
© 2002 Logilab S.A. – Released under the Gnu Public License

XML and Python
Tutorial

By Alexandre Fayolle

Logilab

(mailto:alexandre.fayolle@logilab.fr)

© 2002 Logilab S.A. – Released under the Gnu Public License

Presentation Contents

Chapter 1: Introductions

Chapter 2: What is XML Processing?

Chapter 3: Available tools

Chapter 4: Simple API for XML (SAX)

Chapter 5: Document Object Model (DOM)

Chapter 6: Xpath and XSLT

Chapter 7: Where can you go now?

© 2002 Logilab S.A. – Released under the Gnu Public License

1. Introductions

2. XML Processing

3. Available tools

4. SAX

5. DOM

6. XPath and XSLT

7. What next?

Chapter 1
Introductions

Introducing the speaker,
his company and the tutorial…

© 2002 Logilab S.A. – Released under the Gnu Public License

About me

My name is Alexandre, I'm French
I've been using Python for the past 3 years
Main programming interests

– knowledge representation
– AI algorithms

Other interests include
– Playing and listening Jazz
– Writing short stories

I've been using and constributing to PyXML and 4Suite
for the past 2 years

I maintain some Debian packages
– python-xml, python-4suite, python-unit

© 2002 Logilab S.A. – Released under the Gnu Public License

About Logilab

Logilab is a french IT company, founded in 2000
We provide industrial-strength solution to complex

problems
– We use techniques coming from research labs and universities
– And we mix them with good software development practices

We are strongly involved in the Free Software and
Python communities
– Narval, python Logic-SIG, HMM, XMLDiff, PyReverse...

Nicolas Chauvat is the Track Champion for the Python
in Science and Industry track at EPC2002, together with
Marc Poinot from ONERA

We have some demos available on our booth over there

© 2002 Logilab S.A. – Released under the Gnu Public License

About this tutorial

This is not an XML tutorial:

I won't be going in the gory syntax of XML, Schemas and
DTDs

This is not a Python tutorial:

I expect you to know the Python programming language

I also expect that you have a good background in OO Design
and Programming (Design Patterns...)

The main focus will be on the tools provided by the Python
Standard Library and the PyXML extensions, with some mentions of
the 4Suite processing tools provided by FourThought, Inc.

All the examples will use these tools.

© 2002 Logilab S.A. – Released under the Gnu Public License

XML syntax in 2 minutes

Prologue is optional

Document Type Definition can be
used to validate the document

One root element

Namespaces can be used to avoid
name clashes

Elements are properly nested

Attributes must be quoted

Data is stored in attribute values or in
text nodes

It's possible to have mixed contents

<?xml version='1.0'
encoding='iso-8859-1?>
<!DOCTYPE presentation SYSTEM
"presentation.dtd">
<presentation
xmlns="http://logilab.fr/slides">
 <info>
 <title>XML and Python
Tutorial</title>
 <author>Alexandre Fayolle</author>
 </info>
 <section title="Introductions">
 <slide title="About me">
 <list>
 <entry>My name is
Alexandre, I'm French</entry>
 <entry>I've been using Python for
the past 3 years</entry>
 </list>
 </slide>
 <!–- add more slides here –->
 </section>
</presentation>

© 2002 Logilab S.A. – Released under the Gnu Public License

Some definitions

Well formed: denotes an XML document that is
syntactically correct according to the XML specification

Valid: denotes an XML document with elements and
attributes conforming to a grammar. This grammar can
be described with a DTD, an XML Schema, or some
other mean

Entity: a shortcut to some data

PCDATA: parsed character data

CDATA: character data

© 2002 Logilab S.A. – Released under the Gnu Public License

1. Introductions

2. XML Processing

3. Available tools

4. SAX

5. DOM

6. XPath and XSLT

7. What next?

Chapter 2
What is XML Processing?

Operations to be performed
on XML documents

© 2002 Logilab S.A. – Released under the Gnu Public License

When to use XML?

 Whenever you have to decide on a format that should be open, and
may have to evolve
– Configuration files (Jabber, Zope3)

– Document serialization (DIA, Gnumeric)

– Business to business applications (Jabber)

 Storing data on disk
– Human readable, structured files

– Better extension possibilities than with .ini files, or rfc822-ish files

 Exchanging messages with remote systems
– E.g. SOAP, XML-RPC

 Designing a pivot format for conversions
– DocBook for technical documentation

– XBEL for bookmarks

© 2002 Logilab S.A. – Released under the Gnu Public License

When not to use XML?

XML is text-based
– Handling binary files is not a strong point, though a binary

payload is possible with external entities

– Precision problems with handling floating point numbers

XML is quite verbose, and can be difficult to hand-edit
– Few good XML editors

Parsing XML can be CPU expensive
– Beware of possible performance problems if you have lots of

parsing in a tight inner loop

– However, there are a lot of parsers available, with various
prices, licenses and performances

© 2002 Logilab S.A. – Released under the Gnu Public License

XML-related tasks

There are a few number of very common programming
tasks when dealing with XML data:
– Reading (parsing) the data

– Extracting some special nodes from the data

– Changing the contents of an XML document

– Writing the data

© 2002 Logilab S.A. – Released under the Gnu Public License

W3C Standards

XML

Document Type Definitions (DTDs)

XML Schemas

Document Object Model

XPath

XSLT

XLink, XPointer

RDF

And also
– DAML, SVG, MathML, XHTML, Xforms, etc.

© 2002 Logilab S.A. – Released under the Gnu Public License

Other standards

Parsing
– SAX

– Lots of specific parsers (e.g. expat, RXP…)

Schema languages
– Schematron

– REXX

– Relax NG

© 2002 Logilab S.A. – Released under the Gnu Public License

Encoding considerations

XML Data is encoded as UTF-8 (Unicode) by default
– Or UTF-16 if a special byte sequence is included at the start of

the file

Some tools will accept other encodings if it is declared in
the XML Prologue

Parsing will generally return Unicode objects
– Your application should be able to deal with it

– Python's default behaviour (converting to ASCII) will work for
English-speaking users

– It will fail as soon as an 8-bit character is encountered

© 2002 Logilab S.A. – Released under the Gnu Public License

Encoding example

<?xml version='1.0' encoding='iso-8859-1'?>
<dictionary>
 <entry>
 <word lang='en'>summer</word>
 <word lang='fr'>été</word>
 </entry>
</dictionary>

You have an XML dictionary, and want to provide a text based
interface to query it.

Trying to print the French word for 'summer' will cause the
following exception:
UnicodeError: ASCII encoding error: ordinal not in range(128)

You have to find out the local encoding scheme and use the
encode(encoding) method of the unicode objects explicitely.

© 2002 Logilab S.A. – Released under the Gnu Public License

Writing XML

Generating XML is not difficult
– You can do it easily with print statements

Mind the encoding!
– You have to use UTF-8 or specify the encoding in the prologue

Mind entities!
– Some characters must be escaped so that the output is well-

formed XML

" (in attributes quoted with ")"

' (in attributes quoted with ')'

> (at least in]]>)>

<<

&&

© 2002 Logilab S.A. – Released under the Gnu Public License

Writing XML example

def escape(str):
 # you can also use
 # from xml.sax.saxutils import escape
 # Caution: you have to escape '&' first!
 str = str.replace(u'&',u'&')
 str = str.replace(u'<',u'<')
 str = str.replace(u'>',u'>')
 return str

def list_as_xml(aList,aFile):
 """aList is a list of Unicode objects"""
 aFile.write('<list>\n')
 for elem in aList:
 aFile.write('<entry>')
 aFile.write(escape(elem).encode('UTF-8'))
 aFile.write('</entry>\n')
 aFile.write('</list>\n')

© 2002 Logilab S.A. – Released under the Gnu Public License

1. Introductions

2. XML Processing

3. Available tools

4. SAX

5. DOM

6. XPath and XSLT

7. What next?

Chapter 3
Available Tools

Available Python tools
for XML processing

© 2002 Logilab S.A. – Released under the Gnu Public License

Standard Library

Since version 2.0, Python comes with some excellent
XML support in the standard library
– Previous versions provided some support too, for instance the
xmllib package in 1.5.2

The package xml.sax and the assorted subpackages
provide a non-validating SAX parser
– Based on the Expat parser (also available with a native

interface through the xml.parsers.expat module)

The package xml.dom.minidom provides a basic dom
implementation

© 2002 Logilab S.A. – Released under the Gnu Public License

PyXML

The PyXML library supercedes the XML support
provided by the Standard Library
– Developed by members of the Python XML-SIG

It adds a validating SAX parser, xmlproc
– 100% pure python

It adds a very compliant DOM implementation, 4DOM
– Featuring DOM Level 2 events, readonly attributes…
– Slow. Very slow. Uses lots of memory too
– Loading and saving is not compatible with minidom

4XPath is available through the xml.xpath package
– Works with both 4DOM and minidom

4XSLT is available through the xml.xslt package

© 2002 Logilab S.A. – Released under the Gnu Public License

4Suite

4Suite is a suite of tools for dealing with XML
documents
– Developed by Fourthought, Inc.

4DOM, 4XPath and 4XSLT used to be part of it
– 4DOM was donated to PyXML
– An old version of 4XPath and 4XSLT were donated too, but

development goes on.

4Suite provides
– enhanced 4XPath and 4XSLT
– cDomlette, a C-based DOM implementation for Python
– 4RDF and Versa
– 4Suite server

© 2002 Logilab S.A. – Released under the Gnu Public License

Notes about PyXML/4Suite

There are some versioning issues between PyXML and
4Suite

OK
(xml.xslt does't work)

NOKNOK0.12.0a2

NOKNOKOK0.11.1

0.7.10.7.00.6.64Suite\PyXML

© 2002 Logilab S.A. – Released under the Gnu Public License

Other libraries

PyRXP is a very fast C parser with python bindings,
released under the GPL

libxml and libxslt are the GNOME project XML
libraries with Python bindings, very fast too, available
under the LGPL

Sablotron is an XSLT processor with python
bindings, written in C

Xerces and Xalan are tools from the Apache XML
project. There are Python bindings for the C++ versions,
and the Java versions are usable from Jython

© 2002 Logilab S.A. – Released under the Gnu Public License

1. Introductions

2. XML Processing

3. Available tools

4. SAX

5. DOM

6. XPath and XSLT

7. What next?

Chapter 4
Simple API for XML

Reading XML with SAX,
error handling and validation

© 2002 Logilab S.A. – Released under the Gnu Public License

Overall presentation

SAX is a programming interface specifying interfaces
and responsibilities for the parser and the application
– It reduces the coupling between your application and a specific

parser

It follows the Observer design pattern
– The library provides a class implementing the Reader

interface
– You provide implementations of the ContentHandler

interface, and possibly of the ErrorHandler interface, and
connect them to the Reader using the setXXXHandler()
methods

– When you call the parse() method, your handlers get
notified of events as they are seen by the Reader

© 2002 Logilab S.A. – Released under the Gnu Public License

SAX main interfaces

© 2002 Logilab S.A. – Released under the Gnu Public License

SAX Exceptions

 An instance of SAXParseException is passed to the
ErrorHandler through callback method, or raised if no
ErrorHandler was provided

 The two other exceptions are raised when dealing with
unsupported or unrecognized features or properties

© 2002 Logilab S.A. – Released under the Gnu Public License

The Reader

 The reader is responsible for parsing the data
– It can either do the parsing itself (xmlproc) or delegate it to a lower-level

parser (expat)

– Call the parse(source) method to start parsing

 It calls the methods of the various Handlers provided by
applications
– Use setContentHandler(handler) to set the content handler

– Use setErrorHandler(handler) to set the error handler

 Its behaviour can be customized using features and properties
– Features are boolean, properties are arbitrary objects

– If a feature or property is not supported or not recognized trying to set it or
to read its value will raise an exception

© 2002 Logilab S.A. – Released under the Gnu Public License

Obtaining a Reader

 Use the make_parser() factory function in the xml.sax
package.

 To obtain a validating reader, a little more work is required

– This will return a Reader with validation capabilities and the validation
feature enabled

– If you choose to directly instanciate a validating reader, don't forget that
validation is turned off by default

– Use setFeature(xml.sax.handler.feature_validation,1)

from xml.sax.sax2exts import XMLValParserFactory
reader = XMLValParserFactory.make_parser()

from xml.sax import make_parser
reader = make_parser()

© 2002 Logilab S.A. – Released under the Gnu Public License

Features and properties

Feature and property names are defined in the
xml.sax.handler module as symbolic constants

We will see how to use features to enable validation and
namespace processing later

Properties can be used to add handlers besides the most
common ones
– Especially the lexical handler which can be notified of

comment nodes

© 2002 Logilab S.A. – Released under the Gnu Public License

 ContentHandler

The ContentHandler is notified of parsing events by
the Reader through its various methods

Notifies of PI (NB: the prologue is not
reported as a PI)

processingInstruction(name,
 target)

Called to notify of text nodes. Be
careful, since a text node can be
reported with several calls to this
method

characters(string)

Called when a new element is opened or
closed

startElement(name,attributes)
endElement(name)

Called before the start of the root
element, and after its end

startDocument()
endDocument()

First call (if ever). The locator can be
asked where in the document we
currently are.

setDocumentLocator(locator)

© 2002 Logilab S.A. – Released under the Gnu Public License

ErrorHandler

 The ErrorHandler is notified of parsing events by the
Reader through its various methods

Fatal errors are caused by not well
formed documents

fatalError(exception)

Errors are triggered by non respected
validation constraints

error(exception)

Warnings are ignorable errors. Used,
for instance for a redefined element
in the DTD

warning(exception)

© 2002 Logilab S.A. – Released under the Gnu Public License

DefaultHandler

In PyXML, a concrete implementation of the
ContentHandler and ErrorHandler interfaces is
provided in xml.sax.saxutils.DefaultHandler

The default implementation of the callbacks do nothing
– Except setDocumentLocator() which stores the locator

as self._locator

This is useful to start your own implementation of the
handlers
– You don't have to implement the callbacks that are not

interesting for your application

© 2002 Logilab S.A. – Released under the Gnu Public License

Using SAX (1)

© 2002 Logilab S.A. – Released under the Gnu Public License

Using SAX (2)

:application
handler:myHandler

:xmlproc

<<create>>

<<create>>

setContentHandler(handler)

setErrorHandler(handler)

parse(source)

setLocator
(locator)startDocument()

endDocument()

startElement(u'root',{u'attname':u'value'})

endElement(u'root')

characters(u'the data')

getResult()

© 2002 Logilab S.A. – Released under the Gnu Public License

Validation (1)

Validating a document is making sure that its content
follows a given grammar
– The only support available in PyXML is DTD validation using

xmlproc

Using validation is highly recommended when loading
data coming from an untrusted source
– Anything that was read from disk or received from the network

– You can also build your own validation system, but never
make the optimistic assumption that the data you're processing
has the right format

© 2002 Logilab S.A. – Released under the Gnu Public License

Validation (2)

 When using a validating parser, you should set up an
ErrorHandler
– The error() method of the handler will be called whenever invalid data

is encountered

– You may choose to ignore the error (for instance to report all the errors in
one go at the end of the parsing)

– Or you may raise the SAXParseException object passed as an
argument right away, which will stop the Reader

 If you don't, the first validation error will cause an exception, and
parsing will stop

 Enabling validation will cause ignorable whitespace in the
document to be reported as such to the ContentHandler
– through the ignorableWhitespace() method

© 2002 Logilab S.A. – Released under the Gnu Public License

Namespace processing (1)

Caution: the namespace processing feature is disabled
by default in the Python SAX2 binding
– Different from the Java binding

To enable namespace processing, use the following
code:

from xml.sax import make_parser
reader = make_parser
from xml.sax.handler import feature_namespaces
reader.setFeature(feature_namespaces,1)

© 2002 Logilab S.A. – Released under the Gnu Public License

Namespace processing (2)

 When namespace processing is enabled, then no calls are made to
startElement() and endElement()

Name is a 2 element tuple
(uri,localname);
qname is the qualified name or None if
this is not supported by the parser (expat
will use None)

startElementNS(name,qname,attrs)

endElementNS(name,qname)

Called to signify that a new prefix is used.
The calls to these methods occur before
and after the calls to startElementNS
and endElementNS respectively.

startPrefixMapping(prefix,nsuri)

endPrefixMapping(prefix)

© 2002 Logilab S.A. – Released under the Gnu Public License

Building Objects from SAX

In this sample application, we will use a SAX parser to
build Python objects.
– Each element name will be used as a class name.

• XML attributes will be used as named arguments to the constructor of
the class

– Sub elements objects will be added to the parent object using
addClassname(obj) method calls

– Text nodes will be passed using a call to setData()

Note that this scheme will perform validation without
using a DTD
– The validation code is in the class definitions

© 2002 Logilab S.A. – Released under the Gnu Public License

Example data

<Window bgcolor='cyan'>
 <Panel layout='vertical'>
 <Label>Hello World</Label>
 <Button>OK</Button>
 </Panel>
</Window>

class Window:
 def __init__(fgcolor='black',
 bgcolor='white'):
 self.fg = fgcolor
 self.bg = bgcolor
 self.content = None
 def addPanel(self,panel):
 self.content = panel

class Panel:
 def __init__(layout='horizontal'):
 self.layout = layout
 self.contents = []
 def addLabel(self,label):
 self.content.append(label)
 def addButton(self,butn):
 self.content.append(butn)

Add a Label and a Button class, with a setData(d) method

© 2002 Logilab S.A. – Released under the Gnu Public License

Example code (1)

def safe_eval(str):
 """converts a string to an int, a float or its repr"""
 try:
 return int(str)
 except:
 try:
 return float(str)
 except:
 return repr(str)

© 2002 Logilab S.A. – Released under the Gnu Public License

Example code (2)

from xml.sax.handler import ContentHandler
class ObjBuilder(ContentHandler):
 def __init__(self, class_names):
 ContentHandler.__init__(self)
 self.obj = []
 self._classes = class_names
 self.__buffer = []
 def startElement(self,name,attrs):
 self.__buffer = []
 if name not in self._names: raise NameError(name)
 args = [u'='.join(k,safe_eval(v) for k,v in attrs.items()]
 o = exec(u'%s(%s)'%(name,u','.join(args)))
 if self.obj: apply(self.obj[-1].getattr('add%s'%name),(o,))
 else: self.rootobject = o
 self.obj.append(o)
 def endElement(self,name):
 if self.__buffer:
 self.obj[-1].setData(u''.join(self.__buffer))
 self.__buffer = []
 del self.obj[-1]
 def characters(self,contents):
 self.__buffer.append(contents)

© 2002 Logilab S.A. – Released under the Gnu Public License

Example code (3)

def build_class_hierarchy(classnames,file):
 from xml.sax import parse
 handler = ObjBuilder(classnames)
 parse(file,handler)
 return handler.rootobject

© 2002 Logilab S.A. – Released under the Gnu Public License

1. Introductions

2. XML Processing

3. Available tools

4. SAX

5. DOM

6. XPath and XSLT

7. What next?

Chapter 5
Document Object Model

Building, writing,
using a DOM

© 2002 Logilab S.A. – Released under the Gnu Public License

Overall presentation

DOM is an XML element to Object mapping defined by
the W3C
– It is used a lot in browser scripting

– Standardization for loading and saving DOMs is still
nonexistent

• Therefore, each implementation has its own way of doing this

Each part of a XML document is mapped to an interface
for which an implementation is provided by libraries
– Reasonably portable code, apart from loading/saving

DOM depends on a parser to build the objects in
memory

© 2002 Logilab S.A. – Released under the Gnu Public License

DOM vs SAX

In DOM:
 Full document view

 Random navigation

 Must load the whole
document first

 High memory consumption

 Can create new nodes, and
move nodes in the document

In SAX:
 Document as stream

 Forward only

 Get events as soon as parsing
begins

 Use only the memory you need

 Difficult to add nodes,
impossible to move nodes

© 2002 Logilab S.A. – Released under the Gnu Public License

DOM Nodes

Node

nodeName:String
nodeValue:String
nodeType:int
attributes:[Attribute]
parent:Node
childNodes:[Node]
firstChild:Node
lastChild:Node
previousSibling:Node
nextSibling:Node
ownerDocument:Document
appendChild(newChild)
removeChild(child)
replaceChild(newChild,oldChild)
insertBefore(newChild,refChild)
cloneNode(deep):Node

Document
documentElement:Element

getElementsByTagnameNS(name):[Elements]
createElementNS(nsuri,name):Element
createTextNode(data):Text
importNode(Node,deep)

Element

tagName:String

getElementsByTagnameNS(name):[Elements]
setAttributeNS(nsuri,name,value)
getAttributeNS(nsuri,name):String
removeAttributeNS(nsuri,name):Attribute

Text

data:String

© 2002 Logilab S.A. – Released under the Gnu Public License

Building a DOM (1)

This is highly implementation dependent

For minidom, use:
from xml.dom.minidom import parseString, parse

doc1 = parseString(str)

doc2 = parse(file)

For 4DOM, use:
from xml.dom.ext.reader.Sax2 import Reader

reader = Reader()

doc1 = reader.fromString(str)

doc2 = reader.fromStream(file)

doc3 = reader.fromUri(docuri)

© 2002 Logilab S.A. – Released under the Gnu Public License

Building a DOM (2)

For Domlette in 4Suite >= 0.12.0a2, use:
from Ft.Xml import Domlette

reader = Domlette.NonValidatingReader

doc1 = reader.parseString(str,'<someUri>')

doc2 = reader.parseStream(open(filename),filename)

doc3 = reader.parseUri(docuri)

© 2002 Logilab S.A. – Released under the Gnu Public License

Writing a DOM

 This is highly implementation dependent

 For minidom, use:
from xml.dom.minidom import parseString

doc = parseString(str)

xmlstr = doc.toxml() # use toprettyxml() for pretty printing

doc.writexml(open('document.xml','w'))

 For 4DOM, use:
from xml.dom.ext.reader.Sax2 import Reader

doc = Reader().fromString(str)

from xml.dom.ext import Print, PrettyPrint

from StringIO import StringIO

strio = StringIO()

Print(doc,strio) # use PrettyPrint(…) for pretty printing

xmlstr = strio.get_value()

Print(doc,open('document.xml','w'))

© 2002 Logilab S.A. – Released under the Gnu Public License

DOM Navigation

 For each Node object (that is almost any element in a DOM), it is
possible to navigate in any of the five basic directions in a tree
using
– parent, previousSibling, nextSibling, firstChild,
lastChild

– If no corresponding element exist, the value of the attribute is None

 You can also get to the top of the tree, using the ownerElement
attribute
– This is None if the current node is a Document

• Caution: it is self in 4DOM Documents

 The childNodes attribute is a live list of all the nodes children
– Attributes are not in the childNodes

– Live means that it gets updated if you add or remove children

© 2002 Logilab S.A. – Released under the Gnu Public License

Navigation example

 Let node be an Element in a Document. We know that its second
child with tag name 'data' holds a text node, and we want to get
the data in this text node

 Caution: there can be comment nodes, or text nodes full of
ignorable whitespace in the childNodes list. Do not depend on
node counting when navigating in a DOM

def get_the_second_data(node):
 count = 0
 for c in node.childNodes:
 if c.tagName == 'data':
 count +=1
 if count == 2:
 textnode = c.firstChild
 return textnode.data

© 2002 Logilab S.A. – Released under the Gnu Public License

Moving and adding nodes

To move a node, get a reference to it, and a reference to
its new parent node, and just use
– newParent.appendChild(node)

– newParentNode.insertBefore(node,ref)
• ref can be newParent.firstChild to insert node at the

beginning

– This will update all the affected attributes

To create a new Node, you need a Document instance
– Use ownerDocument on any node to get the document it

belongs to

– Then use one of the factory methods to create the node

– Finally, insert it in the document

© 2002 Logilab S.A. – Released under the Gnu Public License

Example

from xml.dom.minidom import parseString
create a new document
doc = parseString(u'<article/>'.encode('UTF-8'))
art = doc.documentElement
create a sect1 element
s1 = doc.createElementNS(None,u'sect1')
add it under the root element
art.appendChild(s1)
create a title element with a text node inside
s1.appendChild(doc.createElementNS(None,u'title'))
title = doc.createTextNode(u'Introduction to XML')
s1.firstChild.appendChild(title)
s1.appendChild(doc.createElementNS(None,u'para'))
txt = doc.createTextNode(u'WRITE ME!')
s1.lastChild.appendChild(txt)
write the result
print doc.toprettyxml()

© 2002 Logilab S.A. – Released under the Gnu Public License

Example output

<?xml version="1.0" ?>
<article>

<sect1>
<title>Introduction to XML</title>
<para>WRITE ME!</para>

</sect1>
</article>

© 2002 Logilab S.A. – Released under the Gnu Public License

Working with attributes

Attributes are best handled though the
set/getAttributeNS() methods of the Element
interface
– You can also see them as nodes, but it takes more work to do

the same thing

If an attribute is not set, trying to get it will return an
empty string

Setting an attribute will overwrite its previous value, if
any

© 2002 Logilab S.A. – Released under the Gnu Public License

Working with 2 documents

If you want to add nodes from another Document, you
have to import them first
– This is done with a call to
newnode = Document.importNode(node,deep=1)

– You can then append the new node somewhere in your
document

© 2002 Logilab S.A. – Released under the Gnu Public License

1. Introductions

2. XML Processing

3. Available tools

4. SAX

5. DOM

6. XPath and XSLT

7. What next?

Chapter 6
XPath and XSLT

Random access to a Document,
converting XML to other formats

© 2002 Logilab S.A. – Released under the Gnu Public License

XPath Presentation

The W3C has defined an XML Stylesheet Language
(XSL). XPath and XSLT are part of this specification

XPath can be used to point to a node or a set of nodes
in a document, or even to make some computations based
on values in the document

– Requires having a DOM representation, since the engine
needs to iterate in the XML tree in an order that is different
from document traversal order

There are implementations of XPath and XSLT in pure
Python available in PyXML and 4Suite, as well as several
bindings to C, C++ or Java implementations

© 2002 Logilab S.A. – Released under the Gnu Public License

XPath syntax

An XPath is a sequence of location steps separated by
'/'

Each location step selects nodes in the XML tree using
the previous location step as a context

A location step is made of
– An optional axis, giving the navigation direction

– A node test

– An optional predicate, used to filter nodes passing the test

/addressbook/person[name]/phone[@type='mobile']/text()

© 2002 Logilab S.A. – Released under the Gnu Public License

Using 4XPath

To use 4XPath from a recent version of PyXML, or
4Suite < 0.12, use the xml.xpath package:

from xml.xpath import Evaluate

To use 4XPath from 4Suite >= 0.12, use the
Ft.Xml.XPath package

from Ft.Xml.XPath import Evaluate

This function takes an xpath in a string and a context
node as arguments. It returns a list of nodes matching the
xpath, or a value corresponding to the evaluation of the
xpath

© 2002 Logilab S.A. – Released under the Gnu Public License

XSLT Principles

XSL(T) is a functional language that lets you define
transformation/styling rules, aka templates.

An XSLT processor will take two inputs, a
stylesheet/transform and an XML document, and output
the result. The result may be text, xml or html.

The XSLT processor will walk the tree of nodes from the
input document and apply the matching templates
defined in the stylesheet.

As with any functional language, recursion is the key.

Let's walk through an example.

© 2002 Logilab S.A. – Released under the Gnu Public License

Input Document
<addressbook>
 <person>
 <name>Eric Idle</name>
 <phone>999-999-999</phone>
 <phone type='mobile'>555-555-555</phone>
 <address>
 <street>12, spam road</street>
 <city>London</city>
 <zip>H4B 1X3</zip>
 </address>
 </person>
 <person>
 <name>Terry Gilliam</name>
 <phone type='mobile'>555-555-554</phone>
 <phone>999-999-998</phone>
 <address>
 <street>3, Brazil Lane</street>
 <city>Leeds</city>
 <zip>F2A 2S5</zip>
 </address>
 </person>
</addressbook>

© 2002 Logilab S.A. – Released under the Gnu Public License

XSL Transformation
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text" encoding="ISO-8859-1"/>
 <xsl:template match="addressbook">
Mobile Phone Numbers From AddressBook
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  <xsl:apply-templates select="person">
   <xsl:sort select="name"/>
  </xsl:apply-templates>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 </xsl:template>
 <xsl:template match="person">
 <xsl:value-of select="name"/>'s <xsl:apply-templates
 select="phone[@type='mobile']"/>
 </xsl:template>
 <xsl:template match="phone">
 <xsl:value-of select="@type"/>: <xsl:value-of select="text()"/>
 <xsl:text>
</xsl:text>
 </xsl:template>
</xsl:stylesheet>

© 2002 Logilab S.A. – Released under the Gnu Public License

Using 4XSLT (1)

To use 4XSLT from a recent version of PyXML, or
4Suite < 0.12, use the xml.xslt package:

from xml.xslt.Processor import Processor

To use 4XSLT from 4Suite >= 0.12, use the Ft.Xml.XSL
package

from Ft.Xml.Xslt.Processor import Processor

The Processor API changed, so the code depends on
which version you're using
– 4Suite 0.12.0a2 uses InputSources to abstract the origin of

a document
– PyXML and previous versions of 4Suite had several methods

to append a stylesheet or process a document read from a
string, and file or a URI.

© 2002 Logilab S.A. – Released under the Gnu Public License

Using 4XSLT (2)

PyXML Code
from xml.xslt.Processor import Processor
p = Processor()
p.appendStylesheetString(ssheet)
result = p.runString(idoc)
print result

4Suite >= 0.12.Oa2 Code
from Ft.Xml.Xslt.Processor import Processor
from Ft.Xml.InputSource import DefaultFactory
p = Processor()
stylesheet_source = DefaultFactory.fromString(ssheet,
 'stylesheet uri')
doc_source = DefaultFactory.fromString(idoc,'source uri')
p.appendStylesheet(stylesheet_source)
result = p.runString(doc_source)
print result

© 2002 Logilab S.A. – Released under the Gnu Public License

Output

$ 4xslt addressbook.xml addbook.xslt
Mobile Phone Numbers From AddressBook
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Eric Idle's mobile: 555-555-555
Terry Gilliam's mobile: 555-555-554
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


© 2002 Logilab S.A. – Released under the Gnu Public License

1. Introductions

2. XML Processing

3. Available tools

4. SAX

5. DOM

6. XPath and XSLT

7. What next?

Chapter 7
Where can you go now?

Pointers to further readings
and documentation sources

© 2002 Logilab S.A. – Released under the Gnu Public License

Mailing lists

General XML-related mailing lists
– W3C mailing lists : http://w3.org/Mail/Lists.html

– XSL mailing list: http://www.mulberrytech.com/xsl/xsl-
list/

Python-specific mailing lists
– XML-SIG:
http://mail.python.org/mailman/listinfo/xml-sig/

– 4Suite:
http://www.fourthought.com/mailman/listinfo/4suite/

© 2002 Logilab S.A. – Released under the Gnu Public License

Web resources and docs

PyXML and 4Suite:
– http://pyxml.sf.net and http://4suite.org/

Documentations links:
– Collection of pointers on the XML-SIG page:
http://pyxml.sf.net/topics/

– Uche Ogbuji's integrated guide to XML processing in Python :
http://uche.ogbuji.net/tech/akara/pyxml

– Online Python cookbook:
http://aspn.activestate.com/ASPN/Cookbook/Python?kwd=XML

– Python XML Wiki:
http://twistedmatrix.com/users/jh.twistd/xml-sig/moin.cgi/

Lars Marius Garshol's book, Definitive XML
Application Development

© 2002 Logilab S.A. – Released under the Gnu Public License

Interesting tools

XMLDiff
– Logilab module, GPLed

– Computes differences between XML documents

mxTidy
– Python wrapper around W3C's Tidy utility

– Converts HTML to XHTML

– Can handle MSOffice "html" files

