
Visual Prolog Version 5.x

Language Tutorial

(c) Copyright 1986-2001
Prolog Development Center A/S

H.J. Holst Vej 3-5C,
DK - 2605 Broendby, Copenhagen

Denmark

Copyright

The documentation for this software is copyrighted, and all rights are reserved. It
may not be reproduced, transmitted, stored in a retrieval system, or translated,
either by electronic, mechanical or any other means, without the prior written
consent of Prolog Development Center A/S.

The software products described in these manuals are also copyrighted, and are
licensed to the End User only for use in accordance with the End User License
Agreement, which is printed on the diskette packaging. The prospective user
should read this agreement carefully prior to use of the software.

Visual Prolog is a registered trademark of Prolog Development Center A/S.

Other brand and product names are trademarks or registered trademarks of their
respective holders.

i

Table of Contents

Part 1 Introduction to Visual Prolog
Chapter 1, Using Visual Prolog's Visual Development Environment

What Needs to be Installed for This Book? ... 6
Starting the Visual Prolog's Visual Development Environment 7
Creating the TestGoal Project for Running the Examples 8
Opening an Editor Window ... 11
Running and Testing a Program... 11
Testing Language Tutorial Examples .. 12

Testing Examples in Test Goal .. 13
Remarks About Properties of the Test Goal Utility............................ 13

Testing Examples as Standalone Executables.. 14
Handling Errors.. 15

Part 2 Tutorial Chapters 2 – 11: Learning Visual Prolog
Chapter 2, Prolog Fundamentals

PROgramming in LOGic ... 18
Sentences: Facts and Rules .. 19

Facts: What Is Known .. 19
Rules: What You Can Infer from Given Facts 20

Queries ... 21
Putting Facts, Rules, and Queries Together.. 22

Variables: General Sentences... 24
Overview.. 25

Exercises... 26
From Natural Language to Prolog Programs ... 26

Clauses (Facts and Rules) .. 26
More About Facts ... 26
More About Rules .. 27

Predicates (Relations) .. 30
Variables (General Clauses) .. 31

How Variables Get Their Values.. 32
Anonymous Variables .. 33

Goals (Queries) .. 35
Compound Goals: Conjunctions and Disjunctions............................. 36

Comments .. 38
What Is a Match? ... 39
Summary.. 40

ii

Chapter 3, Visual Prolog Programs
Visual Prolog's Basic Program Sections.. 43

The Clauses Section... 44
The Predicates Section... 44

How to Declare User-Defined Predicates... 45
The Domains Section... 47
The Goal Section ... 51

A Closer Look at Declarations and Rules.. 51
Typing Arguments in Predicate Declarations..................................... 55
Multiple Arity... 58
Rule Syntax .. 59
Automatic Type Conversions ... 60

Other Program Sections ... 60
The Facts Section... 61
The Constants Section ... 61
The Global Sections... 63
The Compiler Directives.. 63

The include Directive ... 63
Summary.. 64

Chapter 4, Unification and Backtracking
Matching Things Up: Unification.. 67
Backtracking .. 70

Visual Prolog's Relentless Search for Solutions .. 73
A Detailed Look at Backtracking ... 76
Backtracking in Standalone Executables.. 80

Controlling the Search for Solutions.. 85
Using the fail Predicate.. 85
Preventing Backtracking: The Cut... 87

How to Use the Cut .. 88
Determinism and the Cut.. 91
The not Predicate.. 92

Prolog from a Procedural Perspective.. 97
How Rules and Facts Are Like Procedures ... 97

Using Rules Like Case Statements... 98
Performing Tests within the Rule... 99
The cut as a GoTo... 99
Returning Computed Values .. 101

Summary.. 103
Chapter 5, Simple and Compound Objects

Simple Data Objects .. 105
Variables as Data Objects .. 105
Constants as Data Objects.. 105

iii

Characters ... 106
Numbers ... 106
Atoms ... 107

Compound Data Objects and Functors .. 108
Unification of Compound Objects ... 109

Using the Equal Sign to Unify Compound Objects.......................... 109
Treating Several Items as One ... 110

An Example Using Compound Objects.. 111
Declaring Domains of Compound Objects .. 115

Writing Domain Declarations: a Summary 117
Multi-Level Compound Objects... 118

Compound Mixed-Domain Declarations ... 120
Multiple-Type Arguments .. 121
Lists .. 121

Summary.. 123
Chapter 6, Repetition and Recursion

Repetitive Processes... 124
Backtracking Revisited .. 124

Example.. 125
Pre- and Post-Actions ... 126

Implementing Backtracking with Loops.. 128
Recursive Procedures... 130

What the Computer is Really Doing... 131
Advantages of Recursion.. 131

Tail Recursion Optimization.. 132
Making Tail Recursion Work... 133
How Not to Do Tail Recursion... 134
Cuts to the Rescue .. 136

Using Arguments as Loop Variables ... 138
Recursive Data Structures.. 142

Trees as a Data Type.. 143
Traversing a Tree.. 145
Creating a Tree ... 147

Binary Search Trees... 149
Tree-Based Sorting... 151
Example.. 152

Summary.. 157
Chapter 7, Lists and Recursion

What Is a List? ... 158
Declaring Lists ... 159

Heads and Tails .. 159
List Processing... 160

iv

Using Lists ... 161
Writing Lists .. 162
Counting List Elements ... 163
Tail Recursion Revisited.. 165

Another Example – Modifying the List.. 166
List Membership .. 169
Appending One List to Another: Declarative and Procedural Programming170

Recursion from a Procedural Viewpoint .. 171
One Predicate Can Have Different Uses .. 172

Finding All the Solutions at Once.. 173
Compound Lists... 175

Parsing by Difference Lists .. 177
Summary.. 181

Chapter 8, Visual Prolog’s Internal Fact Databases
Declaring the Fact Databases... 183
Using the Fact Databases ... 185

Accessing the Fact Databases .. 185
Updating the Fact Databases.. 186

Adding Facts at Run Time.. 186
Removing Facts at Run Time ... 189
Saving a database of facts at runtime ... 191

Keywords Determining Fact Properties... 191
Facts declared with the keyword nondeterm. 192
Facts declared with the keyword determ. ... 192
Facts declared with the keyword single.. 193

Examples.. 195
Summary.. 199

Chapter 9, Arithmetic and Comparison
Arithmetic Expressions.. 200

Operations.. 200
Order of Evaluation ... 201

Functions and Predicates ... 202
Generating Random Numbers.. 203

random/1... 203
random/2... 203
randominit/1 ... 204
Example.. 204

Integer and Real Arithmetic... 205
mod/2.. 205
div/2.. 205
abs/1.. 205
cos/1.. 206

v

sin/1 .. 206
tan/1 .. 206
arctan/1 ... 206
exp/1 ... 207
ln/1.. 207
log/1.. 207
sqrt/1 ... 207
round/1.. 208
trunc/1... 208
val/2 .. 208
Exercise .. 209

Comparisons .. 209
Equality and the equal (=) Predicate .. 210

Example.. 211
Exercises... 212

Comparing Characters, Strings, and Symbols ... 213
Characters ... 213
Strings... 213
Symbols .. 214

Chapter 10, Advanced Topics
The Flow Analysis ... 215

Compound Flow ... 216
Specifying Flow Patterns for Predicates .. 218
Controlling the Flow Analysis ... 218
Reference Variables ... 219
Declaring Domains as Reference... 220
Reference Domains and the Trail Array .. 221
Using Reference Domains ... 222

Example.. 223
Flow Patterns Revisited ... 224
Using Binary Trees with Reference Domains.. 225
Sorting with Reference Domains ... 226

Functions and Return Values ... 228
Determinism Monitoring in Visual Prolog .. 230

Visual Prologs Determinism Checking System... 234
Predicates as Arguments .. 236

Predicate Values... 236
Predicate Domains ... 238

Comparison with declaration of predicates 240
Examples .. 241

The Binary Domain.. 245
Implementation of binary terms... 246

vi

Text syntax of Binary Terms ... 246
Creating Binary Terms... 247

makebinary/1 .. 247
makebinary/2 .. 247
composebinary/2... 247
getbinarysize/1.. 247

Accessing Binary Terms .. 248
get*entry/2.. 248
set*entry/3 .. 248

Unifying Binary Terms .. 248
Comparing Binary Terms ... 248

Example ... 249
Converting Terms to Binary Terms ... 250

term_bin/3 .. 250
Modular Programming... 252

Global Declarations ... 252
Global Domains.. 252
Global Facts Sections ... 254
Global Predicates.. 254

Projects... 258
Errors and Exception Handling.. 259

Exception Handling and Error Trapping.. 260
exit/0 and exit/1 .. 260
errorexit/0 and errorexit/1... 260
trap/3... 261
errormsg/4 .. 262

Error reporting ... 263
errorlevel .. 263
lasterror/4.. 264

Handling Errors from the Term Reader ... 265
consulterror/3.. 265
readtermerror/2... 266

Break Control (Textmode Only).. 266
break/1 .. 267
breakpressed/0 .. 267

Manual Break and Signal Checking in UNIX ... 268
signal/2 ... 268

Critical Error Handling under DOS Textmode.. 273
criticalerror/4 .. 273
fileerror/2.. 274

Dynamic Cutting.. 275
Examples .. 275

vii

Free Type Conversions .. 277
Programming Style .. 277

Rules for Efficient Programming... 277
Using the fail Predicate.. 280
Determinism vs. Non-determinism: Setting the Cut 281

Chapter 11, Classes and Objects
Encapsulation... 282
Objects and Classes.. 282
Inheritance.. 283
Identity ... 283

Visual Prolog Classes .. 284
Class Declarations.. 284
Class Implementation... 285

Class Instances - Objects ... 285
Destroying Objects... 287

Class Domains ... 288
Derived Classes and Inheritance.. 288
Virtual Predicates... 291
Static Facts and Predicates... 292
Reference to the Object Itself (Predicate this) ... 295
Class Scopes... 296

Classes as Modules .. 296
User-defined Constructors and Destructors ... 297
Abstract Classes... 300
Protected Predicates, Domains, and Facts ... 301
Derived Class Access Control ... 302
Object Predicate Values... 303

Object Predicate Domain Declarations .. 309
Formal Syntax for Classes ... 311

Part 3 Tutorial Chapters 12 – 17: Using Visual Prolog
Chapter 12, Writing, Reading, and Files

Writing and Reading.. 316
Writing ... 316

write/* and nl .. 316
writef/* ... 321

Reading .. 324
readln/1 ... 324
readint/1, readreal/1, and readchar/1 .. 324
readterm/2... 325
file_str/2.. 325

viii

Examples .. 326
Binary Block Transfer ... 328

readblock/2 ... 328
writeblock/2.. 328
file_bin/2 .. 329

Visual Prolog's File System ... 329
Opening and Closing Files... 330

openread/2 .. 330
openwrite/2... 330
openappend/2.. 331
openmodify/2.. 331
filemode/2... 331
closefile/1 ... 332
readdevice/1.. 332
writedevice/1 .. 332

Redirecting Standard I/O ... 333
Working with Files .. 334

filepos/3 .. 334
eof/1.. 335
flush/1... 337
existfile/1 .. 337
existfile/2 .. 338
searchfile/3 ... 338
deletefile/1 .. 338
renamefile/1.. 339
disk/1 .. 339
copyfile/2.. 339

File Attributes .. 339
Opening and creating files.. 340
Special File Modes for DOS >= 4.0 and UNIX 341
openfile/5.. 341

File and Path Names .. 342
filenamepath/3 .. 343
filenameext/3 .. 343

Directory Searching ... 344
diropen/3... 345
dirmatch/10... 345
dirclose/1 .. 346
dirfiles/11.. 347

Manipulating File Attributes.. 349
fileattrib/2 ... 349

Handling terms in text files.. 350

ix

Manipulating Facts Like Terms ... 351
Example.. 352

Summary.. 353
Chapter 13, String-Handling in Visual Prolog

String Processing ... 356
Basic String-Handling Predicates .. 356

frontchar/3 .. 356
fronttoken/3 .. 357
frontstr/4 ... 358
concat/3... 359
str_len/2 .. 359
isname/1.. 359
format/* .. 360
subchar/3... 360
substring/4 .. 360
searchchar/3.. 361
searchstring/3.. 362

Type Conversion.. 362
char_int/2.. 362
str_char/2 .. 363
str_int/2... 363
str_real/2 ... 363
upper_lower/2... 363
term_str/3.. 364
Examples .. 364

Summary.. 367
Chapter 14, The External Database System

External Databases in Visual Prolog.. 369
An Overview: What's in an External Database? .. 370

Naming Convention.. 370
External Database Selectors ... 371

Chains .. 372
External Database Domains... 374

Database Reference Numbers... 374
db_reuserefs/2... 375

Manipulating Whole External Databases... 375
db_create/3 ... 376
db_open/3 ... 377
db_copy/3 ... 377
db_loadems/2 and db_saveems/2 ... 378
db_openinvalid/3 .. 378
db_flush/1 ... 378

x

db_close/1... 379
db_delete/1 ... 379
db_garbagecollect/1.. 379
db_btrees/2 ... 380
db_chains/2... 380
db_statistics/5 ... 380

Manipulating Chains.. 381
chain_inserta/5 and chain_insertz/5.. 381
chain_insertafter/6 .. 382
chain_terms/5 ... 382
chain_delete/2... 382
chain_first/3 and chain_last/3... 383
chain_next/3 and chain_prev/3... 383

Manipulating Terms... 383
term_replace/4 .. 383
term_delete/3 .. 384
ref_term/4 ... 384

A Complete Program Example .. 384
B+ Trees... 388

Pages, Order, and Key Length ... 388
Duplicate Keys... 389
Multiple Scans ... 389
The B+ Tree Standard Predicates .. 389

bt_create/5 and bt_create/6... 389
bt_open/3 .. 390
bt_close/2 and bt_delete/2 .. 390
bt_copyselector... 390
bt_statistics/8 .. 391
key_insert/4 and key_delete/4 .. 391
key_first/3, key_last/3, and key_search/4... 391
key_next/3 and key_prev/3... 392
key_current/4.. 392

Example: Accessing a Database via B+ Trees... 392
External Database Programming ... 394

Scanning through a Database... 395
Displaying the Contents of a Database .. 396
Implementing a Database That Won't Break Down 398
Updating the Database ... 399
Using Internal B+ Tree Pointers .. 403
Changing the Structure of a Database.. 405
Filesharing and the External Database... 407
Filesharing Domains .. 407

xi

Opening the Database in Share Mode.. 408
Transactions and Filesharing .. 409
Filesharing Predicates... 410
db_open/4 ... 410
db_begintransaction/2... 410
db_endtransaction/1.. 410
db_updated/1 .. 411
bt_updated/2 ... 411
db_setretry/3 ... 411

Programming with Filesharing... 411
Implementing High-level Locking... 413
A Complete Filesharing Example .. 414
Implementation Aspects of Visual Prolog Filesharing 420

Miscellaneous .. 421
Summary.. 421

Chapter 15, System-Level Programming
Access to the Operating System... 423

system/1.. 423
system/3.. 424
envsymbol/2 ... 425
time/4 and date ... 425
comline/1 .. 426
syspath/2 ... 427

Timing Services ... 427
sleep/1... 427
marktime/2.. 427
timeout/1... 428
difftime ... 428
sound/2 ... 429
beep/0 ... 429
osversion/1.. 429
diskspace/2 ... 430
storage/3 and storage/11 ... 430
storage/0 ... 431

Bit-Level Operations.. 431
bitand/3 ... 431
bitor/3 ... 432
bitxor/3 ... 432
bitleft/3 ... 433
bitright/3 ... 433
Exercise .. 433

Access to the Hardware: Low-Level Support .. 433

xii

bios/3 and bios/4... 434
ptr_dword ... 436
membyte, memword, memdword... 436
port_byte/2.. 436

Summary.. 437
Example Prolog Programs

Building a Small Expert System.. 439
Prototyping: A Simple Routing Problem... 444
Adventures in a Dangerous Cave... 446
Hardware Simulation ... 449
Towers of Hanoi .. 450
Dividing Words into Syllables... 452
The N Queens Problem.. 456

Part 4 Programmer’s Guide
Chapter 17, Elements of the Language

Names .. 461
Keywords.. 462
Specially-Handled Predicates... 462

Program Sections ... 462
The Domains Section... 465

Shortening Domain Declarations ... 465
Synonyms to Standard Domains .. 465
List Domains .. 466
Multi-alternative Compound Domains... 466
Single-alternative Compound Domains.. 468
Domains FILE and DB_SELECTOR... 468
Specially Handled Predefined Domains ... 469
Declaring Reference Domains.. 470
Declaring Predicate Domains ... 470

The Predicates Section... 472
Determinism Modes ... 472
Flow Patterns.. 474
Functions .. 475
Predicate Values ... 476
Object Predicate Values ... 476

The Facts Section... 476
The Clauses Section... 478

Simple Constants .. 479
Terms.. 482
Variables... 482

xiii

Compound Terms ... 482
The Goal Section.. 484
The Constants Section.. 484

Predefined Constants .. 486
Conditional Compilation.. 486

Including Files in Your Program ... 487
Modules and Global Programming Constructions... 488

Compilation Units.. 488
Names with Global Scope.. 489
Include Structure of Multi-modular Programs... 489

Include All Global Declarations in each Module 490
Where-used Strategy for Including Global Declarations.................. 490

Qualification Rules for Public Class Members.. 492
Compiler Options for Multi-modular Projects... 493

Compiler Directives ... 494
check_determ.. 494
code... 495
config.. 496
diagnostics .. 496
errorlevel... 497
heap... 498
nobreak ... 498
nowarnings ... 499
printermenu... 499
project ... 499

Visual Prolog Memory Management... 500
Memory Restrictions.. 500

Stack Size ... 500
GStack Size .. 501
Heap Size.. 502

Releasing Spare Memory Resources.. 502
Chapter 18, Interfacing with Other Languages

Using DLL’s .. 503
Calling Other Languages from Visual Prolog.. 504

Declaring External Predicates.. 504
Calling Conventions and Parameter Passing ... 504

Input parameters ... 504
Output parameters .. 505
Return Values ... 505
Multiple declarations .. 505
Parameter pushing order... 507
Leading underscored... 507

xiv

32-bit Windows naming convention .. 507
Converting the name to Uppercase (Pascal)..................................... 508
Adjustment of stackpointer... 508
The AS "external_name" Declaration .. 509

Domain Implementation .. 509
Simple Domains... 510

Complex Domains ... 510
Ordinary Compound Objects and Structures.................................... 511
Lists .. 512

Memory Considerations... 512
Memory Alignment.. 512

Example.. 513
Memory Allocation.. 514

Pre-allocation of Memory... 515
The sizeof function... 516
malloc and free ... 517

Examples.. 518
List Handling ... 518
Calling Prolog from Foreign Languages.. 521

Hello ... 521
Standard Predicates .. 522

Calling an Assembler Routine from Visual Prolog 523

Index 527

 1

Using This Manual

If you have never programmed in Prolog before, you should read all of this
manual. Chapters 1-10 cover Prolog fundamentals, and you should read them
before attempting any serious application development. The later chapters
become very important as soon as you want to do serious programming. If you
program in a procedural programming language such as C, Pascal, or Basic, pay
close attention to the procedural discussions. At the end of Chapter 4, you will
find a procedural overview of the material covered in the first three tutorial
chapters. We also provide procedural discussions of recursion in Chapter 6.

If you have programmed in other Prologs and have a good understanding of
Prolog fundamentals, you won't need much review. However, Visual Prolog has
several extensions and is different from interpreted Prologs. We recommend that
you read the release notes and Chapters 1 as an introduction. Chapter 3 explains
the structure of a Visual Prolog program and Chapter 5 introduces the
declarations. We also recommend that you read Chapter 8 on Visual Prolog's
facts section, and Chapter 14, on the external database.

Chapters 12 through 16 provide valuable information that you will need if you
plan to do serious programming.

If you think you could use a review of Visual Prolog programming, we
recommend that you read from Chapter 16 on.

This user's guide is divided into four parts: a short introduction to the Visual
Prolog environment; then the first ten tutorial chapters – which teach you how to
program in Visual Prolog; then six chapters – which gives an overview of the
predefined features of Visual Prolog - the standard predicates, the last part gives
a complete systematic overview of the language, modular programming and
interfacing to other languages.

Here's a summary of each chapter in this book:

Part 1: Introduction to Visual Prolog

Chapter 1: Getting Started describes how to install Visual Prolog on your
computer, how to use Visual Prolog's Visual Development Environment for
running examples supplied for this book, provides a quick guide through the
steps involved in creating, running, and saving your first Visual Prolog program.
This chapter explains how to apply Visual Development Environment's Test
Goal utility to run the Language Tutorial examples supplied with Visual Prolog.

2

Part 2: Tutorial Chapters 2 – 10: Learning Visual Prolog

Chapter 2: Fundamentals of Prolog provides a general introduction to Prolog
from a natural language perspective and discusses how to convert natural
language statements and questions into Prolog facts, rules, and queries.

Chapter 3: Visual Prolog Programs covers Visual Prolog syntax, discusses the
sections of a Visual Prolog program, and introduces programming in Visual
Prolog.

Chapter 4: Unification and Backtracking describes how Visual Prolog solves
problems and assigns values to variables.

Chapter 5: Simple and Compound Objects discusses declaring and building
structures in Visual Prolog.

Chapter 6: Repetition and Recursion explains how to write repetitive
procedures using backtracking and recursion; also introduces recursive structures
and trees.

Chapter 7: Lists and Recursion introduces lists and their use through recursion,
as well as covers general list manipulation.

Chapter 8: Visual Prolog’s Internal Fact Databases discusses using of Visual
Prolog's facts sections for adding facts to your program at run time and for
storing global information.

Chapter 9: Arithmetic and Comparison introduces the full range of arithmetic
and comparison functions built into Visual Prolog and gives examples that
demonstrate how to use them.

Chapter 10: Advanced Techniques controlling the flow analysis, using
reference variables, pointers to predicates, the binary domain, term conversions,
using the dynamic cut, tools and techniques for error and signal handling, and
programming style for efficient programs.

Chapter 11: Classes and Objects gives a short introduction to object oriented
programming and introduces the object mechanism in Visual Prolog.

Part 3: Tutorial Chapters 12 – 16: Using Visual Prolog

Chapter 12: Writing, Reading, and Files introduces I/O in Visual Prolog;
covers reading and writing, and file and directory handling.

Chapter 13: String-Handling in Visual Prolog covers string manipulation,
including string comparison and string conversion, plus constructing and parsing
strings.

 3

Chapter 14: The External Database System covers Visual Prolog's external
database system: chained data, B+ trees, storing data (in EMS, conventional
memory, and hard disk), and sorting data. Includes examples of constructing real
database applications.

Chapter 15: System-Level Programming introduces the low-level control
supported within Visual Prolog: system calls, BIOS, low-level memory
addressing, and bit manipulation.

Chapter 16: Example Prolog Programs provides a diverse group of Prolog
program examples demonstrating some of the elegant ways Prolog solves
complex problems.

Part 4: Reference Chapters 17 – 18: An overview

Chapter 17 Elements of the Language gives a systematic overview of all the
features in the Visual Prolog language. The chapter also introduces modular
programming.

Chapter 18 Interfacing with Other Languages gives a description on how to
interface with C and other languages

PART 1

Introduction to Visual Prolog

6 Visual Prolog Language Tutorial

CHAPTER 1

Using Visual Prolog's Visual Development
Environment

This chapter describes the basic operation of the Visual Prolog system focusing
on running the examples described in this book.

We assume, that you have experience using the Graphical User Interface system,
the windowing system. This might be either 16-bit Windows 3.x or 32-bit
Windows (95/98 and NT/2000). You should thus know about using menus,
closing and resizing windows, loading a file in the File Open dialog etc. If you
do not have this knowledge, you should not start off trying to create an
application that runs under this environment. You must first learn to use the
environment.

If you are a beginner to Prolog, you don’t want to mix learning the Prolog
language with the complexity of creating Windows applications with event
handling and all the Windows options and possibilities. The code for the
examples in this book are platform independent: They can run in DOS text mode,
under UNIX, or with the adding of a little extra code for the User Interface
handling, in a Windowing environment like MS Windows.

We do suggest that you at an early stage work your way through the Guided Tour
in the Getting Started book and try to compile some of the examples in the VPI
subdirectory. This gives you an impression what can be done with Visual Prolog
- just so you know what you should be able to do, when you have learned to
master Visual Prolog.

However, if you are going to seriously use the Visual Prolog system, you need to
learn the basic concepts of Visual Prolog properly. You will not be able to build
a skyscraper without having a solid foundation. In Visual Prolog the foundation
is understanding the Prolog language and the VPI layer.

What Needs to be Installed for This Book?

To run and test the examples described in this book you need during installation
of Visual Prolog from CD:

Chapter 1, Using Visual Prolog's Visual Development Environment 7

• In the dialog Compilers. Install the Visual Development Environment
(VDE). We recommend that you choose the Win32 version.

• In the dialog Libraries. Check ON libraries correspondent to the selected
VDE platform.

• In the dialog Documentation. You must check ON installation of Answers
(Language Tutorial) and Examples (Language Tutorial). We recommend
you also to switch ON installation of all other items listed in the
Documentation dialog.

• In the dialog Final. We recommend you to check ON the Associate 32-bit
VDE with Project File Extensions PRJ & VPR.

Starting the Visual Prolog's Visual Development
Environment

The Visual Prolog's installation program will install a program group with an
Icon, which are normally used to start Visual Prolog's Visual Development
Environment (VDE). However, there are many ways to start an application in the
GUI World, if you prefer another method, you can just start the Visual
Development Environment's executable file VIP.EXE from BIN\WIN\32 (32-bit
Windows version) or BIN\WIN\16 (16-bit Windows version) directories under
the main Visual Prolog directory.

If the Visual Development Environment had an open project (a .PRJ or .VPR
file) the last time the VDE was closed on your computer, it will automatically
reopen this project next time it starts.

If while installation of Visual Prolog's from CD you had checked ON the
Associate 32-bit VDE with Project File Extensions PRJ & VPR, then you can
simply double click on a project file (file name extension .PRJ or .VPR). The
Visual Development Environment will be activated and the selected project will
be loaded.

To run most examples in this manual, you should use Visual Development
Environment's utility Test Goal. The Test Goal utility can be activated with the
menu item Project | Test Goal or simply by the hot key Ctrl+G. For correct
running of these examples with the Test Goal utility, the VDE should use the
special settings of loaded projects. We recommend you to create and always use
the following special TestGoal project.

8 Visual Prolog Language Tutorial

Creating the TestGoal Project for Running the
Examples

To run with the Test Goal utility, Language Tutorial's examples require that
some non-default settings of Visual Prolog's compiler options should be
specified. These options can be specified as the project settings with the
following actions:

1. Start Visual Prolog's VDE.

If this is the first time you start the VDE, then it does not have a loaded
project and you will see the picture like this (also you will be informed that
the default Visual Prolog initialization file is created):

Figure 1.1: Start Visual Development Environment

2. Start creation of a new project.

Select Project | New Project menu item, the Application Expert dialog will
be activated.

3. Specify the Base Directory and the Project Name.

Chapter 1, Using Visual Prolog's Visual Development Environment 9

Suppose that while installation of Visual Prolog you had selected Visual
Prolog's root directory C:\VIP, then the Language Tutorial examples should
be installed into the \DOC\Examples subdirectory of this root directory. In
this case, we recommend you to specify the following Base Directory:

C:\VIP\DOC\Examples\TestGoal

This choice is convenient for future loading of Prolog source files of the
Language Tutorial examples.

In the Project Name, we recommend to specify "TestGoal".

Also check ON the Multiprogrammer Mode and click inside the Name of
.PRJ File control. You will see that the project file name TestGoal.PRJ
appears.

Figure 1.2: Application Expert's General Settings

Specify the Target settings.

In the Application Expert's Target tab, we recommend to select the following
settings:

10 Visual Prolog Language Tutorial

Figure 1.3: Application Expert's Target Settings

Now press the Create button to create the default project files.

4. Set the required Compiler Options for the created TestGoal project.

Select the Options | Project | Compiler Options menu item, the Compiler
Options dialog is activated. Choose the Warnings tab. In this tab:

• Check ON the Nondeterm radio button. This enforces Visual Prolog's
compiler to accept that by default all user-defined predicates are
nondeterministic (can produce more than one solution).

• Check Off: the Non Quoted Symbols, Strong Type Conversion Check,
and Check Type of Predicates. These will suppress some possible
compiler warnings that are not important for understanding of the
Language Tutorial examples.

• As the result the Compiler Options dialog will looks like the following:

Chapter 1, Using Visual Prolog's Visual Development Environment 11

Figure 1.4: The Compiler Options Settings

Press the OK button to save the Compiler Options settings.

Opening an Editor Window

To create a new edit window, you can use the menu command File | New. This
will bring up a new editor window with the title "NONAME".

The VDE's editor is a fairly standard text editor. You can use cursor keys and the
mouse as you are used to in other editors. It supports Cut, Copy and Paste,
Undo and Redo, which you can all activate from the Edit menu. Also the Edit
menu shows the accelerator keys associated for these actions. The editor is
documented in the Visual Development Environment manual.

Running and Testing a Program

To check, that your system is set up properly, you should try to type in the
following text in the window:

GOAL write("Hello world"),nl.

12 Visual Prolog Language Tutorial

This is what is called a GOAL in the Prolog terminology, and this is enough to be
a program that can be executed. To execute the GOAL, you should activate the
menu item Project | Test Goal, or just press the accelerator key Ctrl+G. If your
system is installed properly, your screen will look like the following:

Figure 1.5: The "Hello world" test

The result of the execution will come up in a separate window (on this figure it
has title: [Inactive C:\Vip\Doc\Examples\TestGoal\Obj\goal$000.exe]), which
you must close before you can test another GOAL.

Testing Language Tutorial Examples

As we recommended, you have installed Examples (Language Tutorial) and
Answers (Language Tutorial). You can find the Language Tutorial examples in

Chapter 1, Using Visual Prolog's Visual Development Environment 13

the subdirectory: DOC\EXAMPLES, and answers to exercises in the
subdirectory DOC\ANSWERS.

The examples are named after the chapter they appear in: chCCeNN.pro, where CC
will be 02, 03, 04, etc. according to the chapter number, and NN is the example
number within that chapter (01, 02, 03, etc.).

Testing Examples in Test Goal
You should now try to open one of these examples by Visual Development
Environment, and test it using the Test Goal utility. These involves the following
steps:

1. Start Visual Prolog's VDE.

2. Use the Project | Open Project menu command to open the special
TestGoal project (see above).

3. Use the File | Open command to open one of chCCeNN.pro files.

4. Use the Project | Test Goal command (or press Ctrl+G) to test the GOAL
of the loaded example.

The Test Goal will finds ALL possible solutions for the GOAL and display
values of ALL variables used in the GOAL.

Remarks About Properties of the Test Goal Utility
The Visual Development Environment's Test Goal utility treats the GOAL as a
special program, which it compiles, links, generates the executable from and runs
this executable. The Test Goal internally extends the specified code of the
GOAL in the way enforcing the generated program to find ALL possible
solutions and display values of ALL used variables. The Test Goal utility
compiles this code using the Compiler Options specified to the opened project
(we had specified the recommended Compiler Options for the TestGoal project
above). Notice that the Test Goal utility compiles only the code specified in the
active editor window (it simply ignores code in any other opened editors or the
project modules, if they are). Linking the executable, the Test Goal uses the
EASYWIN strategy (that is described in the Visual Development Environment
manual). Notice that you cannot specify any linking options to the Test Goal;
because it ignores any Make Options specified to the opened project. Therefore,
the Test Goal cannot use any global predicates defined in different modules.
Notice that the Test Goal has restriction on number of variables that can be used
in the GOAL. Currently it is 12 for 32-bit Windows VDE, but this can be
changed without any notification.

14 Visual Prolog Language Tutorial

Testing Examples as Standalone Executables
Most examples in Language Tutorial are intended to be tested with the Test Goal
utility, but some examples, for instance ch04e05.pro, are intended to be tested as
standalone executables. We recommend the following procedure for testing such
examples:

1. Start Visual Prolog's VDE and open the previously created TestGoal project
(see above).

2. Open the file TestGoal.PRO for editing (simply double click on TestGoal
item in the Project window).

3. The Prolog code in the file TestGoal.PRO starts (after the header comment)
with the include directive:

include "TestGoal.INC"

4. Comment this include directive and delete all other Prolog code. Notice that
this include directive can be commented (ignored) for simple examples from
Language Tutorial, but it is required for more complicated programs.

5. Include the file with the example source code, for instance ch04e05.pro.
Notice that filenames in include directives should contain correct paths
relative to the project root directory; therefore, we recommend using the
editor's Insert -> FileName command:

• Type:

include

• Activate the menu command Edit | Insert | FileName; the Get & Insert
FileName dialog is activated. Browse for the required filename
(ch04e05.pro), highlight it and click the Open button. Now the file
TestGoal.PRO should contain the lines:

% include "TestGoal.INC" % Can be commented in simple
examples
include "C:\\VIP_SS\\DOC\\EXAMPLES\\ch04e05.pro"

6. Now you can compile the example source code (ch04e05.pro), create the
correspondent executable file (in this case it will be the file TestGoal.EXE)
and run it as a standalone executable. You can execute all these actions with
one command: Project | Run or simply with the hot key F9.

Chapter 1, Using Visual Prolog's Visual Development Environment 15

Handling Errors

If you, like all programmers do, happen to make some errors in your program
and try to compile the program, then the VDE will display the Errors
(Warnings) window, which contains the list of detected errors. You can double
click on one of these errors to come to the position of the error in the source text.
(Beginning with Visual Prolog v. 5.3, you can click on one of these errors and
press the hot key F1 to display extended information about the selected error.) In
previous versions, you can press F1 to display Visual Prolog's on-line Help.
When in the Help window, click the Search button and type in an error number;
the help topic with extended information about the error will be displayed.

Figure 1.6: Handling Errors

PART 2

Tutorial Chapters 2 – 11: Learning Visual
Prolog

18 Visual Prolog Language Tutorial

CHAPTER 2

Prolog Fundamentals

This is the first in a sequence of chapters giving a step-by-step tutorial
introduction to the Visual Prolog language. We begin this chapter with an
introduction to programming in logic. After that, we discuss some of Prolog's
basic concepts, including clauses, predicates, variables, goals, and matching.

PROgramming in LOGic

In Prolog, you arrive at solutions by logically inferring one thing from something
already known. Typically, a Prolog program isn't a sequence of actions – it's a
collection of facts together with rules for drawing conclusions from those facts.
Prolog is therefore what is known as a declarative language.

Prolog is based on Horn clauses, which are a subset of a formal system called
predicate logic. Don't let this name scare you. Predicate logic is simply a way of
making it clear how reasoning is done. It's simpler than arithmetic once you get
used to it.

Prolog uses a simplified variation of predicate logic syntax because it provides an
easy-to-understand syntax very similar to natural language, and because
computers are not as fast, large, or as inexpensive as we would like. If Prolog
were to accept English statements, the compiler would need to know every
possible way something could be worded in English. In many cases, it would
take many times longer to translate the program into something the computer
understands than it would to run the program. The computer hardware needed to
run such a system would be monstrous.

Prolog includes an inference engine, which is a process for reasoning logically
about information. The inference engine includes a pattern matcher, which
retrieves stored (known) information by matching answers to questions. Prolog
tries to infer that a hypothesis is true (in other words, answer a question) by
questioning the set of information already known to be true. Prolog's known
world is the finite set of facts (and rules) that are given in the program.

One important feature of Prolog is that, in addition to logically finding answers
to the questions you pose, it can deal with alternatives and find all possible

Chapter 2, Prolog Fundamentals 19

solutions rather than only one. Instead of just proceeding from the beginning of
the program to the end, Prolog can actually back up and look for more than one
way of solving each part of the problem.

Predicate logic was developed to easily convey logic-based ideas into a written
form. Prolog takes advantage of this syntax to develop a programming language
based on logic. In predicate logic, you first eliminate all unnecessary words from
your sentences. You then transform the sentence, placing the relationship first
and grouping the objects after the relationship. The objects then become
arguments that the relationship acts upon. For example, the following sentences
are transformed into predicate logic syntax:

Natural Language: Predicate Logic:

A car is fun.
A rose is red.

fun(car).
red(rose).

Bill likes a car if the car is fun. likes(bill, Car) if fun(Car).

Sentences: Facts and Rules
The Prolog programmer defines objects and relations, then defines rules about
when these relations are true. For example, the sentence

Bill likes dogs.

shows a relation between the objects Bill and dogs; the relation is likes. Here is a
rule that defines when the sentence Bill likes dogs is true:

Bill likes dogs i f the dogs are nice.

Facts: What Is Known
In Prolog, a relation between objects is called a predicate. In natural language, a
relation is symbolized by a sentence. In the predicate logic that Prolog uses, a
relation is summarized in a simple phrase – a fact – that consists of the relation
name followed by the object or objects (enclosed in parentheses). As with a
sentence, the fact ends with a period (.).

Here are some more facts expressing "likes" relations in natural language:

Bill likes Cindy.
Cindy likes Bill.
Bill likes dogs.

Here are the same facts, written in Prolog syntax:

20 Visual Prolog Language Tutorial

likes(bill, cindy).
likes(cindy, bill).
likes(bill, dogs).

Facts can also express properties of objects as well as relations; in natural
language "Kermit is green" and "Caitlin is a girl." Here are some Prolog facts that
express these same properties:

green(kermit).
girl(caitlin).

Rules: What You Can Infer from Given Facts
Rules enable you to infer facts from other facts. Another way to say this is that a
rule, as conclusions is a conclusion that is known to be true if one or more other
conclusions or facts are found to be true. Here are some rules concerning a
"likes" relation:

Cindy likes everything that Bill likes.
Caitlin likes everything that is green.

Given these rules, you can infer from the previous facts some of the things that
Cindy and Caitlin like:

Cindy likes Cindy.
Caitlin likes Kermit.

To encode these same rules into Prolog, you only need to change the syntax a
little, like this:

likes(cindy, Something):- likes(bill, Something).
likes(caitlin, Something):- green(Something).

The :- symbol is simply pronounced "if", and serves to separate the two parts of
a rule: the head and the body.

You can also think of a rule as a procedure. In other words, these rules

likes(cindy, Something):- likes(bill, Something)
likes(caitlin, Something):- green(Something).

also mean "To prove that Cindy likes something, prove that Bill likes that same
thing" and "To prove that Caitlin likes something, prove that it is green." In the
same side effects procedural way, a rule can ask Prolog to perform actions other
than proving things – such as writing something or creating a file.

Chapter 2, Prolog Fundamentals 21

Queries
Once we give Prolog a set of facts, we can proceed to ask questions concerning
these facts; this is known as querying the Prolog system. We can ask Prolog the
same type of questions that we would ask you about these relations. Based upon
the known facts and rules given earlier, you can answer questions about these
relations, just as Prolog can.

In natural language, we ask you:

Does Bill like Cindy?

In Prolog syntax, we ask Prolog:

likes(bill, cindy).

Given this query, Prolog would answer

yes

because Prolog has a fact that says so. As a little more complicated and general
question, we could ask you in natural language:

What does Bill like?

In Prolog syntax, we ask Prolog:

likes(bill, What).

Notice that Prolog syntax does not change when you ask a question: this query
looks very similar to a fact. However, it is important to notice that the second
object – What – begins with a capital letter, while the first object – bill – does
not. This is because bill is a fixed, constant object – a known value – but What is
a variable. Variables always begin with an upper-case letter or an underscore.

Prolog always looks for an answer to a query by starting at the top of the facts. It
looks at each fact until it reaches the bottom, where there are no more. Given the
query about what Bill likes, Prolog will return

What=cindy
What=dogs
2 Solutions

This is because Prolog knows

likes(bill, cindy).

and

22 Visual Prolog Language Tutorial

likes(bill, dogs).

We hope that you draw the same conclusion.

If we were to ask you (and Prolog):

What does Cindy like?

likes(cindy, What).

Prolog would answer

What = bill
What = cindy
What = dogs
3 solutions

This is because Prolog knows that Cindy likes Bill, and that Cindy likes what Bill
likes, and that Bill likes Cindy and dogs.

We could ask Prolog other questions that we might ask a person; however, a
question such as "What girl does Bill like?" will yield no solution because
Prolog, in this case, knows no facts about girls, and it can't draw any conclusions
based on material not known (supplied to it). In this example, we have not given
Prolog any relation or property to determine if any of the objects are girls.

Putting Facts, Rules, and Queries Together
1. Suppose you have the following facts and rules:

A fast car is fun.
A big car is nice.
A little car is practical.
Bill likes a car if the car is fun.

When you read these facts, you can deduce that Bill likes a fast car. In much
the same way, Prolog will come to the same conclusion. If no fact were given
about fast cars, then you would not be able to logically deduce what kind of a
car Bill likes. You could take a guess at what kind of a car might be fun, but
Prolog only knows what you tell it; Prolog does not guess.

2. Here's an example demonstrating how Prolog uses rules to answer queries.
Look at the facts and rules in this portion of Program ch02e01.pro:

Chapter 2, Prolog Fundamentals 23

likes(ellen, tennis).
likes(john, football).
likes(tom, baseball).
likes(eric, swimming).
likes(mark, tennis).
likes(bill, Activity):- likes(tom, Activity).

The last line in Program ch02e01.pro is a rule:

likes(bill, Activity):- likes(tom, Activity).

This rule corresponds to the natural language statement

Bill likes an activity if Tom likes that activity.

In this rule, the head is likes(bill, Activity), and the body is likes(tom,
Activity). Notice that there is no fact in this example about Bill liking
baseball. For Prolog to discover if Bill likes baseball, you can give the query

likes(bill, baseball).

When attempting to find a solution to this query, Prolog will use the rule:

likes(bill, Activity):- likes(tom, Activity).

3. Load Program ch02e01.pro into the Visual Prolog's Visual Development
Environment and run it with the Test Goal utility (see Testing Language
Tutorial Examples on page 12).

PREDICATES
likes(symbol,symbol)

CLAUSES
likes(ellen,tennis).
likes(john,football).
likes(tom,baseball).
likes(eric,swimming).
likes(mark,tennis).

likes(bill,Activity):-
likes(tom, Activity).

GOAL
likes(bill, baseball).

The Test Goal replies in the application's window

yes

It has combined the rule

likes(bill, Activity):- likes(tom, Activity).

24 Visual Prolog Language Tutorial

with the fact

likes(tom, baseball).

to decide that

likes(bill, baseball).

Try also this query:

likes(bill, tennis).

The Test Goal replies

no

Visual Prolog replies no to the latest query ("Does Bill like tennis?") because:

• There is no fact that says Bill likes tennis.

• Bill's relationship with tennis can't be inferred using the given rule and the
available facts.

Of course, it may be that Bill absolutely adores tennis in real life, but Visual
Prolog's response is based only upon the facts and the rules you have given it
in the program.

Variables: General Sentences
In Prolog, variables enable you to write general facts and rules and ask general
questions. In natural language, you use variables in sentences all the time. A
typical general statement in English could be

Bill likes the same thing as Kim.

As we mentioned earlier in this chapter, to represent a variable in Prolog, the first
character of the name must be an upper-case letter or an underscore. For
example, in the following line, Thing is a variable.

likes(bill, Thing):- likes(kim, Thing).

In the preceding discussion of rules, you saw this line:

likes(cindy, Something):- likes(bill, Something).

The object Something begins with a capital letter because it is a variable; it must
be able to match anything that Bill likes. It could equally well have been called X
or Zorro.

Chapter 2, Prolog Fundamentals 25

The objects bill and cindy begin with lower-case letters because they are not
variables – instead, they are symbols, having a constant value. Visual Prolog can
also handle arbitrary text strings, much like we've been handling symbols above,
if the text is surrounded by double quotes. Hence, the token bill could have been
written as "Bill", if you wanted it to begin with an upper-case letter.

Overview
1. A Prolog program is made up of two types of phrases (also known as

clauses): facts and rules.

• Facts are relations or properties that you, the programmer, know to be
true.

• Rules are dependent relations; they allow Prolog to infer one piece of
information from another. A rule becomes true if a given set of conditions
is proven to be true. Each rule depends upon proving its conditions to be
true.

2. In Prolog, all rules have two parts: a head and a body separated by the special
:- token.

• The head is the fact that would be true if some number of conditions were
true. This is also known as the conclusion or the dependent relation.

• The body is the set of conditions that must be true so that Prolog can
prove that the head of the rule is true.

3. As you may have already guessed, facts and rules are really the same, except
that a fact has no explicit body. The fact simply behaves as if it had a body
that was always true.

4. Once you give Prolog a set of facts and/or rules, you can proceed to ask
questions concerning these; this is known as querying the Prolog system.
Prolog always looks for a solution by starting at the top of the facts and/or
rules, and keeps looking until it reaches the bottom.

5. Prolog's inference engine takes the conditions of a rule (the body of the rule)
and looks through its list of known facts and rules, trying to satisfy the
conditions. Once all the conditions have been met, the dependent relation (the
head of the rule) is found to be true. If all the conditions can't be matched with
known facts, the rule doesn't conclude anything.

26 Visual Prolog Language Tutorial

Exercises
Write natural language sentences that represent what these Prolog facts might
convey to a human reader. (Remember that, to the computer, these facts are
simple pieces of information that can be used for matching answers to questions.)

1. likes(jeff, painting).

2. male(john).

3. building("Empire State Building", new_york).

4. person(roslin, jeanie, "1429 East Sutter St.",
"Scotts Valley", "CA", 95066).

Write Visual Prolog facts that represent the following natural language
statements:

1. Helen likes pizza.

2. San Francisco is in California.

3. Amy's telephone number is 476-0299.

4. Len's father is Alphonso Grenaldi.

From Natural Language to Prolog Programs

In the first section of this chapter we talked about facts and rules, relations,
general sentences, and queries. Those words are all part of a discussion of logic
and natural language. Now we're going to discuss the same ideas, but we're going
to use more Prolog-ish words, like clauses, predicates, variables, and goals.

Clauses (Facts and Rules)
Basically, there are only two types of phrases that make up the Prolog language;
a phrase can be either a fact or a rule. These phrases are known in Prolog as
clauses. The heart of a Prolog program is made up of clauses.

More About Facts
A fact represents one single instance of either a property of an object or a relation
between objects. A fact is self-standing; Prolog doesn't need to look any further
for confirmation of the fact, and the fact can be used as a basis for inferences.

Chapter 2, Prolog Fundamentals 27

More About Rules
In Prolog, as in ordinary life, it is often possible to find out that something is true
by inferring it from other facts. The Prolog construct that describes what you can
infer from other information is a rule. A rule is a property or relation known to be
true when some set of other relations is known. Syntactically, these relations are
separated by commas, as we illustrate in example 1 below.

Examples of Rules

1. This first example shows a rule that can be used to conclude whether a menu
item is suitable for Diane.

Diane is a vegetarian and eats only what her doctor tells her to eat.

Given a menu and the preceding rule, you can conclude if Diane can order a
particular item on the menu. To do this, you must check to see if the item on
the menu matches the constraints given.

a. Is Food_on_menu a vegetable?

b. Is Food_on_menu on the doctor's list?

c. Conclusion: If both answers are yes, Diane can order Food_on_menu.

In Prolog, a relationship like this must be represented by a rule because the
conclusion is based on facts. Here's one way of writing the rule:

diane_can_eat(Food_on_menu):-
vegetable(Food_on_menu),
on_doctor_list(Food_on_menu).

Notice here the comma after vegetable(Food_on_menu). The comma
introduces a conjunction of several goals, and is simply read as "and"; both
vegetable(Food_on_menu) and on_doctor_list(Food_on_menu) must be true, for
diane_can_eat(Food_on_menu) to be true.

2. Suppose you want to make a Prolog fact that is true if Person1 is the parent of
Person2. This is easy enough; simply state the Prolog fact

parent(paul, samantha).

This shows that Paul is the parent of Samantha. But, suppose your Visual
Prolog fact database already has facts stating father relationships. For
example, "Paul is the father of Samantha":

father(paul, samantha).

28 Visual Prolog Language Tutorial

And you also have facts stating mother relationships; "Julie is the mother of
Samantha":

mother(julie, samantha).

If you already had a collection of facts stating these father/mother
relationships, it would be a waste of time to write parent facts into the fact
database for each parent relationship.

Since you know that Person1 is the parent of Person2 if Person1 is the father
of Person2 or if Person1 is the mother of Person2, then why not write a rule
to convey these constraints? After stating these conditions in natural language,
it should be fairly simple to code this into a Prolog rule by writing a rule that
states the relationships.

parent(Person1, Person2):- father(Person1, Person2).
parent(Person1, Person2):- mother(Person1, Person2).

These Prolog rules simply state that

Person1 is the parent of Person2 if Person1 is the father of Person2.
Person1 is the parent of Person2 if Person1 is the mother of Person2.

3. Here's another example:

A person can buy a car if the person likes the car and the car is for
sale.

This natural language relationship can be conveyed in Prolog with the
following rule:

can_buy(Name, Model):-
person(Name),
car(Model),
likes(Name, Model),

for_sale(Model).

This rule shows the following relationship:

Name can_buy Model if
Name is a person and
Model is a car and
Name likes Model and
Model is for sale.

This Prolog rule will succeed if all four conditions in the body of the rule
succeed.

Chapter 2, Prolog Fundamentals 29

4. Here is a program designed to find solutions to this car-buying problem (test it
as it is described in Testing Language Tutorial Examples on page 12):

/* Program ch02e02.pro */

PREDICATES
can_buy(symbol, symbol)
person(symbol)
car(symbol)
likes(symbol, symbol)
for_sale(symbol)

CLAUSES
can_buy(X,Y):-
person(X),
car(Y),
likes(X,Y),
for_sale(Y).

person(kelly).
person(judy).
person(ellen).
person(mark).

car(lemon).
car(hot_rod).

likes(kelly, hot_rod).
likes(judy, pizza).
likes(ellen, tennis).
likes(mark, tennis).

for_sale(pizza).
for_sale(lemon).
for_sale(hot_rod).

What can Judy and Kelly buy? Who can buy the hot rod? You can try the
following goals:

can_buy(Who, What).
can_buy(judy, What).
can_buy(kelly, What).
can_buy(Who, hot_rod).

Experiment! Add other facts and maybe even a rule or two to this Prolog
program. Test the new program with queries that you make up. Does Prolog
respond in a way you would expect it to?

30 Visual Prolog Language Tutorial

Exercises

1. Write natural-language sentences corresponding to the following Visual
Prolog rules:

eats(Who, What):- food(What), likes(Who, What).

pass_class(Who):- did_homework(Who), good_attendance(Who).

does_not_eat(toby, Stuff):- food(Stuff), greasy(Stuff).

owns(Who, What):- bought(Who, What).

2. Write Visual Prolog rules that convey the meaning of these natural-language
sentences:

a. A person is hungry if that person's stomach is empty.

b. Everybody likes a job if it's fun and it pays well.

c. Sally likes french fries if they're cooked.

d. Everybody owns a car who buys one, pays for it, and keeps it.

Predicates (Relations)
The symbolic name of a relation is called the predicate name. The objects that it
relates are called its arguments; in the fact likes(bill, cindy), the relation likes
is the predicate and the objects bill and cindy are the arguments.

Here are some examples of Prolog predicates with zero or more arguments:

pred(integer, symbol)
person(last, first, gender)
run
insert_mode
birthday(firstName, lastName, date)

As we've shown here, a predicate might not have any arguments at all, but the
use of such a predicate is limited. You can use a query such as
person(rosemont,Name,male) to find out Mr. Rosemont's first name. But what can
you do with the zero-argument query run? You can find out whether the clause
run is in the program, or – if run is the head of a rule, you can evaluate that rule.
This can be useful in a few cases – for instance, you might want to make a
program behave differently depending on whether the clause insert_mode is
present.

Chapter 2, Prolog Fundamentals 31

Variables (General Clauses)
In a simple query, you can use variables to ask Prolog to find who likes tennis.
For example:

likes(X, tennis).

This query uses the letter X as a variable to indicate an unknown person. Variable
names in Visual Prolog must begin with a capital letter (or an underscore), after
which any number of letters (upper-case or lower-case), digits, or underline
characters (_) can be used. For example, the following are valid variable names:

My_first_correct_variable_name
Sales_10_11_86

while the next three are invalid:

1stattempt
second_attempt
"disaster"

(Careful choice of variable names makes programs more readable. For example,

likes(Person, tennis).

is better than

likes(X, tennis).

because Person makes more sense than X.) Now try the goal

GOAL likes(Person, tennis).

Visual Prolog replies

Person=ellen
Person=mark
2 Solutions

because the goal can be solved in just two ways; namely, by taking the variable
Person and successively matching it with the values ellen and mark.

In variable names, except for the first character (which must be an upper-case
letter or an underscore), Visual Prolog allows lower-case or upper-case letters in
any position. One way to make variable names more readable is by using mixed
upper-case and lower-case letters, as in

IncomeAndExpenditureAccount

32 Visual Prolog Language Tutorial

How Variables Get Their Values
You may have noticed that Prolog has no assignment statement; this is a
significant distinction between Prolog and other programming languages.
Variables in Prolog get their values by being matched to constants in facts or
rules.

Until it gets a value, a variable is said to be free; when it gets a value, it becomes
bound. But it only stays bound for the time needed to obtain one solution to the
query; then Prolog unbinds it, backs up, and looks for alternative solutions.

This is a very important point: You can't store information by giving a value to
a variable. Variables are used as part of the pattern-matching process, not as a
kind of information storage.

Take a look at the following example, which uses program ch02e03.pro to
demonstrate how and when variables get their values.

/* Program ch02e03.pro */

PREDICATES
likes(symbol,symbol)

CLAUSES
likes(ellen,reading).
likes(john,computers).
likes(john,badminton).
likes(leonard,badminton).
likes(eric,swimming).
likes(eric,reading).

Consider this query: Is there a person who likes both reading and swimming?

likes(Person, reading), likes(Person, swimming).

Prolog will solve the two parts of this query by searching the program's clauses
from top to bottom. In the first part of the query

likes(Person, reading)

the variable Person is free; its value is unknown before Prolog attempts to find a
solution. On the other hand, the second argument, reading, is known. Prolog
searches for a fact that matches the first part of the query. The first fact in the
program

likes(ellen, reading)

Chapter 2, Prolog Fundamentals 33

is a match (reading in the fact matches reading in the query), so Prolog binds the
free variable Person to the value ellen, the relevant value in the fact. At the same
time, Prolog places a pointer in the list of facts indicating how far down the
search procedure has reached.

Next, in order for the query to be fully satisfied (find a person who likes both
reading and swimming), the second part must also be fulfilled. Since Person is
now bound to ellen, Prolog must search for the fact

likes(ellen, swimming)

Prolog searches for this fact from the beginning of the program, but no match
occurs (because there is no such fact in the program). The second part of the
query is not true when Person is ellen.

Prolog now "unbinds" Person and attempts another solution of the first part of
the query with Person once again a free variable. The search for another fact that
fulfills the first part of the query starts from the pointer in the list of facts. (This
returning to the place last marked is known as backtracking, which we'll cover in
chapter 4.)

Prolog looks for the next person who likes reading and finds the fact likes(eric,
reading). Person is now bound to eric, and Prolog tries once again to satisfy the
second part of the query, this time by looking in the program for the fact

likes(eric, swimming)

This time it finds a match (the last clause in the program), and the query is fully
satisfied. Prolog (the Test Goal) returns

Person=eric
1 Solution

Anonymous Variables
Anonymous variables enable you to unclutter your programs. If you only need
certain information from a query, you can use anonymous variables to ignore the
values you don't need. In Prolog, the anonymous variable is represented by a lone
underscore ("_").

The following parents example demonstrates how the anonymous variable is
used. Load Program ch02e04.pro. into the TestGoal project (see page 13)

34 Visual Prolog Language Tutorial

/* Program ch02e04.pro */

PREDICATES
male(symbol)
female(symbol)
parent(symbol, symbol)

CLAUSES
male(bill).
male(joe).

female(sue).
female(tammy).

parent(bill,joe).
parent(sue,joe).
parent(joe,tammy).

The anonymous variable can be used in place of any other variable. The
difference is that the anonymous variable will never get set to a value.

For example, in the following query, you need to know which people are parents,
but you don't need to know who their children are. Prolog realizes that each time
you use the underscore symbol in the query, you don't need information about
what value is represented in that variable's place.

GOAL
parent(Parent, _).

Given this query, Prolog (the Test Goal) replies

Parent=bill
Parent=sue
Parent=joe
3 Solutions

In this case, because of the anonymous variable, Prolog finds and reports three
parents, but it does not report the values associated with the second argument in
the parent clause.

Anonymous variables can also be used in facts. The following Prolog facts

owns(_, shoes).
eats(_).

could be used to express the natural language statements

Chapter 2, Prolog Fundamentals 35

Everyone owns shoes.
Everyone eats.

The anonymous variable matches anything. A named variable would work
equally well in most cases, but its name would serve no useful purpose.

Goals (Queries)
Up to now, we've been mixing the word query when talking about the questions
you ask Prolog, with the more common name goal, which we'll use from now on.
Referring to queries as goals should make sense: when you query Prolog, you are
actually giving it a goal to accomplish ("Find an answer to this question, if one
exists: ...").

Goals can be simple, such as these two:

likes(ellen, swimming).

likes(bill, What).

or they can be more complex. In the "Variables" section of this chapter, you saw
a goal made up of two parts:

likes(Person, reading), likes(Person, swimming).

A goal made up of two or more parts is known as a compound goal, and each
part of the compound goal is called a subgoal.

Often you need to know the intersection of two goals. For instance, in the
previous parents example, you might also need to know which persons are male
parents. You can get Prolog to search for the solutions to such a query by setting
a compound goal. Load the Program ch02e04.pro (see page 13) and enter the
following compound goal:

Goal parent(Person, _), male(Person).

Prolog will first try to solve the subgoal

parent(Person, _)

by searching the clauses for a match, then binding the variable Person to a value
returned by parent (Person is a parent). The value that parent returns will then
provide the second subgoal with the value on which to search (Is Person – now
bound – a male?).

male(Person)

36 Visual Prolog Language Tutorial

If you entered the goal correctly, Prolog (the Test Goal) will answer

Person=bill
Person=joe
2 Solutions

Compound Goals: Conjunctions and Disjunctions
As you have seen, you can use a compound goal to find a solution where both
subgoal A and subgoal B are true (a conjunction), by separating the subgoals
with a comma, but this is not all. You can also find a solution where subgoal A
or subgoal B is true (a disjunction), by separating the subgoals with a semicolon.
Here's an example program illustrating this idea:

/* Program ch02e05.pro */

predicates
car(symbol,long,integer,symbol,long)
truck(symbol,long,integer,symbol,long)
vehicle(symbol,long,integer,symbol,long)

clauses
car(chrysler,130000,3,red,12000).
car(ford,90000,4,gray,25000).
car(datsun,8000,1,red,30000).

truck(ford,80000,6,blue,8000).
truck(datsun,50000,5,orange,20000).
truck(toyota,25000,2,black,25000).

vehicle(Make,Odometer,Age,Color,Price):-
car(Make,Odometer,Age,Color,Price)
;
truck(Make,Odometer,Age,Color,Price).

Load this program into the TestGoal project (see page 13). Add the goal:

goal
car(Make, Odometer, Years_on_road, Body, 25000).

This goal attempts to find a car described in the clauses that costs exactly
$25,000. Prolog (the Test Goal) replies

Make=ford, Odometer=90000, Years_on_road=4, Body=gray
1 Solution

But this goal is slightly unnatural, since you'd probably rather ask a question like:

Chapter 2, Prolog Fundamentals 37

Is there a car listed that costs less than $25,000?

You can get Visual Prolog to search for a solution by setting this compound goal:

car(Make, Odometer, Years_on_road, Body, Cost), /*subgoal A and*/
Cost < 25000. /*subgoal B */

This is known as a conjunction. To fulfill this compound goal, Prolog will try to
solve the subgoals in order. First, it will try to solve

car(Make, Odometer, Years_on_road, Body, Cost).

and then

Cost < 25000.

with the variable Cost referring to the same value in both subgoals. Try it out
now with the Test Goal (see page 13).

Note: The subgoal Cost < 25000 involves the relation less than, which is built
into the Visual Prolog system. The less than relation is no different from any
other relation involving two numeric objects, but it is more natural to place the
symbol for it between the two objects.

Now we will try to see if the following, expressed in natural language, is true:

Is there a car listed that costs less than $25,000?, or is there a
truck listed that costs less than $20,000?

Prolog will search for a solution if you set this compound goal:

car(Make,Odometer,Years_on_road,Body,Cost), Cost<25000
; /* subgoal A or */

truck(Make,Odometer,Years_on_road,Body,Cost), Cost < 20000.
/* subgoal B */

This kind of compound goal is known as a disjunction. This one sets up the two
subgoals as alternatives, much as though they were two clauses for the same rule.
Prolog will then find any solution that satisfies either of the subgoals.

To fulfill this compound goal, Prolog will try to solve the first subgoal ("find a
car..."), which is composed of these subgoals:

car(Make, Odometer, Years_on_road, Body, Cost.)

and

Cost < 25000.

38 Visual Prolog Language Tutorial

If a car is found, the goal will succeed; if not, Prolog will try to fulfill the second
compound goal ("find a truck..."), made up of the subgoals

truck(Make, Odometer, Years_on_road, Body, Cost),

and

Cost < 20000.

Comments
It's good programming style to include comments in your program to explain
things that might not be obvious to someone else (or to you in six months). This
makes the program easy for you and others to understand. If you choose
appropriate names for variables, predicates, and domains, you'll need fewer
comments, since the program will be more self-explanatory.

Multiple-line comments must begin with the characters /* (slash, asterisk) and
end with the characters */ (asterisk, slash). To set off single-line comments, you
can use these same characters, or you can begin the comment with a percent sign
(%).

/* This is an example of a comment */

% This is also a comment

/***************************************/
/* and so are these three lines */
/***************************************/

/*You can also nest a Visual Prolog comment /*within a comment*/ like
this */

In Visual Prolog you can also use a comment after each subdomain in
declarations of domains:

domains
articles = book(STRING title, STRING author); horse(STRING name)

and in declarations of predicates:

predicates
conv(STRING uppercase,STRING lowercase)

The words title, author, name, uppercase and lowercase will be ignored by the
compiler, but makes the program much more readable.

Chapter 2, Prolog Fundamentals 39

What Is a Match?

In the previous sections of this chapter, we've talked about Prolog "matching
answers to questions", "finding a match", "matching conditions with facts",
"matching variables with constants", and so on. In this section we explain what
we mean when we use the term "match."

There are several ways Prolog can match one thing to another. Obviously,
identical structures match each other;

parent(joe,tammy) matches parent(joe,tammy).

However, a match usually involves one or more free variables. For example,
with X free,

parent(joe,X) matches parent(joe,tammy)

and X takes on (is bound to) the value tammy.

If X is already bound, it acts exactly like a constant. Thus, if X is bound to the
value tammy, then

parent(joe,X) matches parent(joe,tammy) but

parent(joe,X) would not match parent(joe,millie)

The second instance doesn't match because, once a variable becomes bound, its
value can't change.

How could a variable, bindings already be bound when Prolog tries to match it
with something? Remember that variables don't store values – they only stay
bound for the length of time needed to find (or try to find) one solution to one
goal. So the only way a variable could be bound before trying a match is that the
goal involves more than one step, and the variable became bound in a previous
step. For example,

parent(joe,X), parent(X,jenny)

is a legitimate goal; it means, "Find someone who is a child of Joe and a parent
of Jenny." Here X will already be bound when the subgoal parent(X,jenny) is
reached. If there is no solution to parent(X,jenny), Prolog will unbind X and go
back and try to find another solution to parent(joe,X), then see if
parent(X,jenny) will work with the new value of X.

Two free variables can even match each other. For example,

parent(joe,X) matches parent(joe,Y)

40 Visual Prolog Language Tutorial

binding the variables X and Y to each other. As long as the binding lasts, X and Y
are treated as a single variable, and if one of them gets a value, the other one will
immediately have the same value. When free variables are bound to each other
like this, they're called pointers, shared free sharing variables. Some really
powerful programming techniques involve binding together variables that were
originally separate.

In Prolog, variable bindings (values) are passed in two ways: in and out. The
direction in which a value is passed is referred to as its flow pattern. When a
variable is passed into a clause, it is an input argument, signified by (i); when
passed out of a clause, a variable is an output argument, signified by (o).

Summary

These are the ideas we've introduced in this chapter:

1. A Prolog program is made up of clauses, which conceptually are two types
of phrases: facts and rules.

• Facts are relations or properties that you, the programmer, know to be
true.

• Rules are dependent relations; they allow Prolog to infer one piece of
information from another.

2. Facts have the general form:

property(object1, object2, ..., objectN)

or

relation(object1, object2, ..., objectN)

where a property is a property of the objects and a relation is a relation
between the objects. As far as Prolog programming goes, the distinction
doesn't exist and we will refer to both as relations in this book.

3. Each fact given in a program consists of either a relation that affects one or
more objects or a property of one or more objects. For example, in the Prolog
fact

likes(tom, baseball).

the relation is likes, and the objects are tom and baseball; Tom likes baseball.
Also, in the fact

left_handed(benjamin)

Chapter 2, Prolog Fundamentals 41

the property is left_handed and the object is benjamin; in other words,
Benjamin is left-handed.

4. Rules have the general form Head:- Body, which looks like this in a program:

relation(object,object,...,object):-
relation(object,...,object),
.
.

relation(object,...,object).

5. You are free to choose names for the relations and objects in your programs,
subject to the following constraints:

• Object names must begin with a lower-case letter, followed by any
number of characters; characters are upper-case or lower-case letters,
digits, and underscores.

• Properties and relation names must start with a lower-case letter, followed
by any combination of letters, digits, and underscore characters.

6. A predicate is the symbolic name (identifier) for a relation and a sequence of
arguments. A Prolog program is a sequence of clauses and directives, and a
procedure is a sequence of clauses defining a predicate. Clauses that belong to
the same predicate must follow one another.

7. Variables enable you to write general facts and rules and ask general
questions.

• Variable names in Visual Prolog must begin with a capital letter or an
underscore character (_), after which you can use any number of letters
(upper-case or lower-case), digits, or underscores.

• Variables in Prolog get their values by being matched to constants in facts
or rules. Until it gets a value, a variable is said to be free; when it gets a
value, it becomes bound.

• You can't store information globally by binding a value to a variable,
because a variable is only bound within a clause.

8. If you only need certain information from a query, you can use anonymous
variables to ignore the values you don't need. In Prolog, the anonymous
variable is represented by a lone underscore (_).

The anonymous variable can be used in place of any other variable; it matches
anything. The anonymous variable will never get set to a value.

9. Asking Prolog questions about the facts in your program is known as
querying the Prolog system; the query is commonly called a goal. Prolog tries

42 Visual Prolog Language Tutorial

to satisfy a goal (answer the query) by starting at the top of the facts, looking
at each fact until it reaches the bottom.

10. A compound goal is a goal made up of two or more parts; each part of the
compound goal is called a subgoal. Compound goals can be conjunctions
(subgoal A and subgoal B) or disjunctions (subgoal A or subgoal B).

11. Comments make your programs easier to read; you can enclose a comment
with delimiters /* like this */ or precede a single-line comment with a
percent sign, % like this.

12. There are several ways Prolog can match one thing to another:

• Identical structures match each other.

• A free variable matches a constant or a previously-bound variable (and
becomes bound to that value).

• Two free variables can match (and be bound to) each other. As long as the
binding lasts, they are treated as a single variable; if one gets a value, the
other will immediately have the same value.

Chapter 3, Visual Prolog Programs 43

CHAPTER 3

Visual Prolog Programs

The syntax of Visual Prolog is designed to express knowledge about properties
and relationships. You've already seen the basics of how this is done; in Chapter
2 you learned about clauses (facts and rules), predicates, variables, and goals.

Unlike other versions of Prolog, Visual Prolog is a typed Prolog compiler; you
declare the types of the objects that each predicate applies to. The type
declarations allow Visual Prolog programs to be compiled right down to native
machine code, giving execution speeds similar to those of compiled C and
pascal.

We discuss the four basic sections of a Visual Prolog program – where you
declare and define the predicates and arguments, define rules, and specify the
program's goal – in the first part of this chapter. In the second part of this chapter
we take a closer look at declarations and rule syntax. Then, at the end of this
chapter, we briefly introduce the other sections of a Visual Prolog program,
including the facts, constants, and various global sections, and compiler
directives.

Visual Prolog's Basic Program Sections

Generally, a Visual Prolog program includes four basic program sections. These
are the clauses section, the predicates section, the domains section, and the goal
section.

• The clauses section is the heart of a Visual Prolog program; this is where you
put the facts and rules that Visual Prolog will operate on when trying to
satisfy the program's goal.

• The predicates section is where you declare your predicates and the domains
(types) of the arguments to your predicates. (You don't need to declare
Visual Prolog's built-in predicates.)

• The domains section is where you declare any domains you're using that
aren't Visual Prolog's standard domains. (You don't need to declare standard
domains.)

44 Visual Prolog Language Tutorial

• The goal section is where you put the starting goal for a Visual Prolog
program.

The Clauses Section
The clauses section is where you put all the facts and rules that make up your
program. Most of the discussion in Chapter 2 was centered around the clauses
(facts and rules) in your programs; what they convey, how to write them, and so
on.

If you understand what facts and rules are and how to write them in Prolog, you
know what goes in the clauses section. Clauses for a given predicate must be
placed together in the clauses section; a sequence of clauses defining a predicate
is called a procedure.

When attempting to satisfy a goal, Visual Prolog will start at the top of the
clauses section, looking at each fact and rule as it searches for a match. As
Visual Prolog proceeds down through the clauses section, it places internal
pointers next to each clause that matches the current subgoal. If that clause is not
part of a logical path that leads to a solution, Visual Prolog returns to the set
pointer and looks for another match (this is backtracking, which we mentioned in
Chapter 2).

The Predicates Section
If you define your own predicate in the clauses section of a Visual Prolog
program, you must declare it in a predicates section, or Visual Prolog won't
know what you're talking about. When you declare a predicate, you tell Visual
Prolog which domains the arguments of that predicate belong to.

Visual Prolog comes with a wealth of built-in predicates. You don't need to
declare any of Visual Prolog's built-in predicates that you use in your program.
The Visual Prolog on-line help gives a full explanation of the built-in predicates.

Facts and rules define predicates. The predicates section of the program simply
lists each predicate, showing the types (domains) of its arguments. Although the
clauses section is the heart of your program, Visual Prolog gets much of its
efficiency from the fact that you also declare the types of objects (arguments)
that your facts and rules refer to.

Chapter 3, Visual Prolog Programs 45

How to Declare User-Defined Predicates
A predicate declaration begins with the predicate name, followed by an open
(left) parenthesis. After the predicate name and the open parenthesis come zero
or more arguments to the predicate.

predicateName(argument_type1, argument_type2, ..., argument_typeN)

Each argument type is followed by a comma, and the last argument type is
followed by the closing (right) parenthesis. Note that, unlike the clauses in the
clauses section of your program, a predicate declaration is not followed by a
period. The argument types are either standard domains or domains that you've
declared in the domains section.

Predicate Names

The name of a predicate must begin with a letter, followed by a sequence of
letters, digits, and underscores. The case of the letters does not matter, but we
strongly recommend using only a lower-case letter as the first letter in the
predicate name. (Other versions of Prolog don't allow predicate names to begin
with upper-case letters or underscores, and future versions of Visual Prolog
might not, either.) Predicate names can be up to 250 characters long.

You can't use spaces, the minus sign, asterisks, slashes, or other non-
alphanumeric characters in predicate names. Valid naming characters in Visual
Prolog consist of the following:

Upper-case Letters : A, B, ... , Z

Lower-case Letters : a, b, ... , z
Digits : 0, 1, ... , 9
Underscore character : _

All predicate names and arguments can consist of combinations of these
characters, as long as you obey the rules for forming both predicate and argument
names.

Below are a few examples of legal and illegal predicate names.

Legal Predicate Names Illegal Predicate Names

fact [fact]

is_a *is_a*

has_a has/a

patternCheckList pattern-Check-List

46 Visual Prolog Language Tutorial

choose_Menu_Item choose Menu Item

predicateName predicate<Name>

first_in_10 >first_in_10

Predicate Arguments

The arguments to the predicates must belong to known Visual Prolog domains. A
domain can be a standard domain, or it can be one you declare in the domains
section.

Examples

1. If you declare a predicate my_predicate(symbol, integer) in the predicates
section, like this:

PREDICATES
my_predicate(symbol, integer)

you don't need to declare its arguments' domains in a domains section,
because symbol and integer are standard domains. But if you declare a
predicate my_predicate(name, number) in the predicates section, like this:

PREDICATES
my_predicate(name, number)

you will need to declare suitable domains for name and number. Assuming
you want these to be symbol and integer respectively, the domain declaration
looks like this:

DOMAINS
name = symbol
number = integer

PREDICATES
my_predicate(name, number)

2. This program excerpt shows some more predicate and domain declarations:

DOMAINS
person, activity = symbol
car, make, color = symbol
mileage, years_on_road, cost = integer

Chapter 3, Visual Prolog Programs 47

PREDICATES
likes(person, activity)
parent(person, person)
can_buy(person, car)
car(make, mileage, years_on_road, color, cost)
green(symbol)
ranking(symbol, integer)

This excerpt specifies the following information about these predicates and
their arguments:

• The predicate likes takes two arguments (person and activity), both of which
belong to unique symbol domains (which means that their values are
names rather than numbers).

• The predicate parent takes two person arguments, where person is a symbol
type.

• The predicate can_buy takes two arguments, person and car, which are also
both symbol types.

• The predicate car takes five arguments: make and color are of unique
symbol domains, while mileage, years_on_road, and cost are of unique
integer domains.

• The predicate green takes one argument, a symbol: there is no need to
declare the argument's type, because it's of the standard domain symbol.

• The predicate ranking takes two arguments, both of which belong to
standard domains (symbol and integer), so there is no need to declare the
argument types.

Chapter 5, "Simple and Compound Objects," gives more detail about domain
declarations.

The Domains Section

In traditional Prolog there is only one type - the term. We have the same in
Visual Prolog, but we are declaring what the domains of the arguments to the
predicates actually are.

Domains enable you to give distinctive names to different kinds of data that
would otherwise look alike. In a Visual Prolog program, objects in a relation (the
arguments to a predicate) belong to domains; these can be pre-defined domains,
or special domains that you specify.

48 Visual Prolog Language Tutorial

The domains section serves two very useful purposes. First, you can give
meaningful names to domains even if, internally, they are the same as domains
that already exist. Second, special domain declarations are used to declare data
structures that are not defined by the standard domains.

It is sometimes useful to declare a domain when you want to clarify portions of
the predicates section. Declaring your own domains helps document the
predicates that you define by giving a useful name to the argument type.

Examples

1. Here's an example to illustrate how declaring domains helps to document
your predicates:

Frank is a male who is 45 years old.

With the pre-defined domains, you come up with the following predicate
declaration:

person(symbol, symbol, integer)

This declaration will work fine for most purposes. But suppose you want to
maintain your code months after you've finished writing it. The preceding
predicate declaration won't mean much to you in six months. Instead, the
following declarations will help you understand what the arguments in the
predicate declaration stand for:

DOMAINS
name, sex = symbol
age = integer

PREDICATES
person(name, sex, age)

One of the main advantages of this declarations, is that Visual Prolog can
catch type errors, like the following obvious mistake:

same_sex(X, Y) :-
person(X, Sex, _),
person(Sex, Y, _).

Even though name and sex are both defined as symbol, they are not
equivalent to each other. This enables Visual Prolog to detect an error if you
accidentally swap them. This feature is very useful when your programs get
large and complex.

You might be wondering why we don't use special domains for all argument
declarations, since special domains communicate the meaning of the

Chapter 3, Visual Prolog Programs 49

argument so much better. The answer is that once an argument is typed to a
specific domain, that domain can't be mixed with another domain you have
declared, even if the domains are the same! So, even though name and sex are
of the same domain (symbol), they can't be mixed. However, all user-defined
domains can be matched with the pre-defined domains.

2. This next example program will yield a type error when run (see Testing
Language Tutorial Examples on page 12):

/* Program ch03e01.pro */

DOMAINS
product,sum = integer

PREDICATES
add_em_up(sum,sum,sum)
multiply_em(product,product,product)

CLAUSES
add_em_up(X,Y,Sum):-

Sum=X+Y.

multiply_em(X,Y,Product):-
Product=X*Y.

This program does two things: It adds and it multiplies. Add the goal

add_em_up(32, 54, Sum).

Visual Prolog (the Test Goal) will come up with

Sum=86
1 Solution

which is the sum of the two integers you supplied the program.

On the other hand, this program will also multiply two arguments with the
multiply_em predicate. Now experiment with this program. If you need to
figure out what the product of 31 and 13 is, you could enter the goal:

multiply_em(31, 13, Product).

Visual Prolog (the Test Goal) would then respond with the correct answer.

Product=403
1 Solution

But suppose you need the sum of 42 and 17; the goal for this would be

add_em_up(42, 17, Sum).

50 Visual Prolog Language Tutorial

Now you need to double the product of 31 and 17, so you write the following
goal:

multiply_em(31, 17, Sum), add_em_up(Sum, Sum, Answer).

You might expect Visual Prolog (the Test Goal) to return

Sum=527, Answer=1054
1 Solution

But, instead, you get a type error. What happened is that you tried to pass the
resulting value of multiply_em (that is, of domain product), into the first and
second arguments in add_em_up, which have domains of sum. This yields a
type error because product is a different domain than sum. Even though both
domains are really of type integer, they are different domains, and are treated
as such.

So, if a variable is used in more than one predicate within a clause, it must be
declared the same in each predicate. Be sure that you fully understand the
concept behind the type error given here; knowing the concept will avoid
frustrating compiler error messages. Later in this chapter we will describe the
different automatic and explicit type-conversions Visual Prolog offers.

3. To further understand how you can use domain declarations to catch type
errors, consider the following program example:

/* Program ch03e02.pro */

DOMAINS
brand,color = symbol
age = byte
price, mileage = ulong

PREDICATES
car(brand,mileage,age,color,price)

CLAUSES
car(chrysler,130000,3,red,12000).
car(ford,90000,4,gray,25000).
car(datsun,8000,1,black,30000).

Here, the car predicate declared in the predicates section takes five
arguments. One belongs to the age domain, which is of byte type. On the 'x86
family of CPUs, a byte is an 8-bit unsigned integer, which can take on values
between 0 and 255, both inclusive. Similarly, the domains mileage and price
are of type ulong, which is a 32-bit unsigned integer, and the domains brand
and color are of type symbol.

Chapter 3, Visual Prolog Programs 51

We'll discuss the built-in domains in greater detail in a moment. For now,
load this program into the TestGoal project (see page 13) and try each of the
following goals in turn:

car(renault, 13, 40000, red, 12000).
car(ford, 90000, gray, 4, 25000).
car(1, red, 30000, 80000, datsun).

Each goal produces a domain error. In the first case, for example, it's because
age must be a byte. Hence, Visual Prolog can easily detect if someone typing
in this goal has reversed the mileage and age objects in predicate car. In the
second case, age and color have been swapped, and in the third case you get
to find out for yourself where the mixups are.

The Goal Section
Essentially, the goal section is the same as the body of a rule: it's simply a list of
subgoals. There are two differences between the goal section and a rule:

1. The goal keyword is not followed by :-.

2. Visual Prolog automatically executes the goal when the program runs.

It's as if Visual Prolog makes a call to goal, and the program runs, trying to
satisfy the body of the goal rule. If the subgoals in the goal section all succeed,
then the program terminates successfully. If, while the program is running, a
subgoal in the goal section fails, then the program is said to have failed.
(Although, from an external point of view, there isn't necessarily any difference;
the program simply terminates.)

A Closer Look at Declarations and Rules

Visual Prolog has several built-in standard domains. You can use standard
domains when declaring the types of a predicate's arguments. Standard domains
are already known to Visual Prolog and should not be defined in the domains
section.

We'll first look at all the integral ones, shown in Table 3.1.

Table 3.1:Integral Standard Domains

Domain Description and implementation

52 Visual Prolog Language Tutorial

short A small, signed, quantity.

All platforms 16 bits,2s comp -32768 .. 32767

ushort A small, unsigned, quantity.

All platforms 16 bits 0 .. 65535

long A large signed quantity

All platforms 32 bits,2s comp -2147483648 ..
2147483647

ulong A large, unsigned quantity

All platforms 32 bits 0 .. 4294967295

integer A signed quantity, having the natural size for the
machine/platform architecture in question.

16bit platforms 16 bits,2s comp -32768 .. 32767

32bit platforms 32 bits,2s comp -2147483648 ..
2147483647

unsigned

An unsigned quantity, having the natural size for the
machine/platform architecture in question.

16bit platforms 16 bits 0 .. 65535

32bit platforms 32 bits 0 .. 4294967295

byte

All platforms ³ 8 bits 0 .. 255

word

All platforms 16 bits 0 .. 65535

dword

All platforms 32 bits 0 .. 4294967295

Syntactically, a value belonging in one of the integral domains is written as a
sequence of digits, optionally preceded by a minus-sign for the signed domains,
with no white-space. There are also octal and hexadecimal syntaxes for the
integral domains; these will be illustrated in chapter 9.

Chapter 3, Visual Prolog Programs 53

The byte, word, and dword domains are most useful when dealing with machine-
related quantities, except perhaps for the byte; an 8-bit integral quantity can
prove quite relevant, as we have already seen. For general use, the integer and
unsigned quantities are the ones to use, augmented by the short and long (and
their unsigned counterparts) for slightly more specialized applications. Generally,
the most efficient code results from using what's natural for the machine; a short
is not as efficient on a '386 platform as a long, and a long is not as efficient on a
'286 platform as a short, hence the different implementations of integer and
unsigned.

In domain declarations, the signed and unsigned keywords may be used in
conjunction with the byte, word, and dword built-in domains to construct new
integral domains, as in

DOMAINS
i8 = signed byte

creating a new integral domain having a range of -128 to +127.

The other basic domains are shown in table 3.2. Visual Prolog recognizes several
other standard domains, but we cover them in other chapters, after you have a
good grasp of the basics.

Table 3.3: Basic Standard Domains

Domain Description and implementation

char A character, implemented as an unsigned byte.
Syntactically, it is written as a character surrounded
by single quotation marks: 'a'.

54 Visual Prolog Language Tutorial

real

A floating-point number, implemented as 8 bytes in
accordance with IEEE conventions; equivalent to C's
double. Syntactically, a real is written with an
optional sign (+ or -) followed by some digits DDDDDDD,
then an optional decimal point (.) followed by more
digits DDDDDDD, and an optional exponential part (e(+
or -)DDD):

<+|-> DDDDD <.> DDDDDDD <e <+|-> DDD>
Examples of real numbers:

42705 9999 86.72
9111.929437521e238 79.83e+21

Here 79.83e+21 means 79.83 x 10^21, just as in
other languages.
The permitted number range is 1) 10-307 to 1)
10308 (1e-307 to 1e+308). Values from the integral
domains are automatically converted to real numbers
when necessary.

string A sequnce of characters, implemented as a pointer to a zero-
terminated byte array, as in C. Two formats are permitted for
strings:

1. a sequence of letters, numbers and underscores,
provided the first character is lower-case; or

2. a character sequence surrounded by a pair of
double quotation marks.

Examples of strings:
telephone_number "railway ticket" "Dorid Inc"

Strings that you write in the program can be up to 255
characters long. Strings that the Visual Prolog system
reads from a file or builds up internally can be up to 64K
characters long on 16-bit platforms, and (theoretically)
up to 4G long on 32-bit platforms.

symbol A sequence of characters, implemented as a pointer to an
entry in a hashed symbol-table, containing strings. The
syntax is the same as for strings.

Symbols and strings are largely interchangeable as far as your program is
concerned, but Visual Prolog stores them differently. Symbols are kept in a look-
up table, and their addresses, rather than the symbols themselves, are stored to
represent your objects. This means that symbols can be matched very quickly,

Chapter 3, Visual Prolog Programs 55

and if a symbol occurs repeatedly in a program, it can be stored very compactly.
Strings are not kept in a look-up table; Visual Prolog examines them character-
by-character whenever they are to be matched. You must determine which
domain will give better performance in a particular program.

The following table gives some examples of simple objects that belong to the
basic standard domains.

Table 3.4: Simple Objects

"&&", caitlin, "animal lover", b_l_t (symbol or string)

-1, 3, 5, 0 (integer)

3.45, 0.01, -30.5, 123.4e+5 (real)

'a', 'b', 'c' '/', '&' (char)

Typing Arguments in Predicate Declarations
Declaring the domain of an argument in the predicates section is called typing
the argument. For example, suppose you have the following relationship and
objects:

Frank is a male who is 45 years old.

The Prolog fact that corresponds to this natural language relation might be

person(frank, male, 45).

In order to declare person as a predicate with these three arguments, you could
place the following declaration in the predicates section:

person(symbol, symbol, unsigned)

Here, you have used standard domains for all three arguments. Now, whenever
you use the predicate person, you must supply three arguments to the predicate;
the first two must be of type symbol, while the third argument must be an
integer.

If your program only uses standard domains, it does not need a domains section;
you have seen several programs of this type already.

Or, suppose you want to define a predicate that will tell you the position of a
letter in the alphabet. That is,

alphabet_position(Letter, Position)

56 Visual Prolog Language Tutorial

will have Position = 1 if Letter = a, Position = 2 if Letter = b, and so on. The
clauses for this predicate would look like this:

alphabet_position(A_character, N).

If standard domains are the only domains in the predicate declarations, the
program does not need a domains section. Suppose you want to define a
predicate so that the goal will be true if A_character is the N-th letter in the
alphabet. The clauses for this predicate would look like this:

alphabet_position('a', 1).
alphabet_position('b', 2).
alphabet_position('c', 3).
...
alphabet_position('z', 26).

You can declare the predicate as follows:

PREDICATES
alphabet_position(char, unsigned)

and there is no need for a domains section. If you put the whole program
together, you get

PREDICATES
alphabet_position(char, integer)

CLAUSES
alphabet_position('a', 1).
alphabet_position('b', 2).
alphabet_position('c', 3).
/* ... other letters go here ... */
alphabet_position('z', 26).

Here are a few sample goals you could enter:

alphabet_position('a', 1).

alphabet_position(X, 3).

alphabet_position('z', What).

Exercises

1. Program ch03e04.pro is a complete Visual Prolog program that functions as a
mini telephone directory. The domains section is not needed here, since only
standard domains are used.

Chapter 3, Visual Prolog Programs 57

/* Program ch03e04.pro */

PREDICATES
phone_number(symbol,symbol)

CLAUSES
phone_number("Albert","EZY-3665").
phone_number("Betty","555-5233").
phone_number("Carol","909-1010").
phone_number("Dorothy","438-8400").

goal

Add each of these goals in turn to the code of the program ch03e04.pro, then
try them with the Test Goal:

a. phone_number("Carol", Number).

b. phone_number(Who, "438-8400").

c. phone_number("Albert", Number).

d. phone_number(Who, Number).

Now update the clauses. Suppose that Kim shares a condominium with
Dorothy and so has the same phone number. Add this fact to the clauses
section and try the goal

phone_number(Who, "438-8400").

You should get two solutions to this query:

Who=Dorothy
Who=Kim
2 Solutions

2. To illustrate the char domain, program ch03e05.pro defines isletter, which,
when given the goals

isletter('%').
isletter('Q').

will return No and Yes, respectively.
/* Program ch03e05.pro */

PREDICATES
isletter(char)

58 Visual Prolog Language Tutorial

CLAUSES
/* When applied to characters, '<=' means */
/* "alphabetically precedes or is the same as" */
isletter(Ch):-

'a' <= Ch,
Ch <= 'z'.

isletter(Ch):-
'A' <= Ch,
Ch <= 'Z'.

Load Program ch03e05.pro into the TestGoal project (see page 13) and try
each of these goals in turn:

a . isletter('x').

b. isletter('2').

c. isletter("hello").

d. isletter(a).

e. isletter(X).

Goals (c) and (d) will result in a type error message, and (e) will return a Free
variable message, because you can't test whether an unidentified object
follows a or precedes z.

Multiple Arity
The arity of a predicate is the number of arguments that it takes. You can have
two predicates with the same name but different arity. You must group different
arity versions of a given predicate name together in both the predicates and
clauses sections of your program; apart from this restriction, the different arities
are treated as completely different predicates.

/* Program ch03e06.pro */

DOMAINS

person = symbol

PREDICATES

father(person) % This person is a father
father(person, person) % One person is the father of the other person

Chapter 3, Visual Prolog Programs 59

CLAUSES
father(Man):-

father(Man,_).
father(adam,seth).
father(abraham,isaac).

Rule Syntax
Rules are used in Prolog when a fact depends upon the success (truth) of another
fact or group of facts. As we explained in Chapter 2, a Prolog rule has two parts:
the head and the body. This is the generic syntax for a Visual Prolog rule:

HEAD :- <Subgoal>, <Subgoal>, ..., <Subgoal>.

The body of the rule consists of one or more subgoals. Subgoals are separated by
commas, specifying conjunction, and the last subgoal in a rule is terminated by a
period.

Each subgoal is a call to another Prolog predicate, which may succeed or fail. In
effect, calling another predicate amounts to evaluating its subgoals, and,
depending on their success or failure, the call will succeed or fail. If the current
subgoal can be satisfied (proven true), the call returns, and processing continues
on to the next subgoal. Once the final subgoal in a rule succeeds, the call returns
successfully; if any of the subgoals fail, the rule immediately fails.

To use a rule successfully, Prolog must satisfy all of the subgoals in it, creating a
consistent set of variable bindings as it does so. If one subgoal fails, Prolog will
back up and look for alternatives to earlier subgoals, then proceed forward again
with different variable values. This is called backtracking. A full discussion of
backtracking and how Prolog finds solutions is covered in Chapter 4.

Prolog if Symbol vs. IF in Other Languages

As we have mentioned earlier, the :- separating the head and the body of a rule,
is read "if". However, a Prolog if differs from the IF written in other languages,
such as Pascal.

In Pascal, for instance, the condition contained in the IF statement must be met
before the body of the statement can be executed; in other words,

"if HEAD is true, then BODY is true (or: then do BODY)"

This type of statement is known as an if/then conditional. Prolog, on the other
hand, uses a different form of logic in its rules. The head of a Prolog rule is
concluded to be true if (after) the body of the rule succeeds; in other words,

60 Visual Prolog Language Tutorial

"HEAD is true if BODY is true (or: if BODY can be done)"

Seen in this manner, a Prolog rule is in the form of a then/if conditional.

Automatic Type Conversions
When Visual Prolog matches two variables, it's not always necessary that they
belong to the same domain. Also, variables can sometimes be bound to constants
from other domains. This (selective) mixing is allowed because Visual Prolog
performs automatic type conversion (from one domain to another) in the
following circumstances:

• Between strings and symbols.

• Between all the integral domains and also real. When a character is
converted to a numeric value, the number is the ASCII value for that
character.

An argument from a domain my_dom declared in this form

DOMAINS
my_dom = <base domain> /*<base domain> is a standard domain */

can mix freely with arguments from that base domain and all other standard
domains that are compatible with that base domain. (If the base domain is string,
arguments from the symbol domain are compatible; if the base domain is integer,
arguments from the real, char, word, etc., domains are compatible.

These type conversions mean, for example, that you can

• call a predicate that handles strings with a symbol argument, and vice versa

• call a predicate that handles reals with an integer argument

• call a predicate that handles characters with integer values

• use characters in expressions and comparisons without needing to look up
their ASCII values.

There are a number of rules deciding what domain the result of the expression
belongs to, when different domains are mixed. These will be detailed in chapter
9.

Other Program Sections

Now that you're reasonably familiar with the clauses, predicates, domains, and
goal sections of a Visual Prolog program, we'll tell you a little bit about some

Chapter 3, Visual Prolog Programs 61

other commonly-used program sections: the facts section, the constants section,
and the various global sections. This is just an introduction; as you work through
the rest of the tutorials in this book, you'll learn more about these sections and
how to use them in your programs.

The Facts Section
A Visual Prolog program is a collection of facts and rules. Sometimes, while the
program is running, you might want to update (change, remove, or add) some of
the facts the program operates on. In such a case, the facts constitute a dynamic
or internal database of facts; it can change while the program is running. Visual
Prolog includes a special section for declaring the facts in the program that are to
be a part of the dynamic (or changing) database of facts; this is the facts section.

The keyword facts declares the facts section. It is here that you declare the facts
to be included in the dynamic facts section. Visual Prolog includes a number of
built-in predicates that allow easy use of the dynamic facts section. The keyword
facts is synonymous with the obsolete keyword database.

Chapter 8 provides a complete discussion of the facts section and the predicates
used along with it.

The Constants Section
You can declare and use symbolic constants in your Visual Prolog programs. A
constant declaration section is indicated by the keyword constants, followed by
the declarations themselves, using the following syntax:

<Id> = <Macro definition>

<Id> is the name of your symbolic constant, and <Macro definition> is what
you're assigning to that constant. Each <Macro definition> is terminated by a
newline character, so there can only be one constant declaration per line.
Constants declared in this way can then be referred to later in the program.

Consider the following program fragment:

62 Visual Prolog Language Tutorial

CONSTANTS
zero = 0
one = 1
two = 2
hundred = (10*(10-1)+10)
pi = 3.141592653
ega = 3
slash_fill = 4
red = 4

Before compiling your program, Visual Prolog will replace each constant with
the actual string to which it corresponds. For instance:

...,
A = hundred*34, delay(A),
setfillstyle(slash_fill, red),
Circumf = pi*Diam,
...

will be handled by the compiler in exactly the same way as

...,
A = (10*(10-1)+10)*34, delay(A),
setfillstyle(4, 4),
Circumf = 3.141592653*Diam,
...

There are a few restrictions on the use of symbolic constants:

• The definition of a constant can't refer to itself. For example:

my_number = 2*my_number/2 /* Is not allowed */

will generate the error message Recursion in constant definition.

• The system does not distinguish between upper-case and lower-case in a
constants declaration. Consequently, when a constants identifier is used in
the clauses section of a program, the first letter must be lower-case to avoid
confusing constants with variables. So, for example, the following is a valid
construction:

CONSTANTS
Two = 2

GOAL
A=two, write(A).

Chapter 3, Visual Prolog Programs 63

• There can be several constants declaration sections in a program, but
constants must be declared before they are used.

• Declared constants are effective from their point of declaration to the end of
the source file, and in any files included after the declaration. Constant
identifiers can only be declared once. Multiple declarations of the same
identifier will result in the error message: This constant is already defined.

The Global Sections
Visual Prolog allows you to declare some domains, predicates, and clauses in
your program to be global (rather than local); you do this by setting aside
separate global domains, global predicates, and global facts sections at the top
of your program. These global sections are discussed in the chapter 17.

The Compiler Directives

Visual Prolog provides several compiler directives you can add to your program
to tell the compiler to treat your code in specified ways when compiling. You can
also set most of the compiler directives from the Options | Project | Compiler
Options menu item in the Visual Prolog system. Compiler directives are
covered in detail in the chapter 17, but you'll want to know how to use a couple
of them before you get to that chapter, so we introduce the basic ones here.

The include Directive
As you get more familiar with using Visual Prolog, you'll probably find that you
use certain procedures over and over again in your programs. You can use the
include directive to save yourself from having to type those procedures in again
and again.

Here's an example of how you could use it:

1. You create a file (such as MYSTUFF.PRO) in which you declare your
frequently used predicates (using domains and predicates sections) and give
the procedures defining those predicates in a clauses section.

2. You write the source text for the program that will make use of these
procedures.

3. At a natural boundary in your source text, you place the line

include "mystuff.pro"

64 Visual Prolog Language Tutorial

(A natural boundary is anywhere in your program that you can place a
domains, facts, predicates, clauses, or goal section.)

4. When you compile your source text, Visual Prolog will compile the contents
of MYSTUFF.PRO right into the final compiled product of your source text.

You can use the include directive to include practically any often-used text into
your source text, and one included file can in turn include another (but a given
file can only be included once in your program). The include directive can appear
at any natural boundary in your source text. However, you must observe the
restrictions on program structure when you include a file into your source text.

Summary

These are the ideas we've introduced in this chapter:

1. A Visual Prolog program has the following basic structure:

DOMAINS
/* ...
domain declarations
... */

PREDICATES
/* ...
predicate declarations
... */

CLAUSES
/* ...
clauses (rules and facts)
... */

GOAL
/* ...
subgoal_1,
subgoal_2,
etc. */

2. The clauses section is where you put the facts and rules that Visual Prolog
will operate on when trying to satisfy the program's goal.

3. The predicates section is where you declare your predicates and the domains
(types) of the arguments to your predicates. Predicate names must begin with
a letter (preferably lower-case), followed by a sequence of letters, digits, and

Chapter 3, Visual Prolog Programs 65

underscores, up to 250 characters long. You can't use spaces, the minus sign,
asterisks, or slashes in predicate names. Predicate declarations are of the form

PREDICATES
predicateName(argumentType1, argumentType2, ..., argumentTypeN)

argumentType1,..., argumentTypeN are either standard domains or domains
that you've declared in the domains section. Declaring the domain of an
argument and defining the argument's type are the same things.

4. The domains section is where you declare any nonstandard domains you're
using for the arguments to your predicates. Domains in Prolog are like types
in other languages. Visual Prolog's basic standard domains are char, byte,
short, ushort, word, integer, unsigned, long, ulong, dword, real, string, and
symbol; the more specialized standard domains are covered in other chapters.
The basic domain declarations are of the form

DOMAINS
argumentType1,..., argumentTypeN = <standardDomain>

Compound domain declarations are of the form:

argumentType_1,..., argumentType_N = <compoundDomain_1>;
 <compoundDomain_2>;
 < ... >;
 <compoundDomain_M>;

Compound domains haven't been covered in this chapter; you'll see them in
Chapter 5.

5. The goal section is where you put your program's goal (in PDC Prolog we
also used here term internal goal); this allows the program to be compiled,
built and run as standalone executable independent of the Visual
Development Environment. In standalone executables, Visual Prolog only
searches for the first solution for the program goal, and the values to which
goal variables are bound are not displayed.

Some Prolog environments (for instance, the old PDC Prolog environment)
support, so called external goals (as counterpart to term internal goal). When
the PDC Prolog environment runs a program that does not contain an internal
goal, then the environment displays the special dialog in which you can enter
an external goal at run time. With an external goal, Prolog searches for all
goal solutions, and displays the values to which goal variables are bound.
Visual Prolog's Visual Development Environment does not support external
goals. However, for simple programs (like most examples in this Language
Tutorial) you can use the special Visual Development Environment's utility

66 Visual Prolog Language Tutorial

Test Goal. The Test Goal searches for all solutions for the goal, and displays
the values to which the goal variables are bound.

6. The arity of a predicate is the number of arguments that it takes; two
predicates can have the same name but different arity. You must group a
predicate's different arity versions together in both the predicates and clauses
sections, but different arities are treated as completely different predicates.

7. Rules are of the form

HEAD :- <Subgoal1>, <Subgoal2>, ..., <SubgoalN>.

For a rule to succeed, Prolog must satisfy all of its subgoals, creating a
consistent set of variable bindings. If one subgoal fails, Prolog backs up and
looks for alternatives to earlier subgoals, then proceeds forward with different
variable values. This is called backtracking.

8. The :- ("if") in Prolog should not be confused with the IF used in other
languages; a Prolog rule is in the form of a then/if conditional, while IF
statements in other languages are in the form of an if/then conditional.

Chapter 4, Unification and Backtracking 67

CHAPTER 4

Unification and Backtracking

This chapter is divided into four main parts. In the first part, we examine in detail
the process Visual Prolog uses when trying to match a call (from a subgoal) with
a clause (in the clauses section of the program). This search process includes a
procedure known as unification, which attempts to match up the data-structures
embodied in the call with those found in a given clause. In Prolog, unification
implements several of the procedures you might know from other, more
traditional languages – procedures such as parameter passing, case selection,
structure building, structure access, and assignment.

In the second part, we show you how Visual Prolog searches for solutions to a
goal (through backtracking) and how to control a search. This includes
techniques that make it possible for a program to carry out a task that would
otherwise be impossible, either because the search would take too long (which is
less likely with Visual Prolog than with other Prologs) or because the system
would run out of free memory.

In the third part of this chapter, we introduce a predicate you can use to
encourage backtracking, and go into more detail about how you can control
backtracking. We also introduce a predicate you can use to verify that a certain
constraint in your program is (or is not) met.

To shed more light on the subject, in the fourth part of this chapter we review the
more important tutorial material (presented so far) from a procedural perspective.
We show how you can understand the basic aspects of Prolog, a declarative
language, by also looking at them as procedures.

Matching Things Up: Unification

Consider Program ch04e01.pro in terms of how the Test Goal utility (see page
12) will search for all solutions for the goal

written_by(X, Y).

When Visual Prolog tries to fulfill the goal written_by(X, Y), it must test each
written_by clause in the program for a match. In the attempt to match the

68 Visual Prolog Language Tutorial

arguments X and Y with the arguments found in each written_by clause, Visual
Prolog will search from the top of the program to the bottom. When it finds a
clause that matches the goal, it binds values to free variables so that the goal and
the clause are identical; the goal is said to unify with the clause. This matching
operation is called unification.

/* Program ch04e01.pro */

DOMAINS
title,author = symbol
pages = unsigned

PREDICATES
book(title, pages)
written_by(author, title)
long_novel(title)

CLAUSES
written_by(fleming, "DR NO").
written_by(melville, "MOBY DICK").

book("MOBY DICK", 250).
book("DR NO", 310).

long_novel(Title):-
written_by(_, Title),
book(Title, Length),
Length > 300.

Since X and Y are free variables in the goal, and a free variable can be unified
with any other argument (even another free variable), the call (goal) can be
unified with the first written_by clause in the program, as shown here:

written_by(X , Y).
 | |
written_by(fleming, "DR NO").

Visual Prolog makes a match, X becomes bound to fleming, and Y becomes
bound to "DR NO." At this point, Visual Prolog displays

X=fleming, Y=DR NO

Since the Test Goal (see page 12) looks for all solutions for the specified goal,
the goal is also unified with the second written_by clause

written_by(melville,"MOBY DICK").

and the Test Goal executable displays the second solution:

Chapter 4, Unification and Backtracking 69

X=melville, Y=MOBY DICK
2 Solutions

If, on the other hand, you give the program the goal

written_by(X, "MOBY DICK").

Visual Prolog will attempt a match with the first clause for written_by:

written_by(X ,"MOBY DICK").
 | |
written_by(fleming,"DR NO").

Since "MOBY DICK" and "DR NO" do not match, the attempt at unification fails.
Visual Prolog then tries the next fact in the program:

written_by(melville, "MOBY DICK").

This does unify, and X becomes bound to melville.

Consider how Visual Prolog executes the following:

long_novel(X).

When Visual Prolog tries to fulfill a goal, it investigates whether or not the call
can match a fact or the head of a rule. In this case, the match is with

long_novel(Title)

Visual Prolog looks at the clause for long_novel, trying to complete the match by
unifying the arguments. Since X is not bound in the goal, the free variable X can
be unified with any other argument. Title is also unbound in the head of the
long_novel clause. The goal matches the head of the rule and unification is made.
Visual Prolog will subsequently attempt to satisfy the subgoals to the rule.

long_novel(Title):-
written_by(_, Title),
book(Title, Length),
Length>300.

In attempting to satisfy the body of the rule, Visual Prolog will call the first
subgoal in the body of the rule, written_by(_, Title). Notice that, since who
authored the book is immaterial, the anonymous variable (_) appears in the
position of the author argument. The call written_by(_, Title) becomes the
current subgoal, and Prolog searches for a solution to this call.

70 Visual Prolog Language Tutorial

Prolog searches for a match with this subgoal from the top of the program to the
bottom. In doing so, it achieves unification with the first fact for written_by as
follows:

written_by(_, Title),
 | |
written_by(fleming,"DR NO").

The variable Title becomes bound to "DR NO" and the next subgoal, book(Title,
Length), is called with this binding.

Visual Prolog now begins its next search, trying to find a match with the call to
book. Since Title is bound to "DR NO", the actual call resembles book("DR NO",
Length). Again, the search starts from the top of the program. Notice that the first
attempt to match with the clause book("MOBY DICK", 250) will fail, and Visual
Prolog will go on to the second clause of book in search of a match. Here, the
book title matches the subgoal and Visual Prolog binds the variable Length with
the value 310.

The third clause in the body of long_novel now becomes the current subgoal:

Length > 300.

Visual Prolog makes the comparison and succeeds; 310 is greater than 300. At
this point, all the subgoals in the body of the rule have succeeded and therefore
the call long_novel(X) succeeds. Since the X in the call was unified with the
variable Title in the rule, the value to which Title is bound when the rule
succeeds is returned to the call and unified with the variable X. Title has the value
"DR NO" when the rule succeeds, so Visual Prolog will output:

X=DR NO
1 Solution

In the following chapters, we will show several advanced examples of
unification. However, there are still a few basics that need to be introduced first,
such as complex structures. In the next section of this chapter, we'll discuss how
Prolog searches for its solutions.

Backtracking

Often, when solving real problems, you must pursue a path to its logical
conclusion. If this conclusion does not give the answer you were looking for, you
must choose an alternate path. For instance, you might have played maze games
when you were a child. One sure way to find the end of the maze was to turn left

Chapter 4, Unification and Backtracking 71

at every fork in the maze until you hit a dead end. At that point you would back
up to the last fork, and try the right-hand path, once again turning left at each
branch encountered. By methodically trying each alternate path, you would
eventually find the right path and win the game.

Visual Prolog uses this same backing-up-and-trying-again method, called
backtracking, to find a solution to a given problem. As Visual Prolog begins to
look for a solution to a problem (or goal), it might have to decide between two
possible cases. It sets a marker at the branching spot (known as a backtracking
point) and selects the first subgoal to pursue. If that subgoal fails (equivalent to
reaching a dead end), Visual Prolog will backtrack to the backtracking point and
try an alternate subgoal.

Here is a simple example (use the TestGoal see page 13 to run this example):
/* Program ch04e02.pro */

PREDICATES
likes(symbol,symbol)
tastes(symbol,symbol)
food(symbol)

CLAUSES
likes(bill,X):-

food(X),
tastes(X,good).

tastes(pizza,good).
tastes(brussels_sprouts,bad).

food(brussels_sprouts).
food(pizza).

This small program is made up of two sets of facts and one rule. The rule,
represented by the relationship likes, simply states that Bill likes good-tasting
food.

To see how backtracking works, give the program the following goal to solve:

likes(bill, What).

When Prolog begins an attempt to satisfy a goal, it starts at the top
of the program in search of a match.

In this case, it will begin the search for a solution by looking from the top for a
match to the subgoal likes(bill, What).

72 Visual Prolog Language Tutorial

It finds a match with the first clause in the program, and the variable What is
unified with the variable X. Matching with the head of the rule causes Visual
Prolog to attempt to satisfy that rule. In doing so, it moves on to the body of the
rule, and calls the first subgoal located there: food(X).

When a new call is made, a search for a match to that call also
begins at the top of the program.

In the search to satisfy the first subgoal, Visual Prolog starts at the top,
attempting a match with each fact or head of a rule encountered as processing
goes down into the program.

It finds a match with the call at the first fact representing the food relationship.
Here, the variable X is bound to the value brussels_sprouts. Since there is more
than one possible answer to the call food(X), Visual Prolog sets a backtracking
point next to the fact food(brussels_sprouts). This backtracking point keeps
track of where Prolog will start searching for the next possible match for
food(X).

When a call has found a successful match, the call is said to
succeed, and the next subgoal in turn may be tried.

With X bound to brussels_sprouts, the next call made is

tastes(brussels_sprouts, good)

and Visual Prolog begins a search to attempt to satisfy this call, again starting
from the top of the program. Since no clause is found to match, the call fails and
Visual Prolog kicks in its automatic backtracking mechanism. When
backtracking begins, Prolog retreats to the last backtracking point set. In this
case, Prolog returns to the fact food(brussels_sprouts).

Once a variable has been bound in a clause, the only way to free
that binding is through backtracking.

When Prolog retreats to a backtracking point, it frees all the variables set after
that point, and sets out to find another solution to the original call.

The call was food(X), so the binding of brussels_sprouts for X is released.
Prolog now tries to resolve this call, beginning from the place where it left off. It
finds a match with the fact food(pizza)] and returns, this time with the variable X
bound to the value pizza.

Chapter 4, Unification and Backtracking 73

Prolog now moves on to the next subgoal in the rule, with the new variable
binding. A new call is made, tastes(pizza, good)], and the search begins at the
top of the program. This time, a match is found and the goal returns successfully.

Since the variable What in the goal is unified with the variable X in the likes rule,
and the variable X is bound to the value pizza, the variable What is now bound to
the value pizza and Visual Prolog reports the solution

What=pizza
1 Solution

Visual Prolog's Relentless Search for Solutions
As we've described earlier, with the aid of backtracking, Visual Prolog will not
only find the first solution to a problem, but is actually capable of finding all
possible solutions.

Consider Program ch04e03.pro, which contains facts about the names and ages of
some players in a racquet club.

/* Program ch04e03.pro */

DOMAINS
child = symbol
age = integer

PREDICATES
player(child, age)

CLAUSES
player(peter,9).
player(paul,10).
player(chris,9).
player(susan,9).

You'll use Visual Prolog to arrange a ping-pong tournament between the nine-
year-olds in a racquet club. There will be two games for each pair of club
players. Your aim is to find all possible pairs of club players who are nine years
old. This can be achieved with the compound goal:

goal
player(Person1, 9),
player(Person2, 9),
Person1 <> Person2.

In natural language: Find Person1 (age 9) and Person2 (age 9) so that Person1 is
different from Person2.

74 Visual Prolog Language Tutorial

1. Visual Prolog will try to find a solution to the first subgoal player(Person1,
9) and continue to the next subgoal only after the first subgoal is reached. The
first subgoal is satisfied by matching Person1 with peter. Now Visual Prolog
can attempt to satisfy the next subgoal:

player(Person2, 9)

by also matching Person2 with peter. Now Prolog comes to the third and final
subgoal

Person1 <> Person2

2. Since Person1 and Person2 are both bound to peter, this subgoal fails.
Because of this, Visual Prolog backtracks to the previous subgoal, and
searches for another solution to the second subgoal:

player(Person2, 9)

This subgoal is fulfilled by matching Person2 with chris.

3. Now, the third subgoal:

Person1 <> Person2

can succeed, since peter and chris are different. Here, the entire goal is
satisfied by creating a tournament between the two players, chris and peter.

4. However, since Visual Prolog must find all possible solutions to a goal, it
backtracks to the previous goal – hoping to succeed again. Since

player(Person2, 9)

can also be satisfied by taking Person2 to be susan, Visual Prolog tries the
third subgoal once again. It succeeds (since peter and susan are different), so
another solution to the entire goal has been found.

5. Searching for more solutions, Visual Prolog once again backtracks to the
second subgoal, but all possibilities for this subgoal have been exhausted.
Because of this, backtracking now continues back to the first subgoal. This
can be satisfied again by matching Person1 with chris. The second subgoal
now succeeds by matching Person2 with peter, so the third subgoal is
satisfied, again fulfilling the entire goal. Here, another tournament has been
scheduled, this time between chris and peter.

6. Searching for yet another solution to the goal, Visual Prolog backtracks to the
second subgoal in the rule. Here, Person2 is matched to chris and again the
third subgoal is tried with these bindings. The third subgoal fails, since
Person1 and Person2 are equal, so backtracking regresses to the second
subgoal in search of another solution. Person2 is now matched with susan,

Chapter 4, Unification and Backtracking 75

and the third subgoal succeeds, providing another tournament for the racket
club (chris vs. susan).

7. Once again, searching for all solutions, Prolog backtracks to the second
subgoal, but this time without success. When the second subgoal fails,
backtracking goes back to the first subgoal, this time finding a match for
Person1 with susan. In an attempt to fulfill the second subgoal, Prolog
matches Person2 with peter, and subsequently the third subgoal succeeds with
these bindings. A fifth tournament has been scheduled for the players.

8. Backtracking again goes to the second subgoal, where Person2 is matched
with chris. A sixth solution is found for the racquet club, producing a full set
of tournaments.

9. The final solution tried is with both Person1 and Person2 bound to susan.
Since this causes the final subgoal to fail, Visual Prolog must backtrack to the
second subgoal, but there are no new possibilities. Visual Prolog then
backtracks to the first subgoal, but the possibilities for Person1 have also been
exhausted. No more solutions can be found for the goal, so the program
terminates.

Type in this compound goal for the program:

player(Person1, 9),
player(Person2, 9),
Person1 <> Person2.

Verify that Visual Prolog (see how to use the Test Goal utility on page 13)
responds with

Person1=peter, Person2=chris
Person1=peter, Person2=susan
Person1=chris, Person2=peter
Person1=chris, Person2=susan
Person1=susan, Person2=peter
Person1=susan, Person2=chris
6 Solutions

Notice how backtracking might cause Visual Prolog to come up with redundant
solutions. In this example, Visual Prolog does not distinguish that Person1 =
peter is the same thing as Person2 = peter. We will show you later in this
chapter how to control the search Visual Prolog generates.

76 Visual Prolog Language Tutorial

Exercise in Backtracking

Using Program ch04e04.pro, decide what Visual Prolog will reply to the
following goal:

player(Person1, 9), player(Person2, 10).

Check your answer by typing in the exercise and the given goal when you run the
program.

A Detailed Look at Backtracking
With this simple example under your belt, you can take a more detailed look at
how Visual Prolog's backtracking mechanism works. Start by looking at Program
ch04e04.pro in light of the following goal, which consists of two subgoals:

likes(X, wine) , likes(X, books)

When evaluating the goal, Visual Prolog notes which subgoals have been
satisfied and which have not. This search can be represented by a goal tree:

likes (X, wine) likes (X, books)

Before the goal evaluation begins, the goal tree consists of two unsatisfied
subgoals. In the following goal tree diagrams, a subgoal satisfied in the goal tree
is marked with an underline, and the corresponding clause is shown beneath that
subgoal.

/* Program ch04e04.pro */

domains
name,thing = symbol

predicates
likes(name, thing)
reads(name)
is_inquisitive(name)

Chapter 4, Unification and Backtracking 77

clauses
likes(john,wine).
likes(lance,skiing).
likes(lance,books).
likes(lance,films).
likes(Z,books):-

reads(Z),
is_inquisitive(Z).

reads(john).

is_inquisitive(john).

goal
likes(X,wine),likes(X,books).

The Four Basic Principles of Backtracking

In this example, the goal tree shows that two subgoals must be satisfied. To do
so, Visual Prolog follows the first basic principle of backtracking:

Subgoals must be satisfied in order, from top to bottom.

Visual Prolog determines which subgoal it will use when trying to satisfy the
clause according to the second basic principle of backtracking:

Predicate clauses are tested in the order they appear in the program,
from top to bottom.

When executing Program ch04e04.pro, Visual Prolog finds a matching clause
with the first fact defining the likes predicate. Take a look at the goal tree now.

likes (X, wine) likes (X, books)

likes (john, wine)

The subgoal likes(X, wine) matches the fact likes(john, wine) and binds X to
the value john. Visual Prolog tries to satisfy the next subgoal to the right.

78 Visual Prolog Language Tutorial

The call to the second subgoal begins a completely new search with the binding
X = john. The first clause

likes(john, wine)

does not match the subgoal

likes(X, books)

since wine is not the same as books. Visual Prolog must therefore try the next
clause, but lance does not match the value X (because, in this case, X is bound to
john), so the search continues to the third clause defining the predicate likes:

likes(Z, books):- reads(Z), is_inquisitive(Z).

The argument Z is a variable, so it is able to match with X. The second arguments
agree, so the call matches the head of the rule. When X matches Z, the arguments
are unified. With the arguments unified, Visual Prolog will equate the value X
has (which is john) with the variable Z. Because of this, now the variable Z also
has the value john.

The subgoal now matches the left side (head) of a rule. Continued searching is
determined by the third basic principle of backtracking:

When a subgoal matches the head of a rule, the body of that rule
must be satisfied next. The body of the rule then constitutes a new
set of subgoals to be satisfied.

This yields the following goal tree:

likes (X, wine) likes (X, books)

likes (john, wine) likes (Z, books)

is_inquisitive (Z) reads (Z)

The goal tree now includes the subgoals

Chapter 4, Unification and Backtracking 79

reads(Z) and is_inquisitive(Z)

where Z is bound to the value john. Visual Prolog will now search for facts that
match both subgoals. This is the resulting final goal tree:

likes (X, wine) likes (X, books)

likes (john, wine) likes (Z, books)

is_inquisitive (Z)reads (Z)

reads (john) is_inquisitive (john)

According to the fourth basic principle of backtracking:

A goal has been satisfied when a matching fact is found for each of
the extremities (leaves) of the goal tree.

So now the initial goal is satisfied.

Visual Prolog uses the result of the search procedure in different ways,
depending on how the search was initiated. If the goal is a call from a subgoal in
the body of a rule, Visual Prolog attempts to satisfy the next subgoal in the rule
after the call has returned. If the goal is a query from the user, Visual Prolog (see
page 13 how to use the Test Goal utility) replies directly:

X=john
1 Solution

As you saw in Program ch04e04.pro, having once satisfied the goal, Visual
Prolog's Test Goal utility backtracks to find all alternate solutions. It also
backtracks if a subgoal fails, hoping to re-satisfy a previous subgoal in such a
way that the failed subgoal is satisfied by other clauses.

To fulfill a subgoal, Visual Prolog begins a search with the first clause that
defines the predicate. One of two things can then happen:

80 Visual Prolog Language Tutorial

1. It finds a matching clause, in which case the following occurs:

a. If there is another clause that can possibly re-satisfy the subgoal, Visual
Prolog places a pointer (to indicate a backtracking point) next to the
matching clause.

b. All free variables in the subgoal that match values in the clause are
bound to the corresponding values.

c. If the matching clause is the head of a rule, that rule's body is then
evaluated; the body's subgoals must succeed for the call to succeed.

2. It can't find a matching clause, so the goal fails. Visual Prolog backtracks as it
attempts to re-satisfy a previous subgoal. When processing reaches the last
backtracking point, Visual Prolog frees all variables that had been assigned
new values since the backtracking point was set, then attempts to re-satisfy
the original call.

Visual Prolog begins a search from the top of the program. When it backtracks to
a call, the new search begins from the last backtracking point set. If the search is
unsuccessful, it backtracks again. If backtracking exhausts all clauses for all
subgoals, the goal fails.

Backtracking in Standalone Executables
Here is another, slightly more complex, example, illustrating how in Visual
Prolog backtracking works to find the goal solution, when the program is
compiled and run as a standalone executable (see Testing Examples as
Standalone Executables on page 14).

/* Program ch04e05.pro */

predicates
type(symbol, symbol)
is_a(symbol, symbol)
lives(symbol, symbol)
can_swim(symbol)

clauses
type(ungulate,animal).
type(fish,animal).

is_a(zebra,ungulate).
is_a(herring,fish).
is_a(shark,fish).

Chapter 4, Unification and Backtracking 81

lives(zebra,on_land).
lives(frog,on_land).
lives(frog,in_water).
lives(shark,in_water).

can_swim(Y):-
type(X,animal),
is_a(Y,X),
lives(Y,in_water).

goal
can_swim(What),
write("A ",What," can swim\n"),
readchar(_).

When the program is compiled and runs as a standalone executable (for example,
using the menu command Project | Run), Visual Prolog will automatically begin
executing the goal, attempting to satisfy all the subgoals in the goal section.

1. Visual Prolog calls the can_swim predicate with a free variable What. In
trying to solve this call, Visual Prolog searches the program looking for a
match. It finds a match with the clause defining can_swim, and the variable
What is unified with the variable Y.

2. Next, Visual Prolog attempts to satisfy the body of the rule. In doing so,
Visual Prolog calls the first subgoal in the body of the rule, type(X, animal),
and searches for a match to this call. It finds a match with the first fact
defining the type relationship.

3. At this point, X is bound to ungulate. Since there is more than one possible
solution, Visual Prolog sets a backtracking point at the fact type(ungulate,
animal).

4. With X bound to ungulate, Visual Prolog makes a call to the second subgoal
in the rule (is_a(Y, ungulate)), and again searches for a match. It finds one
with the first fact, is_a(zebra, ungulate). Y is bound to zebra and Prolog sets
a backtracking point at is_a(zebra, ungulate).

5. Now, with X bound to ungulate and Y bound to zebra, Prolog tries to satisfy
the last subgoal, lives(zebra, in_water). Prolog tries each lives clause, but
there is no lives(zebra, in_water) clause in the program, so the call fails and
Prolog begins to backtrack in search of another solution.

6. When Visual Prolog backtracks, processing returns to the last point where a
backtracking point was placed. In this case, the last backtracking point was
placed at the second subgoal in the rule, on the fact is_a(zebra, ungulate).

82 Visual Prolog Language Tutorial

7. When Visual Prolog reaches a backtracking point, it frees the variables that
were assigned new values after the last backtracking point and attempts to
find another solution to the call it made at that time. In this case, the call was
is_a(Y, ungulate).

8. Visual Prolog continues down into the clauses in search of another clause that
will match with this one, starting from the point where it previously left off.
Since there are no other clauses in the program that can match this one, the
call fails and Visual Prolog backtracks again in an attempt to solve the
original goal.

9. From this position, the last backtracking point was set at type(ungulate,
animal).

10. Visual Prolog frees the variables set in the original call and tries to find
another solution to the call type(X, animal). The search begins after the
backtracking point. Visual Prolog finds a match with the next type fact in the
program (type(fish, animal)); X is bound to fish, and a new backtracking
point is set at that fact.

11. Visual Prolog now moves down to the next subgoal in the rule; since this is a
new call, the search begins at the top of the program with is_a(Y, fish).

12. Visual Prolog finds a match to this call and Y is bound to herring.

13. Since Y is now bound to herring, the next subgoal called is lives(herring,
in_water). Again, this is a new call, and the search begins from the top of the
program.

14. Visual Prolog tries each lives fact, but fails to find a match and the subgoal
fails.

15. Visual Prolog now returns to the last backtracking point, is_a(herring,
fish).

16. The variables that were bound by this matching are now freed. Starting at the
point where it last left off, Visual Prolog now searches for a new solution to
the call is_a(Y, fish).

17. Visual Prolog finds a match with the next is_a clause, and Y becomes bound
to the symbol shark.

18. Visual Prolog tries the last subgoal again, with the variable Y bound to shark.
It calls lives(shark, in_water); the search begins at the top of the program,
since this is a new call. It finds a match and the last subgoal to the rule
succeeds.

Chapter 4, Unification and Backtracking 83

19. At this point, the body of the can_swim(Y) rule is satisfied. Visual Prolog
returns Y to the call can_swim(What). Since What is bound to Y, and Y is bound
to shark, What is now bound to shark in the goal.

20. Visual Prolog continues processing where it left off in the goal section, and
calls the second subgoal in the goal.

21. Visual Prolog completes the program by outputting

A shark can swim.

and the program terminates successfully.

84 Visual Prolog Language Tutorial

Figure 4.1: How the can_swim Program Works

Chapter 4, Unification and Backtracking 85

Try to follow these steps using the Visual Prolog Debugger. Run the Debugger
from the VDE with the Project | Debug command. When the Debugger window
appears, choose the Debugger's menu command View | Local Variables, and use
the Run | Trace Into command (or F7 hot key) to trace the program execution
and to inspect instantiation of variables. (For more instructions, see the chapter
Debugging Prolog Programs in the Getting Started and the chapter The
Debugger in the Visual Development Environment manuals.)

Controlling the Search for Solutions
Prolog's built-in backtracking mechanism can result in unnecessary searching;
because of this, inefficiencies can arise. For instance, there may be times when
you want to find unique solutions to a given question. In other cases, it may be
necessary to force Visual Prolog to continue looking for additional solutions even
though a particular goal has been satisfied. In cases such as these, you must
control the backtracking process. In this section, we'll show you some techniques
you can use to control Visual Prolog's search for the solutions to your goals.

Visual Prolog provides two tools that allow you to control the backtracking
mechanism: the fail predicate, which is used to force backtracking, and the cut
(signified by !), which is used to prevent backtracking.

Using the fail Predicate
Visual Prolog begins backtracking when a call fails. In certain situations, it's
necessary to force backtracking in order to find alternate solutions. Visual Prolog
provides a special predicate, fail, to force failure and thereby encourage
backtracking. The effect of the fail predicate corresponds to the effect of the
comparison 2 = 3 or any other impossible subgoal. Program ch04e06.pro
illustrates the use of this special predicate.

/* Program ch04e06.pro */

DOMAINS
name = symbol

PREDICATES
father(name, name)
everybody

CLAUSES
father(leonard,katherine).
father(carl,jason).
father(carl,marilyn).

86 Visual Prolog Language Tutorial

everybody:-
father(X,Y),
write(X," is ",Y,"'s father\n"),
fail.

Let one wish to find all solutions to father(X,Y). If he uses the Test Goal utility,
then he can simply use the goal:

goal
father(X,Y).

The Test Goal utility will find ALL solutions to father(X,Y) and display values
of all variables in the following manner:

X=leonard, Y=katherine
X=carl, Y=jason
X=carl, Y=marilyn

3 Solutions

But if you compile this program and run the obtained executable, then Visual
Prolog will find only the first matched solution for father(X,Y). In built
executables, once a goal specified in the program goal section has completely
succeeded, there is nothing that tells Visual Prolog to backtrack. Because of this,
an internal call to father will come up with only one solution and does not
display any variables at all. This definitely is not what you need. However, the
predicate everybody in Program ch04e06.pro uses fail to force backtracking, and
therefore finds all possible solutions.

The object of the predicate everybody is to find ALL solutions to father and to
produce a cleaner response from program runs. Compare the above answers of
the Test Goal utility to the goal father(X,Y) and the answers to the goal:

goal
everybody.

displayed by the generated executable:

leonard is katherine's father
carl is jason's father
carl is marilyn's father

The predicate everybody uses backtracking to generate more solutions for
father(X, Y) by forcing Prolog to backtrack through the body of the everybody
rule:

father(X, Y), write(X," is ",Y,"'s father\n"), fail.

Chapter 4, Unification and Backtracking 87

fail can never be satisfied (it always fails), so Visual Prolog is forced to
backtrack. When backtracking takes place, Prolog backtracks to the last call that
can produce multiple solutions. Such a call is labeled non-deterministic. A non-
deterministic call contrasts with a call that can produce only one solution,
which is a deterministic call.

The write predicate can't be re-satisfied (it can't offer new solutions), so Visual
Prolog must backtrack again, this time to the first subgoal in the rule.

Notice that it's useless to place a subgoal after fail in the body of a rule. Since the
predicate fail always fails, there would be no way of reaching a subgoal located
after fail.

Exercises

1. Load and run Program ch04e06.pro and evaluate the following goals:

a. father(X, Y).
b. everybody.

2. Edit the body of the rule defining everybody so that the rule ends with the call
to the write predicate (delete the call to fail). Now compile and run the
program, giving everybody as the goal. Why doesn't Visual Prolog's Test Goal
find all the solutions as it does with the query father(X, Y)?

3. Repair the call to fail at the end of the everybody rule. Again, give the query
everybody as the goal and start the Test Goal. Why are the solutions to
everybody terminated by no? For a clue, append everybody as a second clause
to the definition of predicate everybody and re-evaluate the goal.

Preventing Backtracking: The Cut
Visual Prolog contains the cut, which is used to prevent backtracking; it's written
as an exclamation mark (!). The effect of the cut is simple: It is impossible to
backtrack across a cut.

You place the cut in your program the same way you place a subgoal in the body
of a rule. When processing comes across the cut, the call to cut immediately
succeeds, and the next subgoal (if there is one) is called. Once a cut has been
passed, it is not possible to backtrack to subgoals placed before the cut in the
clause being processed, and it is not possible to backtrack to other predicates
defining the predicate currently in process (the predicate containing the cut).

There are two main uses of the cut:

88 Visual Prolog Language Tutorial

1. When you know in advance that certain possibilities will never give rise to
meaningful solutions, it's a waste of time and storage space to look for
alternate solutions. If you use a cut in this situation, your resulting program
will run quicker and use less memory. This is called a green cut.

2. When the logic of a program demands the cut, to prevent consideration of
alternate subgoals. This is a red cut.

How to Use the Cut
In this section, we give examples that show how you can use the cut in your
programs. In these examples, we use several schematic Visual Prolog rules (r1,
r2, and r3), which all describe the same predicate r, plus several subgoals (a, b, c,
etc.).

Prevent Backtracking to a Previous Subgoal in a Rule

r1 :- a, b, !, c.

This is a way of telling Visual Prolog that you are satisfied with the first solution
it finds to the subgoals a and b. Although Visual Prolog is able to find multiple
solutions to the call to c through backtracking, it is not allowed to backtrack
across the cut to find an alternate solution to the calls a or b. It is also not allowed
to backtrack to another clause that defines the predicate r1.

As a concrete example, consider Program ch04e07.pro.
/* Program ch04e07.pro */

PREDICATES
buy_car(symbol,symbol)
car(symbol,symbol,integer)
colors(symbol,symbol)

CLAUSES
buy_car(Model,Color):-

car(Model,Color,Price),
colors(Color,sexy),!,
Price < 25000.

car(maserati,green,25000).
car(corvette,black,24000).
car(corvette,red,26000).
car(porsche,red,24000).

Chapter 4, Unification and Backtracking 89

colors(red,sexy).
colors(black,mean).
colors(green,preppy).

In this example, the goal is to find a Corvette with a sexy color and a price that's
ostensibly affordable. The cut in the buy_car rule means that, since there is only
one Corvette with a sexy color in the known facts, if its price is too high there's
no need to search for another car.

Given the goal

buy_car(corvette, Y)

1. Visual Prolog calls car, the first subgoal to the buy_car predicate.

2. It makes a test on the first car, the Maserati, which fails.

3. It then tests the next car clauses and finds a match, binding the variable
Color with the value black.

4. It proceeds to the next call and tests to see whether the car chosen has a sexy
color. Black is not a sexy color in the program, so the test fails.

5. Visual Prolog backtracks to the call to car and once again looks for a
Corvette to meet the criteria.

6. It finds a match and again tests the color. This time the color is sexy, and
Visual Prolog proceeds to the next subgoal in the rule: the cut. The cut
immediately succeeds and effectively "freezes into place" the variable
bindings previously made in this clause.

7. Visual Prolog now proceeds to the next (and final) subgoal in the rule: the
comparison

Price < 25000.

8. This test fails, and Visual Prolog attempts to backtrack in order to find
another car to test. Since the cut prevents backtracking, there is no other way
to solve the final subgoal, and the goal terminates in failure.

Prevent Backtracking to the Next Clause

The cut can be used as a way to tell Visual Prolog that it has chosen the correct
clause for a particular predicate. For example, consider the following code:

90 Visual Prolog Language Tutorial

r(1):- ! , a , b , c.
r(2):- ! , d.
r(3):- ! , c.
r(_):- write("This is a catchall clause.").

Using the cut makes the predicate r deterministic. Here, Visual Prolog calls r
with a single integer argument. Assume that the call is r(1). Visual Prolog
searches the program, looking for a match to the call; it finds one with the first
clause defining r. Since there is more than one possible solution to the call,
Visual Prolog places a backtracking point next to this clause.

Now the rule fires and Visual Prolog begins to process the body of the rule. The
first thing that happens is that it passes the cut; doing so eliminates the possibility
of backtracking to another r clause. This eliminates backtracking points,
increasing the run-time efficiency. It also ensures that the error-trapping clause is
executed only if none of the other conditions match the call to r.

Note that this type of structure is much like a "case" structure written in other
programming languages. Also notice that the test condition is coded into the head
of the rules. You could just as easily write the clauses like this:

r(X) :- X = 1 , ! , a , b , c.
r(X) :- X = 2 , ! , d.
r(X) :- X = 3 , ! , c.
r(_) :- write("This is a catchall clause.").

However, you should place the testing condition in the head of the rule as much
as possible, as doing this adds efficiency to the program and makes for easier
reading.

As another example, consider the following program. Run this program with the
Test Goal.

/* Program ch04e08.pro */

PREDICATES
friend(symbol,symbol)
girl(symbol)
likes(symbol,symbol)

Chapter 4, Unification and Backtracking 91

CLAUSES
friend(bill,jane):-

girl(jane),
likes(bill,jane),
!.

friend(bill,jim):-
likes(jim,baseball),
!.

friend(bill,sue):-
girl(sue).

girl(mary).
girl(jane).
girl(sue).

likes(jim,baseball).
likes(bill,sue).

goal
friend(bill, Who).

Without cuts in the program, Visual Prolog would come up with two solutions:
Bill is a friend of both Jim and Sue. However, the cut in the first clause defining
friend tells Visual Prolog that, if this clause is satisfied, it has found a friend of
Bill and there's no need to continue searching for more friends. A cut of this type
says, in effect, that you are satisfied with the solution found and that there is no
reason to continue searching for another friend.

Backtracking can take place inside the clauses, in an attempt to satisfy the call,
but once a solution is found, Visual Prolog passes a cut. The friend clauses,
written as such, will return one and only one friend of Bill's (given that a friend
can be found).

Determinism and the Cut
If the friend predicate (defined in the previous program) were coded without the
cuts, it would be a non-deterministic predicate (one capable of generating
multiple solutions through backtracking). In many implementations of Prolog,
programmers must take special care with non-deterministic clauses because of
the attendant demands made on memory resources at run time. However, Visual
Prolog makes internal checks for non-deterministic clauses, reducing the burden
on you, the programmer.

However, for debugging (and other) purposes, it can still be necessary for you to
intercede; the check_determ compiler directive is provided for this reason. If
check_determ is inserted at the very beginning of a program, Visual Prolog will

92 Visual Prolog Language Tutorial

display a warning if it encounters any non-deterministic clauses during
compilation.

You can make non-deterministic clauses into deterministic clauses by inserting
cuts into the body of the rules defining the predicate. For example, placing cuts
in the clauses defining the friend predicate causes that predicate to be
deterministic because, with the cuts in place, a call to friend can return one, and
only one, solution.

The not Predicate
This program demonstrates how you can use the not predicate to identify an
honor student: one whose grade point average (GPA) is at least 3.5 and who is
not on probation.

/* Program ch04e10.pro */

DOMAINS
name = symbol
gpa = real

PREDICATES
honor_student(name)
student(name, gpa)
probation(name)

CLAUSES
honor_student(Name):-

student(Name, GPA),
GPA>=3.5,
not(probation(Name)).

student("Betty Blue", 3.5).
student("David Smith", 2.0).
student("John Johnson", 3.7).

probation("Betty Blue").
probation("David Smith").

goal
honor_student(X).

There is one thing to note when using not: The not predicate succeeds when the
subgoal can't be proven true. This results in a situation that prevents unbound
variables from being bound within a not. When a subgoal with free variables is
called from within not, Visual Prolog will return the error message Free
variables not allowed in 'not' or 'retractall'. This happens because, for

Chapter 4, Unification and Backtracking 93

Prolog to bind the free variables in a subgoal, that subgoal must unify with some
other clause and the subgoal must succeed. The correct way to handle unbound
variables within a not subgoal is with anonymous variables.

Here are some examples of correct clauses and incorrect clauses.

likes(bill, Anyone):- /* 'Anyone' is an output argument */
likes(sue, Anyone),
not(hates(bill, Anyone).

In this example, Anyone is bound by likes(sue, Anyone) before Visual Prolog
finds out that hates(bill, Anyone) is not true. This clause works just as it should.

If you rewrite this so that it calls not first, you will get an error message to the
effect that free variables are not allowed in not.

likes(bill, Anyone):- /* This won't work right */
not(hates(bill, Anyone)),
likes(sue, Anyone).

Even if you correct this (by replacing Anyone in not(hates(bill, Anyone)) with
an anonymous variable) so that the clause does not return the error, it will still
return the wrong result.

likes(bill, Anyone):- /* This won't work right */
not(hates(bill, _)),
likes(sue, Anyone).

This clause states that Bill likes Anyone if nothing that Bill hates is known and if
Sue likes Anyone. The original clause stated that Bill likes Anyone if there is
some Anyone that Sue likes and that Bill does not hate.

Example

Always be sure that you think twice when using the not predicate. Incorrect use
will result in an error message or errors in your program's logic. The following is
an example of the proper way to use the not predicate.

/* Program ch04e11.pro */

PREDICATES
likes_shopping(symbol)
has_credit_card(symbol,symbol)
bottomed_out(symbol,symbol)

94 Visual Prolog Language Tutorial

CLAUSES
likes_shopping(Who):-

has_credit_card(Who,Card),
not(bottomed_out(Who,Card)),
write(Who," can shop with the ",Card, " credit card.\n").

has_credit_card(chris,visa).
has_credit_card(chris,diners).
has_credit_card(joe,shell).
has_credit_card(sam,mastercard).
has_credit_card(sam,citibank).

bottomed_out(chris,diners).
bottomed_out(sam,mastercard).
bottomed_out(chris,visa).

goal
likes_shopping(Who).

Exercises

1. Suppose an average taxpayer in the USA is a married US citizen with two
children who earns no less than $500 a month and no more than $2,000 per
month. Define a special_taxpayer predicate that, given the goal
special_taxpayer(fred), will succeed only if fred fails one of the conditions
for an average taxpayer. Use the cut to ensure that there is no unnecessary
backtracking.

2. Players in a certain squash club are divided into three leagues, and players
may only challenge members in their own league or the league below (if there
is one).

Write a Visual Prolog program that will display all possible matches between
club players in the form:

tom versus bill
marjory versus annette

Use the cut to ensure, for example, that

tom versus bill

and

bill versus tom

are not both displayed.

Chapter 4, Unification and Backtracking 95

3. This is an exercise in backtracking, not a test of your ability to solve murder
mysteries. Load and run with the Test Goal the following program.

(Note: Bert is guilty because he has a motive and is smeared in the same stuff
as the victim.)

/* Program ch04e12.pro */

DOMAINS
name,sex,occupation,object,vice,substance = symbol
age=integer

PREDICATES
person(name, age, sex, occupation)
had_affair(name, name)
killed_with(name, object)
killed(name)
killer(name)
motive(vice)
smeared_in(name, substance)
owns(name, object)
operates_identically(object, object)
owns_probably(name, object)
suspect(name)

/* * * Facts about the murder * * */
CLAUSES

person(bert,55,m,carpenter).
person(allan,25,m,football_player).
person(allan,25,m,butcher).
person(john,25,m,pickpocket).

had_affair(barbara,john).
had_affair(barbara,bert).
had_affair(susan,john).

killed_with(susan,club).
killed(susan).

motive(money).
motive(jealousy).
motive(righteousness).

smeared_in(bert, blood).
smeared_in(susan, blood).
smeared_in(allan, mud).
smeared_in(john, chocolate).
smeared_in(barbara,chocolate).

96 Visual Prolog Language Tutorial

owns(bert,wooden_leg).
owns(john,pistol).

/* * * Background knowledge * * */
operates_identically(wooden_leg, club).
operates_identically(bar, club).
operates_identically(pair_of_scissors, knife).
operates_identically(football_boot, club).

owns_probably(X,football_boot):-
person(X,_,_,football_player).

owns_probably(X,pair_of_scissors):-
person(X,_,_,hairdresser).

owns_probably(X,Object):-
owns(X,Object).

/*
 * Suspect all those who own a weapon with *
 * which Susan could have been killed. *
 */

suspect(X):-
killed_with(susan,Weapon) ,
operates_identically(Object,Weapon) ,
owns_probably(X,Object).

/*
 * Suspect men who have had an affair with Susan. *
 */

suspect(X):-
motive(jealousy),
person(X,_,m,_),
had_affair(susan,X).

/*
 * Suspect females who have had an *
 * affair with someone that Susan knew. *
 */

suspect(X):-
motive(jealousy),
person(X,_,f,_),
had_affair(X,Man),
had_affair(susan,Man).

Chapter 4, Unification and Backtracking 97

/*
 * Suspect pickpockets whose motive could be money. *
 */

suspect(X):-
motive(money),
person(X,_,_,pickpocket).

killer(Killer):-
person(Killer,_,_,_),
killed(Killed),
Killed <> Killer, /* It is not a suicide */
suspect(Killer),
smeared_in(Killer,Goo),
smeared_in(Killed,Goo).

goal
killer(X).

Prolog from a Procedural Perspective

Now that you've read chapters 2, 3, and the first three parts of this chapter, you
should have a pretty good understanding of the basics of Prolog programming
and using Visual Prolog. Remember, Prolog is a declarative language, which
means that you describe a problem in terms of facts and rules and let the
computer figure out how to find a solution. Other programming languages – such
as Pascal, BASIC, and C – are procedural, which means that you must write
subroutines and functions that tell the computer exactly what steps to go through
in order to solve the problem.

We're going to back up now and review of some of the material you've just
learned about Prolog, but this time we're going to present it from a procedural
perspective.

How Rules and Facts Are Like Procedures
It's easy to think of a Prolog rule as a procedure definition. For instance, the rule

likes(bill,Something):- likes(cindy,Something).

means,

"To prove that Bill likes something, prove that Cindy likes it."

With this in mind, you can see how procedures like

98 Visual Prolog Language Tutorial

say_hello:- write("Hello"), nl.

and

greet:-
write("Hello, Earthlings!"),
nl.

correspond to subroutines and functions in other programming languages.

You can even think of Prolog facts of as procedures; for instance, the fact

likes(bill, pasta).

means

"To prove that Bill likes pasta, do nothing – and by the way, if the arguments
Who and What in your query likes(Who, What) are free variables, you can
bind them to bill and pasta, respectively."

Some programming procedures that you might be familiar with from other
languages are case statements, boolean tests, GoTo statements, and
computational returns. In the next sections, by reiterating what we've already
covered from a different (procedural) point of view, we'll show you how Prolog
rules can perform these same functions.

Using Rules Like Case Statements
One big difference between rules in Prolog and procedures in other languages is
that Prolog allows you to give multiple alternative definitions of the same
procedure. This came up with the "parent" program earlier on page 34; a person
can be a parent by being a father or by being a mother, so the definition of
"parent" is made up of two rules.

You can use multiple definitions like you use a Pascal case statement by writing
a different definition for each argument value (or set of argument values). Prolog
will try one rule after another until it finds a rule that matches, then perform the
actions that rule specifies, as in Program ch04e13.pro.

/* Program ch04e13.pro */

PREDICATES
action(integer)

Chapter 4, Unification and Backtracking 99

CLAUSES
action(1):-

nl,
write("You typed 1."),nl.

action(2):-
nl,
write("You typed two."),nl.

action(3):-
nl,
write("Three was what you typed."),nl.

action(N):-
nl,
N<>1, N<>2, N<>3,
write("I don't know that number!"),nl.

GOAL
write("Type a number from 1 to 3: "),
readint(Choice),
action(Choice).

If the user types 1, 2, or 3, action will be called with its argument bound to the
appropriate value, and it will match only one of the first three rules.

Performing Tests within the Rule
Look more closely at the fourth clause for action. It will match whatever
argument it's called with, binding X to that value. So you have to make sure that
it doesn't print I don't know that number unless the number is indeed out of
range. That's the purpose of the subgoals

X<>1, X<>2, X<>3

where <> means not equal. In order to print I don't know that number, Prolog
must first prove that X is not 1, 2, or 3. If any of these subgoals fail, Prolog will
try to back up and find alternatives – but there aren't any alternatives, so the rest
of the clause will never be executed.

Notice that action relies on Choice being bound. If you call action with a free
variable as an argument, the compiler would raise an error.

The cut as a GoTo
Program ch04e13.pro is somewhat wasteful because, after choosing and
executing the correct rule, Prolog still keeps looking for alternatives and has to
find out the hard way that the last rule doesn't apply.

100 Visual Prolog Language Tutorial

It would save time and memory if you could tell Prolog to stop looking for
alternatives. And you can, by using the cut, which means,

"If you get this far, don't do any backtracking within this rule, and don't look
for any alternatives to this rule."

In other words, "Burn your bridges behind you." Backtracking is still possible,
but only at a higher level. If the current rule was called by another rule, and the
higher rule has alternatives, they can still be tried. But the cut rules out
alternatives within, and alternatives to, the present rule.

Using cuts, the program can be rewritten as follows:
/* Program ch04e14.pro */

PREDICATES
action(integer)

CLAUSES
action(1):-!,

nl,
write("You typed 1.").

action(2):-!,
nl,
write("You typed two.").

action(3):-!,
nl,
write("Three was what you typed.").

action(_):-
write("I don't know that number!").

GOAL
write("Type a number from 1 to 3: "),
readint(Num),
action(Num),nl.

The cut has no effect unless it is actually executed. That is, in order to perform a
cut, Prolog must actually get into the rule containing the cut and reach the point
where the cut is located.

The cut can be preceded by other tests, like this:

action(X) :- X>3, !, write("Too high.").

In this rule, the cut won't have any effect unless the subgoal X>3 succeeds first.

Notice that the order of the rules is now significant. In ch04e13.pro, you could
have written the rules in any order; only one of them will match any particular

Chapter 4, Unification and Backtracking 101

number. But in Program ch04e14.pro you must make sure that the computer
doesn't even try the rule that prints I don't know that number unless all of the
preceding rules have been tried (and have not executed their cuts).

The cuts in ch04e14.pro are what some people call red cuts – cuts that change the
logic of the program. If you had kept the tests X<>1, X<>2, and X<>3, changing the
program only by inserting a cut in each clause, you would have been using green
cuts – cuts that save time in a program that would be equally correct without
them. The efficiency gained is not as great, but there is less risk of making an
error in the program.

The cut is a powerful, but messy, Prolog operation. In this respect it resembles
the GoTo statement in other programming languages – you can do many things
with it, but it can make your program really hard to understand.

Returning Computed Values
As we have seen, a Prolog rule or fact can return information to the goal that
called it. This is done by binding arguments that were previously unbound. The
fact

likes(bill, cindy).

returns information to the goal

likes(bill, Who).

by binding Who to cindy.

A rule can return the results of a computation the same way. Here's a simple
example:

/* Program ch04e15.pro */

PREDICATES
classify(integer,symbol)

CLAUSES
classify(0,zero).
classify(X,negative):-

X < 0.
classify(X,positive):-

X > 0.

The first argument of classify must always be either a constant or a bound
variable. The second argument can be either bound or unbound; it gets matched

102 Visual Prolog Language Tutorial

with the symbol zero, negative, or positive, depending on the value of the first
argument.

Here are some examples of how rules can return values:

1. You can ask (using the Test Goal) whether 45 is positive by giving the goal:

Goal classify(45, positive).

yes

Because 45 is greater than 0, only the third clause of classify can succeed. In
doing so, it matches the second argument with positive. But the second
argument is already positive, so the match succeeds, and you get the answer
yes.

2. Conversely, if the match fails, you get no:

Goal classify(45, negative).

no

What happens is this:

• Prolog tries the first clause, but the first argument won't match 0 (nor does
the second argument match zero).

• Then it tries the second clause, binding X to 45, but the test X<0 fails.

• So it backs out and tries the third clause, but this time the second arguments
don't match.

3. To get an actual answer, rather than just yes or no, you must call classify with
the second argument free:

Goal classify(45, What).

What=positive
1 Solution

Here's what really takes place in this case:

a. The goal classify(45, What) won't match the head of the first clause,
classify(0, zero), because 45 doesn't match 0. So the first clause can't
be used.

b. Again, the goal classify(45, What) matches the head of the second
clause, classify(X, negative), binding X to 45 and negative to What.
But then the subgoal X<0, fails, because X is 45 and it is not true that

Chapter 4, Unification and Backtracking 103

45<0. So Prolog backs out of this clause, undoing the variable bindings
just created.

c. Finally, classify(45, What) matches classify(X, positive), binding X
to 45 and What to positive. The test X>0 succeeds. Since this is a
successful solution, Prolog doesn't backtrack; it returns to the calling
procedure (which in this case is the goal that you typed). And since the
variable X belongs to the calling procedure, that procedure can use its
binding – in this case, to print out the value automatically.

Summary

In this chapter we've introduced unification, backtracking, determinism, the
predicates not and fail, and the cut (!), and we've reviewed the important parts of
the tutorial information up to this point from a procedural perspective.

1. Prolog facts and rules receive information by being called with arguments
that are constants or bound variables; they return information to the calling
procedure by binding variable arguments that were unbound.

2. Unification is the process of matching two predicates and assigning free
variables to make the predicates identical. This mechanism is necessary so
Prolog can identify which clauses to call and bind values to variables. These
are the major points about matching (unification) presented in this chapter:

a. When Prolog begins an attempt to satisfy a goal, it starts at the top of the
program in search of a match.

b. When a new call is made, a search for a match to that call also begins at
the top of the program.

c. When a call has found a successful match, the call is said to return, and
the next subgoal in turn can be tried.

d. Once a variable has been bound in a clause, the only way to free that
binding is through backtracking.

3. Backtracking is the mechanism that instructs Prolog where to go to look for
solutions to the program. This process gives Prolog the ability to search
through all known facts and rules for a solution. These are the four basic
principles of backtracking given in this chapter:

a. Subgoals must be satisfied in order, from top to bottom.

b. Predicate clauses are tested in the order they appear in the program, from
top to bottom.

104 Visual Prolog Language Tutorial

c. When a subgoal matches the head of a rule, the body of that rule must be
satisfied next. The body of the rule then constitutes a new set of subgoals
to be satisfied.

d. A goal has been satisfied when a matching fact is found for each of the
extremities (leaves) of the goal tree.

4. A call that can produce multiple solutions is non-deterministic, while a call
that can produce one and only one solution is deterministic.

5. Visual Prolog provides three tools for controlling the course of your
program's logical search for solutions: these are the two predicates fail and
not, and the cut.

• The fail predicate always fails; it forces backtracking in order to find
alternate solutions.

• The not predicate succeeds when its associated subgoal can't be proven true.

• The cut prevents backtracking.

6. It's easy to think of a Prolog rule as a procedure definition. From a procedural
perspective, rules can function as case statements, perform boolean tests, act
like GoTo statements (using the cut), and return computed values.

Chapter 5, Simple and Compound Objects 105

CHAPTER 5

Simple and Compound Objects

So far, we've only shown you a few kinds of Visual Prolog data objects, such as
numbers, symbols, and strings. In this chapter we discuss the whole range of data
objects that Visual Prolog can create, from simple to compound objects.

We also show the different types of data structures and data objects that a Visual
Prolog program can contain. Because the standard domains do not cover some of
the compound data structures, we explain how to declare these compound data
structures in both the domains section and the predicates section of your
programs.

Simple Data Objects

A simple data object is either a variable or a constant. Don't confuse this use of
the word "constant" with the symbolic constants you define in the constants
section of a program. What we mean here by a constant, is anything identifying
an object not subject to variation, such as a character (a char), a number (an
integral value or a real), or an atom (a symbol or string).

Variables as Data Objects
Variables, which we've discussed in chapter 2, must begin with an upper-case
letter (A-Z) or an underscore (_). A single underscore represents an anonymous
variable, which stands for a "don't care what it is" situation. In Prolog, a variable
can bind with any legal Prolog argument or data object.

Prolog variables are local, not global. That is, if two clauses each contain a
variable called X, these Xs are two distinct variables. They may get bound to each
other if they happen to be brought together during unification, but ordinarily they
have no effect on each other.

Constants as Data Objects
Constants include characters, numbers, and atoms. Again, don't confuse
constants in this context with the symbolic constants defined in the constants

106 Visual Prolog Language Tutorial

section of a program. A constant's value is its name. That is, the constant 2 can
only stand for the number 2, and the constant abracadabra can only stand for the
symbol abracadabra.

Characters
Characters are char type. The printable characters (ASCII 32-127) are the digits
0-9, upper-case letters A-Z, lower-case letters a-z, and the punctuation and
familiar TTY characters. Characters outside this range may not be portable
between different platforms; in particular, characters less than ASCII 32 (space)
are control characters, traditionally used by terminals and communication
equipment.

A character constant is simply written as the character you want, enclosed by
single quotes:

'a' '3'
'*' '{'
'W' 'A'

If, however, you want to specify a backslash or a single quote itself as the
character, precede it by a backslash (\):

'\\' backslash '\'' single quote.

There are a few characters that perform a special function, when preceded by the
escape character:

'\n' Newline (linefeed)
'\r' Carriage return.
'\t' Tab (horizontal)

Character constants can also be written as their ASCII codes, preceded by the
escape character, like this:

'\225' ß
'\3' %]

but the exact character displayed by more exotic ASCII values will vary
depending on your video-card/terminal.

Numbers
Numbers are either from one of the integral domains (see Table 3.1 on page 51),
or the real domain. Real numbers are stored in the IEEE standard format and
range from 1e-308 to 1e308 (10-308 to 10+308). Examples are:

Chapter 5, Simple and Compound Objects 107

Integers Real Numbers

3 3.

-77 34.96

32034 -32769

-10 4e27

0 -7.4e-296

Atoms
An atom is either a symbol or a string. The distinction between these is largely a
question about machine-representation and implementation, and is generally not
syntactically visible. When an atom is used as an argument in a predicate call, it
is the declaration for the predicate that determines if that argument should be
implemented as a string or a symbol.

Visual Prolog performs an automatic type conversion between the string domain
and the symbol domain, so you can use symbol atoms for string domains and
string atoms for the symbol domains. However, there is a loose convention
stating that anything in double quotes should be considered a string, while
anything not needing to be quoted to be syntactically valid is a symbol:

• Symbol atoms are names starting with a lower-case letter, and containing
only letters, digits, and underscores.

• String atoms are bound within double quotes and can contain any
combination of characters, except ASCII NULL (0, binary zero), which
marks the end of the string.

Symbol Atoms String Atoms

food "Jesse James"

rick_Jones_2nd "123 Pike street"

fred_Flintstone_1000_Bc_Rd_Bedr
ock

"jon"

a "a"

new_york "New York"

pdcProlog "Visual Prolog, by Prolog
Development Center"

As far as the string/symbol domain interchangeability goes, this distinction is not
important. However, things such as predicate names and functors for compound
objects (introduced below) must follow the syntactic conventions for symbols.

108 Visual Prolog Language Tutorial

Compound Data Objects and Functors

Compound data objects allow you to treat several pieces of information as a
single item in such a way that you can easily pick them apart again. Consider, for
instance, the date April 2, 1988. It consists of three pieces of information – the
month, day, and year – but it's useful to treat the whole thing as a single object
with a treelike structure:

 DATE
 / | \
October 15 1991

You can do this by declaring a domain containing the compound object date:

DOMAINS
date_cmp = date(string,unsigned,unsigned)

and then simply writing e.g.

..., D = date("October",15,1991), ...

This looks like a Prolog fact, but it isn't here – it's just a data object, which you
can handle in much the same way as a symbol or number. It begins with a name,
usually called a functor (in this case date), followed by three arguments.

Note carefully that a functor in Visual Prolog has nothing to do with a function in
other programming languages. A functor does not stand for some computation
to be performed. It's just a name that identifies a kind of compound data object
and holds its arguments together.

The arguments of a compound data object can themselves be compound. For
instance, you might think of someone's birthday as an information structure like
this:

 BIRTHDAY
 / \
 / \
 person date
 / \ / | \
"Per" "Bilse" "Apr" 14 1960

In Prolog you would write this as:

birthday(person("Per","Bilse"),date("Apr",14,1960))

Chapter 5, Simple and Compound Objects 109

In this example, there are two parts to the compound object birthday: the object
person("Per", "Bilse") and the object date("Apr", 14, 1960). The functors of
these data objects are person and date.

Unification of Compound Objects
A compound object can unify either with a simple variable or with a compound
object that matches it (perhaps containing variables as parts of its internal
structure). This means you can use a compound object to pass a whole collection
of items as a single object, and then use unification to pick them apart. For
example,

date("April",14,1960)

matches X and binds X to date("April",14,1960).

Also

date("April",14,1960)

matches date(Mo,Da,Yr) and binds Mo to "April", Da to 14, and Yr to 1960.

Some examples of programming with compound objects follow in the next
sections.

Using the Equal Sign to Unify Compound Objects
Visual Prolog performs unification in two places. The first is when a call or goal
matches the head of a clause. The second is the across the equal (=) sign, which
is actually an infix predicate (a predicate that is located between its arguments
rather than before them).

Visual Prolog will make the necessary bindings to unify the objects on both sides
of the equal sign. This is useful for finding the values of arguments within a
compound object. For example, the following code excerpt tests if two people
have the same last name, then gives the second person the same address as the
first.

110 Visual Prolog Language Tutorial

/* Program ch05e01.pro */

DOMAINS
person = person(name,address)
name = name(first,last)
address = addr(street,city,state)
street = street(number,street_name)
city,state,street_name = string
first,last = string
number = integer

GOAL
P1 = person(name(jim,mos),addr(street(5,"1st st"),igo,"CA")),
P1 = person(name(_,mos),Address),
P2 = person(name(jane,mos),Address),
write("P1=",P1),nl,
write("P2=",P2),nl.

Treating Several Items as One
Compound objects can be regarded and treated as single objects in your Prolog
clauses, which greatly simplifies programming. Consider, for example, the fact

owns(john, book("From Here to Eternity", "James Jones")).

in which you state that John owns the book From Here to Eternity, written by
James Jones. Likewise, you could write

owns(john, horse(blacky)).

which can be interpreted as

John owns a horse named blacky.

The compound objects in these two examples are

book("From Here to Eternity", "James Jones")

and

horse(blacky)

If you had instead written two facts:

owns(john, "From Here to Eternity").
owns(john, blacky).

Chapter 5, Simple and Compound Objects 111

you would not have been able to decide whether blacky was the title of a book or
the name of a horse. On the other hand, you can use the first component of a
compound object – the functor – to distinguish between different objects. This
example used the functors book and horse to indicate the difference between the
objects.

Remember: Compound objects consist of a functor and the objects belonging to
that functor, as follows:

functor(object1, object2, ..., objectN)

An Example Using Compound Objects
An important feature of compound objects allows you to easily pass a group of
values as one argument. Consider a case where you are keeping a telephone
database. In your database, you want to include your friends' and family
members' birthdays. Here is a section of code you might have come up with:

PREDICATES
phone_list(symbol, symbol, symbol, symbol, integer, integer)

/* (First, Last, Phone, Month, Day, Year) */

CLAUSES
phone_list(ed, willis, 422-0208, aug, 3, 1955).
phone_list(chris, grahm, 433-9906, may, 12, 1962).

Examine the data, noticing the six arguments in the fact phone_list; five of these
arguments can be broken down into two compound objects, like this:

 person birthday
/ \ / | \

First Name Last Name Month Day Year

It might be more useful to represent your facts so that they reflect these
compound data objects. Going back a step, you can see that person is a
relationship, and the first and last names are the objects. Also, birthday is a
relationship with three arguments: month, day, and year. The Prolog
representation of these relationships is

person(First_name, Last_name)
birthday(Month, Day, Year)

You can now rewrite your small database to include these compound objects as
part of your database.

112 Visual Prolog Language Tutorial

DOMAINS
name = person(symbol, symbol) /* (First, Last) */
birthday = b_date(symbol, integer, integer) /* (Month, Day, Year) */
ph_num = symbol /* Phone_number */

PREDICATES
phone_list(name, ph_num, birthday)

CLAUSES
phone_list(person(ed, willis), "422-0208", b_date(aug, 3, 1955)).
phone_list(person(chris, grahm), "433-9906", b_date(may, 12, 1962)).

In this program, two compound domains declarations were introduced. We go
into more detail about these compound data structures later in this chapter. For
now, we'll concentrate on the benefits of using such compound objects.

The phone_list predicate now contains three arguments, as opposed to the
previous six. Sometimes breaking up your data into compound objects will
clarify your program and might help process the data.

Now add some rules to your small program. Suppose you want to create a list of
people whose birthdays are in the current month. Here's the program code to
accomplish this task; this program uses the standard predicate date to get the
current date from the computer's internal clock. The date predicate is discussed
later in chapter 15. For now, all you need to know is that it will return the current
year, month, and day from your computer's clock.

/* Program ch05e03.pro */

DOMAINS
name = person(symbol,symbol) /* (First, Last) */
birthday = b_date(symbol,integer,integer) /* (Month, Day, Year) */
ph_num = symbol /* Phone_number */

PREDICATES
phone_list(name,ph_num,birthday)
get_months_birthdays()
convert_month(symbol,integer)
check_birthday_month(integer,birthday)
write_person(name)

Chapter 5, Simple and Compound Objects 113

CLAUSES
get_months_birthdays:-

write("************ This Month's Birthday List *************"),nl,
write(" First name\t\t Last Name\n"),
write("***"),nl,
date(_, This_month, _), /* Get month from system clock */
phone_list(Person, _, Date),
check_birthday_month(This_month, Date),
write_person(Person),
fail.

get_months_birthdays:-
write("\n\n Press any key to continue: "),nl,
readchar(_).

write_person(person(First_name,Last_name)):-
write(" ",First_name,"\t\t ",Last_name),nl.

check_birthday_month(Mon,b_date(Month,_,_)):-
convert_month(Month,Month1),
Mon = Month1.

phone_list(person(ed, willis), "767-8463", b_date(jan, 3, 1955)).
phone_list(person(benjamin, thomas), "438-8400", b_date(feb, 5, 1985)).
phone_list(person(ray, william), "555-5653", b_date(mar, 3, 1935)).
phone_list(person(thomas, alfred), "767-2223", b_date(apr, 29, 1951)).
phone_list(person(chris, grahm), "555-1212", b_date(may, 12, 1962)).
phone_list(person(dustin, robert), "438-8400", b_date(jun, 17, 1980)).
phone_list(person(anna, friend), "767-8463", b_date(jun, 20, 1986)).
phone_list(person(brandy, rae), "555-5653", b_date(jul, 16, 1981)).
phone_list(person(naomi, friend), "767-2223", b_date(aug, 10, 1981)).
phone_list(person(christina, lynn), "438-8400", b_date(sep, 25, 1981)).
phone_list(person(kathy, ann), "438-8400", b_date(oct, 20, 1952)).
phone_list(person(elizabeth, ann), "555-1212", b_date(nov, 9, 1984)).
phone_list(person(aaron, friend), "767-2223", b_date(nov, 15, 1987)).
phone_list(person(jennifer, caitlin), "438-8400", b_date(dec, 31,

1981)).

114 Visual Prolog Language Tutorial

convert_month(jan, 1).
convert_month(feb, 2).
convert_month(mar, 3).
convert_month(apr, 4).
convert_month(may, 5).
convert_month(jun, 6).
convert_month(jul, 7).
convert_month(aug, 8).
convert_month(sep, 9).
convert_month(oct, 10).
convert_month(nov, 11).
convert_month(dec, 12).

GOAL
get_months_birthdays().

Load and run the Test Goal with this program.

How do compound data objects help in this program? This should be easy to see
when you examine the code. Most of the processing goes on in the
get_months_birthdays predicate.

1. First, the program makes a window to display the results.

2. After this, it writes a header in the window to help interpret the results.

3. Next, in get_months_birthdays, the program uses the built-in predicate date
to obtain the current month.

4. After this, the program is all set to search the database and list the people
who were born in the current month. The first thing to do is find the first
person in the database. The call phone_list(Person, _, Date) binds the
person's first and last names to the variable Person by binding the entire
functor person to Person. It also binds the person's birthday to the variable
Date.

Notice that you only need to use one variable to store a person's complete
name, and one variable to hold the birthday. This is the power of using
compound data objects.

5. Your program can now pass around a person's birthday simply by passing on
the variable Date. This happens in the next subgoal, where the program passes
the current month (represented by an integer) and the birthday (of the person
it's processing) to the predicate check_birthday_month.

6. Look closely at what happens. Visual Prolog calls the predicate
check_birthday_month with two variables: The first variable is bound to an
integer, and the second is bound to a birthday term. In the head of the rule

Chapter 5, Simple and Compound Objects 115

that defines check_birthday_month, the first argument, This_month, is
matched with the variable Mon. The second argument, Date, is matched
against b_date(Month, _,_).

Since all you're concerned with is the month of a person's birthday, you have
used the anonymous variable for both the day and the year of birth.

7. The predicate check_birthday_month first converts the symbol for the month
into an integer value. Once this is done, Visual Prolog can compare the value
of the current month with the value of the person's birthday month. If this
comparison succeeds, then the subgoal check_birthday_month succeeds, and
processing can continue. If the comparison fails (the person currently being
processed was not born in the current month), Visual Prolog begins to
backtrack to look for another solution to the problem.

8. The next subgoal to process is write_person. The person currently being
processed has a birthday this month, so it's OK to print that person's name in
the report. After printing the information, the clause fails, which forces
backtracking.

9. Backtracking always goes up to the most recent non-deterministic call and
tries to re-satisfy that call. In this program, the last non-deterministic call
processed is the call to phone_list. It is here that the program looks up another
person to be processed. If there are no more people in the database to process,
the current clause fails; Visual Prolog then attempts to satisfy this call by
looking further down in the database. Since there is another clause that
defines get_months_birthdays, Visual Prolog tries to satisfy the call to
get_months_birthdays by satisfying the subgoals to this other clause.

Exercise

Modify the previous program so that it will also print the birth dates of the people
listed. Next, add telephone numbers to the report.

Declaring Domains of Compound Objects
In this section, we show you how domains for compound objects are defined.
After compiling a program that contains the following relationships:

owns(john, book("From Here to Eternity", "James Jones")).

and

owns(john, horse(blacky)).

116 Visual Prolog Language Tutorial

you could query the system with this goal:

owns(john, X)

The variable X can be bound to different types of objects: a book, a horse, or
perhaps other objects you define. Because of your definition of the owns
predicate, you can no longer employ the old predicate declaration of owns:

owns(symbol, symbol)

The second argument no longer refers to objects belonging to the domain symbol.
Instead, you must formulate a new declaration to the predicate, such as

owns(name, articles)

You can describe the articles domain in the domains section as shown here:

DOMAINS
articles = book(title,author); horse(name)
 /* Articles are books or horses */
title, author, name = symbol

The semicolon is read as or. In this case, two alternatives are possible: A book
can be identified by its title and author, or a horse can be identified by its name.
The domains title, author, and name are all of the standard domain symbol.

More alternatives can easily be added to the domains declaration. For example,
articles could also include a boat, a house, or a bankbook. For a boat, you can
make do with a functor that has no arguments attached to it. On the other hand,
you might want to give a bank balance as a figure within the bankbook. The
domains declaration of articles is therefore extended to:

articles = book(title, author) ; horse(name) ;
 boat ; bankbook(balance)
title, author, name = symbol
balance = real

Here is a full program that shows how compound objects from the domain
articles can be used in facts that define the predicate owns.

Chapter 5, Simple and Compound Objects 117

/* Program ch05e04.pro */

DOMAINS
articles = book(title, author) ;
 horse(name) ; boat ;
 bankbook(balance)
title, author, name = symbol
balance = real

PREDICATES
owns(name,articles)

CLAUSES
owns(john, book("A friend of the family", "Irwin Shaw")).
owns(john, horse(blacky)).
owns(john, boat).
owns(john, bankbook(1000)).

goal
owns(john, Thing).

Now load the program into Visual Development Environment and run the Test
Goal.

Visual Prolog (the Test Goal) responds with:

Thing=book("A friend of the family","Irwin Shaw")
Thing=horse("blacky")
Thing=boat
Thing=bankbook(1000)

4 Solutions

Writing Domain Declarations: a Summary
This is a generic representation of how to write domain declarations for
compound objects:

domain =alternative1(D, D, ...);
 alternative2(D, D, ...);
 ...

Here, alternative1 and alternative2 are arbitrary (but different) functors. The
notation (D, D, ...) represents a list of domain names that are either declared
elsewhere or are one of the standard domain types (such as symbol, integer, real,
etc).

Note:

118 Visual Prolog Language Tutorial

1. The alternatives are separated by semicolons.

2. Every alternative consists of a functor and, possibly, a list of domains for the
corresponding arguments.

3. If the functor has no arguments, you can write it as alternativeN or
alternativeN() in your programs. In this book, we use the former syntax.

Multi-Level Compound Objects
Visual Prolog allows you to construct compound objects on several levels. For
example, in

book("The Ugly Duckling", "Andersen")

instead of using the author's last name, you could use a new structure that
describes the author in more detail, including both the author's first and last
names. By calling the functor for the resulting new compound object author, you
can change the description of the book to

book("The Ugly Duckling", author("Hans Christian", "Andersen"))

In the old domain declaration

book(title, author)

the second argument of the book functor is author. But the old declaration

author = symbol

can only include a single name, so it's no longer sufficient. You must now
specify that an author is also a compound object made up of the author's first and
last name. You do this with the domain statement:

author = author(first_name, last_name)

which leads to the following declarations:

DOMAINS
articles = book(title, author); .. /* First level */
author = author(first_name, last_name)/* Second level */
title, first_name, last_name = symbol /* Third level */

When using compound objects on different levels in this way, it's often helpful to
draw a "tree":

Chapter 5, Simple and Compound Objects 119

 book
 / \
 title author
 / \
 / \
 firstname lastname

A domain declaration describes only one level of the tree at a time, and not the
whole tree. For instance, a book can't be defined with the following domain
declaration:

book = book(title,author(first_name,last_name)) /* Not allowed */

An Example That Illustrates Sentence Structure

As another example, consider how to represent the grammatical structure of the
sentence

ellen owns the book.

using a compound object. The most simple sentence structure consists of a noun
and a verb phrase:

sentence = sentence(noun, verbphrase)

A noun is just a simple word:

noun = noun(word)

A verb phrase consists of either a verb with a noun phrase or a single verb.

verbphrase = verbphrase(verb, noun); verb(word)
verb = verb(word)

Using these domain declarations (sentence, noun, verbphrase, and verb), the
sentence ellen owns the book. becomes

sentence(noun(ellen), verbphrase(verb(owns), noun(book)))

120 Visual Prolog Language Tutorial

The corresponding tree is

 sentence
 / \
 / \
 noun verbphrase
 | / \
 | verb noun
 | | |
 ellen owns the book

A data structure like this might be the output of a parser, which is a program that
determines the grammatical structure of a sentence. Parsing is not built into
Visual Prolog, but we have included a parser implementing simple sentence
analysis with your Visual Prolog package. (Try to run the project
VPI\PROGRAMS\SEN_AN when you're ready to tackle this subject.)

Exercises

1. Write a suitable domains declaration using compound objects that could be
used in a Visual Prolog catalog of musical shows. A typical entry in the
catalog might be

Show: West Side Story
Lyrics: Stephen Sondheim
Music: Leonard Bernstein

2. Using compound objects wherever possible, write a Visual Prolog program to
keep a database of United States senators. Entries should include the senator's
first and last name, affiliation (state and party), size of constituency, date of
election, and voting record on ten bills. Or, if you're not familiar with United
States senators, use any political (or other) organization that you're familiar
with.

Compound Mixed-Domain Declarations

In this section, we discuss three different types of domain declarations you can
add to your programs. These declarations allow you to use predicates that

1. take an argument, more than one type of more than one possible type

2. take a variable number of arguments, each of a specified type

3. take a variable number of arguments, some of which might be of more than
one possible type

Chapter 5, Simple and Compound Objects 121

Multiple-Type Arguments
To allow a Visual Prolog predicate to accept an argument that gives information
of different types, you must add a functor declaration. In the following example,
the your_age clause will accept an argument of type age, which can be a string, a
real, or an integer.

domains
age = i(integer); r(real); s(string)

predicates
your_age(age)

clauses
your_age(i(Age)) :- write(Age).
your_age(r(Age)) :- write(Age).
your_age(s(Age)) :- write(Age).

Visual Prolog does not allow the following domain declaration:

domains
age = integer; real; string /* Not permitted. */

Lists
Suppose you are keeping track of the different classes a professor might teach.
You might produce the following code:

PREDICATES
teacher(symbol First_name, symbol Last_name, symbol Class)

CLAUSES
teacher(ed, willis, english1).
teacher(ed, willis, math1).
teacher(ed, willis, history1).
teacher(mary, maker, history2).
teacher(mary, maker, math2).
teacher(chris, grahm, geometry).

Here, you need to repeat the teacher's name for each class he or she teaches. For
each class, you need to add another fact to the database. Although this is
perfectly OK in this situation, you might find a school where there are hundreds
of classes; this type of data structure would get a little tedious. Here, it would be
helpful if you could create an argument to a predicate that could take on one or
more values.

122 Visual Prolog Language Tutorial

A list in Prolog does just that. In the following code, the argument class is
declared to be of a list type. We show here how a list is represented in Prolog, but
list-handling predicates are covered in chapter 7.

DOMAINS
classes = symbol* /* declare a list domain */

PREDICATES
teacher(symbol First, symbol Last, classes Classes)

CLAUSES
teacher(ed, willis, [english1, math1, history1]).
teacher(mary, maker, [history2, math2]).
teacher(chris, grahm, [geometry]).

In this example, the code is more concise and easier to read than in the preceding
one. Notice the domains declaration:

DOMAINS
classes = symbol*

The asterisk (*) means that classes is a list of symbols. You can just as easily
declare a list of integers:

DOMAINS
integer_list = integer*

Once you declare a domain, it's easy to use it; just place it as an argument to a
predicate declared in the predicates section. Here's an example of using an
integer list:

DOMAINS
integer_list = integer*

PREDICATES
test_scores(symbol First, symbol Last, integer_list Test_Scores)

CLAUSES
test_scores(lisa, lavender, [86, 91, 75]).
test_scores(libby, dazzner, [79, 75]).
test_scores(jeff, zheutlin, []).

In the case of Jeff Zheutlin, notice that a list doesn't need to contain any elements
at all.

Lists are discussed in greater detail in chapter 7.

Chapter 5, Simple and Compound Objects 123

Summary

These are the important points covered in this chapter:

1. A Visual Prolog program can contain many types of data objects: simple and
compound, standard and user-defined. A simple data object is one of the
following:

• a variable; such as X, MyVariable, _another_variable, or a single underscore
(_) for an anonymous variable

• a constant; a char, an integer or real number, or a symbol or string atom

2. Compound data objects allow you to treat several pieces of information as a
single item. A compound data object consists of a name (known as a functor)
and one or more arguments. You can define a domain with several alternative
functors.

3. A functor in Visual Prolog is not the same thing as a function in other
programming languages. A functor does not stand for some computation to
be performed. It's just a name that identifies a kind of compound data object
and holds its arguments together.

4. Compound objects can be regarded and treated as single objects; you use the
functor to distinguish between different objects. Visual Prolog allows you to
construct compound objects on several levels; the arguments of a compound
data object can also be compound objects. With compound mixed domain
declarations, you can use predicates that:

• take an argument of more than one possible type (functor declaration).

• take a variable number of arguments, each of a specified type (list
declaration).

• take a variable number of arguments, some of which might be of more than
one possible type.

124 Visual Prolog Language Tutorial

CHAPTER 6

Repetition and Recursion

Much of the usefulness of computers comes from the fact that they are good at
doing the same thing over and over again. Prolog can express repetition both in
its procedures and in its data structures. The idea of a repetitive data structure
may sound strange, but Prolog allows you to create data structures whose
ultimate size is not known at the time you create them. In this chapter, we discuss
repetitive processes first (as loops and recursive procedures), then cover
recursive data structures.

Repetitive Processes

Pascal, BASIC, or C programmers who start using Visual Prolog are often
dismayed to find that the language has no FOR, WHILE, or REPEAT statements.
There is no direct way to express iteration. Prolog allows only two kinds of
repetition – backtracking, in which it searches for multiple solutions in a single
query, and recursion, in which a procedure calls itself.

As it turns out, this lack doesn't restrict the power of the Prolog language. In fact,
Visual Prolog recognizes a special case of recursion – called tail recursion – and
compiles it into an iterative loop in machine language. This means that although
the program logic is expressed recursively, the compiled code is as efficient as it
would be in Pascal or BASIC.

In this section, we explore the art of writing repetitive processes in Prolog. As
you'll see, recursion is – in most cases – clearer, more logical, and less error-
prone than the loops that conventional languages use. Before delving into
recursion, however, take another look at backtracking.

Backtracking Revisited
When a procedure backtracks, it looks for another solution to a goal that has
already been satisfied. It does this by retreating to the most recent subgoal that
has an untried alternative, using that alternative, then moving forward again. You
can exploit backtracking as a way to perform repetitive processes.

Chapter 6, Repetition and Recursion 125

Example
Program ch06e01.pro demonstrates how to use backtracking to perform repetitive
processes – it prints all solutions to a query.

/* Program ch06e01.pro */

PREDICATES
country(symbol)
print_countries

CLAUSES
country("England").
country("France").
country("Germany").
country("Denmark").

print_countries:-
country(X),
write(X), /* write the value of X */
nl, /* start a new line */
fail.

print_countries.

goal
print_countries.

The predicate country simply lists the names of various countries, so that a goal
such as

country(X)

has multiple solutions. The predicate print_countries then prints out all of these
solutions. It is defined as follows:

print_countries :-
country(X), write(X), nl, fail.

print_countries.

The first clause says:

"To print countries, find a solution to country(X), then write X and start a new
line, then fail."

In this case, "fail" means:

"assume that a solution to the original goal has not been reached, so back up
and look for an alternative."

126 Visual Prolog Language Tutorial

The built-in predicate fail always fails, but you could equally well force
backtracking by using any other goal that would always fail, such as 5=2+2 or
country(shangri_la).

The first time through, X is bound to england, which is printed. Then, when it
hits fail, the computer backs up. There are no alternative ways to satisfy nl or
write(X), so the computer looks for a different solution to country(X).

The last time country(X) was executed, it bound a value to the previously free
variable X. So, before retrying this step, the computer unbinds X (frees it). Then
it can look for an alternative solution for country(X) and bind X to a different
value. If it succeeds, processing goes forward again and the name of another
country is printed.

Eventually, the first clause runs out of alternatives. The only hope then is to try
another clause for the same predicate. Sure enough, execution falls through to the
second clause, which succeeds without doing anything further. In this way the
goal print_countries terminates with success. Its complete output is

england
france
germany
denmark

yes

If the second clause were not there, the print_countries goal would terminate
with failure, and the final message would be no. Apart from that, the output
would be the same.

Exercise

Modify ch06e01.pro so that

1. country has two arguments, name and population, and

2. only those countries with populations greater than 10 million (1e+7) are
printed

Pre- and Post-Actions
Typically, a program that retrieves all the solutions to a goal will also want to do
something beforehand and afterward. For instance, your program could

1. Print Some delightful places to live are....

2. Print all solutions to country(X)

Chapter 6, Repetition and Recursion 127

3. Close by printing And maybe others.

Note that print_countries, as defined in the preceding example, already includes
clauses that print all solutions to country(X) and close by (potentially) printing a
final message.

The first clause for print_countries corresponds to step 2 and prints all the
solutions; its second clause corresponds to step 3 and simply terminates the goal
successfully (because the first clause always fails).

You could change the second clause in ch06e01.pro to

print_countries :- write("And maybe others."), nl.

which would implement step 3 as specified.

What about step 1? There's no reason why print_countries should have only two
clauses. It can have three, like this:

print_countries :-
write("Some delightful places to live are"),nl,
fail.

print_countries :-
country(X),
write(X),nl,
fail.

print_countries :-
write("And maybe others."), nl.

The fail in the first clause is important – it ensures that, after executing the first
clause, the computer backs up and tries the second clause. It's also important that
the predicates write and nl do not generate alternatives; strictly speaking, the first
clause tries all possible solutions before failing.

This three-clause structure is more of a trick than an established programming
technique. A more fastidious programmer might try to do things this way:

print_countries_with_captions :-
write("Some delightful places to live are"),nl,
print_countries,
write("And maybe others."),nl.

print_countries :-
country(X),
write(X),nl,
fail.

128 Visual Prolog Language Tutorial

There's nothing essentially wrong here, but this hypothetical fastidious
programmer has made a mistake.

Exercise

Don't look ahead – figure out what's wrong with this program, and fix it!

You're right – the problem is that, as written in the latest example,
print_countries will always fail, and print_countries_with_captions will never
get to execute any of the subgoals that follow it. As a result, And maybe others.
will never be printed.

To fix this, all you need to do is restore the original second clause for
print_countries.

print_countries.

to its original position. If you want the goal print_countries_with_captions to
succeed, it must have at least one clause that does not contain fail.

Implementing Backtracking with Loops
Backtracking is a good way to get all the alternative solutions to a goal. But even
if your goal doesn't have multiple solutions, you can still use backtracking to
introduce repetition. Simply define the two-clause predicate

repeat.
repeat :- repeat.

This tricks Prolog's control structure into thinking it has an infinite number of
different solutions. (Never mind how – after reading about tail recursion, you'll
see how this works.) The purpose of repeat is to allow backtracking ad infinitum.

/* Program ch06e02.pro */

/* Uses repeat to keep accepting characters and printing them
 until the user presses Enter. */

PREDICATES
repeat
typewriter

CLAUSES
repeat.
repeat:-repeat.

Chapter 6, Repetition and Recursion 129

typewriter:-
repeat,
readchar(C), /* Read a char, bind C to it */
write(C),

C = '\r',!. /* Is it a carriage return? fail if not */

goal
typewriter(),nl.

Program ch06e02.pro shows how repeat works. The rule typewriter :- ...
describes a procedure that accepts characters from the keyboard and prints them
on the screen until the user presses the Enter (Return) key.

typewriter works as follows:

1. Execute repeat (which does nothing).

2. Then read a character into the variable C.

3. Then write C.

4. Then check if C is a carriage return.

5. If so, you're finished. If not, backtrack and look for alternatives. Neither
write nor readchar generates alternative solutions, so backtrack all the way
to repeat, which always has alternative solutions.

6. Now processing can go forward again, reading another character, printing it,
and checking whether it's a carriage return.

Note, by the way, that C looses its binding when you backtrack past readchar(C),
which bound it. This kind of unbinding is vital when you use backtracking to
obtain alternative solutions to a goal, but it makes it hard to use backtracking for
any other purpose. The reason is that, although a backtracking process can repeat
operations any number of times, it can't "remember" anything from one repetition
to the next. All variables loose their values when execution backtracks over the
steps that established those values. There is no simple way for a repeat loop to
keep a counter, a total, or any other record of its progress.

Exercises

1. Modify 2 so that, if the user types lower-case letters, they will be displayed
as upper-case.

2. If you'd like to play with file I/O now, look up the appropriate built-in
predicates and write a program that uses a repeat loop to copy a file
character-by-character. (Refer to chapter 12.)

130 Visual Prolog Language Tutorial

Recursive Procedures
The other way to express repetition is through recursion. A recursive procedure is
one that calls itself. Recursive procedures have no trouble keeping records of
their progress because counters, totals, and intermediate results can be passed
from each iteration to the next as arguments.

The logic of recursion is easy to follow if you forget, for the moment, how
computers work. (Prolog is so different from machine language that ignorance of
computers is often an asset to the Prolog programmer.) Forget for the moment
that the computer is trekking through memory addresses one by one, and imagine
a machine that can follow recipes like this one:

To find the factorial of a number N:

If N is 1, the factorial is 1.

Otherwise, find the factorial of N-1, then multiply it by N.

This recipe says: To find the factorial of 3, you must find the factorial of 2, and,
to find the factorial of 2, you must find the factorial of 1. Fortunately, you can
find the factorial of 1 without referring to any other factorials, so the repetition
doesn't go on forever. When you have the factorial of 1, you multiply it by 2 to
get the factorial of 2, then multiply that by 3 to get the factorial of 3, and you're
done.

In Visual Prolog:

factorial(1, 1) :- !.

factorial(X, FactX) :-
Y = X-1,
factorial(Y, FactY),
FactX = X*FactY.

A complete program is as follows:
/* Program ch06e03.pro */

/* Recursive program to compute factorials.
 Ordinary recursion, not tail recursion. */

PREDICATES
factorial(unsigned,real)

CLAUSES
factorial(1,1):-!.

Chapter 6, Repetition and Recursion 131

factorial(X,FactX):-
Y=X-1,
factorial(Y,FactY),
FactX = X*FactY.

goal
X=3,
factorial(X,FactX).

What the Computer is Really Doing
But wait a minute, you say. How does the computer execute factorial while it's in
the middle of executing factorial? If you call factorial with X=3, factorial will
then call itself with X=2. Will X then have two values, or will the second value
just wipe out the first, or what?

The answer is that the computer creates a new copy of factorial so that factorial
can call itself as if it were a completely separate procedure. The executable code
doesn't have to be duplicated, of course, but the arguments and internal variables
do.

This information is stored in an area called a stack frame, which is created every
time a rule is called. When the rule terminates, the stack is reset (unless it was a
non-deterministic return) and execution continues in the stack frame for the
parent.

Advantages of Recursion
Recursion has three main advantages:

• It can express algorithms that can't conveniently be expressed any other way.

• It is logically simpler than iteration.

• It is used extensively in list processing.

Recursion is the natural way to describe any problem that contains within itself
another problem of the same kind. Examples include tree search (a tree is made
up of smaller trees) and recursive sorting (to sort a list, partition it, sort the parts,
and then put them together).

Logically, recursive algorithms have the structure of an inductive mathematical
proof. The preceding recursive factorial algorithm, in Program ch06e02.pro,
describes an infinite number of different computations by means of just two
clauses. This makes it easy to see that the clauses are correct. Further, the
correctness of each clause can be judged independently of the other.

132 Visual Prolog Language Tutorial

Tail Recursion Optimization
Recursion has one big drawback: It eats memory. Whenever one procedure calls
another, the calling procedure's state of execution must be saved so that it (the
calling procedure) can resume where it left off after the called procedure has
finished. This means that, if a procedure calls itself 100 times, 100 different
states of execution must be stored at once. (The saved state of execution is
known as a stack frame.) The maximum stack size on 16bit platforms, such as
the IBM PC running DOS, is 64K, which will accommodate, at most, 3000 or
4000 stack frames. On 32bit platforms, the stack may theoretically grow to
several GigaBytes; here, other system limitations will set in before the stack
overflows. Anyway, what can be done to avoid using so much stack space?

It turns out that there's a special case in which a procedure can call itself without
storing its state of execution. What if the calling procedure isn't going to resume
after the called procedure finishes?

Suppose the calling procedure calls a procedure as its very last step. When the
called procedure finishes, the calling procedure won't have anything else to do.
This means the calling procedure doesn't need to save its state of execution,
because that information isn't needed any more. As soon as the called procedure
finishes, control can go directly to wherever it would have gone when the calling
procedure finished.

For example, suppose that procedure A calls procedure B, and B calls procedure
C as its very last step. When B calls C, B isn't going to do anything more. So,
instead of storing the current state of execution for C under B, you can replace
B's old stored state (which isn't needed any more) with C's current state, making
appropriate changes in the stored information. When C finishes, it thinks it was
called by A directly.

Now suppose that, instead of calling C, procedure B calls itself as its very last
step. The recipe says that, when B calls B, the stack frame for the calling B
should be replaced by a stack frame for the called B. This is a particularly simple
operation; only the arguments need to be set to new values, and then processing
jumps back to the beginning of the procedure. So, from a procedural point of
view, what happens is very similar to updating the control variables in a loop.

This is called tail recursion optimization, or last-call optimization. Note that for
technical reasons, recursive functions (predicates returning a value, described in
chapter 10) cannot be tail recursive.

Chapter 6, Repetition and Recursion 133

Making Tail Recursion Work
What does it mean to say that one procedure calls another "as its very last step?"
In Prolog, this means that

1. The call is the very last subgoal of the clause.

2. There are no backtracking points earlier in the clause.

Here's an example that satisfies both conditions:

count(N) :-
write(N), nl,
NewN = N+1,
count(NewN).

This procedure is tail recursive; it calls itself without allocating a new stack
frame, so it never runs out of memory. As program ch06e04.pro shows, if you
give it the goal

count(0).

count will print integers starting with 0 and never ending. Eventually, rounding
errors will make it print inaccurate numbers, but it will never stop.

/* Program ch06e04.pro */

/* Tail recursive program that never runs out of memory */

PREDICATES
count(ulong)

CLAUSES
count(N):-

write('\r',N),
NewN = N+1,
count(NewN).

GOAL
nl,
count(0).

Exercise

Without looking ahead, modify ch06e04.pro so that it is no longer tail recursive.
How many iterations can it execute before running out of memory? Try it and
see. (On 32-bit platforms, this will take a considerable length of time, and the
program will most likely not run out of stack space; it, or the system, will run out

134 Visual Prolog Language Tutorial

of memory in general. On 16-bit platforms, the number of possible iterations is
directly related to the stack size.

How Not to Do Tail Recursion
Now that you've seen how to do tail recursion right, program ch06e05.pro shows
you three ways to do it wrong.

1. If the recursive call isn't the very last step, the procedure isn't tail
recursive. For example:

badcount1(X) :-
write('\r',X),
NewX = X+1,
badcount1(NewX),
nl.

Every time badcount1 calls itself, a stack frame has to be saved so that
control can return to the calling procedure, which has yet to execute its final
nl. So only a few thousand recursive calls can take place before the program
runs out of memory.

2. Another way to lose tail recursion is to leave an alternative untried at the
time the recursive call is made. Then a stack frame must be saved so that, if
the recursive call fails, the calling procedure can go back and try the
alternative. For example:

badcount2(X) :-
write('\r',X),
NewX = X+1,
badcount2(NewX).

badcount2(X) :-
X < 0,

write("X is negative.").

Here, the first clause of badcount2 calls itself before the second clause has
been tried. Again, the program runs out of memory after a certain number of
calls.

3. The untried alternative doesn't need to be a separate clause for the recursive
procedure itself. It can equally well be an alternative in some other clause that
it calls. For example:

Chapter 6, Repetition and Recursion 135

badcount3(X) :-
write('\r',X),
NewX = X+1,
check(NewX),
badcount3(NewX).

check(Z) :- Z >= 0.
check(Z) :- Z < 0.

Suppose X is positive, as it normally is. Then, when badcount3 calls itself, the
first clause of check has succeeded, but the second clause of check has not yet
been tried. So badcount3 has to preserve a copy of its stack frame in order to
go back and try the other clause of check if the recursive call fails.

/* Program ch06e05.pro */

/* In 32bit memory architectures, the examples here
will run for a considerable length of time, occupying large amounts
of memory and possibly reducing system performance significantly.

*/
PREDICATES

badcount1(long)
badcount2(long)
badcount3(long)
check(long)

CLAUSES
/* badcount1:

The recursive call is not the last step. */

badcount1(X):-
write('\r',X),
NewX = X+1,
badcount1(NewX),
nl.

/* badcount2:
There is a clause that has not been tried
at the time the recursive call is made. */

badcount2(X):-
write('\r',X),
NewX = X+1,
badcount2(NewX).

badcount2(X):-
X < 0,
write("X is negative.").

136 Visual Prolog Language Tutorial

/* badcount3:
There is an untried alternative in a
predicate called before the recursive call. */

badcount3(X):-
write('\r',X),
NewX = X+1,
check(NewX),
badcount3(NewX).

check(Z):-
Z >= 0.

check(Z):-
Z < 0.

Cuts to the Rescue
By now, you may think it's impossible to guarantee that a procedure is tail
recursive. After all, it's easy enough to put the recursive call in the last subgoal of
the last clause, but how do you guarantee there are no alternatives in any of the
other procedures that it calls?

Fortunately, you don't have to. The cut (!) allows you to discard whatever
alternatives may exist. You'll need to use the check_determ compiler directive to
guide you through setting the cuts. (Compiler directives are described in the
chapter 17.)

You can fix up badcount3 as follows (changing its name in the process):

cutcount3(X) :-
write('\r',X),
NewX = X+1,
check(NewX),
!,
cutcount3(NewX).

leaving check as it was.

The cut means "burn your bridges behind you" or, more precisely, "once you
reach this point, disregard alternative clauses for this predicate and alternative
solutions to earlier subgoals within this clause." That's precisely what you need.
Because alternatives are ruled out, no stack frame is needed and the recursive call
can go inexorably ahead.

A cut is equally effective in badcount2, by negating and moving the test from the
second clause to the first:

Chapter 6, Repetition and Recursion 137

cutcount2(X) :-
X >= 0, !,
write('\r',X),
NewX = X+1,
cutcount2(NewX).

cutcount2(X) :-
write("X is negative.").

A cut is really all about making up ones mind. You set a cut whenever you can
look at non-deterministic code, and say "Yes! Go ahead!" – whenever it's
obvious that alternatives are of no interest. In the original version of the above
example, which tries to illustrate a situation where you have to decide something
about X (the test X < 0 in the second clause), the second clause had to remain an
option as the code in the first clause didn't test X. By moving the test to the first
clause and negating it, a decision can be reached already there and a cut set in
accordance: "Now I know I don't want to write that X is negative."

The same applies to cutcount3. The predicate check illustrates a situation where
you want to do some additional processing of X, based on its sign. However, the
code for check is, in this case for illustration, non-deterministic, and the cut after
the call to it is all about you having made up your mind. After the call to check,
you can say "Yes! Go ahead!" However, the above is slightly artificial – it would
probably be more correct for check to be deterministic:

check(Z) :- Z >= 0, !, ... % processing using Z
check(Z) :- Z < 0, ... %processing using Z

And, since the test in the second clause of check is the perfect negation of the test
in the first, check can be further rewritten as:

check(Z) :- Z >= 0, !, % processing using Z
check(Z) :- ... % processing using Z

When a cut is executed, the computer assumes there are no untried alternatives
and does not create a stack frame. Program ch06e06.pro contains modified
versions of badcount2 and badcount3:

/* Program ch06e06.pro */

/* Shows how badcount2 and badcount3 can be fixed by adding cuts to
 rule out the untried clauses. These versions are tail recursive. */

PREDICATES
cutcount2(long)
cutcount3(long)
check(long)

138 Visual Prolog Language Tutorial

CLAUSES
/* cutcount2:

There is a clause that has not been tried
at the time the recursive call is made. */

cutcount2(X):-
X>=0,
!,
write('\r',X),
NewX = X + 1,
cutcount2(NewX).

cutcount2(_):-
write("X is negative.").

/* cutcount3:
There is an untried alternative in a
clause called before the recursive call. */

cutcount3(X):-
write('\r',X),
NewX = X+1,
check(NewX),
!,
cutcount3(NewX).

check(Z):-Z >= 0.
check(Z):-Z < 0.

Unfortunately, cuts won't help with badcount1, whose need for stack frames has
nothing to do with untried alternatives. The only way to improve badcount1
would be to rearrange the computation so that the recursive call comes at the end
of the clause.

Using Arguments as Loop Variables
Now that you've mastered tail recursion, what can you do about loop variables
and counters? To answer that question, we'll do a bit of Pascal-to-Prolog
translation, assuming that you're familiar with Pascal. Generally, the results of
direct translations between two languages, whether natural or programming, are
poor. The following isn't too bad and serves as a reasonable illustration of strictly
imperative programming in Prolog, but you should never write Prolog programs
by blind translation from another language. Prolog is a very powerful and
expressive language, and properly written Prolog programs will display a
programming style and problem focus quite different from what programs in
other languages do.

Chapter 6, Repetition and Recursion 139

In the "Recursion" section, we developed a recursive procedure to compute
factorials; in this section we'll develop an iterative one. In Pascal, this would be:

P := 1;
for I := 1 to N do P := P*I;
FactN := P;

If you're unfamiliar with Pascal, the :- is the assignment, read as "becomes".
There are four variables here. N is the number whose factorial will be calculated;
FactN is the result of the calculation; I is the loop variable, counting from 1 to N;
and P is the variable in which the product accumulates. A more efficient Pascal
programmer might combine FactN and P, but in Prolog it pays to be fastidiously
tidy.

The first step in translating this into Prolog is to replace for with a simpler loop
statement, making what happens to I in each step more explicit. Here is the
algorithm recast as a while loop:

P := 1; /* Initialize P and I */
I := 1;
while I <= N do /* Loop test */

begin
P := P*I; /* Update P and I */
I := I+1

end;
FactN := P; /* Return result */

shows the Prolog translation constructed from this Pascal while loop.
/* Program ch06e07.pro */

PREDICATES
factorial(unsigned,long)
factorial_aux(unsigned,long,unsigned,long)

/* Numbers likely to become large are declared as longs. */

CLAUSES
factorial(N, FactN):-

factorial_aux(N,FactN,1,1).

140 Visual Prolog Language Tutorial

factorial_aux(N,FactN,I,P):-
I <= N,!,
NewP = P * I,
NewI = I + 1,
factorial_aux(N, FactN, NewI, NewP).

factorial_aux(N, FactN, I, P) :-
I > N,
FactN = P.

Let's look at this in greater detail.

The factorial clause has only N and FactN as arguments; they are its input and
output, from the viewpoint of someone who is using it to find a factorial. A
second clause, factorial_aux(N, FactN, I, P), actually performs the recursion;
its four arguments are the four variables that need to be passed along from each
step to the next. So factorial simply invokes factorial_aux, passing to it N and
FactN, along with the initial values for I and P, like so:

factorial(N, FactN) :-
factorial_aux(N, FactN, 1, 1).

That's how I and P get initialized.

How can factorial "pass along" FactN? It doesn't even have a value yet! The
answer is that, conceptually, all Visual Prolog is doing here is unifying a variable
called FactN in one clause with a variable called FactN in another clause. The
same thing will happen whenever factorial_aux passes FactN to itself as an
argument in a recursive call. Eventually, the last FactN will get a value, and,
when this happens, all the other FactN-s, having been unified with it, will get the
same value. We said "conceptually" above, because in reality there is only one
FactN. Visual Prolog can determine from the source code that FactN is never
really used before the second clause for factorial_aux, and just shuffles the same
FactN around all the time.

Now for factorial_aux. Ordinarily, this predicate will check that I is less than or
equal to N – the condition for continuing the loop – and then call itself
recursively with new values for I and P. Here another peculiarity of Prolog
asserts itself. In Prolog there is no assignment statement such as

P = P + 1

which is found in most other programming languages. You can't change the
value of a Prolog variable. In Prolog, the above is as absurd as in algebra, and
will fail. Instead, you have to create a new variable and say something like

NewP = P + 1

Chapter 6, Repetition and Recursion 141

So here's the first clause:

factorial_aux(N, FactN, I, P) :-
I <= N, !,
NewP = P*I,
NewI = I+1,
factorial_aux(N, FactN, NewI, NewP).

As in cutcount2, the cut enables last-call optimization to take effect, even though
the clause isn't the last in the predicate.

Eventually I will exceed N. When it does, processing should unify the current
value of P with FactN and stop the recursion. This is done in the second clause,
which will be reached when the test I <= N in the first clause fails:

factorial_aux(N, FactN, I, P) :-
I > N,
FactN = P.

But there is no need for FactN = P to be a separate step; the unification can be
performed in the argument list. Putting the same variable name in the positions
occupied by FactN and P requires the arguments in these positions to be matched
with each other. Moreover, the test I > N is redundant since the opposite has been
tested for in the first clause. This gives the final clause:

factorial_aux(_, FactN, _, FactN).

Exercises

1. The following is a more elegant version of factorial.
/* Program ch06e08.pro */

PREDICATES
factorial(unsigned,long)
factorial(unsigned,long,unsigned,long)
/* Numbers likely to become large are declared as longs. */

CLAUSES
factorial(N,FactN):-

factorial(N,FactN,1,1).

142 Visual Prolog Language Tutorial

factorial(N,FactN,N,FactN):-
!.

factorial(N,FactN,I,P):-
NewI = I+1,
NewP = P*NewI,
factorial(N, FactN, NewI, NewP).

Load and run this program. Carefully look at the code in the second clause of
factorial/4. It takes advantage of the fact that the first time it's called the
counter variable I always has the value 1. This allows the multiplication step
to be carried out with the incremented counter variable NewI rather than I,
saving one recursion/iteration. This is reflected in the first clause.

2. Write a tail recursive program that behaves like 2 but doesn't use
backtracking.

3. Write a tail recursive program that prints a table of powers of 2, like this:

N 2^N
-- -----
1 2
2 4
3 8
4 16
... ...
10 1024

Make it stop at 10 as shown here.

4. Write a tail recursive program that accepts a number as input and can end in
either of two ways. It will start multiplying the number by itself over and over
until it either reaches 81 or reaches a number greater than 100. If it reaches
81, it will print yes; if it exceeds 100, it will print no.

Recursive Data Structures

Not only can rules be recursive; so can data structures. Prolog is the only widely
used programming language that allows you to define recursive data types. A
data type is recursive if it allows structures to contain other structures like
themselves.

The most basic recursive data type is the list, although it doesn't immediately
look recursively constructed. A lot of list-processing power is built into Prolog,

Chapter 6, Repetition and Recursion 143

but we won't discuss it here; lists are such an important part of Prolog that there
is a whole chapter devoted to them, chapter 7.

In this chapter, we invent a recursive data type, implement it, and use it to write a
very fast sorting program. The structure of this invented recursive data type is a
tree (Figure 6.1). Crucially, each branch of the tree is itself a tree; that's why the
structure is recursive.

Cathy

Michael Melody

Charles Hazel Jim Eleanor

Figure 6.1: Part of a Family Tree

Trees as a Data Type
Recursive types were popularized by Niklaus Wirth in Algorithms + Data
Structures = Programs. Wirth derived Pascal from ALGOL60 and published this
work in the early 70's. He didn't implement recursive types in Pascal, but he did
discuss what it would be like to have them. If Pascal had recursive types, you
would be able to define a tree as something like this:

tree = record /* Not correct Pascal! */
name: string[80];
left, right: tree

 end;

This code, translated into natural language, means: "A tree consists of a name,
which is a string, and the left and right subtrees, which are trees."

The nearest approach to this in Pascal is to use pointers and say

144 Visual Prolog Language Tutorial

treeptr = ^tree;

tree = record
name: string[80];
left, right: treeptr

 end;

But notice a subtle difference: This code deals with the memory representation of
a tree, not the structure of the tree itself. It treats the tree as consisting of cells,
each containing some data plus pointers to two more cells.

Visual Prolog allows truly recursive type definitions in which the pointers are
created and maintained automatically. For example, you can define a tree as
follows:

DOMAINS
treetype = tree(string, treetype, treetype)

This declaration says that a tree will be written as the functor, tree, whose
arguments are a string and two more trees.

But this isn't quite right; it provides no way to end the recursion, and, in real life,
the tree does not go on forever. Some cells don't have links to further trees. In
Pascal, you could express this by setting some pointers equal to the special value
nil, but pointers are an implementation issue that ordinarily doesn't surface in
Prolog source code. Rather, in Prolog we define two kinds of trees: ordinary ones
and empty ones. This is done by allowing a tree to have either of two functors:
tree, with three arguments, or empty, with no arguments.

DOMAINS
treetype = tree(string, treetype, treetype) ; empty

Notice that the names tree (a functor that takes three arguments) and empty (a
functor taking no arguments) are created by the programmer; neither of them has
any pre-defined meaning in Prolog. You could equally well have used xxx and
yyy.

This is how the tree in Figure 6.1 could appear in a Prolog program:

tree("Cathy",
tree("Michael"

tree("Charles", empty, empty)
tree("Hazel", empty, empty))

tree("Melody"
tree("Jim", empty, empty)
tree("Eleanor", empty, empty)))

Chapter 6, Repetition and Recursion 145

This is indented here for readability, but Prolog does not require indentation, nor
are trees indented when you print them out normally. Another way of setting up
this same data structure is:

tree("Cathy"
tree("Michael", tree("Charles", empty, empty), tree("Hazel", empty,

empty))
tree("Melody", tree("Jim", empty, empty), tree("Eleanor", empty,

empty)))

Note that this is not a Prolog clause; it is just a complex data structure.

Traversing a Tree
Before going on to the discussion of how to create trees, first consider what you'll
do with a tree once you have it. One of the most frequent tree operations is to
examine all the cells and process them in some way, either searching for a
particular value or collecting all the values. This is known as traversing the tree.
One basic algorithm for doing so is the following:

1. If the tree is empty, do nothing.

2. Otherwise, process the current node, then traverse the left subtree, then
traverse the right subtree.

Like the tree itself, the algorithm is recursive: it treats the left and right subtrees
exactly like the original tree. Prolog expresses it with two clauses, one for empty
and one for nonempty trees:

traverse(empty). /* do nothing */

traverse(tree(X, Y, Z)) :-
do something with X,
traverse(Y),
traverse(Z).

146 Visual Prolog Language Tutorial

Cathy

Michael Melody

Charles Hazel Jim Eleanor

1

2

3

4

5

6

7

Figure 6.2: Depth-First Traversal of the Tree in Figure 6.1

This tree traversal algorithm is known as depth-first search because it goes as far
as possible down each branch before backing up and trying another branch
(Figure 6.2). To see it in action, look at program ch06e09.pro, which traverses a
tree and prints all the elements as it encounters them. Given the tree in Figures
6.1 and 6.2, ch06e09.pro prints

Cathy
Michael
Charles
Hazel
Melody
Jim
Eleanor

Of course, you could easily adapt the program to perform some other operation
on the elements, rather than printing them.

/* Program ch06e09.pro */

/* Traversing a tree by depth-first search
 and printing each element as it is encountered */

DOMAINS
treetype = tree(string, treetype, treetype) ; empty()

Chapter 6, Repetition and Recursion 147

PREDICATES
traverse(treetype)

CLAUSES
traverse(empty).

traverse(tree(Name,Left,Right)):-
write(Name,'\n'),
traverse(Left),
traverse(Right).

GOAL
traverse(tree("Cathy",

tree("Michael",
tree("Charles", empty, empty),
tree("Hazel", empty, empty)),
tree("Melody",
tree("Jim", empty, empty),
tree("Eleanor", empty, empty)))).

Depth-first search is strikingly similar to the way Prolog searches a knowledge
base, arranging the clauses into a tree and pursuing each branch until a query
fails. If you wanted to, you could describe the tree by means of a set of Prolog
clauses such as:

father_of("Cathy", "Michael").
mother_of("Cathy", "Melody").
father_of("Michael", "Charles").
mother_of("Michael", "Hazel").
...

This is preferable if the only purpose of the tree is to express relationships
between individuals. But this kind of description makes it impossible to treat the
whole tree as a single complex data structure; as you'll see, complex data
structures are very useful because they simplify difficult computational tasks.

Creating a Tree
One way to create a tree is to write down a nested structure of functors and
arguments, as in the preceding example (Program ch06e09.pro). Ordinarily,
however, Prolog creates trees by computation. In each step, an empty subtree is
replaced by a nonempty one through Prolog's process of unification (argument
matching).

Creating a one-cell tree from an ordinary data item is trivial:

create_tree(N, tree(N, empty, empty)).

148 Visual Prolog Language Tutorial

This says: "If N is a data item, then tree(N, empty, empty) is a one-cell tree
containing it."

Building a tree structure is almost as easy. The following procedure takes three
trees as arguments. It inserts the first tree as the left subtree of the second tree,
giving the third tree as the result:

insert_left(X, tree(A, _, B), tree(A, X, B)).

Notice that this rule has no body – there are no explicit steps in executing it. All
the computer has to do is match the arguments with each other in the proper
positions, and the work is done.

Suppose, for example, you want to insert tree("Michael", empty, empty) as the
left subtree of tree("Cathy", empty, empty). To do this, just execute the goal

insert_left(tree("Michael", empty, empty),
tree("Cathy", empty, empty),
T)

and T immediately takes on the value

tree("Cathy", tree("Michael", empty, empty), empty).

This gives a way to build up trees step-by-step. Program ch06e10.pro
demonstrates this technique. In real life, the items to be inserted into the tree
could come from external input.

/* Program ch06e10.pro */

/*
 * Simple tree-building procedures *
 * create_tree(A, B) puts A in the data field of a one-cell tree *
 * giving B insert_left(A, B, C) inserts A as left subtree of B *
 * giving C insert_right(A, B, C) inserts A as right subtree of B *
 * giving C *
 */

DOMAINS
treetype = tree(string,treetype,treetype) ; empty()

PREDICATES
create_tree(string,treetype)
insert_left(treetype,treetype,treetype)
insert_right(treetype, treetype, treetype)
run

Chapter 6, Repetition and Recursion 149

CLAUSES
create_tree(A,tree(A,empty,empty)).
insert_left(X,tree(A,_,B),tree(A,X,B)).
insert_right(X,tree(A,B,_),tree(A,B,X)).

run:-
% First create some one-cell trees
create_tree("Charles",Ch),
create_tree("Hazel",H),
create_tree("Michael",Mi),
create_tree("Jim",J),
create_tree("Eleanor",E),
create_tree("Melody",Me),
create_tree("Cathy",Ca),

%.then link them up
insert_left(Ch, Mi, Mi2),
insert_right(H, Mi2, Mi3),
insert_left(J, Me, Me2),
insert_right(E, Me2, Me3),
insert_left(Mi3, Ca, Ca2),
insert_right(Me3, Ca2, Ca3),

%.and print the result
write(Ca3,'\n').

GOAL
run.

Notice that there is no way to change the value of a Prolog variable once it is
bound. That is why ch06e10.pro uses so many variable names; every time you
create a new value, you need a new variable. The large number of variable names
here is unusual; more commonly, repetitive procedures obtain new variables by
invoking themselves recursively, since each invocation has a distinct set of
variables. Notice that the Test Goal utility has restriction on the number of
variables used in the goal (<12), this is why the wrapping predicate run should
be used.

Binary Search Trees
So far, we have been using the tree to represent relationships between its
elements. Of course, this is not the best use for trees, since Prolog clauses can do
the same job. But trees have other uses.

150 Visual Prolog Language Tutorial

Trees provide a good way to store data items so that they can be found quickly. A
tree built for this purpose is called a search tree; from the user's point of view,
the tree structure carries no information – the tree is merely a faster alternative to
a list or array. Recall that, to traverse an ordinary tree, you look at the current cell
and then at both of its subtrees. To find a particular item, you might have to look
at every cell in the whole tree.

The time taken to search an ordinary tree with N elements is, on the
average, proportional to N.

A binary search tree is constructed so that you can predict, upon looking at any
cell, which of its subtrees a given item will be in. This is done by defining an
ordering relation on the data items, such as alphabetical or numerical order. Items
in the left subtree precede the item in the current cell and, in the right subtree,
they follow it. Figure 6.3 shows an example. Note that the same names, added in
a different order, would produce a somewhat different tree. Notice also that,
although there are ten names in the tree, you can find any of them in – at most –
five steps.

Grasso

Blackwell

Anthony Chrisholm

Rankin

Mott Tubmann

Lovelace OKeeffe

Stanton

Figure 6.3: Binary Search Tree

Chapter 6, Repetition and Recursion 151

Every time you look at a cell in a binary search tree during a search, you
eliminate half the remaining cells from consideration, and the search proceeds
very quickly. If the size of the tree were doubled, then, typically, only one extra
step would be needed to search it.

The time taken to find an item in a binary search tree is, on the average,
proportional to log2 N (or, in fact, proportional to log N with logarithms to
any base).

To build the tree, you start with an empty tree and add items one by one. The
procedure for adding an item is the same as for finding one: you simply search
for the place where it ought to be, and insert it there. The algorithm is as follows:

If the current node is an empty tree, insert the item there.

Otherwise, compare the item to be inserted and the item stored in the current
node. Insert the item into the left subtree or the right subtree, depending on
the result of the comparison.

In Prolog, this requires three clauses, one for each situation. The first clause is

insert(NewItem, empty, tree(NewItem, empty, empty) :- !.

Translated to natural language, this code says "The result of inserting NewItem
into empty is tree(NewItem, empty, empty)." The cut ensures that, if this clause
can be used successfully, no other clauses will be tried.

The second and third clauses take care of insertion into nonempty trees:

insert(NewItem, tree(Element, Left, Right),
tree(Element, NewLeft, Right) :-

NewItem < Element,
!,
insert(NewItem, Left, NewLeft).

insert(NewItem, tree(Element, Left, Right),
tree(Element, Left, NewRight) :-

insert(NewItem, Right, NewRight).

If NewItem < Element, you insert it into the left subtree; otherwise, you insert it
into the right subtree. Notice that, because of the cuts, you get to the third clause
only if neither of the preceding clauses has succeeded. Also notice how much of
the work is done by matching arguments in the head of the rule.

Tree-Based Sorting
Once you have built the tree, it is easy to retrieve all the items in alphabetical
order. The algorithm is again a variant of depth-first search:

152 Visual Prolog Language Tutorial

1. If the tree is empty, do nothing.

2. Otherwise, retrieve all the items in the left subtree, then the current element,
then all the items in the right subtree.

Or, in Prolog:

retrieve_all(empty). /* Do nothing */

retrieve_all(tree(Item, Left, Right)) :-
retrieve_all(Left),
do_something_to(Item),
retrieve_all(Right).

You can sort a sequence of items by inserting them into a tree and then retrieving
them in order. For N items, this takes time proportional to N log N, because both
insertion and retrieval take time proportional to log N, and each of them has to be
done N times. This is the fastest known sorting algorithm.

Example
Program ch06e11.pro uses this technique to alphabetize character input. In this
example we use some of Visual Prolog's standard predicates we haven't
introduced before. These predicates will be discussed in detail in later chapters.

/* Program ch06e11.pro */

DOMAINS
chartree = tree(char, chartree, chartree); end

PREDICATES
nondeterm do(chartree)
action(char, chartree, chartree)
create_tree(chartree, chartree)
insert(char, chartree, chartree)
write_tree(chartree)
nondeterm repeat

Chapter 6, Repetition and Recursion 153

CLAUSES
do(Tree):-

repeat,nl,
write("***"),nl,
write("Enter 1 to update tree\n"),
write("Enter 2 to show tree\n"),
write("Enter 7 to exit\n"),
write("***"),nl,
write("Enter number - "),
readchar(X),nl,
action(X, Tree, NewTree),
do(NewTree).

action('1',Tree,NewTree):-
write("Enter characters or # to end: "),
create_Tree(Tree, NewTree).

action('2',Tree,Tree):-
write_Tree(Tree),
write("\nPress a key to continue"),
readchar(_),nl.

action('7', _, end):-
exit.

create_Tree(Tree, NewTree):-
readchar(C),
C<>'#',
!,
write(C, " "),
insert(C, Tree, TempTree),
create_Tree(TempTree, NewTree).
create_Tree(Tree, Tree).

insert(New,end,tree(New,end,end)):-
!.

insert(New,tree(Element,Left,Right),tree(Element,NewLeft,Right)):-
New<Element,
!,
insert(New,Left,NewLeft).

insert(New,tree(Element,Left,Right),tree(Element,Left,NewRight)):-
insert(New,Right,NewRight).

write_Tree(end).
write_Tree(tree(Item,Left,Right)):-

write_Tree(Left),
write(Item, " "),
write_Tree(Right).

154 Visual Prolog Language Tutorial

repeat.
repeat:-repeat.

GOAL
write("*************** Character tree sort *******************"),nl,
do(end).

Load and run Program ch06e11.pro and watch how Visual Prolog does tree-based
sorting on a sequence of characters.

Exercises

1. Program ch06e12.pro is similar to ch06e11.pro, but more complex. It uses the
same sorting technique to alphabetize any standard text file, line by line.
Typically it's more than five times faster than "SORT.EXE", the sort
program provided by DOS, but it's beaten by the highly optimized "sort" on
UNIX. Nevertheless, tree-based sorting is remarkably efficient.

In this example we use some of the predicates from Visual Prolog's file
system, to give you a taste of file redirection. To redirect input or output to a
file, you must tell the system about the file; you use openread to read from
the file or openwrite to write to it. Once files are open, you can switch I/O
between an open file and the screen with writedevice, and between an open
file and the keyboard with readdevice. These predicates are discussed in detail
later in chapter 12.

Load and run Program ch06e12.pro. When it prompts File to read type in the
name of an existing text file; the program will then alphabetize that file, line
by line.

/* Program ch06e12.pro */

DOMAINS
treetype = tree(string, treetype, treetype) ; empty
file = infile ; outfile

PREDICATES
main
read_input(treetype)
read_input_aux(treetype, treetype)
insert(string, treetype, treetype)
write_output(treetype)

Chapter 6, Repetition and Recursion 155

CLAUSES
main :-

write("PDC Prolog Treesort"),nl,
write("File to read: "),
readln(In),nl,
openread(infile, In), /* open the specified file for reading */
write("File to write: "),
readln(Out),nl,
openwrite(outfile, Out),
readdevice(infile),
 /* redirect all read operations to the opened file */
read_input(Tree),
writedevice(outfile),
 /* redirect all write operations to the opened file */
write_output(Tree),
closefile(infile), /* close the file opened for reading */
closefile(outfile).

/*
 * read_input(Tree) *
 * reads lines from the current input device until EOF, then *
 * instantiates Tree to the binary search tree built *
 * therefrom *
 */

read_input(Tree):-
read_input_aux(empty,Tree).

/*
 * read_input_aux(Tree, NewTree) *
 * reads a line, inserts it into Tree giving NewTree, *
 * and calls itself recursively unless at EOF. *
 */

read_input_aux(Tree, NewTree):-
readln(S),
!,
insert(S, Tree, Tree1),
read_input_aux(Tree1, NewTree).

read_input_aux(Tree, Tree). /* The first clause fails at EOF. */

/*
 * insert(Element, Tree, NewTree) *
 * inserts Element into Tree giving NewTree. *
 */

insert(NewItem, empty, tree(NewItem,empty,empty)):-!.

156 Visual Prolog Language Tutorial

insert(NewItem,tree(Element,Left,Right),tree(Element,NewLeft, Right)):-
NewItem < Element,
!,
insert(NewItem, Left, NewLeft).

insert(NewItem,tree(Element,Left,Right),tree(Element,Left,NewRight)):-
insert(NewItem, Right, NewRight).

/*
 * write_output(Tree) *
 * writes out the elements of Tree in alphabetical order. *
 */

write_output(empty). /* Do nothing */

write_output(tree(Item,Left,Right)):-
write_output(Left),
write(Item), nl,
write_output(Right).

GOAL
main,nl.

2. Use recursive data structures to implement hypertext. A hypertext is a
structure in which each entry, made up of several lines of text, is accompanied
by pointers to several other entries. Any entry can be connected to any other
entry; for instance, you could get to an entry about Abraham Lincoln either
from "Presidents" or from "Civil War."

To keep things simple, use one-line entries (strings) and let each of them
contain a pointer to only one other entry.

Hint: Start with

DOMAINS
entrytype = empty() ; entry(string, entry)

Build a linked structure in which most of the entries have a nonempty second
argument.

3. Now, take your hypertext implementation and redo it using Prolog clauses.
That is, use clauses (rather than recursive data structures) to record which
entry follows which.

Chapter 6, Repetition and Recursion 157

Summary

These are the major points covered in this chapter:

1. In Prolog there are two ways to repeat the same clause: through backtracking
and recursion. By failing, Prolog will backtrack to find a new piece of data
and repeat the clause until there are no more options. Recursion is the
process of a clause calling itself.

2. Backtracking is very powerful and memory efficient, but variables are freed
after each iteration, so their values are lost. Recursion allows variables to be
incremented, but it is not memory efficient.

3. However, Visual Prolog does tail recursion elimination, which relieves the
memory demands of recursion. For Visual Prolog to achieve tail recursion
elimination, the recursive call must be the last subgoal in the clause body.

158 Visual Prolog Language Tutorial

CHAPTER 7

Lists and Recursion

List processing – handling objects that contain an arbitrary number of elements –
is a powerful technique in Prolog. In this chapter, we explain what lists are and
how to declare them, then give several examples that show how you might use
list processing in your own applications. We also define two well-known Prolog
predicates – member and append – while looking at list processing from both a
recursive and a procedural standpoint.

After that, we introduce findall, a Visual Prolog standard predicate that enables
you to find and collect all solutions to a single goal. We round out this chapter
with a discussion of compound lists – combinations of different types of
elements – and an example of parsing by difference lists.

What Is a List?

In Prolog, a list is an object that contains an arbitrary number of other objects
within it. Lists correspond roughly to arrays in other languages, but, unlike an
array, a list does not require you to declare how big it will be before you use it.

There are other ways to combine several objects into one, of course. If the
number of objects to be combined is known in advance, you can make them the
arguments of a single compound data structure. And even if the number of
objects is unpredictable, you can use a recursive compound data structure, such
as a tree. But lists are usually easier to use because the language provides a
concise notation for them.

A list that contains the numbers 1, 2, and 3 is written as

[1, 2, 3]

Each item contained in the list is known as an element. To form a list data
structure, you separate the elements of a list with commas and then enclose them
in square brackets. Here are some examples:

[dog, cat, canary]
["valerie ann", "jennifer caitlin", "benjamin thomas"]

Chapter 7, Lists and Recursion 159

Declaring Lists
To declare the domain for a list of integers, you use the domains declaration, like
this:

DOMAINS
integerlist = integer*

The asterisk means "list of"; that is, integer* means "list of integers."

Note that the word list has no special meaning in Visual Prolog. You could
equally well have called your list domain zanzibar. It's the asterisk, not the name,
that signifies a list domain.

The elements in a list can be anything, including other lists. However, all
elements in a list must belong to the same domain, and in addition to the
declaration of the list domain there must be a domains declaration for the
elements:

DOMAINS
elementlist = elements*
elements =

Here elements must be equated to a single domain type (for example: integer,
real, or symbol) or to a set of alternatives marked with different functors. Visual
Prolog does not allow you to mix standard types in a list. For example, the
following declarations would not properly indicate a list made up of integers,
reals, and symbols:

elementlist = elements*
elements = integer; real; symbol /* Incorrect */

The way to declare a list made up of integers, reals, and symbols is to define a
single domain comprising all three types, with functors to show which type a
particular element belongs to. For example:

elementlist = elements*
elements = i(integer); r(real); s(symbol)
 /* the functors are i, r, and s */

(For more information about this, refer to "Compound Lists" later in this
chapter.)

Heads and Tails
A list is really a recursive compound object. It consists of two parts: the head, of
list which is the first element, and the tail, which is a list comprising all the

160 Visual Prolog Language Tutorial

subsequent elements. The tail of a list is always a list; the head of a list is an
element. For example,

the head of [a, b, c] is a

the tail of [a, b, c] is [b, c]

What happens when you get down to a one-element list? The answer is that

the head of [c] is c

the tail of [c] is []

If you take the first element from the tail of a list enough times, you'll
eventually get down to the empty list ([]).

The empty list can't be broken into head and tail.

This means that, conceptually, lists have a tree structure just like other compound
objects. The tree structure of [a, b, c, d] is

 list
 / \
 a list
 / \
 b list
 / \
 c list
 / \
 d []

Further, a one-element list such as [a] is not the same as the element that it
contains because, simple as it looks, [a] is really the compound data structure
shown here:

 list
 / \
 a []

List Processing

Prolog provides a way to make the head and tail of a list explicit. Instead of
separating elements with commas, you can separate the head and tail with a
vertical bar (|). For instance,

[a, b, c] is equivalent to [a|[b, c]]

Chapter 7, Lists and Recursion 161

and, continuing the process,

[a|[b, c]] is equivalent to [a|[b|[c]]]

which is equivalent to [a|[b|[c|[]]]]

You can even use both kinds of separators in the same list, provided the vertical
bar is the last separator. So, if you really want to, you can write [a, b, c, d] as
[a, b|[c, d]]. Table 7.1 gives more examples.

Table 7.1: Heads and Tails of Lists

List Head Tail

['a', 'b', 'c'] 'a' ['b', 'c']

['a'] 'a' [] /* an empty list */

[] undefined undefined

[[1, 2, 3], [2, 3, 4], []] [1, 2, 3] [[2, 3, 4], []]

Table 7.2 gives several examples of list unification.

Table 7.2: Unification of Lists

List 1 List 2 Variable Binding
[X, Y, Z] [egbert, eats, icecream] X=egbert, Y=eats, Z=icecream

[7] [X | Y] X=7, Y=[]

[1, 2, 3, 4] [X, Y | Z] X=1, Y=2, Z=[3,4]

[1, 2] [3 | X] fail

Using Lists

Because a list is really a recursive compound data structure, you need recursive
algorithms to process it. The most basic way to process a list is to work through
it, doing something to each element until you reach the end.

An algorithm of this kind usually needs two clauses. One of them says what to do
with an ordinary list (one that can be divided into a head and a tail). The other
says what to do with an empty list.

162 Visual Prolog Language Tutorial

Writing Lists
For example, if you just want to print out the elements of the list, here's what you
do:

/* Program ch07e01.pro */

DOMAINS
list = integer* /* or whatever type you wish to use */

PREDICATES
write_a_list(list)

CLAUSES
write_a_list([]). /* If the list is empty, do nothing more. */

write_a_list([H|T]):-
 /* Match the head to H and the tail to T, then... */

write(H),nl,
write_a_list(T).

GOAL
write_a_list([1, 2, 3]).

Here are the two write_a_list clauses described in natural language:

To write an empty list, do nothing.

Otherwise, to write a list, write its head (which
is a single element), then write its tail (a list).

The first time through, the goal is:

write_a_list([1, 2, 3]).

This matches the second clause, with H=1 and T=[2, 3]; this writes 1 and then
calls write_a_list recursively with the tail of the list:

write_a_list([2, 3]). /* This is write_a_list(T). */

This recursive call matches the second clause, this time with H=2 and T=[3], so it
writes 2 and again calls write_a_list recursively:

write_a_list([3]).

Chapter 7, Lists and Recursion 163

Now, which clause will this goal match? Recall that, even though the list [3] has
only one element, it does have a head and tail; the head is 3 and the tail is []. So
again the goal matches the second clause, with H=3 and T=[]. Hence, 3 is written
and write_a_list is called recursively like this:

write_a_list([]).

Now you see why this program needs the first clause. The second clause won't
match this goal because [] can't be divided into head and tail. So, if the first
clause weren't there, the goal would fail. As it is, the first clause matches and the
goal succeeds without doing anything further.

Exercise

Is write_a_list tail-recursive? Would it be if the two clauses were written in the
opposite order?

Counting List Elements
Now consider how you might find out how many elements are in a list. What is
the length of a list, anyway? Here's a simple logical definition:

The length of [] is 0.

The length of any other list is 1 plus the length of its tail.

Can you implement this? In Prolog it's very easy. It takes just two clauses:
/* Program ch07e02.pro */

DOMAINS
list = integer* /* or whatever type you want to use */

PREDICATES
length_of(list,integer)

CLAUSES
length_of([], 0).
length_of([_|T],L):-

length_of(T,TailLength),
L = TailLength + 1.

Take a look at the second clause first. Crucially, [_|T] will match any nonempty
list, binding T to the tail of the list. The value of the head is unimportant; as long
as it exists, it can be counted it as one element.

So the goal:

164 Visual Prolog Language Tutorial

length_of([1, 2, 3], L).

will match the second clause, with T=[2, 3]. The next step is to compute the
length of T. When this is done (never mind how), TailLength will get the value 2,
and the computer can then add 1 to it and bind L to 3.

So how is the middle step executed? That step was to find the length of [2, 3] by
satisfying the goal

length_of([2, 3], TailLength).

In other words, length_of calls itself recursively. This goal matches the second
clause, binding

• [3] in the goal to T in the clause and

• TailLength in the goal to L in the clause.

Recall that TailLength in the goal will not interfere with TailLength in the clause,
because each recursive invocation of a clause has its own set of variables. If
this is unclear, review the section on recursion in chapter 6.

So now the problem is to find the length of [3], which will be 1, and then add 1 to
that to get the length of [2, 3], which will be 2. So far, so good.

Likewise, length_of will call itself recursively again to get the length of [3]. The
tail of [3] is [], so T is bound to [], and the problem is to get the length of [],
then add 1 to it, giving the length of [3].

This time it's easy. The goal

length_of([], TailLength)

matches the first clause, binding TailLength to 0. So now the computer can add 1
to that, giving the length of [3], and return to the calling clause. This, in turn,
will add 1 again, giving the length of [2, 3], and return to the clause that called
it; this original clause will add 1 again, giving the length of [1, 2, 3].

Confused yet? We hope not. In the following brief illustration we'll summarize
the calls. We've used subscripts to indicate that similarly-named variables in
different clauses – or different invocations of the same clause – are distinct.

length_of([1, 2, 3], L1).
length_of([2, 3], L2).
length_of([3], L3).
length_of([], 0).

Chapter 7, Lists and Recursion 165

L3 = 0+1 = 1.
L2 = L3+1 = 2.
L1 = L2+1 = 3.

Exercises

1. What happens when you satisfy the following goal?

length_of(X, 3), !.

Does the goal succeed, and if so, what is bound to X? Why? (Work through
carefully by hand to see how this works.)

2. Write a predicate called sum_of that works exactly like length_of, except that
it takes a list of numbers and adds them up. For example, the goal:

sum_of([1, 2, 3, 4], S).

should bind S to 10.

3. What happens if you execute this goal?

sum_of(List, 10).

This goal says, "Give me a list whose elements add up to 10." Can Visual
Prolog do this? If not, why not? (Hint: It's not possible to do arithmetic on
unbound variables in Prolog.)

Tail Recursion Revisited
You probably noticed that length_of is not, and can't be, tail-recursive, because
the recursive call is not the last step in its clause. Can you create a tail-recursive
list-length predicate? Yes, but it will take some effort.

The problem with length_of is that you can't compute the length of a list until
you've already computed the length of the tail. It turns out there's a way around
this. You'll need a list-length predicate with three arguments.

• One is the list, which the computer will whittle away on each call until it
eventually becomes empty, just as before.

• Another is a free argument that will ultimately contain the result (the length).

• The third is a counter that starts out as 0 and increments on each call.

When the list is finally empty, you'll unify the counter with the (up to then)
unbound result.

166 Visual Prolog Language Tutorial

/* Program ch07e03.pro */

DOMAINS
list = integer* /* or whatever type you want to use */

PREDICATES
length_of(list,integer,integer)

CLAUSES
length_of([], Result, Result).
length_of([_|T],Result,Counter):-

NewCounter = Counter + 1,
length_of(T, Result, NewCounter).

GOAL
length_of([1, 2, 3], L, 0), /* start with Counter = 0 */
write("L=",L), nl.

This version of the length_of predicate is more complicated, and in many ways
less logical, than the previous one. We've presented it merely to show you that,
by devious means, you can often find a tail-recursive algorithm for a problem
that seems to demand a different type of recursion.

Exercises

1. Try both versions of length_of on enormous lists (lists with perhaps 200 to
500 elements). What happens? On long lists, how do they compare in speed?

2. What happens with the new version of length_of if you give the following
goal?

length_of(MyList, 5, 0).

Hint: You are discovering a very important property of Prolog called
interchangeability of unknowns. Not all Prolog predicates have it.

3. Rewrite sum_of to work like the new version of length_of.

Another Example – Modifying the List
Sometimes you want to take a list and create another list from it. You do this by
working through the list element by element, replacing each element with a
computed value. For example, here is a program that takes a list of numbers and
adds 1 to each of them:

Chapter 7, Lists and Recursion 167

/* Program ch07e04.pro */

DOMAINS
list = integer*

PREDICATES
add1(list,list)

CLAUSES
add1([], []). /* boundary condition */
add1([Head|Tail],[Head1|Tail1]):- /* separate the head */
 /* from the rest of the list */

Head1= Head+1, /* add 1 to the first element */
add1(Tail,Tail1). /* call element with the rest of the list */

goal
add1([1,2,3,4], NewList).

To paraphrase this in natural language:

To add 1 to all the elements of the empty list,
just produce another empty list.

To add 1 to all the elements of any other list,
add 1 to the head and make it the head of the result, and then
add 1 to each element of the tail and make that the tail of the
result.

Load the program, and run the Test Goal with the specified goal add1([1,2,3,4],
NewList).

The Test Goal will return

NewList=[2,3,4,5]
1 Solution

Tail Recursion Again

Is add1 tail-recursive? If you're accustomed to using Lisp or Pascal, you might
think it isn't, because you think of it as performing the following operations:

1. Split the list into Head and Tail.

2. Add 1 to Head, giving Head1.

3. Recursively add 1 to all the elements of Tail, giving Tail1.

4. Combine Head1 and Tail1, giving the resulting list.

168 Visual Prolog Language Tutorial

This isn't tail-recursive, because the recursive call is not the last step.

But – and this is important – that is not how Prolog does it. In Visual Prolog,
add1 is tail-recursive, because its steps are really the following:

1. Bind the head and tail of the original list to Head and Tail.

2. Bind the head and tail of the result to Head1 and Tail1. (Head1 and Tail1 do
not have values yet.)

3. Add 1 to Head, giving Head1.

4. Recursively add 1 to all the elements of Tail, giving Tail1.

When this is done, Head1 and Tail1 are already the head and tail of the result;
there is no separate operation of combining them. So the recursive call really is
the last step.

More on Modifying Lists

Of course, you don't actually need to put in a replacement for every element.
Here's a program that scans a list of numbers and copies it, leaving out the
negative numbers:

/* Program ch07e05.pro */

DOMAINS
list = integer*

PREDICATES
discard_negatives(list, list)

CLAUSES
discard_negatives([], []).

discard_negatives([H|T],ProcessedTail):-
H < 0, /* If H is negative, just skip it */
!,
discard_negatives(T, ProcessedTail).

discard_negatives([H|T],[H|ProcessedTail]):-
discard_negatives(T, ProcessedTail).

For example, the goal

discard_negatives([2, -45, 3, 468], X)

gives X=[2, 3, 468].

Chapter 7, Lists and Recursion 169

And here's a predicate that copies the elements of a list, making each element
occur twice:

doubletalk([], []).

doubletalk([H|T], [H, H|DoubledTail]) :-
doubletalk(T, DoubledTail).

List Membership
Suppose you have a list with the names John, Leonard, Eric, and Frank and
would like to use Visual Prolog to investigate if a given name is in this list. In
other words, you must express the relation "membership" between two
arguments: a name and a list of names. This corresponds to the predicate

member(name, namelist). /* "name" is a member of "namelist" */

In Program ch07e06.pro, the first clause investigates the head of the list. If the
head of the list is equal to the name you're searching for, then you can conclude
that Name is a member of the list. Since the tail of the list is of no interest, it is
indicated by the anonymous variable. Thanks to this first clause, the goal

member(john, [john, leonard, eric, frank])

is satisfied.
/* Program ch07e06.pro */

DOMAINS
namelist = name*
name = symbol

PREDICATES
member(name, namelist)

CLAUSES
member(Name, [Name|_]).
member(Name, [_|Tail]):-

member(Name,Tail).

If the head of the list is not equal to Name, you need to investigate whether Name
can be found in the tail of the list.

In English:

Name is a member of the list if Name is the first element
of the list, or
Name is a member of the list if Name is a member of the tail.

170 Visual Prolog Language Tutorial

The second clause of member relates to this relationship. In Visual Prolog:

member(Name, [_|Tail]) :- member(Name, Tail).

Exercises

1. Load Program ch07e06.pro and try the Test Goal the following goal:

member(susan, [ian, susan, john]).

2. Add domain and predicate statements so you can use member to investigate
if a number is a member of a list of numbers. Try several goals, including

member(X, [1, 2, 3, 4]).

to test your new program.

3. Does the order of the two clauses for the member predicate have any
significance? Test the behavior of the program when the two rules are
swapped. The difference appears if you test the goal

member(X, [1, 2, 3, 4, 5])

in both situations.

Appending One List to Another: Declarative and
Procedural Programming
As given, the member predicate of Program ch07e06.pro works in two ways.
Consider its clauses once again:

member(Name, [Name|_]).
member(Name, [_|Tail]) :- member(Name, Tail).

You can look at these clauses from two different points of view: declarative and
procedural.

• From a declarative viewpoint, the clauses say

Name is a member of a list if the head is equal to Name;
if not, Name is a member of the list if it is a member of the tail.

• From a procedural viewpoint, the two clauses could be interpreted as saying:

To find a member of a list, find its head;
otherwise, find a member of its tail.

These two points of view correspond to the goals

Chapter 7, Lists and Recursion 171

member(2, [1, 2, 3, 4]).

and

member(X, [1, 2, 3, 4]).

In effect, the first goal asks Visual Prolog to check whether something is true; the
second asks Visual Prolog to find all members of the list [1,2,3,4]. Don't be
confused by this. The member predicate is the same in both cases, but its
behavior may be viewed from different angles.

Recursion from a Procedural Viewpoint
The beauty of Prolog is that, often, when you construct the clauses for a predicate
from one point of view, they'll work from the other. To see this duality, in this
next example you'll construct a predicate to append one list to another. You'll
define the predicate append with three arguments:

append(List1, List2, List3)

This combines List1 and List2 to form List3. Once again you are using recursion
(this time from a procedural point of view).

If List1 is empty, the result of appending List1 and List2 will be the same as
List2. In Prolog:

append([], List2, List2).

If List1 is not empty, you can combine List1 and List2 to form List3 by making
the head of List1 the head of List3. (In the following code, the variable H is used
as the head of both List1 and List3.) The tail of List3 is L3, which is composed of
the rest of List1 (namely, L1) and all of List2. In Prolog:

append([H|L1], List2, [H|L3]) :-
append(L1, List2, L3).

The append predicate operates as follows: While List1 is not empty, the recursive
rule transfers one element at a time to List3. When List1 is empty, the first clause
ensures that List2 hooks onto the back of List3.

Exercise

The predicate append is defined in Program ch07e07.pro. Load the program.

172 Visual Prolog Language Tutorial

/* Program ch07e07.pro */

DOMAINS
integerlist = integer*

PREDICATES
append(integerlist,integerlist,integerlist)

CLAUSES
append([],List,List).
append([H|L1],List2,[H|L3]):-

append(L1,List2,L3).

Now run it with the following goal:

append([1, 2, 3], [5, 6], L).

Now try this goal:

append([1, 2], [3], L), append(L, L, LL).

One Predicate Can Have Different Uses
Looking at append from a declarative point of view, you have defined a relation
between three lists. This relation also holds if List1 and List3 are known but List2
isn't. However, it also holds true if only List3 is known. For example, to find
which two lists could be appended to form a known list, you could use a goal of
the form

append(L1, L2, [1, 2, 4]).

With this goal, Visual Prolog will find these solutions:

L1=[], L2=[1,2,4]
L1=[1], L2=[2,4]
L1=[1,2], L2=[4]
L1=[1,2,4], L2=[]
4 Solutions

You can also use append to find which list you could append to [3,4] to form the
list [1,2,3,4]. Try giving the goal

append(L1, [3,4], [1,2,3,4]).

Visual Prolog finds the solution

L1=[1,2].

Chapter 7, Lists and Recursion 173

This append predicate has defined a relation between an input set and an output
set in such a way that the relation applies both ways. Given that relation, you can
ask

Which output corresponds to this given input?

or

Which input corresponds to this given output?

The status of the arguments to a given predicate when you call that predicate is
referred to as a flow pattern. An argument that is bound or instantiated at the time
of the call is an input argument, signified by (i); a free argument is an output
argument, signified by (o).

The append predicate has the ability to handle any flow pattern you provide.
However, not all predicates have the capability of being called with different
flow patterns. When a Prolog clause is able to handle multiple flow patterns, it is
known as an invertible clause. When writing your own Visual Prolog clauses,
keep in mind that an invertible clause has this extra advantage and that creating
invertible clauses adds power to the predicates you write.

Exercise

Amend the clauses defining member in Program ch07e06.pro and construct the
clauses for a predicate even_member that will succeed if you give the goal

even_member(2, [1, 2, 3, 4, 5, 6]).

The predicate should also display the following result:

X=2
X=4
X=6
3 Solutions

given the goal

even_member(X, [1, 2, 3, 4, 5, 6]).

Finding All the Solutions at Once

In chapter 6, we compared backtracking and recursion as ways to perform
repetitive processes. Recursion won out because, unlike backtracking, it can pass

174 Visual Prolog Language Tutorial

information (through arguments) from one recursive call to the next. Because of
this, a recursive procedure can keep track of partial results or counters as it goes
along.

But there's one thing backtracking can do that recursion can't do – namely, find
all the alternative solutions to a goal. So you may find yourself in a quandary:
You need all the solutions to a goal, but you need them all at once, as part of a
single compound data structure. What do you do?

Fortunately, Visual Prolog provides a way out of this impasse. The built-in
predicate findall takes a goal as one of its arguments and collects all of the
solutions to that goal into a single list. findall takes three arguments:

• The first argument, VarName, specifies which argument in the specified
predicate is to be collected into a list.

• The second, mypredicate, indicates the predicate from which the values will
be collected.

• The third argument, ListParam, is a variable that holds the list of values
collected through backtracking. Note that there must be a user-defined
domain to which the values of ListParam belong.

Program ch07e08.pro uses findall to print the average age of a group of people.
/* Program ch07e08.pro */

DOMAINS
name,address = string
age = integer
list = age*

PREDICATES
person(name, address, age)
sumlist(list, age, integer)

CLAUSES
sumlist([],0,0).
sumlist([H|T],Sum,N):-

sumlist(T,S1,N1),
Sum=H+S1, N=1+N1.

person("Sherlock Holmes", "22B Baker Street", 42).
person("Pete Spiers", "Apt. 22, 21st Street", 36).
person("Mary Darrow", "Suite 2, Omega Home", 51).

Chapter 7, Lists and Recursion 175

GOAL
findall(Age,person(_, _, Age),L),
sumlist(L,Sum,N),
Ave = Sum/N,
write("Average=", Ave),nl.

The findall clause in this program creates a list L, which is a collection of all the
ages obtained from the predicate person. If you wanted to collect a list of all the
people who are 42 years old, you could give the following subgoal:

findall(Who, person(Who, _, 42), List)

Before trying this, please note that it requires the program to contain a domain
declaration for the resulting list:

slist = string*

Compound Lists

A list of integers can be simply declared as

integerlist = integer*

The same is true for a list of real numbers, a list of symbols, or a list of strings.

However, it is often valuable to store a combination of different types of
elements within a list, such as:

[2, 3, 5.12, ["food", "goo"], "new"] /* Not correct Visual Prolog*/

Compound lists are lists that contain more than one type of element. You need
special declarations to handle lists of multiple-type elements, because Visual
Prolog requires that all elements in a list belong to the same domain. The way
to create a list in Prolog that stores these different types of elements is to use
functors, because a domain can contain more than one data type as arguments
to functors.

The following is an example of a domain declaration for a list that can contain an
integer, a character, a string, or a list of any of these:

DOMAINS /* the functors are l, i, c, and s */
llist = l(list); i(integer); c(char); s(string)
list = llist*

The list

176 Visual Prolog Language Tutorial

[2, 9, ["food", "goo"], "new"] /* Not correct Visual Prolog */

would be written in Visual Prolog as

[i(2), i(9), l([s("food"), s("goo")]), s("new")]
 /* Correct Visual Prolog */

The following example of append shows how to use this domain declaration in a
typical list-manipulation program.

/* Program ch07e09.pro */

DOMAINS
llist = l(list); i(integer); c(char); s(string)
list = llist*

PREDICATES
append(list,list,list)

CLAUSES
append([],L,L).
append([X|L1],L2,[X|L3]):-

append(L1, L2, L3).

GOAL
append([s(likes), l([s(bill), s(mary)])],[s(bill), s(sue)],Ans),
write("FIRST LIST: ", Ans,"\n\n"),
append([l([s("This"),s("is"),s("a"),s("list")]),s(bee)],

[c('c')],Ans2),
write("SECOND LIST: ", Ans2, '\n', '\n').

Exercises

1. Write a predicate, oddlist, that takes two arguments. The first argument is a
list of integers, while the second argument returns a list of all the odd
numbers found in the first list.

2. Write a predicate, real_average, that calculates the average value of all the
elements in a list of reals.

3. Write a predicate that takes a compound list as its first argument and returns a
second argument that is the list with all the sub-lists removed. This predicate
is commonly known as flatten, as it flattens a list of lists into a single list. For
example, the call

flatten([s(ed), i(3), l([r(3.9), l([s(sally)])])], r(4.21), X)

returns

Chapter 7, Lists and Recursion 177

X = [s(ed), i(3), r(3.9), s(sally), r(4.21)]
1 Solution

which is the original list, flattened.

Parsing by Difference Lists
Program ch07e10.pro demonstrates parsing by difference lists. The process of
parsing by difference lists works by reducing the problem; in this example we
transform a string of input into a Prolog structure that can be used or evaluated
later.

The parser in this example is for a very primitive computer language. Although
this example is very advanced for this point in the tutorial, we decided to put it
here because parsing is one of the areas where Visual Prolog is very powerful. If
you do not feel ready for this topic, you can skip this example and continue
reading the tutorial without any loss of continuity.

/* Program ch07e10.pro */

DOMAINS
toklist = string*

PREDICATES
tokl(string,toklist)

CLAUSES
tokl(Str,[H|T]):-

fronttoken(Str,H,Str1),!,
tokl(Str1,T).

tokl(_,[]).

/*
 * This second part of the program is the parser *
 */

DOMAINS
program = program(statementlist)
statementlist = statement*

/*
 * Definition of what constitutes a statement *
 */

statement = if_Then_Else(exp,statement,statement);
 if_Then(exp,statement);
 while(exp,statement);
 assign(id,exp)

178 Visual Prolog Language Tutorial

/* * * * * * * * * * * * * * *
 * Definition of expression *
 * * * * * * * * * * * * * * */

exp = plus(exp,exp);
 minus(exp,exp);
 var(id);
 int(integer)

id = string

PREDICATES
s_program(toklist,program)
s_statement(toklist,toklist,statement)
s_statementlist(toklist,toklist,statementlist)
s_exp(toklist,toklist,exp)
s_exp1(toklist,toklist,exp,exp)
s_exp2(toklist,toklist,exp)

CLAUSES
s_program(List1,program(StatementList)):-

s_statementlist(List1,List2,StatementList),
List2=[].

s_statementlist([],[],[]):-!.
s_statementlist(List1,List4,[Statement|Program]):-

s_statement(List1,List2,Statement),
List2=[";"|List3],
s_statementlist(List3,List4,Program).

Chapter 7, Lists and Recursion 179

s_statement(["if"|List1],List7,if_then_else(Exp,Statement1,
Statement2)):-

s_exp(List1,List2,Exp),
List2=["then"|List3],
s_statement(List3,List4,Statement1),
List4=["else"|List5],!,
s_statement(List5,List6,Statement2),
List6=["fi"|List7].

s_statement(["if"|List1],List5,if_then(Exp,Statement)):-!,
s_exp(List1,List2,Exp),
List2=["then"|List3],
s_statement(List3,List4,Statement),
List4=["fi"|List5].

s_statement(["do"|List1],List4,while(Exp,Statement)):-!,
s_statement(List1,List2,Statement),
List2=["while"|List3],
s_exp(List3,List4,Exp).

s_statement([ID|List1],List3,assign(Id,Exp)):-
isname(ID),
List1=["="|List2],
s_exp(List2,List3,Exp).

s_exp(LIST1,List3,Exp):-
s_exp2(List1,List2,Exp1),
s_exp1(List2,List3,Exp1,Exp).

s_exp1(["+"|List1],List3,Exp1,Exp):-!,
s_exp2(List1,List2,Exp2),
s_exp1(List2,List3,plus(Exp1,Exp2),Exp).

s_exp1(["-"|List1],List3,Exp1,Exp):-!,
s_exp2(List1,List2,Exp2),
s_exp1(List2,List3,minus(Exp1,Exp2),Exp).

s_exp1(List,List,Exp,Exp).

s_exp2([Int|Rest],Rest,int(I)):-
str_int(Int,I),!.

s_exp2([Id|Rest],Rest,var(Id)):-
isname(Id).

Load and run this program, then enter the following goal:

Goal tokl("b=2; if b then a=1 else a=2 fi; do a=a-1 while a;",Ans),
s_program(Ans,Res).

Visual Prolog will return the program structure:

180 Visual Prolog Language Tutorial

Ans=["b","=","2",";","if","b","then","a","=","1",
"else","a","=","2","fi",";","do","a","=","a",
"-","1","while","a",";"
],

Res=program([assign("b",int(2)),
if_then_else(var("b"),assign("a",int(1)),
assign("a",int(2))),

while(var("a"),assign("a",minus(var("a"),int(1))))
])

1 Solution

The transformation in this example is divided into two stages: scanning and
parsing. The tokl predicate is the scanner; it accepts a string and converts it into a
list of tokens. All the predicates with names beginning in s_ are parser predicates.
In this example the input text is a Pascal-like program made up of Pascal-like
statements. This programming language only understands certain statements: IF
THEN ELSE, IF THEN, DO WHILE, and ASSIGNMENT. Statements are made
up of expressions and other statements. Expressions are addition, subtraction,
variables, and integers.

Here's how this example works:

1. The first scanner clause, s_program, takes a list of tokens and tests if it can
be transformed into a list of statements.

2. The predicate s_statementlist takes this same list of tokens and tests if the
tokens can be divided up into individual statements, each ending with a
semicolon.

3. The predicate s_statement tests if the first tokens of the token list make up a
legal statement. If so, the statement is returned in a structure and the
remaining tokens are returned back to s_statementlist.

a. The four clauses of the s_statement correspond to the four types of
statements the parser understands. If the first s_statement clause is
unable to transform the list of tokens into an IF THEN ELSE statement,
the clause fails and backtracks to the next s_statement clause, which tries
to transform the list of tokens into an IF THEN statement. If that clause
fails, the next one tries to transform the list of tokens into a DO WHILE
statement.

b. If the first three s_statement clauses fail, the last clause for that predicate
tests if the statement does assignment. This clause tests for assignment
by testing if the first term is a symbol, the second term is "=", and the
next terms make up a simple math expression.

Chapter 7, Lists and Recursion 181

4. The s_exp, s_exp1, and s_exp2 predicates work the same way, by testing if
the first terms are expressions and – if so – returning the remainder of the
terms and an expression structure back to s_statement.

See the Sentence Analyzer VPI\PROGRAMS\SEN_AN program on your disk
for a more detailed example of parsing natural-language.

Summary

These are the important points covered in this chapter:

1. Lists are objects that can contain an arbitrary number of elements; you
declare them by adding an asterisk at the end of a previously defined domain.

2. A list is a recursive compound object that consists of a head and a tail. The
head is the first element and the tail is the rest of the list (without the first
element). The tail of a list is always a list; the head of a list is an element. A
list can contain zero or more elements; the empty list is written [].

3. The elements in a list can be anything, including other lists; all elements in a
list must belong to the same domain. The domain declaration for the elements
must be of this form:

DOMAINS
elementlist = elements*
elements =

where elements = one of the standard domains (integer, real, etc.) or a set of
alternatives marked with different functors (int(integer); rl(real);
smb(symbol); etc.). You can only mix types in a list in Visual Prolog by
enclosing them in compound objects/functors.

4. You can use separators (commas, [, and |) to make the head and tail of a list
explicit; for example, the list

[a, b, c, d]

can be written as

[a|[b, c, d]] or
[a, b|[c, d]] or
[a, b, c|[d]] or
[a|[b|[c, d]]] or
[a|[b|[c|[d]]]] or even
[a|[b|[c|[d|[]]]]]

182 Visual Prolog Language Tutorial

5. List processing consists of recursively removing the head of the list (and
usually doing something with it) until the list is an empty list.

6. The classic Prolog list-handling predicates member and append enable you to
check if an element is in a list and check if one list is in another (or append
one list to another), respectively.

7. A predicate's flow pattern is the status of its arguments when you call it; they
can be input parameters (i) – which are bound or instantiated – or output
parameters (o), which are free.

8. Visual Prolog provides a built-in predicate, findall, which takes a goal as one
of its arguments and collects all of the solutions to that goal into a single list.

9. Because Visual Prolog requires that all elements in a list belong to the same
domain, you use functors to create a list that stores different types of
elements.

10. The process of parsing by difference lists works by reducing the problem; the
example in this chapter transforms a string of input into a Prolog structure that
can be used or evaluated later.

Chapter 8, Visual Prolog’s Internal Fact Databases 183

CHAPTER 8

Visual Prolog’s Internal Fact Databases

In this chapter, we describe how you declare internal fact databases and how you
can modify the contents of your fact databases.

An internal fact database is composed of facts that you can add directly into and
remove from your Visual Prolog program at run time. You declare the predicates
describing the fact databases in the facts sections of your program, and you use
these predicates the same way you use the ones declared in the predicates
section.

In Visual Prolog, you use the predicates assert, asserta, assertz to add new facts
to the fact databases, and the predicates retract and retractall to remove existing
facts. You can modify the contents of your fact databases by first retracting a fact
and then asserting the new version of that fact (or a different fact altogether). The
predicates consult/1 and consult/2 read facts from a file and asserts them into
internal fact databases, and predicates save/1 and save/2 save the contents of
internal fact databases to a file.

Visual Prolog treats facts belonging to fact databases differently from the way it
treats normal predicates. Facts for the fact database predicates are kept in tables,
which are easy to modify, while the normal predicates are compiled to binary
code for maximum speed.

Declaring the Fact Databases

The keyword facts (it is synonymous to the obsolete keyword database) marks
the beginning of the facts section declaration. A facts section consists of a
sequence of declarations for predicates describing the correspondent internal fact
database. You can add facts – but not rules – to a fact databases from the
keyboard at run time with asserta and assertz. Or, by calling the standard
predicates consult, you can retrieve the added facts from a disk file. The facts
section looks something like in the following example.

184 Visual Prolog Language Tutorial

DOMAINS
name, address = string
age = integer
gender = male ; female

FACTS
person(name, address, age, gender)

PREDICATES
male(name, address, age)
female(name, address, age)
child(name, age, gender)

CLAUSES
male(Name, Address, Age) :-

person(Name, Address, Age, male).
...

In this example, you can use the predicate person the same way you use the other
predicates, (male, female, child); the only difference is that you can insert and
remove facts for person while the program is running.

There are two restrictions on using predicates declared in facts sections:

1. You can add them into fact databases as facts only – not as rules.

2. Facts in fact databases may not have free variables.

It is possible to declare several facts sections, but in order to do this, you must
explicitly name each facts section.

FACTS - mydatabase
myFirstRelation(integer)
mySecondRelation(real, string)
myThirdRelation(string)
/* etc. */

This declaration of a facts section with the name mydatabase creates the
mydatabase internal fact database. If you don't supply a name for a fact database,
it defaults to the standard name dbasedom. Notice that a program can contain the
local unnamed facts section only if the program consists of the single
compilation module, which is not declared to be a part of a project. (See Modular
Programming on page 252). The Visual Development Environment executes a
program file as a single compilation module only with the Test Goal utility.
Otherwise, the unnamed facts section has to be declared global. This is done by
preceding the keyword facts (or database) with the keyword global.

Chapter 8, Visual Prolog’s Internal Fact Databases 185

The names of predicates in a facts section must be unique within a module
(source file); you cannot use the same predicate name in two different facts
sections or in a facts section and in a predicates section. However, the predicates
in the local named facts sections are private to the module in which they are
declared, and do not interfere with local predicates in other modules.

Using the Fact Databases
Because Visual Prolog represents a relational database as a collection of facts,
you can use it as a powerful query language for internal databases. Visual
Prolog's unification algorithm automatically selects facts with the correct values
for the known arguments and assigns values to any unknown arguments, while its
backtracking algorithm can give all the solutions to a given query.

Accessing the Fact Databases
Predicates belonging to a fact database are accessed in exactly the same way as
other predicates. The only visible difference in your program is that the
declarations for the predicates are in a facts section instead of a predicates
section. Given for instance the following:

DOMAINS
name = string
sex = char

FACTS
person(name,sex)

CLAUSES
person("Helen",'F').
person("Maggie",'F').
person("Suzanne",'F').
person("Per",'M').

you can call person with the goal person(Name,'F') to find all women, or
person("Maggie",'F') to verify that there is a woman called Maggie in your fact
database.

You should be aware that, by their very nature, predicates in facts sections are
always nondeterministic. Because facts can be added anytime at run time, the
compiler must always assume that it's possible to find alternative solutions during
backtracking. If you have a predicate in a facts section for which you'll never
have more than one fact, you can override this by prefacing the declaration with

186 Visual Prolog Language Tutorial

the keyword determ (or keyword single if the predicate must always have one
and only one fact) to the declaration:

FACTS
determ daylight_saving(integer)

You will get an error if you try to add a fact for a deterministic database predicate
which already has a fact.

Updating the Fact Databases
Facts for database predicates can be specified at compile time in the clauses
section, as in the example above. At run time, facts can be added and removed by
using the predicates described below. Note that facts specified at compile time in
the clauses section can be removed too, they are not different from facts added at
run time.

Visual Prolog's standard database predicates assert, asserta, assertz, retract,
retractall, consult, and save will all take one or two arguments. The optional
second argument is the name of a facts section. We describe these predicates in
the following pages. The notation "/1" and "/2" after each predicate name refers
to the number of arguments that arity version of the predicate takes. The
comments after the formats (such as /* (i) */ and /* (o,i) */ show the flow
pattern(s) for that predicate.

Adding Facts at Run Time
At run time, facts can be added to the fact databases with the predicates: assert,
asserta and assertz, or by loading facts from a file with consult.

There are three predicates to add a single fact at runtime:

asserta(< the fact>) /* (i) */
asserta(< the fact>, facts_sectionName) /* (i, i) */

assertz(< the fact>) /* (i) */
assertz(< the fact>, facts_sectionName) /* (i, i) */

assert(< the fact>) /* (i) */
assert(< the fact>, facts_sectionName) /* (i, i) */

asserta asserts a new fact into the fact database before the existing facts for the
given predicate, while assertz asserts a new fact after the existing facts for that
predicate. assert behaves like assertz.

Chapter 8, Visual Prolog’s Internal Fact Databases 187

The assertion predicates always know which fact database to insert the fact in,
because the names of the database predicates are unique within a program (for
global facts sections) or module (for local facts sections). However, you can use
the optional second argument for type-checking purposes in order to ensure that
you are working on the correct fact database.

The first of the following goals inserts a fact about Suzanne for the person
predicate, after all the facts for person currently stored in the fact database. The
second inserts a fact about Michael before all the currently stored facts for
person. The third inserts a fact about John after all the other likes facts in the fact
database likesDatabase, while the fourth inserts a fact about Shannon in the same
facts section, before all the other likes facts.

assertz(person("Suzanne", "New Haven", 35)).
asserta(person("Michael", "New York", 26)).
assertz(likes("John", "money"), likesDatabase).
asserta(likes("Shannon", "hard work"), likesDatabase).

After these calls the fact databases look as if you'd started with the following
facts:

/* Internal fact database – dbasedom */
person("Michael", "New York", 26).
/* ... other person facts ... */
person("Suzanne", "New Haven", 35).

/* Internal fact database – likesDatabase */
likes("Shannon", "hard work").
/* ... other likes facts ... */
likes("John", "money").

Be careful that you don't accidentally write code asserting the same fact twice.
The fact databases do not impose any kind of uniqueness, and the same fact may
appear many times in a fact database. However, a uniqueness-testing version of
assert is very easy to write:

FACTS - people
person(string,string)

PREDICATES
uassert(people)

188 Visual Prolog Language Tutorial

CLAUSES
uassert(person(Name,Address)):-

person(Name,Address),
!
; % OR
assert(person(Name,Address)).

Loading Facts from a File at Run Time

consult reads in a file, fileName, containing facts declared in a facts section and
asserts them at the end of the appropriate fact database. consult takes one or two
arguments:

consult(fileName) /* (i) */
consult(fileName, databaseName) /* (i, i) */

Unlike assertz, if you call consult with only one argument (no facts section
name), it will only read facts that were declared in the default (unnamed)
dbasedom facts section.

If you call consult with two arguments (the file name and a facts section name),
it will only consult facts from that named facts section. If the file contains
anything other than facts belonging to the specified fact database, consult will
return an error when it reaches that part of the file.

Keep in mind that the consult predicate reads one fact at a time; if the file has ten
facts, and the seventh fact has some syntax error, consult will insert the first six
facts into the facts section – then issue an error message.

Note that consult is only able to read a file in exactly the same format as save
generates (in order to insert facts as fast as possible). There can be

• no upper-case characters except in double-quoted strings

• no spaces except in double-quoted strings

• no comments

• no empty lines

• no symbols without double quotes

You should be careful when modifying or creating such a file of facts with an
editor.

Chapter 8, Visual Prolog’s Internal Fact Databases 189

Removing Facts at Run Time
retract unifies facts and removes them from the fact databases. It's of the
following form:

retract(< the fact>[, databaseName]) /* (i, i) */

retract will remove the first fact in your fact database that matches <the fact>,
instantiating any free variables in <the fact> in the process. Retracting facts from
a fact database is exactly like accessing it, with the side effect that the matched
fact is removed. Unless the database predicate accessed by retract was declared
to be deterministic, retract is nondeterministic and will, during backtracking,
remove and return the remaining matching facts, one at a time. When all
matching facts have been removed, retract fails.

Suppose you have the following facts sections in your program:

DATABASE
person(string, string, integer)

FACTS - likesDatabase
likes(string, string)
dislikes(string, string)

CLAUSES
person("Fred", "Capitola", 35).
person("Fred", "Omaha", 37).
person("Michael", "Brooklyn", 26).

likes("John", "money").
likes("Jane", "money").
likes("Chris", "chocolate").
likes("John", "broccoli").

dislikes("Fred", "broccoli").
dislikes("Michael", "beer").

Armed with these facts sections, you give Visual Prolog the following subgoals:

retract(person("Fred", _, _)), /* 1 */
retract(likes(_, "broccoli")), /* 2 */
retract(likes(_, "money"), likesDatabase), /* 3 */
retract(person("Fred", _, _), likesDatabase). /* 4 */

The first subgoal retracts the first fact for person about Fred from the default
dbasedom fact database. The second subgoal retracts the first fact matching
likes(X, "broccoli") from the fact database likesDatabase. With both of these
subgoals, Visual Prolog knows which fact database to retract from because the

190 Visual Prolog Language Tutorial

names of the database predicates are unique: person is only in the default fact
database, and likes is only in the fact database likesDatabase.

The third and fourth subgoals illustrate how you can use the optional second
argument for type checking. The third subgoal succeeds, retracting the first fact
that matches likes(_, "money") from likesDatabase, but the fourth cannot be
compiled because there are no (and cannot be) person facts in the fact database
likesDatabase. The error message given by the compiler is:

506 Type error: The functor does not belong to the domain.

The following goal illustrates how you can obtain values from retract:

GOAL
retract(person(Name, Age)),
write(Name, ", ", Age),nl,
fail.

If you supply the name of a fact database as the second argument to retract, you
don't have to specify the name of the database predicate you're retracting from. In
this case, retract will find and remove all facts in the specified fact database.
Here is an example:

GOAL
retract(X, mydatabase),
write(X),
fail.

Removing Several Facts at Once

retractall removes all facts that match <the fact> from your facts section, and is
of the following form:

retractall(< the fact>[, databaseName])

retractall behaves as if defined by

retractall(X):- retract(X), fail.
retractall(_).

but it's considerably faster than the above.

As you can gather, retractall always succeeds exactly once, and you can't obtain
output values from retractall. This means that, as with not, you must use
underscores for free variables.

Chapter 8, Visual Prolog’s Internal Fact Databases 191

As with assert and retract, you can use the optional second argument for type
checking. And, as with retract, if you call retractall with an underscore, it can
remove all the facts from a given fact database.

The following goal removes all the facts about males from the database of person
facts:

retractall(person(_, _, _, male)).

The next goal removes all the facts from the fact database mydatabase.

retractall(_, mydatabase).

Saving a database of facts at runtime
save saves facts from a given facts section to a file. save takes one or two
arguments:

save(fileName) /* (i) */
save(fileName, databaseName) /* (i, i) */

If you call save with only one argument (no facts section name), it will save the
facts from the default dbasedom database to the file fileName.

If you call save with two arguments (the file name and a facts section name), it
will save all facts existing in the fact database databaseName to the named file.

Keywords Determining Fact Properties
Facts section declarations can use the following optional keywords:

facts [- <databasename>]
[nocopy] [{ nondeterm | determ | single }]

dbPredicate ['(' [Domain [ArgumentName]]* ')']

The optional keywords nondeterm, determ or single declares the determinism
mode of the declared database predicate dbPredicate. Only one of them can be
used. If the determinism mode for a database predicate is not declared explicitly,
then the default nondeterm is accepted. Notice that the setting for Default
Predicate Mode (specified in the VDE's dialog Compiler Options) does not
effect onto the nondeterm default for database predicates.

nondeterm

Determines that the fact database can contain any number of facts for the
database predicate dbPredicate. This is the default mode.

192 Visual Prolog Language Tutorial

determ

Determines that the fact database at any time can contain no more than one
fact of the database predicate dbPredicate.

single

Determines that the fact database always contains one and only one fact of the
database predicate dbPredicate.

nocopy

Normally, when a database predicate is called to bind a variable to a string or
a compound object, then the referenced data are copiedb from the heap to the
Visual Prolog global stack (GStack). The nocopy declares that the data will
not be copied and variables will reference directly to the fact's data stored in
heap. This can considerably increase efficiency, but should be used carefully.
If a copy was not made, the variable would point to garbage after the fact
retraction was made.

global

Determines that the facts section is global. (See Modular Programming on
page 252.) Notice that safe programming techniques require that you do not
use global facts. Instead you can use global predicates handling local facts.

Facts declared with the keyword nondeterm.
The keyword nondeterm is the default mode for facts (database predicates)
declared in facts sections. If none of the keywords determ or single are used in a
fact declaration, the compiler applies nondeterm mode. Normally, by their very
nature, database predicates are non-deterministic. Because facts can be added at
any moment at runtime, the compiler must normally assume that it is possible to
find alternative solutions during backtracking.

Facts declared with the keyword determ.
The keyword determ declares that the fact database can contain no more than
one fact for the database predicate declared with this keyword. So if a program
tries to assert a second such fact into the fact database, then Prolog will generate
a runtime error. Therefore, the programmer should take special care asserting
deterministic facts.

Preceding a fact with determ enables the compiler to produce better code, and
you will not get non-deterministic warnings for calling such a predicate. This is
useful for flags, counters, and other things that are essentially global
characteristics.

Chapter 8, Visual Prolog’s Internal Fact Databases 193

Particularly note that when retracting a fact that is declared to be determ, the call
to non-deterministic predicates retract/1 and retract/2 will be deterministic. So if
you know that at any moment the fact database contains no more then one fact
counter then you can write:

FACTS
determ counter(integer CounterValue)

GOAL
...
retract(counter(CurrentCount)),
/* here Prolog will not set backtracking point */
Count= CurrentCount + 1,
assert(counter(Count)),

instead of

FACTS
counter(integer CounterValue)

PREDICATES
determ retract_d(dbasedom)

CLAUSES
retract_d(X): - retract(X),!. % deterministic predicate

GOAL
...
retract_d(counter(CurrentCount)),
/* here Prolog will not set backtracking point */
Count= CurrentCount + 1,
asserta(counter(Count)),

Facts declared with the keyword single.
The keyword single declares that the fact database will always contain one and
only one fact for the database predicate declared with the keyword single.

Since single facts must be already known when the program calls Goal;
therefore, single facts must be initialized in clauses sections in a program source
code. For example:

facts - properties
single numberWindows_s(integer)

CLAUSES
numberWindows_s(0).

194 Visual Prolog Language Tutorial

Single facts cannot be retracted. If you try to retract a single fact then the
compiler will generates an error. (In most cases the compiler can detect retracting
of a single fact while the compile time.)

Since one instance of a single fact always exists, a single fact never fails if it is
called with free arguments. For example, a following call

numberWindows_s(Num),

never fails if Num is a free variable. Therefore, it is convenient to use single facts
in predicates declared with determinism mode procedure.

Predicates assert, asserta, assertz, and consult applied to a single fact act
similarly to couples of retract and assert predicates. That is, assert (consult)
predicates change an existing instance of a fact to the specified one.

Preceding a fact with single enables the compiler to produce optimized code for
accessing and updating of a fact. For example, for assert predicates applied to a
single fact the compiler generates a code that works more effectively than a
couple of retract and assert predicates applied to a determ fact (and all the more
so than retract and assert predicates applied to a nondeterm fact).

Initialization of single facts with some domains (when you do not have the
default value to use) are not trivial. The following information can be useful:

1. Notice that binary domain data can be initialized using text format of binary
data. For example:

global domains
font = binary

facts – properties
single my_font(font)

clauses
my_font($[00]).

2. Other important special case is initialization of single facts carrying the
standard ref domain. The origin of ref domain is the domain for database
reference numbers in Visual Prolog external databases (see The External
Database System on page 369), but ref is also used in many predefined
domains declared in tools and packages supplied with Visual Prolog. For
instance, the fundamental VPI domain window is declared:

domains
WINDOW = REF

Chapter 8, Visual Prolog’s Internal Fact Databases 195

Notice that for initialization of ref values you can use unsigned numbers
preceded by the tilde '~' character. For example, you can write:

facts
single mywin(WINDOW)

clauses
mywin(~0).

Examples

1. This is a simple example of how to write a classification expert system using
the fact database. The important advantage of using the fact database in this
example is that you can add knowledge to (and delete it from) the program at
run time.

/* Program ch08e01.pro */

DOMAINS
thing = string
conds = cond*
cond = string

FACTS – knowledgeBase
is_a(thing, thing, conds)
type_of(thing, thing, conds)
false(cond)

PREDICATES
run(thing)
ask(conds)
update

CLAUSES
run(Item):-

is_a(X, Item, List),
ask(List),
type_of(ANS, X, List2),
ask(List2),
write("The ", Item," you need is a/an ", Ans),nl.

run(_):-
write("This program does not have enough "),
write("data to draw any conclusions."),
nl.

196 Visual Prolog Language Tutorial

ask([]).
ask([H|T]):-

not(false(H)),
write("Does this thing help you to "),
write(H," (enter y/n)"),
readchar(Ans), nl, Ans='y',
ask(T).

ask([H|_]):-
assertz(false(H)), fail.

is_a(language, tool, ["communicate"]).
is_a(hammer, tool, ["build a house", "fix a fender", "crack a nut"]).
is_a(sewing_machine, tool, ["make clothing", "repair sails"]).
is_a(plow, tool, ["prepare fields", "farm"]).

type_of(english, language, ["communicate with people"]).
type_of(prolog, language, ["communicate with a computer"]).

update:-
retractall(type_of(prolog, language, ["communicate with a
computer"])),
asserta(type_of("Visual Prolog", language,
 ["communicate with a personal computer"])),
asserta(type_of(prolog, language,

 ["communicate with a mainframe computer"])).

The following database facts could have been asserted using asserta or
assertz, or consulted from a file using consult. In this example, however,
they're listed in the clauses section.

is_a(language, tool, ["communicate"]).
is_a(hammer, tool, ["build a house", "fix a fender", "crack a nut"]).
is_a(sewing_machine, tool, ["make clothing", "repair sails"]).
is_a(plow, tool, ["prepare fields", "farm"]).

type_of(english, language, ["communicate with people"]).
type_of(prolog, language, ["communicate with a computer"]).

As the goal enter:

goal
run(tool).

Respond to each question as if you were looking for some tool to
communicate with a personal computer.

Now enter the following goal:

Chapter 8, Visual Prolog’s Internal Fact Databases 197

update, run(tool).

The update predicate is included in the source code for the program, to save
you a lot of typing, and will remove the fact

type_of(prolog, language, ["communicate with a computer"])

from the fact database knowledgeBase and add two new facts into it:

type_of(prolog, language,
["communicate with a mainframe computer"]).

type_of("Visual Prolog", language,
["communicate with a personal computer"]).

Now respond to each question once again as if you were looking for some
tool to communicate with a personal computer.

You can save the whole fact database knowledgeBase in a text file by calling
the predicate save/2 with names of a text file and a facts section as its
arguments. For example, after the call to

save("mydata.dba", knowledgeBase),

the file mydata.dba will resemble the clauses section of an ordinary Visual
Prolog program, with a fact on each line. You can read this file into memory
later using the consult predicate:

consult("mydata.dba", knowledgeBase)

2. You can manipulate facts describing database predicates (facts declared in
facts sections) as though they were terms.

When you declare a facts section, Visual Prolog's compiler will internally
generate a domain definition corresponding to the facts declaration. As an
example, consider the declarations

FACTS - dba1 /* dba1 is the domain for these predicates */
person(name, telno)
city(cno, cname)

Given these declarations, Visual Prolog's compiler internally generates the
corresponding dba1 domain:

DOMAINS
dba1 = person(name, telno); city(cno, cname)

This dba1 domain can be used like any other predefined domain. For
example, you could use the standard predicate readterm (which is covered in
chapter 12) to construct a predicate my_consult, similar to the standard
predicate consult.

198 Visual Prolog Language Tutorial

Program ch08e02 illustrates one practical way you might use the facts section
in an application. This example supposes that you have a screen handler
predicate, which places text on the screen in predefined locations. A screen
layout for the current screen display can be stored in the field and txtfield
facts that are defined in the screen facts section. Several screen names can be
stored in the correspondent screens fact database. At run time, the shiftscreen
predicate can copy one of these stored screens to the screen fact database by
first retracting all current data from the screen fact database, calling the
screen predicate to get the layout information for the upcoming screen, then
asserting the new screen's form into the screen facts section.

/* Program ch08e02.pro */

DOMAINS
screenname, fname, type = symbol
row,col,len = integer

FACTS - screenDescription
field(fname, type, row, col, len) /* Definitions of field on screen */
txtfield(row, col, len, string) /* Showing textfields */
windowsize(row,col)

FACTS - screens
screen(symbol,screenDescription) /* Storing different screens */

PREDICATES
shiftscreen(symbol)

CLAUSES
shiftscreen(_):-

retract(field(_,_,_,_,_)),
fail.

shiftscreen(_):-
retract(txtfield(_,_,_,_)),
fail.

shiftscreen(_):-
retract(windowsize(_,_)),
fail.

shiftscreen(Name):-
screen(Name,Term),
assert(Term),
fail.

shiftscreen(_).

Chapter 8, Visual Prolog’s Internal Fact Databases 199

GOAL
shiftscreen(person).

Summary

1. Visual Prolog's internal fact databases are composed of the facts in your
program that are grouped into facts sections. In facts sections you declare the
user-defined database predicates used in these fact databases. The facts
section declaration is started with the keyword facts.

2. You can name facts sections (which creates a corresponding internal domain);
the default domain for (unnamed) facts sections is dbasedom. Your program
can have multiple facts sections, but each one must have a unique name. You
can declare a given database predicate in only one facts section.

3. With the standard predicates assert, asserta, assertz, and consult, you can add
facts to the fact databases at run time. You can remove such facts at run time
with the standard predicates retract and retractall.

4. The save predicates save facts from a fact database to a file (in a specific
format). You can create or edit such a fact file with an editor, then insert facts
from the file into the correspondent fact database of your running program
with consult.

5. Your program can call fact database predicates just as it calls any other
predicates.

6. You can handle facts as terms when using domains internally generated for
names of facts sections.

200 Visual Prolog Language Tutorial

CHAPTER 9

Arithmetic and Comparison

Visual Prolog's arithmetic and comparison capabilities are similar to those
provided in programming languages such as BASIC, C, and Pascal. Visual
Prolog includes a full range of arithmetic functions; you have already seen some
simple examples of Visual Prolog's arithmetic capabilities.

In this chapter we summarize Visual Prolog's built-in predicates and functions for
performing arithmetic and comparisons, as well as a two-arity versions of a
standard predicate used for random number generation. We'll also discuss
comparison of strings and characters.

Arithmetic Expressions

Arithmetic expressions consist of operands (numbers and variables), operators
(+, -, *, /, div, and mod), and parentheses. The symbols on the right side of the
equal sign (which is the = predicate) in the following make up an arithmetic
expression.

A = 1 + 6 / (11 + 3) * Z

Leading "0x" or "0o" signify hexadecimal and octal numbers, respectively, e.g.

0xFFF = 4095
86 = 0o112 + 12

The value of an expression can only be calculated if all variables are bound at the
time of evaluation. The calculation then occurs in a certain order, determined by
the priority of the arithmetic operators; operators with the highest priority are
evaluated first.

Operations
Visual Prolog can perform all four basic arithmetic operations (addition,
subtraction, multiplication, and division) between integral and real values; the
type of the result is determined according to Table 9.1.

Chapter 9, Arithmetic and Comparison 201

Table 9.1 Arithmetic Operations

Operand 1 Operator Operand 2 Result

integral +, -, * integral integral

real +, -, * integral real

integral +, -, * real real

real +, -, * real real

integral or real / integral or real real

integral div integral integral

integral mod integral integral
In case of mixed integral arithmetic, involving both signed and unsigned
quantities, the result is signed. The size of the result will be that of the larger of
the two operands. Hence, if an ushort and a long are involved the result is long;
if an ushort and an ulong are involved the result is ulong.

Order of Evaluation
Arithmetic expressions are evaluated in this order:

1. If the expression contains sub-expressions in parentheses, the sub-
expressions are evaluated first.

2. If the expression contains multiplication (*) or division (/, div or mod), these
operations are carried out next, working from left to right through the
expression.

3. Finally, addition (+) and subtraction (-) are carried out, again working from
left to right.

Hence, these are the operator precedence:

Table 9.2 Operator
Precedence

Operator Priority
+ - 1
* / mod div 2

202 Visual Prolog Language Tutorial

- + (unary) 3
In the expression A = 1 + 6/(11+3)*Z, assume that Z has the value 4, since
variables must be bound before evaluation.

1. (11 + 3) is the first sub-expression evaluated, because it's in parentheses; it
evaluates to 14.

2. Then 6/14 is evaluated, because / and * are evaluated left to right; this gives
0.428571.

3. Next, 0.428571 * 4 gives 1.714285.

4. Finally, evaluating 1 + 1.714285 gives the value of the expression as
2.714285.

A will then be bound to 2.714285 that makes it a real value.

However, you should exercise some care when handling floating-point (real)
quantities. In most cases they are not represented accurately and small errors can
accumulate, giving unpredictable results. An example follows later in the
chapter.

Functions and Predicates

Visual Prolog has a full range of built-in mathematical functions and predicates
that operate on integral and real values. The complete list is given in Table 9.3

Table 9.4: Visual Prolog Arithmetic Predicates and Functions

Name Description

X mod Y

Returns the remainder (modulo) of X divided by Y.

X div Y Returns the quotient of X divided by Y.

abs(X) If X is bound to a positive value val, abs(X) returns that
value; otherwise, it returns -1 * val.

cos(X) The trigonometric functions require that X be bound to

sin(X) a value representing an angle in radians.

tan(X) Returns the tangent of its argument.

Chapter 9, Arithmetic and Comparison 203

arctan(X) Returns the arc tangent of the real value to which X is
bound.

exp(X) e raised to the value to which X is bound.

ln(X) Logarithm of X, base e.

log(X) Logarithm of X, base 10.

sqrt(X) Square root of X.

random(X) Binds X to a random real; 0 <= X < 1.

random(X, Y) Binds Y to a random integer; 0 <= Y < X.

round(X) Returns the rounded value of X. The result still being a
real

trunc(X) Truncates X. The result still being a real

val(domain, X) Explicit conversion between numeric domains.

Generating Random Numbers
Visual Prolog provides two standard predicates for generating random numbers.
One returns a random real between 0 and 1, while the other returns a random
integer between 0 and a given integer. Additionally, the random numbering
sequence may be re-initialized.

random/1
This version of random returns a random real number that satisfies the
constraints

0 <= RandomReal < 1.

random/1 takes this format:

random(RandomReal) /* (o) */

random/2
This version of random takes two arguments, in this format:

random(MaxValue, RandomInt) /* (i, o) */

204 Visual Prolog Language Tutorial

It binds RandomInt to a random integer that satisfies the constraints

0 <= RandomInt < MaxValue

random/2 is much faster than random/1 because random/2 only uses integer
arithmetic.

randominit/1
randominit will initialize the random number generator and is of the following
form:

randominit(Seed) /* (i) */

The default random number seed value is generated as function from system
time, and the Seed argument to randominit sets this seed value. The main use for
randominit is to provide repeatable sequences of pseudo random numbers for
statistical testing. Note that both the integer and floating point versions of
random use the same seed and basic number generator.

Example
Program ch9e01.pro uses random/1 to select three names from five at random.

/* Program ch9e01.pro */

PREDICATES
person(integer, symbol)
rand_int_1_5(integer)
rand_person(integer)

CLAUSES
person(1,fred).
person(2,tom).
person(3,mary).
person(4,dick).
person(5,george).

rand_int_1_5(X):-
random(Y),
X=Y*4+1.

Chapter 9, Arithmetic and Comparison 205

rand_person(0):-!.
rand_person(Count):-

rand_int_1_5(N),
person(N,Name),
write(Name),nl,
NewCount=Count-1,
rand_person(NewCount).

GOAL
rand_person(3).

Integer and Real Arithmetic
Visual Prolog provides predicates and functions for: modular arithmetic, integer
division, square roots and absolute values, trigonometry, transcendental
functions, rounding (up or down), and truncation. They are summarized in Table
9.3 and are explained on the following pages.

mod/2
mod performs the function X modulo Y (where X and Y are integers).

X mod Y /* (i, i) */

The expression Z = X mod Y binds Z to the result. For example,

Z = 7 mod 4 /* Z will equal 3 */
Y = 4 mod 7 /* Y will equal 4 */

div/2
div performs the integer division X/Y (where X and Y are integers).

X div Y /* (i, i) */

The expression Z = X div Y binds Z to the integer part of the result. For example,

Z = 7 div 4 /* Z will equal 1 */
Y = 4 div 7 /* Y will equal 0 */

abs/1
abs returns the absolute value of its argument.

abs(X) /* (i) */

206 Visual Prolog Language Tutorial

The expression Z = abs(X) binds Z (if it's free) to the result, or succeeds/fails if Z
is already bound. For example,

Z = abs(-7) /* Z will equal 7 */

cos/1
cos returns the cosine of its argument.

cos(X) /* (i) */

The expression Z = cos(X) binds Z (if it's free) to the result, or succeeds/fails if Z
is already bound. For example,

Pi = 3.141592653,
Z = cos(Pi) /* Z will equal -1 */

sin/1
sin returns the sine of its argument.

sin(X) /* (i) */

The expression Z = sin(X) binds Z (if it's free) to the result, or succeeds/fails if Z
is already bound. For example:

Pi = 3.141592653,
Z = sin(Pi) /* Z will almost equal 0 */

tan/1
tan returns the tangent of its argument.

tan(X) /* (i) */

The expression Z = tan(X) binds Z (if it's free) to the result, or succeeds/fails if Z
is already bound. For example,

Pi = 3.141592653,
Z = tan(Pi) /* Z will almost equal 0 */

arctan/1
arctan returns the arc tangent of the real value to which X is bound.

arctan(X) /* (i) */

Chapter 9, Arithmetic and Comparison 207

The expression Z = arctan(X) binds Z (if it's free) to the result, or succeeds/fails
if Z is already bound. For example,

Pi = 3.141592653,
Z = arctan(Pi) /* Z will equal 1.2626272556 */

exp/1
exp returns e raised to the value to which X is bound.

exp(X) /* (i) */

The expression Z = exp(X) binds Z (if it's free) to the result, or succeeds/fails if Z
is already bound. For example,

Z = exp(2.5) /* Z will equal 12.182493961 */

ln/1
ln returns the natural logarithm of X (base e).

ln(X /* (i) */

The expression Z = ln(X) binds Z (if it's free) to the result, or succeeds/fails if Z
is already bound. For example,

Z = ln(12.182493961) /* Z will equal 2.5 */

log/1
log returns the base 10 logarithm of X.

log(X) /* (i) */

The expression Z = log(X) binds Z (if it's free) to the result, or succeeds/fails if Z
is already bound. For example,

Z = log(2.5) /* Z will equal 0.39794000867 */

sqrt/1
sqrt returns the positive square root of X.

sqrt(X) /* (i) */

208 Visual Prolog Language Tutorial

The expression Z = sqrt(X) binds Z (if it's free) to the result, or succeeds/fails if
Z is already bound. For example,

Z = sqrt(25) /* Z will equal 5 */

round/1
round returns the rounded value of X.

round(X) /* (i) */

round rounds X up or down to the nearest integral value of X, but performs no
type conversion. For example,

Z1 = round(4.51) /* Z1 will equal 5.0 */
Z2 = round(3.40) /* Z2 will equal 3.0 */

Both Z1 and Z2 are floating point values following the above; only the fractional
parts of the arguments to round have been rounded up or down.

trunc/1
trunc truncates X to the right of the decimal point, discarding any fractional part.
Just like round, trunc performs no type conversion.

trunc(X) /* (i) */

For example,

Z = trunc(4.7) /* Z will equal 4.0 */

Again, Z is a floating-point number.

val/2
val provides general purpose conversion between the numeric domains, in cases
where you want full control over the result of the operation. val observes any
possible overflow condition. The format is

Result = val(returnDomain,Expr)

where Expr will be evaluated (if it's an expression), the result converted to
returnDomain and unified with Result. Visual Prolog also has a cast function that
will convert uncritically between any domains; this is described in chapter 10.

Chapter 9, Arithmetic and Comparison 209

Exercise
Use the trigonometric functions in Visual Prolog to display a table of sine,
cosine, and tangent values on the screen. The left column of the table should
contain angle values in degrees, starting at 0 degrees and continuing to 360
degrees in steps of 15 degrees.

Note: Because the trigonometric functions take values expressed in radians, you
must convert radians to angles to obtain entries for the left column.

Degrees = Radians * 180/3.14159265...

Comparisons

Visual Prolog can compare arithmetic expressions as well as characters, strings,
and symbols. The following statement is the Visual Prolog equivalent of "The
total of X and 4 is less than 9 minus Y."

X + 4 < 9 - Y

The less than (<) relational operator indicates the relation between the two
expressions, X + 4 and 9 - Y.

Visual Prolog uses infix notation, which means that operators are placed between
the operands (like this: X+4) instead of preceding them (like this: +(X,4)).

The complete range of relational operators allowed in Visual Prolog is shown in
Table 9.4.

Table 9.5: Relational Operators

Symbol Relation

< less than

<= less than or equal to

= equal

> greater than

>= greater than or equal to

<> or >< not equal

210 Visual Prolog Language Tutorial

Equality and the equal (=) Predicate
In Visual Prolog, statements like N = N1 - 2 indicate a relation between three
objects (N, N1, and 2), or a relation between two objects (N and the value of N1 -
2). If N is still free, the statement can be satisfied by binding N to the value of the
expression N1 - 2. This corresponds roughly to what other programming
languages call an assignment statement. Note that N1 must always be bound to a
value, since it is part of an expression to be evaluated.

When using the equal predicate (=) to compare real values, you must take care to
ensure that the necessarily approximate representation of real numbers does not
lead to unexpected results. For example, the goal

7/3 * 3 = 7

will frequently fail (the exact outcome depends on the accuracy of the floating
point calculations in use on your particular platform). Program ch9e02.pro
illustrates another example:

/* Program ch9e02.pro */

PREDICATES
test(real,real)

CLAUSES
test(X,X):-!,

write("ok\n").
test(X,Y):-

Diff = X-Y,
write(X,"<>",Y,"\nX-Y = ",Diff,'\n').

GOAL
X=47,
Y=4.7*10,
test(X,Y).

Except when running Prolog on the UNIX platform, where it behaves as one
might expect, this prints:

47<>47
X-Y = 7.1054273576E-15

Therefore, when comparing two real values for equality you should always check
that the two are within a certain range of one another.

Chapter 9, Arithmetic and Comparison 211

Example
Program ch9e03.pro shows how to handle approximate equality; this is an
iterative procedure for finding the square root in order to calculate the solutions
to the quadratic equation:

A*X*X + B*X + C = 0

The existence of solutions depends on the value of the discriminant D, defined as
follows:

D = B*B - 4*A*C.

• D > 0 implies that there are two unique solutions.

• D = 0 implies there is only one solution.

• D < 0 implies that there are no solutions if X is to take a real value (there can
be one or two complex solutions).

/* Program ch9e03.pro */

PREDICATES
solve(real, real, real)
reply(real, real, real)
mysqrt(real, real, real)
equal(real, real)

CLAUSES
solve(A,B,C):-

D=B*B-4*A*C,
reply(A, B, D), nl.

reply(_,_,D):-
D < 0,
write("No solution"),
!.

reply(A,B,D):-
D=0,
X=-B/(2*A),write("x=", X),
!.

reply(A,B,D):-
mysqrt(D,D,SqrtD),
X1=(-B+SqrtD)/(2*A),
X2 = (-B - SqrtD)/(2*A),
write("x1 = ", X1," and x2 = ", X2).

212 Visual Prolog Language Tutorial

mysqrt(X,Guess,Root):-
NewGuess = Guess-(Guess*Guess-X)/2/Guess,
not(equal(NewGuess,Guess)),
!,
mysqrt(X,NewGuess,Root).

mysqrt(_,Guess,Guess).

equal(X,Y):-
X/Y >0.99999,
X/Y < 1.00001.

To solve the quadratic equation, this program calculates the square root of the
discriminant, D. The program calculates square roots with an iterative formula
where a better guess (NewGuess) for the square root of X can be obtained from
the previous guess (Guess):

NewGuess = Guess-(Guess*Guess-X)/2/Guess

Each iteration gets a little closer to the square root of X. Once the condition
equal(X, Y) is satisfied, no further progress can be made, and the calculation
stops. Once this calculation stops, the program can solve the quadratic using the
values X1 and X2, where

X1 = (-B + sqrtD)/(2*A)
X2 = (-B - sqrtD)/(2*A)

Exercises
1. Load Program ch9e03.pro and try the Test Goal with the following goals:

solve(1, 2, 1).
solve(1, 1, 4).
solve(1, -3, 2).

The solutions should be

x = -1
No solution
x1 = 2 and x2 = 1

respectively.

2. The object of this exercise is to experiment with the mysqrt predicate in
Program ch9e03.pro. To ensure that temporary calculations are monitored,
add the following as the first subgoal in the first mysqrt clause:

write(Guess).

Chapter 9, Arithmetic and Comparison 213

To see the effect of this amendment, try this goal:

mysqrt(8, 1, Result).

Next, replace the equal clause with this fact:

equal(X, X).

and retry the goal. Experiment a little more with the properties of equal. For
instance, try

equal(X, Y) :-
X/Y < 1.1 , X/Y > 0.9.

Visual Prolog has a built-in square root function, sqrt. For example,

X = sqrt(D)

will bind X to the square root of the value to which D is bound. Rewrite
Program ch9e03.pro using sqrt and compare the answers with those from the
original version.

Comparing Characters, Strings, and Symbols
Besides numeric expressions, you can also compare single characters, strings and
symbols. Consider the following comparisons:

'a' < 'b' /* Characters */
"antony" > "antonia" /* Strings */
P1 = peter, P2 = sally, P1 > P2 /* Symbols */

Characters
Visual Prolog converts the 'a' < 'b' to the equivalent arithmetic expression 97 <
98, using the corresponding ASCII code value for each character. You should be
aware that only 7 bit ASCII comparisons should be relied upon (i.e. upper and
lower case letters a-z, digits, etc.). 8 bit characters, used for a number of national
characters, are not necessarily portable between the different platforms.

Strings
When two strings or symbols are compared, the outcome depends on a character-
by-character comparison of the corresponding positions. The result is the same as
you'd get from comparing the initial characters, unless those two characters are
the same. If they are, Visual Prolog compares the next corresponding pair of
characters and returns that result, unless those characters are also equal, in which
case it examines a third pair, and so on. Comparison stops when two differing

214 Visual Prolog Language Tutorial

characters are found or the end of one of the strings is reached. If the end is
reached without finding a differing pair of characters, the shorter string is
considered smaller.

The comparison "antony" > "antonia" evaluates to true, since the two symbols
first differ at the position where one contains the letter y (ASCII value 79) and
the other the letter i (ASCII value 69). In the same vein, the character comparison
"aa" > "a" is true.

Similarly, the expression "peter" > "sally" would be false – as determined by
comparing the ASCII values for the characters that make up peter and sally,
respectively. The character p comes before s in the alphabet, so p has the lower
ASCII value. Because of this, the expression evaluates to false.

Symbols
Symbols can't be compared directly because of syntax. In the preceding P1 =
peter, P2 ... example, the symbol peter can't be compared directly to the
symbol sally; they must be bound to variables to be compared, or written as
strings.

Chapter 10, Advanced Topics 215

CHAPTER 10

Advanced Topics

This is an advanced chapter; we expect that you have been working with the
various examples earlier in this book and are now beginning to be an experienced
Visual Prolog user. In this chapter, we illustrate how you can control the flow
analysis by using the standard predicates free and bound, reference domains,
how to use them and how to separate them from the other domains. We also
discuss more advanced topics about domains, including the binary domain,
pointers to predicates and functions, and return values from functions. Finally,
we look at error-handling, dynamic cutting, free type conversions and discuss
some programming style issues that will improve your programs' efficiency.

The Flow Analysis

In a given predicate call, the known arguments are called input arguments (i), and
the unknown arguments are called output arguments (o). The pattern of the input
and output arguments in a given predicate call is called the flow pattern.

For example, if a predicate is to be called with two arguments, there are four
possibilities for its flow pattern:

(i, i) (i, o) (o, i) (o, o)

When compiling programs, Visual Prolog carries out a global flow analysis of
the predicates. It starts with the main goal and then performs a pseudo-evaluation
of the entire program, where it binds flow patterns to all predicate calls in the
program.

The flow analysis is quite simple; you are actually carrying it out yourself when
you write your program. Here are some examples:

GOAL
cursor(R, C), R1 = R+1, cursor(R1, C).

In the first call to the cursor, the two variables R and C are free; this means that
the cursor predicate will be called with the flow pattern cursor(o,o). You know
that the variables are free because this is the first time they've been encountered.

216 Visual Prolog Language Tutorial

In the expression R1=R+1, the flow analyzer knows that the variable R is bound
because it comes from the cursor predicate. If it were free, an error message
would have been issued. R1 will be a known argument after this call.

In the last call to cursor, both of the variables R1 and C have been encountered
before, so they will be treated as input arguments; the call will have the flow
pattern cursor(i,i).

For each flow pattern that a user-defined predicate is called with, the flow
analyzer goes through that predicate's clauses with the variables from the head
set to either input or output (depending on the flow pattern being analyzed).

Here's an example illustrating this:

% To run this example you should in the VDE's Application Expert
% set Target settings to "DOS" and "Textmode
% and use Project | Run command

predicates
changeattrib(Integer, Integer)

clauses
changeattrib(NewAttrib, OldAttrib) :-

attribute(OldAttrib), attribute(NewAttrib).

goal
changeattrib(112, Old), write("Hello"),
attribute(Old), write(" there"),
readchar(_).

In the goal section, the first call to the predicate changeattrib is made with the
flow pattern changeattrib(i, o) (because 112 is known, and Old is not). This
implies that, in the clause for changeattrib, the variable NewAttrib will be an
input argument, and OldAttrib will be an output argument. Therefore, when the
flow analyzer encounters the first subgoal attribute(OldAttrib), the predicate
attribute will be called with the flow pattern attribute(o), while the second call
to attribute will have the flow pattern attribute(i). Finally, the call to attribute
in the goal will have an input flow pattern, because Old came out of
changeattrib.

Compound Flow
If a predicate argument is a compound term it's also possible to have a compound
flow pattern, where the same argument has both input and output flow. Suppose
for instance that you have a database of information about countries. To enable

Chapter 10, Advanced Topics 217

easy expansion with new data, it may well be desirable to contain each piece of
information in its own domain alternative:

/* Program ch10e01.pro */

diagnostics

DOMAINS
cinfo = area(string,ulong);

population(string,ulong);
capital(string,string)

PREDICATES
country(cinfo)

CLAUSES
country(area("Denmark",16633)).
country(population("Denmark",5097000)).
country(capital("Denmark","Copenhagen")).
country(area("Singapore",224)).
country(population("Singapore",2584000)).
country(capital("Singapore","Singapore")).

The following depicts some of the different flow patterns country can be called
with:

goal
country(C), % (o)
country(area(Name,Area)), % area(o,o)
country(population("Denmark",Pop)), % population(i,o)
country(capital("Singapore","Singapore")). % (i)

Note that because in the last call all elements of the term are known, the flow
pattern defaults to plain input (i).

Load ch10e01.pro and try the goal example above with the Test Goal utility (see
Testing Language Tutorial Examples on page 12). When you look at the
VDE's Messages window, you will see the diagnostics output referencing the
specified above flow variants in the table like this:

Predicate Name Type Determ Size Domains -- flowpattern
------ ---------------- -------- -------- ----- ---------- -----------
goal000country$1 local nondtm 168 cinfo -- o
goal000country$2 local nondtm 72 cinfo -- area(o,o)
goal000country$3 local nondtm 108 cinfo -- population(i,o)
goal000country$4 local nondtm 416 cinfo -- i

218 Visual Prolog Language Tutorial

When the domains involved in a compound flow pattern are reference domains,
the distinction between known and unknown arguments becomes blurred. We'll
return to this example in the reference domain section later.

Specifying Flow Patterns for Predicates
It is sometimes convenient to specify flow patterns for your predicates. If you
know, that your predicates will only be valid for special flow patterns, it is a
good idea to specify flow patterns for your predicates because the flow analyzer
will then catch any wrong usage of these predicates. After specifying the
domains, a dash and the possible flow patterns can be given like in:

PREDICATES
frame_text_mask(STRING,STRING,SLIST) - (i,o,o)(o,i,o)

Controlling the Flow Analysis
When the flow analyzer recognizes that a standard predicate is called with a
nonexistent flow pattern, it issues an error message. This can help you identify
meaningless flow patterns when you're creating user-defined predicates that call
standard predicates.

For example, if you use:

Z = X + Y

where the variable X or Y is not bound, the flow analyzer will give an error
message saying that the flow pattern doesn't exist for that predicate. To control
this situation, you can use the standard predicates free and bound.

Suppose you want to create a predicate for addition, plus, which can be called
with all possible flow patterns. Program ch10e02.pro gives the code for such a
predicate.

/* Program ch10e02.pro */

diagnostics

PREDICATES
plus(integer, integer, integer)
num(integer)

Chapter 10, Advanced Topics 219

CLAUSES
plus(X,Y,Z):-

bound(X),bound(Y),Z=X+Y. /* (i,i,o) */
plus(X,Y,Z):-

bound(Y),bound(Z),X=Z-Y. /* (o,i,i) */
plus(X,Y,Z):-

bound(X),bound(Z),Y=Z-X. /* (i,o,i) */
plus(X,Y,Z):-

free(X),free(Y),bound(Z),num(X),Y=Z-X. /* (o,o,i) */
plus(X,Y,Z):-

free(X),free(Z),bound(Y),num(X),Z=X+Y. /* (o,i,o) */
plus(X,Y,Z):-

free(Y),free(Z),bound(X),num(Y),Z=X+Y. /* (i,o,o) */
plus(X,Y,Z):-

free(X),free(Y),free(Z),num(X),num(Y),Z=X+Y. /* (o,o,o) */

% Generator of numbers starting from 0
num(0).
num(X):-

num(A),
X = A+1.

Reference Variables
When the flow analyzer has been through a clause, it checks that all output
variables in the clause head have been bound in the clause body. If a variable is
not bound in a clause, it needs to be treated as a reference variable. Here is an
example demonstrating this dilemma:

predicates
p(integer)

clauses
p(X):- !.

goal
p(V), V = 99, write(V).

In the Goal, the predicate p is called with an output pattern, but in the clause for
p, the argument X is not bound. When the flow analyzer recognizes this, it will
take a look at the domain corresponding to the variable. If the domain is already
declared as a reference domain, there is no problem; if it is not, Visual Prolog
tries to re-declare it internally as a reference domain. When it is possible (see the
list of reference domains in the VDE's Messages window), the compiler

220 Visual Prolog Language Tutorial

generates a warning. When it is impossible, for example, in programs containing
several source modules, the error message is generated.

Note

Beginning with Visual Prolog v.5.2 the compiler, by default, generates an
error on attempts to use Visual Prolog standard domains as reference. This
example uses the basic domain integer as reference. Therefore, an attempt to
invoke the Test Goal (with the default Visual Development Environment
parameters) on this example will generate the error like "Basic domain
becomes reference domain" (on integer domain). Consequently, to run the
Test Goal on this example, you must explicitly specify to the compiler, that it
should "allow basic domains become reference domains". You can do this
with the command line compiler option:

-R+

To pass this option from the VDE into the command line compiler calls
(while the Test Goal), you can specify –R+ in the Predefined Constants edit
control in the Compiler Options dialog. In this case the compiler will not
generate the error.

However, we strongly recommend always explicitly declare all reference
domains in domains sections.

When a variable is not bound in a clause, the clause cannot return a value.
Instead, it will return a pointer to a reference record where the actual value can
be inserted at a later time. This requires that the whole domain be treated equally;
instead of just passing the values directly for some of the variables of that type,
pointers to records will be passed through arguments belonging to the reference
domain. When a compound domain becomes a reference domain, all of its
subdomains must also become reference domains, because they must also be
capable of containing free variables. If you just declare a compound domain to be
a reference domain, the compiler will automatically know that all the subdomains
are also reference domains.

Declaring Domains as Reference
When the flow analyzer encounters an unbound variable, it will only give a
warning if the variable is not bound on return from a clause. If you ignore this
warning, the compiler will treat the domain as a reference domain. The compiler
will also try to declare all its subdomains as reference domains.

Because the code is treated the same for the whole domain, it is usually not a
good idea to treat the basic domains as reference domains. Instead, you should
declare a domain as being a reference domain to the desired base domain. For

Chapter 10, Advanced Topics 221

instance, in the following code excerpt, the user-defined domain refinteger is
declared to be a reference domain to the integer domain. All occurrences of
refinteger types will be handled as reference domains, but any occurrence of
other integers will still be treated as integers.

DOMAINS
refinteger = reference integer

PREDICATES
p(refinteger)

CLAUSES
p(_).

Notice that if a base domain, for example integer, is treated as reference, then
variables belonging to this base domain are treated as references on the base
domain values. For example, integer variables will contain not integer values but
references to integers. If predicates in some module (for example in a third-party
C library) do not know that integer arguments are not ordinary integer values (but
pointers to integer values), then calls to these predicates from other modules can
be incorrect. As the result of this misunderstanding, such predicates may return
wrong values or generate run-time errors. Therefore, by default, the compiler
issues error message on attempts to use base domains as reference. This compiler
checking can be switched OFF with the command line option "-R" (see the
Admonition above). Therefore, you should never turn this checking OFF in
projects calling external global functions that use basic domains in arguments,
for example, if your project calls C functions from external libraries. (For
instance, attempts to treat integer domain as reference domain in VPI based
projects, will generally lead to run-time errors.

You should always explicitly declare the domains intended to be reference
domains in the domains section. This is directly required in projects containing
several modules - when global domains should handle unbound values, the
compiler will not allow automatic conversion of these domains to reference
domains. (Global domains and predicates are covered later in this chapter in the
section Modular Programming on page 252.)

Notice that the following special basic domains are not allowed to become
reference domains: file, reg, db_selector, bt_selector, and place.

Reference Domains and the Trail Array
Because coercion’s and some extra unification are needed, reference domains
will in general give a reduction in execution speed. However, some problems can

222 Visual Prolog Language Tutorial

be solved far more elegant and efficiently when you use reference domains, and
Visual Prolog has facilities to limit their effect.

When you use reference domains, Visual Prolog uses the trail array. The trail
array is used to remember when reference variables become instantiated. This is
necessary because if you backtrack to a point between the creation and the
instantiation of a reference variable, it must be uninstantiated. This problem
doesn't exist with ordinary variables, as their points of creation and instantiation
are the same. Each instantiation recorded in the trail uses 4 bytes (the size of a
32-bit pointer). However, the trail usage is heavily optimized and no record will
be placed there if there are no backtrack points between the variable's creation
and instantiation.

The trail is automatically increased in size when necessary. The maximum size is
64K in the 16-bit versions of Visual Prolog, and practically unbounded in the 32-
bit versions.

Using Reference Domains
The right way to use reference domains is to use them only in the few places
where they are needed and to use non-reference domains for all the rest. Visual
Prolog allows you to convert reference domains to non-reference domains
whenever needed. For example, you can create a predicate that converts a
reference integer to a non-reference integer with a single fact:

DOMAINS
refint = reference integer

PREDICATES
conv(refint,integer)

CLAUSES
conv(X, X).

Visual Prolog does the conversion automatically when the same variable is used
with both a reference domain and a non-reference domain, as it does in the clause
when converting X from a refint to an integer. The above is only an explicit
example; you don't need to write any special code to convert from reference to
non-reference domains. Note that the reference variable needs to be instantiated
to a value before it can be converted to the non-reference value. In the same way,
if you try to convert a variable from one reference domain to another (such as
from reference integers to reference characters), you should make sure the value
is bound. Otherwise, Visual Prolog will issue an error message to the effect that
free variables are not allowed in the context.

Chapter 10, Advanced Topics 223

Pay attention to the automatic type conversions when you are creating a new free
reference variable through a call to free predicate or creating a free variable with
the equal predicate (=). Notice that when Visual Prolog's compiler creates a new
unbound variable it needs to know to which domain this variable belongs.
Otherwise, the compiler treats this variable as belonging to the first found
reference domain; otherwise, if none reference domain is declared the compiler
generates an error. (Notice that this behavior is subject to change in different
Visual Prolog versions without any announcement.) That is, you can write:

predicates
p(refinteger) – (o)

clauses
p(X):-

Y = X, bind_integer(X), ...

creating a new free reference variable with the equal predicate (=), but you
should not create an unbound variable through a call to free with unknown
domain like in this example:

goal
free(X), ..., bind_integer(X), ...

With reference domains you can return variables that will receive values at a later
point. You can also create structures where some places are left uninstantiated
until later.

Example
To get a feel for how reference domains work, you should try some goals with
the well-known predicates member and append:

/* Program ch10e03.pro */

diagnostics

DOMAINS
refinteger = integer
reflist = reference refinteger*

PREDICATES
member(refinteger, reflist)
append(reflist, reflist, reflist)

224 Visual Prolog Language Tutorial

CLAUSES
member(X,[X|_]).
member(X,[_|L]):-

member(X,L).

append([],L,L).
append([X|L1],L2,[X|L3]):-

append(L1, L2, L3).

Load this example program, and try the Test Goal with the following goals:

member(1,L). % Give all lists where 1 is a member
member(X,L), X=1. % Same as before
member(1,L), member(2,L). % Lists starting with 1 and containing 2
X=Y,member(X,L),member(Y,L), X=3. % starting with X and containing Y
member(1,L), append(L,[2,3],L1).

 % Lists starting with X and closing with [... 2,3]
append(L,L,L1), member(1,L). % lists containing 1 as less twice

You will discover that the answers are what you logically expect them to be.

Flow Patterns Revisited
A reference variable may well be unbound and yet exist at the time it's used in a
predicate call. In example ch10e01.pro, this will happen if for instance you want
to find all countries having the same name as their capital, using e.g.

samecaps:- country(capital(C,C)), write(C,'\n'), fail.

Here the variable C is used twice with output flow, but what the code really says
is that the two variables in capital should share the same value once one of them
becomes instantiated. Therefore, both variables are created and unified before the
call. In order to do this their domain is converted to a reference domain, and both
variables are in effect known at the time of call, giving a straight input flow
pattern.

Note that, as said before, it's dangerous practice to let the standard domains
become reference domains. If you want to use the above call, you should declare
a suitable reference domain. However, this would create an overhead in all
accesses of the country predicate, and it would probably be more efficient to use
backtracking to find the special case where a country name and a capital are
identical, by using.

country(capital(Co,Ca)), Co = Ca, !, ...

Chapter 10, Advanced Topics 225

Whether this is true or not depends on the size of the database, how many times
you perform the call, how many other calls you have, how the arguments are
used after the calls, etc.

Using Binary Trees with Reference Domains
In chapter 6, you saw how binary trees could be used for fast and efficient
sorting. However, sorting can actually be done in a more elegant fashion with
reference domains. Because there is no way to change the leaves of a tree when
they get new values, a lot of node copying occurs when the tree is created. When
you are sorting large amounts of data, this copying can result in a memory
overflow error. A reference domain can handle this by letting the leaves of the
tree remain as free variables (where the subtrees will later be inserted). By using
a reference domain this way, you don't need to copy the tree above the place
where the new node is to be inserted.

Consider the predicate insert during the evaluation of the goal in ch10e04.pro. In
this program, the insert predicate creates a binary tree using the reference domain
tree.

/* Program ch10e04.pro */

diagnostics

DOMAINS
tree = reference t(val, tree, tree)
val = string

PREDICATES
insert(val, tree)

CLAUSES
insert(ID,t(ID,_,_)):-!.
insert(ID,t(ID1,Tree,_)):-

ID<ID1,
!,
insert(ID,Tree).

insert(ID,t(_,_,Tree)):-
insert(ID,Tree).

GOAL
insert("tom",Tree),
insert("dick",Tree),
insert("harry",Tree),
write("Tree=",Tree),
nl, readchar(_).

226 Visual Prolog Language Tutorial

The first subgoal, insert("tom",Tree), will match with the first rule, and the
compound object to which Tree is bound takes this form:

t("tom", _, _)

Even though the last two arguments in t are not bound, t carried is forward to the
next subgoal evaluation:

insert("dick", Tree)

This, in turn, binds Tree to

t("tom", t("dick", _, _), _)

Finally, the subgoal

insert("harry", Tree)

binds Tree to

t("tom", t("dick", _, t("harry", _, _)), _)

which is the result returned by the goal.

Try to view details of this process using the Visual Prolog Debugger. Run the
Debugger from the VDE with the Project | Debug command. When the
Debugger window appears, choose the Debugger's menu command View | Local
Variables, and use the Run | Trace Into command to inspect variables
instantiation while the program execution. (For more instructions see the chapter
Debugging Prolog Programs in the Getting Started and the chapter The
Debugger in the Visual Development Environment manuals.) Notice that in the
VDE in the Application Expert's Target tab you should select the following
settings: Platform = Windows32, UI Strategy = Textmode.

Sorting with Reference Domains
In this section, we add onto the preceding binary tree example (ch10e04.pro) to
show how you can isolate the use of reference domains and convert between
reference and non-reference domains. The next example defines a predicate that
is able to sort a list of values.

Chapter 10, Advanced Topics 227

/* Program ch10e05.pro */

diagnostics

DOMAINS
tree = reference t(val, tree, tree)
val = integer
list = integer*

PREDICATES
insert(integer,tree)
instree(list,tree)
nondeterm treemembers(integer,tree)
sort(list,list)

CLAUSES
insert(Val,t(Val,_,_)):-!.
insert(Val,t(Val1,Tree,_)):-

Val<Val1,!,
insert(Val,Tree).

insert(Val,t(_,_,Tree)):-
insert(Val,Tree).

instree([],_).
instree([H|T],Tree):-

insert(H,Tree),
instree(T,Tree).

treemembers(_,T):-
free(T),!,fail.

treemembers(X,t(_,L,_)):-
treemembers(X,L).

treemembers(X,t(Refstr,_,_)):-
X = Refstr.

treemembers(X,t(_,_,R)):-
treemembers(X,R).

sort(L,L1):-
instree(L,Tree),
findall(X,treemembers(X,Tree),L1).

GOAL
sort([3,6,1,4,5],L),
write("L=",L),nl.

In this example, note that reference domains are only used in the tree. All other
arguments use non-reference domains. You can see this diagnostic in the VDE's
Messages window like the following:

228 Visual Prolog Language Tutorial

REFERENCE DOMAINS
tree
val

Functions and Return Values

Visual Prolog includes syntax for letting predicates be considered functions
having a return value, rather than plain predicates using an output argument. The
difference is a bit more than syntactic, however. Because return values are stored
in registers, Prolog functions can return values to, and get return values from,
foreign languages, but that is an issue covered in the chapter Interfacing with
Other Languages on page 503.

A function declaration looks like an ordinary predicate declaration, except that
the function name is prefixed by the domain it is returning:

predicates
unsigned triple(unsigned)

However, the clauses for a function should have an extra last argument, to be
unified with the return value upon success:

clauses
triple(N,Tpl):- Tpl = N*3.

goal
TVal = triple(6), write(TVal).

The return value need not be one of the standard domains; it can be any domain.

If you declare a function that does not take any arguments, you must supply an
empty pair of brackets when calling it, in order to distinguish it from a string
symbol. Given for instance a function to return the hour of the day

PREDICATES
unsigned hour()

CLAUSES
hour(H):- time(H,_,_,_).

you must call it like this:

..., Hour = hour(), ...

and not like this

Chapter 10, Advanced Topics 229

..., Hour = hour, ...

as this will simply consider hour to be the text string "hour", following which the
compiler will complain about type errors once you try to use Hour.

It is also recommended to supply an empty pair of brackets in the declaration of
functions and predicates having no arguments. If not, confusing syntax errors
may result from misunderstandings between predicate names and domain names,
if they clash. If for instance you have a domain named key and you also have a
predicate named key, then the declaration:

PREDICATES
key
mypred

can be interpreted in two ways: 1) a predicate named key and a predicate named
mypred, 2) a predicate name mypred returning a key. If instead you write:

PREDICATES
key()
mypred()

all ambiguity is resolved.

Note that when a predicate is declared as a function, having a return value, it
cannot be called as an ordinary Prolog predicate using the extra argument as an
output argument; it must be called as a function. The reason for this is that
functions store return values in registers, meaning that the code compiled before
and in particular after a function call is different from the code around a call of an
ordinary predicate. For the same reason, functions calling themselves are
currently not tail recursive but this may change in future versions of Visual
Prolog.

For instance, if you write a function neg to negate each element in a list, like this:

DOMAINS
ilist = integer*

PREDICATES
ilist neg(ilist)

CLAUSES
neg([],[]).
neg([Head|Tail],[NHead|NTail]):-

NHead = -Head,
NTail = neg(Tail).

230 Visual Prolog Language Tutorial

it is not tail-recursive, while neg as a predicate:

DOMAINS
ilist = integer*

PREDICATES
neg(ilist,ilist)

CLAUSES
neg([],[]).
neg([Head|Tail],[NHead|NTail]):-

NHead = -Head,
neg(Tail,NTail).

is tail-recursive. Therefore, don't overdo the use of functions. Their primary aim
is to enable you to get returned values from, and return values to, foreign
language routines.

As a final note, you should be aware that functions with arithmetic return values
must be deterministic if they take part in arithmetic expressions.

Determinism Monitoring in Visual Prolog

Most programming languages are deterministic in nature. That is, any set of input
values leads to a single set of instructions used to produce output values.
Furthermore in most languages, for example in C, a called function can produce
only a single set of output values. On the contrary, Visual Prolog naturally
supports non-deterministic inference based on non-deterministic predicates.

The object behind the determinism monitoring is to save run-time storage space.
In fact, when a deterministic clause succeeds, the corresponding run-time stack
space can be dispensed with at once, thus freeing the storage it occupied. There
are a number of reasons why determinism should also concern programmers,
most of them involving programming optimization.

Visual Prolog has a strongly typed determinism system. Visual Prolog's
determinism checking system enforces the programmer to declare the following
two behavior aspects of predicates (and facts):

1. Whether a call to a predicate can fail;

2. Number of solutions a predicate can produce.

In more Prolog program execution terms determinism mode defines the
following properties of predicate behavior:

Chapter 10, Advanced Topics 231

1. Can the predicate fail? (Fail - F)

2. Can the predicate succeed? (Succeed - S)

3. Whether Visual Prolog will set a Backtracking Point to call of this predicate.
(Backtrack Point - BP)

According to these aspects of determinism the following determinism modes of
predicates (rules) are supported in Visual Prolog:

Table 10.1: Determinism Modes of Predicates

 Number of Solutions can be produced

 0 1 > 1

Cannot fail: erroneous

{}

procedure

{S}

multi

{S, BP}

Can fail:| failure

{F}

determ

{F, S}

nondeterm

{F, S, BP}

Using keywords from the above table in declarations of predicates and predicate
domains the programmer can declare the six different determinism modes of
predicates.

multi

{Succeed, BacktrackPoint}

The keyword multi defines non-deterministic predicates that can backtrack
and generate multiple solutions. Predicates declared with the keyword multi
cannot fail and therefore always produce at least one solution.

nondeterm

{Fail, Succeed, BacktrackPoint}

The keyword nondeterm defines non-deterministic predicates that can
backtrack and generate multiple solutions. Predicates declared with the
keyword nondeterm can fail.

procedure

{Succeed}

232 Visual Prolog Language Tutorial

The keyword procedure defines predicates called procedures. Procedures
always succeed (cannot fail) and do not produce backtrack points. That is
procedures always have one and only one solution. (But run-time errors are
possible.)

The compiler always checks and gives warnings for non-deterministic clauses
in procedures.

The compiler (by default) checks and gives an error if it cannot guarantee that
a procedure never fails.

determ

{Fail, Succeed}

The keyword determ defines deterministic predicates that can succeed or fail,
but never backtracks. That is, predicates declared with the keyword determ
have no more then one solution. When a predicate is declared with the
keyword determ, the compiler always checks and gives a warning for non-
deterministic clauses in the predicate. The keyword determ is also used in
declarations of database predicates in facts sections.

erroneous

{}

A predicate declared with the keyword erroneous should not succeed
(produce a solution) and should never fail.

Visual Prolog supplies the following erroneous built-in predicates: exit/0,
exit/1, errorexit/0, and errorexit/1. These predicates have a run-time error
effect. That is, if a call of such predicate is surrounded by the trap predicate,
then calling of the predicate will jump back to this trap. (Notice that in VPI
(Visual Programming Interface) every event handler is surrounded by an
internal trap.)

failure

{Fail}

A predicate declared with the keyword failure should not produce a solution
but it can fail.

The most common example of failure predicates is built-in predicate fail.

When a predicate is declared with the keyword failure, the compiler by
default checks and gives a warning for possible non-deterministic clauses in
the predicate.

Chapter 10, Advanced Topics 233

Calling of a failure predicate enforces a program to backtrack to the nearest
backtracking point or interrupt the program with an effect identical to a run-
time error. The following example demonstrates difference between failure
and erroneous predicates:

predicates
failure failure_1(INTEGER) - (i)
erroneous erroneous_0()

clauses
erroneous_0():- exit(). % This predicate cannot fail

failure_1(0) :- %This predicate can fail
erroneous_0().

failure_1(_) :-
fail.

Notice that all Visual Prolog's standard predicates have internal definition of
determinism mode as nondeterm, multi, determ, procedure, failure or
erroneous.

Applying this classification to declarations of database predicates that can be
declared in facts sections we obtain the following table:

Table 10.2: Determinism Modes of Facts

 Number of Solutions can be produced

 0 1 > 1

Cannot fail:

single

{S}

Can fail:|

determ

{F, S}

nondeterm

{F, S, BP}
Using keywords from the above table in declarations of facts the programmer can
declare three different determinism modes of facts (database predicates).

nondeterm

{Fail, Succeed, BacktrackPoint}

Determines that the fact database can contain any number of facts for the
database predicate. This is the default determinism mode for database
predicates.

234 Visual Prolog Language Tutorial

determ

{Fail, Succeed}

Determines that the fact database at each moment can contain no more than
one fact for the database predicate declared with the keyword determ.

single

{Succeed}

Determines that the fact database will always contain one and only one fact
for the database predicate declared with the keyword single.

In this table term "Cannot fail" related to single facts means that called with
free arguments a single database predicate always gives a solution (succeeds).

Visual Prologs Determinism Checking System
Visual Prolog offers unique determinism monitoring facilities based on
declarations of types of predicates and facts. All Visual Prolog's standard
predicates are internally defined as nondeterm, multi, determ, procedure,
failure or erroneous.

By default, the compiler checks clauses of predicates and calculates determinism
modes of all user-defined predicates; the compiler gives errors/warnings if it
cannot guarantee that a predicate corresponds to a declared determinism mode:

1. By default, the compiler checks user-defined predicates declared with the
keywords determ, procedure, failure or erroneous, and gives warnings for
clauses that can result in a non-deterministic predicate. There are two kinds of
non-deterministic clauses:

a. If a clause does not contain a cut, and there are one or more clauses that
can match the same input arguments for that flow pattern.

b. If a clause calls a non-deterministic predicate, and that predicate call is
not followed by a cut.

Because of the second reason above, non-determinism has a tendency to
spread like wildfire throughout a program unless (literally) cut off by one or
more cuts.

2. By default, the compiler checks user-defined predicates declared with the
keywords procedure, multi, and erroneous and gives warning/errors if it
cannot guarantee that a predicate never fails.

Take into account that the compiler is able to verify only necessary conditions
for fail (not necessary and sufficient). Therefore, the compiler can sometimes

Chapter 10, Advanced Topics 235

generate warnings/errors for predicates (declared with the keywords multi,
procedure or erroneous) that, in fact, will never fail. For example,

domains
charlist = char*

predicates
procedure str_chrlist(STRING,CHARLIST) - (i,o)

clauses
str_chrlist("",[]):-!.
str_chrlist(Str,[H|T]):-

frontchar(Str,H,Str1),
str_chrlist(Str1,T).

The frontchar predicate can fail if the first parameter Str is an empty string.
The compiler is not sophisticated enough to detect that Str in the second
clause of str_chrlist cannot be empty string. For this example the compiler
will generate a warning like "Possibility for failure in a predicate declared as
procedure, multi or erroneous".

Checking of determinism modes of user-defined predicates can be switched OFF
by unchecking the Check Type of Predicates (in VDE's Compiler Options
dialog) or with the command-line compiler option -upro-, but it is a dangerous
programming style. Instead you should modify the code to avoid these warnings.
For instance, in this example you can reorder the clauses like:

str_chrlist(Str,[H|T]):-
frontchar(Str,H,Str1),
!,
str_chrlist(Str1,T).

str_chrlist(_,[]):-!.

The declaration of procedures catches many small mistakes, like forgetting a
catchall clause.

There are two rules that you must use when writing predicates declared with the
keyword multi, procedure or erroneous:

• If any clause of a predicate can fail than the final catchall clause must be
defined in the predicate (see the str_chrlist example above).

• For any possible (according to declared domains) set of input arguments, a
clause, having a head, which matches this set, must exist. Otherwise, the
compiler will generate a warning.

236 Visual Prolog Language Tutorial

For instance, in the following example the third clause for the predicate p can be
missed if the predicate is declared without the procedure keyword, but the
compiler will detect this if the predicate is declared as procedure.

DOMAINS
BOOLEAN = INTEGER % b_True = 1, b_False = 0

PREDICATES
procedure p(BOOLEAN)

CLAUSES
p(b_False):- !,
p(b_True): - !,
p(_): - dlg_error("An illegal argument value").

Notice that the compiler handles erroneous predicates in a special way providing
possibility to use them in the final catchall clauses (for handling error situations)
in predicates of other types. For instance, the catchall clause in the previous
example can be rewritten as the following:

p(_): - errorexit(error_vpi_package_bad_data).

Predicates as Arguments

So far we have only seen predicate calls of a static nature. That is, the predicates
being called as subgoals are specified statically in the source code. However, in
many cases it may be desirable to call different predicates, depending on
previous events and evaluations, from the same place, to avoid large-scale
duplication of code. To this end Visual Prolog supports a notion of predicate
values, you can declare a predicate domain, and pass predicate values (pointers
to predicates) of that domain as variables.

The main usage of this feature in Visual Prolog is to pass event handler
predicates to the VPI layer.

Predicate Values
Predicate values are predicates that can be treated as values in the sense that:

• They can be passed as parameters and returned from predicates and
functions.

• They can be stored in facts.

Chapter 10, Advanced Topics 237

• They can be held in variables.

• They can be compared for identity.

Of course, like "plain" predicates the predicate values can be called with
appropriate arguments.

The predicate values are declared as instances of predicate domains.

If you have declared a predicate domain (for example, pred_Dom) in a domains
section:

domains
pred_dom = procedure (integer, integer) – (i,o)

then you can declare one or more predicate values (functions) as belonging to
this predicate domain. The syntax for declarations of predicate values is:

predicates
predValue_1: pred_Dom
predValue_2: pred_Dom

Here predValue_1, predValue_2 are names of predicate values and pred_Dom
is the predicate domain declared in the domains section. This predicate domain
pred_Dom can then be specified as domain for arguments to other predicates.
For example:

predicates
variant_process(pred_Dom PredName, integer InVar, integer OutVar)

Then the programmer can pass these predicates (predicate values) predValue_1,
predValue_2 as values of the PredName argument to predicate variant_process.
Predicate variant_process will hence be able to make a vectored call.

Predicate values may be used like almost any other entities in a program. In
particular, they can appear as parts of compound terms, creating object oriented
possibilities where each object carries with it a series of routines for its own
management.

Predicate values do however differ from most other Visual Prolog values in the
following respects:

• There exist no literals for predicate values.

• Predicate values have no persistent representation. (The text representation of
a predicate value is simply a hexadecimal number (i.e. the value of a pointer
to a memory address)).

238 Visual Prolog Language Tutorial

You should take note, that predicate values are a fairly low-level mechanism.
The actual value of such a predicate value is simply a code-address, and therefore
it is valid only in the particular program where it was created. Hence, although
you can store and retrieve predicate values via the fact databases, highly
unexpected and quite possibly disastrous results will occur if you try to use a
predicate value not originating in the current program.

Predicate values have many usages. One of the most important is for callbacks.

A callback is a predicate that is used to call back from some used entity to the
user of this entity. For example:

• A call back from a server to a client, or

• A call back from a service to the service user, or

• A call back from a routine to a routine user.

Callbacks are normally used for one or both of the following purposes:

• To handle asynchronous events;

• To provide advanced/dynamic parameterization.

When dealing with asynchronous events a program registers a callback with
some event source. Then this event source invokes the callback whenever an
event occurs. "Data ready" in asynchronous communication is a typical example
of such an asynchronous event. Another very typical example is a Windows
event handler.

As an example of advanced/dynamic parameterization assume a tool that can
create a certain kind of window. This window has the ability to change the shape
of the cursor (mouse pointer) when it enters certain parts of the window. The
window is however intended to work in many different situations, and therefore
it cannot know which cursor to use in which parts of the window. In fact, the
choice of cursor might depend on numerous things of which the window has no
knowledge at all. Subsequently the window simply leaves the choice of cursor to
the program that uses the window. And the way the window does this is by
invoking a callback predicate. Via this callback predicate the window asks the
surrounding program - which cursor to use, when the mouse enters a certain part
of the window. Since the window makes such a callback each time the mouse
enters a certain part it need not receive the same cursor each time, the choice of
cursor can dynamically depend on things external to the window.

Predicate Domains
The declaration for a predicate domain is of the form:

Chapter 10, Advanced Topics 239

[global] domains
PredDom = DetermMode [ReturnDom] (ArgList) [- [FlowPattern]] [Language]

Here:

PredDom

Declares the name of the predicate domain.

DetermMode

Specifies the determinism mode with one of the following keywords:

{procedure | determ | nondeterm | failure | erroneous | multi}

Remember that the determinism mode must be specified in predicate domain
declarations.

ReturnDom

Defines the domain for the return value, if you are declaring a predicate
domain for functions.

ArgList

Defines domains for arguments in the form:

[arg_1 [, arg_2]*]

Here arg_N is of the form:

Domain_Name [Argument_Name]

Here Domain_Name can be any standard or user-defined domain. The
compiler just ignores the Argument_Name (if specified).

Attention: Brackets surrounding the argument list ArgList should always be
given, even when the ArgList is empty.

FlowPattern

is of the form:

(flow [, flow]*)

where flow is { i | o | functor FlowPattern | listflow }

and listflow is '[' flow [, flow]* ['|' { i | o | listflow }] ']'

The char '-' is obligatory before the FlowPattern (if FlowPattern is
specified).

The flow pattern FlowPattern specifies how each argument is to be used. It
must be the letter 'i' for an argument with input flow or the letter 'o' for one

240 Visual Prolog Language Tutorial

with output flow. A functor and a flow pattern must be given for a compound
term (e.g. (i, o, myfunc(i,i), o)) or a listflow (e.g. [i, myfunc(i,o), o]).

Attention: Only one flow pattern can be specified. If it is not specified
explicitly, then the default flow pattern with all input arguments is accepted
implicitly.

Notice that this implicit flow pattern can be the reason of error messages like
"This flow pattern does not exist".

Language

is of the form:

language { pascal | stdcall | asm | c | syscall | prolog}

The Language specification tells the compiler, which kind of calling
conventions to use. It is only required when predicate values, which are
declared as instances of this predicate domain, will be passed to routines
written in foreign languages. (For instance, in C, Delphi, etc.)

The default calling convention is pascal. Notice the difference with
declarations of predicates, where the default is prolog.

Restriction. Predicate values having calling convention prolog cannot be
called from variables. That is, if such predicate value is passed in a variable
and the received predicate value is called on appropriate arguments, then the
compiler generates an error.

Here we use:

• Square brackets to indicate optional items, and braces (curly brackets) to
indicate that one of the items delimited by the symbols '|' must be used.

• Pair of single quotes to indicate that the character surrounded by them
(namely '|', '[' and ']') is a part of the Visual Prolog language syntax.

• Asterisk symbol '*' to indicate arbitrary quantity of the immediately
preceding item (zero or more times).

Comparison with declaration of predicates
In contradistinction to predicate declarations, in declarations of predicate
domains:

1. Only one flow pattern can be specified.

2. If a flow pattern is not specified explicitly, then the default one with all input
arguments is accepted implicitly.

Chapter 10, Advanced Topics 241

3. The determinism mode DetermMode should always be specified before the
argument list ArgList or before the return domain ReturnDom (in
declarations of predicate domains for functions). The determinism mode
cannot be (re-)declared before the flow pattern.

4. Brackets of the argument list should always be given (even when the list is
empty).

5. The default calling convention for predicate domains is pascal while for
predicates the default is prolog.

Examples
Hence, the declaration of a predicate domain for deterministic predicates
(functions) taking an integer as input argument and returning an integer return
value, would be

DOMAINS
list_process = determ integer (integer) - (i)

This predicate domain is now known as list_process. To declare a function
square as belonging to this predicate domain, the syntax is:

PREDICATES
square: list_process

The clause for square is just like an ordinary clause, but as it's declared as a
function it needs a return argument:

CLAUSES
square(E,ES):- ES = E*E.

Elaborating on the above, declarations of the predicate domain ilist_p for
deterministic predicates taking an integer list (ilist) and a predicate value (of
list_process predicate domain) as input arguments, and an integer list as output
argument, would hence be:

DOMAINS
ilist = integer*
list_process = determ integer (integer) - (i)
ilist_p = determ (ilist,list_process,ilist) - (i,i,o)

Now look at the following program:

242 Visual Prolog Language Tutorial

/* Program ch10e06.pro */

DOMAINS
ilist = integer*
list_process = determ integer (integer) - (i)
ilist_p = determ (ilist,list_process,ilist) - (i,i,o)

PREDICATES
list_square: list_process
list_cube: list_process
il_process: ilist_p

CLAUSES
list_square(E,ES):- ES = E*E.
list_cube(E,EC):- EC = E*E*E.

il_process([],_,[]).
il_process([Head|Tail],L_Process,[P_Head|P_Tail]):-

P_Head = L_Process(Head),
il_process(Tail,L_Process,P_Tail).

GOAL
List = [-12,6,24,14,-3],
il_process(List,list_square,P_List1),
write("P_List1 = ",P_List1,'\n'),
il_process(List,list_cube,P_List2),
write("P_List2 = ",P_List2,'\n').

This declares two functions: list_square and list_cube, belonging to the
list_process predicate domain, and a predicate il_process creating a new integer
list by applying the list element-processing predicate (which is passed as a
predicate value in the L_Process argument) to each element of the original list.
Note that the domain declaration ilist_p is only included for illustration;
il_process could equally well been declared using:

PREDICATES
il_process(ilist,list_process,ilist)

since it is not referred to as a variable.

With the goal shown, il_process is called twice, first creating a list of squares by
applying the list_square function, and then a list of cubes by applying the
list_cube function. Compile and run this program, and you will get:

P_List1 = [144,36,576,196,9]
P_List2 = [-1728,216,13824,2744,-27]

Chapter 10, Advanced Topics 243

Make sure you understand the complexities of this, and, when you do, make sure
you don't abuse it. It's all too easy to create totally unreadable programs. Program
ch10e07, which is a somewhat elaborated version of ch10e06, illustrates the
concept taken to a reasonable limit:

/* Program ch10e07.pro */

DOMAINS
ilist = integer*
list_process = determ integer (integer) - (i)
list_p_list = list_process*
elem_process = determ (integer,integer,integer) - (i,i,o)
elem_p_list = elem_process*

PREDICATES
list_same: list_process
list_square: list_process
list_cube: list_process

elem_add: elem_process
elem_max: elem_process
elem_min: elem_process

il_process(ilist,list_process,ilist)
il_post_process(ilist,elem_process,integer)

apply_elemprocess(ilist,elem_p_list)
apply_listprocess(ilist,list_p_list,elem_p_list)

string lpname(list_process)
string epname(elem_process)

CLAUSES
lpname(list_same,list_same). % Map predicate values to predicate
functors
lpname(list_square,list_square).
lpname(list_cube,list_cube).

epname(elem_add,elem_add).
epname(elem_min,elem_min).
epname(elem_max,elem_max).

elem_add(E1,E2,E3):- E3 = E1+E2.
elem_max(E1,E2,E1):- E1 >= E2, !.
elem_max(_,E2,E2).
elem_min(E1,E2,E1):- E1 <= E2, !.
elem_min(_,E2,E2).

244 Visual Prolog Language Tutorial

list_same(E,E).
list_square(E,ES):- ES = E*E.
list_cube(E,EC):- EC = E*E*E.

il_process([],_,[]).
il_process([Head|Tail],E_Process,[P_Head|P_Tail]):-

P_Head = E_Process(Head),
il_process(Tail,E_Process,P_Tail).

il_post_process([E],_,E):-!.
il_post_process([H|T],L_Process,Result):-

il_post_process(T,L_Process,R1),
L_Process(H,R1,Result).

apply_elemprocess(_,[]).
apply_elemprocess(P_List,[E_Process|E_Tail]):-

il_post_process(P_List,E_Process,PostProcess),
NE_Process = epname(E_Process),
write(NE_Process,": Result = ",PostProcess,'\n'),
apply_elemprocess(P_List,E_Tail).

apply_listprocess(_,[],_).
apply_listprocess(I_List,[L_Process|L_Tail],E_List):-

il_process(I_List,L_Process,P_List),
NL_Process = lpname(L_Process),
write('\n',NL_Process,":\nProcessed list = ",P_List,

"\nPost-processing with:\n"),
apply_elemprocess(P_List,E_List),
apply_listprocess(I_List,L_Tail,E_List).

GOAL
List = [-12,6,24,14,-3],
write("Processing ",List," using:\n"),nl,
apply_listprocess(List,[list_same,list_square,list_cube],

[elem_add,elem_max,elem_min]).

Among other things, this program illustrates the use of lists of predicate values. If
you run it, you'll get the following output:

Processing [-12,6,24,14,-3] using:

list_same:
Processed list = [-12,6,24,14,-3]
Post-processing with:
elem_add: Result = 29
elem_max: Result = 24
elem_min: Result = -12

Chapter 10, Advanced Topics 245

list_square:
Processed list = [144,36,576,196,9]
Post-processing with:
elem_add: Result = 961
elem_max: Result = 576
elem_min: Result = 9

list_cube:
Processed list = [-1728,216,13824,2744,-27]
Post-processing with:
elem_add: Result = 15029
elem_max: Result = 13824
elem_min: Result = -1728

The Binary Domain

Visual Prolog has a special binary domain for holding binary data, as well as
special predicates for accessing individual elements of binary terms. The main
use for binary terms is to hold data that has no reasonable representation
otherwise, such as screen bitmaps and other arbitrary memory blocks. There are
separate predicates for reading binary terms from, and writing them to, files.
These will be discussed in chapter 12 "Writing, Reading, and Files". With the
help of the built-in conversion predicate term_bin, conversion from things such
as binary file-headers to Prolog terms is a snap, and binary items going into or
coming out of foreign language routines are easily handled. Finally arrays may
also be implemented easily and efficiently.

Binary terms is a low-level mechanism, whose primary aim is to allow easy and
efficient interfacing to other, non-logical, objects, and foreign languages. To this
end, binary terms do not behave like other Prolog terms with respect to
backtracking. Binary terms will be released if you backtrack to a point previous
to their creation, but if you don't backtrack that far any changes done to the term
will not be undone. We will illustrate this in the example program at the end of
this section.

246 Visual Prolog Language Tutorial

Implementation of binary terms
Pointer

A binary term is simply a sequence of
bytes, preceded by a word (16-bit
platforms) or dword (32-bit platforms),
holding its size.

When interfacing to other languages,
you should be aware that a term of
binary type (the variable passed in the

foreign language function call) points to the actual contents, not the size. The
Size field includes the space taken up by the field itself. Binary terms are subject
to the usual 64K size restriction on 16-bit platforms.

Text syntax of Binary Terms
Binary terms can be read and written in text format, and also specified in source
form in Visual Prolog source code. The syntax is:

$[b1,b2,...,bn]

where b1, b2, etc. are the individual bytes of the term. When a binary term is
specified in source form in a program, the bytes may be written using any
suitable unsigned integral format: decimal, hexadecimal, octal, or as a character.
However, the text-representation of binary terms created and converted at run-
time is fixed hexadecimal, with no leading "0x" on the individual bytes. Program
ch10e08.pro illustrates this:

/* Program ch10e08.pro */

GOAL
write("Text form of binary term: ",$['B',105,0o154,0x73,'e',0],'\n').

Load and run this program, and Visual Prolog will respond

Text form of binary term: $[42,69,6C,73,65,00]

You should hence be careful if you use e.g. readterm to read a binary term at
runtime.

Size bytes
 ^
 |

Chapter 10, Advanced Topics 247

Creating Binary Terms
Below we discuss the standard predicates Visual Prolog includes, for creation of
binary terms.

makebinary/1
makebinary creates and returns a binary term with the number of bytes specified,
and sets its contents to binary zero.

..., Bin = makebinary(10), ...

The number of bytes should be the net size, excluding the size of the size field.

makebinary/2
makebinary is also available in a two-arity version, allowing specification of an
element size.

..., USize = sizeof(unsigned), Bin = makebinary(10,USize), ...

This creates a binary term with a size given by the number of elements (10 in the
above example) multiplied by the element-size (sizeof(unsigned) in the above),
and sets its contents to zero.

composebinary/2
composebinary creates a binary term from an existing pointer and a length. It's
useful in converting pointers to arbitrary blocks of memory returned by foreign
language functions. The composebinary takes two arguments, and returns a
binary.

..., Bin = composebinary(StringVar,Size), ...

composebinary takes a copy of the StringVar given as input, so changes to the
created binary term Bin will not affect StringVar, and vice versa.

getbinarysize/1
getbinarysize returns the net size (in bytes) of the binary term, excluding the size
field in front of the data.

..., Size = getbinarysize(Bin), ...

248 Visual Prolog Language Tutorial

Accessing Binary Terms
There are eight predicates for accessing binary terms, four for setting entries and
four for getting entries. Both groups perform range checking based on the size of
the binary term, the index specified, and the size of the desired item (byte, word,
dword, or real). It is an error to try to get or set entries outside the range of the
binary term.

Take special note that indices (element numbers) are 0-relative; the first element
of a binary term has index 0, and the last element of an N-element binary term
has index N-1.

get*entry/2
get*entry is either getbyteentry, getwordentry, getdwordentry, or getrealentry,
accessing and returning the specified entry as a byte, word, dword, or real,
respectively.

..., SomeByte = getbyteentry(Bin,3), ...

set*entry/3
set*entry is the counterpart to get*entry, setting the specified byte, word, dword,
or real entry.

..., setbyteentry(Bin,3,SomeByte), ...

Unifying Binary Terms
Binary terms may be unified just like any other term, in clause heads or using the
equal predicate '=':

..., Bin1 = Bin2, ...

If either of the terms is free at the time of unification, they will be unified and
point to the same binary object. If both are bound at the time of unification, they
will be compared for equality.

Comparing Binary Terms
The result of comparing two binary terms is as follows:

If they are of different sizes, the bigger is considered larger; otherwise, they're
compared byte by byte, as unsigned values; comparison stops when two

Chapter 10, Advanced Topics 249

differing bytes are found, and the result of their comparison is also the result
of the comparison of the binary terms.

For instance, $[1,2] is bigger than $[100], and smaller than $[1,3].

Example
Program ch10e09.pro demonstrates a number of aspects of binary terms.

/* Program ch10e09.pro */

predicates
comp_unify_bin
comp_unify(binary,binary)
access(binary)
error_handler(integer ErrorCode, unsigned Index, binary)

clauses
comp_unify_bin:-

Bin = makebinary(5),
comp_unify(Bin,_),
comp_unify($[1,2],$[100]),
comp_unify($[0],Bin),
comp_unify($[1,2,3],$[1,2,4]).

comp_unify(B,B):-!,
write(B," = ",B,'\n').

comp_unify(B1,B2):-
B1 > B2,!,
write(B1," > ",B2,'\n').

comp_unify(B1,B2):-
write(B1," < ",B2,'\n').

access(Bin):-
setwordentry(Bin,3,255),
fail. % Changes are not undone when backtracking!

access(Bin):-
Size = getbinarysize(Bin),
X = getwordentry(Bin,3),
write("\nSize=",Size," X=",X," Bin=",Bin,'\n').

error_handler(ErrorCode, Index, Bin):-
write("Error ",ErrorCode," setting word index ",Index," of ",Bin,

'\n', "Press any char to terminate execution\n"),
readchar(_).

250 Visual Prolog Language Tutorial

goal
% Illustrate comparison and unification of binary terms

comp_unify_bin,

% Allocate a binary chunk of 4 words
WordSize = sizeof(word),
Bin = makebinary(4,WordSize),
access(Bin),

% Illustrate range checking; element numbers are 0-relative
write("Run-time error due to wrong index:\n"),
Index = 4,
trap(setwordentry(Bin,Index,0),E, error_handler(E,Index,Bin)).

This example uses the trap predicate, which will be discussed in the section
about error handling below.

Converting Terms to Binary Terms
A compound term may have its arguments scattered all over memory, depending
on what domains they belong to. Simple types are stored directly in the term
record itself, while complex types (those accessed via a pointer, and allocated
separately on the global stack) will not necessarily be anywhere near the term
they appear in. This is a problem if a term has to be sent out of a program, so to
speak, as there is no way make an explicit copy of its contents. Unifying a term
variable with another variable will only take a copy of the pointer to the term.

Using term_str (discussed in chapter 13), it is possible to convert the term to a
string and back again, but this is rather inefficient when all that's needed is a
copy of the term's contents.

term_bin solves this problem.

term_bin/3
term_bin will convert between a term of any domain and a block of binary data,
holding the term's contents as well as pointer fixup information. The pointer
fixup information will be applied to the binary data when converted back to a
term, allowing recreation of any pointers to complex terms the term contains.

term_bin looks like this:

term_bin(domain,Term,Bin) /* (i,i,o) (i,_,i) */

The domain is the domain the Term belongs, or should belong, to, and Bin is a
binary term holding the Term's contents.

Chapter 10, Advanced Topics 251

Example

Program ch10e11.pro demonstrates conversion between a term and its binary
representation. The domains and alignment have been explicitly chosen to ease
description, as they would otherwise differ between 16-bit and 32-bit platforms.
Alignment of terms is usually only relevant when interfacing to foreign
languages, and is fully described in the chapter 18.

/* Program ch10e11.pro */

DOMAINS
dom = align dword cmp(string,short)

GOAL
T = cmp("Bilse",31),
term_bin(dom,T,B),
write("Binary form of ",T,":\n",B),
term_bin(dom,T1,B),
write("\nConverted back: ",T1,'\n').

If you run this, you'll get:

Binary form of cmp("Bilse",31):
$[01,00,00,00,0A,00,00,00,1F,00,42,69,6C,73,65,00,04,00,00,00,01,00,00,00]
Converted back: cmp("Bilse",31)

You shouldn't be too concerned about the actual format of this, in particular as
we're dealing with implementation details, which may change. Nevertheless,
we'll briefly describe the contents of the binary information:

$[01,00,00,00,0A,00,00,00,1F,00,42,69,6C,73,65,00,04,00,00,00,01,00,00,00]
 | |_________| |___| |_______________| |_________| |_________|
 | | | | | |
functor | 31 "Bilse"\0 offset of # of ptrs
 | ptr to fix in fixup
 0-relative (array, but

 ptr to string only one element here)

The offset of ptr to fix array will be 16-bit quantities on 16-bit platforms, as will
the # of ptrs in fixup.

If the term contains elements from the symbol domain, the binary term will
contain additional information to insert the symbols in the symbol table when the
term is re-created.

Visual Prolog uses term_bin itself when storing things in the internal fact
database system and when sending terms over a message pipe to another

252 Visual Prolog Language Tutorial

program. If several programs share external databases or communicate over
pipes, it's hence crucial that the domains involved use the same alignment.

Modular Programming

A Visual Prolog program can be broken up into modules. You can write, edit,
and compile the modules separately, and then link them together to create a
single executable program. If you need to change the program, you only need to
edit and recompile individual modules, not the entire program – a feature you
will appreciate when you write large programs. Also, modular programming
allows you to take advantage of the fact that, by default, all predicate and domain
names are local. This means different modules can use the same name in
different ways. Visual Prolog uses two concepts to manage modular
programming: global declarations and projects.

Global Declarations
By default, all names used in a module are local. Visual Prolog programs
communicate across module boundaries using the predicates defined in the
global predicates sections and in classes. The domains used in global predicates
must be also defined as global domains or else they must be standard Visual
Prolog domains.

Beginning with version 5.2 Visual Prolog provides enhanced handling of global
declarations. In short:

1. The main project module (with the goal) must contain declarations of all
global domains (and global facts sections) declared in all project
submodules.

2. Any other project module may contain declarations of only those global
domains, which are used in this module.

3. Global declarations can be placed after local declarations.

4. If any global declaration is changed, only modules including this declaration
must be recompiled.

Global Domains
You make a domain global by writing it in a global domains section. In all other
respects, global domains are the same as ordinary (local) domains.

Chapter 10, Advanced Topics 253

Visual Prolog v. 5.2 provides enhanced handling of global domains. Now it is not
required that all modules contain identical declarations of all global domains in
exactly the same order (the special CHKDOMS.EXE utility were used to check
this identity in PDC Prolog and in Visual Prolog versions previous to v. 5.2).
Now you should obey only the following 2 much less strict rules:

1. Only the main project module (containing the goal section) must include
declarations of all global domains (and global facts sections) declared in all
project submodules.

2. Any other project module may contain declarations of only those global
domains, which are used in this module.

This gives the following principal benefits:

• It is possible to create and use pre-compiled libraries (using global domains).

• When a global domain is changed, recompilation time is reduced, because
only the modules including this domain declaration have to be recompiled.

• Your program can use more domains, since a module can include only those
global domains, which are really used in this module.

According to these rules, the PDC Linker (while linking-time) checks whether
the main project module includes declarations of all global domains declared in
all project modules. If the PDC Linker detects a global domain DomainName that
is declared in a submodule FileName and is not declared in the main module,
then it generates an error message like this:

FileName - undefined name:$global$dom$DomainName

Notice that the PDC Linker compares only global domain names and it does not
guarantee that a global domain has the same declarations in different project
modules; this consistency is only the programmer responsibility. If you mix this
up, all sorts of strange run-time problems can happen, such as a computer
hanging under DOS or a protection violation on 32-bit platforms.

The easiest way to ensure that this is correct is by placing (including) all global
domain declarations in a single file (for instance ProjectName.inc), which you
can then include in every relevant module with an include directive like:

include "ProjectName.inc"

Visual Prolog VDE provides flexible automatic engine for handling inclusion of
global domain declarations into project modules. The core of this engine is the
File Inclusion for Module dialog, which is activated when you create a new
module. (See the Options of File Inclusion for Module dialog in the Visual
Development Environment manual.) For small projects you can use the simplified

254 Visual Prolog Language Tutorial

strategy providing inclusion of all global domains in each project module. To
guarantee this you need:

1. In the File Inclusion for Module dialog:

• Check ON the "Create <ModuleName>.DOM" for each source module,
which may introduce new global domains.

• Check ON the "Include <ModuleName>.DOM", to specify that the include
statement for <ModuleName>.DOM must be generated in the
<ProjectName>.INC file.

2. The programmer has to place declarations of all global domains exported
from a module into the correspondent <ModuleName>.DOM file.

Because the include directive for <ProjectName>.INC file is placed in all
project modules, all modules will contain the same declarations of global
domains.

In larger projects, you can implement more flexible "where-used" strategy for
including of global domains. Instead of including <ModuleName>.DOM into
the <ProjectName>.INC file, you can selectively include
<ModuleName>.DOM files only into modules really importing global domains
declared in these files. When you follow VDE's file naming and inclusion
philosophy, the VDE's Make facility will automatically detect changes of files
containing global declarations and enforce recompilation of all necessary
modules, based on the file time stamps.

Global Facts Sections
You make a facts section global to a project by preceding the keyword facts (the
obsolete keyword database is also possible) with the keyword global.

You can give initializing clauses for global facts only after the goal section in the
main module.

Since Visual Prolog automatically generates the global domain correspondent to
the name of each global facts section, then all rules discussed for handling of
global domains should be applied to global fact sections.

Notice that the safe programming techniques require that you should not use
global facts. Instead you can use global predicates operating with local facts.

Global Predicates
Global predicate declarations differ from ordinary (local) predicate declarations
because they must contain a description of the flow pattern(s) by which each

Chapter 10, Advanced Topics 255

given predicate can be called. If such one is not specified, all arguments will be
input.

The keyword global specified before the keyword predicates specifies that all
predicates and predicate values declared in the section are global to the project.

The syntax for global predicate declarations is:

global predicates
[DeterminismMode] [ReturnDomain] PredicateName [(ArgList)]

[- [FlowPatterns]] [Language] [ObjNameSpec]

The syntax for declarations of global predicate values is:

predicateName : PredicateDomain [ObjNameSpec]

Here:

PredicateName

Defines the name of a declared predicate or a global predicate value.

PredicateDomain

Is a global predicate domain. It must be declared previously in a global
domains section.

DeterminismMode

Specifies the predicate determinism mode with one of the following
keywords:

{procedure | determ | nondeterm | failure | erroneous | multi}

This determinism mode is used for all specified predicate flow patterns if
different determinism modes are not specified before separate flow patterns.

If the predicate determinism mode is not specified here explicitly, then the
default determinism mode (as it is specified by the Default Predicate Type in
the VDE's dialog Compiler Options or by the -z[Value] command line
compiler option) is accepted. The default is determ.

ReturnDomain

Defines the domain for the return value, if you are declaring a function.

ArgList

Defines domains for predicate arguments in the form:

[arg_1 [, arg_2]*]

256 Visual Prolog Language Tutorial

Here arg_N is of the form:

Domain_Name [Argument_Name]

Domain_Name can be any standard or user-defined domain.

An optional Argument_Name can specify a mnemonic argument name. It
must be a correct Visual Prolog name. The Visual Prolog supports this
possibility to improve code readability and treats Argument_Name just as a
comment.

Brackets surrounding the argument list ArgList can be omitted when the
ArgList is empty.

FlowPatterns

Is of the form:

[[FlowDetermMode] FlowPattern] [[,] [FlowDetermMode] FlowPattern]*

FlowPattern

Is of the form:

(flow [, flow]*)

where flow is { i | o | functor FlowPattern | listflow }

and listflow is '[' flow [, flow]* ['|' { i | o | listflow }] ']'

The char '-' is obligatory if any FlowPatterns is specified.

The flow pattern FlowPattern specifies how each argument is to be used. It
must be 'i' for an input argument and 'o' for output arguments. A functor
and flow pattern must be given for a compound term (e.g.
(i,o,myfunc(i,o),o)), or a listflow (e.g. [i, myfunc(i,o), o]).

Caution: Several flow patterns can be explicitly specified for a global
predicate. If none is specified explicitly, then the default flow pattern with all
input arguments is accepted implicitly.

Notice that this implicit flow pattern can be the reason of error messages like
"This flow pattern does not exist" when you re-declare working local
redicates to global.

FlowDetermMode

One of the following keywords:

{procedure | determ | nondeterm | failure | erroneous | multi}

Chapter 10, Advanced Topics 257

Optional possibility to declare separate determinism modes for flow patters. If
the FlowDetermMode is specified before a flow pattern then for this flow
pattern it overrides the predicate determinism mode specified before the
predicate name (or the default determinism mode specified in the Compiler
Options).

Language

Is of the form:

language { pascal | stdcall | asm | c | syscall | prolog}

The Language specification tells the compiler, which kind of calling
conventions to use. It is only required when a predicate will be used from
routines written in other languages (C, Delphi, etc.).

The default calling convention is prolog. Notice the difference with
declarations of predicate domains, where the default is pascal.

ObjNameSpec

Is of the form

as "ObjectName"

The ObjNameSpec may be used to specify the public object-code name
"ObjectName", overriding the default naming used by Visual Prolog compiler.
The main use of this is when you are linking in modules written in other
languages. (For more information see the chapter Interfacing with Other
Languages on page 503.)

Here we use:

• Square brackets to indicate optional items, and braces (curly brackets) to
indicate that one of the items delimited by the symbols '|' must be used.

• Pair of single quotes to indicate that the character surrounded by them
(namely '|', '[' and ']') is a part of the Visual Prolog language syntax.

• Asterisk symbol '*' to indicate arbitrary quantity of the immediately
preceding item (zero or more times).

Examples

In the following global predicate declaration, name and home are of type string,
and age is of type integer; the arguments to first_pred can either be all bound (i,
i, i) or all free (o, o, o):

first_pred(name,home,age) - (i,i,i) (o,o,o)

258 Visual Prolog Language Tutorial

Here is the declaration for a predicate with either compound flow of an integer
list, or plain output flow:

p1(integerlist) - ([i,o,i|o]),(o)

If a flow pattern is not explicitly specified in a global predicate declaration:

my_converter(STRING, INTEGER)

Then the default flow pattern (i, i) with all input arguments is assumed, like if it
is declared like this:

my_converter(STRING, INTEGER)- (i,i)

Particular determinism mode can be re-declared for every flow pattern. For
example:

procedure append(ILIST,ILIST,ILIST) -
(i,i,o)
determ (i,i,i)
nondeterm (o,o,i)

In this example append will have procedure determinism mode only with
(i,i,o) flow pattern. Called with the (i,i,i) flow pattern it will be determ, and
called with the (o,o,i) flow pattern it will be nondeterm

Finally, this declaration specifies compound flow for an object declared as
func(string, integer) coming from a domain called mydom:

pred(mydom) - (func(i,o)) (func(o,i))

Note: If any global predicate definition is changed, only the modules, which
refer to this predicate need to be recompiled. However, it is rather critical that
this recompilation is done; if you change the flow pattern of a predicate, the calls
using it will need different code.

It doesn't matter in which module the clauses for global predicates appear, but –
as with local predicates – all clauses must appear together.

Projects
When you are using Visual Prolog's Visual Development Environment, then the
Application Expert automatically handles creation of new projects and
adding/deleting of project modules. The VDE's Make facility automatically
manages compilation and linking operations needed to create the target module
from the source project modules.

Chapter 10, Advanced Topics 259

Therefore, we need to explain here only two features that can be important if you
use the command line compiler:

1. How Visual Prolog projects use symbol table.

All Visual Prolog modules involved in a project share the same internal
symbol table that stores all symbol domain terms, which are used in all
project modules. The symbol table is generated in the "so called" SYM-file.
The SYM-file is an object format file with the .SYM extension. By default, if
the project name is ProjectName then the VDE accepts that the SYM-file
name is ProjectName.SYM. This name can be changed with the SYM File
Name option in the Compiler Options dialog.

When the command line compiler compiles a source file ModuleName.PRO,
then by default it accepts that the SYM-file name is ModuleName.SYM. This
default name can be changed by the -r<ProjectName> and –M<SymFileName>
command line compiler options.

2. Visual Prolog programs must have the internal goal. Therefore, by default
the compiler checks whether a compiled module has the goal section, and the
compiler generates error if it has not. But in multi-modular projects only one
(the main) module of the project contains the goal section. Hence, to compile
other modules the compiler needs to be informed that these modules are parts
of the project and thus do not have goal sections. This is done by the
command line compiler option -r[ProjectName]. For example, when
compiling a file ModuleName.PRO the compiler gets the option

-rProjectName

then the compiler is notified:

• The compiled file ModuleName.PRO is a module of the project ProjectName
and so does not have to contain the goal section;

• The SYM-file name is ProjectName.SYM.

In some circumstances we need to use the –M<SymFileName> option to override
the SYM-file name specified by the -r<ProjectName> option. For instance,
when linking from the Visual C++ environment, there is a requirement that all
object files must have the .OBJ extension.

Errors and Exception Handling

As software quality improves, error handling becomes increasingly important in
providing safe and trustworthy programs that users feel they can rely on. In this

260 Visual Prolog Language Tutorial

section we look at the standard predicates Visual Prolog provides, giving you
control over the errors and exceptions that may occur when your application is
running. This includes trapping run-time errors and controlling user interruption.

If you look in Visual Prolog's error-message file PROLOG.ERR, you'll see all
the error numbers applicable to both compile-time and run-time problems. All
numbers above and including 10000 are reserved for user program exit codes,
and you may modify and distribute the error message file if required.
Additionally, in the include directory you'll find the ERROR.CON include file,
containing constant declarations for all run-time error codes (from 1000 till
10000). To guard against future changes, use this file for error codes rather than
hard-coding numbers into your application.

Exception Handling and Error Trapping
The cornerstone of error and exception handling is the trap predicate, which can
catch run-time errors as well as exceptions activated by the exit predicate. You
can also use this mechanism to catch signals, such as that generated by Ctrl-
Break in the textmode platforms, as well as a kind of "block exit" mechanism.

exit/0 and exit/1
A call to exit has an effect identical to a run-time error.

exit /* (no arguments) */
exit(ExitCode) /* (i) */

exit without an argument is equivalent to exit(0). If the call to exit is executed in
a direct or indirect subgoal of a trap, the ExitCode will be passed to the trap.

The behavior of an untrapped exit depends on the platform. The VPI event
handlers do their own trapping, and an exit will be caught here resulting in an
error message.

An untrapped call of the exit predicate on the textmode platforms results in
program termination, and the OS return code ('ErrorLevel' in the DOS-related
operating systems, '$?' in UNIX sh) will be set to the value used in the call. The
maximum value a process can exit with is 254; 255 is reserved for Visual
Prolog's system call, but no checks are performed.

errorexit/0 and errorexit/1
A call to errorexit performs a run-time error with setting of internal error
information.

Chapter 10, Advanced Topics 261

errorexit() /* (no arguments) */
errorexit(ErrorNumber) /* (i) */

A call to errorexit/1 has an effect identical to a run-time error, but in contrast to
exit predicates it sets internal error number ErrorNumber that can be obtained by
a call to lasterror/4 predicate:

lasterror(LastErrorNumber, ModuleName, IncludeFileName, Position)

This predicate will return LastErrorNumber = ErrorNumber.

Notice that in order to obtain a correct position all modules in a project must be
compiled with the errorlevel > 0. (See below.)

Calling errorexit/0 is the same as calling

errorexit(1000)

If errorexit is surrounded by a trap, calling errorexit will jump back to this trap,
and ErrorNumber will be passed to the error code variable of this trap.

trap/3
trap, which takes three arguments, carries out error trapping and exception
handling. The first and the last arguments to trap are predicate calls, and the
second argument is a variable; it takes this format:

trap(PredicateCall, ExitCode, PredicateToCallOnError)

For example, consider the call:

trap(menuact(P1, P2, P3), ExitCode, error(ExitCode, P1)), ...

If an error occurs during execution of menuact – including all further called
subgoals – an error code will be returned in the variable ExitCode, and the error-
handling predicate error will be called. trap will then fail on return from error. If
menuact returns successfully, evaluation will continue after the trap, which will
no longer be effective.

Before calling the error predicate, the system resets the stack, global stack, and
trail to the values they had before the goal specified in the trap (menuact in the
example above) was called. This means that you can use a trap to catch memory
overflows, but you shouldn't rely on big memory consuming operations such as
database updates to be in either a complete or unaltered state - a heap-full error
may occur anytime.

262 Visual Prolog Language Tutorial

If Break is enabled on the textmode platforms, and a Break occurs (because the
user pressed Ctrl-Break during execution of a predicate with a surrounding
trap), the trap will catch the Break and return 0 in the ExitCode variable.

Example: catching file-not-open
/* Program ch10e12.pro */

include "error.con"

DOMAINS
file = inpfile

PREDICATES
ioehand(integer,file)
getline(file,string)

CLAUSES
ioehand(err_notopen,File):-!,

write(File," isn't open\n"),
exit(1).

ioehand(Err,File):-
write("Error ",Err," on ",File,'\n'),
exit(1).

getline(File,Line):-
readdevice(Old),
readdevice(File),
readln(Line),
readdevice(Old).

GOAL
trap(getline(inpfile,First),Err,ioehand(Err,inpfile)),
write(First).

errormsg/4
You can use the errormsg predicate to access files that are structured the same as
Visual Prolog's error-message file.

errormsg(File name, ErrorNo, ErrorMsg, ExtraHelpMsg) /* (i,i,o,o) */

A typical use of errormsg is in error-trapping predicates to obtain an explanation
of an error code, as illustrated below.

Chapter 10, Advanced Topics 263

PREDICATES
error(integer)
main
/*....*/

CLAUSES
error(0) :- !. % discard break.

error(E) :-
errormsg("prolog.err", E, ErrorMsg, _),
write("\nSorry; the error\n", E, " : ", ErrorMsg),
write("\nhas occurred in your program."),
write("\nYour database will be saved in the file error.sav"),
save("error.sav").

GOAL
trap(main, ExitCode, error(Exitcode)).

Error reporting
Visual Prolog includes several compiler directives that you can use to control
run-time error reporting in your programs. These directives allow you to select
the following:

• whether code should be generated to check for integer overflows.

• the level of detail in reporting run-time errors.

• whether code should be generated for stack overflow checking.

You can place these compiler directives at the top of your program, or choose
them from the Compiler Options dialog.

errorlevel
Visual Prolog has a mechanism to locate the source position where a run-time
error occurs. To do this, it generates code before predicate calls to save the
source code position where executions are actually performed. Levels of error
reporting and storing of source positions are selected by the errorlevel compiler
directive. The syntax is:

errorlevel = d

where d is one of 0, 1, or 2, representing the following levels:

0 This level generates the smallest and most efficient code. No source
positions are saved. When an error occurs, just the error number is
reported.

264 Visual Prolog Language Tutorial

1 This is the default level. When an error occurs, the Visual Prolog system
displays its origin (module name and include file, if applicable). The
place where the error was detected within the relevant source file is also
displayed, expressed in terms of the number of bytes from the beginning
of the file.

2 At this level, certain errors not reported at level 1, including stack
overflow, heap overflow, trail overflow, etc., are also reported. Before
each predicate call code is generated to store the source position.

When a source position are reported, the source program can be loaded into the
editor, and you can activate the Edit | Go To Line Number menu item, where
you can enter the position number and the cursor will move to the place where
the error occurred.

In a project, the errorlevel directive in each module controls that module's detail
of error reporting. However, if the errorlevel directive in the main module is
higher than that of the other modules, the system might generate misleading error
information.

If, for example, an error occurs in a module compiled with errorlevel = 0, which
is linked with a main module compiled with errorlevel set to 1 or 2, the system
will be unable to show the correct location of the error – instead, it will indicate
the position of some previously executed code.

For more information about projects, refer to "Modular Programming" on page
252.

lasterror/4
Hand in hand with trap and errormsg goes lasterror. It returns all relevant
information about the most recent error, and looks like this:

lasterror(ErrNo,Module,IncFile,Pos) /* (i,i,i,i) */

where ErrNo is the error number, Module is the source file name, IncFile is the
include file name, and Pos is the position in the source code where the error
occurred. However, the program must be compiled with an errorlevel greater
than 1 in order for the information to be relevant in case of memory overflow.
For ordinary errors, an errorlevel of 1 is sufficient.

The primary aim of lasterror is to ease debugging when subgoals are trapped, but
it may equally well form the basis of a cause-of-death indicator in commercially
distributed software. Using lasterror, your code can provide the user with a quite
sober error message in addition to exact information about what happened.

Chapter 10, Advanced Topics 265

Handling Errors from the Term Reader
When you call consult or readterm and a syntax error occurs in the line read, the
predicates will exit with an error. The syntax error could be any one of the
following:

• A string is not terminated.

• Several terms are placed on one line.

• A symbol is placed where an integer is expected.

• Upper-case letters are used for the predicate name.

• A symbol is not surrounded by double quotes.

• Etc.

When consult was originally introduced in Visual Prolog, it was not meant to be
used for reading user-edited files: It was designed to read back files that were
saved by the save predicate. In order to make it easier to consult user-created
files, we have introduced the two predicates readtermerror and consulterror.
You can call these to obtain information about what went wrong in readterm or
consult, respectively.

If the errors from consult and readterm are caught by the trap predicate,
consulterror and readtermerror allow you to inspect and possibly edit the cause
of the syntax error.

consulterror/3
consulterror returns information about the line containing a syntax error.

consulterror(Line, LinePos, Filepos), /* (o,o,o) */

Line is bound to the line that has the syntax error, LinePos is bound to the
position in the line where the syntax error was found, and FilePos is bound to the
position in the file where the line was read.

/* Program ch10e13.pro */

CONSTANTS
helpfile = "prolog.hlp"
errorfile = "prolog.err"

DOMAINS
dom = f(integer)
list = integer*

266 Visual Prolog Language Tutorial

facts - mydba
p1(integer, string, char, real, dom, list)

PREDICATES
handleconsulterr(string, integer)

CLAUSES
handleconsulterr(File, Err):-

Err>1400, Err<1410, !,
retractall(_, mydba),
consulterror(Line, LinePos, _),
errormsg(errorfile, Err, Msg, _),
str_len(Blanks,LinePos),
write("Syntax error in ",File,'\n',Line,'\n',Blanks,"^\n",Msg,'\n'),
exit(1).

handleconsulterr(File,Err):-
errormsg(errorfile,Err,Msg,_),
write("Error while trying to consult ",File,":\n",Msg,'\n'),
exit(2).

GOAL
File="faulty.dba",
trap(consult(File, mydba), Err, handleconsulterr(File,Err)),
write("\nSUCCESS\n").

Notice that the file "faulty.dba" should be copied into the \EXE subdirectory of
your project if you Run the program or into \OBJ subdirectory when you use the
Test Goal.

readtermerror/2
readtermerror returns information about the readterm-read line containing a
syntax error.

readtermerror(Line, LinePos), /* (o,o) */

Line is bound to the line that has the syntax error, and LinePos is bound to the
position in the line where the syntax error was found.

Break Control (Textmode Only)

It is important to understand how the break/signal mechanism is implemented in
Visual Prolog. Generally, a break does not immediately abort the current
execution. Rather, Visual Prolog has an exception handler installed, which sets a

Chapter 10, Advanced Topics 267

flag when activated by the signal. Visual Prolog checks this flag in two different
cases:

• If the code is compiled with break checking enabled, the status of the break-
flag is examined each time a predicate is entered. Break checking may be
disabled by using the nobreak directive in the source code, through the
Options/Compiler Directives/Run-time check menu item, or from the
command line.

• Several of the library routines check the break-flag.

If the break-flag is set, the outcome depends on the break-status, set by the
predicate break: If break-status is OFF, the signal is ignored for the time being,
otherwise the code will exit with an appropriate exitcode (discussed below). This
exit will of course be caught by a trap, if any is set.

break/1
break enables and disables the sensing of the break-flag during execution. break
takes one of the following forms:

break(on) /* (i); enables the BREAK key */
break(off) /* (i); disables the BREAK key */
break(BreakStatus) /* (o); returns the current BREAK status */

You can read the current break status by calling break with an output variable.
This means that, during critical operations, you can disable break and then return
to the original break state afterwards. For example:

update :-
break(OldBreak),
break(off),

/* do the updating, */
break(OldBreak).

For the DOS-related versions, the exitcode resulting from a break will always be
0, as the only signal recognized is the user interrupt. For the UNIX version,
SIGINT also results in an exit value of 0, for backwards compatibility with the
large base of installed DOS programs written in Visual Prolog. For other signals
which the process has been set up to catch, the exitcode is the signal number plus
the constant err_signaloffset, defined in the include file ERROR.CON.

breakpressed/0
breakpressed succeeds if the break-flag is set, even when the break-state has
been turned off by break(off) or the program compiled with the nobreak option.

268 Visual Prolog Language Tutorial

If successful, breakpressed returns the exitcode generated by the most recently
caught signal, and clears the break-flag. For the DOS-related versions of Visual
Prolog, this will always be 0; for UNIX, it will be the same value as would
otherwise be passed through the exit/trap mechanism, as described above. This
too will be 0 if SIGINT is received.

Manual Break and Signal Checking in UNIX
This section, down to page 271, only applies to UNIX and may be skipped by
users of the DOS-related versions.

A Visual Prolog program may be configured to catch any of the many different
signals a UNIX process can receive (see signal(S)). However, as signals may
arrive at any time, quite asynchronously from the running process, it's important
that they don't interrupt the process while in the middle of something critical,
such as memory allocation. The reason for this is that, due to Prolog's
modularity, the only means of communication between different predicates is
through arguments or through databases. Obviously, an asynchronously executed
signal-handler predicate can't communicate to the rest of the program through
arguments, leaving only the database. And since databases rely on memory
allocation, which invariably is in use by the rest of the program, an
asynchronously executed signal-handling predicate could create havoc, if trying
to e.g. assert something to indicate that a signal was received, while the
interrupted process was in the middle of allocating memory. It really all boils
down to Prolog not having global variables, leaving asynchronously executed
predicates with no means of communication with the rest of the program.

Therefore, rather than invoking a signal-handling predicate the instant the signal
is received, signals are routed through the exit/trap mechanism.

signal/2
Signal-handling in Visual Prolog programs is controlled by the signal predicate,
defined in the include file ERROR.PRE:

GLOBAL DOMAINS
sighand = determ (integer) - (i) language C

GLOBAL PREDICATES
sighand signal(integer,integer) - (i,i) language C as "_BRK_Signal"
sighand signal(integer,sighand) - (i,i) language C as "_BRK_Signal"

Chapter 10, Advanced Topics 269

CONSTANTS
sig_default = 0
sig_ignore = 1
sig_catch = 2

To modify the handling of a specific signal, call signal with the signal exitcode
you want to catch, such as err_sigalrm, defined in ERROR.PRE, specifying in
the second argument what to do:

• sig_default to reset the handling of the signal to the default for the process

• sig_ignore to ignore the signal completely

• sig_catch to have the signal routed through the exit/trap mechanism

• anything else is taken to be the address of a function to be invoked when the
signal occurs

The return value of signal is the previous handling of the signal in question,
which will be one of the values outlined above. The only cases where you may
use the fourth alternative (address of function) is when this value was returned by
a previous call to signal, or when the function is one you have written yourself in
C, exercising the usual precautions when writing signal handlers. In particular,
SIGINT is masked out during the execution of the signal handler, so if you intend
to do a longjump from a signal handler you're written in C, SIGINT must be
enabled first (see sigprocmask(S)). The validity of the function address is not
verified at the time signal is called and results may be highly erratic if it's an
invalid address; see signal(S).

Although the name and argument profile of signal matches that of signal(S), it is
implemented using sigaction(S) and SIGINT is ignored during execution of
installed signal handlers.

By default, Visual Prolog catches the following signals:

• SIGINT (user interrupt); results in exit of 0 when detected.

• SIGFPE (floating point exception); results in an exit of err_realoverflow
immediately after the erroneous calculation.

• SIGBUS and SIGSEGV (memory fault); these signals result from attempting
to access memory not belonging to the process, typically due to a faulty
pointer. A short message, indicating where in the program the error
happened, will be printed if possible (see the errorlevel compiler directive),
and the process is terminated, leaving a core dump. Unless you have made a
mistake in modules you have written yourself in C, this invariably indicates
an internal error.

270 Visual Prolog Language Tutorial

• SIGILL (illegal instruction); the processor encountered an unrecognized or
illegal instruction. Other details as for SIGBUS and SIGSEGV.

Any signals caught will be routed through the same function as SIGINT. Note
that once catching has been enabled for a signal, it remains in effect until
explicitly reset by another call to signal. Receiving and catching a signal will not
reset the signal handling.

Needless to say, signal catching should be used very carefully, and the break-
state should always be turned off if you intend to receive and test for signals
without interrupting the program. In particular, a number of operating system
calls will be terminated prematurely if a signal is caught while they're executing.
When the break-state is off, the reception of the signal will be noted in the break-
flag and the interrupted system call called again, meaning the program should
work as expected. However, while every care has been taken to ensure the
integrity of this scheme, no guarantees can be given.

Below are two examples, using the alarm clock signal. Both use the
breakpressed predicate, which will be described later.

The first example will print the message "Do something!" every three seconds,
until the user enters a character. It doesn't turn the break-state off during the
central parts of the program, as the whole purpose is to interrupt a system call.

/* Program ch10e14.pro */

/* For UNIX platform only */

include error.con"

GLOBAL PREDICATES
alarm(integer) - (i) language C % See alarm(S)

PREDICATES
brkclear
nondeterm repeat
ehand(integer)
getchar(char)

CLAUSES
brkclear:-breakpressed,!. % Clear break-flag, if set
brkclear.

repeat.
repeat:-repeat.

Chapter 10, Advanced Topics 271

ehand(2214):-!,
write("Do something!\n").

ehand(E):-
write("\nUnknown exit ",E,'\n'),
exit(2).

getchar(C):-
write("Enter char: "),
alarm(3), % Alarm to go off in 3 seconds
readchar(C),
 % This will exit with err_sigalrm when receiving SIGALRM
alarm(0), % Cancel pending alarm signal
break(off),
brkclear, % Clear break-flag, in case alarm went off
break(on). % just before cancellation above.

GOAL
Old=signal(err_sigalrm,sig_catch), % Declared in error.con
repeat,
 trap(getchar(C),Err,ehand(Err)),
!,
signal(err_sigalrm,Old),
write("\nYou entered '",C,"'\n").

The next example, which has been deliberately written to be somewhat
inefficient, displays program progress during lengthy processing. Break-status is
turned off in this program, and the detection of any signals is handled manually,
using the breakpressed predicate.

/* Program ch10e15.pro */

/* For UNIX platform only */

include "error.con"

GLOBAL PREDICATES
alarm(integer) - (i) language C% See alarm(S)

facts
rcount(unsigned)
dba(real,real,real)

PREDICATES
nondeterm repeat
process_dba
bcheck
bcheck1(integer)

272 Visual Prolog Language Tutorial

CLAUSES
repeat.
repeat:- repeat.

rcount(0).

dba(1,1,1).

process_dba:-
retract(dba(F1,F2,F3)), !, F = F1 * F2 * F3, assert(dba(F,F,F)),
retract(rcount(N)), !, NN = N+1, assert(rcount(NN)),
NN = 25000. % fail back to repeat in goal

bcheck:-
Break = breakpressed(),!,
bcheck1(Break).

bcheck.

bcheck1(err_sigalrm):-!,
rcount(N),!,
time(H,M,S,_),
writef("\r%:%:% % records ",H,M,S,N),
alarm(1). % Next alarm in 1 second

bcheck1(0):-!,
write("\nInterrupt\n"),
exit(1).

bcheck1(Exit):-
write("\nUnknown exit ",Exit,"; runtime error?\n"),
exit(2).

GOAL
break(off),
Old = signal(err_sigalrm,sig_catch), % Declared in error.pre
alarm(1), % First alarm in 1 second
repeat,
bcheck, process_dba,
!,
alarm(0), % Cancel pending alarm
signal(err_sigalrm,Old),
dba(F1,F2,F3), !,
write('\n',F1,' ',F2,' ',F3,'\n').

The writef predicate is covered in chapter 12.

Chapter 10, Advanced Topics 273

Critical Error Handling under DOS Textmode
This section applies only to the DOS textmode platform, and are not relevant for
VPI programs.

The DOS-version of Visual Prolog's library contains some default routines for
handling error situations, but you can actually substitute the default code with
your own clauses. In this section, we describe two routines – criticalerror and
fileerror. DOS will call criticalerror when a DOS error occurs. The Visual
Prolog system calls fileerror when it gets a file error in the run-time editor. If
you define these predicates as global and supply your own clauses for them, the
linker will take your code instead of the code from the library. The result is that
you gain better control over error situations. Your .EXE program's size might
also decrease (because the code for the default routines draw in window
routines).

Global declarations for criticalerror and fileerror are given in the include file
ERROR.PRE shipped with the Visual Prolog system in the include directory.

criticalerror/4
Visual Prolog defines this routine for handling DOS critical errors (DOS
interrupt 24H). If you want to use your own version of criticalerror, you should
include ERROR.PRE, which gives a global declaration as follows:

GLOBAL PREDICATES
criticalerror(ErrNo, ErrType, DiskNo, Action) - (i, i, i, o) language

c as "_CriticalError_0"

Refer to the (see the Modular Programming on page 252) for information on
how to use global declarations.

The criticalerror predicate must never fail, and it works only from an .EXE file
application. The criticalerror predicate replaces the DOS critical error interrupt
handler and has the same restriction as the original interrupt handler. (Refer to
the DOS Technical Reference for details.) You can only use DOS function calls
01h to 0Ch and 59h ("Get extended error") – that means console I/O and nothing
else. If your application uses any other DOS function calls, the operating system
is left in an unpredictable state.

274 Visual Prolog Language Tutorial

Table 10.3: Argument Values for the criticalerror Predicate

Argument Value Meaning

ErrNo = 0
= 1
= 2
= 3
= 4
= 5
= 6
= 7
= 8
= 9
= 10
= 11

Attempt to write on write-protected disk
Unknown unit
Drive not ready
Unknown command
CRC error in data
Bad drive request structure length
Seek error
Unknown media type
Sector not found
= 12
Printer out of paper
Write fault
Read fault
General failure

ErrType = 0
= 1
= 2

Character device error
Disk read error
Disk write error

DiskNo = 0-25

Means device A to Z

Action = 0
= 1
= 2

Abort current operation
Retry current operation
Ignore current operation (this could be very
dangerous and is not recommended)

fileerror/2
Visual Prolog will activate the predicate fileerror when a file in the textmode
editor action fails.

If you define your own fileerror predicate, it is not allowed to fail, and it works
only from an .EXE file application.

The declaration for fileerror in the ERROR.PRE file is:

Chapter 10, Advanced Topics 275

GLOBAL PREDICATES
fileerror(integer, string) - (i, i) language c as "_ERR_FileError"

Note that this declaration is correct – you must specify language c even though
the source code will be in Prolog.

Dynamic Cutting

The traditional cut in Prolog is static. One problem with this is that the effect of
the cut happens when execution passes the '!' symbol, and it affects only those
clauses in which it was placed (in the source text). There is no way of passing the
effect of a cut in an argument to another predicate, where the cut might only be
evaluated if some conditions were fulfilled. Another problem with the traditional
cut is that it is impossible to cut away further solutions to a subgoal in a clause,
without also cutting away the backtracking point to the following clauses in the
predicate.

Visual Prolog has a dynamic cutting mechanism, which is implemented by the
two standard predicates getbacktrack and cutbacktrack. This mechanism allows
you to handle both of these problems. The predicate getbacktrack returns the
current pointer to the top of the stack of backtrack points. You can remove all
backtrack points above this place, at some later time, by giving the pointer thus
found to the cutbacktrack predicate.

Examples
Here are some examples that illustrate the use of these two predicates.

1. Suppose you have a database of people and their incomes, and you have
registered who their friends are.

facts
person(symbol, income)
friends(symbol, symbol)

If you define a happy person as one who either has some friends or pays little
tax, the clauses that return happy persons could be as follows:

happy_person(has_friends(P)) :-
person(P, _),
friends(P, _).

happy_person(is_rich(P)) :-
person(P, Income),
not(rich(Income)).

276 Visual Prolog Language Tutorial

If a person has more than one friend, the first clause will return a multiple
number of solutions for the same person. You could, of course, add another
predicate have_friends(P,P) that has a cut, or you could use the dynamic cut
instead.

happy_person(has_friends(P)) :-
person(P, _),
getbacktrack(BTOP),
friends(P, _),
cutbacktrack(BTOP).

Although the friends predicate might return many solutions if backtracked
into, that possibility is cut away with the call to cutbacktrack. A subsequent
failure would backtrack into the person predicate.

2. The more important use of a dynamic cut is when you pass the backtrack
pointer to another predicate and execute the cut conditionally. The pointer is
of unsigned type and can be passed in arguments of unsigned type.

As an illustration of this, let's say you want a predicate to return numbers until
the user presses a key.

PREDICATES
number(integer)
return_numbers(integer)
checkuser(unsigned)

CLAUSES
number(0).
number(N) :- number(N1), N = N1+1.

return_numbers(N) :-
getbacktrack(BTOP),
number(N),
checkuser(BTOP).

checkuser(BTOP) :-
keypressed,
cutbacktrack(BTOP).

checkuser(_).

The compiler does not recognize the cutbacktrack predicate in the pass that
analyzes the clauses for determinism. This means you could get the warning
Non-deterministic clause when using the check_determ directive, even if
you called cutbacktrack.

Chapter 10, Advanced Topics 277

You should use dynamic cutting very judiciously. It's all too easy to destroy
program structure with dynamic cutting, and careless use will invariably lead
to problems that are very hard to track down.

Free Type Conversions

In most cases there is little need to start mixing wildly differing types. However,
from time to time, in particular when dealing with system level programming or
when interfacing to foreign languages, rather reckless conversions have to be
dealt with. To this end the cast function will convert from anything to anything.
No checks are performed on the supplied values, and quite disastrous results will
occur if you try to use incorrectly cast variables.

The format of cast is

Result = cast(returnDomain,Expr)

where Expr is evaluated (if it's a numerical expression), converted to
returnDomain type, and unified with Result.

For instance, a null string pointer (a character pointer with a value of 0; not an
empty string, which is a pointer to a byte with a value of 0) can be created using:

NullPtr = cast(string,0)

Don't try to write the resulting string, you'd most probably get a protection
violation, a hung system, or at best garbage characters.

If you don't see any obvious use for cast, don't worry. It plays no part in ordinary
Prolog programs.

Programming Style

In this section, we provide some comprehensive guidelines for writing good
Visual Prolog programs. After summarizing a few rules of thumb about
programming style, we give you some tips about when and how to use the fail
predicate and the cut.

Rules for Efficient Programming

Rule 1. Use more variables rather than more predicates.

278 Visual Prolog Language Tutorial

This rule is often in direct conflict with program readability. To achieve
programs that are efficient (both in their demands upon relatively cheap
machines and upon relatively expensive human resources) requires a careful
matching of objectives.

Often, the purely declarative style of Prolog leads to code that is significantly
less efficient than other (non-declarative) approaches. For instance, if you're
writing a predicate to reverse the elements of a list, this code fragment:

reverse(X, Y) :- reverse1([], X, Y). /* More efficient */
reverse1(Y, [], Y).
reverse1(X1, [U|X2], Y) :- reverse1([U|X1], X2, Y).

makes less demands upon the stack than the next one, which uses the extra
predicate append:

reverse([], []). /* Less efficient */
reverse([U|X], Y) :- reverse(X, Y1), append(Y1, [U], Y).

append([], Y, Y).
append([U|X], Y, [U|Z]) :- append(X, Y, Z).

Rule 2. Try to ensure that execution fails efficiently when no
solutions exist.

Suppose you want to write a predicate singlepeak that checks the integers in a
list to see if, in the order given, they ascend to a single maximum and then
descend again. With this predicate, the call:

singlepeak([1, 2, 5, 7, 11, 8, 6, 4]).

would succeed, while the call:

singlepeak([1, 2, 3, 9, 6, 8, 5, 4, 3]).

would fail.

The following definition for singlepeak breaks Rule 2, since the failure of a list
to have a single peak is only recognized when append has split the list into every
possible decomposition:

/* Definition 1 - Breaks Rule 2 */

singlepeak(X) :- append(X1, X2, X), up(X1), down(X2).

up[_].
up([U, V|Y]) :- U<V, up([V|Y]).

Chapter 10, Advanced Topics 279

down([]).
down([U]).
down([U, V|Y]) :- U>V, down([V|Y]).

append([], Y, Y).
append([U|X], Y, [U|Z]) :- append(X, Y, Z).

On the other hand, the next definition recognizes failure at the earliest possible
moment:

/* Definition 2 - Follows Rule 2 */

singlepeak([]).
singlepeak([U, V|Y]) :- U<V, singlepeak([V|Y]).
singlepeak([U, V|Y]) :- U>V, down([V|Y]).

down([]).
down([U]).
down([U, V|Y]) :- U>V, down([V|Y]).

The third and final definition shortens singlepeak even further by observing Rule
1.

/* Definition 3 - Follows Rule 1 */

singlepeak([], _).
singlepeak([H|[]], _).
singlepeak([U, V|W], up) :- U<V, singlepeak([V|W], up).
singlepeak([U, V|W], _) :- U>V, singlepeak([V|W], down).

Using Definition 3, this call to singlepeak

singlepeak(Y, up)

succeeds if Y is bound to a single peaked list appended to an ascending list. This
call

singlepeak(Y, down)

succeeds if Y is bound to a descending list.

Rule 3. Let Visual Prolog's unification mechanism do as much of
the work as possible.

At first thought, you might define a predicate equal to test two lists from the
same domain for equality as follows:

280 Visual Prolog Language Tutorial

equal([], []).
equal([U|X], [U|Y]) :- equal(X, Y).

This is unnecessary. Using the definition

equal(X, X).

or, even simpler, unification by means of =, Visual Prolog's unification
mechanism does all the work!

Rule 4. Use backtracking – instead of recursion – for repetition.

Backtracking decreases stack requirements. The idea is to use the repeat ... fail
combination instead of recursion. This is so important that the next section is
dedicated to the technique.

Using the fail Predicate
To evaluate a particular sequence of subgoals repeatedly, it is often necessary to
define a predicate like run with a clause of the form subgoals, evaluating
repeatedly

run :-
readln(X),
process(X, Y),
write(Y),
run.

This kind of definition incurs unnecessary recursion overheads that cannot be
automatically eliminated by the system if process(X,Y) is non-deterministic.

In this case, the repeat ... fail combination avoids the need for the final recursive
call. Given

repeat.
repeat :- repeat.

you can redefine run without recursion as follows:

Chapter 10, Advanced Topics 281

run :-
repeat,

readln(X),
process(X, Y),
write(Y),

fail.

fail causes Visual Prolog to backtrack to process and eventually to repeat, which
always succeeds. But how do you break out of a repeat ... fail combination?
Well, in the cases where you want infinite execution (the run:- ..., ..., run
variety, you will usually only want to quit if some exceptional condition arises.
To this end, you can use the exit predicate in non-interactive programs, or just
press break in interactive ones. In other cases, where you have a clear condition
of completion, replace the fail with a test for completion:

run:-
repeat,

getstuff(X),
process(X,Y),
putstuff(Y),

test_for_completion(Y),
!.

Determinism vs. Non-determinism: Setting the Cut
The compiler directive check_determ is useful when you need to decide where to
place the cut, since it marks those clauses that give rise to non-deterministic
predicates. If you want to make these predicates deterministic, you must insert
the cut to stop the backtracking (which causes the non-determinism).

As a general rule, in such cases, the cut should always be inserted as far to the
left as possible (close to the head of a rule) without destroying the underlying
logic of the program.

Keep in mind these two rules used by the compiler to decide that a clause is non-
deterministic:

1. There is no cut in the clause, and there is another clause that can match the
input arguments in the clause head.

2. There is a call to another non-deterministic predicate in the clause body, and
this non-deterministic call is not followed by a cut.

282 Visual Prolog Language Tutorial

CHAPTER 11

Classes and Objects

Visual Prolog contains a powerful object-mechanism, that melts together the
logic programming and object oriented programming (OOP) paradigms.

You will find some small examples of Visual Prolog programs, which use OOP-
technology on the CD in the directory \OOP\EXAMPLES.

Four criteria have to be fulfilled, before a system can be considered to be object
orientated: encapsulation, classes, inheritance, and identity.

Encapsulation
The importance of encapsulation and modularity are well known. Encapsulated
objects can help building more structured and readable programs because objects
are treated like black boxes. Look at complex problems, find a part, which you
can declare and describe. Encapsulate it in an object, construct an interface and
continue so, until you have declared all the subproblems. When you have
encapsulated the objects of the problem, and ensured that they work correctly,
you can abstract from them.

OOP is also sometimes known as data-driven programming. You can actually let
the objects themselves do the work for you. They contain methods, which are
invoked, when they are created, deleted and whenever you call them. Methods
can call methods in other objects.

Objects and Classes
The way data is stored in traditional programming languages are usually hard to
grasp for humans and not suited for modeling. Objects are much easier to work
with, because it is closer to the way humans understand real-world objects and in
fact objects themselves are a tool for modeling.

Object is a far more complex data structure than lists. At the basic level an object
is a declaration of coherent data. This declaration can also contain predicates,
which work on these data. In OOP terminology these predicates are called
methods. Each class represents a unique type of objects and the operations
(methods) available to create, manipulate, and destroy such objects.

Chapter 11, Classes and Objects 283

A class is a definition of an object type; it can create objects corresponding to
this type. An instance is an actual occurrence of an object. Normally you can
define as many instances (objects) of a class as you like.

Example

class automobile
owner string
brand string

endclass

Actual instance 1
Owner Beatrice
brand Morris Mascot

End

Actual instance 2
Owner John
brand Rolls Royce

End

Inheritance
OOP is a powerful modeling tool. Objects can be defined on the abstraction level
that suits best. From this level child-objects can be defined on lower levels, or
parent-objects on higher levels. An object can inherit data and methods from
objects at higher levels. Objects are thus an easy way to make modular programs.

Identity
Every object is unique. Objects have a changeable state, and since states of
objects can be observed by means of their member predicates an object is only
identical to itself. I.e. even if the states of two objects are identical, the objects
are not identical, because we can change the state of one object without changing
the other, and then the objects no longer have identical states.

A very important characteristic of an object is that its identity remains even
though its attributes change. We always access an object by means of a reference
to an object. An object can be accessed through many different references and
since an object is only identical to itself, we can have many references to the
same object.

284 Visual Prolog Language Tutorial

Visual Prolog Classes
Defining a Class in Visual Prolog requires two things: a class declaration, and a
class implementation. The class declaration specifies the interface to the class;
that is, what can be seen from the outside. The class implementation contains the
Prolog clauses for defining the actual functionality for the class.

That is, the declaration of the interface to a class and the actual definition of the
clauses for a class are separated. The class declaration will often be placed in
header files (usually, with filename extension .PH or .PRE) that can be included
in modules that use the class. The class implementation can be placed in any
project module that includes the class declaration.

Class Declarations
A simplified "first-look" syntax for a class declaration is:

class class-name [: parentclass-list]
domains

domain_declarations

[static] predicates
predicate_declarations

[static] facts
fact_declarations

endclass class-name

The class declaration section starts with the keyword class and terminates with
the keyword endclass. The optional parentclass-list specifies the parent class (or
classes) from which the class class-name will derive (or inherit) domains,
predicates and facts. If any parent class is specified, the class class-name is called
a derived class. The class-name after the keyword endclass is optional.

By default, the access rights of entities declared in the class declaration are
public (global to the project); therefore, such domains, predicates and facts can
be accessed outside the class (and inherited classes).

Unless predicates and facts sections are preceded with the keyword static (see
Static Facts and Predicates on page 292), the declared facts will belong to
objects (class instances), and the predicates will carry an invisible argument
identifying the objects to which they belong to.

Chapter 11, Classes and Objects 285

Class Implementation
A simplified "first-look" syntax for a class implementation is:

implement class-name [: parentclass-list]
domains

domain_declarations

[static] predicates
predicate_declarations

[static] facts
fact_declarations

clauses
clause_definitions

endclass class-name

Definitions of clauses for a class is done in a section starting with the implement
keyword and ending with the endclass keyword. Multiple domains, predicates,
facts, and clauses sections can be placed inside a class implementation. The
class-name after the endclass keyword is optional.

Declarations done in a class implementation work like as they are given in a class
declaration, however, in opposite to the class declaration, entities declared in the
class implementation will be entirely private to the implementation. The scope of
names declared in a class implementation section is this implementation section.

Note also, that it is possible to inherit classes down in the implementation, thus
encapsulating details on a class implementation. Base classes specified in a class
implementation must not duplicate base classes specified in this class declaration.

Notice that using of global facts is not a safe programming technique. Therefore,
we recommend never declare facts in class declarations. We recommend
encapsulate facts in class implementations and provide access to them with
public class member predicates. According to PDC plans, future versions of
Visual Prolog will not support public facts.

Class Instances - Objects
When a class declaration and definition has been made a multiple number of
instances (objects) of this class can be created. A new object of a class is made
with a call to a constructor new for that class. A call to a constructor predicate
new creates a new object (instance of the class) and returns a reference to the
created object, which can later be used to perform operations on this object and

286 Visual Prolog Language Tutorial

call methods of this object. The syntax for calling a constructor of some class
my_c to create a new class instance is:

Object_identifier = my_c :: new,

The ordinary syntax for specification of predicates and facts from some formerly
created object is:

[Object_identifier :] predicate_or_fact_name[(arguments)]

Example:
/* Program ch11e01.pro */

class cCounter
predicates

inc()
dec()
integer getval()

endclass

implement cCounter
facts

single count(integer)

clauses
count(0).

inc:-
count(X),
X1=X+1,
assert(count(X1)).

dec:-
count(X),
X1=X-1,
assert(count(X1)).

getval(VAL):-
count(Val).

endclass

goal
Obj_counter = cCounter::new,
Initial = Obj_counter:getval(),
Obj_counter:inc,
NewVal = Obj_counter:getval(),
Obj_counter:delete.

Chapter 11, Classes and Objects 287

Run the program with the Test Goal utility, you will obtain:

Obj_counter=145464, Initial=0, NewVal=1
1 Solution

In this example the call Obj_counter = cCounter::new to the constructor new of
the class cCounter creates a new instance of the class cCounter and returns the
reference (object identifier) to the created object in the variable Obj_counter.
Later this reference is used to call methods of the object and access the instance
of the fact count from this object.

Each instance of the class will have its own version of non-static facts. Such fact
databases can be manipulated as usual facts by database predicates: retract,
assert, save, consult, etc.

Each class has the default constructor new (without parameters). When a
program calls the default constructor to create an object, then Visual Prolog
automatically initializes all structures required to the created object. To provide
additional functionality to class constructors (initialize facts to special values,
etc), the programmer can define explicit constructors to the class. (See Explicit
Constructors and Destructors on page 297.)

Destroying Objects
Objects have to be deleted explicitly by calling a destructor delete on an object.

Obj = customers::new,
Obj:change_account,
Obj:delete.

After calling a destructor delete on an object Obj, the object Obj is considered to
be deleted, and any attempt to use it is not correct.

Deleting of an object causes automatic retracting of all (non-static) facts from
fact databases of this object and deallocation of memory that was used by this
object. Hence, it is strictly recommended to delete unnecessary objects in order
to free resources.

Notice that once created, objects will survive fail. That is, fail does not delete
created objects and does not deallocate the memory occupied by objects. To
delete an object and to free the occupied resources you have to call a class
destructor delete explicitly.

Each class has the default destructor delete (without parameters).

288 Visual Prolog Language Tutorial

Class Domains
The declaration of a class with the name class_name automatically generates a
global domain class_name. This domain can be used to declare adrument
domains in predicates that should handle references to objects of this class.

CLASS class_name
...

ENDCLASS

PREDICATES
p(class_name)

Passing an object identifier in a parameter means just passing a pointer to the
object as in normal OOP-programming style.

In most cases, class domains can be used as ordinary global domains and most
corresponding rules are applied to them.

• As ordinary global domains, the class domain class_name has to be visible
only in those project modules (the declaration of class class_name should be
included in those modules), which explicitly use this class_name domain.

• As ordinary global domains, class domains correspondent to abstract classes
have to be visible in the main module. (see the Abstract Classes below).

• But class domains correspondent to non-abstract classes do not have to be
visible in the main module if the main module does not use them.

Class domains can be used for type conversions of objects with predicate val.
Normally, val checks correctness of conversions at compile-time; but when val
converts an object from a parent class to a derived (child) class, then val leaves
some freedom to the programmer and checks the correctness only at run-time. If
val detects that the conversion is incorrect, then it generates the run-time error.

Derived Classes and Inheritance
What you can do if you need an object that is rather similar to an object you
already have, but with some extra properties? You can just derive a new class
using a class of this similar object as the base class. When you declare a derived
class D, you list parent classes P1, P2 in a comma-delimited parent class list:

CLASS D : P1, P2 ...

The derived class D inherits public domains, predicates, and facts of the specified
parent classes P1, P2. Inherited predicates and facts become public members of

Chapter 11, Classes and Objects 289

the class D and they can be referenced as members of the class D. On the other
hand, D inherits only possibility to use the inherited domains; they cannot be
qualified with the name of the class D.

Inherited domains, predicates, and facts can be redefined in a derived class.
Global predicates also can be redefined inside a class, for example, the build-in
global predicates beep, concat, retract can be overridden inside a class.

When using a child class, it is possible to use predicates and facts from both the
parent classes and from the child class. However, the child class might choose to
redefine some of predicates or facts from the parent classes. Members of a base
class redefined in a derived class can be accessed from the derived class with
explicit qualifying of a member name by the base class name:

[base_class_name ::] member_name[(arguments)]

Example.
/* Program ch11e02.pro */

class cPerson
predicates

procedure add_name(STRING) - (i)
procedure add_father(cPerson) - (i)
procedure add_mother(cPerson) - (i)
procedure write_info()

endclass

class cEmploye : cPerson
predicates

procedure add_company(string Name) -(i)
procedure write_info()

endclass

implement cPerson
facts

name(string)
father(cPerson)
mother(cPerson)

clauses
add_name(Name):-

assert(name(Name)).

add_father(Obj_person):-
assert(father(Obj_person)).

290 Visual Prolog Language Tutorial

add_mother(Obj_person):-
assert(mother(Obj_person)).

write_info():-
name(X),
 write("Name=",X),nl,
fail.

write_info():-
father(F),
 write("Father:\n"),
 F:cPerson::write_info(),
fail.

write_info():-
mother(M),
 write("Mother:\n"),
 M:cPerson::write_info(),
fail.

write_info().
endclass

implement cEmploye
facts

company(string Name)

clauses
add_company(Name):-

assert(company(Name)).

write_info():-
 cPerson::write_info(),
fail.

write_info():-
company(X),
 write("Company=",X),nl,
fail.

write_info().
endclass

Chapter 11, Classes and Objects 291

goal
F = cPerson::new(),
F:add_name("Arne"),
O = cEmploye::new(),
O:add_name("Leo"),
O:add_father(F),
O:add_company("PDC"),
O:write_info(),
F:delete(),
O:delete().

The formal syntax for using the members of an object is:

[ObjectVariable:] [name_of_class::] name_of_member[(arguments)]

The object can be omitted inside the implementation of a class or for calling the
class members, which were declared as static. For example, a call in the form:

member_name(arguments)

will be considered as a call to the corresponding member predicate
member_name of that class (or its parents) in case it exists. Otherwise, if there
are no members with the given name, it will be considered as a call to the
predicate with the same name, which is declared in some predicates or facts
section outside classes.

Names for members may be redefined in the hierarchy of classes. So, in order to
refer to names of members in the previous scope, the name of class defined in
call to some member may be used for explicit qualification of class in use:

[name_of_class::] name_of_member[(arguments)]

Virtual Predicates
In Visual Prolog all predicates declared in class declarations are what in the C++
terminology is called virtual methods. Virtual predicates allow derived classes to
provide different versions of a parent class predicates. You can declare a
predicate in a parent class and then redefine it in any derived class.

Assume, that a parent class P declares and defines a public predicate who_am_i,
and class D derived from P also has a declaration and definitions for who_am_i.
If who_am_i is called on an object of D, the call made is D::who_am_i even if
access to who_am_i is via a reference to P. For example:

292 Visual Prolog Language Tutorial

/* Program ch11e03.pro */

class P
predicates

test
who_am_i()

endclass

class D : P
predicates

who_am_i()
endclass

implement P
clauses

test:-who_am_i().

who_am_i():-
write("I am of class P\n").

endclass

implement D
clauses

who_am_i():-
write("I am of class D\n").

endclass

goal
O = D::new,
O:test,
O:delete.

The output from the above program would be:

I am of class D

Note, that if you define a predicate in a subclass with different domains or
number of arguments, Prolog will treat this as a different declaration, and it will
not work as a virtual predicate.

Static Facts and Predicates
It is possible to declare class member predicates and facts as being static.

Chapter 11, Classes and Objects 293

Preceding the declaration of a predicates or a facts section with the keyword
static specifies that all predicates or facts declared in the section are static. For
example:

static facts
single counter(integer)

static predicates
procedure get_counter(integer)

Static class members belong to the class, not to the individual objects. This
means that when a class declares a static member, then only one such static
member exists for a class, rather than one per each object (like it is for non-static
(object) class members). Static class members do not have any reference to
personal objects of the class.

Public static members of a class can be used in any place where the class is
visible (in any modules including the class declaration) even without creation of
any object of the class.

Outside implementations of classes that inherit (transitively) a static class
member, it can be qualified with the class name using the following syntax:

class_name :: static_class_member_name[(arguments)]

For example, one can access static predicate get_counter like this:

goal
...
xclass::get_counter(Current_Counter),

Of course, a static member (as a non-static class members) can be qualified with
references to objects of classes obtaining this static member.

Static facts are not generated for each instance of a class. Only one version of
each static fact exists for the class and it is accessible for all instances of the
class. This is useful, for example, to count the number of instances of a class.

Because, static predicates and static predicate values (see the Predicate Values on
page 236) do not carry any internal reference to class instances, therefore,
"ordinary" predicate domains can be used for declarations of static predicate
values. See the example ch11e04.pro

/* Program ch11e04.pro */

class cCounter
domains

p_dom = determ (integer) - (o) % predicate domain

294 Visual Prolog Language Tutorial

predicates
procedure new()

static predicates
static_p_value : p_dom

endclass

implement cCounter
static facts - db

single count(integer)

clauses
count(0).

new():-
count(N),
N1 = N+1,
assert(count(N1)).

static_p_value(N):-
count(N),
write("There are now ",N," instances of class cCounter\n\n").

endclass

goal
cCounter::static_p_value(_), % static member predicates can be called
 % before an object creation
O = cCounter::new(),
O:static_p_value(_), % qualify static predicate with object identifier
O2 = cCounter::new(),
P_value = cCounter::static_p_value, % bound static predicate value
P_value(_I), % call static predicate value by variable
O:delete,
O2:delete.

The output of the Test Goal for this program will be:

There are now 0 instances of class cCounter
There are now 1 instances of class cCounter
There are now 2 instances of class cCounter
O=6763168, O2=6763190,
P_value=430BFC,
_I=2
1 Solution

Chapter 11, Classes and Objects 295

Reference to the Object Itself (Predicate this)
Each non-static predicate has an invisible (to the programmer) extra parameter,
which is a pointer (object identifier) to an actual instance of a class (an object) to
which this predicate belongs.

In a clause like:

implement x
clauses

inc:-
count(X),
X1=X+1,
assert(count(X1)).

endclass

The object is entirely invisible. If it is necessary to refer to the object itself for
instance to access a predicate in an inherited class, it is possible to use the built-
in predicate this. The predicate this allows for an object to get access to any
member predicate, which is defined in corresponding class or in its parents. The
syntax for making call to this predicate is:

this(ObjectIdentifier) % (o)

The predicate this can be used only in non-static member predicates. Predicate
this has the single output argument. The variable ObjectIdentifier in this
predicate must be free; the anonimous variable (single underscore) is not allowed
here. The domain of this argument is the class domain of an implementation
section in which this is called.

For example:

IMPLEMENT x
CLAUSES

inc:-
this(ObjectId),
ObjectId:x::count(X),
X1=X+1,
assert(count(X1)).

ENDCLASS

This piece of code is functionally identical with the piece of code just above,
with the only difference, that you get the object identifier of this object ObjectId.
The obtained object identifier ObjectId can be passed on as a parameter to other
predicates.

296 Visual Prolog Language Tutorial

Class Scopes
A name scope is defined as the area, in which you can access it. Predicate,
domain, and fact names may be redefined in the class hierarchy. In order to refer
to names in a previous scope, a name can be preceded by a class name for
explicit qualification of the class in use. The following notation can be used for
explicit naming of a class:

class_name :: member_name(arguments)

For example:

class parent
predicates

p(integer)
endclass

class child : parent
predicates

p(string, integer)
endclass

% IMPLEMENTATION is not shown for clarity

goal
O = child::new,
O : parent::p(99) % Access the definition in parent

Classes as Modules
Another usage of the explicit scoping is in using classes with static predicates
and static facts as packages, like a module system.

Beginning with version 5.2, Visual Prolog provides possibility to declare
domains inside classes. Being able to declare domains in classes opens the
possibility to use classes as modules. Public domains declared in a class
declaration are global and can be used outside the class.

If a class declares only static entities, then it can be considered a module.

The static entities of a class can be used as ordinary global entities, as long as
you remember to qualify them with the class name. One advantage of creating
modules this way is that the module will have a separate name space (as the
result of qualification with the class name). This means that you can choose
names in the module more freely. It also ensures consistent naming of all entities

Chapter 11, Classes and Objects 297

in the module. Another advantage is that declarations of classes (except for
abstract classes) do not have to be included in the main module, even if they
contain declarations of public domains.

Example:
/* Program ch11e05.pro */

class cList
domains

ilist = integer*

static predicates
append(ilist, ilist, ilist) - (i,i,o)
ilist gen(integer)

endclass

implement cList
clauses

append([],L,L).
append([H|L1],L2,[H|L3]):-

append(L1,L2,L3).

gen(0,[]):-!.
gen(N,[N|L]):-

N1=N-1,
L = gen(N1).

endclass

goal
L1 = cList::gen(3),
L2 = cList::gen(5),
cList::append(L1,L2,L3).

User-defined Constructors and Destructors
The Visual Prolog system itself allocates and initializes the memory during
creation of an object. However there might still be the desire to specify how an
object is created. For instance, initialize object facts to special values, create a
window on the screen or open a file. In the same way, the programmer may wish
to control how an object is deleted, for instance, closing windows or files.

For this purpose, in a class declaration section, it is possible to declare an explicit
constructor(s) or destructor(s) for objects of the class. Explicit constructors are
made by giving explicit declarations and definitions for predicates new in a class,

298 Visual Prolog Language Tutorial

and an explicit destructor is made by giving an explicit definition and declaration
for a predicate delete.

/* Program ch11e06.pro */

CLASS cTest
PREDICATES

procedure new(String, String)
procedure delete()
add(STRING)
writeStrings()

ENDCLASS cTest

IMPLEMENT cTest
FACTS - privateDB

nondeterm strDB(STRING)

CLAUSES
new(StrHello, StrToLoad):-

write(StrHello),
assertz(strDB(StrToLoad)),
write("Initial string is loaded into the database\n"),
write("Constructor ended\n").

delete():-
writef("Simple destructor startup\n"),
write("Delete all strings from the database\n"),
retractall(strDB(_)),
write("Destructor ended\n").

add(STR):-
assertz(strDB(STR)).

writeStrings:-
strDB(StringFromDataBase),
writef("%s\n", StringFromDataBase),
fail.

writeStrings.

ENDCLASS cTest

GOAL
O = cTest::new(

"Simple constructor startup\n",
"This is the initial string.\n"),nl,nl,

O:add("Second String"),
O:WriteStrings,
O:delete.

Chapter 11, Classes and Objects 299

Constructors and destructors are not allowed to fail; they must be procedures.

Predicates new and delete have many features of usual member predicates but
they have some specific features.

In clauses of a predicate new, it is possible to call constructors of base classes
using the following syntax:

base_class_name::new

Several constructors and destructors with different arity or argument domains can
be declared in a class.

Before doing any references to an object of a class, an object should be created
with a call of any constructor new declared in the class. The compiler checks
this.

If a predicate new is not explicitly declared in a class, then the default constructor
new is used.

If an explicit constructor new is declared in a class, then the default constructor
new cannot be called explicitly.

If a constructor or destructor exits with a runtime error, the object state is
undefined.

An explicitly declared predicate new can be called in two different ways:

• As a constructor of class objects. The syntax is:

Created_Object_Identifier = class_name :: new[(arguments)]

For example:

O = child::new, % call new as class "child" constructor

When called as the constructor, the predicate new creates a new object
(instance of the class) and returns a reference to the created object.

• As an ordinary member predicate of a class. The syntax is:

[Object_Identifier :] [class_name ::] new[(arguments)]

For example:

O:parent::new, % call new() as class "parent" member predicate

When the new is called as a member predicate, it does not create a new
instance of the class.

300 Visual Prolog Language Tutorial

Similarly, an explicitly declared predicate delete can also be called in two
different ways:

• On class objects, as a destructor of class objects. The syntax is:

Object_Identifier : [class_name ::] delete[(arguments)]

For example:

O:parent::delete,

• As an ordinary member predicate of a class. When called as a member
predicate delete does not destroy any object. The syntax is:

class_name :: delete[(arguments)]

For example:

parent::delete(),

Abstract Classes
An abstract class is a class definition without an implementation. It is only
inherited by subclasses. Abstract classes are used to provide general concepts
(interfaces). . An abstract class is defined by the keyword abstract preceding the
class declaration. The short syntax is:

abstract class <class_name> [: <base_class_list>]
{[protected] domains <domains_declarations>}
{[protected] predicates <predicates_declarations>}

endclass [<class_name>]

For example, if you want to create a browser that can work on many different
kinds of data, you will open the browser by passing to it an object, which
methods the browser can call to get the data and move forward or backward. By
using an abstract class, the browser knows which predicates it can make calls to.

abstract class cBrowseInterface
predicates

string get_Current()
next()
prev()

endclass

Chapter 11, Classes and Objects 301

class cDBinterface : cBrowseInterface
PREDICATES

new(Db_Selector,Chain)
string get_Current()
next()
prev()

endclass

class cFileInterface : cBrowseInterface
predicates

string get_Current()
next()
prev()

endclass

class cBrowser
predicates

new(cBrowseInterface)
endclass

Another example you can find in OOP\Test\ABSTRACT.PRO.

Remarks:

• In case an abstract class inherits some base classes, these must also be
declared abstract.

• It is impossible to declare facts in abstract classes.

• It is impossible to declare static predicates in abstract classes.

• Abstract classes cannot be specified in base class lists for class
implementations.

• Declarations of all abstract classes must be included into the main module.

Beginning with Visual Prolog version 5.2, Visual Prolog's class system is much
more compatible with COM. Abstract classes provide exactly the same VTABLE
as the COM interface.

Protected Predicates, Domains, and Facts
It is possible to declare whether you can access predicates, domains, and facts
from outside of a class. By default, all domains, facts and predicates declared in a
class declaration are public. This means that they are accessible by any predicate
in any module, which includes the class declaration.

302 Visual Prolog Language Tutorial

The default access rights can be changed by preceding the keywords facts,
predicates or domains in the section declaration with the keyword protected.
Protected entities can be used only inside the class in which they are declared and
in classes directly inherited from this class.

An example of the usage of protected predicates is callback event handlers,
where subclasses might redefine some handling predicates, but it makes no sense
to call these from the outside:

class window
protected predicates

onUpdate(rct)
onCreate(long)

endclass

Derived Class Access Control
An important issue in building the hierarchies of objects correct, so that you can
re-use as much code as possible, is inheritance. You can define methods on one
level, and these can then be reused on lower levels. If a class inherits from other
classes, we say, that this class is a derived class.

Visual Prolog supports so called "multiple inheritance". This means possibility to
derive a class from several base classes at once. A resulting derived class thus
inherits properties from several derectly inherited classes. Notice that this turns
the inheritance hierarchy (or hierarchy of derived classes) into a directed
(acyclic) inheritance graph. Notice that in case of simpler "single inheritence"
the inheritance hierarchy can be represented as a directed hierarchy tree.

When you declare a derived class (for example, D), you can list several base
classes (for example, P1, P2, P3, and P4) in a comma-delimited base class lists
both in the declaration and in the implementation of the derived class D. For
example,

class D : P1, P2

and

implement D : P3, P4

When base classes P1 and P2 are specified in the derived class D declaration,
then D inherits from classes P1 and P2 all public domains, predicates, and facts.
The inherited predicates and facts become public members of class D and they
can be referenced as members of class D. On the other hand, D inherits only

Chapter 11, Classes and Objects 303

possibility to use inherited public domains; inherited domains cannot be qualified
with D name.

When base classes P3 and P4 are specified in the class D implementation, then D
inherits from P3 and P4 all public domains, facts, and predicates, but they
become private (local) to D and can be used only inside D implementation.

Derived class D does not have access to private names defined in base classes.

Redefined names can be accessed using scope overrides, if needed.

In case the name of some member can be achieved by several ways with the
directed acyclic inheritance graph, the longest way is accepted.

If two or more predicates in a class hierarchy have the same name but different
number or types of arguments, we say that this name is overloaded. We then
have to consider the scope of the name, here defined as the area in which each
predicate is valid. Every usage of name for any member of some class must be
unambiguous (to an approximation of overloading). If a name denotes a
predicate, a predicate call must be unambiguous with respect to number and type
of arguments. The access to the member of base class is ambiguous if the
expression of access names more than one member. The test for unambiguous is
performed before the access control.

In case the synonymously defined name is the name of any overloaded member,
then the scope of overloading is performed after the ambiguous control (but
before the access control). The ambiguity can be scoped with explicit qualifying
name of the member by the name of the corresponding class. The general syntax
is the following:

[ObjectVariable:] [name_of_class::] name_of_member[(arguments)]

All predicates from class declarations, except new and delete, are virtual.
Opposite, all predicates declared in implementations become non-virtual.

Object Predicate Values
Visual Prolog supports a notion of object predicate values. Object predicate
values are a generalization of predicate values. (See Predicate Values on page
236.) An object predicate value is a non-static predicate of a specific object. This
is opposed to "ordinary" predicate values, which are either global, local or static
predicates (predicate values).

Object predicate values are declared as instances of object predicate domains (see
page 309).

304 Visual Prolog Language Tutorial

Seen from the outside, an object predicate value looks like an "ordinary"
predicate value, because the object to which it belongs is encapsulated by the
predicate value itself. That is, an object predicate value consists of both the code
and the reference onto the object, to which the code belongs. Therefore, the call
of an object predicate value looks exactly the same as the call of an "ordinary"
predicate value: It is simply applied to their arguments. But execution will
(nevertheless) take place in the context of the specific object to which the object
predicate value relates.

So the main reason for using object predicate values over "ordinary" predicate
values is that execution will occur in a specific context of an object.

To illustrate this semantics let us consider an example:

First, we declare an object predicate domain:

global domains
objectIntInt = object procedure integer (integer)

The domain objectIntInt declares non-static (object) predicates. These predicates
(functions) have one input argument from integer domain and return integer
value. They have procedure determinism mode. Now let us declare a predicate
of this domain. Because a predicate value of such domain must be a non-static
member predicate, therefore, it must be declared in a class:

class cLast
predicates

last : objectIntInt
endclass cLast

To illustrate that last is indeed a non-static member predicate, we let it return a
value dependent on the state of the object. In fact, we let it return the parameter it
was called with at the previous invocation. Thus, we store the parameter from
one invocation to the next in a fact:

implement cLast
facts

% invariant: "lastParameter" holds the parameter value
% from the previous invocation of "last"
% initially assume 0 as value from "last" invocation

single lastParameter(integer Last)

clauses
lastParameter(0).

Chapter 11, Classes and Objects 305

last(ThisParameter, LastParameter) :-
lastParameter(LastParameter),
assert(lastParameter(ThisParameter)).

endclass cLast

So far, the only thing special about this example is the way the predicate last is
declared. And before we will really use last as an object predicate value, let us
use it like a normal non-static member predicate:

predicates
test1() - procedure ()

clauses
test1():-

O1 = cLast::new(),
O2 = cLast::new(),
_1 = O1:last(1),
_2 = O2:last(2),
V1 = O1:last(3),
V2 = O2:last(4),
writef("V1 = %, V2 = %", V1, V2), nl,
O1:delete(),
O2:delete().

If we call test1 then it will first create two objects O1 and O2. Then it calls last
on O1 with parameter 1 and on O2 with parameter 2. Both O1 and O2 will store
their parameter in respective instances of lastParameter fact. So when last is
called again we will retrieve 1 and 2, respectively. Subsequently, the call of test1
will produce the output:

V1 = 1, V2 = 2

Now let us do the same again, but this time we will use the predicates as values
held in variables:

predicates
test2() - procedure ()

306 Visual Prolog Language Tutorial

clauses
test2() :-

O1 = cLast::new(),
O2 = cLast::new(),
P1 = O1:last, % P1 and P2 are bound to instances
P2 = O2:last, % of the object predicate domain objectIntInt
_1 = P1(1),
_2 = P2(2),
V1 = P1(3),
V2 = P2(4),
writef("V1 = %, V2 = %", V1, V2), nl,
O1:delete(),
O2:delete().

The first thing to notice is that object predicate values P1 and P2 consist of both
an object (O1 or O2) and a predicate (last). The call of an object predicate value
is, however, completely identical to calls of "ordinary" predicate values, i.e. you
do not apply an object predicate value on an object, you simply call it with
appropriate arguments.

The effect of running test2 is exactly the same as when running test1: Executing
P1(1) will store 1 in the lastParameter fact of O1. Likewise, the next call of P1
will retrieve the value stored in the lastParameter fact of O1. And completely
similarly P2 will refer to O2.

Object predicate values are at least as useful for callbacks as "ordinary" predicate
values (please refer to the description of predicate values (see page 236) for a
discussion of callbacks). The benefit from using object predicate values (over
"ordinary" predicate values) is that the callback comes back to a specific context,
namely to the object to which the callback belongs. This makes it possible to deal
with several different callbacks of the same kind because each callback will end
up in its own context.

Let us walk through an example. Assume that we have a number of "things" that
are interested in knowing when a certain value changes. (For the sake of the
example this value is simply an integer.) These things want to be notified
asynchronously about changes in the value. Therefore, they register a
"dataReady" listener at a data ready source. In this example we choose to transfer
the new value together with the data ready notification, but with more complex
data we might let the listener pick up the data itself.

We represent the data ready source by an object of class cDataReadySource. If
we have several pieces of data that can "become ready", then we can use one
instance of cDataReadySource per data piece, making it possible to listen to
notifications for exactly those of interest. Class cDataReadySource supports

Chapter 11, Classes and Objects 307

registering and unregistering of listeners. It also has a predicate for setting the
value in question.

Listeners are represented by object procedure values (i.e. object callbacks).

class cDataReadySource
domains

dataReadyListener = object procedure
(cDataReadySource EventSource,integer NewValue)

predicates
addDataReadyListener(dataReadyListener Listener) - procedure (i)
removeDataReadyListener(dataReadyListener Listener) - procedure (i)

predicates
setValue(integer NewValue) - procedure (i)

endclass cDataReadySource

The implementation is quite straightforward. We store the currently registered
listeners in a fact, and when the data is changed, we notify all registered listeners
about this.

implement cDataReadySource
facts

% Invariant: listener_db contains the currently registered
% listeners (multiple registrations are ignored)

listener_db(dataReadyListener Listener)

clauses
addDataReadyListener(Listener):-

listener_db(Listener), % already registered
!.

addDataReadyListener(Listener):-
assert(listener_db(Listener)).

removeDataReadyListener(Listener) :-
retractAll(listener_db(Listener)).

predicates
dataIsReady(integer NewValue) - procedure (i)

clauses
dataIsReady(NewValue):-

this(This),
listener_db(Listener),
Listener(This, NewValue),
fail.

dataIsReady(_).

308 Visual Prolog Language Tutorial

clauses
setValue(NewValue) :-

dataIsReady(NewValue).

endclass cDataReadySource

Let us also try to use the class above in a context. Assume that we have a system,
which counts how many users are active, this count is used in a number of places.
One of these places is a status window, which displays the count. For the sake of
the example, we imagine that there is a global predicate getUserCountSource,
which will return a cDataReadySource object corresponding to the count.

global predicates
cDataReadySource getUserCountSource() - procedure ()

We implement our status window as a class cStatusWindow. The declaration of
cStatusWindow is not very interesting in this context; all we are concerned with
is the implementation. In the implementation we put our dataReadyListener and
in the constructor of the class we register this listener with the user count data
source. We, of course, also unregister the listener in the destructor.

implement cStatusWindow
predicates

updateWindow(integer NewValue) - procedure (i)

clauses
updateWindow(NewValue) :- ... % window updating code

predicates
onUserCountChanged : cDataReadySource::dataReadyListener

clauses
onUserCountChanged(_Source, NewValue) :-

updateWindow(NewValue).

clauses
new() :-

UserCountSource = getUserCountSource(),
UserCountSource:addDataReadyListener(onUserCountChanged).
 % THIS is subsumed

delete() :-
UserCountSource = getUserCountSource(),
UserCountSource:removeDataReadyListener(onUserCountChanged).

endclass cStatusWindow

Chapter 11, Classes and Objects 309

No matter how many status windows we create they all will be updated when the
user count changes.

Object Predicate Domain Declarations
An object predicate domain declares a type of non-static (object) member
predicates.

The object predicate domains can be used for declarations of non-static
predicates that can be used as object predicate values (see page 303). These
object predicate values can be passed as arguments to other predicates.

Object predicate domains can be declared both outside and inside classes, but in
contrast to "ordinary" predicate domains, object predicate domains can be used
for declarations of object predicate values only inside classes. This is because,
when an object predicate value is passed as an argument, it should carry the
reference to the actual class instance (object) to which the predicate value
belongs.

The declaration of an object predicate domain is of the form:

[global] domains
PredDom = object

DetermMode [ReturnDom] (ArgList) [- [FlowPattern]] [Language]

Here the keyword object states declaration of the object predicate domain. This
is the only difference from syntax for declaration of "ordinary" predicate
domains described with all details on page 238. Therefore, here we only shortly
remind used terms and point to differences. PredDom declares the name of the
predicate domain. DetermMode specifies the determinism mode. ReturnDom
defines the domain of the return value for functions. ArgList defines domains for
arguments. FlowPattern specifies argument flows. It must be 'i' for input
arguments and 'o' for output arguments. Only one flow pattern can be specified.
If it is absent, then the default flow pattern with all input arguments is accepted
implicitly. Language is of the form:

language { pascal | stdcall | asm | c | syscall | prolog}

The default calling convention is pascal. Notice the difference with declarations
of predicates, where the default is prolog.

Restriction. If an object predicate value is declared as an instance of an object
predicate domain with calling conventions prolog, syscall, c or asm, then this
object predicate value cannot be called on arguments if it is passed in a variable.

310 Visual Prolog Language Tutorial

For example, the declaration of object predicate domain for deterministic
predicates taking an integer as argument and returning an integer, would be:

domains
list_process = object determ integer (integer) - (i)

The example ch11e07.pro demonstrates using of object predicate domain
obj_dom for the declaration of object predicate value opv_a.

/* Program ch11e07.pro */

domains
obj_dom = object procedure (string) - (i) % object predicate domain

class cl_a
predicates

opv_a : obj_dom % declaration of object predicate value opv_a

endclass cl_a

implement cl_a
clauses

opv_a(S) :-
write(S), nl.

endclass cl_a

class cl_b : cl_a
predicates

p_ns_b(obj_dom,string)

static predicates
p_s_b(obj_dom,string) % static predicate p_s_b

endclass cl_b

implement cl_b
clauses

p_ns_b(OP_value,S) :-
OP_value(S), nl.

p_s_b(OP_value,S) :-
OP_value(S), nl.

endclass cl_b

predicates
p_local(obj_dom, string) - procedure (i,i)

Chapter 11, Classes and Objects 311

clauses
p_local(OP_value, S):-
OP_value(S).

goal
O_a = cl_a::new(),
O_a:opv_a("I am opv_a!"),
write("\t Object Predicate (OP) <opv_a> is called directly."), nl,nl,
OP_value_a = O_a:opv_a,
OP_value_a("OP value <opv_a> is called as variable"), nl,
p_local(O_a:opv_a,

"OP <opv_a> is explicitly specified in predicate argument"),nl,
p_local(OP_value_a,

"OP value <opv_a> is passed to predicate in variable !"),nl,
cl_b::p_s_b(O_a:opv_a,

"OP <opv_a> is specified as argument to static predicate!"),nl,
O_b = cl_b::new(),
O_b:p_ns_b(OP_value_a,

"OP value <opv_a> is passed in variable to non-static predicate!"),
nl,
O_a:delete(),
O_b:delete().

Formal Syntax for Classes
<class> ::=

<class_declaration> <class_implementation>

<abstract_class> ::=
<abstract_class_declaration>

<class_declaration > ::=
<class_declaration_begin>
<class_declaration_body>
<class_end>

<abstract_class_declaration> ::=
<abstract_class_declaration_begin>
<abstract_class_declaration_body>
<class_end>

<class_declaration_begin > ::=
CLASS <class_header>

<abstract_class_declaration_begin> ::=
ABSTRACT CLASS <class_header>

312 Visual Prolog Language Tutorial

<class_header> ::=
<class_name> [: <base_class_list>]

<class_name > ::=
identifier

<base_class_list > ::=
<base_class_name_1> [,<base_class_name_2>]*

<class_declaration_body> ::=
<class_declaration_section>*

<abstract_class_declaration_body> ::=
<abstract_class_declaration_section>*

<class_declaration_section> ::=
<class_declaration_domains_section>
| <class_declaration_facts_section>
| <class_declaration_predicates_section>

<abstract_class_declaration_section> ::=
<class_declaration_domains_section>
| <abs_class_declaration_predicates_section>

<class_declaration_domains_section> ::=
[PROTECTED] DOMAINS

<domains_declarations>

<class_declaration_facts_section > ::=
[STATIC] [PROTECTED] FACTS [- <facts_section_name>]

<facts_declarations>
<facts_section_name> ::=

identifier

<class_declaration_predicates_section > ::=
[STATIC] [PROTECTED] PREDICATES

<predicates_declarations>

<abs_class_declaration_predicates_section> ::=
[PROTECTED] PREDICATES

<predicates_declarations>

<class_end> ::=
ENDCLASS [<class_name>]

<class_implementation> ::=
<class_implementation_begin>
<class_implementation_body>
<class_end>

Chapter 11, Classes and Objects 313

<class_implementation_begin> ::=
IMPLEMENT <class_header>

<class_implementation_body> ::=
<class_implementation_section>*

<class_implementation_section> ::=
<class_implementation_domains_section>
| <class_implementation_facts_section>
| <class_implementation_predicates_section>
| <CLAUSES_section>

<class_implementation_facts_section> ::=
[STATIC] FACTS [- <facts_section_name>]

<facts_declarations>

<class_implementation_predicates_section> ::=
[STATIC] PREDICATES

<predicates_declarations>

Here:

• The square brackets indicate optional items.

• The curly braces indicate arbitrary number of items (zero or more items).

• The symbol '|' means that one of the items separated by the symbol '|' must be
chosen.

• The asterisk symbol '*' indicates arbitrary number of the immediately
preceding item (zero or more items).

PART 3

Tutorial Chapters 12 – 17: Using Visual Prolog

316 Visual Prolog Language Tutorial

CHAPTER 12

Writing, Reading, and Files

In this chapter, we first cover the basic set of built-in predicates for writing and
reading. Next we describe how the file system works in Visual Prolog and show
how you can redirect both input and output to files. We also discuss the file
domain and some predefined files.

Writing and Reading

In these tutorials, most of the Input/Output has been interactive via screen and
keyboard. In this section, we provide formal coverage of the standard predicates
you use for I/O, including predicates for file operations.

Writing
Visual Prolog includes three standard predicates for writing. These predicates are
write, nl and writef.

write/* and nl
The predicate write can be called with an arbitrary number of arguments:

write(Param1, Param2, Param3, ..., ParamN)
 /* (i, i, i, ..., i) */

These arguments can either be constants from standard domains or they can be
variables. If they're variables, they must be input parameters.

The standard predicate nl (for new line) is often used in conjunction with write; it
generates a newline on the display screen. For example, the following subgoals:

pupil(PUPIL, CL),
write(PUPIL," is in the ",CL," class"),
nl,
write("-----------------------------------").

could result in this display:

Chapter 12, Writing, Reading, and Files 317

Helen Smith is in the fourth class

while this goal:

....,
write("List1= ", L1, ", List2= ", L2).

could give:

List1= [cow,pig,rooster], List2= [1,2,3]

Also, if My_sentence is bound to

sentence(subject(john),sentence_verb(sleeps))

in the following program

DOMAINS
sentence = sentence(subject, sentence_verb)
subject = subject(symbol) ;
sentence_verb = sentence_verb(verb) ;
verb = symbol

CLAUSES
....
write(" SENTENCE= ", My_sentence).

you would obtain this display:

SENTENCE= sentence(subject(john),sentence_verb(sleeps))

Note that with respect to strings, the backslash (\) is an escape character. To print
the backslash character verbatim, you must type two backslashes. For example,
to designate the DOS directory path name
A:\PROLOG\MYPROJS\MYFILE.PRO in a Visual Prolog program, you would
type a:\\prolog\\myprojs\\myfile.pro.

If a backslash is followed by one of a few specially recognized characters, it will
be converted to a print control character. These are

'n' newline and carriage return
't' tab
'r' carriage return

Alternatively, the backslash may be followed by up to three decimal digits,
specifying a particular ASCII code. However, avoid putting \0 into a string

318 Visual Prolog Language Tutorial

unless you know what you're doing. Visual Prolog uses the C convention with 0-
terminated strings.

Be very careful with the '\r' option. It sets the current write position back to the
start of the current line, but if you accidentally do that in between writing
different things, it may happen so quickly that the first thing you write becomes
overwritten before you even notice it's there. Also, if you write something which
is too long for a single line, causing the output to wrap, the '\r' will set the cursor
back to the beginning of the last line, not the beginning of the line where the
writing started.

Often write does not, by itself, give you as much control as you'd like over the
printing of compound objects such as lists, but it's easy to write programs that
give better control. The following four small examples illustrate the possibilities.

Examples Demonstrating the write Predicate

These examples show how you can use write to customize your own predicates
for writing such things as lists and compound data structures.

1. Program ch11e01.pro prints out lists without the opening bracket ([) and
closing bracket (]).

/* Program ch12e01.pro */

DOMAINS
integerlist = integer*
namelist = symbol*

PREDICATES
writelist(integerlist)
writelist(namelist).

CLAUSES
writelist([]).
writelist([H|T]):-

write(H, " "),
writelist(T).

Notice how this program uses recursion to process a list. Load the program
and try this goal:

writelist([1, 2, 3, 4]).

2. The next example, Program ch11e02.pro, writes out the elements in a list with
no more than five elements per line.

Chapter 12, Writing, Reading, and Files 319

/* Program ch12e02.pro */

DOMAINS
integerlist = integer*

PREDICATES
writelist(integerlist)
write5(integerlist,integer)

CLAUSES
writelist(NL):-

nl,
write5(NL,0),nl.

write5(TL,5):-!,
nl,
write5(TL, 0).

write5([H|T],N):-!,
write(H," "),
N1=N+1,
write5(T,N1).

write5([],_).

If you give the program this goal:

writelist([2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22]).

Visual Prolog responds with:

2 4 6 8 10
12 14 16 18 20
22

3. Frequently, you may want a predicate that displays compound data structures
in a more readable form. Program ch11e03.pro displays a compound object
like:

plus(mult(x, number(99)), mult(number(3), x))

in the form:

x*99+3*x

(This is known as infix notation.)
/* Program ch12e03.pro */

DOMAINS
expr = number(integer); x; log(expr);
plus(expr, expr); mult(expr, expr)

320 Visual Prolog Language Tutorial

PREDICATES
writeExp(expr)

CLAUSES
writeExp(x):-write('x').
writeExp(number(No)):-write(No).
writeExp(log(Expr)):-

write("log("), writeExp(Expr), write(')').
writeExp(plus(U1, U2)):-

writeExp(U1),write('+'),writeExp(U2).
writeExp(mult(U1,U2)):-

writeExp(U1),write('*'),writeExp(U2).

4. Program ch11e04.pro is similar to Program ch11e03.pro.
/* Program ch12e04.pro */

DOMAINS
sentence = sentence(nounphrase, verbphrase)
nounphrase = nounp(article, noun); name(name)
verbphrase = verb(verb); verbphrase(verb, nounphrase)
article, noun, name, verb = symbol

PREDICATES
write_sentence(sentence)
write_nounphrase(nounphrase)
write_verbphrase(verbphrase)

CLAUSES
write_sentence(sentence(S,V)):-

write_nounphrase(S),write_verbphrase(V).
write_nounphrase(nounp(A,N)):-

write(A,' ',N,' ').
write_nounphrase(name(N)):-write(N,' ').
write_verbphrase(verb(V)):-write(V,' ').
write_verbphrase(verbphrase(V,N)):-

write(V,' '),write_nounphrase(N).

Try Program ch11e04.pro with this goal:

write_sentence(sentence(name(bill), verb(jumps))).

Exercise

Write a Visual Prolog program that, when given a list of addresses contained in
the program as clauses of the form:

Chapter 12, Writing, Reading, and Files 321

address("Sylvia Dickson", "14 Railway Boulevard","Any Town", 27240).

displays the addresses in a form suitable for mailing labels, such as:

Sylvia Dickson
14 Railway Boulevard
Any Town
27240

writef/*
The writef predicate allows you to produce formatted output; it uses this format:

writef(FormatString, Arg1, Arg2, Arg3, ...,ArgN)
 /* (i, i, i, i, ..., i) */

Arg1 to ArgN must be constants or bound variables belonging to standard
domains; it is not possible to format compound domains. The format string
contains ordinary characters and format specifiers; ordinary characters are
printed without modification, and format specifiers take the following form:

%-m.pf

The characters in the format specifiers following the % sign are optional and
have these meanings:

hyphen (-) Indicates that the field is to be left-justified (right-justified
is the default).

m field Decimal number specifying a minimum field length.

.p field Decimal number specifying either the precision of a
floating-point number or the maximum number of
characters to be printed from a string.

f field Specifies formats other than the default format for the
given object. For example, the f field can specify that
integers should be printed as unsigned or hexadecimal
numbers.

Visual Prolog recognizes the following format specifiers in the f field:

f reals in fixed-decimal notation (such as 123.4 or 0.004321)
e reals in exponential notation (such as 1.234e2 or 4.321e-3)
g reals in the shorter format of f or e (this is the default for reals)

322 Visual Prolog Language Tutorial

d integral domains as a signed decimal number
D integral domains as a signed long decimal number
u integral domains as an unsigned decimal integer
U integral domains as an unsigned long decimal integer
o integral domains as an octal number
O integral domains as an octal long number
x integral domains as a hexadecimal number
X integral domains as a long hexadecimal number
c integral domains as a char
s as a string (symbols and strings)
R as a database reference number (ref domain only)
B as a binary (binary domain only)
P as a predicate value

The ref domain will be described in chapter 14, and the binary and predicate
values in chapter 10.

For the integral domain specifiers, an uppercase format letter denotes that the
associated object is a long type. If no format letter is given, Visual Prolog will
automatically select a suitable format.

Examples of Formatted Output

1. The following example program illustrates the effect of different format
specifiers on output formatted with writef.

Chapter 12, Writing, Reading, and Files 323

/* Program ch12e05.pro */

% Note that the format strings in this example specify 16bit integers

GOAL
A = one,
B = 330.12,
C = 4.3333375,
D = "one two three",
writef("A = '%-7' \nB = '%8.1e'\n",A,B),
writef("A = '%' \nB = '%8.4e'\n",A,B),nl,
writef("C = '%-7.7g' \nD = '%7.7'\n",C,D),
writef("C = '%-7.0f' \nD = '%0'\n",C,D),
writef("char: %c, decimal: %d, octal: %o, hex: %x",'a','a','a','a').

When run, this program will produce the following output:

A = 'one '
B = ' 3.3E+02'
A = 'one'
B = '3.3012E+02'
C = '4.3333375'
D = 'one two'
C = '4 '
D = 'one two three'
char: a, decimal: 97, octal: 141, hex: 61

2. Here's another example, showing how you can use writef to format your
output.

/* Program ch12e06.pro */

facts
person(string,integer,real)

CLAUSES
person("Pete Ashton",20,11111.111).
person("Marc Spiers",32,33333.333).
person("Kim Clark",28,66666.666).

GOAL
% Name is left-justified, at least 15 characters wide
% Age is right-justified, 2 characters wide
% Income is right-justified, 9 characters wide, with 2
% decimal places, printed in fixed-decimal notation

324 Visual Prolog Language Tutorial

person(N, A, I),
writef("Name= %-15, Age= %2, Income= $%9.2f \n",N,A,I),
fail
;
true.

This produces the following:

Name= Pete Ashton , Age= 20, Income= $ 11111.11
Name= Marc Spiers , Age= 32, Income= $ 33333.33
Name= Kim Clark , Age= 28, Income= $ 66666.67

Reading
Visual Prolog includes several standard predicates for reading. The four basic
ones are readln for reading whole lines of characters, readchar for reading single
characters/keystrokes, readint for reading integers, and readreal for reading
floating point numbers. Additionally, readterm will read any term, including
compound objects. These predicates can all be redirected to read from files.

Another, more specialized, predicate that belong in the reading category is
file_str for reading a whole text file into a string.

readln/1
readln reads a line of text; it uses this format:

readln(Line) /* (o) */

The domain for the variable Line will be a string. Before you call readln, the
variable Line must be free. readln reads up to 254 characters (plus a carriage
return) from the keyboard, up to 64K from other devices. If Esc is pressed during
input from the keyboard, readln will fail.

readint/1, readreal/1, and readchar/1
readint reads an integer value, using this format:

readint(X) /* (o) */

The domain for the variable X must be of integer type, and X must be free prior
to the call. readint will read an integer value from the current input device
(probably the keyboard) until the Enter key is pressed. If the line read does not
correspond to the usual syntax for integers, readint fails and Visual Prolog

Chapter 12, Writing, Reading, and Files 325

invokes its backtracking mechanism. If Esc is pressed during input from the
keyboard, readint will fail.

readreal does as its name conveys: it reads a real number (as opposed to readint,
which reads an integer). readreal uses the following format:

readreal(X) /* (o) */

The domain for the variable X must be real, and X must be free prior to the call.
readreal will read a real value from the current input device until the Enter key
is pressed. If the input does not correspond to the usual syntax for a real number,
readreal fails. If Esc is pressed during input from the keyboard, readreal will
fail.

readchar reads a single character from the current input device, using this
format:

readchar(CharParam) /* (o) */

CharParam must be a free variable before you call readchar and must belong to
a domain of char type. If the current input stream is the keyboard, readchar will
wait for a single character to be typed before it returns. If Esc is pressed during
input from the keyboard, readchar will fail.

readterm/2
readterm reads a compound term and converts it to an object; it takes this format:

readterm(DomainName, Term) /* (i, i) */

You call readterm with two arguments: a domain name and a term. readterm
reads a line and converts it to an object of the given domain. If the line does not
look like write would have formatted the object, readterm gives an error. The
standard predicate readtermerror may be used in connection with a trap to
produce customized error handling for readterm. See chapter 10.

readterm is useful for handling terms in text files. For example, you can
implement you own version of consult.

file_str/2
file_str reads characters from a file and transfers them to a variable, or creates a
file and writes the string into the file. It uses this format:

file_str(Filename, Text) /* (i, o), (i, i) */

326 Visual Prolog Language Tutorial

If, before your program calls file_str, the variable Text is free, file_str reads the
entire contents of the file Filename into Text. In the DOS-related versions of
Visual Prolog, an eof character (Ctrl+Z) will terminate reading when
encountered and will not be included in the string.

For example, the call

file_str("T.DAT", My_text)

binds My_text to the contents of the file T.DAT. The file size can't exceed the
maximum length of a string, which is 64 Kbytes on the 16-bit platforms. If the
file exceeds the maximum size, file_str will return an error message.

With My_text bound to the text in T.DAT, file_str("T.BAK", My_text) will
create a file called T.BAK that contains the text from T.DAT. If T.BAK already
exists it will be overwritten.

Examples
These examples demonstrate how you can use the standard reading predicates to
handle compound data structures and lists as input.

1. Program ch11e07.pro illustrates assembling of compound objects from
individually read pieces of information.

/* Program ch12e07.pro */

DOMAINS
person = p(name, age, telno, job)
age = integer
telno, name, job = string

PREDICATES
readperson(person)
run

CLAUSES
readperson(p(Name,Age,Telno,Job)):-

write("Which name ? "), readln(Name),
write("Job ? "), readln(Job),
write("Age ? "), readint(Age),
write("Telephone no ? "), readln(Telno).

run :-
readperson(P),nl,write(P),nl,nl,
write("Is this compound object OK (y/n)"),
readchar(Ch),Ch='y', !.

Chapter 12, Writing, Reading, and Files 327

run :-
nl,write("Alright, try again"),nl,nl,run.

GOAL
run.

2. This next example reads one integer per line until you type a non-integer
(such as the X key), then readint will fail and Visual Prolog displays the list.

/* Program ch12e08.pro */

DOMAINS
list = integer*

PREDICATES
readlist(list)

CLAUSES
readlist([H|T]):-

write("> "),
readint(H),!,
readlist(T).

readlist([]).

GOAL
write("*************** Integer List *****************"),nl,
write(" Type in a column of integers, like this:"),nl,
write(" integer (press ENTER)\n integer (press ENTER)\n"),
write(" etc.\n\n Type X (and press ENTER) to end the list.\n\n"),
readlist(TheList),nl,
write("The list is: ",TheList).

Load Program ch12e08.pro and run it. At the prompt, enter a column of integers
(such as 1234 Enter 567 Enter 89 Enter 0 Enter), then press X Enter to end
the list.

Exercise

Write and test clauses for a predicate readbnumb, which, in the call:

readbnumb(IntVar)

converts a user-input, 16-bit binary number like "1111 0110 0011 0001" to a
corresponding integer value to which IntVar is bound. Check your work by
writing a program that contains readbnumb.

328 Visual Prolog Language Tutorial

Binary Block Transfer
Three standard predicates allow reading and writing of binary blocks, or byte
sequences of a given length. They all use the binary standard domain. This
emulates an array, with a word (dword on the 32-bit versions of Visual Prolog) in
front, holding the size. For a complete description of the binary domain, see
chapter 10.

readblock/2
readblock has the following format:

readblock(Length,BTerm) /* (i, o) */

where Length is the number of bytes to read and BTerm is the returned binary
term. As described in chapter 11, there are no restrictions on the contents of a
binary term, and it will contain whatever was read from the file including zeros
and DOS eof-markers (Ctrl+Z).

The current input device must be assigned to a file (see readdevice).

If Length = 0 is specified, the readblock attempts to read maximum possible
number of bytes from an input device. (Remember that BinBlock < 64 K on 16-
bit platforms).

If Length is larger than the actual remaining number of bytes in the file - then the
readblock generates the run-time error 1111: "Wrong number of bytes read from
file".

writeblock/2
writeblock complements readblock:

writeblock(Length,BTerm) /* (i, i) */

As with readblock, there are no restrictions on the contents of BTerm. The
Length specifies how many bytes to write; a length of 0 will write the whole
term.

For compatibility with previous versions of Visual Prolog, where binary blocks
were disguised as strings, writeblock may be called with a string argument
instead of a binary term. In this case, it is imperative that Length contains the
correct number of bytes to write.

Chapter 12, Writing, Reading, and Files 329

file_bin/2
file_bin will read a whole file into a binary term, and vice versa. It takes two
arguments, the filename and the binary term:

file_bin(FileName,BinTerm) /* (i, o) (i, i) */

Visual Prolog's File System

In this section, we give you a look at Visual Prolog's file system and the standard
predicates relevant to files. We also introduce I/O redirection, an efficient
method for routing input and output to various devices. With a few exceptions,
the file system works identically in the different versions of Visual Prolog.

Visual Prolog uses a current_read_device, from which it reads input, and a
current_write_device, to which it sends output. Normally, the keyboard is the
current read device, and the screen is the current write device. However, you can
specify other devices. For instance, input could be read from an externally stored
file (on disk perhaps). Not only can you specify other devices, you can even
reassign the current input and output devices while a program is running.

Regardless of what read and write devices you use, reading and writing are
handled identically within a Visual Prolog program. To access a file, you must
first open it. A file can be opened in one of four ways:

• for reading

• for writing

• for appending

• for modification

A file opened for any activity other than reading must be closed when that
activity is finished, or the changes to the file might be lost. You can open several
files simultaneously, and input and output can be quickly redirected between
open files. In contrast, it takes much longer to open and close a file than to
redirect data between files.

When Visual Prolog opens a file, it connects a symbolic name to the actual file
name. Visual Prolog uses this symbolic name when directing input and output.
Symbolic file names must start with a lower-case letter and must be declared in
the file domain declaration like this:

file = file1; source; auxiliary; somethingelse

330 Visual Prolog Language Tutorial

Only one file domain is allowed in any program. Visual Prolog recognizes five
predefined file alternatives:

keyboard reading from the keyboard (default)

screen writing to the screen

stdin reading from standard input

stdout writing to standard output

stderr writing to standard error
These predefined alternatives must not appear in the file domain declaration; they
don't need to be opened and they should not be closed. Note, that when using the
VPI strategy, only the screen alternative can be used.

Opening and Closing Files
The following sections describe the standard predicates for opening and closing
files.

Note: In the DOS-related versions of Visual Prolog, remember that the backslash
character, used to separate subdirectories, is an escape character. You must
always use two backslash characters when you give a path in the program, for
example, the string

"c:\\prolog\\include\\iodecl.con"

represents the path name

c:\prolog\include\iodecl.con

openread/2
openread opens the file OSFileName for reading, using this format:

openread(SymbolicFileName, OSFileName) /* (i, i) */

Visual Prolog refers to the opened file by the symbolic name SymbolicFileName
declared in the file domain. If the file can't be opened, Visual Prolog returns an
error message.

openwrite/2
openwrite opens the file OSFileName for writing; it takes this format:

openwrite(SymbolicFileName, OSFileName) /* (i,i) */

Chapter 12, Writing, Reading, and Files 331

If the file already exists, it is erased. Otherwise, Visual Prolog creates a new file
and makes an entry in the appropriate directory. If the file can't be created, the
predicate exits with an error message.

openappend/2
openappend opens the file OSFileName for writing at the end, using this format:

openappend(SymbolicFileName, OSFileName) /* (i, i) */

If the file can't be opened for write access, Visual Prolog issues an error message.

openmodify/2
openmodify opens the file OSFileName for both reading and writing; if the file
already exists, it won't be overwritten. openmodify takes this format:

openmodify(SymbolicFileName, OSFileName) /* (i, i) */

If the system can't open OSFileName, it issues an error message. openmodify can
be used in conjunction with the filepos standard predicate to update a random-
access file.

filemode/2
When a file has been opened, filemode sets the specified file to text mode or
binary mode, using this format:

filemode(SymbolicFileName, FileMode) /* (i, i) */

If FileMode = 0, the file specified by SymbolicFileName is set to binary mode; if
FileMode = 1, it's set to text mode.

In text mode, new lines are expanded to carriage- return/line-feed pairs during
writes, and carriage-return/line-feed pairs are converted to newlines during reads.

Carriage return = ASCII 13
Line feed = ASCII 10

In binary mode, no expansions or conversions occur. To read a binary file, you
can only use readchar or the binary file-access predicates discussed in chapter
10.

filemode is only relevant in the DOS-related versions of Visual Prolog. In the
UNIX version it has no effect.

332 Visual Prolog Language Tutorial

closefile/1
closefile closes the indicated file; it takes this format:

closefile(SymbolicFileName) /* (i) */

This predicate always succeeds, even if the file has not been opened.

readdevice/1
readdevice either reassigns the current_read_device or gets its name; the
predicate takes this format:

readdevice(SymbolicFileName) /* (i), (o) */

readdevice reassigns the current read device if SymbolicFileName is bound and
has been opened for reading. If SymbolicFileName is free, readdevice binds it to
the name of the current active read device.

writedevice/1
writedevice either reassigns or gets the name of the current_write_device; it takes
this format:

writedevice(SymbolicFileName) /* (i), (o) */

writedevice reassigns the current write device if the indicated file has been
opened for either writing or appending. If SymbolicFileName is free, writedevice
binds it to the name of the current active write device.

Examples

1. The following sequence opens the file MYDATA.FIL for writing, then
directs all output produced by clauses between the two occurrences of
writedevice to that file. The file is associated with the symbolic file name
destination appearing in the declaration of the file domain.

DOMAINS
file = destination

GOAL
openwrite(destination, "MYDATA.FIL"),
writedevice(OldOut), /* gets current output device */
writedevice(destination), /* redirects output to the file */

:
:

writedevice(OldOut), /* resets output device */

Chapter 12, Writing, Reading, and Files 333

2. Program ch11e09.pro uses some standard read and write predicates to
construct a program that stores characters typed at the keyboard in the file
TRYFILE.ONE. Characters typed are not echoed to the display; it would be a
good exercise for you to change the program so that characters are echoed.
The file is closed when you press the # key.

/* Program ch12e09.pro */

DOMAINS
file = myfile

PREDICATES
readloop

CLAUSES
readloop:-

readchar(X),
X<>'#',!,
write(X),
readloop.

readloop.

GOAL
write("This program reads your input and writes it to"),nl,
write("tryfile.one. For stop press #"),nl,
openwrite(myfile,"tryfile.one"),
writedevice(myfile),
readloop,
closefile(myfile),
writedevice(screen),
write("Your input has been transferred to the file tryfile.one"),nl.

Redirecting Standard I/O
The file domain has three additional options: stdin, stdout, and stderr. The
advantage of these file streams is that you can redirect I/O at the command line.

stdin

Standard input is a read-only file - the keyboard, by default.
readdevice(stdin) directs the input device to stdin.

stdout

Standard output is a write-only file that defaults to the screen.
writedevice(stdout) directs the output device to stdout.

stderr

Standard error is a write-only file that defaults to the screen.
writedevice(stderr) directs the output device to stderr.

334 Visual Prolog Language Tutorial

Working with Files
In this section, we describe several other predicates used for working with files;
these are: filepos, eof, flush, existfile, searchfile, deletefile, renamefile, disk,
and copyfile.

filepos/3
filepos can control the position where reading or writing takes place; it takes the
form

filepos(SymbolicFileName, FilePosition, Mode) % (i, i, i), (i, o, i)

With FilePosition bound, this predicate can change the read and write position
for the file identified by SymbolicFileName. It can return the current file position
if called with FilePosition free. FilePosition is a long value.

Mode is an integer and specifies how the value of FilePosition is to be
interpreted, as shown in Table 12.1.

Table 12.1: Mode and FilePosition

Mode FilePosition

0 Relative to the beginning of the file.

1 Relative to current position.

2 Relative to the end of the file. (The end of the file is position
0.)

When returning FilePosition, filepos will return the position relative to the
beginning of the file irrespective of the value of Mode. Note: In the DOS-related
versions of Visual Prolog, filepos does not consider files in text mode to be
different from files in binary mode. No translation of DOS newline conventions
takes place, and a newline in a file following DOS newline conventions consists
of two characters.

Example

1. The following sequence writes the value of Text into the file
SOMEFILE.PRO (referred to by Prolog as myfile), starting at position 100
(relative to the beginning of the file).

Chapter 12, Writing, Reading, and Files 335

Text = "A text to be written in the file",
openmodify(myfile, "somefile.pro"),
writedevice(myfile),
filepos(myfile, 100, 0),
write(Text),
closefile(myfile).

2. Using filepos, you can inspect the contents of a file on a byte-by-byte basis, as
outlined in Program ch11e10.pro. This program requests a file name, then
displays the contents of positions in the file as their position numbers are
entered at the keyboard.

/* Program ch12e10.pro */

DOMAINS
file = input

PREDICATES
inspect_positions(file)

CLAUSES
inspect_positions(UserInput):-

readdevice(UserInput),
nl,write("Position No? "),
readln(X),
term_str(ulong,Posn,X),
readdevice(input),
filepos(input,Posn,0),
readchar(Y),nl,
write("Char is: ",Y),
inspect_positions(UserInput).

GOAL
write("Which file do you want to work with ?"),nl,
readln(FileName),
openread(input, FileName),
readdevice(UserInput),
inspect_positions(UserInput).

eof/1
eof checks whether the file position is at the end of the file, in which case eof
succeeds; otherwise, it fails. eof has the form

eof(SymbolicFileName) /* (i) */

336 Visual Prolog Language Tutorial

eof gives a run-time error if the file has been opened with write-only access. Note
that it doesn't consider a DOS eof character (Ctrl+Z) to have any particular
meaning.

Example

eof can be used to define a predicate repfile that's handy when operating with
files. repfile generates backtrack points as long as the end of the file has not been
reached.

PREDICATES
repfile(FILE)

CLAUSES
repfile(_).
repfile(F):- not(eof(F)), repfile(F).

The following program converts one file to another where all the characters are
upper-case.

/* Program ch12e11.pro */

DOMAINS
file = input; output

PREDICATES
convert_file
nondeterm repfile(FILE)

CLAUSES
convert_file :-

repfile(input),
readln(Ln),
upper_lower(LnInUpper,Ln), /* converts the string to uppercase */
write(LnInUpper),nl,
fail.

convert_file.

repfile(_).
repfile(F):-

not(eof(F)),
repfile(F).

Chapter 12, Writing, Reading, and Files 337

GOAL
write("Which file do you want convert ?"),
readln(InputFileName),nl,
write("What is the name of the output file ?"),
readln(OutputFileName),nl,
openread(input, InputFileName),
readdevice(input),
openwrite(output, OutputFileName),
writedevice(output),
convert_file,
closefile(input),
closefile(output).

flush/1
flush forces the contents of the internal buffer to be written to the named file. It
takes this format:

flush(SymbolicFileName) /* (i) */

flush also requests the operating system to flush its buffers. For versions of DOS
previous to 3.30, this entails closing and re-opening the file. For newer versions
of DOS, as well as the other platforms, the appropriate operating system function
is called.

existfile/1
existfile succeeds if OSFileName exists. It takes this format:

existfile(OSFileName) /* (i) */

where OSFileName may contain a directory path and the name itself may contain
wildcards, e.g. c:\psys*.cfg. existfile fails if the name does not appear in the
directory. However, note that although existfile finds all files, including those
with the 'system' and 'hidden' attribute set, it doesn't find directories. This may be
accomplished using the directory search predicates described later on.

You can use the following sequence to verify that a file exists before attempting
to open it.

open(File, Name) :-
existfile(Name), !,
openread(File, Name).

open(_, Name) :-
write("Error: the file ", Name," is not found").

338 Visual Prolog Language Tutorial

existfile/2
In UNIX, existfile is also available in a two- arity version:

existfile(OSFileName,AccessMode) /* (i, i) */

with AccessMode specifying the type of access desired. This should be one of the
following constants:

• f_ok to test for existence

• x_ok to test for execute permission

• w_ok to test for write permission

• r_ok to test for read permission

These constants are declared in the include file IODECL.CON.

existfile with only one argument tests for file-existence only.

searchfile/3
searchfile is used to locate a file along a path list, and is a kind of automated
existfile. It takes three arguments, as follows:

searchfile(PathList,Name,FoundName) /* (i,i,o) */

The PathList is a string containing one or more paths, separated by semicolons
(or colons, for UNIX), and Name is the name of the file to locate. If found,
FoundName will be bound to the fully qualified name, otherwise searchfile will
fail. For instance, for DOS

SearchFile(".;..;C:\\","autoexec.bat",FoundName),

will - provided autoexec.bat is located in the root of drive C - set FoundName to
C:\AUTOEXEC.BAT.

The file name may contain wildcards. In that case, FoundName is bound to the
fully qualified wildcard name, which may subsequently be used as input to the
directory matching predicates described later on. For instance, if the name is
specified as *.bat instead of autoexec.bat in the above example, FoundName
will be bound to C:*.BAT.

deletefile/1
deletefile removes the file specified by its argument:

deletefile(OSFileName) /* (i) */

Chapter 12, Writing, Reading, and Files 339

deletefile gives an error if it can't remove the file. The OSFileName cannot
contain wildcards.

renamefile/1
renamefile renames the file OldOSFileName to NewOSFileName. It takes this
format:

renamefile(OldOSFileName, NewOSFileName) /* (i, i) */

renamefile succeeds if a file called NewOSFileName doesn't already exist and
both names are valid file names; otherwise, it gives an error.

disk/1
disk is used to change the current disk and/or directory; it takes this format:

disk(Path) /* (i) (o) */

Called with a free variable, disk will return the current directory. In the DOS-
related versions, to change to another disk without changing the existing current
directory on that disk, use D:. Where D is the drive letter.

copyfile/2
copyfile is used to copy a file. It takes two file names as follows:

copyfile(SourceName,DestinationName) /* (i,i)*/

The names may be partly or fully qualified file names, including disks and
directories. However, no wildcards are allowed. The copied file will have the
same attributes (and permissions) as those of the source.

File Attributes
Although the standard file open predicates described previously cover all general
cases, there may be a need to open or create files with specialized attributes and
non-obvious sharing modes. To this end Visual Prolog incorporates a general-
purpose open predicate, but before discussing that we need to look at file
attributes and sharing modes.

The attributes and access modes used by Visual Prolog use the same values as
your operating system, with the exception of the default ('normal') attribute in the
NonUNIX-related versions of Visual Prolog. However, for easy porting to other
environments, you should avoid coding inherently non-portable constructs such

340 Visual Prolog Language Tutorial

as file attributes (and even the fact that files have attributes) all over an
application. Rather, wrap things up nicely and write your own intermediate level
of predicates, getting and setting information in transparent ways.

The attributes and sharing modes are found in the include file IODECL.CON.

Opening and creating files
When opening or creating a file, the OS needs to know the file's attributes (e.g.
'hidden'), the type of use or access (e.g. 'read'), and how the file may be shared
with other programs while open (e.g. 'deny write'). Don't confuse these - they are
three different pieces of information, only partly related:

Attributes

The file attributes are the permanent attributes relating to the physical file on
disk, whether currently in use by a program or not. In DOS there's only a few
attributes, such as 'read only' and 'hidden'. These attributes inform the operating
system about how it may handle the file. Network and multi-user operating
systems, such as UNIX, typically have a much wider range of attributes. These
may include access allowed by other users (e.g. 'execute-only', no read or write,
giving copy-protection) and direct instructions to the OS ('this is an executable
program').

The attributes have no effect when opening an existing file, as files are unique
based on names only. They only apply when creating a new file.

The standard predicates described in the previous section all reference 'normal'
files. However, when a file has been modified the archive bit will automatically
be set by the operating system when the file is closed.

Access Modes

The access modes indicate how the file will be used. The OS will combine this
information with the files physical attributes, to determine if the access requested
is acceptable. For instance, opening a file having the read-only physical attribute
set, with either fm_access_wo or fm_access_rw will not be accepted.

Sharing Modes

The sharing modes indicate how this process views sharing with other
processes. The OS will combine the sharing and access modes with the sharing
and access modes specified by other processes, if the file is already in use, to

Chapter 12, Writing, Reading, and Files 341

determine if the open call should succeed. If successful, the modes will restrict
future open attempts.

Note that conceptually the sharing and access modes work both ways to form a
combined set of restrictions on the file: they specify both what the process wants
from a file and what it will allow from other processes. For instance, if a file has
been opened with 'deny write' and 'read only', an open attempt with 'deny none'
and 'write only' will fail because the first process has specified 'deny write' - in
this case it is the existing restriction on the file that rejects the open attempt. On
the other hand, an open attempt with 'deny read' and 'read only' will fail because
the file is already open with read access - in this case it is the current requirement
that rejects the open attempt.

Note that the fm_sh_denyrw denies all modes from other processes; it doesn't
mean 'deny read- write, but allow read-only or write-only'.

All the standard predicates described in the previous section specify the sharing
mode as 'deny write'.

Special File Modes for DOS >= 4.0 and UNIX
DOS versions greater than or equal to 4.0, have a special fm_returnerr mode:

The fm_returnerr specify that "media" errors occurring after the file has been
opened should return an error to the program, rather than be reported through a
pop-up window. Media errors are those indicating a malfunction of the device,
e.g. if writing to a floppy and the drive door is opened - this generates the well-
known 'Drive not ready' error.

UNIX and DOS >= 4.0 also have a write- through mode:

The fm_writethru specifies that no write buffering should take place. In this case,
every single byte written to the file cause both the physical disk image and the
directory entry to be updated, giving a secure file. However, disk writes
performed with write-through are excessively slow compared to ordinary writes.

openfile/5
With the general-purpose openfile predicate, files may be created or opened in
nonstandard ways. openfile looks like this:

openfile(SymbolicName,OSName,OpenMode,Attributes,Creation)
 /* (i,i,i,i,i) */

The SymbolicName and OSName are the same as for the previously described
standard predicates. The rest of the arguments are as follows (please refer to the
section on File Attributes a few pages back):

342 Visual Prolog Language Tutorial

• OpenMode is the access and sharing modes for the file. It is formed by
adding together one of the fm_access_XX values, one of the
fm_sh_XXXXXX and optionally fm_returnerr and fm_writethru. If no
access mode is specified, it will be set to 'read only'. If no sharing mode is
specified, it will be set to 'deny write'.

• Attributes are the attributes for the physical disk file. Valid attributes on
DOS are fa_rdonly, fa_hidden, fa_system, fa_arch and fa_normal. If nothing
(0) is specified, the attributes will be set to fa_normal. The system and the
hidden attributes both have the same effect, namely to hide the file when a
'dir' command is executed. Note that DOS automatically sets the archive
attribute when an updated file is closed. For UNIX, the attributes correspond
to the file's permissions.

• Creation specifies how the presence or absence of an existing file with the
same name is to be handled. It is formed by adding at most one from the
cr_ex_XX group and at most one from the cr_noex_XX group. Pay attention
to Creation defaults - if nothing (0) is specified. Note that this is the
equivalent of specifying cr_ex_fail and cr_noex_fail, i.e. fail if it exists and
fail if it doesn't exist. But remember that the actual default Creation action
will be set according to the access mode as follows:

fm_access_ro -> cr_ex_open + cr_noex_fail
fm_access_wo -> cr_ex_replace + cr_noex_create
fm_access_rw -> cr_ex_open + cr_noex_create

A sensible Creation default for read-write access is a bit tricky: If read-write
is specified because the file is opened for 'modification', an existing file of the
same name should be opened, not replaced. This is therefore the default.
However, if read-write is specified because one wants bidirectional access to
a new file, an existing file of the same name should be deleted. This is
possible with a call to openfile as follows:

:
FMode = fm_access_rw + fm_sh_denywr + fm_returnerr,
FCrea = cr_ex_replace + cr_noex_create,
openfile(dbfile,"salient.dba",FMode,fa_normal,FCrea),
:

File and Path Names

A set of standard predicates ease file name handling and enable searching for
files on a disk.

Chapter 12, Writing, Reading, and Files 343

filenamepath/3
filenamepath is used to compose and decompose a fully qualified name around
its path and file name. It takes three arguments, as follows:

filenamepath(QualName,Path,Name) /* (i,o,o) (o,i,i)*/

filenamepath converts between QualName on one side, and Path and Name on
the other. The programs ch11e12.pro and ch11e13.pro contain examples for DOS
and UNIX respectively; both examples do essentially the same thing:

/* Program ch12e12.pro */

GOAL
QualName="c:\\vip\\bin\\prolog.err",
fileNamePath(QualName,Path,Name),
write("\nQualName=",QualName),
write("\nPath=",Path),
write("\nName=",Name),
fileNamePath(NewName,Path,Name),
write("\nConverted back: ",NewName),nl.

/* Program ch12e13.pro */

GOAL
QualName="/usr/bin/prolog.err",
fileNamePath(QualName,Path,Name),
write("\nQualName=",QualName),
write("\nPath=",Path),
write("\nName=",Name),
fileNamePath(NewName,Path,Name),
write("\nConverted back: ",NewName),nl.

This will set Path to C:\VIP\BIN and name to PROLOG.ERR; finally, NewName
will be set to C:\VIP\BIN\PROLOG.ERR. Note that under DOS, all Visual
Prolog file name handling converts the name to upper case. This is because there
has in the past been confusion with respect to upper and lower case versions of
some foreign characters.

Please, using the (o,i,i) flow pattern of this predicate, take into account some
special cases described in the filenamepath topic in VDE help.

filenameext/3
filenameext is used to compose and decompose a (fully qualified) file name
around its extension, defined by a dot. It takes three arguments, as follows:

344 Visual Prolog Language Tutorial

filenameext(Name,BaseName,Ext) /* (i,o,o) (o,i,i)*/

Here is the DOS example:
/* Program ch12e14.pro */

GOAL
Name="c:\\vip\\bin\\win\\16\\vip.exe",
FileNameExt(Name,BaseName,Ext),
write("\nName=",Name),
write("\nBaseName=",BaseName),
write("\nExt=",Ext),
FileNameExt(NewName,BaseName,Ext),
write("\nConverted back: ",NewName),
% Override the old extension
FileNameExt(NewName1,"VIP.EXE",".HLP"),
write("\nNewName1=",NewName1),nl.

This will set BaseName to C:\VIP\BIN\WIN\16\VIP and Ext to .EXE; then
NewName is set to C:\VIP\BIN\WIN\16\VIP.EXE and finally NewName1
demonstrates a direct extension override - it isn't necessary to explicitly remove
the old extension first. Note that the dot is considered a part of the extension and
that - as with filenamepath - in the DOS version, everything is converted to
upper case.

Directory Searching

Visual Prolog includes directory search predicates, enabling file name matching
with wildcards. In addition, the predicates return all relevant information about
the directory entries found.

Directory searching is very file system dependent and you should therefore guard
yourself against future changes by isolating these predicates when they're used.
Don't spread them all over your application, and don't rely on their arguments
and functionality remaining unchanged.

Basically, to find matching files the directory has to be opened; this is done with
the diropen predicate, specifying the file name mask and the attributes to look
for. Then, by calling the dirmatch predicate, the matching files are found one by
one. Finally, the directory is closed by a call to the dirclose predicate.

Generally, the predicates behave identically irrespective of platform: a file name
- optionally containing wildcards - is used to specify the names to match, and a
set of search attributes refine the match (for a list of attributes, see the section on

Chapter 12, Writing, Reading, and Files 345

File Attributes earlier in this chapter). However, unlike the DOS directory search
mechanism, the search attributes don't increase the search beyond 'normal' files.
Visual Prolog considers all attributes as strictly informational, and they may all
be used for file selection. When using the directory search predicates, you should
therefore specify the attributes you are interested in: if you for instance want
everything with the archive bit set, specify fa_arch; if you want everything with
the system bit set, specify fa_system; if you want 'normal' files, specify
fa_normal, etc. You should be aware, though, that the attributes specified are
inclusive of each other: if several attributes are combined, the directory search
will find everything matching at least one of the attributes, but the entry found
won't necessarily match all the attributes. In other words, using set terminology,
it is the union of the matching files, not the intersection, which is returned.
Exactly what is found may be determined by bitwise testing of the returned
attribute.

UNIX users should be aware that only one kind of directory entry (such as a
normal file, a pipe, a directory, etc.) may be searched for at a time. No
permissions of the entries are considered, and none should be specified.

diropen/3
diropen is used to gain access to a directory. It takes the following format:

diropen(Wild,Attrib,Block) /* (i,i,o) */

where Wild is a file name, optionally containing wildcards, Attrib are the
required search attributes, and Block is an information block used by subsequent
calls to dirmatch. To the compiler this block looks like a string, but it contains
more information than meets the eye. Therefore, it cannot be asserted in a fact
database and then retracted for use at a later stage - as long as the directory is
open, it must be held in a local variable (or an argument, which is the same
thing). diropen will fail if there are no files matching the specification; however,
if the file name includes a directory that does not exist, diropen will exit with an
error.

Several diropens may be active simultaneously; in other words, they may be
nested and used recursively.

dirmatch/10
dirmatch will, after diropen has returned an information block, return the name
and other information for each matching file, one at each call. It looks as follows:

dirmatch(Block,Name,Attr,Hour,Min,TwoSec,Year,Month,Day,Size)
 /* (i,o,o,o,o,o,o,o,o,o) */

346 Visual Prolog Language Tutorial

The Block is the information block returned by diropen, Name is the matching
name, and Attr are the attributes for the entry found. The rest of the arguments
should be self-explanatory - they're all unsigned integers, apart from Size, which
is an unsigned long. Note that DOS uses only 5 bits to encode the seconds part of
the time stamp, giving at most 32 different values - hence the TwoSec name.

Upon each call, dirmatch returns the next matching directory entry. When there
are no more matches, dirmatch fails; if this happens, dirmatch will automatically
close the directory.

You should be aware that if searching for subdirectories with a name
specification of e.g. "*.*", dirmatch will always return the entries "." and ".." if
these are returned by the operating system. Therefore, dirmatch is likely to find
directories in all directories except perhaps the root.

dirclose/1
dirclose will close a previously opened directory. It takes the form:

dirclose(Block) /* (i) */

where Block is the information block returned by diropen. Note that if dirmatch
is repeatedly called until it fails (because there are no more matching files),
dirclose should not be called, as dirmatch will have closed the directory.

Example

The following demonstrates the use of the directory matching predicates, to make
an existdir predicate to complement the existfile standard predicate described
previously.

/* Program ch12e16.pro */

include "iodecl.con"

PREDICATES
existdir(string)
exd1(string)
exd2(string,string)

CLAUSES
existdir(Wild):-

diropen(Wild,fa_subdir,Block),
exd1(Block),
dirclose(Block).

Chapter 12, Writing, Reading, and Files 347

exd1(Block):-
dirmatch(Block,Name,_,_,_,_,_,_,_,_),
exd2(Block,Name).

exd2(_,Name):-
not(frontchar(Name,'.',_)),!.

exd2(Block,_):-
exd1(Block).

Given for instance the goal existdir("C:*.*") in DOS, it will - unless you
have a rather extraordinary disk organization - say 'yes'. However, it will only
find subdirectories in existing paths - if you ask for e.g. existdir(C:\\JNK*.*")
without having a directory called 'JNK' in the root of drive C, it will exit with an
error. You should also be aware that in DOS the root itself cannot be matched:
there is no directory called '\', and existdir("c:\\") will fail. This is an
operating system defined restriction of DOS, and is not relevant in UNIX where
'/' does exist.

Note, by the way, how the current and parent directory entries ("." and "..") are
filtered out in the example.

dirfiles/11
Having presented the hard way of finding files, here is the easy way. dirfiles is a
non-deterministic standard predicate which, upon backtracking, returns all
matching files one by one. It looks as follows:

dirfiles(Wild,Attrib,Fnam,RetAttr,Hour,Min,Sec,
Year,Month,Day,Size) /* (i,i,o,o,o,o,o,o,o,o,o) */

The use of dirfiles obviates the need to open and close the directory as this is
handled automatically, but there is a condition attached: in order to use it
correctly, it must be backtracked into until it fails. It is the final failure of the
predicate, which automatically closes the directory. You should be aware that
neither the compiler nor the code supporting a running program has any way of
detecting if this won't happen - it is entirely the programmer responsibility.
Having said that, no serious harm will come from leaving a couple of directories
open, but eventually the system will run out of handles.

As with diropen, calls to dirfiles may be nested and used recursively.

DOS Example

Below is a sample program, which will traverse all directories on, drive C,
searching for entries having the 'system' or 'hidden' attribute set. The OS will

348 Visual Prolog Language Tutorial

typically have a couple of hidden files in the root directory. However, if there are
hidden files elsewhere on the disk, be suspicious! They're probably harmless
copy- protection or configuration files for commercial software you have
installed, but why hide any files?

/* Program ch12e17.pro */

CONSTANTS
fa_hidden = $02 /* Hidden file */
fa_system = $04 /* System file */
fa_subdir = $10 /* Subdirectory */

fa_hidsys = $06 /* hidden + system */

PREDICATES
findhidden(string,string)
wrattr(integer)

CLAUSES
wrattr(A):-

bitand(A,fa_hidden,AA),
AA<>0,write('H'),fail.

wrattr(A):-bitand(A,fa_system,AA),
AA<>0,write('S'),fail.

wrattr(A):-
bitand(A,fa_subdir,AA),
AA<>0,write('D'),fail.

wrattr(_).

findhidden(CurrPath,Wild):-
write(CurrPath,":\n"),
filenamepath(FileSpec,CurrPath,Wild),
dirfiles(FileSpec,fa_hidsys,FileName,RetAttr,_,_,_,_,_,_,_),
wrattr(RetAttr),
write('\t',FileName,'\n'),
fail.

findhidden(CurrPath,Wild):-
filenamepath(DirSpec,CurrPath,"*.*"),
dirfiles(DirSpec,fa_subdir,Name,_,_,_,_,_,_,_,_),
not(frontchar(Name,'.',_)),
filenamepath(DirName,CurrPath,Name),
findhidden(DirName,Wild),
fail.

findhidden(_,_).

GOAL
findhidden("C:\\","*.*").

Chapter 12, Writing, Reading, and Files 349

This example also demonstrates decoding the returned attribute (in the wrattr
predicate), by means of bitwise testing.

Manipulating File Attributes

A standard predicate enables getting and setting the (informational) attributes of
files. Although documentation for DOS and MS Windows frequently talks about
a "directory attribute", a file cannot be changed to a directory just by clearing this
attribute.

fileattrib/2
Depending on dataflow fileattrib will get or set the attributes for a file. In UNIX
this corresponds to the file mode, meaning permissions, sticky bits, etc; see
chmod(S).

fileattrib(Name,Attrib) /* (i,o) (i,i) */

The Name must specify an existing file, otherwise fileattrib exits with an error.
Note that the definition of getting or setting attributes is entirely operating system
defined; in particular, you cannot set the file attributes for a directory. The
attributes for the file appear in Attrib as an unsigned short. This may then be
decomposed and/or changed using bitwise manipulation. For instance, the
following will clear the system attribute for the DOS file "JNK":

constants
fa_system = $04 /* System file */
fa_notsys = $FFFB /* ~system file. */

GOAL
fileattrib("jnk",FA),
bitand(FA,fa_notsys,Plain),
fileattrib("jnk",Plain).

The constant fa_notsys is the bitwise negation of fa_system. If you don't know
how to find the negation, use the bitxor (see chapter 16) standard predicate:

constants
fa_system = $04 /* System file */

350 Visual Prolog Language Tutorial

GOAL
bitxor(fa_system,$FFFF,NotSys),
fileattrib("jnk",FA),
bitand(FA,NotSys,Plain),
fileattrib("jnk",Plain).

Handling terms in text files

The readterm predicate makes it possible to access facts in a file. readterm can
read any object written by the write predicate and takes the form

readterm(<name>,TermParam).

where <name> is the name of a domain. The following code excerpt shows how
readterm might be used.

domains
name,addr = string
one_data_record = p(name, addr)
file = file_of_data_records

predicates
person(name, addr)
moredata(file)

clauses
person(Name,Addr) :-

openread(file_of_data_records, "DD.DAT"),
readdevice(file_of_data_records),
moredata(file_of_data_records),
readterm(one_data_record, p(Name, Addr)).

moredata(_).
moredata(File) :-

not(eof(File)),
moredata(File).

If the file DD.DAT contains facts belonging to the one_data_record domain,
such as

p("Peter","28th Street")
p("Curt","Wall Street")

the following are examples of goals, which retrieves information from that file.
Run the Test Goal adding the following goal section into the program code:

Chapter 12, Writing, Reading, and Files 351

Goal
person("Peter",Address).

The Test Goal will reply:

Address="28th Street"
1 Solution

Now run the Test Goal adding the following goal:

Goal
person("Peter","Not an address").

The Test Goal will reply:

no

Manipulating Facts Like Terms
Facts that describe fact database predicates can also be manipulated as though
they were terms. This is made possible by automatical declaration by the Visual
Prolog compiler of domains corresponding to names of facts sections (and the
special dbasedom domain to the unnamed facts section).

Visual Prolog generates one domain alternative for each predicate in a facts
section. It describes each database predicate by a functor and by the domains of
the arguments in that predicate. For example, given this facts section declaration:

facts
person(name, telno)
city(cno, cname)

Visual Prolog generates the corresponding dbasedom domain:

DOMAINS
dbasedom = person(name, telno) ; city(cno, cname)

A named facts section similarly generates a domain corresponding to the facts
section name, as in the following example:

facts - test
person(name, telno)
city(cno, cname)

generates the domain

352 Visual Prolog Language Tutorial

DOMAINS
test = person(name, telno) ; city(cno, cname)

These domains can be used like any other predefined domains.

Example
The following example shows how you could construct a predicate my_consult,
similar to the standard predicate consult.

/* User-defined Predicate my_consult using readterm */

domains
file = dbase

facts - dba1
/* ... Declare database predicates to be read from file */

predicates
my_consult(string)
repfile(file)

clauses
my_consult(FileName) :-

openread(dbase, FileName),
readdevice(dbase),
repfile(dbase),
readterm(dba1, Term),
assertz(Term),
fail.

my_consult(_) :- eof(dbase).

repfile(_).
repfile(F):-not(eof(F)),repfile(F).

If, for example, the facts section contains the declaration

p(string, string)

and a file called DD.DAT exists (with contents as described above), you could
try the following goals, which retrieves information from that file. Add the
following goal section into the program code and run the Test Goal :

goal
my_consult("dd.dat").

The Test Goal will reply:

yes

Chapter 12, Writing, Reading, and Files 353

Now run the Test Goal adding the following goal:

Goal
my_consult("dd.dat"),
p(X,Y).

The Test Goal will reply:

X=Peter, Y=28th Street
X=Curt, Y=Wall Street
2 Solutions

Summary

These are the important points covered in this chapter:

1. Visual Prolog provides three standard predicates for basic writing:

a. write (for plain output)

b. writef (for output formatted according to format specifiers)

c. nl (for generating new lines)

2. Visual Prolog basic standard predicates for reading are

a. readln (for reading whole lines of characters)

b. readint, readreal, and readchar (for reading integers, reals, and
characters, respectively)

c. readterm (for reading compound objects)

d. file_str (for reading a whole text file into a string)

3. Additionally, binary blocks may be transferred using

a. readblock (reads a binary block from a file)

b. writeblock (writes a binary block to a file)

c. file_bin transfers between whole files and binary blocks

4. Visual Prolog uses a current_read_device (normally the keyboard) for reading
input, and a current_write_device (normally the screen) for sending output.
You can specify other devices, and can reassign the current input and output
devices at run time. (This reassigning is known as redirecting I/O.)

5. Visual Prolog's basic file-access predicates are:

354 Visual Prolog Language Tutorial

a. openread (open a file for reading)

b. openwrite (open a file for writing)

c. openappend (open a file for appending)

d. openmodify (open a file for modification)

e. openfile (general purpose file opener)

f. filemode (set a file to text mode or binary mode)

g. closefile (close a file)

h. readdevice (reassign the current_read_device or get its name)

i. writedevice (reassign the current_write_device or get its name)

6. To access files you use the FILE domain, which has five predefined
alternatives:

a. keyboard (for reading from the keyboard)

b. screen (for writing to the screen)

c. stdin (for reading from standard input)

d. stdout (for writing to standard output)

e. stderr (for writing to standard error)

7. To work within and manipulate files, you use the following standard
predicates:

a. filepos (controls the position where reading or writing takes place)

b. eof (checks whether the file position during a read operation is at the end
of the file)

c. flush (forces the contents of the internal buffer to be written to a file)

d. existfile (verifies that a file exists)

e. searchfile (locates a file among several directories)

f. deletefile (deletes a file)

g. renamefile (renames a file)

h. copyfile (copies a file)

i. fileattrib (gets or sets file attributes)

j. disk (changes the current disk and directory/subdirectory)

8. To search directories, the following standard predicates are available:

Chapter 12, Writing, Reading, and Files 355

a. diropen (opens a directory for searching)

b. dirmatch (finds matching files in a directory)

c. dirclose (closes a directory)

d. dirfiles (non-deterministically matches files in a directory)

9. To manipulate file names, the following are available:

a. filenamepath (joins or splits qualified file names)

b. filenameext (joins or splits file names and extensions)

10. The standard predicate readterm allows your program to access facts in a file
at run time. readterm can read any object written by write, plus facts
describing fact database predicates.

356 Visual Prolog Language Tutorial

CHAPTER 13

String-Handling in Visual Prolog

Visual Prolog provides several standard predicates for powerful and efficient
string manipulations. In this chapter, we've divided these into two groups: the
family of basic string-handling predicates, and a set of predicates used for
converting strings to other types and vice versa. Strings may also be compared to
each other, but this is covered in chapter 9.

String Processing

A few formalities apply to strings and string processing, in that the backslash acts
as an escape character, allowing you to put non-keyboardable characters into
strings. Please see the description on page 106.

Basic String-Handling Predicates
The predicates described in this section are the backbone of string-handling in
Visual Prolog; as such, they serve several purposes:

• dividing a string into component strings or tokens

• building a string from specified strings or tokens

• verifying that a string is composed of specified strings or tokens

• returning a string, token, or list of these from a given string

• verifying or returning the length of a string

• creating a blank string of specified length

• verifying that a string is a valid Visual Prolog name

• formatting a variable number of arguments into a string variable

frontchar/3
frontchar operates as if it were defined by the equation

String1 = the concatenation of Char and String2

Chapter 13, String-Handling in Visual Prolog 357

It takes this format:

frontchar(String1,Char,String2)
 /* (i,o,o) (i,i,o) (i,o,i) (i,i,i) (o,i,i) */

frontchar takes three arguments; the first is a string, the second is a char (the
first character of the first string), and the third is the rest of the first string.

frontchar can be used to split a string up into a series of characters, or to create a
string from a series of characters, and to test the characters within a string. If the
argument String1 is bound to a zero-length string, the predicate fails.

Example

In Program ch13e01.pro, frontchar is used to define a predicate that changes a
string to a list of characters. Try the goal

string_chlist("ABC", Z)

This goal will return Z bound to ['A','B','C'].
/* Program ch13e01.pro */

DOMAINS
charlist = char*

PREDICATES
string_chlist(string, charlist)

CLAUSES
string_chlist("", []):-!.
string_chlist(S, [H|T]):-

frontchar(S,H,S1),
string_chlist(S1,T).

fronttoken/3
fronttoken performs three related functions, depending on the type of flow
pattern you use when calling it.

fronttoken(String1, Token, Rest)
 /* (i,o,o) (i,i,o) (i,o,i) (i,i,i) (o,i,i) */

In the (i,o,o) flow variant, fronttoken finds the first token of String1, binds it to
Token, and binds the remainder of String1 to Rest. The (i,i,o), (i,o,i), and
(i,i,i) flow variants are tests; if the bound arguments are actually bound to the

358 Visual Prolog Language Tutorial

corresponding parts of String1 (the first token, everything after the first token, or
both, respectively), fronttoken succeeds; otherwise, it fails.

The last flow variant (o,i,i) constructs a string by concatenating Token and
Rest, then binds String1 to the result.

A sequence of characters is grouped as one token when it constitutes one of the
following:

• a name according to normal Visual Prolog syntax

• a number (a preceding sign is returned as a separate token)

• a non-space character

fronttoken is perfectly suited for decomposing a string into lexical tokens.

Example

Program ch13e02.pro illustrates how you can use fronttoken to divide a sentence
into a list of names. If 2 is given the goal:

string_namelist("bill fred tom dick harry", X).

X will be bound to:

[bill, fred, tom, dick, harry]

/* Program ch13e02.pro */

DOMAINS
namelist = name*
name = symbol

PREDICATES
string_namelist(string, namelist)

CLAUSES
string_namelist(S,[H|T]):-

fronttoken(S,H,S1),!,
string_namelist(S1,T).

string_namelist(_,[]).

frontstr/4
frontstr splits String1 into two parts. It takes this format:

frontstr(NumberOfChars, String1, StartStr, EndStr)
 /* (i,i,o,o) */

Chapter 13, String-Handling in Visual Prolog 359

StartStr contains the first NumberOfChars characters in String1, and EndStr
contains the rest. When frontstr is called, the first two parameters must be bound,
and the last two must be free.

concat/3
concat states that String3 is the string obtained by concatenating String1 and
String2. It takes this format:

concat(String1, String2, String3)
 /* (i,i,o), (i,o,i), (o,i,i), (i,i,i) */

At least two of the parameters must be bound before you invoke concat, which
means that concat always gives only one solution (in other words, it's
deterministic). For example, the call

concat("croco", "dile", In_a_while)

binds In_a_while to crocodile. In the same vein, if See_ya_later is bound, the
call

concat("alli", "gator", See_ya_later)

succeeds only if See_ya_later is bound to alligator.

str_len/2
str_len can perform three tasks: It either returns or verifies the length of a string,
or it returns a string of blank spaces of a given length. It takes this format:

str_len(StringArg, Length) /* (i,o), (i,i), (o,i) */

str_len binds Length to the length of StringArg or tests whether StringArg has the
given Length. The Length is an unsigned integer. In the third flow version,
str_len returns a string of spaces with a given length; this can be used to allocate
buffers, etc. allocating buffers with str_len, but makebinary is preferable
especially for binary data.

isname/1
isname verifies that its argument is a valid name in accordance with Visual
Prolog's syntax; it takes this format:

isname(String) /* (i) */

360 Visual Prolog Language Tutorial

A name is a letter of the alphabet or an underscore character, followed by any
number of letters, digits, and underscore characters. Preceding and succeeding
spaces are ignored.

format/*
format performs the same formatting as writef (see page 321), but format
delivers the result in a string variable.

format(OutputString,FormatString,Arg1,Arg2,Arg3,...,ArgN)
 /* (o,i,i,i,...,i) */

subchar/3
subchar returns the character at a given position in a string; it takes the form:

subchar(String,Position,Char) /* (i,i,o) */

The first character has position 1. For example,

subchar("ABC",2,Char)

will bind Char to B. If the position specifies a character beyond the end of the
string, subchar exits with an error.

substring/4
substring returns a part of another string; it takes the form:

substring(Str_in,Pos,Len,Str_out) /* (i,i,i,o) */

Str_out will be bound to a copy of the string starting with the Pos’th character,
Len characters long, in Str_in. For example

substring("GOLORP",2,3,SubStr)]

binds SubStr to OLO. If Pos and Len specify a string partly or wholly outside of
Str_in, substring exits with an error. However, it is not an error to ask for 0 bytes
at the extreme end of the string:

substring("ABC",4,0,SubStr)]

will bind SubStr to an empty string (""), while

substring("ABC",4,1,SubStr)/* WRONG */]

is an error. By the way, so is

Chapter 13, String-Handling in Visual Prolog 361

substring("ABC",5,-1,SubStr)/* WRONG */]

searchchar/3
searchchar returns the position of the first occurrence of a specified character in
a string; it takes the form:

searchchar(String,Char,Position) /* (i,i,o) */]

For example,

searchchar("ABEKAT",'A',Pos)]

will bind Pos to 1. If the character isn't found, searchchar will fail. Note that
searchchar is not re-satisfiable (i.e. if there are more occurrences of the specified
character in the string, backtracking won't find them), but you can easily make
your own:

/* Program ch13e03.pro */

PREDICATES
nondeterm nd_searchchar(string,char,integer)
nondeterm nd_searchchar1(string,char,integer,integer)
nondeterm nd_sc(string,char,integer,integer,integer)
run

CLAUSES
nd_searchchar(Str,Ch,Pos):-

nd_searchchar1(Str,Ch,Pos,0).

nd_searchchar1(Str,Ch,Pos,Old):-
searchchar(Str,Ch,Pos1),
nd_sc(Str,Ch,Pos,Pos1,Old).

nd_sc(_,_,Pos,Pos1,Old):- Pos = Pos1+Old.
nd_sc(Str,Ch,Pos,Pos1,Old):-

frontstr(Pos1,Str,_,Rest),
Old1 = Old + Pos1,
nd_searchchar1(Rest,Ch,Pos,Old1).

GOAL
nd_searchchar("abbalblablabbala",'a',P),
write(P,'\n'),
fail.

362 Visual Prolog Language Tutorial

This implements a non-deterministic predicate nd_searchchar, which is plug-
compatible with searchchar; if you don't mind typing the extra argument (Old)
to nd_searchchar1 yourself, you can of course discard a level of calls.

searchstring/3
searchstring returns the position of the first occurrence of a string in another
string; it takes the form:

searchstring(SourceStr,SearchStr,Pos) /* (i,i,o) */]

For example,

searchstring("ABEKAT","BE",Pos)]

will bind Pos to 2. If the search string isn't found in, or is longer than, the source
string, searchstring will fail. As with searchchar, searchstring isn't re-
satisfiable, but you can easily make your own. As a matter of fact, all that's
necessary is to take 3 and do a global substitution with 'string' replacing 'char',
and change the 'a' in the goal to a suitable search string, e.g. "ab":

GOAL
nd_searchstring("abbalblablabbala","ab",P),
write(P,'\n'),
fail.

Type Conversion

In this section, we summarize the standard predicates available for type
conversion. The predicates are char_int, str_char, str_int, str_real, upper_lower,
and finally term_str, which converts between terms of any kind and strings.

char_int/2
char_int converts a character into an integer or an integer into a character; it
takes this format:

char_int(Char, Integer) /* (i,o), (o,i), (i,i) */

With both its arguments bound, char_int tests that the arguments correspond.
With one argument bound and the other free, char_int performs the conversion
and binds the output argument to the converted form of the input one.

Chapter 13, String-Handling in Visual Prolog 363

Note: This predicate is really not needed in newer versions of Visual Prolog
because there is automatic conversion between characters and integers. We've
left char_int in to be compatible with older versions.

str_char/2
str_char converts a string containing one and only one character into a character,
or converts a single character into a string of one character; it takes this format:

str_char(String, Char) /* (i,o), (o,i), (i,i) */]

In the (i,i) flow variant, str_char succeeds if String is bound to the single-
character string equivalent of Char. If the length of the string is not 1, str_char
fails.

str_int/2
str_int converts a string containing an integer into an integer, or converts an
integer into its textual representation; it takes this format:

str_int(String, Integer) /* (i,o), (o,i), (i,i) */]

In the (i,i) flow variant, str_int succeeds if Integer is bound to the integer
equivalent of the integer represented by String.

str_real/2
str_real converts a string containing a real number into a real number, or
converts a real number into a string; it takes this format:

str_real(String, Real) /* (i,o), (o,i), (i,i) */]

In the (i,i) flow variant, str_real succeeds if Real is bound to the real equivalent
of the real number represented by String.

upper_lower/2
upper_lower converts an upper-case (or mixed) string or character to all lower-
case, or a lower-case (or mixed) string or character to all upper-case; it takes this
format:

upper_lower(Upper, Lower) /* (i,o), (o,i), (i,i) */]

With both its arguments bound, upper_lower succeeds if Upper and Lower are
bound to strings that – except for the case of the letters – are identical; for
instance, the goal:

364 Visual Prolog Language Tutorial

Str1=samPLEstrING,
Str2=sAMpleSTRing,
upper_lower(Str1, Str2)}
succeeds. Otherwise, it fails.

term_str/3
term_str is a general-purpose conversion predicate and will convert between
terms of a specified domain and their string representations. It looks like this:

term_str(Domain,Term,String) /* (i,i,o),(i,_,i) */]

where Domain specifies which domain the term belongs to. term_str could
replace the various str_* predicates above, for instance, str_real could be
implemented as str_real(S,R):- term_str(real,R,S). However, term_str is a
somewhat heavier mechanism.

The Domain need not be one of the standard domains; it can be any user-defined
domain:

/* Program ch13e04.pro */

DOMAINS
intlist = integer*

GOAL
write("Input list (example [66,73,76,83]): "),
readln(L),nl,
str_len(L,Len),
write("The stringlength of ",L),
write(" is ",Len,'\n').

Examples
1. This example defines the predicate scanner, which transforms a string into a

list of tokens. Tokens are classified by associating a functor with each token.
This example uses the predicates isname, str_int, and str_len to determine
the nature of the tokens returned by fronttoken.

/* Program ch13e05.pro */

DOMAINS
tok = numb(integer); name(string); char(char)
toklist = tok*

Chapter 13, String-Handling in Visual Prolog 365

PREDICATES
nondeterm scanner(string, toklist)
nondeterm maketok(string, tok)

CLAUSES
scanner("",[]).
scanner(Str,[Tok|Rest]):-

fronttoken(Str, Sym, Str1),
maketok(Sym, Tok),
scanner(Str1, Rest).

maketok(S,name(S)):-isname(S).
maketok(S,numb(N)):-str_int(S,N).
maketok(S,char(C)):-str_char(S, C).

GOAL
write("Enter some text:"),nl,
readln(Text),nl,
scanner(Text,T_List),
write(T_List).

2. Conversions between the domain types symbol and string, and between char,
integer, and real, are handled automatically when using standard predicates
and during evaluation of arithmetic expressions. Reals will be rounded during
automatic conversions. Visual Prolog performs this automatic conversion as
necessary when a predicate is called, as in the following example:

PREDICATES
p(integer)

CLAUSES
p(X):- write("The integer value is ",X,'\n').

With this example, the following goals have the same effect:

X=97.234, p(X).
X=97, p(X).
X='a', p(X).

3. The following very simple English parser is a practical example of string
parsing. This example directly parses strings; if the parser were to be
extended, the string should be tokenized using a scanner similar to the one
used in Program ch13e04.pro. Whether you're parsing tokens or strings, the
algorithm in this program is a good example of how to start.

366 Visual Prolog Language Tutorial

If you are interested in English-language parsing, we recommend that you
take a look at the Sentence Analyzer and Geobase programs in the
VPI\PROGRAMS subdirectory.

/* Program ch13e06.pro */

DOMAINS
sentence = s(noun_phrase,verb_phrase)
noun_phrase = noun(noun) ; noun_phrase(detrm,noun)
noun = string
verb_phrase = verb(verb) ; verb_phrase(verb,noun_phrase)
verb = string
detrm = string

PREDICATES
nondeterm s_sentence(string,sentence)
nondeterm s_noun_phrase(string,string,noun_phrase)
nondeterm s_verb_phrase(string,verb_phrase)
d(string)
n(string)
v(string)

CLAUSES
s_sentence(Str,s(N_Phrase,V_Phrase)):-

s_noun_phrase(Str, Rest, N_Phrase),
s_verb_phrase(Rest, V_Phrase).

s_noun_phrase(Str,Rest,noun_phrase(Detr,Noun)):-
fronttoken(Str,Detr,Rest1),
d(Detr),
fronttoken(Rest1,Noun,Rest),
n(Noun).

s_noun_phrase(Str,Rest,noun(Noun)):-
fronttoken(STR,Noun,Rest),
(Noun).

s_verb_phrase(Str, verb_phrase(Verb,N_Phrase)):-
fronttoken(Str,Verb,Rest1),
v(Verb),
s_noun_phrase(Rest1,"",N_Phrase).

s_verb_phrase(Str,verb(Verb)):-
fronttoken(STR,Verb,""),
v(Verb).

Chapter 13, String-Handling in Visual Prolog 367

/* determiner */
d("the").
d("a").

/* nouns */
n("bill").
n("dog").
n("cat").

/* verbs */
v("is").

Load and run this program, and enter the following goal:

Goal s_sentence("bill is a cat", Result).

The program will return:

Result = s(noun("bill"),verb_phrase("is", noun_phrase("a","cat")))
1 Solution

Summary

These are the important points covered in this chapter:

1. Visual Prolog's string-handling predicates are divided into two groups:
basic string manipulation and string type conversions.

2. The predicates for basic string manipulation are summarized here:

a. frontchar, fronttoken, and concat for dividing a string into components,
building a string from specified components, and testing if a string is
composed of specified components; these components can be characters,
tokens, or strings

b. subchar and substring for returning a single character from, or a part of,
another string

c. searchchar and searchstring for finding the first occurrence of a
character, or a string, in a string

d. str_len for verifying or returning the length of a string, or creating a
blank string of specified length

e. frontstr for splitting a string into two separate strings

f. isname for verifying that a string is a valid Visual Prolog name

368 Visual Prolog Language Tutorial

g. format for formatting a variable number of arguments into a string
variable

Several of the basic string manipulation predicates have different flow
variants. The variants with only input parameters perform tests that succeed
when the string in question is made up of the specified components (or is of
the specified length).

3. The predicates for type conversion are listed here:

a. char_int for converting from a character to an integer, or vice versa

b. str_char for converting a single character into a string of one character,
or vice versa

c. str_int for converting from an integer to its textual representation, or vice
versa

d. str_real for converting from a real number to a string, or vice versa

e. upper_lower for converting a string to all upper-case or all lower-case
characters, or testing case-insensitive string equality

f. term_str for conversion between arbitrary domains and strings

The type conversion predicates each have three flow variants; the (i,o) and
(o,i) variants perform the appropriate conversions, and the (i,i) variants are
tests that succeed only if the two arguments are bound to the converted
representations of one another

Chapter 14, The External Database System 369

CHAPTER 14

The External Database System

In this chapter, we cover Visual Prolog's external database system. An external
database is composed of an external collection of chained terms; these chains
give you direct access to data that is not a part of your Prolog program. The
external database can be stored in any one of three locations: in a file, in
memory, or in EMS-type expanded memory under DOS. The external database
supports B+ trees, which provide fast data retrieval and the ability to sort quickly,
and it supports multi-user access by a mechanism for serializing the file accesses
inside transactions.

External Databases in Visual Prolog

Visual Prolog's internal fact database, which uses asserta, assertz, retract, and
retractall, is very simple to use and suitable for many applications. However, the
RAM requirements of a database can easily exceed the capacity of your
computer; the external database system has been designed partly with this
problem in mind. For example, you might want to implement one or more of the
following:

• a stock control system with an large number of records

• an expert system with many relations but only a few records with
complicated structures

• a filing system in which you store large text files in the database

• your own database product – which maybe has nothing to do with a
relational database system – in which data is linked together in other,
nonrelational ways

• a system including several of these possibilities

Visual Prolog's external database system supports these different types of
applications, while meeting the requirement that some database systems must not
lose data during update operations – even in the event of power failure.

Visual Prolog's external database predicates provide the following facilities:

370 Visual Prolog Language Tutorial

• efficient handling of very large amounts of data on disk

• the ability to place the database in a file, in memory, or in EMS-type
expanded memory cards under DOS

• multi-user access

• greater data-handling flexibility than provided by the sequential nature of
Visual Prolog's automatic backtracking mechanism

• the ability to save and load external databases in binary form

An Overview: What's in an External Database?
A Visual Prolog external database consists of two components: the data items –
actually Prolog terms – stored in chains, and corresponding B+ trees, which you
can use to access the data items very quickly.

The external database stores data items in chains (rather than individually) so that
related items stay together. For example, one chain might contain part numbers
to a stock list, while another might contain customer names. Simple database
operations, such as adding new items or replacing and deleting old items, do not
require B+ trees. These come into play when you want to sort data items or
search the database for a given item; they are covered in detail later in this
chapter.

Naming Convention
The names of all the standard predicates concerned with database management
follow a certain convention.

• The first part of the name (db_, chain_, term_, and so on) is a reminder of
what you must specify as input.

• The second part of the name (flush, btrees, delete, and so on) is a reminder
of what action occurs or what is returned or affected.

For example, db_delete deletes a whole database, chain_delete deletes a whole
chain, and term_delete deletes a single term.

Chapter 14, The External Database System 371

term

term

term

term

term

term

term

term

term

Chain

Chain

Chain

1

2

N

:

:

:

B+Tree

B+Tree

B+Tree

1

2

..

.
N

Figure 14.1: Structure of a Visual Prolog External Database

External Database Selectors
It is possible to have several external databases simultaneously in memory, on
disk, and in an EMS-type memory expansion card under DOS. With this
flexibility, you can place external databases where they give the best speed and
space compromise.

372 Visual Prolog Language Tutorial

In order to distinguish between several open databases, you use a selector in
every call to an external database standard predicate. You must declare these
selectors in a domain called db_selector. This works like the file domain in the
file system. For example, the following domains, declarations, external databases
domain declaration declares customers and parts to be external database
selectors:

DOMAINS
db_selector = customers; parts

Chains
An external database is a collection of Prolog terms. Some examples of terms are
integers, reals, strings, symbol values, and compound objects; for instance, 32, -
194, 3.1417, "Wally", wages, and book(dickens, "Wally goes to the zoo").

Inside an external database, the terms are stored in chains. A chain can contain
any number of terms, and an external database can contain any number of chains.
Each chain is selected by a name, which is simply a string.

The following figure illustrates the structure of a chain called MY_CHAIN.

term termterm term

Figure 14.2: Structure of a Chain

Database relations and database tables are modeled by chains of terms. For
example, suppose you have a customer, supplier, and parts database, and you
want to put all the data into a single database with three relations: one for
customers, one for suppliers, and one for parts. You do this by putting the
customers in one chain called customers, the suppliers in another chain called
suppliers, and the parts in a chain called parts.

To insert a term in an external database, you must insert the term into a named
chain. On the other hand, you can retrieve terms without explicitly naming the
containing chain. In both cases, you must specify the domain to which the term
belongs. In practice, it is best if all terms in the chain belong to the same domain,
but there is actually no restriction on how terms are mixed in a database. It's up to
you to ensure that a term you retrieve belongs to the same domain as it did when
you inserted it.

Chapter 14, The External Database System 373

The following is a simple example of setting up two chained databases, dba1 and
dba2. In this example, all the customer data is in dba1 and all the parts data in
dba2. For now, just look over this example. We need to introduce a lot more
information before we can explain what's happening here.

/* Program ch14e01.pro */

DOMAINS
db_selector = dba1 ; dba2
customers = customer(customer_name, address)
parts = part(part_name, ID, customer_name)
customer_name, part_name = symbol
ID = integer
address = string

PREDICATES
access

CLAUSES
access:-

chain_terms(dba1,chain1,customers,customer(Name, ADDR),_),
chain_terms(dba2,chain2,parts,part(Part, Id, Name),_),
write("send ",Part," part num ",Id," to ",Addr), nl,
fail.

access.

GOAL
% create the databases dba1 and dba2
db_create(dba1, "dd1", in_memory),
db_create(dba2, "dd1.bin", in_file),

% insert customer facts into chain1 in dba1
chain_insertz(dba1, chain1, customers,
customer("Joe Fraser","123 West Side"), _),
chain_insertz(dba1, chain1, customers,
customer("John Smith","31 East Side"), _),
chain_insertz(dba1, chain1, customers,
customer("Diver Dan","1 Water Way"), _),
chain_insertz(dba1, chain1, customers,
customer("Dave Devine","123 Heaven Street"), _),

374 Visual Prolog Language Tutorial

% insert parts facts into chain2 in dba2
chain_insertz(dba2, chain2, parts, part("wrench", 231,

"John Smith"), _),
chain_insertz(dba2, chain2, parts, part("knife", 331,

"Diver Dan"), _),
access,
db_close(dba1), db_close(dba2),
db_delete("dd1", in_memory),
db_delete("dd1.bin", in_file).

This program first creates the databases dba1 (in memory) and dba2 (in a disk
file). It then inserts facts into two chains: chain1 and chain2. After inserting the
facts, it looks in these chains for a customer and the part ordered by that
customer; finding these, it returns the address to which the shipper should ship
the part. Finally, it closes and deletes the two databases.

External Database Domains
The external database uses six standard domains, summarized here:

Domain What It's Used For

db_selector Domain for declaring database selectors

bt_selector Domain for declaring B+ tree selectors

place Location of the database: in RAM, in a file, or in an
extended memory system (EMS card under DOS)

accessmode Decides how the file will be used.

denymode Determines how other users can open the file.

ref Reference to the location of a term in a chain

Database Reference Numbers
Every time you insert a new term into an external database, Visual Prolog assigns
it a database reference number. You can use the term's database reference
number to retrieve, remove, or replace that term, or to get the next or previous
term in the chain. You can also insert a database reference number in a B+ tree
(as described later in this chapter), and then use the B+ tree to sort some terms or
to carry out a fast search for a term.

Database reference numbers are independent of the database location and any
possible packing operations. Once a reference number has been associated with a

Chapter 14, The External Database System 375

term, you can use that number to access that term – no matter which database
management operations are subsequently carried out – until the term is deleted.

The ref Domain

Database reference numbers are special because you can insert them in facts
sections and write them out with write or writef, but you can't type them in from
the keyboard. You must declare the arguments to predicates handling database
reference numbers as belonging to the standard domain ref.

When you delete a term with term_delete, the system will reuse that term's
reference number when it inserts the next term into the external database. This
happens automatically; however, if reference numbers have been stored in the
facts section or in a B+ tree for some reason, it is your responsibility to ensure
that a given reference is associated with the correct term.

To assist you in this, there is an error-checking option, enabled with the
db_reuserefs standard predicate:

db_reuserefs/2
db_reuserefs has the following form:

db_reuserefs(DBase,ReUse) /* (i,i)*/

where DBase is a db_selector and ReUse is an unsigned integer. This should be
set to 0 to enable checking for use of released terms, or 1 do disable this. The
overhead of having the check enabled is very small (4 bytes per term, virtually no
CPU overhead), but those 4 bytes will never be released. If you constantly create
and release terms, your database will therefore grow at a steady rate.
db_reuserefs's primary purpose is to assist you in tracking down bugs during
development of programs.

Manipulating Whole External Databases
When you create a new external database, or open an existing one, you can place
it in a file, in memory, or in EMS-type expanded memory under DOS, depending
on the value of the Place argument in your call to db_create or db_open. After
you've finished working with the external database, you close it with a call to
db_close.

When you place an external database in main or expanded memory, closing the
database with db_close does not delete the database from memory. You must do
this explicitly with a call to db_delete, to free the memory the database occupies.

376 Visual Prolog Language Tutorial

If you close such an external database but don't delete it, you can later reopen it
with the db_open predicate.

Since the external database system relies on the DOS buffer system, it will be
very slow if no buffers have been allocated. To allocate 40 buffers (which isn't an
excessive number), include the following line in your CONFIG.SYS file (a part
of the DOS environment):

buffers = 40

In this section, we discuss the predicates db_create, db_open, db_copy,
db_loadems, db_saveems, db_close, db_delete, db_openinvalid, db_flush,
db_garbagecollect, db_btrees, db_chains, and db_statistics.

db_create/3
db_create creates a new database.

db_create(Dbase, Name, Place) /* (i,i,i) */

If the database is placed in a disk file, the name of the file will be Name; if it's
placed in memory or EMS under DOS, you'll need Name if you close the
database and want to open it later. Dbase and Name correspond to the internal
and external names for files.

Where you place an external database is determined by the Place argument.
Place can take one of the following values:

in_file The external database is placed in a disk file, and there
will be only a minimum of main memory overhead.

in_memory The external database is placed in the main memory –
usually this will be done to achieve maximum
performance.

in_ems

The database is placed in EMS-type expanded
memory, if a suitable card is installed in the computer.
in_ems is only relevant for DOS. On other platforms it
has the same effect as in_memory

These values, in_file, in_memory, and in_ems, are elements of the pre-declared
domain place, which corresponds to the following declaration:

DOMAINS
place = in_file; in_memory; in_ems

For example, here are two different calls to db_create:

Chapter 14, The External Database System 377

db_create(db_sel1,"MYFILE.DBA",in_file)
 /* Creates disk file MYFILE.DBA */
db_create(db_sel2,"SymName2",in_memory)
 /* Creates memory database SymName2 */

db_open/3
db_open opens a previously created database, identified by Name and Place.

db_open(Dbase, Name, Place) /* (i,i,i) */

If Place is in_memory or in_ems, Name is the database's symbolic file name; if
Place is in_file, Name is the actual DOS-style file name.

db_copy/3
Irrespective of where you initially place an external database, you can later move
it to another location with the db_copy predicate.

db_copy(Dbase, Name, Place) /* (i,i,i) */

For example, in this call to db_copy

db_copy(my_base, "new_EMSbase", in_ems)

Visual Prolog copies the database identified by the database selector my_base
into the new database file new_EMSbase, which is placed in EMS under DOS.

When you copy a database, the original still exists; you will have two copies until
you explicitly delete the original.

Once you've moved a database, all processing can continue as if nothing
happened, since all reference numbers to the external database terms will still be
valid. In this way, if you're maintaining an external database in main memory,
and free storage is running short, you can copy the database to a file and continue
execution with the database in the file. An index set up to the external database in
internal memory is still valid, even after you've copied the database to a file.

db_copy has several uses; you can use it to do the following:

• Load a database from disk to memory and later save it again in binary form,
instead of using save and consult with text files.

• Copy a medium-sized database from disk to memory for faster access.

• Pack a database containing too much free space; when the database is copied
to another file, all free space will be eliminated.

378 Visual Prolog Language Tutorial

db_loadems/2 and db_saveems/2
db_copy performs a full-scale record-by-record copy of the database in question.
This has the advantage that the resulting database will be compacted and without
unused space, but for large databases the process can be time consuming.

For DOS only, db_loadems and db_saveems will transfer complete images of
databases between disk and EMS:

db_loadems(FileName,EmsName /* (i,i) */
db_saveems(EmsName,FileName) /* (i,i) */

The only restriction on their use is that there can be no more than one database in
EMS.

db_openinvalid/3
db_openinvalid allows you to open a database that's been flagged as invalid.

db_openinvalid(Dbase, Name, Place) /* (i,i,i) */

If the power to the computer fails while a database is being updated, all the data
in the database may be lost because part of some buffer has not been written to
disk. A flag in the database indicates if it's in an invalid state after an update.

A database is recorded as being invalid after a call to any of the predicates that
change the content in the database. These include chain_inserta, chain_insertz,
chain_insertafter, term_replace, term_delete, chain_delete, bt_create,
key_insert, and key_delete. The database is recorded as being valid once again
when it is closed with db_close, or when db_flush is called to flush out the
buffers.

By using db_openinvalid, it is sometimes possible to continue execution when a
database is marked as invalid. This might make it possible to recover some data
if all your backups have disappeared. However, all attempts to use an invalid
database after opening it with db_openinvalid might yield unexpected results.

db_flush/1
db_flush flushes the buffers and writes their contents to the appropriate
destination in your database.

db_flush(Dbase) /* (i) */

When a database is updated it will be marked as invalid, and it remains flagged
as invalid until it is either flushed with db_flush, or closed.

Chapter 14, The External Database System 379

The level of security you employ for a given database will, of course, depend on
how important its data is. The most basic level of data security is to keep backups
on disk. At the intermediate level, you could call db_flush after each important
database update. However, flushing the buffers is a relatively slow operation; if
it's done too often, your database system will grind to a halt. Finally, if the
contents of an external database are especially valuable, you could record all
changes in a special log file or maintain two identical databases – perhaps on
different disks.

db_close/1
A call to db_close closes an open database.

db_close(Dbase) /* (i) */

If the database Dbase is placed in a disk file, the file will be closed. The database
won't be deleted, even if it is placed in memory or in an EMS-type memory
expansion card, and you can reopen it later through a call to db_open. You can
use db_delete to remove a closed database from memory.

db_delete/1
When the database is situated in memory or in an EMS-type memory expansion
card, db_delete releases all the occupied space.

db_delete(Name, Place) /* (i,i) */

When the database is situated in a file, db_delete erases the file. db_delete gives
an error if the database Name does not exist in the given Place.

db_garbagecollect/1
db_garbagecollect scans through the free lists in the database garbage collect and
tries to merge some of the free space together into larger pieces.

db_garbagecollect(Dbase) /* (i) */

This scanning and merging is done automatically when the database is placed in
memory or in an EMS card.

Under normal circumstances, there should be no need to call this predicate.
However, if there seems to be too much free space in the database that is not
being reused when new terms are inserted, db_garbagecollect can regain some
extra space.

380 Visual Prolog Language Tutorial

db_btrees/2
During backtracking, db_btrees successively binds BtreeName to the name of
each B+ tree in the Dbase database.

nondeterm db_btrees(Dbase, BtreeName) /* (i,o) */

The names are returned in sorted order. B+ trees are described later in this
chapter.

db_chains/2
During backtracking, db_chains successively binds ChainName to the name of
each chain in the Dbase database.

nondeterm db_chains(Dbase, ChainName) /* (i,o) */

The names are returned in sorted order.

db_statistics/5
db_statistics returns statistical information for the database Dbase.

db_statistics(Dbase, NoOfTerms, MemSize, DbaSize, FreeSize)
 /* (i,o,o,o,o) */

The arguments to db_statistics represent the following:

NoOfTerms is bound to the total number of terms in the database.

MemSize is bound to the size – in bytes – of the internal tables
stored in memory for the database.

DbaSize is bound to the total number of bytes that the terms and
descriptors in the Dbase database occupy. If Dbase is
stored in a disk file, and DbaSize gets a value much
smaller than the size of that file, the file can be
compressed by using db_copy.

Chapter 14, The External Database System 381

FreeSize becomes bound to a value representing the free memory
space; the value depends on where the database Dbase is
currently placed.
• When Dbase is placed in memory, FreeSize is bound

to the number of unused bytes between the top of the
global stack and the top of the heap. (Note: There
might be some additional free bytes that are not
included in this count.)

• If Dbase is placed in EMS-type expanded memory,
FreeSize is bound to the number of unoccupied bytes
in that expansion memory.

• When Dbase is placed in a file, FreeSize is bound to
the number of unused bytes on the disk containing the
file.

Manipulating Chains
To insert terms into an external database chain, you use the predicates
chain_inserta, chain_insertz, or chain_insertafter. You can successively bind
the terms in a chain, and their reference numbers, to the arguments of
chain_terms, while chain_delete allows you to delete a whole chain of terms
from the external database.

Four standard predicates return database reference numbers. These are
chain_first, chain_last, chain_next, and chain_prev.

chain_inserta/5 and chain_insertz/5
The predicates chain_inserta and chain_insertz correspond to asserta and
assertz, respectively. These take the following form:

chain_inserta(Dbase, Chain, Domain, Term, Ref) /* (i,i,i,i,o) */
chain_insertz(Dbase, Chain, Domain, Term, Ref) /* (i,i,i,i,o) */

chain_inserta inserts the term Term at the beginning of the chain Chain, while
chain_insertz inserts Term at the chain's end. Dbase is the db_selector of the
database, Domain is the domain of Term, and Ref is the database reference
number corresponding to Term. For example, if my_dba is declared to be in the
domain db_selector, like this:

382 Visual Prolog Language Tutorial

DOMAINS
db_selector = my_dba;

then in this call to chain_inserta

chain_inserta(my_dba, customer, person, p(john,
 "1 The Avenue", 32), NewRef)

customer is the name of the chain, and all customers are stored in one chain. It
would be perfectly all right to store the suppliers as terms from the domain
person but in a different chain, perhaps called supplier. person is the name of the
domain to which p(john, "1 The Avenue", 32) belongs, as shown in this domain
declaration:

DOMAINS
person = p(name, address, age)

If Chain doesn't already exist, these predicates will automatically create it.

chain_insertafter/6
chain_insertafter inserts a term after a specified term, returning the inserted
term's new reference number. It takes this format:

chain_insertafter(Dbase, ChainName, Domain, Ref, Term, NewRef)
 /* (i,i,i,i,i,o) */

chain_insertafter inserts the term Term after the chain element specified by Ref,
while NewRef is bound to the database reference number corresponding to Term
after it's been inserted.

chain_terms/5
During backtracking, chain_terms successively binds Term and Ref to each term
and its associated database reference number in the specified Chain. chain_terms
takes the form:

chain_terms(Dbase, Chain, Domain, Term, Ref) /* (i,i,i,o,o) */

chain_delete/2
chain_delete deletes a specified chain from a given external database; this
predicate takes the form:

chain_delete(Dbase, Chain) /* (i,i) */

Chapter 14, The External Database System 383

chain_first/3 and chain_last/3
chain_first and chain_last return the database reference number for the first and
last terms in a given chain, respectively.

chain_first(Dbase, Chain, FirstRef) /* (i,i,o) */
chain_last(Dbase, Chain, LastRef) /* (i,i,o) */

chain_next/3 and chain_prev/3
chain_next returns the reference number of the term following the given one,
while chain_prev returns the reference number of the term preceding the given
one.

chain_next(Dbase, Ref, NextRef) /* (i,i,o) */
chain_prev(Dbase, Ref, PrevRef) /* (i,i,o) */

Manipulating Terms
Three standard predicates for external database management are all concerned
with terms; these are term_replace, term_delete, and ref_term. Whenever you
call any of the term-handling external database standard predicates, you must
give the domain of the term as one of the arguments. Because of this, it's usually
a good idea to declare all terms in a given database as alternatives in one domain,
as in this declaration:

DOMAINS
terms_for_my_stock_control_database =

customer(Customer, Name, ZipCode, Address);
supplier(SupplierNo, Name, Address);
parts(PartNo, Description, Price, SupplierNo)

Note that there are no restrictions on mixing types (domains) in an external
database. One chain can contain text strings, another integers, a third some kind
of compound structures, and so on. However, external database data items are not
stored with type descriptors; for example, integers don't necessarily occupy just
two bytes. It's your responsibility to retrieve a term into the same domain as that
from which it was inserted. A run-time error will usually result if you attempt to
mix domains.

term_replace/4
term_replace replaces an old term (referenced by Ref, a database reference
number) with a new term, Term.

384 Visual Prolog Language Tutorial

term_replace(Dbase, Domain, Ref, Term) /* (i,i,i,i) */

term_delete/3
term_delete erases the term stored under Ref, a given database reference number.

term_delete(Dbase, Chain, Ref) /* (i,i,i) */

The storage occupied by the term will be released, and there must be no further
references to Ref.

ref_term/4
ref_term binds Term to the term stored under a given reference number, Ref.

ref_term(Dbase, Domain, Ref, Term) /* (i,i,i,o) */

A Complete Program Example
The following example program ch14e02.pro uses nearly all the external database
predicates introduced so far. Working first in memory, this program goes through
the following sequence of operations:

1. Writes 100 terms in a database.

2. Reads them back.

3. Replaces every second term.

4. Doubles the number of terms.

5. Erases every second term.

6. Examines every term with ref_term.

7. Calculates the size of the database.

This program then copies the database to a disk file and carries out the same
sequence of activities twice with the database held on disk. Finally, it calculates –
in hundredths of a second – the total time taken to carry out these activities. Note,
however, that for illustration the program generates large amounts of output,
which slows it down considerably. The true speed is only revealed if you remove
the output statements. The program ch14e03.pro is for UNIX, as time-calculation
is done differently in UNIX, and terminal output is significantly slower in UNIX
than in DOS.

Run the program to see what happens, and then try to alter the number of terms
and study your system's performance. The DOS program appears below.

Chapter 14, The External Database System 385

/* Program ch14e02.pro */

DOMAINS
my_dom = f(string)
db_selector = my_dba

PREDICATES
write_dba(integer)
read_dba
rd(Ref)
count_dba(integer)
count(Ref, integer, integer)
replace_dba
replace(Ref)
double_dba
double(Ref)
half_dba
half(Ref)
mixture

CLAUSES
write_dba(0):-!.
write_dba(N):-

chain_inserta(my_dba,my_chain,my_dom,f("Prolog system"),_),
chain_insertz(my_dba, my_chain, my_dom, f("Prolog Compiler"), _),
N1=N-1,
write_dba(N1).

read_dba:-
db_chains(my_dba, Chain),
chain_terms(my_dba, Chain, my_dom, Term, Ref),nl,
write("Ref=", Ref),
write(", Term=", Term),
fail.

read_dba:-
db_chains(my_dba, Chain),
chain_first(my_dba, Chain, Ref),
rd(Ref),
fail.
read_dba.

386 Visual Prolog Language Tutorial

rd(Ref):-
ref_term(my_dba, my_dom, Ref, Term), nl,
write(Term),
fail.

rd(Ref):-
chain_next(my_dba,Ref,Next),!,rd(Next).

rd(_).

replace_dba:-
chain_first(my_dba, my_chain, Ref),
replace(Ref).

replace(Ref):-
term_replace(my_dba, my_dom, Ref, f("Prolog Toolbox")),
chain_next(my_dba, Ref, NN),
chain_next(my_dba, NN, Next),!,
replace(Next).
replace(_).

half_dba:-
chain_last(my_dba, my_chain, Ref),
half(Ref).

half(Ref):-
chain_prev(my_dba, Ref, PP),
chain_prev(my_dba, PP, Prev), !,
term_delete(my_dba, my_chain, Ref),
half(Prev).

half(_).

double_dba:-
chain_first(my_dba, my_chain, Ref),
double(Ref).

double(Ref):-
chain_next(my_dba, Ref, Next),!,
chain_insertafter(my_dba, my_chain, my_dom, Ref,f("Programmers

Guide"), _),
double(Next).
double(_).

count_dba(N):-
chain_first(my_dba, my_chain, Ref),
count(Ref, 1, N).

Chapter 14, The External Database System 387

count(Ref, N, N2):-
chain_next(my_dba, Ref, Next),!,
N1=N+1,
count(Next, N1, N2).

count(_, N, N).

mixture :-nl,
write("Replace every second term:"),
replace_dba,nl,
write("Double the number of terms:"),
double_dba,nl,
write("Erase every second term:"),
half_dba,nl,
write("Use ref_term for all terms:"),
read_dba,
count_dba(N),nl,
write("There are now ", N, " terms in the database"),
db_statistics(my_dba, NoOfTerms, MemSize, DbaSize, FreSize),nl,
writef("NoOfTerms=%, MemSize=%, DbaSize=%, FreeSize=%", NoOfTerms,

MemSize,DbaSize,FreSize).

GOAL
nl,nl,nl,
write("\tTEST OF DATABASE SYSTEM\n\t***********************\n\n"),
time(H1, M1, S1, D1),
db_create(my_dba, "dd.dat", in_memory),nl,nl,
write("Write some terms in the database:"),
write_dba(50),
read_dba,
mixture,nl,nl,

write("Copy to file"),
db_copy(my_dba, "dd.dat", in_file),
db_close(my_dba), db_delete("dd.dat", in_memory),
db_open(my_dba, "dd.dat", in_file),
mixture,
db_close(my_dba),nl,nl,nl,

write("Open the database on file"),
db_open(my_dba, "dd.dat", in_file),
mixture,
db_close(my_dba),

time(H2, M2, S2, D2),
Time = (D2-D1)+100.0*((S2-S1)+60.0*((M2-M1)+ 60.0*(H2-H1))),nl,nl,
write("Time = ", Time, "/100 Sec"), nl.

388 Visual Prolog Language Tutorial

B+ Trees

A B+ tree is a data structure you can use to implement a very efficient method
for sorting, large amounts of data efficient method for sorting large amounts of
data; B+ trees enable a correspondingly efficient searching algorithm. You can
think of a B+ tree as providing an index to a database, which is why B+ trees are
sometimes referred to as indices.

In Visual Prolog, a B+ tree resides in an external database. Each entry in a B+
tree is a pair of values: a key string key string and an associated database
reference number. When building your database, you first insert a record in the
database and establish a key for that record. The Visual Prolog B+tree predicates
may then be used to insert this key and the database reference number
corresponding to this record into a B+ tree.

When searching a database for a record, all you have to do is to obtain a key for
that record, and the B+ tree will give you the corresponding reference number.
Using this reference number, you can retrieve the record from the database. As a
B+ tree evolves, its entries are kept in key order. This means that you can easily
obtain a sorted listing of the records.

A B+ tree is analogous to a binary tree, with the exception that in a B+ tree, more
than one key string is stored at each node. B+ trees are also balanced; this means
that the search paths to each key in the leaves of the tree have the same length.
Because of this feature, a search for a given key among more than a million keys
can be guaranteed, even in the worst case, to require accessing the disk only a
few times – depending on how many keys are stored at each node.

Although B+ trees are placed in an external database, they don't need to point to
terms in the same database. It is possible to have a database containing a number
of chains, and another database with a B+ tree pointing to terms in those chains.

Pages, Order, and Key Length
In a B+ tree, keys are grouped together in pages; each page has the same size,
and all pages can contain the same number of keys, which means that all the
stored keys for that B+ tree must be the same size. The size of the keys is
determined by the KeyLen argument, which you must supply when creating a B+
tree. If you attempt to insert strings longer than KeyLen into a B+ tree, Visual
Prolog will truncate them. In general, you should choose the smallest possible
value for KeyLen in order to save space and maximize speed.

Chapter 14, The External Database System 389

When you create a B+ tree, you must also give an argument called its Order.
This argument determines how many keys should be stored in each tree node;
usually, you must determine the best choice by trial and error. A good first try for
Order is 4, which stores between 4 and 8 keys at each node. You must choose the
value of Order by experimentation because the B+ tree's search speed depends
on the values KeyLen and Order, the number of keys in the B+ tree, and your
computer's hardware configuration.

Duplicate Keys
When setting up a B+ tree, you must allow for all repeat occurrences of your key.
For example, if you're setting up a B+ tree for a database of customers in which
the key is the customer's last name, you need to allow for all those customers
called Smith. For this reason, it is possible to have duplicate keys in a B+ tree.

When you delete a term in the database, you must delete the corresponding entry
in a B+ tree with duplicate keys by giving both the key and the database
reference number.

Multiple Scans
In order multiple, scans of B+ trees to have more than one internal pointer to the
same B+ tree, you can open the tree more than once. Note, however, that if you
update one copy of a B+ tree, for which you have other copies currently open, the
pointers for the other copies will be repositioned to the top of the tree.

The B+ Tree Standard Predicates
Visual Prolog provides several predicates for handling B+ trees; these predicates
work in a manner that parallels the corresponding db_... predicates.

bt_create/5 and bt_create/6
You create new B+ trees by calling the bt_create predicate.

bt_create(Dbase, BtreeName, Btree_Sel, KeyLen, Order)
 /* (i,i,o,i,i) */
bt_create(Dbase, BtreeName, Btree_Sel, KeyLen, Order, Duplicates)
 /* (i,i,o,i,i,i) */

The BtreeName argument specifies the name for the new tree. You later use this
name as an argument for bt_open. The arguments KeyLen and Order for the B+
Tree are given when the tree is created and can't be changed afterwards. If you

390 Visual Prolog Language Tutorial

are calling bt_create/5 or bt_create/6 with the Duplicates argument set to 1,
duplicates will be allowed in the B+Tree. If you call bt_create/6 with the
Duplicates argument set to 0 you will not be allowed to insert duplicates in the
B+Tree.

bt_open/3
bt_open opens an already created B+ tree in a database, which is identified by the
name given in bt_create.

bt_open(Dbase, BtreeName, Btree_Sel) /* (i,i,o) */

When you open or create a B+ tree, the call returns a selector (Btree_Sel) for that
B+ tree. A B+ tree selector belongs to the predefined domain bt_selector and
refers to the B+ tree whenever the system carries out search or positioning
operations. The relationship between a B+ tree's name and its selector is exactly
the same as the relationship between an actual file name and the corresponding
symbolic file name.

You can open a given B+ tree more than once in order to handle several
simultaneous scans. Each time a B+ tree is opened, a descriptor is allocated, and
each descriptor maintains its own internal B+ tree pointer.

bt_close/2 and bt_delete/2
You can close an open B+ tree with a call to bt_close or delete an entire B+ tree
with bt_delete.

bt_close(Dbase, Btree_Sel) /* (i,i) */
bt_delete(Dbase, BtreeName) /* (i,i) */

Calling bt_close releases the internal buffers allocated for the open B+ tree with
BtreeName.

bt_copyselector
bt_copyselector gives you a new pointer for an already open B+ tree selector (a
new scan).

bt_copyselector(Dbase,OldBtree_sel,NewBtree_sel) /* (i,i,o) */

The new selector will point to the same place in the B+ tree as the old selector.
After the creation the two B+ tree selectors can freely be repositioned without
affecting each other.

Chapter 14, The External Database System 391

bt_statistics/8
bt_statistics returns statistical information for the B+ tree identified by Btree_Sel.

bt_statistics(Dbase,Btree_Sel,NumKeys,NumPages, /* (i,i,o,o, */
Depth,KeyLen,Order,PgSize) /* o,o,o,o) */

The arguments to bt_statistics represent the following:

Dbase is the db_selector identifying the database.

Btree_Sel is the bt_selector identifying the B+ tree.

NumKeys is bound to the total number of keys in the B+ tree
Btree_Sel.

NumPages is bound to the total number of pages in the B+ tree.

Depth is bound to the depth of the B+ tree.

KeyLen is bound to the key length.

Order is bound to the order of the B+ tree.

PgSize is bound to the page size (in bytes).

key_insert/4 and key_delete/4
You use the standard predicates key_insert and key_delete to update the B+ tree.

key_insert(Dbase, Btree_Sel, Key, Ref /* (i,i,i,i) */
key_delete(Dbase, Btree_Sel, Key, Ref) /* (i,i,i,i) */

By giving both Key and Ref to key_delete, you can delete a specific entry in a B+
tree with duplicate keys.

key_first/3, key_last/3, and key_search/4
Each B+ tree maintains an internal pointer to its nodes. key_first and key_last
allow you to position the pointer at the first or last key in a B+ tree, respectively.
key_search positions the pointer on a given key.

key_first(Dbase, Btree_Sel, Ref) /* (i,i,o) */
key_last(Dbase, Btree_Sel, Ref) /* (i,i,o) */
key_search(Dbase, Btree_Sel, Key, Ref) /* (i,i,i,o)(i,i,i,i) */

If the key is found, key_search will succeed; if it's not found, key_search will
fail, but the internal B+ tree pointer will be positioned at the key immediately
after where Key would have been located. You can then use key_current to
return the key and database reference number for this key. If you want to position

392 Visual Prolog Language Tutorial

on an exact position in a B+ tree with duplicates you can also provide the Ref as
an input argument.

key_next/3 and key_prev/3
You can use the predicates key_next and key_prev to move the B+ tree's pointer
forward or backward in the sorted tree.

key_next(Dbase, Btree_Sel, NextRef) /* (i,i,o) */
key_prev(Dbase, Btree_Sel, PrevRef) /* (i,i,o) */

If the B+ tree is at one of the ends, trying to move the pointer further will cause a
fail, but the B+ tree pointer will act as if it were placed one position outside the
tree.

key_current/4
key_current returns the key and database reference number for the current
pointer in the B+ tree.

key_current(Dbase, Btree_Sel, Key, Ref) /* (i,i,o,o) */

key_current fails after a call to the predicates bt_open, bt_create, key_insert, or
key_delete, or when the pointer is positioned before the first key (using
key_prev) or after the last (with key_next).

Example: Accessing a Database via B+ Trees
The following example program handles several text files in a single database
file at once. You can select and edit the texts as though they were in different
files. A corresponding B+ tree is set up for fast access to the texts and to produce
a sorted list of the file names.

/* Program ch14e04.pro */

DOMAINS
db_selector = dba

PREDICATES
% List all keys in an index
list_keys(db_selector,bt_selector)

Chapter 14, The External Database System 393

CLAUSES
list_keys(dba,Bt_selector):-

key_current(dba,Bt_selector,Key,_),
write(Key,' '),
fail.

list_keys(dba,Bt_selector):-
key_next(dba,Bt_selector,_),!,
list_keys(dba,Bt_selector).

ist_keys(_,_).

PREDICATES
open_dbase(bt_selector)
main(db_selector,bt_selector)
ed(db_selector,bt_selector,string)
ed1(db_selector,bt_selector,string)

CLAUSES
% Loop until escape is pressed
main(dba,Bt_select):-

write("File Name: "),
readln(Name),
ed(dba,Bt_select,Name),!,
main(dba,Bt_select).

main(_,_).

% The ed predicates ensure that the edition will never fail.
ed(dba,Bt_select,Name):-

ed1(dba,Bt_select,Name),!.
ed(_,_,_).

%*
% There are three choices:
%% a) The name is an empty string - list all the names
% b) The name already exists - modify the contents of the file
% c) The name is a new name - create a new file
%* */

394 Visual Prolog Language Tutorial

ed1(dba,Bt_select,""):-!,
key_first(dba,Bt_select,_),
list_keys(dba,Bt_select),
nl.

ed1(dba,Bt_select,Name):-
key_search(dba,Bt_select,Name,Ref),!,
ref_term(dba,string,Ref,Str),
edit(Str,Str1,"Edit old",NAME,"",0,"PROLOG.HLP",RET),
clearwindow,
Str><Str1, RET=0,
term_replace(dba, string, Ref, Str1).

ed1(dba,Bt_select,Name):-
edit("",STR1,"Create New",NAME,"",0,"PROLOG.HLP",RET),
clearwindow,
""><Str1, RET=0,
chain_insertz(dba,file_chain,string,Str1,Ref),
key_insert(dba,Bt_select,Name,Ref).

open_dbase(INDEX):-
existfile("dd1.dat"),!,
db_open(dba,"dd1.dat",in_file),
bt_open(dba,"ndx",INDEX).

open_dbase(INDEX):-
db_create(dba,"dd1.dat",in_file),
bt_create(dba,"ndx",INDEX,20,4).

GOAL
open_dbase(INDEX),
main(dba,INDEX),
bt_close(dba,INDEX),
db_close(dba).

External Database Programming

In this section, we provide seven examples that illustrate some general principles
and methods for working with Visual Prolog's external database system. This is a
summary of what the following sections cover:

"Scanning through a Database" shows you the way to perform a sequential scan
through a chain or a B+ tree in an external database.

"Displaying the Contents of a Database" defines a predicate you can use to
display the current state of an external database.

Chapter 14, The External Database System 395

"Making a Database That Won't Break Down" illustrates how to protect your
database from unexpected system power failure and other potential catastrophes.

"Updating the Database" provides an example that makes it easy to change, add
to, and protect your database.

"Using Internal B+ Tree Pointers" supplies you with some predicates for
positioning a pointer within an open B+ tree.

"Changing the Structure of a Database" offers an alternative to the old copy-
while-changing method of changing the structure of a database.

Scanning through a Database
When you are using the database system, it is important to keep Visual Prolog's
storage mechanisms storage mechanisms in mind. Every time Visual Prolog
retrieves a term from an external database with the ref_term predicate, it places
that term on the global stack. The system won't release the space occupied by that
term until the program fails and backtracks to a point before the call to ref_term.
This means that, to do a sequential scan through a chain in an external database,
you should always use a structure like the following:

/* Structure for sequentially scanning through a chain */

scan(db_selector, Chain,) :-
chain_first(db_selector, Chain, Ref),
scanloop(db_selector, Ref).

scanloop(db_selector, Ref) :-
ref_term(db_selector, mydom, Ref, Term),
/* ... do your processing ... */
fail.

scanloop(db_selector, _) :-
chain_next(db_selector, Ref, NextRef),
scanloop(db_selector, NextRef).

Similarly, for a sequential scan through an index, you should use a structure like
this:

/* Structure for sequentially scanning through an index */

scan(db_selector, Bt_selector) :-
key_first(db_selector, Bt_selector, FirstRef),
scanloop(db_selector, Bt_selector, FirstRef).

396 Visual Prolog Language Tutorial

scanloop(db_selector, Bt_selector, Ref) :-
ref_term(db_selector, mydom, Ref, Term),
/* ... do your processing ... */
fail.

scanloop(db_selector, Bt_selector, _) :-
key_next(db_selector, Bt_selector, NextRef),
scanloop(db_selector, Bt_selector, NextRef).

You can also carry out a sequential scan through a chain in the database by using
chain_terms, like this:

/* Another way to sequentially scan through a chain */

scan(db_selector, Chain) :-
chain_terms(db_selector, Chain, mydom, Term, Ref),

/* ... do your processing ... */
fail.

scan(_, _).

To scan through a B+ tree, you could have also defined and used the predicate
bt_keys. During backtracking, this predicate returns (for a given B+ tree and
database) each key in the tree and its associated database reference number.

/* This fragment goes with ch14e05.pro */

PREDICATES
bt_keys(db_selector, bt_selector, string, ref)
bt_keysloop(db_selector, bt_selector, string, ref)

CLAUSES
bt_keys(Db_selector, Bt_selector, Key, Ref):-

key_first(Db_selector, Bt_selector, _),
bt_keysloop(Db_selector, Bt_selector, Key, Ref).

bt_keysloop(Db_selector, Bt_selector, Key, Ref):-
key_current(Db_selector, Bt_selector, Key, Ref).

bt_keysloop(Db_selector, Bt_selector, Key, Ref):-
key_next(Db_selector, Bt_selector, _),
bt_keysloop(Db_selector, Bt_selector, Key, Ref).

Displaying the Contents of a Database
You can use the predicate listdba, defined in the following program fragment, to
display the current state of an external database. listdba has one argument: the
selector of a database assumed to be open. All terms in the database must belong

Chapter 14, The External Database System 397

to the same domain. In the example, the domain is called mydom; when you use
this predicate, you must replace mydom with the actual name of the appropriate
domain in your program.

/* Program ch14e05.pro */

CONSTANTS
filename = "\\vip\\vpi\\programs\\register\\exe\\register.bin"

DOMAINS
db_selector = mydba
mydom = city(zipcode, cityname);
 person(firstname, lastname, street, zipcode, code)
zipcode, cityname, firstname, lastname, street, code = string

PREDICATES
listdba(db_selector)
nondeterm bt_keys(db_selector,bt_selector,string,ref)
nondeterm bt_keysloop(db_selector,bt_selector,string,ref)

CLAUSES
listdba(Db_selector):-nl,

write("**"),nl,
write(" DATABASE LISTING"),nl,
write("**"),
db_statistics(Db_selector,NoOfTerms,MemSize,DbaSize,FreeSize),nl,nl,
write("Total number of records in the database: ",NoOfTerms),nl,
write("Number of bytes used in main memory: ",MemSize),nl,
write("Number of bytes used by the database: ",DbaSize),nl,
write("Number of bytes free on disk: ",FreeSize),nl,
fail.

listdba(Db_selector):-
db_chains(Db_selector,Chain),nl,nl,nl,nl,
write("******* Chain LISTING *************"),nl,nl,
write("Name=",Chain),nl,nl,
write("CONTENT OF: ",Chain),nl,
write("------------------------------\n"),
chain_terms(Db_selector, Chain, mydom,Term, Ref),
write("\n", Ref, ": ",Term),
fail.

398 Visual Prolog Language Tutorial

listdba(Db_selector):-
db_btrees(Db_selector,Btree), /* Returns each B+ tree name */

bt_open(Db_selector,Btree,Bt_selector),
bt_statistics(Db_selector,Bt_selector,NoOfKeys,
 NoOfPages,Dept,KeyLen,Order,PageSize),nl,nl,nl,
write("******** INDEX LISTING **************"),nl,nl,
write("Name= ", Btree),nl,
write("NoOfKeys= ", NoOfKeys),nl,
write("NoOfPages=", NoOfPages),nl,
write("Dept= ", Dept),nl,
write("Order= ", Order),nl,
write("KeyLen= ", KeyLen),nl,
write("PageSize= ", PageSize), nl,
write("CONTENT OF: ", Btree),nl,
write("-----------------------------\n"),
bt_keys(Db_selector,Bt_selector,Key,Ref),
write("\n",Key, " - ",Ref),
fail.

listdba(_).

bt_keys(Db_selector,Bt_selector,Key, Ref):-
key_first(Db_selector,Bt_selector,_),
bt_keysloop(Db_selector,Bt_selector,Key,Ref).

bt_keysloop(Db_selector,Bt_selector,Key,Ref):-
key_current(Db_selector,Bt_selector,Key,Ref).

bt_keysloop(Db_selector,Bt_selector,Key,Ref):-
key_next(Db_selector,Bt_selector,_),

bt_keysloop(Db_selector,Bt_selector,Key,Ref).

GOAL
db_open(mydba,filename,in_file),
listdba(mydba).

Implementing a Database That Won't Break Down
If you enter a lot of new information into a database, it is important to ensure that
this information won't be lost if the system goes down. In this section, we
illustrate one way of doing this – by logging all changes in another file.

Making a change involves first updating the database, and then flushing it. If this
operation succeeds, the system then records the change in the log file and flushes
the log file itself. This means that only one file is unsafe at any given time. If the
database file becomes invalid (because the system went down before the file was
flushed, for example), you should be able to reconstruct it by merging the log file

Chapter 14, The External Database System 399

with a backup of the database file. If the log file becomes invalid, you should
create a new log file and make a backup of the database file.

If you record the date and time in the log file, together with the old values from a
modification involving replacement or deletion, you should be able to reconstruct
the database to its state at a given time.

/* This program fragment goes with ch14e05.pro */

DOMAINS
logdom = insert(relation,dbdom,ref);

replace(relation,dbdom,ref,dbdom);
erase(relation,ref,dbdom)

PREDICATES
logdbchange(logdom)

CLAUSES
logdbchange(Logterm):-

chain_insertz(logdba,logchain,logdom,Logterm,_),
db_flush(logdba).

Updating the Database
As a general principle, you shouldn't spread database updating throughout the
program but should keep it in some user-defined predicates. This makes it easier
to change the database and/or to add new B+ trees. When you confine updating
this way, it's also easier to make a robust database system because your program
involves only a small piece of code in which the database is unsafe.

The following example handles updating two different relations, whose objects
are all strings:

person(firstname, lastname, street, zipcode, code)

city(zipcode, cityname)

It handles the updating with the following indexes (keys) on the person and city
relations:

Person's Name............Last Name plus First Name
Person's Address.........Street Name
City Number..............Zip Code

In this example, we assume that the B+ trees are already open, and that their
bt_selectors have been asserted in the database predicate indices.

400 Visual Prolog Language Tutorial

Before this program initiates the updating, it eliminates the possibility of a
BREAK with the break predicate. After updating is finished, the program flushes
the database with db_flush. Although db_flush makes the updating a slow
process (thanks to DOS), the file will be safe after this call.

To make the system as secure as possible, the program logs changes in a special
file through a call to logdbchange.

/* Program ch14e06.pro */

/* Logging database operations */

DOMAINS
logdom = insert(relation,dbdom,ref);
replace(relation,dbdom,ref,dbdom);
erase(relation,ref,dbdom)

PREDICATES
logdbchange(logdom)

CLAUSES
logdbchange(Logterm):-

chain_insertz(logdba,logchain,logdom,Logterm,_),
db_flush(logdba).

DOMAINS
dbdom = city(zipcode, cityname);
person(firstname, lastname, street, zipcode, code)
zipcode, cityname, firstname, lastname = string
street, code = string
indexName = person_name; person_adr; city_no
relation = city; person
db_selector = dba; logdba

facts
% This takes and index name (a key) that is a person's name or address
%or a city number; it also takes a B+ tree selector
indices(IndexName, bt_selector)

PREDICATES
%and a first name (10 characters)
% This predicate creates an index name from a last name (20 characters)
xname(FirstName,LastName,string)

CLAUSES
xname(F,L,S):-

str_len(L,LEN),LEN>20,!,
frontstr(20,L,L1,_),
format(S,"%-20%",L1,F).

Chapter 14, The External Database System 401

xname(F,L,S):-
format(S,"%-20%",L,F).

PREDICATES
ba_insert(relation, dbdom)
dba_replace(relation, dbdom, Ref)
dba_erase(relation, Ref)

CLAUSES
dba_insert(person,Term):-!,

break(OldBreak),
break(off),
indices(person_name,I1),
indices(person_adr,I2),!,
Term = person(Fname,Lname,Adr,_,_),
xname(Fname,Lname,Xname),
chain_insertz(dba,person,dbdom,Term,Ref),
key_insert(dba,I1,Xname,Ref),
key_insert(dba,I2,Adr,Ref),
db_flush(dba),
logdbchange(insert(person,Term,Ref)),
break(OldBreak).

dba_insert(city,Term):-
break(OldBreak),
break(off),
indices(city_no,I),!,
Term = city(ZipCode,_),
chain_insertz(dba,city,dbdom,Term,Ref),
key_insert(dba,I,ZipCode,Ref),
db_flush(dba),
logdbchange(insert(city,Term,Ref)),
break(OldBreak).

402 Visual Prolog Language Tutorial

dba_replace(person,NewTerm,Ref):-!,
break(OldBreak),
break(off),
indices(person_name,I1),
indices(person_adr,I2),!,
ref_term(dba,dbdom,Ref,OldTerm),
OldTerm=person(OldFname,OldLname,OldAdr,_,_),
xname(OldFname,OldLname,OldXname),
key_delete(dba,I1,OldXname,Ref),
key_delete(dba,I2,Oldadr,Ref),
NewTerm=person(NewFname,NewLname,NewAdr,_,_),
xname(NewFname,NewLname,NewXname),
term_replace(dba,dbdom,Ref,NewTerm),
key_insert(dba,I1,NewXname,Ref),
key_insert(dba,I2,NewAdr,Ref),
db_flush(dba),
logdbchange(replace(person,NewTerm,Ref,OldTerm)),
break(OldBreak).

dba_replace(city,NewTerm,Ref):-!,
break(OldBreak),
break(off),
indices(city_no,I),!,
ref_term(dba,dbdom,Ref,OldTerm),
OldTerm=city(OldZipCode,_),
key_delete(dba,I,OldZipCode,Ref),
NewTerm=city(ZipCode,_),
term_replace(dba,dbdom,Ref,NewTerm),
key_insert(dba,I,ZipCode,Ref),
db_flush(dba),
logdbchange(replace(city,NewTerm,Ref,OldTerm)),
break(OldBreak).

Chapter 14, The External Database System 403

dba_erase(person,Ref):-!,
break(OldBreak),
break(off),
indices(person_name,I1),
indices(person_adr,I2),!,
ref_term(dba, dbdom, Ref, OldTerm),
OldTerm=person(OldFname,OldLname,OldAdr,_,_),
xname(OldFname,OldLname,OldXname),
key_delete(dba,I1,OldXname,Ref),
key_delete(dba,I2,OldAdr,Ref),
term_delete(dba,person,Ref),
db_flush(dba),
logdbchange(erase(person, Ref, OldTerm)),
break(OldBreak).

dba_erase(city,Ref):-
break(OldBreak),
break(off),
indices(city_no,I),!,
ref_term(dba,dbdom,Ref,OldTerm),
OldTerm=city(OldZipCode,_),
key_delete(dba,I,OldZipCode,Ref),
term_delete(dba,city,Ref),
db_flush(dba),
logdbchange(erase(city,Ref,OldTerm)),
break(OldBreak).

Using Internal B+ Tree Pointers
Each open B+ tree has an associated pointer to its nodes. When you open or
update the B+ tree, this pointer is positioned before the start of the tree. When
you call key_next with the pointer at the last key in the tree, the pointer will be
positioned after the end of the tree. Whenever the pointer moves outside the tree,
key_current fails. If this arrangement is not appropriate for a particular
application, you can model other predicates.

You can use mykey_next, mykey_prev , and mykey_search, defined in this
example, to ensure that the B+ tree pointer is always positioned inside the B+
tree (provided there are any keys in the tree).

PREDICATES
mykey_next(db_selector, bt_selector, ref)
mykey_prev(db_selector, bt_selector, ref)
mykey_search(db_selector, bt_selector, string, ref)

404 Visual Prolog Language Tutorial

CLAUSES
mykey_prev(Dba, Bt_selector, Ref) :-

key_prev(Dba, Bt_selector, Ref), !.
mykey_prev(Dba, Bt_selector, Ref) :-

key_next(Dba, Bt_selector, Ref), fail.

mykey_next(Dba, Bt_selector, Ref) :-
key_next(Dba, Bt_selector, Ref), !.

mykey_next(Dba, Bt_selector, Ref) :-
key_prev(Dba, Bt_selector, Ref), fail.

mykey_search(Dba, Bt_selector, Key, Ref) :-
key_search(Dba, Bt_selector, Key, Ref), !.

mykey_search(Dba, Bt_selector, _, Ref) :-
key_current(Dba, Bt_selector, _, Ref), !.

mykey_search(Dba, Bt_selector, _, Ref) :-
key_last(Dba, Bt_selector, Ref).

You can use the samekey_next and samekey_prev predicates, defined in the next
example, to move the index pointer to the next identical key in a B+ tree that has
duplicate keys.

PREDICATES
samekey_next(db_selector, bt_selector, ref)
try_next(db_selector, bt_selector, ref, string)
samekey_prev(db_selector, bt_selector, ref)
try_prev(db_selector, bt_selector, ref, string)

CLAUSES
samekey_next(Dba, Bt_selector, Ref) :-

key_current(Dba, Bt_selector, OldKey, _),
try_next(Dba, Bt_selector, Ref, OldKey).

try_next(Dba, Bt_selector, Ref, OldKey) :-
key_next(Dba, Bt_selector, Ref),
key_current(Dba, Bt_selector, NewKey, _),
NewKey = OldKey, !.

try_next(Dba, Bt_selector, _, _) :-
key_prev(Dba, Bt_selector, _),
fail.

samekey_prev(Dba, Bt_selector, Ref) :-
key_current(Dba, Bt_selector, OldKey, _),
try_prev(Dba, Bt_selector, Ref, OldKey).

Chapter 14, The External Database System 405

try_prev(Dba, Bt_selector, Ref, OldKey) :-
key_prev(Dba, Bt_selector, Ref),
key_current(Dba, Bt_selector, NewKey, _),
NewKey = OldKey, !.

try_prev(Dba, Bt_selector, _, _) :-
key_next(Dba, Bt_selector, _),
fail.

Changing the Structure of a Database
One way to change the structure of a database is to write a small program that
copies the old database to a new one while making external databases, changing
structure of the changes. Another way, which we'll describe here, is to first dump
the database into a text file, make any necessary modifications to the database
with a text editor, and then read the modified database back into a new file.

You can use the predicate dumpDba, defined in the next program fragment, to
dump the contents of an external database into a text file if the database satisfies
the following conditions:

• Every chain in the database models a relation.

• All terms in the database belong to the same domain.

This method does not dump the B+ trees into the text file; we assume, given the
first condition, that B+ trees can be generated from the relations. In this example,
all terms belong to the generic domain mydom; when you implement this
method, replace mydom with the actual name and a proper declaration.

This code writes the contents of the database to a text file opened by outfile.
Each line of the text file contains a term and the name of the containing chain.
The term and the chain names are combined into the domain chainterm.

/* Program ch14e07.pro */

CONSTANTS
filename = "\\vip\\vpi\\programs\\register\\exe\\register.bin"

DOMAINS
Db_selector = myDba
chainterm = chain(string, mydom)
file = outfile
mydom = city(zipcode, cityname);
person(firstname, lastname, street, zipcode, code)
zipcode, cityname, firstname, lastname = string
street, code = string

406 Visual Prolog Language Tutorial

PREDICATES
wr(chainterm)
dumpDba(string,string)

CLAUSES
wr(X):-

write(X),nl.

dumpDba(Db_selector,OutFile):-
db_open(myDba,Db_selector,in_file),
openwrite(outfile,OutFile),
writedevice(outfile),
db_chains(myDba,Chain),
chain_terms(myDba,Chain,mydom,Term,_),
wr(chain(Chain,Term)),
fail.

dumpDba(_,_):-
closefile(outfile),
db_close(myDba).

GOAL
dumpDba(filename,"register.txt").

Now, using your customized version of this code, you can generate the text file
by calling dumpDba, and you can reload the database by using readterm with the
chainterm domain. The predicate dba_insert, which we defined in "Updating the
Database" (page 399), takes care of the updating.

DOMAINS
chainterm = chain(string, dbdom)

PREDICATES
nondeterm repfile(file)
copyDba
loadDba(string)

CLAUSES
repfile(_).

repfile(File) :- not(eof(File)), repfile(File).

Chapter 14, The External Database System 407

loadDba(OutFile) :-
openread(Prn_file, OutFile),
readdevice(Prn_file),
repfile(Prn_file),
readterm(Chainterm, chain(Chain, Term)),
write(Term), nl,
Dba_insert(Chain, Term),
fail.

loadDba(_) :-
closefile(Prn_file).

copyDba :-
createDba,
db_open(Dba, "register.bin", in_file),
open_indices,
loadDba("register.txt"),
db_close(Dba).

Filesharing and the External Database
Visual Prolog supports file-sharing the external database. This means that a file
can be opened by several users or processes simultaneously, which will be useful
if you are using the external database in a LAN-application or with one of the
multitasking platforms. UNIX developers should take note that Visual Prolog
uses advisory file-locking.

Visual Prolog provides the following file-sharing facilities:

• opening an existing database with two different access modes and three
different sharing modes for optimal speed.

• grouping database accesses in transactions to ensure consistency

• predicates that make it possible to check whether other users have updated
the database.

Filesharing Domains
The two special domains, which are used for file-sharing have the alternatives:

Domain Functors

accessmode = read; readwrite

denymode = denynone; denywrite; denyall

408 Visual Prolog Language Tutorial

Opening the Database in Share Mode
In order to access the external database in share mode, you must open an already
existing database file with the four-arity version of db_open, specifying
AccessMode and DenyMode.

If AccessMode is read the file will be opened as readonly, and any attempts to
update the file will result in a run-time error, if it is readwrite the file is opened
for both reading and writing. AccessMode is also used with the predicate
db_begintransaction.

If DenyMode is denynone all other users will be able to both update and read the
file, if it is denywrite, other users will not be able to open the file in AccessMode
= readwrite, but you will be able to update the file providing it was opened in
AccessMode = readwrite. If db_open is called with DenyMode = denyall no other
users will be able to access the file at all.

The first user that opens the file determines DenyMode for all subsequent
attempts to open the file, and a run-time error will occur if reopened in an
incompatible mode. The following table summarizes the results of opening and
subsequently attempting to reopen the same file for all combinations of
DenyMode and AccessMode:

 2ND, 3RD, REOPEN

denyAll denyWrite denyNone

R RW R RW R RW

R N N N N N N deny-

All RW N N N N N N

R N N Y N Y N deny-

Write RW N N N N Y N

R N N Y Y Y Y

1
s
t

O

P

E

N
deny-

None RW N N N N Y Y

Chapter 14, The External Database System 409

R : AccessMode = read
RW: AccessMode = readwrite
Y : Open by 2ND, 3RD ... allowed
N : Open by 2ND, 3RD ... not allowed

Transactions and Filesharing
If a database file is opened in share mode, all database predicates that access the
database file in any way, must be grouped inside "transactions" this is done by
surrounding the calls to the predicates with db_begintransaction and
db_endtransaction.

Dependent on the combination of the chosen AccessMode and DenyMode the
shared file may be locked for the duration of the transaction. Again dependent on
the severity of the lock, other users may not be able to either read or update the
file, while your transaction takes place. This is of course necessary to avoid
conflicts between reading and writing, but if file-sharing is to have any meaning,
no excessive locking ought to take place. This can be avoided by keeping the
transactions small (as short as possible) and only include those predicates that
access the database inside the transaction.

The concept of transactions in relation to file-sharing is very important. Two
often conflicting requirements, namely, database consistency and a minimum of
file locking, must be fulfilled at the same time.

db_begintransaction ensures that database consistency is maintained and that an
appropriate locking of the file is effectuated. Several readers can access the file at
the same time, but only one process at the time is allowed to update the database.
The predicate db_setretry can be called to set for how long db_begintransaction
will wait to gain access to the file before returning with a run-time error. Calling
db_begintransaction with AccessMode set to readwrite with a file opened with
AccessMode set to read will also result in a run-time error. If
db_begintransaction is called, db_endtransaction must be called before a new
call to db_begintransaction for the same database, otherwise a run-time error
will occur.

The following table summarizes the actions taken by db_begintransaction with
different combinations of AccessMode and DenyMode:

 AccessMode

 read readWrite

Deny- denyNone WLock\Reload RWLock\Reload

410 Visual Prolog Language Tutorial

denyWrite None RWLock Mode

denyAll None None

Actions :

WLock : No write. Read allowed.
RWLock : No read or write allowed.
Reload : Reloading of file descriptors.

Since reloading and locking takes time, AccessMode and DenyMode should be
selected with care. If no users are going to update the database, set AccessMode
to read and DenyMode to denywrite for a minimal overhead.

Filesharing Predicates
In this section we discuss the file sharing predicates db_open,
db_begintransaction, db_endtransaction, db_updated, bt_updated, and
db_setretry.

db_open/4
This four-arity version of db_open opens an existing database on file in share
mode.

db_open(Dbase, Name, AccessMode, DenyMode) /* (i,i,i,i) */

After creating an external database (in_file) with db_create it can be opened in
share mode, where Dbase is a db_selector, Name is the DOS-style file name,
AccessMode is read or readwrite, and DenyMode is denynone, denywrite, or
denyall.

db_begintransaction/2
db_begintransaction(Dbase, AccessMode) /* (i,i) */

This predicate marks the beginning of a transaction, and must be called prior to
any form of access to a database opened in share mode, even if opened with
denyall. In addition to the db_selector for the database, db_begintransaction
must be called with AccessMode bound to either read or readwrite.

db_endtransaction/1
db_endtransaction(Dbase) /* (i) */

Chapter 14, The External Database System 411

db_endtransaction marks the end of a transaction and carries out the appropriate
unlocking of the database. A call of db_endtransaction without a prior call to
db_begintransaction for the db_selector Dbase will result in a run-time error.

db_updated/1
db_updated(Dbase) /* (i) */

If other users have updated the database, a call of db_begintransaction will
ensure that database consistency is maintained. Changes can be detected with the
predicate db_updated, which succeeds if called inside a transaction where
changes made by other users since your last call of db_begintransaction. If no
changes have been made, db_updated will fail. If called outside a transaction a
run-time error will occur.

bt_updated/2
bt_updated(Dbase,Btree_Sel) /* (i,i) */

Similar to db_updated/1, but only succeeds if the named B+ tree has been
updated.

db_setretry/3
db_setretry(Dbase,SleepPeriod,RetryCount) /* (i,i,i) */

If access to a file is denied, because another process has locked the file, you can
have your process wait for a period of time and then try again. The predicate
db_setretry changes the default settings of SleepPeriod, which is the interval in
centiseconds between retries, and RetryCount, which is the maximum number of
times access will be attempted. The default settings are 100 for RetryCount and
10 for SleepPeriod.

Programming with Filesharing
Great care must be taken when using the file sharing predicates. Although they,
when used properly, ensure low-level consistency in a shared database, it is the
application programmers responsibility to provide the demanded high level
consistency for a given application. The term "transaction" is used here for a
group of file accesses, but it should be kept in mind that no back out facilities are
provided, and that program interruption caused by either software or hardware
failure, may cause inconsistencies in the database file.

412 Visual Prolog Language Tutorial

When several processes share a database, special attention must also be paid to
the domains involved. It's crucial that they are identical and use identical
alignment.

To avoid unnecessary locking of the database file the transactions should be kept
fairly small, in order to ensure that the file will be locked for as short a time as
possible. At the same time it is important that predicates used to locate and
access an item in the database are grouped inside the same transaction:

.....
db_begintransaction(dba,readwrite),
key_current(dba,firstindex,Key,Ref),
ref_term(dba,string,Ref,Term),

db_endtransaction(dba),
write(Term),
.....

In this example the predicates key_current and ref_term should not be placed
inside different transactions, as the term stored under Ref may be deleted by
another user between transactions.

If a B+ tree is updated by another user and the file buffers are reloaded, the B+
tree will be repositioned before the first element of the tree. By calling the
predicate bt_updated you can detect when to reposition your B+ tree. It is still
possible to list the entire index and at the same time keep the transactions small,
by temporarily storing the current key in the internal database, as shown in the
following program fragment. It works under the assumption that no duplicate
keys exist.

DOMAINS
db_selector = dba

facts
determ currentkey(string)

PREDICATES
list_keys(bt_selector)
list_index(bt_selector)
check_update(bt_selector,string)

CLAUSES
check_update(Index,Key):-

not(bt_updated(dba,Index)),!,
key_next(dba,Index,_).

check_update(Index,Key):-
key__search(dba,Index,Key,_),!. % Will fail if current was deleted

check_update(_,_). %by another user

Chapter 14, The External Database System 413

list_keys(Index):-
currentkey(Key),
write(Key),nl,
db_begintransaction(dba,read),

check_update(Index,Key),
key_current(dba,Index,NextKey,_),

db_endtransaction(dba),!,
retract(currentkey(_)),
assert(currentkey(NextKey)),
list_keys(Index).

list_keys(_):-
db_endtransaction(dba).

list_index(Index):-
db_begintransaction(dba,read),

key_first(dba,Index,_),
key_current(dba,Index,Key,_),

db_endtransaction(dba),
retractall(currentkey(_)),
assert(currentkey(Key)),
list_keys(Index).

list_index(_).

key_search is used to reposition the B+ tree at the key that was listed previously.
The my_search predicate insures that the B+ tree will be correctly positioned
even if currentkey was deleted by another user.

The example above also illustrates another important point. A db_endtransaction
must be used after each, and before the next, call of db_begintransaction. In the
predicate list_keys above, the listing stops when key_next fails, indicating that all
the keys have been listed. As db_begintransaction had to be called prior to
accessing the database, db_endtransaction has to be called as well after
accessing is completed. The second list_keys-clause ensures that
db_endtransaction will be called when key_next fails.

Implementing High-level Locking
The examples shown so far have illustrated some of the problems involved in file
sharing, and how they can be avoided.

You are allowed to do all the same operations on a shared database file as if you
were the only user with access to the file. Grouping the accesses to the file inside
db_begintransaction and db_endtransaction ensures that the Visual Prolog
system has consistency in its descriptor tables. But on a higher level you must

414 Visual Prolog Language Tutorial

yourself ensure that the various logical constraints you have on your application
are conserved over a network with multiple users.

We call this high level locking or application level locking. By using the
primitives db_begintransaction and db_endtransaction you have many ways of
implementing a high level locking facility.

A common example of where high level locking is needed is in a database
system where a user wants to change a record. When he has decided that he
wants to change a record he should perform some kind of action so the
application will place a lock on that record until the user has finished the changes
to the record so the new record can be written back to disk, and the record
unlocked.

Some suggestions for implementing an application-level lock of this type are:

• Have a special field in that record to tell whether it is locked.

• Have a special B+Tree or a chain where you store all references to all the
records that are locked by users.

• Associated with a REF store a list of references to all records that are locked.

You might need to implement a kind of supervisor mechanism so a special user
can unlock locked records.

This was just an example, you might want to implement locking on a higher level
like tables or groups of tables, - or knowledge groups etc.

Note: If you want to delete a B+ tree in a database file opened in share mode, it
is up to you to ensure by high level locking that no other users have opened this
B+ Tree. In the Visual Prolog system there is no check for a B+Tree selector
being no longer valid because the B+Tree has been deleted by another user.

A Complete Filesharing Example
In the following large example it will be shown how file sharing can be done
more easily by implementing your own locking system. If you manage your own
locks, needless file locking can be avoided, and other users won't have to wait for
access to the file because it is locked.

The example is the file-sharing version of the previous ch14e04.pro example.
The program lets several users create, edit, view and delete texts from a single
shared file. When creating and editing a text, it will be locked until editing is
complete. Other users cannot delete or edit a text while it is locked, but they will
be able to view the text. Run the program and experiment with different settings
for db_open and db_setretry.

Chapter 14, The External Database System 415

/* Program ch14e08.pro */

facts - indexes
determ lockindex(bt_selector)
determ index(bt_selector)
determ mark(real)

DOMAINS
my_dom = f(string)
db_selector = dba

PREDICATES
nondeterm repeat
wr_err(integer)

% List texts and their status
list
list_texts(bt_selector,bt_selector)
show_textname(string,bt_selector)

CLAUSES
show_textname(Key,LockIndex):-

key_search(dba,LockIndex,Key,_),!,
write("\n*",Key).

show_textname(Key,_):-
write("\n ",Key).

list_texts(Index,LockIndex) :-
key_current(dba,Index,Key,_),
show_textname(Key,LockIndex),
key_next(dba,Index,_),!,
list_texts(Index,LockIndex).

list_texts(_,_).

list:-nl,
write("***************** TEXTS (*=Locked) *******************"),nl,
index(Index),
lockindex(LockIndex),
key_first(dba,Index,_),!,
list_texts(Index, LockIndex),nl,
write("**"),nl.

list.

repeat.
repeat:-repeat.

416 Visual Prolog Language Tutorial

wr_err(E):-
errormsg("PROLOG.ERR",E,Errormsg,_),
write(Errormsg),
readchar(_).

PREDICATES
%Logical locking of files

lock(string,bt_selector,bt_selector)

CLAUSES
lock(Name,Index,LockIndex):-

not(key_search(dba,LockIndex,Name,_)),!,
key_search(dba,Index,Name,Ref),
key_insert(dba, LockIndex, Name, Ref).

lock(Name,_,_):-
db_endtransaction(dba),
write(Name," is being updated by another user.\n Access denied"),
fail.

PREDICATES
ed(db_selector, bt_selector, bt_selector, string)
ed1(db_selector, bt_selector, bt_selector, string)

CLAUSES
% The ed predicates ensure that the edition will never fail.

ed(dba,Index,LockIndex,Name):-
ed1(dba,Index,LockIndex,Name),!.

ed(_,_,_,_).

Chapter 14, The External Database System 417

/*
* There are two choices: *
* *
* 1) The name already exists - modify the contents of the *
* file *
* 2) The name is a new name - create a new file *
* */
ed1(dba, Index,LockIndex, Name) :-

db_begintransaction(dba,readwrite),
key_search(dba, Index, Name, Ref),!,
ref_term(dba, string, Ref, Str),
lock(Name,Index,LockIndex),
list,
db_endtransaction(dba),nl,
write("**"),nl,
write("* EDIT ",Name," *"),nl,
write("**"),nl,
write(Str),nl,
write("< Press 'r' to replace this string ; else any key >"),nl,
readchar(X),X='r',nl,
write("Enter string and press <ENTER>"),nl,
readln(Str1),nl,
db_begintransaction(dba,readwrite),
term_replace(dba, string, Ref, Str1),
key_delete(dba, LockIndex, Name, Ref), %unlock
list,
db_endtransaction(dba).

%New file
ed1(dba, Index,LockIndex, Name):-

chain_insertz(dba, file_chain, string, "", Ref),
key_insert(dba, Index, Name, Ref),
list,
db_endtransaction(dba),
ed1(dba,Index,LockIndex, Name).

PREDICATES
main(db_selector, bt_selector, bt_selector)
interpret(char, bt_selector, bt_selector)
check_update_view
update_view
get_command(char)

418 Visual Prolog Language Tutorial

CLAUSES
% Loop until 'Q' is pressed

main(dba,Index,LockIndex) :-
check_update_view,
get_command(Command),
trap(interpret(Command,Index,LockIndex),E,wr_err(E)),!,
main(dba,Index,LockIndex).

main(_,_,_).

check_update_view:-
mark(T),timeout(T),!,
db_begintransaction(dba,read),
update_view,
db_endtransaction(dba),
marktime(100,Mark),
retractall(mark(_)),
assert(mark(Mark)).

check_update_view.

update_view:-nl,
write("******* COMMANDS E:Edit V:View D:DeleteQ:Quit *******"),nl,
write("COMMAND>"),
db_updated(dba),!,
list.

update_view.

get_command(Command):-
readchar(C),!,
upper_lower(Command,C),
write(Command),nl.

get_command(' ').

Chapter 14, The External Database System 419

%interpret commandlineinput
interpret(' ',_,_):-!.
interpret('Q',_,_):-!,fail.
interpret('E',Index,LockIndex):-!,

write("\nFile Name: "),
readln(Name),nl,
ed(dba,Index,LockIndex,Name).

interpret('V',Index,_):-
write("\nFile Name: "),
readln(Name),nl,
db_begintransaction(dba,read),
key_search(dba,Index,Name,Ref),!,
ref_term(dba,string,Ref,Str),
db_endtransaction(dba),
write("**"),nl,
write("* VIEW ",Name," "),nl,
write("**"),nl,
write(Str),nl.

interpret('V',_,_):-!,
db_endtransaction(dba).

interpret('D',Index,_):-
write("\nDelete file: "),
readln(Name),nl,
db_begintransaction(dba,readwrite),
key_search(dba,Index,Name,Ref),!,
% not(key_search(dba,LockIndex,Name,_)),!,
key_delete(dba,Index,Name,Ref),
term_delete(dba,file_chain,Ref),
list,
db_endtransaction(dba).

interpret('D',_,_):-!,
db_endtransaction(dba).
nterpret(_,_,_):-beep.

PREDICATES
open_dbase(bt_selector,bt_selector)

CLAUSES
open_dbase(INDEX,LOCKINDEX):-

existfile("share.dba"),!,
db_open(dba, "share.dba",readwrite,denynone),
db_begintransaction(dba,readwrite),
bt_open(dba, "locks", LOCKINDEX),
bt_open(dba, "ndx", INDEX),
db_endtransaction(dba).

420 Visual Prolog Language Tutorial

open_dbase(INDEX,LOCKINDEX):-
db_create(dba,"share.dba" , in_file),
bt_create(dba, "locks",TEMPLOCKINDEX,20, 4),
bt_create(dba, "ndx",TEMPINDEX , 20, 4),
bt_close(dba, TEMPINDEX),
bt_close(dba, TEMPLOCKINDEX),
db_close(dba),
open_dbase(INDEX,LOCKINDEX).

GOAL
open_dbase(INDEX,LOCKINDEX),
assert(index(INDEX)),
assert(lockindex(LOCKINDEX)),
marktime(10,Mark),
assert(mark(Mark)),
db_setretry(dba,5,20),
db_begintransaction(dba,read),
list,nl,
db_endtransaction(dba),
main(dba, INDEX,LOCKINDEX),
db_begintransaction(dba,read),
bt_close(dba, INDEX),
bt_close(dba, LOCKINDEX),
db_endtransaction(dba),
db_close(dba).

Implementation Aspects of Visual Prolog Filesharing
Filesharing in Visual Prolog is efficient and fast, because only the necessary parts
of the database file descriptors are loaded after an update by another user. As was
shown earlier in this chapter it is only under certain circumstances that any
reloading of file buffers and locking of files has to be done at all, and the
complex internal management of the database file ensures that after an update a
minimum of disk activity is needed.

The database has a serial number, which is a six-byte integer, that is incremented
and written to disk each time an update occurs. The db_begintransaction
predicate compares the local copy of the serial number with the one on the disk,
and if they differ, the descriptors are reloaded. Locking is done in an array with
room for 256 readers. When a reader wishes to access the file, an unlocked space
is located in this lock array, and locked for the duration of the transaction. This
allows several readers to access the file simultaneously. If db_begintransaction
is called with AccessMode = readwrite, it will wait until all present readers have

Chapter 14, The External Database System 421

unlocked their space, and then lock the entire array, allowing no other users to
access the file.

Miscellaneous

Finally, we have provided a couple of small predicates that are handy in special
circumstances. The predicate availableems will in DOS return the amount of
available EMS. This can be used before a call to db_open or db_create in order
to see if there is enough space for placing the database in_ems.

availableems(Size) /* (real)-(o) */

Another predicate str_ref can be used to convert a database reference number to
a string so it can be inserted in a B+ Tree.

str_ref(Str,Ref) /* (string,ref)-(i,o)(o,i)(i,i) */

Summary

Visual Prolog's external database system adds power, speed, and efficiency to
your database applications. These are the major points covered in this chapter:

1. External database terms are stored in chains, which you can access
directly with database reference numbers; these reference numbers belong to
the predefined ref domain.

2. Individual databases are identified by a database selector, which belongs
to the standard domain db_selector.

3. You can store your external database in three locations, depending on
which alternative you use for the predefined place domain:

a. in_file places the database in a disk file

b. in_memory places it in memory

c. and in_ems places it in EMS-type expanded memory (same effect as
in_memory on non-DOS platforms

4. If you want to sort the terms in your database, you'll use B+ trees. Like
databases, individual B+ trees are identified by a B+ tree selector of the
standard domain bt_selector.

422 Visual Prolog Language Tutorial

5. Each entry in a B+ tree node consists of a key string (also known as an
index), which identifies a record, and the database reference number,
associated with that record.

6. B+ tree keys are grouped in pages, and the number of keys stored at a
node is specified by the tree's order.

7. File sharing is done by grouping the predicates that access the database
into transactions.

Chapter 15, System-Level Programming 423

CHAPTER 15

System-Level Programming

Visual Prolog provides several predicates that allow you to access your PC's
operating system and - to the extent that operating system allows - the hardware
directly. We summarize those predicates in this chapter, first taking a look at the
ones giving access to the OS, then those that perform bit-level logical and
shifting operations. After that, we discuss a set of predicates that provide low-
level support for manipulating the DOS BIOS, memory, and other hardware
elements. We end this chapter with a couple of examples that demonstrate how to
use some of these predicates within a Visual Prolog application.

Access to the Operating System

With a handful of predicates, you can access the operating system while running
the Visual Prolog integrated environment, as well as build the ability to access
the run-time computer's operating system right into your Visual Prolog
applications. You can execute any external program with a call to system, call the
date and time facilities with date and time, investigate the environment table with
envsymbol, and read the command-line arguments with comline. Furthermore,
you can establish the start-up directory and exe-filename of the program by
calling syspath, and the marktime, the timeout and the sleep predicates provide
time-tunneling capacity. Then there's the inevitable sound and beep predicates,
and finally osversion returning the operating system version, diskspace returning
the amount of free disk space, and three versions of storage used to determine
memory used.

This section describes each of these predicates in detail and provides some
practical examples that demonstrate how to use them.

system/1
Visual Prolog programs provide access to the OS through the system predicate,
which takes the following form:

system("command") /* (i) */

424 Visual Prolog Language Tutorial

If the argument is an empty string (""), a new command interpreter will be run in
interactive mode.

Examples

1. To copy the file B:\ORIGINAL.FIL to a file A:\NEWCOPY.FIL from within
the Visual Prolog system, your program can call the predicate

system("").

then in activated the OS session the user can copy the file using the usual OS
command,

copy B:\ORIGINAL.FIL A:\NEWCOPY.FIL

You could then return to Visual Prolog by typing

exit

after which you are back in your program again.

2. To rename the file (without going out to the OS), you could give the
command

system("ren newcopy.fil newcopy.txt"),

system/3
This extended version of the system predicate provides two extra features: one
for returning the OS error level, and one for resetting the run-time system's video
mode. The latter has no effect in Windows. In UNIX, this argument is used to
indicate that the process has no interaction with the terminal, and hence that
there's no need to clear and reset it. This is a somewhat unfortunate dual use of
the same argument, but it fulfills the typical needs of users.

system/3 takes this format:

system(CommandString, ResetVideo, ErrorLevel) /* (i,i,o) */

The error level is returned in ErrorLevel. This is the program return code known
by the OS at the time control returns to the program issuing the system call. In
DOS this is only available for .COM and .EXE files.

In textmode DOS, ResetVideo controls whether your program should reset the
video hardware to the state it was in before system/3 was called. ResetVideo = 1
resets the video mode; ResetVideo = 0 does not. When ResetVideo = 0, your
program will run in the new video mode you set, even if that's a mode not

Chapter 15, System-Level Programming 425

specifically supported by Visual Prolog. (For information about setting the run-
time system's video mode, refer to the reference manual for the video hardware.)

In other words, if your external program MYSETMD sets the video hardware to
a mode not specifically supported by Visual Prolog, and you place the following
calls to system in your Visual Prolog program (running from the development
environment), you can actually make your program run in that unsupported
mode:

system("mysetmd", 0, ErrorLevel),

Note: The external program must be compatible with the hardware at least at the
BIOS level (updating the BIOS variables rows and columns on-screen).

envsymbol/2
The envsymbol predicate searches for environment symbols in the application's
environment table; the SET (OS) commands set these symbols. envsymbol takes
this format:

envsymbol(EnvSymb, Value) /* (i,o) */

For example, the command

SET SYSDIR=C:\FOOL

sets the symbol SYSDIR to the string C:\FOOL, and the goal

/*...*/
envsymbol("SYSDIR", SysDir),
/*...*/

searches the environment for the symbol SYSDIR, binding SetValue to
C:\FOOL.

envsymbol will fail if the symbol does not exist.

time/4 and date
Visual Prolog has three more handy OS-related standard predicates: two forms of
date and time. The date/3 and time/3 predicates can be used in two ways,
depending on whether their parameters are free or bound on entry.

With input flow, time and date will set the internal system clock to the time
specified (in UNIX you need root privileges to do this). If all variables are free,
the system will bind them to the internal clock's current values.

426 Visual Prolog Language Tutorial

time(Hours, Minutes, Seconds, Hundredths)
 /* (i,i,i,i), (o,o,o,o) */

Note that the UNIX version of time doesn't return anything useful in the
Hundredths argument.

date/3 also relies on the internal system clock and operates similarly to time; it
takes the following form:

date(Year, Month, Day) /* (i,i,i), (o,o,o) */

date/4 only has an output flow version. The fourth argument is the weekday
number, but what numbering scheme is used is operating system dependent.
However, it's fairly common that 0 is Sunday, 1 is Monday, etc.

date(Year, Month, Day, WeekDay) /* (o,o,o,o) */

Example

Program ch15e02.pro uses time to display the time elapsed during a listing of the
default directory.

/* Program ch15e02.pro */

GOAL
time(H1,M1,S1,_),nl,
write("Start time is: ",H1,":",M1,":",S1),nl,
/* This is the activity that is being timed */
system("dir /s/b c:*.*"),
time(H2,M2,S2,_),
Time = S2-S1 + 60*(M2-M1 + 60*(H2-H1)),
write("Elapsed time: ",Time," seconds"),nl,
time(H3,M3,S3,_),
write("The time now is: ",H3,":",M3,":",S3).

comline/1
comline reads the command-line parameters used when invoking a program; this
is its format:

comline(CommandLine) /* (o) */

where CommandLine is a string.

Chapter 15, System-Level Programming 427

syspath/2
syspath returns the start-up directory and name of the program calling it. syspath
looks as follows:

syspath(HomeDir,ExeName) /* (o,o) */

The main use for syspath is to provide programs the possibility of loading files
from their home directory, as well as constructing helpful command-line error
messages: <progname>: Usage: [-foul] <blah> <blah> <blah>.

On UNIX, the start-up directory is not directly available to a program. In order to
use syspath on UNIX, an initialization predicate, initsyspath, must be called. In
particular, this must be called before the program changes its working directory,
if this becomes necessary. If initsyspath isn't called, syspath will exit with an
error code of 1138.

Timing Services
Visual Prolog provides two different timing services: execution suspension, and
elapsed-time testing. Some special notes apply to UNIX (see the description of
difftime below).

sleep/1
sleep suspends program execution for a specified length of time. It looks like this

sleep(CentiSecs) /* (i) */

where CentiSecs is the time (in centiseconds, i.e. 1/100ths) to sleep. The exact
length of time the program will wait may vary, depending on CPU / OS activity,
and you shouldn't expect greater accuracy than 20-50 milliseconds.

In UNIX, sleep uses the nap(S) system call for delays and fractions of delays less
than 1 second. This call uses the kernel's callout table, and it may be necessary to
increase the size of this (kernel parameter NCALL) to prevent overflows if more
than 10-20 processes simultaneously use sleep with fractional delays or nap(S).

marktime/2
marktime returns a time-stamp, which may later be tested for expiration using
the timeout predicate. marktime has the following format:

marktime(CentiSecs,Ticket) /* (i,o) */

428 Visual Prolog Language Tutorial

where CentiSecs is the required length of time Ticket should last. The Ticket is an
implementation-defined structure holding the timing information, currently
masquerading as a real number.

timeout/1
timeout tests a time-ticket returned by marktime for expiration. If it has expired,
timeout succeeds, otherwise it fails. timeout looks like this:

timeout(Ticket) /* (i) */

As with sleep, don't expect too fine a granularity.

difftime
On UNIX, the standard predicate time doesn't provide a resolution in 100ths, so
any timing calculations will be rather rough. However, the UNIX version of
Visual Prolog has a standard predicate difftime:

difftime(real,real,real) /* (i,i,o) */

which returns the difference between the 1st and the 2nd timemark, in hundredths
of seconds as a floating-point number. The first timemark should be the younger,
and the second the older, i.e. the usage is

marktime(0,M1), lengthy_process, marktime(0,M2),
difftime(M2,M1,Diff).

In order for marktime and difftime to work, they must know how many clock-
ticks the machine has per second. For UNIX executables, they establish this by
calling the sysconf library function (see sysconf(S)), which is a very safe
mechanism. However, for XENIX executables they have to call the library
function gethz (see gethz(S)), which in it's current implementation simply
examines a shell variable called HZ. Thus it is critical that this variable has the
correct value, which, unless it's a whole new world when you read this, is 60. If
gethz fails (e.g. because HZ doesn't exist), marktime will exit with error 1136.
The same applies to difftime if either marktime has never been called, or if
marktime exited due to failure in gethz.

The granularity of sleep and the marktime and timeout predicates is system-
defined, currently being 1/60th of a second. Note that timemarks do not survive
reboots. Under UNIX they're the number of machine clock-ticks since "an
arbitrary point in the past" which in practice means system start-up. With 60
ticks/second, this also means that the tick count wraps around zero after approx.
2.26 years.

Chapter 15, System-Level Programming 429

Example

Program ch15e04.pro below demonstrates marktime and timeout.
/* Program ch15e04.pro */

PREDICATES
ttimeout(real)

CLAUSES
ttimeout(TM):-timeout(TM),!.
ttimeout(TM):-

write("No timeout, sleep 0.5 secs"),nl,
sleep(50),
ttimeout(TM).

GOAL
marktime(400,TM), % 4 secs
ttimeout(TM),
write("\nBINGO!\n").

sound/2
sound generates a sound in the PC's speaker:

sound(Duration,Frequency) /* (i,i) */

where Duration is the time in 1/100ths of a second.

On UNIX, sound works only on the ANSI console; whether you're running on
this is established by examining the TERM shell variable. On other terminals,
sound is equivalent to beep.

beep/0
beep /* (no arguments) */

In the DOS-related versions of Visual Prolog, beep is equivalent to
sound(50,1000).

On UNIX, beep writes the bell character to the file used for terminal output. If
the program is in terminal mode, all buffering will be bypassed.

osversion/1
osversion returns the current operating system version and looks like this:

osversion(VerString) /* (o) */

430 Visual Prolog Language Tutorial

The format for VerString is operating system defined. For DOS, it consists of the
major and minor version numbers, separated by a dot (full stop), e.g. "3.30". In
UNIX, the string contains the information returned by uname(S).

diskspace/2
diskspace returns as an unsigned long the available disk space, using the
following format:

diskspace(Where,Space) /* (i,o) */

The space is reported in bytes.

In the DOS-related versions of Visual Prolog, Where should be a character
specifying the drive letter. In the UNIX version, it should be the name of a file
residing on the file system you want to query (see statfs(S)). You may use simply
"/" for the root file system, or an empty or null string in which case information
is retrieved for the file system holding the current working directory. The space
reported will be the smaller of the actual space and the ulimit for the process (see
ulimit(S)).

storage/3 and storage/11
The standard predicate storage returns information about the three run-time
memory areas used by the system (stack, heap, and trail, respectively) as
unsigned longs:

storage(StackSize,HeapSize,TrailSize) /* (o,o,o) */

The values are all in bytes.

In all versions of Visual Prolog, TrailSize contains the amount of memory used
by the trail.

In the DOS-related versions, StackSize indicates how much stack space is left. In
UNIX, StackSize is the exact opposite, namely how much stack that's been used
so far.

Finally, the HeapSize shows how much memory is available to the process.

In UNIX this is the difference between the current break value and the maximum
possible break value (see ulimit(S) and brk(S)), which again is set by the kernel
parameter MAXUMEM. It does not include memory held in free-lists in the
heap.

In DOS, the HeapSize is the unallocated physical memory between the top of the
GStack and the bottom of the heap. It does not include memory held in free lists

Chapter 15, System-Level Programming 431

in the heap. The storage predicate returns the size that you can be sure of having
when you're loading a file or going out to the operating system.

The storage/11 is extended version of storage/3 predicate. The storage/11
returnes more detailed information about the run-time memory areas used by the
application. Description of this predicate you can find in Visual Prolog's on-line
help.

storage/0
The 0-arity version of storage is primarily intended for debugging purposes. It
prints in the current window an overview of the amount of memory in use by the
different parts of Visual Prolog's memory management, as well as the number of
backtrack points.

Bit-Level Operations

Visual Prolog provides six predicates for bit-level operations: bitor, bitand,
bitnot, bitxor, bitleft, and bitright. These predicates have one flow variant each,
operate on unsigned integers, and must be used in prefix notation.

bitnot/2

bitnot performs a bit-wise logical NOT.

bitnot(X, Z) /* (i,o) */

With X bound to some integral value, Z will be bound to the bit-wise negation of
X.

Operator X Z

bitnot 1

0

0

1

bitand/3
bitand performs a bit-wise AND.

bitand(X, Y, Z) /* (i,i,o) */

With X and Y bound to some integral values, Z will be bound to the result of bit-
wise ANDing the corresponding bits of X and Y.

432 Visual Prolog Language Tutorial

Operator X Y Z

bitand 1

1

0

0

1

0

1

0

1

0

0

0

bitor/3
bitor performs a bit-wise OR.

bitor(X, Y, Z) /* (i,i,o) */

With X and Y bound to some integral values, Z will be bound to the result of bit-
wise ORing the corresponding bits of X and Y.

Operator X Y Z

bitor 1

1

0

0

1

0

1

0

1

1

1

0

bitxor/3
bitxor performs a bit-wise XOR.

bitxor(X, Y, Z) /* (i,i,o) */

With X and Y bound to some integral values, Z will be bound to the result of bit-
wise XORing the corresponding bits of X and Y.

Operator X Y Z

bitxor 1

1

0

0

1

0

1

0

0

1

1

0

Chapter 15, System-Level Programming 433

bitleft/3
bitleft performs a bit-wise left shift.

bitleft(X, N, Y) /* (i,i,o) */

With X and N are bound to some integral values, Y is bound to the result of
shifting the bit-wise representation of X N places to the left. The new bits will be
zero-filled.

bitright/3
bitright performs a bit-wise right shift.

bitright(X, N, Y) /* (i,i,o) */

With X and N are bound to some integral values, Y is bound to the result of
shifting the bit-wise representation of X N places to the right. The new bits will
be zero-filled.

Exercise
Write a Visual Prolog program to test the theory that

myxor(A, B, Result) :-
bitnot(B, NotB), bitand(A, NotB, AandNotB),
bitnot(A, NotA), bitand(NotA, B, NotAandB),
bitor(AandNotB, NotAandB, Result).
behaves like
bitxor(A, B, Result)

Access to the Hardware: Low-Level Support

The DOS ROM-BIOS (Read Only Memory-Basic Input/Output System)
provides an interface between programs and the operating system to perform
various functions, including disk, file, printer, and screen I/O. For specific
information on the ROM-BIOS, refer to the DOS Technical Reference Manual.

Visual Prolog provides six built-in predicates that give low-level access to the
operating system, I/O ports, and hardware. These predicates are bios (2 versions),
ptr_dword, memword, membyte, and port_byte.

This section describes each of these predicates in detail and provides some
practical examples that demonstrate how to use them.

434 Visual Prolog Language Tutorial

bios/3 and bios/4
bios gives access to the PC's low-level BIOS (Basic I/O System) routines. For
information about these routines, refer to your DOS Reference Manual. Note that
the bios predicates only relate to DOS. Under UNIX, it's possible to access
routines in shared libraries using the nlist library call (see nlist(S)). However, the
process is rather involved and won't be described here. See NLIST.PRO in the
PROGRAMS directory for an example.

Information passes to and from the BIOS functions through the predefined
compound object reg(...). The bios predicate takes the following forms:

bios(InterruptNo, RegistersIn, RegistersOut) /* (i,i,o) */
bios(InterruptNo, RegistersIn, RegistersOut, OutFlags)
 /* (i,i,o,o) */

where RegistersIn and RegistersOut are data structures defined as follows:

/* RegistersIn */
reg(AXi, BXi, CXi, DXi, SIi, DIi, DSi, ESi)
 /* (i,i,i,i,i,i,i,i) */

/* RegistersOut */
reg(AXo, BXo, CXo, DXo, SIo, DIo, DSo, ESo)
 /* (o,o,o,o,o,o,o,o) */

The bios predicates use the arguments

• AXi, BXi, CXi, DXi, SIi, DIi, DSi, and ESi to represent the PC's hardware
register values passed to the BIOS.

• AXo, ... , ESo for those register values returned by the BIOS.

The flow pattern for bios/3 is (i,i,o); for bios/4 it is (i,i,o,o). When you make
a call to the BIOS, each argument of RegistersIn must be instantiated (bound to a
value), and each argument of RegistersOut must be free (not bound to a value).

The domain for the RegistersIn and RegistersOut compound objects (reg(AX, BX,
...)) is the reg domain, a predefined data structure created by Visual Prolog
specifically for the bios predicate. Internally, Visual Prolog defines this data
structure as

DOMAINS
reg = reg(integer, integer, integer, ..., integer)

The optional OutFlag argument in the bios/4 predicate is packed coding for the
8086 flag register (see Figure 15.1). OutFlag allows you to read the contents of

Chapter 15, System-Level Programming 435

the status flags after return from the interrupt. The flags are packed in an integer
value as shown here:

Figure 15.1: Packing the 8086 Flag Register in an Integer

| | | | | | | | | | | | | | | | |
| U | U | U | U | O | D | I | T | S | Z | U | A | U | P | U | C |
|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|
| | | | | | | | | | | | | | | | |
|15 |14 |13 |12 |11 |10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|___|

Code Flag Flag's Purpose

U Undefined;

indeterminate value

Not used

O Overflow flag Indicates arithmetic overflow

D Direction flag Controls left/right direction in repeated
operations

I Interrupt enable flag Enables interrupts (when set)

T Trap flag Generates a trap at end of each
instruction (for trace)

S Sign flag Indicates negative result or comparison
if set

Z Zero flag Indicates zero result or equal
comparison

A Auxiliary flag Need adjustment in BCD (Binary
Coded Decimal) operations

P Parity flag Indicates even number of bits set

C Carry flag Indicates arithmetic carry out bit

436 Visual Prolog Language Tutorial

ptr_dword
ptr_dword returns the internal address of StringVar, or creates the string ("the
char pointer") StringVar based on the supplied address.

ptr_dword(StringVar, Seg, Off) /* (o,i,i), (i,o,o) */

When StringVar is bound, ptr_dword returns the internal segment and offset for
the string. When Seg and Off are bound, ptr_dword binds StringVar to the string
stored at that location. On 32-bit platforms the segment is ignored. ptr_dword has
to a considerable extent been superseded by the cast function.

A string in Visual Prolog is a series of ASCII values terminated by a zero value.
You can use the low-level routines in this chapter on abnormal strings (those that
contain several zero bytes). However, you can't write abnormal strings out or
assert them in the fact database.

membyte, memword, memdword
Visual Prolog provides three predicates for looking at (peeking) and modifying
(poking) specific elements in memory. membyte, memword and memdword
access byte, word and dword sized locations respectively. All predicates have
two formats:

membyte(Segment, Offset, Byte) /* (i,i,i), (i,i,o) */
memword(Segment, Offset, Word) /* (i,i,i), (i,i,o) */
memdword(Segment, Offset, DWord) /* (i,i,i), (i,i,o) */

and

membyte(StringVar, Byte) /* (i,i), (i,o) */
memword(StringVar, Word) /* (i,i), (i,o) */
memdword(StringVar, DWord) /* (i,i), (i,o) */

The Segment is an ushort, the Offset is an unsigned, and Byte, Word and DWord
are byte, word and dword respectively. Many of the bios calls require pointers to
be passed as Segment:Offset pairs. membyte and memword also require pointers
in this format. In real mode DOS, Memory locations are calculated as ((Segment
* 16) + Offset).

The mem* predicates have to a large extent been superseded by the get*entry
and set*entry predicates for the binary domain.

port_byte/2
The port_byte predicate allows you to read or write a byte to a specific I/O port.
The DOS format for port_byte is

Chapter 15, System-Level Programming 437

port_byte(PortAddress, Byte) /* (i,i), (i,o) */

where PortAddress and Byte are defined as unsigneds. If you don't know what to
use port_byte for, don't worry and don't think about using it. It's intended for
access to (custom) hardware using ports for I/O.

Summary

These are the major points covered in this chapter:

1. Visual Prolog includes several predicates that

a. give access to the OS

b. perform bit-level logical and shifting operations

c. provide low-level support for manipulating the BIOS, memory, and other
hardware elements

2. These are the predicates giving access to the OS:

a. system (execute external program)

b. time (get or set the system clock)

c. date (get or set the internal calendar)

d. envsymbol (look up an environment variable)

e. comline (read the command-line arguments)

f. syspath (return start-up directory and name of .EXE file)

g. osversion (returns operating system version number)

h. diskspace (returns disk space available)

3. These are the predicates that perform bit-level operations:

a. bitor (bit-wise OR)

b. bitand (bit-wise AND)

c. bitnot (bit-wise NOT)

d. bitxor (bit-wise XOR)

e. bitleft (bit-wise LEFT SHIFT)

f. bitright (bit-wise RIGHT SHIFT)

438 Visual Prolog Language Tutorial

4. These are the predicates that provide low-level support for various hardware
elements:

a. bios (accesses the PC's low-level BIOS routines)

b. ptr_dword (returns the internal address of its argument or places the
argument at a specified memory location)

c. membyte (peeks or pokes a one-byte value)

d. memword (peeks or pokes a two-byte value)

e. memdword (peeks or pokes a four-byte value)

f. port_byte (reads or writes a byte to a specific I/O port)

Chapter 16, Example Prolog Programs 439

CHAPTER 16

Example Prolog Programs

In this final tutorial chapter, we present some small example programs intended
to stimulate your own ideas and to further illustrate the topics covered in the
earlier tutorial chapters. Nearly all of the examples offer plenty of room for
expansion; your own ideas can grow into full-blown programs using one of these
programs as a starting point.

Building a Small Expert System

In this first example, we show you how to construct a small expert system that
figures out which of seven animals (if any) the system's user has in mind. The
expert system will figure out the animal by asking questions then making
deductions from the replies given. This example demonstrates backtracking –
using facts – and how to use not effectively.

A typical user dialogue with this expert system might be:

has it hair?
yes
does it eat meat?
yes
has it a fawn color?
yes
has it dark spots?
yes

Your animal may be a cheetah!

Visual Prolog's ability to check facts and rules will provide your program with
the reasoning capabilities germane to an expert system. The first step is to
provide the knowledge with which the system can reason; this is known as the
inference engine and is shown in ch16e01.pro.

440 Visual Prolog Language Tutorial

/* Program ch16e01.pro */

global facts
xpositive(symbol,symbol)
xnegative(symbol,symbol)

predicates
nondeterm animal_is(symbol)
nondeterm it_is(symbol)
ask(symbol,symbol,symbol)
remember(symbol,symbol,symbol)
positive(symbol,symbol)
negative(symbol,symbol)
clear_facts
run

clauses
animal_is(cheetah):-

it_is(mammal),
it_is(carnivore),
positive(has,tawny_color),
positive(has,dark_spots).

animal_is(tiger):-
it_is(mammal),
it_is(carnivore),
positive(has, tawny_color),
positive(has, black_stripes).

animal_is(giraffe):-
it_is(ungulate),
positive(has,long_neck),
positive(has,long_legs),
positive(has, dark_spots).

animal_is(zebra):-
it_is(ungulate),
positive(has,black_stripes).

animal_is(ostrich):-
it_is(bird),
negative(does,fly),
positive(has,long_neck),
positive(has,long_legs),
positive(has, black_and_white_color).

Chapter 16, Example Prolog Programs 441

animal_is(penguin):-
it_is(bird),
negative(does,fly),
positive(does,swim),
positive(has,black_and_white_color).

animal_is(albatross):-
it_is(bird),positive(does,fly_well).

it_is(mammal):-
positive(has,hair).

it_is(mammal):-
positive(does,give_milk).

it_is(bird):-
positive(has,feathers).

it_is(bird):-
positive(does,fly),
positive(does,lay_eggs).

it_is(carnivore):-
positive(does,eat_meat).

it_is(carnivore):-
positive(has,pointed_teeth),
positive(has, claws),
positive(has,forward_eyes).

it_is(ungulate):-
it_is(mammal),
positive(has,hooves).

it_is(ungulate):-
it_is(mammal),
positive(does,chew_cud).

positive(X,Y):-
xpositive(X,Y),!.

positive(X,Y):-
not(xnegative(X,Y)),
ask(X,Y,yes).

negative(X,Y):-
xnegative(X,Y),!.

negative(X,Y):-
not(xpositive(X,Y)),
ask(X,Y,no).

442 Visual Prolog Language Tutorial

ask(X,Y,yes):-
!,
write(X," it ",Y,'\n'),
readln(Reply),nl,
frontchar(Reply,'y',_),
remember(X,Y,yes).

ask(X,Y,no):-
!,
write(X," it ",Y,'\n'),
readln(Reply),nl,
frontchar(Reply,'n',_),
remember(X,Y,no).

remember(X,Y,yes):-
assertz(xpositive(X,Y)).

remember(X,Y,no):-
assertz(xnegative(X,Y)).

clear_facts:-
write("\n\nPlease press the space bar to exit\n"),
retractall(_,dbasedom),readchar(_).

run:-
animal_is(X),!,
write("\nYour animal may be a (an) ",X),
nl,nl,clear_facts.

run :-
write("\nUnable to determine what"),
write("your animal is.\n\n"),
clear_facts.

goal
run.

Each animal is described by a number of attributes that it has (or has not). Those
questions that the user is to reply to are the positive(X,Y) and negative(X,Y)
ones. The system, therefore, might ask something like this:

Does it have hair?

Having received a reply to such a question, you want to be able to add the answer
to the database, so the system will be able to use the previously gathered
information when reasoning.

For simplicity, this example program will only consider positive and negative
replies, so it uses a fact database containing two predicates:

Chapter 16, Example Prolog Programs 443

facts
xpositive(symbol, symbol)
xnegative(symbol, symbol)

The fact that the animal doesn't have hair is represented by

xnegative(has,hair).

The rules of positive and negative then check to see if the answer is already
known, before asking the user.

positive(X,Y) :-
xpositive(X,Y), !.

positive(X,Y) :-
not(xnegative(X,Y)),
ask(X,Y,yes).

negative(X,Y) :-
xnegative(X,Y), !.

negative(X,Y) :-
not(xpositive(X,Y)),
ask(X,Y,no).

Notice that the second rule for both positive and negative ensures that a
contradiction won't arise before asking the user.

The ask predicate asks the questions and organizes the remembered replies. If a
reply begins with the letter y, the system assumes the answer is Yes; if it begins
with n, the answer is No.

/* Asking Questions and Remembering Answers */

ask(X, Y, yes) :- !, write(X, " it ", Y, '\n'),
readln(Reply),
frontchar(Reply, 'y', _),
remember(X, Y, yes).

ask(X, Y, no) :- !, write(X, " it ", Y, '\n'),
readln(Reply),
frontchar(Reply, 'n', _),
remember(X, Y, no).

remember(X, Y, yes) :- assertz(xpositive(X, Y)).
remember(X, Y, no) :- assertz(xnegative(X, Y)).

444 Visual Prolog Language Tutorial

/* Clearing Out Old Facts */

clear_facts :- write("\n\nPlease press the space bar to exit\n"),
retractall(_,dbasedom), readchar(_).

For practice, type in the preceding inference engine and knowledge clauses. Add
appropriate declarations to make a complete program, and then try out the result.
The completed animal expert system is provided as ch16e01.pro.

An example expert systems shell (GENI.PRO) is also provided with Visual
Prolog in the PROGRAMS directory; this shell is based on the same techniques
introduced in this example, with the added feature that it allows you to
dynamically change the rules.

Prototyping: A Simple Routing Problem

Suppose you want to construct a computer system to help decide the best route
between two U.S. cities. You could first use Visual Prolog to build a miniature
version of the system (see 2), since it will then become easier to investigate and
explore different ways of solving the problems involved. You will use the final
system to investigate questions such as:

Is there a direct road from one particular town to another?

Which towns are situated less than ten miles from a particular town?

The following program is a classic example of using backtracking and recursion
to solve route planning.

/* Program ch16e02.pro */

DOMAINS
town = symbol
distance = integer

PREDICATES
nondeterm road(town,town,distance)
nondeterm route(town,town,distance)

CLAUSES
road(tampa,houston,200).
road(gordon,tampa,300).
road(houston,gordon,100).
road(houston,kansas_city,120).
road(gordon,kansas_city,130).

Chapter 16, Example Prolog Programs 445

route(Town1,Town2,Distance):-
road(Town1,Town2,Distance).

route(Town1,Town2,Distance):-
road(Town1,X,Dist1),
route(X,Town2,Dist2),
Distance=Dist1+Dist2,
!.

Figure 16.1 shows a simplified map for the prototype.

Kansas City

Houston

Gordon

Tampa

Figure 16.1: Prototype Map

Each clause for the road predicate is a fact that describes a road of a certain
length (in miles) that goes from one town to another.

The route clauses indicate that it is possible to make a route from one town to
another over several stretches of road. Following the route, the driver travels a
distance given by the third parameter, distance.

The route predicate is defined recursively; a route can simply consist of one
single stretch of road, as in the first clause. In this case, the total distance is
merely the length of the road.

You can also construct a route from Town1 to Town2 by driving first from
Town1 to X, then following some other route from X to Town2. The total distance
is the sum of the distance from Town1 to X and the distance from X to Town2, as
shown in the second clause for route.

Specify the goal section like this and run the program ch16e02.pro with the Test
Goal:

446 Visual Prolog Language Tutorial

goal
route(tampa, kansas_city, X).

Can the program handle all possible combinations of starting point and
destination? If not, can you modify the program to avoid any omissions?

The next example will give you ideas about how to get this routing program to
make a list of towns visited enroute. Making such a list prevents Visual Prolog
from choosing a route that involves visiting the same town twice, thereby
avoiding going around in circles, and ensures that the program doesn't go into an
infinite loop. When you've solved problems of this type, you can enlarge the
program by adding more cities and roads.

Adventures in a Dangerous Cave

You're an adventurer, and you've heard that there is a vast gold treasure hidden
inside a cave. Many people before you have tried to find it, but to no avail. The
cave is a labyrinth of galleries connecting different rooms in which there are
dangerous beings, like monsters and robbers. In your favor is the fact that the
treasure is all in one room. Which route should you follow to get to the treasure
and escape unhurt with it? Consider the following map of the cave:

entry hell

fountain

monsters

food

gold
treasure

robbers

exit

mermaid

Figure 16.2: The Labyrinth of Galleries

Chapter 16, Example Prolog Programs 447

You can construct a Visual Prolog representation of the map to help you find a
safe route. Each gallery is described by a fact. The predicates go and route give
rules. Give the program the goal

go(entry, exit).

The answer will consist of a list of the rooms you should visit to capture the
treasure and return safely with it.

An important design feature of this program is that the rooms already visited are
collected in a catalog. This happens thanks to the route predicate, which is
defined recursively. If you're standing in the exit room, the third parameter in the
route predicate will be a list of the rooms you've already visited. If the
gold_treasure room is a member of this list, you'll have achieved your aim.
Otherwise, the list of rooms visited is enlarged with Nextroom, provided
Nextroom is not one of the dangerous rooms and has not been visited before.

/* Program ch16e03.pro */

DOMAINS
room = symbol
roomlist = room*

PREDICATES
nondeterm gallery(room,room)

% There is a gallery between two rooms
% Necessary because it does not matter
% which direction you go along a gallery

nondeterm neighborroom(room,room)
avoid(roomlist)
nondeterm go(room,room)
nondeterm route(room,room,roomlist)

% This is the route to be followed.
% roomlist consists of a list of rooms already visited.

nondeterm member(room,roomlist)

CLAUSES
gallery(entry,monsters). gallery(entry,fountain).
gallery(fountain,hell). gallery(fountain,food).
gallery(exit,gold_treasure). gallery(fountain,mermaid).
gallery(robbers,gold_treasure). gallery(fountain,robbers).
gallery(food,gold_treasure). gallery(mermaid,exit).
gallery(monsters,gold_treasure). gallery(gold_treasure,exit).

neighborroom(X,Y):-gallery(X,Y).
neighborroom(X,Y):-gallery(Y,X).

448 Visual Prolog Language Tutorial

avoid([monsters,robbers]).

go(Here,There):-route(Here,There,[Here]).
go(_,_).

route(Room,Room,VisitedRooms):-
member(gold_treasure,VisitedRooms),
write(VisitedRooms),nl.

route(Room,Way_out,VisitedRooms):-
neighborroom(Room,Nextroom),
avoid(DangerousRooms),
not(member(NextRoom,DangerousRooms)),
not(member(NextRoom,VisitedRooms)),
route(NextRoom,Way_out,[NextRoom|VisitedRooms]).

member(X,[X|_]).
member(X,[_|H]):-member (X,H).

After verifying (using the Test Goal) that the program does find a solution to the
goal

go(entry, exit).

you might want to try adding some more galleries, for example,

gallery(mermaid, gold_treasure).

Or you can add some additional nasty things to avoid.

Even though – once you've made these additions – there is more than one
possible solution to the problem, your program will only come up with one
solution. To obtain all the solutions, you must make Visual Prolog backtrack as
soon as it has found one solution. You can do this by adding the fail predicate to
the first rule for route:

route(Room, Room, VisitedRooms) :-
member(gold_treasure, VisitedRooms),
write(VisitedRooms), nl, fail.

To get a neater output, you could use a list-writing predicate, write_a_list, to
write the list of names without the containing square brackets ([and]) or the
separating commas. However, the rooms you've visited are collected in the
VisitedRooms list in reverse order (exit first and entry last). Therefore, you need
to reverse the list or make the list-writing predicate write the list in reverse.

Chapter 16, Example Prolog Programs 449

Hardware Simulation

Every logical circuit can be described with a Visual Prolog predicate, where the
predicate indicates the relationship between the signals on the input and output
terminals of the circuit. The fundamental circuits are described by giving a table
of corresponding truth values (see the and_, or_, and not_ predicates in Program
ch16e04.pro).

Fundamental circuits can be described by indicating the relationships between
the internal connections, as well as the terminals. To see how this works,
construct an exclusive OR circuit from AND, OR, and NOT circuits, and then
check its operation with a Visual Prolog program. The circuit is shown in Figure
16.3.

AND

AND

NOT

NOT

OR

Input1

Input2

N1

N2

N4

N3

Output

Figure 16.3: Fundamental XOR Circuit

In Program ch16e04.pro, this network is described by the xor predicate.
/* Program ch16e04.pro */

DOMAINS
d = integer

PREDICATES
nondeterm not_(D,D)
and_(D,D,D)
or_(D,D,D)
nondeterm xor(D,D,D)

450 Visual Prolog Language Tutorial

CLAUSES
not_(1,0). not_(0,1).
and_(0,0,0). and_(0,1,0).
and_(1,0,0). and_(1,1,1).
or_(0,0,0). or_(0,1,1).
or_(1,0,1). or_(1,1,1).

xor(Input1,Input2,Output):-
not_(Input1,N1),
not_(Input2,N2),
and_(Input1,N2,N3),
and_(Input2,N1,N4),
or_(N3,N4,Output).

goal
xor(Input1, Input2, Output).

Run this program with the Test Goal and it yields the following result:

Input1=1, Input2=1, Output=0
Input1=1, Input2=0, Output=1
Input1=0, Input2=1, Output=1
Input1=0, Input2=0, Output=0
4 Solutions

Interpreting this result as a truth table, you can see that the circuit does indeed
perform as expected.

Towers of Hanoi

The solution to the Towers of Hanoi puzzle is a classic example of recursion. The
ancient puzzle of the Towers Of Hanoi consists of a number of wooden disks
mounted on three poles, which are in turn attached to a baseboard. The disks
each have different diameters and a hole in the middle large enough for the poles
to pass through. In the beginning, all the disks are on the left pole as shown in
Figure 16.4.

Chapter 16, Example Prolog Programs 451

Figure 16.4: The Towers of Hanoi

The object of the puzzle is to move all the disks over to the right pole, one at a
time, so that they end up in the original order on that pole. You can use the
middle pole as a temporary resting place for disks, but at no time is a larger disk
to be on top of a smaller one. It's easy to solve the Towers of Hanoi with two or
three disks, but the process becomes more difficult with four or more disks.

A simple strategy for solving the puzzle is as follows:

• You can move a single disk directly.

• You can move N disks in three general steps:

• Move N-1 disks to the middle pole.

• Move the last (Nth) disk directly over to the right pole.

• Move the N-1 disks from the middle pole to the right pole.

The Visual Prolog program to solve the Towers Of Hanoi puzzle uses three
predicates:

• hanoi, with one parameter that indicates the total number of disks you are
working with.

• move, which describes the moving of N disks from one pole to another –
using the remaining pole as a temporary resting place for disks.

• inform, which displays what has happened to a particular disk.
/* Program ch16e05.pro */

DOMAINS
loc =right;middle;left

PREDICATES
hanoi(integer)
move(integer,loc,loc,loc)
inform(loc,loc)

452 Visual Prolog Language Tutorial

CLAUSES
hanoi(N):-

move(N,left,middle,right).

move(1,A,_,C):-
inform(A,C),!.

move(N,A,B,C):-
N1=N-1, move(N1,A,C,B),
inform(A,C),move(N1,B,A,C).

inform(Loc1, Loc2):-nl,
write("Move a disk from ", Loc1, " to ", Loc2).

To solve the Towers of Hanoi with three disks, give the

goal
hanoi(3).

Run the Test Goal. The output is:

Move a disk from left to right
Move a disk from left to middle
Move a disk from right to middle
Move a disk from left to right
Move a disk from middle to left
Move a disk from middle to right
Move a disk from left to right

yes

Dividing Words into Syllables

Using a very simple algorithm that involves looking at the sequence of vowels
and consonants a word contains, a computer program can decide how to divide
words into syllables. For instance, consider the two sequences:

1. vowel consonant vowel

In this case, the word is divided after the first vowel. For example, this rule
can be applied to the following words:

ruler > ru-ler
prolog > pro-log

2. vowel consonant consonant vowel

Chapter 16, Example Prolog Programs 453

In this case, the word is divided between the two consonants. For example,

number > num-ber
panter > pan-ter
console > con-sole

These two rules work well for most words but fail with words like handbook and
hungry, which conform to neither pattern. To divide such words, your program
would have to use a library containing all words.

Write a Visual Prolog program to divide a word into syllables. The program will
first ask for a word to be typed in, and then attempt to split it into syllables using
the two rules just given. As we've mentioned, this will not always produce
correct results.

First, the program should split the word up into a list of characters. You therefore
need the following domain declarations:

DOMAINS
letter = symbol
word= letter*

You must have a predicate that determines whether the letter is a vowel or a
consonant. However, the two rules given can also work with the vocals (the usual
vowels – a, e, i, o, and u – plus the letter y). The letter y sounds like (and is
considered to be) a vowel in many words, for example, hyphen, pity, myrrh,
syzygy, and martyr. To account for the vocals, you have the clauses

vocal(a). vocal(e). vocal(i).
vocal(o). vocal(u). vocal(y).

for the predicate vocal. A consonant is defined as a letter that is not a vocal:

consonant(L) :- not(vocal(L)).

You also need two more predicates. First, you need the append predicate.

append(word, word, word)

Second, you need a predicate to convert a string to a list of the characters in that
string:

string_word(string, word)

This predicate will use the standard predicate frontstr (described in chapter 13),
as well as the standard predicates free and bound (where free(X) succeeds if X is
a free variable at the time of calling, and bound(Y) succeeds if Y is bound), to
control which clause to activate, dependent on the flow-pattern.

454 Visual Prolog Language Tutorial

Now you're ready to attack the main problem: defining the predicate divide that
separates a word into syllables. divide has four parameters and is defined
recursively. The first and second parameters contain, respectively, the Start and
the Remainder of a given word during the recursion. The last two arguments
return, respectively, the first and the last part of the word after the word has been
divided into syllables.

As an example, the first rule for divide is:

divide(Start, [T1, T2, T3|Rest], D, [T2, T3|Rest]) :-
vocal(T1), consonant(T2), vocal(T3),
append(Start, [T1], D).

where Start is a list of the first group of characters in the word to be divided. The
next three characters in the word are represented by T1, T2, and T3, while Rest
represents the remaining characters in the word. In list D, the characters T2 and
T3, and the list Rest represent the complete sequence of letters in the word. The
word is divided into syllables at the end of those letters contained in D.

This rule can be satisfied by the call:

divide([p, r], [o, l, o, g], P1, P2)

To see how, insert the appropriate letters into the clause:

divide([p, r], [o, l, o|[g]], [p, r, o], [l, o | [g]]) :-
vocal(o), consonant(l), vocal(o),
append([p, r], [o], [p, r, o]).

The append predicate concatenates the first vocal to the start of the word. P1
becomes bound to [p, r, o], and P2 is bound to [l, o, g].

The second rule for divide is shown in the complete program, 6.
/* Program ch16e06.pro */

DOMAINS
letter = char
word_ = letter*

PREDICATES
nondeterm divide(word_,word_,word_,word_)
vocal(letter)
consonant(letter)
nondeterm string_word(string,word_)
append(word_,word_,word_)
nondeterm repeat

Chapter 16, Example Prolog Programs 455

CLAUSES
divide(Start,[T1,T2,T3|Rest],D1,[T2,T3|Rest]):-

vocal(T1),consonant(T2),vocal(T3),
append(Start,[T1],D1).

divide(Start,[T1,T2,T3,T4|Rest],D1,[T3,T4|Rest]):-
vocal(T1),consonant(T2),consonant(T3),vocal(T4),
append(Start,[T1,T2],D1).

divide(Start,[T1|Rest],D1,D2):-
append(Start,[T1],S),
divide(S,Rest,D1,D2).

vocal('a'). vocal('e'). vocal('i').
vocal('o'). vocal('u'). vocal('y').

consonant(B):-
not(vocal(B)),B <= 'z','a' <= B.

string_word("",[]):-!.
string_word(Str,[H|T]):-

bound(Str),frontchar(Str,H,S),string_word(S,T).
string_word(Str,[H|T]):-

free(Str),bound(H),string_word(S,T),frontchar(Str,H,S).

append([],L,L):-!.
append([X|L1],L2,[X|L3]):-

append(L1,L2,L3).

repeat.
repeat:-repeat.

GOAL
repeat,
 write("Write a multi-syllable word: "),
 readln(S),nl,
 string_word(S,Word),
 divide([],Word,Part1,Part2),
 string_word(Syllable1,Part1),
 string_word(Syllable2,Part2),
 write("Division: ",Syllable1,"-",Syllable2),nl,
fail.

456 Visual Prolog Language Tutorial

The N Queens Problem

In the N Queens problem, the object is to place N queens on a chessboard in such
a way that no two queens can take each other. Accordingly, no two queens can be
placed on the same row, column, or diagonal.

To solve the problem, you'll number the rows and columns of the chessboard
from 1 to N. To number the diagonals, you divide them into two types, so that a
diagonal is uniquely specified by a type and a number calculated from its row
and column numbers:

Diagonal = N + Column - Row (Type 1)
Diagonal = Row + Column - 1 (Type 2)

When you view the chessboard with row 1 at the top and column 1 on the left
side, Type 1 diagonals resemble the backslash (\) character in shape, and Type 2
diagonals resemble the shape of slash (/). Figure 16.5 shows the numbering of
Type 2 diagonals on a 4x4 board.

1

1 1

2

2

2

2

3

3

3

3

3

4

4

4

4

4

4

5

5

5

6

6

7

Figure 16.5: The N Queens Chessboard

To solve the N Queens Problem with a Visual Prolog program, you must record
which rows, columns, and diagonals are unoccupied, and also make a note of
where the queens are placed.

A queen's position is described with a row number and a column number as in
the domain declaration:

queen = q(integer, integer)

Chapter 16, Example Prolog Programs 457

This declaration represents the position of one queen. To describe more
positions, you can use a list:

queens = queen*

Likewise, you need several numerical lists indicating the rows, columns, and
diagonals not occupied by a queen. These lists are described by:

freelist = integer*

You will treat the chessboard as a single object with the following domain
declaration:

board = board(queens, freelist, freelist, freelist, freelist)

The four freelists represent the free rows, columns, and diagonals of Type 1 and
Type 2, respectively.

To see how this is going to work, let board represent a 4 * 4 chessboard in two
situations: (1) without queens, and (2) with one queen at the top left corner.

1. board without queens

board([], [1,2,3,4], [1,2,3,4], [1,2,3,4,5,6,7], [1,2,3,4,5,6,7])

2. board with one queen

board([q(1,1)], [2,3,4], [2,3,4], [1,2,3,5,6,7], [2,3,4,5,6,7])

You can now solve the problem by describing the relationship between an empty
board and a board with N queens. You define the predicate

placeN(integer, board, board)

with the two clauses following. Queens are placed one at a time until every row
and column is occupied. You can see this in the first clause, where the two lists
of freerows and freecols are empty:

placeN(_, board(D, [], [], X, Y), board(D, [], [], X, Y)) :- !.

placeN(N, Board1, Result) :-
place_a_queen(N, Board1, Board2),
placeN(N, Board2, Result).

In the second clause, the predicate place_a_queen gives the connection between
Board1 and Board2. (Board2 has one more queen than Board1). Use this
predicate declaration:

place_a_queen(integer, board, board)

458 Visual Prolog Language Tutorial

The core of the N Queens Problem lies in the description of how to add extra
queens until they have all been successfully placed, starting with an empty board.
To solve this problem, add the new queen to the list of those already placed:

[q(R, C)|Queens]

Among the remaining free rows, Rows, you need to find a row R where you can
place the next queen. At the same time, you must remove R from the list of free
rows, resulting in a new list of free rows, NewR. This is formulated as:

findandremove(R, Rows, NewR)

Correspondingly, you must find and remove a vacant column C. From R and C,
you can calculate the numbers of the occupied diagonals. Then you can
determine if D1 and D2 are among the vacant diagonals.

This is the place_a_queen clause:

place_a_queen(N, board(Queens, Rows, Columns, Diag1, Diag2),
board([q(R, C)|Queens], NewR, NewS, NewD1, NewD2)) :-

findandremove(R, Rows, NewR),
findandremove(C, Columns, NewC),
D1=N+S-R, findandremove(D1, Diag1, NewD1),
D2=R+S-1, findandremove(D2, Diag2, NewD2).

Program ch16e07.pro is the complete program. It contains a number of smaller
additions to define nqueens, so you only need to give a goal section like:

nqueens(5).

to obtain a possible solution (in this case, for placing five queens on a 5 * 5
board).

/* Program ch16e07.pro */

domains
queen = q(integer, integer)
queens = queen*
freelist = integer*
board = board(queens, freelist, freelist, freelist, freelist)

Chapter 16, Example Prolog Programs 459

predicates
nondeterm placeN(integer, board, board)
nondeterm place_a_queen(integer, board, board)
nondeterm nqueens(integer)
nondeterm makelist(integer, freelist)
nondeterm findandremove(integer, freelist, freelist)
nextrow(integer, freelist, freelist)

clauses
nqueens(N):-

makelist(N,L),Diagonal=N*2-1,makelist(Diagonal,LL),
placeN(N,board([],L,L,LL,LL),Final), write(Final).

placeN(_,board(D,[],[],D1,D2),board(D,[],[],D1,D2)):-!.
placeN(N,Board1,Result):-

place_a_queen(N,Board1,Board2),
placeN(N,Board2,Result).

place_a_queen(N,board(Queens,Rows,Columns,Diag1,Diag2),
board([q(R,C)|Queens],NewR,NewC,NewD1,NewD2)):-

nextrow(R,Rows,NewR),
findandremove(C,Columns,NewC),
D1=N+C-R,findandremove(D1,Diag1,NewD1),
D2=R+C-1,findandremove(D2,Diag2,NewD2).

findandremove(X,[X|Rest],Rest).
findandremove(X,[Y|Rest],[Y|Tail]):-

findandremove(X,Rest,Tail).

makelist(1,[1]).
makelist(N,[N|Rest]) :-

N1=N-1,makelist(N1,Rest).
nextrow(Row,[Row|Rest],Rest).

goal
nqueens(5),
nl,readchar(_).

460 Visual Prolog Language Tutorial

PART 4

Programmer’s Guide

Chapter 17, Elements of the Language 461

CHAPTER 17

Elements of the Language

In this chapter, we summarize the elements of the Visual Prolog compiler and
language. We discuss some fundamental elements of the language: names,
program sections, compiler directives, and memory management.

We give an introduction to handling modules in Visual Prolog, and how a
program can be split up into several modules, which you can then compile
separately and link together.

We've written this chapter for programmers who've already worked some with
Visual Prolog. To get the most benefit out of this chapter, you should be familiar
with the material in the first chapters of the Visual Prolog Language.

Names

In Prolog, names are used to denote symbolic constants, domains, predicates, and
variables. A name consists of a letter, or an underscore character, followed by
any combination of zero or more letters, digits, and underscores. Two important
restrictions are imposed on names:

• Names of symbolic constants must start with a lower-case letter.

• Names of variables must start with an upper-case letter or an underscore.

Except for these restrictions, you can use upper-case and lower-case letters in
your programs as you please. For instance, you could make a name more
readable by using mixed upper-case and lower-case, as in the variable

MyLongestVariableNameSoFar

or by using underscores, as in

pair_who_might_make_a_happy_couple(henry_viii, ann_boleyn)

The Visual Prolog compiler does not make a distinction between upper and lower
case letters, except for the first letter. This means that the two variables:

SourceCode

462 Visual Prolog Language Tutorial

and

SOURCECODE

are the same.

Keywords
The following are reserved words; you must not employ them as user-defined
names:

abstract
align
as
and
class
clauses
constants
database
determ

domains
elsedef
endclass
enddef
erroneous
facts
failure
global
goal

if
ifdef
ifndef
implement
include
language
multi
nocopy
nondeterm

object
or
procedure
protected
predicates
reference
single
static
struct
this

Specially-Handled Predicates
The following predicates are handled specially by the compiler.

assert
asserta
assertz
bound
chain_inserta
chain_insertafter
chain_insertz

chain_terms
consult
db_btrees
db_chains
fail
findall
format

free
msgrecv
msgsend
not
readterm
ref_term
retract

retractall
save
term_bin
term_replace
term_str
trap
write
writef

Program Sections

A Visual Prolog program consists of several modules and each module consists
of several program sections. Each program section is identified by a keyword, as
shown in this table.

Chapter 17, Elements of the Language 463

Table 17.1: Contents of Program Sections

Section Contents

compiler options Options are given at the top of a module.

constants section Zero or more symbolic constants.

domains section Zero or more domain declarations.

facts section Zero or more declarations of fact database
predicates.

predicates section Zero or more predicate declarations.

goal section The program goal.

clauses section Zero or more clauses.

class section Zero or more declarations of public (and
protected) predicates, facts and domains

implement section Zero or more declarations of private predicates,
facts and domains. Zero or more clauses
implementing public and private predicates (and
initializing facts).

abstract class section Zero or more declarations of public predicates
and domains. Should not have an
implementation.

To generate an executable stand-alone application, your program must contain a
goal. Usually, a program requires at least a predicates and a clauses section. For
most programs, a domains section is needed to declare lists, compound
structures and your own names for the basic domains.

For modular programming, you can prefix the keywords domains, predicates
and facts with the keyword global, indicating that the subsequent declarations
have global scope of visibility and the declared names can be used in all modules
that include declarations of these global sections. (Modular programming is
discussed on page 252).

A program can contain several domains, predicates, facts or clauses sections
and several declarations and implementation of classes, provided you observe the
following restrictions:

• Compiler options must precede all other sections.

464 Visual Prolog Language Tutorial

• Constants, domains (including implicitly defined domains defined by names
of classes and facts section) and predicates should be defined before you use
them. However, within the domains section you can refer to domains that are
declared at a later point.

• All predicates with the same name, but with different domains or arity must
be declared in one predicates section.

• You cannot give the same name to predicates declared in predicates and
facts sections.

• All clauses that describe predicates with the same name and arity (but with
different domains) must occur in sequence (one after the other).

• Facts sections can be named, but a given name can only appear once.
Because the default name is dbasedom, there can only be one unnamed
database section and it must be global. Initializing clauses for global facts
can be done only after the goal section in the main module.

• One and only one goal must be specified in a program. However, the goal
can appear anywhere.

• If a compiled file (project module) does not contain a goal section, then the
compiler has to be informed that this file is a project module. This can be
done with the –r<-ProjectName> command line compiler option (the VDE
makes this automatically) or with the project "ProjectName" compiler
directive.

• Beginning with version 5.2, Visual Prolog provides enhanced handling of
global declarations:

• Global and local declarations can be given in any order. (Elder versions
required that all global declarations must come before any local
declarations.)

• The main project module (with the goal) must contain declarations of all
global domains, global facts sections, and abstract classes that are declared
in all project submodules.

• Any other project module may contain declarations of only those global
domains, global facts sections, and classes, which are used in this module.

• If any global declaration (class declaration) is changed, all modules including
this declaration must be recompiled.

Chapter 17, Elements of the Language 465

The Domains Section
A domains section contains domain declarations. Seven generic formats are
used:

my_name = d % standard domain synonyms

my_list = elementDom* % list domain

my_CompDom = f_1(d_11,d_12,...,d_1n); % multi-alternative
 % compound domain
 f_m(d_m1,d_m2,...,d_mn)

my_SingleAltCompDom = struct f_single(d1,d2,...,dn)% single-alternative
 % compound domain

predefdom = name1;name2;...;nameN % specially handled domains like
 % db_selector and file

my_PredicateDom = determSpec retDom (args) - flow langSpec
 % predicate domain

my_ObjPredicateDom = object determSpec retDom (args) - flow langSpec
 % object predicate domain

Shortening Domain Declarations
The left side of a domain declaration (except for specially handled predefined
domains file and db_selector) can consist of a list of names, like this:

mydom1, mydom2, ... , mydomN = ...

This feature allows you to declare several domains at the same time. For
example:

firstname, lastname, address = string

Synonyms to Standard Domains
my_name = d

This declaration specifies a domain my_name, which consists of elements from a
standard domain d; the domain d must be char, real, ref, string, symbol, binary
or one of the integral standard domains: byte, sbyte, short, ushort, word,
integer, unsigned, dword, long, ulong. For some integral domains also can be
used the following syntax:

my_name = [signed | unsigned] {byte | word | dword}

466 Visual Prolog Language Tutorial

These declarations are used for objects that are syntactically alike but
semantically different. For instance, Rows and Columns could both be
represented as integers, and consequently be mistaken for one another. You can
avoid this by declaring two different domains of unsigned type, like this:

Rows, Columns = unsigned

Declaring different domains in this way allows Visual Prolog to perform domain
checks to ensure, for example, that Rows and Columns are never inadvertently
mixed. However, both domains can interchangeably be mixed with unsigned,
and you can use the equal sign to convert between Rows and Columns.

General Syntax for Synonyms to Standard Domains is:

my_dom [, my_dom1] = [reference] <basicdom>

Here we use square brackets to indicate optional items. The keyword reference
is used for declaration of reference domains (see the Declaring Reference
Domains on page 470).

List Domains
mylist = elementDom*

This is a convenient notation for declaring a list domain. mylist is a domain
consisting of lists of elements, from the domain elementDom. The domain
elementDom can be either a user-defined domain, or one of the standard types of
domain. You read the asterisk '*' as "list". For example, this domain declaration:

numberlist = integer*

declares a domain for lists of integers, such as [1, -5, 2, -6].

General Syntax for List Domains is:

mylist [, mylist1]= [reference] [align {byte|word|dword}] elementDom*

Here we use square brackets to indicate optional items. The keyword reference
is used for declaration of reference domains (see the Declaring Reference
Domains on page 470). The optional keyword align indicates the type of memory
alignment (see below in this chapter) to be used.

Multi-alternative Compound Domains
myCompDom=f_1(d_11, .., d_1N); f_2(d_21, d_22, .., d_2N); ...

Chapter 17, Elements of the Language 467

To declare a domain that consists of compound elements, you state functors and
the domains for all the subcomponents.

For example, you could declare a domain of owners made up of elements like
this:

owns(john, book(wuthering_heights, bronte))

with this declaration:

owners = owns(symbol, book)
book = book(symbol,symbol)

where owns is the functor of the compound object, and symbol and book are
domains of the subcomponents.

The right side of this type of domain declaration can define several alternatives,
separated by a semicolon ';'. Each alternative must contain a unique functor and
a description of the domains for the actual subcomponents of the functor. For
example, the following domain declaration could be used to say, "For some
predicates a key is either up, down, left, right or a char with a character value."

key = up; down; left; right; char(char)

There is a possibility to include a comment after the domain, for instance

 person= p(string name, integer age).

General Syntax for Multi-alternative Compound Domains is:

my_dom [,my_dom_M]* = [reference] [align {byte|word|dword}]
 alternative_1 [;alternative_N]*

Here:

my_dom_M

are names of declared domains. They can be any legal Visual Prolog names.

alternative_N

are declarations of domain alternatives in the form:

alternative_functor([subComponent_1 [, subComponent_2]*])

Here alternative_functor is the program unique functor naming the
alternative. It can be any legal Visual Prolog name. An alternative
subcomponents subComponent_N must be of the form sub_Domain_N

468 Visual Prolog Language Tutorial

[sub_Name_N], where sub_Domain_N can be either standard or any user-defined
domain. At last, sub_Name_N is an optional name of the subcomponent.

The optional keyword reference indicates declarations of reference domains.

The optional keyword align indicates the type of memory alignment to be used.

Here we use:

• Square brackets indicate optional items, and curly braces mean that one of
the items (separated by the symbol '|') must be chosen.

• An asterisk symbol '*' indicates arbitrary number of the immediately
preceding item (zero or more items)

• The semicolon ';' is read as "or".

Single-alternative Compound Domains
By prefixing a compound domain declaration with the keyword struct, you
declare a special single-alternative compound domain

my_FunctorlessDom = struct [align {byte|word|dword}]
singleFunctor(dom1 [name1],dom2 [name2],...,domN [nameN])

The main difference is that the single-alternative compound domain can declare
only one domain "alternative" with a single functor. Therefore, internal
representation of single-alternative terms need not store the functor number,
which is the reason of other name functorless domains for single-alternative
compound domains. Such functorless internal representation is directly
compatible with C structs and the primary aim of using functorless terms is for
interfacing with other languages.

Notice that functorless domains (for technical reasons) cannot be declared as
reference domains. In all other aspects terms of functorless domains can be used
just like other terms in your programs.

Domains FILE and DB_SELECTOR
file = symbolicFileName1; symbolicFilename2;...;symbolicFilenameN

A file domain must be defined when you need to refer to files (other than the
predefined ones) by symbolic names. A program can have only one domain of
this type, which must be called file. Symbolic file names are then given as
alternatives for the file domain. For example, this declaration:

file = sales ; salaries

Chapter 17, Elements of the Language 469

introduces the two symbolic file names sales and salaries.

The following alternatives are predefined in the file domain:

keyboard stdin
screen stdout
stderr

Notice that VDE generates the default definitions for file and db_selector
domains in the <ProjectName>.INC file. It is:

global domains
db_selector = browselist_db % For treebrowser tool
file = fileselector1; fileselector2 % To be edited

Therefore, if you need to use files of external databases in your program, then
you should append your alternatives to these default declarations.

Specially Handled Predefined Domains
There are several predefined domains; some are handled specially, like the file
domain and the db_selector domain. Here's a summary of these special
predefined domains:

Table 17.2: Specially Handled Predefined Domains

dbasedom implicitly generated domain for terms in the unnamed
global fact database

bt_selector returned binary tree selector

db_selector user-defined external database selectors

place in_memory; in_ems; in_file

accessmode read; readwrite

denymode denynone; denywrite; denyall

ref domain for database reference numbers

file symbolic file names

reg reg(AX,BX,CX,DX,SI,DI,DS,ES) used with bios/4

470 Visual Prolog Language Tutorial

Declaring Reference Domains
A reference domain is one that can carry unbound variables as input arguments.
To declare a reference domain, precede the right side of the domain declaration
with the keyword reference.

DOMAINS
reflist = reference refint*
refint = reference integer
term = reference int(refint); symb(refsymb)
refsymb = reference symbol

When you declare a compound domain as a reference domain, all its subdomains
are automatically (implicitly) declared as reference domains.

If some domain, for example integer, is implicitly redeclared as reference, then
variables of this domain are treated as references on the original domain values.
For example, integer variables will contain not integer values but references to
integers. This can be dangerous for multi-module projects. If a global predicate
defined in other module (for example in C library) does not know that integer
arguments should be not ordinary integer values (but pointers to integer values),
then calls to this predicate can generate errors. Therefore, you should always
explicitly declare all domains intended to be reference domains in the domains
section; and you should never use basic domains as reference, instead you should
declare a domain being a reference domain to the desired base domain, for
instance, as refint in the above example.

Declaring Predicate Domains
A predicate domain declares a type of predicates. In a subsequent predicate
declaration you may then declare one or more predicates as belonging to such a
predicate domain, and these may then be specified as arguments to other
predicates. Those other predicates will hence be able to do a variable call.
Therefore, we say that predicates declared as instances of predicate domains can
be used as predicate values. (See the Predicate Values on page 236.)

In declarations and implementations of classes, these "ordinary" predicate
domains can be used for declarations of static predicate values. (See the Static
Facts and Predicates on page 292.) For declarations of non-static (object) class
member predicates you should use object predicate domains (See the Object
Predicate Values on page 303)

The declaration for object predicate domains is of the form:

Chapter 17, Elements of the Language 471

[global] domains
PredDom = object

DetermMode [ReturnDom] (ArgList) [- [FlowPattern]] [Language]

The syntax for "ordinary" predicate domains is almost the same

PredDom = DetermMode [ReturnDom] (ArgList) [- [FlowPattern]] [Language]

The only difference is the additional keyword object stating the declaration of
object predicate domains.

This syntax is described in all details in the section Predicate Domains on page
238. PredDom states the name of the declared predicate domain. DetermMode
specifies the determinism mode for predicates. Must be specified one of the
keywords: procedure, determ, nondeterm, failure, erroneous, and multi.
ReturnDom states the domain of the return value (when declaring functions).
ArgList defines domains for arguments; brackets surrounding the arguments
should be given even when the ArgList is empty.

The Language specification tells the compiler which calling convention to use,
and is only required when declaring domains for routines written in other
languages (see the Interfacing with Other Languages chapter). The calling
convention defaults to pascal if omitted, but this should not be relied upon if a
particular convention is desired.

The flowpattern specifies how each argument is to be used. It should be the letter
'i' for an argument with input flow and 'o' for one with output flow. You can
have no more than one flow pattern declaration for a predicate domain, and it
must be given unless the argument list is empty or all arguments have input flow.

Hence, the predicate domain declaration for a deterministic predicate values
taking an integer as input argument and returning an integer, would be:

domains
list_process = determ integer (integer) - (i)

This predicate domain is now known as list_process. In classes list_process
domain can be used only for declarations of statis predicate values, if you need
using object predicate values, then you should declare correspondent object
predicate domain like this:

objectIntInt = object procedure integer (integer)

The object predicate domain objectIntInt can be used inside classes for
declarations of object predicate values. These predicates (functions) have one
input argument from integer domain and returns an integer value. They have

472 Visual Prolog Language Tutorial

procedure determinism mode. As non-static class members, they have a hidden
argument pointing onto objects (class instances) to which these predicate values
belong.

The Predicates Section
In Visual Prolog, the sections introduced by the keyword predicates contain
predicate declarations. You declare a predicate by its name and the domains of its
arguments, like this:

predicates
predname(domain1 [Name1], domain2 [Name2],...,domainN [NameN])

In this example, predname represents the new predicate name and domain1, ...,
domainN stand for user-defined or pre-defined domains. Optionally after each
argument domain, you can specify a mnemonic argument name NameN. You can
use these argument names to improve readability; the compiler just deletes them
on the preprocessing phase.

Multiple declarations for one predicate are also allowed. As an example, you
could declare that the predicate member works both on numbers and names by
giving the following declarations:

PREDICATES
member(name, namelist)
member(number, numberlist)

In this example, the arguments name, namelist, number, and numberlist are user-
defined domains.

You can declare a predicate with several different arities.

hanoi % chooses 10 slices as default
hanoi(integer) % moves N slices

If you give more than one declaration for the same name (with different domains
or arities), these declarations must come right after each other. However, in
classes hierarchy you can declare overloading predicates (different domains or
arities) and overriding predicates (with the same domains and arity).

Determinism Modes
You can declare predicates as being deterministic by preceding the predicate
declaration with the keywords procedure, determ, failure, or erroneous. From
the other hand, you can declare a predicate as being non-deterministic by

Chapter 17, Elements of the Language 473

preceding a declaration by the keywords nondeterm or multy. If you declare a
predicate to be deterministic, the compiler will issue a warning/error if it finds
any non-deterministic clauses for the predicate. On the other hand, when you
declare a predicate as non-deterministic, the compiler will not complain on non-
deterministic clauses in this predicate. The compiler default determinism mode
for predicates is determ. You can change this default to nondeterm or
procedure in the VDE's Compiler Options dialog with an appropriate selection
in the Default Predicate Type radio button group. You can also directly specify
the default determinism mode to the compiler with the compiler option –
Z{pro|dtm|ndt}. (Here: pro corresponds to the procedure; dtm to determ, and
ndt to nondeterm.)

The compiler implicitly accepts this default determinism mode to all predicates
declared without an explicit determinism mode specification.

nondeterm repeat /*repeat is non-deterministic by design*/
determ menuact(Integer,String) /*menuact is deterministic*/

By default, the compiler checks user-defined deterministic predicates (determ,
procedure, failure and erroneous) and gives warnings/errors for clauses that
can result in a non-deterministic predicate. This checking is extremely important
for effective and reliable code generation; therefore, it cannot be switched OFF
from VDE. (It can be switched OFF only by the compiler option –udtm).

By default, the compiler checks user-defined predicates declared with the
keywords procedure, multi, and erroneous and gives warning/errors if it cannot
guarantee that a predicate cannot fail. To switch OFF this checking from the
VDE, you can uncheck the Check Type of Predicates in the Compiler Options
dialog. (It can be switched OFF also by the command-line compiler option –
upro).

The short description of determinism modes:

nondeterm

The keyword nondeterm defines non-deterministic predicates that can
backtrack and generate multiple solutions. Predicates declared with the
keyword nondeterm can fail.

procedure

The keyword procedure defines predicates called procedures that always
have one and only one solution. (But run-time errors are possible.) Procedures
cannot fail and do not produce backtrack points. Most built-in Visual Prolog
predicates are internally declared as procedures.

474 Visual Prolog Language Tutorial

determ

The keyword determ defines deterministic predicates that can succeed or fail,
but cannot produce backtrack points. That is, predicates declared with the
keyword determ have no more then one solution.

multi

The keyword multi defines non-deterministic predicates that can backtrack
and generate multiple solutions. Predicates declared with the keyword multi
cannot fail.

erroneous

A predicate declared with the keyword erroneous should never fail and should
not produce solution. Typical used for error-handling purposes. Visual Prolog
supplies built-in erroneous predicates exit and errorexit.

failure

A predicate declared with the keyword failure should not produce a solution
but it can fail. Visual Prolog supplies the built-in failure predicate fail.
Failure predicates are usually used to enforce backtracking to the nearest
backtrack point. The predicate failure1 demonstrates the difference between
failure and erroneous predicates:

failure1(0) :- %This predicate can fail
errorexit().

failure1(_) :-
fail().

Flow Patterns
In a given predicate call, the known arguments are called input arguments (i), and
the unknown arguments are called output arguments (o). The set of the input and
output arguments in a given predicate call is called the flow pattern.

Starting from the goal section, the Visual Prolog compiler analizes all calls of
each local user-defined predicate and internally defines all possible flow patterns
with which a predicate can be used. For each flow pattern that a predicate is
called with, the flow analyzer goes through that predicate clauses with the
variables from the head set to either input or output (depending on the flow
pattern being analyzed) and defines flow patterns for calls of used predicates.
When the flow analyzer recognizes that a standard predicate or a user-defined
predicate is called with a nonexistent flow pattern, it issues an error message.

Chapter 17, Elements of the Language 475

For local predicates (since a local predicate is used only in one compiling
module) the compiler can determine all flow patterns a predicate is called with;
therefore, it is not required to specify flow patterns for local predicates. But if
you know that a local predicate is only valid with special flow patterns, it is a
good idear to explicitly specify these flow patterns in the predicate declaration.
Then the flow analyzer will catch any wrong usage of this predicate.

You can also specify separate determinism mode before each flow pattern. For
example, you can give the following detalization to the declaration of the
predicate plus/3 in the example ch10e02.pro:

PREDICATES
nondeterm plus(integer, integer, integer) –

procedure (i,i,o)
procedure (o,i,i)
procedure (i,o,i)
determ (i,i,i)
(o,o,i) (i,o,o) (o,i,o) (o,o,o)

If a special determinism mode is explicitly declared before a flow pattern (for
example, procedure (i,i,o)) then it overrides the "main" predicate determinism
mode declared before the predicate name, otherwise, the flow pattern has the
determinism mode declared before the predicate name (for example, (o,i,o) has
nondeterm mode).

The General Form of Local Predicate Declarations is:

predicates
[DeterminismMode] PredicateName [(ArgList)]

[- [[FlowDetermMode] FlowPattern] [[,][FlowDetermMode] FlowPattern]*]

All elements used in this declaration are explained with all details in the Global
Predicates on page 254).

Functions
By prefixing a predicate declaration with a domain name, you declare a function.
The return value is taken from the last argument in the final clause executed, and
this argument must not be present in the predicate declaration. A function
returning the cube of its argument would hence be declared as:

predicates
procedure integer cube(integer)

And the clause for this function would be:

476 Visual Prolog Language Tutorial

clauses
cube(In,Out):- Out = In*In*In.

A function can return any domain.

Predicate Values
If you have declared a predicate domain in the domain section, you may declare
one or more predicates as belonging to that domain. The syntax for this is.

PREDICATES
pred1: p_domain
pred2: p_domain
...

where pred1, pred2 etc. are the predicate names and p_domain is the predicate
domain declared in the domain section. As "plain" predicates, these predicates
pred1, pred2 can be called with appropriate arguments. But also these predicates
can be considered as predicate values since they have the following value
properties:

• They can be passed as parameters and returned from predicates and
functions.

• They can be stored in facts.

• They can be held in variables.

• They can be compared for identity.

Object Predicate Values
If you have declared an object predicate domain (for example, my_objDom) in a
domains section, you may (in a class declaration or in a class implementation)
declare one or more non-static class member predicates as belonging to this
object predicate domain. The syntax is.

class c
predicates

my_obj_pred1: my_obj_Dom
my_obj_pred2: my_obj_Dom

The Facts Section
A facts section (database section in PDC Prolog) declares predicates just as the
predicates section does. However, the clauses for such predicates can only
consist of plain facts, they cannot have an associated body. These facts can be

Chapter 17, Elements of the Language 477

inserted at run time by assert, asserta, assertz, or consult predicates into internal
fact databases, and you can remove them again with retract or retractall. The
predicates save/1 and save/2 save the contents of internal fact databases to a file.
The predicates consult/1 and consult/2 read facts from a file and assert them into
internal fact databases.

You can have several facts sections in your program; some of them can be global
and some local. You can name facts sections, and each name must be unique
within the module. If you do not give a name for a facts section, the compiler
will give it the default name dbasedom. Only one such unnamed facts section is
possible and it must be declared global in multi-module programs (this is the
default for projects created by the Visual Development Environment). When a
facts section is declared, the compiler internally declares the domain with the
same name as the facts section name; this allows predicates to handle facts as
terms.

Notice that inside the implementation and the declaration of a class you can
declare several unnamed facts sections, for such fact databases the compiler
generates special internal names that cannot be referenced from the program
code.

The General Form of Facts Section Declarations is:

[global] facts [- <databasename>]
[nocopy] [{ determ | single | nondeterm }] dbPredicate ['(' [Domain
[ArgumentName]]* ')']

...

Each facts section can declare any number of database predicates.

By their basic nature, fact database predicates are nondeterministic; therefore, the
default determinism mode of facts is nondeterm. You can precede declaration of
a database predicate with the keywords:

• determ if you know that there can be only one fact for that database
predicate.

• single if you know that there always will be one and only one fact for that
database predicate.

This enables the compiler to produce better code, and you will not get non-
deterministic warnings for calling such predicates. This is useful for flags,
counters, etc.

478 Visual Prolog Language Tutorial

nocopy

Normally, when a database predicate is called to bind a variable to a string or
a compound object, then the referenced data are copied from the heap to the
Visual Prolog global stack (GStack). The nocopy declares that the data will
not be copied and variables will reference directly to the fact's data stored in
the heap. This can increase efficiency, but should be used carefully. If a copy
was not made, the variable would point to garbage after the fact retraction was
made.

global

Determines a global facts section. (See Modular Programming on page
252.) Notice that safe programming techniques require that you do not use
global facts. Instead, you can use global predicates handling local facts.

An example is:

facts - tables
part(name,cost)
salesperson(name,sex)

predicates
write_table_element(tables)

clauses
write_table_element(part(Name,Cost)):-
writef("\nPart's Name= % Cost = %",Name,Cost).

write_table_element(salesperson(Name,Sex)):-
writef("\nSalesperson's Name= % Sex = %",Name,Sex).

The Clauses Section
A clause is either a fact or a rule corresponding to one of the declared predicates.
In general, a clause consists of either 1) a fact or 2) a clause head followed first
by a colon and hyphen (:-), then by a list of predicate calls separated by commas
(,) or semicolons (;). Both facts and rules must be terminated by a period (.).

The fact:

same_league(ucla, usc).

consists of a predicate name same_league, and a bracketed list of arguments
(ucla, usc).

Notice that for compatibility with other Prologs you can use the keywords: if
instead of (:-), and instead of (,), or instead of (;).

Chapter 17, Elements of the Language 479

Simple Constants
Simple constants belong to one of the following standard domains:

char

A character (an 8-bit ASCII character enclosed
between a pair of single quotation marks) belongs
to the char domain.

An ASCII character is indicated by the escape
character (\) followed by the ASCII code for that
character. \n, \t, \r produce a newline , a tab and a
carriage return character, respectively. A backslash
(\) followed by any other character produces that
character ('\\' produces \ and '\'' produces ').

integral numbers

positive and negative numbers can be represented in
the Visual Prologs integral number domains shown
in the following table.

real A real number belongs to the real domain and is a
number in the range 1.7*10^-307 to 1.7*10^+308.

Real numbers are written with a sign, a mantissa, a
decimal point, a fractional part, an e, a sign, and an
exponent, all without included spaces. For example,
the real value -12345.6789 * 10^3 can be written as
-1.23456789e+7.

The sign, fractional, and exponent parts are optional
(though if you omit the fractional part, you must
leave out the decimal point, too). Visual Prolog
automatically converts integers to real numbers
when necessary.

string A string (any sequence of characters between a pair
of double quotation marks) belongs to the string
domain. Strings can contain characters produced by
an escape sequence (as mentioned under char);
strings can be up to 64 K in length.

480 Visual Prolog Language Tutorial

symbol A symbolic constant (a name starting with a lower-
case letter) belongs to the symbol domain type.

Strings are accepted as symbols too, but symbols
are kept in an internal table for quicker matching.
The symbol table takes up some storage space, as
well as the time required to make an entry in the
table. However, if the same symbols are frequently
compared, it's well worth the investment.

binary A binary constant belongs to the binary domain. It
is written as a comma-separated list of integral
values, each less than or equal to 255, enclosed in
square brackets prefixed with a dollar sign:
$[1,0xff,'a'].

predicate value A predicate value is the name of a predicate
previously declared as belonging to a predicate
domain. It is written simply as the name of the
predicate, with no argument list or brackets.

object predicate
value

An object predicate value is the name of a predicate
previously declared as belonging to an object
predicate domain. It is written simply as the name
of the predicate, with no argument list or brackets.

Chapter 17, Elements of the Language 481

Table 17.3: Integral Standard Domains

Domain Description and implementation
short A small, signed, quantity.

All platforms 16 bits,2s comp 32768 .. 32767

ushort A small, unsigned, quantity.

All platforms 16 bits 0 .. 65535

long A large signed quantity

All platforms 32 bits,2s comp -2147483648 ..
2147483647

ulong A large, unsigned quantity

All platforms 32 bits 0 .. 4294967295

integer A signed quantity, having the natural size for the
machine/platform architecture in question.

16bit platforms 16 bits,2s comp -32768 .. 32767

32bit platforms 32 bits,2s comp -2147483648 ..
2147483647

unsigned An unsigned quantity, having the natural size for the
machine/platform architecture in question.

16bit platforms 16 bits 0 .. 65535

32bit platforms 32 bits 0 .. 4294967295

byte

All platforms ³ 8 bits 0 .. 255

word

All platforms 16 bits 0 .. 65535

dword

All platforms 32 bits 0 .. 4294967295

An integral value may be preceded by 0x or 0o, indicating hexadecimal and octal
syntax respectively.

482 Visual Prolog Language Tutorial

Terms
A term is, strictly speaking, any Prolog entity. Either an object from one of the
domains of standard type, a list, a variable, or a compound term, i.e., a functor
followed by a list of terms (optional arguments) enclosed in parentheses and
separated by commas. Facts can be handled as terms when using the domains
internally generated for names of facts sections. In practice we tend to mean
those (variable) entities holding data or non-compiled information, or compound
terms (consisting of a functor and optional arguments).

Variables
Variables are names starting with an upper-case letter or underscore or, to
represent the anonymous variable, a single underscore character underscore
character). The anonymous variable is used when the value of that variable is not
of interest. A variable is said to be free when it is not yet associated with a term,
and bound or instantiated when it is unified with a term.

The Visual Prolog has an option so it can give a warning when it detects that a
variable has been used only once in a clause. This warning will not be given if
the variable starts with an underscore. Note that when a variable name starts with
an underscore like _Win, it is still a normal variable, which unlike the
anonymous variable can be used to pass values from one call to another.

Compound Terms
A compound term is a single object that consists of a collection of other terms
(called subcomponents) and a describing name (the functor). The subcomponents
are enclosed in parentheses and separated by commas. The functor is written just
before the left parenthesis. For example, the following compound term consists
of the functor author and three subcomponents:

author(emily, bronte, 1818)

A compound term belongs to a user-defined domain. The domain declaration
corresponding to the author compound term might look like this:

DOMAINS
author_dom = author(firstname, lastname, year_of_birth)
firstname, lastname = symbol
year_of_birth = integer

Chapter 17, Elements of the Language 483

Functorless Compound Terms

By prefixing a compound domain declaration with the directive struct, you
declare a single alternative compount domain.

domains
author_dom = struct author(firstname, lastname, year_of_birth)

There can be no alternatives in a single alternative compound domain. Hence, the
internal representation of a term of a single alternative compound domain has no
functor. Therefore, such domains can be named functorless domains. Functorless
terms can be used just like other terms in your source code, but their primary aim
is to be directly compatible with C structs.

Lists – a Special Kind of Compound Terms

Lists are a common data structure in Prolog and are actually a form of compound
terms. Syntactically, it is written as a sequence of comma-separated arguments,
enclosed in square brackets. A list of integers would appear as follows:

[1, 2, 3, 9, -3, 2]

Such a list belongs to a user-defined domain, such as:

DOMAINS
ilist = integer*

If the elements in a list are of mixed types (for example, a list containing both
characters and integers), you must state this in a corresponding domain
declaration. For example, the following declarations

DOMAINS
element = c(char) ; i(integer)
list = element*

would allow lists like this one:

[i(12), i(34), i(-567), c('x'), c('y'), c('z'), i(987)]

Memory Alignment

By prefixing a compound or list declaration with an alignment specification, you
can override the default alignment. The syntax is:

DOMAINS
dom = align { byte | word | dword } domdecl

484 Visual Prolog Language Tutorial

where domdecl is a normal domain declaration:

DOMAINS
element = align byte c(char) ; i(integer)
list = align dword element*

This would make the internal representation for elements byte-aligned and list
dword-aligned.

If you want to override the default alignment for a functorless domain, the struct
directive must precede the align directive.

DOMAINS
bbdom = struct align byte blm(char,integer)

The primary aim of overriding alignment is to make compound objects
compatible with external code using a different alignment than the default for
your platform. If several programs share an external database or communicate
over pipes, the domains involved must use the same alignment.

The Goal Section
The goal section is declared with the keyword goal. A goal is a special variant of
a clause, sometimes called a goal clause.

Essentially, the goal section is the same as the body of a clause. The goal section
simply contains a list of subgoals separated by commas ',' (logical AND) or
semicolons ';' (logical OR). However in contrast to a rule, the goal section does
not contain ':-'. When the program starts, Visual Prolog automatically calles
the goal and the program runs, trying to satisfy the body of the goal rule. If the
subgoals in the goal section all succeed, then the program terminates
successfully. Otherwise, we say that the program fails. For example,

goal
write("Hello world"), readchar(_).

The Constants Section
You can define and use constants in your Visual Prolog programs. A constant
declaration section is indicated by the keyword constants, followed by the
declarations themselves, using the following syntax:

<Id> = <definition>

Chapter 17, Elements of the Language 485

Each <definition> is terminated by a newline character, so there can be only one
constant declaration per line. Constants declared in this way can then be referred
to later in the program.

Consider the following program fragment:

CONSTANTS
blue = 1
green = 2
red = 4
grayfill = [0xaa, 0x55, 0xaa, 0x55, 0xaa, 0x55, 0xaa, 0x55]
language = english
project_module = true

Before compiling your program, Visual Prolog will replace each constant with
the actual string to which it corresponds. For instance:

...
menu_colors(red,green,blue),
my_fill_pattern(grayfill),
text_convert(prolog, language),
status(project_module),
...

will be handled by the compiler in exactly the same way as:

...
menu_colors(4, 2, 1),
my_fill_pattern([0xaa, 0x55, 0xaa, 0x55, 0xaa, 0x55, 0xaa, 0x55]),
text_convert(prolog, english),
status(true),
...

There are a few restrictions on the use of symbolic constants.

• The definition of a constant can't refer to itself. For example:

list = [1, 2|list]. /* Is not allowed */

will generate the error message Recursion in constant definition. The
system does not distinguish between upper-case and lower-case in a constant
declaration. Consequently, when a constant identifier is used in the clauses
section of a program, the first letter must be lower-case to avoid ambiguity
with variables. So, for example, the following is a valid construction:

CONSTANTS
Two = 2

486 Visual Prolog Language Tutorial

GOAL
A=two, write(A).

• There can be several constants sections in a program, but each constant must
be declared before it is used.

• Constant identifiers are global for the rest of the module and can only be
declared once. Multiple declarations of the same identifier will result in an
error message. You can use constants to redefine names of domains and
predicates, except the specially-handled predicates. Refer to "Specially-
Handled Predicates" earlier in this chapter.

Predefined Constants
Depending on the target platform selected for compilation, one or more constants
will be predefined:

Table 17.4: Predefined Constants

Constant Target selections causing it to be defined

os_dos
os_os2
os_nt
os_unix
ws_win
ws_pm
dosx286
platform_16bit
platform_32bit
use_coff_objformat
use_elf_objformat
use_omf_objformat

DOS, Phar Lap and 16-bit Windows
32-bit or 16-bit OS/2
32-bit MS Windows SCO UNIX and Linux
32-bit or 16-bit MS Windows
Presentation Manager
Phar Lap286
16-bit platforms
32-bit platforms
COFF object format: 32-bit Visual C++.
ELF object format is used on Linux
OMF object format

Selecting DOS as your target will cause os_dos to be defined, and selecting 16-
bit MS Windows will cause both os_dos and ws_win to be defined.

These predefined constants enable you to control platform-dependent conditional
compilation with ifdef/ifndef compiler directives.

Conditional Compilation
You use conditional compilation when you need to generate different versions of
the same program; for example, one version that uses graphics and another that
only uses text mode. The syntax for conditional compilation directives is:

Chapter 17, Elements of the Language 487

[ifdef | ifndef] <constantID>
...

elsedef
...

enddef

<constantID> represents a constant identifier declared in a constants section.
The value of the constant is irrelevant; only its presence matters. The ifdef
directive succeeds if the constant is defined, while the ifndef directive succeeds if
the constant is not defined. The elsedef part is optional. The following program
shows a typical use of the conditional compilation directives.

CONSTANTS
restricted = 1

ifdef restricted /* if restricted is defined, use this */

savebase(_):-
write("\nBase cannot be saved in demo version"),
readchar(_).

elsedef /* otherwise, use this */

savebase(Name):-
write("\nSaving ",Name),
save(Name).

enddef

Including Files in Your Program

You use include to include the contents of another file in your program during
compilation. The syntax is:

include "OSFileName"

The OSFileName can include a path name, but you must remember that the
backslash character used to give subdirectories in the DOS-related versions of
Visual Prolog is an escape character in Visual Prolog. Because of this, you must
always give two backslash characters when you use the backslash in a path inside
the source text.

include "\\vip\\include\\error.con"

488 Visual Prolog Language Tutorial

Under Options | Project | Directories you can give one or more paths separated
by semicolons (colons under UNIX) to indicate where the Prolog system should
look for the include files (Here, of course, only a single backslash is required). If
you don't give an absolute path in your OSFileName, the compiler will in turn try
to concatenate each of the paths given in the include directory to your filename in
order to locate the file.

You can only use include files on section boundaries in a program, so include
can appear only where the keywords constants, domains, predicates, goal,
facts, clauses, class or implement are permitted. An include file itself can
contain further include directives. However, include files must not be used
recursively in such a way that the same file is included more than once during a
module compilation.

Include files can contain any sections, provided the restrictions on program
structure are observed (see page 463).

Modules and Global Programming Constructions

Compilation Units
The programmer writes all code in source files. The source files are presented to
the compiler in "chunks" called compilation units. Each compilation unit is
compiled separately into an intermediate file called an object file. These
intermediate files are linked together (maybe with other files) by the PDC Link
Editor (or other linker) to create the target file. The Visual Prolog's target files
can be executables or dynamic link libraries (DLLs).

Until the moment, in this chapter we mainly have spoken about programs having
one compilation unit. We say that such programs consist of one module. Of
course, one-module programs can consist of several source files that are included
(with include derectives) during the compilation into the "root" source file of the
module.

When your program consists of a single module, then you need only local
declarations (that were discussed in this chapter). Because all user-defined names
are defined in this module, the compiler sees all of them while compiling the
module. The scope of local names is the module where they are defined.
However, real programs rare consist of one module. There are several reasons:
restrictions on numbers of domains and predicates that can be declared in a
module, necessity to use tools supplied as separate modules, etc. Notice that any
VPI (Visual Programming Interface) program contains as less two modules.

Chapter 17, Elements of the Language 489

Names with Global Scope
Since the scope of local names is a module in which they are defined, hence, to
interact between two modules they need some "large-scale" entities that can be
accessed from both modules. In Visual Prolog such large-scale names are:

• Global domains and predicates declared in global domains or global
predicates sections (and also global facts).

• Public domains and predicates (and facts) declared in declarations of classes.

Declarations of global domains and predicates is discribed in the Modular
Programming on page 252). From the inter-module communication perspective,
public predicates and domains declared in classes have the same behavior as
global ones. (Of course, declared in classes entities need to be qualified with
names of classes or with objects to which they belong.) The common rules are
the following:

1. A module can use all names declared in the scope of the module. That is:

• a module can use all global predicates and domains (and facts), which
declarations are included in the module;

• a module can use all public predicates, domains (and facts) that are
declared in the classes, which declarations are included in the module.
The module can also use all domains corresponding to names of these
classes.

2. The main project module (with the goal) must contain declarations of all
global domains, global facts sections, and abstract classes that are declared in
all project submodules.

3. Any other project module may contain declarations of only those global
domains, global facts sections, abstract and "ordinary" classes, which are
used in this module.

4. If any global declaration or a class declaration is changed, all modules
including this declaration must be recompiled.

Include Structure of Multi-modular Programs
Let us consider include "styles" of multi-modular programs, which fit the above
requirements.

490 Visual Prolog Language Tutorial

Include All Global Declarations in each Module
First, let us start with the most simple to use "style", which fit well for beginners,
small-scale programming, prototyping, etc. This is the VDE's default structuring
mechanism. According to it, every module includes a <ProjectName>.INC file,
which then in turn includes <ModuleName>.DOM and a <ModuleName>.PRE
files for each module. In the DOM file you should declare the global domains
(and facts) introduced in the module. In the PRE file you should declare the
global predicates and place class declarations. Since every module includes the
INC file, which includes all DOM and PRE files, you have access to every global
domain and every global predicate in each module. To follow this mechanism,
creating a new module you simply need in VDE's File Inclusion for Module
dialog:

1. Check ON the "Create <ModuleName>.DOM" for each source module,
which may introduce new global domains and

• check ON the "Include <ModuleName>.DOM", to specify that the include
statement for this file must be generated in the <ProjectName>.INC file.

2. Check ON the "Create <ModuleName>.PRE" for each source module,
which may introduce new global predicates or declare a new classes and

• check ON the "Include <ModuleName>.PRE", to specify that the include
statement for this file must be generated in the <ProjectName>.INC file.

This is nice for "easy programming" (programming in the small).

Notice that regarding to proper handling of global domains this was the best
possible mechanism in Visual Prolog versions prior to 5.2. Because older
versions required that all global domains were declared in all modules (and even
in the same order). Class names are considered global domains (in some
respects), and (until Visual Prolog v.5.2) class declarations also had to be
included in every module. Notice that every thing we say here about global
domains also count for domains corresponding to names of global facts sections.

Where-used Strategy for Including Global Declarations
When you make large programs, there are serious drawbacks of the above style:

• If you change any global declaration of a class declaration, you have to
recompile all modules of the project.

• You soon meet the restrictions on numbers of predicates and domains that
can be used in a module.

• When creating larger programs (especially with many programmers), having
access to everything from everywhere tends to lead to spaghetti programs.

Chapter 17, Elements of the Language 491

That is, programs where every part of a program references to all other parts
of the program.

Therefore, it is quite common to structure larger programs differently. When
creating larger programs you would often move the includes of all the PRE and
DOM files out of the INC file, and include them only into those modules (PRO
files) that actually use the corresponding PRE and DOM files. (Recall that until
VIP v. 5.2, you could not do this with DOM files.) Notice that now it is also
recommended to place declarations of classes into <ModuleName>.PH files
(separately from declarations of global predicates).

The benefit from moving includes of PRE, DOM, and PH files from the INC file
into the using them PRO files are:

• When you change declaration of a global predicate, a global domain or a
class, only those modules that include the changed declaration need to be
recompiled. This can considerably decrease recompilation time.

• Since the overall numbers of predicates and domains that can be declared in a
module are limited; therefore, more global predicates and domains can be
used in a project and more local predicates and domains can be declared in
each module.

• If a module does not include a certain PRE, DOM or PH file, then you
cannot call the predicates or use domains declared in this file. Subsequently
it is easier to maintain a certain usage structure between modules, with
reduction in spaghetti code as a consequence. Especially it is easier to avoid
that new programmers on a project, who do not yet know the program
structure, accidentally circumvent a good program structure. New
programmers on a project can also learn about the overall structure of a
program by investigating the include structure.

Now when the main module is the only one that has to include declarations of all
global domains and abstract classes, you might consider making the main module
very small (so that recompilation will be fast). An easy way to make the main
module small is to replace the goal in its original place with a clause of a new
global predicate (lets name it run).

Then create a new module containing all includes required to the main module
and a goal:

goal
run().

The declaration of the global predicate run must, of course, be visible both in the
old main module and in the new one.

492 Visual Prolog Language Tutorial

Qualification Rules for Public Class Members
This manual provides rather compact description of syntax for classes and
objects in Visual Prolog (see the Classes and Objects on page 282). Therefore,
we will not repeat it here. The only important to modular programming feature
that should be summarized here are scoping and qualification rules for names
declared in classes.

1. Any class entities (domains, predicates, facts) declared in a class
implementation is local to that implementation, and inside this
implementation these class entities are used just like any other domains,
predicates or facts.

2. Any public class entities declared in a class declaration can be used directly
in all classes that inherit (transitively) from that class (including the class
itself). Domains declared in a class declaration can be used both in the
declaration and in the implementation of this class.

3. In classes that do not inherit (transitively) from the class declaring the
domain (and outside classes), the domain and all functors have to be
qualified with the class name of the declaring class. The qualification have to
go to the class that really declares the domain, it cannot go to a class that
merely inherit from that class. In other words, the derived classes only
"inherit" the ability to use a domain.

4. Static class members belong to the class, not to the individual objects.
Outside implementations of classes that inherit (transitively) a public static
class member, it can be qualified with the class name using the following
syntax:

class_name :: static_class_member[(arguments)]

Public static members of a class can be used in any place where the class
declaration is visible (in any modules including the class declaration) even
without creation of any object of the class. Of course, qualification with
reference to an object is also possible.

5. In opposite, non-static class members belong to the instances (objects).
Therefore, to use a public non-static class member outside implementations
of classes that inherit (transitively) this member, an object obtaining this
member should be created, and in the call of this non-static member an object
identifier should be specified using the following syntax:

object : non_static_class_member[(arguments)]

Chapter 17, Elements of the Language 493

6. In Visual Prolog all public predicates (except new and delete) are virtual.
Virtual predicates allow derived classes providing different versions of a
parent class predicates. You can declare a predicate in a parent class and then
redefine it in any derived class. Calling a virtual predicate you may need to
qualify explicitly the class name. The general syntax is:

[ObjectVariable:] [name_of_class::] virtual_pred_name[(arguments)]

Notice that all domains declared in classes are static/class entities. The domain
belongs to the class not to the individual objects (but like other static/class
entities they can of course be used freely by objects).

Being able to declare domains in classes opens the possibility to use classes as
modules. If a class only declare static entities, then it can be considered a
module. The static/class entities of a class can however be used as ordinary
global entities, as long as you remember to qualify them with the class name.
One advantage of creating modules this way is that the module will have a
separate name space (as the result of qualification with the class name). This
means that you can choose names in the module more freely. Another advantage
is that classes do not have to be included in the main module, even if they contain
public domains

Compiler Options for Multi-modular Projects
To manage multi-modular programs Visual Prolog's compiler uses the concept of
projects. It is used to handle the following two tasks:

1. Define the SYM-file name.

Visual Prolog stores symbol domain terms in a so-called symbol table, which
is stored in the special (object format) SYM-file. By default, its filename
extension is SYM. This symbol table is shared by all modules. Hence, the
compiler must collect in the same SYM-file all symbol terms used in all
modules. Therefore, while compiling each project module the compiler has to
know the name of the common SYM-file.

2. To notify the compiler that compiled modules are parts of a project and so do
not obliged to contain the goal section.

Visual Prolog programs must have the internal goal. Therefore, by default the
compiler requires that each compiled module has the goal section, but in
projects only the main module contains the goal.

These can be done by the command line compiler option -r[ProjectName]. For
example, let the compiler, while compiling a file ModuleName.PRO, get the
option

494 Visual Prolog Language Tutorial

-rProjectName

It notifies the compiler that:

• the compiled file ModuleName.PRO is a module of the project ProjectName
and so does not have to contain the goal section;

• the SYM-file name is ProjectName.SYM.

These also can be done with the project compiler directive (see below in this
chapter), but the compiler option –r overrides it. The -r command line compiler
option is much more convenient to the Visual Development Environment;
therefore, the project compiler directive is almost never used now.

If you use the VDE, the Application expert automatically specifies the required
command line compiler options. Therefore, if you use the VDE, then you need
not any knowledge about command line compiler options. Otherwise, you can
find descriptions of command line compiler options in the on-line help. (Search
for the topic Command Line Compiler Options.)

Compiler Directives

A number of compiler features are controlled through compiler directives. You
can introduce one or more of the following directives at the beginning of the
program text:

check_determ
code
config
diagnostics

errorlevel
heap
gstacksize
nobreak

nowarnings
printermenu
project

Many of the compiler directives can be set both in the Visual Prolog
development environment (from the menus), through command-line options and
in the source code. If a compiler directive exists in the source code, its setting
will override values set elsewhere.

Note, that most of the compiler directives are now obsolete for VPI Programs.

check_determ
When you specify check_determ, the Visual Prolog compiler will give a
warning for all non-deterministic clauses, unless the predicates have explicitly
been declared as nondeterm. This compiler directive can override the command-
line compiler option -udtm- or with the VDE's option Options | Project |
Compiler Options | Check Type of Predicates.

Chapter 17, Elements of the Language 495

You can use check_determ to guide the setting of cuts. Visual Prolog itself
performs extensive tests to decide whether a predicate is deterministic or non-
deterministic, so you don't need to fill your programs with cuts merely to save
stack space (as is necessary in many other Prolog implementations). Visual
Prolog offers effective determinism monitoring based on declarations of
determinism modes of predicates and facts. Six different determinism modes can
be declared for predicates with the keywords multi, nondeterm, determ,
procedure, failure or erroneous. To declare the predicate determinism mode
one can precede the predicate declaration with one of these keywords. Notice that
a separate determinism mode can be declared for each flow pattern of a predicate
by preceding a flow pattern with the required determinism mode keyword. For
example:

predicates
procedure difModes(string,integer) – determ (i,i) (i,o) (o,i)

This example declares predicate difModes as determ for (i,i) flow and as
procedure for all other possible flow patterns. You can also use keywords
determ or single declaring database predicates intended to have no more than
one fact or one and only one fact respectively. Calling and retracting of facts
declared deterministic are deterministic; you can use declarations of determ or
single facts to avoid warnings about non-deterministic clauses.

The default determinism mode for predicates is determ. You can change it by
the z[Value] command line compiler option to procedure (Value=pro) or
nondeterm (Value=ndt). Visual Development Environment generates these
options, when you check the correspondent check box for the Default Predicate
Mode in the Compiler Options dialog.

Notice that if a predicate is declared with the mode determ, procedure, failure
or erroneous, then the compiler always checks the predicate for non-
deterministic clauses.

There are two kinds of non-deterministic clauses:

1. If a clause does not contain a cut, and there are one or more clauses that can
match with the same input arguments for that flow pattern.

2. If a clause calls a non-deterministic predicate, and that predicate call is not
followed by a cut.

code
The code directive specifies the size of the internal code array. The default is
4000 paragraphs (16-byte units) for the 16-bit versions of Visual Prolog,

496 Visual Prolog Language Tutorial

otherwise 10000 paragraphs. For larger programs you might need to specify a
larger size.

code = Number_of_paragraphs

where Number_of_paragraphs represents the number of memory paragraphs (16
bytes each) required in the code array. For example, the directive:

code = 1024

sets the size of the code array to 16 Kbytes.

The code directive has no influence on the size of an executable file, it simply
controls how much memory the compiler should allocate for the compilation.

When the code size exceeds the value 4095, the compiler will switch over to
generating FAR calls inside that module. For this reason, you should only use a
code size above 4095 if it is really needed. For 32-bit code generation, the size of
the code array is practically irrelevant. All code is NEAR, and the operating
system will only allocate physical memory when the allocated virtual memory is
actually used.

config
This option is only relevant for old DOS textmode windowing applications!

To let a stand-alone DOS application read a configuration file (which defines
default window attributes, keyboard setup, etc.) place the directive:

config "<ConfigFileName>.cfg"

in your program.

diagnostics
Corresponds to the VDE's option Options | Project | Compiler Options |
Diagnostics Output. When you specify diagnostics, the compiler will display an
analysis of your program containing the following information:

• the names of the predicates used

• whether a predicate is local, global or defined externally

• whether a predicate is deterministic or non-deterministic

• the size of the code for each predicate

• the domain types of the parameters

Chapter 17, Elements of the Language 497

• the flow patterns for each predicate

The diagnostics will also produce a listing of which domains are treated as
reference domains, and for which domains the compiler generates internal
unification predicates. These predicates are generated when you unify two terms
in certain non-simple ways. As an example if you are writing L1=L2 where both
L1 and L2 are bound to a list, the compiler needs to test all the elements of the
list for equality.

Here's an example of a diagnostics display:

DIAGNOSTICS FOR MODULE: /usr/pdev/test/flow1.pro

Predicate Name Type Determ Size Domains – flowpattern
---------------- ------ ------ ----- ----------------------------
_PROLOG_Goal local yes 216 --
_p1_0 global yes 112 integerlist – [i,o,i|o]
_p1_1 global yes 128 integerlist – o
---------------- ------ ------ ----- ----------------------------
Total size 460

Size of symbol table= 324 bytes
Size of PROCONST segment=1705 bytes

Under Options | Global | Environment, it is possible to log the diagnostics
output into a file.

errorlevel
Corresponds to the VDE's option Options | Project | Compiler Options |
Errorlevel. The compiler directive errorlevel enables you to control how
detailed the error reporting should be. The syntax is:

errorlevel = d

where d is one of 0, 1, or 2, representing the following levels:

d Level of Error Reporting

0 Generates the most efficient code. No cursor information will be
placed in the code and only the error number will be displayed in an
error occurs.

498 Visual Prolog Language Tutorial

1 This is the default. When an error occurs, its origin (module name
and include file, if applicable) will be displayed. The place where
the error was detected within the relevant source file will also be
displayed, expressed in terms of the number of bytes from the
beginning of the file.

2 At this level, certain errors not reported at level 1, including stack
overflow heap overflow, trail overflow, etc., are also reported.

In a project, it is the error-level option in each module that controls that module's
detail of saving the cursor information. If, however, the error-level option in the
main module is higher than that of the submodules, Visual Prolog might generate
misleading error information. For example, if an error occurs in a module
compiled with error level 0, which is included in a main module compiled with
error level 1 or 2, the system will be unable to show the correct location of the
error. Instead, it will indicate the position of some previously executed code.

heap
Note: this is relevant only if you are going to implement a DOS TSR program.

Corresponds to the VDE's option Options | Project | Compiler Options | Heap
Size. The heap directive specifies how much memory your .EXE file should
allocate when it is started from DOS. If you don't use the heap directive, or if you
set it to the value 0, the program will allocate all available memory. This is
normally the right way to do it, but if you want to implement a RAM-resident
Visual Prolog program, your program should only allocate the necessary
memory. The format is:

heap = Number_of_paragraphs

nobreak
Note: this is only relevant for DOS textmode programs.

Corresponds to the VDE's option Options | Project | Compiler Options | Break
Check. In the absence of the nobreak compiler directive, the Visual Prolog
system will generate code to check the keyboard before each predicate call, to
ensure that the Ctrl+Break key combination has not been pressed. This slows
down program execution slightly and takes up a little extra program space.

Chapter 17, Elements of the Language 499

The nobreak directive prevents this automatic generation of code. When nobreak
is in operation, the only way to escape an endless loop is to reboot the computer
(DOS, PharLap) or kill the process in some other way. nobreak should only be
used after a program has been thoroughly tested.

nowarnings
Corresponds to the VDE's option Options | Project | Compiler Options |
Unused Variables. The nowarnings directive suppresses the warnings given
when a variable occurs only once in a clause.

If a variable occurs only once, either it is a mistake or it should be replaced by
the anonymous variable - or a variable starting with an underscore.

printermenu
Note: this is only relevant for DOS textmode programs.

Corresponds to the VDE's option Options | Project | Compiler Options | Print
menu in DOS .EXE. When this compiler directive appears in the program,
Visual Prolog will place code in the executable file for handling the Alt-P key.
This means that the user will be able to send screen output to the printer or
capture it to a log file.

project
The project compiler directive is used in modular programming. All Visual
Prolog modules involved in a project need to share an internal symbol table. If
the project is called MYPROJ, the symbol table will be placed in a file called
MYPROJ.SYM. The project directive must appear on the first line of a module to
specify which project that module belongs to. For example, the following line of
code states that a module belongs to the MYPROJ project:

project "myproj"

The project name is not allowed to have a path or an extension.

If the name of the .SYM file is given in the VDE with the option
Options|Project|Compiler Options|.SYM File Name or with the command line
compiler option (-r<ProjectName> or –M<SymFileName>), the project
compiler directive will be ignored.

See page 252 for more details about modular programming.

500 Visual Prolog Language Tutorial

Visual Prolog Memory Management

Visual Prolog uses the following memory areas:

Stack the stack is used for transferring arguments and return addresses for
predicate calls. The stack also holds the information for backtrack
points.

Heap the heap holds all objects that are more or less permanent, such as
database facts, window buffers, file buffers etc.

GStack the global stack, normally called GStack, is the place where lists,
compound structures and strings are placed. The GStack is only
released during backtracking.

Trail The trail is only used when the program uses reference variables. It
holds information about which reference variables must be unbound
during backtracking. The trail is allocated in the heap.

Memory Restrictions
If you get a Memory overflow error, either correct your program or increase the
size of the correspondent memory area.

Stack Size
• On 32-bit Windows platforms, the linker should specify the total stack

allocation in the application virtual memory (Stack Size). This determines
the maximal possible Stack size for the process. This reservation specifies
the continuous range of addresses, in the 2GB virtual address space of the
processes, which is reserved for the Stack. Without this type of protection,
operations like loading DLLs could occupy Stack addresses and jeopardize
availability for later use of them for stack needs. Notice that the reserved
Stack Size cannot be increased dynamically by running processes; therefore,
if a process attempts to allocate for stack more memory than the reserved
Stack Size, then the memory error is generated. The default Stack size is 1
MB. This value can be changed with VDE's option Options | Project |
Compiler Options | Miscellaneous | Stack Size. This VDE option is
equivalent to "-s[StackSize]" PDC linker option. The STACKSIZE
definition file directive (if specified) overwrites this option.

Notice that such addresses reserving in a process virtual memory, does not
allocate physical memory pages and no space is reserved in the paging (swap)
file. It is simply saving a free address range until needed by Stack, protecting

Chapter 17, Elements of the Language 501

the addresses from other allocation requests. Therefore, since no resources are
allocated during the operation, this is a quick operation, completely
independent of the size of the virtual address range (whether a 500MB or a
4K) being reserved.

Also notice that, this reserving of a range of virtual addresses for Stack does
not guarantee that at a later time there will be physical memory available to
allocate to those addresses. While a program execution the Stack will
dynamically expand to the physical memory available from OS.

• In the 16-bit protected mode versions (16-bit Windows, PharLap DOS
extended) 64 Kbytes will always be allocated for the stack.

• For plain DOS programs the default stack size is 600 paragraphs (16-byte
units). You can increase the default stack size using Visual Prolog VDE
option Options | Project | Compiler Options | Stack Size or with the "-
S[Value]" compiler option.

• In the UNIX version, all stack allocation and sizing is handled automatically
by the operating system. The virtual stack can grow almost without limit.

GStack Size
• For 32-bit Windows targets, Visual Prolog compiler should specify the total

amount of addresses reserved for the Global Stack (GStack) in a process
virtual memory. This determines the maximal possible GStack size for the
process. The default GStack size is 100 MB. This value can be changed with
VDE's option Options | Project | Compiler Options | Miscellaneous |
GStack Size. This VDE option is equivalent to "-k[GStackSize]" command
line compiler option. The gstacksize compiler directive (if specified in the
text of the main program module) overwrites this option. The minimum valid
value for this option is 128KB.

• Notice that, as in the case of Stack size, such addresses reserving in a process
virtual memory does not allocate physical memory pages and no space is
reserved in the paging (swap) file. Therefore, this is a quick operation
completely independent of the specified GStack range of the virtual address
range, but also, this reserving does not guarantee that at a later time there will
be physical memory available to allocate to those addresses.

• In 16-bit applications, GStack can be dynamically expanded to the memory
available. Notice that at once no more than 64 KB can be allocated.

502 Visual Prolog Language Tutorial

Heap Size
• The heap compiler directive can be used for DOS real mode terminate and

stay resident programs to specify the Heap Size. In all other cases, the Heap
will dynamically expand to the memory available. Under 32-bit platforms, all
addresses from the process virtual address space that are not reserved for the
Stack and Gstack are available to the Heap.

Under 16-bit platforms, at once no more than 64 KB can be allocated.

Releasing Spare Memory Resources
During program execution, the memory is used for several different purposes;
depending upon the purpose, spare memory resources can be released in separate
ways.

• To minimize stack use, avoid unnecessary non-determinism; use the
check_determ directive to guide the setting of cuts. Also, take advantage of
tail-recursion elimination by writing your predicates so they are tail-
recursive.

• The global stack is used for building strings and structures. In order to save
global stack space, write your program so that the outer loop is a repeat...fail
loop. The fail predicate effectively releases unused GStack. More flexible
releasing of the GStack can be done by mem_MarkGStack and
mem_ReleaseGStack predicates.

• The trail will seldom be a problem in Visual Prolog. In all versions of Visual
Prolog, the trail is dynamically allocated (in the heap), and will be increased
in size when necessary. However, in the 16-bit versions the trail is limited to
64K and the first thing to do if the system complains about trail overflow is
to avoid using reference domains. If you want to use reference domains, you
should decrease the number of backtrack points by using some cuts (use
check_determ). The repeat...fail combination will also release the trail. As a
last resort, rearrange your predicate calls so that you create less reference
variables.

• The heap is used when facts are inserted in fact databases and to store
window buffers, file buffers, etc. These areas are automatically released
when facts are retracted, windows are closed, and so on.

Chapter 18, Interfacing with Other Languages 503

CHAPTER 18

Interfacing with Other Languages

Although Visual Prolog is an excellent tool for many purposes, there are still
reasons to use other languages. For example, it's easier to perform numeric
integration in C, and interrupt-handling and low-level stuff is perhaps better done
in Assembly language. Moreover, if you've developed a large program in another
language that already solves some aspect of the problem, this work should not be
wasted. For these reasons, Visual Prolog allows you to interface your programs
with other languages, as long as those languages produce standard object files
and follows the conventions outlined in this chapter.

In this chapter you will find a number of examples of interfacing C and Visual
Prolog. Their source files are in the DOC\EXAMPLES directory or the
FOREIGN directory of your distribution. In order to run them, you need to have
the appropriate development system and/or C compiler and libraries installed.

The process to compile and link the examples varies considerably between
the different operating systems and the different C compilers. In the foreign
subdirectory of your distribution you will find thorough instructions and
examples for the different platforms and compilers. Read these instructions
carefully.

When using the Visual Prolog Development Environment, you don't, strictly
speaking, need to know how to compile C programs, how to run the linker, or
which libraries to specify and how to do it. This is handled automatically.
However, you should have a fairly thorough understanding about C, and be able
to write, compile and link multi-module C programs yourself.

Using DLL’s

A dynamic-link library (DLL) is a binary file that acts as a shared library of
predicates that can be used simultaneously by multiple applications.

Visual Prolog can generate DLL’s and link in DLL’s staticly or load DLL’s
dynamicly. For more information about Visual Prolog and dll’s please see the
examples VPI\EXAMPLES\DLL and VPI\TOOLEXAMP\BUILD.

504 Visual Prolog Language Tutorial

Calling Other Languages from Visual Prolog

In this section, we cover what you need to know to call C, Pascal and assembler
routines from Visual Prolog.

Before calling routines and functions written in other languages, you need to
declare them as external predicates in Visual Prolog. You also need to understand
the correct calling conventions and parameter-pushing sequences, and you need
to know how to name the different flow variants of your external predicates.

Declaring External Predicates
To inform the Visual Prolog system that a given global predicate is implemented
in another language, you need to append a language specification to the global
predicates declaration, as briefly mentioned in chapter 17:

GLOBAL PREDICATES
add(integer,integer,integer) - (i,i,o),(i,i,i) language c
scanner(string,token) - (i,o) language pascal
triple(integer,real) - (i,o) language asm

In Visual Prolog, you explicitly list the interfaced language; this simplifies the
problems inherent in calling conventions, such as activation record format,
naming convention and returning conventions.

Calling Conventions and Parameter Passing
The 80x86 processor family gives programmers a choice between NEAR and
FAR subroutine calls, when running 16-bit programs. Visual Prolog requires all
global routines to be FAR. The same applies to pointers to data objects. Many
16-bit compilers for the 80x86 family require you to choose between 16-bit and
32-bit pointers, where the 16-bit pointers refer to a default segment. In order to
access all of memory, Visual Prolog always uses 32-bit pointers.

For 32-bit programs, "NEAR" means 32 bits and the above considerations are
irrelevant.

Input parameters
For input parameters, the value is pushed directly, and the size of the parameter
depends on its type.

Chapter 18, Interfacing with Other Languages 505

Output parameters
An output parameter is pushed as a 32-bit pointer to where a value must be
assigned.

Return Values
Visual Prolog follows the most widely adopted register convention for function
values on the 80x86 CPU family. This should not be of any concern in most
cases, but is included here for completeness.

Table 18.1: Registers for Return Values

Operand Size Program Type

16 bit 32 bit

byte (8 bits) AL

word (16 bits) AX

dword (32 bits) DX:AX ³ EAX

Pointers are 32 bits in size and are handled as dwords. The Program Type is
determined by the operating system,

Floating point values are exceedingly troublesome to handle. They may be
returned in registers, on the (emulated) coprocessor stack, and the pascal calling
convention will frequently return them through pointers. Currently pascal
functions cannot return floating point values. See the notes in the FOREIGN
subdirectory of your distribution for any special considerations for your platform.

In any case, floating point values can always be returned in arguments. However,
take special note that Visual Prolog's real corresponds to a C double (8 bytes).

You should also be aware that currently external C functions cannot return C
structs (but they may of course return pointers to structs).

Multiple declarations
In Visual Prolog, a predicate can have several type variants, arities, and flow
variants, and a separate procedure is needed for each type and flow variant.
When you implement predicates, having several versions, in C, each C function
must have a name corresponding to the name generated by Visual Prolog. The
naming convention used by Visual Prolog is straightforward; the predicate name
is used as the root, and the suffix _X is appended to signify the variant number,

506 Visual Prolog Language Tutorial

where X is an integer starting at 0. If there is only one variant, no suffix is
appended.

Consider the following program:

GLOBAL PREDICATES
add(integer,integer,integer) –

(i,i,o),(i,o,i),(o,i,i),(i,i,i) language c
square(integer,integer) - (i,o)

GOAL
add(2,3,X), write("2 + 3 = ",X), nl,
add(2,Y,5), write("5 - 2 = ",Y), nl,
add(Z,3,5), write("5 - 3 = ",Z), nl,
add(2,3,5), write("2 + 3 is 5"), nl,
square(5,Sq), write("5 squared is ",Sq).

A module linked with this program should contain the following C functions:

add_0 for the first flow pattern (i,i,o)

add_1 for the (i,o,i) flow pattern

add_2 for (o,i,i)

add_3 for (i,i,i)

square

As an example, the following C module implements square as well as all flow
patterns for add:

add_0(int x, int y, int *z) /* (i,i,o) flow pattern */
{ *z = x + y; }

add_1(int x, int *y, int z) /* (i,o,i) flow pattern */
{ *y = z - x; }

add_2(int *x, int y, int z) /* (o,i,i) flow pattern */
{ *x = z - y; }

add_3(int x, int y, int z) /* (i,i,i) flow pattern */
{ if ((x + y) != z) RUN_Fail(); }

square(int i,int *i_sq)
{ *i_sq = i*i; }

Chapter 18, Interfacing with Other Languages 507

Parameter pushing order
When interfacing to a routine written in C, the parameters are pushed onto the
stack in reverse order and, after return, the stack pointer is automatically adjusted
by Visual Prolog.

When calling languages other than C, the parameters are pushed in the normal
order, and the called function is responsible for removing the parameters from
the stack.

Leading underscored
On the 16-bit platforms, C compilers will prefix the name of public C functions
with an underscore. Therefore, global predicates declared as language C will also
have their names prefixed with an underscore if the target platform is one of
these.

32-bit Windows naming convention
Win32 (Windows 95/98/NT/2000) API functions use the special C calling
convention __stdcall. The __stdcall uses the following name-decoration rules:

• the function name is prefixed with an underscore '_' and

• the function name is suffixed with the @NN, where NN is the number of
bytes in the argument list.

This means that a function fName, which has two integer arguments, should have
the object name _fName@8.

When the Visual Prolog compiler generates object files for Windows32 Target
Platform, specifying the language stdcall in a global predicate (or global
predicate domain) declaration, you can specify that the predicate must have the
same calling convention as __stdcall in C.

Therefore, it is recommended to use language stdcall declaring global predicates
for calling 32-bit Windows API functions.

Notice that when language stdcall is specified, then the compiler provides the
advanced handling for the explicit specification of predicate names in object code
as "object_name".

• The compiler checks and (if needed) adds/corrects the leading underscore
and

• The compiler adds/corrects (if needed) the suffixing '@' with number of
bytes pushed in the argument list.

508 Visual Prolog Language Tutorial

For instance, with the following declaration of the global predicate to call the
Win32 API function sndPlaySoundA:

sndPlaySound(STRING, UNSIGNED)
- (i,i) language stdcall as "sndPlaySoundA"

the compiler generates the object name _sndPlaySoundA@8.

Notice that when a predicate has several variants (for example, several flow
patterns), then the standard naming convention for multiple declarations is used.
The predicate name is used as the root, and the suffix _N is appended to specify
the variant number. For example, with the declaration:

pName(integer) - (i), (o) language stdcall

the compiler generates the following object names _pName_0@4 for the first (i)
flow pattern and _pName_1@4 for the second (o) flow pattern.

Converting the name to Uppercase (Pascal)
PASCAl uses the convention, that the name is converted to uppercase. So if
language PASCAl is used, the name will during .OBJ module generation be
converted to uppercase.

Adjustment of stackpointer
There are two possibilities of adjusting the SP register. This can be done either
by the called function or the calling function. Traditionally PASCAL does this in
the called function, while C does it in the calling function.

Table 18.2: Calling conventions

 Convert
name to
upper case

Add
leading
under
Score

Push
args
Reversed

Adjust SP
after
return

NT
naming
convention

pascal X

c X X X

stdcall X X X

syscall X X

Chapter 18, Interfacing with Other Languages 509

The AS "external_name" Declaration
As an alternative to the automatic naming convention, you can use the as
keyword in the global declaration, like this:

GLOBAL PREDICATES
scanner(string,token) - (i,o) language c as "_myscan"

The result of this is that Visual Prolog will refer to the name _myscan in the
object file instead of _scanner. You would still refer to the name scanner in your
Visual Prolog source.

You can only use the as option if there is a single flow variant for the predicate.

Domain Implementation

Most types normally used in C form a subset of Visual Prolog domains, and
hence have direct equivalents. Below we discuss both simple and complex
domain equivalents in C.

510 Visual Prolog Language Tutorial

Simple Domains
The implementation of Visual Prolog's simple domains are outlined in the
following table:

Table 18.3: Visual Prolog Simple Domains

Domain Implementation

 16-bit OS 32-bit OS

char, byte 1 byte (see note) 1 byte (see note)

(u)short, word 2 bytes 2 bytes

(u)long, dword 4 bytes 4 bytes

unsigned, integer 2 bytes 4 bytes

real 8 bytes (IEEE format) 8 bytes (IEEE format)

ref 4 bytes 4 bytes

Note: The char and byte domains occupy a machine word when pushed on the
stack (2 bytes for 16-bit programs, 4 bytes for 32-bit programs).

Complex Domains
All non-simple domains are implemented as pointers to things.

The string and symbol domains are pointers to null-terminated character arrays,
with symbols being hashed and stored in the symbol table in the heap.

The binary domain is a pointer to a block of memory, prefixed by a dword (32bit
platforms) or word (16bit platforms) indicating the net size of the block.

Size bytes

 ^
 |

 Pointer

Special consideration must be given to allocation of memory for complex
domains. This will be detailed in a later section.

Chapter 18, Interfacing with Other Languages 511

Ordinary Compound Objects and Structures
User-defined compound objects are pointers to records (structs and unions in C).
The general format of these is a byte representing the functor (domain
alternative), followed by the individual components of the term. These will vary,
depending on which alternative we're dealing with. In any case, components
belonging to simple domains are stored directly in the term record itself, while
complex components are themselves stored as pointers. For example, in this code
fragment:

DOMAINS
mydom = i(integer); c(char); s(string)

the functor number will be 1 for the first alternative, i(integer), 2 for the second,
c(char), and 3 for the third.

A suitable C typedef for mydom would be:

typedef struct {
unsigned char func;
union {

int i;
char c;
char *s;

} u;
} MYDOM;

Here func will have the value 1, 2 or 3, depending on which domain alternative
we're dealing with. This then indicates which of the union's components it's
appropriate to access.

Functorless Terms (structs)

By prefixing a compound domain declaration with the compiler directive struct,
the terms belonging to that domain will not carry functors with them:

DOMAINS
rec = struct record(d1,d2,...)

Apart from the struct directive, terms belonging to a functorless domain are used
and written exactly like other terms in your program, except that there can be no
alternatives in a functorless domain.

Functorless terms allow you to duplicate C structs when interfacing to C routines
and libraries using predefined structs. Apart from that, they'll save you a bit of
memory if you don't need alternatives in the domain.

512 Visual Prolog Language Tutorial

Lists
Lists are implemented exactly like ordinary compound domains, with a field at
the end of the record pointing to the next. This is known as linked lists in C
terminology. From a Prolog perspective lists are merely a notational
convenience. Given for instance a declaration for a list of strings:

DOMAINS
strlist = string*

the C structures relevant for this are identical to those for:

DOMAINS
strlist = elem(string,strlist); endoflist()

The records for the elem alternative will contain:

1. a functor

2. a pointer to a string

3. a pointer to the next element in the list

and the record for the endoflist alternative will only contain a functor.

This collection of fields is reflected in the C data structure for strlist:

struct node {
unsigned char functor; /* The type */
char *value; /* A string pointer */
struct node *next; /* A pointer to struct node */

} strlist;

The functor field indicates the type of list record. The value is 1 if it's a list
element, and 2 if it's the end of the list.

Memory Considerations

While all memory considerations are handled automatically when you write pure
Prolog code, you need to take special care when interfacing to foreign languages.
In this section we'll describe several of these aspects.

Memory Alignment
C compilers for 32-bit platforms will usually align data on dword boundaries,
while those for 16-bit platforms will usually align on byte boundaries. The reason

Chapter 18, Interfacing with Other Languages 513

for aligning on word or dword boundaries is speed. On a 32-bit platform, dword
alignment will give up to 10-12 percent faster execution than byte alignment.

For simple variables alignment isn't important, but in order for Prolog terms and
C structures to be compatible, the data contained in the records must be
identically aligned. To this end, Visual Prolog gives you the option of selecting a
different alignment than what's the default for your platform. The default is
dword if you're using a 32-bit version of Visual Prolog, otherwise byte. Notice
that some C compilers for 32-bit platforms (for example, Visual C++) by default
align data at 8 Bytes; therefore, you should correct this to 4 Bytes to be
compatible with DWord alignment of Visual Prolog.

The alignment scheme may be selected with the help of the Options | Project |
Compiler Options menu item, or through the -A command line option.
Additionally, the align compiler directive may be used to override alignment on
selected domains, like this:

DOMAINS
dom = align { byte | word | dword } func(d1,d2,...) [; func1(...);

...]

The align directive must appear before any alternatives in the domain, and all
alternatives will have the alignment specified. It's not possible to specify
different alignment for individual alternatives.

For functorless terms, the align directive should appear after the struct directive.

Note that when several processes share a database or communicate over pipes,
it's crucial that the domains involved use identical alignment.

Example
Byte alignment is easy: each element is simply put right after the previous one.
Given the declaration dom = struct my_struct(char,short,char,long) (recall that
the struct directive declares the term to be functorless), the term
my_struct('P',29285,'B',1702063209) is stored in memory like this:

Byte number:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

| | | | |
|'P'| 29285 |'B'| 1702063209 |
|___|_______|___|_______________|

514 Visual Prolog Language Tutorial

Word and dword alignment is a bit trickier. Here, items are stored in memory so
that accessing them won't cross a word or dword boundary. That means that the
individual elements of terms may be followed by a number of unused bytes,
depending on the size of the following element. With dword alignment, the term
above would be stored like this:

Byte number:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10| 11|

| | | | | | | | |
|'P'|PAD| 29285 |'B'|PAD|PAD|PAD| 1702063209 |
|___|___|_______|___|___|___|___|_______________|

The PADs indicate unused bytes, allowing the values following them to be stored
on suitable boundaries.

Notice that it's sufficient for the value 29285 to be aligned on a word boundary,
because it's a short (16 bits); accessing it on a word boundary won't cross any
undesirable boundaries.

Memory Allocation
When you create and return compound objects to Visual Prolog, memory for the
objects must normally be allocated on the Global Stack. This memory will
automatically be released if you fail back to a point previous to its allocation.
GStack memory is allocated using:

void *MEM_AllocGStack(unsigned size);

You would typically use C's sizeof function to determine how much memory to
allocate. Given for instance the mydom domain discussed previously, the Prolog
declarations for a C routine returning a term belonging to that domain in an
argument would be:

/* Program mydom_p.pro */

project "mydom"

global domains
mydom = i(integer); c(char); s(string)

global predicates
determ make_mydom(mydom) - (o) language C

Chapter 18, Interfacing with Other Languages 515

goal
make_mydom(MD), write(MD), nl.

And the C code for mydom and make_mydom could be:
/* Program mydom_c.c */

typedef struct {
 unsigned char func;
 union {
 int i;
 char c;
 char *s;
 } u;
} MYDOM;

void *MEM_AllocGStack(unsigned);
char *MEM_SaveStringGStack(char *);

void make_mydom(register MYDOM **md)
{

*md = MEM_AllocGStack(sizeof(MYDOM));
(*md)->func = 3;
(*md)->u.s = MEM_SaveStringGStack("wombat");

}

Notice that, as terms are handled through pointers in Prolog, the argument to
make_mydom is a pointer to a term pointer. This example also makes use of
another GStack-related function, MEM_SaveStringGStack, which allocates
GStack space for the string (based on its length), then copies the string into the
allocated space, returning a pointer to it. There are some other handy functions in
Visual Prolog's library:

char *MEM_SaveStringHeap(char *String);
/* Copies String to heap */

unsigned STR_StrLen(char *String);
/* Returns length (excluding terminating null byte) of String */

void MEM_MovMem(void *Source,void *Dest,unsigned Len);
/* Moves Len bytes from Source to Dest; these may overlap */

Pre-allocation of Memory
Many C library functions require you to specify a pointer to a structure, which
the C routine then fills in. In this case the compound flow pattern for global
predicates should be used to specify what's happening:

516 Visual Prolog Language Tutorial

GLOBAL DOMAINS
off_t, time_t = long

dev_t = short
stat = struct stat(dev_t,ushort,ushort,short,ushort,ushort,
 dev_t,off_t,time_t,time_t,time_t)

GLOBAL PREDICATES
determ integer stat(string,stat) -
 (i,stat(o,o,o,o,o,o,o,o,o,o,o)) language C

When you call stat

..., 0 = stat("/unix",Stat), !, write(Stat).

Visual Prolog will allocate memory for the stat structure before the call.

The sizeof function
Visual Prolog has a sizeof function that duplicates C's sizeof function, returning
the size of the specified domain or variable.

For a compound domain with alternatives, sizeof will return the size of the
largest alternative. Given a second argument of a functor from one of the domain
alternatives, sizeof will return the size of that particular alternative.

Given a variable, sizeof will return the size of the corresponding domain
(alternative), except that for string variables or constants, sizeof will return the
number of bytes in the string including the terminating zero byte.

The program ALIGN.PRO illustrates alignment selection and the use of the
sizeof function:

/* Program align.pro */

DOMAINS
dom = struct f(char,integer)
dom1 = align word f(integer,integer,long); g(string)
refint = reference integer

predicates
refint(refint)

clauses
refint(_).

goal % Find the size of a functorless domain
A = sizeof(dom),
write("\nSize=",A),

Chapter 18, Interfacing with Other Languages 517

% when there are alternatives, the largest is returned
B = sizeof(dom1),
write("\nSize=",B),

% Find size of a single alternative
C = sizeof(dom1,g),
write("\nSize=",C),

% Find size of a term pointed to by a variable
X = f(1,1,1), % This is from dom1
D = sizeof(X),
write("\nSize=",D),

% Find size of a string pointed to by a variable
Y = "hello there",
E = sizeof(Y),
write("\nSize=",E),

% Find size of a reference variable
refint(Z),
F = sizeof(Z),
write("\nSize=",F).

Load and run this program. Try changing the domains and their alignment, and
watch the results.

malloc and free
When writing functions in other languages, you often need to allocate dynamic
memory. You've already seen MEM_AllocGStack, but this allocates memory on
Prolog's Global Stack, which is released automatically. Permanent allocations
should be done in the heap, and because Visual Prolog already has suitable
memory allocation routines, it's generally preferable to use these. In fact, in DOS
it's mandatory to use them, since a foreign memory allocation package would be
allocating memory from the same physical memory as Visual Prolog. On other
platforms, you can use C's malloc and free, but this would duplicate an amount
of code and data, and the two packages would both be holding released memory
in separate pools. Moreover, Visual Prolog's heap allocation system has a
performance far superior to that supplied with most C compilers.

Therefore, on all platforms except UNIX, public routines for malloc and free,
consisting of bindings to Visual Prolog's heap allocation routines, are provided in
the initialization assembler and object files. These files are found in the
subdirectories for the different platforms and compilers in the FOREIGN
directory of your distribution. Note that when linking, it's essential that the

518 Visual Prolog Language Tutorial

appropriate initialization file appears before the (C) library containing malloc
and free.

Examples

List Handling
In this section we give a more useful example that shows how to convert a list to
an array and back to a list again.

The C routine ListToArray takes a list of integers, converts this to an array
placed on the Global Stack, and returns the number of elements. The conversion
is done in three steps:

1. The list is traversed in order to count the number of elements.

2. The array with the needed number of elements is allocated.

3. The list is traversed again while the elements are transferred to the array.

The C routine ArrayToList takes an integer array and the size of the array as
arguments, then converts these to a list of integers. This routine only makes one
pass, building the list as it indexes through the array.

All of this is used in the C-coded predicate inclist. When given a list of integers,
inclist first converts the input list to an array, increments the elements of the
array by 1, then converts the array back to a list of integers.

/* Program lstar_p.pro */

project "lstar"

global domains
ilist = integer*

global predicates
inclist(ilist,ilist) - (i,o) language c

goal
inclist([1,2,3,4,5,6,7],L), write(L).

Here is the C program defining the two C procedures ListToArray and
ArrayToList, and the external Visual Prolog predicate inclist.

Chapter 18, Interfacing with Other Languages 519

/* Program lstar_c.c */

#define listfno 1
#define nilfno 2
typedef unsigned char BYTE;

void *MEM_AllocGStack(unsigned);

typedef struct ilist {
BYTE Functor;
int Value;
struct ilist *Next;

} INTLIST;

int ListToArray(INTLIST *List,int **ResultArray)
{

INTLIST *SaveList = List;
int *Array, len;
register int *ArrP;
register int i;

/* Count the number of elements in the list */
i = 0;
while (List->Functor == listfno) {
 i++;
 List = List->Next;
}
len = i;

Array = MEM_AllocGStack(i*sizeof(int));
ArrP = Array;

/* Transfer the elements from the list to the array */
List = SaveList;
while (i != 0) {
 *ArrP++ = List->Value;
 List = List->Next;
 i--;
}

*ResultArray = Array;
return(len);

}

520 Visual Prolog Language Tutorial

void ArrayToList(register int *ArrP,register int n,
register INTLIST **ListPP)

{
while (n != 0) {
 *ListPP = MEM_AllocGStack(sizeof(INTLIST));
 (*ListPP)->Functor = listfno;
 (*ListPP)->Value = *ArrP++;
 ListPP = &(*ListPP)->Next;
 n--;
}
*ListPP = MEM_AllocGStack(sizeof((*ListPP)->Functor));
 /* End of list */
(*ListPP)->Functor = nilfno;

}

void inclist(INTLIST *InList,INTLIST **OutList)
{

register int *ArrP, i, len;
int *Array;

len = ListToArray(InList,&Array);
ArrP = Array;
for (i = 0; i < len; i++)
 ++*ArrP++;
ArrayToList(Array,len,OutList);

}

This program belongs to the kind where memory alignment can be critical. If you
intend to compile to several platforms, you're well advised to keep an eye on this.
As a first step, check that the sizes of the structures shared by C and Prolog are
the same; the padding applied when aligning on non-byte boundaries will make
things a bit bigger. The sizeof function comes in handy here. You can write a
small C function:

unsigned c_ilsize(void)
{

return(sizeof(INTLIST));
}

returning the size of the INTLIST structure. This can then be used by a Prolog
predicate to verify that the sizes of INTLIST and ilist are identical:

GLOBAL PREDICATES
unsigned c_ilsize() language C

Chapter 18, Interfacing with Other Languages 521

PREDICATES
scheck

CLAUSES
scheck:- ILSize = sizeof(ilist), ILSize = c_ilsize(), !.
scheck:- write("ilist element sizes differ\n"), exit(1).

Calling Prolog from Foreign Languages
If you supply Prolog clauses for global predicates declared as being of foreign
language, those predicates may be called from foreign languages. They will have
parameter access and entry and exit code, including register preservation, as for
the language specified.

Hello
This small project is hello-world, with a twist.

/* Program hello_p.pro */

global predicates
char prowin_msg(string) - (i) language c
hello_c - language c

clauses
prowin_msg(S,C) :-

write(S," (press any key)"), readchar(C).

goal
prowin_msg("Hello from PDC Prolog"),
hello_c.

The global predicate prowin_msg is now accessible from C and can be called just
like any other C function:

/* Program hello_c.c */

char prowin_msg(char *);

void hello_c()
{
 while (prowin_msg("Hello from C (press 'C')") != 'C')
 ;
}

As is evident, values may be returned to foreign languages.

522 Visual Prolog Language Tutorial

Standard Predicates
Most of Visual Prolog's standard predicates can be called from C, but their
public names and exact functionality are subject to change without notice. It's
therefore strongly recommended that you write a small set of interface routines if
you want to call Visual Prolog standard predicates from C. The following
illustrates bindings to a number of Visual Prolog's DOS Textmode I/O
predicates:

/* Program spred_p.pro */

project "spred"

global predicates
myfail language c as "_fail"
mymakewindow(integer,integer,integer,string,integer,integer,

integer,integer)
 - (i,i,i,i,i,i,i,i) language c as "_makewindow"

myshiftwindow(integer) - (i) language c as "_shiftwindow"
myremovewindow language c as "_removewindow"
write_integer(integer) - (i) language c as "_write_integer"
write_real(real) - (i) language c as "_write_real"
write_string(string) - (i) language c as "_write_string"
myreadchar(char) - (o) language c as "_readchar"
myreadline(string) - (o) language c as "_readline"

extprog language c

clauses
myfail:- fail.

mymakewindow(Wno, Wattr, Fattr, Text, Srow, Scol, Rows, Cols):-
makewindow(Wno, Wattr, Fattr, Text, Srow, Scol, Rows, Cols).

myshiftwindow(WNO):- shiftwindow(WNO).

myremovewindow:- removewindow.

write_integer(I):- write(I).

write_real(R):- write(R).

write_string(S):- write(S).

myreadchar(CH):- readchar(CH).

myreadline(S):- readln(S).

goal
extprog.

Chapter 18, Interfacing with Other Languages 523

These may be accessed freely by C, as illustrated by extprog:
/* Program spred_c.c */

void extprog(void)
{

char dummychar;
char *Name;

makewindow(1,7,7,"Hello there",5,5,15,60);
write_string("\n\nIsn't it easy");
readchar(&dummychar);
write_string("\nEnter your name: ");
readline(&Name);
write_string("\nYour name is: ");
write_string(Name);
readchar(&dummychar);
removewindow();

}

Calling an Assembler Routine from Visual Prolog
You can also call assembler routines from Visual Prolog. The activation record is
the same as for pascal (that is, parameters are pushed left to right), and the called
routine should pop the stack itself. If you have a C compiler supporting inline
assembler, things will be considerably easier than if you have to do everything
yourself.

In any case there seems to be little point in using assembler since C handles most
things, but a small example is included here for completeness. For obvious
reasons, the code differs between 16 and 32 bit platforms.

Suppose you want to write a routine returning a 32-bit sum of the characters in a
string, and also verifying that all characters are within a certain range, say A-Z.

The Prolog code for this could be:
/* Program csum_p.pro */

project "csum"

global predicates
integer sum_verify(char,char,string,ulong) - (i,i,i,o) language asm

predicates
uc_check(string)

524 Visual Prolog Language Tutorial

clauses
uc_check(S):-

0 = sum_verify('A','Z',S,Sum), !,
write('"',S,"\" OK, sum = ",Sum,'\n').

uc_check(S):- write('"',S,"\" fails\n").

goal
uc_check("UNIX"),
uc_check("Windows").

where we have adopted the convention that a return value of 0 means the string
was OK.

Here is the suitable 16-bit assembler code:
/* Program csum_a16.asm */

; 16-bit version

CSUM_A16_TEXT SEGMENT WORD PUBLIC 'CODE'
CSUM_A16_TEXT ENDS
_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS
CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS
_BSS SEGMENT WORD PUBLIC 'BSS'
_BSS ENDS
DGROUP GROUP CONST, _BSS, _DATA
 ASSUME CS: CSUM_A16_TEXT, DS: DGROUP, SS: DGROUP

CSUM_A16_TEXT SEGMENT
ASSUME CS: CSUM_A16_TEXT

PUBLIC sum_verify
sum_verify PROC FAR

push bp
mov bp,sp

lolim equ 16
hilim equ 14
string equ 10
sum equ 6

Chapter 18, Interfacing with Other Languages 525

xor dx,dx
xor bx,bx ; Do sum in dx:bx
les di,[bp+string] ; Pointer to string
mov cl,byte ptr [bp+lolim] ; Low limit in cl
mov ch,byte ptr [bp+hilim] ; High limit in ch
xor ax,ax

ALIGN 2
loopy:

add bx,ax ; Add sum
adc dx,0
mov al,byte ptr es:[di]
inc di
cmp al,cl
jb end_check
cmp al,ch
jbe loopy

end_check:
or al,al
jnz go_home
les di,[bp+sum]
mov es:[di],bx
mov es:[di+2],dx
inc ax; ax: 0 -> 1

go_home:
dec ax ; ax: 1 -> 0, or 0 -> -1
mov sp,bp
pop bp
ret 12

sum_verify ENDP

CSUM_A16_TEXT ENDS
END

When writing assembler code, take special care that the sizes of things on the
stack follow the machine's natural word-size. This is 2 bytes on 16-bit machines
and 4 bytes on 32-bit machines. A good first attempt is to compile a dummy C
routine, with the correct parameters and local variables, to assembler, and then
use the entry, exit, and variable access code generated by the C compiler.

It isn't necessary to preserve any of the usual registers when foreign language
routines are called from Prolog, but if you're calling from C or assembler it's
assumed that you preserve si and di (esi and edi on 32-bit platforms). On 32-bit
platforms, ebx must also be preserved.

Index 527

Index

—8—
8086, 434
80x86 processor family, 505

—A—
abs, 205
absolute, 205
absolute values, 205
Abstract, 301
access

error message files, 262
external database via B+ trees,

392
hardware, 433
memory, 436
OS, 423

access modes, 340
accessmode, 407
accessmode, 374
actions

post- and pre-, 126
adding facts at run time, 186
addition, 200
adventure game, 446
alignment

memory, 483, 513
databases and pipes, 412, 514

alternate solutions, 70
alternative, 136
alternatives to file domains, 468
anonymous variables, 33, 482
append, 171, 223, 453
appending

lists, 170
approximate, 211
arc tangent, 206

arctan, 206
arguments, 19, 30

arity and, 58
compound data objects, 108
flow pattern, 215
input, 215
known, 215
multiple-type, 121
output, 215
reference domain, 220
typing in predicate declarations,

55
arguments:, 69
arithmetic, 200

expressions, 200
comparing, 209

integer and real, 205
operations, 200
order of evaluation, 201

arities, 472
arity, 58
arrays

code, 496
internal, 496

ASCII, 106
assembler

routines
calling, 524

assert, 186
asserta, 186
assertz, 186
assignment statements, 210
atoms, 107
attributes, 340
automatic type conversion, 60, 107,

223, 365

528 Visual Prolog Language Tutorial

—B—
B+ trees, 370, 388

bt_copyselector, 390
closing, 390
creating, 389
deleting, 390
duplicate keys, 389
internal pointer, 391
internal pointers, 403
key length, 388
multiple scans, 389
order B+ trees

pages, 388
statistics, 391
updating, 391

backslash, 479
backtrack point

removing, 275
backtracking, 70, 124

basic principles, 77
point, 71
preventing with the cut, 87

basic
concepts of Prolog, 18
program sections, 43
string-handling procedures, 356

beep, 429
binary

domain, 245
search trees, 149
trees

reference domains and, 225
binary terms

accessing, 248
comparing, 248
creating, 247
implementation, 246
memory consideration, 246
size of, 247
text format, 246
unifying, 248

binding
flow patterns topredicate calls,

215
bios, 434
bitand, 431
bitleft, 433
bit-level operations, 431
bitnot, 431
bitor, 432
bitright, 433
bitxor, 349, 432
bound variables, 482
break, 267
Break Check menu item, 499
breakpressed, 268
bt_close, 390
bt_copyselector, 390

B+ trees, 390
bt_create, 389
bt_delete, 390
bt_open, 390
bt_selector, 221, 374, 469
bt_statistics, 391
bt_updated, 411
byte, 52, 481

—C—
C

interface, 504
lists, 519
passing lists to, 513
passing structures to, 512
routines

calling, 507
calling conventions, 505
calls

deterministic, 87
non-deterministic, 87

carriage return, 479
case conversion, 363
cast, 277

Index 529

chain_delete, 382
chain_first, 383
chain_inserta, 381
chain_insertafter, 382
chain_insertz, 381
chain_last, 383
chain_next, 383
chain_prev, 383
chain_terms, 382
chains

deleting, 382
inserting terms in, 381
manipulating, 381
names of terms in, 382
of terms, 372

char, 53, 106, 478
char_int, 362
characters, 106, 213

comparing, 213
converting to integers, 362
converting to strings, 363

characters:, 106, 213
check_determ, 136
check_determ compiler directive,

277, 281, 472, 495, 503
class, 286
Class, 286, 289, 297
class declaration, 285
class keyword, 285
CLASS keyword, 285
classes, 283
clauses, 26

head, 478
Horn, 18
nondeterministic, 496
non-deterministic, 282
section, 44, 478

clauses:, 173
closefile, 332
closing

B+ trees, 390
external database, 379

files, 330
code compiler directive, 496
coercion

type], 60
comline, 426
command line, 426
comments, 38
comparing, 200

arithmetic expressions, 209
characters, 213
strings, 213
symbols, 213

compilation
conditional, 486

compilation module, 184
compiler, 136
compiler directives, 63, 494

check_determ, 277, 281, 472
code, 496
config, 496
determ, 186
diagnostics, 497
errorlevel, 498
include, 63
nonbreak, 499
nowarnings, 499
struct, 512

composebinary, 247
compound

data objects, 108
lists, 175
mixed-domain declarations, 120
objects, 482

declaring domains, 115
unification, 109

compound flow pattern, 216
compound:, 159
compund object, 482
concat, 359
concatenation

strings, 357, 359
conditional compilation, 486

530 Visual Prolog Language Tutorial

conditional:, 59
config compiler directive, 496
CONFIG.SYS, 376
configuration file, 496
constants

declaring, 61
predefined, 486
section, 61, 484

Constructors, 298
consult, 188, 265
consulterror, 265
controlling the flow analysis, 218
conversion

case, 363
character to integer, 362
integer to character, 362
integer to string, 363
numbers, 208
real to string, 363
single character to string, 363
string to character, 363
string to integer, 363
string to real, 363
type, 60

conversion of types, 277
converting domains, 222
copyfile, 339
copying external databases, 377
cos, 206
cosine, 206
counters, 130
counting list elements, 163
cpunters, 138
criticalerror, 273
cursor predicate, 215
cut

green, 101
red, 101

cutbacktrack, 275
cuts, 87, 136

as goto, 99
determinism and, 91

dynamic, 275
setting, 495
static, 275
using, 88

—D—
data

objects
compound, 108

security, 379
structures

recursive], 142
types

trees, 143
database

internal
declaring, 183
updating, 186
using, 185

internal fact databases, 183
predicates

restrictions, 184
reference numbers, 374, 383
section, 61, 183, 476

database:, 61
databases

test of system (program), 384
date, 112, 425
db_begintransaction, 409, 410, 420
db_btrees, 380
db_chains, 380
db_close, 379
db_copy, 377
db_create, 376
db_delete, 379
db_endtransaction, 409, 411
db_flush, 378
db_garbagecollect, 379
db_loadems, 378
db_open, 377, 410
db_openinvalid, 378

Index 531

db_reuserefs, 375
db_saveems, 378
db_selector, 221, 374, 469
db_setretry, 411
db_statistics, 380
db_updated, 411
dbasedom, 184, 469
declarations

accessmode, 407
as external name, 510
B+ tree selectors, 374
compound mixed-domain, 120
constants, 484
database selectors, 374
denymode, 407
different domains, 466
domain, 47
domains as reference, 220
domains of compound objects,

115
facts section, 183
functions, 475
lists, 159
predicate domains, 470
predicates, 45
predicates as deterministic, 472
reference domains, 469
typing arguments, 55

declarative language, 18
default error routines, 273
deletefile, 338
deleting

B+ trees, 390
chains, 382
external database, 379
terms, 384

denymode, 374, 407
depth-first search, 146
Derived, 303
derived class, 285
Destructors, 298
determ, 473

determinism, 87
cut and, 91
vs. non-determinism, 281

deterministic predicates, 472
diagnostics compiler directive, 497
difference lists, 177
difftime, 428
dirclose, 346
dirfiles, 347
dirmatch, 345
diropen, 345
disabling breaks, 267
discriminant, 211
diskspace, 430
displaying external database

contents, 396
div, 205
dividing

words into syllables, 452
division, 200
domains

binary, 245
compound mixed, 120
compound object, 466
converting reference, 222
db_selector, 372
dbasedom, 184
declarations, 47
declaring, 466
declaring as reference, 220
external databases, 374
file, 468
file, 333
list, 466
predefined, 469
predicate, 470
ref, 375
reference, 219, 469
reg, 434
section, 464
shortening declarations, 465
specially handled, 469

532 Visual Prolog Language Tutorial

standard, 465
user-defined, 472, 482

DOS
critical error, 274

double quotation marks, 479
dumpDba, 405
dumping external databases to text

file, 405
duplettes, 389
duplicate keys

in B+ trees, 389
dword, 52, 481
dynamic cutting, 275
dynamic memory allocation, 518

—E—
elements of the language, 461
elsedef, 487
enabling breaks, 267
Encapsulation, 283
endclass, 285
ENDCLASS, 285
endclass keyword, 285
ENDCLASS keyword, 285
enddef, 487
environment symbols, 425
envsymbol, 425
eof, 335
equal

predicate, 210
sign

unifying compound objects,
109

equality, 210
equality:, 211
erroneous, 231, 474
error

memory overflow, 225
error reporting, 263
errorcodes, 260

reserved, 260

errorlevel, 263
errorlevel compiler directive, 498
errormsg, 262
errors

constant definition recursion, 485
constant identifier declarations,

486
consult, 265
control in EXE files, 273
readterm, 266
reporting

at run time, 263
run-time, 263, 498
term reader, 265
trapping, 260

escape character, 479
example Prolog programs, 439
EXE files

error control in, 273
existdir

example, 346
existfile, 337
exit, 260
exp, 207
expressions, 200

order of evaluation, 201
external, 369

name
declaration, 510

predicates
declaring, 505

external databases
accessing via B+ trees, 392
accessmode, 407
B+ tree names, 380
chain names, 380
closing, 379
copying, 377
creating, 376
deleting, 379
deleting chains, 382
denymode, 407

Index 533

displaying contents of, 396
domains, 374
dumping to text file, 405
filesharing, 409, 420
file-sharing, 407
flushing, 378
index to, 388
inserting terms in, 381
invalid, 378
location of, 376
locking of, 409, 413, 420
log file, 398
merging free space, 379
moving, 377
non-breakdown, 398
opening, 377
programming, 394
RAM requirements, 369
reopening, 408
scanning through, 395
selectors, 371
sharemode, 408
statistics, 380
structure of, 370
system, 369
transactions, 409
updating, 399

external goals, 65
external program, 423

—F—
fact databases, 183

using, 185
factorials:, 130
facts, 19, 476, 478

adding at run time, 186
loading from files at run time,

188
removing, 189, 190
saving at run time, 191
section, 61, 183

unification with, 69
facts sections

databases
updating, 186

fail, 85, 127
failure, 231, 474
FAR subroutines, 505
file attributes, 340
file_bin, 329
file_str, 325
fileattrib, 349
fileerror, 275
filemode, 331
filenameext, 343
filenamepath, 343
filepos, 334
files

attributes, 339
closing, 330
domain, 468
domains, 469
dumped (external databases), 405
error message, 262
external databases

file-sharing, 407
log (external databases), 398
object, 504
opening, 330
symbolic file names, 480

filesharing, 420
predicates, 410
transaction, 409

findall, 174
finding

all solutions at once, 173
flag, 434
floating-point numbers, 479
flow pattern, 40, 173, 215

compound, 216
non-existent, 218, 474

flush, 337
flushing an external database, 378

534 Visual Prolog Language Tutorial

formal, 312
format, 360
formatted output

examples, 322
to string variable, 360

formatting arguments into a string,
356

free, 68, 518
free variables, 482
frontchar, 356
frontstr, 358
fronttoken, 357
functions

declaring, 475
return values, 228
sizeof, 517

functorless terms, 512
functors, 108, 466

—G—
games

adventures in a cave, 446
Towers of Hanoi, 450

getbacktrack, 275
getbinarysize, 247
getentry

binary access, 248
global

stack, 503
global sections, 63
goal

external, 65
internal, 65

goal trees, 76
goals, 35

failing, 51
goals:, 68
goto:, 99
green cuts, 101

—H—
hardware simulation, 449
head of clause, 478
head of rule

unification with, 69
heap

allocation from C, 518
heap compiler directive, 498
Heap menu item, 498
heapsize, 430
hexadecimal numbers, 200
Horn clauses, 18
hypertext, 156

—I—
I/O

ports, 436
redirecting, 333

Identity, 284
IEEE standard format, 107
if/then, 59
ifdef, 487
ifndef, 487
implement, 286
IMPLEMENT, 286
implementation of binary terms, 246
in B+ trees

names, 380
in chains

names, 380
in_file, 376
in_memory, 376
include compiler directive, 63
include file

error.con, 260
including files in your program, 487
index

to external databases, 388
inference engine, 18, 439
infix

Index 535

predicate, 109
infix:, 209
Inheritance, 284
input

argument, 40
arguments, 215
parameters, 506
redirecting, 333

input:, 173
inserting terms in chains, 381
instantiating reference variables,

222
integer, 52, 481
integers

arithmetic, 205
converting to characters, 362
converting to strings, 363
division, 205
random, 203

interchangeability of unknowns, 166
interfacing with other languages,

504
intermediate, 130
internal

databases, 183
using, 185

fact databases, 183
facts section, 183
goals, 463
pointer

B+ trees, 391
string address, 436
system time clock, 425

internal goal, 65
internal:, 61, 500
invalid external databases, 378
invertible, 173
isname, 359
IXREF statistics

B+ trees, 391

—K—
key_current, 392
key_delete, 391
key_first, 391
key_insert, 391
key_last, 391
key_next, 392
key_prev, 392
key_search, 391
keyboard, 468
keywords, 462

—L—
last-call, 132
lasterror, 264
length

of a string, 359
length:, 163
less than, 209
linked lists, 513
listdba, 396
lists, 121, 158

appending, 170
as compound objects, 483
compound, 175
counting elements, 163
declaring, 159
defined, 158
difference, 177
domains, 466
handling, 519
length, 163
linked, 513
membership, 169
mixed types, 483
passing to C, 513
processing, 160
recursion and, 158
using, 161

lists:, 158, 161

536 Visual Prolog Language Tutorial

ln, 207
loading

facts from a file at run time, 188
log, 207
log file

external databases, 398
logarithm, 207
logic program

defined, 18
logical

AND, 431
circuit, 449
inference, 18
NOT, 431
OR, 432
XOR, 432

long, 52, 481
loop variables, 138
loops

backtracking, 128
lowercase

in names, 461
low-level support, 433

—M—
macro definition, 484
makebinary, 247
malloc, 518
manipulation

chains, 381
external databases, 375
terms (external database, 383

marktime, 427
matching, 39, 67
mathematical, 202
member, 170, 223, 472
membyte, 436
memdword, 436
memory

access, 436
alignment, 483, 513

databases and pipes, 412, 514
allocation, 515

dynamic, 518
freeing, 503
management, 501
overflow error, 225
regaining (external databases),

379
memword, 436
menus:, 63
merging free space, 379
methods, 283
mod, 205
modes

access, 340
sharing, 340

modular arithmetic, 205
module

of project, 184
moving external databases, 377
multi, 474
multiple

arity, 58
solutions, 87

multiple-type arguments, 121
multiplication, 200
multitasking, 407
mykey_next, 403
mykey_prev, 403
mykey_search, 403

—N—
N Queens problem, 456
names, 461

external database predicates, 370
predicates, 45
redefining, 486
restrictions in, 461
terms in chains, 382
valid, 359

naming conventions, 506

Index 537

extended database predicates, 370
natural

logarithm, 207
NEAR subroutines, 505
newline, 479
nl, 316
nobreak compiler directive, 499
nondeterm, 473
non-determinism, 87
non-determinism vs. determinism,

281
non-deterministic clause warning,

496
nondeterministic predicates, 472
not, 92, 439
nowarnings compiler directive, 499
numbers, 107

converting, 208
hexadecimal, 200
octal, 200

—O—
object files, 504
objects, 19, 283, 286

compound, 482
octal numbers, 200
openappend, 331
openfile, 341
opening

B+ trees, 390
external databases, 377
files, 330
invalid external database, 378

openmodify, 331
openread, 154, 330
openwrite, 154, 330
operands, 200
operations, 200

bit-level, 431
operators, 200

precedence of, 201

relational, 209
order

B+ trees, 389
of evaluation, 201

OS
accessing from applications, 423

osversion, 429
output

argument, 40
arguments, 215, 474
diagnostic, 497
echoing to file or printer, 499
formatted to string variable, 360
parameters, 506
redirecting, 333

output:, 173
overflow

memory, 225

—P—
parameter-pushing, 505
parameters

input, 506
output, 506

parent class, 285
parser, 365
parsing, 180

by different lists, 177
pathname

in include files, 487
pattern matcher, 18
peeking, 436
place, 221, 374, 469
pointers

B+ trees (internal), 403
stack, 508

poking, 436
port_byte, 436
post-actions, 126
pre-actions, 126
pred_Dom, 237

538 Visual Prolog Language Tutorial

predefined
domains, 469
file names, 468

predefined constants, 486
predicate domains, 237
predicate logic, 18
Predicate values, 236
predicates, 30

arity, 58, 472
as arguments, 236
C functions, 507
declarations, 45

typing arguments in, 55
declaring as deterministic, 472
equal, 210
external, 505
flow variants, 506
implementing in other languages,

505
infix, 109
multiple declarations, 472
names, 45
number of arguments, 58
section, 44, 472
specially handled, 462

preventing backtracking, 87
Printer Menu in EXE File menu

item, 499
printermenu compiler directive, 499
procedural perspective, 97
procedure, 473
procedure parameters, 236
procedures, 20
program planning routes, 444
program sections, 462
program structure

restrictions on, 463
programming

efficiency, 278
external databases, 394
style, 278
system-level, 423

programs
different versions of same, 486
logic, 18
sections, 43

clauses, 44
constants, 61
domains, 47
facts, 61
global, 63
predicates, 44

stand-alone, 463
programs:, 51
project compiler directive, 500
project modules, 184
projects

error level in, 498
Prolog

example programs, 439
fundamentals, 18
objects, 19
predicate logic syntax, 18
procedural perspective, 97
relations, 19

Protected, 302
ptr_dword, 436

—Q—
quadratic, 211
queries, 21, 35
questions, 21
quotation marks, 479

—R—
random, 203
random numbers

generating, 203
initializing, 204

randominit, 204
readblock, 328
readchar, 325

Index 539

readdevice, 154, 332
reading

from I/O port, 436
user-edited files, 265

readint, 324
readln, 324
readreal, 325
readterm, 265, 325, 350
readtermerror, 266
real, 54, 107

arithmetic, 205
converting to string, 363
random, 203

recursion, 130, 158
from a procedural viewpoint, 171
lists and, 158
repitition and, 124

recursive
data structures, 142
procedures, 130

recursive:, 159
red cuts, 88, 101
ref, 374, 469
ref_term, 384
reference

domains, 219, 469
binary trees and, 225
sorting with, 226
trail array and, 221

numbers, 374
variable, 219
variables, 222

Reference, 296
reg, 221, 469
reg domain, 434
register:, 434
registers

preserving, 522, 526
relational, 185
relational operators, 209
relations, 19, 30
removing

backtrack points, 275
facts at run time, 189
several facts at once, 190

renamefile, 339
repeat, 128
repeat...fail, 503
repetition

recursion and, 124
repetitive processes, 124
replacing terms, 383
reporting errors at run time, 263
reserved words, 462
restrictions

names, 461
program structure, 463
symbolic constants, 485

restrictions to using database
predicates, 184

retract, 189
retractall, 190
RetryCount, 411
return values, 475

registers for, 506
return values from functions, 228
round, 208
rounding, 205, 208
route planning

example, 444
rules, 19, 20, 478

as procedures, 97
syntax, 59
using like case statements, 98

rules:, 69
run-time

error reporting, 498
run-time errors, 260, 263

—S—
samekey_next, 404
samekey_prev, 404
save, 191, 197, 265

540 Visual Prolog Language Tutorial

saving
facts at run time, 191

scanner, 364
scanning, 180

B+ trees, 389
external databases, 395

scope
constant identifiers, 486
predicates, 497

screen, 468
search

database for record, 388
searchchar, 361
searchfile, 338
searchstring, 362
selectors

external databases, 371
sentence structure, 119
separators:, 161
setentry

binary access, 248
setting cuts, 495
sharing modes, 340
short, 52, 481
signal, 269
signals

enabling and disabling, 267
signed:, 53
simple constants, 478
sin, 206
sine, 206
single, 233
single solutions, 87
sizeof function, 517
sleep, 427
SleepPeriod, 411
solutions

controlling the search, 85
finding all at once, 173
multiple, 87
single, 87

solutions:, 136

sorting
tree-based, 151
with reference domains, 226

sound, 429
sqrt, 207
square roots, 205, 207
stack

pointer, 508
standard

domains, 465, 478
object files, 504

STATIC, 285
statistics

external databases, 380
stderr, 468
stdin, 468
stdout, 468
storage (predicate), 430
str_char, 363
str_int, 363
str_len, 359
str_real, 363
string, 54
string-handling, 356
strings, 107, 213, 479

blank spaces, 359
building, 356
comparing, 213
comparison, 213
concatenation, 357, 359
converting to other domains, 363
converting to term, 364
creating blank, 356
dividing, 356
internal address, 436
length, 359
manipulations, 356
parsing, 365
returning, 356
verifying, 356

length, 356
struct compiler directive, 512

Index 541

structure
data, 482
external databases, 370, 405
programs, 463

structures
passing to C, 512

style
programming, 278

subchar, 360
subcomponents, 482

of functors, 466
subgoals:, 70, 92
substring, 360
subtraction, 200
symbol, 54, 480
symbol table, 259
symbolic

constants, 61
symbolic constants, 461, 479

restrictions on, 485
symbolic file names, 480
symbols, 107, 214

comparing, 213
syntax

predicate logic, 18
rules, 59

syspath, 427
system, 423
system-level programming, 423

—T—
tab, 479
tail recursion, 165

optimization, 132
tan, 206
tangent, 203, 206
telephone directory, 56
term

converting to string, 364
location in chain, 374

term reader

handling errors from, 265
term_bin, 250
term_delete, 384
term_replace, 383
term_str, 364
termination, 51
terms, 481

alignment, 483, 513
binary conversion of, 250
chains of, 372
deleting, 384
functorless, 512
manipulating, 383
reference number, 384
replacing, 383

tests
external database system external,

384
text

files
external databases dump, 405

text format of binary terms, 246
text syntax of binary terms, 246
This, 296
time, 425
timeout, 428
totals, 130
trail

array
reference domains and, 221

transcendental functions, 205
trap, 260, 261
traversing trees, 145
tree-based sorting, 151
trees

as data type, 143
binary search, 149
creating, 147
goal, 76
traversing, 145

trigonomet ry, 205
trunc, 208

542 Visual Prolog Language Tutorial

truncation, 205, 208
type

coercion, 60
conversion, 60, 362

automatic, 365
type conversion, 277
type implementation, 511
type variants, 472
type-checking, 190
typing arguments in predicate

declarations, 55

—U—
ulong, 52, 481
unbound variables, 469
underscore symbol, 34
unification, 67, 482

of compound objects, 109
unification:, 141
unnamed fact database, 184
unnamed facts section, 184
unnamed internal database, 184
unsigned, 52, 481
unsigned:, 53
updating

B+ trees, 391
external databases, 399
facts section, 186

upper_lower, 363
uppercase

in names, 461
user-defined

domains, 482
error routines, 273

ushort, 52, 481

—V—
value, 200
Variable Used Once menu item, 499
variables, 21, 24, 31, 482

anonymous, 33, 482
bound, 482
constants and, 485
efficient programming with, 278
free, 482
reference, 219
unbound, 469

variables:, 68
variant_process, 237
verifying the length of a string, 356
version

OS, 429
Virtual, 292
Visual Prolog

external database, 369
handling strings, 356
strings in, 356

Visual Prolog
internal facts section, 183
program sections, 43

—W—
word, 52, 481
write, 316
write_a_list, 448
writeblock, 328
writedevice, 154, 332
writef, 321
writing

to I/O port, 436

