Visual Prolog Version 5.x

L anguage Tutorial

(c) Copyright 1986-2001
Prolog Development Center A/S
H.J. Holst Ve 3-5C,

DK - 2605 Broendby, Copenhagen
Denmark

Copyright

The documentation for this software is copyrighted, and all rights are reserved. It
may not be reproduced, transmitted, stored in a retrieval system, or trandated,
either by electronic, mechanical or any other means, without the prior written
consent of Prolog Development Center A/S.

The software products described in these manuals are also copyrighted, and are
licensed to the End User only for use in accordance with the End User License
Agreement, which is printed on the diskette packaging. The prospective user
should read this agreement carefully prior to use of the software.

Visual Prolog is aregistered trademark of Prolog Development Center A/S.

Other brand and product names are trademarks or registered trademarks of their
respective holders.

Table of Contents

Part 1 Introduction to Visual Prolog
Chapter 1, Using Visual Prolog's Visual Development Environment

What Needs to be Installed for ThiSBOOK?........ccccoeiiiereeniieeeeeeeee 6
Starting the Visual Prolog's Visual Development Environment.............ccc.e..... 7
Creating the TestGoal Project for Running the Examples.........ccocoeevvveecienene 8
Opening an Editor WINCOWccooeiieirieeese e 11
Running and Testing @aProgram...........c.ccoeeeereeeeneneeee e 11
Testing Language Tutorial EXamPleS........cccecvieeve i 12
Testing Examplesin Test GOalcccoceeierereeiere e 13
Remarks About Properties of the Test Goal Utility..........ccccccvceeeenen. 13

Testing Examples as Standalone Executables...........ccocvvveveveceecccecciennn, 14
HaNAliNG EITOrS........ooeii ettt sttt nne s 15

Part 2 Tutorial Chapters2—11: Learning Visual Prolog
Chapter 2, Prolog Fundamentals

PROGgramming iN LOGIC........cveiiiiiiese ettt nne s 18
Sentences: FactS and RUIES........coovv e iee e 19
Facts: What ISKNOWNcocuiiieiicice et 19

Rules: What Y ou Can Infer from Given Facts.........ccccovveevvieeciennne 20

L@ 01 1= 21
Putting Facts, Rules, and Queries Together..........ccoovveicenrieeceenne 22
Variables: General SENTENCES........ccvcveieeeere e 24

L@ Y1 YT 25
= o 1= - 26

From Natural Languageto Prolog Programs..........ccceeeeveieeveseseesiesieesiennens 26
Clauses (Facts and RUIES)ccviveeieiiceese st 26
MOre ADOUL FaCES......eeie et 26

MOre ADOUL RUIESocveeeecie ettt s 27
Predicates (REIGLHONS)cccccveeeecieieeese et st 30
Variables (General ClalSeS)cvieeereeierereee e ree e 31
How Variables Get Their ValUes..........cccevcvcceeveevee e 32
ANoNyMOUS VariableS.........ccooviveieie e 33

GOBIS (QUENTES) ...ttt ettt e st seeeeesne e e e e e 35
Compound Goals; Conjunctions and DiSunctions............ccccceeeeerenee. 36
10010711 01 01K RSN 38
What [SAMEICIT? ..o 39
SUMIMBIY ..ot n e s r e e e r e e nr e nreenr e nenneenne e 40

Chapter 3, Visual Prolog Programs

Visual Prolog's Basic Program SECLioNS..........cccoveeeeiererenineneseeeeeeseseenes 43
The ClauseS SECHON.......cueiiirircrie e 44
The PrediCateS SECHION.cooiiiirirerereeee e 44

How to Declare User-Defined Predicates...........ccooovieeeenencennieenne 45

The DOMAINS SECLION........eeiiie et esee e e 47
The GOal SECHION ... 51
A Closer Look at Declarationsand RUIES...........cocoeieieieeniieeere e 51
Typing Arguments in Predicate Declarations...........cccccevevveereneecnne 55

U T o = N YRS 58

RUIE SYNLAX ...ttt st 59
Automatic TYPE CONVEISIONS.......c.cveeeerieeeeenienieeeeseeeee e seeeee e eneenes 60

Other Program SECHIONS..........civiieeieie ettt st 60
The FaCtS SECHION......c.eeeieeeirier et 61
The CoNStaNtS SECHIONcecverieeeeeriee e eneens 61
The Global SECHIONS.......cc.eeeie e 63
The Compiler DIFECHIVES.......ccv i 63

TheiNClude DITECHIVEccceieee e 63

SUMIMIBIY ...ttt ettt ettt e be et e e s be e s ae e s aeesateebeebeesbeesanesnnesnneens 64

Chapter 4, Unification and Backtracking

Matching Things Up: UnifiCation...........cocoveereni e 67

BaCKIraCKiNGecveivicieeiecie ettt e ettt et esresreennen 70
Visual Prolog's Relentless Search for SOIULIONS..........cccoveieieicieninincins 73

A Detailed Look at BacktraCking.........ccooveeeerereeinnenene e 76
Backtracking in Standalone Executables............ccovviveceeieiievc e, 80
Controlling the Search for SOIULIONS...........ccccevvieereiicese e 85
Using thefail PrediCate..........ccoooeiiieeieeeeee e 85
Preventing Backtracking: The CUt...........ccoooeiiiiein e 87
HOW 1O USEThE CUL ...t 88
Determinism and the CUL...........ccooiiiriineeere e 91
Thenot PrediCate.........ccooieeeee e e 92

Prolog from a Procedural PErSpeCtiVe..........ccoceveieecieiiceee e 97

How Rules and Facts Are Like Procedures...........cooeeveninenenieniecesieneniens 97
Using Rules Like Case Statements.........cccoeeerereeieneeceese e 98
Performing Testswithinthe Rule............ccccceviieeiiiiceee e, 99
THe CUL 8S @ GOT 0. ..ttt 99
Returning Computed ValUEScoovveerenieieese e 101

SUMMIBITY ... r e sr e n e an e snesresneennesreennens 103

Chapter 5, Smple and Compound Objects

SIMPIE Data ObJECESc.veveeeeieceeete sttt ene s 105
Variadblesas Data ObJECES.........ccevvieeiececece e 105
Constants as Data ODJECES........ccooeieereieecere e 105

(4 7= o (< (TP 106

N0] 7 106

ATOIMS L.t 107
Compound Data Objects and FUNCLONS.........ccoocveveieiiere e 108
Unification of Compound OBJECES..........coiiiieere e 109
Using the Equal Sign to Unify Compound Objects...........ccccecveenene 109
Treating Several [teMS aSONE........ccovvieeiececeee e 110
An Example Using Compound ObJECLS..........ccovvreereneeiesereeneee 111
Declaring Domains of Compound ODjects..........coceriiieiinincerr e 115
Writing Domain Declarations: a Summaryccceeeveeveseseennene. 117
Multi-Level Compound ODJECES.........ccccevveeeieiiceese e 118
Compound Mixed-Domain Declarations...........ccocceecereeeeneneeneseseenenee 120
MUltiple-TYPe ArQUMENTS........cceereecieeeesie ettt 121

L SES ettt 121
SUMIMBIY ..o r s r e sme e n e s r e n e n e eae e nesneenenrs 123

Chapter 6, Repetition and Recursion

REPELITIVE PrOCESSES. ...ttt 124
Backtracking REVISITEAcceocveiiieee e 124
EXAMPIE.....ei e s 125

Pre- and POSE-ACLIONS........coieere e 126
Implementing Backtracking With LOOPS..........ccovovveeiinieieneneere e 128
RECUrSIVE PrOCEAUIES. ..ottt 130
What the Computer isReally Doing.........ccccceeeveeeeneneeieseseeee 131
Advantages Of RECUISION..........ooveirieeere e 131

Tail Recursion OptimiZation............cocveeeeeieeeese et 132
Making Tail Recursion WOrKccceceveieeieie e 133

How Not to Do Tail RECUISION.........ceeceieeieeeeeeeee e 134
CULSTOthE RESCUE.....ceeee e 136

Using Arguments as Loop Variables..........ccceecevvieeceiicceece e 138
ReCUrsive Data SITUCLUES..........oovivieeeie e 142
TreeSas aDala TYPE.......coieeiee ettt ettt 143
TraVerSING A TIE ... cccii ettt rs 145

(O (] 0o - N . S SORSR 147

Binary SEarch TreES.....cc.oiieeceeeeeer e 149
Tree-Based SOrting.......ccoovveeeieieeie et 151
EXAMPIE.....eceeee s 152
SUMIMBIY ...t re e r e sme e n e s r e nn e nesae e nesneenenrs 157

Chapter 7, Listsand Recursion

LAV S K= N S 158
DECIariNg LiStS...ccuiceecieiiesie sttt st sre e nne s 159
HeadS and TailS ..o 159

B 100 =S g o R 160

LU LS e I TS 161

WHTING LISES et 162

Counting List EIEMENLScccoeveieiiese et 163

Tail ReCUrSION REVISITE.ciiiirieieieee e 165

Another Example —Modifying the List.........ccoocevviieeienc e, 166

LiSt MemMBDErSNip ..o 169
Appending One List to Another: Declarative and Procedural Programmingl170

Recursion from aProcedural Viewpointcccocoeeeneneenenencenn. 171

One Predicate Can Have Different USeS.........ccoocvveeceiivceienceen 172

Finding All the SOIUtIONS @l ONCE........cccccvieeiiciicece e 173

COMPOUNG LISES....coiiiiiciiciecese ettt 175

Parsing by Difference ListS.....ccoovvoereieerere e 177

IE 1010 7= Y 181

Chapter 8, Visual Prolog'sInternal Fact Databases

Declaring the Fact Databases........cccvceeceveieeie e 183

Using the Fact Databases.ccveveiieeieie et 185

Accessing the Fact Datalases.c.ooveveeeirireneesse e 185

Updating the Fact Databases...........cccoveveieeie i 186

Adding Factsat RUN TIME.......cccevvieeiecieee e 186

Removing Facts at RUN TIME........cooeiiiiiinenineseeee e 189

Saving adatabase of factsat runtimecocevvveecesr e 191

Keywords Determining Fact Properties...........ccocevvveevevecceeseseess e, 191

Facts declared with the keyword nondeterm.cccccoveveeviencnen. 192

Facts declared with the keyword determ.ccoocoeoeivnecnienne. 192

Facts declared with the keyword single..........cccccevveveeveiecceeceseenee, 193

= 11 0] =SSO 195

SUMIMEIY ..ttt ettt sb e he e et e eee e be e sbe e sbe e saeesmsesaneenbeereenseas 199

Chapter 9, Arithmetic and Comparison

ATthmMELiC EXPreSSIONS.....cc.coiiieieeierieeieseeee et ee e eas 200

(@01 = o]0 J U RSPRRN 200

Order of EVAIUBLIONooviiiieeicieinese e 201

Functions and PrediCatesooceeovieeeene e 202

Generating Random NUMDESS..........ccooiiiiiiieceeseseee e 203

FANCOMY L.ttt nee 203

027010 (0] 0 12U 203

(=710 (0] 0 011 017 U 204

EXAMPIE....oe e e 204

Integer and Real ArithmetiC.......coovveeeiiceee e 205

10700 SR 205

TIV/2.e s 205

BT/ L s 205

o0 1 SRS 206

L2210 SRS 206
AICLANTL ... 206

LS o TSSOSO 207
SRS 207

[OG L. 207

S0 0 207

1011 o /S 208

110 o 208

VT2 oo 208
EXEICISE .. 209
(001072 11 o] 0 209
Equality and the equal (=) Predicate........cccoveveveveeceiiceese e 210
EXAMPIE.....ei e s 211
EXEICISES. ..ottt ettt 212
Comparing Characters, Strings, and SymboIScccocvreneneneneieeeee 213
CRAIACLEN'S......ccuieiireeree et 213

SHTTNGS. c et 213
SYMDBOIS .. 214

Chapter 10, Advanced Topics

THE FIOW ANBIYSIS ..o 215
ComPOUNd FIOWoviieeieciecese e 216
Specifying Flow Patternsfor Predicates..........ocovveeeiinceiineeereeeee 218
Controlling the FIOW ANalYSIS.......cooi e 218
Reference Variables... ... 219
Declaring Domains as REFENENCE..........ceeveveeceere e 220
Reference Domains and the Trail Arraycocceveeeeieneeceseeeere e 221
Using Reference DOMEINScceeeeriereeeereeee e seeeee e eee e seeseeseeeeeneens 222
EXAMPIE.....ooe e s 223

Flow PatternS ReVISITEAoooiiieeee e 224
Using Binary Trees with Reference DOmains..........ccccooveeeneneeennseenennnns 225
Sorting with Reference DOMaiNS...........cocvvvveeveceece e 226
Functions and RELUNN ValUES...........ooeiiiiininisesee s 228
Determinism Monitoring in Visual Prologccocvverrieeiene e 230
Visual Prologs Determinism Checking System.........ccccecevvieeievecceenene, 234
Predicates as ArQUMENES........cceeiieiieeeesieceeste st eee st e e sre e be e ete s snae e 236
PrediCate ValUES........oc.o et 236
Predicate DOMEINS.........coiiieeee e see e see e ee e e e seeseeenee e 238
Comparison with declaration of predicates..........cccccvvvveevieieecienene 240

= 1 0] = 241

The Binary DOMEIN........ccccoiiiieeie et eeas 245
Implementation Of binary termS.........ccccveveieece s 246

Text syntax of Binary TEIMSoov e 246

Creating BinNary TEIMIS......c.oiieiiieeeere ettt eneens 247
MBKEDINAIY/L.......eeeecie et 247
MBKEDINGIY/2 ...ttt 247
COMPOSEDINAIY/2......c.ooeeeeee s 247
QEDINAIYSIZE/ ... 247

ACCESSING BiNary TEIMS....c.viiiieecieieece ettt 248
(01 (= 011 Y/ TP USRS 248
SEFENIIY/S ..o 248

UnNifying BiNary TEIMS.......coivieeieieceese ettt st sae e 248
Comparing Binary TEMS.......cccovivieereiieeese e 248

= 010 = TSSO 249

Converting Termsto Binary TEIMS........ccceviieeveii e seesee e sie e 250
TErM DIN/3 .o s 250

Modular Programming.........ccoeeeerereeeene e eseese e seesee e see e ee e eneenes 252

Global DECIArationsSccvieeiireeierie et eneens 252
Global DOMAINS........cciiiieieirire e 252
Global Facts SECIONS......ccc e 254
Global PrediCates.........ooeevvieeene e 254

(0= £SO 258

Errors and Exception Handling..........cccceviieeiiii e 259

Exception Handling and Error Trapping.......ccocceeeeeeeeneneeneeseseeseeseeeeens 260
EXIt/0 AN EXIT/ L. s 260
errorexit/O and erroreXit/L.......cooveverereieeeeesese s 260
EFAID/S. e 261
EITOMMST/Z ...ttt 262

o = 0 0] 1o OSSP 263
EITOMTEVEL ... s 263
S L (0] U 264

Handling Errorsfrom the Term Readerccccevvveevevvcceeseseese e, 265
CONSUITEITON 3. 265
=720 1= 1101 0 (0] U 266

Break Control (Textmode OnlY)coceieriereneeee e 266
BrEAK/L ... 267
PreakpreSSad/O ..o 267

Manual Break and Signal Checking in UNIX ... 268
SIGNAIZ ..o e e ena 268

Critical Error Handling under DOS Textmode..........ccocvvveveseseesesieenns 273
CIITICAIEITON A ... 273
THEEITON 2. e 274

(Y g T= 0 T ol O 1] o O 275
EXAMPIES ... et 275

Vi

Free TYPE CONVEISIONScoiiieerieiieeeesie e ettt see e seeseeeeesneeneenee e
Programming SEYIE ..o e
Rules for Efficient Programming...........ccocceveeeeieseeie s seeseeseene e
Using the fail PrediCate.........ccooviiieeci e
Determinism vs. Non-determinism: Setting the Cut.............cocevvveeieenns

Chapter 11, Classes and Objects
ENCAPSUIBLION ...t nne
Objects and ClaSSES.......ccoiiiieiecie ettt
INNENTTANCE. ...ttt
0 11U
Visual ProlOg ClaSSEScoiiieeieieeiese et
Class DECaralions.........c.cuiirerierieiieieesesesie st
Class IMplemeENtalioN...........cooeii e
Class INStaNCES - ODJECEScoiviieieerieeerie e e
Destroying ODJECLS.......ccveiiieeesie et
ClasS DOMAINScceiiiuiriiriisie sttt sttt be b sn et st e e

PN o1 1 = o O = (S T
Protected Predicates, Domains, and FaCts............ocovevveee e
Derived Class ACCESS CONLIOcceveivieiiiieceie et
Object Predicate ValUES.........c.ooeeieeeee e

Object Predicate Domain Declarations...........ccoceveeeereeeeneneenene e
Formal Syntax for ClasseS.......cciiieeieiiieeie et

Part 3 Tutorial Chapters 12 —17: Using Visual Prolog

Chapter 12, Writing, Reading, and Files

Writing and REAAINGcoeviiiee e e
LT €1 o S
WHEE* @NA Nl .o s

1T S

= o] oo ST
(172 o | o 1 S

readint/1, readreal/1, and readchar/lc..ccocevveveiv e,
(=720 1= 1 107 S

LS 1

vii

Binary BIOCK TranSfErccooviiiiriiericeieeseeesese s 328
FEAADIOCK/2 ... 328
WITEDIOCK/ 2.t 328
FIlE DIN/Z . 329

Visual Prolog's File SyStem ..o 329

Opening and CloSING FIlES.......c.ccviieciceee e 330
OPENTEAIZ ...t 330
OPENWIITE/2 ... 330
OPENBPPENA/ 2.ttt 331
OPENMOTITY/2.....oeeeeece e 331
FHEMOES2.......eeeee s 331
CLOSEFITEIL ... s 332
FEAAABVICES L. 332
WHTEHEVICE L ... e 332

Redirecting Standard 1/0 ..o 333

WOrKIiNG WIth FIlES ..ot 334
FIHHEPOS/3...c e 334
<) S 335
FIUSH L. e 337
EXISHIEI L. 337
Lo S 1 1= S 338
SEAICHIIE/3 ... 338
ElELEfIE ... 338
FENAMEFTTEI L ... 339
(0TS T S 339
(o007 11 1= 2SSO 339

File ATIHDULES ... 339
Opening and Creating fileS..........ooiiiieieieess e 340
Special FileModesfor DOS>=4.0and UNIXcccoovvvecevnenenne, 341
(007 01 1] 1= TSSO 341

File and Path NAIMES..........cooiiiiee e 342
fIllenamepath/3.........cooo e 343
FIHENAMEEXL/3 ... e 343

DIreCtory SEArCHINGcoirvirrereeeereesesie st 344
TITOPEN/3....oe s 345
AIrMEECH/L0....c..i e 345
TITCIOSE L ... 346
(0T 1= S 347

Manipulating File ARIDULES.........cccoceeeieceee e 349
FHEALLITIIZ ..o e 349

Handling termSin text fil€S........oooiiiieeee e 350

viii

EXAMPIE...ee e 352
RS T 0107 PR 353
Chapter 13, String-Handling in Visual Prolog

S g0 00 =S] o TP 356
Basic String-Handling PrediCates.........ccovvveeveveseeie e 356
L0110 7= A 356
FrONTOKEN/3 ...t 357
FPONESII/A ..o e 358
(00] 0 0r 11/ 1 TSRS 359

S L L 0 SRS 359
FSNAIMEY L.t 359
10 00 ¥ 360
SUDCNAITS.....cee s 360
SUDSIIINGIZ ..o 360
SEAICNCNAI ... 361
SEAICNSINNG/3.....eeee e 362

I/ 8O0 017/ £ Lo o O 362
ChAr TINU/2....eeeee e 362
SIE_CNAIT2 e e 363

SIE N2 e 363

SIE TEAI/2 .. s 363

UPPES _TOWEN/2.....eeeeee et 363

102 0 TR 7 T 364
EXAMPIES ... e 364
SUNMMMBIY ..ttt ettt e e e te e sbe e s b e saeesaeesaeeenbeebeesteesreesneesneeensennns 367

Chapter 14, The External Database System

External Databasesin Visual Prolog.........ccccovveeeieieeie e 369
An Overview: What'sin an External Database?..........ccceecevveeeneneeieeenne. 370
Naming CONVENLION.........ccoeceiieiiere et 370
External Dataase SElECtOrSccovvirerierieeesese e 371

L1 5 7= P 372
External Database DOMAINS..........cooveriiierrieeiesieseese e eee e see e seeeee e 374
Database Reference NUMDEXS..........cccoviiiieinren s 374

D _rEUSEIEfS/2.......eeee e 375
Manipulating Whole External Databases...........ccovveereneeceeneneeseseeeeenes 375
OD_CrEAE/3 ... 376
AD_OPEN/3 ... 377
AD_COPY/B . 377
db_loademg/2 and db_saveems/2ccccveeeveiiccece e 378
db_openinvalid/3...........coooiieeieee e 378
AD_FIUSH L ... s 378

AD_ClOSE/ L. e 379

AD_dEIBLE/L ... s 379
db_garbageCOllECt/L.........ooeeeeceee e 379

D _DEIEES/2 ... 380
AD_ChaINS/2..... e 380

[0 OIS = S (01 S 380
Manipulating Chains...........cccviieieii e 381
chain_inserta/5 and chain_insertz/s...........coooivoeiiiicinnecee e 381
Chain_INSEMafter/B........ccoeeiiie e 382
ChaiN_tEIMS/S ... 382
ChaiN_dElELE2........cceeeee e 382
chain_first/3and chain_last/3..........ccooo e 383
chain_next/3 and chain_previ3..........ooooecevicceece e, 383
ManipUIELNG TEIMS.....ccueiiece ettt e st esaesreennens 383
TEIM_IEPIACES A ... e 383

term _deletef3..... s 384

1= =101 U 384

A Complete Program EXample..........ccooieiinninnececeeesesee 384
B TTEES. ..ttt et e e b n e e 388
Pages, Order, and Key Lengthccccvvveieiiecese e e 388
DUPIICALE KEYS.... .ottt sttt sttt saesre e 389
MUILIPIE SCANS ... 389
The B+ Tree Standard PrediCates...........ccooeeerenenenine e 389
bt _create/5 and bt_Create/B..........ccoeeveieeveeee e 389
Bt_OPEN/3... e 390
bt_close/2 and bt_delete/2..........ccoovveieieeeeere e 390

Dt COPYSEIECLON ... e s 390

Dt SEALISHICTB.....eeeeiieee e 391
key_insert/4 and key_deletel4 ..o 391
key first/3, key last/3, and key_search/4...........cccccoevvvvecniennnenen, 391

key next/3and Key Previ3........ieecene e 392

KEY CUITENL/A ...t 392
Example: Accessing a Database viaB+ Trees.......ccoooeveieneiccenenesennens 392
External Database Programimingcccceeeereneeieesieseesissieeeesesseeseesneeeenns 394
Scanning through aDatabase.............ccovveiereieeicee e 395
Displaying the Contents of a Database............ccoovverirereneneeeeeeeseens 396
Implementing a Database That Won't Break Downcccccccoeeveiieeneee. 398
Updating the Datahase..........ccceeceeiiieece e 399
Using Internal B+ Tree POINEErS.cceoveieeierieeneseseseseeee e 403
Changing the Structure of aDatabase..........cccceeveiieieesie e 405
Filesharing and the External Database.............cceceveieevenvcciesesie e, 407
Filesharing DOMAaINS.coiiieiee e 407

Opening the Database in Share Mode.............coeveieiiiinineneeeeeeee 408

Transactions and F1esharing.........cceeceveeeeneneese e 409
Filesharing PrediCates.........cccvvviieievieee e 410
AD_OPENIA ...t e e 410
db_begintranSaction/2............cccooereiiiieeeee 410
db_endtransaction/1.........co.coeoiieiieie e 410
Ab_UPAtEA/L ... 411

Bt UPELEAI2 ... 411
AD_SEIEIIY/3....oeee s 411
Programming with FIlesharing..........ccccveveieiceii e 411
Implementing High-level LocKing.........ccocvieeveiiiieie e 413
A Complete Filesharing EXample.........ccooeieieneeeere e 414
Implementation Aspects of Visua Prolog Filesharingcc.cccccvieeienen. 420
MISCEITANEOUS ..ottt 421
SUMIMBIY ..o r s r e sme e n e s r e n e n e eae e nesneenenrs 421

Chapter 15, System-L evel Programming

Accessto the Operating SYSteM..........oov e 423
LSS = 1 2 1 423
LSS =1 0 T 424
ENVSYMDOI/2 ... 425

tME/4 and ateooeiieeee e 425
COMINEIL ...t 426
SYSPAENZ ... 427

TIMING SEIVICESeeiie ettt e st sr e sne e e 427
SIOEP/ L.t 427
MANKEIME/ 2. 427
TIMEOUL/ L. e 428

(013 1 =TS 428
SOUND/Z ...ttt 429

DEED/O ..o 429

(0= £ o] SRS 429
AISKSPACEIZ ...t e 430
storage/3 and StOrage/dl........cccocvveeeeiiceese e 430
SEOTBGESO ...t 431
Bit-Level OPErations.........cccceieeiiirieeie et see sttt 431
DITANA/3 ... e 431

o]0/ TS 432
DITXOI/S . e 432
DITIEFT/S ..o 433
DITFIGNL/S ... 433

T (ot = T 433
Accessto the Hardware: Low-Level SUPPOrt........ccocvevvveeieve e 433

Xi

DIOS/S ANA DIOS ...ttt ettt e e e e e e s e eraeeeeean 434

PU_AWOID ... 436

membyte, memword, memadword............ccccevveeverecceese e, 436

POt DYLE/ 2. 436
SUMMIBIY ...t r e sr e n e sn s e e sresmeesnenreennens 437

Example Prolog Programs

Building a Small EXpert SYyStem.........ccovverireneneeeesene s 439
Prototyping: A Simple Routing Problem............ccocovvieiiieie e 444
Adventuresin aDangerous CaVe...........ccvieevereeeeseseese e seese e esee e seenees 446
Hardware SIMUIaLioNcooeiiee e 449
TOWENS Of HBNOI ..o 450
Dividing Words into Syllables...........ccccevvieeiiiicese e 452
The N QUEENS Probl€M.........cooieiee e 456

Part 4 Programmer’s Guide
Chapter 17, Elementsof the Language

NNBIMIES ...ttt sttt et be bt e et e e b e reeeeas 461
KEYWOITS. ...ttt 462
Specially-Handled Predicates..........coovvvveveeveiiece e 462

Program SECLONS........ccoi it s 462

The DOMAINS SECLION........ceiiii et 465
Shortening Domain Declarations...........c.cccevvieeveveeciese e 465
Synonyms to Standard DOMaINSccceeeeeveieevesieeiese e 465
RS o] = U 466
Multi-alternative Compound DOMaiNS...........cceceereereeneneeseeseneenen 466
Single-alternative Compound DOmains...........ccccceveeceeveseeceseenenn, 468
Domains FILE and DB_SELECTOR........ccccevvverenereerieneeeneneneens 468
Specially Handled Predefined Domains...........ccocoveeeereseeceneeenne 469
Declaring Reference DOMaINS..........cccceeveereveeiiesecieesie e 470
Declaring Predicate DOMAINS..........cocoveeeeviceecece e 470

The PredicateS SECHION.cccvii i e 472
DeterminiSM MOOEScooeiiririirieee e 472
FIOW PaITEIMNS.o 474
FUNCLIONS ... et 475
PrediCate ValUES.........ooeeeeeee e 476
Object Predicate ValUES.........cccevveieececiceece e 476

The FaCtS SECHION........cieieeeerer e 476

The Clauses SECHION.ceeriie ettt 478
SIMPlIE CONSLANES......ccviieieee e 479
TOIIMIS. .ttt 482
VaTADIES. ... s 482

Xii

(00700107010 1010 BN = 1 1 0TSSR 482

The GOal SECLION......cci et 484
The CoNStaNtS SECLION........c.oiveeeerirere e 484
Predefined CoNSaNtS. ..o 486
Conditional ComPIlation............ccoceeririeiereeese e 486
Including FleS TN YOur Programccocerereeeeneneene e 487
Modules and Global Programming Constructions............cccceeveeeveceeevennne. 488
ComPilation UNITS......cocoieieeese e e 488
Names With GIobal SCOPE......ccccviireiiieere e 4389
Include Structure of Multi-modular Programs..........ccccceeeeveieeveseeiiennnn, 489
Include All Global Declarationsin each Module...........c.ccoeieenene 490
Where-used Strategy for Including Global Declarations.................. 490
Quadlification Rules for Public ClassMembers..........cocccveeeeeveeceeceecnene, 492
Compiler Options for Multi-modular Projects.........cccoovvvevevvcceeseseeeee 493
COMPIlEr DITECHIVES.eeeee et ee e 494
o1 Lo U= = 1 0 PSS 494

COUR....e ettt bbbttt b et e e 495

(o0] 11 1o SRS 496

(0120 001 1 = SRS 496
EITOMTEVEL ... s 497

NP ...t e 498
NOBIEAK ...ttt 498
(010Y 7= 11 0T o 499

01T 1= 107 L S 499

01 0] = oX S 499

Visual Prolog Memory Management...........ccoceeeereeeereneeeene e see e 500
MEMOrY RESIICLONS........ccviieeiecie ettt nne 500
SEACK SIZE .. s 500

GSHACK SIZ8 ..ottt nee 501

HEBD SIZE....coi et 502
Releasing Spare Memory RESOUICES...........ccceeeerieeeeriesieeeesieseesiesreenennens 502

Chapter 18, Interfacing with Other Languages

(S T T T RS 503
Calling Other Languages from Visual Prolog........ccccceeervieeieneeeceneieeenee 504
Declaring External PrediCates...........coviveieceeiese e se e 504
Cadling Conventions and Parameter Passingccccevvveeveieeveeseseennnee 504
[NPUL PAIEMIELEIS......oiii ettt 504

OULPUL PAraIMELENS ..ottt 505

REIUM VAIUES ..o 505
Multiple declarations...........ccoovierrreeeere e 505
Parameter puSing OFderooceerireeiere e 507
Leading UNAErSCOred..........cccueiieieeerie et 507

32-bit Windows naming CONVENLIONcccouverererreneeneeeseneneennes 507

Converting the name to Uppercase (Pascal)...........coocververeierienennens 508
Adjustment of StaCkpointer..........cccoveeviiieie e, 508

The AS"external_name" Declarationccoceveveecececceeseseenn, 509
Domain IMplementationc.cooeieeeene e 509
SIMPIE DOMEINS.....c.eiieieieiieeerieeeee et et et see e te e eeesneeeestesneeseesreeneens 510
COoMPIEX DOMAINSueceeieieeee ettt et ae e s e e saesreennens 510
Ordinary Compound Objects and StrucCtures............ccoceeeeeeerieniennens 511
S 512
Memory CoNSIAEratioNS..........cccveieieeiese et 512
MemOrY ALTGNMENL.........cceeie et 512
EXAMPIE....ccee e 513
MemMOrY ATOCALTION.........cceeie et 514
Pre-allocation of MemMOrY.........ccceeeeveieevese e 515

The SIZeof TUNCHION ..o s 516

MAIIOC AN FIB....coeiee e 517
Gz 11 0] =S 518
LiSt HANAIING ..o 518
Calling Prolog from Foreign LanguUages...........ccoceveerereneennneeeeseseeens 521
HEIO e 521
Standard PrediCatesco.eveereririeriesieeeeeesese s 522

Calling an Assembler Routine from Visual Prologccoeeeieeienencnnens 523
Index 527

Xiv

Using This Manual

If you have never programmed in Prolog before, you should read al of this
manual. Chapters 1-10 cover Prolog fundamentals, and you should read them
before attempting any serious application development. The later chapters
become very important as soon as you want to do serious programming. If you
program in a procedural programming language such as C, Pascal, or Basic, pay
close attention to the procedural discussions. At the end of Chapter 4, you will
find a procedural overview of the material covered in the first three tutorial
chapters. We also provide procedural discussions of recursion in Chapter 6.

If you have programmed in other Prologs and have a good understanding of
Prolog fundamentals, you won't need much review. However, Visual Prolog has
severa extensions and is different from interpreted Prologs. We recommend that
you read the release notes and Chapters 1 as an introduction. Chapter 3 explains
the structure of a Visual Prolog program and Chapter 5 introduces the
declarations. We also recommend that you read Chapter 8 on Visua Prolog's
facts section, and Chapter 14, on the external database.

Chapters 12 through 16 provide valuable information that you will need if you
plan to do serious programming.

If you think you could use a review of Visua Prolog programming, we
recommend that you read from Chapter 16 on.

This user's guide is divided into four parts: a short introduction to the Visual
Prolog environment; then the first ten tutorial chapters —which teach you how to
program in Visua Prolog; then six chapters — which gives an overview of the
predefined features of Visual Prolog - the standard predicates, the last part gives
a complete systematic overview of the language, modular programming and
interfacing to other languages.

Here's a summary of each chapter in this book:

Part 1: Introduction to Visual Prolog

Chapter 1. Getting Started describes how to install Visual Prolog on your
computer, how to use Visua Prolog's Visua Development Environment for
running examples supplied for this book, provides a quick guide through the
steps involved in creating, running, and saving your first Visual Prolog program.
This chapter explains how to apply Visual Development Environment's Test
Goal utility to run the Language Tutorial examples supplied with Visual Prolog.

Part 2: Tutorial Chapters2—10: Learning Visual Prolog

Chapter 2: Fundamentals of Prolog provides a general introduction to Prolog
from a natural language perspective and discusses how to convert natural
language statements and questions into Prolog facts, rules, and queries.

Chapter 3: Visual Prolog Programs covers Visual Prolog syntax, discusses the
sections of a Visua Prolog program, and introduces programming in Visual
Prolog.

Chapter 4: Unification and Backtracking describes how Visual Prolog solves
problems and assigns values to variables.

Chapter 5: Simple and Compound Objects discusses declaring and building
structuresin Visual Prolog.

Chapter 6: Repetition and Recursion explains how to write repetitive
procedures using backtracking and recursion; also introduces recursive structures
and trees.

Chapter 7: Listsand Recursion introduces lists and their use through recursion,
aswell as covers general list manipulation.

Chapter 8: Visual Prolog's Internal Fact Databases discusses using of Visual
Prolog's facts sections for adding facts to your program at run time and for
storing global information.

Chapter 9: Arithmetic and Comparison introduces the full range of arithmetic
and comparison functions built into Visual Prolog and gives examples that
demonstrate how to use them.

Chapter 10: Advanced Techniques controlling the flow anaysis, using
reference variables, pointers to predicates, the binary domain, term conversions,
using the dynamic cut, tools and techniques for error and signa handling, and
programming style for efficient programs.

Chapter 11: Classes and Objects gives a short introduction to object oriented
programming and introduces the object mechanism in Visual Prolog.

Part 3: Tutorial Chapters 12 —16: Using Visual Prolog

Chapter 12: Writing, Reading, and Files introduces 1/O in Visual Prolog;
covers reading and writing, and file and directory handling.

Chapter 13: String-Handling in Visual Prolog covers string manipulation,
including string comparison and string conversion, plus constructing and parsing
strings.

Chapter 14: The External Database System covers Visua Prolog's external
database system: chained data, B+ trees, storing data (in EMS, conventional
memory, and hard disk), and sorting data. Includes examples of constructing real
database applications.

Chapter 15: System-Level Programming introduces the low-level control
supported within Visual Prolog: system calls, BIOS, low-level memory
addressing, and bit manipulation.

Chapter 16: Example Prolog Programs provides a diverse group of Prolog
program examples demonstrating some of the elegant ways Prolog solves
complex problems.

Part 4: Reference Chapters 17 —18: An overview

Chapter 17 Elements of the Language gives a systematic overview of all the
features in the Visual Prolog language. The chapter also introduces modular
programming.

Chapter 18 Interfacing with Other Languages gives a description on how to
interface with C and other languages

PART

Introduction to Visual Prolog

CHAPTER 1

Using Visual Prolog's Visual Development
Environment

This chapter describes the basic operation of the Visual Prolog system focusing
on running the examples described in this book.

We assume, that you have experience using the Graphical User Interface system,
the windowing system. This might be either 16-bit Windows 3.x or 32-bit
Windows (95/98 and NT/2000). You should thus know about using menus,
closing and resizing windows, loading a file in the File Open dialog etc. If you
do not have this knowledge, you should not start off trying to create an
application that runs under this environment. You must first learn to use the
environment.

If you are a beginner to Prolog, you don’'t want to mix learning the Prolog
language with the complexity of creating Windows applications with event
handling and al the Windows options and possibilities. The code for the
examplesin this book are platform independent: They can run in DOS text mode,
under UNIX, or with the adding of a little extra code for the User Interface
handling, in a Windowing environment like MS Windows.

We do suggest that you at an early stage work your way through the Guided Tour
in the Getting Started book and try to compile some of the examples in the VPI
subdirectory. This gives you an impression what can be done with Visual Prolog
- just so you know what you should be able to do, when you have learned to
master Visua Prolog.

However, if you are going to seriously use the Visual Prolog system, you need to
learn the basic concepts of Visual Prolog properly. Y ou will not be able to build
a skyscraper without having a solid foundation. In Visual Prolog the foundation
is understanding the Prolog language and the VPI layer.

What Needsto be Installed for This Book?

To run and test the examples described in this book you need during installation
of Visual Prolog from CD:

6 Visual Prolog Language Tutorial

* In the didog Compilers. Install the Visual Development Environment
(VDE). We recommend that you choose the Win32 version.

* Inthe dialog Libraries. Check ON libraries correspondent to the selected
VDE platform.

* Inthe dialog Documentation. Y ou must check ON installation of Answers
(Language Tutorial) and Examples (Language Tutorial). We recommend
you aso to switch ON instalation of al other items listed in the
Documentation diaog.

* In the dialog Final. We recommend you to check ON the Associate 32-bit
VDE with Project File Extensions PRJ & VPR.

Starting the Visual Prolog's Visual Development
Environment

The Visual Prolog's installation program will install a program group with an
Icon, which are normally used to start Visual Prolog's Visua Development
Environment (VDE). However, there are many ways to start an application in the
GUI World, if you prefer another method, you can just start the Visual
Development Environment's executable file VIP.EXE from BIN\WIN\32 (32-bit
Windows version) or BIN\WIN\16 (16-bit Windows version) directories under
the main Visual Prolog directory.

If the Visual Development Environment had an open project (a .PRJ or .VPR
file) the last time the VDE was closed on your computer, it will automatically
reopen this project next time it starts.

If while installation of Visual Prolog's from CD you had checked ON the
Associate 32-bit VDE with Project File Extensions PRJ & VPR, then you can
simply double click on a project file (file name extension .PRJ or .VPR). The
Visual Development Environment will be activated and the selected project will
be loaded.

To run most examples in this manual, you should use Visua Development
Environment's utility Test Goal. The Test Goal utility can be activated with the
menu item Project | Test Goal or simply by the hot key Ctrl+G. For correct
running of these examples with the Test Goal utility, the VDE should use the
specia settings of loaded projects. We recommend you to create and always use
the following special TestGoal project.

Chapter 1, Using Visual Prolog's Visual Development Environment 7

Creating the TestGoal Project for Running the
Examples

To run with the Test Goal utility, Language Tutorial's examples require that
some non-default settings of Visual Prolog's compiler options should be
specified. These options can be specified as the project settings with the
following actions:

1. Start Visual Prolog's VDE.

If this is the first time you start the VDE, then it does not have a loaded
project and you will see the picture like this (also you will be informed that
the default Visual Prolog initialization file is created):

Evisual Prolog - | | |i|

File Edit Project ©Options Window Help

DlaE EE ZhE DorkEs] EEEE]

Figure 1.1: Start Visual Development Environment

2. Start creation of anew project.

Select Project | New Project menu item, the Application Expert dialog will
be activated.

3. Specify the Base Directory and the Project Name.

8 Visual Prolog Language Tutorial

Suppose that while installation of Visual Prolog you had selected Visual
Prolog's root directory C:\VIP, then the Language Tutorial examples should
be installed into the \DOC\Examples subdirectory of this root directory. In
this case, we recommend you to specify the following Base Directory:

C:.\ VI P\ DOC\ Exanpl es\ Test Goal

This choice is convenient for future loading of Prolog source files of the
Language Tutorial examples.

In the Project Name, we recommend to specify "TestGoal".

Also check ON the Multiprogrammer Mode and click inside the Name of
.PRJ File control. You will see that the project file name Test Goal . PRI

appears.

Application Expert il

General I Target | WPl Options | Other Options | zer Info | Help Makerl

Project Mame ITestGDaI

Name of VPRFile: [TestGoalvpr

Suppor for Source Control Systems and Muliprogrammer Frojects

v Multiprogrammer Mode

Name of PRJFile: [TestGoalpr

Base Directany: IC:'\,Vip'\,DDC\ExampIes\TestGDal Browse... |

Create Cancel Help |

Figure 1.2: Application Expert's General Settings

Specify the Target settings.

In the Application Expert's Target tab, we recommend to select the following
settings:

Chapter 1, Using Visual Prolog's Visual Development Environment 9

Application Expert il
General |TEII’E_IBT I WPl Options | Other Options | User Info | Help Makerl
Platform [Windows32 ~|
Ll Strateqy
Target Type Iexe LI
kain Program Ipmmg LI
Create Cancel Help

Figure 1.3: Application Expert's Target Settings

Now press the Cr eate button to create the default project files.
4. Set the required Compiler Options for the created TestGoal project.

Select the Options | Project | Compiler Options menu item, the Compiler
Optionsdialog is activated. Choose the War nings tab. In this tab:

* Check ON the Nondeterm radio button. This enforces Visual Prolog's
compiler to accept that by default all user-defined predicates are
nondeterministic (can produce more than one solution).

» Check Off: the Non Quoted Symboals, Strong Type Conversion Check,
and Check Type of Predicates. These will suppress some possible
compiler warnings that are not important for understanding of the
Language Tutorial examples.

 Asthe result the Compiler Options dialog will looks like the following:

10 Visual Prolog Language Tutorial

compiler Options x|

Code Generation | Dutpaut | WWarmings I hiscellaneaus

[T Suppress All \Warnings ¥ Duplicated Includes
[TreatWamings as Erars [Mon Quoted Symbaols
hax Allowed Warnings |25 I Strang Type Canversion Check

Default Predicate Type [T Check Type of Predicates
&+ Mondeterm ¥ Unused Yariables
" Detarm ¥ Unused Predicates
" Procedure I~ Unreachable Code

CK. Cancel | Helg |

Figure 1.4: The Compiler Options Settings

Pressthe OK button to save the Compiler Options settings.

Opening an Editor Window

To create a new edit window, you can use the menu command File | New. This
will bring up a new editor window with the titte "NONAME".

The VDE's editor is afairly standard text editor. Y ou can use cursor keys and the
mouse as you are used to in other editors. It supports Cut, Copy and Paste,
Undo and Redo, which you can al activate from the Edit menu. Also the Edit
menu shows the accelerator keys associated for these actions. The editor is
documented in the Visual Development Environment manual.

Running and Testing a Program

To check, that your system is set up properly, you should try to type in the
following text in the window:

GOAL write("Hello world"),nl.

Chapter 1, Using Visual Prolog's Visual Development Environment 11

Thisiswhat is called a GOAL in the Prolog terminology, and thisis enough to be
a program that can be executed. To execute the GOAL, you should activate the
menu item Project | Test Goal, or just press the accelerator key Ctrl+G. If your
system isinstalled properly, your screen will ook like the following:

TestGoaI.Vpr - Visual Prolog

Fle Edit Project Options Window Help

ClaE (=2 EoE EErEe] FEEEE]

t:: WWip'Doc\Examples®, T

=0l x|

=lof x|

Viodue| | 788 TestCoal noname.pro
: TestGoal.pro 2:96 Insert
Dialog COAT,
Mdindowe write{"Hello world"),nl.
tenu
Toolbar 1
String ! [Inactive C:\Wip“Doc'Examples' TestGoal 0Objigoal
Hello world
lzon
yes
Curzor
Bitrap

Prii
Messages

Kl
Generating ' Objigoal$000.SYM'
Linking Target Object

TestGoal is running in CAVip\DociExamplesiTestGoaliObj diréctory

< |

-

Figure 1.5: The "Hello world" test

The result of the execution will come up in a separate window (on this figure it

has title: [Inactive C\Vip\ Doc\ Exanpl es\ Test Goal \ Obj \ goal $000. exe]), Which
you must close before you can test another GOAL.

Testing Language Tutorial Examples

As we recommended, you have installed Examples (Language Tutorial) and
Answers (Language Tutorial). You can find the Language Tutorial examplesin

12

Visual Prolog Language Tutorial

the subdirectory: DOC\EXAMPLES, and answers to exercises in the
subdirectory DOC\ANSWERS.

The examples are named after the chapter they appear in: chccenN. pro, where CC
will be 02, 03, 04, etc. according to the chapter number, and NN is the example
number within that chapter (01, 02, 03, etc.).

Testing Examplesin Test Goal

You should now try to open one of these examples by Visual Development
Environment, and test it using the Test Goal utility. These involves the following

steps:
1. Start Visual Prolog's VDE.

2. Use the Project | Open Project menu command to open the special
TestGoal project (see above).

Use the File | Open command to open one of chcceNN. pr o files.

Use the Project | Test Goal command (or press Ctrl+G) to test the GOAL
of the loaded example.

The Test Goal will finds ALL possible solutions for the GOAL and display
values of ALL variables used in the GOAL.

Remarks About Properties of the Test Goal Utility

The Visual Development Environment's Test Goal utility treats the GOAL as a
specia program, which it compiles, links, generates the executable from and runs
this executable. The Test Goal internally extends the specified code of the
GOAL in the way enforcing the generated program to find ALL possible
solutions and display values of ALL used variables. The Test Goal utility
compiles this code using the Compiler Options specified to the opened project
(we had specified the recommended Compiler Options for the TestGoal project
above). Notice that the Test Goal utility compiles only the code specified in the
active editor window (it simply ignores code in any other opened editors or the
project modules, if they are). Linking the executable, the Test Goal uses the
EASYWIN strategy (that is described in the Visual Development Environment
manual). Notice that you cannot specify any linking options to the Test Goal;
because it ignores any M ake Options specified to the opened project. Therefore,
the Test Goal cannot use any global predicates defined in different modules.
Notice that the Test Goal has restriction on number of variables that can be used
in the GOAL. Currently it is 12 for 32-bit Windows VDE, but this can be
changed without any notification.

Chapter 1, Using Visual Prolog's Visual Development Environment 13

Testing Examples as Standalone Executables

Most examplesin Language Tutorial are intended to be tested with the Test Goal
utility, but some examples, for instance cho4eos. pro, are intended to be tested as
standal one executables. We recommend the following procedure for testing such
examples:

1. Start Visua Prolog's VDE and open the previously created TestGoal project
(see above).

2. Open the file TestGoal.PRO for editing (simply double click on TestGoal
item in the Project window).

3. The Prolog code in the file TestGoal.PRO starts (after the header comment)
with the include directive:

i ncl ude "Test Goal . | NC'

4. Comment this include directive and delete al other Prolog code. Notice that
thisinclude directive can be commented (ignored) for simple examples from
Language Tutorial, but it is required for more complicated programs.

5. Include the file with the example source code, for instance cho4eos. pro.
Notice that filenames in include directives should contain correct paths
relative to the project root directory; therefore, we recommend using the
editor's Insert -> FileName command:

* Type:
i ncl ude

* Activate the menu command Edit | Insert | FileName; the Get & Insert
FileName diadog is activated. Browse for the required filename
(cho4eos. pro), highlight it and click the Open button. Now the file
TestGoal .PRO should contain the lines:

% i ncl ude "Test Goal .| NC' % Can be commented in sinple
exanpl es
i nclude "C\\VIP_SS\\ DOC\\ EXAMPLES\ \ ch04€05. pro"

6. Now you can compile the example source code (cho4e05. pro), create the
correspondent executable file (in this case it will be the file TestGoa .EXE)
and run it as a standalone executable. Y ou can execute all these actions with
one command: Project | Run or simply with the hot key F9.

14 Visual Prolog Language Tutorial

Handling Errors

If you, like all programmers do, happen to make some errors in your program
and try to compile the program, then the VDE will display the Errors
(Warnings) window, which contains the list of detected errors. You can double
click on one of these errors to come to the position of the error in the source text.
(Beginning with Visual Prolog v. 5.3, you can click on one of these errors and
press the hot key F1 to display extended information about the selected error.) In
previous versions, you can press F1 to display Visual Prolog's on-line Help.
When in the Help window, click the Search button and type in an error number;
the help topic with extended information about the error will be displayed.

TestGoaI.prj - Visual Prolog = |EI |i|
File Edit Project Opfions Window Help

oaE =2 REwE [EErREs] EREE]
=T

ﬁodule

. TestGo 24:1 Insert Indent
Dialeg predicates
Window likes{=ymbkol, symbal)
ey clauses

likes(ellen, tennis).
likes{john, foothall).
Sl likes (tom, basehall).
likes({eric, swimming, &) .

Taolbar

leon likes (mark, tennis) .
likes(bill, Activity):-#
likes(tom, Actiwvity).

Cursor

Bitmap

goal
iz likes(bill, basehall).
o i

Topics

rors(Warnings)

E:Test_Goal, pos: 548, 10 llegal character

4 |

2s5ages 5

Compiling ‘objigoal$000.pro* to 'Obj\goal$000.0BJ*
Compilation terminated due to errors

4

Figure 1.6: Handling Errors

Chapter 1, Using Visual Prolog's Visual Development Environment 15

PART

Tutorial Chapters2 —11: Learning Visual
Prolog

CHAPTER 2

Prolog Fundamentals

This is the first in a sequence of chapters giving a step-by-step tutorial
introduction to the Visual Prolog language. We begin this chapter with an
introduction to programming in logic. After that, we discuss some of Prolog's
basic concepts, including clauses, predicates, variables, goals, and matching.

PROgrammingin LOGic

In Prolog, you arrive at solutions by logically inferring one thing from something
aready known. Typicaly, a Prolog program isn't a sequence of actions — it's a
collection of facts together with rules for drawing conclusions from those facts.
Prolog is therefore what is known as a declarative language.

Prolog is based on Horn clauses, which are a subset of a formal system called
predicate logic. Don't let this name scare you. Predicate logic is simply away of
making it clear how reasoning is done. It's ssimpler than arithmetic once you get
used to it.

Prolog uses asimplified variation of predicate logic syntax because it provides an
easy-to-understand syntax very similar to natural language, and because
computers are not as fagt, large, or as inexpensive as we would like. If Prolog
were to accept English statements, the compiler would need to know every
possible way something could be worded in English. In many cases, it would
take many times longer to trandate the program into something the computer
understands than it would to run the program. The computer hardware needed to
run such a system would be monstrous.

Prolog includes an inference engine, which is a process for reasoning logically
about information. The inference engine includes a pattern matcher, which
retrieves stored (known) information by matching answers to questions. Prolog
tries to infer that a hypothesis is true (in other words, answer a question) by
questioning the set of information already known to be true. Prolog's known
world isthe finite set of facts (and rules) that are given in the program.

One important feature of Prolog is that, in addition to logically finding answers
to the questions you pose, it can deal with alternatives and find all possible

18 Visual Prolog Language Tutorial

solutions rather than only one. Instead of just proceeding from the beginning of
the program to the end, Prolog can actually back up and look for more than one
way of solving each part of the problem.

Predicate logic was developed to easily convey logic-based ideas into a written
form. Prolog takes advantage of this syntax to develop a programming language
based on logic. In predicate logic, you first eliminate all unnecessary words from
your sentences. You then transform the sentence, placing the relationship first
and grouping the objects after the relationship. The objects then become
arguments that the relationship acts upon. For example, the following sentences
are transformed into predicate logic syntax:

Natural L anguage: Predicate L ogic:

A car isfun. fun(car).

A roseisred red(rose).

Bill likesacar if thecarisfun. | i kes(bill, Car) if fun(Car).

Sentences: Facts and Rules

The Prolog programmer defines objects and relations, then defines rules about
when these relations are true. For example, the sentence

Bill likes dogs.

shows a relation between the objects Bill and dogs; the relation is likes. Hereisa
rule that defines when the sentence Bill 1ikes dogs iStrue

Bill likes dogs i f the dogs are nice.

Facts: What Is Known

In Prolog, arelation between objects is called a predicate. In natural language, a
relation is symbolized by a sentence. In the predicate logic that Prolog uses, a
relation is summarized in a simple phrase — a fact — that consists of the relation
name followed by the object or objects (enclosed in parentheses). As with a
sentence, the fact ends with a period (.).

Here are some more facts expressing "likes' relations in natural language:

Bill likes G ndy.
Cndy likes Bill.
Bill likes dogs.

Here are the same facts, written in Prolog syntax:

Chapter 2, Prolog Fundamentals 19

l'ikes(bill, cindy).
l'i kes(cindy, bill).
likes(bill, dogs).

Facts can also express properties of objects as well as relations; in natural
language "Kermit is green" and "Caitlinisagirl." Here are some Prolog facts that
express these same properties:

green(kernmit).
girl(caitlin).

Rules: What You Can Infer from Given Facts

Rules enable you to infer facts from other facts. Another way to say thisisthat a
rule, as conclusions is a conclusion that is known to be true if one or more other
conclusions or facts are found to be true. Here are some rules concerning a
"likes' relation:

Cindy likes everything that Bill likes.

Caitlin likes everything that is green.

Given these rules, you can infer from the previous facts some of the things that
Cindy and Caitlin like:

Ci ndy |ikes C ndy.

Caitlin likes Kernit.
To encode these same rules into Prolog, you only need to change the syntax a
little, like this:

l'i kes(cindy, Sonething):- likes(bill, Something).

likes(caitlin, Sonething):- green(Sonething).
The: - symbol is simply pronounced "if", and serves to separate the two parts of
arule: the head and the body.
Y ou can aso think of arule as a procedure. In other words, these rules

i kes(cindy, Something):- likes(bill, Something)

l'ikes(caitlin, Something):- green(Somrething).

aso mean "To prove that Cindy likes something, prove that Bill likes that same
thing" and "To prove that Caitlin likes something, prove that it is green." In the
same side effects procedural way, arule can ask Prolog to perform actions other
than proving things — such as writing something or creating afile.

20 Visual Prolog Language Tutorial

Queries

Once we give Prolog a set of facts, we can proceed to ask questions concerning
these facts; this is known as querying the Prolog system. We can ask Prolog the
same type of questions that we would ask you about these relations. Based upon
the known facts and rules given earlier, you can answer questions about these
relations, just as Prolog can.

In natural language, we ask you:

Does Bill like C ndy?

In Prolog syntax, we ask Prolog:

likes(bill, cindy).

Given this query, Prolog would answer

yes
because Prolog has a fact that says so. As a little more complicated and general
guestion, we could ask you in natural language:

What does Bill |ike?

In Prolog syntax, we ask Prolog:

likes(bill, What).
Notice that Prolog syntax does not change when you ask a question: this query
looks very similar to a fact. However, it is important to notice that the second
object — What — begins with a capital letter, while the first object — bill — does

not. Thisis because bill is afixed, constant object —a known value — but What is
avariable. Variables always begin with an upper-case letter or an underscore.

Prolog always looks for an answer to a query by starting at the top of the facts. It
looks at each fact until it reaches the bottom, where there are no more. Given the
guery about what Bill likes, Prolog will return

What =ci ndy
What =dogs
2 Sol utions

Thisis because Prolog knows

likes(bill, cindy).

and

Chapter 2, Prolog Fundamentals 21

likes(bill, dogs).

We hope that you draw the same conclusion.
If we were to ask you (and Prolog):
What does Cindy |ike?

I'i kes(cindy, Wat).

Prolog would answer

What = bill
What = ci ndy
What = dogs

3 sol utions

Thisis because Prolog knows that Cindy likes Bill, and that Cindy likes what Bill
likes, and that Bill likes Cindy and dogs.

We could ask Prolog other questions that we might ask a person; however, a
question such as "What girl does Bill like?' will yield no solution because
Prolog, in this case, knows no facts about girls, and it can't draw any conclusions
based on material not known (supplied to it). In this example, we have not given
Prolog any relation or property to determine if any of the objects are girls.

Putting Facts, Rules, and Queries Together
1. Suppose you have the following facts and rules:

A fast car is fun.

A big car is nice.

Alittle car is practical.

Bill likes a car if the car is fun.

When you read these facts, you can deduce that Bill likes a fast car. In much
the same way, Prolog will come to the same conclusion. If no fact were given
about fast cars, then you would not be able to logically deduce what kind of a
car Bill likes. You could take a guess at what kind of a car might be fun, but
Prolog only knows what you tell it; Prolog does not guess.

2. Here's an example demonstrating how Prolog uses rules to answer queries.
Look at the facts and rules in this portion of Program cho2eo1. pro:

22 Visual Prolog Language Tutorial

likes(ellen, tennis).

likes(john, football).

likes(tom baseball).

likes(eric, sw nmmng).

likes(mark, tennis).

likes(bill, Activity):- likes(tom Activity).

Thelast linein Program cho2eo1. pro isarule:
likes(bill, Activity):- likes(tom Activity).

This rule corresponds to the natural language statement
Bill likes an activity if Tomlikes that activity.

In this rule, the head is1ikes(bill, Activity), and the body is1ikes(tom
Activity). Notice that there is no fact in this example about Bill liking
baseball. For Prolog to discover if Bill likes baseball, you can give the query

likes(bill, baseball).
When attempting to find a solution to this query, Prolog will usetherule:
likes(bill, Activity):- likes(tom Activity).

3. Load Program cho2eo1. pro into the Visua Prolog's Visua Development
Environment and run it with the Test Goal utility (see Testing Language
Tutorial Examples on page 12).

PREDI CATES
i kes(synbol , synbol)

CLAUSES
likes(ellen,tennis).
l'i kes(john,football).
li kes(tom basebal I').
likes(eric,sw nmng).
li kes(mark, tennis).

likes(bill,Activity):-
likes(tom Activity).

GOAL
likes(bill, baseball).

The Test Goal repliesin the application’'s window
yes
It has combined the rule

likes(bill, Activity):- likes(tom Activity).

Chapter 2, Prolog Fundamentals 23

with the fact
i kes(tom baseball).
to decide that
likes(bill, baseball).
Try aso this query:
likes(bill, tennis).
The Test Goal replies
no
Visual Prolog repliesno to the latest query ("Does Bill like tennis?') because:
» Thereisno fact that says Bill likes tennis.

* Bill's relationship with tennis can't be inferred using the given rule and the
available facts.

Of course, it may be that Bill absolutely adores tennisin real life, but Visual
Prolog's response is based only upon the facts and the rules you have given it
in the program.

Variables: General Sentences

In Prolog, variables enable you to write general facts and rules and ask general
questions. In natural language, you use variables in sentences al the time. A
typical general statement in English could be

Bill likes the sane thing as Kim

Aswe mentioned earlier in this chapter, to represent avariablein Prolog, the first
character of the name must be an upper-case letter or an underscore. For
example, in the following line, Thing isavariable.

likes(bill, Thing):- likes(kim Thing).

In the preceding discussion of rules, you saw thisline:

l'i kes(cindy, Sonething):- likes(bill, Something).

The object Something begins with a capital letter because it is avariable; it must
be able to match anything that Bill likes. It could equally well have been called X
or Zorro.

24 Visual Prolog Language Tutorial

The objects bill and cindy begin with lower-case letters because they are not
variables — instead, they are symbols, having a constant value. Visual Prolog can
also handle arbitrary text strings, much like we've been handling symbols above,
if the text is surrounded by double quotes. Hence, the token bi 11 could have been
written as-si I 1 ", if you wanted it to begin with an upper-case | etter.

Overview

1. A Prolog program is made up of two types of phrases (aso known as
clauses): facts and rules.

» Facts are relations or properties that you, the programmer, know to be
true.

* Rules are dependent relations; they allow Prolog to infer one piece of
information from another. A rule becomes true if a given set of conditions
is proven to be true. Each rule depends upon proving its conditions to be
true.

2. InProlog, al rules have two parts: a head and a body separated by the special
. - token.

* Thehead isthefact that would be true if some number of conditions were
true. Thisis aso known as the conclusion or the dependent relation.

» The body is the set of conditions that must be true so that Prolog can
prove that the head of the ruleistrue.

3. Asyou may have already guessed, facts and rules are really the same, except
that a fact has no explicit body. The fact smply behaves as if it had a body
that was always true.

4. Once you give Prolog a set of facts and/or rules, you can proceed to ask
guestions concerning these; this is known as querying the Prolog system.
Prolog always looks for a solution by starting at the top of the facts and/or
rules, and keeps looking until it reaches the bottom.

5. Prolog's inference engine takes the conditions of a rule (the body of the rule)
and looks through its list of known facts and rules, trying to satisfy the
conditions. Once al the conditions have been met, the dependent relation (the
head of therule) isfound to betrue. If all the conditions can't be matched with
known facts, the rule doesn't conclude anything.

Chapter 2, Prolog Fundamentals 25

Exercises

Write natural language sentences that represent what these Prolog facts might
convey to a human reader. (Remember that, to the computer, these facts are
simple pieces of information that can be used for matching answers to questions.)

1. likes(jeff, painting).

2. mal e(j ohn).

3. building("Enpire State Building", new york).

4. person(roslin, jeanie, "1429 East Sutter St.",
"Scotts Valley", "CA', 95066).

Write Visual Prolog facts that represent the following natural language

statements:

1. Heenlikes pizza.

2. San Francisco isin California

3. Amy'stelephone number is 476-0299.

4. Len'sfather is Alphonso Grenaldi.

From Natural Language to Prolog Programs

In the first section of this chapter we talked about facts and rules, relations,
genera sentences, and queries. Those words are al part of a discussion of logic
and natural language. Now we're going to discuss the same ideas, but we're going
to use more Prolog-ish words, like clauses, predicates, variables, and goals.

Clauses (Facts and Rules)

Basicaly, there are only two types of phrases that make up the Prolog language;
a phrase can be either a fact or a rule. These phrases are known in Prolog as
clauses. The heart of a Prolog program is made up of clauses.

More About Facts

A fact represents one single instance of either a property of an object or arelation
between objects. A fact is self-standing; Prolog doesn't need to look any further
for confirmation of the fact, and the fact can be used as a basis for inferences.

26 Visual Prolog Language Tutorial

More About Rules

In Prolog, asin ordinary life, it is often possible to find out that something is true
by inferring it from other facts. The Prolog construct that describes what you can
infer from other information isarule. A ruleis aproperty or relation known to be
true when some set of other relations is known. Syntactically, these relations are
separated by commas, aswe illustrate in example 1 below.

Examples of Rules

1. Thisfirst example shows arule that can be used to conclude whether a menu
item is suitable for Diane.

Diane is a vegetarian and eats only what her doctor tells her to eat.

Given a menu and the preceding rule, you can conclude if Diane can order a
particular item on the menu. To do this, you must check to see if the item on
the menu matches the constraints given.

a. Is Food_on_menu avegetable?
b. ISFood_on_nenu on the doctor'slist?
c. Conclusion: If both answers are yes, Diane can order Food_on_nenu.

In Prolog, a relationship like this must be represented by a rule because the
conclusion is based on facts. Here's one way of writing the rule;

di ane_can_eat (Food_on_nenu): -
veget abl e(Food_on_nenu),
on_doctor _I|ist(Food_on_nenu).

Notice here the comma after vegetabl e(Food_on _nenu). The comma
introduces a conjunction of several goals, and is simply read as "and"; both
veget abl e(Food_on_menu) and on_doctor i st (Food_on_nenu) must be true, for
di ane_can_eat (Food_on_menu) t0 betrue.

2. Suppose you want to make a Prolog fact that is true if Personl is the parent of
Person2. Thisis easy enough; simply state the Prolog fact

parent (paul , samant ha).

This shows that Paul is the parent of Samantha. But, suppose your Visual
Prolog fact database aready has facts stating father relationships. For
example, "Paul isthe father of Samantha':

f at her (paul , samant ha).

Chapter 2, Prolog Fundamentals 27

And you also have facts stating mother relationships; "Julie is the mother of
Samantha':

mot her (julie, samantha).

If you aready had a collection of facts stating these father/mother
relationships, it would be a waste of time to write parent facts into the fact
database for each parent relationship.

Since you know that Personl is the parent of Person2 if Personl is the father
of Person2 or if Personl isthe mother of Person2, then why not write arule
to convey these constraints? After stating these conditionsin natural language,
it should be fairly simple to code this into a Prolog rule by writing a rule that
states the relationships.

parent (Personl, Person2):- father(Personl, Person2).
par ent (Personl, Person2):- nother(Personl, Person2).

These Prolog rules simply state that

Personl is the parent of Person2 if Personl is the father of Person2.
Personl is the parent of Person2 if Personl is the nother of Person2.

. Herée's another example:

A person can buy a car if the person likes the car and the car is for
sal e.

This natural language relationship can be conveyed in Prolog with the
following rule:

can_buy(Nane, Model): -
per son(Nane),
car (Model),
i kes(Nane, Mbdel),
for_sal e(Model).

This rule shows the following relationship:

Nane can_buy Model if
Nane is a person and
Model is a car and
Nane |ikes Mdel and
Model is for sale.

This Prolog rule will succeed if all four conditions in the body of the rule
succeed.

Visual Prolog Language Tutorial

4. Hereisaprogram designed to find solutions to this car-buying problem (test it
asitisdescribed in Testing Language Tutorial Examples on page 12):

/* Program ch02e02. pro */

PREDI CATES
can_buy(synbol , synbol)
per son(synbol)
car (synbol)
i kes(synbol, synbol)
for_sal e(synbol)

CLAUSES
can_buy(X Y): -
person(X),

car(Y),
likes(XY),
for_sale(Y).

person(kel ly).
per son(j udy).
person(ellen).
per son(mar k) .

car (1 emon).
car (hot _rod).

likes(kelly, hot_rod).
l'ikes(judy, pizza).
likes(ellen, tennis).
li kes(mark, tennis).

for_sal e(pi zza).
for_sal e(l emon).
for_sal e(hot _rod).

What can Judy and Kelly buy? Who can buy the hot rod? You can try the
following goals:

can_buy(Wo, Wat).
can_buy(j udy, What).
can_buy(kel ly, What).
can_buy(Wo, hot _rod).

Experiment! Add other facts and maybe even a rule or two to this Prolog
program. Test the new program with queries that you make up. Does Prolog
respond in away you would expect it to?

Chapter 2, Prolog Fundamentals 29

Exercises

1. Write natural-language sentences corresponding to the following Visual
Prolog rules:

eat s(Who, Wat):- food(Wat), |ikes(Wo, What).

pass_cl ass(Wo): - di d_honewor k(W0), good_attendance(\Wo).
does_not _eat (toby, Stuff):- food(Stuff), greasy(Stuff).
owns(Who, What):- bought (Who, Wat).

2. Write Visua Prolog rules that convey the meaning of these natural-language
sentences:

a A personishungry if that person’'s stomach is empty.
b. Everybody likesajob if it'sfun and it payswell.

c. Saly likesfrench friesif they're cooked.
d

Everybody owns a car who buys one, paysfor it, and keeps it.

Predicates (Relations)

The symbolic name of arelation is called the predicate name. The objects that it
relates are called its arguments; in the fact 1i kes(biI'l, cindy), the relation likes
is the predicate and the objects bill and cindy are the arguments.

Here are some examples of Prolog predicates with zero or more arguments:

pred(integer, symbol)

person(last, first, gender)

run

i nsert _node

bi rt hday(firstName, |astNanme, date)

As we've shown here, a predicate might not have any arguments at all, but the
use of such a predicate is limited. You can use a query such as
per son(rosenont , Nane, nal e) to find out Mr. Rosemont's first name. But what can
you do with the zero-argument query run? Y ou can find out whether the clause
run isin the program, or —if run isthe head of arule, you can evaluate that rule.
This can be useful in a few cases — for instance, you might want to make a
program behave differently depending on whether the clause insert_node IS
present.

30 Visual Prolog Language Tutorial

Variables (General Clauses)

In a simple query, you can use variables to ask Prolog to find who likes tennis.
For example:

likes(X, tennis).
This query uses the letter X as avariable to indicate an unknown person. Variable
names in Visual Prolog must begin with a capital letter (or an underscore), after

which any number of letters (upper-case or lower-case), digits, or underline
characters () can be used. For example, the following are valid variable names:

My_first_correct_variabl e_nane
Sales_10_11_86
while the next three are invalid:

Istattenpt
second_at t enpt
"di saster"

(Careful choice of variable names makes programs more readable. For example,

li kes(Person, tennis).

is better than

likes(X, tennis).

because Person makes more sense than X.) Now try the goal

GOAL | i kes(Person, tennis).

Visual Prolog replies

Per son=el | en
Per son=nar k
2 Sol utions

because the goal can be solved in just two ways;, namely, by taking the variable
Person and successively matching it with the values ellen and mark.

In variable names, except for the first character (which must be an upper-case
letter or an underscore), Visual Prolog allows lower-case or upper-case lettersin
any position. One way to make variable names more readable is by using mixed
upper-case and lower-case letters, asin

I ncomeAndExpendi t ur eAccount

Chapter 2, Prolog Fundamentals 31

How Variables Get Their Values

You may have noticed that Prolog has no assignment statement; this is a
significant distinction between Prolog and other programming languages.
Variablesin Prolog get their values by being matched to constants in facts or
rules.

Until it gets avalue, avariable is said to be free; when it gets a value, it becomes
bound. But it only stays bound for the time needed to obtain one solution to the
query; then Prolog unbinds it, backs up, and looks for aternative solutions.

Thisis avery important point: You can't store information by giving a value to
a variable. Variables are used as part of the pattern-matching process, not as a
kind of information storage.

Take a look at the following example, which uses program cho2eo03.pro to
demonstrate how and when variables get their values.

/* Program ch02e03. pro */

PREDI CATES
I'i kes(synbol, synbol)

CLAUSES
li kes(ellen,reading).
I'i kes(john, conputers).
|'i kes(john, badm nton).
| i kes(| eonard, badm nton).
li kes(eric,sw nmmng).
li kes(eric,reading).

Consider this query: Is there a person who likes both reading and swimming?

|i kes(Person, reading), |ikes(Person, sw nm ng)

Prolog will solve the two parts of this query by searching the program's clauses
from top to bottom. In the first part of the query

|i kes(Person, reading)
the variable Person is free; its value is unknown before Prolog attempts to find a
solution. On the other hand, the second argument, reading, is known. Prolog

searches for a fact that matches the first part of the query. The first fact in the
program

i kes(ellen, reading)

32 Visual Prolog Language Tutorial

isamatch (reading in the fact matches reading in the query), so Prolog binds the
free variable Person to the value ellen, the relevant value in the fact. At the same
time, Prolog places a pointer in the list of facts indicating how far down the
search procedure has reached.

Next, in order for the query to be fully satisfied (find a person who likes both
reading and swimming), the second part must aso be fulfilled. Since Person is
now bound to ellen, Prolog must search for the fact

likes(ellen, sw nm ng)

Prolog searches for this fact from the beginning of the program, but no match
occurs (because there is no such fact in the program). The second part of the
guery is not true when Person is ellen.

Prolog now "unbinds' Person and attempts another solution of the first part of
the query with Person once again afree variable. The search for another fact that
fulfills the first part of the query starts from the pointer in the list of facts. (This
returning to the place last marked is known as backtracking, which well cover in
chapter 4.)

Prolog looks for the next person who likes reading and finds the fact 1i kes(eri c,
readi ng) . Person is now bound to eric, and Prolog tries once again to satisfy the
second part of the query, thistime by looking in the program for the fact

likes(eric, sw nmmng)

Thistime it finds a match (the last clause in the program), and the query is fully
satisfied. Prolog (the Test Goal) returns

Per son=eric
1 Sol ution

Anonymous Variables

Anonymous variables enable you to unclutter your programs. If you only need
certain information from a query, you can use anonymous variables to ignore the
values you don't need. In Prolog, the anonymous variable is represented by alone
underscore (*_").

The following parents example demonstrates how the anonymous variable is
used. Load Program cho2eo4. pro. into the TestGoal project (see page 13)

Chapter 2, Prolog Fundamentals 33

/* Program ch02e04. pro */

PREDI CATES
mal e(synbol)
femal e(synbol)
par ent (synbol , synbol)

CLAUSES
mal e(bill).
mal e(j oe).

femal e(sue).
femal e(tammy).

parent (bill,joe).
par ent (sue, j oe) .
parent (j oe, tamy) .

The anonymous variable can be used in place of any other variable. The
difference is that the anonymous variable will never get set to avalue.

For example, in the following query, you need to know which people are parents,
but you don't need to know who their children are. Prolog realizes that each time
you use the underscore symbol in the query, you don't need information about
what value is represented in that variable's place.

GOAL
parent (Parent, _).
Given this query, Prolog (the Test Goal) replies

Par ent =bi | |
Par ent =sue
Par ent =j oe
3 Sol utions

In this case, because of the anonymous variable, Prolog finds and reports three
parents, but it does not report the values associated with the second argument in
the parent clause.

Anonymous variables can also be used in facts. The following Prolog facts

owns(_, shoes).
eats(_).

could be used to express the natural language statements

34 Visual Prolog Language Tutorial

Everyone owns shoes.
Everyone eats.

The anonymous variable matches anything. A named variable would work
equally well in most cases, but its name would serve no useful purpose.

Goals (Queries)

Up to now, we've been mixing the word query when talking about the questions
you ask Prolog, with the more common name goal, which we'll use from now on.
Referring to queries as goals should make sense: when you query Prolog, you are
actually giving it a goa to accomplish ("Find an answer to this question, if one
exigts: ...").

Goals can be simple, such as these two:

likes(ellen, sw nmmng).

likes(bill, What).
or they can be more complex. In the "Variables' section of this chapter, you saw
agoa made up of two parts:

|i kes(Person, reading), |ikes(Person, sw ming).
A goal made up of two or more parts is known as a compound goal, and each
part of the compound goal is called a subgoal.

Often you need to know the intersection of two goals. For instance, in the
previous parents example, you might also need to know which persons are male
parents. Y ou can get Prolog to search for the solutions to such a query by setting
a compound goal. Load the Program chozeo4. pro (See page 13) and enter the
following compound goal:

Goal parent(Person, _), male(Person).

Prolog will first try to solve the subgoal

parent (Person, _)

by searching the clauses for a match, then binding the variable Person to a value
returned by parent (Person is a parent). The value that parent returns will then
provide the second subgoa with the value on which to search (Is Person — now
bound —amale?).

mal e(Per son)

Chapter 2, Prolog Fundamentals 35

If you entered the goal correctly, Prolog (the Test Goal) will answer

Per son=hi |
Per son=j oe
2 Sol utions

Compound Goals: Conjunctions and Digjunctions

As you have seen, you can use a compound goal to find a solution where both
subgoal A and subgoa B are true (a conjunction), by separating the subgoals
with a comma, but thisis not all. You can also find a solution where subgoal A
or subgoa B istrue (adigunction), by separating the subgoals with a semicolon.
Here's an example program illustrating this idea:

/* Program ch02e05. pro */

pr edi cat es
car (symbol , | ong, i nt eger, synbol , | ong)
truck(synbol, | ong, i nt eger, synbol , | ong)
vehi cl e(synbol , | ong, i nt eger, synbol , | ong)

cl auses
car (chrysler, 130000, 3, red, 12000) .
car (ford, 90000, 4, gray, 25000) .
car (dat sun, 8000, 1, r ed, 30000) .

truck(ford, 80000, 6, bl ue, 8000) .
t ruck(dat sun, 50000, 5, or ange, 20000) .
truck(toyota, 25000, 2, bl ack, 25000) .

vehi cl e(Make, Cdonet er, Age, Col or, Price): -
car (Make, Cdonet er, Age, Col or, Pri ce)

truck(Make, Cdonet er, Age, Col or, Price).

Load this program into the TestGoal project (see page 13). Add the goal:

goal
car (Make, Cdoneter, Years_on_road, Body, 25000).

This goal attempts to find a car described in the clauses that costs exactly
$25,000. Prolog (the Test Goal) replies

Make=f ord, Odomneter=90000, Years_on_road=4, Body=gray
1 Sol ution

But this goal is dlightly unnatural, since you'd probably rather ask a question like:

36 Visual Prolog Language Tutorial

Is there a car listed that costs | ess than $25, 000?

You can get Visual Prolog to search for a solution by setting this compound goal:
car (Make, Cdoneter, Years_on_road, Body, Cost), / *subgoal A and*/
Cost < 25000. / *subgoal B */

Thisis known as a conjunction. To fulfill this compound goal, Prolog will try to

solve the subgoalsin order. First, it will try to solve

car (Make, Cdoneter, Years_on_road, Body, Cost).

and then

Cost < 25000.
with the variable Cost referring to the same value in both subgoals. Try it out
now with the Test Goal (see page 13).

Note: The subgoal cost < 25000 involves the relation less than, which is built
into the Visual Prolog system. The less than relation is no different from any
other relation involving two numeric objects, but it is more natural to place the
symbol for it between the two objects.

Now we will try to seeif the following, expressed in natural language, istrue:
Is there a car listed that costs | ess than $25,000?, or is there a
truck listed that costs |ess than $20, 000?

Prolog will search for asolution if you set this compound goal:

car (Make, Cdonet er, Year s_on_r oad, Body, Cost), Cost<25000
; |* subgoal A or */
truck(Make, Cdonet er, Years_on_r oad, Body, Cost), Cost < 20000.
/* subgoal B */

This kind of compound goal is known as a digjunction. This one sets up the two
subgoals as aternatives, much as though they were two clauses for the samerule.
Prolog will then find any solution that satisfies either of the subgoals.

To fulfill this compound goal, Prolog will try to solve the first subgoal ("find a
car..."), which is composed of these subgoals:

car (Make, Cdoneter, Years_on_road, Body, Cost.)

and

Cost < 25000.

Chapter 2, Prolog Fundamentals 37

If acar isfound, the goal will succeed; if not, Prolog will try to fulfill the second
compound goal ("find atruck..."), made up of the subgoals

truck(Make, COdoneter, Years_on_road, Body, Cost),

and

Cost < 20000.

Comments

It's good programming style to include comments in your program to explain
things that might not be obvious to someone else (or to you in six months). This
makes the program easy for you and others to understand. If you choose
appropriate names for variables, predicates, and domains, you'll need fewer
comments, since the program will be more self-explanatory.

Multiple-line comments must begin with the characters /* (slash, asterisk) and
end with the characters */ (asterisk, slash). To set off single-line comments, you
can use these same characters, or you can begin the comment with a percent sign
(%).

/* This is an exanple of a comrent */

% This is al so a comment
/***************************************/

/* and so are these three lines */

/***************************************/

/*You can also nest a Visual Prolog comrent /*within a commrent*/ |ike
this */

In Visual Prolog you can also use a comment after each subdomain in
declarations of domains:

domai ns
articles = book(STRING title, STRING author); horse(STRI NG nang)

and in declarations of predicates:

predi cat es
conv(STRI NG upper case, STRI NG | ower case)

The words tit! e, aut hor, nane, uppercase and 1 ower case Will be ignored by the
compiler, but makes the program much more readable.

38 Visual Prolog Language Tutorial

What Isa Match?

In the previous sections of this chapter, we've talked about Prolog "matching
answers to questions’, "finding a match”, "matching conditions with facts’,
"matching variables with constants’, and so on. In this section we explain what
we mean when we use the term "match.”

There are several ways Prolog can match one thing to another. Obvioudly,
identical structures match each other;

parent (j oe, tamry) matches parent (joe,tammy).
However, a match usually involves one or more free variables. For example,
with X free,

parent (j oe, X) matches parent (j oe, t ammy)

and X takes on (is bound to) the value tammy.

If Xis already bound, it acts exactly like a constant. Thus, if X is bound to the
value tammy, then

parent (j oe, X) matches parent (j oe, tammy) but

parent (j oe, X) would not match parent (joe, nillie)

The second instance doesn't match because, once a variable becomes bound, its
value can't change.

How could a variable, bindings already be bound when Prolog tries to match it
with something? Remember that variables don't store values — they only stay
bound for the length of time needed to find (or try to find) one solution to one
goal. So the only way a variable could be bound before trying a match is that the
goal involves more than one step, and the variable became bound in a previous
step. For example,

parent (j oe, X), parent (X, jenny)
is a legitimate goal; it means, "Find someone who is a child of Joe and a parent
of Jenny." Here X will aready be bound when the subgoal parent (X, jenny) is
reached. If there is no solution to parent (X, j enny), Prolog will unbind X and go

back and try to find another solution to parent(joe, x), then see if
par ent (X, j enny) Will work with the new value of X.

Two free variables can even match each other. For example,

par ent (j oe, X) matches parent (j oe, Y)

Chapter 2, Prolog Fundamentals 39

binding the variables X and Y to each other. Aslong as the binding lasts, X and Y
are treated as asingle variable, and if one of them gets a value, the other one will
immediately have the same value. When free variables are bound to each other
like this, they're called pointers, shared free sharing variables. Some really
powerful programming techniques involve binding together variables that were
originally separate.

In Prolog, variable bindings (values) are passed in two ways. in and out. The
direction in which a value is passed is referred to as its flow pattern. When a
variable is passed into a clause, it is an input argument, signified by (i); when
passed out of aclause, avariable is an output argument, signified by (o).

Summary

These are the ideas we've introduced in this chapter:

1. A Prolog program is made up of clauses, which conceptually are two types
of phrases: facts and rules.

* Facts are relations or properties that you, the programmer, know to be
true.

* Rules are dependent relations; they allow Prolog to infer one piece of
information from another.

2. Facts have the genera form:
property(objectl, object2, ..., objectN)
or
rel ation(objectl, object2, ..., objectN)

where a property is a property of the objects and a relation is a relation
between the objects. As far as Prolog programming goes, the distinction
doesn't exist and we will refer to both as relationsin this book.

3. Each fact given in a program consists of either a relation that affects one or
more objects or a property of one or more objects. For example, in the Prolog
fact

i kes(tom baseball).

the relation is likes, and the objects are tom and baseball; Tom likes baseball.
Also, in thefact

| ef t _handed(benj ani n)

40 Visual Prolog Language Tutorial

the property is Ieft_handed and the object is benjamin; in other words,
Benjamin is left-handed.

4. Ruleshavethe general form Head: - Body, which looks like thisin a program:

rel ati on(object, object, ..., object): -
rel ation(object,..., obj ect),
rel ation(object,..., obj ect).

5. You are free to choose names for the relations and objects in your programs,
subject to the following constraints:

* Object names must begin with a lower-case letter, followed by any
number of characters; characters are upper-case or lower-case letters,
digits, and underscores.

» Properties and relation names must start with alower-case |etter, followed
by any combination of |etters, digits, and underscore characters.

6. A predicate isthe symbolic name (identifier) for arelation and a sequence of
arguments. A Prolog program is a sequence of clauses and directives, and a
procedure is a sequence of clauses defining a predicate. Clauses that belong to
the same predicate must follow one another.

7. Variables enable you to write general facts and rules and ask general
guestions.

» Variable names in Visua Prolog must begin with a capital letter or an
underscore character (), after which you can use any number of letters
(upper-case or lower-case), digits, or underscores.

* Variablesin Prolog get their values by being matched to constantsin facts
or rules. Until it gets a value, a variable is said to be free; when it gets a
value, it becomes bound.

* You can't store information globaly by binding a value to a variable,
because avariable is only bound within a clause.

8. If you only need certain information from a query, you can use anonymous
variables to ignore the values you don't need. In Prolog, the anonymous
variable is represented by alone underscore ().

The anonymous variable can be used in place of any other variable; it matches
anything. The anonymous variable will never get set to avalue.

9. Asking Prolog questions about the facts in your program is known as
guerying the Prolog system; the query is commonly called agoal. Prolog tries

Chapter 2, Prolog Fundamentals 41

to satisfy a goal (answer the query) by starting at the top of the facts, looking
at each fact until it reaches the bottom.

10.A compound goal is a goal made up of two or more parts; each part of the
compound goal is called a subgoal. Compound goals can be conjunctions
(subgoal A and subgoal B) or disjunctions (subgoal A or subgoal B).

11.Comments make your programs easier to read; you can enclose a comment
with delimiters /* Iike this */ or precede a single-line comment with a
percent sign, % 1 i ke this.

12.There are several ways Prolog can match one thing to another:
* ldentical structures match each other.

* A free variable matches a constant or a previously-bound variable (and
becomes bound to that value).

e Two freevariables can match (and be bound to) each other. Aslong as the
binding lasts, they are treated as a single variable; if one gets a value, the
other will immediately have the same value.

42 Visual Prolog Language Tutorial

CHAPTER 3

Visual Prolog Programs

The syntax of Visual Prolog is designed to express knowledge about properties
and relationships. You've already seen the basics of how thisis done; in Chapter
2 you learned about clauses (facts and rules), predicates, variables, and goals.

Unlike other versions of Prolog, Visual Prolog is a typed Prolog compiler; you
declare the types of the objects that each predicate applies to. The type
declarations allow Visua Prolog programs to be compiled right down to native
machine code, giving execution speeds similar to those of compiled C and
pascal.

We discuss the four basic sections of a Visua Prolog program — where you
declare and define the predicates and arguments, define rules, and specify the
program's goal — in the first part of this chapter. In the second part of this chapter
we take a closer look at declarations and rule syntax. Then, at the end of this
chapter, we briefly introduce the other sections of a Visual Prolog program,
including the facts, constants, and various global sections, and compiler
directives.

Visual Prolog's Basic Program Sections

Generally, a Visua Prolog program includes four basic program sections. These
are the clauses section, the predicates section, the domains section, and the goal
section.

» Theclauses section isthe heart of aVisual Prolog program; thisiswhere you
put the facts and rules that Visual Prolog will operate on when trying to
satisfy the program's goal.

» The predicates section is where you declare your predicates and the domains
(types) of the arguments to your predicates. (You don't need to declare
Visual Prolog's built-in predicates.)

* The domains section is where you declare any domains you're using that
aren't Visua Prolog's standard domains. (Y ou don't need to declare standard
domains.)

Chapter 3, Visual Prolog Programs 43

* The goal section is where you put the starting goal for a Visual Prolog
program.

The Clauses Section

The clauses section is where you put al the facts and rules that make up your
program. Most of the discussion in Chapter 2 was centered around the clauses
(facts and rules) in your programs; what they convey, how to write them, and so
on.

If you understand what facts and rules are and how to write them in Prolog, you
know what goes in the clauses section. Clauses for a given predicate must be
placed together in the clauses section; a sequence of clauses defining a predicate
iscalled aprocedure.

When attempting to satisfy a goal, Visual Prolog will start at the top of the
clauses section, looking at each fact and rule as it searches for a match. As
Visual Prolog proceeds down through the clauses section, it places internal
pointers next to each clause that matches the current subgoal. If that clause is not
part of a logical path that leads to a solution, Visual Prolog returns to the set
pointer and looks for another match (this is backtracking, which we mentioned in
Chapter 2).

The Predicates Section

If you define your own predicate in the clauses section of a Visua Prolog
program, you must declare it in a predicates section, or Visual Prolog won't
know what you're talking about. When you declare a predicate, you tell Visual
Prolog which domains the arguments of that predicate belong to.

Visual Prolog comes with a wealth of built-in predicates. You don't need to
declare any of Visual Prolog's built-in predicates that you use in your program.
The Visual Prolog on-line help gives afull explanation of the built-in predicates.

Facts and rules define predicates. The predicates section of the program simply
lists each predicate, showing the types (domains) of its arguments. Although the
clauses section is the heart of your program, Visual Prolog gets much of its
efficiency from the fact that you also declare the types of objects (arguments)
that your facts and rules refer to.

44 Visual Prolog Language Tutorial

How to Declare User -Defined Predicates

A predicate declaration begins with the predicate name, followed by an open
(left) parenthesis. After the predicate name and the open parenthesis come zero
or more arguments to the predicate.

predi cat eNane(ar gunent _typel, argument_type2, ..., argunent_typeN)

Each argument type is followed by a comma, and the last argument type is
followed by the closing (right) parenthesis. Note that, unlike the clauses in the
clauses section of your program, a predicate declaration is not followed by a
period. The argument types are either standard domains or domains that you've
declared in the domains section.

Predicate Names

The name of a predicate must begin with a letter, followed by a sequence of
letters, digits, and underscores. The case of the letters does not matter, but we
strongly recommend using only a lower-case letter as the first letter in the
predicate name. (Other versions of Prolog don't allow predicate names to begin
with upper-case letters or underscores, and future versions of Visua Prolog
might not, either.) Predicate names can be up to 250 characters long.

You can't use spaces, the minus sign, asterisks, slashes, or other non-
alphanumeric characters in predicate names. Valid naming characters in Visual
Prolog consist of the following:

>
N

Upper-case Letters
Lower-case Letters
Digits

Underscore character

op

All predicate names and arguments can consist of combinations of these
characters, aslong as you obey the rules for forming both predicate and argument
names.

Below are afew examples of legal and illegal predicate names.

L egal Predicate Names Illegal Predicate Names
fact [fact]

is a *is a*

has a has/a

patternCheckL ist pattern-Check-List

Chapter 3, Visual Prolog Programs 45

choose Menu_Item

choose Menu lItem

predicateName

predicate<Name>

first_in_10

>first_in 10

Predicate Arguments

The arguments to the predicates must belong to known Visual Prolog domains. A
domain can be a standard domain, or it can be one you declare in the domains

section.

Examples

1. If you declare a predicate ny_pr edi cat e(symbol , integer) in the predicates

section, like this:

PREDI CATES

ny_pr edi cat e(synbol ,

you don't need to declare its arguments domains in a domains section,
because symbol and integer are standard domains. But if you declare a
predicate my_pr edi cat e(nane, nunber) inthe predicates section, like this:

PREDI CATES

ny_pr edi cat e(nane,

you will need to declare suitable domains for name and number. Assuming
you want these to be symbol and integer respectively, the domain declaration

looks like this:

DOVAI NS
nane = synbol

nunber = integer

PREDI CATES

ny_pr edi cat e(nane,

2. This program excerpt shows some more predicate and domain declarations:

DOVAI NS

person, activity = synbol
car, make, color = synbol
nm | eage, years_on_road,

46

i nt eger

Visual Prolog Language Tutorial

PREDI CATES
i kes(person, activity)
par ent (person, person)
can_buy(person, car)
car (nmake, nileage, years_on_road, color, cost)
green(synbol)
ranki ng(synbol , integer)

This excerpt specifies the following information about these predicates and
their arguments:

 The predicate likes takes two arguments (person and activity), both of which
belong to unique symbol domains (which means that their values are
names rather than numbers).

» The predicate parent takes two person arguments, where person is a symbol
type.

 The predicate can_buy takes two arguments, person and car, which are aso
both symbol types.

e The predicate car takes five arguments: make and color are of unique
symbol domains, while mileage, years on road, and cost are of unique
integer domains.

» The predicate green takes one argument, a symbol: there is no need to
declare the argument's type, because it's of the standard domain symbol.

* The predicate ranking takes two arguments, both of which belong to
standard domains (symbol and integer), so there is no need to declare the
argument types.

Chapter 5, "Simple and Compound Objects," gives more detail about domain
declarations.

The Domains Section

In traditional Prolog there is only one type - the term. We have the same in
Visual Prolog, but we are declaring what the domains of the arguments to the
predicates actualy are.

Domains enable you to give digtinctive names to different kinds of data that
would otherwise look alike. In aVisual Prolog program, objectsin arelation (the
arguments to a predicate) belong to domains; these can be pre-defined domains,
or special domains that you specify.

Chapter 3, Visual Prolog Programs 47

The domains section serves two very useful purposes. First, you can give
meaningful names to domains even if, internaly, they are the same as domains
that already exist. Second, special domain declarations are used to declare data
structures that are not defined by the standard domains.

It is sometimes useful to declare a domain when you want to clarify portions of
the predicates section. Declaring your own domains helps document the
predicates that you define by giving a useful name to the argument type.

Examples

1. Here's an example to illustrate how declaring domains helps to document
your predicates:

Frank is a nale who is 45 years ol d.

With the pre-defined domains, you come up with the following predicate
declaration:

person(synbol, synbol, integer)

This declaration will work fine for most purposes. But suppose you want to
maintain your code months after you've finished writing it. The preceding
predicate declaration won't mean much to you in six months. Instead, the
following declarations will help you understand what the arguments in the
predicate declaration stand for:

DOVAI NS
nane, sex = synbol
age = i nteger
PREDI CATES

person(nane, sex, age)

One of the main advantages of this declarations, is that Visual Prolog can
catch type errors, like the following obvious mistake:

sane_sex(X, Y) :-
person(X, Sex, _),
person(Sex, Y, _).

Even though name and sex are both defined as symbol, they are not
equivaent to each other. This enables Visual Prolog to detect an error if you
accidentally swap them. This feature is very useful when your programs get
large and compl ex.

Y ou might be wondering why we don't use special domains for all argument
declarations, since special domains communicate the meaning of the

48 Visual Prolog Language Tutorial

argument so much better. The answer is that once an argument is typed to a
specific domain, that domain can't be mixed with another domain you have
declared, even if the domains are the same! So, even though name and sex are
of the same domain (symbol), they can't be mixed. However, all user-defined
domains can be matched with the pre-defined domains.

2. This next example program will yield a type error when run (see Testing
L anguage Tutorial Examples on page 12):

/* Program ch03e01. pro */
DOVAI NS
product, sum = i nt eger

PREDI CATES
add_em up(sum sum sun
mul ti ply_en(product, product, product)

CLAUSES
add_em up(X, Y, Sum: -
SUmeEX+Y.

mul tiply_en(X Y, Product): -
Product =X*Y.
This program does two things: It adds and it multiplies. Add the goal
add_em up(32, 54, Sum.
Visual Prolog (the Test Goal) will come up with

Sunm=86
1 Sol ution

which isthe sum of the two integers you supplied the program.

On the other hand, this program will also multiply two arguments with the
multiply_em predicate. Now experiment with this program. If you need to
figure out what the product of 31 and 13 is, you could enter the goal:

mul tiply_en(31, 13, Product).
Visual Prolog (the Test Goal) would then respond with the correct answer.

Pr oduct =403
1 Sol ution

But suppose you need the sum of 42 and 17; the goal for thiswould be

add_em up(42, 17, Sum.

Chapter 3, Visual Prolog Programs 49

Now you need to double the product of 31 and 17, so you write the following
goal:

mul tiply_em(31, 17, Sum), add_emup(Sum Sum Answer).
Y ou might expect Visual Prolog (the Test Goal) to return

Sum=527, Answer =1054
1 Sol ution

But, instead, you get atype error. What happened is that you tried to pass the
resulting value of multiply_em (that is, of domain product), into the first and
second arguments in add_em_up, which have domains of sum. Thisyields a
type error because product is a different domain than sum. Even though both
domains arereally of type integer, they are different domains, and are treated
as such.

So, if avariable is used in more than one predicate within a clause, it must be
declared the same in each predicate. Be sure that you fully understand the
concept behind the type error given here; knowing the concept will avoid
frustrating compiler error messages. Later in this chapter we will describe the
different automatic and explicit type-conversions Visual Prolog offers.

. To further understand how you can use domain declarations to catch type
errors, consider the following program example:

/* Program ch03e02. pro */

DOVAI NS
brand, col or = synbo
age = byte
price, mleage = ulong

PREDI CATES
car (brand, m | eage, age, col or, pri ce)

CLAUSES
car (chrysler, 130000, 3, red, 12000) .
car (ford, 90000, 4, gray, 25000) .
car (dat sun, 8000, 1, bl ack, 30000) .

Here, the car predicate declared in the predicates section takes five
arguments. One belongs to the age domain, which is of byte type. On the 'x86
family of CPUs, a byteis an 8-bit unsigned integer, which can take on values
between 0 and 255, both inclusive. Similarly, the domains mileage and price
are of type ulong, which is a 32-bit unsigned integer, and the domains brand
and color are of type symbol.

Visual Prolog Language Tutorial

WEe'l discuss the built-in domains in greater detail in a moment. For now,
load this program into the TestGoal project (see page 13) and try each of the
following goalsin turn:

car(renault, 13, 40000, red, 12000).
car(ford, 90000, gray, 4, 25000).
car(1l, red, 30000, 80000, datsun).

Each goal produces a domain error. In the first case, for example, it's because
age must be a byte. Hence, Visual Prolog can easily detect if someone typing
in this goal has reversed the mileage and age objects in predicate car. In the
second case, age and color have been swapped, and in the third case you get
to find out for yourself where the mixups are.

The Goal Section

Essentially, the goal section is the same as the body of arule: it'sssmply alist of
subgoals. There are two differences between the goal section and arule:

1. Thegoal keywordis not followed by :-.
2. Visua Prolog automatically executes the goal when the program runs.

It's as if Visual Prolog makes a call to goal, and the program runs, trying to
satisfy the body of the goal rule. If the subgoals in the goal section all succeed,
then the program terminates successfully. If, while the program is running, a
subgoal in the goal section fails, then the program is said to have failed.
(Although, from an external point of view, there isn't necessarily any difference;
the program simply terminates.)

A Closer Look at Declarations and Rules

Visual Prolog has several built-in standard domains. You can use standard
domains when declaring the types of a predicate's arguments. Standard domains
are aready known to Visual Prolog and should not be defined in the domains
section.

Well first look at all the integral ones, shownin Table 3.1.

Table 3.1:Integral Standard Domains

Domain Description and implementation

Chapter 3, Visual Prolog Programs 51

short

ushort

long

ulong

integer

unsigned

byte

word

dword

A snal |, signed, quantity.

Al platforns 16 bits,2s conp -32768 .. 32767
A snal |, unsigned, quantity.
Al platforns 16 bits 0 .. 65535

A large signed quantity

Al platforms 32 bits,2s conp -2147483648 ..
2147483647

A large, unsigned quantity

Al platforms 32 bits 0 .. 4294967295

A signed quantity, having the natural size for
machi ne/ pl atformarchitecture in question.

the

16bit platforns 16 bits,2s conp -32768 .. 32767

32bit platforms 32 bits, 2s conp -2147483648 ..
2147483647

An unsigned quantity, having the natural size for the
machi ne/ pl atform architecture in question.

16bit platforns 16 bits 0 .. 65535

32bit platforms 32 bits 0 .. 4294967295
Al platforns 3 8 bits 0 .. 255

Al platforns 16 bits 0 .. 65535

Al platforms 32 bits 0 .. 4294967295

Syntactically, a value belonging in one of the integral domains is written as a
sequence of digits, optionally preceded by a minus-sign for the signed domains,
with no white-space. There are also octal and hexadecimal syntaxes for the
integral domains; these will beillustrated in chapter 9.

52

Visual Prolog Language Tutorial

The byte, word, and dword domains are most useful when dealing with machine-
related quantities, except perhaps for the byte; an 8-bit integral quantity can
prove quite relevant, as we have aready seen. For genera use, the integer and
unsigned quantities are the ones to use, augmented by the short and long (and
their unsigned counterparts) for dightly more specialized applications. Generally,
the most efficient code results from using what's natural for the machine; a short
isnot as efficient on a'386 platform as along, and along is hot as efficient on a
'286 platform as a short, hence the different implementations of integer and
unsigned.

In domain declarations, the signed and unsigned keywords may be used in
conjunction with the byte, word, and dword built-in domains to construct new
integral domains, asin

DOVAI NS
i8 = signed byte
creating a new integral domain having arange of -128 to +127.

The other basic domains are shown in table 3.2. Visual Prolog recognizes several
other standard domains, but we cover them in other chapters, after you have a
good grasp of the basics.

Table 3.3; Basic Sandard Domains

Domain | Description and implementation

char A character, implenented as an unsigned byte.
Syntactically, it is witten as a character surrounded
by single quotation marks: 'a'.

Chapter 3, Visual Prolog Programs 53

real A floating-point nunber, inplenented as 8 bytes in
accordance with |EEE conventions; equivalent to Cs
double. Syntactically, a real is witten wth an
optional sign (+ or -) followed by sone digits DDDDDDD,
then an optional decimal point (.) followed by nore
digits DDDDDDD, and an optional exponential part (e(+
or -)DDD):

<+| -> DDDDD <. > DDDDDDD <e <+|-> DDD>
Exanpl es of real nunbers:

42705 9999 86.72

9111. 929437521e238 79. 83e+21
Here 79.83e+21 nmeans 79.83 x 10721, just as in
ot her | anguages.

The permitted number range is 1) 10-307 to 1)
10308 (1e-307 to 1e+308). Values from the integral
domai ns are automatically converted to real nunbers
when necessary.
string A sequnce of characters, i_npl emented as a pointer to a zero-
term nated byte array, as in C. Two fornmats are pernmtted for
strings:
1. a sequence of letters, nunbers and underscores,
provided the first character is |ower-case; or
2. a character sequence surrounded by a pair of
doubl e quotation nmarks.
Exanpl es of strings:

t el ephone_nunber "railway ticket" "Dorid Inc"
Strings that you wite in the program can be up to 255
characters long. Strings that the Visual Prolog system
reads froma file or builds up internally can be up to 64K
characters long on 16-bit platforns, and (theoretically)
up to 4G long on 32-bit platforns.

symbol A sequence of characters, inplemented as a pointer to an

entry in a hashed synbol-table, containing strings. The
syntax is the sane as for strings.

Symbols and strings are largely interchangeable as far as your program is
concerned, but Visua Prolog stores them differently. Symbols are kept in alook-
up table, and their addresses, rather than the symbols themselves, are stored to
represent your objects. This means that symbols can be matched very quickly,

Visual Prolog Language Tutorial

and if a symbol occurs repeatedly in a program, it can be stored very compactly.
Strings are not kept in a look-up table; Visual Prolog examines them character-
by-character whenever they are to be matched. You must determine which
domain will give better performance in a particular program.

The following table gives some examples of simple objects that belong to the
basic standard domains.

Table 3.4: Smple Objects

"&&', caitlin, "animal lover", b |_t (symbol or string)
-1, 3, 5, 0 (integer)

3.45, 0.01, -30.5, 123.4e+5 (real)

rat, ‘b, ‘et I, & (char)

Typing Argumentsin Predicate Declarations

Declaring the domain of an argument in the predicates section is called typing
the argument. For example, suppose you have the following relationship and
objects:

Frank is a male who is 45 years old

The Prolog fact that corresponds to this natural language relation might be
person(frank, male, 45)
In order to declare person as a predicate with these three arguments, you could
place the following declaration in the predicates section:
person(synbol, synbol, unsigned)
Here, you have used standard domains for all three arguments. Now, whenever
you use the predicate person, you must supply three arguments to the predicate;

the first two must be of type symbol, while the third argument must be an
integer.

If your program only uses standard domains, it does not need a domains section;
you have seen several programs of thistype already.

Or, suppose you want to define a predicate that will tell you the position of a
letter in the alphabet. That is,

al phabet _position(Letter, Position)

Chapter 3, Visual Prolog Programs 55

will have Position = 1 if Letter = a, Position = 2 if Letter = b, and so on. The
clauses for this predicate would look like this:

al phabet _position(A _character, N)
If standard domains are the only domains in the predicate declarations, the
program does not need a domains section. Suppose you want to define a

predicate so that the goal will be true if A _character is the N-th letter in the
aphabet. The clauses for this predicate would look like this:

al phabet _position('a', 1).
al phabet _position('b', 2).
al phabet _position('c', 3).

al phabet _position('z', 26).

Y ou can declare the predicate as follows:
PREDI CATES
al phabet _position(char, unsigned)
and there is no need for a domains section. If you put the whole program
together, you get

PREDI CATES
al phabet _positi on(char, integer)

CLAUSES
al phabet _position('a', 1).
al phabet _position('b', 2).
al phabet _position('c', 3).
/* ... other letters go here ... */
al phabet _position('z', 26).
Here are afew sample goals you could enter:
al phabet _position('a', 1).
al phabet _position(X, 3).

al phabet _position('z', Wat).

Exercises

1. Program cho3eo4. pro isacomplete Visua Prolog program that functions as a
mini telephone directory. The domains section is not needed here, since only
standard domains are used.

56 Visual Prolog Language Tutorial

/* Program ch03e04. pro */
PREDI CATES
phone_nunber (synbol , synbol)

CLAUSES
phone_nunber (" Al bert", "EZY- 3665") .
phone_nunber ("Betty", "555-5233").
phone_nunber (" Carol ", "909- 1010") .
phone_nunber (" Dor ot hy", "438- 8400") .

goal

Add each of these goals in turn to the code of the program chozeo4. pro, then
try them with the Test Goal:

a. phone_nunber ("Carol ", Nunber).

b. phone_nunber (Wo, "438-8400").

Cc. phone_nunber ("Al bert", Nunber).

d. phone_nunber (Wio, Nunber).

Now update the clauses. Suppose that Kim shares a condominium with

Dorothy and so has the same phone number. Add this fact to the clauses
section and try the goal

phone_nunber (Who, "438-8400").
Y ou should get two solutions to this query:

Who=Dor ot hy
Who=Ki m
2 Sol utions

2. To illustrate the char domain, program cho3zeos. pro defines idetter, which,
when given the goals

isletter('%).
isletter('Q).

will return No and Y es, respectively.
/* Program ch03e05. pro */

PREDI CATES
isletter(char)

Chapter 3, Visual Prolog Programs 57

CLAUSES
/* \When applied to characters, '<=' nmeans */
/* "al phabetically precedes or is the same as" */

isletter(Ch):-
‘a' <= Ch,
Ch <="'z".
isletter(Ch):-
'"A <= Ch,
Ch <="'2Z.

Load Program cho3eos. pro into the TestGoal project (see page 13) and try
each of these goalsin turn:

a. isletter('x").

b. isletter('2").

C. isletter("hello").

d. isletter(a).

e. isletter(X).

Goals (c) and (d) will result in atype error message, and (€) will return arree

variabl e message, because you can't test whether an unidentified object
follows a or precedes z.

Multiple Arity

The arity of a predicate is the number of arguments that it takes. You can have
two predicates with the same name but different arity. Y ou must group different
arity versions of a given predicate name together in both the predicates and
clauses sections of your program; apart from this restriction, the different arities
are treated as completely different predicates.

/* Program ch03e06. pro */

DOVAI NS

person = synbol

PREDI CATES

f at her (person) % This person is a father
f at her (person, person) % One person is the father of the other person

Visual Prolog Language Tutorial

CLAUSES
fat her(Man): -
father(Mn,).
f at her (adam seth).
f at her (abraham i saac).

Rule Syntax

Rules are used in Prolog when afact depends upon the success (truth) of another
fact or group of facts. As we explained in Chapter 2, a Prolog rule has two parts:
the head and the body. Thisisthe generic syntax for aVisual Prolog rule:

HEAD : - <Subgoal >, <Subgoal >, ..., <Subgoal >.

The body of the rule consists of one or more subgoals. Subgoals are separated by
commas, specifying conjunction, and the last subgoal in aruleisterminated by a
period.

Each subgoal is a call to another Prolog predicate, which may succeed or fail. In
effect, calling another predicate amounts to evaluating its subgoals, and,
depending on their success or failure, the call will succeed or fail. If the current
subgoal can be satisfied (proven true), the call returns, and processing continues
on to the next subgoal. Once the final subgoal in arule succeeds, the call returns
successfully; if any of the subgoalsfail, the rule immediately fails.

To use arule successfully, Prolog must satisfy all of the subgoalsinit, creating a
consistent set of variable bindings as it does so. If one subgoal fails, Prolog will
back up and look for aternatives to earlier subgoals, then proceed forward again
with different variable values. This is called backtracking. A full discussion of
backtracking and how Prolog finds solutions is covered in Chapter 4.

Prolog if Symbol vs. I F in Other Languages

As we have mentioned earlier, the :- separating the head and the body of arule,
isread "if". However, a Prolog if differs from the | F written in other languages,
such as Pascal .

In Pascal, for instance, the condition contained in the | F statement must be met
before the body of the statement can be executed; in other words,

"if HEAD istrue, then BODY istrue (or: then do BODY)"

This type of statement is known as an if/then conditional. Prolog, on the other
hand, uses a different form of logic in its rules. The head of a Prolog rule is
concluded to be true if (after) the body of the rule succeeds; in other words,

Chapter 3, Visual Prolog Programs 59

"HEAD istrueif BODY istrue (or: if BODY can be done)"

Seen in this manner, a Prolog ruleisin the form of athen/if conditional.

Automatic Type Conversions

When Visual Prolog matches two variables, it's not always necessary that they
belong to the same domain. Also, variables can sometimes be bound to constants
from other domains. This (selective) mixing is allowed because Visua Prolog
performs automatic type conversion (from one domain to another) in the
following circumstances:

e Between strings and symbols.

* Between al the integra domains and also real. When a character is
converted to a numeric value, the number is the ASCIlI vaue for that
character.

An argument from adomain my_dom declared in thisform
DOVAI NS

ny_dom = <base donai n> /| *<base dommin> is a standard donmin */

can mix freely with arguments from that base domain and al other standard
domains that are compatible with that base domain. (If the base domain is string,
arguments from the symbol domain are compatible; if the base domain isinteger,
arguments from the real, char, word, etc., domains are compatible.

These type conversions mean, for example, that you can

e cal apredicate that handles strings with asymbol argument, and vice versa
» cal apredicate that handles reals with an integer argument

o cal apredicate that handles characters with integer values

e use characters in expressions and comparisons without needing to look up
their ASCII values.

There are a number of rules deciding what domain the result of the expression
belongs to, when different domains are mixed. These will be detailed in chapter
9.

Other Program Sections

Now that you're reasonably familiar with the clauses, predicates, domains, and
goal sections of a Visual Prolog program, well tell you a little bit about some

60 Visual Prolog Language Tutorial

other commonly-used program sections: the facts section, the constants section,
and the various global sections. Thisisjust an introduction; as you work through
the rest of the tutorials in this book, you'll learn more about these sections and
how to use them in your programs.

The Facts Section

A Visual Prolog program is a collection of facts and rules. Sometimes, while the
program is running, you might want to update (change, remove, or add) some of
the facts the program operates on. In such a case, the facts constitute a dynamic
or internal database of facts; it can change while the program is running. Visual
Prolog includes a special section for declaring the facts in the program that are to
be a part of the dynamic (or changing) database of facts; thisisthe facts section.

The keyword facts declares the facts section. It is here that you declare the facts
to be included in the dynamic facts section. Visual Prolog includes a number of
built-in predicates that allow easy use of the dynamic facts section. The keyword
factsis synonymous with the obsol ete keyword database.

Chapter 8 provides a complete discussion of the facts section and the predicates
used along with it.

The Constants Section

You can declare and use symbolic constants in your Visual Prolog programs. A
constant declaration section is indicated by the keyword constants, followed by
the declarations themselves, using the following syntax:

<ld> = <Macro definition>
<ld> is the name of your symbolic constant, and <macro defi nition> iS what
you're assigning to that constant. Each <macro definition> is terminated by a

newline character, so there can only be one constant declaration per line.
Constants declared in thisway can then be referred to later in the program.

Consider the following program fragment:

Chapter 3, Visual Prolog Programs 61

CONSTANTS

zero = 0

one =1

two = 2

hundred = (10*(10-1)+10)
pi = 3.141592653

ega =3

slash_fill = 4

red =4

Before compiling your program, Visual Prolog will replace each constant with
the actual string to which it corresponds. For instance:

A = hundred*34, delay(A),
setfillstyle(slash_fill, red),
Circunf = pi*D am

will be handled by the compiler in exactly the same way as

A = (10*(10-1)+10)*34, delay(A),
setfillstyle(4, 4),
Circunf = 3.141592653*Di am

There are afew restrictions on the use of symbolic constants:
* Thedefinition of a constant can't refer to itself. For example:

ny_nunber = 2*nmy_nunber/2 /* |Is not allowed */

will generate the error message Recursion in constant definition.

« The system does not distinguish between upper-case and lower-case in a
constants declaration. Consequently, when a constants identifier is used in
the clauses section of a program, the first letter must be lower-case to avoid
confusing constants with variables. So, for example, the following is avalid
construction:

CONSTANTS
Two = 2

GOAL
A=two, wite(A).

62 Visual Prolog Language Tutorial

* There can be severa constants declaration sections in a program, but
constants must be declared before they are used.

» Declared constants are effective from their point of declaration to the end of
the source file, and in any files included after the declaration. Constant
identifiers can only be declared once. Multiple declarations of the same
identifier will result in the error message: This constant is already defined.

The Global Sections

Visual Prolog allows you to declare some domains, predicates, and clauses in
your program to be global (rather than local); you do this by setting aside
separate global domains, global predicates, and global facts sections at the top
of your program. These global sections are discussed in the chapter 17.

The Compiler Directives

Visual Prolog provides several compiler directives you can add to your program
to tell the compiler to treat your code in specified ways when compiling. Y ou can
also set most of the compiler directives from the Options | Project | Compiler
Options menu item in the Visua Prolog system. Compiler directives are
covered in detail in the chapter 17, but you'll want to know how to use a couple
of them before you get to that chapter, so we introduce the basic ones here.

Theinclude Directive

Asyou get more familiar with using Visual Prolog, you'll probably find that you
use certain procedures over and over again in your programs. You can use the
include directive to save yourself from having to type those procedures in again
and again.

Here's an example of how you could useit:

1. You create a file (such as MYSTUFF.PRO) in which you declare your
frequently used predicates (using domains and predicates sections) and give
the procedures defining those predicates in a clauses section.

2. You write the source text for the program that will make use of these
procedures.

3. At anatural boundary in your source text, you place the line

include "mystuff.pro”

Chapter 3, Visual Prolog Programs 63

(A natural boundary is anywhere in your program that you can place a
domains, facts, predicates, clauses, or goal section.)

4. When you compile your source text, Visua Prolog will compile the contents
of MY STUFF.PRO right into the final compiled product of your source text.

Y ou can use the include directive to include practically any often-used text into
your source text, and one included file can in turn include another (but a given
file can only be included once in your program). The include directive can appear
at any natural boundary in your source text. However, you must observe the
restrictions on program structure when you include afile into your source text.

Summary

These are the ideas we've introduced in this chapter:
1. A Visua Prolog program has the following basic structure:

DOVAI NS
[* ...
donmi n decl arations
.ox

PREDI CATES
[* ...
predi cate decl arations
.o
CLAUSES
[* ...
clauses (rules and facts)
.o
GOAL
[* ...
subgoal _1,
subgoal _2,
etc. */

2. The clauses section is where you put the facts and rules that Visual Prolog
will operate on when trying to satisfy the program's goal .

3. The predicates section is where you declare your predicates and the domains
(types) of the arguments to your predicates. Predicate names must begin with
a letter (preferably lower-case), followed by a sequence of letters, digits, and

64 Visual Prolog Language Tutorial

underscores, up to 250 characters long. You can't use spaces, the minus sign,
asterisks, or dashes in predicate names. Predicate declarations are of the form

PREDI CATES
pr edi cat eNane(ar gunent Typel, argunent Type2, ..., argunent TypeN)

argumentTypel,..., argumentTypeN are either standard domains or domains
that you've declared in the domains section. Declaring the domain of an
argument and defining the argument’s type are the same things.

4. The domains section is where you declare any nonstandard domains you're
using for the arguments to your predicates. Domains in Prolog are like types
in other languages. Visual Prolog's basic standard domains are char, byte,
short, ushort, word, integer, unsigned, long, ulong, dword, real, string, and
symbol; the more specialized standard domains are covered in other chapters.
The basic domain declarations are of the form

DOVAI NS
ar gument Typel, ..., ar gurent TypeN = <st andar dDonmi n>

Compound domain declarations are of the form:

argunent Type_1, ..., ar gunent Type_N = <conpoundDomai n_1>;
<conpoundDonmai n_2>;
< ...o>

<conpoundDonmai n_M>;

Compound domains haven't been covered in this chapter; you'll see them in
Chapter 5.

5. The goal section is where you put your program's goal (in PDC Prolog we
also used here term internal goal); this alows the program to be compiled,
built and run as standalone executable independent of the Visual
Development Environment. In standalone executables, Visual Prolog only
searches for the first solution for the program goal, and the values to which
goal variables are bound are not displayed.

Some Prolog environments (for instance, the old PDC Prolog environment)
support, so called external goals (as counterpart to term internal goal). When
the PDC Prolog environment runs a program that does not contain an internal
goal, then the environment displays the special dialog in which you can enter
an external goal at run time. With an external goal, Prolog searches for all
goal solutions, and displays the values to which goal variables are bound.
Visual Prolog's Visual Development Environment does not support external
goals. However, for simple programs (like most examples in this Language
Tutorial) you can use the specia Visual Development Environment's utility

Chapter 3, Visual Prolog Programs 65

66

Test Goal. The Test Goal searches for all solutions for the goal, and displays
the values to which the goal variables are bound.

The arity of a predicate is the number of arguments that it takes; two
predicates can have the same name but different arity. You must group a
predicate's different arity versions together in both the predicates and clauses
sections, but different arities are treated as completely different predicates.

Rules are of the form
HEAD : - <Subgoal 1>, <Subgoal 2>, ..., <Subgoal N>.

For a rule to succeed, Prolog must satisfy all of its subgoals, creating a
consistent set of variable bindings. If one subgoal fails, Prolog backs up and
looks for alternatives to earlier subgoals, then proceeds forward with different
variable values. Thisis called backtracking.

The :- ("if") in Prolog should not be confused with the IF used in other
languages; a Prolog rule is in the form of a then/if conditional, while IF
statements in other languages are in the form of an if/then conditional.

Visual Prolog Language Tutorial

CHAPTER 4

Unification and Backtracking

This chapter isdivided into four main parts. In the first part, we examine in detail
the process Visual Prolog uses when trying to match a call (from a subgoal) with
a clause (in the clauses section of the program). This search process includes a
procedure known as unification, which attempts to match up the data-structures
embodied in the call with those found in a given clause. In Prolog, unification
implements several of the procedures you might know from other, more
traditional languages — procedures such as parameter passing, case selection,
structure building, structure access, and assignment.

In the second part, we show you how Visual Prolog searches for solutions to a
goal (through backtracking) and how to control a search. This includes
techniques that make it possible for a program to carry out a task that would
otherwise be impossible, either because the search would take too long (which is
less likely with Visua Prolog than with other Prologs) or because the system
would run out of free memory.

In the third part of this chapter, we introduce a predicate you can use to
encourage backtracking, and go into more detail about how you can control
backtracking. We aso introduce a predicate you can use to verify that a certain
constraint in your program is (or is not) met.

To shed more light on the subject, in the fourth part of this chapter we review the
more important tutorial material (presented so far) from a procedural perspective.
We show how you can understand the basic aspects of Prolog, a declarative
language, by also looking at them as procedures.

Matching Things Up: Unification

Consider Program cho4eo01. pro in terms of how the Test Goal utility (see page
12) will search for al solutions for the goal

witten_by(X V).

When Visua Prolog tries to fulfill the goal written_by(X, Y), it must test each
written_by clause in the program for a match. In the attempt to match the

Chapter 4, Unification and Backtracking 67

arguments X and Y with the arguments found in each written_by clause, Visual
Prolog will search from the top of the program to the bottom. When it finds a
clause that matches the goal, it binds values to free variables so that the goal and
the clause are identical; the goal is said to unify with the clause. This matching
operation is called unification.

/* Program ch04e01. pro */

DOVAI NS
title,author = synbol
pages = unsi gned
PREDI CATES

book(title, pages)
witten_by(author, title)
| ong_novel (title)

CLAUSES
witten_by(flemng, "DR NO').
witten_by(relville, "MOBY D CK").

book(" MOBY DI CK", 250).
book("DR NO', 310).

| ong_novel (Title):-
witten_by(_, Title),
book(Title, Length),
Length > 300.

Since X and Y are free variables in the goal, and a free variable can be unified
with any other argument (even another free variable), the call (goal) can be
unified with the first written_by clause in the program, as shown here:

witten_by(X Y).

I I
witten_by(flem ng, "DR NO').

Visual Prolog makes a match, X becomes bound to fiening, and Y becomes
bound to "DR NO." At this point, Visua Prolog displays

X=fl em ng, Y=DR NO

Since the Test Goal (see page 12) looks for all solutions for the specified goal,
the goal is aso unified with the second written_by clause

witten_by(melville,"MOBY DI CK").

and the Test Goal executable displays the second solution:

68 Visual Prolog Language Tutorial

X=nelville, Y=MOBY DI CK
2 Sol utions

If, on the other hand, you give the program the goal

witten_by(X “MOBY DICK').

Visual Prolog will attempt a match with the first clause for written_by:

witten_by(X ,"MOBY DI CK").

I I
witten_by(flening, "DR NO').

Since "MOBY DICK" and "DR NO" do not match, the attempt at unification fails.
Visual Prolog then tries the next fact in the program:

witten_by(rmelville, "MOBY D CK").

This does unify, and X becomes bound to nel vi I I e.
Consider how Visual Prolog executes the following:

I ong_novel (X).

When Visual Prolog tries to fulfill a goal, it investigates whether or not the call
can match afact or the head of arule. In this case, the match iswith

I ong_novel (Title)

Visual Prolog looks at the clause for long_novel, trying to complete the match by
unifying the arguments. Since X is not bound in the goal, the free variable X can
be unified with any other argument. Title is also unbound in the head of the
long_novel clause. The goal matches the head of the rule and unification is made.
Visual Prolog will subsequently attempt to satisfy the subgoals to the rule.

I ong_novel (Title): -
witten_by(_, Title),
book(Title, Length),
Lengt h>300.

In attempting to satisfy the body of the rule, Visua Prolog will call the first
subgoal in the body of the rule, written_by(_, Title). Notice that, since who
authored the book is immaterial, the anonymous variable () appears in the
position of the author argument. The call witten_by(_, Title) becomes the
current subgoal, and Prolog searches for a solution to this call.

Chapter 4, Unification and Backtracking 69

Prolog searches for a match with this subgoal from the top of the program to the
bottom. In doing so, it achieves unification with the first fact for written_by as
follows:

witten_by(_, Title),

I I
witten_by(flening, "DR NO').

The variable Title becomes bound to "DR NO" and the next subgoal, book(Tit! e,
Lengt h), is called with this binding.

Visual Prolog now begins its next search, trying to find a match with the cal to
book. Since Title is bound to "DR NO", the actual call resembles book("DR NoO',

Lengt h) . Again, the search starts from the top of the program. Notice that the first
attempt to match with the clause book("M®BY DI ck', 250) will fail, and Visual
Prolog will go on to the second clause of book in search of a match. Here, the
book title matches the subgoal and Visual Prolog binds the variable Length with
the value 310.

Thethird clause in the body of long_novel now becomes the current subgoal:

Length > 300.

Visual Prolog makes the comparison and succeeds; 310 is greater than 300. At
this point, all the subgoals in the body of the rule have succeeded and therefore
the call 1ong_novel (X) succeeds. Since the X in the call was unified with the
variable Title in the rule, the value to which Title is bound when the rule
succeeds is returned to the call and unified with the variable X. Title hasthe value
"DR NO" when the rule succeeds, so Visua Prolog will output:

X=DR NO
1 Sol ution

In the following chapters, we will show several advanced examples of
unification. However, there are still afew basics that need to be introduced first,
such as complex structures. In the next section of this chapter, we'll discuss how
Prolog searches for its solutions.

Backtracking

Often, when solving real problems, you must pursue a path to its logical
conclusion. If this conclusion does not give the answer you were looking for, you
must choose an alternate path. For instance, you might have played maze games
when you were a child. One sure way to find the end of the maze was to turn left

70 Visual Prolog Language Tutorial

at every fork in the maze until you hit a dead end. At that point you would back
up to the last fork, and try the right-hand path, once again turning left at each
branch encountered. By methodically trying each aternate path, you would
eventually find the right path and win the game.

Visual Prolog uses this same backing-up-and-trying-again method, called
backtracking, to find a solution to a given problem. As Visual Prolog begins to
look for a solution to a problem (or goal), it might have to decide between two
possible cases. It sets a marker at the branching spot (known as a backtracking
point) and selects the first subgoal to pursue. If that subgoal fails (equivalent to
reaching a dead end), Visual Prolog will backtrack to the backtracking point and
try an alternate subgoal .

Here isasimple example (use the TestGoal see page 13 to run this example):
/* Program ch04e02. pro */

PREDI CATES
i kes(synbol , synbol)
tast es(synbol , synbol)
f ood(synbol)

CLAUSES
likes(bill,X):-
food(X),
tast es(X, good).

tast es(pi zza, good) .
tast es(brussel s_sprouts, bad).

f ood(brussel s_sprouts).

f ood(pi zza) .

This small program is made up of two sets of facts and one rule. The rule,
represented by the relationship likes, smply states that Bill likes good-tasting
food.

To see how backtracking works, give the program the following goal to solve:

likes(bill, What).

When Prolog begins an attempt to satisfy a goal, it starts at the top
of the program in search of a match.

In this case, it will begin the search for a solution by looking from the top for a
match to the subgoal 1i kes(bill, what).

Chapter 4, Unification and Backtracking 71

It finds a match with the first clause in the program, and the variable What is
unified with the variable X. Matching with the head of the rule causes Visua
Prolog to attempt to satisfy that rule. In doing so, it moves on to the body of the
rule, and calls the first subgoal located there: f ood(X) .

When a new call is made, a search for a match to that call also
begins at the top of the program.

In the search to satisfy the first subgoal, Visual Prolog starts at the top,
attempting a match with each fact or head of a rule encountered as processing
goes down into the program.

It finds a match with the call at the first fact representing the food relationship.
Here, the variable X is bound to the value brussels sprouts. Since there is more
than one possible answer to the call food(x), Visual Prolog sets a backtracking
point next to the fact food(brussel s_sprouts). This backtracking point keeps

track of where Prolog will start searching for the next possible match for
food(X).

When a call has found a successful match, the call is said to
succeed, and the next subgoal in turn may be tried.

With X bound to brussels_sprouts, the next call madeis

tastes(brussel s_sprouts, good)

and Visual Prolog begins a search to attempt to satisfy this call, again starting
from the top of the program. Since no clause is found to match, the call fails and
Visual Prolog kicks in its automatic backtracking mechanism. When
backtracking begins, Prolog retreats to the last backtracking point set. In this
case, Prolog returnsto the fact f ood(br ussel s_sprouts).

Once a variable has been bound in a clause, the only way to free
that binding is through backtracking.

When Prolog retreats to a backtracking point, it frees al the variables set after
that point, and sets out to find another solution to the original call.

The call was food(X), S0 the binding of brussels_sprouts for X is released.
Prolog now tries to resolve this call, beginning from the place where it left off. It
finds a match with the fact f ood(pi zza)] and returns, this time with the variable X
bound to the value pizza.

72 Visual Prolog Language Tutorial

Prolog now moves on to the next subgoal in the rule, with the new variable
binding. A new call is made, tast es(pi zza, good)], and the search begins at the
top of the program. Thistime, amatch isfound and the goal returns successfully.

Since the variable What in the goal is unified with the variable X in the likes rule,
and the variable X is bound to the value pizza, the variable What is now bound to
the value pizza and Visual Prolog reports the solution

What =pi zza
1 Sol ution

Visual Prolog's Relentless Search for Solutions

As we've described earlier, with the aid of backtracking, Visua Prolog will not
only find the first solution to a problem, but is actually capable of finding all
possible solutions.

Consider Program cho4e03. pr o, which contains facts about the names and ages of
some playersin aracquet club.

/* Program ch04e03. pro */

DOVAI NS
child = synbol
age = i nteger
PREDI CATES

pl ayer (child, age)

CLAUSES
pl ayer (peter,9).
pl ayer (paul , 10).
pl ayer (chris, 9).
pl ayer (susan, 9).

You'll use Visual Prolog to arrange a ping-pong tournament between the nine-
year-olds in a racquet club. There will be two games for each pair of club
players. Your aim isto find all possible pairs of club players who are nine years
old. This can be achieved with the compound goal:

goal
pl ayer (Personl, 9),
pl ayer (Person2, 9),
Personl <> Person2.

In natural language: Find Personl (age 9) and Person2 (age 9) so that Personlis
different from Person2.

Chapter 4, Unification and Backtracking 73

. Visual Prolog will try to find a solution to the first subgoal pi ayer (Personi,

9) and continue to the next subgoal only after the first subgoal is reached. The
first subgoal is satisfied by matching Personl with peter. Now Visual Prolog
can attempt to satisfy the next subgoal:

pl ayer (Person2, 9)

by also matching Person2 with peter. Now Prolog comes to the third and final
subgoal

Personl <> Person2

. Since Personl and Person2 are both bound to peter, this subgoal fails.
Because of this, Visua Prolog backtracks to the previous subgoal, and
searches for another solution to the second subgoal :

pl ayer (Person2, 9)
This subgoal isfulfilled by matching Person2 with chris.
. Now, the third subgoal:

Personl <> Person2

can succeed, since peter and chris are different. Here, the entire goal is
satisfied by creating a tournament between the two players, chris and peter.

. However, since Visual Prolog must find all possible solutions to a goal, it
backtracks to the previous goal — hoping to succeed again. Since

pl ayer (Person2, 9)

can also be satisfied by taking Person2 to be susan, Visua Prolog tries the
third subgoal once again. It succeeds (since peter and susan are different), so
another solution to the entire goa has been found.

. Searching for more solutions, Visual Prolog once again backtracks to the
second subgoal, but al possibilities for this subgoal have been exhausted.
Because of this, backtracking now continues back to the first subgoal. This
can be satisfied again by matching Personl with chris. The second subgoal
now succeeds by matching Person2 with peter, so the third subgoal is
satisfied, again fulfilling the entire goal. Here, another tournament has been
scheduled, this time between chris and peter.

. Searching for yet another solution to the goal, Visual Prolog backtracks to the
second subgoal in the rule. Here, Person2 is matched to chris and again the
third subgoal is tried with these bindings. The third subgoa fails, since
Personl and Person2 are equal, so backtracking regresses to the second
subgoal in search of another solution. Person2 is now matched with susan,

Visual Prolog Language Tutorial

and the third subgoal succeeds, providing another tournament for the racket
club (chrisvs. susan).

7. Once again, searching for all solutions, Prolog backtracks to the second
subgoal, but this time without success. When the second subgoa fails,
backtracking goes back to the first subgoal, this time finding a match for
Personl with susan. In an attempt to fulfill the second subgoal, Prolog
matches Person2 with peter, and subsequently the third subgoal succeedswith
these bindings. A fifth tournament has been scheduled for the players.

8. Backtracking again goes to the second subgoal, where Person2 is matched
with chris. A sixth solution is found for the racquet club, producing a full set
of tournaments.

9. The final solution tried is with both Personl and Person2 bound to susan.
Since this causes the final subgoal to fail, Visual Prolog must backtrack to the
second subgoal, but there are no new possibilities. Visual Prolog then
backtracksto the first subgoal, but the possibilities for Personl have also been
exhausted. No more solutions can be found for the goal, so the program
terminates.

Type in this compound goal for the program:

pl ayer (Personl, 9),
pl ayer (Person2, 9),
Personl <> Person2.

Verify that Visua Prolog (see how to use the Test Goal utility on page 13)
responds with

Per sonl=pet er, Person2=chris

Per sonl=peter, Person2=susan

Per sonl=chri s,
Per sonl=chri s,
Per sonl=susan,
Per sonl=susan,

Per son2=pet er
Per son2=susan
Per son2=pet er
Per son2=chri s

6 Sol utions

Notice how backtracking might cause Visual Prolog to come up with redundant
solutions. In this example, Visual Prolog does not distinguish that person1 =
peter IS the same thing as person2 = peter. We will show you later in this
chapter how to control the search Visual Prolog generates.

Chapter 4, Unification and Backtracking 75

Exercisein Backtracking

Using Program cho4eo4. pro, decide what Visual Prolog will reply to the
following goal:

pl ayer (Personl, 9), player(Person2, 10).

Check your answer by typing in the exercise and the given goal when you run the
program.

A Detailed L ook at Backtracking

With this simple example under your belt, you can take a more detailed look at
how Visua Prolog's backtracking mechanism works. Start by looking at Program
ch04e04. pro in light of the following goal, which consists of two subgoals:

likes(X, wine) , likes(X books)

When evaluating the goal, Visua Prolog notes which subgoals have been
satisfied and which have not. This search can be represented by a goal tree:

AN

l'ikes (X, wine) likes (X, books)

Before the goa evaluation begins, the goal tree consists of two unsatisfied
subgoals. In the following goal tree diagrams, a subgoal satisfied in the goal tree
is marked with an underline, and the corresponding clause is shown beneath that
subgoal .

/* Program ch04e04. pro */

domai ns
nane, t hi ng = synbo

predi cat es
I'i kes(nane, thing)
reads(nanme)
i s_inquisitive(nane)

76 Visual Prolog Language Tutorial

cl auses

i kes(j ohn, wi ne).

i kes(l ance, skiing).

i kes(l ance, books).

likes(lance, filns).

i kes(Z, books): -
reads(2),
is_inquisitive(Z).

reads(j ohn).
is_inquisitive(john).

goal
likes(X, wine), likes(X, books).

The Four Basic Principles of Backtracking

In this example, the goal tree shows that two subgoals must be satisfied. To do
s0, Visual Prolog follows the first basic principle of backtracking:

Subgoals must be satisfied in order, from top to bottom.

Visual Prolog determines which subgoal it will use when trying to satisfy the
clause according to the second basic principle of backtracking:

Predicate clauses are tested in the order they appear in the program,
from top to bottom.

When executing Program cho4eo4. pro, Visual Prolog finds a matching clause
with the first fact defining the likes predicate. Take alook at the goal tree now.

N\

likes (X, wi ne) likes (X, books)

i kes (john, wne)

The subgoal 1ikes(Xx, wine) matches the fact Iikes(john, wine) and binds X to
the value john. Visual Prolog tries to satisfy the next subgoal to the right.

Chapter 4, Unification and Backtracking 77

The call to the second subgoal begins a completely new search with the binding
X = john. Thefirst clause

I'i kes(john, wine)

does not match the subgoal

I'i kes(X, books)

since wine is not the same as books. Visual Prolog must therefore try the next
clause, but lance does not match the value X (because, in this case, X is bound to
john), so the search continues to the third clause defining the predicate likes:

l'ikes(Z, books):- reads(Z), is_inquisitive(Zz).

The argument Zisavariable, so it is able to match with X. The second arguments
agree, so the call matches the head of the rule. When X matches Z, the arguments
are unified. With the arguments unified, Visual Prolog will equate the value X
has (which is john) with the variable Z. Because of this, now the variable Z aso
has the value john.

The subgoal now matches the left side (head) of a rule. Continued searching is
determined by the third basic principle of backtracking:

When a subgoal matches the head of a rule, the body of that rule
must be satisfied next. The body of the rule then constitutes a new
set of subgoals to be satisfied.

Thisyields the following goal tree:

N\

likes (X, w ne) l'i kes (X, books)
likes (john, w ne) likes (Z, books)
reads (2) is_inquisitive (2)

The goal tree now includes the subgoals

78 Visual Prolog Language Tutorial

reads(Z) and is_inquisitive(2)

where Z is bound to the value john. Visual Prolog will now search for facts that
match both subgoals. Thisisthe resulting final goal tree:

N\

l'ikes (X, wine) likes (X, books)
l'ikes (john, w ne) likes (Z, books)
reads (2) is_inquisitive (2)
reads (john) i s_inquisitive (john)

According to the fourth basic principle of backtracking:

A goal has been satisfied when a matching fact is found for each of
the extremities (leaves) of the goal tree.

So now theinitial goal is satisfied.

Visual Prolog uses the result of the search procedure in different ways,
depending on how the search was initiated. If the goal isacall from a subgoal in
the body of arule, Visua Prolog attempts to satisfy the next subgoal in the rule
after the call has returned. If the goal is a query from the user, Visual Prolog (see
page 13 how to use the Test Goal utility) replies directly:

X=j ohn
1 Sol ution

As you saw in Program cho4e04. pro, having once satisfied the goal, Visual
Prolog's Test Goal utility backtracks to find all alternate solutions. It also
backtracks if a subgoal fails, hoping to re-satisfy a previous subgoal in such a
way that the failed subgoal is satisfied by other clauses.

To fulfill a subgoal, Visual Prolog begins a search with the first clause that
defines the predicate. One of two things can then happen:

Chapter 4, Unification and Backtracking 79

1 It finds a matching clause, in which case the following occurs:

a. If thereis another clause that can possibly re-satisfy the subgoal, Visual
Prolog places a pointer (to indicate a backtracking point) next to the
matching clause.

b. All free variables in the subgoal that match values in the clause are
bound to the corresponding values.

c. If the matching clause is the head of a rule, that rule's body is then
evaluated; the body's subgoals must succeed for the call to succeed.

2. It can't find a matching clause, so the goal fails. Visual Prolog backtracks as it
attempts to re-satisfy a previous subgoa. When processing reaches the last
backtracking point, Visual Prolog frees all variables that had been assigned
new values since the backtracking point was set, then attempts to re-satisfy
the original call.

Visual Prolog begins a search from the top of the program. When it backtracksto
acall, the new search begins from the last backtracking point set. If the search is
unsuccessful, it backtracks again. If backtracking exhausts all clauses for all
subgoals, the goal fails.

Backtracking in Standalone Executables

Here is another, dlightly more complex, example, illustrating how in Visual
Prolog backtracking works to find the goal solution, when the program is
compiled and run as a standalone executable (see Testing Examples as
Standalone Executables on page 14).

/* Program ch04e05. pro */

predi cat es
type(synbol, synbol)
is_a(synbol, synbol)
l'ives(synbol, synbol)
can_sw m(synbol)

cl auses
type(ungul ate, ani nal).
type(fish,aninal).

i s_a(zebra,ungul ate).
is_a(herring,fish).
i s_a(shark, fish)

80 Visual Prolog Language Tutorial

lives(zebra, on_l and).
lives(frog,on_land).
lives(frog,in_water).
lives(shark,in_water).

can_swimY): -
type(X ani mal),
is_a(y, X,
lives(Y,in_water).

goal
can_sw m(Wat),
wite("A",Wat," can swmn"),
readchar (_).

When the program is compiled and runs as a standal one executable (for example,
using the menu command Project | Run), Visual Prolog will automatically begin
executing the goal, attempting to satisfy al the subgoalsin the goal section.

1. Visua Prolog calls the can_swim predicate with a free variable What. In
trying to solve this call, Visual Prolog searches the program looking for a
match. It finds a match with the clause defining can_swim, and the variable
What is unified with the variable Y.

2. Next, Visual Prolog attempts to satisfy the body of the rule. In doing so,
Visual Prolog calls the first subgoal in the body of the rule, type(x, animal),
and searches for a match to this call. It finds a match with the first fact
defining the type relationship.

3. At this point, X is bound to ungulate. Since there is more than one possible
solution, Visual Prolog sets a backtracking point at the fact t ype(ungul ate,
ani mal) .

4. With X bound to ungulate, Visual Prolog makes a cal to the second subgoal
intherule (is_a(Y, ungulate)), and again searches for a match. It finds one
with the first fact, i s_a(zebra, ungul ate). Y isbound to zebra and Prolog sets
abacktracking point at i s_a(zebra, ungul ate).

5. Now, with X bound to ungulate and Y bound to zebra, Prolog tries to satisfy
the last subgoal, 1ives(zebra, in_water). Prolog tries each lives clause, but
thereisnolives(zebra, in_water) clausein the program, so the call fails and
Prolog begins to backtrack in search of another solution.

6. When Visual Prolog backtracks, processing returns to the last point where a
backtracking point was placed. In this case, the last backtracking point was
placed at the second subgoal in therule, onthefact i s_a(zebra, ungul ate).

Chapter 4, Unification and Backtracking 81

7. When Visual Prolog reaches a backtracking point, it frees the variables that
were assigned new values after the last backtracking point and attempts to
find another solution to the call it made at that time. In this case, the call was
is_a(Y, ungulate).

8. Visua Prolog continues down into the clauses in search of another clause that
will match with this one, starting from the point where it previously left off.
Since there are no other clauses in the program that can match this one, the
call fails and Visua Prolog backtracks again in an attempt to solve the
original goal.

9. From this position, the last backtracking point was set at type(ungul ate,
ani mal).

10.Visual Prolog frees the variables set in the original call and tries to find
another solution to the call type(x, animl). The search begins after the
backtracking point. Visual Prolog finds a match with the next type fact in the
program (type(fish, animal)); X is bound to fish, and a new backtracking
point is set at that fact.

11.Visual Prolog now moves down to the next subgoal in the rule; since thisisa
new call, the search begins at the top of the program withis_a(y, fish).

12.Visua Prolog finds a match to this call and Y is bound to herring.

13.Since Y is now bound to herring, the next subgoal called is1ives(herring,
in_water). Again, thisisanew cal, and the search begins from the top of the
program.

14.Visual Prolog tries each lives fact, but fails to find a match and the subgoal
fails.

15.Visual Prolog now returns to the last backtracking point, is_a(herring,
fish).

16.The variables that were bound by this matching are now freed. Starting at the
point where it last left off, Visual Prolog now searches for a new solution to
thecal is_a(y, fish).

17.Visua Prolog finds a match with the next is_a clause, and Y becomes bound
to the symboal shark.

18.Visual Prolog tries the last subgoal again, with the variable Y bound to shark.
It calls1ives(shark, in_water); the search begins at the top of the program,
since this is a new call. It finds a match and the last subgoal to the rule
succeeds.

82 Visual Prolog Language Tutorial

19.At this point, the body of the can_swin(Y) rule is satisfied. Visual Prolog
returns Y to the call can_swi m(what). Since What isbound to Y, and Y is bound
to shark, What is now bound to shark in the goal.

20.Visual Prolog continues processing where it left off in the goal section, and
calls the second subgoal in the goal.

21.Visual Prolog completes the program by outputting
A shark can swim

and the program terminates successfully.

Chapter 4, Unification and Backtracking 83

84

EULE: can swimi W hat):-
typeZ, animal),
is_aWhat, 30,
liwes(What, in_water).
CATT: typel, animal)
NMATCH: typefungulate, animal)
CATT: 1z_al ¥, ungulate)

& MWMATCH: iz_alzebra, ungulate)
P CATL: lives{zebra, in_water)
i FATL: lives(zebra, in_water)

EEDD: 1z_al ¥, ungulate)

| FATL: iz_al ¥, ungulate)

| | REEDO: typel, animal)
NMATCH: typelfish, animal)
CATT: 12_al ¥, fish)

H MWMATCH: is_afherring, fish)

! CATT: lives(herring, in_water)

i FATL: liwes(herring, in_water)

EEDO: 12_al ¥, fish)
T MATCH: iz_afzhark, fish)
CATT: lives(shark, in_ water)
MATCH: lives(shark, in water)

Wt is
unified
with ¥

X is bound
to ungilate

Fizs bound
to zehre

Mo
match

Mo mere facts that
match this call

X 15 now bound

to fish

Fis now bound
to herring

Mo

match

Fis now bound
to shark

Hhat 15 bound
to shark

Figure 4.1: How the can_swim Program Works

Visual Prolog Language Tutorial

Try to follow these steps using the Visual Prolog Debugger. Run the Debugger
from the VDE with the Project | Debug command. When the Debugger window
appears, choose the Debugger's menu command View | Local Variables, and use
the Run | Trace Into command (or F7 hot key) to trace the program execution
and to inspect instantiation of variables. (For more instructions, see the chapter
Debugging Prolog Programs in the Getting Sarted and the chapter The
Debugger in the Visual Devel opment Environment manuals.)

Controlling the Search for Solutions

Prolog's built-in backtracking mechanism can result in unnecessary searching;
because of this, inefficiencies can arise. For instance, there may be times when
you want to find unique solutions to a given question. In other cases, it may be
necessary to force Visual Prolog to continue looking for additional solutions even
though a particular goal has been satisfied. In cases such as these, you must
control the backtracking process. In this section, we'll show you some techniques
you can use to control Visua Prolog's search for the solutions to your goals.

Visual Prolog provides two tools that allow you to control the backtracking
mechanism: the fail predicate, which is used to force backtracking, and the cut
(signified by !), which is used to prevent backtracking.

Using the fail Predicate

Visual Prolog begins backtracking when a call fails. In certain situations, it's
necessary to force backtracking in order to find alternate solutions. Visual Prolog
provides a special predicate, fail, to force falure and thereby encourage
backtracking. The effect of the fail predicate corresponds to the effect of the
comparison 2 = 3 or any other impossible subgoal. Program cho4e06. pro
illustrates the use of this specia predicate.

/* Program ch04e06. pro */

DOVAI NS
name = synbol

PREDI CATES
f at her (name, nane)
ever ybody

CLAUSES
fat her (I eonard, kat herine).
father(carl,jason).
father(carl,marilyn).

Chapter 4, Unification and Backtracking 85

ever ybody: -
father(X V),
wite(X," is ",Y,"'s father\n"),
fail

Let onewish to find all solutionsto fat her (X, v) . If he usesthe Test Goal utility,
then he can simply use the goal:

goal
father(X Y).

The Test Goal utility will find ALL solutions to f at her (X, v) and display values
of all variablesin the following manner:

X=l eonard, Y=katherine
X=carl, Y=jason
X=carl, Y=marilyn

3 Sol utions

But if you compile this program and run the obtained executable, then Visual
Prolog will find only the first matched solution for father(x v). In built
executables, once a goal specified in the program goal section has completely
succeeded, there is nothing that tells Visual Prolog to backtrack. Because of this,
an internal call to father will come up with only one solution and does not
display any variables at al. This definitely is not what you need. However, the
predicate everybody in Program cho4eos. pro uses fail to force backtracking, and
therefore finds all possible solutions.

The object of the predicate everybody is to find ALL solutions to father and to
produce a cleaner response from program runs. Compare the above answers of
the Test Goal utility to the goal f at her (X,) and the answers to the goal:

goal
ever ybody.
displayed by the generated executable:

| eonard is katherine's father
carl is jason's father
carl is marilyn's father

The predicate everybody uses backtracking to generate more solutions for
father (X Y) by forcing Prolog to backtrack through the body of the everybody
rule:

father(X, Y), wite(X " is ",Y,"'s father\n"), fail.

86 Visual Prolog Language Tutorial

fail can never be satisfied (it always fails), so Visua Prolog is forced to
backtrack. When backtracking takes place, Prolog backtracks to the last call that
can produce multiple solutions. Such a call is labeled non-deterministic. A non-
deterministic call contrasts with a call that can produce only one solution,
which isa deterministic call.

The write predicate can't be re-satisfied (it can't offer new solutions), so Visual
Prolog must backtrack again, this time to the first subgoal in therule.

Notice that it's useless to place a subgoal after fail in the body of arule. Since the
predicate fail always fails, there would be no way of reaching a subgoal located
after fail.

Exercises
1 Load and run Program cho4eos. pro and evaluate the following goals:

a father(X Y).
b. everybody.

2. Edit the body of the rule defining everybody so that the rule ends with the call
to the write predicate (delete the call to fail). Now compile and run the
program, giving everybody as the goal. Why doesn't Visual Prolog's Test Goal
find al the solutions as it does with the query fat her (X, v)?

3. Repair the call to fail at the end of the everybody rule. Again, give the query
everybody as the goal and start the Test Goa. Why are the solutions to
everybody terminated by no? For a clue, append everybody as a second clause
to the definition of predicate everybody and re-evaluate the goal .

Preventing Backtracking: The Cut

Visual Prolog contains the cut, which is used to prevent backtracking; it's written
as an exclamation mark (!). The effect of the cut is smple: It is impossible to
backtrack across a cui.

Y ou place the cut in your program the same way you place a subgoal in the body
of a rule. When processing comes across the cut, the call to cut immediately
succeeds, and the next subgoal (if there is one) is called. Once a cut has been
passed, it is not possible to backtrack to subgoals placed before the cut in the
clause being processed, and it is not possible to backtrack to other predicates
defining the predicate currently in process (the predicate containing the cut).

There are two main uses of the cut:

Chapter 4, Unification and Backtracking 87

1. When you know in advance that certain possibilities will never give rise to
meaningful solutions, it's a waste of time and storage space to look for
aternate solutions. If you use a cut in this situation, your resulting program
will run quicker and use less memory. Thisis called agreen cut.

2. When the logic of a program demands the cut, to prevent consideration of
aternate subgoals. Thisisared cut.

How to Usethe Cut

In this section, we give examples that show how you can use the cut in your
programs. In these examples, we use several schematic Visual Prolog rules (r1,
r2, and r3), which all describe the same predicate r, plus several subgoals (a, b, c,
etc.).

Prevent Backtracking to a Previous Subgoal in a Rule

rl:- a, b, !, c.

Thisisaway of telling Visual Prolog that you are satisfied with the first solution
it finds to the subgoals a and b. Although Visual Prolog is able to find multiple
solutions to the call to ¢ through backtracking, it is not allowed to backtrack
across the cut to find an aternate solution to the callsa or b. It isalso not alowed
to backtrack to another clause that defines the predicate r1.

As a concrete example, consider Program cho4eo7. pro.
/* Program ch04e07.pro */

PREDI CATES
buy_car (synbol , synbol)
car (symnbol , synbol , i nt eger)
col or s(synbol , synbol)

CLAUSES
buy_car (Model , Col or): -
car (Mobdel , Col or, Price),
col ors(Col or, sexy), !,
Price < 25000

car (maserati, green, 25000) .
car (corvette, bl ack, 24000) .
car(corvette,red, 26000) .
car (porsche, red, 24000) .

88 Visual Prolog Language Tutorial

col ors(red, sexy).
col ors(bl ack, mean) .
col ors(green, preppy).

In this example, the goal isto find a Corvette with a sexy color and a price that's
ostensibly affordable. The cut in the buy_car rule means that, since thereis only
one Corvette with a sexy color in the known facts, if its price is too high there's
no need to search for another car.

Given the god

buy_car(corvette, V)

Visual Prolog calls car, the first subgoal to the buy_car predicate.
It makes atest on thefirst car, the Maserati, which fails.

It then tests the next car clauses and finds a match, binding the variable
Color with the value black.

4. It proceedsto the next call and tests to see whether the car chosen has a sexy
color. Black is not asexy color in the program, so the test fails.

5. Visua Prolog backtracks to the call to car and once again looks for a
Corvette to meet the criteria.

6. It finds a match and again tests the color. This time the color is sexy, and
Visual Prolog proceeds to the next subgoal in the rule: the cut. The cut
immediately succeeds and effectively "freezes into place” the variable
bindings previously made in this clause.

7. Visua Prolog now proceeds to the next (and final) subgoal in the rule: the
comparison

Price < 25000.
8. This test fails, and Visual Prolog attempts to backtrack in order to find

another car to test. Since the cut prevents backtracking, there is no other way
to solve the final subgoal, and the goal terminatesin failure.

Prevent Backtracking to the Next Clause

The cut can be used as away to tell Visual Prolog that it has chosen the correct
clause for a particular predicate. For example, consider the following code:

Chapter 4, Unification and Backtracking 89

r(1):- !, a, b, c.

r(2):- ', d.

r(3):- ', c.

r():- wite("This is a catchall clause.").

Using the cut makes the predicate r deterministic. Here, Visual Prolog calls r
with a single integer argument. Assume that the call is r(1). Visua Prolog
searches the program, looking for a match to the cal; it finds one with the first
clause defining r. Since there is more than one possible solution to the call,
Visual Prolog places a backtracking point next to this clause.

Now the rule fires and Visual Prolog begins to process the body of the rule. The
first thing that happensisthat it passes the cut; doing so eliminates the possibility
of backtracking to another r clause. This eliminates backtracking points,
increasing the run-time efficiency. It also ensures that the error-trapping clause is
executed only if none of the other conditions match the call tor.

Note that this type of structure is much like a "case" structure written in other
programming languages. Also notice that the test condition is coded into the head
of therules. You could just as easily write the clauses like this:

r(x) :- X=1,1!, a, b, c.

r(x) :- Xx=2, 1, d.

r(x) :- X=3, 1!, c.

r(_) :- wite("This is a catchall clause.").

However, you should place the testing condition in the head of the rule as much
as possible, as doing this adds efficiency to the program and makes for easier
reading.

As another example, consider the following program. Run this program with the
Test Goal.

/* Program ch04e08. pro */

PREDI CATES
friend(synbol, synmbol)
girl (synbol)

l'i kes(synbol, synbol)

20 Visual Prolog Language Tutorial

CLAUSES

friend(bill,jane):-
girl (jane),
likes(bill,jane),
I,

friend(bill,jim:-

likes(jimbaseball),

I,
friend(bill,sue):-

girl(sue).

girl (mary).
girl (jane).
girl(sue).

likes(jimbaseball).
likes(bill, sue).

goal
friend(bill, Wo).

Without cuts in the program, Visua Prolog would come up with two solutions:
Bill isafriend of both Jim and Sue. However, the cut in the first clause defining
friend tells Visual Prolog that, if this clause is satisfied, it has found a friend of
Bill and there's no need to continue searching for more friends. A cut of thistype
says, in effect, that you are satisfied with the solution found and that there is no
reason to continue searching for another friend.

Backtracking can take place inside the clauses, in an attempt to satisfy the call,
but once a solution is found, Visual Prolog passes a cut. The friend clauses,
written as such, will return one and only one friend of Bill's (given that a friend
can be found).

Deter minism and the Cut

If the friend predicate (defined in the previous program) were coded without the
cuts, it would be a non-deterministic predicate (one capable of generating
multiple solutions through backtracking). In many implementations of Prolog,
programmers must take special care with non-deterministic clauses because of
the attendant demands made on memory resources at run time. However, Visual
Prolog makes internal checks for non-deterministic clauses, reducing the burden
on you, the programmer.

However, for debugging (and other) purposes, it can still be necessary for you to
intercede; the check_det erm compiler directive is provided for this reason. If
check_det ermis inserted at the very beginning of a program, Visual Prolog will

Chapter 4, Unification and Backtracking 91

display a warning if it encounters any non-deterministic clauses during
compilation.

You can make non-deterministic clauses into deterministic clauses by inserting
cuts into the body of the rules defining the predicate. For example, placing cuts
in the clauses defining the friend predicate causes that predicate to be
deterministic because, with the cuts in place, a call to friend can return one, and
only one, solution.

Thenot Predicate

This program demonstrates how you can use the not predicate to identify an
honor student: one whose grade point average (GPA) is at least 3.5 and who is
not on probation.

/* Program ch04e10. pro */

DOVAI NS
name = symbol
gpa = real
PREDI CATES

honor _st udent (nane)
st udent (nane, gpa)
pr obat i on(nane)

CLAUSES
honor _st udent (Nane) : -
student (Nane, GPA),
GPA>=3. 5,
not (probati on(Nare)) .

student ("Betty Blue", 3.5).
student ("David Snith", 2.0).
student ("John Johnson", 3.7).

probation("Betty Blue").
probation("David Snmith").

goal
honor _st udent (X) .

There is one thing to note when using not: The not predicate succeeds when the
subgoal can't be proven true. This results in a situation that prevents unbound
variables from being bound within a not. When a subgoal with free variables is
called from within not, Visua Prolog will return the error message Free
variables not allowed in "not' or 'retractall'. This happens because, for

92 Visual Prolog Language Tutorial

Prolog to bind the free variables in a subgoal, that subgoal must unify with some
other clause and the subgoal must succeed. The correct way to handle unbound
variables within a not subgoal iswith anonymous variables.

Here are some examples of correct clauses and incorrect clauses.

likes(bill, Anyone):- /* ' Anyone' is an output argument */
i kes(sue, Anyone),
not (hates(bill, Anyone).

In this example, Anyone is bound by 1ikes(sue, Anyone) before Visua Prolog
finds out that hat es(bi 11, Anyone) iSnot true. This clause works just asit should.

If you rewrite this so that it calls not first, you will get an error message to the
effect that free variables are not allowed in not.

likes(bill, Anyone):- /* This won't work right */
not (hates(bill, Anyone)),
i kes(sue, Anyone).

Even if you correct this (by replacing Anyone in not (hates(bill, Anyone)) with
an anonymous variable) so that the clause does not return the error, it will still
return the wrong result.

likes(bill, Anyone):- /* This won't work right */
not (hates(bill, _)),
l'i kes(sue, Anyone).

This clause states that Bill likes Anyone if nothing that Bill hates is known and if
Sue likes Anyone. The original clause stated that Bill likes Anyone if there is
some Anyone that Sue likes and that Bill does not hate.

Example

Always be sure that you think twice when using the not predicate. Incorrect use
will result in an error message or errorsin your program'slogic. The following is
an example of the proper way to use the not predicate.

/* Program chO4ell. pro */

PREDI CATES
I'i kes_shoppi ng(synbol)
has_credit_card(synbol, synbol)
bot t oned_out (synbol , synbol)

Chapter 4, Unification and Backtracking 93

CLAUSES
I'i kes_shoppi ng(Wo) : -
has_credit_card(Wo, Card),
not (bot t omred_out (Wo, Card)),
wite(Wo," can shop with the ", Card, " credit card.\n").

has_credit_card(chris,visa).
has_credit_card(chris,diners).
has_credit_card(joe, shell).
has_credit_card(sam mastercard).
has_credit_card(samcitibank).

bott omed_out (chri s, di ners).
bot t oned_out (sam nast ercard).
bott omed_out (chri s, visa).

goal
I'i kes_shoppi ng(Wo) .

Exercises

1. Suppose an average taxpayer in the USA is a married US citizen with two
children who earns no less than $500 a month and no more than $2,000 per
month. Define a special_taxpayer predicate that, given the goa
speci al _t axpayer (fred), Will succeed only if fred fails one of the conditions
for an average taxpayer. Use the cut to ensure that there is no unnecessary
backtracking.

2. Players in a certain sguash club are divided into three leagues, and players
may only challenge membersin their own league or the league below (if there
isone).

Write a Visua Prolog program that will display all possible matches between
club playersin the form:

tomversus bill
Mmarjory versus annette

Use the cut to ensure, for example, that
tomversus bill

and
bill versus tom

are not both displayed.

9 Visual Prolog Language Tutorial

3. Thisis an exercise in backtracking, not a test of your ability to solve murder

mysteries. Load and run with the Test Goal the following program.

(Note: Bert is guilty because he has a motive and is smeared in the same stuff
asthevictim.)

/* Program chO4el2.pro */

DOVAI NS
nane, sex, occupati on, obj ect, vi ce, substance = synbol
age=i nt eger

PREDI CATES
person(nane, age, sex, occupation)
had_affair(nanme, nane)
killed_w th(nanme, object)
ki | | ed(nane)
ki |l er (nane)
nmot i ve(vi ce)
snear ed_i n(nanme, substance)
owns(nane, object)
operates_identically(object, object)
owns_probabl y(nanme, object)
suspect (nane)

/* * * Facts about the nurder * * */
CLAUSES
person(bert, 55, m carpenter).
person(al |l an, 25, m f oot bal | _pl ayer).
person(al |l an, 25, m but cher).
person(j ohn, 25, m pi ckpocket).

had_af fai r (barbara, j ohn).
had_affair(barbara, bert).
had_af fair(susan,john).

killed_w th(susan, cl ub).
kil | ed(susan).

not i ve(noney) .
nmot i ve(j eal ousy).
nmoti ve(ri ght eousness).

sneared_i n(bert, bl ood).

snear ed_i n(susan, bl ood).
sneared_in(allan, nud).

snear ed_i n(j ohn, chocol ate).
snear ed_i n(bar bar a, chocol ate).

Chapter 4, Unification and Backtracking 95

96

/*

/*

/*

/*

owns(bert, wooden_I eg).
owns(j ohn, pistol).

* * Background know edge * * */
operates_identical |l y(wooden_l eg, club).
operates_identically(bar, club).
operates_identically(pair_of_scissors, knife).
operates_identically(football_boot, club).

owns_probabl y(X, foot bal | _boot): -

person(X, _, _, footbal | _pl ayer).
owns_probabl y(X, pai r_of _sci ssors): -
person(X, _, _, hairdresser).

owns_probabl y(X, Obj ect): -
owns(X, oj ect) .

* * *x

Suspect all those who own a weapon with *
whi ch Susan coul d have been kill ed. *

* * *x % *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x % */

suspect (X): -
killed_wi th(susan, Weapon)
operates_identical |l y(Ooj ect, Weapon) ,
owns_pr obabl y(X, Obj ect) .

* *x * *x

Suspect nmen who have had an affair with Susan.

* * *x % *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x * % */

suspect (X): -
noti ve(j eal ousy),
person(X, _,m_),
had_af fai r (susan, X) .

* * *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x %

Suspect femal es who have had an *
affair with someone that Susan knew. *

* * *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x *x % */

suspect (X): -
noti ve(j eal ousy),
person(X, _,f,_),
had_af fair (X, Man),
had_af f ai r (susan, Man) .

Visual Prolog Language Tutorial

/* * % *

* Suspect pickpockets whose notive could be noney. *
***************************/
suspect (X): -
not i ve(noney),
person(X, _, _, pi ckpocket).

killer(Killer):-
person(Killer,_,_,),
killed(Killed),
Killed <> Killer, /* It is not a suicide */
suspect (Killer),
sneared_in(Killer, Goo),
sneared_i n(Kil |l ed, Goo).

goal
killer(X).

Prolog from a Procedural Per spective

Now that you've read chapters 2, 3, and the first three parts of this chapter, you
should have a pretty good understanding of the basics of Prolog programming
and using Visual Prolog. Remember, Prolog is a declarative language, which
means that you describe a problem in terms of facts and rules and let the
computer figure out how to find a solution. Other programming languages — such
as Pascal, BASIC, and C — are procedural, which means that you must write
subroutines and functions that tell the computer exactly what steps to go through
in order to solve the problem.

We're going to back up now and review of some of the material you've just
learned about Prolog, but this time we're going to present it from a procedural
perspective.

How Rules and Facts Are Like Procedures

It's easy to think of a Prolog rule as a procedure definition. For instance, the rule
likes(bill, Something):- |ikes(cindy, Sonething).

means,
"To prove that Bill likes something, prove that Cindy likesit."

With thisin mind, you can see how procedures like

Chapter 4, Unification and Backtracking 97

say_hello:- wite("Hello"), nl.

and

greet: -
wite("Hello, Earthlings!"),
nl

correspond to subroutines and functions in other programming languages.
Y ou can even think of Prolog facts of as procedures; for instance, the fact

likes(bill, pasta).

means

"To prove that Bill likes pasta, do nothing — and by the way, if the arguments
Who and What in your query 1ikes(wo, what) are free variables, you can
bind them to bill and pasta, respectively."

Some programming procedures that you might be familiar with from other
languages are case statements, boolean tests, GoTo statements, and
computational returns. In the next sections, by reiterating what we've already
covered from a different (procedural) point of view, well show you how Prolog
rules can perform these same functions.

Using Rules Like Case Statements

One big difference between rules in Prolog and procedures in other languagesis
that Prolog allows you to give multiple aternative definitions of the same
procedure. This came up with the "parent”" program earlier on page 34; a person
can be a parent by being a father or by being a mother, so the definition of
"parent” is made up of two rules.

Y ou can use multiple definitions like you use a Pascal case statement by writing
adifferent definition for each argument value (or set of argument values). Prolog
will try one rule after another until it finds a rule that matches, then perform the
actions that rule specifies, asin Program cho4e13. pro.

/* Program chO4el3.pro */

PREDI CATES
action(integer)

98 Visual Prolog Language Tutorial

CLAUSES
action(1):-
nl,
wite("You typed 1."),nl.
action(2):-
nl,
wite("You typed two."),nl.
action(3):-
nl,
wite("Three was what you typed."),nl.
action(N): -
nl,
N<>1, N<>2, N<>3,
wite("l don't know that nunber!"),nl.

GOAL
wite("Type a nunber from1l to 3: "),
r eadi nt (Choi ce),
acti on(Choice).

If the user types 1, 2, or 3, action will be called with its argument bound to the
appropriate value, and it will match only one of the first three rules.

Performing Testswithin the Rule

Look more closely at the fourth clause for action. It will match whatever
argument it's called with, binding X to that value. So you have to make sure that
it doesn't print I don't know that number unless the number is indeed out of
range. That's the purpose of the subgoals

X<>1, X<>2, X<>3

where <> means not equal. In order to print 1 don't know that nunber, Prolog
must first prove that Xisnot 1, 2, or 3. If any of these subgoals fail, Prolog will
try to back up and find alternatives — but there aren't any alternatives, so the rest
of the clause will never be executed.

Notice that action relies on Choice being bound. If you call action with a free
variable as an argument, the compiler would raise an error.

Thecut asaGoTo

Program cho4e13.pro is somewhat wasteful because, after choosing and
executing the correct rule, Prolog still keeps looking for alternatives and has to
find out the hard way that the last rule doesn't apply.

Chapter 4, Unification and Backtracking 99

It would save time and memory if you could tell Prolog to stop looking for
aternatives. And you can, by using the cut, which means,

"If you get this far, don't do any backtracking within this rule, and don't look
for any alternativesto thisrule."

In other words, "Burn your bridges behind you." Backtracking is still possible,
but only at a higher level. If the current rule was called by another rule, and the
higher rule has alternatives, they can still be tried. But the cut rules out
aternatives within, and alternatives to, the present rule.

Using cuts, the program can be rewritten as follows:
/* Program chO4el4.pro */

PREDI CATES
action(integer)

CLAUSES

action(1):-!,

nl,

wite("You typed 1.").
action(2):-!,

nl,

wite("You typed two.").
action(3):-!,

nl,

wite("Three was what you typed.").
action(_):-

wite("l don't know that nunber!").

wite("Type a nunber from1l to 3: "),
readi nt (Nunmj,
action(Num,nl.

The cut has no effect unlessit is actually executed. That is, in order to perform a
cut, Prolog must actually get into the rule containing the cut and reach the point
where the cut islocated.

The cut can be preceded by other tests, like this:

action(X) :- X>3, !, wite("Too high.").

In thisrule, the cut won't have any effect unless the subgoal x>3 succeeds first.

Notice that the order of the rules is now significant. In cho4e13. pro, you could
have written the rules in any order; only one of them will match any particular

100 Visual Prolog Language Tutorial

number. But in Program cho4e14. pro you must make sure that the computer
doesn't even try the rule that prints1 don't know that number unless all of the
preceding rules have been tried (and have not executed their cuts).

The cutsin cho4e14. pro are what some people call red cuts — cuts that change the
logic of the program. If you had kept the tests x<>1, Xx<>2, and x<>3, changing the
program only by inserting a cut in each clause, you would have been using green
cuts — cuts that save time in a program that would be equally correct without
them. The efficiency gained is not as great, but there is less risk of making an
error in the program.

The cut is a powerful, but messy, Prolog operation. In this respect it resembles
the GoTo statement in other programming languages — you can do many things
with it, but it can make your program really hard to understand.

Returning Computed Values

As we have seen, a Prolog rule or fact can return information to the goal that
called it. This is done by binding arguments that were previously unbound. The
fact

likes(bill, cindy).

returns information to the goal

likes(bill, o).

by binding Who to cindy.

A rule can return the results of a computation the same way. Here's a simple
example:

/* Program chO4el5. pro */

PREDI CATES
cl assi fy(integer, synbol)

CLAUSES
classify(0, zero).
classify(X negative):-
X < 0.
classify(X positive):-
X > 0.

The first argument of classify must always be either a constant or a bound
variable. The second argument can be either bound or unbound; it gets matched

Chapter 4, Unification and Backtracking 101

with the symbol zero, negative, or positive, depending on the value of the first
argument.

Here are some examples of how rules can return values:
1. Youcan ask (using the Test Goal) whether 45 is positive by giving the goal:

Goal classify(45, positive).
yes

Because 45 is greater than 0, only the third clause of classify can succeed. In
doing so, it matches the second argument with positive. But the second
argument is aready positive, so the match succeeds, and you get the answer
yes.

2. Conversely, if the match fails, you get no:

Goal classify(45, negative).
no

What happensisthis:

e Prolog tries the first clause, but the first argument won't match 0 (nor does
the second argument match zero).

* Thenit triesthe second clause, binding X to 45, but the test X<O fails.

e Soit backs out and tries the third clause, but this time the second arguments
don't match.

3. To get an actual answer, rather than just yes or no, you must call classify with
the second argument free:

Coal classify(45, Wat).
What =posi tive
1 Sol ution

Here'swhat redly takes place in this case:

a The god classify(45 what) won't match the head of the first clause,
classify(0, zero), because 45 doesn't match 0. So the first clause can't
be used.

b. Again, the goa cilassify(45 what) matches the head of the second
clause, classify(X, negative), binding X to 45 and negative to What.
But then the subgoal x<o, fails, because X is 45 and it is not true that

102 Visual Prolog Language Tutorial

45<0. So Prolog backs out of this clause, undoing the variable bindings
just created.

Finally, cl assify(45, Wwhat) matChes classify(X, positive), binding X
to 45 and What to positive. The test x>0 succeeds. Since this is a
successful solution, Prolog doesn't backtrack; it returns to the calling
procedure (which in this case is the goal that you typed). And since the
variable X belongs to the calling procedure, that procedure can use its
binding —in this case, to print out the value automatically.

Summary

In this chapter we've introduced unification, backtracking, determinism, the
predicates not and fail, and the cut (!), and we've reviewed the important parts of
the tutorial information up to this point from a procedural perspective.

1. Prolog facts and rules receive information by being called with arguments
that are constants or bound variables; they return information to the calling
procedure by binding variable arguments that were unbound.

2. Unification is the process of matching two predicates and assigning free
variables to make the predicates identical. This mechanism is necessary so
Prolog can identify which clauses to call and bind values to variables. These
are the mgjor points about matching (unification) presented in this chapter:

a

When Prolog begins an attempt to satisfy agoal, it starts at the top of the
program in search of a match.

When a new call is made, a search for a match to that call also begins at
the top of the program.

When a call has found a successful match, the call is said to return, and
the next subgoal in turn can be tried.

Once a variable has been bound in a clause, the only way to free that
binding is through backtracking.

3. Backtracking is the mechanism that instructs Prolog where to go to look for
solutions to the program. This process gives Prolog the ability to search
through al known facts and rules for a solution. These are the four basic
principles of backtracking given in this chapter:

a

b.

Subgoals must be satisfied in order, from top to bottom.

Predicate clauses are tested in the order they appear in the program, from
top to bottom.

Chapter 4, Unification and Backtracking 103

c. When a subgoal matches the head of arule, the body of that rule must be
satisfied next. The body of the rule then constitutes a new set of subgoals
to be satisfied.

d. A goal has been satisfied when a matching fact is found for each of the
extremities (leaves) of the goal tree.

4. A cal that can produce multiple solutions is non-deterministic, while a call
that can produce one and only one solution is deterministic.

5. Visua Prolog provides three tools for controlling the course of your
program's logical search for solutions: these are the two predicates fail and
not, and the cut.

e The fail predicate aways fails; it forces backtracking in order to find
aternate solutions.

« Thenot predicate succeeds when its associated subgoal can't be proven true.
e The cut prevents backtracking.

6. It's easy to think of a Prolog rule as a procedure definition. From a procedural
perspective, rules can function as case statements, perform boolean tests, act
like GoT o statements (using the cut), and return computed values.

104 Visual Prolog Language Tutorial

CHAPTER S

Simple and Compound Objects

So far, we've only shown you afew kinds of Visual Prolog data objects, such as
numbers, symbols, and strings. In this chapter we discuss the whole range of data
objectsthat Visual Prolog can create, from simple to compound objects.

We also show the different types of data structures and data objects that a Visual
Prolog program can contain. Because the standard domains do not cover some of
the compound data structures, we explain how to declare these compound data
structures in both the domains section and the predicates section of your
programs.

Simple Data Objects

A simple data object is either a variable or a constant. Don't confuse this use of
the word "constant” with the symbolic constants you define in the constants
section of a program. What we mean here by a constant, is anything identifying
an object not subject to variation, such as a character (a char), a number (an
integral value or areal), or an atom (a symbol or string).

Variables as Data Objects

Variables, which we've discussed in chapter 2, must begin with an upper-case
letter (A-Z) or an underscore (). A single underscore represents an anonymous
variable, which stands for a"don't care what it is" situation. In Prolog, a variable
can bind with any legal Prolog argument or data object.

Prolog variables are local, not global. That is, if two clauses each contain a
variable called X, these Xs are two distinct variables. They may get bound to each
other if they happen to be brought together during unification, but ordinarily they
have no effect on each other.

Constants as Data Objects

Constants include characters, numbers, and atoms. Again, don't confuse
constants in this context with the symbolic constants defined in the constants

Chapter 5, Smple and Compound Objects 105

section of a program. A constant's value is its name. That is, the constant 2 can
only stand for the number 2, and the constant abr acadabr a can only stand for the
symbol abracadabra.

Characters

Characters are char type. The printable characters (ASCII 32-127) are the digits
0-9, upper-case letters A-Z, lower-case letters a-z, and the punctuation and
familiar TTY characters. Characters outside this range may not be portable
between different platforms; in particular, characters less than ASCII 32 (space)
are control characters, traditionally used by terminals and communication
equipment.

A character constant is simply written as the character you want, enclosed by
single quotes:

o .

e e

W A

If, however, you want to specify a backslash or a single quote itself as the
character, precede it by a backslash (\):
"\\' backslash “\'' single quote.

There are afew characters that perform a special function, when preceded by the
escape character:

A Newline (linefeed)
A Carriage return.
e Tab (horizontal)

Character constants can also be written as their ASCII codes, preceded by the
escape character, like this:

"\ 225 R
3 %

but the exact character displayed by more exotic ASCIlI values will vary
depending on your video-card/terminal.

Numbers

Numbers are either from one of the integral domains (see Table 3.1 on page 51),
or the real domain. Real numbers are stored in the |IEEE standard format and
range from 1e-308 to 1e308 (10-308 to 10+308). Examples are:

106 Visual Prolog Language Tutorial

Integers Real Numbers
3 3.
-77 34.96
32034 -32769
-10 4e27
0 -7.4e-296

Atoms

An atom is either a symbol or a string. The distinction between these is largely a
guestion about machine-representation and implementation, and is generaly not
syntactically visible. When an atom is used as an argument in a predicate call, it
is the declaration for the predicate that determines if that argument should be
implemented as a string or a symbol.

Visual Prolog performs an automatic type conversion between the string domain
and the symbol domain, so you can use symbol atoms for string domains and
string atoms for the symbol domains. However, there is a loose convention
stating that anything in double quotes should be considered a string, while
anything not needing to be quoted to be syntactically valid is a symbol:

* Symbol atoms are names starting with a lower-case letter, and containing
only letters, digits, and underscores.

* String atoms are bound within double quotes and can contain any
combination of characters, except ASCII NULL (O, binary zero), which
marks the end of the string.

Symbol Atoms String Atoms

f ood "Jesse Janes"

ri ck_Jones_2nd "123 Pike street"

fred_Flintstone_1000_Bc_Rd_Bedr "jon"

ock

a "a"

new_yor k "New Yor k"

pdcPr ol og "Vi sual Prolog, by Prolog
Devel opnent Center"

Asfar asthe string/symbol domain interchangeability goes, this distinction is not
important. However, things such as predicate names and functors for compound
objects (introduced below) must follow the syntactic conventions for symbols.

Chapter 5, Smple and Compound Objects 107

Compound Data Objects and Functors

Compound data objects allow you to treat several pieces of information as a
single item in such away that you can easily pick them apart again. Consider, for
instance, the date April 2, 1988. It consists of three pieces of information — the
month, day, and year — but it's useful to treat the whole thing as a single object
with atreelike structure:

DATE
/ | \
Cct ober 15 1991

Y ou can do this by declaring a domain containing the compound object date:

DOVAI NS
date_cnp = date(string, unsi gned, unsi gned)

and then simply writing e.g.

, D = date("Cctober", 15,1991), ...

This looks like a Prolog fact, but it isn't here — it's just a data object, which you
can handle in much the same way as a symbol or number. It begins with a name,
usually called afunctor (in this case date), followed by three arguments.

Note carefully that afunctor in Visual Prolog has nothing to do with afunction in
other programming languages. A functor does not stand for some computation
to be performed. It's just a name that identifies a kind of compound data object
and holds its arguments together.

The arguments of a compound data object can themselves be compound. For
instance, you might think of someone's birthday as an information structure like
this:

Bl RTHDAY
/ \
/ \
per son date
/ \ / | \
" Per" "Bilse" "Apr" 14 1960

In Prolog you would write this as:

bi rt hday(person("Per","Bilse"),date("Apr", 14, 1960))

108 Visual Prolog Language Tutorial

In this example, there are two parts to the compound object birthday: the object
person("Per”, "Bilse") and the object date("Apr", 14, 1960). The functors of
these data objects are person and date.

Unification of Compound Objects

A compound object can unify either with a simple variable or with a compound
object that matches it (perhaps containing variables as parts of its internal
structure). This means you can use a compound object to pass a whole collection
of items as a single object, and then use unification to pick them apart. For
example,

date("April", 14, 1960)

matches X and binds X to dat e(" Apri | ", 14, 1960) .
Also

date("April", 14, 1960)

matches dat e(M, Da, Yr) and bindsMoto " aApri 1", Dato 14, and Yr to 1960.

Some examples of programming with compound objects follow in the next
sections.

Using the Equal Sign to Unify Compound Objects

Visual Prolog performs unification in two places. The first iswhen a call or goal
matches the head of a clause. The second is the across the equal (=) sign, which
is actually an infix predicate (a predicate that is located between its arguments
rather than before them).

Visual Prolog will make the necessary bindings to unify the objects on both sides
of the equal sign. This is useful for finding the values of arguments within a
compound object. For example, the following code excerpt tests if two people
have the same last name, then gives the second person the same address as the
first.

Chapter 5, Smple and Compound Objects 109

/* Program ch05e01. pro */

DOVAI NS
person = person(nane, addr ess)
name = nane(first,|ast)
addr ess = addr(street,city, state)
street = street (nunber, street _nane)
city,state,street_nanme = string
first,|ast = string
nunber = integer
GOAL
P1 = person(nane(jimnos), addr (street(5,"1st st"),igo,"CA")),
P1 = person(nane(_, nps), Address),
P2 = person(nane(j ane, nbs), Addr ess),

write("Pl=",P1),nl,
write("P2=",P2),nl.

Treating Several Items as One

Compound objects can be regarded and treated as single objects in your Prolog
clauses, which greatly simplifies programming. Consider, for example, the fact

owns(j ohn, book("From Here to Eternity", "James Jones")).

in which you state that John owns the book From Here to Eternity, written by
James Jones. Likewise, you could write

owns(j ohn, horse(bl acky)).

which can be interpreted as

John owns a horse naned bl acky

The compound objects in these two examples are

book("From Here to Eternity", "James Jones")

and

hor se(bl acky)

If you had instead written two facts:

owns(john, "FromHere to Eternity").
owns(j ohn, blacky).

110 Visual Prolog Language Tutorial

you would not have been able to decide whether bl acky was the title of a book or
the name of a horse. On the other hand, you can use the first component of a
compound object — the functor — to distinguish between different objects. This
example used the functors book and horse to indicate the difference between the
objects.

Remember: Compound objects consist of a functor and the objects belonging to
that functor, as follows:

functor(objectl, object2, ..., objectN)

An Example Using Compound Objects

An important feature of compound objects allows you to easily pass a group of
values as one argument. Consider a case where you are keeping a telephone
database. In your database, you want to include your friends and family
members' birthdays. Here is a section of code you might have come up with:

PREDI CATES
phone_l i st (synmbol, synbol, synbol, synbol, integer, integer)
/* (First, Last, Phone, Month, Day, Year) */
CLAUSES

phone_list(ed, willis, 422-0208, aug, 3, 1955).
phone_list(chris, grahm 433-9906, nmay, 12, 1962).

Examine the data, noticing the six arguments in the fact phone_list; five of these
arguments can be broken down into two compound objects, like this:

per son bi rt hday
/ \ / | \
First Name Last Nane Month Day Year

It might be more useful to represent your facts so that they reflect these
compound data objects. Going back a step, you can see that person is a
relationship, and the first and last names are the objects. Also, birthday is a
relationship with three arguments: month, day, and year. The Prolog
representation of these relationshipsis

person(First_nanme, Last_nane)
bi rt hday(Mont h, Day, Year)

You can now rewrite your small database to include these compound objects as
part of your database.

Chapter 5, Smple and Compound Objects 111

DOVAI NS

nane = person(synbol, synbol) /* (First, Last) */

bi rthday = b_date(synbol, integer, integer) /* (Month, Day, Year) */

ph_num = synbol /* Phone_nunber */
PREDI CATES

phone_l i st (nane, ph_num birthday)

CLAUSES
phone_l i st (person(ed, wllis), "422-0208", b_date(aug, 3, 1955))
phone_l i st (person(chris, grahn), "433-9906", b_date(may, 12, 1962)).

In this program, two compound domains declarations were introduced. We go
into more detail about these compound data structures later in this chapter. For
now, we'll concentrate on the benefits of using such compound objects.

The phone list predicate now contains three arguments, as opposed to the
previous six. Sometimes breaking up your data into compound objects will
clarify your program and might help process the data.

Now add some rules to your small program. Suppose you want to create a list of
people whose birthdays are in the current month. Here's the program code to
accomplish this task; this program uses the standard predicate date to get the
current date from the computer's internal clock. The date predicate is discussed
later in chapter 15. For now, all you need to know isthat it will return the current
year, month, and day from your computer's clock.

/* Program ch05e03. pro */

DOVAI NS
name = person(synbol , symbol) /* (First, Last) */
bi rthday = b_dat e(synbol , i nteger,integer) /* (Month, Day, Year) */
ph_num = synbol /* Phone_nunber */
PREDI CATES

phone_I i st (name, ph_num bi rt hday)

get _nont hs_bi rt hdays()
convert_nont h(synbol , i nt eger)

check_bi rt hday_nont h(i nt eger, bi rt hday)
write_person(namne)

112 Visual Prolog Language Tutorial

CLAUSES

Chapter 5, Smple and Compound Objects

get _nont hs_bi rt hdays: -
Wite("x****xxxxx%x% Thig Mpnth's Birthday List *x****sxxxxssn) p|
wite(" First nanme\t\t Last Nane\n"),
Vwite(“***“),nl,
date(_, This_nonth,), /* Get nonth from system cl ock */
phone_l i st(Person, _, Date),
check_birthday_nont h(Thi s_nonth, Date),
write_person(Person),
fail.

get _nont hs_bi rt hdays: -
wite("\n\n Press any key to continue: "),nl,
readchar (_).

wr it e_person(person(First_nane, Last _nane)): -
wite(" ",First_nane,"\t\t ", Last_nane), nl.

check_bi rthday_nont h(Mon, b_date(Month, _,)):-
convert _nont h(Mont h, Mont hl),
Mon = Mont hl.

phone_| i st(person(ed, willis), "767-8463", b_date(jan, 3, 1955)).
phone_| i st (person(benjanin, thomas), "438-8400", b_date(feb, 5, 1985)).
phone_| i st (person(ray, wllian), "555-5653", b_date(mar, 3, 1935)).
phone_| i st (person(thomas, alfred), "767-2223", b_date(apr, 29, 1951)).
phone_l i st (person(chris, grahn), "555-1212", b_date(may, 12, 1962)).
phone_| i st (person(dustin, robert), "438-8400", b_date(jun, 17, 1980)).
phone_| i st (person(anna, friend), "767-8463", b_date(jun, 20, 1986)).
phone_| i st (person(brandy, rae), "555-5653", b_date(jul, 16, 1981)).
phone_| i st (person(naom, friend), "767-2223", b_date(aug, 10, 1981)).
phone_| i st (person(christina, |ynn), "438-8400", b_date(sep, 25, 1981)).
phone_| i st (person(kathy, ann), "438-8400", b_date(oct, 20, 1952)).
phone_| i st (person(elizabeth, ann), "555-1212", b_date(nov, 9, 1984)).
phone_| i st (person(aaron, friend), "767-2223", b_date(nov, 15, 1987)).
phone_| i st (person(jennifer, caitlin), "438-8400", b_date(dec, 31,
1981)).

113

convert_nonth(jan, 1).
convert_nonth(feb, 2).
convert_nonth(mar, 3).
convert_nonth(apr, 4).
convert_nonth(may, 5).
convert_nonth(jun, 6).
convert_nonth(jul, 7).
convert_nont h(aug, 8).
convert_nonth(sep, 9).
convert_nont h(oct, 10).
convert_nmont h(nov, 11).
convert_nont h(dec, 12).

GOAL

get _nont hs_bi rt hdays().

Load and run the Test Goal with this program.

How do compound data objects help in this program? This should be easy to see
when you examine the code. Most of the processing goes on in the
get_months_birthdays predicate.

1
2.
3.

First, the program makes awindow to display the results.
After this, it writes a header in the window to help interpret the results.

Next, in get_months_birthdays, the program uses the built-in predicate date
to obtain the current month.

After this, the program is all set to search the database and list the people
who were born in the current month. The first thing to do is find the first
person in the database. The call phone_list(Person, _, Date) binds the
person's first and last names to the variable Person by binding the entire
functor person to Person. It also binds the person's birthday to the variable
Date.

Notice that you only need to use one variable to store a person's complete
name, and one variable to hold the birthday. This is the power of using
compound data objects.

Y our program can now pass around a person's birthday simply by passing on
the variable Date. This happens in the next subgoal, where the program passes
the current month (represented by an integer) and the birthday (of the person
it's processing) to the predicate check birthday month.

. Look closely a what happens. Visual Prolog calls the predicate

check_birthday_month with two variables: The first variable is bound to an
integer, and the second is bound to a birthday term. In the head of the rule

114 Visual Prolog Language Tutorial

that defines check birthday month, the first argument, This_month, is
matched with the variable Mon. The second argument, Date, is matched
against b_date(Month, _,).

Since al you're concerned with is the month of a person's birthday, you have
used the anonymous variable for both the day and the year of birth.

7. The predicate check_birthday_month first converts the symbol for the month
into an integer value. Once thisis done, Visual Prolog can compare the value
of the current month with the value of the person's birthday month. If this
comparison succeeds, then the subgoal check_birthday _month succeeds, and
processing can continue. If the comparison fails (the person currently being
processed was not born in the current month), Visua Prolog begins to
backtrack to ook for another solution to the problem.

8. The next subgoal to process is write person. The person currently being
processed has a birthday this month, so it's OK to print that person's name in
the report. After printing the information, the clause fails, which forces
backtracking.

9. Backtracking always goes up to the most recent non-deterministic call and
tries to re-satisfy that call. In this program, the last hon-deterministic call
processed isthe call to phone_list. It is here that the program looks up another
person to be processed. If there are no more people in the database to process,
the current clause fails; Visual Prolog then attempts to satisfy this call by
looking further down in the database. Since there is another clause that
defines get_months_birthdays, Visual Prolog tries to satisfy the call to
get_months_birthdays by satisfying the subgoals to this other clause.

Exercise

Modify the previous program so that it will also print the birth dates of the people
listed. Next, add tel ephone numbers to the report.

Declaring Domains of Compound Objects

In this section, we show you how domains for compound objects are defined.
After compiling a program that contains the following rel ationships:

owns(j ohn, book("From Here to Eternity", "Janmes Jones")).

and

owns(j ohn, horse(bl acky)).

Chapter 5, Smple and Compound Objects 115

you could query the system with this goal:

owns(j ohn, X)

The variable X can be bound to different types of objects: a book, a horse, or
perhaps other objects you define. Because of your definition of the owns
predicate, you can no longer employ the old predicate declaration of owns:

owns(synbol , synbol)

The second argument no longer refers to objects belonging to the domain symbol.
Instead, you must formulate a new declaration to the predicate, such as

owns(name, articles)

Y ou can describe the articles domain in the domains section as shown here:

DOVAI NS
articles = book(title,author); horse(nane)

/* Articles are books or horses */
title, author, name = synbol

The semicolon is read as or. In this case, two aternatives are possible: A book
can be identified by itstitle and author, or a horse can be identified by its name.
The domainstitle, author, and name are al of the standard domain symbol.

More aternatives can easily be added to the domains declaration. For example,
articles could also include a boat, a house, or a bankbook. For a boat, you can
make do with a functor that has no arguments attached to it. On the other hand,
you might want to give a bank balance as a figure within the bankbook. The
domains declaration of articlesis therefore extended to:

articles = book(title, author) ; horse(nane) ;
boat ; bankbook(bal ance)

title, author, name = synbol

bal ance = real

Here is a full program that shows how compound objects from the domain
articles can be used in facts that define the predicate owns.

116 Visual Prolog Language Tutorial

/* Program ch05e04. pro */

DOVAI NS
articles = book(title, author) ;
horse(nane) ; boat ;
bankbook(bal ance)

title, author, name = synbol
bal ance = real
PREDI CATES
owns(nane, articl es)
CLAUSES
owns(j ohn, book("A friend of the famly", "lrwin Shaw')).

owns(j ohn, horse(bl acky)).
owns(j ohn, boat).
owns(j ohn, bankbook(1000)).

goal
owns(j ohn, Thing).

Now load the program into Visua Development Environment and run the Test
Goal.

Visual Prolog (the Test Goal) responds with:

Thi ng=book("A friend of the famly","lrwin Shaw')
Thi ng=hor se(" bl acky")

Thi ng=boat

Thi ng=bankbook(1000)

4 Sol utions

Writing Domain Declarations: a Summary
This is a generic representation of how to write domain declarations for
compound objects:

domai n =alternativel(D, D, ...);
alternative2(D, D, ...);

Here, alternativel and alternative?2 are arbitrary (but different) functors. The
notation (b, b, ...) represents alist of domain names that are either declared
elsawhere or are one of the standard domain types (such as symbol, integer, real,
etc).

Note:

Chapter 5, Smple and Compound Objects 117

1. The alternatives are separated by semicolons.

2. Every aternative consists of a functor and, possibly, alist of domainsfor the
corresponding arguments.

3. If the functor has no arguments, you can write it as alternativeN OF
al ternativeN() inyour programs. In this book, we use the former syntax.

Multi-L evel Compound Objects

Visual Prolog allows you to construct compound objects on severa levels. For
example, in

book("The Ugly Duckling", "Andersen")
instead of using the author's last name, you could use a new structure that
describes the author in more detail, including both the author's first and last

names. By calling the functor for the resulting new compound object author, you
can change the description of the book to

book("The Ugly Duckling", author("Hans Christian", "Andersen"))

In the old domain declaration

book(title, author)

the second argument of the book functor is author. But the old declaration

aut hor = synbo

can only include a single name, so it's no longer sufficient. You must now
specify that an author is also a compound object made up of the author's first and
last name. Y ou do this with the domain statement:

aut hor = aut hor(first_name, |ast_nane)

which leads to the following declarations:

DOVAI NS
articles = book(title, author); .. /* First level */
aut hor = aut hor(first_nanme, |ast_nane)/* Second |evel */
title, first_name, |ast_nane = synbol /* Third | evel */

When using compound objects on different levelsin thisway, it's often helpful to
draw a"tree":

118 Visual Prolog Language Tutorial

book
I\
title aut hor
I\
/ \
firstnane | astnane

A domain declaration describes only one level of the tree a a time, and not the
whole tree. For instance, a book can't be defined with the following domain
declaration:

book = book(title,author(first_name, | ast_nane)) /* Not allowed */

An Example That Illustrates Sentence Structure

As another example, consider how to represent the grammatical structure of the
sentence

el l en owns the book

using a compound object. The most simple sentence structure consists of a noun
and averb phrase:

sentence = sentence(noun, verbphrase)

A nounisjust asimple word:

noun = noun(word)

A verb phrase consists of either averb with a noun phrase or asingle verb.

ver bphrase = verbphrase(verb, noun); verb(word)
verb = ver b(word)

Using these domain declarations (sentence, noun, verbphrase, and verb), the
sentenceel | en owns the book. becomes

sent ence(noun(ell en), verbphrase(verb(owns), noun(book)))

Chapter 5, Smple and Compound Objects 119

The corresponding treeis

sentence
/ \
/ \
noun ver bphr ase
| / \
| verb noun

ellen owns t he book

A data structure like this might be the output of a parser, which is a program that
determines the grammatical structure of a sentence. Parsing is not built into
Visual Prolog, but we have included a parser implementing simple sentence
analysis with your Visual Prolog package. (Try to run the project
VPI\PROGRAMS\SEN_AN when you're ready to tackle this subject.)

Exercises

1. Write a suitable domains declaration using compound objects that could be
used in a Visual Prolog catalog of musical shows. A typical entry in the
catalog might be

Show. West Side Story
Lyrics: Stephen Sondhei m
Musi c: Leonard Bernstein

2. Using compound objects wherever possible, write a Visual Prolog program to
keep a database of United States senators. Entries should include the senator's
first and last name, affiliation (state and party), size of constituency, date of
eection, and voting record on ten hills. Or, if you're not familiar with United
States senators, use any political (or other) organization that you're familiar
with.

Compound Mixed-Domain Declarations

In this section, we discuss three different types of domain declarations you can
add to your programs. These declarations allow you to use predicates that

1. take an argument, more than one type of more than one possible type
2. take avariable number of arguments, each of a specified type

3. take avariable number of arguments, some of which might be of more than
one possible type

120 Visual Prolog Language Tutorial

Multiple-Type Arguments

To alow a Visual Prolog predicate to accept an argument that gives information
of different types, you must add a functor declaration. In the following example,
the your_age clause will accept an argument of type age, which can be astring, a
real, or aninteger.

domai ns

age = i(integer); r(real); s(string)
pr edi cat es

your _age(age)
cl auses

your _age(i (Age)) :- wite(Age).

your _age(r(Age)) :- wite(Age).

your _age(s(Age)) :- wite(Age).

Visual Prolog does not allow the following domain declaration:

donmai ns

age = integer; real; string /* Not permtted. */

Lists
Suppose you are keeping track of the different classes a professor might teach.
Y ou might produce the following code:

PREDI CATES

t eacher (synbol First_name, synbol Last_name, synbol d ass)

CLAUSES
teacher(ed, willis, englishl).
teacher(ed, willis, mathl).
teacher(ed, willis, historyl).
teacher (mary, maker, history2).
teacher (mary, naker, math2).

teacher(chris, grahm geonetry).

Here, you need to repeat the teacher's name for each class he or she teaches. For
each class, you need to add another fact to the database. Although this is
perfectly OK in this situation, you might find a school where there are hundreds
of classes; this type of data structure would get alittle tedious. Here, it would be
helpful if you could create an argument to a predicate that could take on one or
mor e values.

Chapter 5, Smple and Compound Objects 121

A list in Prolog does just that. In the following code, the argument class is
declared to be of alist type. We show here how alist is represented in Prolog, but
list-handling predicates are covered in chapter 7.

DOVAI NS
cl asses = synbol * /* declare a list domain */

PREDI CATES
teacher (synmbol First, synbol Last, classes C asses)

CLAUSES
teacher(ed, willis, [englishl, mathl, historyl])
teacher (mary, nmaker, [history2, math2]).
teacher(chris, grahm [geonetry]).

In this example, the code is more concise and easier to read than in the preceding
one. Notice the domains declaration:

DOVAI NS
cl asses = synbol *

The asterisk (*) means that classes is a list of symbols. You can just as easily
declare alist of integers:

DOVAI NS
integer_list = integer*

Once you declare a domain, it's easy to use it; just place it as an argument to a
predicate declared in the predicates section. Here's an example of using an
integer list:
DOMAI NS

integer_list = integer*

PREDI CATES
test_scores(synbol First, symbol Last, integer_list Test_Scores)

CLAUSES
test_scores(lisa, |lavender, [86, 91, 75]).
test_scores(libby, dazzner, [79, 75]).
test_scores(jeff, zheutlin, []).

In the case of Jeff Zheutlin, notice that alist doesn't need to contain any €lements
at all.

Listsare discussed in greater detail in chapter 7.

122 Visual Prolog Language Tutorial

Summary

These are the important points covered in this chapter:

1

2.

A Visual Prolog program can contain many types of data objects: simple and
compound, standard and user-defined. A simple data object is one of the
following:

« avariable; such as X, MyVariable, _another_variable, or a single underscore
() for an anonymous variable

« aconstant; achar, an integer or real number, or asymbol or string atom

Compound data objects allow you to treat several pieces of information as a
single item. A compound data object consists of a name (known as a functor)
and one or more arguments. Y ou can define a domain with several alternative
functors.

A functor in Visual Prolog is not the same thing as a function in other
programming languages. A functor does not stand for some computation to
be performed. It's just a name that identifies a kind of compound data object
and holds its arguments together.

Compound objects can be regarded and treated as single objects; you use the
functor to distinguish between different objects. Visual Prolog alows you to
construct compound objects on several levels; the arguments of a compound
data object can also be compound objects. With compound mixed domain
declarations, you can use predicates that:

« take an argument of more than one possible type (functor declaration).

e take a variable number of arguments, each of a specified type (list
declaration).

« take a variable number of arguments, some of which might be of more than
one possible type.

Chapter 5, Smple and Compound Objects 123

CHAPTER 6

Repetition and Recursion

Much of the usefulness of computers comes from the fact that they are good at
doing the same thing over and over again. Prolog can express repetition both in
its procedures and in its data structures. The idea of a repetitive data structure
may sound strange, but Prolog allows you to create data structures whose
ultimate sizeis not known at the time you create them. In this chapter, we discuss
repetitive processes first (as loops and recursive procedures), then cover
recursive data structures.

Repetitive Processes

Pascal, BASIC, or C programmers who start using Visual Prolog are often
dismayed to find that the language has no FOR, WHILE, or REPEAT statements.
There is no direct way to express iteration. Prolog allows only two kinds of
repetition — backtracking, in which it searches for multiple solutions in a single
query, and recursion, in which a procedure calsitself.

Asit turns out, thislack doesn't restrict the power of the Prolog language. In fact,
Visual Prolog recognizes a specia case of recursion —called tail recursion —and
compilesit into an iterative loop in machine language. This means that although
the program logic is expressed recursively, the compiled code is as efficient as it
would be in Pascal or BASIC.

In this section, we explore the art of writing repetitive processes in Prolog. As
you'll see, recursion is — in most cases — clearer, more logical, and less error-
prone than the loops that conventional languages use. Before delving into
recursion, however, take another look at backtracking.

Backtracking Revisited

When a procedure backtracks, it looks for another solution to a goal that has
aready been satisfied. It does this by retreating to the most recent subgoal that
has an untried alternative, using that alternative, then moving forward again. Y ou
can exploit backtracking as away to perform repetitive processes.

124 Visual Prolog Language Tutorial

Example

Program choeeo1. pr o demonstrates how to use backtracking to perform repetitive
processes —it prints all solutionsto a query.

/* Program ch06e01. pro */

PREDI CATES
count ry(synbol)
print_countries

CLAUSES
count ry("Engl and").
country("France").
count ry("Germany").
count ry("Denmark") .

print_countries:-

country(X),

wite(X), /* wite the value of X */
nl, /* start a new line */
fail.

print_countries.
goal

print_countries.
The predicate country simply lists the names of various countries, so that a goal
such as

country(X)
has multiple solutions. The predicate print_countries then prints out al of these
solutions. It is defined as follows:

print_countries :-
country(X), wite(X), nl, fail.

print_countries.

Thefirst clause says:

"To print countries, find a solution to count ry(x) , then write X and start a new
line, then fail."

In this case, "fail" means:

"assume that a solution to the original goa has not been reached, so back up
and look for an aternative."

Chapter 6, Repetition and Recursion 125

The built-in predicate fail always fails, but you could equally well force

backtracking by using any other goa that would always fail, such as s5=2+2 or
country(shangri _Il a).

The first time through, X is bound to england, which is printed. Then, when it
hits fail, the computer backs up. There are no alternative ways to satisfy ni or
write(X), SO the computer looks for a different solution to count ry(x) .

The last time count ry(x) was executed, it bound a value to the previously free
variable X. So, before retrying this step, the computer unbinds X (frees it). Then
it can look for an alternative solution for country(x) and bind X to a different
value. If it succeeds, processing goes forward again and the name of another
country is printed.

Eventually, the first clause runs out of alternatives. The only hope then is to try
another clause for the same predicate. Sure enough, execution falls through to the
second clause, which succeeds without doing anything further. In this way the
goal print_count ri es terminates with success. Its complete output is

engl and
france
ger many
denmar k

yes

If the second clause were not there, the print_countries goa would terminate
with failure, and the final message would be no. Apart from that, the output
would be the same.

Exercise
Modify choeeo1. pro so that
1. country has two arguments, name and population, and

2. only those countries with populations greater than 10 million (1le+7) are
printed

Pre- and Post-Actions

Typically, aprogram that retrieves all the solutions to a goal will also want to do
something beforehand and afterward. For instance, your program could

1. Print Sone delightful places to live are....

2. Print al solutionsto country(X)

126 Visual Prolog Language Tutorial

3. Close by printing And maybe ot hers.

Note that print_countries, as defined in the preceding example, already includes
clauses that print all solutionsto count ry(x) and close by (potentially) printing a

final message.

The first clause for print_countries corresponds to step 2 and prints al the
solutions; its second clause corresponds to step 3 and ssimply terminates the goal
successfully (because the first clause always fails).

Y ou could change the second clause in choéeo1. pro to

print_countries :- wite("And maybe others."), nl.

which would implement step 3 as specified.

What about step 1? There's no reason why print_countries should have only two
clauses. It can have three, like this:

print_countries :-
wite("Some delightful places to live are"),nl,
fail.
print_countries :-
country(X),
wite(X),nl,
fail.
print_countries :-
wite("And naybe others."), nl.

The fail in the first clause is important — it ensures that, after executing the first
clause, the computer backs up and tries the second clause. It's also important that
the predicates write and nl do not generate alternatives; strictly speaking, the first
clause tries all possible solutions before failing.

This three-clause structure is more of a trick than an established programming
technique. A more fastidious programmer might try to do things this way:

print_countries_with_captions :-
wite("Some delightful places to live are"),nl,
print_countries,
wite("And maybe others."),nl.
print_countries :-
country(X),
wite(X),nl,
fail.

Chapter 6, Repetition and Recursion 127

There's nothing essentially wrong here, but this hypothetica fastidious
programmer has made a mistake.

Exercise
Don't look ahead — figure out what's wrong with this program, and fix it!

Youre right — the problem is that, as written in the latest example,
print_countries will always fail, and print_countries_with_captions will never
get to execute any of the subgoals that follow it. As aresult, And naybe ot hers.
will never be printed.

To fix this, all you need to do is restore the original second clause for
print_countries.

print_countries.

to its original position. If you want the goa print_countries with_captions to
succeed, it must have at least one clause that does not contain fail.

I mplementing Backtracking with L oops

Backtracking is a good way to get all the alternative solutions to a goal. But even
if your goal doesn't have multiple solutions, you can till use backtracking to
introduce repetition. Simply define the two-clause predicate

repeat .
repeat :- repeat.

This tricks Prolog's control structure into thinking it has an infinite number of
different solutions. (Never mind how — after reading about tail recursion, you'll
see how thisworks.) The purpose of repeat isto allow backtracking ad infinitum.

/* Program ch06e02. pro */

/* Uses repeat to keep accepting characters and printing them
until the user presses Enter. */

PREDI CATES
r epeat
typewiter

CLAUSES
repeat .
repeat: -repeat.

128 Visual Prolog Language Tutorial

typewiter:-

repeat,
readchar (Q), /* Read a char, bind Cto it */
wite(C,
C="\r",I. /* Is it a carriage return? fail if not */
goal
typewiter(),nl.

Program chose02. pro shows how repeat works. The rule typewriter .
describes a procedure that accepts characters from the keyboard and prints them
on the screen until the user presses the Enter (Return) key.

typewriter works as follows:

1. Execute repeat (which does nothing).
Then read a character into the variable C.
Then write C.

Then check if Cisacarriage return.

o~ W DN

If so, you're finished. If not, backtrack and look for alternatives. Neither
write nor readchar generates alternative solutions, so backtrack all the way
to repeat, which always has alternative solutions.

6. Now processing can go forward again, reading another character, printing it,
and checking whether it's a carriage return.

Note, by the way, that C looses its binding when you backtrack past r eadchar (),
which bound it. This kind of unbinding is vital when you use backtracking to
obtain alternative solutions to a goal, but it makes it hard to use backtracking for
any other purpose. The reason is that, although a backtracking process can repeat
operations any number of times, it can't "remember" anything from one repetition
to the next. All variables loose their values when execution backtracks over the
steps that established those values. There is no simple way for a repeat loop to
keep a counter, atotal, or any other record of its progress.

Exercises

1. Modify 2 so that, if the user types lower-case letters, they will be displayed
as upper-case.

2. If youd like to play with file /O now, look up the appropriate built-in
predicates and write a program that uses a repeat loop to copy a file
character-by-character. (Refer to chapter 12.)

Chapter 6, Repetition and Recursion 129

Recursive Procedur es

The other way to express repetition is through recursion. A recursive procedureis
one that cals itself. Recursive procedures have no trouble keeping records of
their progress because counters, totals, and intermediate results can be passed
from each iteration to the next as arguments.

The logic of recursion is easy to follow if you forget, for the moment, how
computers work. (Prolog is so different from machine language that ignorance of
computers is often an asset to the Prolog programmer.) Forget for the moment
that the computer is trekking through memory addresses one by one, and imagine
amachine that can follow recipes like this one:

To find the factorial of a nunber N
If Nis 1, the factorial is 1.

O herwise, find the factorial of N1, then nultiply it by N

This recipe says: To find the factorial of 3, you must find the factoria of 2, and,
to find the factorial of 2, you must find the factorial of 1. Fortunately, you can
find the factoria of 1 without referring to any other factorials, so the repetition
doesn't go on forever. When you have the factorial of 1, you multiply it by 2 to
get the factorial of 2, then multiply that by 3 to get the factorial of 3, and you're
done.

In Visua Prolog:
factorial (1, 1) :- I.

factorial (X, FactX) :-
Y = X-1,
factorial (Y, FactY),
Fact X = X*Fact.

A complete program is as follows:
/* Program ch06e03. pro */

/* Recursive programto conpute factorials.
Ordinary recursion, not tail recursion. */

PREDI CATES
factorial (unsigned, real)

CLAUSES
factorial (1,1):-!.

130 Visual Prolog Language Tutorial

factorial (X, FactX): -
Y=X-1,
factorial (Y, Facty),
Fact X = X*Fact .

goal
X=3,
factorial (X FactX).

What the Computer isReally Doing

But wait aminute, you say. How does the computer execute factorial whileit'sin
the middle of executing factorial? If you call factorial with X=3, factorial will
then call itsalf with X=2. Will X then have two values, or will the second value
just wipe out the first, or what?

The answer is that the computer creates a new copy of factorial so that factorial
can call itself asif it were a completely separate procedure. The executable code
doesn't have to be duplicated, of course, but the arguments and internal variables
do.

Thisinformation is stored in an area called a stack frame, which is created every
time aruleis called. When the rule terminates, the stack is reset (unlessit was a
non-deterministic return) and execution continues in the stack frame for the
parent.

Advantages of Recursion
Recursion has three main advantages:

* It can express algorithms that can't conveniently be expressed any other way.
e ltislogicaly smpler than iteration.

* Itisused extensively in list processing.

Recursion is the natural way to describe any problem that contains within itself
another problem of the same kind. Examples include tree search (a tree is made

up of smaller trees) and recursive sorting (to sort alist, partition it, sort the parts,
and then put them together).

Logically, recursive algorithms have the structure of an inductive mathematical
proof. The preceding recursive factorial algorithm, in Program choeeo2. pro,
describes an infinite number of different computations by means of just two
clauses. This makes it easy to see that the clauses are correct. Further, the
correctness of each clause can be judged independently of the other.

Chapter 6, Repetition and Recursion 131

Tail Recursion Optimization

Recursion has one big drawback: It eats memory. Whenever one procedure calls
another, the calling procedure's state of execution must be saved so that it (the
calling procedure) can resume where it left off after the called procedure has
finished. This means that, if a procedure cals itself 100 times, 100 different
states of execution must be stored at once. (The saved state of execution is
known as a stack frame.) The maximum stack size on 16bit platforms, such as
the IBM PC running DOS, is 64K, which will accommodate, at most, 3000 or
4000 stack frames. On 32bit platforms, the stack may theoretically grow to
several GigaBytes; here, other system limitations will set in before the stack
overflows. Anyway, what can be done to avoid using so much stack space?

It turns out that there's a special case in which a procedure can call itself without
storing its state of execution. What if the calling procedure isn't going to resume
after the called procedure finishes?

Suppose the calling procedure calls a procedure as its very last step. When the
called procedure finishes, the calling procedure won't have anything else to do.
This means the calling procedure doesn't need to save its state of execution,
because that information isn't needed any more. As soon as the called procedure
finishes, control can go directly to wherever it would have gone when the calling
procedure finished.

For example, suppose that procedure A calls procedure B, and B calls procedure
C asiits very last step. When B calls C, B isn't going to do anything more. So,
instead of storing the current state of execution for C under B, you can replace
B's old stored state (which isn't needed any more) with C's current state, making
appropriate changes in the stored information. When C finishes, it thinks it was
called by A directly.

Now suppose that, instead of calling C, procedure B calls itself as its very last
step. The recipe says that, when B calls B, the stack frame for the caling B
should be replaced by a stack frame for the called B. Thisisa particularly simple
operation; only the arguments need to be set to new values, and then processing
jumps back to the beginning of the procedure. So, from a procedural point of
view, what happensis very similar to updating the control variablesin aloop.

Thisis called tail recursion optimization, or last-call optimization. Note that for
technical reasons, recursive functions (predicates returning a value, described in
chapter 10) cannot be tail recursive.

132 Visual Prolog Language Tutorial

Making Tail Recursion Work

What does it mean to say that one procedure calls another "as its very last step?”
In Prolog, this means that

1. Thecall isthe very last subgoal of the clause.
2. Thereare no backtracking points earlier in the clause.
Here's an exampl e that satisfies both conditions:

count(N) :-
wite(N, nl,
NewN = N+1,
count (NewN) .

This procedure is tail recursive; it calls itself without alocating a new stack
frame, so it never runs out of memory. As program choeeo4. pro shows, if you
giveit the goa

count (0).

count will print integers starting with 0 and never ending. Eventually, rounding
errors will make it print inaccurate numbers, but it will never stop.

/* Program ch06e04. pro */

/* Tail recursive programthat never runs out of menory */

PREDI CATES
count (ul ong)

CLAUSES
count (N): -
wite('\r',N,
NewN = N+1,
count (NewN) .

GOAL
nl,
count (0).

Exercise

Without looking ahead, modify choeeo4. pro SO that it is no longer tail recursive.
How many iterations can it execute before running out of memory? Try it and
see. (On 32-bit platforms, this will take a considerable length of time, and the
program will most likely not run out of stack space; it, or the system, will run out

Chapter 6, Repetition and Recursion 133

of memory in general. On 16-bit platforms, the number of possible iterations is
directly related to the stack size.

How Not to Do Tail Recursion

Now that you've seen how to do tail recursion right, program choéeos. pr o Shows
you three ways to do it wrong.

1. If the recursive call isn't the very last step, the procedure isn't tail
recursive. For example:

badcount 1(X) : -
wite('\r',X),
NewX = X+1,
badcount 1(NewX) ,
nl.

Every time badcountl calls itself, a stack frame has to be saved so that
control can return to the calling procedure, which has yet to execute its final
nl. So only a few thousand recursive calls can take place before the program
runs out of memory.

2. Another way to lose tail recursion is to leave an alternative untried at the
time the recursive call is made. Then a stack frame must be saved so that, if
the recursive call fails, the calling procedure can go back and try the
dternative. For example:

badcount 2(X) : -
wite('\r',X),
NewX = X+1,
badcount 2(NewX) .
badcount 2(X) : -
X <0,
wite("X is negative.").

Here, the first clause of badcount2 calls itself before the second clause has
been tried. Again, the program runs out of memory after a certain number of
cals.

3. The untried alternative doesn't need to be a separate clause for the recursive
procedure itself. It can equally well be an alternative in some other clause that
it calls. For example:

134 Visual Prolog Language Tutorial

/*

*/

badcount 3(X) : -
wite('\r', X)),
NewX = X+1,
check(NewX) ,
badcount 3(NewX) .

check(2) :- Z >= 0.
check(2) :- Z < 0.

Suppose X is positive, asit normally is. Then, when badcount3 callsitself, the
first clause of check has succeeded, but the second clause of check has not yet
been tried. So badcount3 has to preserve a copy of its stack frame in order to
go back and try the other clause of check if the recursive cal fails.

/* Program ch06e05. pro */

In 32bit nenory architectures, the exanples here
will run for a considerable | ength of tine, occupying |arge anounts
of menory and possibly reduci ng system performance significantly.

PREDI CATES

badcount 1(| ong)
badcount 2(| ong)
badcount 3(| ong)
check(1 ong)

CLAUSES

/*

/*

badcount 1:
The recursive call is not the last step. */

badcount 1(X) : -
wite('\r',X),
NewX = X+1,
badcount 1(NewX) ,
nl.

badcount 2:
There is a clause that has not been tried
at the tine the recursive call is nade. */

badcount 2(X) : -
wite('\r',X),
NewX = X+1,
badcount 2(NewX) .

badcount 2(X) : -
X < 0,
wite("X is negative.").

Chapter 6, Repetition and Recursion 135

/* badcount 3:
There is an untried alternative in a
predicate called before the recursive call. */

badcount 3(X) : -
wite('\r', X)),
NewX = X+1,
check(NewX) ,
badcount 3(NewX) .

check(2): -
Z >= 0.

check(2): -
Z < 0.

Cutstothe Rescue

By now, you may think it's impossible to guarantee that a procedure is tail
recursive. After all, it's easy enough to put the recursive call in the last subgoal of
the last clause, but how do you guarantee there are no alternatives in any of the
other procedures that it calls?

Fortunately, you don't have to. The cut (1) alows you to discard whatever
aternatives may exist. You'll need to use the check_det ermcompiler directive to
guide you through setting the cuts. (Compiler directives are described in the
chapter 17.)

Y ou can fix up badcount3 as follows (changing its name in the process):

cutcount3(X) :-
wite('\r',X),
NewX = X+1,
check(NewX) ,
!,
cut count 3(NewX) .

leaving check asit was.

The cut means "burn your bridges behind you" or, more precisely, "once you
reach this point, disregard alternative clauses for this predicate and aternative
solutions to earlier subgoals within this clause." That's precisely what you need.
Because alternatives are ruled out, no stack frame is needed and the recursive call
can go inexorably ahead.

A cut isequally effective in badcount2, by negating and moving the test from the
second clause to the first:

136 Visual Prolog Language Tutorial

cutcount2(X) :-
X >= 0, !
wite('\r',X),
NewX = X+1
cut count 2(NewX) .

cutcount2(X) :-
wite("X is negative.")

A cut isreally al about making up ones mind. You set a cut whenever you can
look at non-deterministic code, and say "Yes! Go ahead!" — whenever it's
obvious that alternatives are of no interest. In the original version of the above
example, which tries to illustrate a situation where you have to decide something
about X (thetest x < o in the second clause), the second clause had to remain an
option as the code in the first clause didn't test X. By moving the test to the first
clause and negating it, a decision can be reached already there and a cut set in
accordance: "Now | know | don't want to write that X is negative."

The same applies to cutcount3. The predicate check illustrates a situation where
you want to do some additional processing of X, based on its sign. However, the
code for check is, in this case for illustration, non-deterministic, and the cut after
the call to it is all about you having made up your mind. After the call to check,
you can say "Yes! Go ahead!" However, the above is dightly artificial —it would
probably be more correct for check to be deterministic:

check(2) :- Z>=0, !, ... %processing using Z
check(2) :- 2 <0, ... Y%rocessing using Z

And, since the test in the second clause of check is the perfect negation of the test
in the first, check can be further rewritten as:

check(2) :- Z2>=0, !, %processing using Z
check(2) :- ... %processing using Z

When a cut is executed, the computer assumes there are no untried alternatives
and does not create a stack frame. Program choseos. pro contains modified
versions of badcount2 and badcount3:

/* Program ch06e06. pro */

/* Shows how badcount2 and badcount3 can be fixed by adding cuts to
rule out the untried clauses. These versions are tail recursive. */

PREDI CATES
cut count 2(1 ong)
cut count 3(1 ong)
check(1 ong)

Chapter 6, Repetition and Recursion 137

CLAUSES

/* cutcount2:
There is a clause that has not been tried
at the time the recursive call is made. */

cutcount 2(X): -

X>=0,

!,
wite('\r', X)),
NewX = X + 1,

cut count 2(NewX) .
cutcount2(_): -
wite("X is negative.").

/* cutcount 3:
There is an untried alternative in a
clause called before the recursive call. */

cutcount 3(X): -
wite('\r', X)),
NewX = X+1,
check(NewX) ,
!,
cut count 3(NewX) .

check(2):-zZ >= 0.
check(2):-Z < 0.

Unfortunately, cuts won't help with badcountl, whose need for stack frames has
nothing to do with untried alternatives. The only way to improve badcountl
would be to rearrange the computation so that the recursive call comes at the end
of the clause.

Using Arguments as L oop Variables

Now that you've mastered tail recursion, what can you do about loop variables
and counters? To answer that question, well do a bit of Pascal-to-Prolog
trandation, assuming that you're familiar with Pascal. Generally, the results of
direct tranglations between two languages, whether natural or programming, are
poor. The following isn't too bad and serves as areasonable illustration of strictly
imperative programming in Prolog, but you should never write Prolog programs
by blind trandation from another language. Prolog is a very powerful and
expressive language, and properly written Prolog programs will display a
programming style and problem focus quite different from what programs in
other languages do.

138 Visual Prolog Language Tutorial

In the "Recursion" section, we developed a recursive procedure to compute
factorias; in this section we'll develop an iterative one. In Pascal, this would be:

P:=1;
for 1 :=1to Ndo P := P*l;
FactN : = P;

If you're unfamiliar with Pascal, the : - is the assignment, read as "becomes'.
There are four variables here. N is the number whose factorial will be calculated;
FactN isthe result of the calculation; | isthe loop variable, counting from 1to N;
and P is the variable in which the product accumulates. A more efficient Pascal
programmer might combine FactN and P, but in Prolog it pays to be fastidiously
tidy.

The first step in trandlating this into Prolog is to replace for with asimpler loop
statement, making what happens to | in each step more explicit. Here is the
algorithm recast as awhile loop:

P =1 /* Initialize P and | */
=1
while | <= N do /* Loop test */
begi n
P = P*I; /* Update P and | */
I = 1+1
end;
FactN : = P; /* Return result */

shows the Prolog translation constructed from this Pascal while loop.
/* Program ch06e07.pro */

PREDI CATES
factorial (unsigned, | ong)
factorial _aux(unsigned, | ong, unsi gned, | ong)

/* Numbers likely to becone |arge are declared as |ongs. */

CLAUSES
factorial (N, FactN): -
factorial _aux(N, FactN, 1, 1).

Chapter 6, Repetition and Recursion 139

factorial _aux(N, FactN,|,P): -

I <= N!,

NewP = P * |,

Newl =1 + 1,

factorial _aux(N, FactN, Newi, NewP).
factorial _aux(N, FactN, |, P) :-

I >N,

FactN = P.

Let'slook at thisin greater detail.

The factorial clause has only N and FactN as arguments; they are its input and
output, from the viewpoint of someone who is using it to find a factorial. A
second clause, factorial _aux(N, FactN, I, P), actualy performs the recursion;
its four arguments are the four variables that need to be passed along from each
step to the next. So factorial ssimply invokes factorial_aux, passing to it N and
FactN, along with the initial valuesfor | and P, like so:

factorial (N, FactN) :-
factorial _aux(N, FactN, 1, 1).

That's how | and P get initialized.

How can factorial "pass along” FactN? It doesn't even have a value yet! The
answer isthat, conceptually, all Visual Prolog is doing here is unifying a variable
called FactN in one clause with a variable called FactN in another clause. The
same thing will happen whenever factorial_aux passes FactN to itself as an
argument in a recursive call. Eventualy, the last FactN will get a value, and,
when this happens, all the other FactN-s, having been unified with it, will get the
same value. We said "conceptually" above, because in redlity there is only one
FactN. Visual Prolog can determine from the source code that FactN is never
really used before the second clause for factorial_aux, and just shuffles the same
FactN around all the time.

Now for factorial_aux. Ordinarily, this predicate will check that | isless than or
equal to N — the condition for continuing the loop — and then call itself
recursively with new values for | and P. Here ancther peculiarity of Prolog
assertsitsalf. In Prolog there is no assignment statement such as

P=P+1
which is found in most other programming languages. You can't change the

value of a Prolog variable. In Prolog, the above is as absurd as in algebra, and
will fail. Instead, you have to create a new variable and say something like

NewP = P + 1

140 Visual Prolog Language Tutorial

So here's the first clause:

factorial _aux(N, FactN, I, P) :-
| <= N, !,
NewP = P*|,
Newl = |+1,

factorial _aux(N, FactN, New , NewP).

Asin cutcount2, the cut enables last-call optimization to take effect, even though
the clause isn't the last in the predicate.

Eventually | will exceed N. When it does, processing should unify the current
value of P with FactN and stop the recursion. This is done in the second clause,
which will be reached when thetest | <= N in thefirst clause fails:

factorial _aux(N, FactN, I, P) :-
I >N,
FactN = P.

But there is no need for FactN = P to be a separate step; the unification can be
performed in the argument list. Putting the same variable name in the positions
occupied by FactN and P requires the arguments in these positions to be matched
with each other. Moreover, thetest | > N isredundant since the opposite has been
tested for in the first clause. This givesthe final clause:

factorial __aux(_, FactN, _, FactN).

Exercises

1. Thefollowing isamore elegant version of factorial.
/* Program ch06e08. pro */

PREDI CATES
factorial (unsigned, | ong)
factorial (unsigned, | ong, unsi gned, | ong)
/* Nunmbers likely to becone |arge are declared as |ongs. */

CLAUSES
factorial (N, FactN): -
factorial (N, FactN, 1,1).

Chapter 6, Repetition and Recursion 141

factorial (N, FactN, N, FactN): -
.
factorial (N, FactN, |, P): -
Newl = I|+1
NewP = P*New ,
factorial (N, FactN, Newl, NewP).

Load and run this program. Carefully look at the code in the second clause of
factorial/4. It takes advantage of the fact that the first time it's called the
counter variable | always has the value 1. This allows the multiplication step
to be carried out with the incremented counter variable Newl rather than I,
saving one recursion/iteration. Thisisreflected in the first clause.

2. Write a tail recursive program that behaves like 2 but doesn't use
backtracking.

3. Writeatail recursive program that prints a table of powers of 2, like this:

N 2"N
1 2
2 4
3 8
4 16
10 1024

Makeit stop at 10 as shown here.

4. Write a tail recursive program that accepts a number as input and can end in
either of two ways. It will start multiplying the number by itself over and over
until it either reaches 81 or reaches a number greater than 100. If it reaches
81, it will print yes; if it exceeds 100, it will print no.

Recursive Data Structures

Not only can rules be recursive; so can data structures. Prolog is the only widely
used programming language that allows you to define recursive data types. A
data type is recursive if it allows structures to contain other structures like
themselves.

The most basic recursive data type is the list, athough it doesn't immediately
look recursively constructed. A lot of list-processing power is built into Prolog,

142 Visual Prolog Language Tutorial

but we won't discuss it here; lists are such an important part of Prolog that there
isawhole chapter devoted to them, chapter 7.

In this chapter, we invent arecursive data type, implement it, and use it to write a
very fast sorting program. The structure of this invented recursive datatype is a
tree (Figure 6.1). Crucially, each branch of the tree is itself atree; that's why the
structure isrecursive.

Cat hy
M chael Mel ody
Charl es Hazel Jim El eanor

Figure 6.1: Part of a Family Tree

Treesas a Data Type

Recursive types were popularized by Niklaus Wirth in Algorithms + Data
Sructures = Programs. Wirth derived Pascal from ALGOL 60 and published this
work in the early 70's. He didn't implement recursive types in Pascal, but he did
discuss what it would be like to have them. If Pascal had recursive types, you
would be able to define a tree as something like this:

tree = record /* Not correct Pascal! */
nane: string[80];
left, right: tree
end

This code, trandlated into natural language, means: "A tree consists of a name,
which isastring, and the left and right subtrees, which are trees."

The nearest approach to thisin Pascal isto use pointers and say

Chapter 6, Repetition and Recursion 143

treeptr = ~tree

tree = record
nane: string[80];
left, right: treeptr
end

But notice a subtle difference: This code deals with the memory representation of
atree, not the structure of the tree itself. It treats the tree as consisting of cells,
each containing some data plus pointers to two more cells.

Visual Prolog allows truly recursive type definitions in which the pointers are
created and maintained automatically. For example, you can define a tree as
follows:

DOVAI NS
treetype = tree(string, treetype, treetype)

This declaration says that a tree will be written as the functor, tree, whose
arguments are a string and two more trees.

But thisisn't quite right; it provides no way to end the recursion, and, in real life,
the tree does not go on forever. Some cells don't have links to further trees. In
Pascal, you could express this by setting some pointers equal to the special value
nil, but pointers are an implementation issue that ordinarily doesn't surface in
Prolog source code. Rather, in Prolog we define two kinds of trees: ordinary ones
and empty ones. This is done by alowing a tree to have either of two functors:
tree, with three arguments, or empty, with no arguments.

DOVAI NS
treetype = tree(string, treetype, treetype) ; enpty

Notice that the names tree (a functor that takes three arguments) and empty (a
functor taking no arguments) are created by the programmer; neither of them has
any pre-defined meaning in Prolog. You could equally well have used xxx and

yyy.
Thisishow thetreein Figure 6.1 could appear in a Prolog program:

tree("Cathy",
tree("M chael "
tree("Charles", enpty, enpty)
tree("Hazel", enpty, enpty))
tree(" Mel ody"
tree("Jint, enpty, enpty)
tree("El eanor", enpty, enpty)))

144 Visual Prolog Language Tutorial

Thisisindented here for readability, but Prolog does not require indentation, nor
are trees indented when you print them out normally. Another way of setting up
this same data structure is:

tree(" Cat hy"

tree("Mchael", tree("Charles", enpty, enpty), tree("Hazel", enpty,
enpty))

tree("Mel ody", tree("Jint, enpty, enpty), tree("El eanor", enpty,
enpty)))

Note that thisis not a Prolog clause; it isjust a complex data structure.

TraversngaTree

Before going on to the discussion of how to create trees, first consider what you'll
do with a tree once you have it. One of the most frequent tree operations is to
examine all the cells and process them in some way, either searching for a
particular value or collecting all the values. This is known as traversing the tree.
One basic algorithm for doing so is the following:

1. If thetreeisempty, do nothing.

2. Otherwise, process the current node, then traverse the left subtree, then
traverse the right subtree.

Like the tree itself, the algorithm is recursive: it treats the left and right subtrees
exactly like the original tree. Prolog expresses it with two clauses, one for empty
and one for nonempty trees:

traverse(enpty). /* do nothing */

traverse(tree(X, Y, 2)) :-
do sonething with X
traverse(Y),
traverse(2).

Chapter 6, Repetition and Recursion 145

AN

Charl es Hazel Jim El eanor

Figure 6.2: Depth-First Traversal of the Treein Figure 6.1

Thistree traversal algorithm is known as depth-first search because it goes as far
as possible down each branch before backing up and trying another branch
(Figure 6.2). To see it in action, look at program choéeo9. pr o, Which traverses a
tree and prints all the elements as it encounters them. Given the tree in Figures
6.1 and 6.2, ch06e09. pro prints

Cat hy
M chael
Charl es
Haze
Mel ody
Jim

El eanor

Of course, you could easily adapt the program to perform some other operation
on the elements, rather than printing them.

/* Program ch06e09. pro */

/* Traversing a tree by depth-first search
and printing each element as it is encountered */

DOVAI NS
treetype = tree(string, treetype, treetype) ; enpty()

146 Visual Prolog Language Tutorial

PREDI CATES
traverse(treetype)

CLAUSES
traverse(enpty).

traverse(tree(Nane, Left, Right)): -
wite(Nane,'\n'),
traverse(Left),
traverse(Ri ght).

GOAL
traverse(tree("Cat hy",

tree("M chael ",
tree("Charles", enpty, enpty),
tree("Hazel", enpty, enpty)),
tree(" Mel ody",
tree("Jint, enpty, enpty),
tree("El eanor", enpty, enpty)))).

Depth-first search is strikingly similar to the way Prolog searches a knowledge
base, arranging the clauses into a tree and pursuing each branch until a query
fails. If you wanted to, you could describe the tree by means of a set of Prolog
clauses such as:

father_of ("Cathy", "Mchael").
not her _of (" Cat hy", "Mel ody").
father_of ("M chael", "Charles").
nmot her _of ("M chael ", "Hazel").

This is preferable if the only purpose of the tree is to express relationships
between individuals. But this kind of description makes it impossible to treat the
whole tree as a single complex data structure; as you'll see, complex data
structures are very useful because they simplify difficult computational tasks.

CreatingaTree

One way to create a tree is to write down a nested structure of functors and
arguments, as in the preceding example (Program choeeo9. pro). Ordinarily,
however, Prolog creates trees by computation. In each step, an empty subtree is
replaced by a nonempty one through Prolog's process of unification (argument
matching).

Creating a one-cell tree from an ordinary dataitemistrivial:

create_tree(N, tree(N, enmpty, enpty)).

Chapter 6, Repetition and Recursion 147

This says: "If N is a data item, then tree(N, enpty, enpty) iS a one-cell tree
containing it."

Building a tree structure is amost as easy. The following procedure takes three
trees as arguments. It inserts the first tree as the left subtree of the second tree,
giving the third tree as the resuilt:

insert_left(X tree(A _, B), tree(A X B)).

Notice that this rule has no body — there are no explicit steps in executing it. All
the computer has to do is match the arguments with each other in the proper
positions, and the work is done.

Suppose, for example, you want to insert tree("M chael ", enpty, enpty) asthe
left subtree of tree("cathy”, enpty, enpty).Todo this, just execute the goal

insert_left(tree("Mchael", enpty, enpty),

tree("Cathy", enpty, enpty),
7

and T immediately takes on the value
tree("Cathy", tree("Mchael", enpty, enpty), enpty).
This gives a way to build up trees step-by-step. Program choeeio. pro

demonstrates this technique. In real life, the items to be inserted into the tree
could come from external input.

/* Program ch06el10. pro */

/* * * *x % *x * *

* Sinple tree-buil ding procedures *
* create_tree(A B) puts Ain the data field of a one-cell tree *
* giving Binsert_left(A B, C inserts A as left subtree of B *
* giving Cinsert_right(A B, C inserts A as right subtree of B *
* giving C *

* * *x * *x */

DOVAI NS
treetype = tree(string,treetype,treetype) ; enpty()

PREDI CATES
create_tree(string,treetype)
insert_left(treetype,treetype,treetype)
insert_right(treetype, treetype, treetype)
run

148 Visual Prolog Language Tutorial

CLAUSES
create_tree(A tree(A enpty, enpty)).
insert_left(X tree(A _,B),tree(A X B)).
insert_right(X tree(A B, _),tree(A B X)).

run: -
% First create some one-cell trees
create_tree("Charles", Ch),
create_tree("Hazel ", H),
create_tree("Mchael ", M),
create_tree("Jint,J),
create_tree("El eanor", E),
create_tree(" Ml ody", M),
create_tree("Cathy", Ca),

% then |ink themup
insert_left(Ch, M, M2),
insert_right(H M2, M3),
insert_left(J, M, Me2),
insert_right(E M2, M3),
insert_left(M3, Ca, Ca2),
insert_right (M3, Ca2, Ca3),

% and print the result
wite(Ca3,'\n").

GOAL
run.

Notice that there is no way to change the value of a Prolog variable once it is
bound. That is why chose10. pro uses so many variable names; every time you
create a new value, you need a new variable. The large number of variable names
here is unusual; more commonly, repetitive procedures obtain new variables by
invoking themselves recursively, since each invocation has a distinct set of
variables. Notice that the Test Goa utility has restriction on the number of
variables used in the goal (<12), this is why the wrapping predicate run should
be used.

Binary Search Trees

So far, we have been using the tree to represent relationships between its
elements. Of course, thisis not the best use for trees, since Prolog clauses can do
the same job. But trees have other uses.

Chapter 6, Repetition and Recursion 149

Trees provide agood way to store data items so that they can be found quickly. A
tree built for this purpose is called a search tree; from the user's point of view,
the tree structure carries no information — the tree is merely afaster alternative to
alist or array. Recall that, to traverse an ordinary tree, you look at the current cell
and then at both of its subtrees. To find a particular item, you might have to ook
at every cell in the whole tree.

The time taken to search an ordinary tree with N elementsis, on the
average, proportional to N.

A binary search tree is constructed so that you can predict, upon looking at any
cell, which of its subtrees a given item will be in. This is done by defining an
ordering relation on the data items, such as alphabetical or numerical order. Items
in the left subtree precede the item in the current cell and, in the right subtree,
they follow it. Figure 6.3 shows an example. Note that the same names, added in
a different order, would produce a somewhat different tree. Notice aso that,
athough there are ten names in the tree, you can find any of them in —at most —
five steps.

Grasso
/\
Bl ackwel | Ranki n
Ant hony Chri shol m Mot t Tubmann
/\
Lovel ace OKeeffe
\
St ant on

Figure 6.3: Binary Search Tree

150 Visual Prolog Language Tutorial

Every time you look at a cell in a binary search tree during a search, you
eliminate half the remaining cells from consideration, and the search proceeds
very quickly. If the size of the tree were doubled, then, typically, only one extra
step would be needed to search it.

The time taken to find an item in a binary search tree is, on the average,
proportional to log2 N (or, in fact, proportional to log N with logarithmsto
any base).

To build the tree, you start with an empty tree and add items one by one. The
procedure for adding an item is the same as for finding one: you simply search
for the place where it ought to be, and insert it there. The algorithm is as follows:

If the current node is an empty tree, insert the item there.

Otherwise, compare the item to be inserted and the item stored in the current
node. Insert the item into the left subtree or the right subtree, depending on
the result of the comparison.

In Prolog, this requires three clauses, one for each situation. The first clauseis

insert(Newltem enpty, tree(Newtem enpty, enpty) :- !.

Trandated to natural language, this code says "The result of inserting Newltem
into empty iStree(Newitem enpty, enpty)." The cut ensures that, if this clause
can be used successfully, no other clauses will be tried.

The second and third clauses take care of insertion into nonempty trees:

insert(Newitem tree(El enent, Left, Right),
tree(El ement, NewLeft, R ght) :-
Newl t em < El enent,
b,
insert(Newitem Left, NewlLeft).

insert(Newitem tree(El enent, Left, Right),
tree(El ement, Left, NewR ght) :-
insert(Newitem Right, NewR ght).

If Newltem < Element, you insert it into the left subtree; otherwise, you insert it
into the right subtree. Notice that, because of the cuts, you get to the third clause
only if neither of the preceding clauses has succeeded. Also notice how much of
the work is done by matching arguments in the head of the rule.

Tree-Based Sorting

Once you have built the tree, it is easy to retrieve al the items in aphabetical
order. The algorithm is again a variant of depth-first search:

Chapter 6, Repetition and Recursion 151

1. If thetreeisempty, do nothing.

2. Otherwise, retrieve al the items in the | eft subtree, then the current e ement,
then all the itemsin the right subtree.

Or, in Prolog:
retrieve_all (enpty). /* Do nothing */

retrieve_all(tree(ltem Left, Right)) :-
retrieve_all (Left),
do_sonmething_to(ltem,
retrieve_all (Right).

Y ou can sort a sequence of items by inserting them into atree and then retrieving
them in order. For N items, this takes time proportional to N log N, because both
insertion and retrieval take time proportional to log N, and each of them hasto be
done N times. Thisisthe fastest known sorting algorithm.

Example

Program choee11. pro uses this technique to alphabetize character input. In this
example we use some of Visua Prolog's standard predicates we haven't
introduced before. These predicates will be discussed in detail in later chapters.

/* Program chO6ell. pro */

DOVAI NS
chartree = tree(char, chartree, chartree); end

PREDI CATES
nondet erm do(chartree)
action(char, chartree, chartree)
create_tree(chartree, chartree)
insert(char, chartree, chartree)
wite tree(chartree)
nondet er m r epeat

152 Visual Prolog Language Tutorial

CLAUSES
do(Tree): -

repeat, nl,
Vwite(“***“),nl,
wite("Enter 1 to update tree\n"),
wite("Enter 2 to show tree\n"),
wite("Enter 7 to exit\n"),
Vwite(“***“),nl,
wite("Enter nunber - "),
readchar (X), nl,
action(X, Tree, NewTlree),
do(NewTr ee) .

action('1l', Tree, NewTree): -
wite("Enter characters or # to end: "),
create_Tree(Tree, Newlree).
action('2',Tree, Tree): -
wite Tree(Tree),
wite("\nPress a key to continue"),
readchar(_),nl.
action('7', _, end):-
exit.

create_Tree(Tree, Newlree): -
readchar (Q),
C>' #
b,
wite(C " "),
insert(C, Tree, TenpTree),
create_Tree(TenpTree, Newlree).
create_Tree(Tree, Tree).

i nsert (New, end, tree(New, end, end)) : -
I,
insert(New, tree(El ement, Left, Right),tree(El enent, NewLeft, Right)): -

New<El enent ,
|

insert(New, Left, NewLeft).
insert(New, tree(El ement, Left, Right),tree(El enent, Left, NewRi ght)): -

i nsert (New, Ri ght, NewRi ght).

wite_Tree(end).

wite Tree(tree(ltemLeft,Right)):-
wite Tree(Left),
wite(ltem " "),
wite Tree(Right).

Chapter 6, Repetition and Recursion 153

repeat .
repeat: -repeat.

GOAL
Wite("x****xxxxkkxxxx Character tree sort **xx**xdxxaksdkdxxxxsll) n|
do(end).

Load and run Program chose11. pro and watch how Visual Prolog does tree-based
sorting on a sequence of characters.

Exercises

1. Program choee12. pro iSSimilar to choee11. pr o, but more complex. It uses the
same sorting technique to aphabetize any standard text file, line by line.
Typically it's more than five times faster than "SORT.EXE", the sort
program provided by DOS, but it's beaten by the highly optimized "sort" on
UNIX. Nevertheless, tree-based sorting is remarkably efficient.

In this example we use some of the predicates from Visual Prolog's file
system, to give you a taste of file redirection. To redirect input or output to a
file, you must tell the system about the file; you use openread to read from
the file or openwrite to write to it. Once files are open, you can switch I/O
between an open file and the screen with writedevice, and between an open
file and the keyboard with readdevice. These predicates are discussed in detail
later in chapter 12.

Load and run Program chose12. pro. When it prompts File to read type in the
name of an existing text file; the program will then alphabetize that file, line
by line.
/* Program ch06el2. pro */
DOMAI NS

treetype = tree(string, treetype, treetype) ; enpty
file infile ; outfile

PREDI CATES
nmai n
read_i nput (treetype)
read_i nput _aux(treetype, treetype)
insert(string, treetype, treetype)
write_output(treetype)

154 Visual Prolog Language Tutorial

CLAUSES

main ;-
wite("PDC Prolog Treesort"),nl,
wite("File to read: "),
readl n(ln),nl,
openread(infile, In), /* open the specified file for reading */

wite("File to wite: "),
readl n(Qut), nl,
openwite(outfile, CQut),
readdevi ce(infile),

/* redirect all read operations to the opened file */
read_i nput (Tree),
writedevice(outfile),

/* redirect all wite operations to the opened file */
write_output(Tree),
closefile(infile), /* close the file opened for reading */
closefile(outfile).

/* * % *x % % * *

* read_i nput (Tree) *
* reads lines fromthe current input device until EOF, then *
* instantiates Tree to the binary search tree built *
* therefrom *

* % *x % */

read_i nput (Tree): -
read_i nput _aux(enpty, Tree).

/* * % % % % % % % % % % % *x % % % % % % % % % % % % % % % % *x %

* read_i nput _aux(Tree, NewTree) *
* reads a line, inserts it into Tree giving Newlree, *
* and calls itself recursively unless at EOF. *

* % * % */

read_i nput _aux(Tree, NewTree): -
readl n(S),
|

insert(S, Tree, Treel),

read_i nput _aux(Treel, NewTree).
read_i nput _aux(Tree, Tree). /* The first clause fails at EOF. */
/********************************

* insert(El enment, Tree, NewTlree) *
* inserts Elenent into Tree giving Newlree. *

* % * % */

insert(Newltem enpty, tree(Newltemenpty, enpty)):-!.

Chapter 6, Repetition and Recursion 155

insert(Newltemtree(El ement, Left, Right),tree(El enment, NewLeft, Right)):-
Newi t em < El enent,
!,
insert(Newltem Left, NewLeft).

insert(Newltemtree(El enent, Left, Right),tree(El ement, Left, NewRi ght)): -
insert(Newtem Right, NewRight).

/* * *x *x % *x * %

*

* wite_output(Tree)
* wites out the elenments of Tree in al phabetical order. *

* % *x % *x * % */

wite_output(enpty). /* Do nothing */
wite_output(tree(ltemLeft,Right)):-
write_output(Left),

wite(lten), nl,
write_output(Right).

GOAL
mai n, nl .

2. Use recursive data structures to implement hypertext. A hypertext is a
structure in which each entry, made up of several lines of text, is accompanied
by pointers to several other entries. Any entry can be connected to any other
entry; for instance, you could get to an entry about Abraham Lincoln either
from "Presidents" or from "Civil War."

To keep things simple, use one-line entries (strings) and let each of them
contain a pointer to only one other entry.

Hint: Start with

DOVAI NS
entrytype = enpty() ; entry(string, entry)

Build alinked structure in which most of the entries have a nonempty second
argument.

3. Now, take your hypertext implementation and redo it using Prolog clauses.
That is, use clauses (rather than recursive data structures) to record which
entry follows which.

156 Visual Prolog Language Tutorial

Summary

These are the major points covered in this chapter:

1. InProlog there are two ways to repeat the same clause: through backtracking
and recursion. By failing, Prolog will backtrack to find a new piece of data
and repeat the clause until there are no more options. Recursion is the
process of aclause calling itself.

2. Backtracking is very powerful and memory efficient, but variables are freed
after each iteration, so their values are lost. Recursion allows variables to be
incremented, but it is not memory efficient.

3. However, Visua Prolog does tail recursion elimination, which relieves the
memory demands of recursion. For Visual Prolog to achieve tail recursion
elimination, the recursive call must be the last subgoal in the clause body.

Chapter 6, Repetition and Recursion 157

CHAPTER 7

Lists and Recursion

List processing — handling objects that contain an arbitrary number of elements —
is a powerful technique in Prolog. In this chapter, we explain what lists are and
how to declare them, then give several examples that show how you might use
list processing in your own applications. We aso define two well-known Prolog
predicates — member and append — while looking at list processing from both a
recursive and a procedural standpoint.

After that, we introduce findall, a Visual Prolog standard predicate that enables
you to find and collect all solutions to a single goal. We round out this chapter
with a discussion of compound lists — combinations of different types of
elements — and an example of parsing by difference lists.

What IsaList?

In Prolog, alist is an object that contains an arbitrary number of other objects
within it. Lists correspond roughly to arrays in other languages, but, unlike an
array, alist does not require you to declare how big it will be before you use it.

There are other ways to combine several objects into one, of course. If the
number of objects to be combined is known in advance, you can make them the
arguments of a single compound data structure. And even if the number of
objects is unpredictable, you can use a recursive compound data structure, such
as a tree. But lists are usually easier to use because the language provides a
concise notation for them.

A list that contains the numbers 1, 2, and 3 iswritten as
[1, 2, 3]
Each item contained in the list is known as an element. To form a list data

structure, you separate the elements of alist with commas and then enclose them
in square brackets. Here are some examples:

[dog, cat, canary]
[*valerie ann", "jennifer caitlin", "benjam n thomas"]

158 Visual Prolog Language Tutorial

Declaring Lists

To declare the domain for alist of integers, you use the domains declaration, like
this:

DOVAI NS
integerlist = integer*

The asterisk means "list of"; that is, integer* means "list of integers.”

Note that the word list has no special meaning in Visual Prolog. You could
equally well have called your list domain zanzibar. It's the asterisk, not the name,
that signifiesalist domain.

The elements in a list can be anything, including other lists. However, al
elements in a list must belong to the same domain, and in addition to the
declaration of the list domain there must be a domains declaration for the
elements:

DOVAI NS
el enentlist = el enents*
el ement s = ...

Here elements must be equated to a single domain type (for example: integer,
real, or symbol) or to a set of alternatives marked with different functors. Visual
Prolog does not alow you to mix standard types in a list. For example, the
following declarations would not properly indicate a list made up of integers,
reals, and symbols:

el ementlist = el ements*
el enents = integer; real; synbol /* Incorrect */

The way to declare alist made up of integers, reals, and symbols is to define a
single domain comprising al three types, with functors to show which type a
particular element belongs to. For example:

el enentlist = el enents*
elenents = i(integer); r(real); s(synbol)
/* the functors are i, r, and s */

(For more information about this, refer to "Compound Lists' later in this
chapter.)

Heads and Tails

A listisreally arecursive compound object. It consists of two parts: the head, of
list which is the first element, and the tail, which is a list comprising all the

Chapter 7, Lists and Recursion 159

subsequent elements. The tail of a list is always a list; the head of a list is an
element. For example,

thehead of [a, b, c] ISa
thetall of [a, b, c] iS[b, c]
What happens when you get down to a one-element list? The answer is that
thehead of [c] isc
thetail of [c] IS []

If you take the first element from the tail of a list enough times, you'll
eventually get down to the empty list ([1).

The empty list can't be broken into head and tail.

This meansthat, conceptually, lists have atree structure just like other compound
objects. Thetree structureof [a, b, ¢, d] iS
list
/ \
a list
/ \
b l'ist
/ \
C list
/ \
d []
Further, a one-element list such as [a] is not the same as the element that it
contains because, simple as it l0oks, [a] is really the compound data structure
shown here:
list
/ \
a []

List Processing

Prolog provides a way to make the head and tail of a list explicit. Instead of
separating elements with commas, you can separate the head and tail with a
vertical bar (]). For instance,

[a, b, c] isequivalentto[a|[b, c]]

160 Visual Prolog Language Tutorial

and, continuing the process,
[al[b, c]] isequivalentto[al[b|[c]]]
whichisequivalenttofal[bl[c|[]]]]

Y ou can even use both kinds of separators in the same list, provided the vertical
bar is the last separator. So, if you really want to, you can write[a, b, ¢, d] as
[a, b|[c, d]]. Table7.1 gives more examples.

Table 7.1; Heads and Tails of Lists

List Head Tail

[*a', '"b'", '"c'] ‘a' ['b'", '"c']

['a 1] ‘a' [1 /* an enpty list */
[1] undef i ned undef i ned

[f1, 2 31, [2 3 4], [1] [1, 2 3] [f2 3 4. [1]

Table 7.2 gives severa examples of list unification.

Table 7.2: Unification of Lists

List 1 List 2 Variable Binding

[X Y, Z] [egbert, eats, icecrean X=egbert, Y=eats, Z=icecream
7] (X1 Y] X=7, Y=[]

[1, 2, 3, 4] (X, Y| Z X=1, Y=2, Z=[3, 4]

[1, 2] [3] X fail

Using Lists

Because a list is really a recursive compound data structure, you need recursive
algorithms to process it. The most basic way to process alist is to work through
it, doing something to each element until you reach the end.

An algorithm of this kind usually needs two clauses. One of them sayswhat to do
with an ordinary list (one that can be divided into a head and a tail). The other
says what to do with an empty list.

Chapter 7, Lists and Recursion 161

Writing Lists

For example, if you just want to print out the elements of the list, here's what you
do:

/* Program ch07e01. pro */
DOVAI NS
list = integer* /* or whatever type you wish to use */

PREDI CATES
wite a_list(list)

CLAUSES
wite a_ list([]). /* If the list is enpty, do nothing nmore. */

wite a list([HT]):-
/* Match the head to H and the tail to T, then... */
wite(H,nl,
wite a_list(T).

GOAL
wite a_ list([1, 2, 3]).

Here arethetwo write_a_list clauses described in natural language:
To wite an enpty list, do nothing.

QO herwise, to wite alist, wite its head (which
is asingle elenment), then wite its tail (a list).

Thefirst time through, the goal is:

wite_a_list([1, 2, 3]).
This matches the second clause, with H=1 and T=[2, 3]; this writes 1 and then
callswrite_a list recursively with the tail of thelist:

wite a_ list([2, 3]). /* This is wite_a_list(T). */
This recursive call matches the second clause, this time with H=2 and 1=[3], so it
writes 2 and again callswrite_a_list recursively:

wite_a_ list([3]).

162 Visual Prolog Language Tutorial

Now, which clause will this goal match? Recall that, even though the list [3] has
only one element, it does have a head and tail; the head is 3 and the tail is[]. So
again the goal matches the second clause, with H=3 and T=[] . Hence, 3 is written
and write_a_listiscalled recursively like this:

wite_ a_ list([]).
Now you see why this program needs the first clause. The second clause won't
match this goal because [] can't be divided into head and tail. So, if the first

clause weren't there, the goal would fail. Asit is, the first clause matches and the
goal succeeds without doing anything further.

Exercise

Iswrite_a list tail-recursive? Would it be if the two clauses were written in the
opposite order?

Counting List Elements

Now consider how you might find out how many elements are in alist. What is
the length of alist, anyway? Here'sa simple logical definition:

Thelength of [] isO.
The length of any other list is 1 plus the length of its tail.

Can you implement this? In Prolog it's very easy. It takes just two clauses:
/* Program ch07e02. pro */

DOVAI NS
list = integer* /* or whatever type you want to use */

PREDI CATES
I ength_of (list,integer)

CLAUSES
length_of ([], 0).
length_of ([_|T],L):-
| engt h_of (T, Tai | Lengt h),
L = Tail Length + 1.

Take alook at the second clause first. Crucialy, [_| 11 will match any honempty
list, binding T to the tail of the list. The value of the head is unimportant; aslong
asit exists, it can be counted it as one element.

So the goal:

Chapter 7, Lists and Recursion 163

length_of ([1, 2, 3], L).

will match the second clause, with T=[2, 3]. The next step is to compute the
length of T. When thisis done (never mind how), TailLength will get the value 2,
and the computer can then add 1 to it and bind L to 3.

So how is the middle step executed? That step was to find the length of [2, 3] by
satisfying the goal

length_of ([2, 3], TaillLength).

In other words, length_of calls itself recursively. This goal matches the second
clause, binding

e [3] inthegoa to Tintheclause and
e TailLengthinthegoal to L inthe clause.

Recall that TailLength in the goal will not interfere with TailLength in the clause,
because each recursive invocation of a clause has its own set of variables. If
thisis unclear, review the section on recursion in chapter 6.

So now the problem isto find the length of [31, which will be 1, and then add 1 to
that to get the length of [2, 3], which will be 2. So far, so good.

Likewise, length_of will call itself recursively again to get the length of [3]. The
tail of [3] is[], so Tisboundto[], and the problem isto get the length of [],
then add 1 toit, giving the length of [3] .

Thistimeit's easy. The goal

I ength_of ([], Tail Length)

matches the first clause, binding TailLength to 0. So now the computer can add 1
to that, giving the length of [3], and return to the calling clause. This, in turn,
will add 1 again, giving the length of [2, 3], and return to the clause that called
it; thisoriginal clause will add 1 again, giving thelength of [1, 2, 3].

Confused yet? We hope not. In the following brief illustration we'll summarize
the calls. We've used subscripts to indicate that similarly-named variables in
different clauses — or different invocations of the same clause — are distinct.

length_of ([1, 2, 3], L1).
length_of ([2, 3], L2).
| ength_of ([3], L3).
I ength_of ([], 0).

164 Visual Prolog Language Tutorial

L3
L2
L1

0+1
L3+1
L2+1

Exercises
1. What happens when you satisfy the following goal ?
length_of (X, 3), !.

Does the goal succeed, and if so, what is bound to X? Why? (Work through
carefully by hand to see how this works.)

2. Write apredicate called sum_of that works exactly like length_of, except that
it takes alist of numbers and adds them up. For example, the goal:

sumof ([1, 2, 3, 4], 9.
should bind Sto 10.
3. What happensif you execute this goal ?
sum of (List, 10).

This goa says, "Give me a list whose elements add up to 10." Can Visual
Prolog do this? If not, why not? (Hint: It's not possible to do arithmetic on
unbound variablesin Prolog.)

Tail Recursion Revisited

Y ou probably noticed that length_of is not, and can't be, tail-recursive, because
the recursive call is not the last step in its clause. Can you create a tail-recursive
list-length predicate? Yes, but it will take some effort.

The problem with length_of is that you can't compute the length of a list until
you've already computed the length of the tail. It turns out there's a way around
this. You'll need alist-length predicate with three arguments.

* Onreis the list, which the computer will whittle away on each cal until it
eventually becomes empty, just as before.

» Another isafree argument that will ultimately contain the result (the length).
» Thethirdisacounter that starts out as 0 and increments on each call.

When the list is finally empty, you'll unify the counter with the (up to then)
unbound result.

Chapter 7, Lists and Recursion 165

/* Program ch07e03. pro */

DOVAI NS
list = integer* /* or whatever type you want to use */

PREDI CATES
I ength_of (list,integer,integer)

CLAUSES
length_of ([], Result, Result).
I ength_of ([_| T], Resul t, Counter): -
NewCounter = Counter + 1,
length_of (T, Result, NewCounter).

GOAL
length_of ([1, 2, 3], L, 0), /* start with Counter = 0 */
wite("L=",L), nl.

This version of the length_of predicate is more complicated, and in many ways
less logical, than the previous one. We've presented it merely to show you that,
by devious means, you can often find a tail-recursive algorithm for a problem
that seems to demand a different type of recursion.

Exercises

1. Try both versions of length_of on enormous lists (lists with perhaps 200 to
500 elements). What happens? On long lists, how do they compare in speed?

2. What happens with the new version of length_of if you give the following
goal?
| ength_of (MyList, 5, 0).

Hint: You are discovering a very important property of Prolog called
interchangeability of unknowns. Not all Prolog predicates have it.

3. Rewrite sum_of to work like the new version of length_of.

Another Example—Modifying the List

Sometimes you want to take a list and create another list from it. Y ou do this by
working through the list element by element, replacing each element with a
computed value. For example, hereis a program that takes a list of numbers and
adds 1 to each of them:

166 Visual Prolog Language Tutorial

/* Program ch07e04.pro */

DOVAI NS
list = integer*
PREDI CATES
addl(list,list)
CLAUSES
add1([], []). /* boundary condition */
addl([Head| Tail],[Headl| Tail1]): - /* separate the head */
/* fromthe rest of the list */
Headl= Head+1, /* add 1 to the first element */
addl(Tail,Tail1l). /* call element with the rest of the list */
goal

add1([1,2,3,4], NewList).

To paraphrase this in natural language:

To add 1 to all the elenents of the empty Iist,
just produce another enpty list.

To add 1 to all the elenents of any other Iist,
add 1 to the head and nmake it the head of the result, and then
add 1 to each elenent of the tail and nmake that the tail of the
result.

Load the program, and run the Test Goal with the specified goal add1([1, 2, 3, 4],
NewLi st) .
The Test Goal will return

NewLi st =[2, 3, 4, 5]
1 Sol ution

Tail Recursion Again

Is addl tail-recursive? If you're accustomed to using Lisp or Pascal, you might
think it isn't, because you think of it as performing the following operations:

1. Splitthelist into Head and Tail.

2. Add1toHead, giving Headl.

3. Recursively add 1 to all the elements of Tail, giving Tail 1.
4. Combine Headl and Taill, giving the resulting list.

Chapter 7, Lists and Recursion 167

Thisisn't tail-recursive, because the recursive call is not the last step.

But — and this is important — that is not how Prolog does it. In Visual Prolog,
addl istail-recursive, because its steps are really the following:

1. Bind the head and tail of the original list to Head and Tail.

2. Bind the head and tail of the result to Headl and Taill. (Headl and Tail1 do
not have values yet.)

3. Add1toHead, giving Headl.
4. Recursively add 1 to all the elements of Tail, giving Tail 1.

When this is done, Headl and Taill are already the head and tail of the result;
there is no separate operation of combining them. So the recursive call redly is
the last step.

More on Modifying Lists

Of course, you don't actually need to put in a replacement for every element.
Here's a program that scans a list of numbers and copies it, leaving out the
negative numbers:

/* Program ch07e05. pro */
DOVAI NS
list = integer*

PREDI CATES
di scard_negatives(list, list)

CLAUSES
di scard_negatives([], [])-

di scard_negatives([H T], ProcessedTail): -

H < 0, /* If His negative, just skip it */
b,

di scard_negatives(T, ProcessedTail).

di scard_negatives([H T],[H ProcessedTail]): -
di scard_negatives(T, ProcessedTail).

For example, the goal

di scard_negatives([2, -45, 3, 468], X

givesx=[2, 3, 468].

168 Visual Prolog Language Tutorial

And here's a predicate that copies the elements of a list, making each element
occur twice:

doubl etal k([], []).

doubl etal k([H T], [H H DoubledTail]) :-
doubl et al k(T, Doubl edTail).

List Membership

Suppose you have a list with the names John, Leonard, Eric, and Frank and
would like to use Visua Prolog to investigate if a given name is in this list. In
other words, you must express the relation "membership” between two
arguments: aname and alist of names. This corresponds to the predicate

menber (name, namelist). /* "name" is a menber of "namelist" */

In Program cho7eos. pro, the first clause investigates the head of the list. If the
head of the list is equal to the name you're searching for, then you can conclude
that Name is a member of the list. Since the tail of the list is of no interest, it is
indicated by the anonymous variable. Thanks to thisfirst clause, the goal

menber (j ohn, [john, leonard, eric, frank])
is satisfied.
/* Program ch07e06. pro */

DOVAI NS
nanel i st = nane*
name = synbol

PREDI CATES
menber (nane, nanelist)

CLAUSES
menber (Nane, [Nane|_]).
menber (Nane, [_|Tail]):-
menber (Nane, Tai l).

If the head of thelist is not equal to Name, you need to investigate whether Name
can be found in the tail of thelist.
In English:

Name is a nmenber of the list if Name is the first el enent
of the list, or
Name is a nmenber of the list if Name is a nenber of the tail.

Chapter 7, Lists and Recursion 169

The second clause of member relatesto this relationship. In Visual Prolog:

nenber (Nane, [_|Tail]) :- nenber(Nane, Tail).

Exercises
1. Load Program cho7eos. pro and try the Test Goal the following goal:
menber (susan, [ian, susan, john]).
2. Add domain and predicate statements so you can use member to investigate
if anumber isamember of alist of numbers. Try severa goals, including
nmenber (X, [1, 2, 3, 4]).
to test your new program.

3. Does the order of the two clauses for the member predicate have any
significance? Test the behavior of the program when the two rules are
swapped. The difference appearsif you test the goal

menber (X, [1, 2, 3, 4, 5])

in both situations.

Appending One List to Another: Declarative and
Procedural Programming

As given, the member predicate of Program cho7eos. pro WOrks in two ways.
Consider its clauses once again:

nenber (Nane, [Nane|_]).

nenber (Nane, [_|Tail]) :- nenber(Nane, Tail).
You can look at these clauses from two different points of view: declarative and
procedural.
e From adeclarative viewpoint, the clauses say

Name is a nenber of a list if the head is equal to Name
if not, Name is a nenber of the list if it is a nmenber of the tail.

e From aprocedural viewpoint, the two clauses could be interpreted as saying:

To find a menber of a list, find its head;
otherwise, find a menber of its tail.

These two points of view correspond to the goals

170 Visual Prolog Language Tutorial

menber (2, [1, 2, 3, 4]).

and

menber (X, [1, 2, 3, 4]).

In effect, the first goal asks Visual Prolog to check whether something istrue; the
second asks Visual Prolog to find all members of the list [1, 2, 3, 4]. Don't be
confused by this. The member predicate is the same in both cases, but its
behavior may be viewed from different angles.

Recursion from a Procedural Viewpoint

The beauty of Prolog isthat, often, when you construct the clauses for a predicate
from one point of view, they'll work from the other. To see this duality, in this
next example you'll construct a predicate to append one list to another. You'll
define the predicate append with three arguments:

append(Listl, List2, List3)
This combines Listl and List2 to form List3. Once again you are using recursion
(thistime from a procedural point of view).

If Listl is empty, the result of appending Listl and List2 will be the same as
List2. In Prolog:

append([], List2, List2).
If Listl is not empty, you can combine Listl and List2 to form List3 by making
the head of Listl the head of List3. (In the following code, the variable H is used

asthe head of both Listl and List3.) Thetail of List3 is L3, which is composed of
therest of Listl (namely, L1) and all of List2. In Prolog:

append([H L1], List2, [HL3]) :-
append(L1, List2, L3).

The append predicate operates as follows: While Listl is not empty, the recursive
rule transfers one element at atime to List3. When Listl is empty, the first clause
ensures that List2 hooks onto the back of List3.

Exercise
The predicate append is defined in Program cho7eo7. pro. Load the program.

Chapter 7, Lists and Recursion 171

/* Program ch07e07.pro */
DOVAI NS
integerlist = integer*

PREDI CATES
append(integerlist,integerlist,integerlist)

CLAUSES
append([], List,List).
append([H L1], List2,[H L3]):-
append(L1, List2,L3).
Now run it with the following goal:

append([1, 2, 3], [5, 6], L).

Now try this goal:

append([1, 2], [3], L), append(L, L, LL).

One Predicate Can Have Different Uses

Looking at append from a declarative point of view, you have defined arelation
between three lists. This relation also holdsif Listl and List3 are known but List2
isn't. However, it aso holds true if only List3 is known. For example, to find
which two lists could be appended to form a known list, you could use a goal of
the form

append(L1, L2, [1, 2, 4]).

With this goal, Visual Prolog will find these solutions:

L1=[], L2=[1, 2, 4]
L1=[1], L2=[2, 4]

L1=[1, 2], L2=[4]

L1=[1, 2,4], L2=[]
4 Sol utions

Y ou can also use append to find which list you could append to[3, 4] to form the
list[1,2,3,4]. Try giving the goal

append(L1, [3,4], [1,2,3,4]).

Visual Prolog finds the solution

L1=[1, 2].

172 Visual Prolog Language Tutorial

This append predicate has defined a relation between an input set and an output
set in such away that the relation applies both ways. Given that relation, you can
ask

Wi ch out put corresponds to this given input?

or

Whi ch input corresponds to this given output?

The status of the arguments to a given predicate when you call that predicate is
referred to as aflow pattern. An argument that is bound or instantiated at the time
of the call is an input argument, signified by (i); a free argument is an output
argument, signified by (o).

The append predicate has the ability to handle any flow pattern you provide.
However, not all predicates have the capability of being caled with different
flow patterns. When aProlog clause is able to handle multiple flow patterns, it is
known as an invertible clause. When writing your own Visual Prolog clauses,
keep in mind that an invertible clause has this extra advantage and that creating
invertible clauses adds power to the predicates you write.

Exercise

Amend the clauses defining member in Program cho7eos. pro and construct the
clauses for a predicate even_member that will succeed if you give the goa

even_nenber (2, [1, 2, 3, 4, 5, 6]).

The predicate should also display the following result:
X=2
X=4
X=6
3 Sol utions
given the goa

even_menber (X, [1, 2, 3, 4, 5, 6]).

Finding All the Solutions at Once

In chapter 6, we compared backtracking and recursion as ways to perform
repetitive processes. Recursion won out because, unlike backtracking, it can pass

Chapter 7, Lists and Recursion 173

information (through arguments) from one recursive call to the next. Because of
this, a recursive procedure can keep track of partial results or counters as it goes
aong.

But there's one thing backtracking can do that recursion can't do — namely, find
all the alternative solutions to a goal. So you may find yourself in a quandary:
Y ou need al the solutions to a goal, but you need them all at once, as part of a
single compound data structure. What do you do?

Fortunately, Visual Prolog provides a way out of this impasse. The built-in
predicate findall takes a goal as one of its arguments and collects all of the
solutions to that goal into asinglelist. findall takes three arguments:

e The first argument, VarName, specifies which argument in the specified
predicate is to be collected into alist.

« The second, mypredicate, indicates the predicate from which the values will
be collected.

e The third argument, ListParam, is a variable that holds the list of values
collected through backtracking. Note that there must be a user-defined
domain to which the values of ListParam belong.

Program cho7eos. pr o uses findall to print the average age of a group of people.
/* Program ch07e08. pro */

DOVAI NS
nane, address = string
age = integer
list = age*

PREDI CATES
person(nane, address, age)
sumist(list, age, integer)

CLAUSES
sumist([],0,0).
sumist([H T],SumN): -
sumist(T,S1,Nl),
SumrH+S1, N=1+NL1.

person("Sherl ock Hol nes", "22B Baker Street", 42).
person("Pete Spiers", "Apt. 22, 21st Street", 36).
person("Mary Darrow', "Suite 2, Orega Hone", 51).

174 Visual Prolog Language Tutorial

GOAL

findal | (Age, person(_, _, Age),L)
sumist(L, SumN),

Ave = Sum N

wite("Average=", Ave), nl

Thefindall clause in this program creates alist L, which isacollection of all the
ages obtained from the predicate person. If you wanted to collect alist of all the
people who are 42 years old, you could give the following subgoal:

findal | (Who, person(Wuo, _, 42), List)

Before trying this, please note that it requires the program to contain a domain
declaration for the resulting list:

slist = string*

Compound Lists

A list of integers can be simply declared as

integerlist = integer*

The sameistruefor alist of real numbers, alist of symbols, or alist of strings.

However, it is often valuable to store a combination of different types of
elementswithin alist, such as:

[2, 3, 5.12, ["food", "go00"], "new'] /* Not correct Visual Prolog*/

Compound lists are lists that contain more than one type of element. You need
specia declarations to handle lists of multiple-type elements, because Visual
Prolog requires that all elementsin a list belong to the same domain. The way
to create a list in Prolog that stores these different types of elements is to use
functors, because a domain can contain more than one data type as arguments
to functors.

The following is an example of a domain declaration for alist that can contain an
integer, a character, astring, or alist of any of these:

DOVAI NS /* the functors are |, i, ¢, and s */
Ilist = 1(list); i(integer); c(char); s(string)
list = 1list*

Thelist

Chapter 7, Lists and Recursion 175

[2, 9, ["food", "go0"], "new'] /* Not correct Visual Prolog */

would be written in Visual Prolog as
[i(2), i(9), I([s("food"), s("goo")]), s("new')]
/* Correct Visual Prolog */

The following example of append shows how to use this domain declaration in a
typical list-manipulation program.
/* Program ch07e09. pro */

DOVAI NS
Ilist = 1(list); i(integer); c(char); s(string)
list = 1list*

PREDI CATES

append(list,list,list)

CLAUSES
append([],L,L).
append([X| L1], L2,[X L3]): -
append(L1, L2, L3).

GOAL
append([s(likes), I([s(bill), s(mary)])],[s(bill), s(sue)], Ans),
wite("FIRST LIST: ", Ans,"\n\n"),
append([I ([s("This"),s("is"),s("a"),s("list")]),s(bee)],
[c('c')], Ans2),
wite("SECOND LIST: ", Ans2, '\n', '\n').
Exercises

1. Write a predicate, oddlist, that takes two arguments. The first argument is a
list of integers, while the second argument returns a list of al the odd
numbers found in the first list.

2. Write a predicate, real_average, that calculates the average value of al the
elementsin alist of reals.

3. Write a predicate that takes a compound list asits first argument and returns a
second argument that is the list with all the sub-lists removed. This predicate
iscommonly known as flatten, asit flattensalist of listsinto asingle list. For
example, the call

flatten([s(ed), i(3), 1([r(3.9), I([s(sally)])])], r(4. 21), X
returns

176 Visual Prolog Language Tutorial

X =[s(ed), i(3), r(3.9), s(sally), r(4.21)]
1 Sol ution

whichisthe original list, flattened.

Parsing by Difference Lists

Program cho7e10. pro demonstrates parsing by difference lists. The process of
parsing by difference lists works by reducing the problem; in this example we
transform a string of input into a Prolog structure that can be used or evaluated

|ater.

The parser in this example is for a very primitive computer language. Although
this example is very advanced for this point in the tutorial, we decided to put it
here because parsing is one of the areas where Visual Prolog is very powerful. If
you do not feel ready for this topic, you can skip this example and continue

reading the tutorial without any loss of continuity.
/* Program ch07e10.pro */

DOVAI NS
toklist = string*

PREDI CATES
tokl (string, toklist)

CLAUSES
tokl (Str,[HT]):-
fronttoken(Str,H Str1),!,
tokl (Str1,T).
tokl (_,[]).

J* % Kk kR ok ok k k ok kK ok kK ok ok kK X kK ok kK

* This second part of the programis the parser *

X ok ok ok ok ok ok ok ok kK ok kK ok kK ok k% Kk X Kk Kk %/

DOVAI NS
program = progran(statenentlist)
statementlist = statenent*

[* ok kK k k ok ok ok k k ok ok kK ok kK Xk kK kK

* Definition of what constitutes a statenent *

Kok ok ok ok kK ok ok kK ok kK kK Kk ok k% Kk X Kk %

statement = if_Then_El se(exp, statenent, statenent);

i f_Then(exp, statenent);
whi | e(exp, statenent);
assign(id, exp)

Chapter 7, Lists and Recursion

177

/* * *x *x *x *x *x *x *x *x *x *x *x *x %

* Definition of expression *

* *x *x % *x *x * *x *x *x *x *x *x % */

exp = pl us(exp, exp);
m nus(exp, exp) ;
var (i d);
int(integer)
id = string
PREDI CATES

s_progran(toklist, progran

s_statement (toklist,toklist,statenent)
s_statementlist(toklist,toklist,statementlist)
s_exp(toklist,toklist,exp)
s_expl(toklist,toklist,exp, exp)
s_exp2(toklist,toklist,exp)

CLAUSES
s_progran(Listl, progran(StatenmentList)):-
s_statenent!list(Listl,List2, StatenentlList),
List2=[].

s_statementlist([],[].,[]):-!.
s_statementlist(Listl, List4,[Statenment|Prograni):-
s_statement (Listl,List2, Statenent),
List2=[";"|List3],
s_statement!list(List3,List4, Progran).

178 Visual Prolog Language Tutorial

s_statement (["if"|Listl],List7,if_then_el se(Exp, Statenent1,
Statement2)): -
s_exp(List1l, List2, Exp),
Li st2=["t hen"| Li st 3],
s_statenent (List3, List4, Statenentl),
List4=["el se"|List5],!,
s_statenent (Li st5, List6, Statenent?2),
List6=["fi"|List7].
s_statement (["if"|Listl],List5,if_then(Exp, Statement)):-!,
s_exp(List1, List2, Exp),
Li st2=["t hen"| Li st 3],
s_statenent (Li st 3, List4, Statenent),
List4=["fi"|List5].
s_statement (["do"|Listl], List4, while(Exp, Staterment)):-!,
s_statenent (Listl,List2, Statenent),
Li st2=["whi |l e"| Li st 3],
s_exp(List3,List4, Exp).
s_statement ([D List1], List3,assign(ld, Exp)):-
i snane(1D),
List1=["="]| List2],
s_exp(List2,List3, Exp).

s_exp(LI ST1, Li st 3, Exp): -
s_exp2(List1, List2, Expl),
s_expl(List2,List3, Expl, Exp).

s_expl(["+"|List1], List3, Expl, Exp):-!,
s_exp2(List1, List2, Exp2),
s_expl(List2,List3, plus(Expl, Exp2), Exp).
s_expl(["-"|List1], List3, Expl, Exp):-!,
s_exp2(List1, List2, Exp2),
s_expl(List2,List3, mnus(Expl, Exp2), Exp).
s_expl(List, List, Exp, Exp).

s_exp2([Int|Rest],Rest,int(l)):-
str_int(Int,1),!.
s_exp2([ld| Rest], Rest,var(ld)):-
i snane(1d).
Load and run this program, then enter the following goal :
Goal tokl("b=2; if b then a=1 else a=2 fi; do a=a-1 while a;", Ans),
s_progran(Ans, Res) .

Visual Prolog will return the program structure:

Chapter 7, Lists and Recursion 179

Ans=["b", "=" "2" " i ft b, "t hen", "a", " =", " 1"
"el se","a","=","2","fi",";","do","a",""=","a"
oAt "while", tat,
1,
Res=progran{[assign("b",int(2)),
if_then_else(var("b"),assign("a",int(1))
assign("a",int(2))),
whi |l e(var ("a"),assign("a", mnus(var("a"),int(1))))
D]

1 Sol ution

The transformation in this example is divided into two stages: scanning and
parsing. The tokl predicate is the scanner; it accepts a string and convertsit into a
list of tokens. All the predicates with names beginning ins_are parser predicates.
In this example the input text is a Pascal-like program made up of Pascal-like
statements. This programming language only understands certain statements: |F
THEN ELSE, IF THEN, DO WHILE, and ASSIGNMENT. Statements are made
up of expressions and other statements. Expressions are addition, subtraction,
variables, and integers.

Here's how this example works:

1. Thefirst scanner clause, s program, takes a list of tokens and tests if it can
be transformed into alist of statements.

2. The predicate s _statementlist takes this same list of tokens and tests if the
tokens can be divided up into individual statements, each ending with a
semicolon.

3. The predicate s_statement tests if the first tokens of the token list make up a
legal statement. If so, the statement is returned in a structure and the
remaining tokens are returned back to s_statementlist.

a The four clauses of the s statement correspond to the four types of
statements the parser understands. If the first s statement clause is
unable to transform the list of tokens into an IF THEN EL SE statement,
the clause fails and backtracks to the next s_statement clause, which tries
to transform the list of tokens into an IF THEN statement. If that clause
fails, the next one tries to transform the list of tokensinto a DO WHILE
Statement.

b. If thefirst three s_statement clausesfail, the last clause for that predicate
tests if the statement does assignment. This clause tests for assignment
by testing if the first term is a symbol, the second term is "=", and the
next terms make up a simple math expression.

180 Visual Prolog Language Tutorial

4. The s exp, s expl, and s_exp2 predicates work the same way, by testing if
the first terms are expressions and — if so — returning the remainder of the
terms and an expression structure back to s_statement.

See the Sentence Analyzer VPI\PROGRAMS\SEN_AN program on your disk
for amore detailed example of parsing natural-language.

Summary

These are the important points covered in this chapter:

1. Lists are objects that can contain an arbitrary number of elements; you
declare them by adding an asterisk at the end of a previously defined domain.

2. A list is arecursive compound object that consists of a head and a tail. The
head is the first element and the tail is the rest of the list (without the first
element). The tail of alist is always alist; the head of alist is an element. A
list can contain zero or more elements; the empty list iswritten[].

3. The elementsin alist can be anything, including other lists; all elementsin a
list must belong to the same domain. The domain declaration for the elements
must be of thisform:

DOVAI NS
el enentli st
el enent s

el enent s*

where elements = one of the standard domains (integer, real, etc.) or a set of
aternatives marked with different functors (int(integer); ri(real);
snb(symbol); €tc.). You can only mix types in a list in Visua Prolog by
enclosing them in compound objects/functors.

4. You can use separators (commas, [, and |) to make the head and tail of alist
explicit; for example, the list

[a, b, c, d]
can be written as

[al[b, ¢, d]] or
[a, b|[c, d]] or
[a, b, c|[d]] or

al[bl[c, d]J]] or
[al[bf[c|[d]]]] or even
Lal[bl[c|[dl[]]]]]

Chapter 7, Lists and Recursion 181

. List processing consists of recursively removing the head of the list (and
usually doing something with it) until the list is an empty list.

. The classic Prolog list-handling predicates member and append enable you to
check if an element isin alist and check if one list isin another (or append
one list to another), respectively.

. A predicate's flow pattern is the status of its arguments when you call it; they
can be input parameters (i) — which are bound or instantiated — or output
parameters (0), which are free.

. Visual Prolog provides a built-in predicate, findall, which takes a goal as one
of its arguments and collects al of the solutions to that goal into asinglelist.

. Because Visua Prolog requires that all elementsin alist belong to the same
domain, you use functors to create a list that stores different types of
elements.

10.The process of parsing by difference lists works by reducing the problem; the

examplein this chapter transforms a string of input into a Prolog structure that
can be used or evaluated later.

182 Visual Prolog Language Tutorial

CHAPTER 3

Visual Prolog’'s Internal Fact Databases

In this chapter, we describe how you declare internal fact databases and how you
can modify the contents of your fact databases.

Aninternal fact database is composed of facts that you can add directly into and
remove from your Visual Prolog program at run time. Y ou declare the predicates
describing the fact databases in the facts sections of your program, and you use
these predicates the same way you use the ones declared in the predicates
section.

In Visua Prolog, you use the predicates assert, asserta, assertz to add new facts
to the fact databases, and the predicates retract and retractall to remove existing
facts. Y ou can modify the contents of your fact databases by first retracting a fact
and then asserting the new version of that fact (or a different fact altogether). The
predicates consult/1 and consult/2 read facts from a file and asserts them into
internal fact databases, and predicates save/l and save/2 save the contents of
internal fact databasesto afile.

Visual Prolog treats facts belonging to fact databases differently from the way it
treats normal predicates. Facts for the fact database predicates are kept in tables,
which are easy to modify, while the normal predicates are compiled to binary
code for maximum speed.

Declaring the Fact Databases

The keyword facts (it is synonymous to the obsolete keyword database) marks
the beginning of the facts section declaration. A facts section consists of a
sequence of declarations for predicates describing the correspondent internal fact
database. You can add facts — but not rules — to a fact databases from the
keyboard at run time with asserta and assertz. Or, by calling the standard
predicates consult, you can retrieve the added facts from a disk file. The facts
section looks something like in the following example.

Chapter 8, Visual Prolog'sInternal Fact Databases 183

DOVAI NS
nane, address = string
age = integer
gender = nale ; female

FACTS
person(nane, address, age, gender)

PREDI CATES
mal e(name, address, age)
f emal e(nane, address, age)
child(name, age, gender)

CLAUSES
mal e(Name, Address, Age) :-
per son(Nane, Address, Age, nale).

In this example, you can use the predicate person the same way you use the other
predicates, (male, female, child); the only difference is that you can insert and
remove facts for person while the program is running.

There are two restrictions on using predicates declared in facts sections:
1. You can add them into fact databases as facts only — not asrules.
2. Factsin fact databases may not have free variables.

It is possible to declare several facts sections, but in order to do this, you must
explicitly name each facts section.

FACTS - nydat abase
nyFi rst Rel ati on(i nteger)
nySecondRel ation(real, string)
nyThi rdRel ati on(string)
/* etc. */

This declaration of a facts section with the name mydatabase creates the
mydatabase internal fact database. If you don't supply a name for a fact database,
it defaults to the standard name dbasedom. Notice that a program can contain the
local unnamed facts section only if the program consists of the single
compilation module, which is not declared to be a part of a project. (See Modular
Programming on page 252). The Visua Development Environment executes a
program file as a single compilation module only with the Test Goal utility.
Otherwise, the unnamed facts section has to be declared global. This is done by
preceding the keyword facts (or database) with the keyword global.

184 Visual Prolog Language Tutorial

The names of predicates in a facts section must be unique within a module
(source file); you cannot use the same predicate name in two different facts
sections or in afacts section and in a predicates section. However, the predicates
in the local named facts sections are private to the module in which they are
declared, and do not interfere with local predicates in other modules.

Using the Fact Databases

Because Visua Prolog represents a relational database as a collection of facts,
you can use it as a powerful query language for internal databases. Visual
Prolog's unification algorithm automatically selects facts with the correct values
for the known arguments and assigns values to any unknown arguments, while its
backtracking algorithm can give all the solutions to a given query.

Accessing the Fact Databases

Predicates belonging to a fact database are accessed in exactly the same way as
other predicates. The only visible difference in your program is that the
declarations for the predicates are in a facts section instead of a predicates
section. Given for instance the following:

DOVAI NS
name = string
sex = char
FACTS

per son(nane, sex)

CLAUSES
person("Helen",'F).
person("Maggie",'F).
person("Suzanne",'F').
person("Per",'M).

you can call person with the goal person(Nare,* F) to find al women, or
person("Maggi e",' F') to verify that there is a woman called Maggie in your fact
database.

Y ou should be aware that, by their very nature, predicates in facts sections are
always nondeterministic. Because facts can be added anytime at run time, the
compiler must always assume that it's possible to find alternative solutions during
backtracking. If you have a predicate in a facts section for which you'll never
have more than one fact, you can override this by prefacing the declaration with

Chapter 8, Visual Prolog'sInternal Fact Databases 185

the keyword determ (or keyword single if the predicate must always have one
and only one fact) to the declaration:

FACTS
det erm dayl i ght _savi ng(i nt eger)

Y ou will get an error if you try to add afact for a deterministic database predicate
which aready has afact.

Updating the Fact Databases

Facts for database predicates can be specified at compile time in the clauses
section, asin the example above. At run time, facts can be added and removed by
using the predicates described below. Note that facts specified at compiletimein
the clauses section can be removed too, they are not different from facts added at
run time.

Visual Prolog's standard database predicates assert, asserta, assertz, retract,
retractall, consult, and save will al take one or two arguments. The optional
second argument is the name of a facts section. We describe these predicates in
the following pages. The notation " /1" and " /2" after each predicate name refers
to the number of arguments that arity version of the predicate takes. The
comments after the formats (such as/* (i) */ and/* (o,i) */ show the flow
pattern(s) for that predicate.

Adding Factsat Run Time

At run time, facts can be added to the fact databases with the predicates: assert,
asserta and assertz, or by loading facts from afile with consult.

There are three predicates to add a single fact at runtime:

asserta(<the fact>) I* (i) */
asserta(<the fact>, facts_sectionNane) I* (i, i) */
assertz(<the fact>) I* (i) */
assertz(<the fact >, facts_sectionNane) I* (i, i) */
assert (<the fact>) I* (i) */
assert (<the fact>, facts_sectionNane) I* (i, i) */

asserta asserts a new fact into the fact database before the existing facts for the
given predicate, while assertz asserts a new fact after the existing facts for that
predicate. assert behaves like assertz.

186 Visual Prolog Language Tutorial

The assertion predicates always know which fact database to insert the fact in,
because the names of the database predicates are unique within a program (for
global facts sections) or module (for local facts sections). However, you can use
the optional second argument for type-checking purposes in order to ensure that
you are working on the correct fact database.

The first of the following goals inserts a fact about Suzanne for the person
predicate, after all the facts for person currently stored in the fact database. The
second inserts a fact about Michael before all the currently stored facts for
person. The third inserts a fact about John after al the other likes factsin the fact
database likesDatabase, while the fourth inserts afact about Shannon in the same
facts section, before all the other likes facts.

assertz(person("Suzanne", "New Haven", 35)).
asserta(person("M chael ", "New York", 26)).
assertz(likes("John", "noney"), |ikesDatabase).
asserta(likes("Shannon", "hard work"), |ikesDatabase).

After these calls the fact databases look as if you'd started with the following
facts:

/* Internal fact database — dbasedom */

person("M chael ", "New York", 26).

/* ... other person facts ... */

person(" Suzanne", "New Haven", 35).

/* Internal fact database — |ikesDatabase */
i kes("Shannon", "hard work").

/* ... other likes facts ... */

I'i kes("John", "money").

Be careful that you don't accidentally write code asserting the same fact twice.
The fact databases do not impose any kind of unigueness, and the same fact may
appear many times in a fact database. However, a uniqueness-testing version of
assert isvery easy to write:

FACTS - peopl e
person(string,string)

PREDI CATES
uassert (peopl e)

Chapter 8, Visual Prolog'sInternal Fact Databases 187

CLAUSES
uassert (person(Nane, Address)): -
per son(Nane, Addr ess) ,
!
; % OR
assert (person(Nane, Address)) .

Loading Factsfrom a Fileat Run Time

consult reads in afile, fileName, containing facts declared in a facts section and
assertsthem at the end of the appropriate fact database. consult takes one or two
arguments:

consult(fileName) /* (i) */

consul t(fil eName, databaseNane) /* (i, i) */

Unlike assertz, if you call consult with only one argument (no facts section
name), it will only read facts that were declared in the default (unnamed)
dbasedom facts section.

If you call consult with two arguments (the file name and a facts section name),
it will only consult facts from that named facts section. If the file contains
anything other than facts belonging to the specified fact database, consult will
return an error when it reaches that part of thefile.

Keep in mind that the consult predicate reads one fact at atime; if the file hasten
facts, and the seventh fact has some syntax error, consult will insert the first six
factsinto the facts section — then issue an error message.

Note that consult is only able to read a file in exactly the same format as save
generates (in order to insert facts as fast as possible). There can be

e no upper-case characters except in double-quoted strings
e no spaces except in double-quoted strings

e no comments

e noempty lines

* no symbols without double quotes

Y ou should be careful when modifying or creating such a file of facts with an
editor.

188 Visual Prolog Language Tutorial

Removing Factsat Run Time

retract unifies facts and removes them from the fact databases. It's of the
following form:

retract (<the fact>[, databaseNane]) I* (i, i) */

retract will remove the first fact in your fact database that matches <the fact>,
instantiating any free variables in <the fact> in the process. Retracting facts from
afact database is exactly like accessing it, with the side effect that the matched
fact is removed. Unless the database predicate accessed by retract was declared
to be deterministic, retract is nondeterministic and will, during backtracking,
remove and return the remaining matching facts, one at a time. When al
matching facts have been removed, retract fails.

Suppose you have the following facts sections in your program:

DATABASE
person(string, string, integer)

FACTS - |i kesDat abase
likes(string, string)
di slikes(string, string)

CLAUSES
person("Fred", "Capitola", 35).
person("Fred", "Omaha", 37).

person("M chael ", "Brooklyn", 26).
I'i kes("John", "nmoney").
likes("Jane", "noney").
likes("Chris", "chocol ate").

I'i kes("John", "broccoli").

di sli kes("Fred", "broccoli").
dislikes("Mchael", "beer").

Armed with these facts sections, you give Visual Prolog the following subgoals:

retract (person("Fred", _, _)), [* 1%/
retract (likes(_, "broccoli")), [* 2 %]
retract (likes(_, "noney"), |ikesDatabase), /* 3 */
retract (person("Fred", _, _), |ikesDatabase). [* 4 %]

The first subgoal retracts the first fact for person about Fred from the default
dbasedom fact database. The second subgoal retracts the first fact matching
likes(X, "broccoli") from the fact database likesDatabase. With both of these
subgoals, Visua Prolog knows which fact database to retract from because the

Chapter 8, Visual Prolog'sInternal Fact Databases 189

names of the database predicates are unique: person is only in the default fact
database, and likesis only in the fact database likesDatabase.

The third and fourth subgoals illustrate how you can use the optional second
argument for type checking. The third subgoal succeeds, retracting the first fact
that matches 1ikes(_, "nmoney") from likesDatabase, but the fourth cannot be
compiled because there are no (and cannot be) person facts in the fact database
likesDatabase. The error message given by the compiler is:

506 Type error: The functor does not belong to the domain.

The following goal illustrates how you can obtain values from retract:

GOAL
retract (person(Nane, Age)),
wite(Nane, ", ", Age),nl,
fail.

If you supply the name of a fact database as the second argument to retract, you
don't have to specify the name of the database predicate you're retracting from. In
this case, retract will find and remove all facts in the specified fact database.
Hereis an example:

GOAL
retract (X, nydatabase),
wite(X),
fail.

Removing Several Facts at Once

retractall removes all facts that match <the fact> from your facts section, and is
of the following form:

retractal | (<the fact>[, databaseNane])

retractall behaves asif defined by

retractall (X):- retract(X), fail.
retractal l (_).

but it's considerably faster than the above.

Asyou can gather, retractall always succeeds exactly once, and you can't obtain
output values from retractall. This means that, as with not, you must use
underscores for free variables.

190 Visual Prolog Language Tutorial

As with assert and retract, you can use the optional second argument for type
checking. And, as with retract, if you call retractall with an underscore, it can
remove all the facts from a given fact database.

The following goal removes all the facts about males from the database of person
facts:

retractal | (person(_, _, male)).

The next goal removes all the facts from the fact database mydatabase.

retractal | (_, mnydatabase).

Saving a database of factsat runtime

save saves facts from a given facts section to a file. save takes one or two
arguments:

save(fil eNane) [* (i) */
save(fil eName, dat abaseNane) [* (i, i) */

If you call save with only one argument (no facts section name), it will save the
facts from the default dbasedom database to the file fileName.

If you call save with two arguments (the file name and a facts section name), it
will save all facts existing in the fact database databaseName to the named file.

K eywor ds Deter mining Fact Properties
Facts section declarations can use the following optional keywords:

facts [- <databasenane>]
[nocopy] [{ nondeterm | determ| single }]
dbPredicate [' (' [Domain [ArgunmentName]]* ')']

The optional keywords nondeterm, determ or single declares the determinism
mode of the declared database predicate dbPredicate. Only one of them can be
used. If the determinism mode for a database predicate is not declared explicitly,
then the default nondeterm is accepted. Notice that the setting for Default
Predicate Mode (specified in the VDE's dialog Compiler Options) does not
effect onto the nondeter m default for database predicates.

nondeterm

Determines that the fact database can contain any number of facts for the
database predicate dbPredicate. Thisis the default mode.

Chapter 8, Visual Prolog'sInternal Fact Databases 191

determ

Determines that the fact database at any time can contain no more than one
fact of the database predicate doPredicate.

single

Determines that the fact database always contains one and only one fact of the
database predicate doPredicate.

nocopy

Normally, when a database predicate is called to bind a variable to a string or
a compound object, then the referenced data are copiedb from the heap to the
Visual Prolog global stack (GStack). The nocopy declares that the data will
not be copied and variables will reference directly to the fact's data stored in
heap. This can considerably increase efficiency, but should be used carefully.
If a copy was not made, the variable would point to garbage after the fact
retraction was made.

global

Determines that the facts section is global. (See Modular Programming on
page 252.) Notice that safe programming techniques require that you do not
use global facts. Instead you can use global predicates handling local facts.

Facts declared with the keyword nondeterm.

The keyword nondeterm is the default mode for facts (database predicates)
declared in facts sections. If none of the keywords determ or singleareused in a
fact declaration, the compiler applies nondeterm mode. Normally, by their very
nature, database predicates are non-deterministic. Because facts can be added at
any moment at runtime, the compiler must normally assume that it is possible to
find aternative solutions during backtracking.

Facts declared with the keyword determ.

The keyword determ declares that the fact database can contain no more than
one fact for the database predicate declared with this keyword. So if a program
tries to assert a second such fact into the fact database, then Prolog will generate
a runtime error. Therefore, the programmer should take special care asserting
deterministic facts.

Preceding a fact with determ enables the compiler to produce better code, and
you will not get non-deterministic warnings for calling such a predicate. Thisis
useful for flags, counters, and other things that are essentially global
characteristics.

192 Visual Prolog Language Tutorial

Particularly note that when retracting afact that is declared to be deter m, the call
to non-deterministic predicates retract/1 and retract/2 will be deterministic. So if
you know that at any moment the fact database contains no more then one fact
count er then you can write:

FACTS
det erm count er (i nt eger Count er Val ue)

GOAL

retract (counter(CurrentCount)),

/* here Prolog will not set backtracking point */
Count = Current Count + 1,

assert (counter(Count)),

instead of

FACTS
count er (i nteger Counter Val ue)

PREDI CATES
determretract_d(dbasedon)

CLAUSES
retract_d(X): - retract(X),!. %determnistic predicate

GOAL

retract _d(counter(Current Count)),

/* here Prolog will not set backtracking point */
Count = Current Count + 1,

asserta(counter(Count)),

Facts declared with the keyword single.
The keyword single declares that the fact database will always contain one and
only one fact for the database predicate declared with the keyword single.

Since single facts must be aready known when the program cals Goadl;
therefore, single facts must be initialized in clauses sections in a program source
code. For example:

facts - properties
si ngl e nunber W ndows_s(i nt eger)

CLAUSES
nunmber W ndows_s(0) .

Chapter 8, Visual Prolog'sInternal Fact Databases 193

Single facts cannot be retracted. If you try to retract a single fact then the
compiler will generates an error. (In most cases the compiler can detect retracting
of asingle fact while the compiletime.)

Since one instance of a single fact always exists, a single fact never failsif it is
called with free arguments. For example, afollowing call

nunber W ndows_s(Num) ,

never failsif Numisafree variable. Therefore, it is convenient to use single facts
in predicates declared with determinism mode procedure.

Predicates assert, asserta, assertz, and consult applied to a single fact act
smilarly to couples of retract and assert predicates. That is, assert (consult)
predicates change an existing instance of afact to the specified one.

Preceding a fact with single enables the compiler to produce optimized code for
accessing and updating of a fact. For example, for assert predicates applied to a
single fact the compiler generates a code that works more effectively than a
couple of retract and assert predicates applied to adeterm fact (and all the more
so than retract and assert predicates applied to a nondeter m fact).

Initialization of single facts with some domains (when you do not have the
default value to use) are not trivial. The following information can be useful:

1. Noticethat binary domain data can be initialized using text format of binary
data. For example:

gl obal donui ns
font = binary

facts — properties
single my_font(font)

cl auses
ny_font ($[00])

2. Other important special case is initiaization of single facts carrying the
standard ref domain. The origin of ref domain is the domain for database
reference numbers in Visual Prolog external databases (see The External
Database System on page 369), but ref is also used in many predefined
domains declared in tools and packages supplied with Visual Prolog. For
instance, the fundamental VPl domain window is declared:

donmi ns
W NDOW = REF

194 Visual Prolog Language Tutorial

Notice that for initialization of ref values you can use unsigned numbers

preceded by thetilde' ~ character. For example, you can write:

facts
singl e mywi n(W NDOW

cl auses
mywi n(~0).

Examples

1. Thisisasimple example of how to write a classification expert system using
the fact database. The important advantage of using the fact database in this
exampleisthat you can add knowledge to (and delete it from) the program at

run time.
/* Program ch08e01. pro */

DOVAI NS
thing = string
conds = cond*
cond = string

FACTS - know edgeBase
is_a(thing, thing, conds)
type_of (thing, thing, conds)
f al se(cond)

PREDI CATES
run(thi ng)
ask(conds)
updat e

CLAUSES
run(ltem: -
is_a(X, Item List),
ask(List),
type_of (ANS, X, List2),
ask(List2),

wite("The ", Item" you need is a/an ", Ans),nl.

run(_): -
wite("This program does not have enough "),
wite("data to draw any conclusions."),
nl.

Chapter 8, Visual Prolog'sInternal Fact Databases

195

ask([1]).
ask([H T]):-
not (fal se(H)),
wite("Does this thing help you to "),
wite(H " (enter y/n)"),
readchar (Ans), nl, Ans='y',
ask(T).

ask([H _1):-
assertz(false(H), fail.

i s_a(l anguage, tool, ["comunicate"]).

is_a(hammer, tool, ["build a house", "fix a fender", "crack a nut"]).
i s_a(sewi ng_nachine, tool, ["nmake clothing", "repair sails"]).
is_a(plow, tool, ["prepare fields", "farni]).

type_of (english, |anguage, ["comunicate with people"]).
type_of (prol og, |anguage, ["comunicate with a conputer"]).

updat e: -
retractal |l (type_of (prol og, |anguage, ["conmmunicate with a
conputer"])),
asserta(type_of ("Visual Prolog", |anguage,
["communicate with a personal conputer"])),
asserta(type_of (prol og, |anguage,
["communicate with a mai nframe conputer"])).

The following database facts could have been asserted using asserta or
assertz, or consulted from a file using consult. In this example, however,
they're listed in the clauses section.

i s_a(language, tool, ["conmmunicate"]).

is_a(hamer, tool, ["build a house", "fix a fender", "crack a nut"]).
i s_a(sew ng_nachine, tool, ["make clothing", "repair sails"]).
is_a(plow, tool, ["prepare fields", "farnm]).

type_of (english, |anguage, ["communicate with people"]).
type_of (prol og, |anguage, ["conmmunicate with a conmputer"]).
Asthe goal enter:

goal
run(tool).

Respond to each question as if you were looking for some tool to
communicate with a personal computer.

Now enter the following goal:

196 Visual Prolog Language Tutorial

update, run(tool).

The update predicate is included in the source code for the program, to save
you alot of typing, and will remove the fact

type_of (prol og, |anguage, ["communicate with a conmputer"])
from the fact database know edgeBase and add two new factsinto it:

type_of (prol og, |anguage,

["comunicate with a mainframe conmputer"]).
type_of ("Visual Prolog", |anguage,
["comuni cate with a personal conputer"]).

Now respond to each question once again as if you were looking for some
tool to communicate with a personal computer.

Y ou can save the whole fact database know edgeBase in atext file by calling
the predicate save/2 with names of a text file and a facts section as its
arguments. For example, after the call to

save("nmydat a. dba", know edgeBase),

the file nydat a. dba Will resemble the clauses section of an ordinary Visual
Prolog program, with a fact on each line. Y ou can read this file into memory
later using the consult predicate:

consul t ("nydat a. dba", know edgeBase)

2. You can manipulate facts describing database predicates (facts declared in
facts sections) as though they were terms.

When you declare a facts section, Visual Prolog's compiler will internally
generate a domain definition corresponding to the facts declaration. As an
example, consider the declarations

FACTS - dbal /* dbal is the domain for these predicates */
per son(nane, telno)
city(cno, cnane)

Given these declarations, Visual Prolog's compiler internally generates the
corresponding dbal domain:

DOVAI NS
dbal = person(nane, telno); city(cno, cnane)

This dbal domain can be used like any other predefined domain. For
example, you could use the standard predicate readterm (which is covered in
chapter 12) to construct a predicate my_consult, similar to the standard
predicate consult.

Chapter 8, Visual Prolog'sInternal Fact Databases 197

Program choseoz2 illustrates one practical way you might use the facts section
in an application. This example supposes that you have a screen handler
predicate, which places text on the screen in predefined locations. A screen
layout for the current screen display can be stored in the field and txtfield
facts that are defined in the screen facts section. Several screen names can be
stored in the correspondent screens fact database. At run time, the shiftscreen
predicate can copy one of these stored screens to the screen fact database by
first retracting all current data from the screen fact database, calling the
screen predicate to get the layout information for the upcoming screen, then
asserting the new screen's form into the screen facts section.

/* Program ch08e02. pro */

DOVAI NS
screennane, fname, type = synbol
row, col,len = integer

FACTS - screenDescription
field(fname, type, row, col, len) /* Definitions of field on screen */
txtfield(row, col, len, string) /* Showing textfields */
wi ndowsi ze(r ow, col)

FACTS - screens
screen(synbol , screenDescri ption) /* Storing different screens */

PREDI CATES
shi ftscreen(synbol)

CLAUSES
shiftscreen(_): -

fail.

shiftscreen(_): -
retract (txtfield(_, _, .,)),
fail.

shiftscreen(_): -
retract (w ndowsi ze(_,)),
fail.

shi ftscreen(Nane): -
screen(Nane, Term,
assert(Tern),
fail.

shiftscreen(_).

198 Visual Prolog Language Tutorial

GOAL
shi ftscreen(person).

Summary

1. Visua Prolog's internal fact databases are composed of the facts in your
program that are grouped into facts sections. In facts sections you declare the
user-defined database predicates used in these fact databases. The facts
section declaration is started with the keyword facts.

2. You can name facts sections (which creates a corresponding internal domain);
the default domain for (unnamed) facts sections is dbasedom. Y our program
can have multiple facts sections, but each one must have a unique name. Y ou
can declare a given database predicate in only one facts section.

3. With the standard predicates assert, asserta, assertz, and consult, you can add
facts to the fact databases at run time. Y ou can remove such facts at run time
with the standard predicates retract and retractall.

4. The save predicates save facts from a fact database to a file (in a specific
format). Y ou can create or edit such afact file with an editor, then insert facts
from the file into the correspondent fact database of your running program
with consult.

5. Your program can call fact database predicates just as it calls any other
predicates.

6. You can handle facts as terms when using domains internally generated for
names of facts sections.

Chapter 8, Visual Prolog'sInternal Fact Databases 199

CHAPTER 9

Arithmetic and Comparison

Visual Prolog's arithmetic and comparison capabilities are similar to those
provided in programming languages such as BASIC, C, and Pascal. Visual
Prolog includes afull range of arithmetic functions; you have already seen some
simple examples of Visual Prolog's arithmetic capabilities.

In this chapter we summarize Visual Prolog's built-in predicates and functions for
performing arithmetic and comparisons, as well as a two-arity versions of a
standard predicate used for random number generation. We'll also discuss
comparison of strings and characters.

Arithmetic Expressions

Arithmetic expressions consist of operands (numbers and variables), operators
(+, -, *, /, div, and mod), and parentheses. The symbols on the right side of the
equal sign (which is the = predicate) in the following make up an arithmetic
expression.

A=1+6/ (11 +3) * Z

Leading "0x" or "00" signify hexadecimal and octal numbers, respectively, e.g.

OxFFF = 4095
86 = 00112 + 12

The value of an expression can only be calculated if all variables are bound at the
time of evaluation. The calculation then occurs in a certain order, determined by
the priority of the arithmetic operators; operators with the highest priority are
evaluated first.

Operations

Visual Prolog can perform al four basic arithmetic operations (addition,
subtraction, multiplication, and division) between integral and real values; the
type of the result is determined according to Table 9.1.

200 Visual Prolog Language Tutorial

Table 9.1 Arithmetic Operations

Operand 1 Operator Operand 2 Result
integral +, -, * integral integral
real +, -, * integral rea
integral +, -, real real
real +,-,* rea rea
integral or red / integral or real real
integral div integral integral
integral mod integral integral

In case of mixed integral

arithmetic, involving both signed and unsigned

guantities, the result is signed. The size of the result will be that of the larger of
the two operands. Hence, if an ushort and along are involved the result is long;
if an ushort and an ulong are involved the result is ulong.

Order of Evaluation

Arithmetic expressions are evaluated in this order:

1. If the expression contains sub-expressions in parentheses, the sub-
expressions are evaluated first.

2. |If the expression contains multiplication (*) or division (/, div or mod), these
operations are carried out next, working from left to right through the

expression.

3. Finaly, addition (+) and subtraction (-) are carried out, again working from

left to right.

Hence, these are the operator precedence:

Table 9.2 Oper

ator

Precedence

Operator

Priority

to 1

* | nod div 2

Chapter 9, Arithmetic and Comparison

201

- + (unary) 3
In the expression A = 1 + 6/(11+3)*z, assume that Z has the value 4, since
variables must be bound before evaluation.

1. (11 + 3) isthe first sub-expression evaluated, because it's in parentheses; it
evaluates to 14.

2. Then 6/14 is evaluated, because / and * are evaluated left to right; this gives
0.428571.

Next, 0.428571 * 4 gives 1.714285.

Finaly, evaluating 1 + 1.714285 gives the value of the expression as
2.714285.

A will then be bound to 2.714285 that makesit areal vaue.

However, you should exercise some care when handling floating-point (real)
quantities. In most cases they are not represented accurately and small errors can
accumulate, giving unpredictable results. An example follows later in the
chapter.

Functions and Predicates

Visual Prolog has a full range of built-in mathematical functions and predicates
that operate on integral and real values. The complete list isgivenin Table 9.3

Table 9.4: Visual Prolog Arithmetic Predicates and Functions

Name Description

XmodY Returns the remainder (modulo) of X divided by Y.

XdivY Returns the quotient of X divided by Y.

abs(X) If X isbound to a positive value val, abs(x) returns that
value; otherwise, it returns-1 * val .

cos(X) The trigonometric functions require that X be bound to

sin(X) avalue representing an angle in radians.

tan(X) Returns the tangent of its argument.

202 Visual Prolog Language Tutorial

arctan(X) Returns the arc tangent of thereal value to which X is
bound.

exp(X) e raised to the value to which X is bound.

In(X) Logarithm of X, base e.

log(X) Logarithm of X, base 10.

sgrt(X) Square root of X.

random(X) Binds X toarandomreal; 0 <= X < 1.

random(X, Y) Binds Y to arandom integer; 0 <=Y < X.

round(X) Returns the rounded value of X. The result still being a
real

trunc(X) Truncates X. Theresult still being areal

val(domain, X) Explicit conversion between numeric domains.

Generating Random Numbers

Visual Prolog provides two standard predicates for generating random numbers.
One returns a random real between 0 and 1, while the other returns a random
integer between 0 and a given integer. Additionally, the random numbering
sequence may be re-initialized.

random/1

This version of ran
constraints

0 <= RandonReal <

dom returns a random real number that satisfies the

1.

random/1 takes this format:

randon(RandonReal)

random/2

I* (o) *I

Thisversion of random takes two arguments, in this format:

randon{ MaxVal ue, Random nt) /* (i, o) */

Chapter 9, Arithmetic

and Comparison 203

It binds Randomint to arandom integer that satisfies the constraints

0 <= Random nt < MaxVal ue

random/2 is much faster than random/1 because random/2 only uses integer
arithmetic.

randominit/1

randominit will initialize the random number generator and is of the following
form:

random ni t (Seed) [* (i) */

The default random number seed value is generated as function from system
time, and the Seed argument to randominit setsthis seed value. The main use for
randominit is to provide repeatable sequences of pseudo random numbers for
statistical testing. Note that both the integer and floating point versions of
random use the same seed and basic number generator.

Example
Program chgeo1. pro uses random/1 to select three names from five at random.
/* Program ch9e01. pro */

PREDI CATES
person(i nteger, synbol)
rand_int_1_5(integer)
rand_person(i nt eger)

CLAUSES
person(1, fred).
person(2,ton).
person(3, mary).
per son(4, di ck).
per son(5, george).

rand_int_1 5(X): -

random(Y),
X=Y*4+1.

204 Visual Prolog Language Tutorial

rand_person(0):-!.

rand_per son(Count): -
rand_int_1 5(N),
person(N, Nane) ,
write(Nane), nl,
NewCount =Count - 1,
rand_per son(NewCount) .

GOAL
rand_person(3).

Integer and Real Arithmetic

Visual Prolog provides predicates and functions for: modular arithmetic, integer
division, square roots and absolute values, trigonometry, transcendental
functions, rounding (up or down), and truncation. They are summarized in Table
9.3 and are explained on the following pages.

mod/2
mod performs the function X modulo Y (where X and Y are integers).

X mod Y 1% (i, i) %

Theexpressionz = x nod Y binds Z to the result. For example,

Z =17 nod 4 /* Z will equal 3 */
Y =4 nmod 7 /* Y wll equal 4 */
div/2

div performsthe integer division X/Y (where X and Y are integers).

X div Y 1% (i, i) %

The expressionz = x div Y binds Z to the integer part of the result. For example,

Z=7div 4 /* Zwll equal 1 */
Y=4div 7 /* Y wll equal 0 */
abg/l
abs returns the absol ute value of its argument.
abs(X) [* (i) *I

Chapter 9, Arithmetic and Comparison 205

The expression z = abs(x) binds Z (if it's free) to the result, or succeeds/falsif Z
is aready bound. For example,

Z = abs(-7) /* Z will equal 7 */
cos/1
cos returns the cosine of its argument.

cos(X) [* (i) */

The expression z = cos(x) binds Z (if it's free) to the result, or succeeds/failsif Z
is aready bound. For example,

Pi = 3.141592653,

Z = cos(Pi) /* Z will equal -1 */
sin/1
sin returns the sine of its argument.

si n(X) I* (i) */

The expression z = sin(x) binds Z (if it's free) to the result, or succeeds/failsif Z
is aready bound. For example:

Pi = 3.141592653,

Z = sin(Pi) /* Z will alnost equal 0 */
tan/1
tan returns the tangent of its argument.

tan(X) 1* (i) */

The expression z = tan(x) binds Z (if it's free) to the result, or succeeds/failsif Z
is aready bound. For example,

Pi = 3.141592653,
Z =tan(Pi) /* Z will alnost equal 0 */

arctan/1
arctan returns the arc tangent of the real value to which X is bound.

arct an(X) I* (i) */

206 Visual Prolog Language Tutorial

The expression z = arctan(X) binds Z (if it's free) to the result, or succeeds/fails
if Zisalready bound. For example,

Pi = 3.141592653,

Z = arctan(Pi) /* Z will equal 1.2626272556 */
exp/1
exp returns e raised to the value to which X is bound.

exp(X) I* (i) *I

The expression z = exp(x) binds Z (if it's free) to the result, or succeeds/failsif Z
is already bound. For example,

Z = exp(2.5) /* Z will equal 12.182493961 */

In/1
In returns the natural logarithm of X (base €).

I n(X I* (i) *I

The expression z = 1 n(x) binds Z (if it's free) to the result, or succeeds/failsif Z
is aready bound. For example,

Z = I n(12. 182493961) /* Z will equal 2.5 */
log/1
log returns the base 10 logarithm of X.

log(X) 1* (i) */

The expression z = 1 og(x) binds Z (if it's free) to the result, or succeeds/failsif Z
is already bound. For example,

Z = log(2.5) /* Z will equal 0.39794000867 */

sqrt/1
sgrt returns the positive square root of X.

sqrt(X) I* (i) */

Chapter 9, Arithmetic and Comparison 207

The expression z = sqrt(X) binds Z (if it's free) to the result, or succeeds/fails if
Z isdready bound. For example,

Z = sqrt(25) /* Z will equal 5 */

round/1
round returns the rounded value of X.

round(X) [* (i) */
round rounds X up or down to the nearest integral value of X, but performs no
type conversion. For example,

Z1
Z2

round(4.51) /* Z1 will equal 5.0 */
round(3. 40) /* Z2 will equal 3.0 */

Both Z1 and Z2 are floating point values following the above; only the fractional
parts of the arguments to round have been rounded up or down.

trunc/l

trunc truncates X to the right of the decimal point, discarding any fractional part.
Just like round, trunc performs no type conversion.

trunc(X) I* (i) *I
For example,
Z =trunc(4.7) /* Z will equal 4.0 */

Again, Zis afloating-point number.

val/2

val provides general purpose conversion between the numeric domains, in cases
where you want full control over the result of the operation. val observes any
possible overflow condition. The format is

Result = val (returnDomai n, Expr)

where Expr will be evaluated (if it's an expression), the result converted to
returnDomain and unified with Result. Visual Prolog also has a cast function that
will convert uncritically between any domains; thisis described in chapter 10.

208 Visual Prolog Language Tutorial

Exercise

Use the trigonometric functions in Visua Prolog to display a table of sine,
cosine, and tangent values on the screen. The left column of the table should
contain angle values in degrees, starting at 0 degrees and continuing to 360
degreesin steps of 15 degrees.

Note: Because the trigonometric functions take values expressed in radians, you
must convert radians to angles to obtain entries for the left column.

Degrees = Radians * 180/ 3. 14159265. ..

Comparisons

Visual Prolog can compare arithmetic expressions as well as characters, strings,
and symbols. The following statement is the Visual Prolog equivalent of "The
total of X and 4 islessthan 9 minus Y."

X+4<9-Y
The less than (<) relational operator indicates the relation between the two
expressions, X + 4and9 - .

Visual Prolog uses infix notation, which means that operators are placed between
the operands (like this: x+4) instead of preceding them (like this: +(x, 4)).

The complete range of relational operators allowed in Visual Prolog is shown in
Table 9.4.

Table 9.5: Relational Operators

Symbol Relation

< less than

<= less than or equal to

= equal

> greater than

>= greater than or equal to
<>or >< not equal

Chapter 9, Arithmetic and Comparison 209

Equality and the equal (=) Predicate

In Visual Prolog, statements like N = N1 - 2 indicate a relation between three
objects (N, N1, and 2), or arelation between two objects (N and the value of N1 -
2). If Nistill free, the statement can be satisfied by binding N to the value of the
expression N1 - 2. This corresponds roughly to what other programming
languages call an assignment statement. Note that N1 must always be bound to a
value, sinceit is part of an expression to be evaluated.

When using the equal predicate (=) to compare real values, you must take care to
ensure that the necessarily approximate representation of real numbers does not
lead to unexpected results. For example, the goal

713 * 3 =17

will frequently fail (the exact outcome depends on the accuracy of the floating
point calculations in use on your particular platform). Program ch9eo2. pro
illustrates another example:

/* Program ch9e02. pro */

PREDI CATES
test(real,real)

CLAUSES
test(X, X):-!,
wite("ok\n").
test(X Y):-
Diff = XY,
wite(X "<>",Y,"\nX-Y =", Dff,"\n").

GOAL
X=47,
Y=4.7*10,
test(XY).

Except when running Prolog on the UNIX platform, where it behaves as one
might expect, this prints:

47<>47

X-Y = 7.1054273576E- 15

Therefore, when comparing two real values for equality you should always check
that the two are within a certain range of one another.

210 Visual Prolog Language Tutorial

Example

Program ch9e03. pro shows how to handle approximate equality; this is an
iterative procedure for finding the square root in order to calculate the solutions
to the quadratic equation:

AFX*X + BEX+ C=0

The existence of solutions depends on the value of the discriminant D, defined as
follows:

D = B*B - 4*A*C.

* D >0impliesthat there are two unique solutions.
D =0impliesthereisonly one solution.

* D <0Oimpliesthat there are no solutionsif X isto take areal value (there can
be one or two complex solutions).

/* Program ch9e03. pro */

PREDI CATES
solve(real, real, real)
reply(real, real, real)
mysqrt(real, real, real)
equal (real, real)

CLAUSES
solve(A B, O : -
D=B*B- 4* A*C,
reply(A, B, D), nl.

reply(_,_,D:-
D < 0,
wite("No solution"),
!
reply(A B, D): -
D=0,
X=-B/ (2*A) ,wite("x=", X),
!
reply(A B, D): -
nmysqrt (D, D, Sqrt D),
X1=(-B+SqrtD)/ (2*A),
X2 = (-B - SqrtD)/(2*A),
wite("x1 =", X1," and x2 =", X2).

Chapter 9, Arithmetic and Comparison 211

nysqrt (X, Guess, Root) : -
NewGuess = Quess- (GQuess*Quess- X)/ 2/ Guess,
not (equal (NewGuess, Guess)),
!,
nysqrt (X, NewGuess, Root) .

nysqrt(_, Guess, Guess).

equal (X, V): -
X/'Y >0.99999,
X/'Y < 1.00001.

To solve the quadratic equation, this program calculates the square root of the
discriminant, D. The program calculates square roots with an iterative formula
where a better guess (NewGuess) for the sguare root of X can be obtained from
the previous guess (Guess):

NewGuess = Quess- (Quess*Quess- X)/ 2/ Guess

Each iteration gets a little closer to the sguare root of X. Once the condition
equal (X, Y) is satisfied, no further progress can be made, and the calculation
stops. Once this calculation stops, the program can solve the quadratic using the
values X1 and X2, where

X1 = (-B + sqrtD)/ (2*A)
X2 = (-B - sqrtD)/(2*A)
Exercises

1. Load Program ch9e03.pro and try the Test Goa with the following goals:

solve(1, 2, 1).
solve(1, 1, 4).
solve(1, -3, 2).

The solutions should be

X =-1
No sol ution
x1 =2 and x2 = 1

respectively.

2. The object of this exercise is to experiment with the mysgrt predicate in
Program ch9e03.pro. To ensure that temporary calculations are monitored,
add the following as the first subgoal in the first mysgrt clause:

wite(Cuess).

212 Visual Prolog Language Tutorial

To seethe effect of this amendment, try this goal:
nysqgrt (8, 1, Result).

Next, replace the equal clause with thisfact:
equal (X, X).

and retry the goal. Experiment a little more with the properties of equal. For
instance, try

equal (X, Y) :-
XY<1.1, XY >0.9.

Visual Prolog has a built-in square root function, sqrt. For example,
X = sqrt(D)

will bind X to the sguare root of the value to which D is bound. Rewrite
Program choeo3. pro using sqrt and compare the answers with those from the
original version.

Comparing Characters, Strings, and Symbols

Besides numeric expressions, you can also compare single characters, strings and
symbols. Consider the following comparisons:

'a' <'Db /* Characters */

"antony" > "antonia" /* Strings */

Pl = peter, P2 = sally, P1 > P2 /* Symbols */
Characters

Visual Prolog convertsthe' a' < ' b tothe equivalent arithmetic expression 97 <
98, using the corresponding ASCII code value for each character. Y ou should be
aware that only 7 bit ASCII comparisons should be relied upon (i.e. upper and
lower case letters az, digits, etc.). 8 bit characters, used for a number of national
characters, are not necessarily portable between the different platforms.

Strings

When two strings or symbols are compared, the outcome depends on a character-
by-character comparison of the corresponding positions. The result isthe same as
you'd get from comparing the initial characters, unless those two characters are
the same. If they are, Visua Prolog compares the next corresponding pair of
characters and returns that result, unless those characters are also equal, in which
case it examines a third pair, and so on. Comparison stops when two differing

Chapter 9, Arithmetic and Comparison 213

characters are found or the end of one of the strings is reached. If the end is
reached without finding a differing pair of characters, the shorter string is
considered smaller.

The comparison "antony” > "antonia" evauates to true, since the two symbols
first differ at the position where one contains the letter y (ASCII value 79) and
the other the letter i (ASCII value 69). In the same vein, the character comparison
"aa" > "a" iStrue.

Similarly, the expression "peter” > "sally" would be false — as determined by
comparing the ASCII values for the characters that make up peter and sally,
respectively. The character p comes before s in the alphabet, so p has the lower
ASCII value. Because of this, the expression evaluates to false.

Symbols
Symbols can't be compared directly because of syntax. In the preceding p1 =
peter, P2 ... example, the symbol peter can't be compared directly to the

symbol sally; they must be bound to variables to be compared, or written as
strings.

214 Visual Prolog Language Tutorial

CHAPTER 10

Advanced Topics

This is an advanced chapter; we expect that you have been working with the
various examples earlier in this book and are now beginning to be an experienced
Visual Prolog user. In this chapter, we illustrate how you can control the flow
analysis by using the standard predicates free and bound, reference domains,
how to use them and how to separate them from the other domains. We also
discuss more advanced topics about domains, including the binary domain,
pointers to predicates and functions, and return values from functions. Finaly,
we look at error-handling, dynamic cutting, free type conversions and discuss
some programming style issues that will improve your programs efficiency.

The Flow Analysis

In agiven predicate call, the known arguments are called input arguments (i), and
the unknown arguments are called output arguments (0). The pattern of the input
and output argumentsin a given predicate call is called the flow pattern.

For example, if a predicate is to be called with two arguments, there are four
possibilities for its flow pattern:

(i, 1) (i, o) (o, i) (o, 0)

When compiling programs, Visual Prolog carries out a global flow analysis of
the predicates. It starts with the main goal and then performs a pseudo-evaluation
of the entire program, where it binds flow patterns to al predicate calls in the
program.

The flow analysisis quite simple; you are actually carrying it out yourself when
you write your program. Here are some examples:

GOAL
cursor(R, C, RL = R+l1, cursor(Rl1, C.

In the first call to the cursor, the two variables R and C are free; this means that
the cursor predicate will be called with the flow pattern cursor (o, 0) . You know
that the variables are free because thisis the first time they've been encountered.

Chapter 10, Advanced Topics 215

In the expression rRi=r+1, the flow analyzer knows that the variable R is bound
because it comes from the cursor predicate. If it were free, an error message
would have been issued. R1 will be a known argument after this call.

In the last call to cursor, both of the variables R1 and C have been encountered
before, so they will be treated as input arguments; the call will have the flow
pattern cursor (i, i).

For each flow pattern that a user-defined predicate is called with, the flow
analyzer goes through that predicate's clauses with the variables from the head
set to either input or output (depending on the flow pattern being analyzed).

Here's an exampleillustrating this:

% To run this exanple you should in the VDE s Application Expert
% set Target settings to "DOS" and "Text node
% and use Project | Run command

pr edi cat es
changeattrib(lnteger, Integer)

cl auses
changeattrib(NewAttrib, A dAttrib) :-
attribute(d dAttrib), attribute(NewAttrib).

goal
changeattrib(112, AOd), wite("Hello"),
attribute(dd), wite(" there"),
readchar (_).

In the goal section, the first call to the predicate changeattrib is made with the
flow pattern changeattrib(i, o) (because 112 is known, and ad is not). This
implies that, in the clause for changeattrib, the variable NewAttrib will be an
input argument, and OldAttrib will be an output argument. Therefore, when the
flow analyzer encounters the first subgoal attribute(d dAttrib), the predicate
attribute will be called with the flow pattern attri but e(o) , while the second call
to attribute will have the flow pattern at tribut e(i) . Finaly, the call to attribute
in the goa will have an input flow pattern, because Old came out of
changeattrib.

Compound Flow

If apredicate argument is a compound term it's also possible to have a compound
flow pattern, where the same argument has both input and output flow. Suppose
for instance that you have a database of information about countries. To enable

216 Visual Prolog Language Tutorial

easy expansion with new data, it may well be desirable to contain each piece of
information in its own domain aternative:

/* Program ch10e01. pro */

di agnostics

DOVAI NS
cinfo = area(string, ul ong);
popul ati on(string, ul ong);
capital (string,string)

PREDI CATES
count ry(cinfo)

CLAUSES
country(area("Denmark", 16633)).
count ry(popul ati on(" Denmar k", 5097000)) .
country(capital ("Denmark", " Copenhagen")).
country(area("Si ngapore", 224)).
count ry(popul ati on("Si ngapore", 2584000)).
country(capital ("Si ngapore","Si ngapore")).

The following depicts some of the different flow patterns country can be called
with:

goal
country(C), % (0)
country(area(Nane, Area)), % ar ea(o, 0)
country(popul ati on(" Denmar k", Pop)), % popul ation(i, o)
country(capital ("Si ngapore","Si ngapore")). % (i)

Note that because in the last call all elements of the term are known, the flow
pattern defaultsto plain input (i) .

Load ch10e01.pro and try the goal example above with the Test Goal utility (see
Testing Language Tutorial Examples on page 12). When you look at the
VDE's Messages window, you will see the diagnhostics output referencing the
specified above flow variantsin the table like this:

Predi cate Nane Type Determ Size Donmins -- flowpattern
goal 000count ry$1 | ocal nondtm 168 cinfo -- o

goal 000count ry$2 | ocal nondt m 72 cinfo -- area(o,o0)

goal 000count ry$3 | ocal nondtm 108 cinfo -- population(i,o)
goal $000%country$4 | ocal nondtm 416 cinfo -- i

Chapter 10, Advanced Topics 217

When the domains involved in a compound flow pattern are reference domains,
the distinction between known and unknown arguments becomes blurred. We'll
return to this example in the reference domain section later.

Specifying Flow Patterns for Predicates

It is sometimes convenient to specify flow patterns for your predicates. If you
know, that your predicates will only be valid for special flow patterns, it is a
good idea to specify flow patterns for your predicates because the flow analyzer
will then catch any wrong usage of these predicates. After specifying the
domains, adash and the possible flow patterns can be given likein:

PREDI CATES
frame_text _mask(STRI NG, STRING, SLIST) - (i,0,0)(0,i,0)

Controlling the Flow Analysis

When the flow analyzer recognizes that a standard predicate is caled with a
nonexistent flow pattern, it issues an error message. This can help you identify
meaningless flow patterns when you're creating user-defined predicates that call
standard predicates.

For example, if you use:
Z=X+Y
where the variable X or Y is not bound, the flow analyzer will give an error

message saying that the flow pattern doesn't exist for that predicate. To control
this situation, you can use the standard predicates free and bound.

Suppose you want to create a predicate for addition, plus, which can be called
with all possible flow patterns. Program ch10e02.pro gives the code for such a
predicate.

/* Program ch10e02. pro */

di agnostics

PREDI CATES
pl us(integer, integer, integer)
nun(i nt eger)

218 Visual Prolog Language Tutorial

CLAUSES

plus(XY,2):-

bound(X), bound(Y), Z=X+Y. [/* (i,i,0) */
plus(XY,2):-

bound(Y), bound(Z2), X=2-Y. /* (o,i,i) */
plus(XY,2):-

bound(X), bound(Z2), Y=2-X. /* (i,o0,i) */
plus(XY,2):-

free(X),free(Y), bound(2), num(X), Y=2-X. /* (0,0,i) */
plus(XY,2):-

free(X),free(2), bound(Y), num(X), Z=X+Y. /* (0,i,0) */
plus(XY,2):-

free(Y),free(2), bound(X), num(Y), Z=X+Y. /* (i,0,0) */
plus(XY,2):-

free(X),free(Y),free(2), num(X), num(Y), Z=X+Y. /* (0,0,0) */

% Generator of nunbers starting fromO
num(0) .
num(X) : -

nun(A),

X = A+l.

Reference Variables

When the flow analyzer has been through a clause, it checks that all output
variables in the clause head have been bound in the clause body. If a variableis
not bound in a clause, it needs to be treated as a reference variable. Hereis an
example demonstrating this dilemma:

predi cates
p(i nteger)

cl auses
p(X):- !.

goal
p(V), V=199, wite(V).

In the Goal, the predicate p is called with an output pattern, but in the clause for
p, the argument X is not bound. When the flow analyzer recognizes this, it will
take alook at the domain corresponding to the variable. If the domain is already
declared as a reference domain, there is no prablem; if it is not, Visua Prolog
triesto re-declare it internally as a reference domain. When it is possible (see the
list of reference domains in the VDE's Messages window), the compiler

Chapter 10, Advanced Topics 219

generates a warning. When it isimpossible, for example, in programs containing
several source modules, the error message is generated.

Note

Beginning with Visual Prolog v.5.2 the compiler, by default, generates an
error on attempts to use Visual Prolog standard domains as reference. This
example uses the basic domain integer as reference. Therefore, an attempt to
invoke the Test Goal (with the default Visual Development Environment
parameters) on this example will generate the error like "Basic domain
becomes reference domain” (on integer domain). Consequently, to run the
Test Goal on this example, you must explicitly specify to the compiler, that it
should "allow basic domains become reference domains'. You can do this
with the command line compiler option:

- R+

To pass this option from the VDE into the command line compiler calls
(while the Test Goal), you can specify —r+ in the Predefined Constants edit
control in the Compiler Options dialog. In this case the compiler will not
generate the error.

However, we strongly recommend always explicitly declare all reference
domains in domains sections.

When a variable is not bound in a clause, the clause cannot return a value.
Instead, it will return a pointer to a reference record where the actual value can
beinserted at alater time. This requires that the whole domain be treated equally;
instead of just passing the values directly for some of the variables of that type,
pointers to records will be passed through arguments belonging to the reference
domain. When a compound domain becomes a reference domain, al of its
subdomains must also become reference domains, because they must also be
capable of containing free variables. If you just declare a compound domain to be
areference domain, the compiler will automatically know that all the subdomains
are also reference domains.

Declaring Domains as Reference

When the flow analyzer encounters an unbound variable, it will only give a
warning if the variable is not bound on return from a clause. If you ignore this
warning, the compiler will treat the domain as a reference domain. The compiler
will also try to declare al its subdomains as reference domains.

Because the code is treated the same for the whole domain, it is usually not a
good idea to treat the basic domains as reference domains. Instead, you should
declare a domain as being a reference domain to the desired base domain. For

220 Visual Prolog Language Tutorial

instance, in the following code excerpt, the user-defined domain refinteger is
declared to be a reference domain to the integer domain. All occurrences of
refinteger types will be handled as reference domains, but any occurrence of
other integer swill still be treated asintegers.

DOVAI NS
refinteger = reference integer

PREDI CATES
p(refinteger)

CLAUSES
p()-

Notice that if a base domain, for example integer, is treated as reference, then
variables belonging to this base domain are treated as references on the base
domain values. For example, integer variables will contain not integer values but
references to integers. If predicates in some module (for example in a third-party
C library) do not know that integer arguments are not ordinary integer values (but
pointers to integer values), then calls to these predicates from other modules can
be incorrect. As the result of this misunderstanding, such predicates may return
wrong values or generate run-time errors. Therefore, by default, the compiler
iSsues error message on attempts to use base domains as reference. This compiler
checking can be switched OFF with the command line option "-rR (see the
Admonition above). Therefore, you should never turn this checking OFF in
projects calling external global functions that use basic domains in arguments,
for example, if your project cals C functions from externa libraries. (For
instance, attempts to treat integer domain as reference domain in VPI based
projects, will generally lead to run-time errors.

You should aways explicitly declare the domains intended to be reference
domains in the domains section. This is directly required in projects containing
several modules - when global domains should handle unbound values, the
compiler will not allow automatic conversion of these domains to reference
domains. (Global domains and predicates are covered later in this chapter in the
section Modular Programming on page 252.)

Notice that the following special basic domains are not allowed to become
reference domains: file, reg, db_selector, bt_selector, and place.

Reference Domains and the Trail Array

Because coercion’s and some extra unification are needed, reference domains
will in general give areduction in execution speed. However, some problems can

Chapter 10, Advanced Topics 221

be solved far more elegant and efficiently when you use reference domains, and
Visual Prolog hasfacilitiesto limit their effect.

When you use reference domains, Visual Prolog uses the trail array. The trail
array is used to remember when reference variables become instantiated. Thisis
necessary because if you backtrack to a point between the creation and the
instantiation of a reference variable, it must be uninstantiated. This problem
doesn't exist with ordinary variables, as their points of creation and instantiation
are the same. Each instantiation recorded in the trail uses 4 bytes (the size of a
32-bit pointer). However, the trail usage is heavily optimized and no record will
be placed there if there are no backtrack points between the variable's creation
and instantiation.

Thetrail isautomatically increased in size when necessary. The maximum sizeis
64K in the 16-bit versions of Visual Prolog, and practically unbounded in the 32-
bit versions.

Using Reference Domains

The right way to use reference domains is to use them only in the few places
where they are needed and to use non-reference domains for all the rest. Visual
Prolog alows you to convert reference domains to non-reference domains
whenever needed. For example, you can create a predicate that converts a
reference integer to a non-reference integer with a single fact:

DOVAI NS
refint = reference integer

PREDI CATES
conv(refint,integer)

CLAUSES
conv(X, X).

Visual Prolog does the conversion automatically when the same variable is used
with both areference domain and a non-reference domain, asit does in the clause
when converting X from a refint to an integer. The above is only an explicit
example; you don't need to write any special code to convert from reference to
non-reference domains. Note that the reference variable needs to be instantiated
to avalue before it can be converted to the non-reference value. In the same way,
if you try to convert a variable from one reference domain to another (such as
from reference integers to reference characters), you should make sure the value
is bound. Otherwise, Visua Prolog will issue an error message to the effect that
free variables are not allowed in the context.

222 Visual Prolog Language Tutorial

Pay attention to the automatic type conversions when you are creating a new free
reference variable through a call to free predicate or creating a free variable with
the equal predicate (=). Notice that when Visual Prolog's compiler creates a new
unbound variable it needs to know to which domain this variable belongs.
Otherwise, the compiler treats this variable as belonging to the first found
reference domain; otherwise, if none reference domain is declared the compiler
generates an error. (Notice that this behavior is subject to change in different
Visual Prolog versions without any announcement.) That is, you can write:

predi cates
p(refinteger) — (0)

cl auses

pP(X):-
Y = X, bind_integer(X), ..

creating a new free reference variable with the equal predicate (=), but you
should not create an unbound variable through a call to free with unknown
domain like in this example:

goal
free(X), ..., bind_integer(X), ..

With reference domains you can return variables that will receive values at alater
point. You can also create structures where some places are left uninstantiated
until later.

Example

To get a feel for how reference domains work, you should try some goals with
the well-known predicates member and append:

/* Program ch10e03. pro */

di agnostics

DOVAI NS
refinteger = integer
reflist = reference refinteger*

PREDI CATES
menber (refinteger, reflist)
append(reflist, reflist, reflist)

Chapter 10, Advanced Topics 223

CLAUSES
nmenber (X, [X _]).
menber (X, [_| L]): -
menber (X, L) .

append([],L,L).
append([X| L1],L2,[X] L3]): -
append(L1, L2, L3).

L oad this example program, and try the Test Goal with the following goals:

menber (1,L). % Gve all lists where 1 is a nenber
menber (X, L), X=1. % Sane as before
menber (1,L), menber(2,L). % Lists starting with 1 and containing 2

X=Y, nenber (X, L), nenber (Y, L), X=3. % starting with X and containing Y
nmenber (1,L), append(L,[2,3],L1).

% Lists starting with X and closing with [... 2,3]
append(L, L, L1), menber(1,L). % lists containing 1 as |ess twce

Y ou will discover that the answers are what you logically expect them to be.

Flow Patter ns Revisited

A reference variable may well be unbound and yet exist a the timeit'susedin a
predicate call. In example ch10e01.pro, this will happen if for instance you want
tofind al countries having the same name as their capital, using e.g.

sanmecaps: - country(capital (C, C), wite(C '\n"), fail.

Here the variable C is used twice with output flow, but what the code really says
isthat the two variables in capital should share the same value once one of them
becomesinstantiated. Therefore, both variables are created and unified before the
call. In order to do this their domain is converted to a reference domain, and both
variables are in effect known at the time of call, giving a straight input flow
pattern.

Note that, as said before, it's dangerous practice to let the standard domains
become reference domains. If you want to use the above call, you should declare
a suitable reference domain. However, this would create an overhead in al
accesses of the country predicate, and it would probably be more efficient to use
backtracking to find the special case where a country name and a capital are
identical, by using.

country(capital (Co,Ca)), Co = Ca, !,

224 Visual Prolog Language Tutorial

Whether thisis true or not depends on the size of the database, how many times
you perform the call, how many other calls you have, how the arguments are
used after the calls, etc.

Using Binary Trees with Reference Domains

In chapter 6, you saw how binary trees could be used for fast and efficient
sorting. However, sorting can actually be done in a more elegant fashion with
reference domains. Because there is no way to change the leaves of a tree when
they get new values, alot of node copying occurs when the treeis created. When
you are sorting large amounts of data, this copying can result in a memory
overflow error. A reference domain can handle this by letting the leaves of the
tree remain as free variables (where the subtrees will later be inserted). By using
a reference domain this way, you don't need to copy the tree above the place
where the new node is to be inserted.

Consider the predicate insert during the evaluation of the goal in ch10e04.pro. In
this program, the insert predicate creates a binary tree using the reference domain
tree.

/* Program ch10e04. pro */

di agnostics

DOVAI NS
tree = reference t(val, tree, tree)
val = string

PREDI CATES

insert(val, tree)

CLAUSES
insert(IDt(ID _,_)):-!.
insert(I1Dt(ID1, Tree,_)):-
| D<I D1,
b,
insert (1D, Tree).
insert(IDt(_,_,Tree)):-
insert (1D, Tree).

GOAL
insert("ton', Tree),
insert("dick", Tree),
insert("harry", Tree),
wite("Tree=", Tree),
nl, readchar(_).

Chapter 10, Advanced Topics 225

The first subgoal, insert("tont, Tree), Will match with the first rule, and the
compound object to which Tree is bound takes this form:

t("tont, _,)
Even though the last two argumentsin t are not bound, t carried is forward to the
next subgoal evaluation:

insert("dick", Tree)

This, in turn, binds Treeto

t("tom, t("dick", _,),)

Finally, the subgoal

insert("harry", Tree)

binds Treeto

t("tont, t("dick", _, t("harry", _, 1)),)

which isthe result returned by the goal.

Try to view details of this process using the Visual Prolog Debugger. Run the
Debugger from the VDE with the Project | Debug command. When the
Debugger window appears, choose the Debugger's menu command View | Local
Variables, and use the Run | Trace Into command to inspect variables
instantiation while the program execution. (For more instructions see the chapter
Debugging Prolog Programs in the Getting Started and the chapter The
Debugger in the Visual Development Environment manuals.) Notice that in the
VDE in the Application Expert's Target tab you should select the following
settings: Platform = w ndows32, Ul Strategy = Text node.

Sorting with Reference Domains

In this section, we add onto the preceding binary tree example (ch10e04.pro) to
show how you can isolate the use of reference domains and convert between
reference and non-reference domains. The next example defines a predicate that
isableto sort alist of values.

226 Visual Prolog Language Tutorial

/* Program ch10e05. pro */

di agnostics

DOVAI NS
tree = reference t(val, tree, tree)
val = integer
list = integer*

PREDI CATES

insert(integer,tree)
instree(list,tree)

nondet erm treenmenber s(i nteger, tree)
sort(list,list)

CLAUSES
insert(Val,t(Vval,_,)):-!.
insert(Val,t(Vall, Tree,)):-
Val <val 1, !,
insert(Val, Tree).
insert(Val,t(_,_,Tree)):-

insert(Val, Tree).

instree([],_).

instree([H T], Tree):-
insert(H Tree),
instree(T, Tree).

treemenbers(_, T):-
free(T),!,fail.
treemenbers(X t(_, L,)):-
treenenbers(X L).
treemenbers(X t(Refstr, ,)):-
X = Refstr.
treemenbers(X t(_, ,R):-
treenenbers(X R).

sort(L,L1):-
instree(L, Tree),
findall (X treenenbers(X, Tree), L1).

GOAL
sort([3,6,1,4,5],L),
wite("L=",L),nl.

In this example, note that reference domains are only used in the tree. All other

arguments use non-reference domains. You can see this diagnostic in the VDE's
M essages window like the following:

Chapter 10, Advanced Topics 227

REFERENCE DOVAI NS
tree
val

Functions and Return Values

Visual Prolog includes syntax for letting predicates be considered functions
having areturn value, rather than plain predicates using an output argument. The
differenceis a bit more than syntactic, however. Because return values are stored
in registers, Prolog functions can return values to, and get return values from,
foreign languages, but that is an issue covered in the chapter Interfacing with
Other Languages on page 503.

A function declaration looks like an ordinary predicate declaration, except that
the function nameis prefixed by the domain it is returning:

predi cat es
unsi gned tripl e(unsi gned)

However, the clauses for a function should have an extra last argument, to be
unified with the return value upon success:

cl auses
triple(N Tpl):- Tpl = N¢3.

goal
TVal = triple(6), wite(Tval)
The return value need not be one of the standard domains; it can be any domain.

If you declare a function that does not take any arguments, you must supply an
empty pair of brackets when calling it, in order to distinguish it from a string
symbol. Given for instance a function to return the hour of the day

PREDI CATES
unsi gned hour ()

CLAUSES
hour(H:- time(H _, _,).

you must call it like this:

.., Hour = hour(), ...

and not like this

228 Visual Prolog Language Tutorial

, Hour = hour, ...

asthiswill smply consider hour to be the text string "hour"”, following which the
compiler will complain about type errors once you try to use Hour.

It is aso recommended to supply an empty pair of brackets in the declaration of
functions and predicates having no arguments. If not, confusing syntax errors
may result from misunderstandings between predicate names and domain names,
if they clash. If for instance you have a domain named key and you also have a
predicate named key, then the declaration:

PREDI CATES
key
nypred

can be interpreted in two ways: 1) a predicate named key and a predicate named
mypred, 2) a predicate name mypred returning a key. If instead you write:

PREDI CATES

key()
nypred()

al ambiguity is resolved.

Note that when a predicate is declared as a function, having a return value, it
cannot be called as an ordinary Prolog predicate using the extra argument as an
output argument; it must be called as a function. The reason for this is that
functions store return values in registers, meaning that the code compiled before
and in particular after afunction call is different from the code around a call of an
ordinary predicate. For the same reason, functions calling themselves are
currently not tail recursive but this may change in future versions of Visual
Prolog.

For instance, if you write afunction neg to negate each element in alist, likethis:

DOVAI NS
ilist = integer*

PREDI CATES
ilist neg(ilist)

CLAUSES
neg([].[1).
neg([Head| Tai I], [NHead| NTai |]): -
NHead = - Head,
NTail = neg(Tail).

Chapter 10, Advanced Topics 229

it is not tail-recursive, while neg as a predicate:

DOVAI NS
ilist = integer*
PREDI CATES
neg(ilist,ilist)
CLAUSES
neg([1.[1).
neg([Head| Tail], [NHead| NTai I]): -
NHead = - Head,
neg(Tail, NTail).

istail-recursive. Therefore, don't overdo the use of functions. Their primary aim
is to enable you to get returned values from, and return values to, foreign
language routines.

As afinal note, you should be aware that functions with arithmetic return values
must be deterministic if they take part in arithmetic expressions.

Deter minism Monitoring in Visual Prolog

Most programming languages are deterministic in nature. That is, any set of input
values leads to a single set of instructions used to produce output values.
Furthermore in most languages, for example in C, a called function can produce
only a single set of output values. On the contrary, Visual Prolog naturally
supports non-deterministic inference based on non-deterministic predicates.

The object behind the determinism monitoring is to save run-time storage space.
In fact, when a deterministic clause succeeds, the corresponding run-time stack
space can be dispensed with at once, thus freeing the storage it occupied. There
are a humber of reasons why determinism should also concern programmers,
most of them involving programming optimization.

Visual Prolog has a strongly typed determinism system. Visual Prolog's
determinism checking system enforces the programmer to declare the following
two behavior aspects of predicates (and facts):

1. Whether acall to a predicate can fail;
2. Number of solutions a predicate can produce.

In more Prolog program execution terms determinism mode defines the
following properties of predicate behavior:

230 Visual Prolog Language Tutorial

1. Canthepredicatefail? (Fail - F)
2. Can the predicate succeed? (Succeed - S)

3. Whether Visual Prolog will set a Backtracking Point to call of this predicate.

(Backtrack Point - BP)

According to these aspects of determinism the following determinism modes of

predicates (rules) are supported in Visual Prolog:

Table 10.1: Determinism Modes of Predicates

Number of Solutions can be produced
0 1 >1
Cannot fail: | erroneous | procedure | multi
{} {S {S BP}
Can fail:| failure determ nondeterm
{F} {F, S} {F, S, BP}

Using keywords from the above table in declarations of predicates and predicate
domains the programmer can declare the six different determinism modes of
predicates.

multi
{ Succeed, BacktrackPoint}

The keyword multi defines non-deterministic predicates that can backtrack
and generate multiple solutions. Predicates declared with the keyword multi
cannot fail and therefore always produce at |east one solution.

nondeterm
{Fail, Succeed, BacktrackPoint}

The keyword nondeterm defines non-deterministic predicates that can
backtrack and generate multiple solutions. Predicates declared with the
keyword nondeterm can fail.

procedure
{ Succeed}

Chapter 10, Advanced Topics 231

The keyword procedure defines predicates called procedures. Procedures
aways succeed (cannot fail) and do not produce backtrack points. That is
procedures always have one and only one solution. (But run-time errors are
possible.)

The compiler always checks and gives warnings for non-deterministic clauses
in procedures.

The compiler (by default) checks and gives an error if it cannot guarantee that
aprocedure never fails.

determ
{Fail, Succeed}

The keyword deter m defines deterministic predicates that can succeed or fail,
but never backtracks. That is, predicates declared with the keyword determ
have no more then one solution. When a predicate is declared with the
keyword determ, the compiler always checks and gives a warning for non-
deterministic clauses in the predicate. The keyword determ is also used in
declarations of database predicates in facts sections.

erroneous

{}

A predicate declared with the keyword erroneous should not succeed
(produce a solution) and should never fail.

Visual Prolog supplies the following erroneous built-in predicates. exit/0,
exit/l, errorexit/0, and errorexit/1. These predicates have a run-time error
effect. That is, if a call of such predicate is surrounded by the trap predicate,
then calling of the predicate will jump back to this trap. (Notice that in VPI
(Visual Programming Interface) every event handler is surrounded by an
internal trap.)

failure
{Fail}

A predicate declared with the keyword failur e should not produce a solution
but it can fail.

The most common example of failur e predicatesis built-in predicate fail.

When a predicate is declared with the keyword failure, the compiler by
default checks and gives a warning for possible non-deterministic clauses in
the predicate.

232 Visual Prolog Language Tutorial

Calling of afailure predicate enforces a program to backtrack to the nearest
backtracking point or interrupt the program with an effect identical to a run-
time error. The following example demonstrates difference between failure
and erroneous predicates:

predi cates
failure failure_1(INTEGER) - (i)
erroneous erroneous_0()

cl auses
erroneous_0():- exit(). % This predicate cannot fai
failure_1(0) :- %rhis predicate can fai
erroneous_0()
failure_1(_) :-
fail

Notice that all Visua Prolog's standard predicates have internal definition of
determinism mode as nondeterm, multi, determ, procedure, failure or
€r roneous.

Applying this classification to declarations of database predicates that can be
declared in facts sections we obtain the following table:

Table 10.2; Determinism Modes of Facts

Number of Solutions can be produced
0 1 >1
Cannot fail: single
{S
Can fail:| determ nondeterm
{F, S} {F, S, BP}

Using keywords from the above table in declarations of facts the programmer can
declare three different determinism modes of facts (database predicates).

nondeterm
{Fail, Succeed, BacktrackPoint}

Determines that the fact database can contain any number of facts for the
database predicate. This is the default determinism mode for database
predicates.

Chapter 10, Advanced Topics 233

determ
{Fail, Succeed}

Determines that the fact database at each moment can contain no more than
one fact for the database predicate declared with the keyword determ.

single
{ Succeed}

Determines that the fact database will always contain one and only one fact
for the database predicate declared with the keyword single.

In this table term "Cannot fail" related to single facts means that called with
free arguments a single database predicate always gives a solution (succeeds).

Visual Prologs Deter minism Checking System

Visual Prolog offers unique determinism monitoring facilities based on
declarations of types of predicates and facts. All Visua Prolog's standard
predicates are internally defined as nondeterm, multi, determ, procedure,
failure or erroneous.

By default, the compiler checks clauses of predicates and cal culates determinism
modes of all user-defined predicates, the compiler gives errors/warnings if it
cannot guarantee that a predicate corresponds to a declared determinism mode:

1 By default, the compiler checks user-defined predicates declared with the
keywords determ, procedure, failure or erroneous, and gives warnings for
clauses that can result in a non-deterministic predicate. There are two kinds of
non-deterministic clauses:

a If aclause does not contain a cut, and there are one or more clauses that
can match the same input arguments for that flow pattern.

b. If aclause cals a non-deterministic predicate, and that predicate call is
not followed by a cut.

Because of the second reason above, non-determinism has a tendency to
spread like wildfire throughout a program unless (literally) cut off by one or
more Cuts.

2. By default, the compiler checks user-defined predicates declared with the
keywords procedure, multi, and erroneous and gives warning/errors if it
cannot guarantee that a predicate never fails.

Take into account that the compiler is able to verify only necessary conditions
for fail (not necessary and sufficient). Therefore, the compiler can sometimes

234 Visual Prolog Language Tutorial

generate warnings/errors for predicates (declared with the keywords multi,
procedur e or erroneous) that, in fact, will never fail. For example,

domai ns
charlist = char*

predi cat es
procedure str_chrlist(STRI NG CHARLI ST) - (i, 0)

cl auses
str_chrlist("",[]):-!.
str_chrlist(Str,[HT]):-
frontchar(Str, H, Str1),
str_chrlist(Strl, T).

The frontchar predicate can fail if the first parameter Sr is an empty string.
The compiler is not sophisticated enough to detect that Sr in the second
clause of str_chrlist cannot be empty string. For this example the compiler
will generate awarning like "Possibility for failure in a predicate declared as
procedure, multi or erroneous’.

Checking of determinism modes of user-defined predicates can be switched OFF
by unchecking the Check Type of Predicates (in VDE's Compiler Options
dialog) or with the command-line compiler option - upro-, but it is a dangerous
programming style. Instead you should modify the code to avoid these warnings.
For instance, in this example you can reorder the clauses like:

str_chrlist(Str,[HT]):-
frontchar(Str,H Strl),
|

str_chrlist(Strl, T).
str_chrlist(_,[]):-!.

The declaration of procedures catches many small mistakes, like forgetting a
catchall clause.

There are two rules that you must use when writing predicates declared with the
keyword multi, procedure or erroneous:

» If any clause of a predicate can fail than the final catchall clause must be
defined in the predicate (see the str_chrlist example above).

* For any possible (according to declared domains) set of input arguments, a
clause, having a head, which matches this set, must exist. Otherwise, the
compiler will generate awarning.

Chapter 10, Advanced Topics 235

For instance, in the following example the third clause for the predicate p can be
missed if the predicate is declared without the procedure keyword, but the
compiler will detect thisif the predicate is declared as procedure.

DOVAI NS
BOOLEAN = I NTEGER % b_True = 1, b_False = 0

PREDI CATES
procedur e p(BOOLEAN)

CLAUSES
p(b_False):- !,
p(b_True): - 1!,
p(_): - dlg_error("An illegal argument value").

Notice that the compiler handles err oneous predicatesin a special way providing
possibility to use them in the final catchall clauses (for handling error situations)
in predicates of other types. For instance, the catchall clause in the previous
example can be rewritten as the following:

p(_): - errorexit(error_vpi_package_bad_data).

Predicates as Arguments

So far we have only seen predicate calls of a static nature. That is, the predicates
being called as subgoals are specified statically in the source code. However, in
many cases it may be desirable to call different predicates, depending on
previous events and evaluations, from the same place, to avoid large-scale
duplication of code. To this end Visual Prolog supports a notion of predicate
values, you can declare a predicate domain, and pass predicate values (pointers
to predicates) of that domain as variables.

The main usage of this feature in Visual Prolog is to pass event handler
predicates to the VPI layer.

Predicate Values
Predicate values are predicates that can be treated as values in the sense that:

e They can be passed as parameters and returned from predicates and
functions.

e They can be stored in facts.

236 Visual Prolog Language Tutorial

* They can beheldin variables.
* They can be compared for identity.

Of course, like "plain” predicates the predicate values can be called with
appropriate arguments.

The predicate values are declared as instances of predicate domains.

If you have declared a predicate domain (for example, pred_Dom) in a domains
section:

domai ns
pred_dom = procedure (integer, integer) — (i,o0)

then you can declare one or more predicate values (functions) as belonging to
this predicate domain. The syntax for declarations of predicate valuesis:

pr edi cat es
predVval ue_1: pred_Dom
predVval ue_2: pred_Dom

Here predValue 1, predvValue 2 are names of predicate values and pred_Dom
is the predicate domain declared in the domains section. This predicate domain
pred_Dom can then be specified as domain for arguments to other predicates.
For example:

predi cat es
vari ant _process(pred_Dom PredName, integer |InVar, integer CutVar)

Then the programmer can pass these predicates (predicate values) predvValue 1,
predValue 2 asvalues of the PredName argument to predicate variant_process.
Predicate variant_process will hence be able to make avectored call.

Predicate values may be used like almost any other entities in a program. In
particular, they can appear as parts of compound terms, creating object oriented
possibilities where each object carries with it a series of routines for its own
management.

Predicate values do however differ from most other Visual Prolog values in the
following respects:

» Thereexist no literals for predicate values.

» Predicate values have no persistent representation. (The text representation of
a predicate value is simply a hexadecima number (i.e. the value of a pointer
to amemory address)).

Chapter 10, Advanced Topics 237

You should take note, that predicate values are a fairly low-level mechanism.
The actual value of such a predicate value is simply a code-address, and therefore
it isvalid only in the particular program where it was created. Hence, although
you can store and retrieve predicate values via the fact databases, highly
unexpected and quite possibly disastrous results will occur if you try to use a
predicate value not originating in the current program.

Predicate values have many usages. One of the most important is for callbacks.

A callback is a predicate that is used to call back from some used entity to the
user of thisentity. For example:

* A cal back from aserver to aclient, or

* A cal back from a service to the service user, or

e A cdl back from aroutine to aroutine user.

Callbacks are normally used for one or both of the following purposes:
e To handle asynchronous events;

» To provide advanced/dynamic parameterization.

When dealing with asynchronous events a program registers a callback with
some event source. Then this event source invokes the callback whenever an
event occurs. "Data ready"” in asynchronous communication is atypical example
of such an asynchronous event. Another very typical example is a Windows
event handler.

As an example of advanced/dynamic parameterization assume a tool that can
create a certain kind of window. This window has the ability to change the shape
of the cursor (mouse pointer) when it enters certain parts of the window. The
window is however intended to work in many different situations, and therefore
it cannot know which cursor to use in which parts of the window. In fact, the
choice of cursor might depend on numerous things of which the window has no
knowledge at all. Subsequently the window simply leaves the choice of cursor to
the program that uses the window. And the way the window does this is by
invoking a callback predicate. Via this callback predicate the window asks the
surrounding program - which cursor to use, when the mouse enters a certain part
of the window. Since the window makes such a callback each time the mouse
enters a certain part it need not receive the same cursor each time, the choice of
cursor can dynamically depend on things external to the window.

Predicate Domains

The declaration for a predicate domain is of the form:

238 Visual Prolog Language Tutorial

[gl obal] domains
PredDom = Det er mvbde [ReturnDon] (ArgList) [- [FlowPattern]] [Language]
Here:
PredDom
Declares the name of the predicate domain.
DetermMode
Specifies the determinism mode with one of the following keywords:
{procedure | determ| nondeterm| failure | erroneous | multi}

Remember that the determinism mode must be specified in predicate domain
declarations.

ReturnDom

Defines the domain for the return value, if you are declaring a predicate
domain for functions.

ArgList
Defines domains for argumentsin the form:
[arg 1 [, arg 2]~]
Herearg_N is of the form:
Dorai n_Name [Argument _Name]

Here Domain_Name can be any standard or user-defined domain. The
compiler just ignores the Argument_Name (if specified).

Attention: Brackets surrounding the argument list ArgList should always be
given, even when the ArgList is empty.

FlowPattern
is of the form:

(flow [, flow]*)
whereflowis{ i | o | functor FlowPattern | listflow}
and listflowis'[* flow [, flow]* ["|* {i | o listflow}] ']
The char '-' is obligatory before the FlowPattern (if FlowPattern is
specified).

The flow pattern FlowPattern specifies how each argument is to be used. It
must be the letter ' i for an argument with input flow or the letter ' o for one

Chapter 10, Advanced Topics 239

with output flow. A functor and aflow pattern must be given for a compound
term (e.g. (i, o, nyfunc(i,i), o))oralistflow(eg.[i, nyfunc(i,o), o]).

Attention: Only one flow pattern can be specified. If it is not specified
explicitly, then the default flow pattern with all input arguments is accepted
implicitly.

Notice that this implicit flow pattern can be the reason of error messages like
"This flow pattern does not exist".

Language

isof theform:
| anguage { pascal | stdcall | asm| c | syscall | prolog}

The Language specification tells the compiler, which kind of calling
conventions to use. It is only required when predicate values, which are
declared as instances of this predicate domain, will be passed to routines
written in foreign languages. (For instance, in C, Delphi, etc.)

The default calling convention is pascal. Notice the difference with
declarations of predicates, where the default is prolog.

Restriction. Predicate values having calling convention prolog cannot be
called from variables. That is, if such predicate value is passed in a variable
and the received predicate value is called on appropriate arguments, then the
compiler generates an error.

Here we use:

Square brackets to indicate optional items, and braces (curly brackets) to
indicate that one of the items delimited by the symbols' |+ must be used.

Pair of single quotes to indicate that the character surrounded by them
(namely ' |, [and']') isapart of the Visua Prolog language syntax.

Asterisk symbol '+ to indicate arbitrary quantity of the immediately
preceding item (zero or more times).

Comparison with declaration of predicates

In contradistinction to predicate declarations, in declarations of predicate
domains:

1. Only oneflow pattern can be specified.

2.

If aflow pattern is not specified explicitly, then the default one with all input
arguments is accepted implicitly.

240 Visual Prolog Language Tutorial

3. The determinism mode DetermM ode should always be specified before the
argument list ArgList or before the return domain ReturnDom (in
declarations of predicate domains for functions). The determinism mode
cannot be (re-)declared before the flow pattern.

4. Brackets of the argument list should always be given (even when the list is
empty).

5. The default calling convention for predicate domains is pascal while for
predicates the default is prolog.

Examples

Hence, the declaration of a predicate domain for deterministic predicates
(functions) taking an integer as input argument and returning an integer return
value, would be

DOVAI NS
list_process = determinteger (integer) - (i)

This predicate domain is now known as list_process. To declare a function
square as belonging to this predicate domain, the syntax is:

PREDI CATES
square: |ist_process

The clause for square is just like an ordinary clause, but as it's declared as a
function it needs a return argument:

CLAUSES
square(E ES):- ES = E*E

Elaborating on the above, declarations of the predicate domain ilist_p for
deterministic predicates taking an integer list (ilist) and a predicate value (of
list_process predicate domain) as input arguments, and an integer list as output
argument, would hence be:

DOVAI NS
ilist = integer*
list_process = determinteger (integer) - (i)
ilist_p = determ(ilist,list_process,ilist) - (i,i,o0)

Now look at the following program:

Chapter 10, Advanced Topics 241

/* Program ch10e06. pro */

DOVAI NS

ilist = integer*

list_process = determinteger (integer) - (i)

ilist_p = determ(ilist,list_process,ilist) - (i,i,o0)
PREDI CATES

l'ist_square: |ist_process

l'ist_cube: list_process

il _process: ilist_p
CLAUSES

l'ist_square(E ES):- ES = E*E
l'ist_cube(E EC):- EC = E*E*E.

il _process([],_,[])-

il _process([Head| Tail],L_Process,[P_Head| P _Tail]):-
P_Head = L_Process(Head),
il _process(Tail,L_Process, P _Tail)

GOAL
List = [-12,6, 24,14, -3],
il _process(List,list_square, P_Listl)

wite("P_Listl =",P_Listl,'\n"),
il _process(List,|ist_cube, P_List2)
wite("P_List2 =",P_List2,"\n").

This declares two functions: list_square and list_cube, belonging to the
list_process predicate domain, and a predicate il_process creating a new integer
list by applying the list element-processing predicate (which is passed as a
predicate value in the L_Process argument) to each element of the original list.
Note that the domain declaration ilist_ p is only included for illustration;
il_process could equally well been declared using:

PREDI CATES
il_process(ilist,list_process,ilist)
sinceitisnot referred to as avariable.

With the goal shown, il_processis called twice, first creating alist of squares by
applying the list_sguare function, and then a list of cubes by applying the
list_cube function. Compile and run this program, and you will get:

P_Listl = [144, 36,576, 196, 9]
P_List2 = [-1728, 216, 13824, 2744, - 27]

242 Visual Prolog Language Tutorial

Make sure you understand the complexities of this, and, when you do, make sure
you don't abuse it. It's all too easy to create totally unreadable programs. Program
ch10e07, which is a somewhat elaborated version of chl0e06, illustrates the
concept taken to a reasonable limit:

/* Program ch10e07.pro */

DOVAI NS
ilist = integer*
list_process = determinteger (integer) - (i)
list_p_list = 1ist_process*
el em process = determ (integer,integer,integer) - (i,i,o0)

elemp_list = el emprocess*

PREDI CATES
list_sanme: |ist_process
list_square: |ist_process
list_cube: |ist_process

el em add: el em process
el em max: el em process
elemmn: el emprocess

il _process(ilist,list_process,ilist)
il _post_process(ilist,elemprocess,integer)

appl y_el enprocess(ilist,elemp_list)
apply_listprocess(ilist,list_p_list,elemp_list)

string | pnanme(list_process)
string epnane(el em process)

CLAUSES
| pnane(list_sane,|ist_sane). % Map predicate values to predicate
functors
| pnanme(list_square,|ist_square)
| pnanme(list_cube, |ist_cube)

epnane(el em add, el em add)
epnane(el em.m n, el em m n)
epnane(el em nmax, el em nmax)

el em add(E1, E2, E3): - E3 = E1+E2
el em max(El, E2, El): - El1 >= E2, !
el em max(_, E2, E2)
elemmn(El E2,El):- El <= E2, !
elemmn(_, E2, E2)

Chapter 10, Advanced Topics 243

list_same(E E).
l'ist_square(E ES):- ES = E*E.
l'ist_cube(E EC):- EC = E*E*E.

il _process([],_,[])-

il _process([Head| Tail], E Process,[P_Head| P _Tail]):-
P_Head = E_Process(Head),
il _process(Tail,E Process,P_Tail).

il _post_process([E],_,E):-!.

il _post_process([H T],L_Process, Result):-
i | _post_process(T, L_Process, Rl),
L_Process(H Rl, Result).

appl y_el enprocess(_,[]).

appl y_el enprocess(P_List,[E Process|E Tail]):-
i | _post_process(P_List, E Process, Post Process),
NE_Process = epnane(E_Process),
wite(NE Process,": Result = ", PostProcess,'\n'),
appl y_el enprocess(P_List,E Tail).

apply_listprocess(_,[],_).
apply_listprocess(l_List,[L_Process|L_Tail],E List):-
il _process(l_List,L_Process, P_List),
NL_Process = | pnane(L_Process),
wite('\n'",N__Process,":\nProcessed list =", P_List,
"\ nPost - processing with:\n"),
appl y_el enprocess(P_List,E List),
apply_listprocess(l_List,L_Tail,E List).

GOAL
List =[-12,6,24,14,-3],
wite("Processing ",List," using:\n"),nl,
apply_listprocess(List,[list_sane,|ist_square,list_cube],
[el em add, el em nmax, elem min]).

Among other things, this program illustrates the use of lists of predicate values. If
you run it, you'll get the following output:

Processing [-12, 6, 24, 14, - 3] using:

I'ist_same:

Processed list = [-12,6, 24, 14, - 3]
Post - processing w th:

el em add: Result = 29

el em max: Result = 24

elemmn: Result = -12

244 Visual Prolog Language Tutorial

i st_square:

Processed list = [144, 36,576, 196, 9]
Post - processing with:

el em add: Result = 961

el em max: Result = 576

elemmn: Result =9

i st_cube:

Processed list = [-1728, 216, 13824, 2744, - 27]

Post - processing with:

el em add: Result = 15029
el em max: Result = 13824
elemmn: Result = -1728

The Binary Domain

Visual Prolog has a special binary domain for holding binary data, as well as
specia predicates for accessing individual elements of binary terms. The main
use for binary terms is to hold data that has no reasonable representation
otherwise, such as screen bitmaps and other arbitrary memory blocks. There are
separate predicates for reading binary terms from, and writing them to, files.
These will be discussed in chapter 12 "Wkiting, Reading, and Files'. With the
help of the built-in conversion predicate term_bin, conversion from things such
as binary file-headers to Prolog terms is a snap, and binary items going into or
coming out of foreign language routines are easily handled. Finally arrays may
also be implemented easily and efficiently.

Binary terms is a low-level mechanism, whose primary aim is to allow easy and
efficient interfacing to other, non-logical, objects, and foreign languages. To this
end, binary terms do not behave like other Prolog terms with respect to
backtracking. Binary terms will be released if you backtrack to a point previous
to their creation, but if you don't backtrack that far any changes done to the term
will not be undone. We will illustrate this in the example program at the end of
this section.

Chapter 10, Advanced Topics 245

| mplementation of binary terms

Poi nt er

A binary termis simply a sequence of

Size | bytes | bytes, preceded by a word (16-bit
n platforms) or dword (32-bit platforms),
| holding its size.

When interfacing to other languages,

you should be aware that a term of

binary type (the variable passed in the
foreign language function call) points to the actual contents, not the size. The
Szefield includes the space taken up by the field itself. Binary terms are subject
to the usual 64K size restriction on 16-bit platforms.

Text syntax of Binary Terms

Binary terms can be read and written in text format, and also specified in source
form in Visual Prolog source code. The syntax is:

$[b1,b2,..., bn]
where bl, b2, etc. are the individual bytes of the term. When a binary term is
specified in source form in a program, the bytes may be written using any
suitable unsigned integral format: decimal, hexadecimal, octal, or as a character.
However, the text-representation of binary terms created and converted at run-

timeis fixed hexadecimal, with no leading "0x" on the individual bytes. Program
ch10e08. pro illustrates this:

/* Program ch10e08. pro */

GOAL
wite("Text formof binary term ", $['B, 105, 00154, 0x73,'e' ,0],"'\n").

Load and run this program, and Visual Prolog will respond

Text formof binary term $[42, 69, 6C, 73, 65, 00]

Y ou should hence be careful if you use e.g. readterm to read a binary term at
runtime.

246 Visual Prolog Language Tutorial

Creating Binary Terms

Below we discuss the standard predicates Visual Prolog includes, for creation of
binary terms.

makebinary/1

makebinary creates and returns a binary term with the number of bytes specified,
and setsits contents to binary zero.

, Bin = makebi nary(10), ...

The number of bytes should be the net size, excluding the size of the size field.

makebinary/2
makebinary is al'so available in a two-arity version, allowing specification of an
element size.

, USi ze = sizeof (unsigned), Bin = makebinary(10, USi ze), ...

This creates a binary term with a size given by the number of elements (10 in the
above example) multiplied by the element-size (si zeof (unsi gned) in the above),
and setsits contents to zero.

composebinary/2

composebinary creates a binary term from an existing pointer and a length. It's
useful in converting pointers to arbitrary blocks of memory returned by foreign
language functions. The composebinary takes two arguments, and returns a
binary.

, Bin = conposebi nary(StringVar, Size), ...
composebinary takes a copy of the SringVar given as input, so changes to the
created binary term Bin will not affect StringVar, and vice versa.

getbinarysize/l
getbinarysize returns the net size (in bytes) of the binary term, excluding the size
field in front of the data.

.., Size = getbhinarysize(Bin), ...

Chapter 10, Advanced Topics 247

Accessing Binary Terms

There are eight predicates for accessing binary terms, four for setting entries and
four for getting entries. Both groups perform range checking based on the size of
the binary term, the index specified, and the size of the desired item (byte, word,
dword, or real). It is an error to try to get or set entries outside the range of the
binary term.

Take special note that indices (element numbers) are O-relative; the first element
of a binary term has index 0, and the last element of an N-element binary term
hasindex N-1.

get*entry/2
get*entry is either getbyteentry, getwordentry, getdwordentry, or getrealentry,
accessing and returning the specified entry as a byte, word, dword, or real,
respectively.

, SomeByte = getbyteentry(Bin,3), ...

set*entry/3
set*entry is the counterpart to get* entry, setting the specified byte, word, dword,
or real entry.

, setbyteentry(Bin, 3, SoneByte), ...

Unifying Binary Terms

Binary terms may be unified just like any other term, in clause heads or using the
equal predicate' =':

.., Binl = Bin2, ...
If either of the terms is free at the time of unification, they will be unified and

point to the same binary object. If both are bound at the time of unification, they
will be compared for equality.

Comparing Binary Terms
The result of comparing two binary termsis as follows:

If they are of different sizes, the bigger is considered larger; otherwise, they're
compared byte by byte, as unsigned values, comparison stops when two

248 Visual Prolog Language Tutorial

differing bytes are found, and the result of their comparison is also the result
of the comparison of the binary terms.

For instance, s[1, 2] isbigger than $[100] , and smaller than $[1, 3] .

Example

Program ch10e09. pr o demonstrates a number of aspects of binary terms.
/* Program ch10e09. pro */

predi cates
conmp_uni fy_bin
conp_uni fy(bi nary, bi nary)
access(bi nary)
error_handl er (i nteger ErrorCode, unsigned Index, binary)

cl auses
conmp_uni fy_bin: -
Bi n = nakebi nary(5),
conmp_uni fy(Bin,_),
conmp_uni fy($[1, 2], $[100]),
conmp_uni fy($[0], Bin),
conmp_uni fy($[1,2,3],9%[1,2,4]).

conmp_uni fy(B,B):-1!,
wite(B" =",B'\n").
conmp_uni fy(B1, B2): -
Bl1L > B2,!,
wite(B1," >",B2,'\n").
conmp_uni fy(B1, B2): -
wite(Bl," <",B2,'\n").

access(Bin): -

setwordentry(Bin, 3, 255),

fail. % Changes are not undone when backtracki ng!
access(Bin): -

Si ze = getbinarysi ze(Bin),

X = getwordentry(Bin,3),

wite("\nSize=",Size," X=",X" Bin=",Bin '\n").

error_handl er (Error Code, |ndex, Bin):-
wite("Error ",ErrorCode," setting word index ",Index," of ",Bin,
"\n', "Press any char to term nate execution\n"),
readchar (_).

Chapter 10, Advanced Topics 249

goal
% |1lustrate conparison and unification of binary terns
conp_uni fy_bin,

% Al l ocate a binary chunk of 4 words
Wor dSi ze = si zeof (word),
Bi n = nakebi nary(4, Wr dSi ze),
access(Bin),

% |1 lustrate range checking; elenent nunbers are O-relative
wite("Run-tine error due to wong index:\n"),
I ndex = 4,
trap(setwordentry(Bin,Index,0),E error_handler(E, I ndex,Bin)).

This example uses the trap predicate, which will be discussed in the section
about error handling below.

Converting Termsto Binary Terms

A compound term may have its arguments scattered all over memory, depending
on what domains they belong to. Simple types are stored directly in the term
record itself, while complex types (those accessed via a pointer, and allocated
separately on the global stack) will not necessarily be anywhere near the term
they appear in. Thisis a problem if aterm has to be sent out of a program, so to
speak, as there is no way make an explicit copy of its contents. Unifying a term
variable with another variable will only take a copy of the pointer to the term.

Using term_str (discussed in chapter 13), it is possible to convert the term to a
string and back again, but this is rather inefficient when all that's needed is a
copy of the term’s contents.

term_bin solvesthis problem.

term_bin/3

term_bin will convert between aterm of any domain and a block of binary data,
holding the term's contents as well as pointer fixup information. The pointer
fixup information will be applied to the binary data when converted back to a
term, allowing recreation of any pointers to complex terms the term contains.

term_bin lookslikethis:

t er m_bi n(donei n, Term Bi n) I* (i,i,o) (i,_,i) */

The domain is the domain the Term belongs, or should belong, to, and Bin is a
binary term holding the Term's contents.

250 Visual Prolog Language Tutorial

Example

Program chioe11. pro demonstrates conversion between a term and its binary
representation. The domains and alignment have been explicitly chosen to ease
description, as they would otherwise differ between 16-bit and 32-bit platforms.
Alignment of terms is usualy only relevant when interfacing to foreign
languages, and is fully described in the chapter 18.

/* Program ch10ell.pro */

DOVAI NS
dom = align dword cnp(string, short)

GOAL
T = cnp("Bil se", 31),
termbi n(dom T, B),
wite("Binary formof ", T,":\n", B),
term bi n(dom T1, B),
wite("\nConverted back: ",T1,'\n").

If you run this, you'll get:

Bi nary form of cnp("Bilse",31):
$[01, 00, 00, 00, OA, 00, 00, 00, 1F, 00, 42, 69, 6C, 73, 65, 00, 04, 00, 00, 00, 01, 00, 00, 00]
Converted back: cnp("Bilse", 31)

Y ou shouldn't be too concerned about the actual format of this, in particular as
we're dealing with implementation details, which may change. Nevertheless,
welll briefly describe the contents of the binary information:

$[01, 00, 00, 00, 0A, 00, 00, 00, 1F, 00, 42, 69, 6C, 73, 65, 00, 04, 00, 00, 00, 01, 00, 00, 00]
| [(I (I I
| | | | | |

functor | 31 "Bilse"\0 of fset of # of ptrs
| ptr to fix in fixup

O-rel ative (array, but
ptr to string only one el enent here)

The offset of ptr to fix array will be 16-bit quantities on 16-bit platforms, as will
the # of ptrsin fixup.

If the term contains elements from the symbol domain, the binary term will
contain additional information to insert the symbols in the symbol table when the
term isre-created.

Visual Prolog uses term_bin itself when storing things in the internal fact
database system and when sending terms over a message pipe to another

Chapter 10, Advanced Topics 251

program. If several programs share external databases or communicate over
pipes, it's hence crucial that the domainsinvolved use the same alignment.

Modular Programming

A Visua Prolog program can be broken up into modules. You can write, edit,
and compile the modules separately, and then link them together to create a
single executable program. If you need to change the program, you only need to
edit and recompile individual modules, not the entire program — a feature you
will appreciate when you write large programs. Also, modular programming
alows you to take advantage of the fact that, by default, all predicate and domain
names are local. This means different modules can use the same name in
different ways. Visual Prolog uses two concepts to manage modular
programming: global declarations and projects.

Global Declarations

By default, al names used in a module are local. Visual Prolog programs
communicate across module boundaries using the predicates defined in the
global predicates sections and in classes. The domains used in global predicates
must be also defined as global domains or else they must be standard Visual
Prolog domains.

Beginning with version 5.2 Visual Prolog provides enhanced handling of global
declarations. In short:

1. The main project module (with the goal) must contain declarations of all
global domains (and global facts sections) declared in al project
submodules.

2. Any other project module may contain declarations of only those global
domains, which are used in this module.

3. Global declarations can be placed after local declarations.

If any global declaration is changed, only modules including this declaration
must be recompiled.

Global Domains

Y ou make a domain global by writing it in a global domains section. In all other
respects, global domains are the same as ordinary (local) domains.

252 Visual Prolog Language Tutorial

Visual Prolog v. 5.2 provides enhanced handling of global domains. Now it is not
required that all modules contain identical declarations of all global domains in
exactly the same order (the special CHKDOMS.EXE utility were used to check
this identity in PDC Prolog and in Visual Prolog versions previous to v. 5.2).
Now you should obey only the following 2 much less strict rules:

1. Only the main project module (containing the goal section) must include
declarations of al global domains (and global facts sections) declared in al
project submodules.

2. Any other project module may contain declarations of only those global
domains, which are used in this module.

This gives the following principal benefits:
* Itispossibleto create and use pre-compiled libraries (using global domains).

* When a global domain is changed, recompilation time is reduced, because
only the modules including this domain declaration have to be recompiled.

* Your program can use more domains, since a module can include only those
global domains, which are really used in this module.

According to these rules, the PDC Linker (while linking-time) checks whether
the main project module includes declarations of al global domains declared in
all project modules. If the PDC Linker detects a global domain DomainName that
is declared in a submodule FileName and is not declared in the main module,
then it generates an error message like this:

Fi eNane - undefined nane: $gl obal donDonai nNane

Notice that the PDC Linker compares only global domain names and it does not
guarantee that a global domain has the same declarations in different project
modules; this consistency is only the programmer responsibility. If you mix this
up, al sorts of strange run-time problems can happen, such as a computer
hanging under DOS or a protection violation on 32-bit platforms.

The easiest way to ensure that this is correct is by placing (including) all global
domain declarations in a single file (for instance ProjectName.inc), which you
can then include in every relevant module with an include directive like:

i ncl ude "ProjectNane.inc"

Visual Prolog VDE provides flexible automatic engine for handling inclusion of
globa domain declarations into project modules. The core of this engine is the
File Incluson for Module dialog, which is activated when you create a new
module. (See the Options of File Inclusion for Module dialog in the Visual
Development Environment manual.) For small projects you can use the simplified

Chapter 10, Advanced Topics 253

strategy providing inclusion of al global domains in each project module. To
guarantee this you need:

1. IntheFilelnclusion for Module diaog:

* Check ON the "Create <ModuleName>.DOM" for each source module,
which may introduce new global domains.

* Check ON the "Include <M oduleName>.DOM", to specify that the include
statement for <ModuleName>.DOM must be generated in the
<ProjectName>.INC file.

2. The programmer has to place declarations of al global domains exported
from a modul e into the correspondent <M oduleName>.DOM file.

Because the include directive for <ProjectName>.INC file is placed in all
project modules, all modules will contain the same declarations of global
domains.

In larger projects, you can implement more flexible "where-used" strategy for
including of global domains. Instead of including <M oduleName>.DOM into
the <ProjectName>.INC file, you can selectively include
<M oduleName>.DOM files only into modules really importing global domains
declared in these files. When you follow VDE's file nhaming and inclusion
philosophy, the VDE's M ake facility will automatically detect changes of files
containing global declarations and enforce recompilation of al necessary
modules, based on the file time stamps.

Global Facts Sections
Y ou make a facts section global to a project by preceding the keyword facts (the
obsolete keyword database is also possible) with the keyword global.

Y ou can giveinitializing clauses for global facts only after the goal section in the
main module.

Since Visual Prolog automatically generates the global domain correspondent to
the name of each global facts section, then all rules discussed for handling of
global domains should be applied to global fact sections.

Notice that the safe programming techniques require that you should not use
global facts. Instea