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Preface
The most important and crucial stage of school education is the

higher secondary level. This is the transition level from a generalised
curriculum to a discipline-based curriculum.

In order to pursue their career in basic sciences and professional
courses, students take up Physics as one of the subjects. To provide
them sufficient background to meet the challenges of academic and
professional streams, the Physics textbook for Std. XI has been reformed,
updated and designed to include basic information on all topics.

Each chapter starts with an introduction, followed by subject matter.
All the topics are presented with clear and concise treatments. The
chapters end with solved problems and self evaluation questions.

Understanding the concepts is more important than memorising.
Hence it is intended to make the students understand the subject
thoroughly so that they can put forth their ideas clearly. In order to
make the learning of Physics more interesting, application of concepts
in real life situations are presented in this book.

Due importance has been given to develop in the students,
experimental and observation skills. Their learning experience would
make them to appreciate the role of Physics towards the improvement
of our society.

The following are the salient features of the text book.

The data has been systematically updated.

Figures are neatly presented.

Self-evaluation questions (only samples) are included to sharpen
the reasoning ability of the student.

As Physics cannot be understood without the basic knowledge
of Mathematics, few basic ideas and formulae in Mathematics
are given.

While preparing for the examination, students should not
restrict themselves, only to the questions/problems given in the
self evaluation. They must be prepared to answer the questions
and problems from the text/syllabus.

Sincere thanks to Indian Space Research Organisation (ISRO) for
providing valuable information regarding the Indian satellite programme.

– Dr. S. Gunasekaran
Chairperson



SYLLABUS (180 periods)

UNIT – 1 Nature of the Physical World and Measurement (7 periods)

Physics – scope and excitement – physics in relation to technology
and society.

Forces in nature – gravitational, electromagnetic and nuclear
forces (qualitative ideas)

Measurement – fundamental and derived units – length, mass
and time measurements.

Accuracy and precision of measuring instruments, errors in
measurement – significant figures.

Dimensions - dimensions of physical quantities - dimensional
analysis – applications.

UNIT – 2 Kinematics (29 periods)

Motion in a straight line – position time graph – speed and
velocity – uniform and non-uniform motion – uniformly accelerated
motion – relations for uniformly accelerated motions.

Scalar and vector quantities – addition and subtraction of vectors,
unit vector, resolution of vectors - rectangular components,
multiplication of vectors – scalar, vector products.

Motion in two dimensions – projectile motion – types of projectile
– horizontal and oblique projectile.

Force and inertia, Newton’s first law of motion.

Momentum – Newton’s second law of motion – unit of force –
impulse.

Newton’s third law of motion – law of conservation of linear
momentum and its applications.

Equilibrium of concurrent forces – triangle law, parallelogram
law and Lami’s theorem – experimental proof.

Uniform circular motion – angular velocity – angular acceleration
– relation between linear and angular velocities. Centripetal force –
motion in a vertical circle – bending of cyclist – vehicle on level circular
road – vehicle on banked road.

Work done by a constant force and a variable force – unit of
work.



Energy – Kinetic energy, work – energy theorem – potential energy
– power.

Collisions – Elastic and in-elastic collisions in one dimension.

UNIT – 3 Dynamics of Rotational Motion (14 periods)

Centre of a two particle system – generalization – applications –
equilibrium of bodies, rigid body rotation and equations of rotational
motion. Comparison of linear and rotational motions.

Moment of inertia and its physical significance – radius of gyration
– Theorems with proof, Moment of inertia of a thin straight rod, circular
ring, disc cylinder and sphere.

Moment of force, angular momentum. Torque – conservation of
angular momentum.

UNIT – 4 Gravitation and Space Science (16 periods)

The universal law of gravitation; acceleration due to gravity and
its variation with the altitude, latitude, depth and rotation of the Earth.
– mass of the Earth. Inertial and gravitational mass.

Gravitational field strength – gravitational potential – gravitational
potential energy near the surface of the Earth – escape velocity –
orbital velocity – weightlessness – motion of satellite – rocket propulsion
– launching a satellite – orbits and energy. Geo stationary and polar
satellites – applications – fuels used in rockets – Indian satellite
programme.

Solar system – Helio, Geo centric theory – Kepler’s laws of planetary
motion. Sun – nine planets – asteroids – comets – meteors – meteroites
– size of the planets – mass of the planet – temperature and atmosphere.

Universe – stars – constellations – galaxies – Milky Way galaxy -
origin of universe.

UNIT – 5 Mechanics of Solids and Fluids (18 periods)

States of matter- inter-atomic and inter-molecular forces.

Solids – elastic behaviour, stress – strain relationship, Hooke’s
law – experimental verification of Hooke’s law – three types of moduli
of elasticity – applications (crane, bridge).

Pressure due to a fluid column – Pascal’s law and its applications
(hydraulic lift and hydraulic brakes) – effect of gravity on fluid pressure.



Surface energy and surface tension, angle of contact – application
of surface tension in (i) formation of drops and bubbles (ii) capillary
rise (iii) action of detergents.

Viscosity – Stoke’s law – terminal velocity, streamline flow –
turbulant flow – Reynold’s number – Bernoulli’s theorem – applications
– lift on an aeroplane wing.

UNIT – 6 Oscillations (12 periods)

Periodic motion – period, frequency, displacement as a function
of time.

Simple harmonic motion – amplitude, frequency, phase – uniform
circular motion as SHM.

Oscillations of a spring, liquid column and simple pendulum –
derivation of expression for time period – restoring force – force constant.
Energy in SHM. kinetic and potential energies – law of conservation of
energy.

Free, forced and damped oscillations. Resonance.

UNIT – 7 Wave Motion (17 periods)

Wave motion- longitudinal and transverse waves – relation
between v, n, λ.

Speed of wave motion in different media – Newton’s formula –
Laplace’s correction.

Progressive wave – displacement equation –characteristics.

Superposition principle, Interference – intensity and sound level
– beats, standing waves (mathematical treatment) – standing waves in
strings and pipes – sonometer – resonance air column – fundamental
mode and harmonics.

Doppler effect (quantitative idea) – applications.

UNIT – 8 Heat and Thermodynamics (17 periods)

Kinetic theory of gases – postulates – pressure of a gas – kinetic
energy and temperature – degrees of freedom (mono atomic, diatomic
and triatomic) – law of equipartition of energy – Avogadro’s number.

Thermal equilibrium and temperature (zeroth law of
thermodynamics) Heat, work and internal energy. Specific heat – specific



heat capacity of gases at constant volume and pressure. Relation
between Cp and Cv.

First law of thermodynamics – work done by thermodynamical
system – Reversible and irreversible processes – isothermal and adiabatic
processes – Carnot engine – refrigerator - efficiency – second law of
thermodynamics.

Transfer of heat – conduction, convection and radiation – Thermal
conductivity of solids – black body radiation – Prevost’s theory – Kirchoff’s
law – Wien’s displacement law, Stefan’s law (statements only). Newton’s
law of cooling – solar constant and surface temperature of the Sun-
pyrheliometer.

UNIT – 9 Ray Optics (16 periods)

Reflection of light – reflection at plane and curved surfaces.

Total internal refelction and its applications – determination of
velocity of light – Michelson’s method.

Refraction – spherical lenses – thin lens formula, lens makers
formula – magnification – power of a lens – combination of thin lenses
in contact.

Refraction of light through a prism – dispersion – spectrometer –
determination of µ – rainbow.

UNIT – 10 Magnetism (10 periods)

Earth’s magnetic field and magnetic elements. Bar magnet -
magnetic field lines

Magnetic field due to magnetic dipole (bar magnet) along the axis
and perpendicular to the axis.

Torque on a magnetic dipole (bar magnet) in a uniform magnetic
field.

Tangent law – Deflection magnetometer - Tan A and Tan B
positions.

Magnetic properties of materials – Intensity of magnetisation,
magnetic susceptibility, magnetic induction and permeability

Dia, Para and Ferromagnetic substances with examples.

Hysteresis.



EXPERIMENTS (12 × 2 = 24 periods)

1. To find the density of the material of a given wire with the help
of a screw gauge and a physical balance.

2. Simple pendulum - To draw graphs between (i) L and T and
(ii) L and T2 and to decide which is better. Hence to determine the
acceleration due to gravity.

3. Measure the mass and dimensions of (i) cylinder and (ii) solid
sphere using the vernier calipers and physical balance. Calculate
the moment of inertia.

4. To determine Young’s modulus of the material of a given wire by
using Searles’ apparatus.

5. To find the spring constant of a spring by method of oscillations.

6. To determine the coefficient of viscosity by Poiseuille’s flow method.

7. To determine the coefficient of viscosity of a given viscous liquid
by measuring the terminal velocity of a given spherical body.

8. To determine the surface tension of water by capillary rise method.

9. To verify the laws of a stretched string using a sonometer.

10. To find the velocity of sound in air at room temperature using the
resonance column apparatus.

11. To determine the focal length of a concave mirror

12. To map the magnetic field due to a bar magnet placed in the
magnetic meridian with its (i) north pole pointing South and
(ii) north pole pointing North and locate the null points.
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1. Nature of the
Physical World and Measurement

The history of humans reveals that they have been making
continuous and serious attempts to understand the world around them.
The repetition of day and night, cycle of seasons, volcanoes, rainbows,
eclipses and the starry night sky have always been a source of wonder
and subject of thought. The inquiring mind of humans always tried to
understand the natural phenomena by observing the environment
carefully. This pursuit of understanding nature led us to today’s modern
science and technology.

1.1 Physics

The word science comes from a Latin word “scientia” which means
‘to know’. Science is nothing but the knowledge gained through the
systematic observations and experiments. Scientific methods include
the systematic observations, reasoning, modelling and theoretical
prediction. Science has many disciplines, physics being one of them.
The word physics has its origin in a Greek word meaning ‘nature’.
Physics is the most basic science, which deals with the study of nature
and natural phenomena. Understanding science begins with
understanding physics. With every passing day, physics has brought to
us deeper levels of understanding of nature.

Physics is an empirical study. Everything we know about physical
world and about the principles that govern its behaviour has been
learned through observations of the phenomena of nature. The ultimate
test of any physical theory is its agreement with observations and
measurements of physical phenomena. Thus physics is inherently a
science of measurement.

1.1.1 Scope of Physics

The scope of  physics can be understood if one looks at its
various sub-disciplines such as mechanics, optics, heat and
thermodynamics, electrodynamics, atomic physics, nuclear physics, etc.
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Mechanics deals with motion of particles and general systems of particles.
The working of telescopes, colours of thin films are the topics dealt in
optics. Heat and thermodynamics deals with the pressure - volume
changes that take place in a gas when its temperature changes, working
of refrigerator, etc. The phenomena of charged particles and magnetic
bodies are dealt in electrodynamics. The magnetic field around a current
carrying conductor, propagation of radio waves etc. are the areas where
electrodynamics provide an answer. Atomic and nuclear physics deals
with the constitution and structure of matter, interaction of atoms and
nuclei with electrons, photons and other elementary particles.

Foundation of physics enables us to appreciate and enjoy things
and happenings around us. The laws of physics help us to understand
and comprehend the cause-effect relationships in what we observe.
This makes a complex problem to appear pretty simple.

Physics is exciting in many ways. To some, the excitement comes
from the fact that certain basic concepts and laws can explain a range
of phenomena. For some others, the thrill lies in carrying out new
experiments to unravel the secrets of nature. Applied physics is even
more interesting. Transforming laws and theories into useful applications
require great ingenuity and persistent effort.

1.1.2 Physics, Technology and Society

Technology is the application of the doctrines in physics for
practical purposes. The invention of steam engine had a great impact
on human civilization. Till 1933, Rutherford did not believe that energy
could be tapped from atoms. But in 1938, Hann and Meitner discovered
neutron-induced fission reaction of uranium. This is the basis of nuclear
weapons and nuclear reactors. The contribution of physics in the
development of alternative resources of energy is significant. We are
consuming the fossil fuels at such a very fast rate that there is an
urgent need to discover new sources of energy which are cheap.
Production of electricity from solar energy and geothermal energy is a
reality now, but we have a long way to go. Another example of physics
giving rise to technology is the integrated chip, popularly called as IC.
The development of newer ICs and faster processors made the computer
industry to grow leaps and bounds in the last two decades. Computers
have become affordable now due to improved production techniques
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and low production costs.

The legitimate purpose of technology is to serve poeple. Our society
is becoming more and more science-oriented. We can become better

members of society if we develop an understanding of the basic laws of

physics.

1.2 Forces of nature

Sir Issac Newton was the first one to give an exact definition for
force.

“Force is the external agency applied on a body to change its state
of rest and motion”.

There are four basic forces in nature. They are gravitational force,
electromagnetic force, strong nuclear force and weak nuclear force.

Gravitational force

It is the force between any two objects in the universe. It is an
attractive force by virtue of their masses. By Newton’s law of gravitation,
the gravitational force is directly proportional to the product of the
masses and inversely proportional to the square of the distance between
them. Gravitational force is the weakest force among the fundamental
forces of nature but has the greatest large−scale impact on the universe.
Unlike the other forces, gravity works universally on all matter and
energy, and is universally attractive.

Electromagnetic force

It is the force between charged particles such as the force between
two electrons, or the force between two current carrying wires. It is
attractive for unlike charges and repulsive for like charges. The
electromagnetic force obeys inverse square law. It is very strong compared
to the gravitational force. It is the combination of electrostatic and
magnetic forces.

Strong nuclear force

It is the strongest of all the basic forces of nature. It, however,
has the shortest range, of the order of 10−15 m. This force holds the
protons and neutrons together in the nucleus of an atom.
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Weak nuclear force

Weak nuclear force is important in certain types of nuclear process
such as β-decay. This force is not as weak as the gravitational force.

1.3 Measurement

Physics can also be defined as the branch of science dealing with
the study of properties of materials. To understand the properties of
materials, measurement of physical quantities such as length, mass,
time etc., are involved. The uniqueness of physics lies in the measurement
of these physical quantities.

1.3.1 Fundamental quantities and derived quantities

Physical quantities can be classified into two namely, fundamental
quantities and derived quantities. Fundamental quantities are quantities
which cannot be expressed in terms of any other physical quantity. For
example, quantities like length, mass, time, temperature are fundamental
quantities. Quantities that can be expressed in terms of fundamental
quantities are called derived quantities. Area, volume, density etc. are
examples for derived quantities.

1.3.2 Unit

To measure a quantity, we always compare it with some reference
standard. To say that a rope is 10 metres long is to say that it is 10
times as long as an object whose length is defined as 1 metre. Such a
standard is called a unit of the quantity.

Therefore, unit of a physical quantity is defined as the established

standard used for comparison of the given physical quantity.

The units in which the fundamental quantities are measured are

called fundamental units and the units used to measure derived quantities

are called derived units.

1.3.3 System International de Units (SI system of units)

In earlier days, many system of units were followed to measure
physical quantities. The British system of foot−pound−second or fps
system, the Gaussian system of centimetre − gram − second or cgs
system, the metre−kilogram − second or the mks system were the three
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systems commonly followed. To bring uniformity, the General Conference
on Weights and Measures in the year 1960, accepted the SI system of
units. This system is essentially a modification over mks system and is,
therefore rationalised mksA (metre kilogram second ampere) system.
This rationalisation was essential to obtain the units of all the physical
quantities in physics.

In the SI system of units there are seven fundamental quantities
and two supplementary quantities. They are presented in Table 1.1.

Table 1.1 SI system of units

Physical quantity Unit Symbol

Fundamental quantities

Length metre m

Mass kilogram kg

Time second s

Electric current ampere A

Temperature kelvin K

Luminous intensity candela cd

Amount of substance mole mol

Supplementary quantities

Plane angle radian rad

Solid angle steradian sr

1.3.4 Uniqueness of SI system

The SI system is logically far superior to all other systems. The
SI units have certain special features which make them more convenient
in practice. Permanence and reproduceability  are the two important
characteristics of any unit standard. The SI standards do not vary with
time as they are based on the properties of atoms. Further SI system
of units are coherent system of units, in which the units of derived
quantities are obtained as multiples or submultiples of certain basic units.
Table 1.2 lists some of the derived quantities and their units.
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1.3.5 SI standards

Length

Length is defined as the distance between two points. The SI unit
of length is metre.

One standard metre is equal to 1 650 763.73 wavelengths of the
orange − red light emitted by the individual atoms of krypton − 86 in a
krypton discharge lamp.

Mass

Mass is the quantity of matter contained in a body. It is
independent of temperature and pressure. It does not vary from place

Table 1.2 Derived quantities and their units

Physical Quantity Expression Unit

Area length × breadth m2

Volume area × height m3

Velocity displacement/ time m s–1

Acceleration velocity / time m s–2

Angular velocity angular displacement / time rad s–1

Angular acceleration angular velocity / time rad s-2

Density mass / volume kg m−3

Momentum mass × velocity kg m s−1

Moment of intertia mass × (distance)2 kg m2

Force mass × acceleration kg m s–2 or N

Pressure force / area N m-2 or Pa

Energy (work) force × distance N m or J

Impulse force × time N s

Surface tension force / length N m-1

Moment of force (torque) force × distance N m

Electric charge current × time A s

Current density current / area A m–2

Magnetic induction force / (current × length) N A–1 m–1
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to place. The SI unit of mass is kilogram.

The kilogram is equal to the mass of the international prototype of
the kilogram (a plantinum − iridium alloy cylinder) kept at the International
Bureau of Weights and Measures at Sevres, near Paris, France.

An atomic standard of mass has not yet been adopted because it
is not yet possible to measure masses on an atomic scale with as much
precision as on a macroscopic scale.

Time

Until 1960 the standard of time was based on the mean solar day,
the time interval between successive passages of the sun at its highest
point across the meridian. It is averaged over an year.  In 1967, an
atomic standard was adopted for second, the SI unit of time.

One standard second is defined as the time taken for
9 192 631 770 periods of the radiation corresponding to unperturbed
transition between hyperfine levels of the ground state of cesium − 133
atom. Atomic clocks are based on this. In atomic clocks, an error of one
second occurs only in 5000 years.

Ampere

The ampere is the constant current which, flowing through two straight
parallel infinitely long conductors of negligible cross-section, and placed in
vacuum 1 m apart, would produce between the conductors a force of
2 × 10 -7 newton per unit length of the conductors.

Kelvin

The Kelvin is the fraction of 
1

273.16
 of the thermodynamic

temperature of the triple point of water*.

Candela

The candela is the luminous intensity in a given direction due to a

* Triple point of water is the temperature at which saturated water vapour,
pure water and melting ice are all in equilibrium. The triple point temperature of
water is 273.16 K.
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source, which emits monochromatic radiation of frequency 540 × 1012 Hz
and of which the radiant intensity in that direction is 

1
683

 watt per steradian.

Mole

The mole is the amount of substance which contains as many
elementary entities as there are atoms in 0.012 kg of carbon-12.

1.3.6 Rules and conventions for writing SI units and their symbols

1. The units named after scientists are not written with a capital
initial letter.

For example : newton, henry, watt

2. The symbols of the units named after scientist should be written
by a capital letter.

For example : N for newton, H for henry, W  for  watt

3. Small letters are used as symbols for units not derived from a
proper name.

For example :  m for metre, kg for kilogram

4. No full stop or other punctuation marks should be used within
or at the end of symbols.

For example : 50 m and not as 50 m.

5. The symbols of the units do not take plural form.

For example : 10 kg not as 10 kgs

6. When temperature is expressed in kelvin, the degree sign is
omitted.

For example : 273 K not as 273o K

(If expressed in Celsius scale, degree sign is to be included. For
example 100o C and not 100 C)

7. Use of solidus is recommended only for indicating a division of
one letter unit symbol by another unit symbol. Not more than one
solidus is used.

For example :  m s−1 or m / s, J / K mol or J K–1 mol–1 but not
J / K / mol.
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8. Some space is always to be left between the number and the
symbol of the unit and also between the symbols for compound units
such as force, momentum, etc.

For example,  it is not correct to write 2.3m. The correct
representation is 2.3 m;  kg m s–2 and not as kgms-2.

9. Only accepted symbols should be used.

For example : ampere is represented as A and not as amp. or am ;
second is represented as s and not as sec.

10. Numerical value of any physical quantity should be expressed
in scientific notation.

For an example, density of mercury is 1.36 × 104 kg m−3 and not
as 13600 kg m−3.

1.4 Expressing larger and smaller physical quantities

Once the fundamental

units are defined, it is easier

to express larger and smaller
units of the same physical

quantity. In the metric (SI)

system these are related to the

fundamental unit in multiples

of 10 or 1/10. Thus 1 km is

1000 m and 1 mm is 1/1000
metre. Table 1.3 lists the

standard SI prefixes, their

meanings and abbreviations.

In order to measure very

large distances, the following

units are used.

(i) Light year

Light year is the distance

travelled by light in one year

in vacuum.

Table 1.3 Prefixes for power of ten

Power of ten Prefix Abbreviation

10−15 femto f

10−12 pico p

10−9 nano n

10−6 micro µ

10−3 milli m

10−2 centi c

10−1 deci d

101 deca da

102 hecto h

103 kilo k

106 mega M

109 giga G

1012 tera T

1015 peta P
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Distance travelled = velocity of light × 1 year

∴ 1 light year = 3 × 108 m s−1 × 1 year (in seconds)

= 3 × 108 × 365.25 × 24 × 60 × 60

= 9.467 × 1015 m

1 light year = 9.467 × 1015 m

(ii) Astronomical unit

Astronomical unit is the mean distance of the centre of the Sun
from the centre of the Earth.

1 Astronomical unit (AU) = 1.496 × 1011 m

1.5 Determination of distance

For measuring large distances such as the distance of moon or
a planet from the Earth, special methods are adopted. Radio-echo
method, laser pulse method and parallax method are used to determine
very large distances.

Laser pulse method
The distance of moon from the Earth can be determined using

laser pulses. The laser pulses are beamed towards the moon from a
powerful transmitter. These pulses are reflected back from the surface
of the moon. The time interval between sending and receiving of the
signal is determined very accurately.

If t is the time interval and c the velocity of the laser pulses,  then

the  distance of the moon from the Earth is d = 
2

ct
.

1.6 Determination of mass
The conventional method of finding the mass of a body in the

laboratory is by physical balance. The mass can be determined to an
accuracy of 1 mg. Now−a−days, digital balances are used to find the
mass very accurately. The advantage of digital balance is that the mass
of the object is determined at once.

1.7 Measurement of time
We need a clock to measure any time interval. Atomic clocks provide

better standard for time. Some techniques to measure time interval are
given below.
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Quartz clocks

The piezo−electric property* of a crystal is the principle of quartz
clock. These clocks have an accuracy of one second in every 109 seconds.

Atomic clocks

These clocks make use of periodic vibration taking place within
the atom. Atomic clocks have an accuracy of 1 part in 1013 seconds.

1.8 Accuracy and precision of measuring instruments

All measurements are made with the help of instruments. The
accuracy to which a measurement is made depends on several factors.
For example, if length is measured using a metre scale which has
graduations at 1 mm interval then all readings are good only upto this
value. The error in the use of any instrument is normally taken to be half
of the smallest division on the scale of the instrument. Such an error is
called instrumental error. In the case of a metre scale, this error is
about 0.5 mm.

Physical quantities obtained from experimental observation always
have some uncertainity. Measurements can never be made with absolute
precision. Precision of a number is often indicated by following it with

±  symbol and a second number indicating the maximum error likely.

For example, if the length of a steel rod = 56.47 ± 3 mm then the
true length is unlikely to be less than 56.44 mm or greater than
56.50 mm. If the error in the measured value is expressed in fraction, it
is called fractional error and  if expressed in percentage it is called
percentage error. For example, a resistor labelled “470 Ω, 10%” probably
has a true resistance differing not more than 10% from 470 Ω. So the
true value lies between 423 Ω and 517 Ω.

1.8.1 Significant figures

The digits which tell us the number of units we are reasonably
sure of having counted in making a measurement are called significant
figures. Or in other words, the number of meaningful digits in a number
is called the number of significant figures. A choice of change of different
units does not change the number of significant digits or figures in a
measurement.

* When pressure is applied along a particular axis of a crystal, an electric
potential difference is developed in a perpendicular axis.
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For example, 2.868 cm has four significant figures. But in different
units, the same can be written as 0.02868 m or 28.68 mm or 28680
µm. All these numbers have the same four significant figures.

From the above example, we have the following rules.

i) All the non−zero digits in a number are significant.

ii) All the zeroes between two non−zeroes digits are significant,
irrespective of the decimal point.

iii)  If the number is less than 1, the zeroes on the right of decimal
point but to the left of the first non−zero digit are not significant. (In
0.02868 the underlined zeroes are not significant).

iv)  The zeroes at the end without a decimal point are not
significant. (In 23080 µm, the trailing zero is not significant).

v) The trailing zeroes in a number with a decimal point are
significant. (The number 0.07100 has four significant digits).

Examples

i) 30700 has three significant figures.

ii) 132.73 has five significant figures.

iii) 0.00345 has three and

iv) 40.00 has four significant figures.

1.8.2 Rounding off

Calculators are widely used now−a−days to do the calculations.
The result given by a calculator has too many figures. In no case the
result should have more significant figures than the figures involved in
the data used for calculation. The result of calculation with number
containing more than one uncertain digit, should be rounded off. The
technique of rounding off is followed in applied areas of science.

A number 1.876 rounded off to three significant digits is 1.88
while the number 1.872 would be 1.87. The rule is that if the insignificant
digit (underlined) is more than 5, the preceeding digit is raised by 1,
and is left unchanged if the former is less than 5.

If the number is 2.845, the insignificant digit is 5. In this case,
the convention is that if the preceeding digit is even, the insignificant
digit is simply dropped and, if it is odd, the preceeding digit is raised
by 1. Following this, 2.845 is rounded off to 2.84 where as 2.815 is
rounded off to 2.82.
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Examples

1. Add 17.35 kg, 25.8 kg and 9.423 kg.

Of the three measurements given, 25.8 kg is the least accurately
known.

∴ 17.35 + 25.8 + 9.423 = 52.573 kg

Correct to three significant figures, 52.573 kg is written as
52.6 kg

2. Multiply 3.8 and 0.125 with due regard to significant figures.

3.8 × 0.125 = 0.475

The least number of significant figure in the given quantities is 2.
Therefore the result should have only two significant figures.

∴ 3.8 × 0.125 = 0.475 = 0.48

1.8.3 Errors in Measurement

The uncertainity in the measurement of a physical quantity is
called error. It is the difference between the true value and the measured
value of the physical quantity. Errors may be classified into many
categories.

(i) Constant errors

It is the same error repeated every time in a series of observations.
Constant error is due to faulty calibration of the scale in the measuring
instrument. In order to minimise constant error, measurements are
made by different possible methods and the mean value so obtained is
regarded as the true value.

(ii) Systematic errors

These are errors which occur due to a certain pattern or system.
These errors can be minimised by identifying the source of error.
Instrumental errors, personal errors due to individual traits and errors
due to external sources are some of the systematic errors.

(iii) Gross errors

Gross errors arise due to one or more than one of the following
reasons.

(1) Improper setting of the instrument.
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(2) Wrong recordings of the observation.

(3) Not taking into account sources of error and precautions.

(4) Usage of wrong values in the calculation.

Gross errros can be minimised only if the observer is very careful
in his observations and sincere in his approach.

(iv) Random errors

It is very common that repeated measurements of a quantity give
values which are slightly different from each other. These errors have
no set pattern and occur in a random manner. Hence they are called
random errors. They can be minimised by repeating the measurements
many times and taking the arithmetic mean of all the values as the
correct reading.

The most common way of expressing an error is percentage error.
If the accuracy in measuring a quantity x is ∆x, then the percentage

error in x is given by 
x

x

∆
 × 100 %.

1.9 Dimensional Analysis

Dimensions of a physical quantity are the powers to which the
fundamental quantities must be raised.

We know that velocity  = 
displacement

time

= 
[ ]
[ ]
L

T

= [MoL1T−1]

where [M], [L] and [T] are the dimensions of the fundamental quantities
mass, length and time respectively.

Therefore velocity has zero dimension in mass, one dimension in
length and −1 dimension in time. Thus the dimensional formula for
velocity is [MoL1T−1] or simply [LT−1].The dimensions of fundamental
quantities are given in Table 1.4 and the dimensions of some derived
quantities are given in Table 1.5
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Table 1.4 Dimensions of fundamental quantities

Fundamental quantity Dimension

Length L
Mass M
Time T
Temperature K
Electric current A
Luminous intensity cd
Amount of subtance mol

Table 1.5 Dimensional formulae of some derived quantities

Physical quantity Expression Dimensional formula

Area length × breadth [L2]
Density mass / volume [ML−3]
Acceleration velocity / time [LT−2 ]
Momentum mass × velocity [MLT−1]
Force mass × acceleration [MLT−2 ]
Work force × distance [ML2T−2 ]
Power work / time [ML2T−3 ]
Energy work [ML2T−2 ]
Impulse force  ×  time [MLT−1 ]
Radius of gyration distance [L]
Pressure force / area [ML−1T−2 ]
Surface tension force / length [MT−2 ]
Frequency 1 / time period [T−1]
Tension force [MLT−2 ]
Moment of force (or torque) force × distance [ML2T−2 ]
Angular velocity angular displacement / time [T−1]
Stress force / area [ML−1T−2]
Heat energy [ML2T−2 ]
Heat capacity heat energy/ temperature [ML2T-2K-1]
Charge current × time [AT]
Faraday constant Avogadro constant ×

elementary charge [AT mol-1]
Magnetic induction force / (current × length) [MT-2 A-1]
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Dimensional quantities

Constants which possess dimensions are called dimensional
constants. Planck’s constant, universal gravitational constant are
dimensional constants.

Dimensional variables are those physical quantities which possess
dimensions but do not have a  fixed value. Example − velocity, force, etc.

Dimensionless quantities

There are certain quantities which do not possess dimensions.
They are called dimensionless quantities. Examples are strain, angle,
specific gravity, etc. They are dimensionless as they are the ratio of two
quantities having the same dimensional formula.

Principle of homogeneity of dimensions

An equation is dimensionally correct if the dimensions of the various
terms on either side of the equation are the same. This is called the
principle of homogeneity of dimensions. This principle is based on the
fact that two quantities of the same dimension only can be added up,
the resulting quantity also possessing the same dimension.

The equation A + B = C is valid only if the dimensions of A, B and
C are the same.

1.9.1 Uses of dimensional analysis

The method of dimensional analysis is used to

(i) convert a physical quantity from one system of units to another.

(ii) check the dimensional correctness of a given equation.

(iii) establish a relationship between different physical quantities
in an equation.

(i) To convert a physical quantity from one system of units to another

Given the value of G in cgs system is 6.67 × 10−8dyne cm2 g−2.
Calculate its value in SI units.

In cgs system In SI system

Gcgs = 6.67 × 10−8 G = ?
M1 = 1g M2 = 1 kg
L1 = 1 cm L2 = 1m
T1 = 1s T2 = 1s
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The dimensional formula for gravitational constant is 1 3 2M L T− −⎡ ⎤⎣ ⎦ .

In cgs system, dimensional formula for G is 1 11  yx zM L T⎡ ⎤
⎣ ⎦

In SI system, dimensional formula for G is    yx z
2 22M L T⎡ ⎤

⎣ ⎦

Here x = −1, y = 3, z = −2

∴ 2 2 2
x y zG M L T⎡ ⎤⎣ ⎦  = 1 1 1 x y z

cgsG M L T⎡ ⎤
⎣ ⎦

or G = Gcgs 
1 1 1

2 2 2

   
x y z

M L T

M L T

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= 6.67 × 10−8 
1 3 2

1 1 1 
   

1 1 1 
g cm s
kg m s

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 = 6.67 × 10−8  [ ]
−

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 1  3
 21 1 

1
1000 100 

g cm

g cm

= 6.67 × 10−11

∴ In SI units,

G = 6.67 × 10−11 N m2 kg−2

(ii) To check the dimensional correctness of a given equation

Let us take the equation of motion

s = ut + (½)at2

Applying dimensions on both sides,

[L] = [LT−1] [T] + [LT−2] [T2]
(½ is a constant having no dimension)

[L] = [L] + [L]

As the dimensions on both sides are the same, the equation is
dimensionally correct.

(iii) To establish a relationship between the physical quantities
in an equation

Let us find an expression for the time period T of a simple pendulum.
The time period T may depend upon (i) mass m of the bob (ii) length l
of the pendulum and (iii) acceleration due to gravity g at the place where
the pendulum is suspended.
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(i.e)  T α mx ly gz 
or T = k mx ly gz ...(1)

where k is a dimensionless constant of propotionality. Rewriting
equation (1) with dimensions,

[T1] = [Mx] [L y] [LT−2]z

[T1] = [Mx L y + z T−2z]

Comparing the powers of M, L and T on both sides

x = 0, y + z = 0 and −2z = 1

Solving for x, y and z, x = 0, y = ½ and z = –½

From equation (1), T = k mo l½ g−½

T = k 
⎡ ⎤
⎢ ⎥
⎣ ⎦

1/2
l
g  = k 

l
g

Experimentally the value of k is determined to be 2π.

∴ T = 2π 
l
g

1.9.2 Limitations of Dimensional Analysis

(i) The value of dimensionless constants cannot be determined
by this method.

(ii) This method cannot be applied to equations involving
exponential and trigonometric functions.

(iii) It cannot be applied to an equation involving more than three
physical quantities.

(iv) It can check only whether a physical relation is dimensionally
correct or not. It cannot tell whether the relation is absolutely correct

or not. For example applying this technique s = ut + 
1
4

at 2 is dimensionally

correct whereas the correct relation is s = ut + 
1
2

at2.
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Solved Problems

1.1 A laser signal is beamed towards a distant planet from the Earth
and its reflection is received after seven minutes. If the distance
between the planet and the Earth is 6.3 × 1010 m, calculate the
velocity of the signal.

Data    : d = 6.3 × 1010  m, t = 7 minutes = 7 × 60 = 420 s

Solution : If d is the distance of the planet, then total distance travelled
by the signal is 2d.

∴ velocity = 
10

8 12 2 6.3 10
    3 10   

420
d

m s
t

−× ×
= = ×

1.2 A goldsmith put a ruby in a box weighing 1.2 kg. Find the total
mass of the box and ruby applying principle of significant figures.
The mass of the ruby is 5.42 g.

Data : Mass of box = 1.2 kg
Mass of ruby = 5.42 g = 5.42 × 10–3 kg  = 0.00542 kg

Solution: Total mass = mass of box + mass of ruby
    = 1.2 + 0.00542 = 1.20542 kg

After rounding off, total mass = 1.2 kg

1.3 Check whether the equation 
hλ =

mv
 is dimensionally correct

(λ - wavelength, h - Planck’s constant, m - mass, v - velocity).

Solution: Dimension of Planck’s constant h is [ML2 T–1]

Dimension of λ is [L]

Dimension of m is [M]

Dimension of v is [LT–1]

Rewriting h
mv

λ =  using dimension

[ ]
[ ]

2 1

1
 = 

ML T
L

M LT

−

−

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

[ ] [ ]L  = L

As the dimensions on both sides of the equation are same, the given
equation is dimensionally correct.
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1.4 Multiply 2.2 and 0.225. Give the answer correct to significant figures.

Solution : 2.2 × 0.225 = 0.495

Since the least number of significant figure in the given data is 2, the
result should also have only two significant figures.

∴ 2.2 × 0.225 = 0.50

1.5 Convert 76 cm of mercury pressure into N m-2 using the method of
dimensions.

Solution : In cgs system, 76 cm of mercury

pressure = 76 × 13.6 × 980 dyne cm–2

Let this be P1. Therefore P1 = 76 × 13.6 × 980 dyne cm–2

In cgs system, the dimension of pressure is [M1
aL1

bT1
c]

Dimension of pressure is [ML–1 T–2]. Comparing this with [M2
aL2

bT2
c]

we have a = 1, b = –1 and c = -2.

∴ Pressure in SI system P2 = P1 
1 1 1

2 2 2

a b c
M L T
M L T

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

ie  P2 = 76×13.6×980 

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

1 1 2-3 -210  kg 10  m 1s
1 kg 1 m 1s

= 76 × 13.6 × 980 ×10–3 ×102

= 101292.8 N m-2

P2 = 1.01 × 105 N m-2
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Self evaluation
(The questions and problems given in this self evaluation are only samples.
In the same way any question and problem could be framed from the text
matter. Students must be prepared to answer any question and problem
from the text matter, not only from the self evaluation.)

1.1 Which of the following are equivalent?

(a) 6400 km and 6.4 × 108 cm (b) 2 × 104 cm and 2 × 106 mm

(c) 800 m and 80 × 102 m (d) 100 µm and 1 mm

1.2 Red light has a wavelength of 7000 Å. In µm it is

(a) 0.7 µm (b) 7 µm

(c) 70 µm (d) 0.07 µm

1.3 A speck of dust weighs 1.6 × 10–10 kg. How many such particles
would weigh 1.6 kg?

(a) 10–10 (b) 1010

(c) 10 (d) 10–1

1.4 The force acting on a particle is found to be proportional to velocity.
The constant of proportionality is measured in terms of

(a) kg s-1 (b) kg s

(c) kg m s-1 (d) kg m s-2

1.5 The number of significant digits in 0.0006032 is

(a) 8 (b) 7

(c) 4 (d) 2

1.6 The length of a body is measured as 3.51 m. If the accuracy is
0.01 m, then the percentage error in the measurement is

(a) 351 % (b) 1 %

(c) 0.28 % (d) 0.035 %

1.7 The dimensional formula for gravitational constant is

(a) M
1
L

3
T

–2
(b) M

–1
L

3
T

–2

(c) M
–1

L
–3

T
–2

(d) M
1
L

–3
T

2
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1.8 The velocity of a body is expressed as v = (x/t) + yt. The dimensional
formula for x is

(a) MLoTo (b) MoLTo

(c) MoLoT (d) MLTo

1.9 The dimensional formula for Planck’s constant is

(a) MLT (b) ML
3
T

2

(c) ML
o
T

4
(d) ML

2
T

–1

1.10 _____________have the same dimensional formula

(a) Force and momentum (b) Stress and strain

(c) Density and linear density (d) Work and potential energy

1.11 What is the role of Physics in technology?

1.12 Write a note on the basic forces in nature.

1.13 Distinguish between fundamental units and derived units.

1.14 Give the SI standard for (i) length (ii) mass and (iii) time.

1.15 Why SI system is considered superior to other systems?

1.16 Give the rules and conventions followed while writing SI units.

1.17 What is the need for measurement of physical quantities?

1.18 You are given a wire and a metre scale. How will you estimate the
diameter of the wire?

1.19 Name four units to measure extremely small distances.

1.20 What are random errors? How can we minimise these errors?

1.21 Show that 1
2

 gt2 has the same dimensions of distance.

1.22 What are the limitations of dimensional analysis?

1.23 What are the uses of dimensional analysis? Explain with one
example.

Problems

1.24 How many astronomical units are there in 1 metre?
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1.25 If mass of an electron is 9.11 × 10–31 kg how many electrons would
weigh 1 kg?

1.26 In a submarine fitted with a SONAR, the time delay between generation
of a signal and reception of its echo after reflection from an enemy
ship is observed to be 73.0 seconds. If the speed of sound in water is
1450 m s–1, then calculate the distance of the enemy ship.

1.27 State the number of significant figures in the following:

(i) 600900 (ii) 5212.0 (iii) 6.320  (iv) 0.0631 (v) 2.64 × 1024

1.28 Find the value of π2 correct to significant figures, if π = 3.14.

1.29 5.74 g of a substance occupies a volume of 1.2 cm3. Calculate its
density applying the principle of significant figures.

1.30 The length, breadth and thickness of a rectanglar plate are 4.234 m,
1.005 m and 2.01 cm respectively. Find the total area and volume of
the plate to correct significant figures.

1.31 The length of a rod is measured as 25.0 cm using a scale having an
accuracy of 0.1 cm. Determine the percentage error in length.

1.32 Obtain by dimensional analysis an expression for the surface tension
of a liquid rising in a capillary tube. Assume that the surface tension
T depends on mass m of the liquid, pressure P of the liquid and
radius r of the capillary tube (Take the constant k = 

1
2 ).

1.33 The force  F acting on a body moving in a circular path depends on
mass m of the body, velocity v and radius r of the circular path.
Obtain an expression for the force by dimensional analysis (Take
the value of k = 1).

1.34 Check the correctness of the following equation by dimensinal
analysis

(i) F = 
2

2

mv

r
 where F is force, m is mass, v is velocity and r is radius

(ii)
1

  
2

g
n

lπ
=  where n is frequency, g is acceleration due to gravity

and l is length.
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(iii) 2 21
   

2
mv mgh=  where m is mass, v is velocity, g is acceleration

due to gravity and h is height.

1.35 Convert using dimensional analysis

(i) 
18
5

 kmph into m s–1

(ii) 
5

18
 m s–1 into kmph

(iii) 13.6 g cm–3 into kg m–3

Answers

1.1 (a) 1.2 (a) 1.3 (b) 1.4 (a)

1.5 (c) 1.6 (c) 1.7 (b) 1.8 (b)

1.9 (d) 1.10 (d)

1.24 6.68 × 10–12 AU 1.25 1.097 × 1030

1.26 52.925 km 1.27 4, 5, 4, 3, 3

1.28 9.86 1.29 4.8 g cm–3

1.30 4.255 m2, 0.0855 m3 1.31 0.4 %

1.32 T = 
Pr

2
1.33 F = 

2mv

r

1.34 wrong, correct, wrong

1.35 1 m s–1, 1 kmph, 1.36 × 104 kg m–3
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2. Kinematics

Mechanics is one of the oldest branches of physics. It deals with
the study of particles or bodies when they are at rest or in motion.
Modern research and development in the spacecraft design, its automatic
control, engine performance, electrical machines are highly dependent
upon the basic principles of mechanics. Mechanics can be divided into
statics and dynamics.

Statics is the study of objects at rest; this requires the idea of
forces in equilibrium.

Dynamics is the study of moving objects. It comes from the Greek
word dynamis which means power. Dynamics is further subdivided into
kinematics and kinetics.

Kinematics is the study of the relationship between displacement,
velocity, acceleration and time of a given motion, without considering
the forces that cause the motion.

Kinetics deals with the relationship between the motion of bodies
and forces acting on them.

We shall now discuss the various fundamental definitions in
kinematics.

Particle

A particle is ideally just a piece or a quantity of matter, having
practically no linear dimensions but only a position.

Rest and Motion

When a body does not change its position with respect to time, then
it is said to be at rest.

Motion is the change of position of an object with respect to time.
To study the motion of the object, one has to study the change in
position (x,y,z coordinates) of the object with respect to the surroundings.
It may be noted that the position of the object changes even due to the
change in one, two or all the three coordinates of the position of the
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objects with respect to time. Thus motion can be classified into three
types :

(i) Motion in one dimension

Motion of an object is said to be one dimensional, if only one of
the three coordinates specifying the position of the object changes with
respect to time. Example : An ant moving in a straight line, running
athlete, etc.

(ii) Motion in two dimensions

In this type, the motion is represented by any two of the three
coordinates. Example : a body moving in a plane.

(iii) Motion in three dimensions

Motion of a body is said to be three dimensional, if all the three
coordinates of the position of the body change with respect to time.

Examples : motion of a flying bird, motion of a kite in the sky,
motion of a molecule, etc.

2.1 Motion in one dimension (rectilinear motion)

The motion along a straight line is known as rectilinear motion.
The important parameters required to study the motion along a straight
line are position, displacement, velocity, and acceleration.

2.1.1 Position, displacement and distance travelled by the particle

The motion of a particle can be described if its position is known
continuously with respect to time.

The total length of the path is the distance travelled by the particle
and the shortest distance between the initial and final position of the
particle is the displacement.

The distance travelled by a
particle, however, is different from its
displacement from the origin. For
example, if the particle moves from a
point O to position P1 and then to

Fig 2.1 Distance and displacement
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position P2, its displacement at the position P2 is – x2 from the origin
but, the distance travelled by the particle is  x1+x1+x2 = (2x1+x2)
(Fig 2.1).

The distance travelled is a scalar quantity and the displacement
is a vector quantity.

2.1.2 Speed and velocity

Speed

It is the distance travelled in unit time. It is a scalar quantity.

Velocity

The velocity of a particle is defined as the rate of change of
displacement of the particle. It is also defined as the speed of the particle
in a given direction. The velocity is a vector quantity. It has both
magnitude and direction.

Velocity = 
displacement

time taken

Its unit is m s−1 and its dimensional formula is  LT−1.

Uniform velocity

A particle is said to move with uniform
velocity if it moves along a fixed direction and
covers equal displacements in equal intervals of
time, however small these intervals of time may
be.

In a displacement - time graph,
(Fig. 2.2) the slope is constant at all the points,
when the particle moves with uniform velocity.

Non uniform or variable velocity

The velocity is variable (non-uniform), if it covers unequal
displacements in equal intervals of time or if the direction of motion
changes or if both the rate of motion and the direction change.

t

Fig. 2.2 Uniform velocity
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Average velocity

Let s1 be the displacement of
a body in time t1 and s2 be its
displacement in time t2 (Fig. 2.3).
The average velocity during the time
interval (t2 – t1) is defined as

  
  average

change in displacement
v

change in time
=

 = 
2 1

2 1

s - s s
=

t - t t

∆
∆

From the graph, it is found
that the slope of the curve varies.

Instantaneous velocity

It is the velocity at any given instant of time or at any given point
of its path. The instantaneous velocity v is given by

0
  = 

t

s ds
v Lt

t dt∆ →

∆
=

∆
2.1.3 Acceleration

If the magnitude or the direction or both of the velocity changes with
respect to time, the particle is said to be under acceleration.

Acceleration of a particle is defined as the rate of change of velocity.
Acceleration is a vector quantity.

Acceleration = 
change in velocity

time taken
  

 

If u is the initial velocity and v, the final velocity of the particle
after a time t, then the acceleration,

v u
a

t

−
=

Its unit is m s−2 and its dimensional formula is LT−2.

The instantaneous acceleration is, a 
2

2

dv d ds d s

dt dt dt dt
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

Uniform acceleration

If the velocity changes by an equal amount in equal intervals of
time, however small these intervals of time may be, the acceleration is
said to be uniform.

O

Fig. 2.3 Average velocity

∆s

∆t
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Retardation or deceleration

If the velocity decreases with time, the acceleration is negative. The
negative acceleration is called retardation or deceleration.

Uniform motion

A particle is in uniform motion when it moves with constant
velocity (i.e) zero acceleration.

2.1.4 Graphical representations

The graphs provide a convenient method to present pictorially,
the basic informations about a variety of events. Line graphs are used
to show the relation of one quantity say displacement or velocity with
another quantity such as time.

If the displacement, velocity and acceleration of a particle are
plotted with respect to time, they are known as,

(i) displacement – time graph (s - t graph)

(ii) velocity – time graph (v - t graph)

(iii) acceleration – time graph (a - t graph)

Displacement – time graph

When the displacement of the
particle is plotted as a function of time,
it is  displacement - time graph.

As  = 
ds

v
dt

, the slope of the s - t

graph at any instant gives the velocity
of  the particle at that instant. In
Fig. 2.4  the particle at time t1, has a
positive velocity, at time t2, has zero
velocity and at time t3, has negative
velocity.

Velocity – time graph

When the velocity of the particle is plotted as a function of time,
it is velocity-time graph.

As = 
dv

a
dt

 , the slope of the v – t curve at any instant gives the

1

2

3

t1 t2
t3

O

Fig. 2.4 Displacement -
time graph
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acceleration of the particle (Fig. 2.5).

But, v = 
ds
dt

  or ds = v.dt

If the displacements are s1 and
s2 in times t1 and t2, then

s t2 2

s t1 1

ds = v dt∫ ∫

s2 – s1 = 
2

1

 
t

t

v dt∫ = area ABCD

The area under the v – t curve, between the given intervals of
time, gives the change in displacement or the distance travelled by the
particle during the same interval.

Acceleration – time graph

When the acceleration is plotted as a
function of time, it is acceleration - time
graph (Fig. 2.6).

 = 
dv

a
dt

 (or) dv = a dt

If the velocities are v1 and v2 at times
t1 and t2 respectively, then

2 2

1 1

 =∫ ∫
v t

v t

dv a dt (or)  v2 – v1 = 
2

1

.

t

t

a dt∫ = area PQRS

The area under the a – t curve, between the given intervals of
time, gives the change in velocity of the particle during the same interval.
If the graph is parallel to the time axis, the body moves with constant
acceleration.

2.1.5 Equations of motion

For uniformly accelerated motion, some simple equations that
relate displacement s, time t, initial velocity u, final velocity v and
acceleration a are obtained.

(i) As acceleration of the body at any instant is given by the first
derivative of the velocity with respect to  time,

O

A
B

CD

dt

v dt

Fig. 2.5 Velocity - time graph

O

P
Q

RS

dt

a dt

Fig. 2.6 Acceleration
– time graph
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 = 
dv

a
dt

 (or) dv = a.dt

If the velocity of the body changes from u to v  in time t then from
the above equation,

t

0 0

 =   = 
v t

u

dv a dt a dt∫ ∫ ∫ ⇒  [ ] [ ] 
0

v t

u
v a t=

∴ v – u = at  (or) v = u + at ...(1)

(ii) The velocity of the body is given by the first derivative of the
displacement with respect to time.

(i.e)  = 
ds

v
dt

 (or) ds = v dt

Since v = u + at, ds = (u + at) dt

The distance s covered in time t is,
s t t

0 0 0

ds = u dt + at dt∫ ∫ ∫   (or)  21
s = ut  + at  

2
   ...(2)

(iii) The acceleration is given by the first derivative of velocity with
respect to time. (i.e)

 =  =    = 
dv dv ds dv

a v
dt ds dt ds

⋅ ⋅   =
ds

v
dt

⎡ ⎤
⎢ ⎥⎣ ⎦
∵  (or)  ds = 

1
a

 v dv

Therefore,
v

0 u

 = 
s

v dv
ds

a∫ ∫
 

 (i.e)  s = 
⎡ ⎤

−⎢ ⎥
⎣ ⎦

2 21
 

2 2
v u

a

( )2 21
s   

2
v u

a
= −  (or) 2as = (v2 – u2)

∴   v2 = u2 + 2 as ...(3)

The equations (1), (2) and (3) are called equations of motion.

Expression for the distance travelled in nth second

Let a body move with an initial velocity u and travel along a
straight line with uniform acceleration a.

Distance travelled in the nth second of motion is,

sn = distance travelled during first n seconds – distance
travelled during (n –1) seconds
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Distance travelled during n seconds

Dn = 21
 + 

2
un an

Distance travelled during (n -1) seconds

D (n –1)  = u(n-1) + 
2

1
 a(n-1)2

∴ the distance travelled in the nth second = Dn−  D(n –1)

(i.e) 
2 2

n
1 1

s  = un + an - u(n -1) + a(n -1)
2 2

⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

sn = 
1

u + a n -
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

n
1

s = u + a(2n -1)
2

Special Cases

Case (i) : For downward motion

For a particle moving downwards,  a = g, since the particle moves
in the direction of gravity.

Case (ii) : For a freely falling body

For a freely falling body,  a = g and u =  0, since it starts from
rest.

Case (iii) : For upward motion

For a particle moving  upwards, a = − g, since the particle moves
against the gravity.

2.2 Scalar and vector quantities

A study of motion will involve the introduction of a variety of
quantities, which are used to describe the physical world.  Examples
of such quantities are distance, displacement, speed, velocity,
acceleration, mass, momentum, energy, work, power etc. All these
quantities can be divided into two categories – scalars and vectors.

The scalar quantities have magnitude only. It is denoted by a
number and unit.  Examples : length, mass, time, speed, work, energy,
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temperature etc. Scalars of the same kind can be added, subtracted,
multiplied or divided by ordinary laws.

The vector quantities have both magnitude and direction. Examples:
displacement, velocity, acceleration, force, weight, momentum, etc.

2.2.1 Representation of a vector

Vector quantities are often represented by a scaled vector diagrams.
Vector diagrams represent a vector by the use of an arrow drawn to
scale in a specific direction. An example of a scaled vector diagram is
shown in Fig 2.7.

From the figure, it is clear that

(i) The scale is listed.

(ii) A line with an arrow is drawn in a specified direction.

(iii) The magnitude and direction
of the vector are clearly labelled. In
the above case, the diagram shows that
the magnitude is 4 N and direction is
30° to x-axis. The length of the line
gives the magnitude and arrow head
gives the direction. In notation, the
vector is denoted in bold face letter
such as A or with an arrow above the

letter as 
→
A, read as vector

A or A vector while its magnitude
is denoted by A or by A .

2.2.2 Different types of vectors

(i) Equal vectors

Two vectors are said to be equal if they have the
same magnitude and same direction, wherever be their

initial positions. In Fig. 2.8 the vectors 
→
A and  

→
B have

the same magnitude and direction. Therefore  
→
A and  

→
B

are equal vectors.

30º
O

Y

X

4cm

OA=4N
A

Tail

Scale : 1cm=1N

Head

Fig 2.7 Representation
of a vector

A

B
Fig. 2.8

Equal vectors
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(ii) Like vectors
Two vectors are said to be like vectors, if they have same direction

but different magnitudes as shown in Fig. 2.9.

(iii) Opposite vectors
The vectors of same magnitude but opposite in direction, are

called opposite vectors (Fig. 2.10).

(iv) Unlike vectors
The vectors of different magnitude acting in opposite directions

are called unlike vectors.  In Fig. 2.11 the vectors 
→
A and 

→
B are unlike

vectors.

(v) Unit vector
A vector having unit magnitude is called a unit vector.  It is also

defined as a vector divided by its own magnitude. A unit vector in the

direction of a vector 
→
A  is written as 

^
A and is read as ‘A cap’ or ‘A caret’

or ‘A hat’. Therefore,

 
^
A

JG
JJG = 

|  |

A

A
 (or)  

→
A = 

^
A |

→
A|

Thus, a vector can be written as the product of its magnitude and
unit vector along its direction.

Orthogonal unit vectors
There are three most common unit vectors in the positive directions

of X,Y and Z axes of Cartesian coordinate system, denoted by i, j and
k respectively. Since they are along the mutually perpendicular directions,
they are called orthogonal unit vectors.

(vi) Null vector or zero vector

A vector whose magnitude is zero, is called a null vector or zero

vector.  It is represented by 
→
0  and its starting and end points are the

same.  The direction of null vector is not known.

Fig. 2.9
Like vectors

Fig. 2.10
Opposite vectors

Fig. 2.11
Unlike Vectors

A
B

A B A B
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(vii) Proper vector

All the non-zero vectors are called proper vectors.

(viii) Co-initial vectors

Vectors having the same starting point are called

co-initial vectors. In Fig. 2.12,  
→
A and  

→
B start from the

same origin O. Hence, they are called as co-initial
vectors.

(ix) Coplanar vectors

Vectors lying in the same plane are called coplanar vectors and
the plane in which the vectors lie are called plane of vectors.

2.2.3 Addition of vectors

As vectors have both magnitude and direction they cannot be
added by the method of ordinary algebra.

Vectors can be added graphically or geometrically. We shall now
discuss the addition of two vectors graphically using head to tail method.

Consider two vectors 
→
P and 

→
Q which are acting along the same

line. To add these two vectors, join the tail of  
→
Q with the head of  

→
P

(Fig. 2.13).

The resultant of 
→
P and 

→
Q is 

→
R  =  

→
P +  

→
Q. The length of the line

AD gives the magnitude of  
→
R.  

→
R acts in the same direction as that of

→
P and  

→
Q.

In order to find the sum of two vectors, which
are inclined to each other, triangle law of vectors
or parallelogram law of vectors, can be used.

(i) Triangle law of vectors

If two vectors are represented in magnitude
and direction by the two adjacent sides of a triangle
taken in order, then their resultant is the closing
side of the triangle taken in the reverse order.

O
A

B

Fig 2.12
Co-initial vectors

Fig. 2.13
Addition of vectors

A

A

A

B

B

C

C

D

D

D

P

P

R

Q

Q
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To find the resultant of

two vectors   
→
P and  

→
Q which

are acting at an angle θ, the
following procedure is adopted.

First draw O A =
JJJG

 
→
P

(Fig. 2.14) Then starting from

the arrow head of  
→
P, draw the

vector =
JJJJG JG
AB Q . Finally, draw

a vector  OB =
JJJG

 
→
R  from the

tail of vector  
→
P to the head of vector  

→
Q. Vector =

JJJG JG
OB R  is the sum

of the vectors  
→
P and  

→
Q. Thus 

→
R =  

→
P +  

→
Q.

The magnitude of 
→
P + 

→
Q is determined by measuring the length

of  
→
R  and direction by measuring the angle between  

→
P and  

→
R.

The magnitude and direction of  
→
R, can be obtained by using the

sine law and cosine law of triangles. Let α be the angle made by the

resultant  
→
R with  

→
P. The magnitude of  

→
R is,

R 2 = P 2 + Q 2 – 2PQ cos (180 o – θ)

R =   2 2P + Q + 2PQ cos θ

The direction of R can be obtained by,

o
 =  = 

   (180  - )

P Q R
sin sin sinβ α θ

(ii) Parallelogram law of vectors

If two vectors acting at a point are represented in magnitude and
direction by the two adjacent sides of a parallelogram, then their resultant
is represented in magnitude and direction by the diagonal passing through
the common tail of the two vectors.

Let us consider two vectors  
→
P and  

→
Q  which are inclined to each

other at an angle θ as shown in Fig. 2.15. Let the vectors 
→
P and 

→
Q be

represented in magnitude and direction by the two sides OA and OB of
a parallelogram OACB. The diagonal OC passing through the common
tail O, gives the magnitude and direction of the resultant 

→
R.

CD is drawn perpendicular to the  extended OA, from C. Let

COD  made by 
→
R with 

→
P be α.

Fig. 2.14 Triangle law of vectors
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From right angled triangle OCD,

OC2 = OD2 + CD2

= (OA + AD)2 + CD2

= OA2 + AD2 + 2.OA.AD + CD2 ...(1)

In Fig. 2.15  θ =  = CADBOA

From right angled ∆ CAD,

AC2 = AD2 + CD2 ...(2)

Substituting (2) in (1)

OC2 = OA2 + AC2 + 2OA.AD ...(3)

From ∆ACD,

CD = AC sin θ ...(4)

AD = AC cos θ ...(5)

Substituting (5)  in (3) OC2 = OA2 + AC2 + 2 OA.AC cos θ

Substituting OC = R, OA = P,

OB = AC = Q in the above equation

R2 = P2 + Q2 + 2PQ cos θ

(or)  θ+ +2 2 =      2  cos  R P Q PQ ...(6)

Equation (6) gives the magnitude of the resultant. From ∆ OCD,

α
+

tan   =  = 
CD CD

OD OA AD

Substituting (4) and (5) in the above equation,

θ θα
θ θ+ +

 sin   sin  
tan   =  = 

 cos   cos 
AC Q

OA AC P Q

(or) α = 
1  sin  

tan
 cos 

Q
P Q

θ
θ

− ⎡ ⎤
⎢ ⎥+⎣ ⎦

...(7)

Equation (7) gives the direction of the resultant.

Special Cases

(i) When two vectors act in the same direction

In this case, the angle between the two vectors θ = 0o,
cos 0o = 1, sin 0o= 0

Q

O
P A D

CB

R

Fig 2.15 Parallelogram
law of vectors
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From (6) = + + = +2 2       2   (   )R P Q PQ P Q

From (7) α = 1  sin  0
tan

 cos 0

o

o

Q

P Q
− ⎡ ⎤
⎢ ⎥

+⎣ ⎦

(i.e) α = 0

Thus, the resultant vector acts in the same direction as the
individual vectors and is equal to the sum of the magnitude of the two
vectors.

(ii) When two vectors act in the opposite direction

In this case, the angle between the two vectors θ = 180°,
cos 180° = -1, sin 180o = 0.

From (6) 2 2      - 2   (   )R P Q PQ P Q= + = −

From (7)
-1 10

tan tan (0) 0
P Q

α −⎡ ⎤
= = =⎢ ⎥−⎣ ⎦

Thus, the resultant vector has a magnitude equal to the difference
in magnitude of the two vectors and acts in the direction of the bigger
of the two vectors

(iii) When two vectors are at right angles to each other

In this case, θ = 90°, cos 90o = 0, sin 90o = 1

From (6) = +2 2     R P Q

From (7) 1  tan  
Q

P
α − ⎛ ⎞= ⎜ ⎟

⎝ ⎠

The resultant  
→
R  vector  acts at an angle α with vector  

→
P.

2.2.4 Subtraction of vectors

The subtraction of a vector from another is equivalent to the
addition of one vector to the negative of the other.

For example       ( )− = + −
JG JG JG JG
Q P Q P .

Thus to subtract 
→
P from 

→
Q, one has to add – 

→
P with 

→
Q

(Fig 2.16a). Therefore, to subtract 
→
P from 

→
Q, reversed 

→
P is added to the
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→
Q . For this, first draw AB

JJJG
 =  

→
Q and then starting from the arrow head

of 
→
Q, draw ( )BC P= −

JJJG JG
 and finally join the head of – 

→
P . Vector 

→
R is the

sum of  
→
Q  and – 

→
P. (i.e) difference 

→
Q – 

→
P.

(a) (b)

Fig 2.16 Subtraction of vectors

The resultant of two vectors which are antiparallel to  each other
is obtained by subtracting the smaller vector from the bigger vector as
shown in Fig 2.16b. The direction of the resultant vector is in the
direction of the bigger vector.

2.2.5 Product of a vector and a scalar

Multiplication of a scalar and a vector gives a vector quantity
which acts along the direction of the vector.

Examples

(i) If  
→
a is the acceleration produced by a particle of mass m under

the influence of the force, then 
→
F  = m

→
a

(ii) momentum = mass × velocity (i.e) 
→
P = m

→
v.

2.2.6 Resolution of vectors and rectangular components

A vector directed at an angle with the co-ordinate axis, can be
resolved into its components along the axes. This process of splitting a
vector into its components is known as resolution of a vector.

Consider a vector R OA=
JG JJJG

 making an angle θ with X - axis. The

vector R can be resolved into two components along X - axis and
Y-axis respectively.  Draw two perpendiculars from A to X and Y axes
respectively. The intercepts on these axes are called the scalar
components Rx and Ry.

Q

P

QA B

C

Q+[-P] -P

A

A

A

B

B

C

C

D

D

P

R

Q

C
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Then, OP is Rx, which is the  magnitude of x component of 
→
R and

OQ is Ry, which is the magnitude of y component of 
→
R

From ∆ OPA,

cos θ  = = xROP

OA R
 (or) Rx  = R cos θ

sin θ  = = yROQ

OA R
 (or) Ry  = R sin θ 

and R 2 =  Rx
2  + Ry

2

Also, R
JG

 can be expressed as
→
R = Rx

→
i + Ry 

→
j where i and j are unit vectors.

In terms of Rx and Ry , θ can be expressed as θ = tan−1 
y

x

R

R

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

2.2.7 Multiplication of two vectors

Multiplication of a vector by another vector does not follow the
laws of ordinary algebra. There are two types of vector multiplication
(i) Scalar product and (ii) Vector product.

(i) Scalar product or Dot product of two
vectors

If the product of two vectors is a scalar,

then it is called scalar product. If 
→
A and 

→
B are

two vectors, then their scalar product is written

as 
→
A.

→
B and read as 

→
A dot 

→
B. Hence scalar product

is also called dot product. This is also referred as
inner or direct product.

The scalar product of two vectors is a scalar, which is equal to
the product of magnitudes of the two vectors and the cosine of the

angle between them. The scalar product of two vectors 
→
A and  

→
B may

be expressed as 
→
A . →

B = |
→
A| |

→
B| cos θ where |

→
A| and |

→
B| are the

magnitudes of 
→
A and 

→
B respectively and θ is the angle between 

→
A and

→
B as shown in Fig 2.18.

O

R

Rx

Ry

AQ

P
X

Y

Fig. 2.17 Rectangular
components of a vector

A

O
B

Fig 2.18 Scalar product
of two vectors
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(ii) Vector product or Cross product of two vectors

If the product of two vectors is a vector, then it is called vector

product. If 
→
A and 

→
B are two vectors then their vector product is written

as 
→
A × 

→
B and read as 

→
A cross 

→
B. This is also referred as outer product.

The vector product or cross product of two vectors is a vector
whose magnitude is equal to the product of their magnitudes and the
sine of the smaller angle between them and the direction is perpendicular
to a plane containing the two vectors.

If θ is the smaller angle through which
→
A should be rotated to reach 

→
B, then the cross

product of  
→
A and 

→
B  (Fig. 2.19) is expressed

as,

→
A × 

→
B = |

→
A| |

→
B| sin θ n̂ = 

→
C

where |→A| and |
→
B| are the magnitudes of 

→
A

and 
→
B respectively. 

→
C is perpendicular to the

plane containing  
→
A and 

→
B. The direction of 

→
C

is along the direction in which the tip of a
screw moves when it is rotated from 

→
A to 

→
B.

Hence 
→
C acts along OC. By the same

argument, 
→
B × 

→
A acts along OD.

2.3 Projectile motion

A body thrown with some initial velocity and then allowed to move
under the action of gravity alone, is known as a projectile.

If we observe the path of the projectile, we find that the projectile
moves in a path, which can be considered as a part of parabola. Such
a motion is known as projectile motion.

A few examples of projectiles are (i) a bomb thrown from an
aeroplane (ii) a javelin or a shot-put thrown by an athlete (iii) motion
of a ball hit by a cricket bat etc.

The different types of projectiles are shown in Fig. 2.20. A body
can be projected in two ways:

Fig 2.19 Vector product
of two vectors

A

B
A  Bx

B  Ax

C

D

O
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(i) It can be projected horizontally from a certain height.

(ii) It can be thrown from the ground in a direction inclined
to it.

The projectiles undergo a vertical motion as well as horizontal
motion.  The two components of the projectile motion are (i) vertical
component and (ii) horizontal component. These two perpendicular
components of motion are independent of each other.

A body projected with an initial velocity making an angle with the
horizontal direction possess uniform horizontal velocity and variable
vertical velocity, due to force of gravity. The object therefore has
horizontal and vertical motions simultaneously. The resultant motion
would be the vector sum of  these two motions and the path following
would be curvilinear.

The above discussion can be summarised as in the Table 2.1

Table 2.1 Two independent motions of a projectile

Motion Forces Velocity Acceleration

Horizontal No force acts Constant Zero

Vertical The force of Changes Downwards
gravity acts (∼10 m s–1) (∼10 m s-2)
downwards

In the study of projectile motion, it is assumed that the air
resistance is negligible and the acceleration due to gravity remains
constant.

Fig 2.20 Different types of projectiles
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Angle of projection

The angle between the initial direction of projection and the horizontal
direction through the point of projection is called the angle of projection.

Velocity of projection

The velocity with which the body is projected is known as velocity
of projection.

Range

Range of a projectile is the horizontal distance between the point of
projection and the point where the projectile hits the ground.

Trajectory

The path described by the projectile is called the trajectory.

Time of flight

Time of flight is the total time taken by the projectile from the
instant of projection till it strikes the ground.

2.3.1 Motion of a projectile thrown horizontally

Let us consider an object thrown horizontally with a velocity u
from a point A, which is at a height
h from the horizontal plane OX
(Fig 2.21). The object acquires the
following motions simultaneously :

(i) Uniform velocity with which
it is projected in the horizontal
direction OX

(ii) Vertical velocity, which is
non-uniform due to acceleration due
to gravity.

The two velocities are
independent of each other. The
horizontal velocity of the object shall

remain constant as no acceleration is acting in the horizontal direction.
The velocity in the vertical direction shall go on changing because of
acceleration due to gravity.

O
R

B
X

h

A
u

u2

u3

u

uD

C

u1=0

Fig  2.21 Projectile projected
horizontally from the top of a tower
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Path of a projectile

Let the time taken by the object to reach C from A = t

Vertical distance travelled by the object in time t = s = y

From equation of motion, s = u1t +  
1
2

 at 2 ...(1)

Substituting the known values in equation (1),

y = (0) t + 
1
2

 gt 2 = 
1
2

gt 2 ...(2)

At A, the initial velocity in the horizontal direction is u.

Horizontal distance travelled by the object in time t is x.

∴ x = horizontal velocity × time  = u t (or) t = 
x

u
...(3)

Substituting t in equation (2), y = 
2 2

2

1 1
    

2 2
x x

g g
u u

⎛ ⎞ =⎜ ⎟
⎝ ⎠

...(4)

(or) y = kx2

where k = 22

g

u
 is a constant.

The above equation is the equation of a parabola. Thus the path

taken by the projectile is a parabola.

Resultant velocity at C

At an instant of time t, let the body be at C.

At A, initial vertical velocity (u1) = 0

At C, the horizontal velocity (ux
)
 = u

At C, the vertical velocity = u2

From equation of motion, u2 = u1 + g t

Substituting all the known values, u2 = 0 + g t ...(5)

The resultant velocity at C is v = 2 2 2 2 2
x 2u + u  = u + g t  ...(6)

The direction of v is given by 
2

tanθ
x

u gt

u u
= = ...(7)

where θ is the angle made by v with X axis.

u2

u
C

v

Fig 2.22
Resultant velocity

at any point
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Time of flight and range

The distance OB = R, is called as range of the projectile.

Range = horizontal velocity × time taken to reach the ground

R = u tf  ...(8)

where tf is the time of flight

At A, initial vertical velocity (u1) = 0

The vertical distance travelled by the object in time tf = sy = h

From the equations of motion Sy = 2
1

1
 

2f fgu t t+ ...(9)

Substituting the known values in equation (9),

h = (0)
21

 
2

f fgt t+  (or) tf  = 
2h

g ...(10)

Substituting tf in equation (8), Range R = u 
2h

g ...(11)

2.3.2 Motion of a projectile projected at an angle with the
horizontal (oblique projection)

Consider a body projected from a point O on the surface of the
Earth with an initial velocity u at an angle θ with the horizontal as
shown in Fig. 2.23. The velocity u can be resolved into two components

Fig 2.23  Motion of a projectile projected at an angle with horizontal

O u =u cosx

X

BE

A (u =0)3

D

hm ax

u2

ux

ux

ux

u4

C

u

u
=
u
s
in

y
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(i) ux = u cos θ , along the horizontal direction OX and

(ii) uy = u sin θ, along the vertical direction OY

The horizontal velocity ux of the object shall remain constant as
no acceleration is acting in the horizontal direction. But the vertical
component uy of the object continuously decreases due to the effect of
the gravity and it becomes zero when the body is at the highest point
of its path. After this, the vertical component uy is directed downwards
and increases with time till the body strikes the ground at B.

Path of the projectile

Let t1 be the time taken by the projectile to reach the point C from
the instant of projection.

Horizontal distance travelled by the projectile in time t1  is,

x  =  horizontal velocity  × time

x = u cos θ  × t1 (or) t1 =  cos  θ
x

u
...(1)

Let the vertical distance travelled by the projectile in time
t1 = s = y

At O,  initial vertical velocity u1= u sin θ

From the equation of motion s = u1 t1 – 
2
1

1
2

gt

Substituting the known values,

y = (u sin θ) t1 – 
2
1

1
2

gt  ...(2)

Substituting equation (1) in equation (2),
2

1
 = (   θ)   ( ) 

  θ 2   θ
x x

y u sin g
u cos u cos

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2

2 2
 =   θ  

2   θ
gx

y x tan
u cos

− ...(3)

The above equation is of the form y = Ax + Bx2 and represents
a parabola. Thus the path of a projectile is a parabola.

Resultant velocity of the projectile at any instant t1

At C, the velocity along the horizontal direction is ux = u cos θ and
the velocity along the vertical direction is uy= u2.
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From the equation of motion,

u2 = u1 – gt1

u2 = u sin θ  – gt1

∴ The resultant velocity at

C is 2 2
2xv u u= +

2 2
1(  cos  θ)   (  sin  θ  )v u u gt= + −

= 2 2 2
1 12 sinθu g t ut g+ −

The direction of v is given by

2 1 sin  θ
tan

 cos θx

u u gt

uu
α

−
= = (or)  1 1 sin  θ

tan
 cos θ

u gt

u
α − ⎡ ⎤−

= ⎢ ⎥
⎢ ⎥⎣ ⎦

where α is the angle made by v with the horizontal line.

Maximum height reached by the projectile

The maximum vertical displacement produced by the projectile is
known as the maximum height reached by the projectile. In Fig 2.23,
EA is the maximum height attained by the projectile. It is represented
as hmax.

At O, the initial vertical velocity (u1) = u sin θ

At A, the final vertical velocity (u3) = 0

The vertical distance travelled by the object = sy = hmax

From equation of motion, u3
2 = u1

2 – 2gsy

Substituting the known values, (0) 2= (u sin θ) 2 – 2ghmax

2ghmax = u2 sin2 θ (or)  hmax = 
2 2u  sin  θ

2g ...(4)

Time taken to attain maximum height

Let t be the time taken by the projectile to attain its maximum
height.

From equation of motion u3 = u1 – g t

C ux

u2

v

Fig 2.24 Resultant velocity of the

projectile at any instant
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Substituting the known values 0 = u sin θ – g t
g t = u sin θ

 sinθu
t

g
= ...(5)

Time of flight

Let tf be the time of flight (i.e) the time taken by the projectile to
reach B from O through A. When the body returns to the ground, the
net vertical displacement made by the projectile

sy = hmax – hmax = 0

From the equation of motion sy = u1 tf  – 21
 

2 fg t

Substituting the known values 0 = ( u sin θ ) tf – 
21

 
2 fg t

21
 

2 fg t = (u sin θ) tf (or) tf  = 
2 sin  u

g
θ

...(6)

From equations (5) and (6) tf = 2t ...(7)

(i.e) the time of flight is twice the time taken to attain the maximum
height.

Horizontal range

The horizontal distance OB is called the range of the projectile.

Horizontal range = horizontal velocity × time of flight

(i.e) R = u cos θ × tf

Substituting the value of tf, R = 
2 sinθ

(  cosθ) 
u

u
g

R = 
2  (2 sinθ cosθ)

 
u

g

∴ R = 
2 sin2θu

g ...(8)

Maximum Range

From (8), it is seen that for the given velocity of projection, the
horizontal range depends on the angle of projection only.  The range is
maximum only if the value of sin 2θ is maximum.
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For maximum range Rmax sin 2θ = 1

(i.e) θ = 45°

Therefore the range is maximum when the angle of projection
is 45°.

Rmax = 
2  × 1u

g
 ⇒ Rmax = 

2u

g ...(9)

2.4 Newton’s laws of motion

Various philosophers studied the basic ideas of cause of motion.
According to Aristotle, a constant external force must be applied
continuously to an object in order to keep it moving with uniform
velocity. Later this idea was discarded and Galileo gave another idea on
the basis of the experiments on an inclined plane. According to him, no
force is required to keep an object moving with constant velocity. It is
the presence of frictional force that tends to stop moving object, the
smaller the frictional force between the object and the surface on which
it is moving, the larger the distance it will travel before coming to rest.
After Galileo, it was Newton who made a systematic study of motion
and extended the ideas of Galileo.

Newton formulated the laws concerning the motion of the object.
There are three laws of motion. A deep analysis of these laws lead us
to the conclusion that these laws completely define the force. The first
law gives the fundamental definition of force; the second law gives the
quantitative and dimensional definition of force while the third law
explains the nature of the force.

2.4.1 Newton’s first law of motion

It states that every body continues  in its state of rest or of uniform
motion along a straight line unless it is compelled by an external force to
change that state.

This law is based on Galileo’s law of inertia. Newton’s first law of
motion deals with the basic property of matter called inertia and the
definition of force.

Inertia is that property of a body by virtue of which the body is
unable to change its state by itself in the absence of external force.
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The inertia is of three types
(i) Inertia of rest
(ii) Inertia of motion
(iii) Inertia of  direction.

(i) Inertia of rest

It is the inability of the body to change its state of rest by itself.

Examples

(i) A person standing in a bus falls backward when the bus
suddenly starts moving. This is because, the person who is initially at
rest continues to be at rest even after the bus has started moving.

(ii) A book lying on the table will remain at rest, until it is moved
by some external agencies.

(iii) When a carpet is beaten by a stick, the dust particles fall off
vertically downwards once they are released and do not move along the
carpet and fall off.

(ii) Inertia of motion

Inertia of motion is the inability of the body to change its state of
motion by itself.

Examples

(a) When a passenger gets down from a moving bus, he falls down
in the direction of the motion of the bus.

(b) A passenger sitting in a moving car falls forward, when the car
stops suddenly.

(c) An athlete running in a race will continue to run even after
reaching the finishing point.

(iii) Inertia of direction

It is the inability of the body to change its direction of motion by
itself.

Examples

When a bus moving along a straight line takes a turn to the right,
the passengers are thrown towards left. This is due to inertia which
makes the passengers travel along the same straight line, even though
the bus has turned towards the right.
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This inability of a body to change by itself its state of rest or of
uniform motion along a straight line or direction, is known as inertia. The
inertia of a body is directly proportional to the mass of the body.

From the first law, we infer that to change the state of rest or
uniform motion, an external agency called, the force is required.

Force is defined as that which when acting on a body changes or
tends to change the state of rest or of uniform motion of the body along
a straight line.

A force is a push or pull upon an object, resulting the change of
state of a body. Whenever there is an interaction between two objects,
there is a force acting on each other. When the interaction ceases, the
two objects no longer experience a force. Forces exist only as a result
of an interaction.

There are two broad categories of forces between the objects,
contact forces and non–contact forces resulting from action at a distance.

Contact forces are forces in which the two interacting objects are
physically in contact with each other.

Tensional force, normal force, force due to air resistance, applied
forces and frictional forces are examples of contact forces.

Action-at-a-distance forces (non- contact forces) are forces in which
the two interacting objects are not in physical contact which each other,
but are able to exert a push or pull despite the physical separation.
Gravitational force, electrical force and magnetic force are examples of
non- contact forces.

Momentum of a body

It is observed experimentally that the force required to stop a
moving object depends on two factors: (i) mass of the body and
(ii) its velocity

A body in motion has momentum. The momentum of a body is
defined as the product of its mass and velocity. If m is the mass of the
body and v,→  its velocity, the linear momentum of the body is given by
→
p = m

→
v.

Momentum has both magnitude and direction and it is, therefore,
a vector quantity. The momentum is measured in terms of kg m s − 1

and its dimensional formula is MLT−1.
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When a force acts on a body, its velocity changes, consequently,
its momentum also changes. The slowly moving bodies have smaller
momentum than fast moving bodies of same mass.

If two bodies of unequal masses and velocities have same
momentum, then,

→
p1 = 

→
p2

(i.e) m1 
→
v1 = m2 

→
v2 ⇒ 21

2 1

 = 
m v

m v

G

G

Hence for bodies of same momenta, their velocities are inversely
proportional to their masses.

2.4.2 Newton’s second law of motion

Newton’s first law of motion deals with the behaviour of objects
on which all existing forces are balanced. Also, it is clear from the first
law of motion that a body in motion needs a force to change the
direction of motion or the magnitude of velocity or both. This implies
that force is such a physical quantity that causes or tends to cause an
acceleration.

Newton’s second law of motion deals with the behaviour of objects
on which all existing forces are not balanced.

According to this law, the rate of change of momentum of a body
is directly proportional to the external force applied on it and the change
in momentum takes place in the direction of the force.

If 
→
p is the momentum of a body and F

JG
 the external force acting

on it, then according to Newton’s second law of motion,

  
d p

F
dt

α
JGJG

(or)  =  
d p

F k
dt

JGJG
 where k is a proportionality constant.

If a body of mass m is moving with a velocity 
→
v then, its momentum

is given by 
 →

p = m
→
v.

∴  =   (  )
d

F k m v
dt

JG JJG
 = k m 

 dv

dt

JJG

Unit of force is chosen in such a manner that the constant k is
equal to unity. (i.e) k =1.
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dv
F m m a

dt
∴ = =

JJGJJG JJG
 where 

→
a = 

 dv

dt

JJG
 is the acceleration produced

in the motion of the body.

The force acting on a body is measured by the product of mass of
the body and acceleration produced by the force acting on the body. The
second law of motion gives us a measure of the force.

The acceleration produced in the body depends upon the inertia
of the body (i.e) greater the inertia, lesser the acceleration. One newton
is defined as that force which, when acting on unit mass produces unit
acceleration. Force is a vector quantity. The unit of force is kg m s−2 or
newton. Its dimensional formula is MLT−2.

Impulsive force and Impulse of a force

(i) Impulsive Force

An impulsive force is a very great force acting for a very short time
on a body, so that the change in the position of the body during the time
the force acts on it may be neglected.

(e.g.) The blow of a hammer, the collision of two billiard balls etc.

(ii) Impulse of a force

The impulse J of a constant force F
acting for a time t is defined as the product
of the force and time.

(i.e) Impulse = Force × time

J = F × t

The impulse of force F acting over a
time interval t is defined by the integral,

0

t

J F dt= ∫   ...(1)

The impulse of a force, therefore can
be visualised as the area under the force
versus time graph as shown in Fig. 2.25.  When a variable force acting
for a short interval of time, then the impulse can be measured as,

J = Faverage  × dt  ...(2)

F

t
dt

O t1 t2

Fig .2.25 Impulse of a force
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Impulse of a force is a vector quantity and its unit is N s.

Principle of impulse and momentum

By Newton’s second law of motion, the force acting on a
body = m a where  m = mass of the body and a = acceleration produced

The impulse of the force = F × t = (m a) t

If u and v be the initial and final velocities of the body then,

( )v u
a

t

−
= .

Therefore,  impulse of the force = 
( )

( )
v u

m t m v u mv mu
t

−
× × = − = −

Impulse = final momentum of the body

– initial momentum of the body.

(i.e) Impulse of the force = Change in momentum

The above equation shows that the total change in the momentum
of a body during a time interval is equal to the impulse of the force acting
during the same interval of time. This is called principle of impulse and
momentum.

Examples

(i) A cricket player while catching a ball lowers his hands in the
direction of the ball.

If the total change in momentum is brought about in a very
short interval of time, the average force is very large according to the

equation, 
mv mu

F
t

−
=

By increasing the time interval, the average force is decreased.  It
is for this reason that a cricket player while catching a ball, to increase
the time of contact, the player should lower his hand in the direction
of the ball , so that he is not hurt.

(ii) A person falling on a cemented floor gets injured more where
as a person falling on a sand floor does not get hurt.  For the same
reason, in wrestling, high jump etc., soft ground is provided.

(iii) The vehicles are fitted with springs and shock absorbers to
reduce jerks while moving on uneven or wavy roads.
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2.4.3 Newton’s third Law of motion

It is a common observation that when we sit on a chair, our body
exerts a downward force on the chair and the chair exerts an upward
force on our body. There are two forces resulting from this interaction:
a force on the chair and a force on our body. These two forces are
called action and reaction forces. Newton’s third law explains the relation
between these action forces. It states that for every action, there is an
equal and opposite reaction.

(i.e.) whenever one body exerts a certain force on a second body,
the second body exerts an equal and opposite force on the first. Newton’s
third law is sometimes called as the law of action and reaction.

Let there be two bodies 1 and 2 exerting forces on each other. Let

the force exerted on the body 1 by the body 2 be 
→
F12  and the force

exerted on the body 2 by the body 1 be 
→
F21. Then according to third

law, 
→
F12 = –

→
F21.

One of these forces, say 
→
F12 may be called as the action whereas

the other force   
→
F21 may be called as the reaction or vice versa. This

implies that we cannot say which is the cause (action) or which is the
effect (reaction). It is to be noted that always the action and reaction
do not act on the same body; they always act on different bodies. The
action and reaction never cancel each other and the forces always exist
in pair.

The effect of third law of motion can be observed in many activities
in our everyday life. The examples are

(i) When a bullet is fired from a gun with a certain force (action),
there is an equal and opposite force exerted on the gun in the backward
direction (reaction).

(ii) When a man jumps from a boat to the shore, the boat moves
away from him. The force he exerts on the boat (action) is responsible
for its motion and his motion to the shore is due to the force of reaction
exerted by the boat on him.

(iii) The swimmer pushes the water in the backward direction
with a certain force (action) and the water pushes the swimmer in the
forward direction with an equal and opposite force (reaction).
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(iv) We will not be able to walk if there
were no reaction force. In order to walk, we
push our foot against the ground. The Earth
in turn exerts an equal and opposite force.
This force is inclined to the surface of the
Earth. The vertical component of this force
balances our weight and the horizontal
component enables us to walk forward.

(v) A bird flies by with the help of its
wings. The wings of a bird push air downwards
(action). In turn, the air reacts by pushing the bird upwards (reaction).

(vi) When a force exerted directly on the wall by pushing the palm
of our hand against it (action), the palm is distorted a little because,
the wall exerts an equal force on the hand (reaction).

Law of conservation of momentum

From the principle of impulse and momentum,
impulse of a force, J  = mv mu−
If    J = 0 then mv mu−  = 0 (or) mv mu=

(i.e)  final momentum = initial momentum

In general, the total momentum of the system is always a constant
(i.e) when the impulse due to external forces is zero, the momentum of the
system remains constant. This is known as law of conservation of
momentum.

We can prove this law, in the case of a head on collision between
two bodies.

Proof
Consider a body A of mass m1 moving with a velocity u1 collides

head on with another body B of mass m2 moving in the same direction
as  A with velocity u2  as shown in Fig 2.26.

Before Collision During Collision After Collision

Fig.2.26 Law of conservation of momentum

m1

u1 u2

A

m2

B

F1 F2

A B
v1

v2A B

Y

RY

XO
Rx

Reaction

Action
Fig. 2.25a Action and

reaction
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After collision, let the velocities of the bodies be changed to v1

and v2 respectively, and both moves in the same direction.  During
collision, each body experiences a force.

The force acting on one body is equal in magnitude and opposite
in direction to the force acting on the other body. Both forces act for
the same interval of time.

Let F1 be force exerted by A on B (action), F2 be force exerted by
B on A (reaction) and t be the time of contact of the two bodies during
collision.

Now, F1 acting on the body B for a time t, changes its velocity
from u2 to v2.

∴ F1 = mass of the body B × acceleration of the body B

= m2 × 2 2( )v u

t

−
...(1)

Similarly, F2 acting on the body A for the same time t changes its
velocity from u1 to v1

∴ F2 = mass of the body A × acceleration of the body A

= m1 × 1 1( )v u

t

−
...(2)

Then by Newton’s third law of motion F1 = −F2

(i.e) m2 × 2 2( )v u

t

−
 = − m1 × 1 1( )v u

t

−

m2 (v2 −  u2) = − m1 (v1 – u1)

m2 v2 − m2 u2 = − m1 v1 + m1 u1

m1 u1 + m2 u2 = m1 v1+ m2 v2 ...(3)

(i.e) total momentum before impact = total momentum after impact.

(i.e) total momentum of the system is a constant.

This proves the law of conservation of linear momentum.

Applications of law of conservation of momentum

The following examples illustrate the law of conservation of
momentum.

(i) Recoil of a gun

Consider a gun and bullet of mass mg and mb respectively. The
gun and the bullet form a single system. Before the gun is fired, both
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the gun and the bullet are at rest. Therefore the velocities of the gun
and bullet are zero. Hence total momentum of the system before firing
is mg(0) + mb(0) = 0

When the gun is fired, the bullet moves forward and the gun
recoils backward. Let vb and vg are their respective velocities, the total
momentum of the bullet – gun system, after firing is mbvb + mgvg

According to the law of conservation of momentum,  total
momentum before firing is equal to total momentum after firing.

(i.e) 0 = mb vb + mg vg (or) vg = – b

g

m

m
 vb

It is clear from this equation, that vg is directed opposite to vb.
Knowing the values of mb, mg and vb, the recoil velocity of the gun vg

can be calculated.

(ii) Explosion of a bomb

Suppose a bomb is at rest before it explodes. Its momentum is
zero. When it explodes, it breaks up into many parts, each part having
a particular momentum. A part flying in one direction with a certain
momentum, there is another part moving in the opposite direction with
the same momentum. If the bomb explodes into two equal parts, they
will fly off in exactly opposite directions with the same speed, since
each part has the same mass.

Applications of Newton’s third law of motion

(i) Apparent loss of weight in a lift

Let us consider a man of mass M standing on a weighing machine
placed inside a lift. The actual weight of the man = Mg. This weight
(action) is measured by the weighing machine and in turn, the machine
offers a reaction R. This reaction offered by the surface of contact on
the man is the apparent weight of the man.

Case (i)

When the lift is at rest:

The acceleration of the man = 0

Therefore, net force acting on the man = 0

From Fig. 2.27(i), R – Mg = 0  (or)  R = Mg
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That is, the apparent weight of the man is equal to the actual
weight.

Case (ii)

When the lift is moving uniformly in the upward or downward
direction:

For uniform motion, the acceleration of the man is zero. Hence,
in this case also the apparent weight of the man is equal to the actual
weight.

Case (iii)

When the lift is accelerating upwards:

If a be the upward acceleration of the man in the lift, then the
net upward force on the man is F = Ma

From Fig 2.27(ii), the net force

F = R – Mg = Ma (or) R = M ( g + a )

Therefore, apparent weight of the man is greater than actual
weight.

Case (iv)

When the lift is accelerating downwards:

Let a  be the downward acceleration of the man in the lift, then
the net downward force on the man is F = Ma

From Fig. 2.27 (iii), the net force

F = Mg – R  = Ma (or)  R = M (g – a)

(i) (ii) (iii)

R

Mg

a=0

Mg Mg

a a

R
R

Fig 2.27 Apparent loss of weight in a lift
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Therefore, apparent weight of the man is less than the actual
weight.

When the downward acceleration of the man is equal to the
acceleration due to the gravity of earth, (i.e) a = g

∴ R = M (g – g) = 0

Hence, the apparent weight of the man becomes zero. This is
known as the weightlessness of the body.

(ii) Working of a rocket and jet plane

The propulsion of a rocket is one of the most interesting examples
of Newton’s third law of motion and the law of conservation of momentum.
The rocket is a system whose mass varies with time. In a rocket,
the gases at high temperature and pressure, produced by the
combustion of the fuel, are ejected from a nozzle. The reaction of the
escaping gases provides the necessary thrust for the launching and
flight of the rocket.

From the law of conservation of linear momentum, the momentum
of the escaping gases must be equal to the momentum gained by the
rocket. Consequently, the rocket is propelled in the forward direction
opposite to the direction of the jet of escaping gases. Due to the thrust
imparted to the rocket, its velocity and acceleration will keep on
increasing. The mass of the rocket and the fuel system keeps on
decreasing due to the escaping mass of gases.

2.5 Concurrent forces and Coplanar forces

The basic knowledge of various kinds
of forces and motion is highly desirable for
engineering and practical applications. The
Newton’s laws of motion defines and gives
the expression for the force. Force is a vector
quantity and can be combined according to
the rules of vector algebra. A force can be
graphically represented by a straight line with
an arrow, in which the length of the line is
proportional to the magnitude of the force and the arrowhead indicates
its direction.

F1

F2
F3

F4

O

F5

Fig 2.28 Concurrent forces
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A force system is said to be
concurrent, if the lines of all forces intersect
at a common point (Fig 2.28).

A force system is said to be coplanar,
if the lines of the action of all forces lie in
one plane (Fig 2.29).

2.5.1  Resultant of a system of forces acting on a rigid body

If two or more forces act simultaneously on a rigid body, it is
possible to replace the forces by a single force, which will produce the
same effect on the rigid body as the effect produced jointly by several
forces. This single force is the resultant of the system of forces.

If 
→
P and 

→
Q are two forces acting on a body simultaneously in the

same direction, their resultant is 
→
R = 

→
P + 

→
Q and it acts in the same

direction as that of the forces. If 
→
P and 

→
Q act in opposite directions,

their resultant 
→
R is 

→
R = 

→
P ~ 

→
Q  and the resultant is in the direction of

the greater force.

If the forces 
→
P and 

→
Q act in directions which are inclined to each

other, their resultant can be found by using parallelogram law of forces
and triangle law of forces.

2.5.2 Parallelogram law of forces

If two forces acting at a point are represented
in magnitude and direction by the two adjacent
sides of a parallelogram, then their resultant is
represented in magnitude and direction by the
diagonal passing through the point.

Explanation

Consider two forces 
→
P and 

→
Q

acting at a point O inclined at an angle
θ as shown in Fig. 2.30.

The forces 
→
P  and 

→
Q are

represented in magnitude and
direction by the sides OA and OB of
a parallelogram OACB as shown in
Fig 2.30.

F1

F2F3

F4
F5

Fig 2.29. Coplanar forces

PO

Q

Q

O
P A D

CB

R

Fig 2.30 Parallelogram
law of forces
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The resultant 
→
R of the forces 

→
P and 

→
Q is the diagonal OC of the

parallelogram. The magnitude of the resultant is

2 2     2  cos θR P Q PQ= + +

The direction of the resultant is 
1  sin  θ

  tan  
 cos  θ

Q

P Q
α − ⎡ ⎤

= ⎢ ⎥+⎣ ⎦

2.5.3 Triangle law of forces

The resultant of two forces acting at a point can also be found by
using triangle law of forces.

If two forces acting at a point
are represented in magnitude and
direction by the two adjacent sides
of a triangle taken in order, then the
closing side of the triangle taken in
the reversed order represents the
resultant of the forces in magnitude
and direction.

Forces 
→
P and 

→
Q act at an

angle θ. In order to find the

resultant of 
→
P and 

→
Q, one can apply

the head to tail method, to construct

the triangle.

In Fig. 2.31, OA and AB represent  
→
P and 

→
Q in magnitude and

direction. The closing side OB of the triangle taken in the reversed

order represents the resultant 
→
R of the forces 

→
P and 

→
Q. The magnitude

and the direction of 
→
R can be found by using sine and cosine laws of

triangles.

The triangle law of forces can also be stated as, if a body is in
equilibrium under the action of three forces acting at a point, then the
three forces can be completely represented by the three sides of a triangle
taken in order.

If 
→
P , 

→
Q  and 

→
R  are the three forces acting at a point and they

are  represented by the three sides of a triangle then 
P Q R

OA AB OB
= = .

Q

P
O

O
P A

B

R
→
Q

Fig 2.31 Triangle law of forces
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2.5.4 Equilibrant

According to Newton’s second law of motion, a body moves with
a velocity if it is acted upon by a force. When the body is subjected to
number of concurrent forces, it moves in a direction of the resultant
force. However, if another force, which is equal in magnitude of the
resultant but opposite in direction, is applied to a body, the body comes
to rest. Hence, equilibrant of a system of forces is a single force, which
acts along with the other forces to keep the body in equilibrium.

Let us consider the forces F1. F2, F3 and F4 acting on a body O
as shown in Fig. 2.32a. If F is the resultant of all the forces and in
order to keep the body at rest, an equal force (known as equilibrant)
should act on it in the opposite direction as shown in Fig. 2.32b.

(a) (b)

Fig 2.32 Resultant and equilibrant

From Fig. 2.32b, it is found that, resultant = − equilibrant

2.5.5 Resultant of concurrent forces

Consider a body O, which is acted upon by four forces as shown
in Fig. 2.33a. Let θ1, θ2, θ3 and θ4 be the angles made by the forces with
respect to X-axis.

Each force acting at O can be replaced by its rectangular
components F1x and F1y, F2x and F2y, .. etc.,

For example, for the force 
→
F1 making an angle θ1, its components

are, F1x =F1 cos θ1 and F1y= F1 sin θ1

These components of forces produce the same effect on the body
as the forces themselves. The algebraic sum of the horizontal components

F1

F2

F3

F4

O
X

Y

FXO   rest

FY

F

re
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lta
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eq
uili

br
an
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F1x, F2x, F3x, .. gives a single horizontal component Rx

(i.e) Rx = F1x + F2x + F3x+ F4x= ΣFx

Similarly, the algebraic sum of the vertical components F1y, F2y,

F3y, .. gives a single vertical component Ry.

(i.e) Ry =F1y + F2y + F3y +F4y = ΣFy

Now, these two perpendicular components Rx and Ry can be added
vectorially to give the resultant 

→
R .

∴ From Fig. 2.33b, 2 2 2   + x yR R R=  (or)   R = 2 2  yx
R R+

and tan α =
y

x

R

R
 (or) α = tan-1 

y

x

R

R

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

2.5.6 Lami’s theorem

It gives the conditions of equilibrium for three forces acting at a
point. Lami’s theorem states that if three forces acting at a point are in
equilibrium, then each of the force is directly proportional to the sine of
the angle between the remaining two forces.

Let us consider three forces 
→
P, 

→
Q  and 

→
R acting at a point O

(Fig 2.34). Under the action of three forces, the point O is at rest, then
by Lami’s theorem,

F1

F2

F3

F4

O
X

Y

1

2

3

4

- X

-Y

O Rx

Ry

R

Fig 2.33 Resultant of several concurrent forces

(a) (b)
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P  ∝ sin α

Q ∝ sin β

and R ∝ sin γ, then

= =
sin  sin  sin  

P Q R
α β γ  = constant

2.5.7 Experimental verification of triangle law,
parallelogram law and Lami’s theorem

Two smooth small pulleys are fixed, one each
at the top corners of a drawing board kept vertically
on a wall as shown in Fig. 2.35. The pulleys should move  freely
without any friction. A light string is made to pass over both the
pulleys. Two slotted weights P and Q (of the order of 50 g) are taken
and are tied to the two free ends of the string.  Another short string
is tied to the centre of the first string at O. A third slotted weight R is
attached to the free end of the short string. The weights P, Q and R are
adjusted such that the system is at rest.

The point O is in equilibrium under the action of the three forces
P, Q and R acting along the strings. Now, a sheet of white paper is held
just behind the string without touching them. The common knot O and
the directions of OA, OB and OD are marked to represent in magnitude,
the three forces P, Q and R on any convenient scale (like 50 g = 1 cm).

P Q

R

O

Fig 2.34
Lami’s theorem
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Q

P Q

R

Fig 2.35 Lami’s theorem - experimental proof
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The experiment is repeated for different values of P, Q and R and the
values are tabulated.

To verify parallelogram law

To determine the resultant of two forces P and Q, a parallelogram
OACB is completed, taking OA representing P, OB representing Q and
the diagonal OC gives the resultant.  The length of the diagonal OC and
the angle COD  are measured and tabulated (Table 2.2).

OC is the resultant R′ of P and Q.  Since O is at rest, this
resultant R′ must be equal to the third force R (equilibrant) which acts
in the opposite direction. OC = OD.  Also, both OC and OD are acting
in the opposite direction. COD∠  must be equal to 180°.

If  OC = OD and COD∠  = 180°, one can say that parallelogram
law of force is verified experimentally.

Table 2.2 Verification of parallelogram law

S.No. P Q R OA OB OD OC COD∠
(R) (R|)

 1.
 2.
 3.

To verify Triangle Law

According to triangle law of forces, the resultant of P (= OA = BC)
and Q (OB) is  represented in magnitude and direction by OC which is
taken in the reverse direction.

Alternatively, to verify the triangle law of forces, the ratios ,  
P Q

O A O B
and R

O C

′  are calculated and are tabulated (Table 2.3).  It will be found out

that, all the three ratios are equal, which proves the triangle law of

forces experimentally.

Table 2.3 Verification of triangle law

S.No. P Q R1 OA OB OC
P

OA

Q

OB
R

OC

′

1.
2.
3.
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To verify Lami’s theorem

To verify Lami’s theorem, the angles between the three forces, P,

Q and R (i.e) BOD∠ = α, AOD∠ = β and AOB∠ = γ are measured using

protractor  and tabulated (Table 2.4).  The ratios 
sin

P

α , sin
Q

β  and sin
R

γ

are calculated and it  is found that all the three ratios are equal and

this verifies the Lami’s theorem.

Table 2.4 Verification of Lami’s theorem

S.No. P Q R α β γ
sin

P

α sinβ
Q

sinγ
R

1.
2.
3.  

2.5.8 Conditions of equilibrium of a rigid body acted upon by a
system of concurrent forces in plane

(i) If an object is in equilibrium under the action of three forces, the
resultant of two forces must be equal and opposite to the third force.
Thus, the line of action of the third force must pass through the point of
intersection of the lines of action of the other two forces.  In other words,
the system of three coplanar forces in equilibrium, must obey parallelogram
law, triangle law of forces and Lami’s theorem.  This condition ensures
the absence of translational motion in the system.

(ii) The algebraic sum of the moments about any point must be
equal to zero. Σ M = 0 (i.e) the sum of clockwise moments about any
point must be equal to the sum of anticlockwise moments about the
same point.  This condition ensures, the absence of rotational motion.

2.6 Uniform circular motion

The revolution of the Earth around the Sun, rotating fly wheel,
electrons revolving around the nucleus, spinning top, the motion of a
fan blade, revolution of the moon around the Earth etc. are some
examples of circular motion.  In all the above cases, the bodies or
particles travel in a circular path.  So, it is necessary to understand the
motion of such bodies.
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When a particle moves on a circular
path with a constant speed, then its
motion is known as uniform circular
motion in a plane.  The magnitude of
velocity in circular motion remains
constant but the direction changes
continuously.

Let us consider a particle of mass
m moving with a velocity v along the circle
of radius r with centre O as shown in Fig
2.36. P is the position of the particle at a given instant of time such
that the radial line OP makes an angle θ with the reference line DA. The
magnitude of the velocity remains constant, but its direction changes
continuously. The linear velocity always acts tangentially to the position

of the particle (i.e) in each position, the linear velocity 
→
v is perpendicular

to the radius vector 
→
r.

2.6.1 Angular displacement

Let us consider a particle of mass  m
moving along the circular path of radius r as
shown in Fig. 2.37.  Let the initial position of
the particle be A. P and Q are the positions of
the particle at any instants of time t and t + dt
respectively.  Suppose the particle traverses a
distance ds along the circular path in time
interval dt. During this interval, it moves through
an angle dθ = θ2 − θ1. The angle swept by the
radius vector at a given time is called the angular
displacement of the particle.

If r be the radius of the circle, then the angular displacement is

given by dθ = 
r

ds
. The angular displacement is measured in terms of

radian.

2.6.2 Angular velocity

The rate of change of angular displacement is called the angular
velocity of the particle.

A

Q

r

2
1

O

Pd

Fig. 2.37 Angular
displacement

v

A

s

v

D

v

r

O

P

Fig. 2.36 Uniform circular motion
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Let dθ  be the angular displacement made by the particle in

time dt , then the angular velocity of the particle is 
dt
dθω = . Its unit

is rad s– 1 and dimensional formula is T–1.

For one complete revolution, the angle swept by the radius vector
is 360o or 2π radians.  If T is the time taken for one complete revolution,

known as period, then the angular velocity of the particle is 
T
2

t
πθω == .

If the particle makes n revolutions per second, then

n2
T
1

2 ππω =⎟
⎠
⎞

⎜
⎝
⎛=  where n = 

T
1

 is the frequency of revolution.

2.6.3 Relation between linear velocity  and angular velocity

Let us consider a body P moving along the circumference of a
circle of radius r with linear velocity v and angular velocity ω as shown
in Fig. 2.38. Let it move from P to Q in time dt and dθ be the angle
swept by the radius vector.

Let PQ = ds, be the arc length covered
by the particle moving along the circle, then
the angular displacement d θ is expressed

as d θ = 
ds

r
. But  ds = v dt

∴ dθ = 
 v dt

r
 (or)  

d v

dt r
θ =

(i.e) Angular velocity ω = 
v
r

 or v =ω r

In vector notation, 
→
v = 

→
ω × 

→
r

Thus, for a given angular velocity ω, the linear velocity v of the
particle is directly proportional to the distance of the particle from the
centre of the circular path (i.e) for a body in a uniform circular motion,
the angular velocity is the same for all points in the body but linear
velocity is different for different points of the body.

2.6.4  Angular acceleration

If the angular velocity of the body performing rotatory motion is
non-uniform, then the body is said to possess angular acceleration.

A

Q

r P

O

d

Fig 2.38  Relation
between linear velocity

and angular velocity
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The rate of change of angular velocity is called angular acceleration.

If the angular velocity of a body  moving in a circular path changes
from ω1 to ω2 in time t then its angular acceleration is

2
2 1

2

d d d d

dt dt dt dt t

ω ωω θ θα
−⎛ ⎞= = = =⎜ ⎟

⎝ ⎠
.

The angular acceleration is measured in terms of rad s−2
 and its

dimensional formula is T − 2.

2.6.5 Relation between linear acceleration and angular
acceleration

If dv is the small change in linear velocity in a time interval dt

then linear acceleration is ( ) αωω r
dt

d
rr

dt

d

dt

dv
a ==== .

2.6.6 Centripetal acceleration

The speed of a particle performing uniform circular motion remains
constant throughout the motion but its velocity changes continuously
due to the change in direction (i.e) the particle executing uniform circular
motion is said to possess an acceleration.

Consider a particle executing circular motion of radius r  with
linear velocity v and angular velocity ω.  The linear velocity of the
particle acts along the tangential line.  Let dθ be the angle described
by the particle at the centre when it moves from A to B in time dt.

At A and B, linear velocity v acts along
AH and BT respectively. In Fig. 2.39

AOB d HETθ∠ = = ∠ (∵ angle subtended by
the two radii of a circle = angle subtended
by the two tangents).

The velocity v at B of the particle
makes an angle dθ with the line BC and
hence it is resolved horizontally as v cos dθ
along BC and vertically as v sin d θ along
BD.

∴ The change in velocity along the horizontal direction = v cos dθ −v

If dθ is very small, cos dθ = 1

A

B C

HE

D

O

d

T

d
d

Fig 2.39  Centripetal
acceleration
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∴ Change in velocity along the horizontal direction = v − v = 0

(i.e) there is no change in velocity in the horizontal direction.

The change in velocity in the vertical direction (i.e along AO) is

dv = v sin dθ − 0 = v sin dθ

If dθ is very small, sin dθ = dθ

∴ The change in velocity in the vertical direction (i.e) along radius
of the circle

dv = v.dθ ...(1)

But, acceleration a = 
dv

dt
 = 

v dθ
dt

 = vω ...(2)

where ω = 
dθ
dt

 is the angular velocity of the particle.

We know that v = r ω   ...(3)

From equations (2) and (3),

a = rω ω = rω2 = 
2v

r
...(4)

Hence, the acceleration of the particle producing uniform circular

motion is equal to 
2v

r
and is along AO (i.e) directed towards the centre of

the circle.  This acceleration is directed towards the centre of the circle
along the radius and perpendicular to the velocity of the particle. This
acceleration is known as centripetal or radial or normal acceleration.

2.6.7 Centripetal force

According to Newton’s first law of motion, a body possesses the
property called directional inertia (i.e) the inability of the body to change
its direction.  This means that without the
application of an external force, the direction
of motion can not be changed. Thus when
a body is moving along a circular path,
some force must be acting upon it, which
continuously changes the body from its
straight-line path (Fig 2.40).  It makes clear
that the applied force should have no
component in the direction of the motion of
the body or the force must act at every

O

v

v v

v

F
F

F

F

Fig 2.40 Centripetal force
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point perpendicular to the direction of motion of the body.  This force,
therefore, must act along the radius and should be directed towards the
centre.

Hence for circular motion, a constant force should act on the body,
along the radius towards the centre and perpendicular to the velocity
of the body. This force is known as centripetal force.

If m is the mass of the body, then the magnitude of the centripetal
force is given by

F = mass × centripetal acceleration

= m 
2 2

 =  = 
v mv

r r

⎛ ⎞
⎜ ⎟
⎝ ⎠

m (rω2)

Examples
Any force like gravitational force, frictional force, electric force,

magnetic force etc. may act as a centripetal force.  Some of the examples
of centripetal force are :

(i) In the case of a stone tied to the end of a string whirled in a
circular path, the centripetal force is provided by the tension in the
string.

(ii) When a car takes a turn on the road, the frictional force
between the tyres and the road provides the centripetal force.

(iii) In the case of planets revolving round the Sun or the moon
revolving round the earth, the centripetal force is provided by the
gravitational force of attraction between them

(iv) For an electron revolving round the nucleus in a circular
path, the electrostatic force of attraction between the electron and the
nucleus provides the necessary centripetal force.

2.6.8 Centrifugal reaction

According to Newton’s third law of motion, for every action there
is an equal and opposite reaction. The equal and opposite reaction to the
centripetal force is called centrifugal reaction, because it tends to take the
body away from the centre.  In fact, the centrifugal reaction is a pseudo
or apparent force, acts or assumed to act because of the acceleration
of the rotating body.

In the case of a stone tied to the end of the string is whirled in
a circular path, not only the stone is acted upon by a force (centripetal
force) along the string towards the centre, but the stone also exerts an
equal and opposite force on the hand (centrifugal force) away from the
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centre, along the string. On releasing the string, the tension disappears
and the stone flies off tangentially to the circular path along a straight
line as enuciated by Newton’s first law of motion.

When a car is turning round a corner, the person sitting inside
the car experiences an outward force.  It is because of the fact that no
centripetal force is supplied by the person. Therefore, to avoid the
outward force, the person should exert an inward force.

2.6.9 Applications of centripetal forces

(i) Motion in a vertical circle

Let us consider a body of mass  m
tied to one end of the string which is
fixed at O and it is moving in a vertical
circle of radius r about the point O as
shown in Fig. 2.41. The motion is circular
but is not uniform, since the body speeds
up while coming down and slows down
while going up.

Suppose the body is at P at any
instant of time t, the tension T in the
string always acts towards 0.

The weight mg of the body at P is
resolved along the string as mg cos θ
which acts outwards and mg sin θ,
perpendicular to the string.

When the body is at P, the following
forces acts on it along the string.

(i) mg cos θ acts along OP (outwards)

(ii) tension T acts along PO (inwards)

Net force on the body at P acting along PO = T – mg cos θ

This must provide the necessary centripetal force 
2mv

r
.

Therefore, T – mg cos θ = 
2mv

r

T = mg cos θ + 
2mv

r
...(1)

mvA
2

r

mg

TA

O

TB

mg

A

B

X
T

mv2

r

mg

mg cos
mg s

in

P

mvB
2

r

Fig. 2.41 Motion of a body
in a vertical circle
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At the lowest point A of the path, θ = 0o, cos 0o = 1 then

from equation  (1),  TA = mg + 
2
Amv

r
...(2)

At the highest point of the path, i.e. at B, θ = 180o. Hence
cos 180o= −1

∴ from equation (1), TB = – mg + 
2
Bmv

r
 = 

2
Bmv

r
 – mg

TB = m 
2

 - Bv
g

r

⎛ ⎞
⎜ ⎟
⎝ ⎠

...(3)

If TB > 0, then the string remains taut while if TB < 0, the string
slackens and it becomes impossible to complete the motion in a vertical
circle.

If the velocity vB is decreased, the tension TB in the string also
decreases, and becomes zero at a certain minimum value of the speed
called critical velocity.  Let vC be the minimum value of the velocity,
then at vB = vC , TB = 0.  Therefore from equation (3),

2
Cmv

r
 – mg = 0 (or)  2

Cv  = rg

(i.e)  vC = rg ...(4)

If the velocity of the body at the highest point B is below this
critical velocity, the string becomes slack and the body falls downwards
instead of moving along the circular path.  In order to ensure that the
velocity vB at the top is not lesser than the critical velocity rg , the
minimum velocity vA at the lowest point should be in such a way that
vB should be rg . (i.e) the motion in a vertical circle is possible only
if vB > rg .

The velocity vA of the body at the bottom point A can be obtained
by using law of conservation of energy.  When the stone rises from A
to B, i.e through a height 2r, its potential energy increases by an
amount equal to the decrease in kinetic energy.  Thus,

(Potential energy at A + Kinetic energy at A ) =
(Potential energy at B + Kinetic energy at B)

(i.e.) 0 +  
1

2
 m 2

Av  = mg (2r) +
1

2
 m 2

Bv

Dividing by 
m

2
, 2

Av  = 2
Bv + 4gr ...(5)
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But from equation (4), 2
Bv  = gr ( )B Cv v=∵

∴ Equation (5) becomes, 2
Av  = gr + 4gr (or) vA = gr5 ...(6)

Substituting vA
  from equation (6) in (2),

TA = mg + 
(5 )m gr
r

 = mg + 5mg = 6 mg ...(7)

While rotating in a vertical circle, the stone must have a velocity
greater than 5gr  or tension greater than 6mg at the lowest point, so
that its velocity at the top is greater than gr or tension > 0.

An aeroplane while looping a vertical circle must have a velocity
greater than 5gr at the lowest point, so that its velocity at the top is
greater than gr. In that case, pilot sitting in the aeroplane will not fall.

(ii) Motion on a level circular road

When a vehicle goes round a level
curved path, it should be acted upon by
a centripetal force. While negotiating the
curved path, the wheels of the car have
a tendency to leave the curved path and
regain the straight-line path. Frictional
force between the tyres and the road
opposes this tendency of the wheels. This
frictional force, therefore, acts towards the
centre of the circular path and provides
the necessary centripetal force.

In Fig. 2.42, weight of the vehicle mg acts vertically downwards.
R1, R2 are the forces of normal reaction of the road on the wheels. As
the road is level (horizontal), R1, R2 act vertically upwards. Obviously,

R1 + R2 = mg ...(1)

Let µ * be the coefficient of friction between the tyres and the

mg

F1 F2

R1 R2

Fig. 2.42 Vehicle on a
level circular road

*Friction : Whenever a body slides over another body, a force  comes into play
between the two surfaces in contact and this force is known as frictional force.
The frictional force always acts in the opposite direction to that of the motion of
the body. The frictional force depends on the normal reaction.  (Normal reaction is
a perpendicular reactional force that acts on the body at the point of contact due
to its own weight) (i.e) Frictional force α normal reaction F α R (or) F = µR where µ
is a proportionality constant and is known as the coefficient of friction. The
coefficient of friction depends on the nature of the surface.
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road, F1 and F2  be the forces of friction between the tyres and the road,
directed towards the centre of the curved path.

∴ F1 = µR1 and F2 = µR2 ...(2)

If v is velocity of the vehicle while negotiating the curve, the

centripetal force required = 
2mv

r
.

As this force is provided only by the force of friction.

∴ 
2

1 2( )
mv

F F
r

≤ +

< (µ R1 + µR2)

< µ (R1 + R2)

∴ 
2mv

r
< µ mg   ( )1 2R R mg+ =∵

v2 < µ rg

v rgµ≤

Hence the maximum velocity with which a car can go round a
level curve without skidding is v = rgµ . The value of v depends on
radius r of the curve and coefficient of friction µ between the tyres and
the road.

(iii) Banking of curved roads and tracks

When a car goes round a level curve, the force of friction between
the tyres and the road provides the necessary centripetal force.  If the
frictional force, which acts as centripetal force and keeps the body
moving along the circular road  is not enough to provide the necessary
centripetal force, the car will skid.  In order to avoid skidding, while
going round a curved path the outer edge of the road is raised above
the level of the inner edge.  This is known as banking of curved roads
or tracks.

Bending of a cyclist round a curve

A cyclist has to bend slightly towards the centre of the circular
track in order to take a safe turn without slipping.

Fig. 2.43 shows a cyclist taking a turn towards his right on a
circular path of radius r.  Let m be the mass of the cyclist along with
the bicycle and v, the velocity.  When the cyclist negotiates the curve,
he bends inwards from the vertical, by an angle θ. Let R be the reaction
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of the ground on the cyclist. The reaction R may be resolved into two
components: (i) the component R sin θ, acting towards the centre of the
curve  providing necessary centripetal force for circular motion and
(ii) the component R cos θ, balancing the weight of the cyclist along
with the bicycle.

(i.e) R sin θ = 
2mv

r
...(1)

and R cos θ = mg ...(2)

Dividing equation (1) by (2),

2

 sin θ
 = 

 cos θ

mv
R r
R mg

  tan θ = 
2v

rg ...(3)

Thus for less bending of cyclist  (i.e for θ to
be small), the velocity v should be smaller and
radius r should be larger.

For a banked road (Fig. 2.44), let h be the
elevation of the outer edge of the road above the

inner edge and l be the width of the road then,

sin θ = 
h

l
...(4)

F

R

mg

R sin θG

FA

θ

mg

R cos θ

θ

R

Fig 2.43 Bending of a cyclist in a curved road

h
l

Fig 2.44 Banked road
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For small values of θ, sin θ = tan θ

Therefore from equations (3) and (4)

tan θ = 
2

 = 
h v
l rg ...(5)

Obviously, a road or track can be banked correctly only for a
particular speed of the vehicle.  Therefore, the driver must drive with
a particular speed at the circular turn.  If the speed is higher than the
desired value, the vehicle tends to slip outward at the turn but then
the frictional force acts inwards and provides the additional centripetal
force. Similarly, if the speed of the vehicle is lower than the desired
speed it tends to slip inward at the turn but now the frictional force
acts outwards and reduces the centripetal force.

Condition for skidding

When the centripetal force is greater than the frictional force,
skidding occurs. If µ is the coefficient of friction between the road and
tyre, then the limiting friction (frictional force) is f = µR where normal
reaction R = mg

∴f = µ (mg)

Thus for skidding,

Centripetal force > Frictional force
2mv

r
 > µ (mg)

2v

rg    > µ

But
2v

rg    = tan θ

     ∴ tan θ > µ

(i.e) when the tangent of the angle of banking is greater than the
coefficient of friction, skidding occurs.

2.7 Work

The terms work and energy are quite familiar to us and we use
them in various contexts. In everyday life, the term work is used to
refer to any form of activity that requires the exertion of mental or
muscular efforts. In physics, work is said to be done by a force or
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against the direction of the force, when the point of application of the
force moves towards or against the direction of the force. If no
displacement takes place, no work is said to be done. Therefore for
work to be done, two essential conditions should be satisfied:

(i)  a force must be exerted

(ii) the force must cause a  motion or displacement

If a particle is subjected to a force F and if the particle is displaced
by an infinitesimal displacement ds , the work done dw by the force is
dw = 

→
F . 

→
ds.

The magnitude of the above dot product
is F cos θ ds.

(i.e) dw = F ds cos θ = (F cos θ) ds where
θ = angle between 

→
F and  

→
ds. (Fig. 2.45)

Thus, the work done by a force during an
infinitesimal displacement is equal to the product
of the displacement ds and the component of
the force F cos θ  in the direction of the
displacement.

Work is a scalar quantity and has magnitude but no direction.

The work done by a force when the body is displaced from position
P to P1 can be obtained by integrating the above equation,

W = ∫ dw = ∫ (F cos θ ) ds

Work done by a constant force
When the force F acting on a body

has a constant magnitude and acts at a
constant angle θ from the straight line
path of the particle as shown as Fig.
2.46, then,

W = F cos θ 
2

1

s

s
∫ ds = F cos θ(s2 – s1)

The graphical representation of work done by a constant force is
shown in Fig 2.47.

W = F cos θ (s2–s1) = area ABCD

P1P

F

ds
Fig. 2.45 Work done

by a force

s1 ds

o

F

x

s2

Fig. 2.46 Work done by a
constant force
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Work done by a variable force

If the body is subjected to a varying force F and displaced along
X axis as shown in Fig 2.48, work done

dw = F cos θ. ds = area of the small element abcd.

∴ The total work done when the body moves from s1 to  s2 is

 Σ dw= W = area under the curve P1P2 = area S1 P1 P2 S2

The unit of work is joule. One joule is defined as the work done
by a force of one newton when its point of application moves by one
metre along the line of action of the force.

Special cases

(i) When θ = 0 , the force F is in the same direction as the
displacement s.

∴ Work done, W = F s cos 0 = F s

(ii) When θ = 90°, the force under consideration is normal to the
direction of motion.

∴Work done, W = F s cos 90° = 0

For example, if a body moves along a frictionless horizontal surface,
its weight and the reaction of the surface, both normal to the surface, do
no work.  Similarly, when a stone tied to a string is whirled around in a
circle with uniform speed, the centripetal force continuously changes the
direction of motion. Since this force is always normal to the direction of
motion of the object, it does no work.

(iii) When θ = 180°, the force F is in the opposite direction to the
displacement.

s
X

Y

O

F
 c

os

A

B C

D

s1 s2

Fig.2.47 Graphical representation
of work done by a constant force

Fig 2.48 Work done by a
variable force
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∴ Work done (W) = F s cos 180°= −F s

(eg.) The frictional force that slows the sliding of an object over
a surface does a negative work.

A positive work can be defined as the work done by a force and
a negative work as the work done against a force.

2.8 Energy

Energy can be defined as the capacity to do work.  Energy can
manifest itself in many forms like mechanical energy, thermal energy,
electric energy, chemical energy, light energy, nuclear energy, etc.

The energy possessed by a body due to its position or due to its
motion is called mechanical energy.

The mechanical energy of a body consists of potential energy and
kinetic energy.

2.8.1 Potential energy

The potential energy of a body is the energy stored in the body by
virtue of its position or the state of strain. Hence water stored in a
reservoir, a wound spring, compressed air, stretched rubber chord, etc,
possess potential energy.

Potential energy is given by the amount of work done by the force
acting on the body, when the body moves from its given position to
some other position.

Expression for the potential energy

Let us consider a body of mass m, which is at
rest at a height h above the ground as shown in
Fig 2.49.  The work done in raising the body from the
ground to the height h is stored in the body as its
potential energy and when the body falls to the ground,
the same amount of work can be got back from it.
Now, in order to lift the body vertically up, a force mg
equal to the weight of the body should be applied.

When the body is taken vertically up through a height h, then
work done,  W = Force × displacement

∴ W = mg × h
This work done is stored as potential energy in the body

∴ EP = mgh

mg h

Fig. 2.49
Potential energy
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2.8.2  Kinetic energy

The kinetic energy of a body is the energy possessed by the body
by virtue of its motion. It is measured by the amount of work that the
body can perform against the impressed forces before it comes to rest.
A falling body, a bullet fired from a rifle, a swinging pendulum, etc.
possess kinetic energy.

A body is capable of doing work if it moves, but in the process
of doing work its velocity gradually decreases.  The amount of work that
can be done depends both on the magnitude of the velocity and the
mass of the body.  A heavy bullet will penetrate a wooden plank deeper
than a light bullet of equal size moving with equal velocity.

Expression for Kinetic energy

Let us consider a body of mass m moving with a velocity v in a
straightline as shown in Fig. 2.50. Suppose that it is acted upon by a
constant force F resisting its motion, which produces retardation a
(decrease in acceleration is known as retardation). Then

F = mass × retardation = – ma ...(1)

Let dx be the displacement of the
body before it comes to rest.

But the retardation is

dv dv dx dv
a  =     =    ×    =    ×  v

dt dx dt dx
 ...(2)

where 
dx

dt
 = v is the  velocity of the body

Substituting equation (2) in (1), F = – mv 
dv

dx
...(3)

Hence the work done in bringing the body to rest is given by,

W = .F dx∫  = 
0

. .
v

dv
mv dx

dx
− ∫  = 

0

v
m vdv− ∫ ...(4)

W = –m 

02

2
v

v⎡ ⎤
⎢ ⎥
⎣ ⎦

= 
1
2

 mv 2

This work done is equal to kinetic energy of the body.

s

v
F

Fig. 2.50 Kinetic energy
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∴ Kinetic energy Ek = 
1
2

mv2

2.8.3 Principle of work and energy  (work – energy theorem)

Statement

The work done by a force acting on the body during its displacement
is equal to the change in the kinetic energy of the body during that
displacement.

Proof

Let us consider a body of mass m acted upon by a force F and
moving with a velocity v along a path as shown in Fig. 2.51. At any
instant, let P be the position of the body
from the origin O. Let θ be the  angle made
by the direction of the force with the
tangential line drawn at P.

The force F can be resolved into two
rectangular components :

(i) Ft = F cos θ , tangentially and

(ii) Fn = F sin θ , normally at P.

But Ft = mat

...(1)

where at is the acceleration of the body in
the tangential direction

∴ F cos θ = mat ...(2)

But at = 
dv
dt

...(3)

∴ substituting equation (3) in (2),

F cos θ = m 
dv
dt

 = m 
dv

ds
.
ds
dt

...(4)

F cosθ ds =  mv dv ...(5)
where ds is the small displacement.

Let v1 and v2 be the velocities of the body at the positions 1 and 2
and the corresponding distances be s1 and s2.

Integrating the equation (5),
2 2

1 1

(  θ)  =  
s v

s v
F cos ds mv dv∫ ∫ ...(6)

P
F

Fn

Ft

s1

s2
Y

O

1

2

X

Fig. 2.51
Work–energy theorem
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But 
2

1

1 2(  θ)  = W
s

s
F cos ds →∫ ...(7)

where W1→2 is the work done by the force

From equation (6) and (7),

2

1

1 2  
v

v
W mv dv→ = ∫

= m 
1

2 2 22
2 1=  - 

2 2 2

v

v

mv mvv⎡ ⎤
⎢ ⎥
⎣ ⎦

...(8)

Therefore work done

= final kinetic energy − initial kinetic energy

= change in kinetic energy

This is known as Work–energy theorem.

2.8.4 Conservative forces and non-conservative forces

Conservative forces

If the work done by a force in moving a body between two positions
is independent of the path followed by the body, then such a force is
called as a conservative force.

Examples : force due to gravity, spring force and elastic force.

The work done by the conservative forces depends only
upon the initial and final position of the body.

(i.e.)  ∫v
→
F . 

→
dr = 0

The work done by a conservative force around a closed path is
zero.

Non conservative forces

Non-conservative force is the force, which can perform some
resultant work along an arbitrary closed path of its point of application.

The work done by the non-conservative force depends upon the
path of the displacement of the body
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(i.e.) ∫v
→
F . 

→
dr  0≠

(e.g) Frictional force, viscous force, etc.

2.8.5 Law of conservation of energy

The law states that, if a body or system of bodies is in motion under a
conservative system of forces, the sum of its kinetic energy and potential
energy is constant.

Explanation

From the principle of work and energy,

Work done = change in the kinetic energy

( i.e) W1→2 = Ek2 – Ek1 ...(1)

If a body moves under the action of a conservative force, work
done is stored as potential energy.

W1→2 = – (EP2 – EP1) ...(2)

Work done is equal to negative change of potential energy.
Combining the equation (1) and (2),

Ek2 – Ek1 = –(EP2 – EP1) (or)  EP1 + Ek1 = EP2 + Ek2 ...(3)

which means that the sum of the potential energy and kinetic energy of
a system of particles remains constant during the motion under the action
of the conservative forces.

2.8.6 Power

It is defined as the rate at which work is done.

power = 
  work done

time

Its unit is watt and dimensional formula is ML2 T–3.

Power is said to be one watt, when one joule of work is said to be
done in one second.

If dw is the work done during an interval of time dt then,

power = 
wd

dt
...(1)

But dw = (F cos θ) ds ...(2)
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where θ is the  angle between the direction of the force and displacement.
F cos θ is component of the force in the direction of the small
displacement ds.

Substituting equation (2) in (1) power = 
(  cos  θ) F ds

dt

=( cosθ)   (  cos  θ) 
ds

F F v
dt

=     
ds

v
dt

⎛ ⎞=⎜ ⎟
⎝ ⎠
∵

∴ power = (F cos θ) v

If F and v are in the same direction, then

power = F v cos 0 = F v = Force × velocity

It is also represented by the dot product of F and v.

(i.e) P =  
→
F .  

→
v

2.9 Collisions

A collision between two particles is said to occur if they physically
strike against each other or if the path of the motion of one is influenced
by the other. In physics, the term collision does not necessarily mean
that a particle actually strikes. In fact, two particles may not even
touch each other and yet they are said to collide if one particle influences
the motion of the other.

When two bodies collide, each body exerts a force on the other.
The two forces are exerted simultaneously for an equal but short interval
of time. According to Newton’s third law of motion, each body exerts an
equal and opposite force on the other at each instant of collision.
During a collision, the two fundamental conservation laws namely, the
law of conservation of momentum and that of energy are obeyed and
these laws can be used to determine the velocities of the bodies after
collision.

Collisions are divided into two types : (i) elastic collision and
(ii) inelastic collision

2.9.1 Elastic collision

If the kinetic energy of the system is conserved during a collision,
it is called an elastic collision. (i.e) The total kinetic energy before collision
and after collision remains unchanged. The collision between subatomic
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particles is generally elastic. The collision between two steel or glass
balls is nearly elastic. In elastic collision, the linear momentum and
kinetic energy of the system are conserved.

Elastic collision in one dimension

If the two bodies after collision move in a straight line, the collision
is said to be of one dimension.

Consider two bodies A and B of masses m1 and m2 moving along
the same straight line in the same direction with velocities u1 and u2

respectively as shown in Fig. 2.54. Let us assume that u1 is greater than
u2. The bodies A and B suffer
a head on collision when
they strike and continue to
move along the same straight
line with velocities v1 and v2

respectively.

From the law of
conservation of linear
momentum,

Total momentum before collision  =
Total momentum after collision

m1u1 + m2u2  = m1v1 + m2v2 ...(1)

Since the kinetic energy of the bodies is also conserved during the
collision

Total kinetic energy before collision  =
Total kinetic energy after collision

2 2 2 2
1 1 2 2 1 1 2 2

1 1 1 1
2 2 2 2

m u m u m v m v+ = + ...(2)

2 2 2 2
1 1 1 1 2 2 2 2m u m v m v m u− = − ...(3)

From equation (1) 1 1 1 2 2 2( ) ( )m u v m v u− = − ...(4)

Dividing equation (3) by (4),
2 22 2
2 21 1

1 1 2 2

v uu v

u v v u

−−
=

− − (or) u1 + v1 =  u2 + v2

(u1 – u2) =  (v2 – v1) ...(5)

Fig 2.54 Elastic collision in one dimension

m1

u1 u2

A

m2

B

v1
v2A B
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Equation (5) shows that in an elastic one-dimensional collision,
the relative velocity with which the two bodies approach each other
before collision is equal to the relative velocity with which they recede
from each other after collision.

From equation (5), v2 = u1 – u2 + v1 ...(6)

Substituting v2 in equation (4),

m1 ( u1– v1) = m2 ( v1 – u2 + u1 – u2)

m1u1 – m1v1 = m2u1 – 2m2u2 + m2v1

(m1 + m2)v1 = m1u1 – m2u1 + 2m2u2

(m1 + m2)v1 = u1  (m1 –  m2) + 2m2u2

v1 = u1 
1 2 2 2

1 2 1 2

2
  

( )

m m m u

m m m m

⎡ ⎤−
+⎢ ⎥

+ +⎣ ⎦
 ...(7)

Similarly, v2 = 
2 2 11 1

1 2 1 2

( )2

( ) ( )

u m mm u

m m m m

−
+

+ + ...(8)

Special cases

Case ( i) : If the masses of colliding bodies are equal, i.e. m1 = m2

v1 = u2 and v2 = u1 ...(9)

After head on elastic collision, the velocities of the colliding bodies
are mutually interchanged.

Case (ii) : If the particle B is initially at rest, (i.e) u2 = 0 then

v1 = 
( )
( )

 A B
A

A B

m m
u

m m

−
+ ...(10)

and v2 = ( )
2 A

A B

m

m m+
u1 ...(11)

2.9.2 Inelastic collision

During a collision between two bodies if there is a loss of kinetic
energy, then the collision is said to be an inelastic collision. Since there
is always some loss of kinetic energy in any collision, collisions are
generally inelastic. In inelastic collision, the linear momentum is
conserved but the energy is not conserved. If two bodies stick together,
after colliding, the collision is perfectly inelastic but it is a special case
of inelastic collision called plastic collision. (eg) a bullet striking a block
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of wood and being embedded in it. The loss of kinetic energy usually
results in the form of heat or sound energy.

Let us consider a simple situation in which the inelastic head on
collision between two bodies of masses mA and mB takes place. Let the
colliding bodies be initially move with velocities u1 and u2. After collision
both bodies stick together and moves with common velocity v.

Total momentum of the system before collision = mAu1 + mBu2

Total momentum of the system after collision =
mass of the composite body × common velocity = (mA+ mB ) v

By law of conservation of momentum

mAu1 + mBu2 = (mA+ mB) v  (or) v = 
A A B B

A B

m u m u

m m

+
+

Thus, knowing the masses of the two bodies and their velocities
before collision, the common velocity of the system after collision can
be calculated.

If the second particle is initially at rest i.e. u2 = 0 then

v = ( )
A A

A B

m u

m m+

kinetic energy of the system before collision

EK1 = 21
2 A Am u  [ ∵ u2 = 0]

and kinetic energy of the system after collision

EK2 = ( ) 21
2 A Bm m v+

Hence,  
2

1

K

K

E

E = 
   

   

kinetic energy after collision
kinetic energy before collision

= 
2

2

( )A B

A A

m m v

m u

+

Substituting the value of v in the above equation,

2

1

K A

K A B

E m

E m m
=

+   (or)  
2

1

K

K

E

E  < 1

It is clear from the above equation that in a perfectly inelastic
collision, the kinetic energy after impact is less than the kinetic energy
before impact. The loss in kinetic energy may appear as heat energy.
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Solved Problems

2.1 The driver of a car travelling at 72 kmph observes the light
300 m ahead of him turning red. The traffic light is timed to
remain red for 20 s before it turns green. If the motorist
wishes to passes the light without stopping to wait for it to
turn green, determine (i) the required uniform acceleration of
the car (ii) the speed with which the motorist crosses the
traffic light.

Data :  u = 72 kmph = 72 × 
5

18
 m s – 1  = 20 m s –1 ; S= 300 m ;

t = 20 s ; a = ? ;   v = ?

Solution : i) s = ut + 
1
2

 at2

300 = (20 × 20 ) + 
1
2

 a (20)2

a = – 0.5 m s –2

ii)  v = u + at = 20 – 0.5 × 20 = 10 m s–1

2.2 A stone is dropped from the top of the tower 50 m high. At the
same time another stone is thrown up from the foot of the
tower with a velocity of 25 m s– 1 . At what distance from the
top and after how much time the stones cross each other?

Data: Height of the tower = 50 m u1 = 0 ; u2 = 25 m s – 1

Let s1  and s2 be the distances travelled by the two stones at the
time of crossing (t). Therefore s1+s2 = 50m

s1 = ? ; t = ?

Solution : For I stone : s1 = 
1
2

 g t2

For  II stone : s2 = u2t – 
1
2

 g t2

s2 = 25 t – 
1
2

 g t2

Therefore, s1+s2 = 50 = 
1
2

 gt2 +25 t – 
1
2

 gt2

t = 2 seconds

s1 = 
1
2

 gt2 = 
1
2

 (9.8) (2)2 = 19.6 m
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2.3 A boy throws a ball so that it may just clear a wall 3.6m high.
The boy is at a distance of 4.8 m from the wall. The ball was
found to hit the ground at a distance of 3.6m on the other side
of the wall. Find the least velocity with which the ball can be
thrown.

Data : Range of the ball  = 4.8 + 3.6 =8.4m

Height of the wall = 3.6m
 u = ? ;  θ =?

Solution : The top of the wall AC must lie on the path of the
projectile.

The equation of the projectile is 
θ

θ
22

2

cosu2

gx
tanxy −=  ...(1)

The point C (x = 4.8m, y = 3.6m ) lies on the trajectory.

Substituting the known values in (1),

θ
θ

22

2

cosu2

)8.4(g
tan8.46.3

×
−= ...(2)

The range of the projectile is 4.8
g

2sinu
R

2
==

θ
...(3)

From (3), θ2sin

4.8

g

u2
= ...(4)

Substituting (4) in (2),

)4.8(

2sin

cos2

)8.4(
tan)8.4(6.3

2

2 θ

θ
θ ×−=
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)4.8(

cossin2

cos2

)8.4(
tan)8.4(6.3

2

2 θθ

θ
θ ×−=

θθ tan)7429.2(tan)8.4(6.3 −=

θtan)0571.2(6.3 =

[ ] '156075.1tan

7500.1
0571.2

6.3
tan

1 °==

==

−θ

θ

Substituting the value of  θ in (4 ),

5399.95
)'1560(2sin

8.94.8

2sin

g4.8
u2 =

°
×

=
×

=
θ

u =9.7745 m s-1

2.4 Prove that for a given velocity of projection, the horizontal
range is same for two angles of projection α and (90o –  α).

The horizontal range is given by,
g

2sin2u
R

θ
= ...(1)

When θ = α, 

g

2sinu
R

2

1
α

=  ...(2)

When θ = (90o – α ),

[ ]
g

90cos()90sin(2u

g

)90(2sinu
R

22

2
ααα −−

=
−

=  ...(3)

But αααα sin)90cos(;cos)90sin( =−=−

g

2sinu

g

)cossin2(u
R

22

2
ααα

==

...(4)

From (2) and (4), it is seen that at both angles α and (90 – α ), the
horizontal range remains the same.

2.5 The pilot of an aeroplane flying horizontally at a height of
2000 m with a constant speed of 540 kmph wishes to hit a
target on the ground. At what distance from the target should
release the bomb to hit the target?

o o o

o o
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Data : Initial velocity of the bomb in the horizontal is the same
as that of  the air plane.

Initial velocity of the bomb in the horizontal

direction = 540 kmph = 
5

540
18

×  m s–1 = 150 m s–1

Initial velocity in the vertical direction (u) = 0 ;  vertical distance
(s) = 2000 m ; time of flight t = ?

Solution : From equation of motion,

21
2

s ut at= +

Substituting the known values,

2t8.9
2

1
t02000 ××+×=

2t9.42000 = (or)

t   = 
2000

 = 20.20 
4.9

s

∴ horizontal range = horizontal velocity × time of flight

= 150 × 20.20 = 3030 m

2.6 Two equal forces are acting at a point with an angle of  60°
between them. If the resultant force is equal to 20√3 N, find
the magnitude of each force.

Data : Angle between the forces, θ = 60° ; Resultant R = 20√3 N

P = Q = P (say) =  ?

Solution : R = 2 2  2  cosθP Q PQ+ +

= + +2 2  2 .  cos60oP P P P

= 2 2 1
2  2  . 

2
P P+ = P 3

20 3 = P 3

P = 20 N

R BTarget
X

h
=
2
0
0
0
 m

u

A
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2.7 If two forces F1 = 20 kN and F2 = 15 kN act on a particle as
shown in figure, find their resultant by triangle law.

Data : F1 = 20 kN; F2 = 15 k N; R=?

Solution : Using law of cosines,

 R2 = P2 + Q2 - 2PQ cos (180 - θ)

 R2 = 202 + 152 - 2 (20) (15) cos 110°

∴  R = 28.813 kN.

Using law of sines,

sin  110
R

= 
15

sin  α

∴         α    = 29.3°

2.8 Two forces act at a point in directions inclined to each other at
120°. If the bigger force is 5 kg wt and their resultant is at
right angles to the smaller force, find the resultant and the
smaller force.

Data : Bigger force = 5 kg wt

Angle made by the resultant with the smaller force = 90°

Resultant  = ? Smaller force = ?

Solution : Let the forces P and Q are acting along OA and OD
where ∠AOD =120°

Complete the parallelogram OACD and join OC. OC therefore
which represents the resultant which is perpendicular to OA.

In ∆OAC
∠OCA = ∠COD=30°
∠AOC = 90°

Therefore ∠OAC = 60°

(i.e)  
sin30 sin90 sin60

P Q R
= =

Since Q = 5 kg. wt.

P = 
5 sin  30
sin  90

= 2.5 kg  wt

R = 
5 sin  60
sin  90

o

o = 
5 3

2
 kg wt

 

15

 

70°
 

20  

 

PO

1200

A

Q
R

CD
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2.9 Determine analytically the magnitude and direction of the
resultant of the following four forces acting at a point.

(i) 10 kN pull N 30° E; (ii) 20 kN push S 45° W;

(iii) 5 kN push N 60° W; (iv) 15 kN push S 60° E.

Data : F1 = 10 kN ; 

F2 = 20 kN ; 

F3 = 5 kN ;

F4 = 15 kN ;

R = ? ; α = ?

Solution : The various forces
acting at a point are shown in
figure.

Resolving the forces
horizontally, we get

ΣFx  = 10 sin 30° + 5 sin 60° + 20 sin 45° - 15 sin 60°

= 10.48 k N

Similarly, resolving forces vertically, we get

ΣFy = 10 cos 30° - 5 cos 60° +  20 cos 45° + 15 cos 60°

= 27.8 k N

Resultant R = 2 2 ( )  + ( )x yF F∑ ∑

= 2 2(10.48)  + (27.8)

= 29.7 kN

tan α = 
27.8

10.48
y

x

F

F

Σ
=

Σ = 2.65

α = 69.34o

2.10 A machine weighing 1500 N is supported by two chains attached
to some point on the machine. One of these ropes goes to a
nail in the wall and is inclined at 30° to the horizontal and

60° 30°

60°45°

15 kN

10 kN

20 kN

5 kN

N

E

S

W
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other goes to the hook in ceiling
and is inclined at 45° to the
horizontal. Find the tensions in
the two chains.

Data : W = 1500 N, Tensions
in the strings = ?

Solution : The machine is in
equilibrium under the following
forces :

(i) W ( weight of the machine) acting vertically down ;

(ii) Tension T1 in the chain OA;

(iii) Tension T2 in the chain OB.

Now applying Lami’s theorem at O, we get

2 31

sin  (90 45 ) sin  (90 30 ) sin  105o o o o o

T TT
= =

+ +

21 1500
sin  135 sin  120 sin  105o o o

TT
= =

T1 = 
1500 sin  135

sin  105

o

o

× = 1098.96 N

T2 = 
1500 sin  120

sin  105

o

o

×
 = 1346.11 N

2.11 The radius of curvature of  a railway line at a place when a
train is moving with a speed of 72 kmph is 1500 m. If the
distance between the rails is 1.54 m, find the elevation of the
outer rail above the inner rail so that there is no side pressure
on the rails.

Data : r = 1500 m ;  v = 72 kmph= 20 m s– 1 ;  l = 1.54 m ;  h = ?

Solution : tan θ  = 
2h v

l rg
=

Therefore  h = 
21.54 × (20)

 =  = 0.0419 m
1500 × 9.8

2lv
rg

W= 1500 N

B

Ceiling

A

T1

T2

105°

30° 45°O
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2.12 A truck of weight 2 tonnes is slipped from a train travelling at
9 kmph and comes to rest in 2 minutes.  Find the retarding
force on the truck.

Data : m = 2 tonne = 2  × 1000 kg = 2000 kg

v1 = 9 kmph = 9 × 
18

5
 =
2

5
 m s-1 ; v2 = 0

Solution : Let R newton be the retarding force.

By the momentum  - impulse theorem ,

( mv1 – mv2 ) = Rt  (or) m v1 – Rt = mv2

2000  × 
5
2

 – R × 120 = 2000 × 0 (or) 5000 – 120 R = 0

R = 41.67  N

2.13  A body of mass 2 kg initially at rest is moved by a horizontal
force of 0.5N on a smooth frictionless table.  Obtain the work
done by the force in 8 s and show that this is equal to change
in kinetic energy of the body.

Data : M =  2 kg ; F =  0.5 N ; t = 8 s ; W = ?

Solution : ∴  Acceleration produced (a) =  
0.5
2

F

m
=  = 0.25 m s–2

The velocity of the body after 8s = a × t  = 0.25 × 8 = 2 m s-1

The distance covered by the body in 8 s = S = ut + 
1
2  at2

  S= (0 × 8) + 1
2

(0.25) (8)2 = 8 m

∴  Work done by the force in 8 s =
Force × distance = 0.5 ×  8 = 4 J

Initial kinetic energy = 
1
2

 m ( 0) 2 = 0

Final kinetic energy = 
1
2  mv2 = 

1
2

 × 2 × (2) 2 = 4 J

∴ Change in kinetic energy = Final K.E. – Initial K.E = 4 – 0 = 4 J

The work done is equal to the change in kinetic energy of the
body.
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2.14 A body is thrown vertically up from the ground with a velocity
of 39.2 m s– 1 . At what height will its kinetic energy be reduced
to one – fourth of its original kinetic energy.

Data : v = 39.2 m s– 1 ; h = ?

Solution : When the body is thrown up, its velocity decreases

and hence potential energy increases.

Let h be the  height at which the potential energy is reduced to
one – fourth of its initial value.

(i.e) loss in kinetic energy = gain in potential energy

3
4

 × 
1
2

  m v2  = mg h

3
4

 × 
1
2

  (39.2)2 = 9.8 × h

h= 58.8 m

2.15 A 10 g bullet is fired from a rifle horizontally into a 5 kg block
of wood suspended by a string and the bullet gets embedded in
the block. The impact causes the block to swing to a height of
5 cm above its initial level. Calculate the initial velocity of the
bullet.

Data : Mass of the bullet = mA = 10 g = 0.01 kg

Mass of the wooden block = mB = 5 kg

Initial velocity of the bullet before impact = uA = ?

Initial velocity of the block before impact = uB = 0

Final velocity of the bullet and block = v

mB

uA

Bullet

5cm
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Solution : By law of conservation of linear momentum,

mAuA + mBuB = (mA + mB) v

(0.01)uA + (5 × 0) = (0.01 + 5) v

(or) v = 
0.01
5.01

⎛ ⎞
⎜ ⎟
⎝ ⎠

uA = 
501

Au
...(1)

Applying the law of conservation of mechanical energy,

KE of the combined mass = PE at the highest point

(or)
1
2

 (mA + mB) v2 = (mA + mB) gh ...(2)

From equation (1) and  (2),
2

2 2
(501)

Au
gh=  (or) uA  = 5 12.46 10 496.0  m s−× =
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Self evaluation
(The questions and problems given in this self evaluation are only samples.
In the same way any question and problem could be framed from the text
matter. Students must be prepared to answer any question and problem
from the text matter, not only from the self evaluation.)

2.1 A particle at rest starts moving in a horizontal straight line with
uniform acceleration.  The ratio of the distance covered during
the fourth and the third second is

(a) 
4
3

(b) 
26
9

(c) 
7
5

(d) 2

2.2 The distance travelled by a body, falling freely from rest in one,
two and three seconds are in the ratio

(a) 1 : 2 : 3 (b) 1 : 3 : 5

(c) 1 : 4 : 9 (d) 9 : 4 : 1

2.3 The displacement of the particle along a straight line at time t
is given by, x  =  a0  + a1 t  +a2 t

2 where a0,a1 and a2 are
constants. The acceleration of the particle is

(a) a0 (b) a1

(c) a2 (d) 2a2

2.4 The acceleration of a moving body can be found from:

(a) area under velocity-time graph

(b) area under distance-time graph

(c) slope of the velocity-time graph

(d) slope of the distance-time graph

2.5 Which of the following is a vector quantity?

(a) Distance (b) Temperature

(c) Mass (d) Momentum

2.6 An object is thrown along a direction inclined at an angle 45°
with the horizontal.  The horizontal range of the object is

(a) vertical height (b) twice the vertical height

(c) thrice the vertical height (d) four times the vertical height
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2.7 . Two bullets are fired at angle θ and (90 - θ) to the horizontal with
some speed. The ratio of their times of flight is

(a) 1:1 (b) tan θ :1

(c)1: tan θ (d) tan2 θ :1

2.8 A stone is dropped from the window of a train moving along a
horizontal straight track, the path of the stone as observed by an
observer on ground is

(a) Straight line (b) Parabola

(c) Circular (c) Hyperbola

2.9 A gun fires two bullets with same velocity at 60° and 30° with
horizontal.  The bullets strike at the same horizontal distance.
The ratio of maximum height for the two bullets is in the ratio

(a) 2  :  1 (b) 3  :  1

(c) 4  :  1 (d) 1  :  1

2.10 Newton’s first law of motion gives the concept of

(a) energy (b) work

(c) momentum (d) Inertia

2.11 Inertia of a body has direct dependence on

(a) Velocity (b) Mass

(c) Area (d) Volume

2.12 The working of a rocket is based on

(a) Newton’s first law of motion

(b) Newton’s second law of motion

(c) Newton’s third law of motion

(d) Newton’s first and second law

2.13 When three forces acting at a point are in equilibrium

(a) each force is equal to the vector sum of the other two forces.

(b) each force is greater than the sum of the other two forces.

(c) each force is greater than the difference of the other two
force.
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(d) each force is to product of the other two forces.

2.14 For a particle revolving in a circular path, the acceleration of the
particle is

(a) along the tangent

(b) along the radius

(c) along the circumference of the circle

(d) Zero

2.15 If a particle travels in a circle, covering equal angles in equal
times, its velocity vector

(a) changes in magnitude only

(b) remains constant

(c) changes in direction only

(d) changes both in magnitude and direction

2.16 A particle moves along a circular path under the action of a
force. The work done   by the force is

(a) positive and nonzero (b) Zero

(c) Negative and nonzero (d) None of the above

2.17 A cyclist of mass m is taking a circular turn of radius R on a
frictional level road with a velocity v. Inorder that the cyclist
does not skid,

(a) (mv2/2) > µmg (b) (mv2/r) > µmg

(c) (mv2/r) < µmg (d) (v/r) =  µg

2.18 If a force F is applied on a body and the body moves with
velocity v, the power will be

(a) F.v (b) F/v

(c) Fv2 (d) F/v2

2.19 For an elastic collision

(a) the kinetic energy first increases and then decreases

(b) final kinetic energy never remains constant

(c) final kinetic energy is less than the initial kinetic energy
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(d) initial kinetic energy is equal to the final kinetic energy

2.20 A bullet hits and gets embedded in a solid block resting on a
horizontal frictionless table. Which of the following is conserved?

(a) momentum and kinetic energy

(b) Kinetic energy alone

(c) Momentum alone

(d) Potential energy alone

2.21 Compute the (i) distance travelled and (ii) displacement made by
the student when he travels a distance of 4km eastwards and
then a further distance of 3 km northwards.

2.22 What is the (i) distance travelled and (ii) displacement produced
by a cyclist when he completes one revolution?

2.23 Differentiate between speed and velocity of a body.

2.24 What is meant by retardation?

2.25 What is the significance of velocity-time graph?

2.26 Derive the equations of motion for an uniformly accelerated body.

2.27 What are scalar and vector quantities?

2.28 How will you represent a vector quantity?

2.29 What is the magnitude and direction of the resultant of two
vectors acting along the same line in the same direction?

2.30 State: Parallelogram law of vectors and triangle law of vectors.

2.31 Obtain the expression for magnitude and direction of the resultant
of two vectors when they are inclined at an angle ‘θ’ with each
other.

2.32 State  Newton’s laws of motion.

2.33 Explain the different types of inertia with examples.

2.34 State and prove law of conservation of linear momentum.

2.35 Define  impulse of a force

2.36 Obtain an expression for centripetal acceleration.

2.37 What is centrifugal reaction?
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2.38 Obtain an expression for the critical velocity of a body revolving
in a vertical circle.

2.39 What is meant by banking of tracks?

2.40 Obtain an expression for the angle of lean when a cyclist takes a
curved path.

2.41 What are the two types of collision? Explain them.

2.42 Obtain the expressions for the velocities of the two bodies after
collision in the case of one dimensional motion.

2.43 Prove that in the case of one dimensional elastic collision between
two bodies of equal masses, they interchange their velocities
after collision.

Problems

2.44 Determine the initial velocity and acceleration of particle travelling
with uniform acceleration in a straight line if it travels 55 m in
the 8th  second and 85 m in the 13th second of its motion.

2.45 An aeroplane takes off at an angle of 450 to the horizontal. If the
vertical component of its velocity is 300 kmph, calculate its actual
velocity. What is the horizontal component of velocity?

2.46 A force is inclined at 60o to the horizontal . If the horizontal
component of force is 40 kg wt, calculate the vertical component.

2.47 A body is projected upwards with a velocity of 30 m s-1 at an
angle of 30° with the horizontal. Determine (a) the time of flight
(b) the range of the body and (c) the maximum height attained by
the body.

2.48 The horizontal range of a projectile is 4√3 times its maximum
height. Find the angle of projection.

2.49 A body is projected at such an angle that the horizontal range is
3 times the greatest height . Find the angle of projection.

2.50 An elevator is required to lift a body of mass 65 kg. Find the
acceleration of the elevator, which could cause a reaction of
800 N on the floor.

2.51 A body whose mass is 6 kg is acted on by a force which changes
its velocity from  3 m s-1  to 5 m s-1. Find the impulse of the



117

force.  If the force is acted for 2 seconds, find the force in
newton.

2.52 A cricket ball of mass 150 g moving at 36 m s-1 strikes a bat and
returns back along the same line at  21 m s-1 .  What is the
change in momentum produced?  If the bat remains in contact
with the ball for 1/20 s, what is the average force exerted in
newton.

2.53 Two forces of magnitude 12 N and 8 N are acting at a point. If
the angle between the two forces is 60°, determine the magnitude
of the resultant force?

2.54 The sum of two forces inclined to each other at an angle is
18 kg wt and their resultant which is perpendicular to the smaller
force is 12 kg wt Find the forces and the angle between them.

2.55 A weight of 20 kN supported by two cords, one 3 m long and the
other 4m long with points of support 5 m apart. Find the tensions
T1  and T2 in the cords.

2.56 The following forces act at a point

(i)  20 N inclined at 30o towards North of East

(ii)  25 N towards North

(iii) 30 N inclined at 45o towards North of West

(iv) 35 N inclined at 40o towards South of West.

Find the magnitude and direction of the resultant force.

2.57 Find the magnitude of the two forces such that it they are at
right angles, their resultant is 10  N. But if they act at 60o, their
resultant is 13  N.

2.58 At what angle must a railway track with a bend of radius 880 m
be banked for the safe running of a train at a velocity of
44 m s – 1 ?

2.59 A railway engine of mass 60 tonnes, is moving in an arc of
radius 200 m with a velocity of 36 kmph. Find the force exerted
on the rails towards the centre of the circle.

2.60 A horse pulling a cart exerts a steady horizontal pull of 300 N
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and walks at the rate of 4.5 kmph.  How much work is done by
the horse in 5 minutes?

2.61 A ball is thrown downward from a height of 30 m with a velocity
of 10 m s-1.  Determine the velocity with which the ball strikes
the ground by using law of conservation of energy.

2.62 What is the work done by a man in carrying a suitcase weighing
30 kg over his head, when he travels a distance of 10 m in
(i) vertical and (ii) horizontal directions?

2.63 Two masses of 2 kg and 5 kg are moving with equal kinetic
energies. Find the ratio of magnitudes of respective linear
momenta.

2.64 A man weighing 60 kg runs up a flight of stairs 3m high in 4 s.
Calculate the power developed by him.

2.65 A motor boat moves at a steady speed of 8 m s– 1 , If the water
resistance to the motion of the boat is 2000 N, calculate the
power of the engine.

2.66 Two blocks of mass 300 kg and 200 kg are moving toward each
other along a horizontal frictionless surface with velocities of 50
m s-1 and 100 m s-1 respectively. Find the final velocity of each
block if the collision is completely elastic.
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Answers

2.1 (c) 2.2 (c) 2.3 (d) 2.4 (c)

2.5 (d) 2.6 (d) 2.7 (b) 2.8 (b)

2.9 (b) 2.10 (d) 2.11 (b) 2.12 (c)

2.13 (a) 2.14 (b) 2.15 (c) 2.16 (b)

2.17 (c) 2.18 (a) 2.19 (d) 2.20 (c)

2.44 10 m s–1 ; 6 m s–2 2.45 424.26 kmph ; 300 kmph

2.46 69.28 kg wt 2.47 3.06s; 79.53 m ; 11.48 m

2.48 30o 2.49 53o7’

2.50 2.5 m s-2 2.51 12 N s ; 6 N

2.52 8.55 kg m s–1; 171 N 2.53 17.43 N

2.54 5 kg wt ; 13 kg wt ; 112o37′ 2.55 16 k N, 12 k N

2.56 45.6 N ; 132o 18’ 2.57 3 N ; 1 N

2.58 12o39′ 2.59 30 kN

2.60 1.125 × 105 J 2.61 26.23 m s–1

2.62 2940 J ; 0 2.63 0.6324

2.64 441 W 2.65 16000 W

2.66 – 70 m s–1 ; 80 m s–1
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3.1 Centre of mass

Every body is a collection of large number of tiny particles. In
translatory motion of a body, every particle experiences equal displacement
with time; therefore the motion of the whole body may be represented by
a particle.  But when the body rotates or vibrates during translatory
motion, then its motion can  be represented by a point on the body that
moves in the same way as that of a single particle subjected to the same
external forces would move.  A point in the system at which whole mass of
the body is supposed to be concentrated is called centre of mass of the
body. Therefore, if a system contains two or more particles, its translatory
motion can be described by the motion of the centre of mass of the system.

3.1.1Centre of mass of a two-particle system

Let us consider a system consisting of two particles of masses m1

and m2. P1 and P2 are their positions at time t and r1 and r2 are the
corresponding distances from the origin O as shown in Fig. 3.1. Then the
velocity and acceleration of the particles are,

v1 = 1dr

dt
...(1)

a1 = 
1dv

dt ...(2)

v2 = 2dr

dt
...(3)

a2 = 2dv

dt
...(4)

The particle at P1 experiences two forces :

(i) a force F12 due to the particle at P2 and

(ii) force F1e , the external force due to some
particles external to the system.

If F1 is the resultant of these two forces,

3. Dynamics of Rotational Motion

Fig 3.1 – Centre of mass

X

Y

P1

P2

r1 r2

F12
F21

O
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F1 = F12 + F1e ...(5)

Similarly, the net force F2 acting on the particle P2 is,

F2 = F21 + F2e ...(6)

where F21 is the force exerted by the particle at P1 on P2

By using Newton’s  second law of motion,

F1 = m1a1 ...(7)

and F2= m2a2 ...(8)

Adding equations (7)  and (8), m1a1 + m2a2 = F1 + F2

Substituting  F1 and F2 from (5) and (6)

m1a1 + m2a2 = F12 + F1e+ F21 + F2e

By Newton’s third law, the internal force F12 exerted by particle at
P2 on the particle at P1 is equal and opposite to F21, the force exerted by
particle at P1 on P2.

(i.e) F12  = - F21 ...(9)

       ∴ F = F1e+ F2e ...(10)

[ ]1 1 2 2m a m a F+ =∵

where  F  is the net external force acting on the system.

The total mass of the system is given by,

M = m1+m2 ...(11)

Let the net external force F acting on the system produces an
acceleration aCM called the acceleration of the centre of mass of the system

By Newton’s second law, for the system of two particles,

F = M aCM ...(12)

From (10) and (12), M aCM = m1a1+m2a2 ...(13)

Let RCM be the position vector of the centre of mass.

∴aCM = 
2

2

( )CMd R

dt
...(14)

From (13) and (14),

 
2

2
CMd R

dt
 = 

1⎛ ⎞
⎜ ⎟
⎝ ⎠M

 2

2 2
1 2

1 2 2

⎛ ⎞
+⎜ ⎟

⎝ ⎠

d r d r
m m

dt dt



122

2

2
CMd R

dt
 

2

1 1 2 22

1
( )

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

d
m r m r

M dt

∴ RCM     = ( )1 1 2 2

1
+m r m r

M

RCM = 
1 1 2 2

1 2

m r m r

m m

+
+ ...(15)

This equation gives  the position of the centre of mass of a system
comprising two particles of masses m1 and m2

If the masses are equal (m1 = m2), then the position vector of the
centre of mass is,

RCM = 1 2r +r

2
...(16)

which means that the centre of mass lies exactly in the middle of the line
joining the two masses.

3.1.2Centre of mass of a body consisting of n  particles

For a system consisting of n particles with masses m1, m2, m3 … mn

with position vectors r1, r2, r3…rn, the total mass of the system is,

M = m1 + m2 +m3 +………….+mn

The position vector RCM of the centre of mass with respect to origin
O is given by

RCM = 1 1 2 2 n n

1 2 n

m r +m r .....+m r

m +m .....+m
     = 1

1

=

=

∑

∑

n

i i
i

n

i
i

m r

m
 = 1=
∑
n

i i
i

m r

M

The x coordinate and y coordinate of the centre of mass of the system
are

x = 
1 1 2 2 n n

1 2 n

m x +m x +.....m x

m +m +.....m   and y = 
1 1 2 2 n n

1 2 n

m y + m y + .....m y

m + m + .....m

Example for motion of centre of mass

Let us consider the motion of the centre of mass of the Earth and
moon system (Fig 3.2). The moon moves round the Earth in a circular
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orbit and the Earth moves
round the Sun in an elliptical
orbit. It is more correct to say
that the Earth and the moon
both move in circular orbits
about their common centre of
mass in an elliptical orbit round
the Sun.

For the system consisting
of the Earth and the moon, their mutual gravitational attractions are the
internal forces in the system and Sun’s attraction on both the Earth and
moon are the external forces acting on the centre of mass of the system.

3.1.3Centre of gravity

A body may be considered to be made up of an indefinitely large
number of particles, each of which is attracted towards the centre of the
Earth by the force of gravity. These forces constitute a system of like parallel
forces. The resultant of these parallel forces known as the weight of the
body always acts through a point, which is fixed relative to the body,
whatever be the position of the body. This fixed point is called the centre
of gravity of the body.

The centre of gravity of a body is the point at which the resultant of
the weights of all the particles of the body acts, whatever may be the
orientation or position of the body provided that its size
and shape remain unaltered.

In the Fig. 3.3, W1,W2,W3….. are the weights
of the first, second, third, ... particles  in the body
respectively. If W is the resultant weight of all
the particles then the point at which W acts is
known as the centre of gravity. The total weight
of the body may be supposed to act at its centre
of gravity. Since the weights of the particles
constituting a body are practically proportional
to their masses when the body is outside the
Earth and near its surface, the centre of mass of
a body practically coincides with its centre of
gravity.

MoonSun

Centre of mass

Earth

Fig 3.2 Centre of mass of Earth –
moon system

Fig . 3.3 Centre of gravity
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3.1.4  Equilibrium of bodies and types of equilibrium

If a marble M is placed on a curved surface of a bowl S, it rolls down
and settles in equilibrium at the lowest point A (Fig. 3.4 a).  This equilibrium
position corresponds to minimum potential energy. If the marble is
disturbed and displaced to a point B, its energy increases When it is
released, the marble rolls back to A. Thus the marble at the position A is
said to be in stable equilibrium.

Suppose now that the bowl S is inverted and the marble is placed at
its top point, at A (Fig. 3.4b).  If the marble is displaced slightly to the
point C, its potential energy is lowered and tends to move further away
from the equilibrium position to one of lowest energy. Thus the marble is
said to be in unstable equilibrium.

Suppose now that the marble is
placed on a plane surface  (Fig. 3.4c). If
it is displaced slightly, its potential
energy does not change. Here the marble
is said to be in neutral equilibrium.

Equilibrium is thus stable, unstable
or neutral according to whether the
potential energy is minimum, maximum
or constant.

We may also characterize the
stability of a mechanical system by
noting that when the system is disturbed
from its position of equilibrium, the
forces acting on the system may

(i) tend to bring back to its original
position if  potential energy  is a
minimum,  corresponding to stable
equilibrium.

(ii) tend to move it farther away if potential energy is maximum,
corresponding unstable equilibrium.

(iii) tend to move either way if potential energy  is a constant
corresponding to neutral equilibrium

Stable

Unstable

(a)

(b)

S

A

B

A
C

S

M

M

M

Neutral

A

(c)

Fig.3.4 Equilibrium of rigid bodies
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Consider three uniform bars shown in Fig. 3.5 a,b,c. Suppose each
bar is slightly displaced from its  position of equilibrium and then released.
For bar A, fixed at its top end, its centre of gravity G rises to G1 on being
displaced, then the bar returns back to its original position on being
released, so that the equilibrium is stable.

For bar B, whose fixed end is at its bottom, its centre of gravity G is
lowered to G2 on being displaced, then the bar B will keep moving away
from its original position on being released, and the equilibrium is said to
be unstable.

For bar C, whose fixed point is about its centre of gravity, the centre
of gravity remains at the same height on being displaced, the bar will
remain in its new position, on being released, and the equilibrium is said
to be neutral.

3.2 Rotational motion of rigid bodies

3.2.1 Rigid body

A rigid body is defined as that body which does not undergo any
change in shape or volume when external forces are applied on it.  When
forces are applied on a rigid body, the distance between any two particles
of the body will remain unchanged, however, large the forces may be.

Actually, no body is perfectly rigid. Every body can be deformed
more or less by the application of the external force. The solids, in which
the changes produced by external forces are negligibly small, are usually
considered as rigid body.

Fig 3.5 Types of equilibrium

W

A

W

B C

G
G1 G

G2 G

(a) Stable equilibrium (b) Unstable equilibrium (c) Neutral equilibrium
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3.2.2Rotational motion

When a body rotates about a fixed axis, its motion is known as
rotatory motion. A rigid body is said to have pure rotational motion, if every
particle of the body moves in a circle, the centre of which lies on a straight
line called the axis of rotation (Fig. 3.6). The axis of rotation may lie inside
the body or even outside the body. The particles lying
on the axis of rotation remains stationary.

The position of particles moving in a circular path
is conveniently described in terms of a radius vector r
and its angular displacement θ . Let us consider a rigid
body that rotates about a fixed axis XOX′ passing
through O and perpendicular to the plane of the paper
as shown in  Fig 3.7. Let the body rotate from the position
A to the position B. The different particles at P1,P2,P3.
…. in the rigid body covers unequal distances P1P1′, P2P2′,

P3P3′…. in the same interval of
time. Thus their linear
velocities are different. But in
the same time interval, they all rotate through
the same angle θ  and hence the angular velocity
is the same for the all the particles of the rigid
body. Thus, in the case of rotational motion,
different constituent particles have different linear
velocities but all of them have the same angular
velocity.

3.2.3 Equations of rotational motion

As in linear motion, for a body having
uniform angular acceleration, we shall derive the
equations of motion.

Let us consider a particle start rotating with angular velocity ω0 and
angular acceleration α. At any instant t, let ω  be the angular velocity of
the particle  and θ be the angular displacement produced by the particle.

Therefore change in angular velocity in time t = ω - ω0

But, angular acceleration  = 
change in angular velocity

time taken

Fig 3.6 Rotational
motion

Axis of rotation

Fig 3.7 Rotational
motion of a rigid body

A

B
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(i.e) α  = o

t

ω ω−
...(1)

ω  = ωο + αt ...(2)

The average  angular velocity  = 2
oω ω⎛ ⎞+

⎜ ⎟
⎝ ⎠

The total angular displacement

=  average angular velocity  × time taken

(i.e) θ = 2
oω ω⎛ ⎞+

⎜ ⎟
⎝ ⎠

  t ...(3)

Substituting ω from equation (2), θ = 2

ω α ω⎛ ⎞+ +
⎜ ⎟
⎝ ⎠

o ot
t 

θ = ωot + 
1

2
αt2 ...(4)

From equation (1),  t = 
oω ω

α
⎛ ⎞−
⎜ ⎟
⎝ ⎠

...(5)

using equation (5) in (3),

θ =  
2

ω ω ω ω
α

⎛ ⎞ ⎛ ⎞+ −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

o o
 = 

( )2 2

2

oω ω

α

−

2α θ = ω2 – ω0
2  or  ω2 = ω0

2 + 2α θ ...(6)

Equations (2), (4) and (6) are the equations of rotational motion.

3.3 Moment of inertia and its physical significance

According to Newton’s first law of motion, a body must continue in
its state of rest or of uniform motion unless  it is compelled by some
external agency called force.  The inability of a material body to change
its state of rest or of uniform motion by itself is called inertia.  Inertia is
the fundamental property of the matter.  For a given force, the greater the
mass, the higher will be the opposition for motion, or larger the inertia.
Thus, in translatory motion, the mass of the body measures the coefficient
of inertia.

Similarly, in rotational motion also, a body, which is free to rotate
about a given axis, opposes any change desired to be produced in its
state.  The measure of opposition will depend on the mass of the body
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and the distribution of mass about the axis of rotation.  The coefficient of
inertia in rotational motion is called the moment of inertia of the body
about the given axis.

Moment of inertia plays the same role in rotational motion as that
of mass in translatory motion.  Also, to bring about a change in the state
of rotation, torque has to be applied.

3.3.1 Rotational kinetic energy and moment of inertia of a rigid
body

Consider a rigid body rotating with angular velocity ω about an axis
XOX′.   Consider the particles of masses m1, m2, m3… situated at distances
r1, r2, r3… respectively from the axis of rotation.  The angular velocity of all
the particles is same but the particles rotate with different linear velocities.
Let the linear velocities of the particles be v1,v2,v3 … respectively.

Kinetic energy of the first particle = 
1

2
 m1v1

2

But v1=r1ω

∴ Kinetic energy of the first particle

=  
1

2
m1( r1ω)2 = 

1

2
 m1r1

2ω2

Similarly,

Kinetic energy of second particle

= 
1

2
 m2r2

2ω2

Kinetic energy of third particle

=  
1

2
 m3r3

2ω2 and so on.

The kinetic energy of the rotating rigid body is equal to the sum of
the kinetic energies of all the particles.

∴ Rotational kinetic energy

= 
1
2

 (m1r1
2ω2 + m2r2

2ω2 + m3r3
2ω2 +  ..... + mnrn

2w2)

= 
1
2

 ω2(m1r1
2 + m2r2

2 + m3r3
2 + ….. + mnrn

2)

O

m1

r1

m2

r2m3

r3

X X/

Fig. 3.8 Rotational kinetic energy
and moment of inertia
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(i.e) ER = 
1
2

 ω2 2

1=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑
n

i i
i

m r ...(1)

In translatory motion, kinetic energy  = 
1
2

mv2

Comparing with the above equation, the inertial role is played by

the term 
2

1=
∑
n

i i
i

m r . This is known as moment of inertia of the rotating rigid

body about the axis of rotation. Therefore the moment of inertia is

I = mass ×  (distance )2

Kinetic energy of rotation = 
1
2

ω2I

When ω  = 1 rad s-1, rotational kinetic energy

= ER =  
1
2

 (1)2I     (or)   I = 2ER

It shows that moment of inertia of a body is equal to twice the kinetic
energy of a rotating body whose angular velocity is one radian per second.

The unit for moment of inertia is  kg m2 and the dimensional formula
is ML2.

3.3.2 Radius of gyration

The moment of inertia of the rotating rigid body is,

I = 
1=
∑
n

i
miri

2 = m1r1
2 + m2r2

2 + ...mnrn
2

If the particles of the rigid body are having same mass, then

m1 = m2 = m3 =….. = m (say)

∴ The above equation becomes,

I = mr1
2+ mr2

2+ mr3
2+…..+ mrn

2

  = m (r1
2+ r2

2+ r3
2+…..+ rn

2)

I = nm 
2 2 2 2
1 2 3 .....⎡ ⎤+ + +

⎢ ⎥
⎣ ⎦

nr r r r

n

where n is the number of particles in the rigid body.
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∴ I = MK2 ... (2)

where M = nm, total mass of the body and K 2 = 
2 2 2 2
1 2 3 ..... nr r r r

n

+ + +

Here K= 
2 2 2 2
1 2 3 ..... nr r r r

n

+ + +
is called as the radius of gyration of the

rigid body about the axis of rotation.

The radius of gyration is equal to the root mean square distances of
the particles from the axis of rotation of the body.

The radius of gyration can also be defined as the perpendicular
distance between the axis of rotation and the point where the whole weight
of the body is to be concentrated.

Also from the equation (2) K 2  = I

M
 (or) K = I

M

3.3.3Theorems of moment of inertia

(i) Parallel axes theorem

Statement

The moment of inertia of a body about any axis is equal to the sum of
its moment of inertia about a parallel axis through its centre of gravity and
the product of the mass of the body and the square of the distance between
the two axes.

Proof

Let us consider a body having its centre of gravity at G as shown in
Fig. 3.9.  The axis XX′ passes through the centre of gravity and is
perpendicular to the plane of the body.  The axis X1X1′  passes through
the point O and is parallel to the axis XX′ . The distance between the two
parallel axes is x.

Let the body be divided into large number of particles each of mass
m . For a particle P  at a distance r from O, its moment of inertia about the
axis X1OX1′  is equal to m r 2.

The moment of inertia of the whole body about the axis X1X1′  is
given by,

I0 = Σ mr2 ...(1)
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From the point P, drop a perpendicular PA to the extended OG  and
join PG.

In the ∆OPA,

OP 2 = OA2 + AP 2

r2  = (x + h)2+AP 2

r2 = x2 + 2xh + h2 + AP2 ...(2)

But from ∆ GPA,

GP 2  = GA2 + AP 2

y 2 = h 2 + AP 2 ...(3)

Substituting equation (3) in (2),

r 2 = x 2 + 2xh + y 2 ...(4)

Substituting equation (4) in (1),

Io = Σ m (x2 + 2xh + y2)

= Σmx2 + Σ2mxh + Σmy2

= Mx2 + My2 + 2xΣmh  ...(5)

Here My2 = IG is the moment of inertia of the body about the line
passing through the centre of gravity. The sum of the turning moments of

X1
/

X1

X'

X

P

O A

x

G
h

yr

Fig .3.9 Parallel axes theorem
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all the particles about the centre of gravity is zero, since the body is
balanced about the centre of gravity G.

Σ (mg) (h) = 0 (or) Σ mh = 0 [since g is a constant] ...(6)

∴ equation  (5) becomes, I0 = Mx2 + IG ...(7)

Thus the parallel axes theorem is proved.

(ii) Perpendicular axes theorem

Statement

The moment of inertia of a plane laminar body about an axis
perpendicular to the plane is equal to the sum of the moments of inertia
about two mutually perpendicular axes in the plane of the lamina such that
the three mutually perpendicular axes have a common point of intersection.

Proof

Consider a plane lamina having
the axes OX and OY in the plane of the
lamina as shown Fig. 3.10.  The axis
OZ passes through O and is
perpendicular to the plane of the
lamina.  Let the lamina be divided into
a large number of particles, each of
mass m.  A particle at P at a distance r
from O has coordinates (x,y).

∴r2 = x2+y2 ...(1)

The moment of inertia of the particle P about the axis OZ = m r2.

The moment of inertia of the whole lamina about the axis OZ is

Iz = Σmr2 ...(2)

The moment of inertia of the whole lamina about the axis OX is

Ix =Σ my 2 ...(3)

Similarly, Iy = Σ mx 2 ...(4)

From eqn. (2), Iz = Σmr2 = Σm(x2+y2)

Iz =Σmx2+Σmy2 =  Iy+ Ix
  ∴  Iz = Ix+ Iy

which proves the perpendicular axes theorem.

Z

O A X

P( )x,y
B

Y

r

Fig 3.10 Perpendicular axes theorem



133

Table 3.1 Moment of Inertia of different bodies

(Proof is given in the annexure)

Body Axis of Rotation Moment of Inertia

Thin Uniform Rod Axis passing through its
centre of gravity and
perpendicular to its length

Axis passing through the
end and perpendicular to
its length.

Thin Circular Ring Axis passing through its
centre and perpendicular
to its plane.

Axis passing through its
diameter

Axis passing through a
tangent

Circular Disc Axis passing through its
centre and perpendicular
to its plane.

Axis passing through its
diameter

Axis passing through a
tangent

Solid Sphere Axis passing through its
diameter

Axis passing through a
tangent

Solid Cylinder Its own axis

Axis passing through its
centre and perpedicular to
its length

12

2Ml

2Ml
3

MR2

1

2
MR2

2

2
3

MR

21
 

2
MR

1
4

 MR2

5

4
 MR2

22
5

MR

7

5
 MR2

1

2
MR2

M 
2 2

4 12
R l⎛ ⎞

+⎜ ⎟
⎝ ⎠

M - mass
l - length

M - mass
l - length

M - mass
R - radius

M - mass
R - radius

M - mass
R - radius

M - mass
R - radius

M - mass
R - radius

M - mass
R - radius

M - mass
R - radius

M - mass
R - radius

M - mass
R - radius

M - mass
R - radius
l - length
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Fig 3.11 Moment of a force

P

F

Axis

A

O

Fig 3.12 Clockwise and
anticlockwise moments

O

F1

O
F2

3.4 Moment of a force

A force can rotate a nut when applied by a wrench or it can open a

door while the door rotates on its hinges (i.e) in addition to the tendency
to move a body in the direction of the application of a force, a force also
tends to rotate the body about any axis which does not intersect the line
of action of the force and also not parallel to it.  This tendency of rotation
is called turning effect of a force or moment of the force about the given
axis. The magnitude of the moment of force F about a point is defined as
the product of the magnitude of force and the perpendicular distance of the

point from the line of action of the force.

Let us consider a force F acting at the

point P on the body as shown in Fig. 3.11.
Then, the moment of the force F about the
point O = Magnitude of the force ×
perpendicular distance between the
direction of the force and the point about
which moment is to be determined = F × OA.

If the force acting on a body rotates
the body in anticlockwise direction with respect to O then the moment is
called anticlockwise moment.  On the other hand, if the force rotates the

body in clockwise direction then the moment
is said to be clockwise moment. The unit of
moment of the force is N m and its
dimensional formula is M L2 T-2.

As a matter of convention,an anticlockwise
moment is taken as positive and a clockwise
moment as negative.  While adding moments,
the direction of each moment should be taken
into account.

In terms of vector product, the moment of a force is expressed as,
→
m = 

→
r × 

→
F

where 
→
r  is the position vector with respect to O. The direction of 

→
m  is

perpendicular to the plane containing  
→
r  and 

→
F.
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Fig.3.14 Work done by a
couple

F

O
F

F

F

r

r

W

3.5 Couple and moment of the couple (Torque)

There are many examples in practice where
two forces, acting together, exert a moment, or
turning effect on some object. As a very simple
case, suppose two strings are tied to a wheel at
the points X and Y, and two equal and opposite
forces, F, are exerted tangentially to the wheels
(Fig. 3.13). If the wheel is pivoted at its centre O
it begins to rotate about O in an anticlockwise
direction.

Two equal and opposite forces whose lines
of action do not coincide are said to constitute a couple in mechanics. The
two forces always have a turning effect, or moment, called a torque. The
perpendicular distance between the lines of action of two forces, which
constitute the couple, is called the arm of the couple.

The product of the forces forming the couple and the arm of the couple
is called the moment of the couple or torque.

Torque = one of the forces × perpendicular distance between the
forces

The torque in rotational motion plays the same role as the force in
translational motion. A quantity that is a measure of this rotational effect
produced by the force is called torque.

In vector notation,  
→
τ  = 

→
r  ×  

→
F

The torque is maximum when θ = 90° (i.e) when the applied force is

at right angles to 
→
r .

Examples of couple are

1. Forces applied to the handle of a
screw press,

2. Opening or closing a water tap.

3. Turning the cap of a pen.

4. Steering a car.

Work done by a couple

Suppose two equal and opposite forces F  act tangentially to a wheel
W, and rotate it through an angle θ   (Fig. 3.14).

Fig. 3.13 CoupleF

F

X YO

90°

90°
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Fig 3.15 Angular
momentum of a particle

O X

Z

Y

P

ppsinr 

L =  x pr

Then the work done by each force = Force  × distance = F × r θ
(since r  θ  is the distance moved by a point on the rim)

Total work done W = F r θ + F r θ = 2F r θ

but torque τ = F × 2r = 2F r

∴ work done by the couple, W = τ θ

3.6 Angular momentum of a particle

The angular momentum in a rotational motion is similar to the

linear momentum in translatory motion.  The linear momentum of a
particle moving along a straight line is the
product of its mass and linear velocity (i.e) p =
mv.  The angular momentum of a particle is
defined as the moment of linear momentum of
the particle.

Let us consider a particle of mass m
moving in the XY plane with a velocity v and
linear momentum    p m v=

JJG JJJG
 at a distance  r from

the origin (Fig. 3.15).

The angular momentum L of the particle
about an axis passing through O perpendicular to XY plane is defined as
the cross product of   r

JJG
 and  p

JJG
 .

(i.e)    L r p= ×
JJG JJG JJG

Its magnitude is given by L = r p sin θ

where  θ is the angle between   r
JJG

 and  p
JJG

  and L is along a direction

perpendicular to the plane containing   r
JJG

 and  p
JJG

.

The unit of angular momentum is kg m2 s–1 and its dimensional
formula is, M L2 T–1.

3.6.1Angular momentum of a rigid body

Let us consider a system of n particles of masses m1, m2 ….. mn

situated at distances r1, r2, …..rn respectively from the axis of rotation
(Fig. 3.16). Let v1,v2, v3 ….. be the linear velocities of the particles
respectively, then linear momentum of first particle  = m1v1.
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Since v1= r1ω the linear momentum
of first particle = m1(r1 ω)

The moment of linear
momentum of first particle

= linear momentum ×

perpendicular distance

= (m1r1ω) × r1

angular momentum of first
particle  = m1r1

2ω

Similarly,

angular momentum of second particle = m2r2
2ω

angular momentum of third particle = m3r3
2ω and so on.

The sum of the moment of the linear momenta of all the particles of a
rotating rigid body taken together about the axis of rotation is known as
angular momentum of the rigid body.

∴ Angular momentum of the rotating rigid body = sum of the angular
momenta of all the particles.

(i.e)   L = m1r1
2ω +  m2r2

2ω + m3r3
2ω .…. + mnrn

2ω

L = ω [m1r
2
1 + m2r2

2 + m3r3
2 + .....mnrn

2]

  = ω 
2

1

n

i i
i

m r
=

⎡ ⎤
⎢ ⎥
⎣ ⎦
∑

∴   L = ω I

where I =
2

1

n

i i
i

m r
=
∑  = moment of inertia of the rotating rigid body about

the axis of rotation.

3.7 Relation between torque and angular acceleration

Let us consider a rigid body rotating about a fixed axis X0X′ with
angular velocity ω   (Fig. 3.17).

The force acting on a particle of mass m1 situated at A, at a distance
r1, from the axis of rotation = mass ×   acceleration

= m1 × 1( )
d

r
dt

ω

Fig 3.16 Angular momentum of a
rigid body

O

m1

r1

m2

r2m3

r3

X X/
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= m1 r1 
d
dt
ω

  = m1 r1 

2

2

θd

dt
The moment of this force

about the axis of rotation

= Force × perpendicular distance

= m1r1 
2

2

θd

dt
 × r1

Therefore, the total  moment of all

the forces acting on all the particles

    = m1r1
2
 

2

2

θd
dt

 + m2r2
2
 

2

2

θd

dt
+ ...

(i.e)  torque  = 
2

2
2

1

θn

i i
i

d
m r

dt=

×∑
or τ = Iα

where  
2

1

n

i i
i

m r
=
∑ = moment of  inertia I of the rigid body and α = 

2

2

θd

dt
 angular

acceleration.

3.7.1Relation between torque and angular momentum

The angular momentum of a rotating rigid body is, L = I ω

Differentiating the above equation with respect to time,

dL d
I I

dt dt
ω α⎛ ⎞= =⎜ ⎟

⎝ ⎠

where α = 
d

dt

ω
 angular acceleration of the body.

But torque τ = Iα

Therefore, torque  τ  = 
dL
dt

Thus the rate of change of angular momentum of a body is equal to
the external torque acting upon the body.

3.8 Conservation of angular momentum

The angular momentum of a rotating rigid body is, L = I ω

The torque acting on a rigid body is, τ = 
dL
dt

Fig 3.17 Relation between torque and
angular acceleration

O

r1

X X/

F AA1
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Fig. 3.18 A diver jumping from a spring board

When no external torque acts on the system, τ = 
dL
dt

 = 0

(i.e) L = I ω = constant

Total angular momentum of the body = constant

(i.e.) when no external torque acts on the body, the net angular
momentum of a rotating rigid body remains constant.  This is known as law
of conservation of angular momentum.

Illustration of conservation of angular momentum

From the law of conservation of angular momentum, I ω = constant

(ie)  ω 
1
I

∝  , the angular velocity of rotation is inversely proportional

to the moment of inertia of the system.

Following are the examples for law of conservation of angular
momentum.

1. A diver jumping from springboard sometimes exhibits somersaults
in air before reaching the water surface, because the diver curls his body
to decrease the moment of inertia and increase angular velocity. When he
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Fig 3.19 A person rotating on a turn table

(a) (b)

is about to reach the water surface, he again outstretches his limbs.  This
again increases moment of inertia and decreases the angular velocity.
Hence, the diver enters the water surface with a gentle speed.

2. A ballet dancer can increase her angular velocity by folding her
arms, as this decreases the moment of inertia.

3. Fig. 3.19a shows a person sitting on a turntable holding a pair of
heavy dumbbells one in each hand with arms outstretched.  The table is
rotating with a certain angular velocity.  The person suddenly pushes the
weight towards his chest as shown Fig.  3.19b, the speed of rotation is
found to increase considerably.

4.The angular velocity of a planet in its orbit round the sun increases
when it  is nearer to the Sun, as the moment of inertia of the planet about
the Sun decreases.
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Solved Problems

3.1 A system consisting of two masses connected by a massless rod
lies along the X-axis. A 0.4 kg mass is at a distance x = 2 m while
a 0.6 kg mass is at x = 7 m. Find the x coordinate of the centre
of mass.

Data : m1 = 0.4 kg ;  m2 = 0.6 kg ; x1 = 2 m ; x2 = 7 m ; x = ?

Solution : 
1 1 2 2

1 2

m x m x
x

m m

+
=

+ = 
(0.4× 2) + (0.6 ×7)

= 5 m
(0.4 +0.6)

3.2 Locate the centre of mass of a system of bodies of masses
m1= 1 kg, m2 = 2 kg and m3 = 3 kg situated at the corners of
an equilateral triangle of side 1 m.

Data : m1 = 1 kg ; m2 = 2 kg ; m3= 3 kg ;

The coordinates of A = (0,0)

The coordinates of B =(1,0)

Centre of mass of the system =?

Solution : Consider an equilateral triangle of side 1m as shown
in Fig. Take X and Y axes as
shown in figure.

To find the coordinate of C:

For an equilateral triangle ,
∠CAB = 60°

Consider the triangle ADC,

CA

CD
sin =θ (or) CD =

(CA) sinθ = 
2

3
60sin1 =× D

Therefore from the figure, the coordinate of C are, ( 0.5, 
2

3
)

1 1 2 2 3 3

1 2 3

m x m x m x
x

m m m

+ +
=

+ +

A

Y

C
m 3

1m

m 2BD

60°

m 1

0.5m
X
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(1×0) + (2×1) + (3×0.5) 3.5
x = = m

(1+ 2 + 3) 6

1 1 2 2 3 3

1 2 3

m y m y m y
y

m m m

+ +
=

+ +

3
3

2 3
4

(1×0) + (2×0) +

y = = m
6

⎛ ⎞
×⎜ ⎟

⎝ ⎠

3.3 A circular disc of mass m and radius r is set rolling on a table.

If ω is its angular velocity, show that its total energy E =
4
3

mr2ω2.

Solution : The total energy of the disc = Rotational KE + linear KE

∴ E =
2

1
 Iω2+ 

2

1
 mv2 ...(1)

But I = 
2

1
mr2 and v = rω ...(2)

Substituting eqn. (2) in eqn. (1),

E =
2

1
× 

2

1
( mr2) (ω2)+ 

2

1
m (rω)2 = 

1
4

mr2ω2 + 
2

1
mr2ω2

 = 
3
4

mr2ω2

3.4  A thin metal ring of diameter 0.6m and mass 1kg starts from
rest and rolls down on an inclined plane.  Its linear velocity on
reaching the foot of the plane is 5 m s-1, calculate (i) the moment
of inertia of the ring and (ii) the kinetic energy of rotation at that
instant.

Data : R  = 0.3 m ; M  = 1 kg ; v = 5 m s–1 ; I  = ? K.E. = ?

Solution : I = MR2  = 1 × (0.3)2 = 0.09 kg m2

K.E. = 
2

1
 Iω2

v = rω ; ∴  ω = 
v
r

 ; K.E. = 
1
2

 × 0.09 ×  

2
5

0.3
⎛ ⎞
⎜ ⎟
⎝ ⎠

= 12.5 J
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3.5 A solid cylinder of mass 200 kg rotates about its axis with angular
speed 100 s-1.  The radius of the cylinder is 0.25 m.  What is the
kinetic energy associated with the rotation of the cylinder?  What
is the magnitude of the angular momentum of the cylinder about
its axis?

Data : M = 200 kg ; ω = 100 s–1 ; R = 0.25 metre ;
ER

 = ? ; L = ?

Solution : I = 
2

2
MR

= 
2200 (0.25)

2
×

 = 6.25 kg m2

K.E. = 
2

1
I ω2

= 
2

1
 × 6.25 × (100)2

ER = 3.125 × 104 J

L = Iω  = 6.25 × 100 = 625 kg m2 s–1

3.6 Calculate the radius of gyration of a rod of mass 100 g and length
100 cm about an axis passing through its centre of gravity and
perpendicular to its length.

Data : M = 100 g = 0.1 kg l = 100 cm = 1 m

K = ?

Solution : The moment of inertia of the rod about an axis passing
through its centre of gravity and perpendicular to the length = I =

MK2 = 
2

12
ML

 (or) K2 =  
2

12
L

 (or) K = 
12

L
 = 

1

12
 = 0.2886 m.

3.7 A circular disc of mass 100 g and radius 10 cm is making 2
revolutions per second about an axis passing through its centre
and perpendicular to its plane. Calculate its kinetic energy.

Data : M = l00 g = 0.1 kg ; R = 10 cm = 0.1 m ; n = 2

Solution : ω = angular velocity = 2πn = 2π × 2  = 4π rad / s

Kinetic energy of rotation = 
2

1
 Iω2

= 
2

1
 × 

2

1
× MR2 ω2 = 

2

1
 × 

2

1
 (0.1) × (0.1)2 × (4π)2

= 3.947 × 10–2 J
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3.8 Starting from rest, the flywheel of a motor attains an angular
velocity 100 rad/s from rest in 10 s. Calculate (i) angular
acceleration and (ii) angular displacement in 10 seconds.

Data : ωo = 0 ; ω = 100 rad s–1 t = 10 s α = ?

Solution : From equations of rotational dynamics,

ω = ω0 + at

(or) α = ω ω− −
= =

100 0
10

10
o

t
 rad s–2

Angular displacement θ = ωot + 
2

1
αt2

= 0 + 
2

1
 × 10 × 102 = 500 rad

3.9 A disc of radius 5 cm has moment of inertia of 0.02 kg m2.A force
of 20 N is applied tangentially to the surface of the disc. Find the
angular acceleration produced.

Data : I = 0.02 kg m2 ; r = 5 cm = 5 × 10–2 m ; F = 20 N ; τ = ?

Solution : Torque = τ = F × 2r =  20 × 2 × 5 × 10–2 = 2 N m

angular acceleration = α = 
I
τ

 = 
2

0.02
 = 100 rad /s2

3.10 From the figure, find the moment of the force 45 N about A?

Data : Force F = 45 N ; Moment of the force about A = ?

Solution : Moment of the force about A

= Force × perpendicular
distance = F × AO

= 45 × 6 sin 30 = 135 N m

O
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Self evaluation
(The questions and problems given in this self evaluation are only samples.
In the same way any question and problem could be framed from the text
matter. Students must be prepared to answer any question and problem
from the text matter, not only from the self evaluation.)

3.1 The angular speed of minute arm in a watch is :

(a) π/21600 rad s–1 (b) π/12 rad s–1

(c) π/3600 rad s–1 (d) π/1800 rad s–1

3.2 The moment of inertia of a body comes into play

(a) in linear motion (b) in rotational motion

(c) in projectile motion (d) in periodic motion

3.3 Rotational analogue of mass in linear motion is

(a) Weight (b) Moment of inertia

(c) Torque (d) Angular momentum

3.4 The moment of inertia of a body does not depend on

(a) the angular velocity of the body

(b) the mass of the body

(c) the axis of rotation of the body

(d) the distribution of mass in the body

3.5 A ring of radius r and mass m rotates about an axis passing
through its centre and perpendicular to its plane with angular
velocity ω. Its kinetic energy is

(a) mrω2 (b)  1
2

mrω2 (c) Iω2 (d) 
1
2

 Iω2

3.6 The moment of inertia of a disc having mass M and radius R,
about an axis passing through its centre and perpendicular to its
plane is

(a) 
1
2

 MR2 (b) MR2 (c) 
1
4

 MR2 (d) 
5
4

 MR2

3.7 Angular momentum is the vector product of

(a) linear momentum and radius vector

(b) moment of inertia and angular velocity

(c) linear momentum and angular velocity

(d) linear velocity and radius vector
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3.8 The rate of change of angular momentum is equal to

(a) Force (b) Angular acceleration

(c) Torque (d) Moment of Inertia

3.9 Angular momentum of the body is conserved

(a) always

(b) never

(c) in the absence of external torque

(d) in the presence of external torque

3.10 A man is sitting on a rotating stool with his arms outstretched.
Suddenly he folds his arm. The angular velocity

(a) decreases (b) increases

(c) becomes zero (d) remains constant

3.11 An athlete diving off a high springboard can perform a variety
of exercises in the air before entering the water below. Which
one of the following parameters will remain constant during the
fall. The athlete’s

(a) linear momentum (b) moment of inertia

(c) kinetic energy (d) angular momentum

3.12 Obtain an expression for position of centre of mass of two particle
system.

3.13 Explain the motion of centre of mass of a system with an example.

3.14 What are the different types of equilibrium?

3.15 Derive the equations of rotational motion.

3.16 Compare linear motion with rotational motion.

3.17 Explain the physical significance of moment of inertia.

3.18 Show that the moment of inertia of a rigid body is twice the
kinetic energy of rotation.

3.19 State and prove parallel axes theorem and perpendicular axes
theorem.

3.20 Obtain the expressions for moment of inertia of a ring (i) about
an axis passing through its centre and perpendicular to its plane.
(ii) about its diameter and (iii) about a tangent.
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3.21 Obtain the expressions for the moment of inertia of a circular
disc (i) about an axis passing through its centre and perpendicular
to its plane.(ii) about a diameter (iii) about a tangent in its plane
and (iv) about a tangent perpendicular to its plane.

3.22 Obtain an expression for the angular momentum of a rotating
rigid body.

3.23 State the law of conservation of angular momentum.

3.24 A cat is able to land on its feet after a fall. Which principle of
physics is being used? Explain.

Problems

3.25 A person weighing 45 kg sits on one end of a seasaw while a
boy of 15 kg sits on the other end. If they are separated by
4 m, how far from the boy is the centre of mass situated. Neglect
weight of the seasaw.

3.26 Three bodies of masses 2 kg, 4 kg and 6 kg are located at the
vertices of an equilateral triangle of side 0.5 m. Find the centre
of mass of this collection, giving its coordinates in terms of a
system with its origin at the 2 kg body and with the 4 kg body
located along the positive X axis.

3.27 Four bodies of masses 1 kg, 2 kg, 3 kg and 4 kg are at the
vertices of a rectangle of sides a and b. If a = 1 m and
b = 2 m, find the location of the centre of mass. (Assume that,
1 kg mass is at the origin of the system, 2 kg body is situated
along the positive x axis and 4 kg along the y axis.)

3.28 Assuming a dumbbell shape for the carbon monoxide (CO)
molecule, find the distance of the centre of mass of the molecule
from the carbon atom in terms of the distance d between the
carbon and the oxygen atom. The atomic mass of carbon is
12 amu and for oxygen is 16 amu. (1 amu = 1.67 × 10 –27 kg)

3.29 A solid sphere of mass 50 g and diameter 2 cm rolls without
sliding with a uniform velocity of 5 m s-1 along a straight line on
a smooth horizontal table.  Calculate its total kinetic energy.

( Note : Total EK = 
1
2

 mv2 + 
1
2

Iω2 ).
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3.30 Compute the rotational kinetic energy of a 2 kg wheel rotating at
6 revolutions per second if the radius of gyration of the wheel is
0.22 m.

3.31 The cover of a jar has a diameter of 8 cm. Two equal, but
oppositely directed, forces of 20 N act parallel to the rim of the
lid to turn it. What is the magnitude of the applied torque?

Answers

3.1 (d) 3.2 (b) 3.3 (b) 3.4 (a)

3.5 (d) 3.6 (a) 3.7 (b) 3.8 (c)

3.9 (c) 3.10 (b) 3.11 (c)

3.25 3 m from the boy 3.26 0.2916 m, 0.2165 m

3.27 0.5 m, 1.4 m 3.28
16 
28

d

3.29 0.875 J 3.30 68.71 J

3.31 1.6 N m
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We have briefly discussed the kinematics of a freely falling body
under the gravity of the Earth in earlier units. The fundamental forces
of nature are gravitational, electromagnetic and nuclear forces. The
gravitational force is the weakest among them. But this force plays an
important role in the birth of a star, controlling the orbits of planets and
evolution of the whole universe.

Before the seventeenth century, scientists believed that objects fell
on the Earth due to their inherent property of matter. Galileo made a
systematic study of freely falling bodies.

4.1 Newton’s law of gravitation

The motion of the planets, the moon and the Sun was the interesting
subject among the students of Trinity college at Cambridge in England.

Isaac Newton was also one among these
students. In 1665, the college was closed for an
indefinite period due to plague. Newton, who
was then 23 years old, went home to
Lincolnshire. He continued to think about the
motion of planets and the moon. One day
Newton sat under an apple tree and had tea
with his friends. He saw an apple falling to
ground. This incident made him to think about
falling bodies. He concluded that the same force
of gravitation which attracts the apple to the
Earth might also be responsible for attracting

the moon and keeping it in its orbit. The centripetal acceleration of the
moon in its orbit and the downward acceleration of a body falling on the
Earth might have the same origin. Newton calculated the centripetal
acceleration by assuming moon’s orbit (Fig. 4.1) to be circular.

Acceleration due to gravity on the Earth’s surface, g = 9.8 m s–2

Centripetal acceleration on the moon, ac = 
2v
r

4. Gravitation and Space Science

Fig. 4.1 Acceleration
of moon
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where r is the radius of the orbit of the moon (3.84 × 108 m) and v is
the speed of the moon.

Time period of revolution of the moon around the Earth,

T = 27.3 days.

The speed of the moon in its orbit, v = 
2 r

T

π

v = 
82 3.84 10

27.3 24 60 60

π × ×
× × ×

 = 1.02 × 103 m s−1

∴  Centripetal acceleration, ac = 
2 3 2

8

(1.02 10 )
 = 

3.84 10

v

r

×
×

ac = 2.7 × 10−3 m s−2

Newton assumed that both the moon and the apple are accelerated
towards the centre of the Earth. But their motions differ, because, the
moon has a tangential velocity whereas the apple does not have.

Newton found that ac was less than g and hence concluded that
force produced due to gravitational attraction of the Earth decreases
with increase in distance from the centre of the Earth. He assumed that
this acceleration and therefore force was inversely proportional to the
square of the distance from the centre of the Earth. He had found that
the value of ac was about 1/3600 of the value of g, since the radius of
the lunar orbit r is nearly 60 times the radius of the Earth R.

The value of ac was calculated as follows :
2 22

c
2

a 1 r R 1 1
 =  = =  = 

g r 60 36001 R

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∴ ac = 
g 9.8

 = 
3600 3600

 = 2.7 × 10−3 m s−2

Newton suggested that gravitational force might vary inversely as
the square of the distance between the bodies. He realised that this
force of attraction was a case of universal attraction between any two
bodies present anywhere in the universe and proposed universal
gravitational law.

The law states that every particle of matter in the universe attracts
every other particle with a force which is directly proportional to the product
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of their masses and inversely proportional to the square of the distance
between them.

Consider two bodies of masses m1 and m2 with their centres
separated by a distance r. The gravitational force between them is

F α m1m2

F α 1/r2

∴ F α 
1 2
2

m m

r

F = G 
1 2
2

m m

r
 where G is the universal

gravitational constant.

If m1 = m2 = 1 kg and r = 1 m, then F = G.

Hence, the Gravitational constant ‘G’ is numerically equal to
the gravitational force of attraction between two bodies of mass
1 kg each separated by a distance of 1 m. The value of G is
6.67 × 10−11 N m2 kg−2 and its dimensional formula is M−1 L3 T−2.

4.1.1 Special features of the law

(i) The gravitational force between two bodies is an action and
reaction pair.

(ii) The gravitational force is very small in the case of lighter
bodies. It is appreciable in the case of massive bodies. The gravitational
force between the Sun and the Earth is of the order of 1027 N.

4.2 Acceleration due to gravity

Galileo was the first to make a systematic study of the motion of
a body under the gravity of the Earth. He dropped various objects from
the leaning tower of Pisa and made analysis of their motion under
gravity. He came to the conclusion that “in the absence of air, all bodies
will fall at the same rate”. It is the air resistance that slows down a piece
of paper or a parachute falling under gravity. If a heavy stone and a
parachute are dropped where there is no air, both will fall together at
the same rate.

Experiments showed that the velocity of a freely falling body under

Fig. 4.2
Gravitational

force

m1
m2

r
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gravity increases at a constant rate. (i.e) with a constant acceleration.
The acceleration produced in a body on account of the force of gravity
is called acceleration due to gravity. It is denoted by g. At a given place,
the value of g is the same for all bodies irrespective of their masses. It
differs from place to place on the surface of the Earth. It also varies with
altitude and depth.

The value of g at sea−level and at a latitude of 45o is taken as the
standard (i.e) g = 9.8 m s−2

4.3 Acceleration due to gravity at the surface of the Earth

Consider a body of mass m on the surface of
the Earth as shown in the Fig. 4.3. Its distance
from the centre of the Earth is R (radius of the
Earth).

The gravitational force experienced by the

body is F =  2

GMm

R
 where M is the mass of the

Earth.

From Newton’s second law of motion,

Force F = mg.

Equating the above two forces, 2

GMm

R
= mg

2 = 
GM

g
R

∴

This equation shows that g is independent of the mass of the body
m. But, it varies with the distance from the centre of the Earth. If the
Earth is assumed to be a sphere of radius R, the value of g on the

surface of the Earth is given by g = 2

GM

R

4.3.1 Mass of the Earth

From the expression g = 2

GM

R , the mass of the Earth can be

calculated as follows :

M   =
2gR

G
 = 

6 2

11

9.8 (6.38 10 )

6.67 10−
× ×

×
= 5.98 × 1024 kg

Fig. 4.3 Acceleration
due to gravity
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4.4 Variation of acceleration due to gravity

(i) Variation of g with altitude

Let P be a point on the surface of the Earth and Q be a point at
an altitude h. Let the mass of the Earth be M and radius of the Earth
be R. Consider the Earth as a spherical shaped body.

The acceleration due to gravity at P on the surface is

g = 2

GM

R
... (1)

Let the body be placed at Q at a height h from the surface of the
Earth. The acceleration due to gravity at Q is

gh = 2( )

GM

R h+ ... (2)

dividing (2) by (1) 
2

h
2

g R
 = 

g (R +h)

By simplifying and expanding using

binomial theorem, gh = g 
2

1 - 
h

R

⎛ ⎞
⎜ ⎟
⎝ ⎠

The value of acceleration due to gravity
decreases with increase in height above the
surface of the Earth.

(ii) Variation of g with depth

Consider the Earth to be a
homogeneous sphere with uniform density
of radius R and mass M.

Let P be a point on the surface of the
Earth and Q be a point at a depth d from
the surface.

The acceleration due to gravity at P on

the surface is g = 2

GM

R
.

If ρ be the density, then, the mass of

the Earth is M = 
4

3
π R3ρ

Q

P

h

R

Fig. 4.4 Variation of g
with altitude

P
d

Q

O R

Fig. 4.5 Variation of g
with depth
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∴ g = 
4

3
GπR ρ ... (1)

The acceleration due to gravity at Q at a depth d from the surface
of the Earth is

gd = 
2

2( )−
dGM

R d

where Md is the mass of the inner sphere of the Earth of radius (R− d).

Md = 
4

3
 π(R − d)3ρ

∴ gd = 
4

3
Gπ(R – d)ρ ... (2)

dividing (2) by (1),  
dg R - d

=
g R

gd = g 1
d

R

⎛ ⎞−⎜ ⎟
⎝ ⎠

The value of acceleration due to gravity decreases with increase of
depth.

(iii) Variation of g with latitude (Non−sphericity of the Earth)

The Earth is not a perfect sphere. It is
an ellipsoid as shown in the Fig. 4.6. It is
flattened at the poles where the latitude is 90o

and bulged at the equator where the latitude
is 0o.

The radius of the Earth at equatorial
plane Re is greater than the radius along the
poles Rp by about 21 km.

We know that g = 2

GM

R

∴ g α 2

1

R

The value of g varies inversely as the square of radius of the
Earth. The radius at the equator is the greatest. Hence the value of g

Re

Rp

Fig.4.6 Non−sphericity
of the Earth
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is minimum at the equator. The radius at poles is the least. Hence, the
value of g is maximum at the poles. The value of g increases from the
equator to the poles.

(iv) Variation of g with latitude (Rotation of the Earth)

Let us consider the Earth as a homogeneous sphere of mass M
and radius R. The Earth rotates about an axis passing through its north

and south poles. The Earth rotates from
west to east in 24 hours. Its angular
velocity is 7.3 × 10−5 rad s−1.

Consider a body of mass m on
the surface of the Earth at P at a
latitude θ. Let ω be the angular velocity.
The force (weight) F = mg acts along
PO. It could be resolved into two
rectangular components (i) mg cos θ along
PB and (ii) mg sin θ along PA (Fig. 4.7).

From the ∆OPB, it is found that
BP = R cos θ. The particle describes a
circle with B as centre and radius
BP = R cos θ.

The body at P experiences a  centrifugal force (outward force) FC

due to the rotation of the Earth.

(i.e) FC = mRω2 cos θ .

The net force along PC = mg cos θ − mRω2 cos θ

∴ The body is acted upon by two forces along PA and PC.

The resultant of these two forces is

F= √(mg sinθ)2+(mg cosθ−mRω2 cosθ)2

F = mg 
2 2 2 4 2

2

2Rω cos θ R ω cos θ
1- +

g g

since 
2 4

2

R

g

ω
 is very small, the term 

2 4 2

2

cosR

g

ω θ
 can be neglected.

The force, F = mg 
2 22Rω cos θ

1-
g ... (1)

W

N

E

S

O D A

B

θ

θ

P Fc

Fig. 4.7 Rotation of
the Earth
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If g ′ is the acceleration of the body at P due to this force F,
we have,  F = mg ′ ... (2)

by equating (2) and (1)

mg ′ = mg 
2 22 cos

 1
ω θ

−
R

g

g ′ = g 
2 2cos

1
ω θ⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

R

g

Case (i) At the poles, θ = 90o ;  cos θ = 0

∴ g ′ = g

Case (ii) At the equator, θ = 0 ; cos θ = 1

∴ g ′ =  g 
2

1
ω⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

R

g

So, the value of acceleration due to gravity is maximum at the
poles.

4.5 Gravitational field

Two masses separated by a distance exert gravitational forces on
one another. This is called action at–a–distance. They interact even
though they are not in contact. This interaction can also be explained
with the field concept. A particle or a body placed at a point modifies a
space around it which is called gravitational field. When another particle
is brought in this field, it experiences gravitational force of attraction.
The gravitational field is defined as the space around a mass in which it
can exert gravitational force on other mass.

4.5.1 Gravitational field intensity

Gravitational field intensity or
strength at a point is defined as the force
experienced by a unit mass placed at
that point. It is denoted by E. It is a
vector quantity. Its unit is N kg–1.

Consider a body of mass M placed
at a point Q and another body of mass m placed at P at a distance r
from Q.

Fig. 4.8 Gravitational field

M
mr

Q
P
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The mass M develops a field E at P and this field exerts a force
F = mE.

The gravitational force of attraction between the masses m and

M is F = 2

GM m

r

The gravitational field intensity at P is E = 
F

m

∴ E = 2

GM

r

Gravitational field intensity is the measure of gravitational field.

4.5.2 Gravitational potential difference

Gravitational potential difference between two points is defined as
the amount of work done in moving unit mass
from one point to another point against the
gravitational force of attraction.

Consider two points A and B separated
by a distance dr in the gravitational field.

The work done in moving unit mass from
A to B is dv = WA → B

Gravitational potential difference dv = − E dr

Here negative sign indicates that work is done against the
gravitational field.

4.5.3 Gravitational potential

Gravitational potential at a point is defined as the amount of work
done in moving unit mass from the point to infinity against the gravitational
field. It is a scalar quantity. Its unit is N m kg−1.

4.5.4 Expression for gravitational potential at a point

Consider a body of mass M at the
point C. Let P be a point at a distance r
from C. To calculate the gravitational
potential at P consider two points A and
B. The point A, where the unit mass is
placed is at a distance x from C.

A B

dr
Fig. 4.9 Gravitational
potential difference

A B

dx

x

r

PC

M

Fig. 4.10 Gravitational potential
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The gravitational field at A is E = 2

GM

x

The work done in moving the unit mass from A to B through a
small distance dx is dw = dv = −E.dx

Negative sign indicates that work is done against the gravitational

field.

dv = − 2

GM

x
 dx

The work done in moving the unit mass from the point P to

infinity is 
∞

= −∫ ∫
r

dv
2

GM

x
 dx

v = – 
GM

r
The gravitational potential is negative, since the work is done

against the field. (i.e) the gravitational force is always attractive.

4.5.5 Gravitational potential energy

Consider a body of mass m placed at P at a distance r from the
centre of the Earth. Let the mass of the Earth be M.

When the mass m is at A at a
distance x from Q, the gravitational

force of attraction on it due to mass M is

given by  F = 2

GM m

x

The work done in moving the mass
m through a small distance dx from A to B along the line  joining the
two centres of masses m and M is dw = –F.dx

Negative sign indicates that work is done against the gravitational
field.

∴ dw = – 2

GM m

x
 . dx

The gravitational potential energy of a mass m at a distance r from
another mass M is defined as the amount of work done in moving the
mass m from a distance r to infinity.

The total work done in moving the mass m from a distance r to

Fig. 4.11 Gravitational
potential energy

A B

dx

x

r

P
Q

Earth
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infinity is

r

 = -dw
∞

∫ ∫ 2

GM m
dx

x

W = – GMm 2

1
∞

∫
r

dx
x

*U = – 
GM m

r
Gravitational potential energy is zero at infinity and decreases as

the distance decreases. This is due to the fact that the gravitational
force exerted on the body by the Earth is attractive. Hence the
gravitational potential energy U is negative.

4.5.6 Gravitational potential energy near the surface of the Earth

Let the mass of the Earth be M and its radius be R. Consider a
point A on the surface of the Earth and another point B at a height h
above the surface of the Earth. The work done in
moving the mass m from A to B is U = UB − UA

U = − GMm 
1 1

 - 
( )R h R

⎡ ⎤
⎢ ⎥+⎣ ⎦

U = GMm 
1 1
 -  
( )R R h

⎡ ⎤
⎢ ⎥+⎣ ⎦

U = 
GMmh
R(R +h)

If the body is near the surface of the Earth,
h is very small when compared with R. Hence (R+h)
could be taken as R.

∴ U = 2

GM mh

R

U = mgh  2

GM
 = g

R
⎛ ⎞
⎜ ⎟
⎝ ⎠
∵

4.6 Inertial mass

According to Newton’s second law of motion (F = ma), the mass of
a body can be determined by measuring the acceleration produced in it

* Potential energy is represented by U (Upsilon).

B

A

h

O
R

Earth

Fig. 4.12 Gravitational
potential energy

near the surface of
the Earth
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by a constant force. (i.e) m = F/a. Intertial mass of a body is a measure
of the ability of a body to oppose the production of acceleration in it by
an external force.

If a constant force acts on two masses mA and mB and produces
accelerations aA and aB respectively, then,  F = mAaA = mBaB

  = A B

B A

m a

m a
∴

The ratio of two masses is independent of the constant force. If the
same force is applied on two different bodies, the inertial mass of the
body is more in which the acceleration produced is less.

If one of the two masses is a standard kilogram, the unknown
mass can be determined by comparing their accelerations.

4.7 Gravitational mass

According to Newton’s law of gravitation, the gravitational force on
a body is proportional to its mass. We can measure the mass of a body
by measuring the gravitational force exerted on it by a massive body like
Earth. Gravitational mass is the mass of a body which determines the
magnitude of gravitational pull between the body and the Earth. This is
determined with the help of a beam balance.

If FA and FB are the gravitational forces of attraction on the two
bodies of masses mA and mB due to the Earth, then

FA = 2
AGm M

R
 and FB = 

2
BGm M

R

where M is mass of the Earth, R is the radius of the Earth and G is the
gravitational constant.

∴   = A A

B B

m F

m F

If one of the two masses is a standard kilogram, the unknown
mass can be determined by comparing the gravitational forces.

4.8 Escape speed

If we throw a body upwards, it reaches a certain height and then
falls back. This is due to the gravitational attraction of the Earth. If we
throw the body with a greater speed, it rises to a greater height. If the
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body is projected with a speed of 11.2 km/s, it escapes from the Earth
and never comes back. The escape speed is the minimum speed with
which a body must be projected in order that it may escape from the
gravitational pull of the planet.

Consider a body of mass m placed on the Earth’s surface. The

gravitational potential energy is EP = – 
GM m

R

where M is the mass of the Earth and R is its radius.

If the body is projected up with a speed ve, the kinetic energy is

EK = 
2

e
1

mv
2

∴ the initial total energy of the body is

Ei = 
2

e
1

mv
2

 – 
GM m

R
... (1)

If the body reaches a height h above the Earth’s surface, the
gravitational potential energy is

EP = – 
( )

GM m

R h+

Let the speed of the body at the height is v, then its kinetic energy is,

EK = 
21

2
mv .

Hence, the final total energy of the body at the height is

Ef = 
21

2
mv  – 

( )

GM m

R h+
... (2)

We know that the gravitational force is a conservative force and
hence the total mechanical energy must be conserved.

∴ Ei = Ef

(i.e)   
2 2

emv GMm mv GMm
 -  =  - 

2 R 2 (R +h)

The body will escape from the Earth’s gravity at a height where
the gravitational field ceases out. (i.e) h = ∞ . At the height h = ∞ , the
speed v of the body is zero.
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Thus
2

emv GMm
   = 0

2 R
−  

ve = 
2GM

 
R

From the relation g = 2

GM

R
 , we get  GM = gR2

Thus, the escape speed is  ve = 2gR

The escape speed for Earth is 11.2 km/s, for the planet Mercury
it is 4 km/s and for Jupiter it is 60 km/s. The escape speed for the
moon is about 2.5 km/s.

4.8.1 An interesting consequence of escape speed with the
atmosphere of a planet

We know that the escape speed is independent of the mass of the
body. Thus, molecules of a gas and very massive rockets will require the
same initial speed to escape from the Earth or any other planet or
moon.

The molecules of a gas move with certain average velocity, which
depends on the nature and temperature of the gas. At moderate
temperatures, the average velocity of oxygen, nitrogen and
carbon–di–oxide is in the order of 0.5 km/s to 1 km/s and for lighter
gases hydrogen and helium it is in the order of 2 to 3 km/s. It is clear
that the lighter gases whose average velocities are in the order of the
escape speed, will escape from the moon. The gravitational pull of the
moon is too weak to hold these gases. The presence of lighter gases in
the atmosphere of the Sun should not surprise us, since the gravitational
attraction of the sun is very much stronger and the escape speed is very
high about 620 km/s.

4.9 Satellites

A body moving in an orbit around a planet is called satellite. The
moon is the natural satellite of the Earth. It moves around the Earth once
in 27.3 days in an approximate circular orbit of radius 3.85 × 105 km.
The first artificial satellite Sputnik was launched in 1956. India launched
its first satellite Aryabhatta on April 19, 1975.
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4.9.1 Orbital velocity

Artificial satellites are made to revolve in an orbit at a height of
few hundred kilometres. At this altitude, the friction due to air is
negligible. The satellite is carried by a rocket to the desired height and
released horizontally with a high velocity, so that it remains moving in
a nearly circular orbit.

The horizontal velocity that has to be imparted to a satellite at the
determined height so that it makes a circular orbit around the planet is
called orbital velocity.

Let us assume that a satellite of mass m moves around the Earth
in a circular orbit of radius r with uniform speed vo. Let the satellite be
at a height h from the surface of the Earth. Hence, r = R+h, where R
is the radius of the Earth.

The centripetal force required to keep the satellite in circular

orbit is F = 
2 2

o omv mv
 = 

r R +h

The gravitational force between the Earth and the satellite is

F = 2 2

GMm GMm
 = 

r (R + h)

For the stable orbital motion,
2

o
2

mv GMm
 = 

R + h (R +h)

vo = 
GM
R+h

Since the acceleration due to

gravity on Earth’s surface is g = 
2

GM

R
,

vo = 
2gR

R+h

If the satellite is at a height of few hundred kilometres
(say 200 km), (R+h) could be replaced by R.

∴ orbital velocity, vo = gR

If the horizontal velocity (injection velocity) is not equal to the
calculated value, then the orbit of the satellite will not be circular. If the

h

R

r

Earthvo

Fig. 4.13 Orbital Velocity
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injection velocity is greater than the calculated value but not greater

than the escape speed (ve = 2 vo), the satellite will move along an elliptical

orbit. If the injection velocity exceeds the escape speed, the satellite will
not revolve around the Earth and will escape into the space. If the
injection velocity is less than the calculated value, the satellite will fall
back to the Earth.

4.9.2 Time period of a satellite

Time taken by the satellite to complete one revolution round the
Earth is called time period.

Time period, T = 
circumference of the orbit

orbital velocity

T =  
o o

2πr 2π(R +h)
= 

v v
 where r is the radius of the orbit which is equal

to (R+h).

T = 2π (R+h) 
R + h
GM

o
GM

v =
R+h

⎡ ⎤
⎢ ⎥
⎣ ⎦
∵

T = 2π 
3(R+h)

GM

As GM = gR2,  T = 2π 
3

2

(R+h)

gR

If the satellite orbits very close to the Earth, then h << R

∴ T = 2π 
R

g

4.9.3 Energy of an orbiting satellite

A satellite revolving in a circular orbit round the Earth possesses
both potential energy and kinetic energy. If h is the height of the satellite
above the Earth’s surface and R is the radius of the Earth, then the
radius of the orbit of satellite is r = R+h.

If m is the mass of the satellite, its potential energy is,

EP = 
-GMm -GMm

 =  
r (R + h)

where M is the mass of the Earth. The satellite moves with an orbital

velocity of vo = 
GM

(R+h)
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Hence, its kinetic energy is,  EK = 21
2 omv EK = 

GMm
2(R+h)

The total energy of the satellite is, E = EP + EK

E = − 
GMm

2(R+h)

The negative value of the total energy indicates that the satellite
is bound to the Earth.

4.9.4 Geo–stationary satellites

A geo-stationary satellite is a particular type used in television and
telephone communications. A number of communication satellites which
appear to remain in fixed positions at a specified height above the equator
are called synchronous satellites or geo-stationary satellites. Some
television programmes or events occuring in other countries are often
transmitted ‘live’ with the help of these satellites.

For a satellite to appear fixed at a position above a certain place
on the Earth, its orbital period around the Earth must be exactly equal
to the rotational period of the Earth about its axis.

Consider a satellite of mass m moving in a circular orbit around the
Earth at a distance r from the centre of the Earth. For synchronisation, its
period of revolution around the Earth must be equal to the period of rotation
of the Earth (ie) 1 day = 24 hr = 86400 seconds.

The speed of the satellite in its orbit is

v = 
Circumference of orbit

Time period

v = 
2π r

T

The centripetal force is F = 
2mv

r

∴ F = 
2

2

4mπ r

T
The gravitational force on the satellite due to the Earth is

2

GMm
F =

r

For the stable orbital motion 
2

2

4mπ r

T
 = 2

GMm

r
  (or)  r3 = 

2

2

GMT

4π
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We know that, g = 2

GM

R

∴ r3 = 
2 2

2

gR T

4π
The orbital radius of the geo- stationary satellite is, r = 

1/32 2

2

gR T

4π
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

This orbit is called parking orbit of the satellite.

Substituting T = 86400 s, R = 6400 km and g = 9.8 m/s2, the
radius of the orbit of geo-stationary satellite is calculated as 42400 km.

∴ The height of the geo-stationary satellite above the surface of
the Earth is h = r − R = 36000 km.

If a satellite is parked at this height, it appears to be stationary.
Three satellites spaced at 120o intervals each above Atlantic, Pacific and
Indian oceans provide a worldwide communication network.

4.9.5 Polar satellites

The polar satellites revolve around the Earth in a north−south
orbit passing over the poles as the Earth spins about its north − south
axis.

The polar satellites positioned nearly 500 to 800 km above the
Earth travels pole to pole in 102 minutes. The polar orbit remains fixed
in space as the Earth rotates inside the orbit. As a result, most of the
earth’s surface crosses the satellite in a polar orbit. Excellent coverage
of the Earth is possible with this polar orbit. The polar satellites are
used for mapping and surveying.

4.9.6 Uses of satellites

(i) Satellite communication

Communication satellites are used to send radio, television and
telephone signals over long distances. These satellites are fitted with
devices which can receive signals from an Earth – station and transmit
them in different directions.

(ii) Weather monitoring

Weather satellites are used to photograph clouds from space and
measure the amount of heat reradiated from the Earth. With this
information scientists can make better forecasts about weather. You
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might have seen the aerial picture of our country taken by the satellites,
which is shown daily in the news bulletin on the television and in the
news papers.

(iii) Remote sensing

Collecting of information about an object without physical contact
with the object is known as remote sensing. Data collected by the
remote sensing satellities can be used in agriculture, forestry, drought
assessment, estimation of crop yields, detection of potential fishing zones,
mapping and surveying.

(iv) Navigation satellites

These satellites help navigators to guide their ships or planes in
all kinds of weather.

4.9.7 Indian space programme

India recognised the importance of space science and technology
for the socio-economic development of the society soon after the launch
of Sputnik by erstwhile USSR in 1957. The Indian space efforts started
in 1960 with the establishment of Thumba Equatorial Rocket Launching
Station near Thiruvananthapuram for the investigation of ionosphere.
The foundation of space research in India was laid by Dr. Vikram
Sarabai, father of the Indian space programme. Initially, the space
programme was carried out by the Department of Atomic Energy. A
separate Department of Space (DOS) was established in June 1972.
Indian Space Research Organisation (ISRO) under DOS executes space
programme through its establishments located at different places in
India (Mahendragiri in Tamil Nadu, Sriharikota in Andhra Pradesh,
Thiruvananthapuram in Kerala, Bangalore in Karnataka, Ahmedabad in
Gujarat, etc...). India is the sixth nation in the world to have the capability
of designing, constructing and launching a satellite in an Earth orbit.
The main events in the history of space research in India are given below:

Indian satellites

1. Aryabhatta - The first Indian satellite was launched on April 19,

1975.

2. Bhaskara - 1
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3. Rohini

4. APPLE - It is the abbreviation of Ariane Passenger Pay Load

Experiment. APPLE was the first Indian communication satellite put in

geo - stationary orbit.

5. Bhaskara - 2

6. INSAT - 1A, 1B, 1C, 1D, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, 3E

(Indian National Satellite). Indian National Satellite System is a joint

venture of Department of Space, Department of Telecommunications,

Indian Meteoro-logical Department and All India Radio and Doordarshan.

7. SROSS - A, B, C and D (Stretched Rohini Satellite Series)

8. IRS - 1A, 1B, 1C, 1D, P2, P3, P4, P5, P6 (Indian Remote Sensing

Satellite)

Data from IRS is used for various applications like drought

monitoring, flood damage assessment, flood risk zone mapping, urban

planning, mineral prospecting, forest survey etc.

9. METSAT (Kalpana - I) - METSAT is the first exclusive

meteorological satellite.

10. GSAT-1, GSAT-2 (Geo-stationary Satellites)

Indian Launch Vehicles (Rockets)

1. SLV - 3 - This was India’s first experimental Satellite Launch
Vehicle. SLV - 3 was a 22 m long, four stage vehicle weighing 17 tonne.
All its stages used solid propellant.
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2. ASLV - Augmented Satellite Launch Vehicle. It was a five stage
solid propellant vehicle, weighing about 40 tonnes and of about 23.8 m
long.

3. PSLV - The Polar Satellite Launch Vehicle has four stages using
solid and liquid propellant systems alternately. It is 44.4 m tall weighing
about 294 tonnes.

4. GSLV - The Geosynchronous Satellite Launch Vehicle is a 49
m tall, three stage vehicle weighing about 414 tonnes capable of placing
satellite of 1800 kg.

India’s first mission to moon

ISRO has a plan to send an unmanned spacecraft to moon in the
year 2008. The spacecraft is named as CHANDRAYAAN-1. This programme
will be much useful in expanding scientific knowledge about the moon,
upgrading India’s technological capability and providing challenging
opportunities for planetory research for the younger generation. This
journey to moon will take 5½ days.

CHANDRAYAAN - 1 will probe the moon by orbiting it at the lunar
orbit of altitude 100 km. This mission to moon will be carried by PSLV
rocket.

4.9.8 Weightlessness

Television pictures and photographs show astronauts and objects
floating in satellites orbiting the Earth. This apparent weightlessness is
sometimes explained wrongly as zero–gravity condition. Then, what should
be the reason?

Consider the astronaut standing on the ground. He exerts a force
(his weight) on the ground. At the same time, the ground exerts an
equal and opposite force of reaction on the astronaut. Due to this force
of reaction, he has a feeling of weight.

When the astronaut is in an orbiting satellite, both the satellite
and astronaut have the same acceleration towards the centre of the
Earth. Hence, the astronaut does not exert any force on the floor of the
satellite. So, the floor of the satellite also does not exert any force of
reaction on the astronaut. As there is no reaction, the astronaut has a
feeling of weightlessness.
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4.9.9 Rockets −−−−− principle

A rocket is a vehicle which propels itself by ejecting a

part of its mass. Rockets are used to carry the payloads

(satellites). We have heard of the PSLV and GSLV rockets.

All of them are based on Newton’s third law of motion.

Consider a hollow cylindrical vessel closed on both
ends with a small hole at one end, containing a mixture of
combustible fuels (Fig. 4.14). If the fuel is ignited, it is
converted into a gas under high pressure. This high pressure
pushes the gas through the hole with an enormous force.
This force represents the action A. Hence an opposite force,
which is the reaction R, will act on the vessel and make it
to move forward.

The force (Fm) on the escaping mass of gases and
hence the rocket is proportional to the product of the mass

of the gases discharged per unit time 
dm

dt

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and the velocity

with which they are expelled (v)

(i.e) Fm α 
dm

dt
 v   ( v)α⎡ ⎤

⎢ ⎥⎣ ⎦
∵ d
F m

dt

This force is known as momentum thrust. If the
pressure (Pe) of the escaping gases differs from the pressure
(Po) in the region outside the rocket, there is an additional thrust called
the velocity thrust (Fv) acts. It is given by Fv = A (Pe − Po) where A is the
area of the nozzle through which the gases escape. Hence, the total
thrust on the rocket is F = Fm + Fv

4.9.10 Types of fuels

The hot gases which are produced by the combustion of a mixture of
substances are called propellants. The mixture contains a fuel which burns
and an oxidizer which supplies the oxygen necessary for the burning of
the fuel. The propellants may be in the form of a solid or liquid.

Fig. 4.14

Principle

of Rocket

F

F

A

R
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4.9.11 Launching a satellite

To place a satellite at a height of 300 km, the launching velocity
should atleast be about 8.5 km s–1 or 30600 kmph. If this high velocity
is given to the rocket at the surface of the Earth, the rocket will be
burnt due to air friction. Moreover, such high velocities cannot be
developed by single rocket. Hence, multistage rockets are used.

To be placed in an orbit, a satellite must be raised to the desired
height and given the correct speed and direction by the launching rocket
(Fig. 4.15).

At lift off, the rocket, with a manned or unmanned satellite on top,
is held down by clamps on the launching pad. Now the exhaust gases
built−up an upward thrust which exceeds the rocket’s weight. The clamps
are then removed by remote control and the rocket accelerates upwards.

4.15 Launching a satellite

Satellite

Satellite

Third Stage

Second Stage

Second Stage

Combustion
chamber

First Stage

First Stage

Combustion
chamber
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To penetrate the dense lower part of the atmosphere, initially the
rocket rises vertically and then tilted by a guidance system. The first stage
rocket, which may burn for about 2 minutes producing a speed of
3 km s–1, lifts the vehicle to a height of about 60 km and then separates
and falls back to the Earth.

The vehicle now goes to its orbital height, say 160 km, where it
moves horizontally for a moment. Then the second stage of the rocket
fires and increases the speed that is necessary for a circular orbit. By
firing small rockets with remote control system, the satellite is separated
from the second stage and made to revolve in its orbit.

4.10  The Universe

The science which deals with the study of heavenly bodies in
respect of their motions, positions and compositions is known as
astronomy. The Sun around which the planets revolve is a star. It is one
of the hundred billion stars that comprise our galaxy called the Milky
Way. A vast collection of stars held together by mutual gravitation is
called a galaxy. The billions of such galaxies form the universe. Hence,
the Solar system, stars and galaxies are the constituents of the universe.

4.10.1 The Solar system

The part of the universe in which the Sun occupies the central
position of the system holding together all the heavenly bodies such as
planets, moons, asteroids, comets ... etc., is called Solar system. The
gravitational attraction of the Sun primarily governs the motion of the
planets and other heavenly bodies around it. Mercury, Venus, Earth,
Mars, Jupiter, Saturn, Uranus, Neptune and Pluto are the nine planets
that revolve around the Sun. We can see the planet Venus in the early
morning in the eastern sky or in the early evening in the western sky.
The planet Mercury can also be seen sometimes after the sunset in the
West or just before sunrise in the East. From the Earth, the planet Mars
was visibly seen on 27th August 2003. The planet Mars came closer to
the Earth after 60,000 years from a distance of 380 × 106 km to a
nearby distance of 55.7 × 106 km. It would appear again in the year
2287.

Some of the well known facts about the solar system have been
summarised in the Table 4.1.
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4.10.2 Planetary motion

The ancient astronomers contributed a great deal by identifying
the planets in the solar system and carefully plotting the variations in
their positions of the sky over the periods of many years. These data
eventually led to models and theories of the solar system.

The first major theory, called the Geo-centric theory was developed
by a Greek astronomer, Ptolemy. The Earth is considered to be the
centre of the universe, around which all the planets, the moons and the
stars revolve in various orbits. The great Indian Mathematician and
astronomer Aryabhat of the 5th century AD stated that the Earth rotates
about its axis. Due to lack of communication between the scientists of
the East and those of West, his observations did not reach the
philosophers of the West.

Nicolaus Copernicus, a Polish astronomer proposed a new theory
called Helio-centric theory. According to this theory, the Sun is at rest
and all the planets move around the Sun in circular orbits. A Danish
astronomer Tycho Brahe made very accurate observations of the motion
of planets and a German astronomer Johannes Kepler analysed Brahe’s
observations carefully  and proposed the empirical laws of planetary
motion.

Kepler’s laws of planetary motion

(i) The law of orbits

Each planet moves in an elliptical orbit with the Sun at one focus.

A is a planet revolving round
the Sun. The position P of the planet
where it is very close to the Sun is
known as perigee and the position
Q of the planet where it is farthest
from the Sun is known as apogee.

(ii) The law of areas

The line joining the Sun and the planet (i.e radius vector) sweeps
out equal areas in equal interval of times.

The orbit of the planet around the Sun is as shown in Fig.  4.17.
The areas A1 and A2 are swept by the radius vector in equal times. The
planet covers unequal distances S1 and S2 in equal time. This is due to

Fig. 4.16 Law of orbits

A

P Q

Sun

Major axis
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the variable speed of the planet.
When the planet is closest to the
Sun, it covers greater distance
in a given time. Hence, the speed
is maximum at the closest
position. When the planet is far
away from the Sun, it covers
lesser distance in the same time. Hence the speed is minimum at the
farthest position.

Proof for the law of areas

Consider a planet moving from A to B. The radius vector OA
sweeps a small angle dθ  at the centre in a small interval of time dt.

From the Fig. 4.18, AB = rd θ. The small area dA swept by the
radius is,

dA = 
1
2

 × r × rdθ

Dividing by dt on both sides

2dA 1 dθ
 = ×r ×

dt 2 dt

2dA 1
 = r ω

dt 2
 where ω is

the angular velocity.

The angular momentum is given by L = mr2ω

∴ r2ω = 
L
m

Hence, 
dA
dt

 = 
1 L

 
2 m

Since the line of action of gravitational force passes through the
axis, the external torque is zero. Hence, the angular momentum is
conserved.

 
dA
dt

∴   = constant.

(i.e) the area swept by the radius vector in unit time is the same.

(iii) The law of periods

The square of the period of revolution of a planet around the Sun

P
Sun

Higher Speed

Lower Speed

S1
S2

A1 A2

Fig. 4.17 Law of areas

d
r

A

B

O

Fig. 4.18 Proof for the law

of areas
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is directly proportional to the cube of the mean distance between the
planet and the Sun.

(i.e) T 2 α r3

2

3

T

r
 = constant

Proof for the law of periods

Let us consider a planet P of mass m moving with the velocity v
around the Sun of mass M in a circular orbit of radius r.

The gravitational force of attraction of the Sun on the planet is,

F = 2

GMm

r

The centripetal force is, F = 
2mv

r
Equating the two forces

2

2

mv GMm
 = 

r r

2 GM
v  = 

r .....(1)

If T be the period of revolution of the
planet around the Sun, then

v = 
2πr
T

.....(2)

Substituting (2) in (1) 
2 2

2

4π r GM
= 

rT
3

2 2

r GM
= 

T 4π

GM is a constant for any planet

∴ T 2 α r 3

4.10.3 Distance of a heavenly body in the Solar system

The distance of a planet can be accurately measured by the radar
echo method. In this method, the radio signals are sent towards the
planet from a radar. These signals are reflected back from the surface
of a planet. The reflected signals or pulses are received and detected on

r

Sun

v Planet

Fig. 4.19 Proof for the

law of periods
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Earth. The time t taken by the signal in going to the planet and coming
back to Earth is noted. The signal travels with the velocity of the light c.

The distance s of the planet from the Earth is given by s = 
2

ct

4.10.4 Size of a planet

It is possible to determine the size of any planet
once we know the distance S of the planet. The image of
every heavenly body is a disc when viewed through a
optical telescope. The angle θ between two extreme points
A and B on the disc with respect to a certain point on the
Earth is determined with the help of a telescope. The
angle θ is called the angular diameter of the planet. The
linear diameter d of the planet is then given by

d = distance × angular diameter

d = s × θ

4.10.5 Surface temperatures of the planets

The planets do not emit light of their own. They reflect the Sun’s
light that falls on them. Only a fraction of the solar radiation is absorbed
and it heats up the surface of the planet. Then it radiates energy. We
can determine the surface temperature T of the planet using Stefan’s
law of radiation E = σ T4 where σ is the Stefan’s constant and E is the
radiant energy emitted by unit area in unit time.

In general, the temperature of the planets decreases as we go
away from the Sun, since the planets receive less and less solar energy
according to inverse square law. Hence, the planets farther away from
the Sun will be colder than those closer to it. Day temperature of
Mercury is maximum (340oC) since it is a planet closest to the Sun and
that of Pluto is minimum (−240oC). However Venus is an exception as
it has very thick atmosphere of carbon−di−oxide. This acts as a blanket
and keeps its surface hot. Thus the temperature of Venus is comparitively
large of the order of 480oC.

4.10.6 Mass of the planets and the Sun

In the universe one heavenly body revolves around another massive
heavenly body. (The Earth revolves around the Sun and the moon revolves

A B
d

P

S

Earth

Fig. 4.20 Size
of a planet
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around the Earth). The centripetal force required by the lighter body to
revolve around the heavier body is provided by the gravitational force of
attraction between the two. For an orbit of given radius, the mass of the
heavier body determines the speed with which the lighter body must
revolve around it. Thus, if the period of revolution of the lighter body
is known, the mass of the heavier body can be determined. For example,
in the case of Sun − planet system, the mass of the Sun M can be
calculated if the distance of the Sun from the Earth r, the period of
revolution of the Earth around the Sun T and the gravitational constant

G are known using the relation  M = 
2 3

2

4π r
 

G T

4.10.7 Atmosphere

The ratio of the amount of solar energy reflected by the planet to
that incident on it is known as albedo. From the knowledge of albedo,
we get information about the existence of atmosphere in the planets.
The albedo of Venus is 0.85. It reflects 85% of the incident light, the
highest among the nine planets. It is supposed to be covered with thick
layer of atmosphere. The planets Earth, Jupiter, Saturn, Uranus and
Neptune have high albedoes, which indicate that they possess
atmosphere. The planet Mercury and the moon reflect only 6% of the
sunlight. It indicates that they have no atmosphere, which is also
confirmed by recent space probes.

There are two factors which determine whether the planets have
atmosphere or not. They are (i) acceleration due to gravity on its surface
and (ii) the surface temperature of the planet.

The value of g for moon is very small (¼th of the Earth).
Consequently the escape speed for moon is very small. As the average
velocity of the atmospheric air molecules at the surface temperature of
the moon is greater than the escape speed, the air molecules escape.

Mercury has a larger value of g than moon. Yet there is no
atmosphere on it. It is because, Mercury is very close to the Sun and
hence its temperature is high. So the mean velocity of the gas molecules
is very high. Hence the molecules overcome the gravitational attraction
and escape.
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4.10.8 Conditions for life on any planet

The following conditions must hold for plant life and animal life to
exist on any planet.

(i) The planet must have a suitable living temperature range.

(ii) The planet must have a sufficient and right kind of atmosphere.

(iii) The planet must have considerable amount of water on its
surface.

4.10.9 Other objects in the Solar system

(i) Asteroids

Asteroids are small heavenly bodies which orbit round the Sun
between the orbits of Mars and Jupiter. They are the pieces of much
larger planet which broke up due to the gravitational effect of Jupiter.
About 1600 asteroids are revolving around the Sun. The largest among
them has a diameter of about 700 km is called Ceres. It circles the Sun
once in every 4½ years.

(ii) Comets

A comet consists of a small mass of rock−like material surrounded
by large masses of substances such as water, ammonia and methane.
These substances are easily vapourised. Comets move round the Sun in
highly elliptical orbits and most of the time they keep far away from the
Sun. As the comet approaches the Sun, it is heated by the Sun’s radiant
energy and vapourises and forms a head of about 10000 km in diameter.
The comet also develops a tail pointing away from the Sun. Some comets
are seen at a fixed regular intervals of time. Halley’s comet is a periodic
comet which made its appearance in 1910 and in 1986. It would appear
again in 2062.

(iii) Meteors and Meteorites

The comets break into pieces as they approach very close to the
Sun. When Earth’s orbit cross the orbit of comet, these broken pieces
fall on the Earth. Most of the pieces are burnt up by the heat generated
due to friction in the Earth’s atmosphere. They are called meteors
(shooting stars). We can see these meteors in the sky on a clear moonless
night.
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Some bigger size meteors may survive the heat produced by friction
and may not be completely burnt. These blazing objects which manage
to reach the Earth are called meteorites.

The formation of craters on the surface of the moon, Mercury and
Mars is due to the fact that they have been bombarded by large number
of meteorites.

4.10.10 Stars

A star is a huge, more or less spherical mass of glowing gas
emitting large amount of radiant energy. Billions of stars form a galaxy.
There are three types of stars. They are (i) double and multiple stars (ii)
intrinsically variable stars and (iii) Novae and super novae.

In a galaxy, there are only a few single stars like the Sun. Majority
of the stars are either double stars (binaries) or multiple stars. The
binary stars are pairs of stars moving round their common centre of
gravity in stable equilibrium. An intrinsically variable star shows variation
in its apparent brightness. Some stars suddenly attain extremely large
brightness, that they may be seen even during daytime and then they
slowly fade away. Such stars are called novae. Supernovae is a large
novae.

The night stars in the sky have been given names such as Sirius
(Vyadha), Canopas (Agasti), Spica (Chitra), Arcturus (Swathi), Polaris
(Dhruva) ... etc. After the Sun, the star Alpha Centauri is nearest to
Earth.

Sun

The Sun is extremely hot and self−luminous body. It is made of
hydrogeneous matter. It is the star nearest to the Earth. Its mass is
about 1.989 × 1030 kg. Its radius is about 6.95 × 108 m. Its distance
from the Earth is 1.496 × 1011 m. This is known as astronomical
unit (AU). Light of the sun takes 8 minutes 20 seconds to reach the
Earth. The gravitational force of attraction on the surface of the Sun is
about 28 times that on the surface of the Earth.

Sun rotates about its axis from East to West. The period of
revolution is 34 days at the pole and 25 days at the equator. The density
of material is one fourth that of the Earth. The inner part of the Sun
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is a bright disc of temperature 14 × 106 K known as photosphere. The
outer most layer of the Sun of temperature 6000 K is called chromosphere.

4.10.11 Constellations

Most of the stars appear to be grouped together forming interesting
patterns in the sky. The configurations or groups of star formed in the
patterns of animals and human beings are called constellations. There
are 88 constellations into which the whole sky has been divided.

If we look towards the northern sky on a clear moonless night
during the months of July and August, a group of seven bright stars
resembling a bear, the four stars forming a quadrangle form the body,
the remaining three stars make the tail and some other faint stars form
the paws and head of the bear. This constellation is called Ursa Major
or Saptarishi or Great Bear. The constellation Orion resembles the figure
of a hunter and Taurus (Vrishabha) resembles the shape of a bull.

4.10.12 Galaxy

A large band of stars, gas and dust particles held together by
gravitational forces is called a galaxy. Galaxies are really complex in
nature consisting of billions of stars. Some galaxies emit a comparatively
small amount of radio radiations compared to the total radiations emitted.
They are called normal galaxies. Our galaxy Milky Way is a normal
galaxy spiral in shape.

The nearest galaxy to us known as Andromeda galaxy, is also a
normal galaxy. It is at a distance of 2 × 106 light years. (The distance
travelled by the light in one year [9.467 × 1012 km] is called light year).
Some galaxies are found to emit millions of times more radio waves
compared to normal galaxies. They are called radio galaxies.

4.10.13 Milky Way galaxy

Milky Way looks like a stream of milk across the sky. Some of the
important features are given below.

(i) Shape and size

Milky Way is thick at the centre and thin at the edges. The
diameter of the disc is 105 light years. The thickness of the Milky Way
varies from 5000 light years at the centre to 1000 light years at the
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position of the Sun and to
500 light years at the edges.
The Sun is at a distance of
about 27000 light years
from the galactic centre.

(ii) Interstellar matter

The interstellar space
in the Milky Way is filled
with dust and gases called
inter stellar matter. It is found that about 90% of the matter is in the
form of hydrogen.

(iii) Clusters

Groups of stars held by mutual gravitational force in the galaxy
are called star clusters. A star cluster moves as a whole in the galaxy.
A group of 100 to 1000 stars is called galactic cluster. A group of about
10000 stars is called globular cluster.

(iv) Rotation

The galaxy is rotating about an axis passing through its centre. All
the stars in the Milky Way revolve around the centre and complete one
revolution in about 300 million years. The Sun, one of the many stars
revolves around the centre with a velocity of 250 km/s and its period
of revolution is about 220 million years.

(v) Mass

The mass of the Milky Way is estimated to be 3 × 1041 kg.

4.10.14 Origin of the Universe

The following three theories have been proposed to explain the
origin of the Universe.

(i) Big Bang theory

According to the big bang theory all matter in the universe was
concentrated as a single extremely dense and hot fire ball. An explosion
occured about 20 billion years ago and the matter was broken into
pieces, thrown off in all directions in the form of galaxies. Due to

< >105 Light years

Sun Galactic centre

< >
27,000
Light years

Fig. 4.21 Milky Way galaxy
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continuous movement more and more galaxies will go beyond the
boundary and will be lost. Consequently, the number of galaxies per
unit volume will go on decreasing and ultimately we will have an empty
universe.

(ii) Pulsating theory

Some astronomers believe that if the total mass of the universe is
more than a certain value, the expansion of the galaxies would be
stopped by the gravitational pull. Then the universe may again contract.
After it has contracted to a certain critical size, an explosion again
occurs. The expansion and contraction repeat after every eight billion
years. Thus we may have alternate expansion and contraction giving
rise to a pulsating universe.

(iii) Steady state theory

According to this theory, new galaxies are continuously created
out of empty space to fill up the gap caused by the galaxies which
escape from the observable part of the universe. This theory, therefore
suggests that the universe has always appeared as it does today and the
rate of expansion has been the same in the past and will remain the
same in future. So a steady state has been achieved so that the total
number of galaxies in the universe remains constant.
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Solved Problems

4.1 Calculate the force of attraction between two bodies, each of mass
200 kg and 2 m apart on the surface of the Earth. Will the force
of attraction be different, if the same bodies are placed on the
moon, keeping the separation same?

Data : m
1
 = m

2
 = 200 kg ; r = 2 m ; G = 6.67 × 10-11 N m2 kg-2;

F = ?

Solution : F = 
-11

1 2
2 2

G m m 6.67 ×10 × 200× 200
= 

r (2)

Force of attraction, F = 6.67 × 10-7 N

The force of attraction on the moon will remain same, since G is the
universal constant and the masses do not change.

4.2 The acceleration due to gravity at the moon’s surface is 1.67 m s–2. If
the radius of the moon is 1.74 × 106 m, calculate the mass of the
moon.

Data : g = 1.67 m s–2 ; R = 1.74 × 106 m ;

G = 6.67 × 10–11 N m2 kg-2 ; M = ?

Solution : M = 
2 6 2

11

1.67 (1.74 10 )
= 

6.67 10

gR

G −

× ×
×

M = 7.58 × 1022 kg

4.3 Calculate the height above the Earth’s surface at which the value
of acceleration due to gravity reduces to half its value on the
Earth’s surface. Assume the Earth to be a sphere of radius
6400 km.

Data : h = ?; g
h
 = 

g
2

; R = 6400 x 103 m

Solution :
hg

g = 
22

2

R R
=

R + h(R + h)
⎛ ⎞
⎜ ⎟
⎝ ⎠

2

2
g R

g R h
⎛ ⎞= ⎜ ⎟+⎝ ⎠

R 1
=

R + h 2
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h = (√2-1) R = (1.414 - 1) 6400 × 103

h = 2649.6 × 103 m

At a height of 2649.6 km from the Earth’s surface, the acceleration
due to gravity will be half of its value at the Earth’s surface.

4.4 Determine the escape speed of a body on the moon. Given : radius
of the moon is 1.74 × 106 m and mass of the moon is
7.36 × 1022 kg.

Data : G = 6.67 × 10-11 N m2 kg-2; R = 1.74 × 106 m ;
M = 7.36 × 1022 kg; v

e
 = ?

Solution : v
e
 = 

-1 1 2 2

6

2G M 2 × 6 .6 7 × 1 0 × 7 .3 6 × 1 0
=

R 1 .7 4 × 1 0

v
e
 = 2.375 km s–1

4.5 The mass of the Earth is 81 times that of the moon and the
distance from the centre of the Earth to that of the moon is about
4 × 105 km. Calculate the distance from the centre of the Earth
where the resultant gravitational force becomes zero when a
spacecraft is launched from the Earth to the moon.

Solution :

Let the mass of the spacecraft be m. The gravitational force on the
spacecraft at S due to the Earth is opposite in direction to that of the
moon. Suppose the spacecraft S is at a distance x from the centre
of the Earth and at a distance of (4 × 105 - x) from the moon.

∴ 
mE

2 5 2

GM mGM m
=

x (4 × 10  - x)

E

m

M

M = 81 = 
2

5 2

x

(4 × 10  - x)

∴ x = 3.6 × 105 km.

The resultant gravitational force is zero at a distance of
3.6 × 105 km from the centre of the Earth. The resultant force on S
due to the Earth acts towards the Earth until 3.6 × 105 km is reached.
Then it acts towards the moon.

S

FmMm

ME

FE

x
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4.6 A stone of mass 12 kg falls on the Earth’s surface. If the mass of
the Earth is about 6 × 1024 kg and acceleration due to gravity is
9.8 m s-2, calculate the acceleration produced on the Earth by the
stone.

Data : m = 12 kg; M = 6 × 1024 kg;

g = a
s
 = 9.8 m s-2; a

E
 = ?

Solution : Let F be the gravitational force between the stone and
the Earth.

The acceleration of the stone (g) a
S
 = F/m

The acceleration of the Earth, a
E
 = F/M

E
24

S

a m 12
= = =

a M 6 ×10  2 × 10–24

a
E
 = 2 × 10–24 × 9.8

a
E
 = 19.6 × 10–24 m s–2

4.7 The maximum height upto which astronaut can jump on the Earth
is 0.75 m. With the same effort, to what height can he jump on
the moon? The mean density of the moon is (2/3) that of the
Earth and the radius of the moon is (1/4) that of the Earth.

Data :  ρ
m

 = 
2
3

 ρ
E
; R

m
 = 

1
4

R
E
;

h
E
 = 0.75 m ; h

m
 = ?

Solution :  The astronaut of mass m jumps a height h
E
 on the Earth

and a height h
m

 on the moon. If he gives himself the same kinetic
energy on the Earth and on the moon, the potential energy gained
at h

E
 and h

m
 will be the same.

∴ mgh = constant

mg
m

 h
m

 = mg
E
 h

E

m E

E m

h g
=

h g
... (1)

For the Earth, g
E
 = E

2
E

GM 4
=

3R
π G R

E 
ρ

E
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For the moon, g
m
 = m

2
m

GM 4
=

3R
 π G R

m 
ρ

m

∴ 
ρ
ρ

E E E

m m m

g R
= .

g R ... (2)

Equating (1) and (2)

h
m

 = 
ρ
ρ

E E

m m

R

R  × h
E

h
m

 = ρ
1 2 ρ
4 3

E E

E E

R

R
× × 0.75

h
m

 = 4.5 m

4.8 Three point masses, each of mass m, are placed at the vertices of
an equilateral triangle of side a. What is the gravitational field and
potential due to the three masses at the centroid of the triangle.

Solution :

The distance of each mass from the centroid
0 is OA = OB = OC

From the ∆ ODC, cos 30o = 
a/2
OC

∴ OC = o

a/2 a =
3cos 30

Similarly, OB = a
3 and OA= a

3

(i) The gravitational field E = 2

GM

r

∴ Field at O due to A is, E
A
 = 2

3GM

a
(towards A)

Field at O due to B is, E
B
 = 2

3GM

a
(towards B)

Field at O due to C is, E
C
 = 2

3GM

a
(towards C)

A

B C

EA

EB

EC

D

ER

O 

30o

Aa / 2
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The resultant field due to E
B
 and E

C
 is

E
R
 = √ E

B

2 + E
C

2 + 2E
B
E

C
 cos 120o

E
R
 = √ E

B

2 + E
B

2 - E
B

2  = E
B

[∵  E
B
  = E

C
]

The resultant field E
R
 = 2

3GM

a
 acts along OD.

Since E
A
 along OA and E

R
 along OD are equal and opposite, the net

gravitational field is zero at the centroid.

(ii) The gravitational potential is, v = – 
GM

r
Net potential at ‘O’ is

v = 
GM GM GM

- - -
a/ 3 a/ 3 a/ 3

 = 
GM GM GM

- 3
a a a

⎛ ⎞+ +⎜ ⎟
⎝ ⎠  = –3√3 

GM
a

4.9 A geo-stationary satellite is orbiting the Earth at a height of 6R
above the surface of the Earth. Here R is the radius of the Earth.
What is the time period of another satellite at a height of 2.5R
from the surface of the Earth?

Data : The height  of the geo-stationary satellite from the Earth’s
surface, h = 6R

The height of another satellite from the Earth’s surface,
h = 2.5R

Solution : The time period of a satellite is T = 2π 
3(R+h)

GM

∴ T α (R+h)3

For geo-stationary satellite, T
1
 α √(R + 6R)3

T
1
 α √(7R)3 ... (1)

For another satellite, T
2
 α √(R + 2.5R)3

T
2
 α √(3.5R)3 ...(2)

Dividing (2) by (1)
3

2
3

1

T (3.5R) 1
= =

T (7R) 2 2

T
2
 = 

1T 24
 = 

2 2 2 2

T
2
 = 8 hours 29 minutes [∵  T

1
 = 24 hours)
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Self evaluation
(The questions and problems given in this self evaluation are only samples.
In the same way any question and problem could be framed from the text
matter. Students must be prepared to answer any question and problem
from the text matter, not only from the self evaluation.)

4.1 If the distance between two masses is doubled, the gravitational
attraction between them

(a) is reduced to half (b) is reduced to a quarter

(c) is doubled (d) becomes four times

4.2 The acceleration due to gravity at a height (1/20)th the radius of
the Earth above the Earth’s surface is 9 m s-2. Its value at a point at
an equal distance below the surface of the Earth is

(a) 0 (b) 9 m s-2

(c) 9.8 m s-2 (d) 9.5 m s-2

4.3 The weight of a body at Earth’s surface is W. At a depth half way
to the centre of the Earth, it will be

(a) W (b) W/2

(c) W/4 (d) W/8

4.4 Force due to gravity is least at a latitude of

(a) 0o (b) 45o

(c) 60o (d) 90o

4.5 If the Earth stops rotating, the value of g at the equator will

(a) increase (b) decrease

(c) remain same (d) become zero

4.6 The escape speed on Earth is 11.2 km s–1. Its value for a planet
having double the radius and eight times the mass of the Earth is

(a) 11.2 km s–1 (b) 5.6 km s–1

(c) 22.4 km s–1 (d) 44.8 km s–1

4.7 If r represents the radius of orbit of satellite of mass m moving
around a planet of mass M. The velocity of the satellite is given by

(a) v2 =
GM

r
(b) v =

GM

r

(c) v2 = 
GMm

r
(d) v = 

Gm

r
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4.8 If the Earth is at one fourth of its present distance from the Sun, the
duration of the year will be
(a) one fourth of the present year
(b) half the present year
(c) one - eighth the present year
(d) one - sixth the present year

4.9 Which of the following objects do not belong to the solar system?

(a) Comets (b) Nebulae

(c) Asteroids (d) Planets

4.10 According to Kepler’s law, the radius vector sweeps out equal areas
in equal intervals of time. The law is a consequence of the
conservation of

(a) angular momentum (b) linear momentum

(c) energy (d) all the above

4.11 Why is the gravitational force of attraction between the two bodies
of ordinary masses not noticeable in everyday life?

4.12 State the universal law of gravitation.

4.13 Define gravitational constant. Give its value, unit and dimensional
formula.

4.14 The acceleration due to gravity varies with (i) altitude and (ii) depth.
Prove.

4.15 Discuss the variation of g with latitude due to the rotation of the
Earth.

4.16 The acceleration due to gravity is minimum at equator and maximum
at poles. Give the reason.

4.17 What are the factors affecting the ‘g’ value?

4.18 Why a man can jump higher on the moon than on the Earth?

4.19 Define gravitational field intensity.

4.20 Define gravitational potential.

4.21 Define gravitational potential energy. Deduce an expression for it
for a mass in the gravitational field of the Earth.

4.22 Obtain an expression for the gravitational potential at a point.

4.23 Differentiate between inertial mass and gravitational mass.
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4.24 The moon has no atmosphere. Why?

4.25 What is escape speed? Obtain an expression for it.

4.26 What is orbital velocity? Obtain an expression for it.

4.27 What will happen to the orbiting satellite, if its velocity varies?

4.28 What are the called geo-stationary satellites?

4.29 Show that the orbital radius of a geo-stationary satellite is
36000 km.

4.30 Why do the astronauts feel weightlessness inside the orbiting
spacecraft?

4.31 Deduce the law of periods from the law of gravitation.

4.32 State and prove the law of areas based on conservation of angular
momentum.

4.33 State Helio-Centric theory.

4.34 State Geo-centric theory.

4.35 What is solar system?

4.36 State Kepler’s laws of planetary motion.

4.37 What is albedo?

4.38 What are asteroids?

4.39 What are constellations?

4.40 Write a note on Milky Way.

Problems

4.41 Two spheres of masses 10 kg and 20 kg are 5 m apart. Calculate
the force of attraction between the masses.

4.42 What will be the acceleration due to gravity on the surface of the

moon, if its radius is 
1
4

th the radius of the Earth and its mass is
1
80

th the mass of the Earth? (Take g as 9.8 m s-2)

4.43 The acceleration due to gravity at the surface of the moon is
1.67 m s-2. The mass of the Earth is about 81 times more massive
than the moon. What is the ratio of the radius of the Earth to that of
the moon?

4.44 If the diameter of the Earth becomes two times its present value
and its mass remains unchanged, then how would the weight of an
object on the surface of the Earth be affected?
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4.45 Assuming the Earth to be a sphere of uniform density, how much
would a body weigh one fourth down to the centre of the Earth, if it
weighed 250 N on the surface?

4.46 What is the value of acceleration due to gravity at an altitude of
500 km? The radius of the Earth is 6400 km.

4.47 What is the acceleration due to gravity at a distance from the centre
of the Earth equal to the diameter of the Earth?

4.48 What should be the angular velocity of the Earth, so that bodies
lying on equator may appear weightless? How many times this
angular velocity is faster than the present angular velocity?
(Given ; g = 9.8 m s-2 ; R = 6400 km)

4.49 Calculate the speed with which a body has to be projected vertically
from the Earth’s surface, so that it escapes the Earth’s gravitational
influence. (R = 6.4 × 103 km ; g = 9.8 m s–2)

4.50 Jupiter has a mass 318 times that of the Earth and its radius is
11.2 times the radius of the Earth. Calculate the escape speed of a
body from Jupiter’s surface. (Given : escape speed on Earth is 11.2
km/s)

4.51 A satellite is revolving in circular orbit at a height of 1000 km from
the surface of the Earth. Calculate the orbital velocity and time of
revolution. The radius of the Earth is 6400 km and the mass of the
Earth is 6 × 1024 kg.

4.52 An artificial satellite revolves around the Earth at a distance of
3400 km. Calculate its orbital velocity and period of revolution.
Radius of the Earth = 6400 km ; g = 9.8 m s-2.

4.53 A satellite of 600 kg orbits the Earth at a height of 500 km from its
surface. Calculate its (i) kinetic energy (ii) potential energy and
(iii) total energy ( M = 6 × 1024 kg ; R = 6.4 × 106 m)

4.54 A satellite revolves in an orbit close to the surface of a planet of
density 6300 kg m-3. Calculate the time period of the satellite. Take
the radius of the planet as 6400 km.

4.55 A spaceship is launched into a circular orbit close to the Earth’s
surface. What additional velocity has to be imparted to the spaceship
in the orbit to overcome the gravitational pull.
(R = 6400 km, g =  9.8 m s–2).
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Answers

4.1 (b) 4.2 (d) 4.3 (b)

4.4 (a) 4.5 (a) 4.6 (c)

4.7 (a) 4.8 (c) 4.9 (b)

4.10 (a)

4.41 53.36 × 10-11 N 4.42 1.96 m s-2

4.43 3.71 4.44 W/4

4.45 187.5 N 4.46 8.27 m s-2

4.47 2.45 m s-2 4.48 1.25 × 10-3 rad s–1; 17

4.49 11.2 km s–1 4.50 59.67 km s–1 ;

4.51 7.35 km s–1; 1 hour 45 minutes 19 seconds

4.52 6.4 km s–1; 9614 seconds

4.53 1.74 × 1010 J; -3.48 × 1010 J; -1.74 × 1010 J

4.54 4734 seconds 4.55 3.28 km s–1
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Matter is a substance, which has certain mass and occupies
some volume. Matter exists in three states namely solid, liquid and
gas. A fourth state of matter consisting of ionised matter of bare nuclei
is called plasma. However in our forth coming discussions, we restrict
ourselves to the first three states of matter. Each state of matter has
some distinct properties. For example a solid has both volume and
shape. It has elastic properties. A gas has the volume of the closed
container in which it is kept. A liquid has a fixed volume at a given
temperature, but no shape. These distinct properties are due to two
factors: (i) interatomic or intermolecular forces (ii) the agitation or
random motion of molecules due to temperature.

In solids, the atoms and molecules are free to vibrate about their
mean positions. If this vibration increases sufficiently, molecules will
shake apart and start vibrating in random directions. At this stage, the
shape of the material is no longer fixed, but takes the shape of its
container. This is liquid state. Due to increase in their energy, if the
molecules vibrate at even greater rates, they may break away from one
another and assume gaseous state. Water is the best example for this
changing of states. Ice is the solid form of water. With increase in
temperature, ice melts into water due to increase in molecular vibration.
If water is heated, a stage is reached where continued molecular
vibration results in a separation among the water molecules and
therefore steam is produced. Further continued heating causes the
molecules to break into atoms.

5.1 Intermolecular or interatomic
forces

Consider two isolated hydrogen
atoms moving towards each other as
shown in Fig. 5.1.

As they approach each other,
the following interactions are
observed.

5. Mechanics of Solids and Fluids

AA

Fig. 5.1 Electrical origin of

interatomic forces



208

Fig. 5.2. Variation of potential energy with interatomic distance
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(i) Attractive force A between the nucleus of one atom and electron
of the other. This attractive force tends to decrease the potential energy
of the atomic system.

(ii) Repulsive force R between the nucleus of one atom and the
nucleus of the other atom and electron of one atom with the electron
of the other atom. These repulsive forces always tend to increase the
energy of the atomic system.

There is a universal tendency of all systems to acquire a state of
minimum potential energy. This stage of minimum potential energy
corresponds to maximum stability.

If the net effect of the forces of attraction and repulsion leads to
decrease in the energy of the system, the two atoms come closer to
each other and form a covalent bond by sharing of electrons. On the
other hand, if the repulsive forces are more and there is increase in the
energy of the system, the atoms will repel each other and do not form
a bond.

The variation of potential energy with interatomic distance between
the atoms is shown in Fig. 5.2.
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It is evident from the graph that as the atoms come closer i.e.
when the interatomic distance between them decreases, a stage is
reached when the potential energy of the system decreases. When the
two hydrogen atoms are sufficiently closer, sharing of electrons takes
place between them and the potential energy is minimum. This results
in the formation of covalent bond and the interatomic distance is ro.

In solids the interatomic distance is ro and in the case of liquids
it is greater than ro. For gases, it is much greater than ro.

The forces acting between the atoms due to electrostatic interaction
between the charges of the atoms are called interatomic forces. Thus,
interatomic forces are electrical in nature. The interatomic forces are
active if the distance between the two atoms is of the order of atomic
size ≈ 10-10 m. In the case of molecules, the range of the force is of the
order of 10–9 m.

5.2 Elasticity

When an external force is applied on a body, which is not free
to move, there will be a relative displacement of the particles. Due to
the property of elasticity, the particles tend to regain their original
position. The external forces may produce change in length, volume
and shape of the body. This external force which produces these changes
in the body is called deforming force. A body which experiences such
a force is called deformed body. When the deforming force is removed,
the body regains its original state due to the force developed within the
body. This force is called restoring force. The property of a material to
regain its original state when the deforming force is removed is called
elasticity. The bodies which possess this property are called elastic
bodies. Bodies which do not exhibit the property of elasticity are called
plastic. The study of mechanical properties helps us to select the
material for specific purposes. For example, springs are made of steel
because steel is highly elastic.

Stress and strain

In a deformed body, restoring force is set up within the body
which tends to bring the body back to the normal position. The
magnitude of these restoring force depends upon the deformation
caused. This restoring force per unit area of a deformed body is known
as stress.
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∴ Stress = 
restoring force

area
N m–2

Its dimensional formula is ML–1T–2.

Due to the application of deforming force, length, volume or
shape of a body changes. Or in other words, the body is said to be
strained. Thus, strain produced in a body is defined as the ratio of
change in dimension of a body to the original dimension.

∴ Strain = 
change in dimension
original dimension

Strain is the ratio of two similar quantities. Therefore it has no
unit.

Elastic limit

If an elastic material is stretched or compressed beyond a certain
limit, it will not regain its original state and will remain deformed. The
limit beyond which permanent deformation occurs is called the elastic
limit.

Hooke’s law

English Physicist Robert Hooke (1635 - 1703) in the year 1676
put forward the relation between the extension produced in a wire and
the restoring force developed in it. The law formulated on the basis of
this study is known as Hooke’s law. According to Hooke’s law, within
the elastic limit, strain produced in a body is directly proportional to the
stress that produces it.

(i.e) stress α strain

Stress
Strain

 = a constant, known as modulus of

elasticity.

Its unit is N m-2 and its dimensional formula
is ML-1T-2.

5.2.1 Experimental verification of Hooke’s law

A spring is suspended from a rigid support
as shown in the Fig. 5.3. A weight hanger and a
light pointer is attached at its lower end such

Spring

Slotted
Weights

1

2

3

4

5

6

Fig. 5.3 Experimental
setup to verify
Hooke’s law
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that the pointer can slide over a scale graduated in millimeters. The
initial reading on the scale is noted. A slotted weight of m kg is added
to the weight hanger and the pointer position is noted. The same
procedure is repeated with every additional m kg weight. It will be
observed that the extension of the spring is proportional to the weight.
This verifies Hooke’s law.

5.2.2 Study of stress - strain relationship

Let a wire be suspended from a rigid support. At the free end, a
weight hanger is provided on which weights could be added to study
the behaviour of the wire under different load conditions. The extension
of the wire is suitably
measured and a stress - strain
graph is plotted as in Fig. 5.4.

(i) In the figure the region
OP is linear. Within a normal
stress, strain is proportional to
the applied stress. This is
Hooke’s law. Upto P, when the
load is removed the wire
regains its original length along
PO. The point P represents the
elastic limit, PO represents the
elastic range of the material
and OB is the elastic strength.

(ii) Beyond P, the graph is not linear. In the region PQ the material
is partly elastic and partly plastic. From Q, if we start decreasing the
load, the graph does not come to O via P, but traces a straight line QA.
Thus a permanent strain OA is caused in the wire. This is called
permanent set.

(iii) Beyond Q addition of even a very small load causes enormous
strain. This point Q is called the yield point. The region QR is the
plastic range.

(iv) Beyond R, the wire loses its shape and becomes thinner and
thinner in diameter and ultimately breaks, say at S. Therefore S is the
breaking point. The stress corresponding to S is called breaking stress.

O A
Strain

Stress

B
P

Q
R S

Fig. 5.4 Stress - Strain relationship
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5.2.3 Three moduli of elasticity

Depending upon the type of strain in the body there are three
different types of modulus of elasticity. They are

(i) Young’s modulus

(ii) Bulk modulus

(iii) Rigidity modulus

(i) Young’s modulus of elasticity

Consider a wire of length l and cross sectional area A
stretched by a force F acting along its length. Let dl be the
extension produced.

∴ Longitudinal stress = =
Force F
Area A

Longitudinal strain = 
    

  

change in length
original length  = 

dl

l
Young’s modulus of the material of the wire is defined

as the ratio of longitudinal stress to longitudinal strain. It is
denoted by q.

Young’s modulus = 
 

 

longitudinal stress
longitudinal strain

(i.e) q = 
/
/

F A
dl l  or  q = 

 
 

F l

A dl

(ii) Bulk modulus of elasticity

Suppose euqal forces act
perpendicular to the six faces of a cube
of volume V as shown in Fig. 5.6. Due
to the action of these forces, let the
decrease in volume be dV.

Now, Bulk stress = 
Force F
Area A

=

Bulk Strain =

 
  

 

change in volume
original volume

 = 
−dV
V

(The negative sign indicates that
volume decreases.)

Fig. 5.5
Young’s

modulus of
elasticity

Fig. 5.6 Bulk modulus
of elasticity

a b

c
d

e f

g

F

F

F
h
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Bulk modulus of the material of the object is defined as the ratio
bulk stress to bulk strain.

It is denoted by k.

∴ Bulk modulus = 
  

  

Bulk stress
Bulk strain

(i.e) k = 
−

/F A
dV
V

= 
−

P
dV
V

 
F

P
A

⎡ ⎤=⎢ ⎥⎣ ⎦
∵  or k = 

-P V
dV

(iii) Rigidity modulus or shear modulus

Let us apply a force F
tangential to the top surface of
a block whose bottom AB is
fixed, as shown in Fig. 5.7.

Under the action of this
tangential force, the body suffers
a slight change in shape, its
volume remaining unchanged.
The side AD of the block is
sheared through an angle θ to
the position AD’.

If the area of the top surface is A, then shear stress = F/A.

Shear modulus or rigidity modulus of the material of the object is
defined as the ratio of shear stress to shear strain. It is denoted by n.

Rigidity modulus = 
 

 

shear stress
shear strain

(i.e) n = θ
/F A

= θ
F
A

Table 5.1 lists the
values of the three
moduli of elasticity for
some commonly used
materials.

A B

C C/

D D/
F

F

Fig. 5.7 Rigidity modulus

Table 5.1 Values for the
moduli of elasticity

Material
Modulus of elasticity (× 1011 Pa)

q k n

Aluminium 0.70 0.70 0.30

Copper 1.1 1.4 0.42

Iron 1.9 1.0 0.70

Steel 2.0 1.6 0.84

Tungsten 3.6 2.0 1.5
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5.2.4 Relation between the three
moduli of elasticity

Suppose three stresses P, Q and
R act perpendicular to the three faces
ABCD, ADHE and ABFE of a cube of
unit volume (Fig. 5.8). Each of these
stresses will produce an extension in
its own direction and a compression
along the other two perpendicular
directions. If λ is the extension per unit
stress, then the elongation along the
direction of P will be λP. If µ is the
contraction per unit stress, then the contraction along the direction of
P due to the other two stresses will be µQ and µR.

∴ The net change in dimension along the direction of P due to all
the stresses is e = λP - µQ - µR.

Similarly the net change in dimension along the direction of Q is
f = λQ - µP - µR and the net change in dimension along the direction
of R is g = λR - µP - µQ.

Case (i)

If only P acts and Q = R = 0 then it is a case of longitudinal stress.

∴ Linear strain = e = λP

∴ Young’s modulus q =  
 

 

linear stress
linear strain

 =  
P
λP

(i.e)  q = 
1
λ  or λ = 

1

q ...(1)

Case (ii)

If R = O and P = – Q, then the change in dimension along P  is
e = λP - µ (-P)

(i.e) e = (λ + µ) P

Angle of shear θ = 2e* = 2 (λ + µ) P

∴ Rigidity modulus

n = θ
P

 = 
P

2(λ + µ)P  (or)  2 (λ + µ) = 
1
n

.....(2)

Fig. 5.8 Relation between the
three moduli of elasticity

A B

C
D

E F

G

R

P

Q
H

* The proof for this is not given here
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Case (iii)

If P = Q = R, the increase in volume is = e + f + g

= 3 e = 3 (λ − 2µ) P (since e = f = g)

∴ Bulk strain = 3(λ−2µ) P

Bulk modulus k =
P

3(λ - 2µ)P or (λ − 2µ) = 
1
3k

...(3)

From (2), 2(λ + µ) = 
1
n

2λ + 2µ = 
1
n

...(4)

From (3), (λ − 2µ) = 
1
3k

...(5)

Adding (4) and (5),

3λ = 
1 1

3n k
+

λ = 
1 1
3 9n k

+

∴ From (1), 
1
q  =  

1 1
3 9n k

+

or  
9 3 1
q n k

= +

This is the relation between the three
moduli of elasticity.

5.2.5 Determination of Young’s modulus
by Searle’s method

The Searle’s apparatus consists of two
rectangular steel frames A and B as shown
in Fig. 5.9. The two frames are hinged
together by means of a frame F. A spirit
level L is provided such that one of its ends
is pivoted to one of the frame B whereas the
other end rests on top of a screw working
through a nut in the other frame. The bottom

AB

F

C

V

P

Q

S

R

L

W

Fig. 5.9 Searle’s
apparatus
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of the screw has a circular scale C which can move along a vertical
scale V graduated in mm. This vertical scale and circular scale
arrangement act as pitch scale and head scale respectively of a
micrometer screw.

The frames A and B are suspended from a fixed support by means
of two wires PQ and RS respectively. The wire PQ attached to the frame
A is the experimental wire. To keep the reference wire RS taut, a constant
weight W is attached to the frame B. To the frame A, a weight hanger
is attached in which slotted weights can be added.

To begin with, the experimental wire PQ is brought to the elastic
mood by loading and unloading the weights in the hanger in the frame
A four or five times, in steps of 0.5 kg. Then with the dead load, the
micrometer screw is adjusted to ensure that both the frames are at the
same level. This is done with the help of the spirit level. The reading
of the micrometer is noted by taking the readings of the pitch scale
and head scale. Weights are added to the weight hanger in steps of 0.5
kg upto 4 kg and in each case the micrometer reading is noted by
adjusting the spirit level. The readings are again noted during unloading
and are tabulated in Table 5.2. The mean extension dl for M kg of load
is found out.

Table 5.2 Extension for M kg weight

Load in weight Micrometer reading Extension

hanger kg Loading Unloading Mean for M kg weight

W

W + 0.5

W + 1.0

W + 1.5

W + 2.0

W + 2.5

W + 3.0

W + 3.5

W + 4.0
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If l is the original length and r the mean radius of the experimental
wire, then Young’s modulus of the material of the wire is given by

q = 
F/A

dl/l
 = 

2F/πr
dl/l

(i.e) q = 2

Fl

πr dl

5.2.6 Applications of modulus of elasticity

Knowledge of the modulus of elasticity of materials helps us to
choose the correct material, in right dimensions for the right application.
The following examples will throw light on this.

(i) Most of us would have seen a crane used for lifting and moving
heavy loads. The crane has a thick metallic rope. The maximum load
that can be lifted by the rope must be specified. This maximum load
under any circumstances should not exceed the elastic limit of the
material of the rope. By knowing this elastic limit and the extension per
unit length of the material, the area of cross section of the wire can be
evaluated. From this the radius of the wire can be calculated.

(ii) While designing a bridge, one has to keep in mind the following
factors (1) traffic load  (2) weight of bridge (3) force of winds. The bridge is
so designed that it should neither bend too much nor break.

5.3 Fluids

A fluid is a substance that can flow when external force is applied
on it. The term fluids include both liquids and
gases. Though liquids and gases are termed
as fluids, there are marked differences between
them. For example, gases are compressible
whereas liquids are nearly incompressible. We
only use those properties of liquids and gases,
which are linked with their ability to flow,
while discussing the mechanics of fluids.

5.3.1 Pressure due to a liquid column

Let h be the height of the liquid column
in a cylinder of cross sectional area A. If ρ  is
the density of the liquid, then weight of the

h

Fig. 5.10 Pressure
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liquid column W is given by

W = mass of liquid column × g = Ahρg

By definition, pressure is the force acting per unit area.

∴ Pressure = 
   

  sec
weight of liquid column
area of cross tion−

= 
ρAh g

A
 = hρg

∴  P = hρg

5.3.2 Pascal’s law

One of the most important facts about
fluid pressure is that a change in pressure at
one part of the liquid will be transmitted
without any change to other parts. This was
put forward by Blaise Pascal (1623 - 1662), a
French mathematician and physicist. This rule
is known as Pascal’s law.

Pascal’s law states that if the effect of
gravity can be neglected then the pressure in a
fluid in equilibrium is the same everywhere.

Consider any two points A and B inside the fluid. Imagine a
cylinder such that points A and B lie at the centre of the circular
surfaces at the top and bottom of the cylinder (Fig. 5.11). Let the fluid
inside this cylinder be in equilibrium under the action of forces from
outside the fluid. These forces act everywhere perpendicular to the
surface of the cylinder. The forces acting on the circular, top and bottom
surfaces are perpendicular to the forces acting on the cylindrical surface.
Therefore the forces acting on the faces at A and B are equal and
opposite and hence add to zero. As the areas of these two faces are
equal, we can conclude that pressure at A is equal to pressure at B.
This is the proof of Pascal’s law when the effect of gravity is not taken
into account.

Pascal’s law and effect of gravity

When gravity is taken into account, Pascal’s law is to be modified.
Consider a cylindrical liquid column of height h and density ρ  in a

A

B

Fig. 5.11 Pascal’s law in
the absence of gravity
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vessel as shown in the Fig. 5.12.

If the effect of gravity is neglected, then
pressure at M will be equal to pressure at N.
But, if force due to gravity is taken into account,
then they are not equal.

As the liquid column is in equilibrium, the
forces acting on it are balanced. The vertical
forces acting are

(i)  Force P1A acting vertically down on the
top surface.

(ii) Weight mg of the liquid column acting vertically downwards.

(iii) Force P2A at the bottom surface acting vertically upwards.

where P1 and P2 are the pressures at the top and bottom faces, A is
the area of cross section of the circular face and m is the mass of the
cylindrical liquid column.

At equilibrium, P1A + mg - P2A = 0 or P1A + mg = P2A

P2 = P1 +
mg
A

But m = Ahρ

∴ P2 = P1 + 
ρAh g

A
(i.e) P2 = P1 + hρg

This equation proves that the pressure is the same at all points
at the same depth. This results in another statement of Pascal’s law
which can be stated as change in pressure at any point in an enclosed
fluid at rest is transmitted undiminished to all points in the fluid and act
in all directions.

5.3.3 Applications of Pascal’s law

(i) Hydraulic lift

An important application of Pascal’s law is the hydraulic lift used
to lift heavy objects. A schematic diagram of a hydraulic lift is shown
in the Fig. 5.13. It consists of a liquid container which has pistons
fitted into the small and large opening cylinders. If a1 and a2 are the
areas of the pistons A and B respectively, F is the force applied on A
and W is the load on B, then

M

P1

P2

h

N

Fig. 5.12 Pascal’s law
and effect of gravity
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=
1 2

F W

a a or W = F 
2

1

a

a

This is the load that can be lifted
by applying a force F on A. In the above

equation 
2

1

a

a  is called mechanical

advantage of the hydraulic lift. One can
see such a lift in many automobile
service stations.

(ii) Hydraulic brake

When brakes are applied suddenly in a moving vehicle, there is
every chance of the vehicle to skid because the wheels are not retarded
uniformly. In order to avoid this danger of skidding when the brakes are
applied, the brake mechanism must be such that each wheel is equally
and simultaneously retarded. A hydraulic brake serves this purpose. It
works on the principle of Pascal’s law.

Fig. 5.14 shows the schematic diagram of a hydraulic brake system.
The brake system has a main cylinder filled with brake oil. The main
cylinder is provided with a piston P which is connected to the brake

Fig. 5.14 Hydraulic brake

Fig. 5.13 Hydraulic lift

A B

F W

Brake Pedal

Lever system

Main Cylinder

Brake oil

T-tube

P1P2

Pipe line to
other wheels

S1S2

Inner rim of the wheel

P
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pedal through a lever assembly. A T shaped tube is provided at the
other end of the main cylinder. The wheel cylinder having two pistons
P1 and P2 is connected to the T tube. The pistons P1 and P2 are connected
to the brake shoes S1 and S2 respectively.

When the brake pedal is pressed, piston P is pushed due to the
lever assembly operation. The pressure in the main cylinder is
transmitted to P1 and P2. The pistons P1 and P2 push the brake shoes
away, which in turn press against the inner rim of the wheel. Thus the
motion of the wheel is arrested. The area of the pistons P1 and P2 is
greater than that of P. Therefore a small force applied to the brake
pedal produces a large thrust on the wheel rim.

The main cylinder is connected to all the wheels of the automobile
through pipe line for applying equal pressure to all the wheels .

5.4 Viscosity

Let us pour equal amounts of water and castor oil in two identical
funnels. It is observed that water flows out of the funnel very quickly
whereas the flow of castor oil is very slow. This is because of the
frictional force acting within the liquid. This force offered by the adjacent
liquid layers is known as viscous force and the phenomenon is called
viscosity.

Viscosity is the property of the fluid by virtue of which it opposes
relative motion between its different layers. Both liquids and gases exhibit
viscosity but liquids are much more viscous than gases.

Co-efficient of viscosity

Consider a liquid to flow
steadily through a pipe as shown
in the Fig. 5.15. The layers of
the liquid which are in contact
with the walls of the pipe have
zero velocity. As we move towards
the axis, the velocity of the liquid
layer increases and the centre
layer has the maximum velocity v. Consider any two layers P and Q
separated by a distance dx. Let dv be the difference in velocity between
the two layers.

Fig. 5.15 Steady flow of a liquid

P

Q
dx

v
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The viscous force F acting tangentially between the two layers of
the liquid is proportional to (i) area A of the layers in contact

(ii) velocity gradient 
dv

dx
 perpendicular to the flow of liquid.

∴  F α A 
dv
dx

F = η A 
dv
dx

where η is the coefficient of viscosity of the liquid.

This is known as Newton’s law of viscous flow in fluids.

If A = 1m2 and 
dv
dx

 = 1s–1

then F = η

The coefficient of viscosity of a liquid is numerically equal to the
viscous force acting tangentially between two layers of liquid having unit
area of contact and unit velocity gradient normal to the direction of flow
of liquid.

The unit of η is N s m–2. Its dimensional formula is ML–1T–1.

5.4.1 Streamline flow

The flow of a liquid is said to be steady, streamline or laminar if
every particle of the liquid follows exactly the path of its preceding particle
and has the same velocity of its preceding particle at every point.

Let abc be the path of flow
of a liquid and v1, v2 and v3

be the velocities of the liquid
at the points a, b and c
respectively. During a
streamline flow, all the particles
arriving at ‘a’ will have the same

velocity v1 which is directed along the tangent at the point ‘a’. A particle
arriving at b will always have the same velocity v2. This velocity v2 may
or may not be equal to v1. Similarly all the particles arriving at the point
c will always have the same velocity v3. In other words, in the streamline
flow of a liquid, the velocity of every particle crossing a particular point
is the same.

a

b

c

v1
v2

v3

Fig. 5.16 Steamline flow



223

The streamline flow is possible only as long as the velocity of the
fluid does not exceed a certain value. This limiting value of velocity is
called critical velocity.

5.4.2 Turbulent flow

When the velocity of a liquid exceeds the critical velocity, the
path and velocities of the liquid become disorderly. At this stage, the
flow loses all its orderliness and is called turbulent flow. Some examples
of turbulent flow are :

(i) After rising a short distance, the smooth column of smoke
from an incense stick breaks up into irregular and random patterns.

(ii) The flash - flood after a heavy rain.

Critical velocity of a liquid can be defined as that velocity of liquid
upto which the flow is streamlined and above which its flow becomes
turbulent.

5.4.3 Reynold’s number

Reynolds number is a pure number which determines the type of
flow of a liquid through a pipe. It is denoted by NR.

It is given by the formula

NR = 
 ρ cv D
η

where vc is the critical velocity, ρ  is the density, η is the co-efficient
of viscosity of the liquid and D is the diameter of the pipe.

If NR lies between 0 and 2000, the flow of a liquid is said to be
streamline. If the value of NR is above 3000, the flow is turbulent. If
NR lies between 2000 and 3000, the flow is neither streamline nor
turbulent, it may switch over from one type to another.

Narrow tubes and highly viscous liquids tend to promote stream
line motion while wider tubes and liquids of low viscosity lead to
tubulence.

5.4.4 Stoke’s law (for highly viscous liquids)

When a body falls through a highly viscous liquid, it drags the
layer of the liquid immediately in contact with it. This results in a
relative motion between the different layers of the liquid. As a result
of this, the falling body experiences a viscous force F. Stoke performed
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many experiments on the motion of small spherical bodies in different
fluids and concluded that the viscous force F acting on the spherical
body depends on

(i) Coefficient of viscosity η of the liquid

(ii) Radius a of the sphere and

(iii) Velocity v  of the spherical body.

Dimensionally it can be proved that

F = k ηav

Experimentally Stoke found that

k = 6π

∴ F = 6π ηav

This is Stoke’s law.

5.4.5 Expression for terminal velocity

Consider a metallic sphere of radius ‘a’ and
density ρ to fall under gravity in a liquid of density

σ . The viscous force F acting on the metallic sphere
increases as its velocity increases. A stage is reached
when the weight W of the sphere becomes equal to
the sum of the upward viscous force F and the upward
thrust U due to buoyancy (Fig. 5.17). Now, there is
no net force acting on the sphere and it moves down
with a constant velocity v called terminal velocity.

∴ W - F - U = O ...(1)
Terminal velocity of a body is defined as the

constant velocity acquired by a body while falling
through a viscous liquid.

From (1), W = F + U ...(2)

According to Stoke’s law, the viscous force F is
given by F = 6πηav.

The buoyant force U = Weight of liquid displaced by the sphere

= 
4
3

πa3σ g

The weight of the sphere

W = 
4

3 πa3ρg

W

F

U

Fig. 5.17 Sphere
falling in a

viscous liquid
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Substituting in equation (2),

4
3

πa3 ρg = 6π ηav + 
4
3

πa3 σ g

or 6π ηav = 
4
3

πa3 (ρ–σ)g

∴ v = 
2( )2 a g

9
ρ σ

η
−

5.4.6 Experimental determination of viscosity of
highly viscous liquids

The coefficient of highly viscous liquid like castor
oil can be determined by Stoke’s method. The
experimental liquid is taken in a tall, wide jar. Two
marking B and C are marked as shown in Fig. 5.18.
A steel ball is gently dropped in the jar.

The marking B is made well below the free surface of the liquid
so that by the time ball reaches B, it would have acquired terminal
velocity v.

When the ball crosses B, a stopwatch is switched on and the time
taken t to reach C is noted. If the distance BC is s, then terminal

velocity v =
s
t

.

The expression for terminal velocity is

v = 
2(ρ-σ)
η

2 a g
9

∴ 
s
t

=
22 (ρ - σ)

9 η
a g

 or η = 
2
9

a2 (ρ - σ)  
t

g
s

Knowing a, ρ  and σ , the value of η of the liquid is determined.

Application of Stoke’s law

Falling of rain drops: When the water drops are small in size,
their terminal velocities are small. Therefore they remain suspended in
air in the form of clouds. But as the drops combine and grow in size,
their terminal velocities increases because v α a2. Hence they start
falling as rain.

s

B

C

Fig. 5.18
Experimental
determination
of viscosity of
highly viscous

liquid
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5.4.7 Poiseuille’s equation

Poiseuille investigated the steady flow of a liquid through a capillary
tube. He derived an expression for the volume of the liquid flowing per
second through the tube.

Consider a liquid of co-efficient of viscosity η flowing, steadily
through a horizontal capillary tube of length l and radius r. If P is the
pressure difference across the ends of the tube, then the volume V of
the liquid flowing per second through the tube depends on η, r and

the pressure gradient 
P
l

⎛ ⎞
⎜ ⎟
⎝ ⎠

.

(i.e) V α ηx  r y 
P
l

⎛ ⎞
⎜ ⎟
⎝ ⎠

z

V = k ηx r y 
⎛ ⎞
⎜ ⎟
⎝ ⎠

z
P
l

...(1)

where k is a constant of proportionality.  Rewriting equation (1) in
terms of dimensions,

[L3T-1] = [ML-1 T-1]x [L]y

z-1 -2ML T
L

⎡ ⎤
⎢ ⎥
⎣ ⎦

Equating the powers of L, M and T on both sides we get
x = -1, y = 4 and z = 1

Substituting in equation (1),

V = k η-1 r 4 
1P

l
⎛ ⎞
⎜ ⎟
⎝ ⎠

V = 
4kPr

lη

Experimentally k was found to be equal to 
π
8 .

∴ V = 
4

8
Pr

l
π

η

This is known as Poiseuille’s equation.
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5.4.8 Determination of coefficient of viscosity of water by
Poiseuille’s flow method

A capillary tube of very fine bore
is connected by means of a rubber tube
to a burette kept vertically. The capillary
tube is kept horizontal as shown in
Fig. 5.19. The burette is filled with water
and the pinch - stopper is removed.
The time taken for water level to fall
from A to B is noted. If V is the volume
between the two levels A and B, then
volume of liquid flowing per second is

V

t
. If l and r are the length and radius

of the capillary tube respectively, then

π
=

η

4

8
V Pr

t l
...(1)

If ρ is the density of the liquid
then the initial pressure difference

between the ends of the tube is P1 = h1ρg and the final pressure difference
P2 = h2ρg. Therefore the average pressure difference during the flow of
water is P where

P = 
+1 2

2
P P

= 
1 2 ρ ρ

2
h h

g h g
⎛ ⎞+

=⎜ ⎟⎜ ⎟
⎝ ⎠

  1 2h + h
h =

2

⎡ ⎤
⎢ ⎥
⎣ ⎦
∵

Substituting in equation (1), we get

V
t

= 
4πhρgr

8lη  or η  = 
4πhρgr t

8lV

5.4.9 Viscosity - Practical applications

The importance of viscosity can be understood from the following
examples.

(i) The knowledge of coefficient of viscosity of organic liquids is
used to determine their molecular weights.

A

B
h1

h2

Fig. 5.19 Determination of
coefficient of

viscosity by Poiseuille’s flow
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(ii) The knowledge of coefficient of viscosity and its variation with
temperature helps us to choose a suitable lubricant for specific
machines. In light machinery thin oils (example, lubricant oil used in
clocks) with low viscosity is used. In heavy machinery, highly viscous
oils (example, grease) are used.

5.5 Surface tension

Intermolecular forces

The force between two molecules of a substance is called
intermolecular force. This intermolecular force is basically electric in
nature. When the distance between two molecules is greater, the
distribution of charges is such that the mean distance between opposite
charges in the molecule is slightly less than the distance between their
like charges. So a force of attraction exists. When the intermolecular
distance is less, there is overlapping of the electron clouds of the
molecules resulting in a strong repulsive force.

The intermolecular forces are of two types. They are (i) cohesive
force and (ii) adhesive force.

Cohesive force

Cohesive force is the force of attraction between the molecules of
the same substance. This cohesive force is very strong in solids, weak
in liquids and extremely weak in gases.

Adhesive force

Adhesive force is the force of attraction between the moelcules of
two different substances. For example due to the adhesive force, ink
sticks to paper while writing. Fevicol, gum etc exhibit strong adhesive
property.

Water wets glass because the cohesive force between water
molecules is less than the adhesive force between water and glass
molecules. Whereas, mercury does not wet glass because the cohesive
force between mercury molecules is greater than the adhesive force
between mercury and glass molecules.

Molecular range and sphere of influence

Molecular range is the maximum distance upto which a molecule
can exert force of attraction on another molecule. It is of the order of
10–9 m for solids and liquids.



229

Sphere of influence is a sphere drawn around a particular molecule
as centre and molecular range as radius. The central molecule exerts a
force of attraction on all the molecules lying within the sphere of
influence.

5.5.1 Surface tension of a liquid

Surface tension is the property of the free surface
of a liquid at rest to behave like a stretched membrane
in order to acquire minimum surface area.

Imagine a line AB in the free surface of a liquid
at rest (Fig. 5.20). The force of surface tension is
measured as the force acting per unit length on either
side of this imaginary line AB. The force is
perpendicular to the line and tangential to the liquid
surface. If F is the force acting on the length l of the
line AB, then surface tension is given by

T = 
F
l

.

Surface tension is defined as the force per unit length acting
perpendicular on an imaginary line drawn on the liquid surface, tending
to pull the surface apart along the line. Its unit is N m–1 and dimensional
formula is MT–2.

Experiments to demonstrate surface tension

(i) When a painting brush is dipped into water, its hair gets
separated from each other. When the brush is taken out of water, it
is observed that its hair will cling together. This is because the free
surface of water films tries to contract due to surface tension.

Fig. 5.21 Practical examples for surface tension

A

B

Fig. 5.20 Force on
a liquid surface

Hair clings together when brush is taken out
Needle floats on water surface

W

Tv

TT
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(ii) When a sewing needle is gently placed on water surface, it
floats. The water surface below the needle gets depressed slightly. The
force of surface tension acts tangentially. The vertical component of
the force of surface tension balances the weight of the needle.

5.5.2 Molecular theory of surface tension

Consider two molecules P and Q as shown
in Fig. 5.22. Taking them as centres and
molecular range as radius, a sphere of influence
is drawn around them.

The molecule P is attracted in all directions
equally by neighbouring molecules. Therefore
net force acting on P is zero. The molecule Q is
on the free surface of the liquid. It experiences
a net downward force because the number of
molecules in the lower half of the sphere is
more and the upper half is completely outside
the surface of the liquid. Therefore all the
molecules lying on the surface of a liquid
experience only a net downward force.

If a molecule from the interior is to be brought to the surface of
the liquid, work must be done against this downward force. This work
done on the molecule is stored as potential energy. For equilibrium, a
system must possess minimum potential energy. So, the free surface will
have minimum potential energy. The free surface of a liquid tends
to assume minimum surface area by contracting and remains in a

state of tension like a stretched elastic
membrane.

5.5.3 Surface energy and surface tension

The potential energy per unit area of
the surface film is called surface energy.
Consider a metal frame ABCD in which AB
is movable. The frame is dipped in a soap
solution. A film is formed which pulls AB
inwards due to surface tension. If T is the
surface tension of the film and l is the length

Q

P

Fig. 5.22 Surface
tension based on
molecular theory

D C

A B

B/A/

x

l

Fig. 5.23 Surface energy
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of the wire AB, this inward force is given by 2 × T l . The number 2
indicates the two free surfaces of the film.

If AB is moved through a small distance x as shown in Fig. 5.23

to the position A B′ ′ , then work done is

W = 2Tlx

Work down per unit area = 
2
W
lx

∴ Surface energy  = 
2

2
T lx

lx

Surface energy = T

Surface energy is numerically equal to surface tension.

5.5.4 Angle of contact

When the free surface of a liquid
comes in contact with a solid, it
becomes curved at the point of
contact. The angle between the
tangent to the liquid surface at the
point of contact of the liquid with the
solid and the solid surface inside the
liquid is called angle of contact.

In Fig. 5.24, QR is the tangent drawn at the point of contact Q.
The angle PQR is called the angle of contact. When a liquid has concave
meniscus, the angle of contact is acute. When it has a convex meniscus,
the angle of contact is obtuse.

The angle of contact depends on the nature of liquid and solid in
contact. For water and glass, θ lies between 8o and 18o. For pure water
and clean glass, it is very small and hence it is taken as zero. The angle
of contact of mercury with glass is 138o.

5.5.5 Pressure difference across a liquid surface

If the free surface of a liquid is plane, then the surface tension
acts horizontally (Fig. 5.25a). It has no component perpendicular to
the horizontal surface. As a result, there is no pressure difference between
the liquid side and the vapour side.

If the surface of the liquid is concave (Fig. 5.25b), then the resultant

Q

P

For water

R

Q

P

R

For mercury

Fig. 5.24 Angle of contact
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force R due to surface tension on a molecule on the surface act vertically
upwards. To balance this, an excess of pressure acting downward on
the concave side is necessary. On the other hand if the surface is
convex (Fig. 5.25c), the resultant R acts downward and there must be
an excess of pressure on the concave side acting in the upward direction.

Thus, there is always an excess of pressure on the concave side of
a curved liquid surface over the pressure on its convex side due to surface
tension.

5.5.6 Excess pressure inside a liquid drop

Consider a liquid drop of radius r. The molecules on the surface
of the drop experience a resultant force acting inwards due to surface
tension. Therefore, the pressure inside the drop must be greater than
the pressure outside it. The excess of pressure P inside the drop provides
a force acting outwards perpendicular to the surface, to balance the
resultant force due to surface tension. Imagine the drop to be divided
into two equal halves. Considering the equilibrium of the upper

hemisphere of the drop, the upward force
on the plane face ABCD due to excess
pressure P is P π r 2 (Fig. 5.26).

If T is the surface tension of the
liquid, the force due to surface tension
acting downward along the circumference
of the circle ABCD is T 2πr.

At equilibrium, P πr 2 = T 2πr

∴ P = 
2T
r

Fig. 5.25 Excess of pressure across a liquid surface

TT

(a)

TT
R

excess pressure

(b)

TT

excess pressure

R

(c)

A C

B

D

T

P

Fig. 5.26 Excess pressure
inside a liquid drop
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Excess pressure inside a soap bubble

A soap bubble has two liquid surfaces in contact with air, one
inside the bubble and the other outside the bubble. Therefore the force
due to surface tension = 2 × 2πrT

∴ At equilibrium, P πr 2 = 2 × 2πrT

(i.e) P = 
4T

r

Thus the excess of pressure inside a drop is inversely proportional

to its radius i.e. P α 
1
r

 . As P α 
1
r

, the pressure needed to form a very

small bubble is high. This explains why one needs to blow hard to start
a balloon growing. Once the balloon has grown, less air pressure is
needed to make it expand more.

5.5.7 Capillarity

The property of surface tension gives rise to an interesting
phenomenon called capillarity. When a capillary tube is dipped in water,
the water rises up in the tube. The level of water in the tube is above
the free surface of water in the beaker (capillary rise). When a capillary
tube is dipped in mercury, mercury also rises in the tube. But the level

of mercury is depressed below the free
surface of mercury in the beaker
(capillary fall).

The rise of a liquid in a capillary
tube is known as capillarity. The height
h in Fig. 5.27 indicates the capillary
rise (for water) or capillary fall (for
mercury).

Illustrations of capillarity

(i) A blotting paper absorbs ink by capillary action. The pores in
the blotting paper act as capillaries.

(ii) The oil in a lamp rises up the wick through the narrow spaces
between the threads of the wick.

(iii) A sponge retains water due to capillary action.
(iv) Walls get damped in rainy season due to absorption of water

by bricks.

For mercury 

h h

For water

h
h

Fig. 5.27 Capillary rise
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5.5.8 Surface tension by capillary rise method

Let us consider a capillary tube of
uniform bore dipped vertically in a beaker
containing water. Due to surface tension,
water rises to a height h in the capillary tube
as shown in Fig. 5.28. The surface tension T
of the water acts inwards and the reaction of
the tube R outwards. R is equal to T in
magnitude but opposite in direction. This
reaction R can be resolved into two
rectangular components.

(i) Horizontal component R sin θ acting
radially outwards

(ii) Vertical component R cos θ acting
upwards.

The horizontal component acting all
along the circumference of the tube cancel
each other whereas the vertical component balances the weight of water
column in the tube.

Total upward force = R cos θ × circumference of the tube

(i.e)  F = 2πr R cos θ or F = 2πr T cos θ ...(1)

[∵  R = T ]

This upward force is responsible for the
capillary rise. As the water column is in
equilibrium, this force acting upwards is
equal to weight of the water column acting
downwards.

(i.e) F = W ...(2)

Now, volume of water in the tube is
assumed to be made up of (i) a cylindrical
water column of height h and (ii) water in the
meniscus above the plane CD.

Volume of cylindrical water column = πr2h

Volume of water in the meniscus = (Volume of cylinder of height
r and radius r) – (Volume of hemisphere)

TT

RR

R sin

R
 c

os

R
 c

os

R sin

r

h

DC

Fig. 5.28 Surface tension
by capillary rise method

r

r

DC

Fig. 5.29 Liquid
meniscus
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∴ Volume of water in the meniscus = (πr2 × r) – π 32
  

3
r⎛ ⎞

⎜ ⎟
⎝ ⎠

= 
1
3

 πr3

∴ Total volume of water in the tube = πr2h + 
1
3

 πr3

= πr2 3
r

h⎛ ⎞+⎜ ⎟
⎝ ⎠

If ρ is the density of water, then weight of water in the tube is

W = πr2 ρ
3
r

h g⎛ ⎞+⎜ ⎟
⎝ ⎠

 ...(3)

Substituting (1) and (3) in (2),

πr2 ρ
3
r

h g⎛ ⎞+⎜ ⎟
⎝ ⎠

 = 2πrT cos θ

T = 
ρ

θ
3

2  

r
h r g

cos

⎛ ⎞+⎜ ⎟
⎝ ⎠

Since r is very small, 
3
r

 can be neglected compared to h.

∴ T = θ
ρ

2  
hr g

cos

For water, θ is small, therefore cos θ � 1

∴ T = 
ρ
2

hr g

5.5.9 Experimental determination
of surface tension of water
by capillary rise method

A clean capillary tube of uniform
bore is fixed vertically with its lower
end dipping into water taken in a
beaker. A needle N is also fixed with
the capillary tube as shown in the Fig.
5.30. The tube is raised or lowered until
the tip of the needle just touches the
water surface. A travelling microscope
M is focussed on the meniscus of the

Fig. 5.30 Surface tension
by capillary rise method

h

N

M
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water in the capillary tube. The reading R1 corresponding to the lower
meniscus is noted. The microscope is lowered and focused on the tip of
the needle and the corresponding reading is taken as R2. The difference
between R1 and R2 gives the capillary rise h.

The radius of the capillary tube is determined using the travelling
microscope. If ρ is the density of water then the surface tension of water

is given by T = 
ρ
2

hr g
 where g is the acceleration due to gravity.

5.5.10 Factors affecting surface tension

Impurities present in a liquid appreciably affect surface tension. A
highly soluble substance like salt increases the surface tension whereas
sparingly soluble substances like soap decreases the surface tension.

The surface tension decreases with rise in temperature. The
temperature at which the surface tension of a liquid becomes zero is
called critical temperature of the liquid.

5.5.11 Applications of surface tension

(i) During stormy weather, oil is poured into the sea around the
ship. As the surface tension of oil is less than that of water, it spreads
on water surface. Due to the decrease in surface tension, the velocity
of the waves decreases. This reduces the wrath of the waves on the
ship.

(ii) Lubricating oils spread easily to all parts because of their low
surface tension.

(iii) Dirty clothes cannot be washed with water unless some
detergent is added to water. When detergent is added to water, one end
of the hairpin shaped molecules of the detergent get attracted to water
and the other end, to molecules of the dirt. Thus the dirt is suspended
surrounded by detergent molecules and this can be easily removed.
This detergent action is due to the reduction of surface tension of water
when soap or detergent is added to water.

(iv) Cotton dresses are preferred in summer because cotton dresses
have fine pores which act as capillaries for the sweat.
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5.6 Total energy of a liquid

A liquid in motion possesses pressure energy, kinetic energy and
potential energy.

(i) Pressure energy

It is the energy possessed by a liquid
by virtue of its pressure.

Consider a liquid of density ρ contained
in a wide tank T having a side tube near the
bottom of the tank as shown in Fig. 5.31. A
frictionless piston of cross sectional area ‘a’
is fitted to the side tube. Pressure exerted
by the liquid on the piston is P = h ρ g
where h is the height of liquid column above the axis of the side tube.
If x is the distance through which the piston is pushed inwards, then

Volume of liquid pushed into the tank = ax

∴ Mass of the liquid pushed into the tank = ax ρ

As the tank is wide enough and a very small amount of liquid is
pushed inside the tank, the height h and hence the pressure P may be
considered as constant.

Work done in pushing the piston through the distance x = Force
on the piston × distance moved

(i.e)  W = Pax

This work done is the pressure energy of the liquid of mass axρ.

∴∴∴∴∴ Pressure energy per unit mass of the liquid  = 
ρ ρ

Pax P

ax
=

(ii) Kinetic energy

It is the energy possessed by a liquid by virtue of its motion.

If m is the mass of the liquid moving with a velocity v, the kinetic

energy of the liquid = 
1
2

 mv2.

Kinetic energy per unit mass = 

21
2

mv

m

2

2
v

=

h

x

T

Fig. 5.31 Pressure energy
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(iii) Potential energy

It is the energy possessed by a liquid by virtue of its height above
the ground level.

If m is the mass of the liquid at a height h from the ground level,
the potential energy of the liquid = mgh

Potential energy per unit mass = 
mgh
m

 = gh

Total energy of the liquid in motion = pressure energy + kinetic
energy + potential energy.

∴ Total energy per unit mass of the flowing liquid = 
2

ρ 2
P v

+  + gh

5.6.1 Equation of continuity

Consider a non-viscous liquid in streamline flow through a tube
AB of varying cross section as shown in Fig. 5.32 Let a1 and a2 be the
area of cross section, v1 and v2 be the
velocity of flow of the liquid at A and B
respectively.

∴ Volume of liquid entering per second
at A = a1v1.

If ρ is the density of the liquid,
then mass of liquid entering per second
at A = a1v1ρ.

Similarly, mass of liquid leaving per
second at B = a2v2ρ

If there is no loss of liquid in the tube and the flow is steady, then
mass of liquid entering per second at A = mass of liquid leaving per
second at B

(i.e) a1v1ρ = a2v2ρ  or a1v1 = a2v2

i.e. av = constant

This is called as the equation of continuity. From this equation

v α 
1
a

.

i.e. the larger the area of cross section the smaller will be the velocity
of flow of liquid and vice-versa.

Fig. 5.32 Equation of
continuity
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5.6.2 Bernoulli’s theorem

In 1738, Daniel Bernoulli
proposed a theorem for the
streamline flow of a liquid based
on the law of conservation of
energy. According to Bernoulli’s
theorem, for the streamline flow of
a non-viscous and incompressible
liquid, the sum of the pressure
energy, kinetic energy and
potential energy per unit mass is a constant.

(i.e) 
2

ρ 2
P v

+ + gh = constant

This equation is known as Bernoulli’s equation.

Consider streamline flow of a liquid of density ρ through a pipe AB
of varying cross section. Let P1 and P2 be the pressures and a1 and a2,
the cross sectional areas at A and B respectively. The liquid enters A
normally with a velocity v1 and leaves B normally with a velocity v2. The
liquid is accelerated against the force of gravity while flowing from A to
B, because the height of B is greater than that of A from the ground
level. Therefore P1 is greater than P2. This is maintained by an external
force.

The mass m of the liquid crossing per second through any section
of the tube in accordance with the equation of continuity is

a1v1ρ = a2v2ρ = m 

or a1v1 = a2v2 = 
ρ
m

 = V ..... (1)

As a1 > a2 , v1 < v2

The force acting on the liquid at A = P1a1

The force acting on the liquid at B = P2 a2

Work done per second on the liquid at A = P1a1 × v1 = P1V

Work done by the liquid at B = P2a2 × v2 = P2V

∴ Net work done per second on the liquid by the pressure energy
in moving the liquid from A to B is = P1V – P2V ...(2)

h1

h2

B

P a1 1

P a2 2

Ground level

Fig. 5.33 Bernoulli’s theorem
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If the mass of the liquid flowing in one second from A to B is m,
then increase in potential energy per second of liquid from A to B is
mgh2 – mgh1

Increase in kinetic energy per second of the liquid

= 1
2

mv2
2 – 1

2
mv1

2

According to work-energy principle, work done per second by the
pressure energy = Increase in potential energy per second + Increase
in kinetic energy per second

(i.e) P1V  – P2V = (mgh2- mgh1)+
2 2

2 1
1 1
2 2

mv mv⎛ ⎞−⎜ ⎟
⎝ ⎠

P1V + mgh1 + 1
2

mv1
2 = P2V + mgh2 + 

1
2

mv2
2

1P V

m
 + gh1 + 2

1
1
2

v = 2P V

m
 + gh2 + 

1
2

v2
2

1

ρ
P

+ gh1 + 
1
2

 v1
2 = 2

ρ
P

+ gh2 + 
1
2

 v2
2 ρ m

v
⎛ ⎞=⎜ ⎟
⎝ ⎠
∵

or ρ
P

+ gh +
1
2

 v 2 = constant ...(3)

This is Bernoulli’s equation. Thus the total energy of unit mass of
liquid remains constant.

Dividing equation (3) by g, ρ
P

g +
2

2
v

g  + h = constant

Each term in this equation has the dimension of length and hence

is called head. ρ
P
g is called pressure head, 

2

2
v
g  is velocity head and h is

the gravitational head.

Special case :

If the liquid flows through a horizontal tube, h1 = h2. Therefore
there is no increase in potential energy of the liquid i.e. the gravitational
head becomes zero.

∴ equation (3) becomes

ρ
P

 + 1
2

 v2 = a constant

This is another form of Bernoulli’s equation.
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5.6.3 Application of Bernoulli’s theorem

(i) Lift of an aircraft wing

A section of an aircraft wing
and the flow lines are shown in
Fig. 5.34. The orientation of the wing
relative to the flow direction causes
the flow lines to crowd together above
the wing. This corresponds to
increased velocity in this region and
hence the pressure is reduced. But below the wing, the pressure is
nearly equal to the atmospheric pressure. As a result of this, the upward
force on the underside of the wing is greater than the downward force
on the topside. Thus there is a net upward force or lift.

(ii) Blowing of roofs

During a storm, the roofs of huts or
tinned roofs are blown off without any
damage to other parts of the hut. The
blowing wind creates a low pressure P1

on top of the roof. The pressure P2 under
the roof is however greater than P1. Due
to this pressure difference, the roof is lifted
and blown off with the wind.

(iii) Bunsen burner
In a Bunsen burner, the gas comes out of the

nozzle with high velocity. Due to this the pressure in
the stem of the burner decreases. So, air from the
atmosphere rushes into the burner.

(iv) Motion of two parallel boats
When two boats separated by a small distance

row parallel to each other along the same direction,
the velocity of water between the boats becomes very
large compared to that on the outer sides. Because
of this, the pressure in between the two boats gets
reduced. The high pressure on the outer side pushes

the boats inwards. As a result of this, the boats come closer and may
even collide.

air flow

High velocity; Low pressure

Low velocity; High pressure

Fig. 5.34 Lift of an aircraft wing

Wind

P1

P2

Low Pressure

AirAir

Gas

Fig. 5.35 Blowing of roofs

Fig. 5.36 Bunsen
Burner
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Solved problems
5.1 A 50 kg mass is suspended from one end of a wire of length 4 m

and diameter 3 mm whose other end is fixed. What will be the
elongation of the wire? Take q = 7 × 1010 N m−2 for the material of
the wire.

Data : l = 4 m; d = 3 mm = 3 × 10−3 m; m = 50 kg; q = 7×1010 N m−2

Solution : q = 
Fl

Adl

∴ dl = π 2 -3 2 10

Fl 50 ×9.8 × 4
 = 

r q 3.14 × (1.5 ×10 ) ×7 ×10

= 3.96 × 10−3 m

5.2 A sphere contracts in volume by 0.01% when taken to the bottom
of sea 1 km deep. If the density of sea water is 103 kg m−3, find the
bulk modulus of the material of the sphere.

Data : dV = 0.01%

i.e 
0.01
100

dV

V
=  ; h = 1 km ;  ρ = 103 kg m−3

Solution :    dP = 103 × 103 × 9.8 =  9.8 × 106

/
dP

k
dV V

∴ =  = 
69.8 ×10 ×100

0.01
  = 9.8 × 1010 N m−2

5.3 A hydraulic automobile lift is designed to lift cars with a maximum
mass of 3000 kg. The area of cross−section of the piston carrying
the load is 425 × 10−4 m2. What maximum pressure would the
piston have to bear?

Data : m = 3000 kg, A = 425 × 10−4 m2

Solution: Pressure on the piston = 
  

   
Weight of car

Area of piston = 
 

mg
A

= -4

3000 ×9.8

425 ×10
= 6.92 × 105 N m−2

5.4 A square plate of 0.1 m side moves parallel to another plate with a
velocity of 0.1 m s−1, both plates being immersed in water. If the
viscous force is 2 × 10−3 N and viscosity of water is 10−3 N s m−2,
find their distance of separation.
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Data : Area of plate A = 0.1 × 0.1 = 0.01 m2

Viscous force F = 2 × 10−3 N

Velocity dv = 0.1 m s−1

Coefficient of viscosity η = 10−3 N s m−2

Solution :  Distance dx  = 
Adv

F

η

= 
-3

-3

10 ×0.01×0.1

2 ×10
 = 5 × 10−4 m

5.5 Determine the velocity for air flowing through a tube of
10−2 m radius. For air ρ = 1.3 kg m−3 and η = 187 x 10−7 N s m−2.

Data : r = 10−2 m ; ρ = 1.3 kg m−3 ; η = 187 × 10−7 N s m−2 ; NR = 2000

Solution : velocity v  = 
η

ρ
RN

D

= 
-7

-2

2000 ×187 ×10

1.3× 2 10×
= 1.44 m s−1

5.6 Fine particles of sand are shaken up in water contained in a tall
cylinder. If the depth of water in the cylinder is 0.3 m, calculate the
size of the largest particle of sand that can remain suspended after
40 minutes. Assume density of sand = 2600 kg m−3 and viscosity of
water = 10−3 N s m−2.

Data : s = 0.3 m,   t = 40 minutes = 40 × 60 s,   ρ = 2600 kg m−3

Solution: Let us assume that the sand particles are spherical in
shape and are of different size.

Let r be the radius of the largest particle.

Terminal velocity v = 
0.3

40 60×
 = 1.25 × 10−4 m s−1

Radius r = 
η

σρ
9 v

2( - )g

= 
-3 -49 ×10 ×1.25 ×10

 
2 (2600 - 1000) 9.8

= 5.989 × 10−6 m



229

5.7 A circular wire loop of 0.03 m radius is rested on the surface of a
liquid and then raised. The pull required is 0.003 kg wt greater
than the force acting after the film breaks. Find the surface tension
of the liquid.

Solution: The additional pull F of 0.003 kg wt is the force due to
surface tension.

∴Force due to surface tension,

F = T × length of ring in contact with liquid

(i.e) F = T × 2 × 2πr = 4πTr

(i.e) 4πTr = F

∴ 4πTr = 0.003 × 9.81

or  T = 
×

× ×
0.003 9.81

4 3.14 0.03
= 0.078 N m−1

5.8 Calculate the diameter of a capillary tube in which mercury is
depressed by 2.219 mm. Given T for mercury is 0.54 N m−1, angle
of contact is 140o and density of mercury is 13600 kg m−3

Data : h = − 2.219 × 10−3 m;  T = 0.54 N m−1 ; θ = 140o ;

ρ = 13600 kg m−3

Solution :  hrρg  = 2T cos θ

∴ r  = 
2  cos 

ρ
T

h g

θ

= −

× ×
− × × ×3

2 0.54 cos 140
( 2.219 10 ) 13600 9.8

o

= 2.79 × 10−3 m

Diameter = 2r = 2 × 2.79 × 10−3 m = 5.58 mm

5.9 Calculate the energy required to split a water drop of radius
1 × 10−3 m into one thousand million droplets of same size. Surface
tension of water = 0.072 N m−1

Data : Radius of big drop R = 1 × 10−3 m

Number of drops n = 103 × 106 = 109 ; T = 0.072 N m-1

Solution : Let r be the radius of droplet.
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Volume of 109 drops = Volume of big drop

109 × π 34
  

3
r  =  π 34

  
3

R

 109 r3 = R3 = (10−3 )3

(103r)3 = (10-3)3

r = 
−3

3

10
10

 = 10−6 m

Increase in surface area ds = 109 × 4πr 2 − 4π R2

(i.e) ds = 4π [ 109 × (10−6)2 − (10−3)2 ] = 4 π[10−3 − 10−6] m2

∴ ds = 0.01254 m2

Work done W = T.ds = 0.072 × 0.01254 = 9.034 × 10−4 J

5.10 Calculate the minimum pressure required to force the blood from
the heart to the top of the head (a vertical distance of 0.5 m). Given
density of blood = 1040 kg m−3. Neglect friction.

Data :  h2 − h1 = 0.5 m ,  ρ  = 1040 kg m−3 ,  P1 − P2 = ?

Solution :  According to Bernoulli’s theorem

P1 − P2 =  ρg(h2 − h1) + 
1
2

ρ  (v2
2
 − v1

2
)

If v2  = v1, then

P1 − P2 = gρ (h2 − h1)

P1 − P2 = 1040 × 9.8 (0.5)

P1 − P2 = 5.096 × 103 N m−2
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Self evaluation
(The questions and problems given in this self evaluation are only samples.
In the same way any question and problem could be framed from the text
matter. Students must be prepared to answer any question and problem
from the text matter, not only from the self evaluation.)

5.1 If the length of the wire and mass suspended are doubled in a Young’s
modulus experiment, then, Young’s modulus of the wire

(a) remains unchanged (b) becomes double

(c) becomes four times (d) becomes sixteen times

5.2 For a perfect rigid body, Young’s modulus is

(a) zero (b) infinity

(c) 1 (d) –1

5.3 Two wires of the same radii and material have their lengths in the
ratio 1 : 2. If these are stretched by the same force, the strains
produced in the two wires will be in the ratio

(a) 1 : 4 (b) 1 : 2

(c) 2 : 1 (d) 1 : 1

5.4 If the temperature of a liquid is raised, then its surface tension is

(a) decreased (b) increased

(c) does not change (d) equal to viscosity

5.5 The excess of pressure inside two soap bubbles of diameters in the
ratio 2 : 1 is

(a) 1 : 4 (b) 2 : 1

(c) 1 : 2 (d) 4 : 1

5.6 A square frame of side l is dipped in a soap solution. When the frame
is taken out, a soap film is formed. The force on the frame due to
surface tension T of the soap solution is

(a) 8 Tl (b) 4 Tl

(c) 10 Tl (d) 12 Tl
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5.7 The rain drops falling from the sky neither hit us hard nor make
holes on the ground because they move with

(a) constant acceleration (b) variable acceleration

(c) variable speed (d) constant velocity

5.8 Two hail stones whose radii are in the ratio of 1 : 2 fall from a height
of 50 km. Their terminal velocities are in the ratio of

(a) 1 : 9 (b) 9 : 1

(c) 4 : 1 (d) 1 : 4

5.9 Water flows through a horizontal pipe of varying cross−section at the
rate of 0.2 m3 s−1. The velocity of water at a point where the area of
cross−section of the pipe is 0.01 m2 is

(a) 2 ms−1 (b) 20 ms−1

(c) 200 ms−1 (d) 0.2 ms−1

5.10 An object entering Earth’s atmosphere at a high velocity catches fire
due to

(a) viscosity of air (b) the high heat content of atmosphere

(c) pressure of certain gases (d) high force of g.

5.11 Define : i) elastic body ii) plastic body iii) stress iv) strain v) elastic
limit vi) restoring force

5.12 State Hooke’s law.

5.13 Explain the three moduli of elasticity.

5.14 Describe Searle’s Experiment.

5.15 Which is more elastic, rubber or steel? Support your answer.

5.16 State and prove Pascal’s law without considering the effect of gravity.

5.17 Taking gravity into account, explain Pascal’s law.

5.18 Explain the principle, construction and working of hydraulic brakes.

5.19 What is Reynold’s number?

5.20 What is critical velocity of a liquid?

5.21 Why aeroplanes and cars have streamline shape?

5.22 Describe an experiment to determine viscosity of a liquid.



233

5.23 What is terminal velocity?

5.24 Explain Stoke’s law.

5.25 Derive an expression for terminal velocity of a small sphere falling
through a viscous liquid.

5.26 Define cohesive force and adhesive force. Give examples.

5.27 Define i) molecular range ii) sphere of influence iii) surface tension.

5.28 Explain surface tension on the basis of molecular theory.

5.29 Establish the relation between surface tension and surface energy.

5.30 Give four examples of practical application of surface tension.

5.31 How do insects run on the surface of water?

5.32 Why hot water is preferred to cold water for washing clothes?

5.33 Derive an expression for the total energy per unit mass of a flowing
liquid.

5.34 State and prove Bernoulli’s theorem.

5.35 Why the blood pressure in humans is greater at the feet than at the
brain?

5.36 Why two holes are made to empty an oil tin?

5.37 A person standing near a speeding train has a danger of falling
towards the train. Why?

5.38 Why a small bubble rises slowly through a liquid whereas the bigger
bubble rises rapidly?

Problems

5.39 A wire of diameter 2.5 mm is stretched by a force of 980 N. If the
Young’s modulus of the wire is 12.5 × 1010 N m−2, find the percentage
increase in the length of the wire.

5.40 Two wires are made of same material. The length of the first wire is
half of the second wire and its diameter is double that of second
wire. If equal loads are applied on both the wires, find the ratio of
increase in their lengths.

5.41 The diameter of a brass rod is 4 mm. Calculate the stress and strain
when it is stretched by 0.25% of its length. Find the force exerted.
Given q = 9.2 × 1010 N m−2 for brass.
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5.42 Calculate the volume change of a solid copper cube, 40 mm on each
side, when subjected to a pressure of 2 ×107 Pa. Bulk modulus of
copper is 1.25 × 1011 N m−2.

5.43 In a hydraulic lift, the piston P2 has a diameter of 50 cm and that of
P1 is 10 cm. What is the force on P2 when 1 N of force is applied on
P1?

5.44 Calculate the mass of water flowing in 10 minutes through a tube of
radius 10−2 m and length 1 m having a constant pressure of 0.2 m of
water. Assume coefficient of viscosity of water = 9 × 10−4 N s m−2

and g = 9.8 m s−2.

5.45 A liquid flows through a pipe of 10−3 m radius and 0.1 m length
under a pressure of 103 Pa. If the coefficient of viscosity of the liquid
is 1.25 × 10−3 N s m−2, calculate the rate of flow and the speed of the
liquid coming out of the pipe.

5.46 For cylindrical pipes, Reynold’s number is nearly 2000. If the diameter
of a pipe is 2 cm and water flows through it, determine the velocity of
the flow. Take η for water = 10−3 N s m−2.

5.47 In a Poiseuille’s flow experiment, the following are noted.

i) Volume of liquid discharged per minute = 15 × 10−6 m3

ii) Head of liquid = 0.30 m

iii) Length of tube = 0.25 m

iv) Diameter = 2 × 10−3 m

v) Density of liquid = 2300 kg m−3.

Calculate the coefficient of viscosity.

5.48 An air bubble of 0.01 m radius raises steadily at a speed of
5 × 10−3 m s−1 through a liquid of density 800 kg m−3. Find the
coefficient of viscosity of the liquid. Neglect the density of air.

5.49 Calculate the viscous force on a ball of radius 1 mm moving through
a liquid of viscosity 0.2 N s m−2 at a speed of 0.07 m s−1.

5.50 A U shaped wire is dipped in soap solution. The thin soap film formed
between the wire and a slider supports a weight of 1.5 × 10−2 N. If
the length of the slider is 30 cm, calculate the surface tension of the
film.
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5.51 Calculate the force required to remove a flat circular plate of radius
0.02 m from the surface of water. Assume surface tension of water
is 0.07 N m−1.

5.52 Find the work done in blowing up a soap bubble from an initial surface
area of 0.5 × 10−4 m2 to an area 1.1 × 10−4 m2. The surface tension of
soap solution is 0.03 N m−1.

5.53 Determine the height to which water will rise in a capillary
tube of 0.5 × 10−3 m diameter. Given for water, surface tension
is 0.074 N m−1.

5.54 A capillary tube of inner diameter 4 mm stands vertically in a bowl
of mercury. The density of mercury is 13,500 kg m−3 and its surface
tension is 0.544 N m−1. If the level of mercury in the tube is 2.33 mm
below the level outside, find the angle of contact of mercury with
glass.

5.55 A capillary tube of inner radius 5 × 10−4 m is dipped in water of
surface tension 0.075 N m−1. To what height is the water raised by
the capillary action above the water level outside. Calculate the weight
of water column in the tube.

5.56 What amount of energy will be liberated if 1000 droplets of water,
each of diameter 10−8 m, coalesce to form a big drop. Surface tension
of water is 0.075 N m−1.

5.57 Water flows through a horizontal pipe of varying cross−section. If the
pressure of water equals 2 × 10−2 m of mercury where the velocity of
flow is 32 × 10−2 m s−1 find the pressure at another point, where the
velocity of flow is 40 × 10−2 m s−1.
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Answers

5.1 (a) 5.2 (b) 5.3 (d) 5.4 (a)

5.5 (c) 5.6 (a) 5.7 (d) 5.8 (d)

5.9 (b) 5.10  (a)

5.39 0.16 % 5.40 1 : 8

5.41 2.3 × 108 N m-2, 0.0025, 2.89 × 103  N

5.42 -1.024 × 10-8  m3 5.43 25 N

5.44 5.13 × 103 kg 5.45 3.14 × 10-6 m3 s-1, 1 m s-1

5.46 0.1 ms-1 5.47 4.25 × 10-2 N s m-2

5.48 34.84 N s m-2 5.49 2.63 × 10-4 N

5.50 2.5 × 10-2 N m-1 5.51 8.8 × 10-3 N

5.52 1.8 × 10-6 J 5.53 6.04 × 10-2 m

5.54 124o36’ 5.55 3.04 × 10-2 m, 2.35 × 10-4 N

5.56 2.12 × 10-14 J 5.57 2636.8 N m-2
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Mathematical Notes
(Not for examination)

Logarithm

In physics, a student is expected to do the calculation by using
logarithm tables. The logarithm of any number to a given base is the
power to which the base must be raised in order to obtain the number.
For example, we know that 2 raised to power 3 is equal to 8 (i.e) 23 = 8. In
the logarithm form this fact is stated as the logarithm of 8 to the base 2 is
equal to 3. (i.e.) log2 8 = 3.

In general, if ax = N, then loga  N = x.

We use “common logarithm” for calculation purposes. Common
logarithm of a number is the power to which 10 must be raised in order to
obtain that number. The base 10 is usually not mentioned. In other words,
when base is not mentioned, it is understood as base of 10.

For doing calculations with log tables, the following formulae should
be kept in mind.

(i) Product formula : log mn = log m + log n

(ii) Quotient formula : log 
m

n
 = log m − log n

(iii) Power formula : log mn = n log m

(iv) Base changing formula : loga m = logb m × logab

Logarithm of a number consists of two parts called characteristic
and Mantissa. The integral part of the logarithm of a number after
expressing the decimal part as a positive is called characteristic. The
positive decimal part is called Mantissa.

To find the characteristic of a number

(i) The characteristic of a number greater than one or equal to
one is lesser by one (i.e) (n − 1) than the number of digits (n)
present to the left of the decimal point in a given number.

(ii) The characteristic of a number less than one is a negative
number whose numerical value is more by one i.e. (n+1) than



2

the number of zeroes (n) between the decimal point and the
first significant figure of the number.

Example Number Characteristic

5678.9 3

567.89 2

56.789 1

5.6789 0

0.56789 1

0.056789 2

0.0056789 3

To find the Mantissa of a number

We have to find out the Mantissa from the logarithm table. The

position of a decimal point is immaterial for finding the Mantissa.

(i.e) log 39, log 0.39, log 0.039 all have same Mantissa. We use the following

procedure for finding the Mantissa.

(i) For finding the Mantissa of log 56.78, the decimal point is ignored.

We get 5678. It can be noted that the first two digits from the left

form 56, the third digit is 7 and the fourth is 8.

(ii) In the log tables, proceed in the row 56 and in this row find the

number written under the column headed by the third digit 7.

(i.e) 7536. To this number the mean difference written under

the fourth digit 8 in the same row is added (i.e)

7536 + 6 = 7542. Hence logarithm of 56.78 is 1.7542. 1 is the

characteristic and 0.7542 is the Mantissa.

(iii) To find out the  Mantissa of 567, find the number in the row

headed by 56 and under the column 7. It is 7536. Hence the

logarithm of 567 is 2. 7536. Here 2 is the characteristic and

0.7536 is the Mantissa.

(iv) To find out the Mantissa of 56, find the number in the row

headed by 56 and under the column 0. It is 7482. Hence the

logarithm of 56 is 1.7482. Here 1 is the characteristic and 0.7482

is the Mantissa.

(v) To find out the Mantissa of 5, find the number in the row headed

by 50 and under the column 0. It is 6990. Hence the logarithm
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of 5 is 0.6990. Here 0 is the characteristic and 0.6990 is the

Mantissa.

Antilogarithm

To find out the antilogarithm of a number, we use the decimal part
of a number and read the antilogarithm table in the same manner
as in the case of logarithm.

(i) If the characteristic is n, then the decimal point is fixed after
(n+1)th digit.

(ii) If the characteristic is n, then add (n−1) zeroes to the left side
and then fix the decimal point.

(iii) In general if the characteristic is n or n, then fix the decimal
point right side of the first digit and multiply the whole number
by 10n or 10−n.

Example Number Antilogarithm

0.9328 8.567 or 8.567 × 100

1.9328 85.67 or 8.567 × 101

2.9328 856.7 or 8.567 × 102

3.9328 8567.0 or 8.567 × 103

1.9328 0.8567 or 8.567 × 10−1

2.9328 0.08567 or 8.567 × 10−2

3.9328 0.008567 or 8.567 × 10−3

EXERCISE - 1
1. Expand by using logarithm formula

(i) T = 2π l
g (ii) ve = 2gR

(iii) q = 2

mgl
πr x

(iv) loge2

2. Multiply 5.5670 by 3

3. Divide 3.6990 by 2

4. Evaluate using logarithm

(i)
2×22×6400
7×7918.4

(ii) 39.8×6370×10
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(iii)
-2

3 -2

2×7.35×10
9.8×10 ×8.5×10

(iv) 2π 
0.5
245

Some commonly used formulae of algebra

(i) (a+b)2 = a2 + 2ab + b2

(ii) (a−b)2 = a2 − 2ab + b2

(iii) (a+b+c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

(iv) (a+b)3 = a3 + b3 + 3a2b + 3b2a

(v) (a − b)3 = a3 − b3 − 3a2b + 3ab2

Quadratic equation

An algebraic equation in the form ax2 + bx + c = 0 is called quadratic
equation. Here a is the coefficient of x2, b is the coefficient of x and c is the
constant. The solution of the quadratic equation is

x = 
− ± −2 4

2
b b ac

a

Binomial theorem

The theorem states that (1 + x)  n = 1 + nx + 
−( 1)

2!
n n

  x2 +

− −( 1)( 2)
3!

n n n
 x3 + ... where x is less than 1 and n is any number. If n

is a positive integer the expansion will have (n+1) terms and if n is
negative or fraction, the expansion will have infinite terms.

Factorial 2 = 2! = 2 × 1

Factorial 3 = 3! = 3 × 2 × 1

Factorial n = n! = n(n − 1) (n − 2) ....

If x is very small, then the terms with higher powers of x can be
neglected.

(i.e) (1 + x)n  = 1 + nx (1 + x)−n  = 1 − nx
(1 − x)n  = 1 − nx (1 − x)−n  = 1 + nx

EXERCISE- 2

1. Find the value of x in 4x2 + 5x − 2 = 0

2. Expand Binomially (i) 

2

1
h

R

−
⎡ ⎤+⎢ ⎥⎣ ⎦

 (ii) (1 − 2x)3
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Trigonometry

Let the line AC moves in anticlockwise direction from the initial
position AB. The amount of revolution that the moving line makes with its
initial position is called angle. From the figure   θ = CAB . The angle is
measured with degree and radian. Radian is the angle subtended at the
centre of a circle by an arc of the circle, whose length is equal to the radius
of the circle.

1 radian = 57o 17′ 45″ 1 right angle = π/2 radian

1ο = 60′  (sixty minutes). 1′ = 60″ (sixty seconds)

Triangle laws of sine and cosine

a2 = b2 + c2 – 2bc cos α

sin sin sin
a b c

α β γ
= =

Trigonometrical ratios (T −−−−− ratios)

Consider the line OA making an
angle θ in anticlockwise direction with
OX.

From A, draw the perpendicular
AB to OX.

The longest side of the right angled
triangle, OA is called hypotenuse. The side
AB is called perpendicular  or opposite side.
The side OB is called base or adjacent side.

1. Sine of angle θ  = sin θ = 
perpendicular

hypotenuse

2. Cosine of angle θ  = cos θ  = 
base

hypotenuse

3. Tangent of angle θ  = tan θ  = 
perpendicular

base

4. Cotangent of θ  = cot θ  = 
base

perpendicular

C

BA
θ

θ
B

A

XOX′

Y

Y′

) )

)

γ α

βa

b

c

)
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5. Secant of θ  = sec θ  = 
hypotenuse

base

6. Cosecant of θ  = cosec θ  = 
hypotenuse

perpendicular

Sign of trigonometrical ratios

II quadrant I quadrant

sin θ and cosec θ All positive

only positive

III quadrant IV quadrant

tan θ and cot θ cos θ and sec θ only

only positive positive

T −−−−− ratios of allied angles

− θ, 90o − θ, 90o + θ, 180o − θ, 180o + θ, 270o − θ, 270o + θ are called

allied angles to the angle θ. The allied angles are always integral multiples

of 90o.

1. (a) sin (−θ) = − sin θ (b) cos (−θ) = cos θ (c) tan (−θ) = − tan θ

2. (a) sin (90o − θ) = cos θ (b) cos (90o − θ) = sin θ (c) tan (90o − θ) = cot θ

3. (a) sin (90o + θ) = cos θ (b) cos (90o + θ) = − sin θ (c) tan (90o + θ) = – cot θ

4. (a) sin (180o – θ) = sin θ (b) cos (180o − θ) = − cos θ (c) tan (180o–θ) = – tan θ

5. (a) sin (180o + θ) = – sin θ (b) cos (180o + θ) = – cos θ (c) tan (180o + θ) = tan θ

6. (a) sin (270o – θ) = – cos θ (b) cos (270o − θ) = − sin θ (c) tan (270o – θ) = cot θ

7. (a) sin (270o + θ) = – cos θ (b) cos (270o + θ) =  sin θ (c) tan (270o + θ)= – cot  θ
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T−−−−− ratios of some standard angles

Angle 0o 30o 45o 60o 90o 120o 180o

sin θ 0
1
2

1

2
3
2

1
3
2

0

cos θ 1
3
2

1

2
1
2

0 – 
1
2

–1

tan θ 0
1

3
1 3 ∞ – 3 0

Some trigonometric formulae

1. sin (A + B) = sin A cos B + cos A sin B

2. cos (A + B) = cos A cos B − sin A sin B

3. sin (A – B) = sin A cos B – cos A sin B

4. cos (A – B) = cos A cos B + sin A sin B

5. sin A + sin B = 2 sin  
2

A B+
 cos 

2

A B−

6. sin A – sin B = 2 cos  
2

A B+
 sin 

2

A B−

7. cos A + cos B = 2 cos  
2

A B+
 cos 

2

A B−

8. cos A – cos B = 2 sin  
2

A B+
 sin 

2

A B−

9. sin 2A = 2 sin A cos A = 2

2 tan

1 tan+
A

A
10. 2 sin A cos B = sin (A + B) + sin (A – B)

11. 2 cos A sin B = sin (A + B) – sin (A – B)

12. 2 sin A sin B = cos (A – B) – cos (A + B)

13. 2 cos A cos B = cos (A + B) + cos (A – B)

14. cos 2 A = 1 – 2 sin2A

Differential calculus

Let y be the function of x

(i.e) y = f(x)  .....(1)

The function y depends on variable x. If the variable x is changed to
x + ∆x, then the function is also changed to y + ∆y
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∴ y + ∆y = f (x + ∆x )  ....(2)

Subtracting equation (1) from (2)

∆y = f (x + ∆x ) – f (x )

dividing on both sides by ∆x, we get

( ) ( )
 = 

y f x x f x

x x

∆ + ∆ −
∆ ∆

Taking limits on both sides of equation, when ∆x approaches zero,
we get

0 0

( ) ( )
  

x x

y f x x f x
Lt Lt

x x∆ → ∆ →

∆ + ∆ −⎛ ⎞ =⎜ ⎟∆ ∆⎝ ⎠

In calculus 
0
 

x

y
Lt

x∆ →

∆
∆

  is denoted by 
dy

dx
 and is called differentiation of

y with respect to x.

The differentiation of a function with respect to a variable means
the instantaneous rate of change of the function with respect to the
variable.

Some theorems and formulae

1.
d

dx
 (c) = 0  , if c is a constant.

2. If y = c u, where c is a constant and u is a function of x then

dy

dx
 = 

d

dx
  (cu) = c 

du

dx

3. If y =    ± ±u v w  where u, v and w are functions of x then

 =  ( )± ±
dy d

u v w
dx dx

=     ± ±
du dv dw

dx dx dx

4. If y = x n, where n is the real number then

1 =  ( )  −=n ndy d
x n x

dx dx

5. If y = uv where u and v are functions of x then

 =  ( )= +
dy d dv du

uv u v
dx dx dx dx
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6. If y is a function of x, then  dy = 
dy

dx
 . dx

7. ( )x xd
e e

dx
=

8.
1

(log )e

d
x

dx x
=

9.
d

dθ  (sin θ) = cos θ

10.
d

dθ  (cos θ) = – sin θ

11. If  y is a trigonometrical function of θ and θ is the function of t, then

d

dt
 (sin θ) = cos θ 

d

dt

θ

12. If y is a trigonometrical function of θ and θ is the function of t, then
d

dt(cos θ) = – sin θ 
d

dt

θ

EXERCISE - 3

1. If y = sin 3θ find θ
dy

d

2. If y = x5/7 find 
dy

dx

3. If y = 2

1

x
 find 

dy

dx

4. If y = 4x3 + 3x2 + 2, find 
dy

dx

5. Differentiate : (i) ax2 + bx + c

6. If s = 2t3 – 5t2 + 4t – 2,  find the position (s), velocity 
ds

dt

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and

acceleration 
⎛ ⎞
⎜ ⎟
⎝ ⎠
dv

dt
 of the particle at the end of 2 seconds.

Integration

It is the reverse process of differentiation. In other words integration
is the process of finding a function whose derivative is given. The integral
of a function y with respect to x is given by ∫y dx. Integration is represented
by the elongated S. The letter S represents the summation of all differential
parts.



10

Indefinite integral

We know that
3 2( ) 3

d
x x

dx
=

3 2( 4) 3
d

x x
dx

+ =

3 2( ) 3
d

x c x
dx

+ =

The result in the above three equations is the same. Hence the
question arises as to which of the above results is the integral of 3x2. To
overcome this difficulty the integral of 3x2 is taken as (x3 + c), where c is
an arbitrary constant and can have any value. It is called the constant of
integration and is indefinite. The integral containing c, (i.e) (x3 + c) is
called indefinite integral. In practice ‘c’ is generally not written, though it
is always implied.

Some important formulae

(1) dx = x∫ ( ) 1
d

x
dx

=∵

(2)
1

1

n
n x
x dx

n

+⎛ ⎞
= ⎜ ⎟+⎝ ⎠

∫
1

1

nd x

dx n

+⎛ ⎞
⎜ ⎟+⎝ ⎠

∵ = xn

(3)   =∫ ∫cu dx c u dx where c is a constant

(4) ( )v    v   ± ± = ± ±∫ ∫ ∫ ∫u w dx u dx dx w dx

(5) ∫ x
e

1
dx = log

x

(6)  = e∫ x xe dx

(7) cos sindθ θ θ=∫

(8) sin cosdθ θ θ= −∫
Definite integrals

When a function is integrated between a lower limit and an upper
limit, it is called a definite integral.
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[ ]( ) ( )  = ( ) ( )

bb

a a

f x dx f x f b f a′ = −∫  is a definite integral. Here a and b are

lower and upper limits of the variable x.

EXERCISE – 4

1. Integrate the following with respect to x

(i) 4x3 (ii) 2

1
x

(iii) 3x2 + 7x - 4

(iv) 2/7

5

7x
(v) 3

2

x
− (vi) 12x2 + 6x

2. Evaluate

(i) 

3
2

2

 ∫ x dx (ii) 

4

1

 ∫ x dx

(iii) 

4

2

 ∫ xdx (iv) 

/2

/2

cos d
π

π

θ θ
−
∫

ANSWERS
Exercise - 1

1. (i) log 2 + log 3.14 + 
1
2

 log l - 
1
2

 log g

(ii)
1
2

 (log 2 + log g + log R)

(iii) log m + log g + log l – log 3.14 – 2 log r – log x

(iv) 0.6931

2. 14.7010

3. 2.8495

4. (i) 5.080 (ii) 7.9 × 103

(iii) 1.764 × 10–4 (iv) 2.836 × 10–1
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Exercise - 2

(1)
5 57

8

− ±
(2) (i) 

2
1

h

R
− (ii) 1 – 6x

Exercise - 3

(1) 3 cos 3θ (2) 2/75

7
x− (3) 3

2

x

−
(4) 12x2 + 6x

(5) 2ax + b (6) 2, 8, 14

Exercise - 4

1. (i) x4 (ii) 
1

x
− (iii) 

3 27
4

2
x x x+ −

(iv) x5/7 (v) 2

1

x
(vi) 4x3 + 3x2

2. (i) 
19

3
(ii) 

14

3
(iii) 6 (iv) 2
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Proof for Lami’s theorem

O A

DB

C

R

P

Q

Proof for Lami’s theorem

Let forces 
→
P, 

→
Q and 

→
R acting at a point O be in equilibrium. Let

OA and OB(=AD) represent the forces
→
P and 

→
Q in magnitude and

direction. By the parallelogram law of forces OD will represent the

resultant of the forces
→
P and 

→
Q. Since the forces are in equilibrium DO

will represent the third force R.

In the triangle OAD, using law of sines,

 =  = 
sin  sin  sin  

OA AD OD

ODA AOD OAD

From Fig. 2.35,

∠ODA = ∠BOD = 180o − ∠BOC

∠AOD = 180o − ∠AOC

∠OAD = 180o − ∠AOB

Therefore,

osin  (180  - )

OA

BOC∠
 = osin  (180  - )

AD

AOC∠
 = osin  (180  - )

OD

AOB∠

(i.e)  = 
sin  sin  

OA AD
BOC AOC∠ ∠

= 
sin  

OD

AOB∠

If  ∠BOC =α,  ∠AOC=β,  ∠AOB=γ

= =
sin  sin  sin  

P Q R

α β γ  which proves Lami’s theorem.

ANNEXURE
(NOT FOR EXAMINATION)
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1. Moment of inertia of a thin uniform rod

(i) About an axis passing through its
centre of gravity and perpendicular
to its length

Consider a thin uniform rod AB of
mass M and length l as shown in
Fig. 1. Its mass per unit length will

be 
M
l

. Let, YY ′  be the axis passing

through the centre of gravity G of the
rod (and perpendicular to the
length AB).

Consider a small element of length
dx of the rod at a distance x  from G.

The mass of the element

= mass per unit length × length of the element = 
M

l
× dx ...(1)

The moment of inertia of the element dx about the axis YY ′  is,

dI = (mass) ×  (distance)2 = ( )2 
M

dx x
l

⎛ ⎞
⎜ ⎟
⎝ ⎠

...(2)

Therefore the moment of inertia of the whole rod about YY′ is obtained

by integrating equation (2) within the limits   – 
l

2
 to + 

l

2
.

ICG=  

/2
2

/2

+

−

⎛ ⎞
⎜ ⎟
⎝ ⎠∫

l

l

M
dx x

l = 

/2
2

/2

  
+

−
∫
l

l

M
x dx

l

ICG = 

/23

/2

 
3

+

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

l

l

M x

l
 = 

3 3

 
3 2 2
M l l

l

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

= 

3 3

3 8 8

⎡ ⎤
+⎢ ⎥

⎣ ⎦

M l l

l  = 

32

3 8

⎡ ⎤
⎢ ⎥
⎣ ⎦

M l

l

ICG =  
3 2

  
12 12

=
M l M l

l
...(3)

Y1

/

Y1

Y/

Y

x

dx

B
GA

l
2

Fig 1 Moment of inertia of
a thin uniform rod
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(ii) About an axis passing through the end and perpendicular to its
length

The moment of inertia I about a parallel axis Y1Y1′ passing through
one end A can be obtained by using parallel axes theorem

∴ I = ICG + 
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
2 2 2l Ml Ml

M +
2 12 4

2Ml
I

3
=

2 Moment of inertia of a thin circular ring

(i) About an axis passing through its centre and
perpendicular to its plane

Let us consider a thin ring of mass M and
radius R with O as centre, as shown in Fig. 2. As the
ring is thin, each particle of the ring is at a distance
R  from the axis XOY passing through O and
perpendicular to the plane of the ring.

For a particle of mass m on the ring, its moment
of inertia about the axis XOY is mR 2. Therefore the moment of inertia of
the ring about the axis is,

I = Σ mR2 = ( )mΣ R2 = MR2

(ii) About its diameter

AB and CD are the diameters of the ring
perpendicular to each other (Fig. 3).  Since, the ring
is symmetrical about any diameter, its moment of
inertia about AB will be equal to that about CD.  Let
it be Id . If I is the moment of inertia of the ring about
an axis passing through the centre and
perpendicular to its plane then applying
perpendicular axes theorem,

∴ I = Id + Id = MR 2 (or) Id = 
1

2
MR2

X

Y

R

O

Fig 2 Moment of
Inertia of a ring

A

B

C
O

D

E

F

R

Fig 3 Moment of
inertia of a ring

about its diameter
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(iii) About a tangent

The moment of inertia of the ring about a tangent EF parallel to AB
is obtained by using the parallel axes theorem. The moment of inertia of
the ring about any tangent is,

IT = Id + M R 2 +2 21
= 

2
 MR MR

2

2T
3

I MR=

3 Moment of inertia of a circular disc

(i) About an axis passing through its
centre and perpendicular to its plane

Consider a circular disc of mass M
and radius R with its centre at O as
shown in Fig. 4. Let σ be the mass per
unit area of the disc.  The disc can be
imagined to be made up of a large number
of concentric circular rings of radii
varying from O to R .Let us consider one
such ring of radius r and width dr.

The circumference of the ring = 2πr.

The area of the elementary ring =  2πr dr

Mass of the ring= 2πr dr σ  = 2πrσ dr ...(1)

Moment of inertia of this elementary ring about the axis passing
through its centre and perpendicular to its plane is

dI = mass ×  ( distance )2

= (2πr σ  dr) r2 ...(2)

The moment of inertia of the whole disc about an axis passing
through its centre and perpendicular to its plane is,

I = ∫
R

O

2πσr3dr = 2πσ ∫
R

O

r3dr    = 2πσ 
4

4

R

O

r⎡ ⎤
⎢ ⎥
⎣ ⎦

(or) I = ( )
4

2 22 1
 = R

4 2
R

R
πσ π σ  =   

21
 

2
MR ...(3)

where M = πR2σ  is the mass of the disc.

dr

rR
O

Fig 4 Moment of inertia of a
circular disc
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(ii) About a diameter

Since, the disc is symmetrical about
any diameter, the moment of inertia about
the diameter AB will be same as its moment
of inertia about the diameter CD.  Let it be
Id (Fig. 5). According to perpendicular axes
theorem, the moment of inertia I of the disc,
about an axis perpendicular to its plane and
passing through the centre will be equal to
the sum of its moment of inertia about two
mutually perpendicular diameters AB
and CD.

Hence, I = Id + Id = 
1
2

MR 2 = 
1
4

 MR 2

(iii) About a tangent in its plane

The moment of inertia of the disc about the tangent EF in the plane
of the disc and parallel to AB can be obtained by using the theorem of
parallel axes (Fig. 3.15).

 IT = Id + MR2  =  21 2MR MR
4

+

∴ ΙΤ =  
5

4
 MR2

4 Moment of inertia of a sphere

(i) About a diameter

Let us consider a homogeneous solid
sphere of mass M, density ρ and radius R
with centre O (Fig.  6). AB is the diameter
about which the moment of inertia is to be
determined.  The sphere may be considered
as made up of a large number of coaxial
circular discs with their centres lying on
AB and their planes perpendicular to AB.
Consider a disc of radius PO′ = y and
thickness dx with centre O′  and at a
distance x from O,

A
B

C

DE F

R

O

R

P

O/

dx

x

y

Fig 6 Moment of inertia of a
sphere about a diameter

A B

C

O

DE F

R

Fig 5 Moment of inertia of a
disc about a tangent line
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Its volume = πy2 dx ...(1)

Mass of the disc = π y 2 dx . ρ ...(2)

From Fig. 6, R2 = y 2 + x 2 (or) y2 = R 2 – x 2 ...(3)

Using (3) in (2),

Mass of the circular disc = π ( R 2 – x 2) dx  ρ ...(4)

The moment of inertia of the disc about the diameter AB is,

dI = 
1
2

(mass) ×  (radius)2

= 
2 21

( ) .ρ( )
2

R x dx yπ 2−

= ( )π −
22 21

 ρ
2

R x dx ... (5)

The moment of inertia of the entire sphere about the diameter AB is
obtained by integrating eqn (5) within the limits x = –R to x = + R.

∴ I = 
2 2 21 ρ( )

2

R

R

R x dxπ
+

−

−∫

 I = 2 × 
2 2 21

( ρ ) ( )
2

R

O

R x d xπ −∫

   = 
4 4 2 2( ρ ) ( 2 )

R

O

R x R x d xπ + −∫

   = 
5 5

5 2
 ρ

5 3
R R

Rπ
⎡ ⎤

+ −⎢ ⎥
⎣ ⎦

   = 
5 3 28 4 2

 ρ  =  
15 3 5

R R Rπ π ρ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

   =   
2 22 2

.  = 
5 5

M R MR⎛ ⎞
⎜ ⎟
⎝ ⎠

where M = 
34 ρ

3
Rπ  = mass of the solid sphere

∴ I = 
22

5
MR

(ii) About a tangent

The moment of inertia of a solid sphere about a tangent EF parallel
to the diameter AB (Fig. 7) can be determined using the parallel axes
theorem,

A B
O

DE F

R

Fig 7 Moment of inertia of a
sphere about a tangent
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 IT = IAB + MR2 = 22
5

2MR MR+

∴  IT =
7

5
 MR2

5. Moment of inertia of a solid cylinder

(i) about its own axis

Let us consider a solid cylinder of mass M, radius R and length l. It
may be assumed that it is made up of a large number of thin circular
discs each of mass m and radius R placed one above the other.

Moment of inertia of a disc about an axis passing through its centre

but perpendicular to its plane = 
2

2
mR

∴ Moment of inertia of the cylinder about its axis I = Σ
2

2
mR

I = 
2 2 2

2 2 2
R R MR

m M
⎛ ⎞

= =⎜ ⎟
⎝ ⎠
∑

(ii) About an axis passing through its centre and perpendicular to
its length

Mass per unit length of the cylinder = 
M

l
...(1)

Let O be the centre
of gravity of the cylinder
and YOY′ be the axis
passing through the
centre of gravity and
perpendicular to the
length of the cylinder
(Fig. 8).

Consider a small
circular disc of width dx
at a distance x from the
axis YY′.

∴ Mass of the disc = mass per unit length × width

 =  
M

l
⎛ ⎞
⎜ ⎟
⎝ ⎠

 dx ...(2)

l /  
2

x

O dx
X

Y/

Y

X/

Y1

Y1
/

Fig.8 Moment of inertia of a
cylinder about its axis
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Moment of inertia of the disc about an axis parallel to YY′ (i.e) about

its diameter = (mass) 
2

4
radius⎛ ⎞

⎜ ⎟
⎝ ⎠

       = 
2 2

 
4 4

M R MR
dx dx

l l

⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

...(3)

By parallel axes theorem, the moment of inertia of this disc about
an axis parallel to its diameter and passing through the centre of the
cylinder (i.e. about YY′) is

dI =
2

4
MR

l

⎛ ⎞
⎜ ⎟
⎝ ⎠

dx + 
M

dx
l

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (x2) ...(4)

Hence the moment of inertia of the cylinder about YY′ is,

I  = 
/2 2

2

/2 4

l

l

M R M
dx x dx

l l

+

−

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∫

        I =  

/2 /22
2

/2 /24

l l

l l

MR M
dx x dx

l l

+ +

− −

+∫ ∫

I =  [ ]
/22 3

/2

/2
/2

4

l
l

l
l

MR M x
x

l l 3

+
+

−
−

⎛ ⎞
+ ⎜ ⎟

⎝ ⎠

 I =

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥− −⎜ ⎟ ⎜ ⎟⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎢ ⎥− − +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

33

2 2 2
4 2 2 3

l l
MR l l M

l l

 I = ( )
2

4
MR

l
l
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24
M l

l

⎡ ⎤⎛ ⎞+ ⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

   = 
2 2

4 12
MR Ml

+

I = M  
2 2

4 12
R l⎛ ⎞

+⎜ ⎟
⎝ ⎠

...(5)


