 * information

 */

 public Order processSubOrder(MapMessage component) {

 String itemName = null;

 // Determine which subcomponent this is.

 try {

 itemName = component.getString("Item");

 } catch (JMSException je) {

 System.err.println("Unexpected exception. " +

 "Message missing Item");

JMS CLIENT EXAMPLES240
 }

 if (itemName.compareTo("Monitor") == 0) {

 monitor = component;

 } else if (itemName.compareTo("Hard Drive") == 0) {

 storage = component;

 }

 /*

 * If notification for all subcomponents has been

 * received, verify the quantities to compute if able

 * to fulfill order.

 */

 if ((monitor != null) && (storage != null)) {

 try {

 if (quantity > monitor.getInt("Quantity")) {

 status = CANCELLED_STATUS;

 } else if (quantity >

 storage.getInt("Quantity")) {

 status = CANCELLED_STATUS;

 } else {

 status = FULFILLED_STATUS;

 }

 } catch (JMSException je) {

 System.err.println("Unexpected exception: " +

 je.toString());

 status = CANCELLED_STATUS;

 }

 /*

 * Processing of order is complete, so remove it

 * from pending-order list.

 */

 pendingOrders.remove(new Integer(orderNumber));

 }

 return this;

 }

 /**

 * Determines if order status is pending.

TRANSACTIONS 241
 *

 * @return true if order is pending, false if not

 */

 public boolean isPending() {

 return status == PENDING_STATUS;

 }

 /**

 * Determines if order status is cancelled.

 *

 * @return true if order is cancelled, false if not

 */

 public boolean isCancelled() {

 return status == CANCELLED_STATUS;

 }

 /**

 * Determines if order status is fulfilled.

 *

 * @return true if order is fulfilled, false if not

 */

 public boolean isFulfilled() {

 return status == FULFILLED_STATUS;

 }

 }

 /**

 * The VendorMessageListener class processes an order

 * confirmation message from a supplier to the vendor.

 *

 * It demonstrates the use of transactions within message

 * listeners.

 */

 public static class VendorMessageListener

 implements MessageListener {

 final SampleUtilities.DoneLatch monitor =

 new SampleUtilities.DoneLatch();

 private final QueueSession session;

 int numSuppliers;

JMS CLIENT EXAMPLES242
 /**

 * Constructor. Instantiates the message listener with

 * the session of the consuming class (the vendor).

 *

 * @param qs the session of the consumer

 * @param numSuppliers the number of suppliers

 */

 public VendorMessageListener(QueueSession qs,

 int numSuppliers) {

 this.session = qs;

 this.numSuppliers = numSuppliers;

 }

 /**

 * Casts the message to a MapMessage and processes the

 * order. A message that is not a MapMessage is

 * interpreted as the end of the message stream, and the

 * message listener sets its monitor state to all done

 * processing messages.

 *

 * Each message received represents a fulfillment message

 * from a supplier.

 *

 * @param message the incoming message

 */

 public void onMessage(Message message) {

 /*

 * If message is an end-of-message-stream message and

 * this is the last such message, set monitor status

 * to all done processing messages and commit

 * transaction.

 */

 if (! (message instanceof MapMessage)) {

 if (Order.outstandingOrders() == 0) {

 numSuppliers--;

 if (numSuppliers == 0) {

 monitor.allDone();

 }

TRANSACTIONS 243
 }

 try {

 session.commit();

 } catch (JMSException je) {}

 return;

 }

 /*

 * Message is an order confirmation message from a

 * supplier.

 */

 int orderNumber = -1;

 try {

 MapMessage component = (MapMessage) message;

 /*

 * Process the order confirmation message and

 * commit the transaction.

 */

 orderNumber =

 component.getInt("VendorOrderNumber");

 Order order =

 Order.getOrder(orderNumber).processSubOrder(component);

 session.commit();

 /*

 * If this message is the last supplier message,

 * send message to Retailer and commit

 * transaction.

 */

 if (! order.isPending()) {

 System.out.println("Vendor: Completed " +

 "processing for order " +

 order.orderNumber);

 Queue replyQueue =

 (Queue) order.order.getJMSReplyTo();

 QueueSender qs =

 session.createSender(replyQueue);

JMS CLIENT EXAMPLES244
 MapMessage retailerConfirmMessage =

 session.createMapMessage();

 if (order.isFulfilled()) {

 retailerConfirmMessage.setBoolean("OrderAccepted",

 true);

 System.out.println("Vendor: sent " +

 order.quantity + " computer(s)");

 } else if (order.isCancelled()) {

 retailerConfirmMessage.setBoolean("OrderAccepted",

 false);

 System.out.println("Vendor: unable to " +

 "send " + order.quantity +

 " computer(s)");

 }

 qs.send(retailerConfirmMessage);

 session.commit();

 System.out.println(" Vendor: committed " +

 "transaction 2");

 }

 } catch (JMSException je) {

 je.printStackTrace();

 try {

 session.rollback();

 } catch (JMSException je2) {}

 } catch (Exception e) {

 e.printStackTrace();

 try {

 session.rollback();

 } catch (JMSException je2) {}

 }

 }

 }

 /**

 * The GenericSupplier class receives an item order from the

 * vendor and sends a message accepting or refusing it.

 */

 public static class GenericSupplier extends Thread {

 final String PRODUCT_NAME;

TRANSACTIONS 245
 final String IN_ORDER_QUEUE;

 int quantity = 0;

 /**

 * Constructor. Instantiates the supplier as the

 * supplier for the kind of item being ordered.

 *

 * @param itemName the name of the item being ordered

 * @param inQueue the queue from which the order is

 * obtained

 */

 public GenericSupplier(String itemName, String inQueue) {

 PRODUCT_NAME = itemName;

 IN_ORDER_QUEUE = inQueue;

 }

 /**

 * Checks to see if there are enough items in inventory.

 * Rather than go to a database, it generates a random

 * number related to the order quantity, so that some of

 * the time there won't be enough in stock.

 *

 * @return the number of items in inventory

 */

 public int checkInventory() {

 Random rgen = new Random();

 return (rgen.nextInt(quantity * 5));

 }

 /**

 * Runs the thread.

 */

 public void run() {

 QueueConnectionFactory queueConnectionFactory = null;

 QueueConnection queueConnection = null;

 QueueSession queueSession = null;

 Queue orderQueue = null;

 QueueReceiver queueReceiver = null;

JMS CLIENT EXAMPLES246
 Message inMessage = null;

 MapMessage orderMessage = null;

 MapMessage outMessage = null;

 try {

 queueConnectionFactory =

 SampleUtilities.getQueueConnectionFactory();

 queueConnection =

 queueConnectionFactory.createQueueConnection();

 queueSession =

 queueConnection.createQueueSession(true, 0);

 orderQueue =

 SampleUtilities.getQueue(IN_ORDER_QUEUE,

 queueSession);

 } catch (Exception e) {

 System.err.println("Connection problem: " +

 e.toString());

 System.err.println("Program assumes five " +

 "queues named A B C D E");

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException ee) {}

 }

 System.exit(1);

 }

 /*

 * Create receiver for order queue and start message

 * delivery.

 */

 try {

 queueReceiver =

 queueSession.createReceiver(orderQueue);

 queueConnection.start();

 } catch (JMSException je) {}

 /*

 * Keep checking supplier order queue for order

TRANSACTIONS 247
 * request until end-of-message-stream message is

 * received. Receive order and send an order

 * confirmation as one transaction.

 */

 while (true) {

 try {

 inMessage = queueReceiver.receive();

 if (inMessage instanceof MapMessage) {

 orderMessage = (MapMessage) inMessage;

 } else {

 /*

 * Message is an end-of-message-stream

 * message. Send a similar message to

 * reply queue, commit transaction, then

 * stop processing orders by breaking out

 * of loop.

 */

 QueueSender queueSender =

 queueSession.createSender((Queue)

 inMessage.getJMSReplyTo());

 queueSender.send(queueSession.createMessage());

 queueSession.commit();

 break;

 }

 /*

 * Extract quantity ordered from order

 * message.

 */

 quantity = orderMessage.getInt("Quantity");

 System.out.println(PRODUCT_NAME +

 " Supplier: Vendor ordered " + quantity +

 " " + orderMessage.getString("Item") +

 "(s)");

 /*

 * Create sender and message for reply queue.

 * Set order number and item; check inventory

 * and set quantity available.

JMS CLIENT EXAMPLES248
 * Send message to vendor and commit

 * transaction.

 */

 QueueSender queueSender =

 queueSession.createSender((Queue)

 orderMessage.getJMSReplyTo());

 outMessage = queueSession.createMapMessage();

 outMessage.setInt("VendorOrderNumber",

 orderMessage.getInt("VendorOrderNumber"));

 outMessage.setString("Item", PRODUCT_NAME);

 int numAvailable = checkInventory();

 if (numAvailable >= quantity) {

 outMessage.setInt("Quantity", quantity);

 } else {

 outMessage.setInt("Quantity",

 numAvailable);

 }

 queueSender.send(outMessage);

 System.out.println(PRODUCT_NAME +

 " Supplier: sent " +

 outMessage.getInt("Quantity") + " " +

 outMessage.getString("Item") + "(s)");

 queueSession.commit();

 System.out.println(" " + PRODUCT_NAME +

 " Supplier: committed transaction");

 } catch (Exception e) {

 System.err.println(PRODUCT_NAME +

 " Supplier: Exception occurred: " +

 e.toString());

 e.printStackTrace();

 }

 }

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException e) {}

 }

 }

 }

TRANSACTIONS 249
 /**

 * Creates the Retailer and Vendor classes and the two

 * supplier classes, then starts the threads.

 *

 * @param quantity the quantity specified on the command

 * line

 */

 public static void run_threads(int quantity) {

 Retailer r = new Retailer(quantity);

 Vendor v = new Vendor();

 GenericSupplier ms = new GenericSupplier("Monitor",

 monitorOrderQueueName);

 GenericSupplier ss = new GenericSupplier("Hard Drive",

 storageOrderQueueName);

 r.start();

 v.start();

 ms.start();

 ss.start();

 try {

 r.join();

 v.join();

 ms.join();

 ss.join();

 } catch (InterruptedException e) {}

 }

 /**

 * Reads the order quantity from the command line, then

 * calls the run_threads method to execute the program

 * threads.

 *

 * @param args the quantity of computers being ordered

 */

 public static void main(String[] args) {

 TransactedExample te = new TransactedExample();

 int quantity = 0;

 if (args.length != 1) {

JMS CLIENT EXAMPLES250
 System.out.println("Usage: java TransactedExample " +

 "<integer>");

 System.out.println("Program assumes five queues " +

 "named A B C D E");

 System.exit(1);

 }

 te.vendorOrderQueueName = new String("A");

 te.retailerConfirmQueueName = new String("B");

 te.monitorOrderQueueName = new String("C");

 te.storageOrderQueueName = new String("D");

 te.vendorConfirmQueueName = new String("E");

 quantity = (new Integer(args[0])).intValue();

 System.out.println("Quantity to be ordered is " +

 quantity);

 if (quantity > 0) {

 te.run_threads(quantity);

 } else {

 System.out.println("Quantity must be positive and " +

 "nonzero");

 }

 }

}

Code Example A.2 TransactedExample.java

A.3 Acknowledgment Modes

The AckEquivExample.java program shows how the following two scenarios both
ensure that a message will not be acknowledged until processing of it is complete:

• Using an asynchronous receiver—a message listener—in an
AUTO_ACKNOWLEDGE session

• Using a synchronous receiver in a CLIENT_ACKNOWLEDGE session

With a message listener, the automatic acknowledgment happens when the
onMessage method returns—that is, after message processing has finished. With a

ACKNOWLEDGMENT MODES 251
synchronous receiver, the client acknowledges the message after processing is
complete. (If you use AUTO_ACKNOWLEDGE with a synchronous receive, the
acknowledgment happens immediately after the receive call; if any subsequent
processing steps fail, the message cannot be redelivered.)

The program contains a SynchSender class, a SynchReceiver class, an
AsynchSubscriber class with a TextListener class, a MultiplePublisher class, a
main method, and a method that runs the other classes’ threads.

The program needs two queues, a topic, and a connection factory with a client
ID, similar to the one in the example in Section A.1 on page 215. You can use
existing administered objects or create new ones. Edit the names at the beginning
of the source file before compiling if you do not use the objects already specified.
You can run the program with a command on one line similar to the following
example for UNIX systems:

java -Djms.properties=$J2EE_HOME/config/jms_client.properties

AckEquivExample

The output looks like this:

java -Djms.properties=$J2EE_HOME/config/jms_client.properties

AckEquivExample

Queue name is controlQueue

Queue name is jms/Queue

Topic name is jms/Topic

Connection factory name is DurableTopicCF

Java(TM) Message Service 1.0.2 Reference Implementation (build b14)

Java(TM) Message Service 1.0.2 Reference Implementation (build b14)

 SENDER: Created client-acknowledge session

 RECEIVER: Created client-acknowledge session

 SENDER: Sending message: Here is a client-acknowledge message

RECEIVER: Processing message: Here is a client-acknowledge message

 RECEIVER: Now I'll acknowledge the message

SUBSCRIBER: Created auto-acknowledge session

PUBLISHER: Created auto-acknowledge session

PUBLISHER: Receiving synchronize messages from controlQueue; count

= 1

SUBSCRIBER: Sending synchronize message to controlQueue

PUBLISHER: Received synchronize message; expect 0 more

PUBLISHER: Publishing message: Here is an auto-acknowledge message 1

JMS CLIENT EXAMPLES252
PUBLISHER: Publishing message: Here is an auto-acknowledge message 2

PUBLISHER: Publishing message: Here is an auto-acknowledge message 3

SUBSCRIBER: Processing message: Here is an auto-acknowledge message

1

SUBSCRIBER: Processing message: Here is an auto-acknowledge message

2

SUBSCRIBER: Processing message: Here is an auto-acknowledge message

3

import javax.jms.*;

import javax.naming.*;

public class AckEquivExample {

 final String CONTROL_QUEUE = "controlQueue";

 final String queueName = "jms/Queue";

 final String topicName = "jms/Topic";

 final String conFacName = "DurableTopicCF";

 /**

 * The SynchSender class creates a session in

 * CLIENT_ACKNOWLEDGE mode and sends a message.

 */

 public class SynchSender extends Thread {

 /**

 * Runs the thread.

 */

 public void run() {

 QueueConnectionFactory queueConnectionFactory = null;

 QueueConnection queueConnection = null;

 QueueSession queueSession = null;

 Queue queue = null;

 QueueSender queueSender = null;

 final String MSG_TEXT =

 new String("Here is a client-acknowledge message");

 TextMessage message = null;

ACKNOWLEDGMENT MODES 253
 try {

 queueConnectionFactory =

 SampleUtilities.getQueueConnectionFactory();

 queueConnection =

 queueConnectionFactory.createQueueConnection();

 queueSession =

 queueConnection.createQueueSession(false,

 Session.CLIENT_ACKNOWLEDGE);

 queue = SampleUtilities.getQueue(queueName,

 queueSession);

 } catch (Exception e) {

 System.err.println("Connection problem: " +

 e.toString());

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException ee) {}

 }

 System.exit(1);

 }

 /*

 * Create client-acknowledge sender.

 * Create and send message.

 */

 try {

 System.out.println(" SENDER: Created " +

 "client-acknowledge session");

 queueSender = queueSession.createSender(queue);

 message = queueSession.createTextMessage();

 message.setText(MSG_TEXT);

 System.out.println(" SENDER: Sending " +

 "message: " + message.getText());

 queueSender.send(message);

 } catch (JMSException e) {

 System.err.println("Exception occurred: " +

 e.toString());

 } finally {

JMS CLIENT EXAMPLES254
 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException e) {}

 }

 }

 }

 }

 /**

 * The SynchReceiver class creates a session in

 * CLIENT_ACKNOWLEDGE mode and receives the message sent by

 * the SynchSender class.

 */

 public class SynchReceiver extends Thread {

 /**

 * Runs the thread.

 */

 public void run() {

 QueueConnectionFactory queueConnectionFactory = null;

 QueueConnection queueConnection = null;

 QueueSession queueSession = null;

 Queue queue = null;

 QueueReceiver queueReceiver = null;

 TextMessage message = null;

 try {

 queueConnectionFactory =

 SampleUtilities.getQueueConnectionFactory();

 queueConnection =

 queueConnectionFactory.createQueueConnection();

 queueSession =

 queueConnection.createQueueSession(false,

 Session.CLIENT_ACKNOWLEDGE);

 queue =

 SampleUtilities.getQueue(queueName,

 queueSession);

 } catch (Exception e) {

 System.err.println("Connection problem: " +

ACKNOWLEDGMENT MODES 255
 e.toString());

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException ee) {}

 }

 System.exit(1);

 }

 /*

 * Create client-acknowledge receiver.

 * Receive message and process it.

 * Acknowledge message.

 */

 try {

 System.out.println(" RECEIVER: Created " +

 "client-acknowledge session");

 queueReceiver =

 queueSession.createReceiver(queue);

 queueConnection.start();

 message = (TextMessage) queueReceiver.receive();

 System.out.println(" RECEIVER: Processing " +

 "message: " + message.getText());

 System.out.println(" RECEIVER: Now I'll " +

 "acknowledge the message");

 message.acknowledge();

 } catch (JMSException e) {

 System.err.println("Exception occurred: " +

 e.toString());

 } finally {

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException e) {}

 }

 }

 }

 }

JMS CLIENT EXAMPLES256
 /**

 * The AsynchSubscriber class creates a session in

 * AUTO_ACKNOWLEDGE mode and fetches several messages from a

 * topic asynchronously, using a message listener,

 * TextListener.

 *

 * Each message is acknowledged after the onMessage method

 * completes.

 */

 public class AsynchSubscriber extends Thread {

 /**

 * The TextListener class implements the MessageListener

 * interface by defining an onMessage method for the

 * AsynchSubscriber class.

 */

 private class TextListener implements MessageListener {

 final SampleUtilities.DoneLatch monitor =

 new SampleUtilities.DoneLatch();

 /**

 * Casts the message to a TextMessage and displays

 * its text. A non-text message is interpreted as the

 * end of the message stream, and the message

 * listener sets its monitor state to all done

 * processing messages.

 *

 * @param message the incoming message

 */

 public void onMessage(Message message) {

 if (message instanceof TextMessage) {

 TextMessage msg = (TextMessage) message;

 try {

 System.out.println("SUBSCRIBER: " +

 "Processing message: " +

 msg.getText());

 } catch (JMSException e) {

ACKNOWLEDGMENT MODES 257
 System.err.println("Exception in " +

 "onMessage(): " + e.toString());

 }

 } else {

 monitor.allDone();

 }

 }

 }

 /**

 * Runs the thread.

 */

 public void run() {

 Context jndiContext = null;

 TopicConnectionFactory topicConnectionFactory = null;

 TopicConnection topicConnection = null;

 TopicSession topicSession = null;

 Topic topic = null;

 TopicSubscriber topicSubscriber = null;

 TextListener topicListener = null;

 /*

 * Create a JNDI API InitialContext object if none

 * exists yet.

 */

 try {

 jndiContext = new InitialContext();

 } catch (NamingException e) {

 System.err.println("Could not create JNDI API " +

 "context: " + e.toString());

 System.exit(1);

 }

 /*

 * Look up connection factory and topic. If either

 * does not exist, exit.

 */

JMS CLIENT EXAMPLES258
 try {

 topicConnectionFactory = (TopicConnectionFactory)

 jndiContext.lookup(conFacName);

 topicConnection =

 topicConnectionFactory.createTopicConnection();

 topicSession =

 topicConnection.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

 System.out.println("SUBSCRIBER: Created " +

 "auto-acknowledge session");

 topic = SampleUtilities.getTopic(topicName,

 topicSession);

 } catch (Exception e) {

 System.err.println("Connection problem: " +

 e.toString());

 if (topicConnection != null) {

 try {

 topicConnection.close();

 } catch (JMSException ee) {}

 }

 System.exit(1);

 }

 /*

 * Create auto-acknowledge subscriber.

 * Register message listener (TextListener).

 * Start message delivery.

 * Send synchronize message to publisher, then wait

 * till all messages have arrived.

 * Listener displays the messages obtained.

 */

 try {

 topicSubscriber =

 topicSession.createDurableSubscriber(topic,

 "AckSub");

 topicListener = new TextListener();

 topicSubscriber.setMessageListener(topicListener);

 topicConnection.start();

ACKNOWLEDGMENT MODES 259
 // Let publisher know that subscriber is ready.

 try {

 SampleUtilities.sendSynchronizeMessage("SUBSCRIBER: ",

 CONTROL_QUEUE);

 } catch (Exception e) {

 System.err.println("Queue probably " +

 "missing: " + e.toString());

 if (topicConnection != null) {

 try {

 topicConnection.close();

 } catch (JMSException ee) {}

 }

 System.exit(1);

 }

 /*

 * Asynchronously process messages.

 * Block until publisher issues a control message

 * indicating end of publish stream.

 */

 topicListener.monitor.waitTillDone();

 topicSubscriber.close();

 topicSession.unsubscribe("AckSub");

 } catch (JMSException e) {

 System.err.println("Exception occurred: " +

 e.toString());

 } finally {

 if (topicConnection != null) {

 try {

 topicConnection.close();

 } catch (JMSException e) {}

 }

 }

 }

 }

 /**

 * The MultiplePublisher class creates a session in

 * AUTO_ACKNOWLEDGE mode and publishes three messages

JMS CLIENT EXAMPLES260
 * to a topic.

 */

 public class MultiplePublisher extends Thread {

 /**

 * Runs the thread.

 */

 public void run() {

 TopicConnectionFactory topicConnectionFactory = null;

 TopicConnection topicConnection = null;

 TopicSession topicSession = null;

 Topic topic = null;

 TopicPublisher topicPublisher = null;

 TextMessage message = null;

 final int NUMMSGS = 3;

 final String MSG_TEXT =

 new String("Here is an auto-acknowledge message");

 try {

 topicConnectionFactory =

 SampleUtilities.getTopicConnectionFactory();

 topicConnection =

 topicConnectionFactory.createTopicConnection();

 topicSession =

 topicConnection.createTopicSession(false,

 Session.AUTO_ACKNOWLEDGE);

 System.out.println("PUBLISHER: Created " +

 "auto-acknowledge session");

 topic =

 SampleUtilities.getTopic(topicName,

 topicSession);

 } catch (Exception e) {

 System.err.println("Connection problem: " +

 e.toString());

 if (topicConnection != null) {

 try {

 topicConnection.close();

 } catch (JMSException ee) {}

 }

ACKNOWLEDGMENT MODES 261
 System.exit(1);

 }

 /*

 * After synchronizing with subscriber, create

 * publisher.

 * Send 3 messages, varying text slightly.

 * Send end-of-messages message.

 */

 try {

 /*

 * Synchronize with subscriber. Wait for message

 * indicating that subscriber is ready to receive

 * messages.

 */

 try {

 SampleUtilities.receiveSynchronizeMessages("PUBLISHER: ",

 CONTROL_QUEUE, 1);

 } catch (Exception e) {

 System.err.println("Queue probably " +

 "missing: " + e.toString());

 if (topicConnection != null) {

 try {

 topicConnection.close();

 } catch (JMSException ee) {}

 }

 System.exit(1);

 }

 topicPublisher =

 topicSession.createPublisher(topic);

 message = topicSession.createTextMessage();

 for (int i = 0; i < NUMMSGS; i++) {

 message.setText(MSG_TEXT + " " + (i + 1));

 System.out.println("PUBLISHER: Publishing " +

 "message: " + message.getText());

 topicPublisher.publish(message);

 }

JMS CLIENT EXAMPLES262
 /*

 * Send a non-text control message indicating

 * end of messages.

 */

 topicPublisher.publish(topicSession.createMessage());

 } catch (JMSException e) {

 System.err.println("Exception occurred: " +

 e.toString());

 } finally {

 if (topicConnection != null) {

 try {

 topicConnection.close();

 } catch (JMSException e) {}

 }

 }

 }

 }

 /**

 * Instantiates the sender, receiver, subscriber, and

 * publisher classes and starts their threads.

 * Calls the join method to wait for the threads to die.

 */

 public void run_threads() {

 SynchSender synchSender = new SynchSender();

 SynchReceiver synchReceiver = new SynchReceiver();

 AsynchSubscriber asynchSubscriber =

 new AsynchSubscriber();

 MultiplePublisher multiplePublisher =

 new MultiplePublisher();

 synchSender.start();

 synchReceiver.start();

 try {

 synchSender.join();

 synchReceiver.join();

 } catch (InterruptedException e) {}

 asynchSubscriber.start();

ACKNOWLEDGMENT MODES 263
 multiplePublisher.start();

 try {

 asynchSubscriber.join();

 multiplePublisher.join();

 } catch (InterruptedException e) {}

 }

 /**

 * Reads the queue and topic names from the command line,

 * then calls the run_threads method to execute the program

 * threads.

 *

 * @param args the topic used by the example

 */

 public static void main(String[] args) {

 AckEquivExample aee = new AckEquivExample();

 if (args.length != 0) {

 System.out.println("Usage: java AckEquivExample");

 System.exit(1);

 }

 System.out.println("Queue name is " + aee.queueName);

 System.out.println("Topic name is " + aee.topicName);

 System.out.println("Connection factory name is " +

 aee.conFacName);

 aee.run_threads();

 }

}

Code Example A.3 AckEquivExample.java

JMS CLIENT EXAMPLES264
A.4 Utility Class

The SampleUtilities class, in SampleUtilities.java, is a utility class for the
other sample programs. It contains the following methods:

• getQueueConnectionFactory

• getTopicConnectionFactory

• getQueue

• getTopic

• jndiLookup

• receiveSynchronizeMessages

• sendSynchronizeMessages

It also contains the class DoneLatch, which has the following methods:

• waitTillDone

• allDone

import javax.naming.*;

import javax.jms.*;

public class SampleUtilities {

 public static final String QUEUECONFAC =

 "QueueConnectionFactory";

 public static final String TOPICCONFAC =

 "TopicConnectionFactory";

 private static Context jndiContext = null;

 /**

 * Returns a QueueConnectionFactory object.

 *

 * @return a QueueConnectionFactory object

UTILITY CLASS 265
 * @throws javax.naming.NamingException (or other

 * exception) if name cannot be found

 */

 public static QueueConnectionFactory

 getQueueConnectionFactory() throws Exception {

 return (QueueConnectionFactory) jndiLookup(QUEUECONFAC);

 }

 /**

 * Returns a TopicConnectionFactory object.

 *

 * @return a TopicConnectionFactory object

 * @throws javax.naming.NamingException (or other

 * exception) if name cannot be found

 */

 public static TopicConnectionFactory

 getTopicConnectionFactory() throws Exception {

 return (TopicConnectionFactory) jndiLookup(TOPICCONFAC);

 }

 /**

 * Returns a Queue object.

 *

 * @param name String specifying queue name

 * @param session a QueueSession object

 *

 * @return a Queue object

 * @throws javax.naming.NamingException (or other

 * exception) if name cannot be found

 */

 public static Queue getQueue(String name,

 QueueSession session) throws Exception {

 return (Queue) jndiLookup(name);

 }

 /**

 * Returns a Topic object.

 *

 * @param name String specifying topic name

JMS CLIENT EXAMPLES266
 * @param session a TopicSession object

 *

 * @return a Topic object

 * @throws javax.naming.NamingException (or other

 * exception) if name cannot be found

 */

 public static Topic getTopic(String name,

 TopicSession session) throws Exception {

 return (Topic) jndiLookup(name);

 }

 /**

 * Creates a JNDI API InitialContext object if none exists

 * yet. Then looks up the string argument and returns the

 * associated object.

 *

 * @param name the name of the object to be looked up

 *

 * @return the object bound to name

 * @throws javax.naming.NamingException (or other

 * exception) if name cannot be found

 */

 public static Object jndiLookup(String name)

 throws NamingException {

 Object obj = null;

 if (jndiContext == null) {

 try {

 jndiContext = new InitialContext();

 } catch (NamingException e) {

 System.err.println("Could not create JNDI API " +

 "context: " + e.toString());

 throw e;

 }

 }

 try {

 obj = jndiContext.lookup(name);

 } catch (NamingException e) {

 System.err.println("JNDI API lookup failed: " +

UTILITY CLASS 267
 e.toString());

 throw e;

 }

 return obj;

 }

 /**

 * Waits for 'count' messages on controlQueue before

 * continuing. Called by a publisher to make sure that

 * subscribers have started before it begins publishing

 * messages.

 *

 * If controlQueue does not exist, the method throws an

 * exception.

 *

 * @param prefix prefix (publisher or subscriber) to be

 * displayed

 * @param controlQueueName name of control queue

 * @param count number of messages to receive

 */

 public static void receiveSynchronizeMessages(String prefix,

 String controlQueueName, int count)

 throws Exception {

 QueueConnectionFactory queueConnectionFactory = null;

 QueueConnection queueConnection = null;

 QueueSession queueSession = null;

 Queue controlQueue = null;

 QueueReceiver queueReceiver = null;

 try {

 queueConnectionFactory =

 SampleUtilities.getQueueConnectionFactory();

 queueConnection =

 queueConnectionFactory.createQueueConnection();

 queueSession =

 queueConnection.createQueueSession(false,

 Session.AUTO_ACKNOWLEDGE);

 controlQueue = getQueue(controlQueueName,

 queueSession);

JMS CLIENT EXAMPLES268
 queueConnection.start();

 } catch (Exception e) {

 System.err.println("Connection problem: " +

 e.toString());

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException ee) {}

 }

 throw e;

 }

 try {

 System.out.println(prefix +

 "Receiving synchronize messages from " +

 controlQueueName + "; count = " + count);

 queueReceiver =

 queueSession.createReceiver(controlQueue);

 while (count > 0) {

 queueReceiver.receive();

 count--;

 System.out.println(prefix +

 "Received synchronize message; " +

 " expect " + count + " more");

 }

 } catch (JMSException e) {

 System.err.println("Exception occurred: " +

 e.toString());

 throw e;

 } finally {

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException e) {}

 }

 }

 }

 /**

UTILITY CLASS 269
 * Sends a message to controlQueue. Called by a subscriber

 * to notify a publisher that it is ready to receive

 * messages.

 * <p>

 * If controlQueue doesn't exist, the method throws an

 * exception.

 *

 * @param prefix prefix (publisher or subscriber) to be

 * displayed

 * @param controlQueueName name of control queue

 */

 public static void sendSynchronizeMessage(String prefix,

 String controlQueueName)

 throws Exception {

 QueueConnectionFactory queueConnectionFactory = null;

 QueueConnection queueConnection = null;

 QueueSession queueSession = null;

 Queue controlQueue = null;

 QueueSender queueSender = null;

 TextMessage message = null;

 try {

 queueConnectionFactory =

 SampleUtilities.getQueueConnectionFactory();

 queueConnection =

 queueConnectionFactory.createQueueConnection();

 queueSession =

 queueConnection.createQueueSession(false,

 Session.AUTO_ACKNOWLEDGE);

 controlQueue = getQueue(controlQueueName,

 queueSession);

 } catch (Exception e) {

 System.err.println("Connection problem: " +

 e.toString());

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException ee) {}

 }

JMS CLIENT EXAMPLES270
 throw e;

 }

 try {

 queueSender =

 queueSession.createSender(controlQueue);

 message = queueSession.createTextMessage();

 message.setText("synchronize");

 System.out.println(prefix +

 "Sending synchronize message to " +

 controlQueueName);

 queueSender.send(message);

 } catch (JMSException e) {

 System.err.println("Exception occurred: " +

 e.toString());

 throw e;

 } finally {

 if (queueConnection != null) {

 try {

 queueConnection.close();

 } catch (JMSException e) {}

 }

 }

 }

 /**

 * Monitor class for asynchronous examples. Producer signals

 * end of message stream; listener calls allDone() to notify

 * consumer that the signal has arrived, while consumer calls

 * waitTillDone() to wait for this notification.

 */

 static public class DoneLatch {

 boolean done = false;

 /**

 * Waits until done is set to true.

 */

 public void waitTillDone() {

 synchronized (this) {

 while (! done) {

 try {

UTILITY CLASS 271
 this.wait();

 } catch (InterruptedException ie) {}

 }

 }

 }

 /**

 * Sets done to true.

 */

 public void allDone() {

 synchronized (this) {

 done = true;

 this.notify();

 }

 }

 }

}

Code Example A.4 SampleUtilities.java

273
Index
A
acknowledge method (Message interface) 63
acknowledging messages. See message

acknowledgment
administered objects 22

J2EE applications and 74
See also connection factories, destinations

application clients
coding 83, 105, 132, 183
packaging 90, 117, 163, 197
running 100, 125, 178, 206, 214

Application Deployment Tool. See
deploytool command

applications
client 33, 207, 215
J2EE 73, 81, 103, 129, 181

asynchronous message consumption 19
See also message-driven beans

AUTO_ACKNOWLEDGE mode
example 250
Session interface field 63

B
bean-managed transactions 78
BytesMessage interface 31

C
CLASSPATH environment variable 34
client applications 33, 215

compiling 43, 54
running 44, 55
running on multiple systems 57
running remotely 58

client ID, for durable subscriptions 67, 116
CLIENT_ACKNOWLEDGE mode

example 250

Session interface field 63
Cloudscape database server

starting 163
stopping 179

commands
cloudscape 163, 179
deploytool 89, 115, 162, 195
j2ee 43, 56, 89, 101, 115, 127, 162, 179,

195, 207
j2eeadmin 23, 24, 101, 116, 127, 179,

195, 207
runclient 100, 125, 178, 206, 214

commit method (Session interface) 70
connection factories

creating 57, 116, 195
deleting 127, 207
introduction 23
specifying for deployment 92, 94, 120,

122, 165, 168, 170, 172, 174, 198,
202

specifying for remote servers 57, 195
connections

introduction 24
managing in J2EE applications 74

container, EJB 13
message-driven beans 75

container-managed transactions 78, 94
creating

connection factories 23, 57, 116, 195
J2EE applications 90, 117, 163
queues 24, 43, 89, 162
topics 24, 55, 116

D
deleting

connection factories 127, 207
queues 45
topics 56, 127

274
delivery modes
introduction 64
JMSDeliveryMode message header field

30
DeliveryMode interface 64
deployment descriptors

creating and packaging 93
JMS API-related elements 97

deploytool command 89, 115, 162, 195
deploytool command

Descriptor Viewer 97
New Application Client Wizard 90, 117,

163, 197
New Enterprise Bean Wizard 93, 166, 169,

171, 200
destination-type deployment descriptor

element 97
destinations

introduction 24
JMSDestination message header field 30
specifying for deployment 92, 94, 121,

122, 168, 170, 172, 199, 202
temporary 66
See also queues, temporary destinations,

topics
distributed transactions 77
domains, messaging 16
DUPS_OK_ACKNOWLEDGE mode (Session

interface field) 63
durable subscriptions

client example 215
introduction 67
J2EE example 116, 122

E
EJB container. See container, EJB
ejbCreate method 74

message-driven beans 76
session beans 108

ejbRemove method
(javax.ejb.MessageDrivenBean
interface) 76

EJBs. See enterprise beans
enterprise beans

specifying references for 118, 168, 170,
172

entity beans
coding 151
packaging 173
sample application 129

environment variables, setting for J2EE
applications 34

exception handling 32
expiration of messages

introduction 65
JMSExpiration message header field 30

G
getRollbackOnly method

(javax.ejb.MessageDrivenContext
interface) 79

H
headers, message

introduction 29

J
j2ee command

starting the server 43, 89, 115, 162, 195
stopping the server 56, 101, 127, 179, 207

J2EE. See Java 2, Enterprise Edition (J2EE)
J2EE_HOME environment variable 34
j2eeadmin command

creating connection factories 23, 116, 195
creating destinations 24
removing connection factories 127, 207
removing destinations 101, 127, 179

Java 2, Enterprise Edition (J2EE)
applications
adding server 99, 124, 177, 204
coding components 82, 104, 131, 183
compiling 88, 114, 161, 194
creating 90, 117, 163, 196, 200
deploying 99, 125, 178, 205
examples 81, 103, 129, 181
introduction 73
packaging 88, 115, 161, 194
running 100, 125, 178, 206

275
running on more than one system 181
running remotely 181
undeploying 101, 126, 179, 206

Java 2, Enterprise Edition (J2EE) platform
12

Java 2, Enterprise Edition SDK
starting server 43, 89, 115, 162, 195
stopping server 56, 101, 127, 179, 207

Java Message Service (JMS) API
achieving reliability and performance 61
architecture 15
basic concepts 15
client applications 33, 215
definition 10
introduction 9
J2EE applications 73, 81, 103, 129, 181
J2EE platform 12
messaging domains 16
programming model 21

Java Naming and Directory Interface (JNDI)
looking up administered objects 22
naming context for J2EE applications 74,

83
specifying names for application 96, 123,

176, 203
specifying names for connection factories

92, 120, 165, 174, 198, 202
specifying names for destinations 92, 121,

199
specifying names for EJB references 118,

168, 170, 172
JAVA_HOME environment variable 34
JMS API. See Java Message Service (JMS)

API
JMSCorrelationID message header field 30
JMSDeliveryMode message header field 30
JMSDestination message header field 30
JMSException class 32
JMSExpiration message header field 30
JMSMessageID message header field 30
JMSPriority message header field 30
JMSRedelivered message header field 30
JMSReplyTo message header field 30
JMSTimestamp message header field 30
JMSType message header field 30
JNDI. See Java Naming and Directory

Interface (JNDI)

L
local transactions 70

example 225

M
MapMessage interface 31
message acknowledgment

bean-managed transactions 80
example 250
introduction 62
message-driven beans 76

message bodies
introduction 31

message consumers
introduction 27

message consumption
asynchronous 19
introduction 19
synchronous 19

message-driven beans
coding 85, 112, 138, 190
introduction 75
packaging 93, 121, 166, 169, 171, 200

message-driven deployment descriptor
element 97

message-driven-destination deployment
descriptor element 97

message headers
introduction 29

message IDs
JMSMessageID message header field 30

Message interface 31
message listeners

examples 53, 132, 183, 209
introduction 28

message producers
introduction 26

message properties
introduction 30

message-selector deployment descriptor
element 97

message selectors
introduction 29
specifying for deployment 122

276
MessageDrivenContext interface
(javax.ejb package) 76

MessageListener interface 28
messages

body formats 31
delivery modes 64
expiration 65
headers 29
introduction 29
persistence 64
priority levels 65
properties 30

messaging
definition 9

messaging domains 16
point-to-point 17
publish/subscribe 17

N
New Application Client Wizard 90, 117, 163,

197
New Enterprise Bean Wizard 93, 166, 169,

171, 200
NON_PERSISTENT delivery mode 64

O
ObjectMessage interface 31
objects, administered 22
onMessage method (MessageListener

interface)
example 53
introduction 28
message-driven beans 75
specifying transaction demarcation 94

P
packaging

application clients 90, 117, 163, 197
entity beans 173
message-driven beans 93, 121, 166, 169,

171, 200
session beans 119

PATH environment variable 34
persistence, for messages 64
PERSISTENT delivery mode 64
point-to-point messaging domain

client example 35
introduction 17
See also queues

priority levels, for messages
introduction 65
JMSPriority message header field 30

programming model 21
properties. See message properties
publish/subscribe messaging domain

client example 45
durable subscriptions 67
introduction 17
See also topics

Q
Queue interface 24
QueueConnection interface 24
QueueConnectionFactory interface 23
QueueReceiver interface 27
queues

creating 24, 43, 89, 162
deleting 45
example 35
introduction 24
temporary 66

QueueSender interface 26
QueueSession interface 25

R
recover method (Session interface) 63
redelivery of messages

JMSRedelivered message header field 30
reliability

advanced mechanisms 66
basic mechanisms 62
durable subscriptions 67
local transactions 70
message acknowledgment 62
message expiration 65
message persistence 64

277
message priority levels 65
temporary destinations 66
transactions 70

Remote Method Invocation (RMI) 9
request/reply mechanism

JMSCorrelationID message header field
30

JMSReplyTo message header field 30
temporary destinations and 66

Required transaction attribute 79, 94
res-auth deployment descriptor element 98
res-ref-name deployment descriptor

element 98
res-sharing-scope deployment descriptor

element 98
res-type deployment descriptor element 98
resource-env-ref deployment descriptor

element 98
resource-env-ref-name deployment

descriptor element 98
resource-env-ref-type deployment

descriptor element 98
resource-ref deployment descriptor

element 98
resources, JMS API 74
rollback method (Session interface) 70
runclient command 100, 125, 178, 206, 214

S
sample programs

AckEquivExample.java 250
DurableSubscriberExample.java 215
HumanResourceClient.java 132
J2EE applications 81, 103, 129, 181
MessageBean.java 85, 112
MultiAppServerRequester.java 183
MyAppClient.java 105
point-to-point 35
publish/subscribe 45
Publisher.java 107
PublisherBean.java 108
PublisherHome.java 107
PubSub.java 209
ReplyMsgBean.java 190
ReserveEquipmentMsgBean.java 138
ReserveOfficeMsgBean.java 138

SampleUtilities.java 264
ScheduleMsgBean.java 147
SetupOffice.java 152
SetupOfficeBean.java 152
SetupOfficeLocalHome.java 151
SimpleClient.java 83
SimpleQueueReceiver.java 40
SimpleQueueSender.java 37
SimpleTopicPublisher.java 47
SimpleTopicSubscriber.java 50
TextListener.java 53
TransactedExample.java 225

servers
adding 99, 124, 177, 204
deploying on more than one 181
running applications on remote 207
running clients on more than one 57
running clients on remote 58

session beans
coding 106
packaging 119
sample application 103

sessions
introduction 25
managing in J2EE applications 74

setMessageDrivenContext method
(javax.ejb.MessageDrivenBean
interface) 76

setRollbackOnly method
(javax.ejb.MessageDrivenContext
interface) 79

standalone applications 33, 215
StreamMessage interface 31
subscription-durability deployment

descriptor element 98
subscription names, for durable subscribers

67
synchronous message consumption 19

T
temporary destinations

examples 132, 183, 209
TextMessage interface 31
timestamps, for messages

JMSTimestamp message header field 30
Topic interface 24

278
TopicConnection interface 24
TopicConnectionFactory interface 23
TopicPublisher interface 26
topics

creating 24, 55, 116
deleting 56, 127
durable subscriptions 67
example 45
introduction 24
temporary 66

TopicSession interface 25
TopicSubscriber interface 27
transactions

bean-managed 78
client example 225
container-managed 78, 94
distributed 77
J2EE applications and 75
local 70
Required attribute 79, 94
specifying for deployment 94

U
UserTransaction interface

(javax.transaction package) 78

W
wizards

New Application Client 90, 117, 163, 197
New Enterprise Bean 93, 166, 169, 171,

200

X
XML (Extensible Markup Language)

deployment descriptor 97

	Java™ Message Service API Tutorial
	Overview
	1.1 What Is Messaging?
	1.2 What Is the JMS API?
	1.3 When Can You Use the JMS API?
	1.4 How Does the JMS API Work with the J2EE™ Platform?

	Basic JMS API Concepts
	2.1 JMS API Architecture
	2.2 Messaging Domains
	2.2.1 Point-to-Point Messaging Domain
	2.2.2 Publish/Subscribe Messaging Domain

	2.3 Message Consumption

	The JMS API Programming Model
	3.1 Administered Objects
	3.1.1 Connection Factories
	3.1.2 Destinations

	3.2 Connections
	3.3 Sessions
	3.4 Message Producers
	3.5 Message Consumers
	3.5.1 Message Listeners
	3.5.2 Message Selectors

	3.6 Messages
	3.6.1 Message Headers
	3.6.2 Message Properties
	3.6.3 Message Bodies

	3.7 Exception Handling

	Writing Simple JMS Client Applications
	4.1 Setting Your Environment for Running Applications
	4.2 A Simple Point-to-Point Example
	4.2.1 Writing the PTP Client Programs
	4.2.1.1 Sending Messages to a Queue: SimpleQueueSender.java
	4.2.1.2 Receiving Messages from a Queue: SimpleQueueReceiver.java

	4.2.2 Compiling the PTP Clients
	4.2.3 Starting the JMS Provider
	4.2.4 Creating the JMS Administered Objects
	4.2.5 Running the PTP Clients
	4.2.6 Deleting the Queue

	4.3 A Simple Publish/Subscribe Example
	4.3.1 Writing the Pub/Sub Client Programs
	4.3.1.1 Publishing Messages to a Topic: SimpleTopicPublisher.java
	4.3.1.2 Receiving Messages Asynchronously: SimpleTopicSubscriber.java
	4.3.1.3 The Message Listener: TextListener.java

	4.3.2 Compiling the Pub/Sub Clients
	4.3.3 Starting the JMS Provider
	4.3.4 Creating the JMS Administered Objects
	4.3.5 Running the Pub/Sub Clients
	4.3.6 Deleting the Topic and Stopping the Server

	4.4 Running JMS Client Programs on Multiple Systems
	4.4.1 Communicating Between Two J2EE Servers
	4.4.2 Communicating Between a J2EE Server and a System Not Running a J2EE Server

	Creating Robust JMS Applications
	5.1 Using Basic Reliability Mechanisms
	5.1.1 Controlling Message Acknowledgment
	5.1.2 Specifying Message Persistence
	5.1.3 Setting Message Priority Levels
	5.1.4 Allowing Messages to Expire
	5.1.5 Creating Temporary Destinations

	5.2 Using Advanced Reliability Mechanisms
	5.2.1 Creating Durable Subscriptions
	5.2.2 Using JMS API Local Transactions

	Using the JMS API in a J2EE Application
	6.1 Using Enterprise Beans to Produce and to Synchronously Receive Messages
	6.1.1 Administered Objects
	6.1.2 Resource Management
	6.1.3 Transactions

	6.2 Using Message-Driven Beans
	6.3 Managing Distributed Transactions
	6.4 Using the JMS API with Application Clients and Web Components

	A Simple J2EE Application that Uses the JMS API
	7.1 Writing and Compiling the Application Components
	7.1.1 Coding the Application Client: SimpleClient.java
	7.1.2 Coding the Message-Driven Bean: MessageBean.java
	7.1.3 Compiling the Source Files

	7.2 Creating and Packaging the Application
	7.2.1 Starting the J2EE Server and the Deploytool
	7.2.2 Creating a Queue
	7.2.3 Creating the J2EE Application
	7.2.4 Packaging the Application Client
	7.2.4.1 Introduction Dialog Box
	7.2.4.2 JAR File Contents Dialog Box
	7.2.4.3 General Dialog Box
	7.2.4.4 Environment Entries Dialog Box
	7.2.4.5 Enterprise Bean References Dialog Box
	7.2.4.6 Resource References Dialog Box
	7.2.4.7 JMS Destination References Dialog Box
	7.2.4.8 Review Settings Dialog Box

	7.2.5 Packaging the Message-Driven Bean
	7.2.5.1 Introduction Dialog Box
	7.2.5.2 EJB JAR Dialog Box
	7.2.5.3 General Dialog Box
	7.2.5.4 Transaction Management Dialog Box
	7.2.5.5 Message-Driven Bean Settings Dialog Box
	7.2.5.6 Environment Entries Dialog Box
	7.2.5.7 Enterprise Bean References Dialog Box
	7.2.5.8 Resource References Dialog Box
	7.2.5.9 Resource Environment References Dialog Box
	7.2.5.10 Security Dialog Box
	7.2.5.11 Review Settings Dialog Box

	7.2.6 Checking the JNDI Names

	7.3 Deploying and Running the Application
	7.3.1 Looking at the Deployment Descriptor
	7.3.2 Adding the Server
	7.3.3 Deploying the Application
	7.3.4 Running the Client
	7.3.5 Undeploying the Application
	7.3.6 Removing the Application and Stopping the Server

	A J2EE Application that Uses the JMS API with a Session Bean
	8.1 Writing and Compiling the Application Components
	8.1.1 Coding the Application Client: MyAppClient.java
	8.1.2 Coding the Publisher Session Bean
	8.1.2.1 The Remote Home Interface: PublisherHome.java
	8.1.2.2 The Remote Interface: Publisher.java
	8.1.2.3 The Bean Class: PublisherBean.java

	8.1.3 Coding the Message-Driven Bean: MessageBean.java
	8.1.4 Compiling the Source Files

	8.2 Creating and Packaging the Application
	8.2.1 Starting the J2EE Server and the Deploytool
	8.2.2 Creating a Topic
	8.2.3 Creating a Connection Factory
	8.2.4 Creating the J2EE Application
	8.2.5 Packaging the Application Client
	8.2.5.1 Introduction Dialog Box
	8.2.5.2 JAR File Contents Dialog Box
	8.2.5.3 General Dialog Box
	8.2.5.4 Environment Entries Dialog Box
	8.2.5.5 Enterprise Bean References Dialog Box

	8.2.6 Packaging the Session Bean
	8.2.6.1 Introduction Dialog Box
	8.2.6.2 EJB JAR Dialog Box
	8.2.6.3 General Dialog Box
	8.2.6.4 Transaction Management Dialog Box
	8.2.6.5 Environment Entries Dialog Box
	8.2.6.6 Enterprise Bean References Dialog Box
	8.2.6.7 Resource References Dialog Box
	8.2.6.8 Resource Environment References Dialog Box
	8.2.6.9 Security Dialog Box
	8.2.6.10 Review Settings Dialog Box

	8.2.7 Packaging the Message-Driven Bean
	8.2.7.1 Introduction Dialog Box
	8.2.7.2 EJB JAR Dialog Box
	8.2.7.3 General Dialog Box
	8.2.7.4 Transaction Management Dialog Box
	8.2.7.5 Message-Driven Bean Settings Dialog Box

	8.2.8 Specifying the JNDI Names

	8.3 Deploying and Running the Application
	8.3.1 Adding the Server
	8.3.2 Deploying the Application
	8.3.3 Running the Client
	8.3.4 Undeploying the Application
	8.3.5 Removing the Application and Stopping the Server

	A J2EE Application that Uses the JMS API with an Entity Bean
	9.1 Overview of the Human Resources Application
	9.2 Writing and Compiling the Application Components
	9.2.1 Coding the Application Client: HumanResourceClient.java
	9.2.2 Coding the Message-Driven Beans
	9.2.3 Coding the Entity Bean
	9.2.3.1 The Local Home Interface: SetupOfficeLocalHome.java
	9.2.3.2 The Local Interface: SetupOffice.java
	9.2.3.3 The Bean Class: SetupOfficeBean.java

	9.2.4 Compiling the Source Files

	9.3 Creating and Packaging the Application
	9.3.1 Starting the J2EE Server and the Deploytool
	9.3.2 Creating a Queue
	9.3.3 Starting the Cloudscape Database Server
	9.3.4 Creating the J2EE Application
	9.3.5 Packaging the Application Client
	9.3.5.1 Introduction Dialog Box
	9.3.5.2 JAR File Contents Dialog Box
	9.3.5.3 General Dialog Box
	9.3.5.4 Environment Entries Dialog Box
	9.3.5.5 Enterprise Bean References Dialog Box
	9.3.5.6 Resource References Dialog Box
	9.3.5.7 JMS Destination References Dialog Box
	9.3.5.8 Review Settings Dialog Box

	9.3.6 Packaging the Equipment Message-Driven Bean
	9.3.6.1 Introduction Dialog Box
	9.3.6.2 EJB JAR Dialog Box
	9.3.6.3 General Dialog Box
	9.3.6.4 Transaction Management Dialog Box
	9.3.6.5 Message-Driven Bean Settings Dialog Box
	9.3.6.6 Environment Entries Dialog Box
	9.3.6.7 Enterprise Bean References Dialog Box

	9.3.7 Packaging the Office Message-Driven Bean
	9.3.7.1 Introduction Dialog Box
	9.3.7.2 EJB JAR Dialog Box
	9.3.7.3 General Dialog Box
	9.3.7.4 Transaction Management Dialog Box
	9.3.7.5 Message-Driven Bean Settings Dialog Box
	9.3.7.6 Environment Entries Dialog Box
	9.3.7.7 Enterprise Bean References Dialog Box

	9.3.8 Packaging the Schedule Message-Driven Bean
	9.3.8.1 Introduction Dialog Box
	9.3.8.2 EJB JAR Dialog Box
	9.3.8.3 General Dialog Box
	9.3.8.4 Transaction Management Dialog Box
	9.3.8.5 Message-Driven Bean Settings Dialog Box
	9.3.8.6 Environment Entries Dialog Box
	9.3.8.7 Enterprise Bean References Dialog Box

	9.3.9 Packaging the Entity Bean
	9.3.9.1 Introduction Dialog Box
	9.3.9.2 EJB JAR Dialog Box
	9.3.9.3 General Dialog Box
	9.3.9.4 Entity Settings Dialog Box
	9.3.9.5 Transaction Management Dialog Box
	9.3.9.6 Environment Entries Dialog Box
	9.3.9.7 Enterprise Bean References Dialog Box
	9.3.9.8 Resource References Dialog Box
	9.3.9.9 Resource Environment References Dialog Box
	9.3.9.10 Security Dialog Box
	9.3.9.11 Review Settings Dialog Box

	9.3.10 Specifying the Entity Bean Deployment Settings
	9.3.11 Specifying the JNDI Names

	9.4 Deploying and Running the Application
	9.4.1 Adding the Server
	9.4.2 Deploying the Application
	9.4.3 Running the Client
	9.4.4 Undeploying the Application
	9.4.5 Removing the Application and Stopping the Server

	An Application Example that Uses Two J2EE Servers
	10.1 Overview of the Applications
	10.2 Writing and Compiling the Application Components
	10.2.1 Coding the Application Client: MultiAppServerRequester.java
	10.2.2 Coding the Message-Driven Bean: ReplyMsgBean.java
	10.2.3 Compiling the Source Files

	10.3 Creating and Packaging the Application
	10.3.1 Starting the J2EE Servers and the Deploytool
	10.3.2 Creating a Connection Factory
	10.3.3 Creating the First J2EE Application
	10.3.4 Packaging the Application Client
	10.3.4.1 Introduction Dialog Box
	10.3.4.2 JAR File Contents Dialog Box
	10.3.4.3 General Dialog Box
	10.3.4.4 Environment Entries Dialog Box
	10.3.4.5 Enterprise Bean References Dialog Box
	10.3.4.6 Resource References Dialog Box
	10.3.4.7 JMS Destination References Dialog Box
	10.3.4.8 Review Settings Dialog Box

	10.3.5 Creating the Second J2EE Application
	10.3.6 Packaging the Message-Driven Bean
	10.3.6.1 Introduction Dialog Box
	10.3.6.2 EJB JAR Dialog Box
	10.3.6.3 General Dialog Box
	10.3.6.4 Transaction Management Dialog Box
	10.3.6.5 Message-Driven Bean Settings Dialog Box
	10.3.6.6 Environment Entries Dialog Box
	10.3.6.7 Enterprise Bean References Dialog Box
	10.3.6.8 Resource References Dialog Box

	10.3.7 Checking the JNDI Names

	10.4 Deploying and Running the Applications
	10.4.1 Adding the Server
	10.4.2 Deploying the Applications
	10.4.3 Running the Client
	10.4.4 Undeploying the Applications
	10.4.5 Removing the Applications and Stopping the Servers

	10.5 Accessing a J2EE Application from a Remote System that Is Not Running a J2EE Server
	10.5.1 Accessing a J2EE Application from a Standalone Client
	10.5.1.1 The Sample Client Program: PubSub.java

	10.5.2 Using runclient to Access a Remote Application Client

	JMS Client Examples
	A.1 Durable Subscriptions
	A.2 Transactions
	A.3 Acknowledgment Modes
	A.4 Utility Class

