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Preface
The most important and crucial stage of school education is the

higher secondary level. This is the transition level from a generalised
curriculum to a discipline-based curriculum.

In order to pursue their career in basic sciences and professional
courses, students take up Physics as one of the subjects. To provide
them sufficient background to meet the challenges of academic and
professional streams, the Physics textbook for Std. XI has been reformed,
updated and designed to include basic information on all topics.

Each chapter starts with an introduction, followed by subject matter.
All the topics are presented with clear and concise treatments. The
chapters end with solved problems and self evaluation questions.

Understanding the concepts is more important than memorising.
Hence it is intended to make the students understand the subject
thoroughly so that they can put forth their ideas clearly. In order to
make the learning of Physics more interesting, application of concepts
in real life situations are presented in this book.

Due importance has been given to develop in the students,
experimental and observation skills. Their learning experience would
make them to appreciate the role of Physics towards the improvement
of our society.

The following are the salient features of the text book.

The data has been systematically updated.

Figures are neatly presented.

Self-evaluation questions (only samples) are included to sharpen
the reasoning ability of the student.

As Physics cannot be understood without the basic knowledge
of Mathematics, few basic ideas and formulae in Mathematics
are given.

While preparing for the examination, students should not
restrict themselves, only to the questions/problems given in the
self evaluation. They must be prepared to answer the questions
and problems from the text/syllabus.

Sincere thanks to Indian Space Research Organisation (ISRO) for
providing valuable information regarding the Indian satellite programme.

– Dr. S. Gunasekaran
Chairperson
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6. Oscillations

Any motion that repeats itself after regular intervals of time is
known as a periodic motion. The examples of periodic motion are the
motion of planets around the Sun, motion of hands of a clock, motion
of the balance wheel of a watch, motion of Halley’s comet around the
Sun observable on the Earth once in 76 years.

If a body moves back and forth repeatedly about a mean position, it
is said to possess oscillatory motion. Vibrations of guitar strings, motion of
a pendulum bob, vibrations of a tuning fork, oscillations of mass suspended
from a spring, vibrations of diaphragm in telephones and speaker system
and freely suspended springs are few examples of oscillatory motion. In all
the above cases of vibrations of bodies, the path of vibration is always
directed towards the mean or equilibrium position.

The oscillations can be expressed in terms of simple harmonic
functions like sine or cosine function. A harmonic oscillation of constant
amplitude and single frequency is called simple harmonic motion (SHM).

6.1 Simple harmonic motion

A particle is said to execute simple harmonic motion if its
acceleration is directly proportional to the displacement from a
fixed point and is always directed towards that point.

Consider a particle P executing SHM along a straight
line between A and B about the mean position O (Fig. 6.1).
The acceleration of the particle is always directed towards a
fixed point on the line and its magnitude is proportional to
the displacement of the particle from this point.

(i.e) a α y

By definition a = −ω2 y

where ω is a constant known as angular frequency of the
simple harmonic motion. The negative sign indicates that the
acceleration is opposite to the direction of displacement. If m
is the mass of the particle, restoring force that tends to bring

O

P

A

B

y

Fig. 6.1
Simple

harmonic
motion of
a particle
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back the particle to the mean position is given by

F = −m ω2 y

or F = −k y

The constant k = m ω2, is called force constant or spring constant.
Its unit is N m−1. The restoring force is directed towards the mean
position.

Thus, simple harmonic motion is defined as oscillatory motion about
a fixed point in which the restoring force is always proportional to the
displacement and directed always towards that fixed point.

6.1.1 The projection of uniform circular motion on a diameter
is SHM

Consider a particle moving along the
circumference of a circle of radius a and
centre O, with uniform speed v, in
anticlockwise direction as shown in Fig. 6.2.
Let XX’ and YY’ be the two perpendicular
diameters.

Suppose the particle is at P after a time
t. If ω is the angular velocity, then the angular
displacement θ in time t is given by θ = ωt.
From P draw PN perpendicular to YY ’. As
the particle moves from X to Y, foot of the
perpendicular N moves from O to Y. As it
moves further from Y to X ’, then from X ’ to Y ’ and back again to X, the
point N moves from Y to O, from O to Y ′ and back again to O. When
the particle completes one revolution along the circumference, the point
N completes one vibration about the mean position O. The motion of the
point N along the diameter YY ’ is simple harmonic.

Hence, the projection of a uniform circular motion on a diameter of
a circle is simple harmonic motion.

Displacement in SHM

The distance travelled by the vibrating particle at any instant of
time t from its mean position is known as displacement. When the
particle is at P,  the displacement of the particle along Y axis is y
(Fig. 6.3).

X
O

X/

Y

Y/

N

a

P

Fig. 6.2 Projection of
uniform circular motion
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Then, in ∆ OPN, sin θ = 
ON
OP

ON = y = OP sin θ

y = OP sin ωt (∵  θ = ωt)

since OP = a, the radius of the circle,
the displacement of the vibrating particle is

y = a sin ωt ...(1)

The amplitude of the vibrating particle
is defined as its maximum displacement from
the mean position.

Velocity in SHM

The rate of change of displacement is the velocity of the vibrating
particle.

Differentiating eqn. (1) with respect to time t

dy d
 = 

dt dt
 (a sin ωt)

∴ v = a ω cos ωt ...(2)

The velocity v of the particle moving
along the circle can also be obtained by
resolving it into two components as shown
in Fig. 6.4.

(i) v cos θ in a direction
parallel to OY

(ii) v sin θ in a direction
perpendicular to OY

The component v sin θ has no effect
along YOY ′ since it is perpendicular to OY.

∴ Velocity = v cos θ
= v cos ωt

We know that, linear velocity = radius × angular velocity
∴ v = aω

∴ Velocity = aω cos ωt

∴ Velocity = aω 21- sin ωt

X
O

X/

Y

Y/

N

y a

P

Fig. 6.3 Displacement
in SHM

a

P

v 
co

s

v sin

v

Fig. 6.4 Velocity in SHM
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Velocity = aω 
2

y
1-   

a
⎛ ⎞
⎜ ⎟
⎝ ⎠

  θ = 
y

sin
a

⎡ ⎤
⎢ ⎥⎣ ⎦
∵

Velocity = ω 2 2a - y ...(3)

Special cases

(i) When the particle is at mean position, (i.e) y = 0. Velocity is aω
and is maximum. v = + aω is called velocity amplitude.

(ii) When the particle is in the extreme position, (i.e) y = + a, the
velocity is zero.

Acceleration in SHM

The rate of change of velocity is the acceleration of the vibrating
particle.

2

2

d y d dy
=  

dt dtdt
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = ( ω cos ωt)d
a

dt
 = −ω2 a sin ωt.

∴ acceleration = 
2

2

d y

dt
= –ω2 y ...(4)

The acceleration of the particle can also be obtained by
component method.

The centripetal

acceleration of the particle P

acting along P O is 
2v

a
. This

acceleration is resolved into
two components as shown in
Fig. 6.5.

(i) 
2v

a
 cos θ along P N

perpendicular to OY

(ii) 
2v

a
 sin θ in a direction

parallal to YO

v2

a
cos

v2

v2

aa
sin

Fig. 6.5 Acceleration in SHM
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The component 
2v

a
 cos θ has no effect along YOY ′ since it is

perpendicular to OY.

Hence acceleration = – 
2v

a
 sin θ

= – a ω2 sin ωt (∵ v = a ω)

= − ω2 y  (∵ y = a sin ωt)

∴ acceleation = − ω2 y

The negative sign indicates that the acceleration is always opposite
to the direction of displacement and is directed towards the centre.

Special Cases

(i) When the particle is at the mean position (i.e) y = 0, the
acceleration is zero.

(ii) When the particle is at the extreme position (i.e) y = +a,
acceleration is ∓  a ω2  which is called as acceleration amplitude.

The differential equation of simple harmonic motion from eqn. (4)

is 
2

2

d y

dt
 + ω2 y = 0 ...(5)

Using the above equations, the values of displacement, velocity
and acceleration for the SHM are given in the Table 6.1.

It will be clear from the above, that at the mean position y = 0,
velocity of the particle is maximum but acceleration is zero. At extreme

Time ωt Displacement Velocity Acceleration
a sin ωt aω cos ωt −ω2a sin ωt

t = 0 0 0 aω 0

t = 
4
T

2
π

+a 0 −aω2

t = 
2
T

π 0 −aω 0

t = 3T
4

3
2
π

−a 0 +aω2

t = T 2π 0 +aω 0

Table 6.1 - Displacement, Velocity and Acceleration
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position y = +a, the velocity is zero
but the acceleration is maximum
∓ a ω2 acting in the opposite direction.

Graphical representation of SHM

Graphical representation of
displacement, velocity and acceleration
of a particle vibrating simple
harmonically with respect to time t is
shown in Fig. 6.6.

(i) Displacement graph is a sine
curve. Maximum displacement of the
particle is y = +a.

(ii) The velocity of the vibrating
particle is maximum at the mean
position i.e v = + a ω and it is zero at
the extreme position.

(iii) The acceleration of the
vibrating particle is zero at the mean
position and maximum at the extreme
position (i.e) ∓ a ω2.

The velocity is ahead of displacement by a phase angle of 
2
π

. The
acceleration is ahead of the velocity by a phase angle 

2
π

 or by a phase
π ahead of displacement. (i.e) when the displacement has its greatest
positive value, acceleration has its negative maximum value or vice
versa.

6.2 Important terms in simple harmonic motion

(i) Time period

The time taken by a particle to complete one oscillation is called the
time period T.

In the Fig. 6.2, as the particle P completes one revolution with
angular velocity ω, the foot of the perpendicular N  drawn to the vertical
diameter completes one vibration. Hence T is the time period.

T
4

T
4

T
2

T
2

3T
4

3T
4

T
4

T
2

3T
4

y

Fig. 6.6 Graphical representation
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Then ω = 
2
T
π

 or T = 2π
ω

The displacement of a particle executing simple harmonic motion
may be expressed as

y(t) = a sin 
2
T
π

 t ...(1)

and y(t) = a cos 
2
T
π

 t ...(2)

where T represents the time period, a represents maximum displacement
(amplitude).

These functions repeat when t is replaced by (t + T).

y (t + T) = a sin 
2

 (t + T)
π⎡ ⎤

⎢ ⎥⎣ ⎦T
...(3)

          = a sin 2  + 2
t

T
π π⎡ ⎤

⎢ ⎥⎣ ⎦

          = a sin 2  
t

T
π = y (t)

In general y (t + nT) = y (t )

Above functions are examples of periodic function with time period

T. It is clear that the motion repeats after a time T = 
2π
ω

 where ω is the

angular frequency of the motion. In one revolution, the angle covered by
a particle is 2π in time T.

(ii) Frequency and angular frequency

The number of oscillations produced by the body in one second is
known as frequency. It is represented by n. The time period to complete

one oscillation is 
1
n

.

T = 
1
n

 shows the time period is the reciprocal of the frequency. Its

unit is hertz. ω = 2π n, is called as angular frequency. It is expressed
in rad s−1.
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(iii) Phase

The phase of a particle vibrating in SHM is the state of the particle
as regards to its direction of motion and position at any instant of time.
In the equation y = a sin (ωt + φo) the term (ωt + φo) = φ, is known as
the phase of the vibrating particle.

Epoch

It is the initial phase of the vibrating particle (i.e) phase at t = 0.

∴ φ = φo   (∵ φ = ωt + φo)

The phase of a vibrating particle changes with time but the epoch
is phase constant.

Fig. 6.7 Phase

(i) If the particle P starts from the position X, the phase of the
particle is Zero.

(ii) Instead of counting the time from the instant the particle is at
X, it is counted from the instant when the reference particle is at A
(Fig. 6.7a) . Then XO P  = (ωt − φo).

Here (ωt − φo) = φ is called the phase of the vibrating particle.
(−φo)  is initial phase or epoch.

(iii) If the time is counted from the instant the particle P is above
X (i.e) at B, [Fig. 6.7b] then (ωt + φo) = φ. Here (+φo) is the initial phase.

(a) Phase φ = (ωt – φ
0
) (b) Phase φ = (ωt + φ

0
)

X
O

X/

Y

Y/

P

A

t
X

O
X/

Y

Y/

P

t
B
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Phase difference

If two vibrating particles executing SHM with same time period,
cross their respective mean positions at the same time in the same direction,
they are said to be in phase.

If the two vibrating particles cross their respective mean position
at the same time but in the opposite direction, they are said to be out
of phase (i.e they have a phase difference of π).

If the vibrating motions are represented by equations

y1 = a sin ωt and

y2 = a sin (ωt − φ)

then the phase difference between their phase angles is equal to the
phase difference between the two motions.

∴ phase difference = ωt − φ − ωt = −φ negative sign indicates that the
second motion lags behind the first.

If  y2 = a sin (ωt + φ),

phase difference = ωt + φ − ωt = φ

Here the second motion leads the first motion.

We have discussed the SHM without taking into account the cause
of the motion which can be a force  (linear SHM) or a torque (angular
SHM).

Some examples of SHM

(i) Horizontal and vertical oscillations of a loaded spring.

(ii) Vertical oscillation of water in a U−tube

(iii) Oscillations of a floating cylinder

(iv) Oscillations of a simple pendulum

(v) Vibrations of the prongs of a tuning fork.

6.3 Dynamics of harmonic oscillations

The oscillations of a physical system results from two basic
properties namely elasticity and inertia. Let us consider a body displaced
from a mean position. The restoring force brings the body to the mean
position.

(i) At extreme position when the displacement is maximum, velocity
is zero. The acceleration becomes maximum and directed towards the
mean position.
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(ii) Under the influence of restoring force, the body comes back to
the mean position and overshoots because of negative velocity gained at
the mean position.

(iii) When the displacement is negative maximum, the velocity
becomes zero and the acceleration is maximum in the positive direction.
Hence the body moves towards the mean position. Again when the
displacement is zero in the mean position velocity becomes positive.

(iv) Due to inertia the body overshoots the mean position once
again. This process repeats itself periodically. Hence the system oscillates.

The restoring force is directly proportional to the displacement and
directed towards the mean position.

(i.e) F  α  y

F  = −ky ... (1)

where k is the force constant. It is the force required to give unit
displacement. It is expressed in N m−1.

From Newton’s second law, F  = ma ...(2)

∴ −k y = ma

or a = 
k

-
m

 y ...(3)

From definition of SHM acceleration a = −ω2y

The acceleration is directly proportional to the negative of the
displacement.

Comparing the above equations we get,

ω = 
k
m

...(4)

Therefore the period of SHM is

T = 
2π
ω  = 2π 

m

k

T = 
inertial factor

2π  
spring factor . ...(5)
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6.4 Angular harmonic oscillator

Simple harmonic motion can also be angular. In this case, the restoring
torque required for producing SHM is directly proportional to the angular
displacement and is directed towards the mean position.

Consider a wire suspended vertically from a rigid support. Let
some weight be suspended from the lower end of the wire. When the
wire is twisted through an angle θ from the mean position, a restoring
torque acts on it tending to return it to the mean position. Here restoring
torque is proportional to angular displacement θ.

Hence τ = − C θ ...(1)

where C is called torque constant.

It is equal to the moment of the couple required to produce unit
angular displacement. Its unit is N m rad−1.

The negative sign shows that torque is acting in the opposite
direction to the angular displacement. This is the case of angular simple
harmonic motion.

Examples : Torsional pendulum, balance wheel of a watch.

But τ = I α ...(2)

where τ is torque, I is the moment of inertia and α is angular acceleration

∴ Angular acceleration, α =  = - 
C

I I

τ θ
...(3)

This is similar to a = −ω2 y

Replacing y by θ, and a by α we get

α = −ω2θ = − 
C
I

 θ

 ∴ ω = 
C
I

∴ Period of SHM T = 2π
I

C

∴ Frequency  
1 1 1

T 22 ππ
= = =

C
n

II
C

S

O/

A
O

B

Fig. 6.8 Torsional Pendulum
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6.5 Linear simple harmonic oscillator

The block − spring system is a linear simple harmonic oscillator.
All oscillating systems like diving board, violin string have some element
of springiness, k (spring constant) and some element of inertia, m.

6.5.1 Horizontal oscillations of spring

Consider a mass (m) attached
to an end of a spiral spring (which
obeys Hooke’s law) whose other end
is fixed to a support as shown in
Fig. 6.9. The body is placed on a
smooth horizontal surface. Let the
body be displaced through a distance
x towards right and released. It will
oscillate about its mean position. The
restoring force acts in the opposite
direction and is proportional to the
displacement.

∴ Restoring force F = −kx.

From Newton’s second law, we know that F = ma

∴ ma = −kx

a = 
−k
m

 x

Comparing with the equation of SHM a = −ω2x, we get

ω2 = 
k
m

or ω = 
k
m

But T = 
2π
ω

Time period T =  2π 
m
k

∴ Frequency n = 
1
2

1 k
T mπ

=

m
x

m
F

x
Fig. 6.9 Linear harmonic

oscillator
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6.5.2 Vertical oscillations of a spring

Fig 6.10a shows a light, elastic spiral spring suspended vertically
from a rigid support in a relaxed position. When a mass ‘m’ is attached
to the spring as in Fig. 6.10b, the spring is extended by a small length
dl such that the upward force F exerted by the spring is equal to the
weight mg.

The restoring force F = k dl ; k dl = mg ...(1)

where k is spring constant. If we further extend the given spring by a
small distance by applying a small force by our finger, the spring oscillates
up and down about its mean position. Now suppose the body is at a
distance y above the equilibrium position as in Fig. 6.10c. The extension
of the spring is (dl − y). The upward force exerted on the body is
k (dl − y) and the resultant force F on the body is

F = k (dl − y) − mg = −ky ...(2)

The resultant force is proportional to the displacement of the body
from its equilibrium position and the motion is simple harmonic.

If the total extension produced is (dl + y) as in Fig. 6.10d the
restoring force on the body is k (dl + y) which acts upwards.

Fig. 6.10 Vertical oscillations of loaded spring
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So, the increase in the upward force on the spring is

k (dl + y) −mg = ky

Therefore if we produce an extension downward then the restoring
force in the spring increases by ky in the upward direction. As the force
acts in the opposite direction to that of displacement, the restoring force
is − ky and the motion is SHM.

  F = − ky

ma = − ky

  a = − 
k
m

 y ...(3)

  a = −ω2 y (expression for SHM)

Comparing the above equations, ω = 
k
m

...(4)

But T = 
2π m

= 2π
ω k

...(5)

From equation (1) mg = k dl

m dl
=

k g

Therefore time period T = 2π 
dl
g ...(6)

Frequency n = 
1

2

g
dlπ

Case 1 : When two springs are connected in
parallel

Two springs of spring factors k1 and k2 are
suspended from a rigid support as shown in
Fig. 6.11. A load m is attached to the combination.

Let the load be pulled downwards through a
distance y from its equilibrium position. The
increase in length is y for both the springs but
their restoring forces are different.

m

F1 F2

Fig. 6.11 Springs in
parallel
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If F1 and F2 are the restoring forces

F1 = −k1y, F2 = −k2y

∴ Total restoring force = (F1 + F2) = −(k1 + k2) y

So, time period of the body is given by

T = 2π 
1 2

m

k +k

If k1 = k2 = k

Then, T = 2π 
m
2k

∴ frequency n = 
1
 

2

2k
mπ

Case 2 : When two springs are connected in series.

Two springs are connected in series in two different ways.

This arrangement is shown in Fig. 6.12a and 6.12b.

In this system when the combination of two springs is displaced
to a distance y, it produces extension y1 and y2 in two springs of force
constants k1 and k2.

F = −k1 y1   ; F = −k2 y2

(a)

(b)

m

k1

k2

mk1
k2

Fig. 6.12 Springs in series
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where F is the restoring force.

Total extension, y = y1 + y2 = −F 
1 2

1 1
+

k k

⎡ ⎤
⎢ ⎥
⎣ ⎦

  

We know that F = −ky

∴ y = F
-

k

From the above equations,

 −
F

k
= − F 

1 2

1 1
+

k k

⎡ ⎤
⎢ ⎥
⎣ ⎦

or k = 
1 2

1 2

k k
k +k

∴ Time period = T = 2π 
1 2

1 2

m(k +k )
k k

 frequency n = 
1 2

1 2

k k1
2π (k +k )m

If both the springs have the same spring constant,

k1 = k2 = k.

∴ n = 
1 k

2π 2m

6.5.3 Oscillation of liquid column in a U - tube

Consider a non viscous liquid column of
length l of uniform cross-sectional area A (Fig. 6.13).
Initially the level of liquid in the limbs is the same.
If the liquid on one side of the tube is depressed by
blowing gently the levels of the liquid oscillates for
a short time about their initial positions O and C,
before coming to rest.

If the liquid in one of the limbs is depressed
by y , there will be a difference of 2 y in the liquid
levels in the two limbs. At some instant, suppose
the level of the liquid on the left side of the tube is

Fig. 6.13
Oscillation of a

liquid
column in
U - tube
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at D, at a height y above its original position O, the level  B of the liquid on
the other side is then at a depth y below its original position C. So the
excess pressure P on the liquid due to the restoring force is excess height
× density × g

(i.e) pressure = 2 y ρ g

∴ Force on the liquid = pressure × area
  of the cross-section of the tube

= – 2 y ρ g × A ..... (1)

The negative sign indicates that the force towards O is opposite to
the displacement measured from O at that instant.

The mass of the liquid column of length l is volume × density

(i.e) m = l A ρ

∴ F = l A ρ a .... (2)

From equations (1) and (2) l A ρ a = - 2 y A ρ g

∴ a = – 
2g

y
l

..... (3)

We know that a = –ω2 y

(i.e) a = – 
2g

y
l

 = –ω2 y where ω = 
2g
l

Here, the acceleration is proportional to the displacement, so the
motion is simple harmonic and the period T is

T = 
2

2
2
l

g

π π
ω

=

6.5.4 Oscillations of a simple pendulum

A simple pendulum consists of massless and inelastic thread whose
one end is fixed to a rigid support and a small bob of mass m is
suspended from the other end of the thread. Let l be the length of the
pendulum. When the bob is slightly displaced and released, it oscillates
about its equilibrium position. Fig.6.14 shows the displaced position of
the pendulum.
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Suppose the thread makes an angle θ with the
vertical. The distance of the bob from the equilibrium
position A is AB. At B, the weight mg acts vertically
downwards. This force is resolved into two components.

(i) The component mg cos θ is balanced by the
tension in the thread acting along the length towards
the fixed point O.

(ii) mg sin θ which is unbalanced, acts
perpendicular to the length of thread. This force tends
to restore the bob to the mean position. If the amplitude
of oscillation is small, then the path of the bob is a
straight line.

∴ F = −mg sin θ ...(1)

If the angular displacement is small sin θ ≈  θ

∴ F = −mg θ ...(2)

But θ = 
x
l

∴ F = − mg 
x
l

Comparing this equation with Newton’s second law, F = ma we

get, acceleration a = 
gx

-
l

...(3)

(negative sign indicates that the direction of acceleration is opposite to
the displacement) Hence the motion of simple pendulum is SHM.

We know that a = −ω2x

Comparing this with (3)

ω2 = 
g
l

 or ω =
g
l

...(4)

∴ Time period T = 
2

ω
π

T = 
l

2π
g ...(5)

∴ frequency n = 
1 g

2π l
...(6)

T

A

B

mg

m
g cos

mg sin
x

l

Fig. 6.14
Simple

Pendulum –
Linear SHM
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Laws of pendulum

From the expression for the time period of oscilations of a pendulum
the following laws are enunciated.

(i) The law of length

The period of a simple pendulum varies directly as the square root
of the length of the pendulum.

(i.e) T α l

(ii) The law of acceleration

The period of a simple pendulum varies inversely as the square
root of the acceleration due to gravity.

(i.e) T α 
1

g

(iii) The law of mass

The time period of a simple pendulum is independent of the mass
and material of the bob.

(iv) The law of amplitude

The period of a simple pendulum is independent
of the amplitude provided the amplitude is small.

Note : The length of a seconds pendulum is
0.99 m whose period is two seconds.

2 = 2π 
l
g

∴ l = 2

9.81 4

4π
×

 = 0.99 m

Oscillations of simple pendulum can also be

regarded as a case of angular SHM.

Let θ be the angular displacement of the bob
B at an instant of time. The bob makes rotation
about the horizontal line which is perpendicular to
the plane of motion as shown in Fig. 6.15.

Restoring torque about O is τ = − mg l sin θ

A

B

mg

l sin 

l

Fig. 6.15

Simple
pendulum -

Angular SHM



20

τ = −m g l θ [  θ is small]∵ ...(1)

Moment of inertia
about the axis =  m l 2 ...(2)

If the amplitude is small, motion of the bob is angular simple
harmonic. Therefore angular acceleration of the system about the axis
of rotation is

α = 2

-m g lθ
m l

τ
=

I

α = 
g
l

θ− ...(3)

We know that α = −ω 2 θ ...(4)

Comparing (3) and (4)

−ω 2θ = 
g

-
l

θ

angular frequency ω = 
g
l

Time period T =
2π
ω

 = 2π 
l
g ...(5)

Frequency n = 
1 g

 
2π l

...(6)

6.6 Energy in simple harmonic motion

The total energy (E) of an oscillating particle is equal to the sum of
its kinetic energy and potential energy if  conservative force acts on it.

The velocity of a particle executing SHM at a position where its

displacement is y from its mean position is v = ω 2 2a y−

Kinetic energy

Kinetic energy of the particle of mass m is

K = 
2

2 21
m  ω a  - y

2
⎡ ⎤
⎢ ⎥⎣ ⎦

K = 1
2

 m ω2 (a2 − y2) ...(1)



21

Potential energy

From definition of SHM  F = –ky the work done by the force during
the small displacement dy is dW = −F.dy = −(−ky) dy = ky dy

∴ Total work done for the displacement y is,

W = ∫ dW = 
0

y

∫ ky dy

W = 

y
2

0

mω y dy∫ [∵k = mω2)

∴W = 
1

2
 m ω2 y2

This work done is stored in the body as potential energy

U  = 
1

2
 m ω2 y2 ...(2)

Total energy E = K + U

= 
1

2
 mω2 (a2 − y2) + 

1

2
 m ω2 y2

= 
1

2
 m ω2 a2

Thus we find that the total energy of a particle executing simple

harmonic motion is 
1

2
 m ω2 a2.

Special cases

(i) When the particle is at the mean position y = 0, from eqn (1)
it is known that kinetic energy is maximum and from eqn. (2) it is
known that potential energy is zero. Hence the total energy is wholly

kinetic

E = Kmax = 
1

2
 mω2a2

(ii) When the particle is at the extreme position y = +a, from eqn.
(1)  it is known that kinetic energy is zero and from eqn. (2) it is known
that Potential energy is maximum. Hence the total energy is wholly
potential.
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E = Umax = 
1

2
 m ω2 a2

(iii) when y = 
2

a
,

K = 
1

2
 m ω2 

2
2 a

a -
4

⎡ ⎤
⎢ ⎥
⎣ ⎦

  ∴K = 
3

4
 

2 21
mω a

2
⎛ ⎞
⎜ ⎟
⎝ ⎠

K = 
3

4
E

U = 
2

2 2 21 a 1 1
m  ω =  m  ω a

2 2 4 2
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∴ U = 
1
4

 E

If the displacement is half of the amplitude, K = 
3

4
 E and

U = 
1

4
 E. K and U are in the ratio 3 : 1,

E = K + U = 2 21
   

2
ωm a

At any other position the energy is partly kinetic and partly
potential.

This shows that the particle
executing SHM obeys the law of
conservation of energy.

Graphical representation of
energy

The values of K and U in
terms of E for different values of y
are given in the Table 6.2. The
variation of energy of an oscillating
particle with the displacement  can
be represented in a graph as
shown in the Fig. 6.16.

Fig. 6.16 Energy – displacement graph

Displacement
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Table 6.2 Energy of SHM

y 0
2

a
a −

2

a
−a

E
3

4
E 0 3

4
E 0

0
1

4
E E

1

4 E E

6.7 Types of oscillations

There are three main types of oscillations.

(i) Free oscillations

When a body vibrates with its own natural frequency, it is said to
execute free oscillations. The frequency of oscillations depends on the
inertial factor and spring factor, which is given by,

n = 
1 k

 
2π m

Examples

(i) Vibrations of tuning fork

(ii) Vibrations in a stretched string

(iii) Oscillations of simple pendulum

(iv) Air blown gently across the mouth of a bottle.

(ii) Damped oscillations

Most of the oscillations in air or
in any medium are damped. When
an oscillation occurs, some kind of
damping force may arise due to
friction or air resistance offered by
the medium. So, a part of the energy
is dissipated in overcoming the
resistive force. Consequently, the
amplitude of oscillation decreases with
time and finally  becomes zero. Such
oscillations are called damped
oscillations (Fig. 6.17).

Kinetic
energy

Potential
energy

+a

-a

ty

Fig. 6.17 Damped oscillations
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Examples :

(i) The oscillations of a pendulum

(ii) Electromagnetic damping in galvanometer (oscillations of a coil
in galvanometer)

(iii) Electromagnetic oscillations in tank circuit

(iii) Maintained oscillations

The amplitude of an oscillating
system can be made constant by
feeding some energy to the system. If
an energy is fed to the system to
compensate the energy it has lost, the
amplitude will be a constant. Such
oscillations are called maintained
oscillations (Fig. 6.18).

Example :

A swing to which energy is fed continuously to maintain amplitude

of oscillation.

(iv) Forced oscillations

When a vibrating body is maintained in the state of vibration by a
periodic force of frequency (n) other than its natural frequency of the body,
the vibrations are called forced vibrations. The external force is driver
and body is driven.

The body is forced to vibrate with an external periodic force. The
amplitude of forced vibration is determined by the difference between
the frequencies of the driver and the driven. The larger the frequency
difference, smaller will be the amplitude of the forced oscillations.

Examples :

(i) Sound boards of stringed instruments execute forced vibration,

(ii) Press the stem of vibrating tuning fork, against tabla. The tabla
suffers forced vibration.

(v) Resonance

In the case of forced vibration, if the frequency difference is small,

Y

Fig. 6.18 Maintained oscillations
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the amplitude will be large (Fig. 6.19).
Ultimately when the two frequencies are
same, amplitude becomes maximum.This is

a special case of forced vibration.

If the frequency of the external periodic
force is equal to the natural frequency of
oscillation of the system, then the amplitude
of oscillation will be large and this is known
as resonance.

Advantages

(i) Using resonance, frequency of a
given tuning fork is determined with a
sonometer.

(ii) In radio and television, using tank circuit, required frequency
can be obtained.

Disadvantages

(i) Resonance can cause disaster in an earthquake, if the natural
frequency of the building matches the frequency of the periodic oscillations
present in the Earth. The building begins to oscillate with large amplitude
thus leading to a collapse.

(ii) A singer maintaining a note at a resonant frequency of a glass,
can cause it to shatter into pieces.

a
m

p
li
tu

d
e

frequency

no

Fig. 6.19 Resonance
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Solved problems

6.1 Obtain an equation for the SHM of a particle whose amplitude is
0.05 m and frequency 25 Hz. The initial phase is π/3.

Data : a = 0.05 m, n = 25 Hz, φo = π/3.

Solution : ω = 2πn = 2π × 25 = 50π

The equation of SHM is y = a sin (ω t + φο)

The displacement equation of SHM is : y = 0.05 sin (50πt + π/3)

6.2 The equation of a particle executing SHM is y = 5 sin 
ππt +
3

⎛ ⎞
⎜ ⎟
⎝ ⎠

.

Calculate (i) amplitude (ii) period (iii) maximum velocity and

(iv) velocity after 1 second  (y is in metre).

Data : y = 5 sin 
ππ⎛ ⎞+⎜ ⎟

⎝ ⎠3
t

Solution : The equation of SHM is y = a sin (ωt + φo)

Comparing the equations

(i) Amplitude a = 5 m

(ii) Period, T = 
π π

ω π
2 2

 = = 2 s

(iii) vmax = aω = 5 × π = 15.7 m s-1

(iv) Velocity after 1 s = aw cos  (ωt + φo)

= 15.7 cos 1
3
ππ⎡ ⎤⎛ ⎞× +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= 15.7 × 
1
2

= 7.85 m s-1

∴ v = 7.85 m s-1

6.3 A particle executes a simple harmonic motion of time period T. Find
the time taken by the particle to have a displacement from mean
position equal to one half of the amplitude.
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Solution : The displacement is given by y = a sin ωt

When the displacement y = 
2
a

,

we get
2
a

= a sin ωt

or sin ωt = 1
2

ωt = 
6
π

∴ t = 
π π

π=
26ω 6.
T

The time taken is t = 
12
T

 s

6.4 The velocities of a particle executing  SHM are 4 cm s-1 and
3 cm s-1, when its distance from the mean position is 2 cm and 3 cm
respectively. Calculate its amplitude and time period.

Data :  v1 = 4 cm s-1 = 4 × 10-2 m s-1 ; v2 = 3 cm s-1 = 3 × 10-2 m s-1

   y1 = 2 cm = 2 × 10-2 m ; y2 = 3 cm = 3 × 10-2 m

Solution : v1 = ω √a2 - y1
2 ... (1)

v2 = ω √a2 - y2
2 ... (2)

Squaring and dividing the equations

2 2 2
1 1

2 2
2 2

v a - y
=

v a - y

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

22 2 4

2 2 4

4 10 4 10

3 10 9 10

a

a

− −

− −

⎛ ⎞× − ×
=⎜ ⎟⎜ ⎟× − ×⎝ ⎠

9a2 - 36 × 10-4 = 16a2 - 144 × 10-4

7a2 = 108 × 10-4

∴ a = √15.42 × 10 -2  = 0.03928 m
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Substituting the value of a2 in equation (1)

we have

4 × 10–2 = ω 
-4

-4108×10
 - 4×10

7

∴ ω = 
7
5

 rad s–1

∴ Time period T = 
2π
ω  = 

5
2  

7
π

T  = 5.31 s

6.5 A circular disc of mass 10 kg is suspended by a wire attached to
its centre. The wire is twisted by rotating the disc and released.
The period of torsional oscillation is found to be 1.5 s. The radius
of the disc is 15 cm. Calculate the torsional spring constant.

Data :  m =10 kg, T = 1.5 s, r = 15 cm = 15 × 10-2 m C = ?

Solution : MI of the disc about an axis through the centre is 

I  = 
1
2

 MR2

The time period of angular SHM is T = 2π 
I

C

Squaring the equation, T2 = 4π2 I

C

∴ C = 
2

2

4 I

T

π

C = 
π 2 2

2

1
4 × MR

2
T

= 
2 2

2

2 (3.14) 10 0.15

(1.5)

× × ×

C = 2.0 N m rad-1

6.6 A body of mass 2 kg executing SHM has a displacement

y = 3 sin 
π⎛ ⎞+⎜ ⎟

⎝ ⎠
100   

4
t  cm. Calculate the maximum kinetic energy

of the body.
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Solution : Comparing with equation of SHM

y = a sin (ωt + φo)

a = 3 cm = 3 × 10–2 m, ω = 100 rad s-1, m = 2 kg

 y = 3 sin 
π⎛ ⎞+⎜ ⎟

⎝ ⎠
100   

4
t

Maximum kinetic energy = 
1
2

 ma2  ω2

= 
1
2

 × 2 × (0.032 × 1002)

Maximum kinetic energy = 9 joule

6.7 A block of mass 15 kg executes SHM under the restoring force of a
spring. The amplitude and the time period of the motion are 0.1 m
and 3.14 s respectively. Find the maximum force exerted by the
spring on the block.

Data : m = 15 kg, a = 0.1 m and T = 3.14 s

Solution : The maximum force exerted on the block is ka, when the
block is at the extreme position, where k is the spring constant.

The angular frequency = ω = 
2
T
π

 =  2 s-1

The spring constant k  = m ω2

 = 15 × 4 = 60 N m-1

The maximum force exerted on the block is ka = 60 × 0.1 = 6 N

6.8 A block of mass 680 g is attached to a horizontal spring whose
spring constant is 65 Nm-1. The block is pulled to a distance of
11 cm from the mean position and released from rest. Calculate :
(i) angular frequency, frequency and time period (ii) displacement
of the system  (iii) maximum speed and acceleration of the  system

Data : m = 680 g = 0.68 kg, k = 65 N m-1, a = 11 cm = 0.11 m

Solution : The angular frequency ω = 
k
m

ω = 
65

0.68
 = 9.78 rad s-1
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The frequency n = 
ω
π2

 = 
9.78
2π  = 1.56 Hz

The time period T = 
1
n

 = 
1

1.56  = 0.64 s

maximum speed  = a ω

= 0.11 × 9.78

= 1.075 m s-1

Acceleration of the block = a ω 2 = aω × ω

= 1.075 × (9.78)

= 10.52 m s-2

Displacement y( t ) = a sin ωt

∴ y ( t) = 0.11 sin 9.78 t metre

6.9 A mass of 10 kg is suspended by a spring of length 60 cm and force
constant 4 × 103 N m-1. If it is set into vertical oscillations, calculate
the (i) frequency of oscillation of the spring and (ii) the length of the
stretched string.

Data : k = 4 × 103 N m-1, F = 10 × 9.8 N, l = 60 × 10-2 m, m = 10 kg

Solution : (i) n = 
1 k

2π m

= 
31 4  × 10 20

=
2 10 2π π

Frequency = 3.184 Hz

(ii) T = 2π 
dl
g or T 2 = 

2 dl
4π

g

length (dl) = 
2T g

24π
 = 2 2

1 g
 × 

n 4π

∴ dl = 2 2

9.8

(3.184)  × 4 × (3.14)

dl = 0.0245 m

∴ The length of the stretched string = 0.6 + 0.0245 = 0.6245 m

mk F
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6.10 A mass m attached to a spring oscillates every 4 seconds. If the
mass is increased by 4 kg, the period increases by 1 s. Find its
initial mass m.

Data : Mass m oscillates with a period of 4 s

When the mass is increased by 4 kg period is 5 s

Solution : Period of oscillation T = 2π 
m
k

4 = 2π m
k ... (1)

5 = 2π 
4m

k
+

... (2)

Squaring and dividing the equations

25 4
16

m
m
+

=

25 m = 16 m + 64

9m = 64

∴ m = 
64
9

 = 7.1 kg

6.11 The acceleration due to gravity on the surface of moon is 1.7 m s-2.
What is the time period of a simple pendulum on the surface of the
moon, if its period on the Earth is 3.5 s ?

Data : g on moon = 1.7 m s-2

g on the Earth = 9.8 ms-2

Time period on the Earth = 3.5 s

Solution : T = 2π 
l
g

Let Tm represent the time period on moon

Tm = 2π 
1.7
l

... (1)

On the Earth, 3.5 = 2π 
9.8
l

... (2)

Dividing the equation (2) by (1) and squaring
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⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

2

m

3.5 1.7
=

9.8T

Tm
2 × 1.7 = (3.5)2 × 9.8

Tm
2 = 

× ×
=

2(3.5) 9.8 12.25 9.8
1.7 1.7

∴ Tm = 
120.05

1.7
 = 8.40 s

6.12 A simple pendulum has a period 4.2 s. When the pendulum is
shortened by 1 m the period is 3.7 s. Calculate its (i) acceleration
due to gravity (ii) original length of the pendulum.

Data : T = 4.2 s ; when length is shortened by 1m the period is 3.7 s.

Solution : T = 2π 
l
g

Squaring and rearranging g = 4π2  
2

l
T

g = 4π2 2(4.2)

l
...(1)

When the length is shortened by 1 m

g = 
2

2

4 ( -1)

(3.7)

lπ
... (2)

From  the above equations

2 2

1

(4.2) (3.7)

l l −
=

(7.9 × 0.5) l = 17.64

l = 
17.64

7.9 0.5×
 = 4.46 m

Substituting in equation (1)

g = 4π2 2

4.46

(4.2)  = 
175.89
17.64

g = 9.97 m s-2
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Self evaluation
(The questions and problems given in this self evaluation are only samples.
In the same way any question and problem could be framed from the text
matter. Students must be prepared to answer any question and problem
from the text matter, not only from the self evaluation.)

6.1 Which of the following is the necessary condition for SHM?

(a) constant period

(b) constant acceleration

(c) displacement and acceleration are proportional

(d) displacement and torque are proportional

6.2 The displacement of a particle executing SHM is given by

x = 0.01 sin (100 πt + 0.05). Its time period is

(a) 0.01 s (b) 0.02 s

(c) 0.1 s (d) 0.2 s

6.3 If the displacement of a particle executing SHM is given by

y = 0.05 sin (100 t + 
2

π
) cm. The maximum velocity of the

particle is

(a) 0.5 cm s-1 (b) 0.05 m s-1

(c) 100 m s-1 (d) 50 m s-1

6.4 If the magnitude of displacement is equal to acceleration, then
the time period is,

(a) 1 s (b) π s

(c) 2π s (d) 4π s

6.5 A body of mass 2 g is executing SHM about a mean position with
an amplitude 10 cm. If the maximum velocity is
100 cm s-1 its velocity is 50 cm s-1 at a distance of (in cm).

(a) 5 2 (b) 50 3
(c) 5 3 (d) 10 3

6.6 A linear harmonic oscillator has a total energy of 160 J. Its
(a) maximum potential energy is 100 J
(b) maximum kinetic energy is 160 J
(c) minimum potential energy is 100 J
(d) maximum kinetic energy is 100 J
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6.7 A force of 6.4 N stretches a vertical spring by 0.1 m. The mass
that must be suspended from the spring so that it oscillates with

a period of 
4
π

 s is

(a) 
4
π

 kg (b) 1 kg

(c) 
1
4

 kg (d) 10 kg

6.8 The length of seconds pendulum at a place where
g = 9.8 m s-2 is

(a) 0.25 m (b) 1 m

(c) 0.99 m (d) 0.50 m

6.9 A particle executes SHM with an amplitude 4 cm. At what
displacement from the mean position its energy is half kinetic
and half potential?

(a) 2 2  cm (b) 2 cm

(c) 2 cm (d) 1 cm

6.10 A particle executes SHM along a straight line with an amplitude
‘a’ ⋅ PE is maximum when the displacement is

(a) + a (b) zero

(c) + 
2
a

(d) 
2

a

6.11 Define simple harmonic motion. What are the conditions of SHM?

6.12 Every SHM is periodic motion but every periodic motion need not
be SHM. Why? Support your answer with an example.

6.13 Show that the projection of uniform circular motion on the diameter
of a circle is simple harmonic motion.

6.14 Explain : (i) displacement (ii) velocity and (iii) acceleration in SHM
using component method.

6.15 Show graphically the variation of displacement, velocity and
acceleration of a particle executing SHM.

6.16 What is the phase difference between (i) velocity and acceleration
(ii) acceleration and displacement of a particle executing SHM?
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6.17 Derive the differential formula for SHM.

6.18 Define the terms (i) time period (ii) frequency and (iii) angular
frequency.

6.19 Define force constant. Give its unit and dimensional formula.

6.20 What is phase of SHM? Explain the term phase difference.

6.21 Derive an expression for the time period of a body when it executes
angular SHM.

6.22 What is an epoch? Give its unit.

6.23 Explain the oscillations of a mass attached to a horizontal spring.
Hence deduce an expression for its time period.

6.24 Obtain an expression for the frequency of vertical oscillations of
a loaded spring.

6.25 Distinguish between linear and angular harmonic oscillator?

6.26 What is a spring factor?

6.27 Show that the oscillations of a simple pendulum are simple
harmonic. Hence deduce the expression for the time period.

6.28 The bob of a simple pendulum is a hollow sphere filled with
water. How does the period of oscillation change if the water
begins to drain out of the sphere?

6.29 Why does the oscillation of a simple pendulum eventually stop?

6.30 What will happen to the time period of a simple pendulum if its
length is doubled?

6.31 Derive an expression for the total energy of a particle executing
SHM.

6.32 On what factors the natural frequency of a body depend on?

6.33 What is forced vibration? Give an example.

6.34 What forces keep the simple pendulum in SHM?

6.35 Illustrate an example to show that resonance is disastrous
sometimes.

6.36 If two springs are connected in parallel, what is its equivalent
spring constant?

6.37 If two springs are connected in series, what is its equivalent
spring constant?
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Problems

6.38 Obtain an equation for the SHM of a particle of amplitude 0.5 m,

frequency 50 Hz. The initial phase is 
2
π

. Find the displacement

at t = 0.

6.39 The equation of SHM is represented by y = 0.25 sin (3014 t + 0.35),
where y and t are in mm and s respectively. Deduce (i) amplitude
(ii) frequency (iii) angular frequency (iv) period and (v) initial phase.

6.40 A particle executing SHM is represented by y = 2 sin 2  + o
t

 
T

π φ⎛ ⎞
⎜ ⎟
⎝ ⎠

.

At t = 0, the displacement is 3 cm. Find the initial phase.

6.41 A particle executing SHM has angular frequency of π rad s-1 and
amplitude of 5 m. Deduce (i) time period (ii) maximum
velocity (iii) maximum acceleration (iv) velocity when the
displacement is 3 m.

6.42 A body executes SHM with an amplitude 10 cm and period 2 s.
Calculate the velocity and acceleration of the body when the
displacement is i) zero and ii) 6 cm.

6.43 A disc suspended by a wire, makes angular oscillations. When it is
displaced through 30o from the mean position, it produces a restoring
torque of 4.6 N m. If the moment of inertia of the disc is
0.082 kg m2, calculate the frequency of angular oscillations.

6.44 A spring of force constant 1200 N m-1 is mounted on a horizontal
table as shown in figure. A mass of 3 kg is attached to its free
end and pulled side ways to a distance of 2 cm and released.
Calculate (i) the frequency of oscillation (ii) the maximum velocity
and (iii) maximum acceleration of the mass.

6.45 A mass of 0.2 kg attached to one end of a spring produces an
extension of 15 mm. The mass is pulled 10 mm downwards and
set into vertical oscillations of amplitude 10 mm. calculate
(i) the period of oscillation (ii) maximum kinetic energy.

mk F
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6.46 A 5 kg mass is suspended by a system of two identical springs
of spring constant 250 N m-1 as shown in figure. Determine the
period of oscillation the system.

6.47 A trolley of mass 2 kg is connected between two identical springs
of spring constant 400 N m-1. If the trolley is displaced from its
mean position by 3 cm and released, calculate its (i) time period
(ii) maximum velocity  (iii) maximum kinetic energy.

6.48 A vertical U tube of uniform cross section contains water to a height
of 0.3 m. Show that, if water in one of the limbs is depressed and
then released, the oscillations of the water column in the tube are
SHM. Calculate its time period also.

6.49 A bob of a simple pendulum oscillates with an amplitude of 4 cm
and time period 1 s. Find (i) length of the pendulum and (ii) velocity
of the bob in the mean position.

6.50 Compare the acceleration due to gravity at two places if the time
for 100 oscillations of a simple pendulum are 8 minutes 2 seconds
and 8 minutes 20 seconds respectively of the two places.

6.51 A particle of mass 0.2 kg executes SHM of amplitude 2 cm and
time period 6 s. Calculate (i) the total energy (ii) kinetic and potential
energy when displacement is 1 cm from the mean position.

6.52 The length of a seconds pendulum in a clock is increased by 2%.
How many seconds will it lose or gain in a day?

m

mk1 k2
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Answers

6.1 (c) 6.2 (b) 6.3 (b) 6.4 (c)

6.5 (c) 6.6 (b) 6.7 (b) 6.8 (c)

6.9 (a) 6.10 (a)

6.38      0.5 m

6.39 0.25 × 10-3 m, 480 Hz, 3014 rad s-1
, 0.0021 s, 0.35 rad

6.40 60o

6.41 2 s, 15.7 m s-1, 49.3 m s-2, 12.56 m s-1

6.42 0.314 m s-1, zero; 0.2512 m s-1, 0.5915 m s-2

6.43 1.64 Hz

6.44 3.2 Hz, 0.40 m s-1, 8.07 m s-2

6.45 0.25 s, 6.533 × 10-3 J

6.46 0.628 s

6.47 0.314 s, 0.6 m  s-1, 0.36 J

6.48 1.0098 s

6.49 0.25 m, 0.2512 m s-1

6.50 1.076

6.51 4.386 × 10-5 J, 3.286 × 10-5 J, 1.1 × 10-5 J

6.52 loss of time is 864 s
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7. Wave Motion

Wave motion is a mode of transmission of energy through a medium
in the form of a disturbance. It is due to the repeated periodic motion
of the particles of the medium about an equilibrium position transferring
the energy from one particle to another.

The waves are of three types - mechanical, electromagnetic and
matter waves. Mechanical waves can be produced only in media which
possess elasticity and inertia. Water waves, sound waves and seismic
waves are common examples of this type. Electromagnetic waves do not
require any material medium for propagation. Radio waves, microwaves,
infrared rays, visible light, the ultraviolet rays,  X rays and γ rays are
electromagnetic waves. The waves associated with particles like electrons,
protons and fundamental particles in motion are matter waves.

Waves on surface of water

In order to understand the concept of wave motion, let us drop
a stone in a trough of water. We find that small circular waves seem
to originate from the point where the stone touches the surface of
water. These waves spread out in all directions. It appears as if water
moves away from that point. If a piece of paper is placed on the water
surface, it will be observed that the piece of paper moves up and down,
when the waves pass through it. This shows that the waves are formed
due to the vibratory motion of the water particles, about their mean
position.

Wave motion is a form of disturbance which travels through a
medium due to the repeated periodic motion of the particles of the medium
about their mean position. The motion is transferred continuously from
one particle to its neighbouring particle.

7.1 Characteristics of wave motion

(i) Wave motion is a form of disturbance travelling in the medium
due to  the periodic motion of the particles about their mean position.
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(ii) It is necessary that the medium should possess elasticity and
inertia.

(iii) All the particles of the medium do not receive the disturbance
at the same instant (i.e) each particle begins to vibrate a little later
than its predecessor.

(iv) The wave velocity is different from the particle velocity. The
velocity of a wave is constant for  a given medium, whereas the velocity
of the particles goes on changing and it becomes maximum in their
mean position and zero in their extreme positions.

(v) During the propagation of wave motion, there is transfer of
energy from one particle to another without any actual transfer of the
particles of the medium.

(vi) The waves undergo reflection, refraction, diffraction and
interference.

7.1.1 Mechanical wave motion

The two types of mechanical wave motion are (i) transverse wave
motion and (ii) longitudinal wave motion

(i) Transverse wave motion

Transverse wave motion is that wave motion in which particles of
the medium execute SHM about their mean positions in a direction
perpendicular to the direction of propagation of the wave. Such waves are
called transverse waves. Examples of transverse waves are waves
produced by plucked strings of veena, sitar or violin and electromagnetic
waves. Transverse waves travel in the form of crests and troughs. The
maximum displacement of the particle in the positive direction i.e. above
its mean position is called crest and
maximum displacement of the particle in
the negative direction i.e below its mean
position is called trough.

Thus if ABCDEFG is a transverse
wave, the points B and F are crests while
D is trough (Fig. 7.1).

For the propagation of transverse
waves, the medium must possess force of cohesion and volume elasticity.
Since gases and liquids do not have rigidity (cohesion), transverse waves

A

B

C

D

E

F

G

Fig. 7.1 Transverse wave



41

cannot be produced in gases and liquids. Transverse waves can be
produced in solids and surfaces of liquids only.

(ii) Longitudinal wave motion

‘Longitudinal wave motion is that wave motion in which each particle
of the medium executes simple harmonic motion about its mean position
along the direction of propagation of the wave.’

Sound waves in fluids (liquids and gases) are examples of
longitudinal wave. When a longitudinal wave travels through a medium,
it produces compressions and rarefactions.

In the case of a spiral
spring, whose one end is tied
to a hook of a wall and the
other end is moved forward and
backward, the coils of the
spring vibrate about their
original position along the length of the spring and longitudinal waves
propagate through the spring (Fig.7.2).

The regions where the coils are closer are said to be in the state
of compression, while the regions where the coils are farther are said
to be in the state of rarefaction.

When we strike a tuning fork on a rubber pad, the  prongs of the
tuning fork begin to vibrate to and  fro about their mean positions.
When the prong A moves outwards to A1, it compresses the layer of air
in its neighbourhood. As the compressed layer moves forward it
compresses the next layer and a wave of compression passes through
air. But when the prong moves inwards to A2, the particles of the
medium which moved to the right, now move backward to the left due

to elasticity of air. This gives rise
to rarefaction.

Thus a longitudinal wave is
characterised by the  formation of
compressions and rarefactions
following each other.

Longitudinal waves can be
produced in all types of material
medium, solids, liquids and gases.
The density and pressure of the

C R C R C

Fig. 7.2 Compression and

rarefaction in spring

C
R C

R
C R

Fig. 7.3 Longitudinal wave



42

medium in the region of compression are more than that in the region
of rarefaction.

7.1.2 Important terms used in wave motion

(i) Wavelength (λλλλλ) 

The distance travelled by a wave during which a particle of the
medium completes one vibration is called wavelength. It is also defined
as the distance between any two nearest particles on the wave having
same phase.

Wavelength may also be defined as the distance between two
successive crests or troughs in transverse waves, or the distance between
two successive compressions or rarefactions in longitudinal waves.

(ii) Time period (T) 

The time period of a wave is the time taken by the wave to travel
a distance equal to its wavelength.

(iii) Frequency (n)

This is defined as the number of waves produced in one second. If
T represents the time required by a particle to complete one vibration,

then it makes 1
T

 waves in one second.

Therefore frequency is the reciprocal of the time period

(i.e) n = 1
T

.

Relationship between velocity, frequency and wavelength of a wave

The distance travelled by a wave in a medium in one second is
called the velocity of propagation of the wave in that medium. If v
represents the velocity of propagation of the wave, it is given by

Velocity = 
Distance travelled

Time taken

v =                   
1

n = 
T

λ λ ⎡ ⎤= ⎢ ⎥⎣ ⎦
∵n

T

The velocity of a wave (v) is given by the product of the frequency
and wavelength.
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7.2 Velocity of wave in different media

The velocity of mechanical wave depends on elasticity and inertia
of the medium.

7.2.1 Velocity of a transverse wave along a stretched string

Let us consider a string fixed at one of its ends and tension be
applied at the other end. When the string is plucked at a point, it
begins to vibrate.

Consider a transverse wave proceeding from left to right in the
form of a pulse when the
string is plucked at a point
as shown in Fig. 7.4. EF is
the displaced position of the
string at an instant of time.
It forms an arc of a circle
with O as centre and R as
radius. The arc EF subtends
an angle 2θ at O.

If m is the mass per
unit length of the string and
dx is the length of the arc
EF, then the mass of the
portion of the string is m dx.

∴ Centripetal force = 
2m.dx.v

R
 ...(1)

This force is along CO. To find the resultant of the tension T at
the points E and F, we resolve T into two components Tcos θ and T
sinθ.

T cosθ components acting perpendi- cular to CO are of equal in
magnitude but opposite in direction, they cancel each other.

T sin θ components act parallel to CO. Therefore the resultant of
the tensions acting at E and F is 2T sin θ. It is directed along CO. If
θ is small, sinθ = θ and the resultant force due to tension is 2Tθ.

resultant force = 2Tθ

O

TT

C

FE

RR

T cosT cos

T sin

A
B

T sin

Fig. 7.4 Transverse vibration of a string
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= 2T.
2
dx

R
 2

dx

R
θ⎛ ⎞=⎜ ⎟

⎝ ⎠
∵

= T. 
dx
R

... (2)

For the arc EF to be in equilibrium,

2m.dx v T.dx
=

R R

v2 = 
T
m

or v = 
T
m

... (3)

7.2.2 Velocity of longitudinal waves in an elastic medium

Velocity of longitudinal waves in an elastic medium is

v = 
E

ρ  ...(1)

where E is the modulus of elasticity, ρ is the density of the
medium.

(i) In the case of a solid rod

v =  
q

ρ ...(2)

where q is the Young’s modulus of the material of the rod and ρ
is the density of the rod.

(ii) In liquids, v = ρ
k

...(3)

where k is the Bulk modulus and ρ  is the density of the liquid.

7.2.3 Newton’s formula for the velocity of sound waves in air

Newton assumed that sound waves travel through air under
isothermal conditions (i.e) temperature of the medium remains constant.

The change in pressure and volume obeys Boyle’s law.

∴ PV = constant

Differentiating, P . dV + V .dP = 0
P. dV = –V dP
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∴ P = 
  

 
dP change in pressure

dV volume strain
V

−
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 P = k (Volume Elasticity)

Therefore under isothermal condition, P = k

v = ρ ρ
=

k P

where P is the pressure of air and ρ is the density of air. The above
equation is known as Newton’s formula for the velocity of sound waves
in a gas.

At NTP, P = 76 cm of mercury

= (0.76 × 13.6 × 103 × 9.8) N m–2

ρ = 1.293 kg m–3.

∴ Velocity of sound in air at NTP is

v = 
× × ×30.76 13.6 10 9.8

1.293
  = 280 m s–1

The experimental value for the velocity of sound in air is
332 m s–1. But the theoretical value of 280 m s–1 is 15% less than the
experimental value. This discrepancy could not be explained by Newton’s
formula.

7.2.4 Laplace’s correction

The above discrepancy between the observed and  calculated values
was explained by Laplace in 1816. Sound travels in air as a longitudinal
wave. The wave motion is therefore, accompanied by compressions and
rarefactions. At compressions the temperature of air rises and at
rarefactions, due to expansion, the temperature decreases.

Air is a very poor conductor of heat. Hence at a compression, air
cannot lose heat due to radiation and conduction. At a rarefaction it
cannot gain heat, during the small interval of time. As a result, the
temperature throughout the medium does not remain constant.

Laplace suggested that sound waves travel in air under adiabatic
condition and not under isothermal condition.
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For an adiabatic change, the relation between pressure and volume
is given by

P V
γ
 = constant

where P

V

C

C
γ

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 is the ratio of two specific heat capacities of the gas.

Differentiating

P γ V γ-1 . dV + V γ dP = 0

P γ =  -1

-

.

γ

γ
V dP

V dV

P γ =  dP
-V.

dV

P γ =
-dP
dV
V

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = k

∴ P γ = k (Volume elasticity)

Therefore under adiabatic condition

velocity of sound  v = ρ
k

 = 
γ
ρ
P

This is Laplace’s corrected formula.

For air at NTP

γ = 1.41, ρ = 1.293 kg m–3

∴   = 
P

v 1.41 × 280γ
ρ

=  = 331.3 ms–1

This result agrees with the experimental value of 332 ms–1.

7.2.5 Factors affecting velocity of sound in gases

(i) Effect of pressure

If the temperature of the gas remains constant, then by Boyle’s
law PV = constant

i.e P . 
m

ρ = constant

P

ρ  is a constant, when mass (m) of a gas is constant. If the
pressure changes from P to P ′ then the corresponding density also will

change from ρ to ρ ′ such that 
P

ρ  is a constant.
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In Laplace’s formula 
γ
ρ
P

 is also a constant. Therefore the velocity

of sound in a gas is independent of the change in pressure provided the
temperature remains constant.

(ii) Effect of temperature

For a gas, PV = RT

P. ρ
m

 = RT

or ρ
P

 = 
RT

m
where m is the mass of the gas, T is the absolute temperature and R
is the gas constant.

Therefore v = 
RT
m

γ

It is clear that the velocity of sound in a gas is directly proportional
to the square root of its absolute temperature.

Let vo and vt be the velocity of sound at Oo C  and to C respectively.
Then, from the above equation,

vo = 
R

× 273
m
γ

vt =  
 R

× 273+ t
m
γ

 ∴ 
t

o

v

v =  
273

273

t+

∴ vt = vo 

1/2

1
273

t⎛ ⎞+⎜ ⎟
⎝ ⎠

Using binomial expansion and neglecting higher powers we get,

vt = vo 
1 t

1+ .
2 273

⎛ ⎞
⎜ ⎟
⎝ ⎠

vt = vo 
t

1+    
546

⎛ ⎞
⎜ ⎟
⎝ ⎠

Since -1 o
ov  = 331 m s  at 0 C

vt = 331 + 0.61 m s–1
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Thus the velocity of sound in air increases by 0.61 m s–1 per degree
centigrade rise in temperature.

(iii) Effect of density

Consider two different gases at the same temperature and pressure
with different densities. The velocity of sound in two gases are
given by

v1 =   
1

1ρ
Pγ

  and v2 = 
2

2ρ
Pγ

∴ 
1

2

v

v  =  1 2

2 1

 . 
γ ρ
γ ρ

For gases having same value of γ,  
1

2

v

v  = 2

1

ρ
ρ

The velocity of sound in a gas is inversely proportional to the square
root of the density of the gas.

(iv) Effect of humidity

When the humidity of air increases, the amount of water vapour
present in it also increases and hence its density decreases, because
the density of water vapour is less than that of dry air. Since velocity
of sound is inversely proportional to the square root of density, the
sound travels faster in moist air than in dry air. Due to this reason it
can be observed that on a rainy day sound travels faster.

(v) Effect of wind

The velocity of sound in air is affected by
wind. If the wind blows with the velocity w
along the direction of sound, then the velocity
of sound increases to  v + w. If the wind blows
in the opposite direction to the direction of
sound, then the velocity of sound decreases to
v – w. If the wind blows at an angle θ with the direction of sound, the
effective velocity of sound will be (v + w cos θ).

Note: In a medium, sound waves of different frequencies or
wavelengths travel with the same velocity. Hence there is no effect of
frequency on the velocity of sound.

Wind

Soundwcos

w

vs

Fig. 7.5 Effect of wind
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7.3 Progressive wave

A progressive wave is defined as the onward transmission of the
vibratory motion of a body in an elastic medium from one particle to the
successive particle.

7.3.1 Equation of a plane progressive wave

An equation can be formed to represent generally the displacement
of a vibrating particle in a medium through which a wave passes. Thus
each particle of a progressive wave executes simple harmonic motion of
the same period and amplitude differing in phase from each other.

Let us assume that a progressive wave travels from the origin O
along the positive direction of X
axis, from left to right (Fig. 7.6).
The displacement of a particle at
a given instant is

y = a sin ωt ... (1)

where a is the amplitude of the
vibration of the particle and ω =
2πn.

Table 7.1 Velocity of sound in various media
(NOT FOR EXAMINATION)

Medium       Velocity (ms–1)

Gases Air 0o C 331

Air 20o C 343

Helium 965

Hydrogen 1284

Liquids Water 0o C 1402

Water at 20o C 1482

Sea water 1522

Solids Aluminum 6420

Steel 5921

Granite 6000

2 x

A

B

O
P

x

t

y

Fig. 7.6 Plane Progressive wave
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The displacement of the particle P at a distance x from O at a given
instant is given by,

y = a sin (ωt - φ) ... (2)

If the two particles are separated by a distance λ, they will differ by a
phase of 2π. Therefore, the phase φ of the particle P  at a distance

x is  φ = 
2
 . x

π
λ

y = a sin 
⎛ ⎞
⎜ ⎟
⎝ ⎠

2πxωt - 
λ ...(3)

Since ω = 2πn = 
v

2π
λ , the equation is given by

y = a sin 
π π
λ λ

⎛ ⎞
⎜ ⎟
⎝ ⎠
2 2

 - 
vt x

y = a sin 
2π
λ   (vt – x) ...(4)

Since ω = 
2

T

π
, the eqn. (3) can also be written as

y = a sin 2π 
t x

T λ
⎛ ⎞−⎜ ⎟
⎝ ⎠

...(5)

If the wave travels in opposite direction, the equation becomes.

y = a sin 2π 
t x

T λ
⎛ ⎞+⎜ ⎟
⎝ ⎠

...(6)

(i) Variation of phase with time

The phase changes continuously with time at a constant distance.

At a given distance x from O let φ1 and φ2 be the phase of a
particle at time t1 and t2 respectively.

φ1 = 2π 
1t x

T λ
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

φ2 = 2π 
2t x

T λ
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠
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∴φ2 - φ1 = 2π 
2 1t t

T T

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
  =  2 1

2
( )t t

T

π
−

 ∆φ = 
2

T

π
 ∆t

This is the phase change ∆φ of a particle in time interval ∆t. If
∆t = T, ∆φ = 2π. This shows that after a time period T, the phase of a
particle becomes the same.

(ii) Variation of phase with distance

At a given time t phase changes periodically with distance x. Let
φ1 and φ2 be the phase of two particles at distance x1 and x2 respectively
from the origin at a time t.

Then φ1 = 2π 
1

λ
⎛ ⎞−⎜ ⎟
⎝ ⎠
t x

T

φ2 = 2π 
2t x

T λ
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

∴ φ2 – φ1 =  2 1
2

( )x x
π
λ

− −

∴ ∆φ = 
2

x
π
λ

− ∆

The negative sign indicates that the forward points lag in phase
when the wave travels from left to right.

When ∆x = λ, ∆φ = 2π, the phase difference between two particles
having a path difference λ is 2π.

7.3.2 Characteristics of progressive wave

1. Each particle of the medium executes vibration about its mean
position. The disturbance progresses  onward from one particle to
another.

2. The particles of the medium vibrate with same amplitude about
their mean positions.

3. Each successive particle of the medium performs a motion
similar to that of its predecessor along the propagation of the wave, but
later in time.

4. The phase of every particle changes from 0 to 2π.

5. No particle remains permanently at rest. Twice during each
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vibration, the particles are momentarily at rest at extreme positions,
different particles attain the position at different time.

6. Transverse progressive waves are characterised by crests and
troughs. Longitudinal waves are characterised by compressions and
rarefactions.

7. There is a transfer of energy across the medium in the direction
of propagation of progressive wave.

8. All the particles have the same maximum velocity when they
pass through the mean position.

9. The displacement, velocity and acceleration of the particle
separated by mλ are the same, where m is an integer.

7.3.3 Intensity and sound level

If we hear the sound produced by violin, flute or harmonium, we
get a pleasing sensation in the ear, whereas the sound produced by a
gun, horn of a motor car etc. produce unpleasant sensation in the ear.

The loudness of a sound depends on intensity of sound wave and
sensitivity of the ear.

The intensity is defined as the amount of energy crossing per unit
area per unit time perpendicular to the direction of propagation of the
wave.

Intensity is measured in W m–2.

The intensity of sound depends on (i) Amplitude of the source
(I α a2), (ii) Surface area of the source (I α A), (iii) Density of the medium
(I α ρ), (iv) Frequency of the source (I α n2) and (v) Distance of the observer

from the source (I α 2

1

r
).

The lowest intensity of sound that can be perceived by the human
ear is called threshold of hearing. It is denoted by Io.

For sound of frequency 1 KHz, Io =10–12  W m–2. The level of sound
intensity is measured in decibel. According to Weber-Fechner law,

decibel level (β) = 10 log10 
o

I

I

⎡ ⎤
⎢ ⎥
⎣ ⎦

where Io is taken as 10–12 W m–2 which corresponds to the lowest sound
intensity that can be heard. Its level is 0 dB. I is the maximum intensity
that an ear can tolerate which is 1W m–2 equal to 120 dB.
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β = 10 log10 12

1

10−
⎛ ⎞
⎜ ⎟
⎝ ⎠

β = 10 log 10 (1012)

β = 120 dB.

Table 7.2 gives the decibel value and power density (intensity) for
various sources.

7.4. Reflection of sound

Take two metal tubes A and B.
Keep one end of each tube on a metal
plate as shown in Fig. 7.7. Place a wrist
watch at the open end of the tube A
and interpose a cardboard between A
and B. Now at a particular inclination
of the tube B with the cardboard, ticking
of the watch is clearly heard. The angle
of reflection made by the tube B with
the cardboard is equal to the angle of
incidence made by the tube A with the cardboard.

7.4.1 Applications of reflection of sound waves

(i) Whispering gallery : The famous whispering gallery at

C

N

D

i r

B AO *
Fig. 7.7 Reflection of sound

Table 7.2 Intensity of sound sources

(NOT FOR EXAMINATION)

Source of sound Sound Intensity
intensity(dB) (W m–2)

Threshold of pain 120 1

Busy traffic 70 10–5

Conversation 65 3.2 × 10–6

Quiet car 50 10–7

Quiet Radio 40 10–8

Whisper 20 10–10

Rustle of leaves 10 10–11

Threshold of hearing 0 10–12



54

St. Paul’s Cathedral is a circular shaped
chamber whose walls repeatedly reflect
sound waves round the gallery, so that a
person talking quietly at one end can be
heard distinctly at the other end. This is
due to multiple reflections of sound waves
from the curved walls (Fig. 7.8).

(ii) Stethoscope : Stethoscope is an
instrument used by physicians to listen to
the sounds produced by various parts of
the body. It consists of a long tube made of
rubber or metal. When sound pulses pass
through one end of the tube, the pulses get concentrated to the other
end due to several reflections on the inner surface of the tube. Using
this doctors hear the patients’ heart beat as concentrated rays.

(iii) Echo : Echoes are sound waves reflected from a reflecting
surface at a distance from the listener. Due to persistence of hearing,
we keep hearing the sound for 

1

10
th of a second, even after the sounding

source has stopped vibrating. Assuming the velocity of sound as
340 ms–1, if the sound reaches the obstacle and returns after
0.1 second, the total distance covered is 34 m. No echo is heard if the
reflecting obstacle is less than 17 m away from the source.

7.5 Refraction of sound

This is explained with a rubber
bag filled with carbon-di-oxide as shown
in Fig. 7.9. The velocity of sound in
carbon-di-oxide is less than that in air
and hence the bag acts as a lens. If a
whistle is used as a source S, the sound
passes through the lens and converges at O which is located with the
help of flame. The flame will be disturbed only at the point O.

When sound travels from one medium to another, it undergoes
refraction.

7.5.1 Applications of refraction of sound

It is easier to hear the sound during night than during day-time.

O L

Fig. 7.8 Multiple reflections
in the whispering gallery

S
O

L

CO2

Fig. 7.9 Refraction of sound
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During day time, the upper layers of air are cooler than the layers of
air near the surface of the Earth. During night, the layers of air near
the Earth are cooler than the upper layers of air. As sound travels
faster in hot air, during day-time, the sound waves will be refracted
upwards and travel a short distance on the surface of the Earth. On
the other hand, during night the sound waves are refracted downwards
to the Earth and will travel a long distance.

7.6 Superposition principle

When two waves travel in a medium simultaneously in such a way
that each wave represents its separate motion, then the resultant
displacement at any point at any time is equal to the vector sum of the
individual displacements of the waves.

This principle is illustrated by means of a slinky in the Fig.
7.10(a).

1. In the figure, (i) shows that the two pulses pass each other,

2. In the figure, (ii) shows that they are at some distance apart

3. In the figure, (iii) shows that they overlap partly

4. In the figure, (iv) shows
that  resultant is maximum

Fig. 7.10 b illustrates the
same events but with pulses
that are equal and opposite.

If  1Y   and 2Y   are the

displacements at a point, then
the resultant displacement is

given by 1 2Y Y Y= + .

If 1 2| |=| |= Y Y a,  and if the
two waves have their displacements in the same direction, then |Y |
= a + a = 2a

If the two waves have their displacements in the opposite direction,
then  |Y | = a + (-a) = 0

The principle of superposition of waves is applied in wave
phenomena such as interference, beats and stationary waves.

(i)

(ii)

(iii)

(iv)

(v)

(a) (b)

Fig.7.10 Superposition of waves
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7.6.1 Interference of waves

When two waves of same frequency travelling in the same direction
in a medium superpose with each other, their resultant intensity is
maximum at some points and minimum at some other points. This
phenomenon of superposition is called interference.

Let us consider two simple harmonic waves of same frequency
travelling in the same direction. If a1 and a2 are the amplitudes of the
waves and φ is the phase difference between them, then  their
instantaneous displacements are

y1 = a1 sin ωt ...(1)

y2 = a2 sin (ωt + φ) ...(2)

According to the principle of superposition, the resultant
displacement is represented by

y = y1 + y2

= a1 sin ωt + a2 sin (ωt + φ)

= a1 sin ωt + a2 (sin ωt. cos φ + cos ωt.sin φ)

= (a1 + a2 cos φ) sin ωt + a2 sin φ cos ωt ...(3)

Put a1 + a2 cos φ = A cos θ ...(4)

a2 sin φ = A sin θ ...(5)

where A and θ are constants, then

y = A sin ωt. cos θ + A cos ωt. sin θ

or y = A sin (ωt + θ) ...(6)

This equation gives the resultant displacement with amplitude A.
From eqn. (4) and (5)

A2cos 2 θ + A2 sin 2 θ

= (a1 +a2 cos φ)2 + (a2 sin φ)2

∴A2 = a1
2 + a2

2 + 2a1a2 cos φ

∴ A =  2 2
1 2 1 2 a  + a  + 2a a cos  φ ... (7)

Also tan θ = 
  

 
2

1 2

a sin

a +a cos 

φ
φ ...(8)
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We know that intensity is directly proportional to the square of
the amplitude

(i.e) I α A2

∴ I α (a1
2 + a2

2  + 2a1a2 cos φ) ... (9)

Special cases

The resultant amplitude A is maximum, when cos φ = 1 or
φ = 2mπ  where m is an integer (i.e) Imax α (a1+ a2) 2

The resultant amplitude A is minimum when

cos φ = –1 or φ = (2m + 1)π

Imin α (a1 – a2)2

The points at which interfering waves meet in the same phase
φ = 2mπ i.e 0, 2π, 4π, ... are points of maximum intensity, where
constructive interference takes place. The points at which
two interfering waves meet out of phase φ = (2m + 1)π i.e π, 3π, ... are
called points of minimum intensity, where destructive interference takes
place.

7.6.2 Experimental demonstration of interference of sound

The phenomenon of interference between two longitudinal waves
in air can be demonstrated by Quincke’s tube shown in Fig. 7.11.

Quincke’s tube consists of
U shaped glass tubes A and B.
The tube SAR has two openings
at S and R. The other tube B can
slide over the tube A. A sound
wave from S travels along both
the paths SAR and SBR in
opposite directions and meet
at R.

If the path difference between the two waves (i.e) SAR ~ SBR is
an integral multiple of wavelength, intensity of sound will be maximum
due to constructive interference.

i.e SAR ~ SBR = mλ

The corresponding phase difference φ between the two waves is
even multiples of π. (i.e) φ = m 2π where m = 0, 1, 2, 3 ....

Fig. 7.11 Quincke’s Tube

S

R

A B
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If the tube B is gradually slided over A, a stage is reached when
the intensity of sound is zero at R due to destructive interference. Then
no sound will be heard at R.

If the path difference between the waves is odd multiples of 
2

λ
,

intensity of sound will be minimum.

i.e SAR ~ SBR = (2m + 1)
2

λ

The corresponding phase difference φ between the two waves is
odd multiples of π. (i.e) φ = (2m + 1)π where m = 0, 1, 2, 3 .....

7.6.3 Beats

When two waves of nearly equal frequencies travelling in a medium
along the same direction superimpose upon each other, beats are
produced. The amptitude of the resultant sound at a point rises and
falls regularly.

The intensity of the resultant
sound at a point rises and falls regularly
with time. When the intensity rises to
maximum we call it as waxing of sound,
when it falls to minimum we call it as
waning of sound.

The phenomenon of waxing and
waning of sound due to interference of
two sound waves of nearly equal
frequencies are called beats. The number
of beats produced per second is called
beat frequency, which is equal to the
difference in frequencies of two waves.

Analytical method

Let us consider two waves of slightly different frequencies n1 and
n2 (n1 ~ n2 < 10) having equal amplitude travelling in a medium in the
same direction.

At time t = 0, both waves travel in  same phase.

The equations of the two waves are

y1 = a sin ω1 t

(a)

(b)

(c)

Min. Max. Min. Max. Min. Max. Min.

Fig. 7.12 Graphical
representation of beats
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y1 = a sin (2π n1)t ...(1)

y2 = a sin ω2 t

= a sin (2π n2)t ...(2)

When the two waves superimpose, the resultant displacement is given
by

y = y1 + y2

y = a sin (2π n1) t + a sin (2π n2) t ...(3)

Therefore

y = 2a sin 2π 1 2

2

+⎛ ⎞
⎜ ⎟
⎝ ⎠
n n

t cos 2π  1 2

2

−⎛ ⎞
⎜ ⎟
⎝ ⎠
n n

t ...(4)

Substitute A = 2 a cos 2π 1 2

2

n n−⎛ ⎞
⎜ ⎟
⎝ ⎠

t and 1 2  in equation (4)
2

n n
n

+
=

∴  y = A sin 2πnt

This represents a simple harmonic wave of frequency n = 1 2

2

+n n

and amplitude A which changes with time.

(i) The resultant amplitude is maximum (i.e) ± 2a, if

cos 2π 1 2 1
2

−⎡ ⎤ = ±⎢ ⎥⎣ ⎦
n n

t

∴ 2π  1 2

2

n n−⎡ ⎤
⎢ ⎥⎣ ⎦

t = mπ

(where m = 0, 1, 2 ...) or  (n1 – n2) t = m

The first maximum is obtained at t1 = 0

The second maximum is obtained at

t2 = 
1 2

1

n n−

The third maximum at t3 =
1 2

2

n n−  and so on.

The time interval between two successive maxima is

t2 – t1 = t3 – t2 = 
1 2

1

n n−
Hence the number of beats produced per second is equal to the

reciprocal of the time interval between two successive maxima.
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(ii) The resultant amplitude is minimum (i.e) equal to zero, if

cos 2π 1 2

2

n n−⎛ ⎞
⎜ ⎟
⎝ ⎠

t = 0

(i.e) 2π 1 2

2

n n−⎛ ⎞
⎜ ⎟
⎝ ⎠

t = 
2

π
 + mπ = (2m + 1) 

2

π
 or (n1 – n2)t = 

(2m +1)
2

where m = 0, 1, 2 ...

The first minimum is obtained at

t1′ = 
1 2

1

2( )n n−

The second minimum is obtained at

t2′ = 
1 2

3

2( )n n−

The third minimum is obtained at

t3′  = 
1 2

5

2( )n n− and so on

Time interval between two successive minima is

t2′ - t1′ = t3′ – t2′ = 
1 2

1

n n−

Hence, the number of beats produced per second is equal to the
reciprocal of time interval between two successive minima.

7.6.4 Uses of beats

(i) The phenomenon of beats is useful in tuning two vibrating
bodies in unison. For example, a sonometer wire can be tuned in
unison with a tuning fork by observing the beats. When an excited
tuning fork is kept on the sonometer and if the sonometer wire is also
excited, beats are heard, when the frequencies are nearly equal. If the
length of the wire is adjusted carefully so that the number of beats
gradually decreases to zero, then the two are said to be in unison. Most
of the musical instruments are made to be in unison based on this
method.

(ii) The frequency of a tuning fork can be found using beats. A
standard tuning fork of frequency N is excited along with the
experimental fork. If the number of beats per second is n, then the
frequency of experimental tuning fork is N+n. The experimental tuning
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fork is then loaded with a little bees’ wax, thereby decreasing its
frequency. Now the observations are repeated. If the number of beats
increases, then the frequency of the experimental tuning fork is N-n,
and if the number of beats decreases its frequency is N + n.

7.6.5 Stationary waves

When two progressive waves of same amplitude and wavelength
travelling along a straight line in opposite directions superimpose on each
other, stationary waves are formed.

Analytical method

Let us consider a progressive wave of amplitude a and wavelength
λ travelling in the direction of X axis.

y1 = a sin 2π 
t x

T λ
⎛ ⎞−⎜ ⎟
⎝ ⎠

.....(1)

This wave is reflected from a free end and it travels in the negative
direction of X axis, then

y2 = a sin 2π 
t x

T λ
⎛ ⎞+⎜ ⎟
⎝ ⎠

.....(2)

According to principle of superposition, the resultant
displacement is

y = y1 + y2

= a sin 2 sin 2
t x t x

T T
π π

λ λ
⎡ ⎤⎛ ⎞ ⎛ ⎞− + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= a 
2 2

2sin  cos  
π π

λ
⎡ ⎤
⎢ ⎥⎣ ⎦

t x

T

∴ y = 2a cos 
2 xπ

λ
sin 

2πt
T

...(3)

This is the equation of a stationary wave.

(i) At points where x = 0, 
2

λ
, λ, 

3

2

λ
, the values of cos 

2
1

xπ
λ

= ±

∴ A = + 2a. At these points the resultant amplitude is maximum.
They are called antinodes (Fig. 7.13).

(ii) At points where x = 
4

λ
, 
3

4

λ
, 
5

4

λ
 .... the values of cos 

2 xπ
λ = 0.

∴ A = 0. The resultant amplitude is zero at these points. They are
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called nodes (Fig. 7.16).

The distance between any two
successive antinodes or nodes is equal to

2

λ
 and the distance between an antinode

and a node is 
4

λ
.

(iii) When t = 0, 
2

T
, Τ, 

3

2

T
, 2T, ... then sin 

2π t
T

 = 0, the displacement

is zero.

(iv) When t = 
4

T
, 
3

4

T
, 
5

4

T
 etc, ... sin 

2
1

t

T

π
= ± , the displacement is

maximum.

7.6.6 Characteristics of stationary waves

1. The waveform remains stationary.

2. Nodes and antinodes are formed alternately.

3. The points where displacement is zero are called nodes and the
points where the displacement is maximum are called antinodes.

4. Pressure changes are maximum at nodes and minimum at
antinodes.

5. All the particles except those at the nodes, execute simple
harmonic motions of same period.

6. Amplitude of each particle is not the same, it is maximum at
antinodes decreases gradually and is zero at the nodes.

7. The velocity of the particles at the nodes is zero. It increases
gradually and is maximum at the antinodes.

8. Distance between any two consecutive nodes or antinodes is

equal to 
2

λ
, whereas the distance between a node and its adjacent

antinode is equal to 
4

λ
.

9. There is no transfer of energy. All the particles of the medium
pass through their mean position simultaneously twice during each
vibration.

10. Particles in the same segment vibrate in the same phase and

N A
N N

A A

Fig. 7.13 Stationary waves
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between the neighbouring segments, the particles vibrate in opposite
phase.

7.7 Standing waves in strings

In musical instruments like sitar, violin, etc. sound is produced
due to the vibrations of the stretched strings. Here, we shall discuss
the different modes of vibrations of a string which is rigidly fixed at
both ends.

When a string under tension is set into vibration, a transverse
progressive wave moves towards the end of the wire and gets reflected.
Thus stationary waves are formed.

7.7.1 Sonometer

The sonometer consists of a hollow sounding box about a metre
long. One end of a thin metallic wire of uniform cross-section is fixed
to a hook and the other end is passed over a pulley and attached to
a weight hanger as shown in Fig. 7.14. The wire is stretched over two
knife edges P and Q by adding sufficient
weights on the hanger. The distance
between the two knife edges can be
adjusted to change the vibrating length of
the wire.

A transverse stationary wave is set
up in the wire. Since the ends are fixed,
nodes are formed at P and Q and antinode
is formed in the middle.

The length of the vibrating segment is  l = λ/2

∴ λ = 2l. If n is the frequency of vibrating segment, then

n = 
v v

 = 
2lλ ...(1)

We know that v = 
T
m

   where T is the tension and m is the mass

per unit length of the wire.

∴ n = 1 T
 

2l m
...(2)

Fig. 7.14 Sonometer

P Q
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Modes of vibration of stretched string

(i) Fundamental frequency

If a wire is stretched between two points, a transverse wave
travels along the wire and is reflected at the fixed end. A transverse
stationary wave is thus formed as shown in Fig. 7.15.

When a wire AB of length l is
made to vibrate in one segment then

l = 1

2

λ
.

∴ λ1 = 2l. This gives the lowest
frequency called fundamental

frequency  n1=
1

v

λ

∴ n1 = 
1 T

 
2l m

...(3)

(ii) Overtones in stretched string

If the wire AB is made to vibrate

in two segments then 2 2

2 2
l

λ λ
= +

∴ λ2 = l.

But,n2 = 
2

v

λ  ∴ n2 = 
1 T
 

l m
 = 2n1 ...(4)

n2 is the frequency of the first overtone.

Since the frequency is equal to twice the fundamental, it is also
known as second harmonic.

Similarly, higher overtones are produced, if the wire vibrates with
more segments. If there are P segments, the length of each segment is

 
2

 =  or   = 
2

λ λ      P
p

l l

P P

∴ Frequency nP = 
P T

  
2l m

 = P n1 ...(5)

(i.e) Pth harmonic corresponds to (P–1)th overtone.

Fig. 7.15 Fundamental and
overtones in stretched string

A B

A B

A B

C

C D

= 

= 

2

= 23

l

l

l

1

2

3
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7.7.2 Laws of transverse vibrations of stretched strings

The laws of transverse vibrations of stretched strings are (i) the
law of length (ii) law of tension and (iii) the law of mass.

(i) For a given wire (m is constant), when T is constant, the
fundamental frequency of vibration is inversely proportional to the
vibrating length (i.e)

n α 
1

l
or nl = constant.

(ii) For constant l and m, the fundamental frequency is directly

proportional to the square root of the tension (i.e) n α T .

(iii) For constant l and T, the fundamental frequency varies
inversely as the square root of the mass per unit length of the wire

(i.e) n α 
1

m
.

7.8 Vibrations of air column in pipes

Musical wind instruments like flute, clarinet etc. are based on the
principle of vibrations of air columns. Due to the superposition of the
incident wave and the reflected wave, longitudinal stationary waves are
formed in the pipe.

7.8.1 Organ pipes

Organ pipes are musical instruments
which are used to produce musical sound by
blowing air into the pipe. Organ pipes are two
types (i) closed organ pipes, closed at one end
(ii) open organ pipe, open at both ends.

(i) Closed organ pipe : If the air is blown
lightly at the open end of the closed organ pipe,
then the air column vibrates (Fig. 7.16a) in the
fundamental mode. There is a node at the closed
end and an antinode at the open end. If l is the
length of the tube,

l = 1

4

λ or λ1 = 4l  ... (1)

If n1 is the fundamental frequency of the

N

A

1 = 4

(a)

l

l

Fig. 7.16a Statinary
waves in a closed pipe

(Fundamental mode)
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vibrations and v is the velocity of sound in air, then

n1 = 
1 4

v v
λ

=
l ... (2)

If air is blown strongly at the open end, frequencies higher than
fundamental frequency can be produced. They are called overtones.
Fig.7.16b & Fig.7.16c shows the mode of vibration with two or more
nodes and antinodes.

l = 33

4

λ
 or λ3 = 

4

3

l
...(3)

∴ n3 = 
3

v 3v
 = 

4lλ  = 3n1 ...(4)

This is the first overtone or third
harmonic.

Similarly  n5 = 
5v
4l

 = 5n1 ...(5)

This is called as second overtone or fifth
harmonic.

Therefore the frequency of pth overtone
is (2p + 1) n1 where n1 is the fundamental
frequency. In a closed pipe only odd harmonics are produced. The
frequencies of harmonics are in the ratio of 1 : 3 : 5.....

(ii) Open organ pipe - When air is blown into the open organ
pipe, the air column vibrates in the fundamental
mode Fig. 7.17a. Antinodes are formed at the
ends and a node is formed in the middle of the
pipe. If l is the length of the pipe, then

l = 1

2

λ
or λ1 = 2l ...(1)

v = n1λ1 = n12l

The fundamental frequency

n1 = 
v
2l

...(2)

In the next mode of vibration additional
nodes and antinodes are formed as shown in

N

A

N

A

3 = 4 3

N

A

N

N

A

A

5 = 4
5

(b) (c)

l l

l l

Fig. 7.16b & c Overtones

in closed pipe

N

A

1 = 2

(a)

A

l

l

Fig. 7.17a Stationary
waves in an open pipe

(Fundamental mode)
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Fig. 7.17b and Fig.7.17c.

l = λ2 or v = n2λ2 = n2 . l.

∴ n2 =
v
l

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 2n1 ...(3)

This is the first overtone or second
harmonic.

Similarly, n3 = 
3

v 3v
 = 

2lλ = 3n1 ...(4)

This is the second overtone or third
harmonic.

Therefore the frequency of Pth overtone is
(P + 1) n1 where n1 is the fundamental frequency.
The frequencies of harmonics are in the ratio of 1 : 2 : 3 ....

7.9 Resonance air column apparatus

The resonance air column apparatus consists of a glass tube G
about one metre in length (Fig. 7.18) whose lower end is connected to
a reservoir R by a rubber tube.

The glass tube is mounted on a vertical stand with a scale attached
to it. The glass tube is partly filled with water. The level of water in the
tube can be adjusted by raising or lowering the reservoir.

N

A

N

A

 2 = 

N

A

N

N

A

A

3 = 2
3

(b) (c)

A

A

l l

l l

Fig. 7.17b & c
Overtones in an

open pipe

l1=
4

l2=
4

3

R

G

Fig. 7.18 Resonance air column apparatus
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A vibrating tuning fork of frequency n is held near the open end
of the tube. The length of the air column is adjusted by changing the
water level. The air column of the tube acts like a closed organ pipe.
When this air column resonates with the frequency of the fork the
intensity of sound is maximum.

Here longitudinal stationary wave is formed with node at the
water surface and an antinode near the open end. If l1 is the length of
the resonating air column

4

λ
 = l1 + e ..(1)

where e is the end correction.

The length of air column is increased until it resonates again with
the tuning fork. If l2 is the length of the air column.

3

4

λ
= l2 + e ...(2)

From equations (1) and (2)

2

λ
 = (l2 - l1) ...(3)

The velocity of sound in air at room temperature

v = nλ = 2n (l2 – l1) ...(4)

End correction

The antinode is not exactly formed at the open end, but at a small
distance above the open end. This is called the end correction.

As l1 + e = 
4

λ
 and l2 + e = 

3

4

λ

e = 2 1( 3 )

2

−l l

It is found that e = 0.61r, where r is the radius of the glass tube.

7.10 Doppler effect

The whistle of a fast moving train appears to increase in pitch as
it approaches a stationary observer and it appears to decrease as the
train moves away from the observer. This apparent change in frequency
was first observed and explained by Doppler in 1845.
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The phenomenon of the apparent change in the frequency of sound
due to the relative motion between the source of sound and the observer
is called Doppler effect.

The apparent frequency due to Doppler effect for different cases

can be deduced as follows.

(i) Both source and observer at rest

Suppose S and O are the
positions of the source and the
observer respectively. Let n be
the frequency of the sound
and v  be the velocity of
sound. In one second, n waves
produced by the source travel
a distance SO = v  (Fig. 7.19a).

The wavelength is λ = 
v
n

.

(ii) When the source moves towards the stationary observer

If the source moves with a velocity vs towards the stationary
observer, then after one second, the source will reach S′ , such that

SS′  = vs. Now n waves emitted by the source will occupy a distance
of (v–vs) only as shown in Fig. 7.19b.

Therefore the apparent
wavelength of the sound is

sv - vλ  = 
n

′

The apparent frequency

s

v v
n  =  = n

λ v - v

⎛ ⎞
′ ⎜ ⎟′ ⎝ ⎠

...(1)

As n′ > n, the pitch of the sound appears to increase.

When the source moves away from the stationary observer

If the source moves away from the stationary observer with
velocity vs, the apparent frequency will be given by

s

 =  = 
( ) +s

v v
n n n

v v v v

⎛ ⎞ ⎛ ⎞
′ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

...(2)

O
S

v

n waves

Fig. 7.19a Both source and observer at rest

S S/

O

v - vs
vs

n waves

Fig. 7.19b Source moves towards
observer at rest
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As n′ < n, the pitch of the sound appears to decrease.

(iii) Source is at rest and observer in motion

S and O represent the positions of source and observer respectively.
The source S emits n
waves per second having

a wavelength  = 
v
n

λ .

Consider a point A such
that OA contains n waves
which crosses the ear of
the observer in one second
(Fig. 7.20a). (i.e) when the
first wave is at the point
A, the nth wave will be at
O, where the observer is
situated.

When the observer moves towards the stationary source

Suppose the observer is moving towards the stationary source
with velocity vo. After one second the observer will reach the point O′
such that OO′ = vo. The number of waves crossing the observer will be
n waves in the distance OA in addition to the number of waves in the

distance OO′ which is equal to ov
λ

 as shown in Fig. 7.20b.

Therefore, the apparent frequency of sound is

n′ = n + ov
λ

 = n + ov

v
⎛ ⎞
⎜ ⎟
⎝ ⎠

 n

∴ n′ =  ov + v
n

v
⎛ ⎞
⎜ ⎟
⎝ ⎠

...(3)

As n′ > n, the pitch of the sound appears to increase.

When the observer moves away from the stationary source

n′ = ov + (-v )
n

v
⎡ ⎤
⎢ ⎥⎣ ⎦

OS

n waves

A

OO/S

vvo

A

Fig. 7.20a & 7.20b Observer is moving
towards a source at rest
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n′ = ov - v
n

v
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ...(4)

As n′ < n, the pitch of sound appears to decrease.

Note : If the source and the observer move along the same
direction, the equation for apparent frequency is

n′ = o

S

v - v
n

v - v

⎛ ⎞
⎜ ⎟
⎝ ⎠

...(5)

Suppose the wind is moving with a velocity W in the direction of
propagation of sound, the apparent frequency is

n′ = 
o

s

v +W -v
n

v +W -v

⎛ ⎞
⎜ ⎟
⎝ ⎠

...(6)

Applications of Doppler effect

(i) To measure the speed of an automobile

An electromagnetic wave is emitted by a source attached to a
police car. The wave is reflected by a moving vechicle, which acts as a
moving source. There is a shift in the frequency of the reflected wave.
From the frequency shift using beats, the speeding vehicles are trapped
by the police.

(ii) Tracking a satellite

The frequency of radio waves emitted by a satellite decreases as
the satellite passes away from the Earth. The frequency received by the
Earth station, combined with a constant frequency generated in the
station gives the beat frequency. Using this, a satellite is tracked.

(iii) RADAR (RADIO DETECTION AND RANGING)

A RADAR sends high frequency radiowaves towards an aeroplane.
The reflected waves are detected by the receiver of the radar station.
The difference in frequency is used to determine the speed of an
aeroplane.

(iv) SONAR (SOUND NAVIGATION AND RANGING)

Sound waves generated from a ship fitted with SONAR are
transmitted in water towards an approaching submarine. The frequency
of the reflected waves is measured and hence the speed of the submarine
is calculated.
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Solved Problems

7.1 What is the distance travelled by sound in air when a tuning fork
of frequency 256 Hz completes 25 vibrations? The speed of sound
in air is 343 m s–1.

Data : v = 343 m s-1, n = 256 Hz, d = ?

Solution : v = nλ

∴ λ = 
343
256

 = 1.3398 m

Wavelength is the distance travelled by the wave in one complete
vibration of the tuning fork.

∴ Distance travelled by sound wave in 25 vibrations = 25 x 1.3398

Distance travelled by sound wave is = 33.49 m

7.2 Ultrasonic sound of frequency 100 kHz emitted by a bat is incident
on a water surface. Calculate the wavelength of reflected sound
and transmitted sound?  (speed of sound in air 340 m s-1 and in
water 1486 m s-1)

Data : n = 100 kHz = 105 Hz, va = 340 m s-1, vw = 1486 m s-1;

λa = ?, λw = ?

Wavelength of reflected sound a
a

vλ =
n

λa = 5

340

10
 = 3.4 × 10-3 m

Wavelength of transmitted sound λw = wv

n

λw = 5

1486

10
 = 1.486 × 10-2 m

7.3 A string of mass 0.5 kg and length 50 m is stretched under a
tension of 400 N. A transverse wave  of frequency 10 Hz travels
through the wire. (i) Calculate the wave velocity and wavelength.
(ii) How long does the disturbance take to reach the other end?

Data : m = 0.5 kg, length of the wire = 50m; T = 400 N; n=10 Hz

v = ? ; λ = ? ; t = ?

Solution : mass per unit length  m = 
mass of the wire
length of the wire

m  = 0.5
50

 = 0.01 kg m-1
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Velocity in the stretched string v = 
T
m

v = 
400
0.01

 = 200 m s-1

v = nλ

200 = 10λ

∴ λ = 20 m

The length of the wire = 50 m

∴ Time taken for the transverse wave to travel

a distance 50 m = 
50
200

 = 0.25 s

7.4 Determine the velocity and wavelength of sound of frequency
256 Hz travelling in water of Bulk modulus 0.022 × 1011 Pa

Data : k = 0.022 x 1011 Pa, ρ = 1000  kg m-3, n = 256 Hz

Solution : Velocity of sound in water v = 
k

ρ

v = 
110.022 10

1000
×

 = 1483 ms-1

  ∴ λ = 
v
n

 = 
1483
256

 = 5.79 m

7.5 Calculate the speed of longitudinal wave in air at 27o C
(The molecular mass of air is 28.8 g mol-1. γ for air is 1.4,
R = 8.314 J mol-1 K-1)

Data : m = 28.8 x 10-3 kg mol-1, γ = 1.4,

R = 8.314 J mol-1 K-1, T = 27oC = 300 K

Solution :  v = 
RT
m

γ
 = 3

1.4 8.314 300

28.8 10−
× ×

×

v = 348.2 m s-1

7.6 For air at NTP, the density is 0.001293 g cm-3. Calculate the
velocity of longitudinal wave (i) using Newton’s formula (ii) Laplace’s
correction
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Data : γ = 1.4, P = 1.013 × 105 N m–2,

ρ = 0.001293 × 103 kg m-3.

Solution : By Newton’s formula the velocity of longitudinal wave

v = 
P
ρ   = 

5

3

1.013 10

0.001293 10

×
×

v = 279.9 m s-1

By Laplace’s formula

v = 
Pγ
ρ  = 

5

3

1.4 1.013 10

0.001293 10

× ×
×

v = 331.18 m s–1

7.7 The velocity of sound at 27oC is 347 m s–1. Calculate the velocity
of sound in air at 627o C.

Data :  v27 = 347 m s-1, v627 = ?

Solution :  v α √ T

27

627

273 27 300
273 627 900

v

v

+
= =

+

27

627

v 1
=

3v

∴ v627 = v27 × 3  = 347 × 3

 = 347 × 1.732 = 601 m s-1

Velocity of sound in air at 627oC is 601 m s-1

7.8 The equation of a progressive wave is y = 0.50 sin (500 t - 0.025x),
where y, t and x are in cm, second and metre. Calculate (i)
amplitude (ii) angular frequency (iii) period (iv) wavelength and (v)
speed of propagation of wave.

Solution : The general equation of a progressive wave is given by

y = a sin 
2

t x
πω
λ

⎛ ⎞−⎜ ⎟
⎝ ⎠

given y = 0.50 sin (500 t - 0.025x)

comparing the two equations,
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(i) amplitude a = 0.50 × 10-2 m

(ii) angular frequency ω = 500 rad s-1

(iii) time period T = 2π
ω

= 
2

 = 
500 250

s
π π

(iv) wavelength λ =  
2

0.025
m

π

   λ = 80π = 251.2 m

(v) wave velocity v = nλ

   = 
250

π  × 80π
 v = 2 x 104 m s-1

7.9 A source of sound radiates energy uniformly in all directions at a
rate of 2 watt. Find the intensity (i) in W m-2 and (ii) in decibels,
at a point 20 m from the source.

Data : Power = 2 watt, r = 20 m

Solution : Intensity of sound I = 
Power
area

I = 2

2

4 (20)π

(A spherical surface of radius 20 m with source of sound as centre
is imagined)

I = 4 x 10-4 W m-2

 Intensity =  10 log 10 
o

I

I

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

      = 10 log 10

4

12

4 10

10

−

−

⎛ ⎞×
⎜ ⎟⎜ ⎟
⎝ ⎠

      (∵  Io = 10-12)

      = 10 log10 (4 × 108)

Intensity = 86 dB

7.10 Two tuning forks A and B when sounded together produce 4
beats. If A is in unison with the 0.96 m length of a sonometer wire
under a tension, B is in unison with 0.97 m length of the same
wire under same tension.  Calculate the frequencies of the forks.

Data : l1 = 0.96 m; l2 = 0.97 m; n1 = ?; n2 = ?

l1 < l2 ∴ n1 > n2
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Solution : Let n1 = n  and  n2 = n - 4

According to 1st law of transverse vibrations

n1 l1 = n2 l2
n × 0.96 = (n-4) × 0.97

n(0.97 - 0.96)  = 3.88

∴ n = 
3.88
0.01

 = 388 Hz

∴ n2 = 388 - 4 = 384 Hz

The frequency of the fork A is n1 = 388 Hz,

The frequency of the fork B is n2 = 384 Hz.

7.11 A string of length 1 m and mass 5 × 10-4 kg fixed at both ends
is under a tension of 20 N. If it vibrates in two segments, determine
the frequency of vibration of the string.

Data :  The string vibrates with 2 segments.

P = 2 loops, l = 1 m, m = 5 × 10–4  kg m-1, T = 20 N

Solution : Frequency of vibration n = 
2
P
l
 

T

m

∴ n = 
2

2 1× 4

20

5 10−×

n = 200 Hz

7.12 A stretched string made of aluminium is vibrating at its fundamental
frequency of 512 Hz. What is the fundamental frequency of a
second string made from the same material which has a diameter
and length twice that of the original and which is subjected to
three times the force of the original?

Data : n = 512 Hz, In the second case, tension = 3T, length = 2 l,
radius = 2r

Solution : Let l be the length, T be the tension and r be the radius
of the wire, then

n = 
1
2

T
l m

Mass per unit length can be written as the product of cross-sectional
area of the wire and density (i.e) m = πr2d
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512 = 2

1
2

T

l r dπ
....(1)

In the second case

2

1
2 2 (2 )

3T
n

l r dπ
=

× ....(2)

Dividing the second equation by first equation

2

1 3
 

512 2 (2)

n
= (i.e) n = 

512
 3

4
 = 222 Hz

7.13 The third overtone of a closed pipe is found to be in unison with
the first overtone of an open pipe. Determine the ratio of the
lengths of the pipes.

Solution : Let l1 and l2 be the lengths of the closed pipe and open
pipe respectively. n1 and n2 are their fundamental frequencies.

For closed pipe n1 = 
14

v
l

For open pipe n2 = 
22

v
l

Third overtone of closed pipe = (2P + 1) n1 = (2 × 3 + 1) n1 = 7n1

First  overtone of open pipe = (P + 1) n2 = (1 + 1) n2 = 2n2

∴ 7n1 = 2n2

7 × 
14

v

l = 2 × 
22

v
l

∴ 1

2

l

l  = 
7
4

7.14 The shortest length of air in a resonance tube which resonates
with a tuning fork of frequency 256 Hz is 32 cm. The corresponding
length for the fork of frequency 384 Hz is 20.8 cm. Calculate the
end correction and velocity of sound in air .

Data : n1 = 256 Hz, l1 = 32 × 10-2 m

n2 = 384 Hz, l2 = 20.8 × 10-2 m

Solution :  In a closed pipe n = 4( )
v

l e+

For the first tuning fork, 256 = 24(32 ) 10

v

e −+ ×  and
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for the second tuning fork, 384 = 24(20.8 ) 10

v

e −+ ×

Dividing the first equation by second equation,

256 20.8
384 32

e
e

+
=

+

∴ e = 1.6 cm.

v = 256 × 4 (32 + 1.6) × 10-2

Velocity of sound in air v = 344 m s-1

7.15 A railway engine and a car are moving parallel but in opposite
direction with velocities 144 km/hr and 72 km/hr respectively.
The frequency of engine’s whistle is 500 Hz and the velocity of
sound is 340 m s-1. Calculate the frequency of sound heard in the
car when (i) the car and engine are approaching each other (ii)
both are moving away from each other.

Data : The velocity of source vS = 144 km/hr and

the velocity of observer vo = 72 km/hr

v = 340 m s-1, n = 500 Hz

Solution :  (i) When the car and engine approaches each other

n′ = 
o

S

v v
n

v v

⎛ ⎞+
⎜ ⎟⎜ ⎟−⎝ ⎠

vS = 
3144 10

60 60
×
×

 = 40 m s-1

vo = 
372 10

60 60
×
×

 = 20 m s-1

∴ n′ =  
340 20
340 40

+
−  × 500

The frequency of sound heard is = 600 Hz

(ii) When the car and engine are moving away from each other

n′′ = 
o

S

v v
n

v v

⎛ ⎞−
⎜ ⎟⎜ ⎟+⎝ ⎠

     =  
340 20
340 40

−
+

 × 500

The frequency of sound heard is = 421 Hz
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Self evaluation

(The questions and problems given in this self evaluation are only samples.
In the same way any question and problem could be framed from the text
matter. Students must be prepared to answer any question and problem
from the text matter, not only from the self evaluation.)

7.1 In a longitudinal wave there is state of maximum compression at
a point at an instant. The frequency of wave is 50 Hz. After what
time will the same point be in the state of maximum rarefaction.

(a) 0.01 s (b) 0.002 s

(c) 25 s (d) 50 s

7.2 Sound of frequency 256 Hz passes through a medium.
The maximum displacement is 0.1 m. The maximum velocity is
equal to

(a) 60π m s-1 (b) 51.2π m s-1

(c) 256 m s-1 (d) 512 m s-1

7.3 Which of the following does not affect the velocity of sound?

(a) temperature of the gas (b) pressure of the gas

(c) mass of the gas

(d) specific heat capacities of the gas

7.4 When a wave passes from one medium to another, there is
change of

(a) frequency and velocity

(b) frequency and wavelength

(c) wavelength and velocity

(d) frequency, wavelength and velocity

7.5 Sound waves from a point source are propagating in all directions.
What will be the ratio of amplitude at a distance 9 m and 25 m
from the source?

(a) 25:9 (b) 9: 25

(c) 3 : 5 (d) 81 : 625

7.6 The intensity level of two sounds are 100 dB and 50 dB. Their
ratio of intensities are

(a) 101 (b) 105

(c) 103 (d) 1010
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7.7 Number of beats produced by two waves of y1 = a sin 2000 πt,
y2 = a sin 2008 πt is

(a) 0 (b) 1

(c) 4 (d) 8

7.8 In order to increase the fundamental frequency of a stretched
string from 100 Hz to 400 Hz, the tension must be increased by

(a) 2 times (b) 4 times

(c) 8 times (d) 16 times

7.9 The second overtone of an open pipe has the same frequency as
the first overtone of a closed pipe of 2 m long. The length of the
open pipe is,

(a) 2 m (b) 4 m

(c) 0.5 m (d) 0.75 m

7.10 A source of sound of frequency 150 Hz is moving in a direction
towards an observer with a velocity 110 m s-1. If the velocity
of sound is 330 m s-1, the frequency of sound heard by the
person is

(a) 225 Hz (b) 200 Hz

(c) 150 Hz (d) 100 Hz

7.11 Define wave motion. Mention the properties of the medium in
which a wave propagates.

7.12 What are the important characteristics of wave motion?

7.13 Distinguish between transverse and longitudinal waves.

7.14 In solids both longitudinal and transverse waves are possible,
but transverse waves are not produced in gases. Why?

7.15 Define the terms wavelength and frequency in wave motion. Prove
that v = nλ.

7.16 Obtain an expression for the velocity of transverse wave in a
stretched string, when it is vibrating in fundamental mode.

7.17 Derive Newton - Laplace formula for the velocity of sound in
gases.

7.18 Show that the velocity of sound increases by 0.61 m s-1 for every
degree rise of temperature.
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7.19 Sound travels faster on rainy days. Why?

7.20 Obtain the equation for plane progressive wave.

7.21 Distinguish between intensity and loudness of sound.

7.22 What do you understand by decibel?

7.23 On what factors does the intensity of sound depend?

7.24 What is an echo? Why an echo cannot be heard in a small room?

7.25 Write a short note on whispering gallery.

7.26 State the principle of superposition.

7.27 What are the essential conditions for the formation of beats?

7.28 What are beats? Show that the number of beats produced per
second is equal to the difference in frequencies.

7.29 What is interference of sound waves? Describe an experiment to
explain the phenomenon of interference of waves.

7.30 How are stationary waves formed?

7.31 Derive the equation of stationary wave and deduce the condition
for nodes and antinodes.

7.32 What are the properties of stationary waves?

7.33 State the laws of transverse vibrations in stretched strings.

7.34 List out the differences between a progressive wave and a
stationary wave.

7.35 What are overtones and harmonics?

7.36 Why open organ pipes are preferred for making flute?

7.37 Prove that in a pipe closed at one end, frequency of harmonics
are in the ratio 1:3:5.

7.38 Explain how overtones are produced in an open pipe. Show that
all harmonics are present in the open pipe.

7.39 What is meant by end correction?

7.40 What is doppler effect? Derive the formula for the change in
frequency (i) when the source  is approaching and receding from
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the observer and (ii) when the source is stationary and observer
is moving towards and away from the source.

Problems

7.41 A wave of length 0.60 cm is produced in air and travels with a
velocity of 340 m s-1. Will it be audiable to human ear?

7.42 The velocity of sound in water is 1480 m s-1. Find the frequency
of sound wave such that its wavelength in water is the same as
the wavelength in air of a sound wave of frequency 1000 Hz.
(The velocity of sound in air is 340 m s-1).

7.43 Calculate the ratio of velocity of sound in hydrogen 
7
5

γ⎛ ⎞=⎜ ⎟
⎝ ⎠

 to that

in helium 
5
3

γ⎛ ⎞=⎜ ⎟
⎝ ⎠

 at the same temperature.

7.44 The equation of a progressive wave travelling along the x axis is
given by y = 10 sin π (2t - 0.01x) where y and x are in m and
t in s. Calculate (i) amplitude (ii) frequency and wavelength
(iii) wave velocity.

7.45 If the intensity is increased by a factor 60, by how many decibels
the sound level is increased.

7.46 Two sound waves, originating from the same source, travel along
different paths in air and then meet at a point. If the source
vibrates at a frequency of 1.0 kHz and one path is 83 cm longer
than the other, what will be the nature of interference? The speed
of sound in air is 332 m s-1.

7.47 In an experiment, the tuning fork and sonometer give 5 beats per
second, when their lengths are 1m and 1.05m respectively.
Calculate the frequency of the fork.

7.48 A steel wire of length 1.2 m with a tension of 9.8 N is found to
resonate in five segments at a frequency of 240 Hz. Find the
mass of the string.

7.49 How can a stretched string of length 114 cm be divided into three
segments so that the fundamental frequency of the three segments
be in the ratio of 1 : 3 : 4.
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7.50 An open organ pipe has a fundamental frequency of 240 Hz. The
first overtone of a closed organ pipe has the same frequency as
the first overtone of the open pipe. How long is each pipe? Velocity
of sound at room temperature is 350 ms-1.

7.51 A tuning fork of frequency 800 Hz produces resonance in a
resonance column apparatus. If successive resonances are
produced at lengths 9.75 cm and  31.25 cm, calculate the velocity
of sound in air.

7.52 A train standing at a signal of a railway station blows a whistle
of frequency 256 Hz in air. Calculate the frequency of the sound
as heard by a person standing on the platform when the train
(i) approches the platform with a speed of 40 m s-1 (ii) recedes
from the platform with the same speed.

7.53 A whistle of frequency 480 Hz rotates in a circle of radius 1.25m
at an angular speed of 16.0 rad s-1. What is the lowest and
highest frequency heard by a listener a long distance away at
rest with respect to the centre of the circle. The velocity of sound
is 340 m s-1.

7.54 Two tuning forks A and B when sounded together give 4 beats
per second. The fork A is in resonance with a closed column of
air of length 15 cm, while the second is in resonance with an
open column of length 30.5 cm. Calculate their frequencies.
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Answers

7.1 (a) 7.2 (b) 7.3 (b)

7.4 (c) 7.5 (a) 7.6 (b)

7.7 (c) 7.8 (d) 7.9 (b)

7.10 (a)

7.41 5.666 × 104 Hz, not audible

7.42 4353 Hz

7.43 1.833

7.44 10 m, 1 Hz, 200 m, 200 ms-1

7.45 18 dB

7.46 destructive interference, as this is odd multiple of π

7.47 205 Hz

7.48 7.38 × 10–4 kg

7.49 72 × 10–2 m, 24 × 10–2 m, 18 × 10–2 m

7.50 54.7 × 10–2 m, 72.9 × 10–2 m

7.51 344 m s-1

7.52 290 Hz, 229 Hz

7.53 510 Hz, 453 Hz

7.54 240 Hz, 244 Hz
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8. Heat and Thermodynamics

In early days, according to caloric theory of heat, heat was regarded
as an invisible and weightless fluid called “caloric”. The two bodies at
different temperatures placed in contact attain thermal equilibrium by
the exchange of caloric. The caloric flows from the hot body to the cold
body, till their temperature becomes equal. However, this theory failed
to explain the production of heat due to friction in the experiments
conducted by Court Rumford. Rubbing our hands against each other
produces heat. Joule’s paddle wheel experiment led to the production
of heat by friction. These observations led to the dynamic theory of
heat, according to which heat is a form of energy called thermal energy.

Every body is made up of molecules. Depending on its nature and
temperature, the molecules may possess translatory motion, vibratory
motion and rotatory motion about its axis. Each type of motion provides
some kinetic energy to the molecules. Heat possessed by a body is the
total thermal energy of the body, which is the sum of kinetic energies
of all the individual molecules of the body.

Temperature of a body is the degree of hotness or coldness of the
body. Heat flows from a body at high temperature to a body at low
temperature when they are in contact with each other. Modern concept
of temperature follows from zeroth law of thermodynamics. Temperature
is the thermal state of the body, that decides the direction of flow of heat.
Temperature is now regarded as one of the fundamental quantities.

8.1 Kinetic theory of gases

The founder of modern kinetic theory of heat by common consent
is Daniel Bernoulli. But the credit for having established it on a firm
mathematical basis is due to Clausius and Maxwell in whose hands it
attained the present form.

8.1.1 Postulates of Kinetic theory of gases

(1) A gas consists of a very large number of molecules. Each one
is a perfectly identical elastic sphere.
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(2) The molecules of a gas are in a state of continuous and random
motion. They move in all directions with all possible velocities.

(3) The size of each molecule is very small as compared to the
distance between them. Hence, the volume occupied by the molecule is
negligible in comparison to the volume of the gas.

(4) There is no force of attraction or repulsion between the molecules
and the walls of the container.

(5) The collisions of the molecules among themselves and with the
walls of the container are perfectly elastic. Therefore, momentum and
kinetic energy of the molecules are conserved during collisions.

(6) A molecule moves along a straight line between two successive
collisions and the average distance travelled between two successive
collisions is called the mean free path of the molecules.

(7) The collisions are almost instantaneous (i.e) the time of collision
of two molecules is negligible as compared to the time interval between
two successive collisions.

Avogadro number

Avogadro number is defined as the number of molecules present in
one mole of a substance. It is constant for all the substances. Its value
is 6.023 × 1023.

8.1.2 Pressure exerted by a gas

The molecules of a gas are in a state of random motion. They
continuously collide against the walls of the container. During each
collision, momentum is transfered to the walls of the container. The
pressure exerted by the gas is due to the
continuous collision of the molecules
against the walls of the container. Due to
this continuous collision, the walls
experience a continuous force which is
equal  to the total momentum imparted to
the walls per second. The force experienced
per unit area of the walls of the container
determines the pressure exerted by the gas.

Consider a cubic container of side l
containing n molecules of perfect gas

Fig. 8.1 Pressure exerted
by a gas

I

A
B

C
D

E F

GH
II

X

l

Y

Z
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moving with velocities C1, C2, C3 ... Cn

(Fig. 8.1).  A molecule moving with a
velocity C1, will have velocities u1, v1 and
w1 as components along the x, y and z
axes respectively. Similarly u2, v2 and w2

are the velocity components of the second
molecule and so on. Let a molecule P
(Fig. 8.2) having velocity C1 collide against
the wall marked I (BCFG) perpendicular
to the x-axis. Only the x-component of
the velocity of the molecule is relevant for the wall I. Hence momentum
of the molecule before collision is mu1 where m is the mass of the
molecule. Since the collision is elastic, the molecule will rebound with
the velocity  u1 in the opposite direction. Hence momentum of the
molecule after collision is –mu1.

Change in the momentum of the molecule

= Final momentum - Initial momentum

= –mu1 – mu1 = –2mu1

During each successive collision on face I the molecule must travel
a distance 2l from face I to face II and back to face I.

Time taken between two successive collisions is = 
1

2l

u

∴ Rate of change of momentum

= 
Change in the momentum

Time taken

= 
2 2

1 1 1

1

2 2
  =   = 

2 2 

mu mu mu
l l l

u

− − −

(i.e) Force exerted on the molecule = 
2

1mu

l

−

∴ According to Newton’s third law of motion, the force exerted by
the molecule

= – 
( )2

1mu

l

−
 =  

2
1mu

l

Fig. 8.2 Components of velocity

P
X

Y

v1
C1

u1

w1Z
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Force exerted by all the n molecules is

=
2 22

21  +  + ..... + n
x

mu mumu
F

l l l

Pressure exerted by the molecules

= x
x

F
P

A

=
2 22

21
2

1
  +  + .....+ nmu mumu

l l l l

⎛ ⎞
⎜ ⎟
⎝ ⎠

     = ( )2 2 2
1 2 n3

m
 u  + u  + ..... + u  

l

Similarly, pressure exerted by the molecules along Y and Z
axes are

( )2 2 2
y 1 2 n3

m
P  =  v  + v  + .....+ v  

l

( )2 2 2
1 2 n3 =   +  + .....+z

m
P w w w

l

Since the gas exerts the same pressure on all the walls of the
container

Px = Py = Pz = P

P =  
3

x y zP P p+ +

P = 3 
1 m
3 l

[ 2 2 2
1 2 n(u  + u  + ... + u )  + 

2 2 2
1 2 n(v  + v  + ....+ v )  + 2 2 2

1 2 n(w  + w  + ....+ w ) ]

P = 3
 

1 m
3 l

[ 1 1
2 2 2
1(u  + v  + w )  + 2 2 2

2 2 2(u  + v  + w ) + +...... 2 2 2
n n n (u  + v  + w ) ]

P = 
2 2 2

1 2 n3

1 m
  [C  + C  + .... + C ]

3 l

where C1
2 = 1 1

2 2 2
1(u  + v  + w )

P = 
2 2 2

1 2 n
3

C  + C  + .... + C1 mn
 

3 l n

⎡ ⎤
⎢ ⎥
⎣ ⎦

P = 21
  . C

3
mn

V
where C is called the root mean square (RMS) velocity, which is defined
as the square root of the mean value of the squares of velocities of individual
molecules.
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(i.e.) C = 
2 2 2

1 2 nC  + C  + .... + C

n

8.1.3 Relation between the pressure exerted by a gas and the mean
kinetic energy of translation per unit volume of the gas

Pressure exerted by unit volume of a gas, P = 
1
3

mnC2

P = 
1
3
ρC2 (∵  mn = mass per unit volume of the gas ; mn = ρ ,

density of the gas)

Mean kinetic energy of translation per unit volume of the gas

E = 
1
2
ρC2

2

2

1
 ρ 23 =  = 

1 3 ρ
2

CP

E C

P = 
2
3

E

8.1.4 Average kinetic energy per molecule of the gas

Let us consider one mole of gas of mass M and volume V.

P = 
1
3
ρC2

P = 
1

 
3

M

V
C2

PV = 
1
3

MC2

From gas equation

PV = RT

∴ RT = 
1
3

MC2

3
2

 RT = 
1
2

MC2

(i.e) Average kinetic energy of one mole of the gas is equal to 
3
2

RT

Since one mole of the gas contains N number of atoms where N
is the Avogadro number
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we have  M = Nm

∴ 
1
2

 mNC2 = 
3
2

RT

1
2

 mC2 = 
3
2

 
R
N

T

= 
3
2

 kT  where k = 
R

N
, is the Boltzmann constant

Its value is 1.38 × 10-23 J K-1

∴ Average kinetic energy per molecule of the gas is equal to 
3
2

 kT

Hence, it is clear that the temperature of a gas is the measure of
the mean translational kinetic energy per molecule of the gas.

8.2 Degrees of freedom

The number of degrees of freedom of a dynamical system is defined
as the total number of co-ordinates or independent variables required to
describe the position and configuration of the system.

For translatory motion

(i) A particle moving in a straight line along any one of the axes
has one degree of freedom (e.g) Bob of an oscillating simple pendulum.

(ii) A particle moving in a plane (X and Y axes) has two degrees
of freedom. (eg) An ant that moves on a floor.

(iii) A particle moving in space (X, Y and Z axes) has three degrees
of freedom. (eg) a bird that flies.

A point mass cannot undergo rotation, but only translatory motion.
A rigid body with finite mass has both rotatory and translatory motion.
The rotatory motion also can have three co-ordinates in space, like
translatory motion ; Therefore a rigid body will have six degrees of
freedom ; three due to translatory motion and three due to rotatory
motion.

8.2.1 Monoatomic molecule

Since a monoatomic molecule consists of only a single atom of
point mass it has three degrees of freedom of translatory motion along
the three co-ordinate axes as shown in Fig. 8.3.



91

Examples : molecules of rare gases
like helium, argon, etc.

8.2.2 Diatomic molecule

The diatomic molecule can rotate
about any axis at right angles to its own
axis. Hence it
has two degrees
of freedom of

rotational motion in addition to three degrees
of freedom of translational motion along the
three axes. So, a diatomic molecule has five
degrees of freedom (Fig. 8.4). Examples :
molecules of O2, N2, CO, Cl2, etc.

8.2.3 Triatomic molecule (Linear type)

In the case of triatomic molecule of linear type, the centre of mass
lies at the central atom. It, therefore, behaves like a diamotic moelcule

with three degrees of freedom of translation and
two degrees of freedom of rotation, totally it has
five degrees of freedom (Fig. 8.5). Examples :
molecules of CO2, CS2, etc.

8.2.4 Triatomic molecule (Non-linear type)

A triatomic non-linear molecule may
rotate, about the three mutually perpendicular
axes, as shown in Fig.8.6. Therefore, it
possesses three degrees of freedom of rotation
in addition to three degrees of freedom of
translation along the three co-ordinate axes.
Hence it has six degrees of freedom.
Examples : molecules of H2O, SO2, etc.

In all the above cases, only the
translatory and rotatory motion of the
molecules have been considered. The vibratory
motion of the molecules has not been taken
into consideration.

Fig. 8.3 Monoatomic molecule

X

Y

Z

Fig. 8.5 Triatomic

molecules (linear type)

X

Y

Z
Fig. 8.4 Diatomic molecule

X

Y

Z

Fig. 8.6 Triatomic

molecule
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8.3 Law of equipartition of energy

Law of equipartition of energy states that for a dynamical system in
thermal equilibrium the total energy of the system is shared equally by all
the degrees of freedom. The energy associated with each degree of freedom
per moelcule is 1

2
 kT, where k is the Boltzmann’s constant.

Let us consider one mole of a monoatomic gas in thermal
equilibrium at temperature T. Each molecule has 3 degrees of freedom
due to translatory motion. According to kinetic theory of gases, the

mean kinetic energy of a molecule is 
3
2

kT.

Let Cx , Cy and Cz be the components of RMS velocity of a molecule
along the three axes. Then the average energy of a gas molecule is given
by

= + +2 2 2 21 1 1 1
        

2 2 2 2x y zmC mC mC mC

∴ + +2 2 21 1 1 3
      =  
2 2 2 2x y zmC mC mC kT

Since molecules move at random, the average kinetic energy
corresponding to each degree of freedom is the same.

∴ 2 2 21 1 1
 =  =  

2 2 2x y zmC mC mC

(i.e)   
2 2 21 1 1 1
 =  =  = 

2 2 2 2x y zmC mC mC kT

∴ Mean kinetic energy per molecule per degree of freedom is

1
2

 kT.

8.4. Thermal equilibrium

Let us consider a system requiring a pair of independent
co-ordinates X and Y for their complete description. If the values of X
and Y remain unchanged so long as the external factors like temperature
also remains the same, then the system is said to be in a state of
thermal equilibrium.

Two systems A and B having their thermodynamic co-ordinates X
and Y and X1 and Y1 respectively separated from each other, for example,
by a wall, will have new and common co-ordinates X′ and Y ′
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spontaneously, if the wall is removed. Now the two systems are said to
be in thermal equilibrium with each other.

8.4.1 Zeroth law of thermodynamics

If two systems A and B are separately in thermal equilibrium with
a third system C, then the three systems are in thermal equilibrium
with each other. Zeroth law of thermodynamics states that two systems
which are individually in thermal equilibrium with a third one, are also in
thermal equilibrium with each other.

This Zeroth law was stated by Flower much later than both first
and second laws of thermodynamics.

This law helps us to define temperature in a more rigorous manner.

8.4.2 Temperature

If we have a number of gaseous systems, whose different states
are represented by their volumes and pressures V1, V2, V3 ... and P1, P2,
P3... etc., in thermal equilibrium with one another, we will have
φ1 (P1,V1) = φ2 (P2, V2) = φ3 (P3, V3) and so on,  where φ is a function
of P and V. Hence, despite their different parameters of P and V, the
numerical value of the these functions or the temperature of these
systems is same.

Temperature may be defined as the particular property which
determines whether a system is in thermal equilibrium or not with its
neighbouring system when they are brought into contact.

8.5 Specific heat capacity

Specific heat capacity of a substance is defined as the quantity of heat
required to raise the temperature of 1 kg of the substance through 1K. Its unit
is J kg–1K–1.

Molar specific heat capacity of a gas

Molar specific heat capacity of a gas is defined as the quantity of
heat required to raise the temperature of 1 mole of the gas through 1K.
Its unit is J mol–1 K–1.

Specific heat capacity of a gas may have any value between –∞
and +∞ depending upon the way in which heat energy is given.
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Let m be the mass of a gas and C its specific heat capacity. Then
∆Q = m × C × ∆T where ∆Q is the amount of heat absorbed and ∆T is
the corresponding rise in temperature.

(i.e) C = 
∆

∆ 
Q

m T

Case (i)

If the gas is insulated from its surroundings and is suddenly
compressed, it will be heated up and there is rise in temperature, even
though no heat is supplied from outside

(i.e) ∆Q = 0

∴ C   = 0

Case (ii)

If the gas is allowed to expand slowly, in order to keep the
temperature constant, an amount of heat ∆Q is supplied from outside,

then C = 
∆ ∆

∞
× ∆

 =  = +
0

Q Q
m T

(∵  ∆Q is +ve as heat is supplied from outside)

Case (iii)

If the gas is compressed gradually and the heat generated ∆Q is

conducted away so that temperature remains constant, then

C =  =  = -
0

Q Q

m T

∆ −∆
∞

× ∆
(∵  ∆Q is -ve as heat is supplied by the system)

Thus we find that if the external conditions are not controlled, the
value of the specific heat capacity of a gas may vary from +∞ to -∞

Hence, in order to find the value of specific heat capacity of a gas,
either the pressure or the volume of the gas should be kept constant.
Consequently a gas has two specific heat capacities (i) Specific heat capacity
at constant volume (ii) Specific heat capacity at constant pressure.

Molar specific heat capacity of a gas at constant volume

Molar specific heat capacity of a gas at constant volume CV is defined
as the quantity of heat required to raise the temperature of one mole of
a gas through 1 K, keeping its volume constant.
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Molar specific heat capacity of a gas at constant pressure

Molar specific heat capacity of a gas at constant pressure Cp is
defined as the quantity of heat to raise the temperature of one mole of a
gas through 1 K keeping its pressure constant.

Specific heat capacity of monoatomic, diatomic and triatomic gases

Monoatomic gases like argon, helium etc. have three degrees of
freedom.

We know, kinetic energy per molecule, per degree of freedom

is 
1
2

 kT.

∴ Kinetic energy per molecule with three degrees of freedom

is 
3
2

 kT.

Total kinetic energy of one mole of the monoatomic gas is given by

E = 

3
2

 kT × N = 
3
2  RT, where N is the Avogadro number.

∴
3

 = 
2

dE
R

dT

If dE is a small amount of heat required to raise the temperature
of 1 mole of the gas at constant volume, through a temperature dT,

dE = 1 × CV × dT

CV = 
3

 = 
2

dE
R

dT

As R = 8.31 J mol–1 K–1

CV = 
3
2

 × 8.31=12.465 J mol–1 K–1

Then CP – CV = R

CP = CV + R

= 
3
2

R + R =  
5
2

R =  
5
2

 × 8.31

∴ Cp = 20.775 J mol–1 K–1
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In diatomic gases like hydrogen, oxygen, nitrogen etc., a molecule
has five degrees of freedom. Hence the total energy associated with one

mole of diatomic gas is

E = 5 × 
1
2

 kT × N = 
5
2

RT

Also, Cv = 
dE
dT

 = 
d

dT
 

5
 RT

2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 
5
2

R

Cv =
5
2

× 8.31 = 20.775 J mol–1 K–1

But Cp = Cv + R

= 
5
2

R + R  = 
7
2

R

    Cp = 
7
2

 × 8.31

= 29.085 J mol–1 K–1

similarly, Cp and Cv can be calculated for triatomic gases.

Internal energy

Internal energy U of a system is the energy possessed by the system
due to molecular motion and molecular configuration. The internal kinetic
energy UK of the molecules is due to the molecular motion and the internal
potential energy UP is due to molecular configuration. Thus

U = UK + UP

It depends only on the initial and final states of the system. In
case of an ideal gas, it is assumed that the intermolecular forces are
zero. Therefore, no work is done, although there is change in the
intermolecular distance. Thus UP = O. Hence, internal energy of an ideal
gas has only internal kinetic energy, which depends only on the
temperature of the gas.

In a real gas, intermolecular forces are not zero. Therefore, a
definite amount of work has to be done in changing the distance between
the molecules. Thus the internal energy of a real gas is the sum of
internal kinetic energy and internal potential energy. Hence, it would
depend upon both the temperature and the volume of the gas.



97

8.6 First law of thermodynamics

Let us consider a gas inside a cylinder fitted with a movable
frictionless piston. The walls of the cylinder are made up of non-

conducting material and the bottom is made up of
conducting material (Fig. 8.7).

Let the bottom of the cylinder be brought in
contact with a hot body like burner. The entire heat
energy given to the gas is not converted into work. A
part of the heat energy is used up in increasing the
temperature of the gas (i.e) in increasing its internal
energy and the remaining energy is used up in pushing
the piston upwards (i.e.) in doing work.

If ∆Q is the heat energy supplied to the gas, U1

and U2 are initial and final internal energies and ∆W
is the work done by the system, then

∆Q = ∆W + (U2 - U1)

∆Q = ∆W + ∆U

where ∆U is the change in the internal energy of the system.

Hence, the first law of thermodynamics states that the amount of
heat energy supplied to a system is equal to the sum of the change in
internal energy of the system and the work done by the system. This law
is in accordance with the law of conservation of energy.

8.7 Relation between Cp and Cv (Meyer’s relation)

Let us consider one mole of an ideal gas enclosed in a cylinder
provided with a frictionless piston of area A. Let P, V and T be the
pressure, volume and absolute temperature of gas respectively (Fig. 8.8).

A quantity of heat dQ is supplied to the gas. To keep the volume
of the gas constant, a small weight is placed over the piston. The
pressure and the temperature of the gas increase to P + dP and T + dT
respectively. This heat energy dQ is used to increase the internal energy
dU of the gas. But the gas does not do any work (dW = 0).

∴ dQ = dU = 1 × Cv × dT ... (1)

The additional weight is now removed from the piston. The piston
now moves upwards through a distance dx, such that the pressure of

Fig. 8.7 First

Law of

thermodynamics
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the enclosed gas is equal to the atmospheric pressure P. The temperature
of the gas decreases due to the expansion of the gas.

Now a quantity of heat dQ ’ is supplied to the gas till its temperature
becomes T + dT. This heat energy is not only used to increase the
internal energy dU of the gas but also to do external work dW in moving
the piston upwards.

∴ dQ’ = dU + dW

Since the expansion takes place at constant pressure,

dQ ′ = CpdT

∴ CpdT = CvdT + dW ... (2)

Work done, dW = force × distance

   = P × A × dx

     dW = P dV (since A × dx = dV, change in volume)

∴ CpdT = CvdT + P dV ... (3)

The equation of state of an ideal gas is

PV = RT

Differentiating both the sides

    PdV = RdT ... (4)

Substituting equation (4) in (3),

CpdT = CvdT + RdT

Cp = Cv + R

Fig. 8.8 Meyer’s relation

P+ P
V

T+ T

d

d

P
V
T

P
V+ V
T+ T

d
d

dQ dQ/

dx
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∴ Cp - Cv = R

This equation is known as Meyer’s relation

8.8 Indicator diagram (P-V diagram)

A curve showing variation of volume of a substance taken along
the X-axis and the variation of pressure taken along Y-axis is called an
indicator diagram or P-V diagram. The shape of the indicator diagram
shall depend on the nature of the thermodynamical process the system
undergoes.

Let us consider one mole of an ideal gas enclosed in a cylinder
fitted with a perfectly frictionless piston. Let P1, V1 and T be the initial
state of the gas. If dV is an infinitesimally small increase in volume of
the gas during which the pressure P is assumed to be constant, then
small amount of workdone by the gas is dW = PdV

In the indicator diagram dW = area a1b1c1d1

∴ The total workdone by the gas during expansion from V1 to V2 is

W = 

2

1

V

V
∫ PdV = Area ABCD, in the

indicator diagram.

Hence, in an indicator diagram
the area under the curve represents
the work done (Fig. 8.9).

8.8.1 Isothermal process

When a gas undergoes expansion
or compression at constant temperature,
the process is called isothermal process.

Let us consider a gas in a cylinder provided with a frictionless
piston. The cylinder and the piston are made up of conducting material.
If the piston is pushed down slowly, the heat energy produced will be
quickly transmitted to the surroundings. Hence, the temperature remains
constant but the pressure of the gas increases and its volume decreases.

The equation for an isothermal process is PV = constant.

If a graph is drawn between P and V, keeping temperature constant,
we get a curve called an isothermal curve. Isotherms for three different

Fig. 8.9 Indicator diagram
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temperatures T1, T2 and T3 are shown in

the Fig. 8.10. The curve moves away from
the origin at higher temperatures.

During an isothermal change, the
specific heat capacity of the gas is infinite.

(i.e)  = 
Q

C
m T
∆

= ∞
∆ ( )0T∆ =∵

(e.g) Melting of ice at its melting point
and vapourisation of water at its boiling
point.

8.8.2 Workdone in an isothermal expansion

Consider one mole of an ideal gas enclosed in a cylinder with
perfectly conducting walls and fitted with a perfectly frictionless and
conducting piston. Let P1, V1 and T be the initial pressure, volume and
temperature of the gas. Let the gas expand to a volume V2 when pressure
reduces to P2, at constant temperature T. At any instant during expansion
let the pressure of the gas be P. If A is the area of cross section of the
piston, then force F = P × A.

Let us assume that the pressure of the gas remains constant
during an infinitesimally small outward displacement dx of the piston.
Work done

dW = Fdx = PAdx = PdV

Total work done by the gas in expansion from initial volume V1 to
final volume V2 is

W = 

2

1

V

V
∫ P dV

We know, PV = RT, P = 
RT
V

∴ W = 

2

1

V

V
∫ RT

V
 dV = RT 

2

1

V

V
∫ 1

V
dV

W = RT [ ] 2

1
log

V
e V
V

Fig. 8.10 Isothermal
process
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W = RT 2 1log  -  loge eV V⎡ ⎤⎣ ⎦
= RT loge 

2

1

V

V

W = 2.3026 RT log10
 2

1

V
V

This is the equation for the workdone during an isothermal process.

8.8.3 Adiabatic process

In Greek, adiabatic means “nothing passes through”. The process
in which pressure, volume and temperature of a system change in such
a manner that during the change no heat enters or leaves the system is
called adiabatic process. Thus in adiabatic process, the total heat of the
system remains constant.

Let us consider a gas in a perfectly thermally insulated cylinder
fitted with a piston. If the gas is compressed suddenly by moving the
piston downward, heat is produced and hence the temperature of the
gas will increase. Such a process is adiabatic compression.

If the gas is suddenly expanded by moving the piston outward,
energy required to drive the piston is drawn from the internal energy of
the gas, causing fall in temperature. This fall in temperature is not
compensated by drawing heat from the surroundings. This is adiabatic
expansion.

Both the compression and expansion should be sudden, so that
there is no time for the exchange of heat. Hence, in an adiabatic process
always there is change in temperature.

Expansion of steam in the cylinder of a steam engine, expansion
of hot gases in internal combustion engine, bursting of a cycle tube or
car tube, propagation of sound waves in a gas are adiabatic processes.

The adiabatic relation between P and V for a gas, is

PV γ = k, a constant ... (1)

where γ = 
specific heat capacity of the gas at constant pressure
specific heat capacity of the gas at constant volume

From standard gas equation,

PV = RT
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P = 
RT
V

substituting the value P in  (1)

RT

V
Vγ = constant

T.Vγ–1 = constant

In an adiabatic process Q =constant

∴ ∆Q = 0

∴ specific heat capacity C = 
Q

m T
∆
∆

∴ C = 0

8.8.4 Work done in an adiabatic expansion

Consider one mole of an ideal gas enclosed in a cylinder with
perfectly non conducting walls and fitted with a perfectly frictionless,
non conducting piston.

Let P1, V1 and T1 be the initial pressure, volume and temperature
of the gas. If A is the area of cross section of the piston, then force
exerted by the gas on the piston is

F = P × A, where P is pressure of the gas at any instant during
expansion. If we assume that pressure of the gas remains constant
during an infinitesimally small outward displacement dx of the piston,

then work done dW = F × dx = P × A dx

dW = P dV

Total work done by the gas in adiabatic expansion from volume V1

to V2 is

W = 

2

1

V

V
∫ P dV

But PV γ = constant (k) for adiabatic process

where γ = 
P

V

C
C

 ∴ W =

2

1

V

V
∫ k.V–γ dV = k 

2

1

V1-γ

V

V
1- γ
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
k

P =
V γ

⎛ ⎞
⎜ ⎟
⎝ ⎠
∵
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 W = 
1 - 1-
2 1

k
 V  - V

1-
γ γ

γ
⎡ ⎤⎣ ⎦

 W = 
1- 1-
2 1

1
 kV  - kV

1-
γ γ

γ
⎡ ⎤⎣ ⎦  ... (1)

but, P2V2
γ = P1V1

γ = k ... (2)

Substituting the value of k in (1)

∴ W = 
1

1- γ  [P2V2
γ
 . V2

1- γ
 - P1 V1

γ
 V1

1-γ]

W = 
1

1- γ  [P2 V2 - P1V1] ... (3)

If T2 is the final temperature of the gas in adiabatic expansion,
then

P1V1 = RT1, P2V2 = RT2

Substituting in (3)

W = 
1

1- γ  [RT2 - RT1]

W = 
R

1- γ  [T2 - T1] ... (4)

This is the equation for the work done during adiabatic process.

8.9 Reversible and irreversible processes

8.9.1 Reversible process

A thermodynamic process is said to be reversible when (i) the
various stages of an operation to which it is subjected can be reversed
in the opposite direction and in the reverse order and (ii) in every part
of the process, the amount of energy transferred in the form of heat or
work is the same in magnitude in either direction. At every stage of the
process there is no loss of energy due to  friction, inelasticity, resistance,
viscosity etc. The heat losses to the surroundings by conduction,
convection or radiation are also zero.

Condition for reversible process

(i) The process must be infinitely slow.
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(ii) The system should remain in thermal equilibrium (i.e) system
and surrounding should remain at the same temperature.

Examples

(a) Let a gas be compressed isothermally so that heat generated
is conducted away to the surrounding. When it is allowed to expand in
the same small equal steps, the temperature falls but the system takes
up the heat from the surrounding and maintains its temperature.

(b) Electrolysis can be regarded as reversible process, provided
there is no internal resistance.

8.9.2 Irreversible process

An irreversible process is one which cannot be reversed back.
Examples : diffusion of gases and  liquids, passage of electric current
through a wire, and heat energy lost due to friction. As an irreversible
process is generally a very rapid one, temperature adjustments are not
possible. Most of the chemical reactions are irreversible.

8.10 Second law of thermodynamics

The first law of thermodynamics is a general statement of
equivalence between work and heat. The second law of thermodynamics
enables us to know whether a process which is allowed by first law of
thermodynamics can actually occur or not. The second law of
thermodynamics tells about the extent and direction of energy
transformation.

Different scientists have stated this law in different ways to bring
out its salient features.

(i) Kelvin’s statement

Kelvin’s statement of second law is based on his experience about
the performance of heat engine.

It is impossible to obtain a continuous supply of work from a body
by cooling it to a temperature below the coldest of its surroundings.

(ii) Clausius statement

It is impossible for a self acting machine unaided by any external
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agency to transfer heat from a body at a lower temperature to another
body at a higher temperature.

(iii) Kelvin - Planck’s statement

It is impossible to construct a heat engine operating in a cycle, that
will extract heat from a reservoir and perform an equivalent amount of
work.

8.11 Carnot engine

Heat engine is a device which converts heat energy into mechanical
energy.

In the year 1824, Carnot devised an ideal cycle of operation for a
heat engine. The machine used
for realising this ideal cycle of
operation is called an ideal heat
engine or carnot heat engine.

The essential parts of a
Carnot engine are shown in
Fig. 8.11

(i) Source

It is a hot body which is
kept at a constant temperature
T1. It has infinite thermal capacity. Any amount of heat can be drawn
from it at a constant temperature T1 (i.e)  its temperature will remain
the same even after drawing any amount of heat from it.

(ii) Sink

It is a cold body which is kept at a constant lower temperature T2.
Its thermal capacity is also infinite that any amount of heat added to
it will not increase its temperature.

(iii) Cylinder

Cylinder is made up of non-conducting walls and conducting
bottom. A perfect gas is used as a working substance. The cylinder is
fitted with a perfectly non-conducting and frcitionless piston.

Insulated cylinder

Working substance

Source
T1 Stand

Sink
T2

Fig. 8.11 Carnot engine
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(iv) Insulating stand

It is made up of non conducting material so as to perform adiabatic
operations.

Working : The Carnot engine has the following four stages of
operations.

1. Isothermal expansion 2. Adiabatic expansion 3. Isothermal
compression 4. Adiabatic compression.

Isothermal expansion

Let us consider one mole of an ideal gas enclosed in the cylinder.
Let V1, P1 be the initial volume and pressure of the gas respectively. The
initial state of the gas is represented by the point A on the P–V diagram.
The cylinder is placed over the source which is at the temperature T1.

The  piston is allowed to move slowly  outwards, so that the gas
expands. Heat is gained from the source and the process is isothermal
at constant temperature T1. In this process the volume of the gas changes

from V1 to V2 and the pressure
changes from P1 to P2. This process
is represented by AB in the
indicator diagram (Fig. 8.12).
During this process, the quantity
of heat absorbed from the source is
Q1 and W1 is the corresponding
amount of work done by the gas.

∴ Q1 = W1 = 
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∫
2

1

2
1 e

1

 log
V

V

V
PdV RT

V

= area ABGEA  ...(1)

Adiabatic expansion

The cylinder is taken from the source and is placed on the insulting
stand and the piston is moved further so that the volume of the gas
changes from V2 to V3 and the pressure changes from P2 to P3. This
adiabatic expansion is represented by BC. Since the gas is thermally
insulated from all sides no heat can be gained from the surroundings.
The temperature of the gas falls from T1 to T2.

Fig. 8.12 Carnot cycle

V

P

O

B (V ,P )2 2

C (V ,P )3 3

D (V ,P )4 4

A (V ,P )1 1

E F G H
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Let W2 be the work done by the gas in expanding adiabatically.

∴ W2 = γ
= −

−∫
3

2

1 2( )
1

V

V

R
PdV T T  = Area BCHGB ...(2)

Isothermal compression

The cylinder is now placed on the sink at a temperature T2. The
piston is moved slowly downward to compress the gas isothermally. This
is represented by CD. Let (V4, P4) be the volume and pressure
corresponding to the point D. Since the base of the cylinder is conducting
the heat produced during compression will pass to the sink so that, the
temperature of the gas remains constant at T2. Let Q2 be the amount
of heat rejected to the sink and W3 be the amount of work done on the

gas in compressing it isothermally.

Q2 = W3 = 
4

3

4
2

3

 log
V

e

V

V
P dV RT

V

⎛ ⎞
− = − ⎜ ⎟

⎝ ⎠
∫ = – area CDFHC        ...(3)

The negative sign indicates that work is done on the working

substance.

∴ Q2 = RT2 loge 
3

4

V

V

⎛ ⎞
⎜ ⎟
⎝ ⎠

Adiabatic compression

The cylinder is now placed on the insulating stand and the
piston is further moved down in such a way that the gas is compressed
adiabatically to its initial volume V1 and pressure P1. As the gas is
insulated from all sides heat produced raises the temperature of the gas
to T1. This change is adiabatic and is represented by DA. Let W4 be the
work done on the gas in compressing it adiabatically from a state
D (V4, P4) to the initial state A (V1, P1).

∴W4= 
γ
−

− −
−∫

1

4

V

2 1

V

R
 P dV =  (T T )

1

The negative sign indicates that work is done on the working
substance.
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∴W4 = 1 2

R
(T - T )

- 1γ
 = Area DAEFD ...(4)

Work done by the engine per cycle

Total work done by the gas during one cycle of operation is

(W1 + W2).

Total work done on the gas during one cycle of operation is

(W3 + W4).

∴ Net work done by the gas in a complete cycle

W = W1 + W2  –  (W3 + W4)

But  W2 = W4

    ∴ W = W1 – W3

W = Q1 – Q2

Also, W = Area ABGEA + Area BCHGB - Area CDFHC - Area DAEFD

  (i.e) W = Area ABCDA

Hence in Carnot heat engine, net work done by the gas per cycle

is numerically equal to the area of the loop representing the cycle.

Efficiency of Carnot’s engine

1 2

1

Q - QHeat converted into workη = =
Heat drawn from the source Q

η = 1 - 
2

1

Q

Q

But

⎛ ⎞
⎜ ⎟
⎝ ⎠= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

2
1

11 1

2 3 3
2

4

log

log

VRT
VQ W

Q W VRT
V

2
1

1

3
2

4

log

log

VT
V

VT
V

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠

...(5)
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Since B and C lie on the same adiabatic curve BC

T1V2
γ-1 = T2V3

γ-1 (∵  TVγ - 1 = constant) where γ = 
p

v

C

C

1
31

1
2 2

VT

T V

γ

γ

−

−∴ = ...(6)

Similarly D & A lie on the same adiabatic curve DA

∴ T1V1
γ - 1 = T2V4

γ - 1

1
1 4

1
2 1

T V
T V

γ

γ

−

−= ...(7)

From (6) & (7) 
1 1

3 4
1 1

2 1

V V
V V

γ γ

γ γ

− −

− −=

23 34

2 1 1 4

(or)  
VV VV

V V V V
= = ...(8)

substituting equation (8) in equation (5)

3

41 1

2 2 3

4

log
 
log

V
VQ T

Q T V
V

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠

(i.e) =2 2

1 1

 
Q T

Q T

∴ We have  
2 2

1 1

1 1  
Q T

Q T
η = − = −

or   η = 
1 2

1

T T

T

−
...(9)

Inferences

Efficiency of Carnot’s cycle is independent of the working substance,
but depends upon the temperatures of heat source and sink.

Efficiency of Carnot’s cycle will be 100% if T1 = ∞  or T2 = 0 K. As
neither the temperature of heat source can be made infinite, nor the
temperature of the sink can be made 0 K, the inference is that the
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Carnot heat engine working on the reversible cycle cannot have 100%
efficiency.

8.12 Refrigerator

A refrigerator is a cooling device. An ideal refrigerator can be
regarded as Carnot’s heat engine working in the reverse direction. Therefore,
it is also called a heat pump. In a
refrigerator the working
substance would absorb certain
quantity of heat from the sink at
lower temperature and reject a
large amount of heat to the
source at a higher temperature
with the help of an external
agency like an electric motor (Fig.
8.13).

In an actual refrigerator
vapours of freon (dichloro difluoro methane CCl2F2) act as the working
substance. Things kept inside the refrigerator act as a sink at a lower
temperature T2. A certain amount of work W is performed by the
compressor (operated by an electric motor) on the working substance.
Therefore, it absorbs heat energy Q2 from the sink and rejects Q1 amount
of heat energy to the source (atmosphere) at a temperature T1.

Since this is a reversible cyclic process, the change in the internal
energy of the working substance is zero (i.e) dU = 0

According to the first law of thermodynamics,

dQ = dU + dW

But dQ = Q2 - Q1

dW = -W and dU = 0

∴ dQ = Q2 - Q1 = - W

Negative sign with W represents work is done on the system

(i.e)  W = Q1 - Q2

Coefficient of performance

Coefficient of performance (COP) is defined as the ratio of quantity

Working 
substance

Compressor

Sink T2

Source T
(Atmosphere)

1

Fig. 8.13 Refrigerator
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of heat Q2 removed per cycle from the contents of the refrigerator to the

energy spent per cycle W to remove this heat.

(i.e) COP = 2Q

W

       = 
2

1 2

Q

Q Q−

(i.e) COP = 
2

1 2

T

T T− ... (1)

The efficiency of the heat engine is

η = 1 – 
2

1

T

T ;  1 – η = 
2

1

T

T

 
1- η
η  = 

2

1

T

T  × 
1

1 2

T

T T−

(i.e) 
1- η
η  = 

2

1 2

T

T T−  ... (2)

From equations (1) and (2)

COP = 
1- η
η ...(3)

Inferences

(i) Equation (1) shows that smaller the value of (T1 - T2) greater is
the value of COP. (i.e.) smaller is the difference in temperature between
atmosphere and the things to be cooled,  higher is  the COP.

(ii) As the refrigerator works, T2 goes on decreasing due to the formation
of ice. T1 is almost steady. Hence COP decreases. When the refrigerator is
defrosted, T2 increases.

Therefore defrosting is essential for better working of the refrigerator.

8.13 Transfer of heat

There are three ways in which heat energy may get transferred

from one place to another. These are conduction, convection and radiation.

8.13.1 Conduction

Heat is transmitted through the solids by the process of conduction
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only. When one end of the solid is heated, the atoms or molecules of the
solid at the hotter end becomes more strongly agitated and start vibrating
with greater amplitude. The disturbance is transferred to the neighbouring
molecules.

Applications

(i) The houses of Eskimos are made up of double walled blocks of
ice. Air enclosed in between the double walls prevents transmission of
heat from the house to the coldest surroundings.

(ii) Birds often swell their feathers in winter to enclose air between
their body and the feathers. Air prevents the loss of heat from the body
of the bird to the cold surroundings.

(iii) Ice is packed in gunny bags or sawdust because, air trapped
in the saw dust prevents the transfer of heat from the surroundings to
the ice. Hence ice does not melt.

Coefficient of thermal conductivity

Let us consider a metallic bar of uniform cross section A whose
one end is heated. After sometime each section of the bar attains constant
temperature but it is different at different sections. This is called steady
state. In this state there is no further absorption of heat.

If ∆x is the distance between the two sections with a difference in
temperature of ∆T and ∆Q is the amount of heat conducted in a time

∆t, then it is found that the rate of conduction of heat 
Q

t

∆
∆

 is

(i) directly proportional to the area of cross section (A)

(ii) directly proportional to the temperature difference between the
two sections (∆T)

(iii) inversely proportional to the distance between the two
sections (∆x).

(i.e)
Q
t

∆
∆

 α A 
T

x

∆
∆

Q
t

∆
∆

 = KA 
T
x

∆
∆
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where K is a constant of proportionality called co-efficient of thermal

conductivity of the metal.
T
x

∆
∆

 is called temperature gradient

If A = 1 m2, and
T
x

∆
∆

 = unit temperature gradient

then, 
Q
t

∆
∆

 = K × 1 × 1

or K = 
Q
t

∆
∆

Coefficient of thermal conductivity of the material of a solid is equal
to the rate of flow of heat per unit area per unit temperature gradient
across the solid. Its unit is W m-1 K-1.

8.13.2 Convection

It is a phenomenon of transfer of heat in a fluid with the actual
movement of the particles of the fluid.

When a fluid is heated, the hot part expands and becomes less
dense. It rises and upper colder part replaces it. This again gets heated,
rises up replaced by the colder part of the fluid. This process goes on.
This mode of heat transfer is different from conduction where energy
transfer takes place without the actual movement of the molecules.

Application

It plays an important role in ventilation and in heating and cooling
system of the houses.

8.13.3 Radiation

It is the phenomenon of transfer of heat without any material medium.
Such a process of heat transfer in which no material medium takes part
is known as radiation.

Thermal radiation

The energy emitted by a body in the form of radiation on account
of its temperature is called thermal radiation.

It depends on,

(i) temperature of the body,
(ii) nature of the radiating body
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The wavelength of thermal radiation ranges from 8 × 10-7 m to
4 × 10-4 m. They belong to infra-red region of the electromagnetic
spectrum.

Properties of thermal radiations

1. Thermal radiations can travel through vacuum.

2. They travel along straight lines with the speed of light.

3. They can be reflected and refracted. They exhibit the phenomenon
of interference and diffraction.

4. They do not heat the intervening medium through which they
pass.

5. They obey inverse square law.

Absorptive and Emissive power

Absorptive power

Absorptive power of a body for a given wavelength and temperature
is defined as the ratio of the radiant energy absorbed per unit area per
unit time to the total energy incident on it per unit area per unit time.

It is denoted by aλ.

Emissive power

Emissive power of a body at a given temperature is the amount of
energy emitted per unit time per unit area of the surface for a given
wavelength. It is denoted by eλ. Its unit is W m-2.

8.14 Perfect black body

A perfect black body is the one which absorbs completely heat
radiations of all wavelengths which fall on it and emits heat radiations
of all wavelengths when heated. Since a perfect black body neither
reflects nor transmits any radiation, the absorptive power of a perfectly
black body is unity.

8.14.1 Fery’s black body

Fery’s black body consists of a double walled hollow sphere having
a small opening O on one side and a conical projection P just opposite
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to it (Fig. 8.14). Its inner surface is coated with lamp black. Any radiation
entering the body through the opening O suffers multiple reflections at
its innerwall and about 97% of it is absorbed by lamp black at each
reflection. Therefore, after a few reflections
almost entire radiation is absorbed. The
projection helps in avoiding any direct
reflections which even otherwise is not
possible because of the small opening O. When
this body is placed in a bath at fixed
temperature, the heat radiations come out of
the hole. The opening O thus acts as a black
body radiator.

8.14.2 Prevost’s theory of heat
exchanges

Prevost applied the idea of thermal equilibrium to radiation.
According to him the rate  at which a body radiates or absorbs heat
depends on the nature of its surface, its temperature and the temperature
of the surroundings. The total amount of heat radiated by a body increases
as its temperature rises. A body at a higher temperature radiates more
heat energy to the surroundings than it receives from the surroundings.
That is why we feel warm when we stand before the furnace.

Similarly a body at a lower temperature receives more heat energy
than it loses to the surroundings. That is why we feel cold when we
stand before an ice block.

Thus the rise or fall of temperature is due to the exchange of heat
radiation. When the temperature of the body is the same as that of
surroundings, the exchanges of heat do not stop. In such a case, the
amount of heat energy radiated by the body is equal to the amount of
heat energy absorbed by it.

A body will stop emitting radiation only when it is at absolute zero.
(i.e) 0 K or –273o C. At this temperature the kinetic energy of the
molecule is zero.

Therefore, Prevost theory states that all bodies emit thermal
radiation at all temperatures above absolute zero, irrespective of the
nature of the surroundings.

Fig. 8.14 Fery’s black

body

O
P
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8.14.3 Kirchoff’s Law

According to this law, the ratio of emissive power to the absorptive
power corresponding to a particular wavelength and at a given temperature
is always a constant for all bodies. This constant is equal to the emissive
power of a perfectly black body at the same temperature and the same
wavelength. Thus, if eλ is the emissive power of a body corresponding
to a wavelength λ at any given temperature, aλ is the absorptive power
of the body corresponding to the same wavelength at the same
temperature and Eλ is the emissive power of a perfectly black body
corresponding to the same wavelength and the same temperature, then
according to Kirchoff’s law

λ

λ

e

a
 = constant = Eλ

From the above equation it is evident that if aλ is large, then eλ
will also be large (i.e) if a body absorbs radiation of certain wavelength
strongly then it will also strongly emit the radiation of same wavelength.
In other words, good absorbers of heat are good emitters also.

Applications of Kirchoff’s law

(i) The silvered surface of a thermos flask is a bad absorber as well
as a bad radiator. Hence, ice inside the flask does not melt quickly and
hot liquids inside the flask do not cool quickly.

(ii) Sodium vapours on heating, emit two bright yellow lines. These
are called D1 and D2 lines of sodium. When continuous white light from
carbon arc passes through sodium vapour at low temperature, the
continuous spectrum is absorbed at two places corresponding to the
wavelengths of D1 and D2 lines and appear as dark lines. This is in
accordance with Kirchoff’s law.

8.14.4 Wien’s displacement law

Wien’s displacement law states that the wavelength of the radiation
corresponding to the maximum energy (λm) decreases as the temperature
T of the body increases.

(i.e) λm T = b  where b is called Wien’s constant.

Its value is 2.898 × 10-3 m K
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8.14.5 Stefan’s law

Stefan’s law states that the total amount of heat energy radiated
per second per unit area of a perfect black body is directly proportional
to the fourth power of its absolute temperature.

(i.e) E α T4 or E = σT4

where σ is called the Stefan’s constant. Its value is 5.67 × 10-8 W m-2 K-4.

It is also called Stefan - Boltzmann law, as Boltzmann gave a
theoretical proof of the result given by Stefan.

8.14.6 Newton’s law of cooling

Newton’s law of cooling states that the rate of cooling of a body is
directly proportional to the temperature difference between the body and
the surroundings.

The law holds good only for a small difference of temperature. Loss
of heat by radiation depends on the nature of the surface and the area
of the exposed surface.

Experimental verification of Newton’s law of cooling

Let us consider a spherical calorimeter of mass m whose outer
surface is blackened. It is filled with hot water
of mass m1. The calorimeter with a
thermometer is suspended from a stand
(Fig. 8.15).

The calorimeter and the hot water radiate
heat energy to the surroundings. Using a stop
clock, the temperature is noted for every 30
seconds interval of time till the temperature
falls by about 20o C. The readings are entered
in a tabular column.

If the temperature of the calorimeter and
the water falls from  T1 to T2 in t seconds, the
quantity of heat energy lost by radiation
Q = (ms + m1s1) (T1 – T2), where s is the
specific heat capacity of the material of the calorimeter and s1 is the
specific heat capacity of water.

Fig. 8.15 Newton’s law of
cooling
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Rate of cooling =
    

  

Heat energy lost
time taken

∴ 
Q
t

 = 1 1 1 2(ms + m s )(T - T )

t
If the room temperature is To, the average excess temperature of

the calorimeter over that of the surroundings  is 
1 2

o

T + T
- T

2

⎛ ⎞
⎜ ⎟
⎝ ⎠

According to Newton’s Law of cooling, 
Q
t

α
1 2

o

T + T
 - T

2

⎛ ⎞
⎜ ⎟
⎝ ⎠

1 1 1 2(ms + m s )(T - T )

t
α 

1 2
o

T + T
 - T

2

⎛ ⎞
⎜ ⎟
⎝ ⎠

∴  = constant1 1 1 2

1 2
0

(ms + m s )(T - T )

T + T
t - T

2

⎛ ⎞
⎜ ⎟
⎝ ⎠

The time for every 4o fall in temperature is noted. The last column
in the tabular column is found to be the same. This proves Newton’s
Law of cooling.

Temperature Time t for Average excess

range every 4o fall of temperature
1 2

o - T
2

T T⎛ ⎞+
⎜ ⎟
⎝ ⎠

 t

of temperature 1 2
o - T

2
T T⎛ ⎞+
⎜ ⎟
⎝ ⎠

Table 8.1 Newton’s law of cooling

Fig. 8.16 Cooling curve

tO

A

B

T

C
TdT

dt

A cooling curve is drawn by taking

time along X-axis and temperature along

Y-axis (Fig. 8.16).

From the cooling curve, the rate

of fall of temperature at T is 
dT AB

=
dt BC
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The rate of cooling 
dT
dt

 is found to be directly proportional to

(T - To). Hence Newton’s law of cooling is verified.

8.15 Solar constant

The solar constant is the amount of radiant energy received per
second per unit area by a perfect black body on the Earth with its surface
perpendicular to the direction of radiation from the sun in the absence of
atmosphere. It is denoted by S and its value is 1.388 × 103 W m-2.
Surface temperature of the Sun can be calculated from solar constant.

Surface temperature of the Sun

The Sun is a perfect black body of radius r and surface temperature
T. According to Stefan’s law, the energy radiated by the Sun per second
per unit area is equal to σT4.

Where σ is Stefan’s Constant.

Hence, the total energy radiated per second by the Sun will be
given by

E = surface area of the Sun × σT4

E = 4πr2 σT4 ...(1)

Let us imagine a sphere with Sun
at the centre and the distance between
the Sun and Earth R as radius (Fig. 8.17).
The heat energy from  the Sun will
necessarily pass through this surface of

the sphere.

If S is the solar constant, the amount of heat energy that falls on
this sphere per unit time is E = 4πR2S  ...(2)

By definition, equations (1) & (2) are equal.

∴ 4πr2σT4. = 4πR2S

T4 = 
2

2

R S
r σ

T = 

1
2 4

2

R S
r σ

⎛ ⎞
⎜ ⎟
⎝ ⎠

; (i.e)  T = 

1
2R

r
⎛ ⎞
⎜ ⎟
⎝ ⎠

1
4S

σ
⎛ ⎞
⎜ ⎟
⎝ ⎠

Sun

R Earth

Fig. 8.17 Surface

temperature of the Sun
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Knowing the values of R, r, S and σ the surface temperature of the
Sun can be calculated.

8.15.1 Angstrom pyrheliometer

Pyrheliometer is an instrument used to measure the quantity of
heat radiation and solar constant.

Pyrheliometer designed by Angstrom is the simplest and most
accurate.

Angstrom’s pyrheliometer consists of two identical strips S1 and S2

of area A. One junction of a thermocouple is connected to S1 and the
other junction is connected to S2. A sensitive galvanometer is connected
to the thermo couple.

Strip S2 is connected to an external electrical circuit as shown in
Fig.8.18. When both the strips S1 and
S2 are shielded from the solar
radiation, galvanometer shows no
deflection as both the junctions are
at the same temperature. Now strip
S1 is exposed to the solar radiation
and S2 is shielded with a cover M. As
strip S1 receives heat radiations from
the sun, its temperature rises and
hence the galvanometer shows
deflection. Now current is allowed to

pass through the strip S2 and it is adjusted so that galvanometer shows
no deflection. Now, the strips S1 and S2 are again at the same temperature.

If the quantity of heat radiation that is incident on unit area in
unit time on strip S1 is Q and a its absorption co-efficient, then the
amount of heat radiations absorbed by the strip S1 in unit time is QAa.

Also, heat produced in unit time in the strip S2 is given by VI,
where V is the potential difference and I is the current flowing
through it.

As heat absorbed = heat produced

QAa = VI (or) Q =
VI
Aa

Knowing the values of V, I, A and a, Q can be calculated.

Fig. 8.18 Angstrom pyrheliometer

M

S2

S1 G V

A

Rh
Bt

K
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Solved Problems

8.1 At what temperature will the RMS velocity of a gas be tripled its
value at NTP?

Solution : At NTP,  To = 273 K

RMS velocity, C = 
3 oRT

M

C = 
3 273R

M

×
... (1)

Suppose at the temperature T, the RMS velocity is tripled, then

3C
3RT
M

= ... (2)

Divide (2) by (1)

3
3

3 273

RT
C M
C R

M

=
×

3 = 
273
T

T = 273 × 9  = 2457 K

8.2 Calculate the number of degrees of freedom in 15 cm3 of nitrogen
at NTP.

Solution : We know 22400 cm3 of a gas at NTP contains
6.02 × 1023 molecules.

∴ The number of molecules in 15 cm3 of N2 at NTP

n = 
15

22400
× 6.023 × 1023 = 4.033 × 1020

The number degrees of freedom of a diatomic gas molecule at
273 K, is f = 5

∴ Total degrees of freedom of 15 cm3 of the gas = nf

∴ Total degrees of freedom = 4.033 × 1020 × 5 = 2.016 × 1021



122

8.3 A gas is a mixture of  2 moles of oxygen and 4 moles of argon at
temperature T. Neglecting vibrational modes, show that the energy
of the system is 11 RT where R is the universal gas constant.

Solution :  Since oxygen is a diatomic moleucle with 5 degrees of
freedom, degrees of freedom of molecules in 2 moles of oxygen
= f1 = 2 N × 5 = 10 N

Since argon is a monatomic molecules degrees of freedom of
molecules in 4 moles of argon = f2 = 4 N × 3 = 12 N

∴ Total degrees of freedom of the mixture = f = f1 + f2 = 22 N

As per the principle of law of equipartition of energy, energy

associated with each degree of freedom of a molecule = 
1
2

 kT

∴ Total energy of the system =
1
2

 kT × 22 N = 11 RT

8.4 Two carnot engines A and B are operating in series. The first one
A receives heat at 600 K and rejects to a reservoir at temperature
T. The second engine B receives the heat rejected by A and in
turn rejects heat to a reservior at 150 K. Calculate the temperature
T when (i) The work output of both the engines are equal, (ii) The
efficiency of both the engines are equal.

Solution : (i) When the work outputs are equal :

For the first engine W1 = Q1 - Q2

For the second engine W2 = Q2 - Q3

Given (i.e) W1 = W2

Q1 - Q2 = Q2 - Q3

Divide by Q2 on both sides

1

2

Q

Q
- 1 = 1 -  

3

2

Q

Q

Also 
1

2

600
 = 

Q

TQ

and 
2

3 150
Q T

Q
= 1 1

2 2

Q T

Q T

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
∵
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600
T

∴ -1 = 1 - 
150
T

600 150T T
T T

− −
=

∴ T = 375 K

(ii)   When efficiencies are equal

η1 = 1 - 
2

1

Q

Q
  and  η2 = 1 - 

3

2

Q

Q

As η1 = η2

1 - 
2

1

Q

Q
= 1 - 

3

2

Q

Q

1 - 
600
T

= 1 - 
150
T

600 150
 = 

600
T T

T
− −

150
 = 

600
T

T

T 2 = 600 × 150

∴ T = 300 K

8.5 A carnot engine whose low temperature reservoir is at 7o C has
an efficiency of 50 %. It is desired to increase the efficiency to 70
%. By how many degrees should the temperature of the high
temperature reservoir be increased?

Data :  η1 = 50 % = 0.5 ; T2 = 7 + 273 = 280K ; η2 = 70% = 0.7

Solution :  η1 = 1 -
2

1

 
T

T
; 0.5 = 1 - 

1

280
 

T ; ∴ T1 = 560 K

Let the temperature of the high temperature reservoir be T1′
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η2 = 1 – 2

1

 
T

T ′
; 0.7 = 1 - 

1

280
 

T ′
; ∴ T1′ = 933.3 K

∴  The temperature of the reservoir should be increased by
933.3 K – 560 K = 373.3 K

8.6 A carnot engine is operated between two reservoirs at temperature
177o C and 77o C. If the engine receives 4200 J of heat energy
from the source in each cycle, calculate the amount of heat rejected
to the sink in each cycle. Calculate the efficiency and work done
by the engine.

Data : T1 = 177o C = 177 + 273 = 450 K.

T2 = 77o C = 77 + 273 = 350 K

Q1 = 4200 J Q2 = ?

Solution :   
2 2

1 1

Q T

Q T
=

  ∴
2

2 1
1

T
Q Q

T
=  = 

350
4200

450
×

Q2 = 3266.67 J

Efficiency, η = 1 - 
2

1

T

T

   η  = 1 - 
350
450

= 0.2222 = 22.22%

Work done

W = Q1 - Q2 = 4200 - 3266.67

W = 933.33 J

8.7 A Carnot engine has the same efficiency, when operated

(i) between 100 K and 500 K

(ii) between T K and 900 K

Find the value of T

Solution : (i) Here T1 = 500 K; T2 = 100 K

η = 1 -
2

1

T

T
 = 1 - 

100
500

= 1–0.2 = 0.8

(ii) Now, T1 = 900 K; T2 = T and η = 0.8
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Again, η = 1 – 
2

1

T

T

0.8 = 1 - 
900
T

or 
900
T

= 1 - 0.8 = 0.2

∴ T = 180 K

8.8 In a refrigerator heat from inside at 277 K is transfered to a room
at 300 K. How many joule of heat will be delivered to the room for
each joule of electric energy consumed ideally?

Data : T1 = 300 K ; T2 = 277 K
Solution : COP of a refrigerator

=
2

1 2

277
 =  = 12.04 

300 277
T

T T −−      ...(1)

Suppose for each joule of electric energy consumed an amount of
heat Q2 is extracted from the inside of refrigerator. The amount of
heat delivered to the room for each joule of electrical energy
consumed is given by

Q1 = Q2 + W = Q2 + 1 ( )1 2W Q Q= −∵

∴ Q1 – Q2 = 1

Also for a refrigerator, COP = 
2

2
1 2

Q
Q

Q Q
=

− ...(2)

From equations (1) and (2)

(i.e) Q2 = 12.04

∴ Q1 =  Q2 + 1 = 12.04 + 1 = 13.04 J

8.9 Two rods A and B of different material have equal length and
equal temperature gradient. Each rod has its ends at temperatures
T1 and T2. Find the condition under which rate of flow of heat
through the rods A and B is same.

Solution :  Suppose the two rods A and B have the same
temperature difference  T1 - T2 across their ends and the length of
each rod is l.

When the two rods have the same rate of heat conduction,
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1 1 1 2 2 2 1 2( ) ( )K A T T K A T T

l l

− −
=

K1 A1 = K2 A2 or 
21

2 1

KA

A K
=

(i.e) for the same rate of heat conduction, the areas of
cross - section of the two rods should be inversely proportional to
their coefficients of thermal conductivity.

8.10 A metal cube takes 5 minutes to cool from 60o C to 52o C. How
much time will it take to cool to 44o C, if the temperature of the
surroundings is 32o C?

Solution : While cooling from 60o C to 52o C

Rate of cooling = 
60 52

5
−

 =1.6o C/minute = 
1.6  

60

o C
 per second

∴ Average temperature while cooling = 
o60+52

 = 56  C
2

∴ Average temperature excess = 56 - 32 = 24o C

According to Newton’s law of cooling,

Rate of cooling α Temperature excess

∴ Rate of cooling = K × temperature excess

1.6
60

 = K × 24 ...(1)

Suppose that the cube takes t seconds to cool from 52o C to 44o C

∴ Rate of cooling = 
52 44 8

t t
−

=

Average temperature while cooling = 
52 + 44

2
 = 48o C

∴ Average temperature excess = 48 - 32 = 16o C

According to Newton’s law, Rate of cooling = K × (Temperature

excess) 
8
t

 = K × 16

Dividing equation (1) by equation (2)

1.6
60

 × 
8
t

 = 
24
16

   = 450 s
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Self evaluation

(The questions and problems given in this self evaluation are only samples.
In the same way any question and problem could be framed from the text
matter. Students must be prepared to answer any question and problem
from the text matter, not only from the self evaluation.)

8.1 Avogadro number is the number of molecules in

(a) one litre of a gas at NTP

(b) one mole of a gas

(c) one gram of a gas

(d) 1 kg of a gas

8.2 First law of thermodynamics is a consequence of the
conservation of

(a) momentum (b) charge

(c) mass (d) energy

8.3 At a given temperature, the ratio of the RMS velocity of hydrogen to
the RMS velocity of oxygen is

(a) 4 (b) 
1
4

(c) 16 (d) 8

8.4 The property of the system that does not change during an adiabatic
change is

(a) temperature (b) volume

(c) pressure (d) heat

8.5 For an ant moving on the horizontal surface, the number of degrees
of freedom of the ant will be:

(a) 1 (b) 2

(c) 3 (d) 6



128

8.6 The translational kinetic energy of gas molecules for one mole of
the gas is equal to :

(a) 
3
2

RT (b) 
2
3

kT

(c) 
1
2
RT (d) 3

2
kT

8.7 The internal energy of a perfect gas is

(a) partly kinetic and partly potential

(b) wholly potential

(c) wholly kinetic

(d) depends on the ratio of two specific heats

8.8 A refrigerator with its power on, is kept in a closed room. The
temperature of the room will

(a) rise (b) fall

(c) remains the same (d) depend on the area of the room

8.9 A beaker full of hot water is kept in a room. If it cools from 80oC to
75oC in t1 minutes, from 75oC to 70oC in t2 minutes and from 70oC
to 65oC in t3 minutes then

(a) t1 = t2 = t3 (b) t1 < t2 = t3
(c) t1 < t2 < t3 (d) t1 > t2 > t3

8.10 Which of the following will radiate heat to the large extent

(a) white polished surface (b) white rough surface

(c) black polished surface (d) black rough surface

8.11 A block of ice in a room at normal temperature

(a) does not radiate

(b) radiates less but absorbs more

(c) radiates more than it absorbs

(d) radiates as much as it absorbs
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8.12 What are the postulates of Kinetic theory of gases?

8.13 Derive an expression for the average  kinetic energy of the molecule
of gas.

8.14 Two different gases have exactly the same temperature. Do the
molecules have the same RMS speed?

8.15 Explain internal energy. What is its value in one complete cyclic
process?

8.16 What are degrees of freedom?

8.17 State the law of equipartition of energy and prove that for a diatomic

gas, the ratio of the two specific heats at room temperature is 
7
5

.

8.18 Distinguish between isothermal and adiabatic process

8.19 Define isothermal process. Derive an expression for the work done
during the process.

8.20 A gas has two specific heats, whereas liquid and solid have only
one. Why?

8.21 Derive an expression for the work done in one cycle during an
adiabatic process

8.22 Define molar specific heat at constant pressure.

8.23 Derive Meyer’s relation.

8.24 What is an indicator diagram?

8.25 Distinguish between reversible process and irreversible process with
examples.

8.26 Is it possible to increase the temperature of a gas without the addition
of heat? Explain.

8.27 On driving a scooter for a long time the air pressure in the tyre
slightly increases why?

8.28 How is second law of thermodynamics different from first law of
thermodynamics?

8.29 Define Clausius statement.
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8.30 Describe the working of Carnot engine and derive its efficiency.

8.31 Give an example for a heat pump.

8.32 A heat engine with 100% efficiency is only a theoretical possibility.
Explain.

8.33 What is Coefficient of Performance? Derive the relation between
COP and efficiency.

8.34 Why are ventilators provided in our houses?

8.35 Define temperature gradient.

8.36 Define steady state in thermal conduction of heat.

8.37 What are the factors upon which coefficient of thermal conductivity
depends?

8.38 Write the applications of Kirchoff’s law.

8.39 Define absorptive power.

8.40 Define Stefan’s law.

8.41 Explain Fery’s concept of a perfect black body.

8.42 State Wien’s displacement law.

8.43 State Newton’s law of cooling. Explain the experimental verification
of Newton’s law of cooling.

8.44 Why does a piece of red glass when heated and taken out glow
with green light?

8.45 Define solar constant.

8.46 Describe the working of pyrheliometer.

Problems

8.47 Calculate the kinetic energy of translational motion of a molecule
of a diatomic gas at 320 K.

8.48 Calculate the rms velocity of hydrogen molecules at NTP (One mole
of hydrogen occupies 22.4 litres at NTP).

8.49 The RMS speed of dust particles in air at NTP is 2.2 × 10-2 ms-1.
Find  the average mass of the particles.
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8.50 Find the number of molecules in 10 × 10-6 m3 of a gas at NTP, if the
mass of each molecule is 4 × 10-26 kg and the RMS velocity is
400 m s–1.

8.51 Calculate the molecular kinetic energy of translation of one mole of
hydrogen at NTP. (R = 8.31 J mol-1 K-1).

8.52 Find the work done by 1 mole of perfect gas when it expands
isothermally to double its volume. The initial temperature of the
gas is 0oC (R=8.31 J mol-1 K-1).

8.53 A tyre pumped to a pressure of 3 atmosphere suddenly bursts.
Calculate the fall in temperature if the temperature of air before
expansion is 27oC and γ = 1.4.

8.54 A certain volume of dry air at NTP is expanded into three times its
volume, under (i) isothermal condition (ii) adiabatic condition.
Calculate in each case, the final pressure and final temperature,
(γ for air = 1.4).

8.55 A gas is suddenly compressed to 
1
2

 of its original volume. If the

original temperature is 300 K, find the increase in temperature
(Assume γ = 1.5).

8.56 A system absorbs 8.4 k J of heat and at the same time does 500 J
of work. Calculate the change in internal energy of the system.

8.57 How many metres can a man weighing 60 kg, climb by using the
energy from a slice of bread which produces a useful work of
4.2 × 105 J.  Efficiency of human body is 28 %.

8.58 The wavelength with maximum energy emitted from a certain star
in our galaxy is 1.449 × 10-5cm. Calculate the temperature of star.

8.59 The surface temperature of a spherical hot body is 1000 K. Calculate
the rate at which energy is radiated.

(Given σ = 5.67 × 10-8 W m-2  K-4)

8.60 The opposite faces of the top of an electric oven are at a difference
of temperature of 100oC and the area of the top surface and its
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thickness are 300 cm2 and 0.2 cm respectively. Find the quantity
of heat that will flow through the top surface in one minute.

(K = 0.2 W m-1 K-1)

8.61 Compare the rate of loss of heat from a black metal sphere at 227oC
with the rate of loss of heat from the same sphere at 127oC. The
temperature of the surroundings is 27oC.

8.62 The ratio of radiant energies radiated per unit surface area by two
bodies is 16 : 1. The temperature of hotter body is 1000 K. Calculate
the temperature of the other body.  Hint: E α (T4 – T0

4)

8.63 Calculate the surface temperature of the Sun (λm = 4753 Å).

8.64 A hot solid takes 10 minutes to cool from 60o C to 50o C. How much
further time will it take to cool to 40o C, if the room temperature is
20o C?

8.65 An object is heated and then allowed to cool when its temperature
is 70oC, its rate of cooling is 3oC per minute and when the
temperature is 60oC, the rate of cooling is 2.5oC per minute.
Determine the temperature of the surroundings.
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Answers

8.1 (b) 8.2 (d) 8.3 (a)

8.4 (d) 8.5 (b) 8.6 (a)

8.7 (c) 8.8 (a) 8.9 (c)

8.10 (d ) 8.11 (b)

8.47 6.624 × 10-21 J 8.48 1845 m s-1

8.49 2.335 × 10-17 kg 8.50 4.748 × 1020

8.51 3.403 x 103 J 8.52 1572.6 J

8.53 80.8 K

8.54 3.376 × 104 N m-2  ; 273 K  ; 2.171 × 104 N m-2 ; 176 K

8.55 124.2 K 8.56 7900 J

8.57 200 m 8.58 20000 K

8.59 5.67 × 104 W m-2 8.60 18 K J

8.61 31 : 10 8.62 500 K

8.63 6097 K 8.64 840 seconds

8.65 10o C
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9. Ray Optics

Light rays and beams

A ray of light is the direction along which the light energy travels.
In practice a ray has a finite width and is represented in diagrams as
straight lines. A beam of light is a collection of rays. A search light
emits a parallel beam of light (Fig. 9.1a). Light from a lamp travels in
all directions which is a divergent beam. (Fig. 9.1b). A convex lens
produces a convergent beam of light, when a parallel beam falls on it
(Fig. 9.1c).

9.1 Reflection of light

Highly polished metal surfaces reflect about 80% to 90% of the light
incident on them. Mirrors in everyday use are therefore usually made of
depositing silver on the backside of the glass. The largest reflector in the
world is a curved mirror nearly 5 metres across, whose front surface is
coated with aluminium. It is the hale Telescope on the top of Mount Palomar,
California, U.S.A. Glass by itself, will also reflect light, but the percentage
is small when compared with the case of silvered surface. It is about 5%
for an air-glass surface.

9.1.1 Laws of reflection

Consider a ray of light, AO, incident on a plane mirror XY at O.
It is reflected along OB. Let the normal ON is drawn at the point of
incidence. The angle AON between the incident ray and the normal is
called angle of incidence, i (Fig. 9.2) the angle BON between the reflected
ray and the normal is called angle of reflection, r. Experiments

(a) Parallel beam (b) Divergent Beam (c) Convergent Beam

Fig. 9.1 Beam of light
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show that : (i) The incident ray, the
reflected ray and the normal drawn
to the reflecting surface at the point
of incidence, all lie in the same plane.

(ii) The angle of incidence is
equal to the angle of reflection.
(i.e) i = r.

These are called the laws of
reflection.

9.1.2 Deviation of light by plane mirror

Consider a ray of light, AO, incident
on a plane mirror XY (Fig. 9.3) at O. It
is reflected along OB. The angle AOX
made by AO with XY is known as the
glancing angle α with the mirror. Since
the angle of reflection is equal to the
angle of incidence, the glancing angle
BOY made by the reflected ray OB with
the mirror is also equal to α.

The light has been deviated from a
direction AO to a direction OB. Since
angle COY = angle AOX,  it follows that

angle of  deviation, d = 2α

So, in general, the angle of deviation of a ray by a plane mirror or a
plane surface is twice the glancing angle.

9.1.3 Deviation of light due to
rotation of a mirror

Let us consider a ray of light AO
incident on a plane mirror XY at O. It is
reflected along OB. Let α be the glancing
angle with XY (Fig. 9.4). We know that
the angle of deviation COB = 2α.

Suppose the mirror is rotated
through an angle θ to a position X′Y′.

A

C

d

B

O
X Y

Silvered

Fig. 9.3 Deviation of light by a
plane mirror

2

A
B

C

O
X/

X Y

Y/

P

Fig. 9.4 Deviation of light due
to rotation of a mirror

Fig. 9.2 Reflection at a plane mirror

i
r

A N B

O
X Y

Silvered
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The same incident ray AO is now reflected along OP. Here the
glancing angle with X′Y′ is (α + θ). Hence the new angle of deviation
COP = 2 (α + θ). The reflected ray has thus been rotated through an
angle BOP when the mirror is rotated through an angle θ.

   -   BOP COP COB=

BOP = 2 (α + θ) – 2α = 2θ

For the same incident ray, when the mirror is rotated through an
angle, the reflected ray is rotated through twice the angle.

9.2 Image in a plane mirror

Let us consider a point object A placed in front of a plane mirror
M as shown in the Fig. 9.5. Consider a
ray of light AO from the point object
incident on the mirror and reflected
along OB. Draw the normal ON to the
mirror at O.

The angle of incidence AON = angle
of reflection BON

Another ray AD incident normally
on the mirror at D is reflected back along
DA. When BO and AD are produced
backwards, they meet at I. Thus the
rays reflected from M appear to come
from a point I behind the mirror.

From the figure

AON DAO= , alternate angles and BON DIO= , corresponding

angles it follows that DAO DIO= .

The triangles ODA and ODI are congruent

∴ AD = ID

For a given position of the object, A and D are fixed points. Since
AD = ID, the point I is also fixed. It should be noted that AO = OI. So
the object and its image in a plane mirror are at equal perpendicular
distances from the mirror.

M

A I
D

O

B

N

Fig. 9.5 Image in a plane
mirror
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9.2.1 Virtual and real images

An object placed in front of a
plane mirror has an image behind
the mirror. The rays reflected from
the mirror do not actually meet
through I, but only appear to meet
and the image cannot be received
on the screen, because the image
is behind the mirror. This type of
image is called an unreal or virtual
image (Fig. 9.6a).

If a convergent beam is
incident on a plane mirror, the
reflected rays pass through a
point I in front of M, as shown
in the Fig. 9.6b. In the Fig. 9.6a,
a real object (divergent beam)
gives rise to a virtual image. In
the Fig. 9.6b, a virtual object
(convergent beam) gives a real
image. Hence plane mirrors not
only produce virtual images for

real objects but also produce real images for virtual objects.

9.2.2 Characteristics of the image formed by a plane mirror

(i) Image formed by a plane mirror is as far behind the mirror as
the object is in front of it and it is always virtual.

(ii) The image produced is laterally inverted.

(iii) The minimum size of the mirror required to see the complete
image of the object is half the size of the object.

(iv) If the mirror turns by an angle θ, the reflected ray turns
through an angle 2θ.

(v) If an object is placed between two plane mirrors inclined at an

angle θ, then the number of images formed is n = 
360
θ

o

–1

O

M

I

Real object

Virtual Image

Fig. 9.6a Virtual image in a
plane mirror

I

M

O

Real image

Virtual object

Fig. 9.6b Real image in a plane mirror
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9.3 Reflection at curved surfaces

In optics we are mainly
concerned with curved mirrors
which are the part of a hollow sphere
(Fig. 9.7). One surface of the mirror
is silvered. Reflection takes place at
the other surface. If the reflection
takes place at the concave surface,
(which is towards the centre of the
sphere) it is called concave mirror. If the reflection takes place at the
convex surface, (which is away from the centre of the sphere) it is called
convex mirror. The laws of reflection  at a plane mirror are equally true
for spherical mirrors also.

The centre of the sphere, of which the mirror is a part is called

the centre of curvature (C).

The geometrical centre of the mirror is called its pole (P).

The line joining the pole of the mirror and its centre of curvature

is called the principal axis.

The distance between the pole and the centre of curvature of the

spherical mirror is called the radius of curvature of the mirror and is

also equal to the radius of the sphere of which the mirror forms a part.

When a parallel beam of light is incident on a spherical mirror, the

point where the reflected rays converge (concave mirror) or appear to

C P P C

Fig.9.7 Concave and convex mirror

C
F

PP
C

F

Fig. 9.8 Principal focus
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diverge from the point (convex mirror) on the principal axis is called the

principal focus (F) of the mirror. The distance between the pole and the

principal focus is called the focal length (f) of the mirror (Fig. 9.8).

9.3.1 Images formed by a spherical mirror

The images produced by spherical mirrors may be either real or
virtual and may be either larger or smaller than the object. The image
can be located by graphical construction as shown in Fig. 9.9 by adopting
any two of the following rules.

(i) A ray parallel to the principal axis after reflection by a concave
mirror passes through the principal focus of the concave mirror and
appear to come from the principal focus in a convex mirror.

(ii) A ray passing through the centre of curvature retraces its path
after reflection.

(iii) A ray passing through the principal focus, after reflection is
rendered parallel to the principal axis.

(iv) A ray striking the pole at an angle of incidence i is reflected
at the same angle i to the axis.

9.3.2 Image formed by a
convex mirror

In a convex mirror
irrespective of the position of
the object, the image formed is
always virtual, erect but
diminished in size. The image
lies between the pole and the
focus (Fig. 9.10).

PC

F

O

O/

I

I/

P
C

F O

O/

I

I/

PC

FO

O/

I

I/

Fig. 9.9 Formation of images in concave mirror

I

I'

O

O'

C
F

P

Fig. 9.10 Image formed by
convex mirror
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In general, real images are located in front of a mirror while
virtual images behind the mirror.

9.3.3 Cartesian sign convention

The following sign conventions are used.

(1) All distances are measured from the pole of the mirror (in the
case of lens from the optic centre).

(2) The distances measured in the same direction as the incident
light, are taken as positive.

(3) The distances measured in the direction opposite to the direction
of incident light are taken as negative.

(4) Heights measured perpendicular to the principal axis, in the
upward direction are taken as positive.

(5) Heights measured perpendicular to the principal axis, in the
downward direction are taken as negative.

(6) The size of the object is always taken as positive, but image
size is positive for erect image and negative for an inverted image.

(7) The magnification is positive for erect (and virtual) image, and
negative for an inverted (and real) image.

9.3.4 Relation between u, v and f for spherical mirrors

A mathematical relation between object distance u, the image

distance v and the focal length f of a spherical mirror is known as

mirror formula.

Height upwards
(Positive)

Object on left

Height downwards 
(Negative) 

Distance against
incident light

(Negative)

Distance along
incident light

(Positive)
Fig. 9.11 Sign convention
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(i) Concave mirror - real image

Let us consider an object OO′ on

the principal axis of a concave mirror

beyond C. The incident and the reflected

rays are shown in the Fig 9.12. A ray

O′A parallel to principal axis is incident

on the concave mirror at A, close to P.

After reflections the ray passes through

the focus F. Another ray O′C passing

through centre of curvature C, falls

normally on the mirror and reflected back along the same path. A third

ray O′P incident at the pole P is reflected along PI′. The three reflected

rays intersect at the point I′. Draw perpendicular I′I to the principal

axis. II′ is the real, inverted image of the object OO′.

Right angled triangles, II ′P and OO′P are similar.

II PI
OO PO

′
∴ =

′ ... (1)

Right angled  triangles II′F and APF are also similar (A is close to

P ; hence AP is a vertical line)

II IF
=

AP PF

′
∴

AP = OO ′. Therefore the above equation becomes,

II IF
OO PF

′
=

′ ... (2)

Comparing the equations (1) and (2)

PI IF
PO PF

= ... (3)

But, IF = PI – PF

Therefore equation (3) becomes,

PI PI PF

PO PF

−
= ... (4)

Using sign conventions, we have PO = –u,

PI = -v and PF = -f

P
C

FO

O'

I

I'

A

Fig. 9.12 Concave mirror-real
image
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Substituting the values in the above equation, we get

( )v v f

u f

− − − −
=

− −   (or)

1
v v f v
u f f

−
= = −

Dividing by v and rearranging, 
1 1 1
u v f

+ =

This is called mirror equation. The same equation can be obtained
for virtual image also.

(ii) Convex mirror - virtual image

Let us consider an object OO′
anywhere on the principal axis of a
convex mirror. The incident and the
reflected rays are shown in the
Fig. 9.13. A ray O′A parallel to the
principal axis incident on the convex
mirror at A close to P. After reflection
the ray appears to diverge from the
focus F. Another ray O′C passing
through centre of curvature C, falls
normally on the mirror and is reflected
back along the same path. A third ray O ′P incident at the pole P is
reflected along PQ. The three reflected rays when produced appear to
meet at the point I ′. Draw perpendicular II′  to the principal axis. II′ is
the virtual image of the object OO′.

Right angled triangles, II ′P and OO ′P are similar.

II PI
OO PO

′
∴ =

′ ... (1)

Right angled triangles II ′F and APF are also similar (A is close to
P; hence AP is a vertical line)

II IF

AP PF

′
=

I

I'

O

O'

CF

P

Q

A

Fig. 9.13 Convex mirror –
Virtual image



143

AP = OO ′. Therefore the above equation becomes,

II IF
OO PF

′
=

′  ... (2)

Comparing the equations (1) and (2)

PI IF
PO PF

= ... (3)

But, IF = PF – PI. Therefore  equation (3) becomes,

PI PF PI
PO PF

−
=

Using sign conventions, we have  PO = -u, PI = +v and PF = +f.

Substituting the values in the above equation, we get

( )v f v

u f

+ + − +
=

− +  (or)  1
v f v v

u f f

−
− = = −

Dividing by v and rearranging we get, 
1 1 1
u v f

+ =

This is called mirror equation for convex mirror producing virtual
image.

9.3.5 Magnification

The linear or transverse magnification is defined as the ratio of the
size of the image to that of the object.

∴Magnification = 
   
   

size of the image
size of the object

 = 2

1

h

h

where h1 and h2 represent the size of the object and image respectively.

From Fig. 9.12 it is known that 
′

=
′

II PI

OO PO

Applying the sign conventions,

II′ = –h2 (height of the image measured downwards)

OO ′ = +h1 (height of the object measured upwards)

PI = –v (image distance against the incident light)



144

PO = –u (object distance against the incident light)

Substituting the values in the above equation, we get

magnification m = 
2

1

h v
h u

− −
=

+ −   (or) m = 
2

1

h v

h u

−
=

For an erect image m is positive and for an inverted image m is
negative. This can be checked by substituting values for convex mirror
also.

Using mirror formula, the equation for magnification can also be
obtained as

m = 
2

1

h v f v f

h u f f u

− −
= = =

−

This equation is valid for both convex and concave mirrors.

9.4 Total internal reflection

When a ray of light AO passes from an optically denser medium
to a rarer medium, at the interface XY, it is partly reflected back into
the same medium along OB and partly refracted into the rarer medium
along OC (Fig. 9.14).

If the angle of incidence is gradually increased, the angle of
refraction r will also gradually increase and at a certain stage r becomes
90o. Now the refracted ray OC is bent so much away from the normal
and it grazes the surface of separation of two media. The angle of
incidence in the denser medium at which the refracted ray just grazes the
surface of separation is called the critical angle c of the denser medium.

If i is increased further,  refraction is not possible and the incident

r

i

C

A B

O

Rarer

Denser

r = 90o

i = c

A B

O

Rarer

Denser
i > c

O

Rarer

Denser

X Y X Y X Y

A B

Fig. 9.14 Total internal reflection
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ray is totally reflected into the same medium itself. This is called total
internal  reflection.

If µd is the refractive index of the denser medium then, from
Snell’s Law, the refractive index of air with respect to the denser medium
is given by,

dµa = 
sin i
sin r

µ
µ

=
 
 

a

d

sin i
sin r

µ
=

1  
 d

sin i
sin r  ( )1 for airaµ =∵

If r = 90o, i = c

µ
=

 c 1
 90o

d

sin

sin  (or)  sin c = 
1

dµ or c = sin–1 
1

dµ
⎛ ⎞
⎜ ⎟
⎝ ⎠

If the denser medium is glass, c = -1

g

1
sin

µ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

Hence for total internal reflection to take place (i) light must travel
from a denser medium to a rarer medium and (ii) the angle of incidence
inside the denser medium must be greater than the critical angle
i.e. i > c.

Table 9.1 Critical angle for some media

(NOT FOR EXAMINATION)

Medium Refractive index Critical  angle

Water 1.33 48.75o

Crown glass 1.52 41.14o

Dense flint glass 1.62 37.31o

Diamond 2.42 24.41o
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9.4.1 Applications

(i) Diamond

Total internal reflection is the main cause of the brilliance of
diamonds. The refractive index of diamond with respect to air is 2.42.
Its critical angle is 24.41o. When light enters diamond from any face at
an angle greater than 24.41o it undergoes total internal reflection. By
cutting the diamond suitably, multiple internal reflections can be made
to occur.

(ii) Optical fibres

The total internal reflection
is the basic principle of optical
fibre. An optical fibre is a very
thin fibre made of glass or quartz
having radius of the order of
micrometer (10–6m). A bundle, of
such thin fibres forms a ‘light
pipe’ (Fig. 9.15a).

Fig. 9.15b shows the
principle of light transmission
inside an optical fibre. The
refractive index of the material
of the core is higher than that of
the cladding. When the light is
incident at one end of the fibre
at a small angle, the light passes
inside, undergoes repeated total internal reflections along the fibre and
finally comes out. The angle of incidence is always larger than the
critical angle of the core material with respect to its cladding. Even if
the fibre is bent or twisted, the light can easily travel through the fibre.

Light pipes are used in medical and optical examination. They are
also used to transmit communication signals.

9.5 Michelson’s method

A.A. Michelson, an American physicist, spent many years of his

life in measuring the velocity of light and he  devised a method in the

year 1926 which is considered as accurate.

(a)

Cladding (  = 1.5)µ

Fibre (  = 1.7)µ

(b)

Fig.9.15 An optical fibre
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The experimental set up is shown in Fig. 9.16. Light from an arc
source after passing through a narrow slit S is reflected from one face
a of an octagonal mirror R. The ray after reflections at small fixed
mirrors b and c is then rendered parallel by a concave mirror M

1
 placed

in the observing station on Mt. Wilson. This parallel beam of light travels
a distance of 35 km and falls on another concave mirror M

2
 placed at

Mt. St Antonio, and it is reflected to a plane mirror d placed at the focus
of the concave mirror M

2
. The ray of light from d is rendered parallel

after getting reflected by M
2
 and travels back to the concave mirror M

1
.

After reflections at M
1
 and the plane mirrors e and f, the ray falls

on the opposite face a
1
 of the octagonal mirror. The final image which

is totally reflected by a total reflecting prism P, is viewed through an eye
piece E.

When the octagonal mirror is stationary,  the image of the slit is
seen through the eye piece. When it is rotated the image disappears.
The speed of rotation of R is suitably adjusted so that the image is seen
again clearly as when R is stationary. The speed of revolution is measured
by stroboscope.

Let D be the distance travelled by light from face a to face a
1
 and

n be the number of rotations made by R per second.

E

R

S

a

b

c
e

M1
M2 d

a1

f

P

Fig. 9.16 Michelson’s method
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The time taken by R to rotate through 45o or 
1
8

 of a rotation = 
1
8n

During this time interval, the distance travelled by the light = D

∴ The velocity of light c = =
Distance travelled D

1Time taken
8n

= 8nD.

In general, if the number of faces in the rotating mirror is N, the
velocity of light = NnD.

The velocity of light determined by him is 2.99797 × 108 m s–1.

Importance of velocity of light

The value of velocity of light in vacuum is of great importance in
science. The following are some of the important fields where the value
of velocity of light is used.

(1) Frequency - wavelength relation : From the relation c = νλ,
the frequency of electromagnetic radiations can be calculated if the
wavelength is known and vice versa.

(2) Relativistic mass variation with velocity : Theory of relativity
has shown that the mass m of a moving particle varies with its velocity

v according to the relation m = 2

21

o

v

c

m

−

Here m
o
 is the rest mass of the particle.

(3) Mass - Energy relation : E = mc2 represents conversion of
mass into energy and energy into mass. The energy released in nuclear
fission and fusion is calculated using this relation.

(4) Measurement of large distance in Astronomy : Light year is
a unit of distance used in astronomy. A light year is the distance
travelled by light in one year. It is equal to 9.46 × 1015 metre.

(5) Refractive index : The refractive index µµµµµ of a medium is

given by

µ ==      
    

velocity of light in vacuum c
velocity of light in medium v
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9.6 Refraction of light

When a ray of light travels from one transparent medium into
another medium, it bends while crossing the interface, separating the
two media. This phenomenon is called refraction.

Image formation by spherical lenses is due to the phenomenon of
refraction. The laws of refraction at a plane surface are equally true for
refraction at curved surfaces also. While deriving the expressions for
refraction at spherical surfaces, we make the following assumptions.

(i) The incident light is assumed to be monochromatic and

(ii) the incident pencil of light rays is very narrow and close to the
principal axis.

9.6.1 Cartesian sign convention

The sign convention followed in the spherical mirror is also
applicable to refraction at spherical surface. In addition to this two more
sign conventions to be introduced which are:

(i) The power of a converging lens is positive and that of a diverging
lens is negative.

(ii) The refractive index of a medium is always said to be positive.
If two refractions are involved, the difference in their refractive index is
also taken as positive.

9.6.2 Refraction at a spherical surface

Let us consider a portion of a spherical surface AB separating two
media having refracting indices µ

1
 and µ

2 
(Fig. 9.17). This is symmetrical

about an axis passing through the centre C and cuts the surface at P.
The point P is called the
pole of the surface. Let R
be the radius of
curvature of the surface.

Consider a point
object O on the axis in
the first medium.
Consider two rays OP
and OD originating from
O. The ray OP falls

O P C I

D A

B

E

r

i
1 2

µ1 µ2

Fig. 9.17 Refraction at a spherical surface
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normally on AB and goes into the second medium, undeviated. The ray
OD falls at D very close to P. After refraction, it meets at the point I on
the axis, where the image is formed. CE is the normal drawn to the
point D. Let i and r be the angle of incidence and refraction respectively.

Let , ,DOP DCPα β= =  DIC γ=

Since D is close to P, the angles α, β and γ are all small. From the
Fig. 9.17.

tan α =
DP
PO

, tan β =
DP
PC

 and tan γ =
DP
PI

∴ α = 
DP
PO

, β = 
DP
PC

 and γ =
DP
PI

From the ∆ODC, i = α + β ...(1)

From the ∆DCI, β = r + γ or r = β − γ ...(2)

From Snell’s Law, 
2

1

µ
µ  = 

sin
sin

i

r
 and for small angles of i and r, we

can write, µ
1
 i = µ

2
r

...(3)

From equations (1), (2) and (3)

we get µ
1
 (α + β) = µ

2
 (β − γ) or µ

1
α + µ

2
γ = (µ

2 
- µ

1
)β     ... (4)

Substituting the values of α, β and γ in equation (4)

1 2
DP DP
PO PI

µ µ⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 = ( )2 1
DP
PC

µ µ−

21

PO PI

µµ
+ = 2 1

PC

µ µ⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

...(5)

As the incident ray comes from left to right, we choose this direction
as the positive direction of the axis. Therefore u is negative, whereas
v and R are positive substitute PO = –u PI = +v and PC = +R in
equation (5),

2 2 11

u v R

µ µ µµ −
+ =

−

2

v

µ
 – 

µ1

u
 = 2 1

R

µ µ−
... (6)
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Equation (6) represents the general equation for refraction at a
spherical surface.

If the first medium is air and the second medium is of refractive
index µ, then

v
µ

 – 
1
u

 = 
1

R
µ −

...(7)

9.6.3 Refraction through thin lenses

A lens is one of the most familiar optical devices. A lens is made
of a transparent material bounded by two spherical surfaces. If the
distance between the surfaces of a lens is very small, then it is a thin
lens.

As there are two spherical surfaces, there are two centres of
curvature C

1
 and C

2
 and correspondingly two radii of curvature R

1
 and

R
2
. The line joining C

1
 and C

2
 is called the principal axis of the lens. The

centre P of the thin lens which lies on the principal aixs is called the
optic centre.

9.6.4 Lens maker’s formula and lens formula

Let us consider a thin lens made up of a medium of refractive
index µ

2
 placed in a medium of refractive index µ

1
. Let R

1
 and R

2
 be the

radii of curvature of two spherical surfaces ACB and ADB respectively
and P be the optic centre.

Consider a point object

O on the principal axis. The

ray OP falls normally on the

spherical surface and goes

through the lens undeviated.

The ray OA falls at A very

close to P. After refraction at

the surface ACB the image is

formed at I′. Before it does

so, it is again refracted by

the surface ADB. Therefore

the final image is formed at I as shown in Fig. 9.18.

u

v

v'

O C DP I I'

A

B

µ1
µ1

µ2

Fig. 9.18 Refraction through a lens
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The general equation for the refraction at a spherical surface is

given by

µ µ µµ −
− =2 2 11

v u R
... (1)

For the refracting surface ACB, from equation (1) we write

µ µ µµ −
− =

′
2 2 11

1v u R ... (2)

The image I′ acts as a virtual object for the surface ADB and the

final image is formed at I. The second refraction takes place when light
travels from the medium of refractive index µ

2
 to µ

1
.

For the refracting surface ADB, from equation (1) and applying
sign conventions, we have

2 2 11

2v v R

µ µ µµ ⎛ ⎞−
− = ⎜ ⎟′ −⎝ ⎠

... (3)

Adding equations (2) and (3) ( )1 1
2 1

1 2

1 1
v u R R

µ µ µ µ
⎡ ⎤

− = − −⎢ ⎥
⎣ ⎦

Dividing the above equation by µ
1

µ
µ

⎡ ⎤⎛ ⎞
− = −⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦
2

1 1 2

1 1 1 1
-1

v u R R ...(4)

If the object is at infinity, the image is formed at the focus of the
lens.

Thus, for u = ∞, v = f. Then the equation (4) becomes.

2

1

1
1 2

1 1 1
-

f R R

µ
µ

⎡ ⎤⎛ ⎞
= −⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

...(5)

If the refractive index of the lens is µ and it is placed in air,
µ

2
 = µ and  µ

1
 = 1. So the equation (5) becomes

( )
1 2

1 1 1
1

f R R
µ

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
...(6)

This is called the lens maker’s formula, because it tells what
curvature will be needed to make a lens of desired focal length. This
formula is true for concave lens also.

Comparing equation (4) and (5)
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we get 
1 1 1
v u f

− = ... (7)

which is known as the lens formula.

9.6.5 Magnification

Let us consider an
object OO ′ placed on
the principal axis with
its height perpendicular
to the principal axis as
shown in Fig. 9.19. The
ray OP passing through
the optic centre will go
undeviated. The ray O ′A parallel to the principal axis must pass through
the focus F

2
. The image is formed where O ′PI ′ and AF

2
I ′ intersect. Draw

a perpendicular from I ′ to the principal axis. This perpendicular II ′ is
the image of OO ′.

The linear or transverse magnification is defined as the ratio of the
size of the image to that of the object.

∴ Magnification m = 
   

2

1

hSize of the image II
Size of the object OO h

′
= =

′
   

 

where h
1
 is the height of the object and h

2
 is the height of the image.

From the similar right angled triangles OO′P and II ′P, we have

II PI
OO PO

′
=

′

Applying sign convention,

II ′  =  - h
2 

; OO ′ =  + h
1 

;

PI  = + v ; PO =  - u ;

Substituting this in the above equation, we get magnification

m =
2

1

h v
h u

− +
=

+ −

∴ m = + 
v
u

The magnification is negative for real image and positive for virtual
image. In the case of a concave lens, it is always positive.

O

O'

P
I

I'

A

B

F1

F2

Fig. 9.19 Magnification
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Using lens formula the equation for magnification can also be

obtained as m = 
2

1

h v f v f
h u f f u

−
= = =

+  

This equation is valid for both convex and concave lenses and for
real and virtual images.

9.6.6 Power of a lens

Power of a lens is a measure of the degree of convergence or
divergence of light falling on it. The power of a lens (P) is defined as the
reciprocal of its focal length.

P = 
1
f

The unit of power is dioptre (D) : 1 D = 1 m-1. The power of the
lens is said to be 1 dioptre if the focal length of the lens is 1 metre. P is
positive for converging lens and negative for diverging lens. Thus, when
an optician prescribes a corrective lens of power + 0.5 D, the required
lens is a convex lens of focal length + 2 m. A power of -2.0 D means
a concave lens of focal length -0.5 m.

9.6.7 Combination of thin lenses in contact

Let us consider two
lenses A and B of focal
length f

1
 and f

2
 placed in

contact with each other.
An object is placed at O
beyond the focus of the
first lens A on the
common principal axis.
The lens A produces an
image at I

1
. This image I

1
acts as the object for the second lens B. The final image is produced at
I as shown in Fig. 9.20. Since the lenses are thin, a common optical
centre P is chosen.

Let PO = u, object distance for the first lens (A), PI = v, final image
distance and PI

1
 = v

1
, image distance for the first lens (A) and also object

distance for second lens (B).

O P I

A B

I1

v

v1u

Fig. 9.20 Image formation by two thin lenses
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For the image I
1
 produced by the first lens A,

1 1

1 1 1
v u f

− = ...(1)

For the final image I, produced by the second lens B,

1 2

1 1 1
v v f

− = ...(2)

Adding equations (1) and (2),

1 2

1 1 1 1
v u f f

− = + ...(3)

If the combination is replaced by a single lens of focal length F
such that it forms the image of O at the same position I, then

1 1 1
v u F

− = ...(4)

From equations (3) and (4)

1 2

1 1 1
F f f

= + ...(5)

This F is the focal length of the equivalent lens for the combination.

The derivation can be extended for several thin lenses of focal
lengths f

1
, f

2
, f

3
 ... in contact. The effective focal length of the combination

is given by

1 2 3

1 1 1 1
= + +

F f f f
+ ... ...(6)

In terms of power, equation (6) can be written as

P = P
1
 + P

2
 + P

3
 + .... ...(7)

Equation (7) may be stated as follows :

The power of a combination of lenses in contact is the algebraic
sum of the powers of individual lenses.

The combination of lenses is generally used in the design of
objectives of microscopes, cameras, telescopes and other optical
instruments.

9.7 Prism

A prism is a transparent medium bounded by the three plane
faces. Out of the three faces, one is grounded and the other two are
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polished. The polished faces are called refracting faces. The angle between
the refracting faces is called angle of prism, or the refracting angle. The
third face is called base of the prism.

Refraction of light through a prism

Fig. 9.21 shows the
cross section of a
triangular prism ABC,
placed in air. Let ‘A’ be the
refracting angle of the
prism. A ray of light PQ
incident on the refracting
face AB, gets refracted
along QR and emerges
along RS. The angle of
incidence and refraction at
the two faces are i

1
, r

1
, r

2
 and i

2
 respectively. The angle between the

incident ray PQ and the emergent ray RS is called angle of deviation, d.

In the ∆QER, the exterior angle FER EQR ERQ= +

d = (i
1
 - r

1
) + (i

2
 - r

2
)

∴ d =  (i
1
 + i

2
) - (r

1
 + r

2
) ...(1)

In the quadrilateral AQOR, the angles at Q and R are right angles

Q  + R = 180o

∴ A + QOR = 180o ...(2)

Also, from the ∆QOR

r
1
 + r

2
 + QOR = 180o ...(3)

From equation (2) and (3)

r
1
 + r

2
 = A ...(4)

Substituting in (1),

d = i
1
 + i

2
 - A

or A + d = i
1
 + i

2
...(5)

For a given prism and for a light of given wavelength, the angle
of deviation depends upon the angle of incidence.

i1
i2r1

r2

d

A

A

B C
O

E

F

RQ

P S

Fig. 9.21 Refraction through a prism
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As the angle of incidence i gradually
increases, the angle of deviation d decreases,
reaches a minimum value D and then
increases. D is called the angle of minimum
deviation. It will be seen from the graph
(Fig. 9.22) that there is only one angle of
incidence for which the deviation is a
minimum.

At minimum deviation position the
incident ray and emergent ray are symmetric
with respect to the base of the prism. (i.e)
the refracted ray QR is parallel to the base of the prism.

At the minimum deviation i
1
 = i

2
 = i and r

1
 = r

2
 = r

∴ from equation (4) 2r = A or r = 2
A

and from equation (5) 2i = A + D or i = 
2

A D+

The refractive index is µ = 
sin i
sin r

 

∴ µ = 
sin

2

sin
2

A D

A

+⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

9.8 Dispersion of light

Dispersion is the splitting of white light into its constituent colours.
This band of colours of light is called its spectrum.

In the visible
region of spectrum, the
spectral lines are seen
in the order from violet
to red. The colours are
given by the word
VIBGYOR (Violet,
Indigo, Blue, Green,
Yellow, Orange and
Red) (Fig. 9.23)

B

R
O
Y
G
B
I
V

Screen

A

C

White light

Fig. 9.23 Dispersion of light

D

d

i

Fig. 9.22 i-d graph
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The origin of colour after passing through a prism was a matter
of much debate in physics. Does the prism itself create colour in some
way or does it only separate the colours already present in white light?

Sir Isaac Newton gave
an explanation for this. He
placed another similar prism
in an inverted position. The
emergent beam from the first
prism was made to fall on
the second prism  (Fig. 9.24).
The resulting emergent beam
was found to be white light.
The first prism separated the
white light into its constituent colours, which were then recombined by
the inverted prism to give white light. Thus it can be concluded that the
prism does not create any colour but it only separates the white light
into its constituent colours.

Dispersion takes place because the refractive index of the material
of the prism is different for different colours (wavelengths). The deviation
and hence the refractive index is more for violet rays of light than the
corresponding values for red rays of light. Therefore the violet ray travels
with a smaller velocity in glass prism than red ray. The deviation and
the refractive index of the yellow ray are taken as the mean values.
Table 9.2 gives the refractive indices for different wavelength for crown

glass and flint glass.

Table 9.2 Refractive indices for different wavelengths
(NOT FOR EXAMINATION)

Colour Wave length (nm) Crown glass Flint glass

Violet 396.9 1.533 1.663

Blue 486.1 1.523 1.639

Yellow 589.3 1.517 1.627

Red 656.3 1.515 1.622

The speed of light is independent of wavelength in vacuum.
Therefore vacuum is a non-dispersive medium in which all colours
travel with the same speed.

A

A

White
 lig

ht
V

R

V

R
R

V
White

 lig
ht

Screen

P1

P2

Fig. 9.24 Newton’s experiment on dispersion



159

9.8.1 Dispersive power

The refractive index of the material of a prism is given by the

relation µ =
sin

2

sin
2

A D

A

+

Here A is the angle of the prism and D is the angle of minimum
deviation.

If the angle of prism is small of the order of 10o, the prism is said
to be small angled prism. When rays of light pass through such prisms
the angle of deviation also becomes small.

If A be the refracting angle of a small angled prism and δ the angle

of deviation, then the prism formula becomes µ =
sin

2

sin
2

A

A

δ+⎛ ⎞
⎜ ⎟
⎝ ⎠

For small angles A and δ , 
+ +

= =
δ δ

sin  and sin
2 2 2 2

A A A A

∴ µ = 2

2

A

A

δ+⎛ ⎞
⎜ ⎟
⎝ ⎠

µ A = A + δ
δ = (µ - 1)A ... (1)

If δ v
 and δ r

 are the
deviations produced for the
violet and red rays and µ

v
and µ

r
 are the corresponding

refractive indices of the
material of the small angled
prism then,

for violet light,

( )v v= - 1δ µ A ...(2)

for red light, ( )r r= - 1δ µ A ...(3)

From equations (2) and (3)

( )v r v r- = - Aδ δ µ µ ...(4)

B

A

C
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V

v -     

r
v

r

Fig. 9.25 Dispersive power
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v r-δ δ  is called the angular dispersion which is the difference in
deviation between the extreme colours (Fig. 9.25).

If δ y
 and µ

y
 are the deviation and refractive index respectively for

yellow ray (mean wavelength) then,

for yellow light,  y y= ( - 1) Aδ µ  ... (5)

Dividing equation (4) by (5) we get 
v r v r

y y

δ - δ (µ - µ )A
=

δ (µ - 1)A

v r v r

y y

δ - δ µ - µ
=

δ µ - 1

The expression 
v r

y

δ - δ
δ is known as the dispersive power of the

material of the prism and is denoted by ω.

∴ ω = 
v r

y

µ - µ
µ - 1

The dispersive power of the material of a prism is defined as the
ratio of angular dispersion for any two wavelengths (colours) to the deviation
of mean wavelength.

9.9 Spectrometer

The spectrometer is an optical instrument used to study the spectra
of different sources of light and to measure the refractive indices of
materials  (Fig. 9.26). It consists of basically three parts. They are
collimator, prism table and Telescope.

Fig. 9.26 Spectrometer (NEED NOT DRAW IN THE EXAMINATION)
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Collimator

The collimator is an arrangement to produce a parallel beam of
light. It consists of a long cylindrical tube with a convex lens at the
inner end and a vertical slit at the outer end of the tube. The distance
between the slit and the lens can be adjusted such that the slit is at
the focus of the lens. The slit is kept facing the source of light. The
width of the slit can be adjusted. The collimator is rigidly fixed to the
base of the instrument.

Prism table

The prism table is used for mounting the prism, grating etc. It
consists of two circular metal discs provided with three levelling screws.
It can be rotated about a vertical axis passing through its centre and
its position can be read with verniers V

1
 and V

2
. The prism table can

be raised or lowered and can be fixed at any desired height.

Telescope

The telescope is an astronomical type. It consists of an eyepiece
provided with cross wires at one end of the tube and an objective lens
at its other end co-axially. The distance between the objective lens and
the eyepiece can be adjusted so that the telescope forms a clear image
at the cross wires, when a parallel beam from the collimator is incident
on it.

The telescope is attached to an arm which is capable of rotation
about the same vertical axis as the prism table. A circular scale graduated
in half degree is attached to it.

Both the telescope and prism table are provided with radial screws
for fixing them in a desired position and tangential screws for fine
adjustments.

9.9.1 Adjustments of the spectrometer

The following adjustments must be made before doing the
experiment with spectrometer.

(i) Adjustment of the eyepiece

The telescope is turned towards an illuminated surface and the
eyepiece  is moved to and fro until the cross wires are clearly seen.
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(ii) Adjustment of the telescope

The telescope is adjusted to receive parallel rays by turning it
towards a distant object and adjusting the distance between the objective
lens and the eyepiece to get a clear image on the cross wire.

(iii) Adjustment of the collimator

The telescope is brought along the axial line with the collimator.
The slit of the collimator is illuminated by a source of light. The distance
between the slit and the lens of the collimator is adjusted until a clear
image of the slit is seen at the cross wires of the telescope. Since the
telescope is already adjusted for parallel rays, a well defined image of
the slit can be formed, only when the light rays emerging from the
collimator are parallel.

(iv) Levelling the prism table

The prism table is adjusted or levelled to be in horizontal position
by means of levelling screws and a spirit level.

9.9.2 Determination of the refractive index of the material of
the prism

The preliminary adjustments of the telescope, collimator and the
prism table of the spectrometer are made. The refractive index of the
prism can be determined by knowing the angle of the prism and the
angle of minimum deviation.

(i) Angle of the prism (A)

The prism is placed on the prism table
with its refracting edge facing the collimator
as shown in Fig 9.27. The slit is illuminated
by a sodium vapour lamp.

The parallel rays coming from the
collimator fall on the two faces AB and AC.

The telescope is rotated to the position
T

1
 until the image of the slit, formed by the

reflection at the face AB is made to coincide
with the vertical cross wire of the telescope. The readings of the verniers
are noted. The telescope is then rotated to the position T

2
 where the

image of the slit formed by the reflection at the face AC coincides with
the vertical cross wire. The readings are again noted.

T1 T2

A

B C

S

2A

Fig. 9.27 Angle of the prism
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The difference between these two readings gives the angle rotated
by the telescope. This angle is equal to twice the angle of the prism. Half
of this value gives the angle of the prism A.

(ii) Angle of minimum deviation (D)

The prism is placed on the prism table so that
the light from the collimator falls on a refracting
face, and the refracted image is observed through
the telescope (Fig. 9.28). The prism table is now
rotated so that the angle of deviation decreases. A
stage comes when the image stops for a moment
and if we rotate the prism table further in the same
direction, the image is seen to recede  and the angle
of deviation increases. The vertical cross wire of the
telescope is made to coincide with the image of the
slit where it turns back. This gives the minimum
deviation position. The readings of the verniers are
noted. Now the prism is removed and the telescope
is turned to receive the direct ray and the vertical
cross wire is made to coincide with the image. The
readings of the verniers are noted. The difference
between the two readings gives the angle of minimum
deviation D.

The refractive index of the material of the prism µ is calculated

using the formula µ = 

sin
2

sin
2

A D

A

+⎛ ⎞
⎜ ⎟
⎝ ⎠

.

The refractive index of a liquid may be determined in the same
way using a hollow glass prism filled with the given liquid.

9.10 Rainbow

One of the spectacular atmospheric phenomena is the formation
of rainbow during rainy days. The rainbow is also an example of dispersion
of sunlight by the water drops in the atmosphere.

When sunlight falls on small water drops suspended in air during
or after a rain, it suffers refraction, internal reflection and dispersion.

Fig. 9.28 Angle of
minimum deviation

T1

T2

A

B

C

S

D
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If the Sun is behind an observer and the water drops infront, the
observer may observe two rainbows, one inside the other. The inner one
is called primary rainbow having red on the outer side and violet on the
inner side and the outer rainbow is called secondary rainbow, for which
violet on the outer side and red on the inner side.

Fig. 9.29 shows the formation of primary rainbow. It is formed by
the light from the Sun undergoing one internal reflection and two
refractions and emerging at minimum deviation. It is however, found
that the intensity of the red light is maximum at an angle of 43o and
that of the violet rays at 41o. The other coloured arcs occur in between
violet and red (due to other rain drops).

The formation of secondary rainbow is also shown in Fig. 9.31. It
is formed  by the light from the Sun undergoing two internal reflections
and two refractions and also emerging at minimum deviation. In this
case the inner red edge subtends an angle of 51o and the outer violet
edge subtends an angle of 54o. This rainbow is less brighter and narrower
than the primary rainbow. Both primary and secondary rainbows exhibit
all the colours of the solar spectrum.

From the ground level an arc of the rainbow is usually visible. A
complete circular rainbow may be seen from an elevated position such
as from an aeroplane.

Fig. 9.29 Formation of rainbows
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Solved Problems

9.1 A man 2 m tall standing in front of a plane mirror whose eye is
1.90 m above the ground. What is the minimum size of the mirror
required to see complete image?

Solution :

M – Mirror

FH − Man

H − Head

E − Eye

F − Feet

A ray HA from the head, falls at A on the mirror and reflected to
E along AE. AD is the perpendicular bisector of HE.

∴ AC = 
1
2

 HE = 
1
2

 × 0.10  = 0.05 m.

A ray FB from the feet, falls at B and reflected to E along BE. BN
is the perpendicular bisector of EF.

∴ CB = 
1
2

 EF = 
1
2

 × 1.90  = 0.95 m.

∴ The size of the mirror= AC + CB

= 0.05 m + 0.95 m

Size of the mirror = 1 m

9.2 An object of length 2.5 cm is placed at a distance of 1.5 times the
focal length (f) from a concave mirror. Find the length of the
image. Is the image is erect or inverted?

Data : f = −f; u = −1.5 f; h1 = 2.5 cm; h2 = ?

Solution :

We know, 1 1 1

1 1 1 1 1
1.5

f u v

v f u f f

= +

= − = −
− −

H

E

D

N

F

B

C

A

M

P

f

1.5f

F
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= −
1 1 1

1.5v f f

v = – 3f

magnification, m = 
3

( ) 
1.5

v f

u f

−
− = −

−
 = –2

But 
2

1

2
h

m
h

= = −

∴ h2 = −5 cm

The length of the image is 5.0 cm. The −ve sign indicates that the
image is inverted.

9.3 In Michelson’s method to determine the velocity of light in air, the
distance travelled by light between reflections from the opposite
faces of the octagonal mirror is 150 km. The image appears
stationary when the minimum speed of rotation of the octagonal
mirror is 250 rotations per second. Calculate the velocity of light.

Data :

D = 150 km = 150 × 103 m; n = 250 rps; N = 8; C = ?

Solution :

In Michelson’s method, the velocity of light is

C = NnD

C = 8 × 250 × 150 × 103

C = 3 × 108 ms–1

9.4 The radii of curvature of two surfaces of a double convex lens are
10 cm each. Calculate its focal length and power of the lens in air
and liquid. Refractive indices of glass and liquid are 1.5 and 1.8
respectively.

Data : R1 = 10 cm, R2 = −10 cm ; µg = 1.5 and µl = 1.8

Solution : In air

( )
1 2

1 1 1
1a g

af R R
µ

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
 ( ) 1 1
= 1.5 - 1 +

10 10
⎡ ⎤
⎢ ⎥⎣ ⎦
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fa =  10 cm

Pa = -2
a

1 1
=

f 10 ×10

Pa = 10 dioptres

In liquid

( )
1 2

1 1 1
 = 1l g

lf R R
µ

⎡ ⎤
− −⎢ ⎥

⎣ ⎦

= 
1 2

1 1
1  g

l R R

µ
µ

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 
1.5 1 1

= - 1 +
1.8 10 10
⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

= 
1 2
6 10

− ×

 fl = – 30 cm

 Pl = 2

1 1

30 10lf
−= −

×

 Pl = −3.33 dioptres

9.5 A needle of size 5 cm is placed 45 cm from a lens produced an image
on a screen placed 90 cm away from the lens. Identify the type of the
lens and calculate its focal length and size of the image.

Data : h1 = 5 cm, u = − 45 cm, v = 90 cm, f = ?    h2 = ?

Solution : We know that
1 1 1
f v u

= −
1 1

  
90 45

= −
−

∴ f  = 30 cm

Since f is positive, the lens is converging

Since 
2

1

h v
uh

=     2 90
2

5 45
h

= = −
−

∴  h2 = −10 cm (The –ve sign indicates that the
image is real and inverted)
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Self evaluation

(The questions and problems given in this self evaluation are only samples.
In the same way any question and problem could be framed from the text
matter. Students must be prepared to answer any question and problem
from the text matter, not only from the self evaluation.)

9.1 The number of images of an object held between two parallel plane
mirrors.

(a) infinity (b) 1

(c) 3 (d) 0

9.2 Radius of curvature of concave mirror is 40 cm and the size of
image is twice as that of object, then the object distance is

(a) 20 cm (b) 10 cm

(c) 30 cm (d) 60 cm

9.3 A ray of light passes from a denser medium strikes a rarer medium
at an angle of incidence i. The reflected and refracted rays are
perpendicular to each other. The angle of reflection and refraction
are r and r′. The critical angle is

(a) tan–1 (sin i) (b) sin–1 (tan i)

(c) tan–1 (sin r) (d) sin–1 (tan r ′)

9.4 Light passes through a closed tube which contains a gas. If the gas
inside the tube is gradually pumped out, the speed of light inside
the tube

(a) increases (b) decreases

(c) remains constant (d) first increases and then decreases

9.5 In Michelson’s experiment, when the number of faces of rotating
mirror increases, the velocity of light

(a) decreases (b) increases

(c) does not change (d) varies according to the rotation

9.6 If the velocity of light in a medium is (2/3) times of the velocity of
light in vacuum, then the refractive index of that medium is.

(a) 3/2c (b) 2c/3

(c) 2/3 (d) 1.5
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9.7 Two lenses of power +12 and −2 dioptre are placed in contact. The
focal length of the combination is given by

(a) 8.33 cm (b) 12.5 cm

(c) 16.6 cm (d) 10 cm

9.8 A converging lens is used to form an image on a screen. When the
lower half of the lens is covered by an opaque screen then,

(a) half of the image will disappear

(b) complete image will be formed

(c) no image is formed

(d) intensity of the image is high

9.9 Two small angled prism of refractive indices 1.6 and 1.8 produced
same deviation, for an incident ray of light, the ratio of angle of
prism

(a) 0.88 (b) 1.33

(c) 0.56 (d) 1.12

9.10 Rainbow is formed due to the phenomenon of

(a) refraction and absorption

(b) dispersion and focussing

(c) refraction and scattering

(d) dispersion and total internal reflection

9.11 State the laws of reflection.

9.12 Show that the reflected ray turns by 2θ when mirror turns by θ.

9.13 Explain the image formation in plane mirrors.

9.14 Draw graphically the image formation in spherical mirrors with
different positions of the object and state the nature of the image.

9.15 What is the difference between the virtual images produced by
(i) plane mirror (ii) concave mirror (iii) convex mirror

9.16 The surfaces of the sun glasses are curved, yet their power may be
zero. Why?
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9.17 Prove the mirror formula for reflection of light from a concave mirror
producing (i) real image (ii) virtual image.

9.18 With the help of ray diagram explain the phenomenon of total
internal reflection. Give the relation between critical angle and
refractive index.

9.19 Write a note on optical fibre.

9.20 Explain Michelson’s method of determining velocity of light.

9.21 Give the importance of velocity of light.

9.22 Derive lens maker’s formula for a thin biconvex lens.

9.23 Define power of a lens. What is one dioptre?

9.24 Establish the relation 
1 2

1 1 1
 =  + 

F f f  of thin lenses in contact.

9.25 Derive the relation µ = 

A + D
sin

2
A

sin
2

.

9.26 Does a beam of white light disperse through a hollow prism?

9.27 Derive an equation for dispersive power of a prism.

9.28 Describe a spectrometer.

9.29 Explain how will you determine the angle of the minimum deviation
of a prism using spectrometer.

9.30 Write a note on formation of rainbows.

Problems

9.31 Light of wavelength 5000 Å falls on a plane reflecting surface.
Calculate the wavelength and frequency of reflected light. For what
angle of incidence, the reflected ray is normal to the incident ray?
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9.32 At what distance from a convex mirror of focal length 2.5 m should
a boy stand, so that his image has a height equal to half the original
height?

9.33 In a Michelson’s experiment the distance travelled by the light
between two reflections from the octagon rotating mirror is 4.8 km.
Calculate the minimum speed of the mirror so that the image is
formed at the non−rotating position.

9.34 If the refractive index of diamond be 2.5 and glass 1.5, then how
faster does light travel in glass than in diamond?

9.35 An object of size 3 cm is kept at a distance of 14 cm from a concave
lens of focal length 21 cm. Find the position of the image produced
by the lens?

9.36 What is the focal length of a thin lens if the lens is in contact with
2.0 dioptre lens to form a combination lens which has a focal length
of −80 cm?

9.37 A ray passes through an equilateral prism such that the angle of
incidence is equal to the angle of emergence and the later is equal
to 3/4 of the angle of prism. Find the angle of deviation.

9.38 The refractive indices of flint glass of equilateral prism for 400 nm
and 700 nm are  1.66 and 1.61 respectively. Calculate  the difference
in angle of minimum deviation.

9.39 White light is incident on a small angled prism of angle 5o. Calculate
the angular dispersion if the refractive indices of red and violet
rays are 1.642 and 1.656 respectively.

9.40 A thin prism of refractive index 1.5 deviates a ray by a minimum
angle of 5o. When it is kept immersed in oil of refractive index 1.25,
what is the angle of minimum deviation?
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Answers

9.1 (a) 9.2 (b) 9.3 (b)

9.4 (a) 9.5 (c) 9.6 (d)

9.7 (d) 9.8 (b) 9.9 (b)

9.10 (d)

9.31 5000 Å ; 6 × 1014 Hz ; 45 o

9.32 2.5 m

9.33 7.8 × 103 rps

9.34 1.66 times

9.35 − 8.4 cm

9.36 –30.8 cm

9.37 30 o

9.38 4 o

9.39 0.07 o

9.40 2o
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10. Magnetism

The word magnetism is derived from iron ore magnetite (Fe3O4),
which was found in the island of magnesia in Greece. It is believed that
the Chinese had known the property of the magnet even in 2000 B.C.
and they used magnetic compass needle for navigation in 1100 AD. But
it was Gilbert who laid the foundation for magnetism and had suggested
that Earth itself behaves as a giant bar magnet. The field at the surface
of the Earth is approximately 10-4 T and the field extends upto a height
of nearly five times the radius of the Earth.

10.1 Earth’s magnetic field and magnetic elements

A freely suspended magnetic
needle at a point on Earth comes to
rest approximately along the
geographical north - south direction.
This shows that the Earth behaves
like a huge magnetic dipole with its
magnetic poles near its geographical
poles. Since the north pole of the
magnetic needle approximately points
towards geographic north (NG) it is
appropriate to call the magnetic pole
near NG as the magnetic south pole of
Earth Sm. Also, the pole near SG is
the magnetic north pole of the Earth
(Nm). (Fig.10.1)

The Earth’s magnetic field at any point on the Earth can be
completely defined in terms of certain quantities called magnetic elements
of the Earth, namely

(i) Declination or the magnetic variation θ.

(ii) Dip or inclination δ and

(iii) The horizontal component of the Earth’s magnetic field Bh

Fig. 10.1 Magnetic field of Earth

Nm

SG

NG

Sm

S

N
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Causes of the Earth’s magnetism

The exact cause of the Earth’s magnetism is not known even
today. However, some important factors which may be the cause of
Earth’s magnetism are:

(i) Magnetic masses in the Earth.

(ii) Electric currents in the Earth.

(iii) Electric currents in the upper regions of the atmosphere.

(iv) Radiations from the Sun.

(v) Action of moon etc.

However, it is believed that the Earth’s magnetic field is due to the
molten charged metallic fluid inside the Earth’s surface with a core of
radius about 3500 km compared to the Earth’s radius of 6400 km.

10.1.1 Bar magnet

The iron ore magnetite which attracts small pieces of iron, cobalt,
nickel etc. is a natural magnet. The natural magnets have irregular
shape and they are weak. A piece of iron or steel acquires magnetic
properties when it is rubbed with a magnet. Such magnets made out of
iron or steel are artificial magnets. Artificial magnets can have desired
shape and desired strength. If the artificial magnet is in the form of a
rectangular or cylindrical bar, it is called a bar magnet.

10.1.2 Basic properties of magnets

(i) When the magnet is dipped in iron filings, they cling to the ends
of the magnet. The attraction is maximum at the two ends of the
magnet. These ends are called poles of the magnet.

(ii) When a magnet is freely suspended, it always points along
north-south direction. The pole pointing towards geographic north is
called north pole N and the pole which points towards geographic south
is called south pole S.

(iii) Magnetic poles always exist in pairs. (i.e) isolated magnetic
pole does not exist.

(iv) The magnetic length of a magnet is always less than its
geometric length, because the poles are situated a little inwards from
the free ends of the magnet. (But for the purpose of calculation the
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geometric length is always taken as magnetic length.)

(v) Like poles repel each other and unlike poles attract each other.
North pole of a magnet when brought near north pole of another magnet,
we can observe repulsion, but when the north pole of one magnet is
brought near south pole of another magnet, we observe attraction.

(vi) The force of attraction or repulsion between two magnetic
poles is given by Coulomb’s inverse square law.

Note : In recent days, the concept of magnetic poles has been
completely changed. The origin of magnetism is traced only due to the
flow of current. But anyhow, we have retained the conventional idea of
magnetic poles in this chapter. Pole strength is denoted by m and its
unit is ampere metre.

Magnetic moment

Since any magnet has two poles, it is also called a magnetic dipole.

The magnetic moment of a magnet is defined as the product of the
pole strength and the distance between the two poles.

If m is the pole strength of each pole and 2l is the distance
between the poles, the magnetic moment

→
M = m (2

→
l )

Magnetic moment is a vector quantity. It is denoted by M. Its unit
is A m2. Its direction is from south pole to north pole.

Magnetic field

Magnetic field is the space in which a magnetic pole experiences
a force or it is the space around a magnet in which the influence of the
magnet is felt.

Magnetic induction

Magnetic induction is the fundamental character of a magnetic
field at a point.

Magnetic induction at a point in a magnetic field is the force
experienced by unit north pole placed at that point. It is denoted by B. Its

unit is 
N

Am
. It is a vector quantity. It is also called as magnetic flux

density.
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If a magnetic pole of strength m placed at a point in a magnetic
field experiences a force F, the magnetic induction at that point is

 
 

F
B =

m

Magnetic lines of force

A magnetic field is better studied by drawing as many number of
magnetic lines of force as possible.

A magnetic line of force is a line along which a free isolated north
pole would travel when it is placed in the magnetic field.

Properties of magnetic lines of force

(i) Magnetic lines of forces are closed continuous curves, extending
through the body of the magnet.

(ii) The direction of line of force is from north pole to south pole
outside the magnet while it is from south pole to north pole inside the
magnet.

(iii) The tangent to the magnetic line of force at any point gives the
direction of magnetic field at that point. (i.e) it gives the direction of
magnetic induction (

→
B ) at that point.

(iv) They never intersect each other.

(v) They crowd where the magnetic field is strong and thin out
where the field is weak.

Magnetic flux and magnetic flux density

The number of magnetic lines of force passing through an area A is
called magnetic flux. It is denoted by φ. Its unit is weber. It is a scalar
quantity.

The number of magnetic lines of force crossing unit area kept normal
to the direction of line of force is magnetic flux density. Its unit is
Wb m–2 or tesla or N A–1m–1.

∴ Magnetic flux  φ = 
→
B .

→
A

Uniform and non-uniform magnetic
field

Magnetic field is said to be uniform
if the magnetic induction has the same
magnitude and the same direction at all Fig. 10.2 Uniform Magneticfield
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the points in the region. It is represented by drawing parallel lines
(Fig. 10.2).

An example of uniform magnetic field over a wide area is the
Earth’s magnetic field.

If the magnetic
induction varies in
magnitude and direction at
different points in a region,
the magnetic field is said
to be non-uniform. The
magnetic field due to a bar
magnet is non-uniform. It

is represented by convergent or divergent lines (Fig. 10.3).

10.2 Force between two magnetic poles

In 1785, Coulomb made use of his torsion balance and discovered
the law governing the force between the two magnetic poles.

Coulomb’s inverse square law

Coulomb’s inverse square law states that the force of attraction or
repulsion between the two magnetic poles is directly proportional to the
product of their pole strengths and inversely proportional to the square of
the distance between them.

If m1 and m2 are the pole strengths of two magnetic poles separated
by a distance of d in a medium, then

F α m1m2
 and F α 2

1

d

∴ F α 1 2
2

m m

d

F = k 1 2
2

m m

d

where k is the constant of proportionality and k = 
4
µ
π  where µ is the

permeability of the medium.

But µ = µo × µr

N S

Fig. 10.3 Non-uniform magnetic field
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∴ µr = 
o

µ
µ

where µr - relative permeability of the medium

µo - permeability of free space or vacuum.

Let m1 = m2 = 1

and d  = 1 m

4
ok

µ
π

=

In free space, µo = 4π × 10-7 H m-1

∴ F = 
7

1 2
2

10 m m

d

− × ×

F = 
7

2

10 1 1

1

− × ×

F = 10-7 N

Therefore, unit pole is defined as that pole which when placed at a
distance of 1 metre in free space or air from an equal and similar pole,
repels it with a force of 10-7 N.

10.3 Magnetic induction at a point along the axial line due to a
magnetic dipole (Bar magnet)

NS is the bar magnet of
length 2l and of pole strength m.
P is a point on the axial line at a
distance d from its mid point O
(Fig. 10.4).

According to inverse square law, F = 
µ
π

1 2
2

 
4

o m m

d
∴ Magnetic induction (B1) at P due to north pole of the magnet,

B1 = 2 
4

o m

NP

µ
π   along NP 

F
B =

m
⎛ ⎞
⎜ ⎟
⎝ ⎠
∵

   = 2 
4 ( )

o m

d l

µ
π −  along NP

Magnetic induction (B2) at P due to south pole of the magnet,

B2 = 2
 

4
o m

SP

µ
π  along PS

S O N P

2

d

l

Fig. 10.4 Magnetic induction along the
axial line
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B2 = 2
 

4 ( )
o m

d l

µ
π +  along PS

∴ Magnetic induction at P due to the bar magnet,

B = B1 – B2

B = 2 2
  -   

4 4( ) ( )
o om m

d l d l

µ µ
π π− +  along NP

B = 2 2

1 1
  -  

4 ( ) ( )
om

d l d l

µ
π

⎛ ⎞
⎜ ⎟

− +⎝ ⎠

B = 
2 2

2 2 2

( ) ( )
   

4 ( )
om d l d l

d l

µ
π

⎛ ⎞+ − −
⎜ ⎟⎜ ⎟−⎝ ⎠

B =  2 2 2

4
   

4 ( )
om ld

d l

µ
π

⎛ ⎞
⎜ ⎟

−⎝ ⎠

B =  2 2 2

2 2
 

4 ( )
om l d

d l

µ
π

×
−

B  = 2 2 2

2
 

4 ( )
o Md

d l

µ
π −

where M = 2ml (magnetic dipole moment).

For a short bar magnet, l is
very small compared to d, hence l 2

is neglected.

∴ B = 3

2
 

4
o M

d

µ
π

The direction of B is along the
axial line away from the north pole.

10.4 Magnetic induction at a point
along the equatorial line of a bar
magnet

NS is the bar magnet of length
2l and pole strength m. P is a point
on the equatorial line at a distance
d from its mid point O (Fig. 10.5).

d

P

S N

T

B1

O

2l

B2

Fig. 10.5 Magnetic induction along
the equatorial line
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Magnetic induction (B1) at P due to north pole of the magnet,

B1 = 2 
4

o m

NP

µ
π  along NP

   = ( )2 2
 

4
o m

d l

µ
π +  along NP

( 2 2 2NP NO OP= +∵ )

Magnetic induction (B2) at P due to
south pole of the magnet,

B2 = 2
 

4
o m

PS

µ
π  along PS

= ( )2 2
 

4
o m

d l

µ
π +  along PS

Resolving B1 and B2 into their horizontal and vertical components.

Vertical components B1 sin θ and B2 sin θ are equal and opposite
and therefore cancel each other (Fig. 10.6).

The horizontal components B1 cos θ and B2 cos θ will get added
along PT.

Resultant magnetic induction at P due to the bar magnet is

B = B1 cos θ + B2 cos θ.   (along PT)

B = 2 2
 

4
o m

d l

µ
π +

 . 2 2

l

d l+
 + 

4
oµ
π  2 2 2 2( )

m l

d l d l
⋅

+ +

SO NO
cos θ = =

PS NP
⎛ ⎞
⎜ ⎟
⎝ ⎠
∵

 = 
4

oµ
π  2 2 3/2

2

( )

ml

d l+

B = 
4

oµ
π  2 2 3/2( )

M

d l+
, (where M = 2ml)

For a short bar magnet, l 2 is neglected.

∴ B = 3
 

4
o M

d

µ
π

The direction of ‘B’ is along PT parallel to NS.

B2

P
T

B1cos

cos

B1
sin

B2 sin

B1

B2

Fig. 10.6 Components of
magnetic fields
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10.5 Mapping of magnetic field due to a bar magnet

A bar magnet is placed on a plane sheet of a paper. A compass
needle is placed near the north pole of the magnet. The north and south
poles of the compass are marked by pencil dots. The compass needle is
shifted and placed so that its south pole touches the pencil dot marked
for north pole. The process is repeated and a series of dots are obtained.
The dots are joined as a smooth curve. This curve is a magnetic line of
force.  Even though few lines are drawn around a bar magnet the
magnetic lines exists in all space around the magnet.

(i) Magnet placed with its north pole facing geographic north

A sheet of paper is fixed on a drawing board. Using a compass
needle, the magnetic meridian is drawn on it. A bar magnet is placed

on the magnetic meridian such
that its north pole points
towards geographic north. Using
a compass needle, magnetic lines
of force are drawn around the
magnet. (Fig. 10.7)

The magnetic lines of force
is due to the combined effect of
the magnetic field due to the bar
magnet and Earth. It is found

that when the compass is placed at points P and P ′ along the equatorial
line of the magnet, the  compass shows no deflection. They are called
“neutral points.” At these points the magnetic field due to the magnet
along its equatorial line (B) is exactly balanced by the horizontal
component of the Earth’s magnetic field. (Bh)

Hence, neutral points are defined as the points where the resultant
magnetic field due to the magnet and Earth is zero.

Hence, at neutral points

B = Bh

4
oµ
π  2 2 3/2( )

M

d l+
 = Bh

N

S

P
BH

B

P/

BH

B

Fig. 10.7 Neutral points - equatorial line
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(ii) Magnet placed with its south pole facing geographic north

A sheet of paper is fixed on a drawing board. Using a compass
needle, the magnetic meridian is drawn on it. A bar magnet is placed

on a magnetic meridian such that its
south pole facing geographic north.
Using a compass needle, the magnetic
lines of force are drawn around the
magnet as shown in Fig. 10.8.

The magnetic lines of force is
due to the combined effect of the
magnetic field due to the bar magnet
and Earth. It is found that when the
compass is placed at points P and P ′
along the axial line of the magnet, the
compass shows no deflection. They are
called neutral points. At these points
the magnetic field (B) due to the
magnet along its axial line is exactly
balanced by the horizontal component
of the Earth’s magnetic field (Bh).

Hence at neutral points,  B = Bh

∴ 2 2 2

2
 

4 (  )
o Md

d l

µ
π −  = Bh

10.6 Torque on a bar magnet placed in a uniform magnetic field

Consider a bar magnet NS of length 2l and pole strength m placed
in a uniform magnetic field of
induction B at an angle θ with
the direction of the field (Fig.
10.9).

Due to the magnetic field
B, a force mB acts on the north
pole along the direction of the
field and a force mB acts on the
south pole along the direction
opposite to the magnetic field.

Fig. 10.8 Neutral points - axial line
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Fig. 10.9 Torque on a bar magnet
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These two forces are equal and opposite, hence constitute a couple.
The torque τ due to the couple is

τ = one of the forces × perpendicular distance between them

τ = F × NA

  = mB × NA ...(1)

  = mB × 2l sin θ

∴ τ = MB sin θ ...(2)

Vectorially,

 
→
τ = 

→
M × 

→
B

The direction of τ is perpendicular to the plane containing 
→
M

and 
→
B.

If B = 1 and θ = 90o

Then from equation (2), τ = M

Hence, moment of the magnet M is equal to the torque necessary to
keep the magnet at right angles to a magnetic field of unit magnetic
induction.

10.7 Tangent law

A magnetic needle suspended, at a point where there are two crossed
magnetic fields acting at right angles to each other, will come to rest in the
direction of the resultant of the two fields.

B1 and B2 are two uniform magnetic fields acting at right angles
to each other. A magnetic needle
placed in these two fields will be
subjected to two torques tending
to rotate the magnet in opposite
directions. The torque τ1 due to
the two equal and opposite
parallel forces mB1 and mB1 tend
to set the magnet parallel to B1.
Similarly the torque τ2 due to
the two equal and opposite
parallel forces mB2 and mB2

tends to set the magnet parallel
to B2. In a position where the
torques balance each other, the

N

S

mB2

2l

A

mB2

B1

mB1

B2

mB1

Fig. 10.10 Tangent law
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magnet comes to rest. Now the magnet makes an angle θ with B2 as
shown in the Fig. 10.10.

The deflecting torque due to the forces mB1 and mB1

τ1 = mB1 × NA

   = mB1 × NS cos θ

   = mB1 × 2l cos θ

   = 2l mB1 cos θ

∴ τ1 = MB1cos θ

Similarly the restoring torque due to the forces mB2 and mB2

τ2 = mB2 × SA

   = mB2 × 2l sin θ

   = 2lm × B2 sin θ

τ2 = MB2 sin θ

At equillibrium,

τ1 = τ2

∴ MB1 cos θ = MB2 sin θ

∴ B1 = B2 tan θ

This is called Tangent law

Invariably, in the applications of tangent law, the restoring magnetic
field B2 is the horizontal component of Earth’s magnetic field Bh.

10.8 Deflection magnetometer

Deflection magnetometer consists of a small magnetic needle pivoted
on a sharp support such that it is free to rotate in a horizontal plane. A
light, thin, long aluminium pointer is fixed perpendicular to the magnetic
needle. The pointer also rotates along with the needle (Fig. 10.11).

There is a circular scale
divided into four quadrants and
each quadrant is graduated from
0o to 90o. A plane mirror fixed below
the scale ensures, reading withoutFig. 10.11 Deflection magnetometer
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90

0

90
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parallax error, as the image of the pointer is made to coincide exactly
with pointer itself. The needle, aluminium pointer and the scale are
enclosed in a box with a glass top. There are two arms graduated in
centimetre and their zeroes coincide at the centre of the magnetic needle.

10.8.1 End-on (or) Tan A position

The magnetic field at a point along the axial line of a bar magnet
is perpendicular to the horizontal component of Earth’s magnetic field.
If a magnetometer and a bar magnet are placed in such way that this
condition is satisfied, then this arrangement is called Tan A position.

To achieve this, the arms of the deflection magnetometer are placed
along East-West
direction (i.e)
perpendicular to the
magnetic meridian.
The bar magnet is
placed along East -
West direction (i.e)
parallel to the arms, as shown in the Fig. 10.12.

When a bar magnet of magnetic moment M and length 2l is placed
at a distance d  from the centre of the magnetic needle, the needle gets
deflected through an angle θ due to the action of two magnetic fields.

(i) the field B due to the bar magnet acting along its axis and

(ii) the horizontal component of Earth’s magnetic field Bh.

The magnetic field at a distance d acting along the axial line of the
bar magnet,

B = 2 2 2

2
4 ( )

o Md

d l

µ
π

⋅
−

According to Tangent law,

B = Bh tan θ

2 2 2

2
4 ( )

o Md

d l

µ
π

⋅
− = Bh tan θ

Comparison of magnetic moments of two bar magnets

(i) Deflection method

The deflection magnetometer is placed in Tan A position (Fig. 10.13).
A bar magnet of magnetic moment M1 and length 2l1 is placed at a distance

Fig. 10.12 End-on (or) Tan A position
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d1 from the centre of the magnetic needle, on one side of the compass box.
Since, the sensitivity of the magnetometer is more at 45o, the distance of
the bar magnet should be chosen such that the deflection lies between 30o

and 60o. The readings corresponding to the ends of the aluminium pointer
are noted as θ1 and θ2. The magnet is reversed pole to pole and kept at the
same distance. Two more readings θ3 and θ4 are noted. By placing the
magnet on the other side of the compass box at the same distance, four
more readings θ5, θ6, θ7 and θ8 are noted as above. The mean of the eight
readings gives a value θI.

The experiment is repeated as above for the second bar magnet of
magnetic moment M2 and
length 2l2 by placing at a
distance d2. Now the mean of
the eight readings gives a value
of θII.

Applying tangent law, for
the first magnet,

1 1
2 2 2

1 1

2
 

4 ( )
o M d

d l

µ
π −  = Bh tan θI ...(1)

and for the second magnet.

2 2
2 2 2

2 2

2
 

4 ( )
o M d

d l

µ
π − = Bh tan θII ...(2)

From the above equations (1) and (2), we get

( )
( )

22 2
1 11

22 22
2 2

d - lM
=  

M d - l
2

1

tanθ
 
tanθ

I

II

d

d ...(3)

Special case

If the magnets are placed at the same distance, then d1 = d2 = d

∴ 
( )
( )

22 2
11

22 22
2

d - lM
=

M d - l
 

tanθ
tanθ

I

II

In addition, if l1 and l2 are small compared to the distance d

then
1

2

M

M  = 
tanθ
tanθ

I

II

Fig. 10.13 Deflection method
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(ii) Null deflection method

The deflection
magnetometer is placed in Tan
A position (Fig. 10.14). A bar
magnet of magnetic moment
M1 and length 2l1 is placed
on one side of the compass
box at a distance d1 from the centre of the magnetic needle. The second
bar magnet of magnetic moment M2 and length 2l2 is placed on the
other side of the compass box such that like poles of the magnets face
each other. The second magnet is adjusted so that the deflection due to
the first magnet is nullified and the aluminium pointer reads 0o - 0o.
The distance of the second magnet is x1. The first magnet is reversed
pole to pole and placed at the same distance d1. The second magnet is
also reversed and adjusted such that the aluminium pointer reads 0o -
0o. The distance of the second magnet is x2.

The experiment is repeated by interchanging the magnets. Two
more distances x3 and x4 are noted. The mean of x1, x2, x3 and x4 is
taken as d2.

As the magnetic fields due to the two bar magnets at the centre
of the magnetic needle are equal in magnitude but opposite in direction,

(i.e) B1 = B2

1 1
2 2 2

1 1

2
 

4 ( )
o M d

d l

µ
π −  = 

2 2
2 2 2

2 2

2
 

4 ( )
o M d

d l

µ
π −

∴ 
( )

( )

22 2
1 11

22 22
2 2

d lM
M d l

−
=

−
 

2

1

d

d

If the bar magnets are short, l1 and l2 are negligible compared to
the distance d1 and d2

∴ 
3

1 1
3

2 2

 = 
M d

M d

N S

N

E

d1 d2

NS0

90

0

90

Fig. 10.14 Null deflection method
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10.8.2 Broad–side on (or) Tan B position

The magnetic field at a point along the
equatorial line of a bar magnet is perpendicular
to the horizontal component of Earth’s magnetic
field. If the magnetometer and a bar magnet are
placed in such way that this condition is satisfied,
then this arrangement is called Tan B position.

To achieve this, the arms of the deflection
magnetometer are placed along the North - South
direction (i.e) along the magnetic meridian. The
magnet is placed along East - West direction (i.e)
parallel to the aluminium pointer as shown in
the Fig. 10.15.

When a bar magnet of magnetic moment M
and length 2l  is placed at a distance d from the

centre of the magnetic needle, the needle gets deflected through an
angle θ  due to the action of the following two magnetic fields.

(i) The field B due to the bar magnet along its equatorial line
(ii) The horizontal component of Earth’s magnetic field Bh.

The magnetic field at a distance d along the equatorial line of the
bar magnet,

B = 
o

2 2 3/2

µ M
 

4π (d + l )

According to tangent law

B = Bh tan θ

(i.e)
µ
π +2 2 3/2

 
4 ( )

o M

d l  = Bh tan θ

If the magnet is short, l  is small compared to d and hence l 2  is
neglected.

3
 

4
o M

d

µ
π  = Bh tan θ

N

E

d

N

S

0

90

0

90

Fig. 10.15 Broad-side
on or Tan B position
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Comparison of magnetic moments of two
bar magnets

(i) Deflection method

The deflection magnetometer is placed
in Tan B position. A bar magnet of magnetic
moment M1 and length 2l1 is placed at a
distance d1 from the centre of the magnetic
needle, on one side of the compass box
(Fig. 10.16). Since, the sensitivity of the
magnetometer is more at 45o, the distance
of the bar magnet should be chosen such
that the deflection lies between 30o and
60o. The readings corresponding to the ends
of the aluminium pointer are noted as θ1

and θ2. The magnet is reversed pole to pole
and kept at the same distance. Two more
readings θ3 and θ4 are noted. By placing
the magnet on the other side of the compass box at the same distance,
four more readings θ5, θ6, θ7 and θ8 are noted as above. The mean of
the eight readings gives a value θI.

The experiment is repeated as above for the second bar magnet of
magnetic moment M2 and length 2l2 by placing at a distance d2. Now
the mean of the eight readings gives a value of θII.

Applying tangent law, for the first magnet,

1
2 2 3/2

1 1

 
4 ( )

o M

d l

µ
π +  = Bh tanθI ...(1)

and for the second magnet

2
2 2 3/2

2 2

 
4 ( )

o M

d l

µ
π +  = Bh tan θII ...(2)

From the above equations (1) and (2), we get

( )
( )

3/22 2
1 11

3/22 22
2 2

d + lM
=

M d + l
  

tanθ
tanθ

I

II
...(3)

Special case

If the magnets are placed at the same distance, then d1 = d2 = d

N

E

d1

N
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0

90

0

90

Fig.10.16 Deflection method
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( )
( )

3/22 2
11

3/22 22
2

d + lM
=

M d + l
 . 

tanθ
tanθ

I

II

In addition, if l1 and l2 are small compared to the distance d,

 
1

2

M

M
=

tanθ
tanθ

I

II

(ii) Null deflection method

The deflection magnetometer is placed in
Tan B position (Fig. 10.17). A bar magnet of
magnetic moment M1 and length 2l1 is placed on
one side of the compass box at a distance d1

from the centre of the magnetic needle. The
second bar magnet of magnetic moment M2 and
length 2l2 is placed on the other side of the
compass box such that like poles of the magnets
face in the opposite direction. The second magnet
is adjusted so that the deflection due to the first
magnet is nullified and the aluminium pointer
reads 0o - 0o. The distance of the second magnet
is x1. The first magnet is reversed pole to pole
and placed at the same distance d1. The second
magnet is also reversed and adjusted such that
the aluminium pointer reads 0o - 0o. The distance
of the second magnet is x2.

The experiment is repeated by interchanging the magnets. Two
more distances x3 and x4 are noted. The mean of x1, x2, x3 and x4 is
taken as d2.

Since the magnetic fields due to the two bar magnets at the centre
of the magnetic needle are equal in magnitude but opposite in direction.

∴ B1 = B2

4
o 1

2 2 3/2
1 1

M
 
(d + l )

µ
π  = 4

o 2
2 2 3/2

2 2

M
 
(d + l )

µ
π

∴
( )

( )

3/22 2
1 11

3/22 22
2 2

d + lM
=

M d + l

Fig. 10.17 Null
deflection method
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If the bar magnets are short, l1 and l2 are negligible compared to
the distance d1 and d2

∴ 
3

1 1
3

2 2

M d
 = 

M d

10.9 Magnetic properties of materials

The study of magnetic properties of materials assumes significance
since these properties decide whether the material is suitable for
permanent magnets or electromagnets or cores of transformers etc.
Before classifying the materials depending on their magnetic behaviour,
the following important terms are defined.

(i) Magnetising field or magnetic intensity

The magnetic field used to magnetise a material is called the
magnetising field. It is denoted by H and its unit is A m–1.

(Note : Since the origin of magnetism is linked to the current, the
magnetising field is usually defined in terms of ampere turn which is
out of our purview here.)

(ii) Magnetic permeability

Magnetic permeability is the ability of the material to allow the
passage of magnetic lines of force through it.

Relative permeability µr of a material is defined as the ratio of
number of magnetic lines of force per unit area B inside the material to
the number of lines of force per unit area in vacuum Bo produced by the
same magnetising field.

∴ Relative permeability µr = 
o

B

B

µr = 
µ µ
µ µ

=
o o

H

H

(since  µr is the ratio of two identical quantities, it has no unit.)

∴ The magnetic permeability of the medium µ = µoµr where µo is the
permeability of free space.

Magnetic permeability µ of a medium is also defined as the ratio of
magnetic induction B inside the medium to the magnetising field H inside
the same medium.

∴ µ = 
B
H
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(iii) Intensity of magnetisation

Intensity of magnetisation represents the extent to which a material
has been magnetised under the influence of magnetising field H.

Intensity of magnetisation of a magnetic material is defined as the
magnetic moment per unit volume of the material.

I = 
M
V

Its unit is A m-1.

For a specimen of length 2l, area A and pole strength m,

I = 
2
2
lm
lA

∴I = 
m
A

Hence, intensity of magnetisation is also defined as the pole strength
per unit area of the cross section of the material.

(iv) Magnetic induction

When a soft iron bar is placed in a uniform magnetising field H,
the magnetic induction inside the specimen B is equal to the sum of the
magnetic induction Bo produced in vacuum due to the magnetising field
and the magnetic induction Bm due to the induced magnetisation of the
specimen.

B = Bo + Bm

But Bo= µoH and Bm = µoI

B = µoH + µoI

    ∴ B = µo (H + I)

(v) Magnetic susceptibility

Magnetic susceptibility χm is a property which determines how
easily and how strongly a specimen can be magnetised.

Susceptibility of a magnetic material is defined as the ratio of intensity
of magnetisation I induced in the material to the magnetising field H in
which the material is placed.
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Thus χ =m

I

H
Since I and H are of the same dimensions, χm has no unit and is

dimensionless.

Relation between χχχχχm and µµµµµr

χm = 
I

H
∴ I = χmH

We know B = µo (H + I)

B = µo (H + χmH)

B = µoH (1 + χm)

If µ is the permeability, we know that B = µH.

∴ µH = µoH (1 + χm)

o

µ
µ

= (1 + χm)

∴ µr= 1 + χm

10.10 Classification of magnetic materials

On the basis of the behaviour of materials in a magnetising field,
the materials are generally classified into three categories namely,
(i) Diamagnetic, (ii) Paramagnetic and (iii) Ferromagnetic

(i) Properties of diamagnetic substances

Diamagnetic substances are those in which the net magnetic
moment of atoms is zero.

1. The susceptibility has a low negative value. (For example, for
bismuth χm= – 0.00017).

2. Susceptibility is
independent of temperature.

3. The relative
permeability is slightly less
than one.

4. When placed in a
non uniform magnetic field
they have a tendency to move

N S

Watch glass

Diamagnetic liquid

Fig. 10.18 Diamagnetic liquid
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away from the field. (i.e) from the stronger part to the weaker part of
the field. They get magnetised in a direction opposite to the field as
shown in the Fig. 10.18.

5. When suspended freely in
a uniform magnetic field, they set
themselves perpendicular to the
direction of the magnetic field
(Fig. 10.19).

Examples : Bi, Sb, Cu, Au,
Hg, H2O, H2 etc.

(ii) Properties of paramagnetic substances

Paramagnetic substances are those in which each atom or molecule
has a net non-zero magnetic moment of its own.

1. Susceptibility has a low positive value.

(For example : χm for aluminium is +0.00002).

2. Susceptibiltity is inversely proportional to absolute temperature

(i.e) χ α 1
  m T

. As the temperature increases susceptibility

decreases.

3. The relative permeability is greater than one.

4. When placed in a non
uniform magnetic field, they
have a tendency to move from
weaker part to the stronger
part of the field. They get
magnetised in the direction of
the field as shown in Fig.
10.20.

5. When suspended freely in a uniform magnetic field, they set
themselves parallel to the
direction of magnetic field
(Fig. 10.21).

Examples : Al, Pt, Cr,
O2, Mn, CuSO4 etc.

N S

Watch glass

Paramagnetic liquid

Fig. 10.20 Paramagnetic liquid

N S

Fig. 10.21 Paramagnetic material
parallel to the field

Fig. 10.19 Diamagnetic material
perpendicular to the field

N S
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(iii) Properties of ferromagnetic substances

Ferromagnetic substances are those in which each atom or molecule
has a strong spontaneous net magnetic moment. These substances
exhibit strong paramagnetic properties.

1. The susceptibility and relative permeability are very large.

(For example : µr for iron = 200,000)

2. Susceptibility is inversely proportional to the absolute
temperature.

(i.e) χ α 1
  m T

. As the temperature increases the value of susceptibility

decreases. At a particular temperature, ferro magnetics become para
magnetics. This transition temperature is called curie temperature. For
example curie temperature of iron is about 1000 K.

3. When suspended freely in uniform magnetic field, they set
themselves parallel to the direction of magnetic field.

4. When placed in a non uniform magnetic field, they have a
tendency to move from the weaker part to the stronger part of the field.
They get strongly magnetised in the direction of the field.

Examples : Fe, Ni, Co and a number of their alloys.

10.11 Hysteresis

Consider an iron bar being
magnetised slowly by a magnetising field
H whose strength can be changed. It is
found that the magnetic induction B
inside  the material increases with the
strength of the magnetising field and
then attains a saturated level. This is
depicted by the path OP in the

Fig. 10.22.

If the magnetising field is now
decreased slowly, then magnetic
induction also decreases but it does not follow the path PO. Instead,
when H = 0, B has non zero value equal to OQ. This implies that some

Fig. 10.22 Hysteresis loop
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magnetism is left in the specimen. The value of magnetic induction of a
substance, when the magnetising field is reduced to zero, is called
remanance or residual magnetic induction of the material. OQ represents
the residual magnetism of the material. Now, if we apply the magnetising
field in the reverse direction, the magnetic induction decreases along QR
till it becomes zero at R. Thus to reduce the residual magnetism (remanent
magnetism) to zero, we have to apply a magnetising field OR in the
opposite direction.

The value of the magnetising field H which has to be applied to the
magnetic material in the reverse direction so as to reduce its residual
magnetism to zero is called its coercivity.

When the strength of the magnetising field H is further increased
in the reverse direction, the magnetic induction increases along RS till
it acquires saturation at a point S (points P and S are symmetrical). If
we now again change the direction of the field, the magnetic induction
follows the path STUP. This closed curve PQRSTUP is called the ‘hysteresis
loop’ and it represents a cycle of magnetisation. The word ‘hysteresis’
literally means lagging behind. We have seen that magnetic induction
B lags behind the magnetising field H in a cycle of magnetisation. This
phenomenon of lagging of magnetic induction behind the magnetising field
is called hysteresis.

Hysteresis loss

In the process of magnetisation of a ferromagnetic substance
through a cycle, there is expenditure of energy. The energy spent in
magnetising a specimen is not recoverable and there occurs a loss of
energy in the form of heat. This is so because, during a cycle of
magnetisation, the molecular magnets in the specimen are oriented and
reoriented a number of times. This molecular motion results in the
production of heat. It has been found that loss of heat energy per unit
volume of the specimen in each cycle of magnetisation is equal to the area
of the hysteresis loop.

The shape and size of the hysteresis loop is characteristic of each
material because of the differences in their retentivity, coercivity,
permeability, susceptibility and energy losses etc. By studying hysteresis
loops of various materials, one can select suitable materials for different
purposes.
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10.11.1 Uses of ferromagnetic materials

(i) Permanent magnets

The ideal material for making permanent magnets should possess
high retentivity (residual magnetism) and high coercivity so that the
magnetisation lasts for a longer time. Examples of such substances are
steel and alnico (an alloy of Al, Ni and Co).

(ii) Electromagnets

Material used for making an electro-
magnet has to undergo cyclic changes.
Therefore, the ideal material for making an
electromagnet has to be one which has the
least hysteresis loss. Moreover, the material
should attain high values of magnetic induction
B at low values of magnetising field H. Soft
iron is preferred for making electromagnets as
it has a thin hysteresis loop (Fig. 10.23) [small
area, therefore less hysteresis loss] and low
retentivity. It attains high values of B at low values
of magnetising field H.

(iii) Core of the transformer

A material used for making transformer core and choke is subjected
to cyclic changes very rapidly. Also, the material must have a large
value of magnetic induction B. Therefore, soft iron that has thin and tall
hysteresis loop is preferred. Some alloys with low hysteresis loss are:
radio-metals, pern-alloy and mumetal.

(iv) Magnetic tapes and memory store

Magnetisation of a magnet depends not only on the magnetising
field but also on the cycle of magnetisation it has undergone. Thus, the
value of magnetisation of the specimen is a record of the cycles of
magnetisation it has undergone. Therefore, such a system can act as a
device for storing memory.

Ferro magnetic materials are used for coating magnetic tapes in a
cassette player and for building a memory store in a modern computer.
Examples : Ferrites (Fe, Fe2O, MnFe2O4 etc.).

Fig. 10.23 Hysteresis
loop for steel
and soft iron
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Solved Problems

10.1 A short bar magnet is placed with its north pole pointing north.
The neutral point is 10 cm away from the centre of the magnet.
If B = 4 × 10−5 T, calculate the magnetic moment of the magnet.

Data : d = 10 × 10−2 m; B = 4 × 10−5 T; M = ?

Solution : When the north pole of a bar magnet points north, the
neutral points will lie on its equatorial line.

∴ The field at the neutral point on the equatorial line of  a short

bar magnet is, B = 34
o M

d

µ
π

∴  M = B × d3 × 10 7 = 4 × 10−5 (10 × 10−2)3 × 107

M = 0.4 A m2

10.2 A bar magnet is suspended horizontally by a torsionless wire in
magnetic meridian. In order to deflect the  magnet through 30o

from the magnetic meridian, the upper end of the wire has to
be rotated by 270o. Now this magnet is replaced by another
magnet. In order to deflect the second magnet through the
same angle from the magnetic meridian, the upper end of the
wire has to be rotated by 180o. What is the ratio of the magnetic
moments of the two bar magnets. (Hint : τ = Cθ)

Solution : Let C be the deflecting torque per unit twist and M1
and M2 be the magnetic moments of the two magnets.

The deflecting torque is τ = Cθ

The restoring torque is τ = MB sin θ

In equilibrium
deflecting torque = restoring torque

For the Magnet − I

C (270o − 30o) = M1 Bh sin θ ... (1)

For the magnet − II

C (180o − 30o) = M2 Bh sin θ ... (2)
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Dividing (1) by (2)

1

2

240 8
5150

o

o

M

M
= =

10.3 A short bar magnet of magnetic moment 5.25 × 10–2 A m2 is
placed with its axis perpendicular to the Earth’s field direction.
At what distance from the centre of the magnet on (i) its
equatorial line and (ii) its axial line, is the resultant field inclined
at 45o with the Earth’s field. Magnitude of the Earth’s field at
the place is 0.42 × 10–4 T.

Data : M = 5.25 × 10–2 A m–2

θ = 45o

Bh = 0.42 × 10–4 T
d = ?

Solution : From Tangent Law

θ=
h

B
Tan

B

B = Bh tan θ = 0.42 × 10–4 × tan 45o

B = 0.42 × 10–4 T

(i) For the point on the equatorial line

B = o
3

M
 

4 d
µ
π

d3 = o M
 

4 B
µ
π

d3 = 
-7 -2

-4

4  × 10  × 5.25 × 10
4  × 0.42 × 10

π
π

= 12.5 × 10-5 = 125 × 10-6

∴ d = 5 × 10–2 m

(ii) For the point on the axial line

B = 3

2M
 

4 d
oµ
π

 (or)  d3 = 
2M

 
4 B

oµ
π

d3 = 
7 -2

-4

4 10 2 × 5.25 × 10
 × 

4 0.42 × 10
π

π

−×

d3 = 250 × 10–6 = 2 × 125 × 10–6
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d = 21/3 . (5 × 10–2)

d = 6.3 × 10–2 m.

10.4 A bar magnet of mass 90 g has magnetic moment 3 A m2. If
the intensity of magnetisation of the magnet is 2.7 × 105 A m−

1, find the density of the material of the magnet.

Data : m = 90 × 10−3 kg; M = 3 A m2

I = 2.7 × 105 A m−1; ρ = ?

Solution : Intensity of magnetisation, I = 
M
V

But, volume V = ρ
m

∴ I = 
ρM

m

 ρ = 
5 32.7 10 90 10

 = 8100
3

Im
M

−× × ×
=

ρ = 8100 kg m−3

10.5 A magnetising field of 50 A m−1 produces a magnetic field of
induction 0.024 T in a bar of length 8 cm and area of cross
section 1.5 cm2. Calculate (i) the magnetic permeability (ii) the
magnetic susceptibility.

Data : H = 50 A m−1, B = 0.024 T = 2.4 × 10–2 T,
2l = 8 × 10−2 m, A = 1.5 x 10−4 m2 µ = ?; χm = ?

Solution : Permeability µ = 
2

4 12.4 10
4.8 10  

50
B

H m
H

−
− −×

= = ×

Susceptibility, χm = µr − 1 = 1
o

µ
µ

−

 χm = 
π

−

−
×

− =
×

4

7

4.8 10
1 381.16

4 10
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Self evaluation

(The questions and problems given in this self evaluation are only samples.
In the same way any question and problem could be framed from the text
matter. Students must be prepared to answer any question and problem
from the text matter, not only from the self evaluation.)

10.1 Two magnetic poles kept separated by a distance d in vacuum
experience a force of 10 N. The force they would experience
when kept inside a medium of relative permeability 2, separated
by the same distance is

(a) 20 N (b) 10 N

(c) 5 N (d) 40 N

10.2 The magnetic moment of a magnet  is 5 A m2. If the pole strength
is 25 A m, what is the length of the magnet?

(a) 10 cm (b) 20 cm

(c) 25 cm (d) 1.25 cm

10.3 A long magnetic needle of length 2l, magnetic moment M and pole
strength m is broken into two at the middle. The magnetic moment
and pole strength of each piece will be

(a) M, m (b) ,
2 2
M m

(c) M, 
2
m

(d) 
2
M

, m

10.4 Two short magnets have equal pole strengths but one is twice as
long as the other. The shorter magnet is placed 20 cm in tan A
position from the compass needle. The longer magnet must be
placed on the other side of the magnetometer for zero deflection
at a distance

(a) 20 cm (b) 20 (2)1/3 cm

(c) 20 (2)2/3 cm (d) 20 (2) cm



202

10.5 The direction of a magnet in tan B position of a deflection
magnetometer is

(a) North − South (b) East − West

(c) North − West (d) South  − West

10.6 The relative permeability of a specimen is 10001 and magnetising
field strength is 2500 A m-1. The intensity of magnetisation is

(a) 0.5 × 10–7 A m−1 (b) 2.5 × 10−7 A m−1

(c) 2.5 × 1.0+7 A m−1 (d) 2.5 × 10−1 A m−1

10.7 For which of the following substances, the magnetic susceptibility
is independent of temperature?

(a) diamagnetic

(b) paramagnetic

(c) ferromagnetic

(d) diamagnetic and paramagnetic

10.8 At curie point, a ferromagnetic material becomes

(a) non−magnetic (b) diamagnetic

(c) paramagnetic (d) strongly ferromagnetic

10.9 Electromagnets are made of soft iron because soft iron has

(a) low susceptibility and low retentivity

(b) high susceptibility and low retentivity

(c) high susceptibility and high retentivity

(d) low permeability and high retentivity

10.10 State Coulomb’s inverse square law.

10.11 Obtain the expressions for the magnetic induction at a point on
the (i) axial line and (ii) equatorial  line of a bar magnet.

10.12 Find the torque experienced by a magnetic needle in a uniform
magnetic field.

10.13 State and prove tangent law.
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10.14 What is tan A position? How will you set up the deflection
magnetometer in tan A position?

10.15 Explain the theory of tan A position. Explain how will you compare
the magnetic moments of two bar magnets in this position.

10.16 What is tan B position? How will you set up the deflection
magnetometer in tan B position?

10.17 Explain the theory of tan B position. Explain how will you compare
the magnetic moments of two bar magnets in this position.

10.18 Define the terms (i) magnetic permeability (ii) intensity of
magnetisation and (iii) magnetic susceptibility.

10.19 Distinguish between dia, para and ferro magnetic substances.
Give one example for each.

10.20 Explain the hysteresis cycle.

Problems

10.21 The force acting on each pole of a magnet placed in a uniform
magnetic induction of 5 × 10–4 T is 6 × 10−3 N. If the length of
the magnet is 8 cm, calculate the magnetic moment of the magnet.

10.22 Two magnetic poles, one of which is twice stronger than the
other, repel one another with a force of 2 × 10−5 N, when kept
seperated at a distance of 20 cm in air. Calculate the strength of
each pole.

10.23 Two like poles of unequal pole strength are placed 1 m apart. If
a pole of strength 4 A m is in equilibrium at a distance 0.2 m from
one of the poles, calculate the ratio of the pole strengths of the
two poles.

10.24 A magnet of pole strength 24.6 × 10−2 A m and length 10 cm is
placed at 30o with a magnetic field of 0.01 T. Find the torque
acting on the magnet.

10.25 The magnetic moment of a bar magnet of length 10 cm is
9.8 × 10−1 A m2. Calculate the magnetic field at a point on its
axis at a distance of 20 cm from its midpoint.
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10.26 Two mutually perpendicular lines are drawn on a table. Two
small magnets of magnetic moments 0.108 and 0.192 A m2

respectively are placed on these lines. If the distance of the point
of intersection of these lines is 30 cm and 40 cm respectively
from these magnets, find the resultant magnetic field at the point
of intersection.

10.27 The intensity of magnetisation of an iron bar of mass 72 g, density
7200 kg m−3 is 0.72 A m−1. Calculate the magnetic moment.

10.28 A magnet of volume 25 cm3 has a magnetic moment of
12.5 × 10−4 A m2. Calculate the intensity of magnetisation.

10.29 A magnetic intensity of 2 × 103 A/m produces a magnetic induction
of 4π Wb/m2 in a bar of iron. Calculate the relative permeability
and susceptibility.
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Answers

10.1 (a) 10.2 (b) 10.3 (d)

10.4 (b) 10.5 (b) 10.6 (c)

10.7 (a) 10.8 (c) 10.9 (b)

10.21 0.96 A m2 10.22 2 A m, 4 A m

10.23 1 :16 10.24 1.23 × 10–4 N m

10.25 2.787 × 10−5 T 10.26 10−6 T

10.27 7.2 × 10−6 A m2 10.28 50 A m−1

10.29 5000, 4999
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1 Declination

A vertical plane passing through the
axis of a freely suspended magnetic needle
is called magnetic meridian and the vertical
plane passing through the geographic north
- south direction (axis of rotation of Earth) is

called geographic meridian (Fig.).

In the Fig. 1 the plane PQRS represents
the magnetic meridian and the plane PQR ′S ′
represents the geographic meridian.

Declination at a place is defined as the
angle between magnetic meridian and the
geographic meridian at that place.

Determination of declination

A simple method of determining the geographical meridian at a
place is to erect a pole of 1 to 1.5 m height on the ground and a circle
is drawn with the pole O as centre and its height as radius as shown
in the Fig. 2.

Mark a point P1 on the circle before noon, when the tip of the
shadow of the pole just touches the circle.

Again mark a point P2 when the tip
of the shadow touches the circle in the
afternoon. The line POQ drawn bisecting
the angle P1OP2 is the geographical
meridian at that place.

Magnetic meridian is drawn by freely
suspending a magnetic needle provided
with two pins fixed vertically at its ends.

When the needle is at rest, draw a line
AB joining the tips of the two pins. The

magnetic needle is reversed upside down. Pins are fixed at the ends of
the needle. When the magnet is at rest, draw a line CD joining the tips of
pins. O is the point of intersection of AB and CD. The line RS bisecting
the angle BOD is the magnetic meridian at that place (Fig. 3).
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Fig. 1 Declination
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Fig. 2 Geographic Meridian
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Fig. 3 Magnetic meridian
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Now the angle between geographic
meridian PQ and the magnetic meridian RS
is the angle of declination θ (Fig. 4).

2 Dip

Dip is defined as the angle between the
direction of Earth’s magnetic field and the direction of horizontal component
of earths magentic field. It is the angle by which the total Earth’s magnetic
field dips or comes out of the horizontal plane. It is denoted by δ. The
value of dip varies from place to place. It is Oo along the equator and
90o at the poles. At Chennai the value of dip is about 9o7’.

At a place the value of dip is measured by
an instrument called dip circle.

Dip circle

A magnetic needle NS is pivoted at the
centre of a circular vertical scale V by means of
a horizontal rod. The needle is free to move
over this circular scale. The scale has four
segments and each segment is graduated from
0o to 90o such that it reads 0o - 0o along the
horizontal and 90o - 90o along the vertical. The
needle and the scale are enclosed in a
rectangular box A with glass window. The box is mounted on a vertical
pillar P on a horizontal base, which is provided with levelling screws.
The base has a circular scale graduated from 0o to 360o (FIg. 5). The box
can be rotated about a vertical axis and its position can be read on the
circular scale with the help of a vernier (not shown in the figure).

The levelling screws are adjusted such that the base is horizontal
and the scale inside the box is vertical. The box is rotated so that the
ends of the magnetic needle NS read 90o - 90o on the vertical scale.

The needle, in this position is along the vertical component of the
Earth’s field. The horizontal component of Earth’s field being
perpendicular to the plane, does not affect the needle. This shows that
the vertical scale and the needle are in a plane at right angles to the
magnetic meridian. Now the box is rotated through an angle of 90o with
the help of the horizontal circular scale. The magnetic needle comes
to rest exactly in the magnetic meridian. The reading of the magnetic
needle gives the angle of dip at that place.
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