Java Thin-Client Programming
for a Network Computing Environment

Jiirgen Friedrichs, Henri Jubin and The Jalapefio Team

International Technical Support Organization

http://www.redbooks.ibm.com

SG24-5115-00

International Technical Support Organization

Java Thin-Client Programming
for a Network Computing Environment

June 1998

SG24-5115-00

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special Notices” on page 307.

First Edition (June 1998)

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. DHHB Building 045 Internal Zip 2834

11400 Burnet Road

Austin, Texas 78758-3493

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

FIQUIES . . e iX
Tables. . . Xiii
Preface. XV
The Team That Wrote ThisBoOK i XV
Comments Welcome e XixX
Chapter 1. Introduction i 1
1.1 A Thin Client Application—The Lunar Medical Center Story 2
1.2 Aboutthe Book. 3
1.3 Structure of the BoOK 4
1.4 Who Should Read ThisBook 7
1.5 ASSUMPLIONS . .o 7
1.6 Howto Use This BOOK e 7
Chapter 2. Network Computing and Network Computers 9
2.1 What is Network Computing? 9

2.1.1 Network Computingldeals 10

2.1.2 Network Computing Reality 11
2.2 Problems with Network Computing. 12
2.3 The Network Computer (NC) 13

2.3.1 NC Objectives e e 15

2.3.2 NC Capabilities and Architecture 15

2.3.3 NC Product Example: The IBM Network Station 1000. 18
2.4 A Network Computing Strategy. 20
Chapter 3. Distributed Applications 23
3.1 The Monolithic, Nondistributed Alternative 23
3.2 ALoOK at SOMe ISSUES. vt 24
3.3 Considering Distributed Systems Design & Development Strategies . 28
3.4 INSUMMANY . ..o e 33
Chapter 4. HTML-Based Clients 35
4.1 Browsersand Web Servers i 36
4.2 HTML OVEIVIEW . . . ot e e e e e e 39

4.2.1 HTML Conformance i 39

4.2.2 Developing in HTML e 40

4.2.3 Simple Example 41

424 Formsand Tables. 42

4.2.5 To Validate or Not to Validate... 45
4.3 Client Intelligence - JavaScript. 46

© Copyright IBM Corp. 1998 i

iv

4.3.1 Simple JavaScriptExamples 48

4.3.2 Using JavaScript 50
Chapter 5. Java-Based Clients 55
5.1 ABriefOverviewofJdava 55
5.2 Client-Server ComputingwithJava. 60

5.2.1 Applets. ..o 61

5.2.2 SocketsinJdava 62

5.2.3 Accessing an HTTP ServerwithJava. 65

5.2.4 Object-Object Communication: Remote Method Invocation (RMI)66

5.2.5 Connecting to the Database: JDBC 66
5.3 The Lunar Medical Center’'s Java Application. 68
5.4 The Lunar Medical Center's Java Applet 73
5.5 Some Java Facilities Supporting Enterprise-Wide Network Computing76
5.6 [N SumMmMary e 78
Chapter 6. Design DeCiSiONS it e e e 79
6.1 Designing the Object Model for the Lunar Medical Center’s Systems . 79
6.2 Designing the Applications: Considering Alternatives. 82

6.2.1 Profiles Describing the Check-In Applet 83

6.2.2 Profiles Describing the Main Patient View/Edit Application 83

6.2.3 Profiles Considered but not Implemented 84

6.2.4 Additional Factors to be Considered. 85
6.3 The Lunar Medical Center Implementations 86

6.3.1 Nondistributed Full Application Basedon Files. 88

6.3.2 HTML Only at the Browser with a Servlet at the Server 89

6.3.3 HTML and JavaScript with HTTP toa Servlet. 90

6.3.4 Applet at the Browser with HTTP Connection to Java Servlet. . . 90

6.3.5 Applet with Direct JIDBC Connection. 91

6.3.6 Java Application Using JDBC Directly. 92

6.3.7 Full Application Using Sockets 93

6.3.8 Full Java Application UsingJava RMI. 94
6.4 IN SUMMAIYo e 95
Chapter 7. Java Servlets and HTTP Communication 97
7.1 Overview of the Hypertext Transfer Protocol and Request Methods . . 97

7.1.1 Protocol Steps o 98

7.1.2 HTTP Headers and Server Status Codes 100

7.1.3 Client RequestMethods 103
7.2 Common Gateway Interface. 106

7221 Using CGl. ... oo 106

7.2.2 ProblemswithCGIl 108
7.3 Java Servlets 109

7.3.1 Servlet RequirementsandUsage....................... 110

Java Thin-Client Programming for a Network Computing Environment

7.4 The LMC's HTTP/Servlet Implementation. 115

7.5 INSUMMANY . ..o 118
Chapter 8. Java Servers usingJDBC 119
8.1 Overview of IDBC 119
8.1.1 JDBC APIl. ... 120
8.1.2 JDBC/SQL Data Type Mappingcoviiiniuunn... 121
8.1.3 JDBC Database Drivers, 123
8.2 USINg IDBC i 126
8.3 The LMC’s JDBC Implementation. 128
Chapter 9. Java Servers and Socket Communication 137
9.1 Introductionto TCP/IP sockets. 137
9.2 SocketswithJdava 139
9.2.1 Compatibility of Different Socket Implementations 140
9.3 The LMC'’s Socket Implementation. 141
9.3.1 Implementing the SocketClient 141
9.3.2 Implementing the Socket Server. 143
9.4 INSUMMAIY . . oot e e 145
Chapter 10. Java Servers and RMI Communication.............. 147
10.1 RMI: An Easy Way to Implement Java Client/Server Applications. . 147
10.2 The RMI Architecture 147
10.2.1 Stub and Skeleton Layer 148
10.2.2 Remote Reference Layer 149
10.2.3 TransportLayer 149
10.2.4 RMI Method Invocation Mechanism 150
10.3 RMI from a Programmer’s Perspective. 150
10.3.1 ServerSide 151
10.3.2 Client Side oo 151
10.3.3 RMI Security Manager 154
10.3.4 RMIReQISIIY.o 154
10.3.5 Major RMIClassesot e 154
10.3.6 DevelopingwithRMI. 155
10.4 The LMC’'s RMI Implementation. 157
10.4.1 The RMI ServerInterface 157
10.4.2 The RMI ServerClassciiiiiiiinnen.. 158
10.4.3 The RMIClientClasst 160
10.5 SUMMaANY . .. e 161
Chapter 11. ClientDiets e 163
11.1 Lookingatthe Options i 163
11.1.1 The Compilerand ToOIS i 164
11.1.2 Packaging, Class Loading and Pre-Initialization 165

Vi

11.1.3 ObjectRecycling e 168

11.1.4 Garbage Collection. i 169
11.1.5 Optimizing Memory ACCESSES. ot it i i i e e e e e 171
11.1.6 Synchronization Overheads 172
11.1.7 ErrorHandling 174
11.1.8 Other Issues and Optimizations 175
11.2 INSUMMANY . . .o e e e e e e 175
Chapter 12. Tasty Additions 177
12.1 Introduction to SmartCards. i 177
12.1.1 The SmartCard File System 180
12.1.2 The OpenCard Framework 181
12.2 Sample SmartCard Application. 185
12.3 AccessingaSerial Port 187
12.3.1 X-10 Architecture and Protocols 188
12.3.2 Programming the X-10 CP290 Home Control Interface. 188
12.3.3 The Java Espresso Machine Example 189
Chapter 13. NC Deployment: Using IBM Network Stations 193
13.1 Introduction 193
13.2 Software Requirements 194
13.3 The Initialization Process i 194
13.3.1 The Power-On Self-Test. 196
13.3.2 Locatingthe Boot Server 196
13.3.3 Loadingthe Kernel 197
13.3.4 Initiate the Environment 198
13.4 IBM Network Station SetUp. 199
13.4.1 The NVRAM Setup Utility Panel 199
13.4.2 Set Network Parameters Panel. 201
13.4.3 Set the Boot Parameters Panel. 204
13.5 The IBM Network Station Manager. 206
13.6 The Configuration Files 208
13.6.1 The Configuration File Syntax. 209
13.6.2 System-Level ConfigurationFiles 209
13.6.3 Workstation-Level Configuration Files. 210
13.6.4 User-Level ConfigurationFiles 211
13.7 The Startup Files 212
13.8 The IBM Network Station User Services. 213
13.9 The IBM Network Station MessageLog 215
13.9.1 Local Session. 215
13.9.2 Allowing Remote Telnet Session 216
13.9.3 Remote Telnet Session 217
13.10 Accessingthe SerialPort 218

Java Thin-Client Programming for a Network Computing Environment

13.10.1 Allowing Access to the Serial Port 218

13.10.2 Initializing the Serial Port 219
13.11 Coming Soon: IBM Software Release 3 221
13.11.1 The Setup Utility Panel 221
13.11.2 IBM Network Station Manager 221
13.11.3 Java SUPPOrt 222
Chapter 14. Java in the IBM Network Station 223
14.1 Introduction 223
14.2 Java Virtual Machine 223
14.3 Memory Requirements 223
14.4 Java Settings 224
14.5 Running Java Programs in the IBM Network Station. 225
14.5.1 Adding a Java Applet Item to the Taskbar. 225
14.5.2 Adding a Java Application Item to the Taskbar............ 227
14.5.3 Autostarting Java Programs and Applets 229
14.6 Troubleshooting Java Execution Problems. 230
14.7 The eSuite 232
14.7.1 The WorkPlace. e 232
14.7.2 The Administrator. 233
14.7.3 AddingaJdava Applet 235
Appendix A. Brief HTML Reference 243
Al TopLevel Tags. . ..ot e e 243
A.2 Character Formatting Tags.« ot vt e 243
A.3 Block Formatting Tagsottt e 244
Ad Table Tags . . o 245
AL LISt TagS . . o oo 245
AB FOIMS TagS. . - oottt e e e e 246
A7 Miscellaneous Tags . ..ot v v ittt 248
Appendix B. Java Development: Using VisualAge for Java........ 251
B.1 The VisualAge Family. i 251
B.2 VisualAge for Java OVervieWt 252
B.3 Integrated Development Environment (IDE). 254
B.3.1 Java SUPPOrt.o 255
B.3.2 Navigating within VisualAgeforJava 258
B.3.3 How lItFits Together............ i, 266
B.3.4 Team Developmentc .. 289
B.3.5 Applet Viewer 292
B.3.6 Editor/Debugger/SmartGuides 294
B.3.7 Proxy Builder 302
B.4 Enterprise Access Builder (EAB) i 303
B.4.1 Data Access Builder (DAX).ot 303

Vii

viii

B.5 System Requirements.ttt 304

B.6 Summary. 305
Appendix C. Special Noticest 307
Appendix D. Related Publications.............................. 309
D.1 International Technical Support Organization Publications 309
D.2 Redbooks on CD-ROMS. it e e e e 309
D.3 Other Publications i 309
How To Get ITSO Redbooks 311
How IBM Employees Can Get ITSO Redbooks. 311
How Customers Can Get ITSO Redbooks. 312
IBM Redbook Order Form e 313
List of Abbreviations. 315
INdEX .. 317
ITSO Redbook Evaluation. 323

Java Thin-Client Programming for a Network Computing Environment

Figures

1. TheJalapefio Team. e e XVi
2. TheLunarMedical Center. 2
3. Network Computer Abstract Architecture. 17
4. The IBM Network Station. e 18
5. IBM Network Station Architecture 20
6. Server Clusters Can Cater for Performance Issues in a Transparent Way 25
7. A Failover Server Can Transparently Take Over from a Crashed Server . 25
8. Recovering from a Network Partition is a Difficult Task. 26
9. Distributed Administration is Vital for Large Distributed Systems 27
10. The Single Computer Image Concept 27
11. A Client Able to Deal with Multiple Versions 28
12. The Decomposition of a System into Distributed Cooperating Services . . 29
13. Clients and SErviCes 29
14. Isolating the Business Logic into Middleware 31
15. Using Wrappering to Incorporate Legacy Systems 32
16. Check-In Application Distribution. 35
17. General Architecture of Browsers and Web Servers. 38
18. Growing Architecture of Browsers and Web Servers. 39
19. Simple HTML Example e 42
20. HTML Form Example. 44
21. Simple JavaScript Example. 49
22. Intermediate JavaScript Example 50
23. JavaScript Instance Hierarchy 51
24. Intermediate JavaScript Example Using New Window 54
25. Java’s Architecture-Neutrality Arises from the Use of Bytecodes 56
26. The Simple Applet Running Inside a World Wide Web Browser........ 62
27. Servers Create Multiple Threads to Handle Multiple Clients 63
28. JDBC Provides a Uniform Interface to Proprietary Databases 67
29. Construction of the Initial Log-In Screen 69
30. Constructing the Main Patient Record View/Edit Screen. 70
31. Construction of the “Select History Entry” Screen 71
32. Construction of the “History Entry” Screen 72
33. Constructing Two Error/Warning Screens, 73
34. The Hospital Check-In Applet Running in the Applet Viewer. 74
35. Check-In Applet Displayed in VisualAge's Visual Composer. 75
36. Simple Object Model forthe LMC's Systems. 81
37. Profile for a Two-Tier Browser-Based Solution 83
38. Profiles for the Three-Tier Browser-Based Solutions. 83
39. Profiles Describing the Application-Based Alternatives. 84
40. Alternate Profiles Considered by the LMC's 84

© Copyright IBM Corp. 1998 iX

X

41.
42.
43.
44,
45,
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.

Representation for a Communicator Class and Mechanism 86
Alternative Plug-Ins 86
Factored, Nondistributed Application. 88
HTML, JavaScript POST Data to the Servlet through the Browser 89
HTML, JavaScript POST Data to the Servlet through the Browser 90
Applet POST Data through a Direct URL Connection to the Servlet. 91
Applet Using the Facilities Providedby JDBC 92
Application Using the Facilities Provided by JDBC 93
Application Using Sockets to Communicate with its Server. 94
Application Using Java RMI to Communicate with its Server 95
Simple Browser > Web Server > CGI Program >DBMS............. 106
Typical Web Server Servlet Administration Interface. 113
Output from the Servlet Shown in Client Browser 118
JDBC General Architecture 120
JDBC Driver Categories.ot e 124
DB2’'s JDBC "Applet Driver" Architecture. 125
DB2’'s JDBC Application Architecture, 126
Simple Object Model for the LMC’'s Systems. 129
Sequence of Interactions in Client/Server Socket Communication 139
Overview of the Socket Package. 141
An RMI-Based System. e 147
Remote Method Invocation Architecture 148
RMI Implementation. e i 149
RMI Programmer Viewpoint.ottt 151
Using Callbacks. 152
Generating Stub and Skeleton with IBM VisualAge for Java. 156
Starting the RMI Registry within IBM VisualAge forJava 157
Packaging an Applet for Efficient Download 166
Physical Properties of an ISO 7816 SmartCard. 177
Internal Structure ofa SmartCard, 178
Example of an ISO 7816-4 SmartCard File System 180
Architecture of the OpenCard Framework. 181
Class Hierarchy for the CardTerminal Component 182
Class Hierarchy for the Main CardAgent Objects 182
Class Hierarchy of the CardlO Component. 184
External Device Controlled by NC Using Serial Portand X-10 188
Initialization Process 195
IBM Network Station BootPanel 197
IBM Network Station, Loading the Kernel 198
IBM Network Station Password Panel. 200
IBM Network Station Administrator Setup Utility Panel 201
Set Network Parameters Panel Using with Network Option Selected . . . 202
Set Network Parameter Panel with NVRAM Option Selected 203

Java Thin-Client Programming for a Network Computing Environment

84. Set Boot Parameters Panel 204

85. The Network Station Manager. 207
86. The Console WIiNdow.t e 213
87. Setup Parameters Windowt 214
88. The Terminal ChooSer. e 215
89. Local Terminal 216
90. Allowing Access to the Message Log 217
91. Windows NT Telnet Sessiont 218
92. Allowing Serial ACCESS. . . .\ttt 219
93. Configuring the Serial Port. 220
94. Java Configuration. 225
95. Addinga Java Applet. 226
96. Multiple Applets Running on the IBM Network Station 227
97. Adding a Java Application 228
98. The Lunar Login Application in the Network Station 229
99. Java Error 231
100.Java EITOr . .o oo 231
101.JaVa EITOr . .o oo 232
102.The eSuite WorkPlace. i e 233
103.The eSuite WorkPlace Administrator 234
104.Task and CategoriesintheeSuite 234
105.Adding @ Category. . . . ot 237
106.Adding a Java Applet 238
107. Adding @ Task . . .ot 239
108.Associating a Task witha Group. o i 240
109.The Scribble Appletin the WorkPlace. 240
110.The Scribble Applet Running. 241
111.Starting IBM VisualAge for Java - Windows NT 4.0 Taskbar 259
112.Starting IBM VisualAge for Java - Quick Start. 260
113.IBM Visualage for Java - Workbench 260
114.Project, Package, Class, Method, and Runlcons. 262
115.I1BM VisualAge for Java - Workbench Window 262
116.I1BM VisualAge for Java - Class Hierarchy 263
117.1BM VisualAge for Java - Project Browser 264
118.IBM VisualAge for Java - Package Browser 265
119.IBM VisualAge for Java - Class Browser.covveiinnnn.. 266
120.Classand Bean. 267
121.JavaBeans - Classes, Properties, Methods and Events 268
122.Events and Actions between JavaBeans 269
123.Single Bean Versus Composite Bean. 269
124.Add Project SmartGuide 272
125.Add Package SmartGuide. 273
126.Add Class SmartGuide 274

Xi

127.I1BM VisualAge for Java - Visual Composition Editor. 275

128.0rder Entry Window Example. 276
129.Parts - List. . ..o 277
130.Labels . .. 277
131.Window Properties e 278
132.AlgN BULLONS oo 278
133.Test BUutton 279
134.CONNECHON . . .ot 280
135.C0NNECHON . . .ot 281
136.Designing ConnectionNSottt e 281
137.New Application Connections ottt 282
138.Add Method SmartGuide.t 284
139.Connections to Add Part/Quantityto List 285
140.Running the Application 286
141.The IBM VisualAge for Java Debugger - Source Window. 287
142.1BM VisualAge for Java - The Debugger. 287
143.The IBM VisualAge for Java Debugger - Variables. 288
144.Change Managementt 291
LA5 VEISIONING « .« . vttt e 291
146.Create Applet SmartGuide i 293
147 RUN Applet. . . 294
148.The IBM VisualAge for Java - Debugger. 298

Xii Java Thin-Client Programming for a Network Computing Environment

Tables

1. The IBM Network Station Series 1000 ataGlance.................. 19
2. JavaScriptand Java. 46
3. Browser/HTML Events and Associated JavaScript Event-Handlers 47
4. JDBC ResultSet getXX Method / SQL Data Type Matrix. 122
5. SSN - Social Security Number. i 129
6. Patient-PatientData. 129
7. History - Patient History Data. 130
8. Possibilities for Optimization 163
9. IBM Network Station Software Memory Requirements 224

© Copyright IBM Corp. 1998 Xiii

Xiv Java Thin-Client Programming for a Network Computing Environment

Preface

In an astonishingly short period of time, Java has emerged as a major force in
the computing landscape, both as a programming language for the '90s and
as a new platform for the development of heterogeneous network-centric
systems. Along with the rise of Java has come the idea of network computing.

This redbook looks at these two major forces by positioning network
computing within the enterprise and showing how Java can be used to build
sophisticated applications in the network computing arena. Using a scenario
centered around the Lunar Medical Center, this redbook shows how to design
and develop Java-based applications, applets and complete systems and
highlights many of the related issues and alternatives that must be examined
before an organization can feel “safe” with the new technologies.

Developing applications with Version 1.0 of IBM'’s versatile VisualAge for
Java Integrated Development Environment is the focus of this redbook. It will
help you install, tailor and configure the new IBM Network Station 1000 to run
Java-based applications and applets and show you how to work with the new
Lotus eSuite Java-based application on the Network Station.

The Team That Wrote This Book

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

© Copyright IBM Corp. 1998 XV

XVi

Figure 1. The Jalapefio Team

Figure 1 shows the team that worked on this book. Clockwise from top-left:
Gerardo Bazalar (Peru), Bob Brown (Australia), Jirgen Friedrichs (Germany),
Burkhard Volkemer (Germany), Jose Swanepoel (France), Henri Jubin
(France) and Dennis Remmer (Australia).

Jirgen Friedrichs is a project leader in the OO/AD group at the International
Technical Support Organization (ITSO), Austin Center. Before joining the
ITSO in 1997, Juergen worked in Technical Marketing Support for OS/2, Warp
Server and TCP/IP in Germany.

Henri Jubin is currently working for the International Technical Support
Organization (ITSO) in Austin, where he covers the area of Object Oriented
Technology. Henri has previously worked in various support and consulting
positions within IBM France. He has dealt with topics such as Object Oriented
Technology and OS/2.

The Jalapeno Team:

Bob Brown is a Principal Consultant with the Distributed Systems
Technology Centre (DSTC), based in Brisbane, Australia. He has been
associated with computers in various ways for 14 years. He has worked as a
computing researcher in the United Kingdom and as a lecturer in computing

Java Thin-Client Programming for a Network Computing Environment

throughout Asia. At the DSTC, Bob works on controlling technology transfer
from the centre to industry and is the manager controlling DSTC’s
relationship with IBM. Bob’s varied activities also include managing nodes on
the Australia-wide Asynchronous Transfer Mode-based Experimental
Broadband Network and presenting workshops on Java.

Dennis Remmer is a Principal Consultant with the Distributed Systems
Technology Centre (DSTC), based in Brisbane, Australia. He has over seven
years of experience in systems design, implementation and integration in the
areas of databases, geospatial information systems (GIS) and network
computing. He holds degrees in Computer Science and GIS from the
University of Queensland. Dennis has previously worked at Unisys
Corporation and ARC Systems, an Australian GIS company. His role with the
DSTC encompasses consultancy, software development, course
development, and instruction in network computing and distributed system
technologies.

Gerardo Bazalar is an IT Specialist in IBM of Peru. He has one year of
experience in electronic and network computing business. He holds a degree
in Information Engineering from the Catholic University of Peru. He is also a
professor in that university in the Compilers and Interpreters area. His areas
of expertise include software development, consultancy and emergent
technologies.

Burkhard Volkemer is a consultant for the IBM Global Services at the
department for telecommunication and media in Frankfurt/Germany. Before
joining IBM in 1996, he was working at the European center for particle
physics (CERN) in Geneva/Switzerland, where he earned his Ph.D. in
physics. In IBM Global Services, Dr. Volkemer has been working on the
analysis and design of telecommunication applications and their
implementation.

Jose Swaenepoel is a AS/400 System Engineer in France. He has worked
with customers and Business Partners since 1988. His skill areas include
Application Development, Performance tuning and communications. In
January 1998 he joined the IBM EMEA West Region AS/400 Java team. He
has previously written a book intended to Business Partners on
Communication APIs.

Thanks to the following people for their invaluable contributions to this
project:

Bob Maatta is a Senior Software Engineer from the United States at the
International Technical Support Organization, Rochester Center. He writes

XVii

extensively and teaches IBM classes worldwide on all areas of AS/400
client/server. Before joining the ITSO three years ago, he worked in the U.S.
AS/400 National Technical Support Center as a Consulting Market Support
Specialist. He has over 20 years of experience in the computer field and has
worked with all aspects of personal computers for the last 10 years.

Brian White Eagle is a software engineer in the Network Computer Division’s
Advanced Solutions Center from Austin, TX. His current responsibilities
include hardware and software enablement on the Network Station, which
includes smart cards on the Network Station 1000 using the OpenCard
Framework. He is a recent graduate from the Massachusetts Institute of
Technology with a Bachelor of Science in Computer Science and Electrical
Engineering.

Sandeep Singhal is a Research Staff Member with IBM's T.J. Watson
Research Center. Dr. Singhal's research focuses on network protocol design
and implementation for enabling high-performance applications such as
distributed multimedia, simulation, and virtual environments in heterogeneous
network and computing environments. His other interests include large-scale
software engineering and object-oriented design. His current work addresses
issues facing the implementation of client/server applications for “pervasive
computing” devices. His previous networking research has been adopted in
the “Tom Clancey’s Politika” video game shipped by Red Storm
Entertainment and in the DoD military simulation High-Level Architecture. Dr.
Singhal has served on DARPA Technical Advisory Boards and National
Research Council efforts to define the modeling and simulation research
agenda for the 21st century, Singhal earned his Ph.D in Computer Science
from Stanford University in 1996 and an M.S. in 1994. He earned a B.S. in
Computer Science, B.S. in Mathematical Sciences, and a B.A. in
Mathematics from Johns Hopkins University in 1992.

Chris Ritchie is a technical consultant for the Network Computer Division
Advanced Solution Center (ASC) in Austin, Texas. He has worked for IBM for
14 years and has experience in high performance graphics device driver
development, X Windows Server development, Xlib protocol transport
mechanisms, Microsoft Windows NT graphics device drivers, MPEG
hardware and software technology, Java integration support, and thin client
architecture. He is currently a member of the ASC SWAT team responsible
for pre-sales customer support and solution development.

Donna Van Fleet, Rebecca Austen, Lauren Kingman, Paul Buck, RG Keen

XViii Java Thin-Client Programming for a Network Computing Environment

Comments Welcome
Your comments are important to us!
We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

* Fax the evaluation form found in “ITSO Redbook Evaluation” on page 323
to the fax number shown on the form.

* Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users htt p: / / waw r edbooks. i bm com
For IBM Intranet users http://wB.itso.i bmcom

e Send us a note at the following address:

r edbook@s. i bm com

XiX

XX Java Thin-Client Programming for a Network Computing Environment

Chapter 1.

© Copyright IBM Corp. 1998

Introduction

Novus ordo seclorum, cum grano salis
— A new order of ages, with a grain of salt

Network computing, Java, the Internet, client/server, distributed systems, ad
infinitum—technologies and techniques that promise a new, cheaper, more
efficient and easier way of computing, that we must approach with caution
and understanding.

Java is a modern programming language that supports development and
deployment of network computing applications. There are literally hundreds
of books on Java, some specialized, many generic. Almost all neglect to
provide a sound basis for understanding the fundamentals of network
computing and the basic reasoning behind why you should use Java for
developing and deploying your applications. The focus ad nauseum has been
on language syntax, which is fine in isolation. Often missing are the
nontechnical issues, the helicopter view of the network computing domain
that makes it clear where to position Java, how to integrate it with existing
technologies, and what you need to consider to allow for a rapidly changing
future.

When a “normal” monolithic application runs on a computer, all the
components of the application work within the same memory space, and the
computer manages the interplay of program modules in a well-understood
and time-honored fashion.

Writing an application for a network computing environment involves the
factoring of the application’s functionality into components and with the
deployment of these components on devices that are most appropriate for
their requirements. An application deployed across multiple, (perhaps
geographically) separated systems is referred to as a distributed application.

Distribution brings with it a number of questions that must be answered
before the system can be fully implemented: how can the components of the
application communicate, interact with other programs, and make use of
external facilities? What are the new “rules” for developing applications for a
potentially unlimited number and class of users? How can the new failure
modes introduced by the distribution process be handled?

Java is still very young, but under the impetus of the Internet and the World
Wide Web, it is maturing rapidly. No programming language is perfect, and in
this regard, Java is certainly not unique! Java has a number of very good

points, and some that are currently the subject of some debate. As a modern
language designed from the ground-up to be an object-oriented language for
network computing, it does represent a powerful weapon in the armory of the
distributed systems warrior.

The Network Computer (NC) is another arrow in the quiver for all those who
are charged with building complex, enterprise-wide systems. It offers a
powerful, lower-cost alternative to today’'s networked desktop hardware. Even
more importantly, the network computer in its various guises represents
choice and freedom: system designers are now free to choose their hardware
and software systems according to the idea of fitness for use, rather than
attempting to mould and shoehorn inappropriate devices into their designs.

Predicting the future is always a risky proposition, but one thing seems clear:
both Java and the idea of network computing are now here to stay. We hope
this book will help you find your way through the battlefield.

1.1 A Thin Client Application—The Lunar Medical Center Story

2

To illustrate the techniques and technologies discussed in this book, gaze
into the proverbial crystal ball, and imagine a future moonbase medical
center—The Lunar Medical Center (LMC)—which needs to provide services
to the lunar community.

Lunar Medical
Center

Figure 2. The Lunar Medical Center

Java Thin-Client Programming for a Network Computing Environment

The LMC system designers have chosen to adopt a network computing
strategy and need to implement numerous applications—administrative,
device-monitoring, public access, and so forth—using a network
computing-centric programming language. Having conducted a
comprehensive study of the technology options, Java has emerged as the
only serious contender for the job.

In the LMC’s medical departments, access terminals are expected to support
work 656.7 hours a day, 365 days a year and allow for easy replacement in
case of failure. The Network Computer is the solution chosen by the Lunar
Medical Center.

Because many people have to share information, the data must be stored on
a system that can be accessed by multiple departments. Java provides
several communication and access solutions, such as Java Data Base
Connectivity (JDBC), Sockets, and Remote Method Invocation (RMI). It is up
to the LMC designers to investigate the pros and cons of each method and to
determine the most appropriate solution for their needs. To achieve this goal,
they have chosen to prototype two aspects of the LMC system—the patient
check-in facility and the patient record view/edit facility—using the various
options available to them.

1.2 About the Book

This book is about developing thin-client Java applications for a network
computing environment, such as your local network, whole enterprise, or
even the Internet. Thin-client is a technique that, among other things,
attempts to minimize the resource requirements of the application at the
desktop. Thin-client computing aims to help you to build a system that doesn’t
require a system configuration that NASA would be proud of!

This book’s intention is to furnish Java knowledge with a foundation in
network computing. In the chapters that follow, you will gain a clear
understanding of network computing, the features and issues related to
distributed systems, the role of Java as one of the key technologies in this
domain, and developing distributed client/server applications with Java. The
focus is on architecting thin-client 100 percent pure Java applications by
example, both generically and through a packaged Java development
environment: IBM’s VisualAge for Java.

Several different communication mechanisms for implementing a distributed
Java application are considered; Hypertext Transfer Protocol (HTTP),
Remote Method Invocation (RMI), Sockets, and Java Data Base Connectivity

Introduction 3

(JDBC). The new class of Java-centric network computing desktop
devices—the Network Computer (NC), in particular—is discussed, along with
the nature of these devices, and the issues associated with deployment of
Java applications for such technology. IBM’s Network Station is presented as
a NC case study.

This book, in combination with some Java language reference documentation
such as that provided in the Java Development Toolkit (JDK) electronic
document set, will give you the knowledge required to implement thin-client,
distributed Java applications and to be able to put what you’ve created in
context.

1.3 Structure of the Book

Chapter 1, Introduction

This chapter is the introduction and highlights the remaining chapters in this
book.

Chapter 2, Network Computing and Network Computers

This chapter positions Java and Network Computers (NCs) within the broader
framework of network computing, by discussing what network computing is,
its implications, benefits and problems, along with an overview of the Network
Computer Technical Standard, NC products, variations, and usage.

Chapter 3, Distributed Applications

This chapter looks at some of the various issues associated with the
development of systems based on the network computing paradigm. It also
examines the features and facilities of Java that make it such an excellent
platform for the development of distributed systems.

Chapter 4, HTML-Based Clients

This chapter investigates the implementation of simple client applications
using HTML and JavaScript. This facilitates using browsers as the data entry
interface, as they are readily and inexpensively available and deployable.

Chapter 5, Java-Based Clients

This chapter has three aims. The first is to introduce Java and take a brief
look at its features and facilities.

4 Java Thin-Client Programming for a Network Computing Environment

A second aim is to introduce the Java-based LMC patient record retrieval and
update application that is used as the vehicle for discussion in the remainder
of the book.

The final aim of the chapter is to provide a short overview of some Java
facilities supporting enterprise-wide network computing—the “ecology” of
Java: its features, properties and related technologies.

Chapter 6, Design Decisions

This chapter looks at the design of the object model underlying many of the
applications and also examines how the LMC'’s network designers
investigated the various network architectures and technologies to see which
were most appropriate for their environment.

Chapter 7, Java Servlets and HTTP Communication

Chapter 4 examined the implementation of very thin clients using HTML and
JavaScript. Chapter 5 examined a Java Applet implementation of the same
client application. This chapter examines the corresponding server
application for the clients, which takes the syntactically valid data from the
client, stores it to our chosen storage mechanism (either the filing system or a
database), and provides some feedback to the browser.

Chapter 8, Java Servers using JDBC

This chapter introduces Java Database Connectivity (JDBC), the Java API for
standardized SQL-based database access. JDBC provides a uniform
interface to a wide range of database systems and a common foundation on
which higher-level tools and interfaces can be built. Java-based middleware
services that utilize the powerful data storage and retrieval facilities of
database systems can be developed for our distributed applications.

Chapter 9, Java Servers and Socket Communication

This chapter deals with methods available in Java to slice monolithic
applications into functional units which communicate through a network, thus
making it a distributed application. The chapter introduces the Internet
Protocol (IP) and its APl using sockets. Sockets provide the functionality to
transport data blocks or data streams over the network and thus represent a
very elementary service for distributed computing.

Chapter 10, Java Servers and RMI Communication

Introduction 5

This chapter introduces Remote Method Invocation (RMI). As its name
suggests, this technique offers a way to invoke Java methods remotely. Using
RMI allows development of easily distributed applications that can execute
and communicate on multiple systems on the network.

Chapter 11, Client Diets

This chapter examines techniques and issues that need to be considered in
order to produce optimized code—both in terms of speed and size—to
maximize the “thinness” of Java solutions and to ensure that they make best
use of the available resources.

Chapter 12, Tasty Additions

This chapter introduces Java programming for accessing smart cards and the
serial port on the Network Computer.

Chapter 13, NC Deployment: Using IBM Network Stations

This chapter analyzes the IBM Network Station as an NC solution in the
Network Computing world and investigates how it should be configured for
commercial use. Performance tips and techniques are also provided.

Chapter 14, Java in the IBM Network Station

This chapter discusses how to successfully run Java in an NC, using the IBM
Network Station as an example, along with some tips and techniques for
avoiding problems.

Appendix A, Brief HTML Reference

This appendix provides an overview of some of the more important HTML
tags used in the book.

Appendix B, Java Development: Using VisualAge for Java

Appendix A is a useful introduction to VisualAge for Java. It covers the
VisualAge family, an overview of VisualAge Java, the Integrated Development
Environment (IDE) and the Enterprise Access Builders (EAB). The chapter
discusses various processes and windows that are used in the development
of windows and applications using VisualAge for Java. A self study example
is furnished as an exercise.

6 Java Thin-Client Programming for a Network Computing Environment

1.4 Who Should Read This Book

This book should prove an excellent resource for many information
technology professionals, including programmers, architects, consultants,
system administrators, and others. It is meant for those wanting a solid
grounding in Java for network computing applications.

Anyone developing software for the Internet and the World Wide Web, for
their enterprise networks (or intranets), or for any networking situation will
find the material timely and relevant.

Although the discussion is centered on Java and the network computer, the
fundamental concepts are applicable to any modern distributed system
programming language and associated technology. The book collects a wide
body of knowledge and presents it in a cohesive and realistic manner.

1.5 Assumptions

This book assumes a basic knowledge of the Java language, HTML,
object-orientation, and window-based GUI concepts.

Although the book provides a case study in Java development using an
integrated development package, any other package, or indeed Version 1.1
of the “vanilla” Java Development Toolkit, may be utilized. The book does not
provide a detailed syntax of commands, JDK classes and methods; so the
reader will find a Java reference very useful. Many reference books exist, but
the online documentation is perfectly adequate.

1.6 How to Use This Book

This book is not intended to be read in a linear fashion. It is anticipated that
the reader will find certain chapters more relevant to their work than others
and thus may want to “dip into” the book in their own order.

Readers are recommended to read this chapter, and especially Section 1.1,
“A Thin Client Application—The Lunar Medical Center Story” on page 2. This
will provide the background that ties many of the chapters together.

Certain groupings of chapters may suggest themselves, however.

Readers new to network computing should first read Chapter 2, to establish a
“feel” for the area. Section 5.2, “Client-Server Computing with Java” on page
60, also provides a useful starting point.

Introduction 7

Readers charged with implementing Java-based, network-aware systems
should read Chapter 3 through Chapter 10. Chapter 6 also covers the design
of applications for a network computing-based enterprise.

The details of programming for the IBM Network Station are examined in
Chapter 2, and Chapter 12 to Chapter 14. Chapter 9 also contains a relevant
discussion. Chapter 14 looks at the new Lotus eSuite Java-based software
suite for the Network Station. Programmers of the Network Station should
also examine Chapter 11, which looks at how to optimize code to achieve
peak performance.

8 Java Thin-Client Programming for a Network Computing Environment

Chapter 2. Network Computing and Network Computers

It is very important to differentiate network computing from Network Computers. The
latter is a class of computing devices specified by The Open Group that have
emerged on the market in recent years, attracting much of the media
attention and therefore a place in the hearts and minds of the IT community.
Network computing has a more fundamental reason for existing than to
simply replace the “standard” desktop PC or workstation. It is a much broader
space, encompassing techniques and technologies for development and
deployment of information, systems and applications for a network of users.

This chapter positions Network Computers (NCs) within the broader
framework of network computing by discussing what network computing is, its
implications, benefits and problems, and provides an overview of the Network
Computer Technical Standard, NC products, variations, and usage.

2.1 What is Network Computing?

For a start, network computing is nothing fundamentally new. By definition, a
network of computers is two or more computers connected in such a way as
to be able to share information and resources; hence network computing is
computing that uses the resources and facilities of the network. We have
been able to construct networks of computers to facilitate such sharing for
many years; however, in architecting such networks we’ve had to cater to the
specific flavors of technology provided by the vendors, and in doing so limit
our scope, ease of integration and capacity for change and choice.

—— The Earliest Thin Client?

Jan 1940: At Bell Labs, Samuel Williams and George Stibitz complete the
“Model | Relay Calculator”. Rather than requiring users to come to the
machine to use it, the calculator (acting as a server) is provided with three
remote keyboards, at various places in the building, in the form of teletypes
(acting as thin clients). Only one can be used at a time, and the output is
automatically displayed on the same one. In September 1940, a teletype is
set up at a mathematical conference in Hanover, New Hampshire, with a
connection to New York, and those attending the conference can use the
machine remotely. Extract from “A Chronology of Digital Computing
Machines (to 1952)”, maintained by Mark Brader at:

http: // waw best . cond ~wi | son/ f ag/ chr ono. ht m

© Copyright IBM Corp. 1998 9

Network computing effectively started with mainframes, which utilized
non-programmable display-only terminals, a server-centric processing
environment, centralized systems management, and proprietary applications
highly dependent on the operating and physical system specifics.

With the advent of more powerful devices such as PCs, Macintosh, and
workstations, users became empowered with powerful computational devices
and display technology. Systems management was decentralized, and
specific servers were deployed in proprietary networks.

There are pros and cons associated with each of these. Although
decentralizing systems management allows for contained local networks with
devices more self-manageable by their users, administration costs increase
dramatically, and security and control decreases over installed software and
configuration. Use of proprietary networks and applications increases the risk
and cost when the need to change arises.

Modern network computing has the potential to deliver a great deal,
employing increasingly universal interfaces such as browsers, simplified and
standardized access, system-independent development languages,
middleware to manage distribution, and centralized systems management.

Directly or indirectly, computing is now a fundamental part of daily life. The
technology has become exponentially more capable, and the social and
commercial benefits of accessing and sharing information are being realized.
The IT market is maturing from the specialized industry it once was in order to
provide services and systems as general commodities. The focus is on the
information; therefore, the technologies required to facilitate our access and
sharing must work well and, in most cases, be hidden from the user. The key
is hiding complexity while providing performance, functionality and
integration, all at low cost.

2.1.1 Network Computing Ideals

10

In network computing Shangri-La (a remote, beautiful, imaginary place where
life approaches perfection):

* We connect using widely accepted and standardized network protocols
and services.

* We use well-defined and trusted industry standards.

* We can easily and effectively distribute our resources, data, functions, and
processing.

* We partition and deploy our application functionality where appropriate
(thin clients, servers, application services, and so forth.).

Java Thin-Client Programming for a Network Computing Environment

Our applications are distributed, object-oriented, component-based,
designed with user profiles in mind, and architecturally neutral.

We have cost-effective graphical devices for our users and
performance-rich server devices to do the hard work.

Users can access and share data and applications transparently and
irrespective of geographical location.

We deploy our information using widely accepted and standardized data
formats.

Our environment is secure and well-managed.

The combined environment is at the user’s or system'’s disposal as if it
were a single computer (“the network is the computer”).

We can interchange devices and software services seamlessly.

We support growth and a changing future.

For most users, network computing must be at least as robust as traditional
computing. Unfortunately, we're not there yet, and it's not that easy.

2.1.2 Network Computing Reality

In the last fifteen years or so, several key developments have supported the
growing reality of network computing through:

Adoption of key communication protocols and standards (such as TCP/IP
and HTTP), and data format standards (such as HTML).

Methodologies and technologies to support distribution of applications
(such as remote procedure calls - RPCs, and distributed objects).

Programming languages supporting development of applications for a
heterogeneous hardware and network environment (such as Java).

Vendor collaboration, cooperation-operation and consolidation, often
under the aegis of industry standards bodies and consortia (such as the
International Standards Organization - ISO, The Open Group, and the
Object Management Group - OMG).

The massive uptake of computing by the general population due to
simplification of interface and access, increasing power and range of
available hardware and software, and reduction in cost.

A corresponding need to better manage this newly empowered user base,
to reduce total cost of ownership and improve resource utilization.

Underlying the adoption of network computing are the recent developments in
high-speed networking technologies such as Asynchronous Transfer Mode

Network Computing and Network Computers 11

(ATM) and GigaBit Ethernet. It is now possible to effectively centralize
resources that previously needed to be distributed simply for performance
reasons. The increased reliability of today’s networks also makes possible
the centralized management of geographically distributed systems.

Centralization of resources and their management is one reason why the
network computing model is claimed to have a lower total cost of ownership
than previous networking schemes that have been used. Other benefits also
accrue: centralized applications can be rolled out throughout an organization
much faster by fewer staff than would otherwise be the case, and reliability is
also much greater. In addition, it becomes easy to implement an
enterprise-wide security scheme (perhaps based on the use of SmartCards),
a very difficult task in the best of circumstances.

A further major factor is leading us to consider network computing and its
associated ideas: dissatisfaction with the resource requirements and stability
of today’s software and operating systems. There is growing evidence that
today’s enterprise systems (populated as they are by powerful,
general-purpose computers) may not be able to successfully scale to meet
the demands being placed upon them. Because of this, architects are
beginning to look long and hard at the idea of fithess for purpose. Instead of
employing general-purpose devices that are under-used, costly and
potentially unstable, network computing promises to allow an architect to
choose a more specialized device appropriate for the task at hand.

Although we are still quite a long way from Shangri-La, the phenomenal
growth of the Internet is spurring the adoption of network-ready and mobile
systems and is also acting as a breeding ground for the required developer
skills. The network is now firmly embedded in the popular psyche.

2.2 Problems with Network Computing

12

The complexities involved with any environment incorporating multiple flavors
of hardware, operating system, and network infrastructure are a significant
concern and not easily dealt with:

« How to transact, schedule, audit, and synchronize tasks in an environment
with any number of different states?

« How does an application or system tell the difference between a resource
that is not responding because it is being heavily used and a resource that
doesn’t respond because it has failed or is unavailable?

« How to manage byte-ordering and data format differences between
systems?

Java Thin-Client Programming for a Network Computing Environment

« How can the user maintain productivity when the server or network goes
down?

* How to control and manage distributed resources effectively?

« How to technically implement the organizational security requirements in
the system, such as authentication, authorization, encryption, and so on?

¢ In addressing these and other problems, how can complexities be kept
transparent to the user or system?

— Note

The ideal distributed or networked system hides complexity by keeping
data-handling, location, failure management and so on, transparent to the
user or system. There is a set of transparencies specified by ISO, known
as the Reference Model for Open Distributed Processing (RM-ODP), which
define the ideal distributed system characteristics. RM-ODP is a useful
metric for evaluating middleware and network computing technologies.

Middleware is the layer of technology that sits above the physical. It manages
many of the aforementioned issues by providing standardized services and
interfaces to the applications, and is a crucial component in the architecture
of a network computing environment. Chapter 3, “Distributed Applications” on
page 23, covers middleware and distributing applications in much more
detail.

New strategies and skills are required. The developer experience necessary
to engineer “thin” or network-based client/server applications has been
lacking. Developing applications for a network computing environment
requires a fundamental understanding of the benefits, problems, options, and
techniques associated with this new paradigm. Network computing is
massively challenging for IT businesses and their models of commerce and
operation.

2.3 The Network Computer (NC)

The Network Computer is an end-user display device with computational
ability, specifically designed for a network computing environment, supporting
(at least) a standard profile of features. The NC is more than a terminal due to
its processing ability, but is currently less capable than a PC or workstation. It
is a low-cost hybrid, built from the ground-up with the network and a class of
applications in mind. One of the key characteristics of network computing is
that most application and system resources are located on servers in the

Network Computing and Network Computers 13

network; so NCs are often called “thin clients”. The resources needed to
support client-side application components are significantly less than if the
application was “monolithic” and required a self-contained, full system.

NCs are currently finding a place as a niche device class in the corporate
market and they show potential in the entry-level Internet market. They
potentially span a range of devices from simple palmtop organizers through
specialized “executive” terminals for call-center applications incorporating
telephones and simple processing capabilities, to powerful general-purpose
desktop devices. NCs provide a clear upgrade path for current users of
non-programmable terminals, a capable option where PCs and workstations
are overkill, and can coexist-exist with devices currently in use, such as PCs.
Determining correct role requires defining user types and function, careful
design and consideration of the applications, data-handling, security, and
management.

It is important to remember that NCs are not necessarily applicable (at least
currently) to all situations, such as:

« Tasks where data processing is highly disk or CPU-intensive, such as
image processing

 Situations where data sets may be very large and thus the requisite
network support may be prohibitively expensive or difficult to provide, such
as multimedia development

¢ A security environment where stations require isolation

« Situations requiring specific applications not available for Network
Computer hardware

 Situations requiring specific hardware not available for the NC

 Situations where stations are mobile and likely to be frequently
disconnected from a supporting network for substantial periods of time

The Open Group Network Computer Technical Standard (see http://

vy opengr oup. or g/ onl i nepubs/ 9627999/ t oc. ht) defines the minimum set of
requirements that must be met by a product in order for that product to
conform to an Open Network Computer Product Standard.

The Open Group is a leading vendor-neutral, international consortium for
buyers and suppliers of technology. Formed in 1996 by the merger of the
X/Open Company Ltd. (founded in 1984) and the Open Software Foundation
(OSF, founded in 1988), The Open Group is supported by most of the world's
largest user organizations, information systems vendors, and software
suppliers. Its activities and output include open systems specifications, a

14 Java Thin-Client Programming for a Network Computing Environment

branding scheme, collaborative technology development and advanced
research, and assisting user organizations, vendors, and suppliers in the
development and implementation of products supporting the adoption and
proliferation of systems that conform to standard specifications.

2.3.1 NC Objectives
The NC provides an architecturally neutral application framework with the
ability to launch applications from any server. NCs are appropriate devices for
deployment of “thin” client applications.
The direct objectives of the NC standard are:
« Facilitate a broad application base
« Encourage interoperability
« Provide for simple and unified systems administration
* End-user ease of use

« Lower the total cost of ownership for desktop computing devices

Indirectly, the Standard:

« Provides a common foundation of popular and widely used features and
functions

« Provides guidelines to content and service providers
« Does not specify implementation of compliant devices

« Does not preclude additional features outside the scope of the standard

2.3.2 NC Capabilities and Architecture

The Technical Standard specifies the basic capabilities of a Network
Computer, shown in Figure 3 below. The four main functional requirements
are:

* Provide a user interface with a minimum set of characteristics:

e Support a text input mechanism (note that the standard does not
specify a keyboard)

e Support a pointing capacity (note that the standard does not specify a
mouse)

« Display with a resolution of at least 640x480 pixels, or equivalent
(including NTSC, PAL and SECAM television display resolutions)

¢ Audio output

Network Computing and Network Computers 15

¢ Process incoming and outgoing resources using the Uniform Resource
Locator (URL) scheme:

e Support the HyperText Transfer Protocol (HTTP) and Secure HTTP
(HTTPS) schemes transmitted using the Transmission Control Protocol
(TCP) over Internet Protocol (IP) -based networks

¢ Be able to send e-mail using the Simple Mail Transfer Protocol
(SMTP), supporting Multipurpose Internet Mail Extensions (MIME), and
conforming, to Internet Engineering Task Force (IETF) mail format
standards.

« Optionally support file transfer using the File Transfer Protocol (FTP)
« Optionally support terminal sessions using Telnet
» Process and present resources:
e Support character set encoding
e Support Text and HyperText Markup Language (HTML)
e Support Graphics Interchange Format (GIF) and JPEG images
e Support Sun Audio and Microsoft Waveform audio formats
» Execute Java:
« Java Virtual Machine (JVM)
 Java class libraries

*« JDK 1.1 base conformance

16 Java Thin-Client Programming for a Network Computing Environment

Provide a User Interface I

Figure 3. Network Computer Abstract Architecture

The physical architecture of NCs vary from vendor to vendor. Supporting the
specification is possible in many ways. Some technologies and initiatives that
are emerging in the marketplace include:

* Many different CPU architectures
e Java chips

 Lightweight NC operating systems (NCOS), downloaded from the server
at start-up or booted from ROM

 Various lightweight desktop environments

¢ Various authentication and user preference mechanisms, such as
SmartCards and server profiling. An extension to the NC standard, the
OpenCard smart card initiative, is discussed in Part 12.2, “Sample
SmartCard Application” on page 185.

e Caching mechanisms using extra memory, disk, flashROM or some other
technology

« Tuned software kits that allow legacy machines (such as 386 PCs) to be
resurrected as NCs

Different types of NCs exist in the marketplace, and are planned for release,
including:

Network Computing and Network Computers 17

« Pure NCs—devices created from the ground up to support the NC
Technical Standard. Currently, the devices typically boot a modified
lightweight operating system from an appropriate server and download
their JVM and class libraries. Second-generation devices may implement
their Java requirements in hardware or ROM.

« Enhanced (or Hybrid) Terminals—typically (based on) X-terminals whose
local operating systems have been improved to include a Java Virtual
Machine. The IBM Network Station falls into this category.

* Net-PCs and Windows Based Terminals (WBTs)—effectively PCs running
Windows and leveraging Java, supporting centralized “Zero”
administration

« Internet Access Devices (IADs) and Set-Top Boxes (STBs)—devices that
connect to television systems and provide access to the Internet through
built-in Web browsers

« Personal Digital Assistants—hand-held devices that rely on a wireless or
wired network environment

« Intelligent Telephones—devices that combine executive telephones with
network access

2.3.3 NC Product Example: The IBM Network Station 1000

18

The IBM Network Station series traces its evolutionary line back to X-terminal
technology and is designed to provide an upgrade path for existing terminal
users to support modern network computing capabilities.

Figure 4. The IBM Network Station

The Network Station is an example of a hybrid NC, which combines
traditional support for terminal and display protocols, such as X (using either
a built-in Window Manager or one deployed on the host system), VT320,

Java Thin-Client Programming for a Network Computing Environment

3270 and 5250, with the ability to execute native Java. Windows applications
are supported through Windows-terminal-type functionality, using WinCenter

or something like it.

Table 1. The IBM Network Station Series 1000 at a Glance

Connection support

Ethernet, Token-Ring

Terminal support

3270

5250

VT320
X-Windows server

Java Virtual Machine

Version 1.1.4

Web browser

Multiple supported

Windows applications

Through multiuser implementations of Windows NT
on a PC Server

Memory 32 MB EDO (base) expandable to 64 MB

2 SIMM Sockets

Optional 512 KB SRAM cache memory
Connectivity Ethernet 10/100 Mb or Token-Ring 4/16 Mb
1/O Ports One serial, one parallel

Video support

Minimum: 640x480 VGA
Maximum: 1600x1280 SXGA
2 MB (base) VRAM

Monitor support

Video graphics array (VGA)
Super video graphics array (SVGA)
Super extended graphics array (SXGA)

Smart card support

T=1 hardware support

Input devices

102-key PC keyboard, two-button mouse

Audio support

16-bit audio

Physical specifications

System unit, excluding base:
Height: 243.0mm (9.56 inches)
Depth: 292.0mm (11.5 inches)
Width: 50.8mm (2.0 inches)
Weight: 1.45kg (3.2 Ibs.)

Power consumption: 40 watts max.

The IBM Network Station kernel is a cut-down version of the Berkeley UNIX
operating system that fits into less than 2 MB. This kernel provides an

Network Computing and Network Computers 19

operating system and hardware access for the application software. Figure 5
illustrates the general architecture of the Network Station.

Java
Applications

Application Support Environment
Networking, Window/Task Management, Hardware Interfaces

Figure 5. IBM Network Station Architecture

2.4 A Network Computing Strategy

Given that the world is moving increasingly towards network computing as a
way of working, and given that the underlying technology changes on a
regular basis, what is the best way to move forward?

 Fitness for purpose is the key philosophy, and network computing
suggests that supporting mixed-technologies for different users and tasks
is possible, based on careful planning and cost analysis.

e Centralized systems management is a good idea for the enterprise.

« For solutions to become decreasingly dependent on physical system
specifics and increasingly dependent on a robust network computing
environment, we need to be cognizant of standards. Vendors should
support standards.

e Supporting the ideals of the NC Technical Standard has merit because the
technologies required for conformance are in wide use and are increasing
exponentially as the Internet grows.

20 Java Thin-Client Programming for a Network Computing Environment

* Any NC device must meet the needs of the business and enterprise and
must be deployed based on a clear understanding of user function.

« Java directly supports the development of network computing
applications. NCs are a device class that inherently support Java.

Network Computing and Network Computers 21

22 Java Thin-Client Programming for a Network Computing Environment

Chapter 3. Distributed Applications

In common with their competitors, the Lunar Medical Center is facing
increasing interplanetary competition, market dynamics, shortening product
life-cycles, and the ever-increasing pace of technological change. These
forces are putting increasing pressure on their need to manage and
manipulate information. In response, their business applications are
becoming far more complex than they have ever been.

The Center’s system developers are beginning to find it very difficult to create
a single, do-it-all, monolithic application. They are turning to the techniques
promoted under the banner of distributed systems to help them maintain their
competitive position in their industry.

3.1 The Monolithic, Nondistributed Alternative

Before looking at network computing systems, perhaps now is a good time to
examine the current state of affairs.

The monolithic, nondistributed system represents the most “traditional” of all
possibilities. It corresponds to a single application, executing completely on a
single system, closely coupled to the data upon which it operates.
Structurally, the client may possess lax internal structuring with no clear
division between the various functions.

Although this is often regarded as a “quick and dirty” solution, there are a few
advantages to this style of development:

« This approach may allow for rapid development. This can be especially
important for tailor-made solutions or those which have to be developed or
prototyped rapidly.

« This approach corresponds to the normal mode of development that has
been undertaken for many years. It is relatively simple, or is at least
well-known by developers.

« A great variety of toolsets provide direct support for straightforward
monolithic development. Support for the development of distributed
systems, which are still felt to be more “esoteric”, is still distinctly lacking.

< A single monolithic application especially developed for a given platform
may give performance that is hard to achieve by any other strategy

There are also many drawbacks to this style of development:

© Copyright IBM Corp. 1998 23

The complexity of a monolithic application makes development difficult,
and while a good tool such as VisualAge for Java can provide a degree of
assistance to the programmer, development can easily get “out of hand”

The amalgamation of various functions into a single application makes for
a very complex system; this may make comprehension difficult, and thus

maintenance is often problematic. In addition, monolithic applications are
typically not built with reference to a standard “framework”, and so each is
effectively unique, compounding the problem.

A monolithic application is required to handle all aspects of processing; so
it will typically have large resource requirements, both in terms of memory
and CPU processing power.

Initial deployment and the mechanisms whereby upgrades are introduced
can often be problematic.

It is often very difficult to make use of preexisting functionality within a
monolithic application. In large organizations, it is common to find that
problems are often “solved” several times—each time in a unique way.
This wastes time and money and may directly impact reliability.

Developing a single monolithic application for a heterogeneous mix of
client platforms requires significant effort, both to ensure that a proposed
design is appropriate and also during any subsequent porting activity.

Reliability may be a problem in some circumstances. Trivially, if a
monolithic application crashes, all processing stops. Gracefully handling
the issues of reliability and scalability, if at all possible, is very hard.

Any good points associated with this methodology are completely swamped
by the numerous drawbacks described.

3.2 A Look at Some Issues

24

While distributed systems are usually applied to solve complex situations,
they also tend to be inherently more sophisticated than a more traditional
monolithic system would be. Some of the issues include:

Extensibility
“Change is the normal state of the universe.” Any new system must be

engineered to cope with this fundamental fact. Over time, new features will be

required, some of which will be substantial and may require a number of
subsystems to cooperate. The various software and hardware ecologies are
also forever changing and this fact needs to be considered. A common
example of the need for extensibility occurs when a system is required to
work with suppliers’ or other third-party systems.

Java Thin-Client Programming for a Network Computing Environment

Scalability and Performance

An expanding user base needs to be accommodated. System changes
require ever greater processing power and network bandwidth to service.
Performance issues can be addressed by installing server clusters.

server cluster

Figure 6. Server Clusters Can Cater for Performance Issues in a Transparent Way

It is also necessary to consider the required partitioning of the total system
according to criteria such as the size, location, complexity of the data being
manipulated. Applications can also be pooled to achieve greater
performance.

Reliability

Crafting a mission-critical application requires careful consideration. Server
replication is often used, together with a failover mechanism to ensure that if
one copy of the server is unavailable, another is able to take up the load. It is
also often necessary to define classes of service to allow a system to
degrade gracefully in the face of errors (it is still possible for a distributed
order entry application to continue, albeit in a degraded state, for example, if
an image of a part cannot be retrieved from an image server).

client crashed server

failover server

Figure 7. A Failover Server Can Transparently Take Over from a Crashed Server

Distributed Applications 25

Network partitioning is another potential problem that must be considered.
Although network equipment is generally reliable, if a network divides itself
into sections as a result of a component failure, each section having a
member of a server pool, the two servers can continue to accept work. This
may lead to inconsistencies in the total data set that will only be discovered
when the two parts of the network are rejoined. Reconciliation strategies to
recover from partitioning can be difficult to define.

partitioned
server network server

Figure 8. Recovering from a Network Partition is a Difficult Task

Security

Security can be an extremely complex matter and is one with a number of
faces: privacy, authentication (is an object really what it claims to be?),
authorization (what are the operations permitted for this resource?), auditing,
proof, and so on. Security is a pervasive aspect of all systems, distributed or
not, but those who are unfamiliar with distributed systems are often taken
aback that “a surprisingly large portion of the entire infrastructure must be
trustworthy, including pieces that you might not have realized were critical”
(see Peter G. Neumann (moderator), The Risks Digest, Volume 19: Issue 11,
http://catless. ncl.ac. uk/ R sks/ 19. 11. ht ni).

Support for existing systems

Nearly all systems have older components or are required to interact with
existing systems. The need to cater for legacy systems can introduce
considerable complexity or overhead into a system design. It is often the case
that complete integration cannot be achieved (reading data may be possible
but not update, for example).

Administration

In a busy network, servers need to be monitored, started, stopped, backed
up, and restored. Bandwidth bottlenecks occur and need to be diagnosed and
corrected (a process which may involve comprehensive reorganization).
System administration must be supported by a powerful and diverse toolset.

26 Java Thin-Client Programming for a Network Computing Environment

servers

Admin. HQ China

Figure 9. Distributed Administration is Vital for Large Distributed Systems

Transparency

Each of the preceding issues are complex when considered separately, but
when considered en-masse, they can be overwhelming. An effective system
architecture will allow the designers to focus on the requisite business tasks
and not be overly concerned with the mechanics of dealing with the various
issues outlined earlier in this section.

The “holy grail” of distributed systems is often described as “single computer
image”, meaning that the overall system should appear to the developer no
different from a single, powerful and highly reliable computer. It is common to
hear distributed systems designers refer to: access, location, failure,
migration, replication, persistence, and transaction transparencies.

Figure 10. The Single Computer Image Concept

Distributed Applications 27

The current state of the art cannot deliver this, but the gap between this ideal
and reality is steadily closing.

Maintenance

Complex systems are often very dynamic things. Bugfixes, updates, and so
forth frequently need to be distributed. This in turn introduces the problem of
component version control. For example, the code comprising a server
application may be updated to reflect a new business policy, and this change
may require the associated client applications to be updated. It can take a fair
amount of time to complete the update. Mechanisms are needed to prevent
different component versions from working with each other as the update
progresses.

client
servers

Figure 11. A Client Able to Deal with Multiple Versions

It can be very difficult to maintain full backwards compatibility between
components while at the same time introducing required changes.

Section 5.5, “Some Java Facilities Supporting Enterprise-Wide Network
Computing” on page 75, takes a brief look at some of the tools and
environments that exist to assist in the development of distributed systems.

3.3 Considering Distributed Systems Design & Development Strategies

Traditional design and development strategies create monolithic, do-it-all
applications. This becomes increasingly inappropriate as an enterprise grows
in complexity. Modern object-oriented development preaches that
applications should be developed as logical groups of cooperating
components. Distributed systems design also takes this approach but
extends it slightly: Distributed systems should be constructed with
functionality provided to clients by logical groupings of cooperating services.

28 Java Thin-Client Programming for a Network Computing Environment

4)

User Interface

.

Functions &
Procedures

¥

‘ Functions & I
Pro@res

K System A /

User Interface

L+
System A

Procedures

<k
System B

Functions &
Proidu}res
System C

Figure 12. The Decomposition of a System into Distributed Cooperating Services

Services are active components that can be accessed to obtain well-defined
functionality. Services are usually structured so that each can be accessed in
a standard manner, thus reducing complexity.

Figure 13 on page 29 shows how this decomposition can be achieved. In this
figure, a widget is composed from two parts: a square and a triangle. Each
part is furnished by a specialized server. The client requests parts from the
servers and assembles them according to its built-in rules.

Client A

Figure 13. Clients and Services

AAA

Services

NI

Once an application is decomposed into clients and services, it becomes
appropriate to consider where each service should be located.

Distributed Applications 29

A simple approach would be to place all data in one place and provide an
appropriate service to mediate requests for that data. With this organization,
all processing appropriate to that data would be performed in the client.

Although appropriate for some situations, this organization has a humber of
problems. It is common for business rules to change rapidly (Discount rates,
tariffs, the effects of inflation, and so on. can change daily in some industries.
Tax rates also change frequently.) Embedding these business rules within a
client application creates serious inflexibility at worst or a maintenance
nightmare at best.

The problem is that the client is relatively “fat.” Data retrieval and processing
functions are colocated, and the latter cannot be modified without also
affecting the former.

Current thinking teaches that the reverse of this is preferable. In much the
same way that a database is “normalized” to remove undesirable duplication
of data and thus increase flexibility, so a distributed system is factored to
separate its component parts into individual services. An application then
becomes an amalgamation of a client and various services.

The factoring procedure also frequently introduces an intermediate
“middleware” service layer, resulting in “three-tier client/server distributed
computing.”

The middleware layer in this discussion performs an additional (and common)
function on behalf of the client: to encapsulate and apply the current set of
business rules to the data obtained from the various servers in the system.

Middleware has an additional function in many circumstances; According to
Byte magazine (see “The Muddle in the Middle”, Byte magazine, April 1996),
“Middleware is software that allows elements of applications to interoperate
across network links, despite differences in underlying communications
protocols, system architectures, OSes, databases, and other application
services.”

By imposing a well-defined middleware system on all the services in a
system, it is possible to ensure that they are all manipulated and structured
almost identically. The use of middleware can thus help to maintain order into
a large enterprise and can prevent things from getting “out of hand.”

Standardization is obviously important when middleware is considered. There
are now many commercial middleware toolsets on the market helping to
facilitate the development of appropriately structured distributed systems. De
facto industry standard systems such as the Distributed Computing

30 Java Thin-Client Programming for a Network Computing Environment

Environment (DCE) and, more recently, CORBA, the Common Obiject
Request Broker Architecture, are helping practitioners of distributed
computing create structured, effective systems. In addition, there are
international standards such as the International Standards Organization’s
“Reference Model of Open Distributed Processing” (see

ht t p: // wawn i so. ch: 8000/ Rv CDP).

Middleware is also a favorite tool of Business Process Engineering (BPE)
consultants.

With the introduction of middleware, and the relocation of the appropriate
processing activities, the client portion in our example becomes a much
“thinner” application that is reduced to simple retrieval and display functions.

Figure 14 on page 31 shows how the introduction of a middleware layer
encapsulating the business logic works. The client no longer interacts directly
with the various servers in the system but instead asks the middleware
component to operate on its behalf.

AAA

A
+=
@] HE.

Middleware Service:
Business Logic

Figure 14. Isolating the Business Logic into Middleware

This “three-tier” architecture has a number of additional advantages:

« Multiple applications can reuse services, and this can help new
applications be developed much more rapidly.

« It becomes possible to modify and maintain services with little impact on
the rest of the system.

« Business rules can operate using data from multiple data sources.

¢ Changes to the underlying infrastructure (such as a database) can be
made without rewriting client applications or intermediate services.

e Services can be distributed across a mix of different processing sites,
giving flexibility and facilitating effective performance tuning.

Distributed Applications 31

The tiered architecture also makes it relatively easy to incorporate existing
legacy systems. The legacy system can be presented as a service by a
wrapper. As a veneer around the legacy system, the wrapper specifies what
services are offered to the clients. As shown in Figure 15 on page 32, the
wrapper also helps to present a uniform “face”: It appears as simply another
service in the system and can be accessed in a standard fashion.

: :AAA

oo

Legacg/ System

Figure 15. Using Wrappering to Incorporate Legacy Systems

It is also possible to generalize from three to an arbitrary number of tiers, and
this is sometimes useful, particularly when organizational boundaries are
being crossed and it is necessary to incorporate an existing system already
structured into tiers as a service in a larger system.

An alternative—and common—view of this situation is the “peer-to-peer”
organization. In this case, the distinction between client and server is less
sharp: A component may offer services to a client and to fulfil that offer, may
be a client of another server.

A further major design issue related to the design of distributed systems
concerns the asynchronous delivery of events. Events allow systems to
respond to relatively infrequent occurrences of a situation with efficiency. In
an enterprise network, events may include:

< A notification that a printer has jammed, which requires clearing and
restarting

« The output from a database trigger highlighting that the level of a given
product in the warehouse has reached a predefined reorder point

¢ An important announcement has been posted to the staff notes database

It is important, both from the point of view of ease of development and from
that of efficiency, that the repeated checking for the occurrence of a situation

32 Java Thin-Client Programming for a Network Computing Environment

of interest be avoided. The delivery of event notifications is a difficult topic
and can complicate a design quite substantially.

3.4 In Summary

While the monolithic way of structuring enterprise-wide applications has
some commendable points, it also has many problems and can effectively be
ruled out for most network computing environments.

The technique of building distributed systems divided into clients and tiers of
services is substantially more complicated, but is clearly more powerful and
fits into the network computing world cleanly.

Industry-standard middleware software and internationally accepted
techniques are increasingly being used to structure and define multi tiered
environments.

Distributed Applications 33

34 Java Thin-Client Programming for a Network Computing Environment

Chapter 4. HTML-Based Clients

This chapter investigates the implementation of simple client applications
using HTML and JavaScript. This facilitates using browsers as the data entry
interface because they are readily and inexpensively available and
deployable.

The Lunar Medical Center check-in application as a whole consists of the
data entry form, feeding its data to a server implemented as a Java servlet,
which stores its data on the host system (using one of a number of storage
mechanisms) and responds to the client. The total functionality of the
application is partitioned to several layers, deployed where appropriate.
Figure 16 illustrates this distribution of components.

4 A [ey Form |

Data Entry . BN =
Client System

Processing :’> | Servlet I
ey 2

Server System

| Storage I

L
Storage System

v

Storage

<ﬁ]<¢

KSingIe System/

Figure 16. Check-In Application Distribution

Hypertext Markup Language (HTML) is the current language of choice for
publishing resources on the network. It is a nonproprietary format based on
the Standardized Generalized Markup Language (SGML) and is promulgated
by an international industry consortium—the World Wide Web Consortium
(W3C). Using HTML to design the client component of your application is a
very simple and portable solution.

© Copyright IBM Corp. 1998 35

— Note

SGML is an ISO standard (ISO 8879:1986). SGML allows you to define
the logical structure of a document type in a very rigorous way using a
Document Type Definition (DTD). Once a DTD such as HTML has been
defined, it becomes possible to structure a document according to the
specified rules.

Browsers, the applications most used today to access and display resources
on the network, provide an excellent platform for the client components of
simple client/server applications.

Simplifying network access and standardizing a “universal” data format has
proven to be a very popular idea, gaining momentum exponentially and giving
us the Internet we know today.

4.1 Browsers and Web Servers

Browsers were born out of a desire to integrate formerly separate network
access functions within one simplified interface. They first appeared early in
1992. Most modern browsers, such as those produced by Netscape,
Microsoft, Sun and others, provide several key functionalities.

e Display of resources coded using HTML.

¢ Support for some form of scripting mechanism (such as JavaScript) which
allows additional code to be included in a HTML document. Scripting
languages typically provide enhanced access to objects within the
browser interface and HTML document, as well as many generic language
features. Scripts are very useful for validation of data on a HTML-based
client prior to interaction with a server.

¢ A Java Virtual Machine (JVM) for execution of Java applets. Applets are
not stand-alone Java applications; they rely on a context to support their
execution. The browser supplies the context, which provides strong
security to restrain the applets from certain sensitive operations, such as
access to the file system on the client, and a restricted set of network
operations.

« Browsers that support a JVM often provide additional proprietary Java
class libraries to extend Java’s features and functionality. Netscape’s
Internet Foundation Classes (IFC) and Microsoft's Advanced Foundation
Classes (AFC) are examples.

36 Java Thin-Client Programming for a Network Computing Environment

» Support for browser plug-ins. Plug-ins are proprietary software programs
that extend the capabilities of browsers in a certain way—giving them the
ability to play audio or view movies, for example.

Browsers request resources from servers using one of a number of supported
network protocols, the predominant being the Hypertext Transfer Protocol
(HTTP). Important aspects of HTTP are discussed in Chapter 7.

Requests are made using a structured naming convention, known as
Universal Resource Identifiers (URIs). Every resource available on the
network—HTML document, image, video clip, program, and so on—has a
unique address that may be encoded by a URI. A Uniform Resource Locator
(URL), the most common form of network URI, typically consists of three
pieces of information:

e The naming scheme of the protocol or mechanism used to access the
resource

* The name of the system hosting the resource

*« The name of the resource itself, with its absolute location on the host
system

Note

Uniform Resource Locators (URLS) are one subtype (and the subtype
most commonly used in this book) of the more general URI naming
scheme. Book ISBN numbers are also a type of URI.

Some example URL-type URIs are:

http://waw dst c. edu. au/ i ndex. ht m

http://waw pc. i bm cond net wor kst at i on/ news/ st ati on/ i ndex. ht m
http://jf0150b.itsc. austin.ibm coniservl et/ ProcessSQL
ftp://ftp.dstc. edu. au/ i ncom ng/ r eadre. t xt

jdbc: db2://juergen.itsc.austin.i bmcom 8888/ sanpl e

The basic operation of the Web server is to supply the requested HTML
resource/s to the client. Figure 17 shows the general relationship between
browsers and Web servers.

HTML-Based Clients 37

HTTP
‘w < Web Server
‘ Web Browser
HTML HTML HTML
Resource Resource {Resource

Figure 17. General Architecture of Browsers and Web Servers

Many Web servers also provide a number of mechanisms for interfacing with
server-side applications. This is usually done for processing input from the
client and dynamically constructing responses (typically in HTML)
interpretable by the client browser. Such mechanisms include:

« The Common Gateway Interface (CGIl) for interfacing regular programs
with the Web server.

e Server plug-ins, similar in concept to browser plug-ins. An example is a
plug-in allowing the Web server to interface directly with a Rational
Database Management System (RDBMS).

« Java servlets—Java components written to accept and respond to HTTP
requests.

Figure 18 shows that the general architecture of browsers and Web servers
has evolved, and continues to do so.

38 Java Thin-Client Programming for a Network Computing Environment

| o
,| Plug-in |)
HTTP “IIP eb
Server
(*l servlet [
Web

Browser
|HTML HTML |App|et l Other
Resrc Resrc
Plug-in with
Script

N\

Figure 18. Growing Architecture of Browsers and Web Servers

4.2 HTML Overview

HTML is a widely accepted way of formatting documents that can be created
and processed using a range of tools, from simple text editors to
sophisticated graphical authoring tools. Web pages are the most common
use of HTML.

HTML consists of a series of tags taking the general form of:

<TAG tag-attributes> ny text </ TAG

The above example shows an opening tag, the tag’s attributes, some content,
and a closing tag. When coding HTML, blocks of text are tagged. Appendix A,
“Brief HTML Reference” on page 243, provides an overview of the most
commonly used tags, grouped in a number of general functional categories.

4.2.1 HTML Conformance

The HTML Standard, like most things in this industry, gets revised from time
to time in order to adopt new features, and to deprecate or remove dated
ones. Most of the currently deployed HTML resources have been coded using
version 3.2 or below of the HTML Standard. The most recent W3C work has
resulted in a much expanded Standard—HTML 4.0. In addition to the text,
multimedia, and hyperlink features of the previous Versions of HTML, HTML
4.0 supports more multimedia options, scripting languages, style sheets,

HTML-Based Clients 39

better printing facilities, documents that are more accessible to users with
disabilities, and internationalization.

HTML 4.0 is not yet widely adopted; so code conformance to HTML 3.2 will
ensure the widest support. Third parties have also extended the Standard
with their own tags, which may or may not be supported by all browsers. If
you intend developing 100 percent pure HTML, these browser-specific
extensions should be avoided.

4.2.2 Developing in HTML

40

There are a number of ways to create a Web page (generate HTML code),
such as:

« Manually, using a text editor. This method requires a browser to view the
HTML code and relies on the developer’s ability to design from scratch.
Clear knowledge of HTML tags and techniques will result in clean minimal
code with a low download time. To improve readability while developing,
there a number of text editors which support automatic code indentation
and construct color-coding, and several are available as shareware from the
Internet.

« Visually, using a Web page design package. This method generally
requires desktop publishing skills, as such packages bear close

resemblance to this class of software. The benefit here is that a Web page
can be created without a fundamental knowledge of HTML. Work is simply
saved as it would be with any other document-creation package; the
difference is that the saved file is in HTML format. Such packages support
rapid development and provide user-friendly facilities to implement
otherwise complex components of a Web page. The main problem is that
the HTML code generated by these packages is typically less than
optimal.

By converting other document formats. Many modern word processor,
desktop publishing, spreadsheet, and database packages provide a
means to export their native formats to HTML. For example, a table of
information for a Web page could be generated by exporting a
spreadsheet or database query results as a HTML file. As with the visual
method, the generated code is often “heavier” than necessary.

Dynamically, as output from an application. The results of an application
can be easily output in HTML format and streamed by the Web server
back to the client browser. This is the art of developing Web server
applications, and it requires clear knowledge of HTML and the utilized
Web server/application integration mechanism (CGl, servlets, and so
forth.)

Java Thin-Client Programming for a Network Computing Environment

< Automatically, as the output from a HTML-format documentation
mechanism. An example is the Java utility, j avadoc, which creates
documentation from Java source code.

As you begin to develop more complex Web-based applications, you will find
yourself adopting a hybrid approach, using a mix of tools and techniques that
best suits the particular job.

4.2.3 Simple Example

Here is a very simple HTML file (which is saved as i ndex. ht ni). Note the
basic structure.

<HTM_>
<HEAD>
<TlI TLE>Lunar Facilities</ Tl TLE>
</ HEAD>
<BCDY>
<HL>\¢l cone to the Mbon</ HL>
<P>Available facilities are: </ P>
<u>
Lunar Medi cal Center</ A>
Lunar Gymmasi unx/ A></ LI >
Lunar Bar and Gill </ A>
</ U>
</ BCDY>
</ HTM.>

Observe that there are two main sections within enclosing <HTM.> and </ HTM.>
tags—a header section and a body section. Most activity will occur in the
body section of the HTML code. Within the body section, observe the use of
level 1 heading, paragraph, unordered list, list item, and anchor (hyperlink)
tags.

Note the hyperlink tags in this example. Simple references are used to linked
files (for example nedi cal . ht m) because the linked file is placed in the same
host system directory as i ndex. ht ni, and the browser knows to fully qualify
the shorthand URI at request-time. The browser knows that the shorthand
location is relative to the location of the linking document. In other words:

Lunar Medi cal Center</ A>

...is effectively the same as:
Lunar Medi cal Center

HTML-Based Clients 41

Note

The URI http://ww noon. xyz is a fictitious location; so your code and
display should reflect the URI of the actual system you use for deployment.

Figure 19 shows how the file will appear in a browser, along with arrows
which indicate the relationship between the HTML code elements and the
display.

unar Facilitiez - Hetscape

File Edit “iew Go Communicator Help

<TITLE>§{&T3"&&Q~@L§@§§§

Back Forward Feload Home Search Guide Frint Securty Stop

v wthookmarks Jg Goto:|http:x’x’www.moon.xyzx’index.html j

Welcome to the Moon

< >
H1 Available faciliies are:

/ + Lunar Medical Center

<P> + Lunar Cymnasim
+ Lunar Bar and Gnill
<LI[>

= | Documert: Do \

Figure 19. Simple HTML Example

4.2.4 Forms and Tables

Let's extend the Moonbase system by implementing the Medical Center
check-in facility (medi cal . ht mt). HTML form tags will be used to provide a
means for entering the data to register a patient into the Medical Center. The
code also uses the table tags to produce an attractive layout of the window.

<HTM.>
<HEAD>

<TI TLE>Hospi tal Check-In Form</ Tl TLE>
</ HEAD>
<BODY>

<CENTER>

<Hl>Lunar Medical Centre Check-I|n</Hl>

<FORM NAME=checki n METHOD=post ACTI ON=htt p://server. nmoon. xyz/ servl et/ Process>

<TABLE W DTH="90% BCRDER=1 CELLPADDI NG=10>

<TR>
<TD ALI GN=CENTER OOLSPAN=2>
<P>Enter your details and press the <I>Submt Details</1> button</P>

42 Java Thin-Client Programming for a Network Computing Environment

</ TD>
</ TR>
<TR>
<TD ALI G\=RI GHT W DTH="50% >
<P>Last Nane: <INPUT TYPE=TEXT NAME=l astname S| ZE=20 MAXLENGTH=40></ P>
<P>First Nane: <INPUT TYPESTEXT NAME=firstnane Sl ZE=20 MAXLENGTH=40></ P>
<P>Date of Birth (DD MM YYYY):
<I NPUT TYPE=TEXT NAVE=dobday S| ZE=2 NMAXLENGTH=2>/
<I NPUT TYPE=TEXT NAVE=dobnonth S| ZE=2 MAXLENGTH=2>/
<I NPUT TYPE=TEXT NAME=dobyear S| ZE=3 MAXLENGTH=4></ P>
<P>Soci al Security (###- ##- ###):
<I NPUT TYPE=TEXT NAME=ssecl S| ZE=3 MAXLENGTH=3>-
<I NPUT TYPE=TEXT NAME=ssec2 S| ZE=2 MAXLENGTH=2>-
<I NPUT TYPE=TEXT NAME=ssec3 S| ZE=3 MAXLENGTH=3></ P>
</ TD>
<TD ALI G\N=LEFT W DTH="50% >
<P>Sex: Mal e <I NPUT TYPE=RAD O NAME=gender VALUE=M>
Fenal e <I NPUT TYPE=RADI O NAME=gender VALUE=F></P>
</ TD>
</ TR>
<TR>
<TD ALI GN=CENTER CCOLSPAN=2>
<P><I NPUT TYPE=subnit VALUE="Subnit Details">
<I NPUT TYPE=reset VALUE="Reset Detail s"></P>
</ TD>
</ TR>
</ TABLE>
</ FORW»>
</ CENTER>
</ BODY>
</ HTM_>

Figure 20 shows how the file will appear in a browser. Note the relationship
between the form and table code elements and the subsequent display.

HTML-Based Clients 43

<INPUT TYPE=TEXT> <TD>

7 Hospital Chec. -In Form - Netscape

Fie Edt Yiew G& Communicator Help

;J;‘g:&a@'d@fﬁ
i Back oo Reflgad Home Seach Guide Frint Securty Slop

" Bockmarks f \En to: [t 7 e o syz/medical hi 7/

\Lunar Medical Cgntre Check-In

ess the Subm:‘*raﬂs hutton
’ I Last Name:

Please enter your details
First Mame
Sex: Male © Female O
Date of Birth (MM/DD/YY YY) AN
Social Security (#H-#H-H5E) - -

37|

<TR>

‘ Submit Details | Reset Details |

A A

W |Document: Done /

v d / \

<TD COLSPAN=2> <INPUT TYPE=SUBMIT> <INPUT TYPE=RESET> <INPUT TYPE=RADIO>

Figure 20. HTML Form Example

Let's examine some interesting aspects of this example.
The Table

<TABLE WDTH="90% BCRDER=1 CELLPADD NG=10>

</ TABLE>

This definition results in a table that must: span 90 percent of the browser
window width (maintained regardless of the current window size), have a
border one pixel wide, and surround (pad) each cell's contents with 10 pixels
of space.

When the browser constructs a table, it examines each row definition before
determining the number of columns to display in the table. The check-in table
has three rows. The middle row has the most with two table data cells; so the
table’s display column count is two. In order to implement the first and third
rows of the table, which appear to only have one column, a table data cell
that spans two columns is created with the following code:

<TD ALI G\=CENTER CGOLSPANE2>

44 Java Thin-Client Programming for a Network Computing Environment

The Form
<FORM NAME=checki n METHCD=post ACTI ON=htt p:// server. moon. xyz/ servl et/ Process>

</ FORW>

This FORM definition has several important aspects other than the form’s
name:

« When the form is submitted (by pressing the input button tagged as
SUBMIT-type on the form), the data will be sent to the application Process
through the http protocol, to the server location serviet, on the server
machine, server.moon.xyz.

* The data will be submitted using the post method.

Servlets and form submission methods are discussed in Chapter 7.

4.2.5 To Validate or Not to Validate...

An important aspect of the code implemented so far, is that there is no
validation of the data that is entered and submitted. The assumption is that
the server application (htt p: // server. noon. xyz/ ser vl et/ Process) will verify that
the required fields have been entered, the dates are correct, and so on.

Assuming that this is true, regardless of whether the server reports back an
error or success, a hew page must be instantiated in the browser for the
HTML response from the server. This means that if there is an error, the user
must go back a screen, reenter, revalidate, and so on. Not only may this
become awkward for the user, but each submission will result in additional
network traffic. This might become an issue for applications that submit large
datasets.

There are two aspects to validation—syntax and semantics. In terms of
general distributed system design, having this validation on the server/s is a
reasonable separation of functionality, and results in a very thin client. With
the Lunar Medical Center browser/HTML-based check-in application, the
preference is to check the data syntax prior to submission so that problems
can be reported to the user while on the same screen. Once users are ready
to submit syntactically valid data, they only have to do it once, and the server
can determine the semantic correctness (whether meaningful or not) of the
data (usually a database function).

HTML itself does not provide any mechanisms for such functionality. The
combination of HTML in association with a supported scripting language such
as JavaScript provides a powerful way to locate some intelligence in the
client application.

HTML-Based Clients 45

4.3 Client Intelligence - JavaScript

JavaScript (formerly Netscape’s LiveScript and the basis for the forthcoming
standards-based ECMAScript) is the most popular scripting language for the
World Wide Web. JavaScript is embedded within hundreds of thousands of
Web pages.

JavaScript looks a little like Java. Their expressions and flow of control are
almost the same, and the general language syntax is similar; but other than
these incomplete syntactic resemblances, JavaScript and Java are entirely
unrelated. The naming of both is also purely (and unfortunately) coincidental.

In contrast to Java’s compile-time system of classes built by declarations,
JavaScript supports a run-time system based on a small set of data types
representing numeric, Boolean and string values. JavaScript has a simple
instance-based object model, but it still provides significant capabilities. Table
2 compares and contrasts JavaScript and Java.

Table 2. JavaScript and Java

JavaScript Java

Textual source interpreted by browser Intermediate binary bytecode (compiled
from textual source) interpreted by Java

VM

Object-based (code uses built-in
extensible objects, but no classes or
inheritance)

Object-oriented (object classes with
inheritance)

Code integrated with, and embedded in,
HTML

Code is distinct (but can be accessed from
HTML using <APPLET> tag)

Variables not declared

Variables must be declared

Dynamic binding (object references
checked at run-time)

Static binding (object references must
exist at compile-time)

JavaScript can handle interactive events such as mouse-clicks, form input
and page navigation. Event-handlers are embedded in HTML code as
additional attributes of tags to which JavaScript code is assigned for

execution. The general syntax is:

<TAG tag-attributes event Handl er ="JavaScri pt Code"></ TAG

Java Thin-Client Programming for a Network Computing Environment

It is good design practice to assign the event-handler code to a JavaScript
function so the same code can be used for other items and events. This
assists with code readability. Events apply to HTML tags as follows:

Table 3. Browser/HTML Events and Associated JavaScript Event-Handlers

current page in the browser

Event JavaScript event-handler
Blur - occurs when the user removes input | onBlur()
focus from a form element

Click - occurs when the user clicks on a onClick()
form element or link

Change - occurs when the user changes onChange()
the value of a text, text area or select

element

Focus - occurs when the user gives the onFocus()
form element input focus

Load - occurs when the user loads the onLoad()
page in the browser

Mouse Over - occurs when the user onMouseOver()
moves the mouse pointer over a link or

anchor

Select - occurs when the user selects a onSelect()
form element’s input field

Submit - occurs when the user submitsa | onSubmit()
form (typically by pressing the Submit form

button)

Unload - occurs when the user exits the onUnload()

JavaScript can be associated with an HTML form to verify that a user enters
valid information into a field. Since JavaScript runs locally within the browser,
the JavaScript can check the entered data and alert the user if the input is

invalid.

While the simplicity of JavaScript is appealing, there are some caveats:

« Be aware that not every browser supports the language, and if it does, use
of the language is optional. Users may have their JavaScript disabled.

« There is an additional resource load on the system (through the browser)
if JavaScript is enabled. This load varies depending on the system and the

application.

HTML-Based Clients

47

4.3.1

« Although scripts can provide an impressive amount of local processing
power and can allow for a high degree of user interactivity, an HTML and
JavaScript-based application may still provide an interface that is
somewhat less rich than for a traditional application.

« It can be difficult to map an application’s required functionality onto the
facilities provided by a World Wide Web browser.

Use JavaScript appropriately, and ensure it meets the needs of the
application and is supported by the intended user base.

Simple JavaScript Examples

JavaScript is embedded directly into the HTML page. To see how it works,
let’s revisit the Lunar home page and insert some simple JavaScript (shown
in bold type). Don’t worry about the language syntax at this stage, just
observe the way JavaScript is introduced into the HTML.

<HTM_>
<HEAD>
<TI TLE>Lunar Facilities</ Tl TLE>
</ HEAD>
<BCODY>
<HL>\¢| cone to t he Mbon</ HL>
<SCRI PT LANGUAGE="JavaScri pt">
<!l -- Hide
document.wite("W hope you enjoy your stay.")
[]-->
</ SCRI PT>
<P>Available facilities are: </ P>
<U>
Lunar Medi cal Center</ A>
Lunar Gymmasi unx/ A></ LI >
Lunar Bar and Gill </ A>
</ U>
</ BCDY>
</ HTM>

Figure 21 shows how the new file will appear in a browser. Note the additional
output produced by the JavaScript.

48 Java Thin-Client Programming for a Network Computing Environment

unar Facilities - Hetscape

File Edit “iew Go Communicator Help

Back Fopward Reload Home Search Guide Frint Security S.top
v wthookmarks v,/ Goto:Ihttp:.-".-"www.moon.xyz.-"newindex.html j

Welcome to the Moon
_>' We hope you enjoy your stay.

from JavaScript

Avvallable facilities are:

+ Lunar Medical Center

+ Lunar Gymnasium
+ Lunar Bar and Gnill

’?| | Document: Done

Figure 21. Simple JavaScript Example

Obviously, this is a trivial example. Let’s investigate something that regular
HTML could not achieve. A useful extension to the previous example would
be to associate some opening and closing times for each Lunar facility and
create a variable to hold the current time. When the user selects one of the
facilities that is “closed”, a pop-up window appears with an appropriate
message.

In the following code, notice the use of a function defined in JavaScript. It
looks much the same as a function, procedure or method defined in any other
language. Functions should be defined in the header section of the HTML
because there is a guarantee that they are loaded and checked by the
browser before any user interaction can occur. Notice also how the function is
called from an event-handler associated (in this case) with the hyperlink tag
objects.

<HTM>
<HEAD>
<TI TLE>Lunar Facilities</TITLE>
<SCRI PT LANGUAGE="JavaScri pt">
<l-- Hde
function checkOpen(venue) {
openTines = new Array(8, 12, 16);
cl oseTi mes = new Array(15, 19, 23);
if (now < openTi nes[venue])
alert("Be aware that this facility opens at " + openTi nes[venue]);
el se
if (now > cl oseTi nes[venue])
alert("Be aware that this facility closed at

+ cl oseTi mes[venue]);

}
1l-->
</ SCR PT>

HTML-Based Clients 49

4.3.2 Using

</ HEAD>
<BODY>
<HL>Weél cone to the Mbon</Hl>
<SCRI PT LANGUAGE="JavaScri pt">
<l-- Hde
today = new Date();
now = today. get Hours();

docurment.wite("The current tine is: " + now
/l-->

</ SCRI PT>

<P>Avail able facilities are: </ P>

Lunar Medical Center
Lunar Gymasi unx/ A></ LI >
<Ll >Lunar Bar and Gill
</ UL>
</ BODY>
</ HTM.>

Figure 22 shows how the application will appear in a browser for a customer
who has attempted to visit the Lunar Bar and Grill before hours! Note the
additional output produced by the JavaScript.

Lunar Facilitiez - Hetscape

File Edit “iew Go Communicator Help

Back Fonward Feload Home Search Guide Frint Security Stop
v wt'Bookmarks \&. Goto:Ihttp:.-".-"www.moon.xyz.-"newindex.html j

Welcome to the Moon

t The current time 1s; 12
. e [JavaScript Application *
/ Available facilities are: L [PeHE]]

from JaVaSCI’ipt + Lunar Medical Center & Be aware that this facility opens at 16

» Lunar Gymnasium
+ Lunar Bar and Grill

= [File:/#/CW TEMP /bar. bt SR

Figure 22. Intermediate JavaScript Example

JavaScript

When a page is loaded in a browser, a number of objects are created
corresponding to the page, its contents, and other pertinent information.
JavaScript organizes all browser and Web-page objects in a hierarchy, each
having certain properties and methods. Every page (in a browser) has the
following objects:

window The top-level object which contains properties and methods that
apply to the entire window (sel f is a synonym for the current

50 Java Thin-Client Programming for a Network Computing Environment

window t op refers to the topmost browser window; parent refers
to a window containing a frameset)

location Contains properties for the current URI

history Contains properties representing URIs the user has previously
visited

document Contains properties for the content in the current HTML
document

The objects in the browser exist in a hierarchy that reflects the hierarchical
structure of the HTML page itself. In the strict object-oriented sense, this type
of hierarchy is an instance hierarchy, since it concerns specific instances of
objects rather than the object classes. Figure 23 illustrates the instance
hierarchy for a sample HTML document.

window
| | | |
parent, self, : document hi
istor
frames, top location HTML page y
| | | |
Iinks[Ol] links[1] forms[0] images[0]
first hyperlink 2nd hyperlink first form first image

elements[0]] elements[1]
first input second input
element element

Figure 23. JavaScript Instance Hierarchy

A browser constructs the display of an HTML file in a top-down fashion,
sequentially moving through the code and building the layout as it goes.
JavaScript similarly constructs its instance model by examining the HTML
top-down. In a Web page, the top-level object is known as the docunent
object. The first image is known as i nages[0] , the first link as | i nks[0], the

HTML-Based Clients 51

second as |inks[1], and so on. Note that reference numbering starts at zero,
not 1.

To reference an object in JavaScript code, its fully qualified reference is used.
The wi ndowobject is not required if the current window is being referred to.
For example, the first hyperlink would be:

docurent . | i nks[0]
Forms have their own subhierarchy, with the first form known as forns[0] .

The first input element in that form is el enent s[0] . The fully qualified
reference to this element would be:

docurent . forns[0] . el enent s[O]

To access what has been entered into the form element, the object’s val ue is
referenced:

docurrent . f orns[0] . el errent s[O] . val ue.

To avoid having to use fully qualified references, which can quickly become
tedious, the object's name (as defined in HTML) may be used. For example,
consider a HTML fragment used in the Medical Center patient check-in
facility:

<FCRM NAME=checki n METHCD=post ACTI ON=htt p://server. moon. xyz/ servl et/ Process>

<P>First Nanme: <INPUT TYPESTEXT NAME=firstname S|ZE=20 MAXLENGTH=40></ P>

Instead of referring to the First Name form field’s data value in JavaScript as:

docurent . forns[0] . el ement s[1] . val ue

the following could be used:

docunent . checki n. firstnane. val ue

A very useful object available is the predefined w ndowobject. JavaScript
allows creation, population, and closure of additional browser windows
(including pop-ups) using several methods available on this object. The
al ert() method in the previous JavaScript example is a window object
method that provides a pop-up facility.

To illustrate, the previous example may be altered slightly to allow loading of
the linked facilities into a new browser window. The code below highlights (in
bold type) five simple modifications, and Figure 24 on page 54 shows the
result of clicking the Medical Center hyperlink. Notice that a reference to the
current object (t hi s), in this case the hyperlink object, is now passed to the

52 Java Thin-Client Programming for a Network Computing Environment

event-handler function. The object’s href data value may now be accessed
for the window object open() method in the function.

<HTM.>
<HEAD>
<TI TLE>Lunar Facilities</TITLE>
<SCRI PT LANGUAGE="JavaScri pt">
<l-- Hde
function checkQpen(field,venue) {
openTines = new Array(8, 12, 16);
cl oseTi mes = new Array(15, 19, 23);
if (now < openTi nes[venue])
alert("Be aware that this facility opens at " + openTi nes[venue]);
el se
if (now > cl oseTi nes[venue])
alert("Be aware that this facility closed at
newW ndow = open(field.href);
}
/]-->
</ SCRI PT>
</ HEAD>
<BODY>
<HL>Wél cone to the Mon</Hl>
<SCR PT LANGUAGE="JavaScri pt ">
<l-- Hde
today = new Date();
now = today. get Hours();

+ cl oseTi mes[venue]);

docurment.wite("The current tinme is: " + now
/-->

</ SCRI PT>

<P>Avail abl e facilities are: </ P>

<UuL>

Lunar Medi cal
Cent er </ A></ LI >
Lunar Gymmasi unx/ A></ LI >
Lunar Bar and Gill
</ UL>
</ BODY>
</ HTM_>

HTML-Based Clients

53

3 Lunar Facilities - Netscape
Fie Edl Yiew Go Communicaor Help

| 4 ¥ 3 3 2 £ a5 & B |
A Back Forward Reload Home Seach Guide Print Secuity Siop

% w# Bookmaks & Goto [hitp:7ansan moon syzinewindes il v

Welcome to the Moon ‘

The current time is: 12

3 Haspital Check-In Form - Netscape ‘

Available facilities are Fie Edt View Go Communicstor Help
M g S E
s L Mo e W w A A s B S & 3
et Tociee L elet § B Fopad Reload Home Seach Guide Pt Secuiy G
+ Lunar G E =
+ Lunar Bar and Gall " Boskmaks & B o [pitp: 7w moon w2/ medcal bl =
7 B instart Message Internet [Lookup [NewbCool

| — Lunar Medical Centre Check-In

Please enter your details and press the Stebmst Detatls button

Last Name: |
FrstMame: ||
Date of Binh cw/moreyy vy [v [
Socidl Securty iy [[[

Submit Details | Resst Dstails

Sex Male © Female ©

=l |Document; Done

Figure 24. Intermediate JavaScript Example Using New Window

Another useful object available to JavaScript code is the | ocati on object,
which holds the address of the loaded HTML document in its href data value.
For example, the Medical Center check-in page’s | ocati on. href value would
be http: //ww: noon. xyz/ nedi cal . ht mi . New values can be assigned to

I ocation. href to immediately load a new page into the browser window.

Other features and facilities available with JavaScript include access to
frames, the browser status bar, layers, time-out mechanisms, built-in string,
date and math objects, and many more. As with HTML, it is not the purpose
of this book to give a full reference to all features. The best place to find the
most current JavaScript reference is on Netscape’s Website at:

htt p: // devel oper . net scape. coni docs/ manual s/ communi cator/j sref/

54 Java Thin-Client Programming for a Network Computing Environment

Chapter 5. Java-Based Clients

This chapter has three aims. The first is to introduce Java and take a brief look at its
features and facilities.

A second aim is to introduce you to the Java-based Lunar Medical Center patient
record retrieval and update application that is used as the vehicle for discussion in
the remainder of the book.

The final aim of the chapter is to provide a short overview of some Java facilities
supporting eEnterprise-wide network computing—the “ecology” of Java: its
features, properties and related technologies.

5.1 A Brief Overview of Java

The “traditional” description of Java is:

“Java: A simple, object-oriented, network-savvy, interpreted, robust, secure,
architecture neutral, portable, high-performance, multithreaded, dynamic language.”
(from: The Java Language: An Overview,

http//javasun.com/docgovaviensjavajavaovervien-1hml) .

This audacious statement covers practically the whole arena of development! Each
claim will be briefly examined in turn.

Simple

The Java language is certainly simpler than its C or C++ forbears, but it is important
to keep in mind that development is a hard activity, regardless of the language used.
Programming for network computing remains an even harder activity than
developing for “simple”, non-distributed environments.

Object-Oriented

In common with most modern programming languages, Java is object-oriented from
the ground up: Almost everything in Java is an object, and what isn’t can be
wrappered and hidden behind an object interface. In contrast to the earlier language
C++, there are no nonobject-oriented features in the language. This accounts to a
large degree for the enhanced robustness of systems developed in Java.

Network-Savvy

Straight “out of the box”, Java provides facilities for building sophisticated,
object-oriented distributed systems using Remote Method Invocation (RMI). Java
also supplies the facilities for working with World Wide Web browsers and with
legacy systems such as FTP and Telnet.

© Copyright IBM Corp. 1998 55

56

Starting with Version 1.2, Java will also offer an implementation of the Common
Object Request Broker Architecture (CORBA) standard.

I nterpreted, Portable and Architecture-Neutral

Rather than being compiled into the native code for a given architecture, in a break
from tradition, Javais compiled into a compact intermediate code that has no direct
correspondence to any given item of hardware. This intermediate code is instead
executed under the auspices of an interpreter known as the Java Virtual Machine
(JVM). The VM is arelatively straightforward program that can be easily ported
from one machine architecture to another with only minimal change. It is this fact
that accounts for the portability of Java code and for a large part of its appeal.

‘Java Source (.java)

\—" Java Compiler (javac) I

Java bytecodes (.class) I

J Network or Filesystem I

‘Class L oader I

L» Bytecode Verifier I

Interpreter I—> Java Runtime

Native Code Generator I

» Hardware

Figure 25. Java's Architecture-Neutrality Arises from the Use of Bytecodes

Java’s portability also stems from the inclusion of a humber of standard library
facilities that all Java environments are required to provide. Given this, developers
do not have to worry about the existence or quality of a given entity: If the desired
functionality is defined as part of the standard facilities, it can be relied upon;
otherwise it will have to be supplied by the developer according to need.

Java Thin-Client Programming for a Network Computing Environment

Robust and Secure

Java was originally intended for the creation of embedded code (code that would be
incorporated into devices such as dishwashers and toasters). Given this, it is no
surprise that the design of the Java language makes it easy to create code that is
relatively error-free: Consumers would not be happy if their toaster continually
produced burnt toast because of a developer error!

Java has no pointers (sometimes called “the goto of the data structure”) and handles
memory allocation and deallocation “behind the scenes.” These two features remove
many possibilities for error. Other language features, such as exception handling,
bounded arrays and a built-in string type, also make it easy to create well-behaved
code.

Security is an area where the Java engineers have devoted a lot of time and effort.

As shown in Figure 25 on page 56, downloaded code is verified prior to execution to
ensure a base level of trustworthiness.

» The bytecode verifier ensures that bytecode is structured correctly and is not
likely to induce problems at run time. These tests are required because it is
assumed that bytecode may be designed to be malicious or that an uncaught
compiler error may manifest itself and thus cause problems.

» A large number of tests are carried out, including: ensuring that no instructions
are likely to index beyond the limits of an array, that the run-time stack is always
correctly formatted (the number of stack pops are equal to the number of pushes)
and that types are always used in appropriate ways (no attempt is being made to
use an integer as a reference to an object, for example).

« A number of security policies embedded within the virtual machine are enforced
as well. Rather than being given unrestricted access to the full resources of the
machine on which it is executing, downloaded Java code is fairly constrained in
what it may do. Among other things, a downloaded applet cannot access the host
machine’s filesystem; it cannot connect to an arbitrary server on the internet, and
it cannot execute a native command in the host system.

» The combination of JVM and security policies is commonly called the
“sandbox.” Java code is constrained to execute like a baby playing in a sandbox:
The baby cannot destroy delicate objects outside the sandbox, just as the Java
code cannot adversely affect the host system, either maliciously or
unintentionally. With the sandbox ensuring that Java code cannot act as a virus,
or behave badly in some other fashion, users are free to use downloaded code
without worry.

Additional security mechanisms are also being introduced into Java. A key
mechanism is the “digital signature” for applets. This is intended to provide a means

Java-Based Clients 57

whereby the author and the integrity of the applet may be established. A digital
signature is essentially a mathematical code applied to the applet, which resultsin a
value that is carried around with it. Any change made to the applet (including
attempts to change the signature itself) will result in a different value for the
signature. When a browser downloads an applet, it attempts to recal culate the
signature. If the value it generates is different from the one that is carried around
with the applet, then the applet is assumed to have been tampered with, and the
browser will not execute it.

If a valid digital signature indicates that the applet’s author is trusted, and the code is
unaltered from the time of signing, it is reasoned that the code may safely be given
additional abilities (access to limited portions of the native file system, for example).

Security is the leading differentiator between Java and Microsoft's competing
technology, ActiveX (which allows for the execution of downloaded native code
without the security constraints imposed by the Java sandbox).

High-Performance

Java is an interpreted language and as such faces a performance penalty when
compared with languages like C or C++ that are traditionally compiled prior to
execution. For the small, highly interactive uses for which Java has so far been
employed, this is not a great problem, but as the use of Java becomes more
widespread, performance becomes a potential problem.

Java supplies two mechanisms to obviate this problem: the Just-In-Time compiler
(JIT) and the new “HotSpot” technology.

A JIT boosts execution speed by converting Java bytecode to native code “on the
fly”, which can then be directly executed instead of being interpreted as bytecode by
the Java Virtual Machine.

Sun’s new HotSpot Virtual Machine technology uses a process called “Adaptive
Optimization”:

» As an application runs, the JVM detects the frequently used “hot spots.” It then
immediately uses this information to optimize those critical portions of the code.

» Because run-time information is available, the hotspot compiler can do a better
job than a static compiler.

» Because optimization saves a considerable amount of time in the overall lifetime
of the application, very aggressive and time-consuming optimizations can be
performed and still result in a net reduction of the execution time.

It is claimed that Java performance will soon be on a par with that of compiled C++.

58 JavaThin-Client Programming for a Network Computing Environment

Multithreaded

Instead of only allowing a single operation to be performed at a time, Java provides
threads to allow the application designer to specify that operations may be performed
“in tandem.”

On a single CPU system, of course, tandem execution is implemented by fast
switching between threads and is an illusion, but when multiple real CPUs are
present, threads can actually be executed in parallel, and a substantial speedup can
result (if the JVM is written to take advantage of multiple CPUSs).

In addition, the presence of threads as a part of the language definition allows the
application designer to more closely model a real-world problem.

Dynamic

Recognizing that downloading code across the Internet can be a very slow
proposition, the designers of Java have incorporated a dynamic loading feature into
the JVM. A class is only loaded—for an applet, fetched from the server—when it is
actually needed at execution time. Since 80 percent of the program is typically
catered for by only about 20 percent of the application code, this can result in a
substantial time saving.

After looking at these features, it should now be clear to you that Java represents a
powerful tool for application development. Several features make it close to ideal for
developing in a network computing arena.

It must be said that Java is currently not problem free, however. It is still a young
language, and this is reflected in the rate of change of development tools, libraries,
and so forth. As with any complex piece of software, different ports and versions of
the JVM and the core class libraries also exhibit different bugs. Crafting a fully
portable Java application still remains an artform, although this is improving rapidly
and may in any case be very much simpler than for some languages.

Most people’s initial contact with Java is through the Sun Java Development Kit
(JDK). While perfectly adequate for experimentation and the development of simple
applications, it is not an industrial-strength tool. Many developers fairly rapidly
adopt more sophisticated tools such as IBM’s VisualAge for Java, which is what we
used in this book. VisualAge for Java is discussed in Chapter 16, “Java
Development: Using VisualAge for Java” on page 243.

The “100 percent pure Java” initiative is currently of some importance in getting
developers to focus on the portability of Java. Simply developing in Java does not
guarantee that a program will be correctly portable: A developer that assumes his or
her code will always run inside a 1024 by 1024 pixel display will give a “poor” user
with a somewhat smaller 640 by 480 pixel monitor quite a surprise! As part of the

Java-Based Clients 59

100 percent pure Java initiative, Sun has developed a testing and certification
mechanism that is intended to ensure that a certified Java application will run on the
widest range of systems possible and avoid such nasty surprises.

It must be said that while the 100 percent pure Javainitiative is a useful way of
focussing developers on the issues of portability; it isnot 100 percent of the solution
for many enterprises. The need to interface with existing legacy systems, the need for
more performance than can currently be delivered by Java, the need to retrain staff,
and so on, means that most systems will remain impure for a fair time to come.

Since its introduction in May 1995, Java has become the most rapidly adopted
programming language in computing history. All major computing platform vendors
have signed up to integrate Javainto their products, paving the way for widespread
deployment of Java-based applications.

We look at more of the 100 percent pure Java ecology in Section 5.5, “Some Java
Facilities Supporting Enterprise-Wide Network Computing” on page 75.

5.2 Client-Server Computing with Java

Java is often proclaimed as the premier tool for developing distributed applications.
Java'’s binary-level portability gives Java a unique position in the world of

distributed computing—for the first time, programmers have been freed from having
to worry about differences between architectures and operating systems and can now
concentrate on writing great applications (or applets!).

This section provides brief overviews of some of the facilities provided by Java for
client/server programmers. You will see in-depth use of some of these tools and
technologies in later chapters.

5.2.1 Applets

Applets are essentially executable content: applications that are embedded within,
and rely on, the support of a context to provide services such as printing and display
management. The context is usually a World Wide Web browser such as Netscape
Navigator, HotJava or Internet Explorer.

Applets were the first manifestation of the value of Java for creating portable,
distributed applications.

Applets are typically used to “spice up” a page written in HTML with animations or
“ticker tape” text displays, but they can do much more, as you will see in this book.

One of the simplest Java applets is:

60 JavaThin-Client Programming for a Network Computing Environment

import java.awt.*;

public class Simple extendsjava.applet. Applet

{

private String message;

public void init ()
{
message = getParameter ("MESSAGE");
}

public void paint (Graphics g)
{
g.drawString (message, 50, 50);

}

There are two fundamental things to note about this example:

* The classxtendsjavagoplee Applet. This is required to allow the context to work with
the applet.

» The class has nadn() method. Instead the functionality is spread across the two
methodsinit() and paint().

This applet is referenced by the following HTML fil@mpehm (for more details on
this, see Chapter 4, “HTML-Based Clients” on page 35):

<APPLET CODE="Smple" WIDTH=200 HEIGHT=100">
<PARAM NAME="MESSAGE" VALUE="Hdlo, World">
</APPLET>

When the HTML page is loaded by a browser and the applet is first started, the
browser calls the appletisit) method. In this simple applet, this method looks into

its associated APPLET tag for a PARAM section with the nBMEESAGE and

retrieves the associated value. When the browser later instructs the applet to show
itself within the 200 by 100 pixel area reserved for it, giv@) method is called,
producing the following:

A

H# Netscape

File Edit “iew Go Communicator Help
< » A & 2 £ S
Back Fonward Reload Home Search Guide Frint £

w§ " Bookmarks A Lacation: [fe:///01/Bicb/Simple/Simple: il

Hello, ‘/orld

Figure 26. The Smple Applet Running Inside a World Wide Web Browser

Java-Based Clients 61

An applet may implement other methods: gat() and stop() are used by the context to tell

the applet when the user’s focus includes it (and thus whether the applet should
continue its activities or suspend them and wait for the user’s focus to return). Other
miscellaneous methods allow an applet to identify itself and to provide usage
information.

5.2.2 Socketsin Java

62

If you need electrical power, you plug your appliance into a standardized electrical
socket and access the electricity supply service. In the future, it is reasoned, a
computing application that needs to access computing power will simply be plugged
into a standardized computing socket. A socket has two components: an address
(typically the location of the computer on which the code is running) and a port
(which allows a given address to provide multiple services, if necessary).

This concept has proven remarkably enduring, and sockets are a facility provided by
almost all operating systems, from mainframes to Personal Digital Assistants
(PDAs).

Java provides a simple-to-use socket facility inadtse package. This is most useful
for connecting to legacy systems such as those based on the Telnet remote access
protocol.

The following code fragments (from an example so traditional that it is almost
de-rigueur) are taken from of a simple sockets-based server. The server simply
accepts a string from a client, assumes that it represents a person’s name, and
responds with “helloname.” Note that in this, as in all the following fragments,
much associated error-handling code is excluded.

import javaio.*;
import java.net.*;

public class Server

public static void main (String [] args)

{

ServerSocket listen_socket = nulll;

ry
{
listen_socket = new ServerSocket (8888);
for (;:)

new Thread (new Connection (listen_socket.accept ())).start ();

... I/ code dlided

The SavaSocke that is created in this fragment is using port 8888 to listen for
connecting clients.

As the server accepts a connection, Java's socket system creates and returns a new
socket specifically for the connection between the server and the particular client.

Java Thin-Client Programming for a Network Computing Environment

The server also creates anew thread specifically to service the client. The new socket
is passed to the constructor of the associated Connedtion class from which the thread is
created.

Once the thread is started, the server returns to listening for more clients.

Client

Figure 27. Servers Create Multiple Threads to Handle Multiple Clients

Allowing the server to off-load processing to multiple threads enables it to respond
asrapidly as possible to new connection requests, something it could not do if it were
also directly concerned with the processing associated with each client’s connection.

The socket passed to the thread has an input and an output stream associated with it.
The Comedtion class’ constructor obtains these streams, anddimetionrun method

uses them to take data from, and to pass results back to, the client. The low-level
details of performing network 1/0O are hidden from the method.

class Connection implements Runnable
{
private Datal nputStream in;
private DataOutputStream out;
private Socket client;
public Connection (Socket client)
{
try

{
thisclient = client;
in = new Datal nputStream (client.getl nputStream ());
out = new DataOutputStream (client.getOutputStream ());
}
catch (Exception €)
{ I* codedided*/}
}

Java-Based Clients 63

/I called by Thread.start () to start execution
public void run ()

ry
{
String name = in.readUTF ();
out.writeUTF ("Hello, " + name +".");

}
catch (Exception €)
{ I* code elided*/ }

} /' end of Connection class

The corresponding client application is much simpler (largely because it does not
have any need to deal with multiple threads), as is shown in the following code
fragment:

import javaio.*;

import java.net.*;

classClient

{
public static void main (String [] args)
{
Socket server = null;
try
{
server = new Socket (args[0], Integer.parselnt (args[1]));
DoHello (args[2], new Datal nputStream (server.getl nputStream (),
new DataOutputStream (server.getOutputStream ()));
}

catch (Exception €)
{ I* codedided*/}
finaly
{
try { server.close(); } catch (Exceptione) { /* ignore*/}
}
System.exit (0);

private static void DoHello (String name,
Datal nputStream in, DataOutputStream out)
{

try
{
out.writeUTF (name);
System.out.printin (in.readUTF ());
... Il code dided
}
} Il end of Client class

Java also provides for creating client/server systems utilizing datagrams—a very
low-level communication facility. This is not examined in this book.

Chapter 9, “Java Servers and Socket Communication” on page 137, discusses how
sockets can be used to implement one of the possible solutions for the needs of the
Lunar Medical Center.

Java Thin-Client Programming for a Network Computing Environment

5.2.3 Accessing an HTTP Server with Java

Java provides a specialized mechanism for connecting to World Wide Web servers.
Although it is based on the sockets facility examined earlier, it is even more
straightforward to use, as the following example shows:
import java.net.*;
import javaio.*;
public class URL Reader

public static void main (String [] args)

{
BufferedReader in=null;
ry

{
URL IBMJava= new URL ("http:/ww.ibm.com/java’);
in = new BufferedReader (new InputStreamReeder(IBM Java.openStream ()));
String line;
while ((line=in.readLine () !=null)
System.out.printin (line);

}
catch (Exception €)
{ I* codedided*/}
finally

{
try { in.close(); } catch (Exceptione) { /* codeelided */}
}

}
}

This straightforward code fragment will open a connection to a Web server and
retrieve the file referenced by the URL http/mww.ibm.comjava One line at a time through a
Java stream. This code provides the basic communication framework for an
application similar to a World Wide Web browser.

Java provides additional facilities to enable finer interaction with a World Wide Web
server. These are not examined here.

5.2.4 Object-Object Communication: Remote Method Invocation (RMI)

Sockets are a straightforward and efficient scheme for getting components to “talk”

to each other. They can also be difficult to use in complex situations, such as when it
becomes necessary to invent a special-purpose “application-layer protocol” for the
client and server to use to coordinate their activities. The design and implementation
of this protocol can be a challenging and time-consuming task that, when it comes
down to it, has little to do with the real task of the distributed application.

RMI is a 100 percent pure Java mechanism that obviates the need for application
developers to also become protocol developers by arranging for the “nuts and bolts”
of communication to be completely hidden. RMI makes it possible for a developer to
call a method of an object that may be located in another Java Virtual Machine
(perhaps running on a different computer) in precisely the same way that he or she

Java-Based Clients 65

would call amethod of alocal object. This removes the burden of handling
communication and lets the developer concentrate solely on application
development.

Section 10.1, “RMI: An Easy Way to Implement Java Client/Server Applications” on
page 147, discusses RMI in detail and shows how the Lunar Medical Center can use
RMI in their system as an alternative to sockets.

5.2.5 Connecting to the Database: JDBC

Through the JDBC facility (found in thjavasg package), Java provides a
straightforward and uniform interface to a very wide range of SQL databases.

Java Application I

JDBC AP

JDBC Driver Manager

JDBC
Drivers

Driver A Driver B

Proprietary database access protocols

Figure 28. JDBC Provides a Uniform Interface to Proprietary Databases

It has been said that much of the popularity of Java is due to the early availability of
this facility, allowing developers to access enterprise databases right from the
beginning.

Any application using JDBC goes through a number of major stages:

1. Cause a database-specific JDBC driver object to load. By convention, this is
typically done in a static block so that the driver is loaded immediately when the
application is loaded. All JDBC drivers are constructed so that they initialize
themselves when first loaded.

2. Ask theDrivaManager to use the loaded driver to create a connection to the
database.

3. Prepare &ELECT (or UPDATE or DELETE) statement, and then issue it to the
database.

4. Process the results of the statement. This is achieved thraweghSa object,
which provides a facility to allow for the sequential processing of the result (or
more usually, the table of results).

66 JavaThin-Client Programming for a Network Computing Environment

This sequence is exhibited in the simple example (which queries aremote IBM DB2
database) below:

import javasgl.*;
import java.util.*;

public class SQLQuery

{

private static final String DRIVER = "COM .ibm.db2.jdbc.net. DB2Driver",
URL = "jdbc:db2://juergen.itsc.austin.ibm.com:8888/sample”,
USER = "db2admin”,
PASSWORD = "password";

/I convention: load & initidize JDBC driver at class|oad time
datic

{

try

{
ClassforName (DRIVER);

}

catch (ClassNotFoundException x)
{/* code elided */ }

}

public static void main (String [] args)

{

Connection connection = null;

Statement statement = null;

ResultSet result = null;

try
{
Propertiesinfo = new Properties ();
info.put ("user”, USER);
info.put ("password”, PASSWORD);
connection = DriverM anager.getConnection (URL, info);
statement = connection.createStatement ();
String SQL SelectStmt = "SELECT COUNT (*) FROM patient”;
result = statement.executeQuery (SQL SelectSimt);
int number = result.next() ? result.getint (1) : O;
System.out.println (number +* records found.");

catch (Exception €)
{ I* codedided*/}
finaly
{ I* code dided */}
}

}

Although the structure of JDBC, with it’s proliferation of object®rveManager,

Driver, Connedtion, Satement, ResitSet, and so forth.—may seem cumbersome at first

glance; it actually allows for maximum flexibility. This flexible structure is a major
reason why JDBC can provide a powerful interface to the many disparate SQL-based
systems that exist today.

JDBC'’s capabilities are discussed in Chapter 8, “Java Servers using JDBC” on page
119, alongside the Lunar Medical Center’s use of JDBC.

Java-Based Clients 67

5.3 The Lunar Medical Center’s Java Application

68

Part 1.1, “A Thin Client Application—The Lunar Medical Center Story” on page 2,
introduced the various applications developed at the Lunar Medical Center. This
section takes a brief look at the construction of the “main” Java module, the Patient
Record display/edit application.

The application was constructed using IBM’s VisualAge for Java and appears on the
CD-ROM accompanying this book.

Since the application is predominantly GUI-based, VisualAge’s visual composition
editor was used to create a large proportion of the application. VisualAge for Java is
covered in depth in Chapter 16, “Java Development: Using VisualAge for Java” on
page 243.

The figures from Figure 29 on page 68 to Figure 33 on page 72 show how the various
Java screens appear in the visual composition editor and also show how the
components were linked together to provide the appropriate functionality.

Figure 29 on page 68 shows the construction of the initial screen. This is the screen
that greets a user when the Java application starts execution. The screen asks for a
user identification and a password and will not allow the user to progress until a
known user ID and the appropriate password are entered.

[(_,JLunal Medical Center: Log In

Figure 29. Construction of the Initial Log-In Screen

Note

In the version on the CD-ROM, this screen does no actual checking other than
to ensure that an ID and a password have been entered.

The cluster of connections linking the OK button to the two text boxes ensure that
the button is not enabled unkibth fields contain characters. The connections are
arranged such that whenever the content of either text field changes, a method will be
called to examine both fields and then decide whether or not the button should be
enabled. The simple method that makes this decisi#be-ognOK—is shown

below:

Java Thin-Client Programming for a Network Computing Environment

private boolean enableloginOK (TextField userI D, TextField passwd)

{

boolean userlDOK = user] D.getText ().length () > 0,
passwdOK = passwd.getText ().length () > O;

return (userlDOK & & passwdOK);

}

The simplicity of this code shows how the visual composition editor can reduce the
amount of Java programming needed to create an application.

Note that instead of creating a new instance each time the screen is needed, the
screen is merely set to visible, having been pre allocated in a non visible state. When
closed, the screen is not destroyed but merely rendered invisible until the next time it
is needed. This mechanism is used throughout the application and potentially reduces
the amount of memory allocation/collection that needs to be performed, resulting in a
smaller memory footprint and possibly more efficient execution.

Although the number of connections appearing at the top center of Figure 30 on page
69 may appear daunting at first glance, they are fundamentally quite simple and
serve a similar purpose to the cluster of connections described earlier: to ensure that
the “Find Patient Record” button is only enabled when a valid Social Security
Number is entered.

[(_, Lunar Medic

[S i oo o ST S
By Histary Enry | viewEnt sy e | | Exit Il

=

Figure 30. Constructing the Main Patient Record View/Edit Screen

When theFind Patient Record button is pressed, the following method is called:
public void findPatientRecordFromSSN (String first, String middle, String last)

{
Framef = getFrame2 ();
Cursor oldCursor = f.getCursor ();
try
{
f.setCursor (Cursor.getPredefinedCursor (Cursor. WAIT_CURSOR));
Socia SecurityNumber SSN =
new Socia SecurityNumber (new Integer (first), middle, new Integer (last));
setPatientRecord ((PatientRecord) Communicator.readPatientRecord (SSN));
getTextFied2 ().setText (getPatientRecord ().getFirstName ());

Java-Based Clients 69

70

getTextField21 ().setText (getPetientRecord ().getLastName ());
Date date = getPatientRecord ().getDateOfBirth ();
getTextFidd53 ().setText (date.getMonth () + 1 +™);
getTextFidd521 ().setText (date.getDate () +"");
getTextFidd511 ().setText (1900 + date.getYear () +);
getTextFidd4 ().setText
((getPatientRecord ().getGender ().equals (new Character (M) ?
"M":"Fem") + "de");
getButton10 ().setEnabled (true);
getButton11 ().setEnabled (true);
}
catch (BadSSNFormatException b)
{
doUserMistake ("Invaid Socid Security Number.", first + middle + last);
}
catch (PeatientRecordException pre)
{
doUserMistake ("Invalid Socia Security Number.”, first + middle + last);
}
catch (Exception €)
{
doExceptionHandling (e);
}
finally

{
/* DONOT MODIFY THIS*/
f.setCursor (oldCursor);
}
}

This code is relatively straightforward. You should note the use of the

Communicator object (described in Chapter 6, “Design Decisions” on page 79) to
perform the actual retrieval of the data corresponding to the given Social Security
Number. Once &dietRecord Object has been found, it is used to populate the
appropriate fields of the GUI.

This method also illustrates how the two dialogs shown in Figure 33 on page 72 are
used.

The screen shown in Figure 31 on page 71 is shown in response to the “View/Edit
History Entry” button being pressed. It shows a summary list of history entries and
allows one to be selected for viewing or further editing.

Java Thin-Client Programming for a Network Computing Environment

|
[(_,JLunal Medical Center: Select History Entry M [=]E3

Figure 31. Construction of the “Select History Entry” Screen

Figure 32 on page 71 is the History Entry Screen shown either in response to the

Select button in the above dialog being pressed—in which case the screen is first
populated with the data from the selected history entry record— or as a result of the
New History Entry button shown in Figure 30 on page 69 being pressed—when a
“fresh” screen is shown populated only by the current date.

Entry Screen

{mmiddfyyy)

[(_,JLur.-al Medical Contei: History

Title:

Figure 32. Construction of the “History Entry” Screen

The two dialog screens in the following figure are used whenever the application
needs to issue a one-line warning to the user (the top screen) or announce that an
error or run-time exception has occurred (the bottom screen). The bottom screen
(referred to as Framed in the visual composition editor) has a scrollable text area
(TextAree?) that allows for a large amount of textual information to be displayed.

This proved useful during development: the output from the printSadkTrace method
associated with the parameter is printed in the TedArea Thisis potentially such a

Java-Based Clients 71

valuable technique that the code for the method DoctorsdoExogationHandling i s excerpted
here:

private void doExceptionHandling (Exception €)
{

StringWriter sw = new StringWriter ();
PrintWriter pw = newPrintWriter (sw);
eprintStackTrace (pw);

getTextArea? ().setText (sw.toString ());
getFramed ().setVisble (true);

}

|
[(_,JPIease Check your Data: M [=]E3

Con_tinue |

|
[(_,JAn Error Has Occurmmed: M [=]E3

Con_tinue |

Figure 33. Constructing Two Error/Warning Screens

5.4 The Lunar Medical Center’s Java Applet

Chapter 4, “HTML-Based Clients” on page 35, introduced the simple patient HTML
and JavaScript-based check-in facility developed at the Lunar Medical Center. This
section takes a brief look at the construction of an equivalent application written as a
Java applet.

The applet was constructed using IBM’s VisualAge for Java and appears on the
CD-ROM accompanying this book.

The applet makes use of the Java-based servlet discussed in Chapter 7, “Java Servlets
and HTTP Communication” on page 97.

Many of the fundamentals regarding the construction of Java components have
already been examined in Section 5.3, “The Lunar Medical Center’s Java
Application” on page 68.

72 JavaThin-Client Programming for a Network Computing Environment

& =1o] x|

Applet
Please enter your details and press the "Submit Details" button

Last Name | Friedrichs

First Name | Juergen
Sex: % Male ¢ Female

DoB (MmMDDNYYYY) 2 =] ¢ [11 | 4 [1988 -

Social Security (###-##-#58) 123 T A S 123
Submit Details | Reset Details |

Applet started.

Figure 34. The Hospital Check-1n Applet Running in the Applet Viewer

Figure 34 shows the Check-1n applet running in the applet viewer. The Function and
layout of this applet are very similar to the HTML version developed in Chapter 4,
“HTML-Based Clients” on page 35. The Java version is rather “fatter” than the
simple version introduced in that chapter. There are, however, several reasons to
consider building a more resource-hungry component:

More Flexible

While using JavaScript in a HTML document allows for some basic checking
regarding the data entered in a form, a Java applet offers a potentially much more
powerful validation mechanism.

Larger Choice of Communication Types

An HTML document has to communicate either with an CGI script or with a Java
servlet running on a Web server. Java applets can do the same, but can also
communicate either through sockets, RMI, JDBC, or perhaps even CORBA.

Smoother Application Flow
With Java, it is possible to construct a user interface much more like what a user
would usually expect.

Easier Accessto Local Hardware

It is much easier to provide access to hardware-specific functions (such as the
SmartCard Slot on the IBM Network Station) through a (signed) Java applet instead
of writing a browser and platform-specific plug-in.

The Check-In applet consists of one class calleckin. Depending on what

Communicaor class is chosen for use, the applet will make use of either the Java servlet,
the socket based server, the RMI server, or will go directly to the database through
JDBC.

Java-Based Clients 73

/*

* The following import statement decided the Communicator type used.
* Just import ONE of the possible Communicators!

*/

/I import com.ibm.austin.itsc.javanc.Serviet.Communicator;

import com.ibm.austin.itsc.javanc.Jdbc.Communicator;

/I import com.ibm.austin.itsc.javanc.Sockets. Communicator;

/I import com.ibm.austin.itsc.javanc.RMI.Communicator;

Comparing Figure 35, showing the Check-In applet in the VisualAge for Java’'s
visual constructor, to Figure 30 on page 69 shows that the complexity of visual
development has been drastically reduced.

Please enter your details and press the \"Submit Details\" button

Last Name |
First Name |
Sex: [Male [~ Female
poBmmooxvyy) [= f [=] ¢ [] . .
Social Security (###-#4-#4#) A1 1+ 1 \ /
b]
| Reset etails| \ }
]

@
oo

SexCheckboxGroup

Figure 35. Check-In Applet Displayed in VisualAge’s Visual Composer

The reason for the difference is mostly because the main Java application GUI and
behavior has been developed graphically with the visual constructor. The Check-In
applet is determining and keeping the state of most entry fields such as names, date
of birth and Social Security Number in hand-written code.

In the applet, all that is required is to connect events to existing methods to check
their states (such as isSSNOK(), which is usedto check the Social Security Number
input fields for validity). These methods then explicitly check the state of any
associated field as required. This makes the visual representation clearer at the cost
of more hand-written code.

The submitDetaly) method is invoked by the adionPaformed() method nominally associated
with the “Submit Details” button. It collects the values of all entry field and stores
them in aPdientRecord instance which is then passed to the approp@atenunicator

class to be sent to the server.

private void submitDetails ()

74 JavaThin-Client Programming for a Network Computing Environment

{
try
{
/lcopy dl data in a PatientRecord
PatientRecord aPatientRecord=new PetientRecord
(
getFirstNameTextField ().getText (),
getLastNameTextField ().getText (),
getDOBDChoice ().getSelecteditem (),
getDOBM Choice ().getSelecteditem (),
getDOBY Choice ().getSel ecteditem (),
(getMaleCheckbox ().getState () ?’M’: 'F,
getSSN ITextFeld ().getText (),
getSSN2TextFied ().getText (),
getSSN3TextFied ().getText ()

)i
/ISend the PatientRecord using the Communicator
Communicator.writePatientRecord (aPatientRecord);
/IClear form after posting
resetDetails ();

}
catch (Exception €)
eprintStackTrace ();

}
}

5.5 Some Java Facilities Supporting Enterprise-Wide Network Computing

This section provides a brief introduction to some of the tools and facilities that
comprise the ecology of Javathat are not examined further in this book.

These facilities allow a designer to create powerful 100 percent pure Java solutions.

Enterprise JavaBeans

An ambitious API describing the facilities needed to create, deploy and manage
cross-platform, enterprise applications. This API extends that provided by Sun
Microsystem’s standard JavaBeans component APIs.

Lotus eSuite
Lotus eSuite is a set of business productivity software designed exclusively for the
network computing environment.

There are two parts to the eSuite: the eSuite WorkPlace and the eSuite DevPack.

The WorkPlace is a Java-based, desktop environment with a set of pre configured
Java business applets, including: calendar, mail, word processor, spreadsheet,
presentation graphics, Web browser, file manager, file viewer, and terminal
emulation.

Java-Based Clients 75

The DevPack portion is a set of Java-based applets that can be used as modular
building blocks by application devel opers who needs to create more interactive and
dynamic Web applications.

Java Naming and Directory I nterface (JNDI)
Provides unified access to multiple naming and directory services across the
enterprise.

Java IDL
Provides interoperability with CORBA, an upcoming industry standard for
object-based heterogeneous computing.

InfoBus

Enables dynamic exchange of data between JavaBeans within avirtual machine. The
InfoBus provides the idea of a bus into which components can be plugged and which
provides a simple standardized data exchange protocol.

Java Transaction Service (JTS)
Defines a standard transaction management API for Java applications.

The San Francisco Project

A framework for the development of high-level business-processes such as
warehouse management, general ledger and order management. At over 500,000
lines of Java, the San Francisco project is claimed to be the largest Java-based
development to date.

JavaBeans Activation Framework (JAF)

The JavaBeans Activation Framework (JAF) provides standard services to allow the
determination of the type of an arbitrary piece of data. It also encapsulates access to
the data, allows a component to discover the operations available on the data and
makes it possible to instantiate the appropriate JavaBeans component to perform
these operations.

JavaOS

As the name suggests, thisis a new operating system optimized to run Javaon a
variety of computing and consumer platforms. Two flavors are planned: JavaOS for
Consumers & JavaOS for Network Computers. They will be codevel oped and
comarketed by IBM and Sun Microsystems.

Aglets

Java applets primarily address the need for extensibility at the client side. Java

servlets have an analogous role for servers. IBM’s aglets take Java onto the next

stage and make maximum use of Java’s architecture neutrality and portability. An
aglet is a Java object that can move from one host to another. An aglet that executes
on one host can suddenly halt execution, transfer itself, or be transferred, to a remote

76 JavaThin-Client Programming for a Network Computing Environment

host, and resume execution there. When the aglet moves, it takes along its program
code as well asits data.

The Javaaglet APl (J-JAAPI) has been submitted as a proposed standard to the Object
Management Group (OMG).

JavaPC

JavaPC converts PCs into network computers. Since it has arelatively light system
requirement, JavaPC allows an enterprise to further recoup its investment in older
equipment. JavaPC offers a migration path towards a complete network computer
environment.

Project Java Activator

This software gives the ability to specify the use of Sun’s implementation of the

JVM in Internet Explorer 3.02 or later, and Netscape Navigator 3.0 or later, in
preference to the browsers default JVM. This allows an enterprise to standardize on a
single virtual machine and thus avoid compatibility problems.

As can be seen from the above list, the 100 percent pure Java ecology is constantly
changing and being augmented with more standard APIls, tools and complete
systems.

5.6 In Summary

As the Lunar Medical Center’s systems get increasingly more complex, the facilities
introduced in this chapter will prove invaluable in allowing their designers to create
structured, powerful systems based upon standard interfaces and technologies.

By utilizing these standards, the designers will be able to concentrate on their core
work: producing effective applications for their business without being distracted by
low-level details and unnecessary minutiae.

Java-Based Clients 77

78 JavaThin-Client Programming for a Network Computing Environment

Chapter 6. Design Decisions

As described in Part 1.1, “A Thin Client Application—The Lunar Medical
Center Story” on page 2, the Lunar Medical Center’s design staff decided to
build a number of applications, including a patient check-in module and a
Patient Record view/edit module. There was some discussion among the
LMC'’s designers regarding the best technologies to use and the best network
architecture to use.

This chapter looks at the design of the object model underlying many of the
applications and also examines how the LMC'’s network designers
investigated the various network architectures and technologies to see which
were most appropriate for their environment.

6.1 Designing the Object Model for the Lunar Medical Center’'s Systems

Health care on the moon base is free! The underlying object model that
describes the data for the Lunar Medical Center is therefore quite simple
since the designers don't have to think about billing and other unpleasant
issues. What remains is a system for documenting a patients’ medical history.

The basic patient data that must be kept is: Social Security Number, name
(actually two items: first name and last name), date of birth, and gender. This
data is encapsulated into a class called Pati ent Recor d:

public class PatientRecord inplenents Serializable
{
private String firstNane,
| ast Nane;
private Date dateXfBirth;
private Character gender;
private Social SecurityNunber SSN
private Vector history;

/1 code elided...

public void setSSN (Integer SSNFirst, String SSNMddl e, Integer SSNLast)
t hrows BadSSNFor mat Except i on

set SSN (new Soci al SecurityNunber (SSNFirst, SSNM ddle, SSNLast));

}
public void setSSN (String SSNFirst, String SSNM ddle, String SSNLast)

t hrows BadSSNFor mat Except i on

set SSN (new Soci al SecurityNunber (new Integer (SSNFirst),
SNM ddl e, new I nteger (SSNLast)));

}
}

The above code fragment shows an important technique used by the LMC'’s
designers for all their classes. All data fields are private and can only be

© Copyright IBM Corp. 1998 79

accessed in a limited number of ways through the constructor and so-called
getter and setter methods. Rather than allowing unrestrained access to the
data fields, which can lead to data corruption, parameters can be
“groomed’—examined for correctness—before any permanent changes are
made to the internal data fields. By following this technique, the LMC’s
designers can be assured that illegal values will not be stored and that
corruption will not occur. It can be argued that access to the fields is rather
slower than for direct access. The LMC's designers felt that this potential
drawback was more than outweighed by the overall gain in security,
readability and maintainability.

Associated with each patient is a medical history. A medical history consists
of a variable number of history entries. The attributes of a history entry are a
date, a title and other data (perhaps a detailed description of the diagnosis,
prescription or treatment) giving the reason why the history entry is being
made.

The LMC's designers decided to model a history entry as a separate
H storyEntry class:

public class HistoryEntry inplenments Serializable

{

private Date date;
private String title,
description;

public HistoryEntry (Date date, String title, String description)
{
setDate (date);
setTitle (title);
set Description (description);

}

/1 code elided...
}

This code fragment shows another important programming method ascribed
to by the LMC'’s designer: Note how the constructor simply refers to the setter
methods elsewhere in the class. This is a useful technique that helps reduce
duplicated code and thus increase reliability and maintainability.

The lunar Social Security Number is a complex entity. It is formed from the
concatenation of three fields:

1. A three-decimal-digit integer

2. A two-character alphabetic field

3. Another three-digit integer

80 Java Thin-Client Programming for a Network Computing Environment

To model this complexity, a separate class was created for the Social Security
Number.

The class was named Soci al Securi t yNunber, naturally!

public class Social SecurityNunber inplenents Serializable
{

private Integer firstField,
| astFiel d;
private String mddl eField;

/1 code elided...

The patient’s Social Security Number is an important entity used as a unique
key throughout the systems to identify particular patients.

All classes are annotated as being Seri al i zabl e. This allows the LMC'’s
designers to use a simple file-based serialization data storage mechanism,
should they so desire.

Figure 36 on page 81 depicts the resulting object model graphically and
shows the relationships between the components.

Note that while the Pati ent Recor d contains a single instance of a
Soci al Securi t yNunber, it may contain an unbounded number of H storyEntry
records and that this relationship is modeled by a Java Vector object.

PatientRecord

String firstName
String lastName
Date dateOfBirth
1| Character gender

SocialSecurityNumber SSN
Vector history
1
1 n

SocialSecurityNumber HistoryEntry
Integer firstField Date date
String middleField String title
Integer lastField String description

Figure 36. Simple Object Model for the LMC’s Systems

Design Decisions 81

A further point to note about the data classes of the fields contained in the
LMC'’s classes—all are objects: Character not char, Integer not int, and so
forth. The basic Java types have been avoided. The designers considered
that it would preserve the maximum amount of flexibility if objects were used
throughout their definitions. There is a minimal potential loss of speed
associated with this decision, but as with the discussion surrounding the use
of getters and setters, the loss of efficiency is felt to be acceptable if
compensated for with flexibility.

There exist a number of other support-oriented classes, such as the
Pat i ent Recor dExcept i on and BadSSNFor nat Except i on classes. These have been
omitted from the above diagram to preserve its clarity.

As the LMC'’s designers undertook their work, they made the decision to
standardize on the use of JDBC for their data access mechanism and on DB2
for a bulk data-storage facility. This necessitated translating the above data
model into an appropriate relational form. You can read more about how this
was achieved in Chapter 8, “Java Servers using JDBC” on page 119.

6.2 Designing the Applications: Considering Alternatives

Various options regarding the structures and communication mechanisms
present themselves to the designers of the Lunar Medical Center’s network
computing systems. After a lot of deliberation and a number of meetings, the
design team drew up a number of profiles, shown in Figure 37 on page 83
through Figure 39 on page 84

These profiles highlight various alternative technologies for client-side
presentation systems, for intermediate services, and for back-end data
storage systems. The profiles also specify the various alternative
communication mechanisms that may be interposed between the layers.

The LMC'’s designers considered various two-tier and three-tier solutions
(see Chapter 3, “Distributed Applications” on page 23, for a discussion of
these terms). The various profiles show how complete systems could be
composed using the various options available.

The code for many of the alternative implementations can be found on the
CD-ROM associated with this book.

82 Java Thin-Client Programming for a Network Computing Environment

6.2.1 Profiles Describing the Check-In Applet

Consider the possibilities for implementing the initial check-in system. Figure
37 on page 83 describes an applet that makes use of JDBC directly in a
two-tier architecture.

Presentation Mechanism Data Storage

Applet JDBC DB2 Database

Figure 37. Profile for a Two-Tier Browser-Based Solution

The profile in Figure 38 on page 83 shows that it is also possible to write an
applet within a three-tier architecture. In this case, the Java applet would
work with a Java-based servlet, which in turn would use JDBC to
communicate with the actual data storage mechanism.

Presentation| Mechanism | Service | Mechanism| Data Storage
Applet

HTML Form — ~— HTTP Servlet JDBC DB2 Database
HTML& — —T ~

JavaScript

Figure 38. Profiles for the Three-Tier Browser-Based Solutions

The same figure highlights other alternatives for implementing the
presentation (client) system: the use of a pure HTML form or the combination
of HTML and JavaScript. In either case, HTTP is the communication
mechanism.

Various factors influence the choice of one possible architecture over another
and these options—and the implications of choosing one way over
another—are presented later within this chapter.

6.2.2 Profiles Describing the Main Patient View/Edit Application
The situation regarding the application is analogous to the applet.

The same three-tier versus two-tier decision is possible, and the same
advantages and disadvantages regarding the individual technologies apply.
Figure 39 on page 84 shows the appropriate profiles for the “main” Patient
Record view/edit application.

Design Decisions 83

Presentation Mechanism Data Storage

File Serialized Data

Application
JDBC DB2 Database

Presentation| Mechanism | Service | Mechanism| Data Storage

Sockets Server

Application r— — - JDBC DB2 Database

RMI Server

Figure 39. Profiles Describing the Application-Based Alternatives

6.2.3 Profiles Considered but not Implemented

The LMC's designers also considered a number of potential designs, but did
not take these past the design stage. Figure 40 on page 84 shows these
discarded possibilities.

Presentation| Mechanism | Service | Mechanism| Data Storage

Sockets Server

Application r— — - File Serialized Data

RMI Server

]

Presentation| Mechanism | Service | Mechanism| Data Storage
Applet

HTML Form HTTP Servlet File Serialized Data
HTML &

JavaScript

Figure 40. Alternate Profiles Considered by the LMC's

The trial architecture is flexible enough to allow these possibilities to be
evaluated, should the need arise.

84 Java Thin-Client Programming for a Network Computing Environment

6.2.4 Additional Factors to be Considered

The LMC's designers not only need to examine the direct technical issues
associated with their systems. There are many associated issues, including:

« Benchmarking, profiling and optimization. Establishing the “cost” of the
various Java operations and components and determine bottlenecks in
executing systems.

e Compilers and other development tools: their maturity, support, abilities,
market penetration, support, and so forth.

¢ Maintainability: how to make code easier to document, understand and
modify

e Support and staffing: where to go to get help when support is needed

Optimization is a potentially important issue. Much has been written
regarding the “evils” of unwarranted optimization:

Rules of Optimization:
Rule 1: Don't do it.
Rule 2 (for experts only): Don't do it yet.
- M.A. Jackson

“More computing sins are committed in the name of efficiency (without
necessarily achieving it) than for any other single reason - including blind
Stupidity.”

- W.A. Wulf

“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.”

- Donald Knuth

In the network computing arena, many optimization issues will become
important: Many devices will be relatively small systems with slow CPUs
and/or small amounts of memory and storage capabilities. It may be that the
LMC'’s developers will be forced to consider optimization issues sooner than
they would if they were building for a network of high-powered PCs or
workstations.

Some of the optimizations and issues looked at by the LMC’s design team are
examined in Chapter 11, “Client Diets” on page 163.

Design Decisions 85

6.3 The Lunar Medical Center Implementations

To account for the various possibilities described in the various profiles, the
LMC'’s designers have factored out all the I/O mechanisms into a separate
class called Conmuni cat or, outlined here:

cl ass Communi cat or

{
public static PatientRecord readPatientRecord (Social SecurityNunber SSN)

throws Patient Recor dExcepti on;
public static void witePatientRecord (PatientRecord patient Record)
throws Patient Recor dExcepti on;

}

In the diagrams throughout this section, you will see a Cormuni cat or class
represented as:

JDBC

Figure 41. Representation for a Communicator Class and Mechanism

Implementing a new Cormuni cat or simply requires creating a new class with
different implementations for the requisite methods. This architecture allows
for the input/output mechanism used by a component to be easily changed as
required without affecting the bulk of the application, as illustrated by the
following figure:

RMI Sockets JDBC ——

Mg E P
m‘@ m—Ej
RMI Sockets
Server Server

Figure 42. Alternative Plug-Ins

To determine which one of several alternative Cormuni cat or classes—and
thus, which mechanism—is actually used by a component, the designers
have utilized Java’s package and import mechanisms.

A version of the Cormuni cat or class that performs I/O of patient records to files
would be created in a package called Fil e. A component that needs to

86 Java Thin-Client Programming for a Network Computing Environment

perform file-based I/O would i nport comibm austin.itsc.javanc. Fil e.* and thus
obtain the correct implementation, even though several alternatives may be
present along the application’s CLASSPATH.

/1 inport comibmaustin.itsc.javanc. Servlet.Conmmuni cator;
/1 inport comibmaustin.itsc.javanc.Jdbc. Coomuni cator;
/1 inport comibmaustin.itsc.javanc. Sockets. Communi cator;
/1 inport comibmaustin.itsc.javanc. RM . Comuni cator;
inport comibmaustin.itsc.javanc.File.*;
public class Hospital

{

In the event (judged unlikely by the designers) of a single component needing
to do 1/0 using more than one mechanism, Java’s normal fully-qualified
name-resolution scheme can be used

(comibmaustin.itsc.javanc. Fi | e. readPati ent Record has a different fully-qualified
name from the comibmaustin.itsc. javanc. Jdoc. r eadPat i ent Record analogue; so
this naming scheme allows Java to clarify the two methods).

An alternative structuring mechanism would have involved defining a
Communicator interface. Whenever an I/O mechanism was needed, an object
implementing the Communicator interface would be provided as a parameter
to the constructor of the class needing to perform the 1/0. The advantage of
this is that the decision regarding which mechanism to use is delayed until
the class is executing, rather than being made at load-time. The LMC'’s
designers did not feel that this ability was needed for their systems and so
chose the more static method detailed above.

A Communi cat or class can be used to provide an I/O mechanism at the client
side and also to perform the same function for a middle-layer server that
needs to work with a data storage facility, such as a file store or a JDBC
database.

While various possibilities exist for implementing the middle layer to data
storage layer communication, the LMC’s designers standardized on JDBC for
all their servers.

In general, JDBC is a very appropriate “thin” technology:

« JDBC is a standard part of the Java environment and can thus be
expected to be available on all client platforms.

¢ Much of the work of communication is in the JDBC library, not in the actual
applet. Since library code tends to be more optimized, this solution may
need fewer resources overall.

« Since JDBC encapsulates the required communication, the developers will
have to write less code, and this may lead to a a more reliable solution.

Design Decisions 87

e Since JDBC provides standard ways to assist in manipulating data, the
LMC'’s developers will not have to “reinvent the wheel” and will be able to
efficiently manipulate the data returned by the server.

« JDBC support is available for many databases. The LMC’s designers can
use their existing DB2 database system for their trials while at the same
time remaining flexible with respect to the actual database used in the final
version of their system. JDBC also lets the LMC keep an upgrade path
open, should one be needed in the future.

Each middle-layer server introduced into the LMC'’s systems utilizes the same
JDBC Gommuni cat or to work with the same DB2 data store. This gives the
LMC'’s designers maximum flexibility.

6.3.1 Nondistributed Full Application Based on Files

The first implementation decision facing the LMC's designers is whether or
not to eschew distribution completely and instead create a simple, file-based
version of the application, perhaps running “on top of” a shared filesystem.

To implement this alternative, the LMC’s designers produced a Java
serialization-based Comnuni cat or class. Serialization provides a simple
method for saving and retrieving objects based on a standard file format. The
use of serialization freed the LMC’s developers from the need to develop an
application-specific datafile format.

File —»@
_\/7‘

Figure 43. Factored, Nondistributed Application

Advantages of this alternative include:

« Development may be quicker

* Developers tend to be more familiar with nondistributed systems and so
are more plentiful in the job market

« There are many toolsets on the market that can be used to support
development

« The system may reach performance limits that may be hard to attain by
any other strategy

88 Java Thin-Client Programming for a Network Computing Environment

The various drawbacks include:

o Complexity

< Administration is often problematic

« Comparatively large resource requirements (both in terms of memory and
CPU processing power), difficulty of dealing with heterogeneity and
reliability

Perhaps the most serious drawback of this alternative is that of maintenance.
It will be extremely difficult to modify the LMC's systems to cope with changes
in regulations, increasing competition, and so on.

6.3.2 HTML Only at the Browser with a Servlet at the Server

This is one alternative implementation that the LMC's designers have
experimented with.

This is perhaps the “thinnest” of all possible alternatives. Although lacking in
some user-interface details, the client-side system requirements are little
more than what is needed for the browser containing the HTML source.

Two major drawbacks are apparent:

« The lack of client-side validation of any entered data causes a “chunky”
user interface experience.

« The servlet will have to perform validity checks on the data sent to it from
the client-side form. This increases the servlet's complexity and may
increase its resource requirements.

The advantage of this mechanism is that, since it requires the least from the
host client system, it is the most “portable” of all solutions.

Browser
Web Server
Java DB Mgr
HTML Servlet ar.

Figure 44. HTML, JavaScript POST Data to the Servlet through the Browser

This alternative is examined in Chapter 4, “HTML-Based Clients” on page 35.

Design Decisions 89

The HTML code for this implementation appears on the CD-ROM
accompanying this book.

6.3.3 HTML and JavaScript with HTTP to a Servlet

This alternative moves (some portion of) the validation processing from the
servlet back to the client.

Browser

Web Server

HTML &

J/Script Java DB Mgr.
Servlet

Figure 45. HTML, JavaScript POST Data to the Servlet through the Browser

This is the “thinnest” of all the alternatives that provide a fully-featured user
experience. JavaScript imposes an additional resource load on the system
that may vary depending on the browser, the system, and the JavaScript
application. This alternative thus might not be appropriate for highly
resource-constrained situations. In addition, Java is now widely supported,
whereas the availability of JavaScript may prove problematic for some client
configurations

This alternative is also examined in Chapter 4, “HTML-Based Clients” on
page 35.

The code for this alternative implementation appears on the CD-ROM
accompanying this book.

6.3.4 Applet at the Browser with HTTP Connection to Java Servlet

This is a more heavyweight alternative implementation that essentially
provides the same functionality as the previous version.

One potential advantage of a purely Java-based solution is the ability to
remove the browser “from the equation” and simply run the applet within the
applet viewer environment. This may work out cheaper and could perhaps
require fewer system resources, but at the cost of some flexibility.

90 Java Thin-Client Programming for a Network Computing Environment

Browser/appletviewer

JDBC]
_\/—
Applet

Direct HTTP-based
Connection

Java
Servlet

Figure 46. Applet POST Data through a Direct URL Connection to the Servlet

Java also provides a more flexible set of communication options over an
HTML/JavaScript-based solution. Whereas the latter solution is restricted to
HTTP communication to an HTTP server, a Java applet is able to make use of
many input/output mechanisms, including sockets, RMI, HTTP, JDBC, and
even files.

The main drawback is that the Java system will require substantially more
system resources than a JavaScript interpreter embedded within a browser.

If Java is already being introduced in a system, and if the target client
systems can afford the extra resource requirements implied by the
combination of browser and Java interpreter, then it may make sense to
standardize the development using a single language.

In the final choice, the decision to use Java may come down to:
* The resources available on the target client systems
* Whether or not Java is being used elsewhere in a project
The LMC's designers have developed a servlet Cormuni cat or class as

described in Chapter 5, “Java-Based Clients” on page 55, and their code
appears on the CD-ROM accompanying this book.

6.3.5 Applet with Direct JDBC Connection

This option may be preferable to the previous browser-based solutions for a
couple of reasons:

¢ Whereas a forms-based solution is essentially limited to handling
simply-structured data and interactions, the Java-based applet can deal
with complex data structures and complex, transaction-oriented
manipulations. Transactions that require visiting multiple “screens” of data

Design Decisions 91

before they are complete can be especially difficult to deal with using an
HTML-based solution (regardless of whether JavaScript is also utilized).

« Allowing JDBC to transparently handle the mechanisms of data transfer
and the protocol expected by the a servlet or HTTP server results in a
simpler programming task. Less programming effort typically means less
code and thus greater reliability. This may also mean that the JDBC
solution is slightly “thinner” than the alternative.

Browser/appletviewer

JDBC-1[~ Direct JDBC-based Database
nVaums Connection
Applet Database
Manager

Figure 47. Applet Using the Facilities Provided by JDBC

The main fear associated with this method is that a JDBC driver for a specific
database may not exist. This is a general concern with regard to JDBC and
not specific to this implementation option.

This is examined in more detail in Chapter 8, “Java Servers using JDBC” on
page 119. The corresponding code appears on the CD-ROM supplied with
this book.

6.3.6 Java Application Using JDBC Directly

For the design of the “main” Java module, the Patient Record display/edit
application, the LMC's system designers faced a large number of choices.
While all agreed that the complexity of the module required a fully-fledged
application, there was disagreement regarding the communication
mechanism to be employed. The designers decided to trial a number of
alternatives, as they had done for the initial check-in module.

Having a Java application results in a rather less “thin” solution than those
discussed so far and is thus more demanding of system resources. The use
of Java allows the application to be more complex and to provide a
sophisticated user interface. This is needed in this case.

92 Java Thin-Client Programming for a Network Computing Environment

JDBC

Database

Database
Manager

Figure 48. Application Using the Facilities Provided by JDBC

The actual application is described in Chapter 5, “Java-Based Clients” on
page 55.

The first alternative communication mechanism trial utilized JDBC.

Although this configuration proved suitable from a technical point of view, the
main drawback is related to the overall design of the LMC’s systems, not
directly to the JDBC technology. Many designers felt that instead of having
the client access the database directly, a three-tier architecture would be
more desirable, as discussed in Chapter 3, “Distributed Applications” on page
23.

A JDBC GCommuni cat or class is included on the CD-ROM that comes with this
book.

6.3.7 Full Application Using Sockets

As a first step in introducing a three-tier system, the LMC'’s designers decided
to implement a sockets-based Gommuni cat or module and an associated server.

Their design is examined in more detail in Chapter 9, “Java Servers and
Socket Communication” on page 137.

For ease of implementation, the LMC designers decided that the server side
should reuse the JDBC Conmuni cat or used in their earlier client-side trials.

Design Decisions 93

Sockets
Y

ju
O
@©
(@]

Sockets
Server DB Mgr.

Figure 49. Application Using Sockets to Communicate with its Server

The LMC's evaluation of this architecture produced a number of advantages
and drawbacks.

Advantages include:
e Sockets are simple to understand.

« A system based on sockets can be quite efficient, both in terms of CPU
and storage requirements.

e Sockets can be used in almost any situation, including those involving
non-Java legacy systems.

There is one major disadvantage:

« Although initially simple, a complicated system using sockets can rapidly
become very complex and force application designers to become protocol
designers as well. Correct protocols are notoriously difficult to design.

The LMC's designers felt that this one disadvantage—the potential for
scalability problems—was sufficient to force them to keep looking for
alternative, better solutions.

A socket-based Conmuni cat or class is included on the CD-ROM that comes
with this book for your reference.

6.3.8 Full Java Application Using Java RMI

Java’'s Remote Method Invocation (RMI) scheme overcomes most of the
problems associated with sockets while remaining easy to use and providing
an efficient communication mechanism.

RMI is probably the most powerful 100 percent pure Java solution currently
available to the LMC's designers. It provides a simple and scalable
networking mechanism. One of RMI's main aims is to make remote invocation
of a method indistinguishable from that of a local method.

94 Java Thin-Client Programming for a Network Computing Environment

The LMC'’s network designers were happy with RMI, but noted one potential
problem: the integration of legacy systems. This can be solved by

wrappering, and this technique is discussed in Chapter 3, “Distributed
Applications” on page 23.

RMI
_\/7

2

RMI
Server

Figure 50. Application Using Java RMI to Communicate with its Server

DB Mgr.

The combination of RMI and JDBC was considered to be the most effective
solution for the LMC’s Patient Record display/edit application.

The LMC’s RMI implementation is examined in Chapter 10, “Java Servers
and RMI Communication” on page 147.

6.4 In Summary

The LMC's designers have investigated many possible options for their
distributed applications. The ease of use and safety of RMI, coupled with the
flexibility and power of JDBC, offers the best solution for implementing the
LMC'’s three-tier distributed architecture.

Design Decisions 95

96 Java Thin-Client Programming for a Network Computing Environment

Chapter 7. Java Servlets and HTTP Communication

Chapter 4 examined the implementation of very thin clients using HTML and
JavaScript. Chapter 5 examined a Java Applet implementation of the same
client application. This chapter examines the corresponding server
application for the clients, which takes the syntactically valid data from the
client, stores it to the chosen storage mechanism (either the filing system or a
database), and provides some feedback to the browser.

There are many ways to code a server to achieve this functionality. Recall the
browser and Web server architecture in Figure 18 on page 39. For
Web-based client/server, it is possible to:

« Interface applications to the Web server using the Common Gateway
Interface (CGI). With CGI, the Web server can invoke (upon request from
the client) an external program coded in a language supported by the host
system, pass client data to the program, and return the program’s
response back to the browser.

¢ Use an enhanced Web server with plug-ins, such as one allowing the Web
server to interface directly with a database system.

« Interface Java applications to the Web server using Java servlets. Java
servlets are platform-neutral components written to accept and respond to
HTTP requests in much the same way as CGI applications, although there
are fundamental differences in the underlying mechanisms. Servlets offer
better performance than most legacy CGI applications because servlets
are only loaded once and reused over and over by the server.

The vast majority of Web-based client/server applications utilize the
HyperText Transfer Protocol as the underlying communication protocol. The
clients submit their data to the server using one of a number of available
submission methods. The HTTP protocol and submission methods will be
examined in some detail.

7.1 Overview of the Hypertext Transfer Protocol and Request Methods

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for
distributed, collaborative, hypermedia information systems. The protocol is
being developed as a standard by the Internet Engineering Task Force (IETF)
of the W3C (See http://ww w3. org/ Protocol s/ for full details and
specification of the HTTP protocol). It is a generic, stateless protocol that can
be used for many tasks.

© Copyright IBM Corp. 1998 97

The HTTP protocol is a request/response protocol. Each client request and
server response has three parts:

« Request or response line
* Header section
¢ Entity body
HTTP communications usually take place over TCP/IP connections, although

this does not preclude HTTP being implemented on top of other
communications protocols.

Under normal Web browsing conditions, the browser conducts HTTP
communication with a Web server automatically—the user is not required to
(and in most cases cannot) interact or interfere with the protocol. When you
design HTTP-based client/server applications, you need to be cognizant of
HTTP to correctly implement the connection, response and problem-handling
mechanisms, and to fine-tune aspects of the protocol for best performance

7.1.1 Protocol Steps
When a client initiates a transaction, several things occur:

1. The client contacts the server at a designated network port number (the
default is port 80).

2. A document request is sent consisting of a single line of text which
includes:

e The request method (or purpose of the request)
e The resource URI
e The HTTP version number

3. Optional header information is sent to the server informing it of the client’s
configuration and supported data formats.

4. A blank line is sent to end the header.

5. Additional data (referred to as the client entity body) may be sent
depending on the request method. The PGST request method places its
required data here.

In summary, a request message from a client to a server has the following
general form:

Request = Method Request-UR HITP- Versi on
(general -header s
| request-headers
| entity-headers)

98 Java Thin-Client Programming for a Network Computing Environment

[entity-body]

Here is an example client request message generated by the patient check-in
example from Figure 20 in Chapter 4:

PCOST /servl et/ Process HITP/ 1.0

Wser-Agent: Mzilla/4.04 [en] (WNNT; I)

Accept: inage/gif, inagel x-xbitmap, inageljpeg, inagelpjpeg, */*
Host : waw noon. xyz

Gont ent -type: appli cati on/ x-wwf or m ur | encoded

Gontent -1 engt h: 102

Gonnection: Keep-Alive

Accept - Charset: is0-8859-1,*, utf-8

Referer: http://ww noon. xyz/ medi cal . ht m

| ast nane=Sm t h&f i r st nane=Jane&dohday=28&dobnont h=02&dobyear =1963&ssec1=123
&ssec2=AB&ssec3=789&gender =F
The server responds accordingly with:
1. A status line consisting of:
e The HTTP version number
¢ A three-digit status code in the range 100-599:

¢ 100-199 is informational, indicating the client request was received
and is being processed.

¢ 200-299 means the client request was action was successfully
received, understood, and accepted.

« 300-399 means the client request was not performed and action
must be taken in order to complete the request.

« 400-499 means the client request contains bad syntax or cannot be
fulfilled.

« 500-599 means that the server failed to fulfill an apparently valid
request.

« A human-readable description of the status code

2. Header information that is sent to the client informing it of the server’s
configuration and the requested document.

3. A blank line is sent to end the header.

4. If the client’s request was successful, the requested data is sent as the
server entity body. This may be a copy of a file or the response from a
server program (often as dynamically generated HTML).

Java Servlets and HTTP Communication 99

5. INnHTTP 1.0, once the server has finished sending its data, it disconnects
from the client (unless otherwise directed by the Connection: Keep Aive
header). The HTTP 1.1 default is a maintained connection until explicitly
closed.

In summary, a response message from a server to a client has the following
general form:

Request = HITP-Version S atus-Code Status-Description
(' general - header
| response- header
| entity-header)

[entity-body]

Here is an example server response message generated by a Web server:

HITP/ 1.0 200 Docurent fol | ows

Server: Dom no- Go- Vbserver/ 4. 6

Date: Ved, 08 Apr 1998 20: 09: 26 GVII
Accept - Ranges: bytes

Qont ent - Type: text/htm

GQont ent - Lengt h: 254

Last-Mdified: Vd, 8 Apr 1998 21:09: 26 GMII

(rest of response in HTM. form

The useful things to know about HTTP are the available request and
response header fields, the server response codes, and the differences
between the request methods. Depending on which request method is used,
the protocol described above may be slightly different.

In Java, the client request and server response packet s are encapsulated in
objects, with methods available to get and set the desired protocol properties
(such as headers). Java provides a much more simplified and logical
interface to the HTTP mechanism.

7.1.2 HTTP Headers and Server Status Codes

100

HTTP headers (see http://ww w8. or g/ Prot ocol s/ for full details of the
following header fields) are used to communicate various pieces of
information between client and server applications. HTTP header fields
include general, client request, server response, and entity header fields.
General headers and entity headers are the same for both the client and
server, although some may be more specific to either a client or server
message. Each header field consists of a nane: val ue line. Field names are
case insensitive.

Java Thin-Client Programming for a Network Computing Environment

The order in which header fields are received is not significant. However, it is
good practice to send general header fields first, followed by request header

or response header fields,

and ending with the entity header fields.

The entity body (if any) of an HTTP message is used to carry the main body
of the request or response. When an entity body is included with a message,
the data type of that body is determined through the header fields
ont ent - Type and Gont ent - Encodi ng. Cont ent - Type specifies the media type of
the underlying data. Cont ent - Encodi ng may be used to indicate any additional
content codings applied to the data, usually for the purpose of data
compression, that are a property of the requested resource. There is no

default encoding.

7.1.2.1 General Header Fields

There are a few header fields that apply to both request and response
messages, but do not apply to the entity being transferred. These header
fields apply only to the message being transmitted.

general header =

Cache- Control
Gonnect i on

Dat e

Pragna

Tr ansf er - Encodi ng
Uogr ade

Trailer

Via

7.1.2.2 Client Request Header Fields

The client request header fields allow the client to pass to the server
additional information about the request and about the client itself. These
fields generally act as request modifiers.

request header =

Accept

Accept - Char set
Accept - Encodi ng
Accept - Language
Aut hori zati on
Expect

From

Host

| f-Mdified-S nce
| f-Match

| f - None- Mat ch

| f- Range

| f-Unhnodi fied-S nce
Max- For war ds

Java Servlets and HTTP Communication

101

| Proxy-Authorization
| Range

| Referer
| TE

| User-Agent

7.1.2.3 Server Response Header Fields

The server response header fields allow the server to pass additional
information about the response which cannot be placed in the status line.
These header fields give information about the server and about further
access to the resource identified by the request URI.

response header = Accept - Ranges
| Age
| ETag
| Location
| Proxy-Authenticate
| Retry-After
| Server
| Vary
| Vérning
| WWVAut henti cate

7.1.2.4 Entity Header Fields
Entity header fields define optional metainformation about the entity body or,
if no body is present, about the resource identified by the request.

entity header = Alow
| Gontent - Encodi ng
| Gontent - Language
| Gontent-Length

| Gontent-Location
| CGontent-Mb

| CGontent-Range

| Gontent-Type

| Expires

| Last-Mdified

7.1.2.5 Server Response Status Codes

The status code in a server response message is a three-digit integer result
code of the attempt to complete the request. An associated textual
description is provided. The status code is intended for use by the system,
and the description is intended for the user. The currently specified codes for
HTTP 1.1 are:

St atus Code = "100" ; Continue
| "101" ; Switching Protocol s

102 Java Thin-Client Programming for a Network Computing Environment

" 200"
"201"
"202"
"203"
"204"
205"
"206"
" 300"
"301"
"302"
" 303"
" 304"
" 305"
"307"
" 400"
" 401"
" 402"
" 403"
" 404"
" 405"
" 406"
" 407"
" 408"
" 409"
"410"
"411"
"412"
"413"
"414"
"415"
"416"
" 417"
" 500"
" 501"
" 502"
" 503"
" 504"
" 505"

7.1.3 Client Request Methods

(014
C eat ed

; Accepted

Non- Aut horitative Information
No Cont ent

Reset Cont ent

Partial Content

Mil ti pl e Choi ces

Moved Pernanent |y

Found

See G her

Not Modi fi ed

Wse Proxy

; Tenporary Redirect

Bad Request

Unaut hori zed

Paynment Requi red

For bi dden

Not Found

Met hod Not Al | owned

Not Accept abl e

Proxy Authentication Required
Request Ti re- out

Confli ct

Gone

Lengt h Requi red

Precondi ti on Fail ed
Request Entity Too Large
Request - UR Too Large
Unsupported Medi a Type
Request ed range not satisfiabl e
Expectation Fail ed
Internal Server Error

Not | npl enent ed

Bad Gat enay

Servi ce Lhavail abl e

Gat eway Ti ne- out

HTTP Versi on not supported

The HTTP client request method tells the server the purpose of the client
request. Supported methods in HTTP 1.1 are:

Method = "CET"

Java Servlets and HTTP Communication 103

104

| "CPTI ONS'
| "PUT"

| "DELETE'

| "TRACE'

| " CONNECT!

Each of the request methods result in different communication between the
client and server. The choice of which method to use is based on the
functional requirements of the application, security and performance needs,
and other considerations. The three most commonly used methods are G=T,
HEAD and PCSBT.

7.1.3.1 The GET Method

The GET method means retrieve whatever information (in the form of an entity)
is identified by the request URI. The entity body portion of a GET request is
always empty because any request data elements (such as the data
submitted by a HTML form) are encapsulated in the request header URI, such
as:

CET /servl et/ Process?l ast nane=Sm t h&f i r st nane=Jane HITP/ 1.0

Since this information is encapsulated in the URI, one should not use the GT
method for secure transactions because the request line (containing the URI)
cannot be encoded and is often logged. Sensitive information submitted by
the user is therefore potentially available to malicious entities. There is also a
(system-dependent) physical limit to the amount of data submittable with G=T.
The method may not be appropriate for applications requiring submission of
large data sets.

The semantics of the GET method change to a conditional G=T if the request
message includes an I f-Mdifi ed-Si nce, |f-Unnodified-S nce, |f-Match,

| f- None- Mat ch, or | f - Range header field. A conditional GET method requests
that the entity be transferred only under the circumstances described by the
conditional header field(s). The conditional GET method is intended to reduce
unnecessary network usage by allowing cached entities to be refreshed
without requiring multiple requests or transferring data already held by the
client.

The semantics of the GET method change to a partial G=T if the request
message includes a Range header field. A partial GET requests that only part of
the entity be transferred. The partial GET method is intended to reduce
unnecessary network usage by allowing partially retrieved entities to be
completed without transferring data already held by the client.

The response to a GET request is cachable.

Java Thin-Client Programming for a Network Computing Environment

7.1.3.2 The HEAD Method

The HEAD method is identical to GET except that the server does not return a
message body in the response. This method can be used for obtaining
metainformation about requested document (such as modification time, size
or type) without transferring the entity body itself. This method is often used
for testing hypertext links for validity, accessibility and recent modification.

7.1.3.3 The POST Method

The PCST method allows data to be sent to the server in a client request more
securely than by using the GET method because the data is encapsulated (and
optionally encoded) in the entity body of the request (recall the POST example
in Part 7.1.1 above). PGST places no restrictions on the size of the entity-body;
so applications with large data set submissions are supported. Generally
speaking, PCBT should be the preferred method for data interaction between
the client and server for applications like:

« Database operations

* Newsgroup, mailing list, or similar article submission
« Submitting data to programs

« Annotating resources on the server

e ...and many others

Responses to PGST are not cachable, unless the response includes
appropriate Cache-Control or Expi res header fields.

7.1.3.4 Other Methods
The following methods are also defined in HTTP 1.1 but not commonly used.
Refer to the HTTP specification for more information:

* CPTI ONS—This method represents a request for information about the
communication options available on the request/response chain identified
by the request URI.

* PUT—This method requests that the enclosed entity be stored under the
supplied request URI. If the request URI refers to an already existing
resource, the enclosed entity should be considered as a modified version
of the one residing on the origin server.

« DELETE—This method requests that the server delete the resource
identified by the request URI.

* TRACE—This method is used to invoke a remote, application-layer
loop-back of the request message for debugging purposes.

Java Servlets and HTTP Communication 105

* QONNECT—Reserved for future use in Secure Sockets Layer (SSL)
tunneling.

7.2 Common Gateway Interface

The Common Gateway Interface (CGI) is the traditional mechanism for
interfacing applications with information servers, such as HTTP or Web
servers. A plain HTML document that a Web server retrieves is static, but a
CGlI program is executed in real-time, so that it can output dynamically
generated information.

For example, it is possible to link a database to the World Wide Web by
creating a CGI program that the Web server can execute and act as a
gateway to the database (hence the name). The Web server passes the client
information and data to the CGI program, which conducts some transaction
with the database, receives and repackages the results, and passes them
back to the Web server for transmission back to the client. Figure 51 shows
this general process.

, T
/ DBMS
Form
1
Submit /'
Form Data Call CGl CGlI -
Browser " T Program{ Program
Web - —~
/ % . Server 7

- - _ -

Program’s Program’s
Reply Response Response

Figure 51. Simple Browser > Web Server > CGI Program > DBMS

By placing an executable program on the Web, any user anywhere will be
able to run the program on that system. Obviously, the Web server / CGI
integration needs to be secure and well controlled, and caution is advised for
the program design.

7.2.1 Using CGI

106

CGI programs reside in a special directory whereby the Web server knows to
execute the given resource as a program, rather than retrieve it as a file for

Java Thin-Client Programming for a Network Computing Environment

display only. This directory is commonly named cgi-bin on the Web server’s
disk and is usually carefully controlled by the Web master with restrictions on
deployment and execution. Once the CGI program is developed and saved by
name in the CGlI directory, it can be referenced by the client application using
the program’s URI. For example, a program called eval uat e. sh (a UNIX shell
script), saved in the cgi - bi n directory of the Webserver ww moon. xyz would be
available to the client program through the URI:

ht t p: // waw noon. xyz/ cgi - bi n/ eval uat e. sh
A CGI program can be written in any supported language that allows it to be
executed on the system, such as:
e Cand C++
UNIX Shell
e Batch Scripts

* Perl
* Visual Basic

... and many others

Different languages have different requirements. They have different levels of
complexity, different performance characteristics, different system overheads,
different features and facilities, different deployment steps, and so on. A C or
Pascal program will require compilation and debugging prior to deployment in
the CGI directory, whereas a script like UNIX Shell or Perl can be deployed
immediately. Many people prefer to write CGI scripts instead of programs
because they are easier to debug, modify, and maintain than a typical
compiled program.

CGI programs obtain the client’'s data from the Web server as environment
variables. One of the major environment variables used by a CGI program is
QUERY_STR NG which is defined as anything which follows the first '?’ in the
request URI. The most common example is data submitted by an HTML form
using the GET or HEAD method. QUERY_STR NGis encoded in the standard URL
format of changing spaces to '+’, and encoding special characters with '%xx’
hexadecimal encoding. QERY_STR NGmust be decoded in the CGI program in
order to use the data held in it.

Client data submitted using the PCST method is passed to the CGI program by
the Web server using standard input and must be dealt with accordingly.

Java Servlets and HTTP Communication 107

7.2.1.1 CGIl Headers

CGI programs can output any number of document types, such as regular
text, HTML, image formats, and audio files. In doing so, the client must be
advised what kind of document the program is returning in order to handle it
appropriately. The first line of output from the CGI program must be a header
of the form Content-type: M M ype, such as:

Qontent-type: text/htm

Another CGI header allows referencing to another document for output,
resulting in the server automatically outputting the referenced document as
part of the program’s response. This is commonly used to automatically
redirect requests for Web documents using an old URI to the new location.
This header takes the form Locati on: UR, such as:

Location: http://ww nars. xyz/real estate. ht m

Other headers are supported, as specified in the CGI specification (available
at http: //hoohoo. ncsa. ui uc. edu/ cgi /i nterface. ht n).

Headers are ASCII text, consisting of lines separated by either line feeds or
carriage returns (or both) followed by a single blank line. The output body
then follows in whatever native format is appropriate, such as a page of
dynamically created HTML or a file of binary image data.

7.2.2 Problems with CGI

Although CGl is a well-established mechanism for developing server
applications, there are a number of important issues that must be considered:

« Controlling resource contention and consumption for CGI programs is
complex. CGI applications create an entire system process (sometimes
called forking) on their host machine every time they run. Under
not-uncommon conditions, this can dramatically degrade server
performance. The situation is worse if the CGI application requires an
additional supporting system process to execute (for example a Perl
interpreter is required to execute each Perl script). Additionally,
implementing proper fault detection and recovery with CGl is not for the
faint-hearted.

e CGI program portability is difficult to achieve. Program code is highly
platform dependent, and the codebase is tied to a specific programming
language and version.

« Java servlets, although similar in concept to CGI programs, provide a
superior solution for HTTP-based server applications. In terms of

108 Java Thin-Client Programming for a Network Computing Environment

performance, management, portability, and ease of development, Java
servlets are the tool of choice if supported by the Web server.

7.3 Java Servlets

In the race to provide complete solutions for developing and deploying
distributed network computing applications, many products have emerged in
the marketplace that address particular aspects of the problem. An
enterprise’s system environment, designed for example to support
Internet-style network computing, will consist of a myriad of software and
services with browsers, plug-ins and system extensions, Web servers with all
manner of applications, gateways, and so on. Each of these components
have a different codebase, deployment strategy, set of management
requirements, and security regime. Java has emerged as one of the only
complete single-technology-base solutions, to address client, server, and
middleware requirements.

In the context of Internet-style network computing, while Java applets provide
a way of dynamically extending the functionality of client-side browsers, Java
servlets may also be implemented, allowing dynamic extension to the
functionality of network servers. Java applets enable browsers to extend their
behavior by supporting Java executable code (distributed from a central
source) within the browser context. Similarly, Java servlets extend the
functionality of Web servers by supporting Java executable code in a similar
fashion to CGI, but with much better performance and management
characteristics. The client can ask for a live document generated by a servlet
object.

Developers should consider servlets as server-side components. Servlets are
to servers what applets are to browsers. Servlet code can be downloaded into
a running server to extend its behavior to provide new or temporary services
to network clients. There are many advantages in using servlets to provide
dynamic content:

e Servlets are faster and cleaner than CGI scripts.

e Servlets use a standard API and language.

e Servlets support all the inherent advantages of Java.

* They are easily configured using a GUI-based administration facility.

« They can be loaded and invoked from a local disk or remotely across the
network.

e Servlets can be linked together (chained) so that one servlet can call
another servlet or several servlets in sequence.

Java Servlets and HTTP Communication 109

e Servlets can be called dynamically from within HTML pages by using
server-side include tags.

« The servlet APl assumes nothing about the protocol being used for
transmission, how the servlet is loaded, or the server environment it will be
running in. This allows the servlet API to be embedded in many different
kinds of servers in addition to HTTP-based Web servers.

« Servlets are extensible. Functionality can be inherited from the available
base classes.

e Servlets are simple to implement and use.

7.3.1 Servlet Requirements and Usage

110

In order to develop Java servlets, the minimum requirements are the servlet
API packages and classes—known as the Servlet Development Kit
(SDK)—and a JDK 1.1.x compiler. They contain all the Java servlet packages
and classes required to develop servlets as well as a small Java Web server
called the ServletRunner. The Java servlet APl is a Standard Java Extension
API. The APl is not part of the core Java 1.1.x framework; it is an extension
that vendors implement as part of their Web server functionality. JDK 1.2 rolls
the Java SDK into its core functionality.

Although all servlets are written in Java, their clients may be written in any
language, the most common being Java applets and HTML forms.

In order to use Java servlets, the Web server must support the servlet
mechanism. Servlets were initially supported in the Java Web Server from
Sun, and since then a growing number of other Web servers have supported
the API. Web server products currently supporting Java servlets include:

e Lotus Domino Go Webserver
* Netscape FastTrack and Enterprise Server
* Microsoft IIS
e Apache (and derived products)
Client/servlet interaction is based on the common request/response protocol

used by many distributed system mechanisms, such as Remote Procedure
Calls (RPCs) and HTTP.

Using servlets enables the Lunar Medical Center to connect their database to
the Web because servlets can use Java Database Connectivity (JDBC) to
interact with the data.

Java Thin-Client Programming for a Network Computing Environment

7.3.1.1 Servlet Interface

All Java servlets implement the Servl et interface within the j avax. servl et
package. This is typically achieved by subclassing either Generi cServl et ,
which implements the Servl et interface, or (in the case of HTTP-based
applications) by subclassing GenericServl et’s descendent, H t pServl et. Only
directly implement Servl et if the servlets cannot (or choose not to) inherit
from GenericServl et or HtpServl et. For example, RMI or CORBA objects that
act as servlets may directly implement this interface.

The Servl et interface defines methods to initialize a servlet, to receive and
respond to client requests, and to destroy a servlet and its resources. These
are known as life-cycle methods and are called by the network service in the
following manner:

1. Servlet is created then initialized.
2. Zero or more service calls from clients are handled.

3. Servlet is destroyed then finalized and garbage collected.

7.3.1.2 GenericServlet Class

The GenericServl et abstract class greatly simplifies the writing of servlets. It
provides simple versions of the Servl et lifecycle methods init() and
destroy(), the methods in the Servl et Gonfi g interface, and an implementation
of the I og() method from the Servl et Cont ext interface.

Only the abstract servi ce() method needs to be overridden. Though not
required, the get Servl et nfo() method may be overridden, and the init() and
destroy() methods may be specialized if expensive servlet-wide resources
are to be managed.

7.3.1.3 HttpServlet Class

The HtpServl et abstract class extends the Generi cServl et class and provides
a simple framework for using the HTTP protocol. Ht pServl et is an abstract
class, so it must be subclassed with the appropriate method/s overridden,
such as:

e doGet (): To support handling of HTTP GET request methods. Overriding
doGet () automatically also provides support for the HEAD and conditional
=T operations. Where practical, the get Last Mdi fi ed() method should also
be overridden, to facilitate caching the HTTP response data. This
improves performance by enabling smarter conditional GET support.

« doPost () : To support handling of HTTP PGST request methods
 doPut () : To support handling of HTTP PUT request methods

Java Servlets and HTTP Communication 111

112

 dolel et e(): To support handling of HTTP DELETE request methods

e init() and destroy(): To support management of resources that are held
for the lifetime of the servlet. Servlets that do not manage resources do
not need to specialize these methods.

e getServletinfo(): Provides descriptive information through a service's
administrative interfaces.

The above methods are not abstract, but have minimal functionality unless
overridden. For example, the doXXX() methods simply report an HTTP
BAD REQUEST error by default.

HTTP TRACE and CPTI ONS request methods are supported, but the doTrace()
and doQpti ons() methods are not typically overridden.

Servlets typically execute inside multithreaded servers; so they must be
written to handle multiple service requests simultaneously. Access to shared
servlet resources such as in-memory data (for example instance or class
variables of the servlet), files, database, and network connections must be
synchronized.

7.3.1.4 Configuring the Web Server for Servlets
The typical series of tasks required to configure a Web server to support
servlets includes:

« Specifying the directory where the JDK executables are located

« Specifying the directory where the JDK shared libraries are located

« Specifying the servlet JVM's CLASSPATH

¢ Specifying the maximum number of Java threads to allocate

e Defining the servlet message log
Every servlet deployed must be saved in the appropriate path, registered with
the Web server and have any additional servlet initialization parameters

defined. Any modifications to the servlet will require replacement of the
servlet class file and the JVM restarted.

The majority of Web server products will provide a browser-based interface
for these functions. Figure 52 shows a view of these administrative functions
for the Lotus Domino Go Webserver product.

Java Thin-Client Programming for a Network Computing Environment

3 Java Servlet Configuration - Netscape

File Edé View Go Commuricator Help

T4 3 A d e £ 5 & @

Back ol Relosd Home Search Gude Pint Seculy Slop

7| Bookmarks & Looatior: o #4701 50bitsc/admin-bin/cfoin/serviet =]
Java Virtual Machine Configuration
Java executable diteciory [E e ames i
Java shared libtary directory I
Java classpath €U B ik Javah LBy clazeaz . mip;CohUMAC

Servlet Configuration

Maximum number of Java threads 10
Servlet message log [omlemremvieior

Servlet initialization parameters

[ndex Instance Name Class Name

[Erampre: [serviesone vy Servier leount= 1, list=d-\w3\list
1 ProcessSQL ProcessSQL

2 Frocess Frocess

& add O Remove Index[1 =

Exter the servlet Instance name, Class name and initialization parameters
Separate nniltiple entries in the initialization parameters with a comma() or a line bredk.

Instance name
Class name

Parameters L d
. _'I_I

apply Resen

[Configuration and 4 dinistration Page] (Helg]
Related tasks:

* Restart VI - Shutdaws & Restart external IVM engine
 Intemal Java Servlet Configuration - Specify internal java servlet settings for the server

s Ll

= [Document: Dane

Figure 52. Typical Web Server Servlet Administration Interface

7.3.1.5 ldentifying Servlets
Servlets can be loaded by the Web server from:

e A directory that is on the CLASSPATH.

e The <web_root >/ servl ets/ directory (which does not need to be in the
server's CLASSPATH).

« From a remote location. The servlet’s class name must be prepended with
its URI. Security implications may also need consideration if remote
servlets are used.

Servlets are identified by either:

¢ A virtual name assigned to the servlet by using the administration tool or

Java Servlets and HTTP Communication 113

114

« Its own class name if the servlet is deployed in the /servl ets/ directory.
For example, the servlet Vval i dat e. cl ass, placed in this directory, can be
invoked using the following URI:

http://server. moon. xyz/ servl et/ Val i dat e

Aclass_file.initArgs file (for example validate.initArgs) can be placed in
the same directory as the servlet for passing initialization arguments to the
servlet, such as system conditions and credentials. This file consists of
vari abl e=val ue pairs.

7.3.1.6 Invoking Servlets from HTML-Based Clients

In the case of HTML-based clients, servlets are used and invoked in two
possible ways: For acting upon HTML form submissions and providing a
dynamically created HTML response, and for providing dynamically created
in-line HTML as part of a resource request.

Form Action Servlets
This option names the servlet as the responder to the ACTI ONdefined for the
HTML form, as in the Lunar Medical Center example:

<FORM NAME=checki n METHOD=post ACTI ON=htt p: // server. noon. xyz/ servl et/ Process>

When the user submits the above form, the form’s fields and data values are
submitted to the servlet-enabled Web server using HTTP as discussed earlier
in this chapter. The Web server invokes the indicated servlet, with the HTTP
request available to the servlet code as a H t pSer vl et Request object instance.
The servlet conducts its activity as required and provides its response to the
Web server as a Ht pSer vl et Response object.

This method is particularly useful for providing full client/server functionality
for a browser/HTTP-based user environment.

Server Side Include (SSI) Servlets

In a similar fashion to invoking Java code in the browser using <APPLET> tags,
<SERWLET>tags can be applied to HTML code to invoke Java code on the Web
server. These tags are known as Server Side Include (SSI) tags. Files using
SSI tags must be deployed using a particular file extension (<fil e> shtm)
which tells the Web server that the document contains SSI directives. The
Web server executes the SSI code during its top-down processing of the
HTML code, and the results are embedded in the response document before
being returned to the client.

The <SERWLET> tags are very similar to the <APPLET> tags required for Java
applet invocation. For example:

Java Thin-Client Programming for a Network Computing Environment

<SERVLET QCDE=Pati ent Dat a. cl ass OCDEBASE=htt p: // server. nars. xyz/ servl et/ >
<PARAM NAME=Use VALUE="Int er nal ">
<PARAM NAME=Language VALUE="Q eek">

</ SERVLET>

The QEtag attribute is the name of the class file that is to be loaded. The
QDERASE tag attribute is optional because the Web server knows by default to
examine its assigned servlet directory. GCDEBASE could be used to refer to a
remote location for the servlet. Other optional tag attributes include
initialization parameters for the servlet. The <PARAM> tags can provide any
required parameters to the servlet.

This method is particularly useful for providing dynamic content for a Web
page or site that does not require user input data.

7.4 The LMC’s HTTP/Servlet Implementation

Let's examine the servlet required to register patients at the Lunar Medical
Center. This code implements the service component of the design options
described in Section 6.3.2 through Section 6.3.4 in Chapter 6. The source is
created as Process. j ava, compiled to Process. cl ass, deployed in the Web
server’s servlet directory, and registered through the administrative interface
previously described.

inmport javax.servlet.*;

inport javax.servlet.http.*;

inmport java.io.*;

inport java.util.*;

inmport comibmaustin.itsc.javanc. Hospital.*;
inport comibmaustin.itsc.javanc.Jdbc. *;

public class Process extends HtpServlet

{
public void doPost (HttpServletRequest request, HttpServletResponse response)
throws Servl et Exception, | CException
{
Pati ent Record thisPatient = null;
PrintStreamout = new PrintStream (response. get Qutput Stream ());
response. set Cont ent Type ("text/htm");
/1 Try creating a PatientRecord based on data retrieved fromthe POST
try
{
thisPatient = new Patient Record
(
request. get Paraneter ("firstnane"),
request. get Paranet er ("l ast name"),
request . get Par anmet er (" dobday"),
request . get Par anet er (" dobront h"),
request . get Par anet er (" dobyear"),
request . get Par anet er ("gender"). char At (0),
request . get Par anet er ("ssecl1"),
request . get Par anet er ("ssec2"),

Java Servlets and HTTP Communication 115

116

request . get Par anet er ("ssec3")

)

}
catch (BadSSNror mat Exception b)

{
/1 code elided

/1 Try witing the PatientRecord using the chosen Comuni cator class
try
{

Comuni cator. wi t ePati ent Record(thisPatient);
cat ch(Exception x)

/1 code elided
}

out. cl ose();
response. get Qut put Strean() . cl ose();

}

Let's examine some interesting aspects of the Java code.

The Class

public class Process extends Ht pServl et

The servlet is extending the H t pServl et abstract class; so all the features of
the parent classes and interfaces in the servlet package are available, greatly
simplifying the code necessary.

The Method

public void doPost (HtpServletRequest request, HttpServl et Response response)
throws Servl et Exception, | CException

The servlet is overriding the doPost () method to implement the requirements
of client HTTP PGCST requests on the servlet. PCST is utilized because it is the
preferred method for conducting update-type transactions. The doPost ()
method’'s parameters provide the instances of the H t pSer vl et Request and

H t pSer vl et Response objects. The former encapsulates the request data from
the client; the latter encapsulates the response output.

HttpServletRequest

Note the use of the get Paranet er () method. This Servl et Request superclass
method returns the values of the named request parameters. Recall that in a
PCBT interaction, these parameters are passed down the wire in the
entity-body of an HTTP request and correspond to the field values from the
HTML form. There are many other useful methods available to examine and
extract the request data. Here is a useful extension (in bold type) to the

Java Thin-Client Programming for a Network Computing Environment

previous example for debugging purposes, showing some of the other
methods available:

public void doPost (HtpServletRequest request, HttpServl et Response response)
throws Servl et Exception, |CException
{
Pati ent Record thisPatient = null;
PrintStreamout = new PrintStream (response. get Qutput Stream());
response. set Cont ent Type ("text/htm");

/| debuggi ng code

out.println("
URI: " + request.getRequestURlI ().toString ());
out.println("
Query String: " + request.getQueryString ());
out.println("
Method: " + request.getMethod ());

out.println("
Header Nanmes: ");

String nane, val ue;

for (Enunmeration e = request.get Header Nanmes (); e.hasMreEl ements ();)

name = (String) e.nextElenment ();
value = (String) request.getHeader (nane);
out.println ("
" + nane + "=" + value);

}
/1 end of debuggi ng code

/1 rest of code elided

HttpServletResponse

Note the use of this object’s output stream (which will eventually be the newly
created response page on the client). Messages that the servlet generates

will be printed to this stream. The set Cont ent Type() method is used to indicate
that the output will be handled as HTML by the client. The response stream is

subsequently closed using the cl ose() parent method.
Using the Communicator Class

Gormuni cat or. writ ePati ent Record(thi sPatient);

The servlet has created a valid instance of a Pati ent Record object and is

calling the wri tePati ent Recor d() method, which saves the patient data to the
chosen storage mechanism. In this case, the storage is a database because

the JDBC version of the Comhuni cat or class is imported.

The output from the servlet of a successful submission from the client

application (with debugging information) is shown in Figure 53. Naturally, one
can now improve the quality of the feedback from the servlet by using any

combination of HTML deemed appropriate.

Java Servlets and HTTP Communication

117

Fle Edit “iew Go Communicator Help

e 2 A A 2 £ I &
Back Fowward Reload Home Search Guide Frint Secuity Stop
- w‘ 7 Bookmarks JL Go to:|http:f’.-"server.moon.xyz.-"servlet.-"PrDcess j

TUEL /servletProcess

Query String: nll

Method: POST

Header MHames:

COWTENT-LENGTH=106
CONTENT-TYPE=application/z-www-form-urlencoded
ACCEPT-LANGUAGE=en
CONNECTION=E eep- Alive

ACCEPT=mage/gif, imagefz-zhitmap, imagelipeg, imageipipes, imageipng, *™*
REFERER=http /0150 ttaciHospitalicheckin_j html
USER-AGENT=Mozllaid. 04 [en] (WinllT;)
ACCEPT-CHARSET=100-8859-1, % -8
HOST=10150b s

Data processed: Success!

=il | Documernt: Done

Figure 53. Output from the Servlet Shown in Client Browser

7.5 In Summary

118

HTTP has been in use since 1990, when it was first used as a simple protocol

for raw data transfer across the Internet. It has subsequently been
significantly extended and is in use by millions of users on millions of
networks around the world.

You can see how much easier it is to implement the server component of an
application using Java servlets. The Moonbase system designers can now
easily extend the basic functionality of the Lunar Medical Center and quickly

prototype the other Lunar facilities.

Bearing in mind the issues discussed in Chapter 6, the combination of HTTP
and Java servlets provides a viable solution for unsophisticated client/server
applications. The code is simple, highly portable, and the client application

components are indeed thin!

Java Thin-Client Programming for a Network Computing Environment

Chapter 8. Java Servers using JDBC

This chapter introduces Java Database Connectivity (JDBC), the Java API for
standardized Structured Query Language (SQL) based database access.
JDBC provides a uniform interface to a wide range of database systems and
a common foundation on which higher-level tools and interfaces can be built.
With JDBC, Java-based middleware services can be developed that utilize
the powerful data storage and retrieval facilities of database systems. Using a
database as the storage mechanism also supports other applications (for
example database Forms) that work on the same data set.

The Lunar Medical Center application has several functions that require
storage and retrieval of patient, history and other records from a database.
The LMC designers have utilized a popular database system (DB2) and have
developed a JDBC Communicator class (see Chapter 6) to support reusable
code for different server application components.

8.1 Overview of JDBC

JDBC consists of two parts: The high-level API and multiple low-level drivers
for connecting to different databases. Figure 54 shows the general
architecture of JDBC.

The JDBC API specifies Java interfaces, classes, and exceptions to support
database connections, SQL-based database query and update transactions,
processing of data result sets, database metadata, and so on.

The drivers are managed by a JDBC driver manager, and there are a number
of variations of driver architecture.

JDK 1.1 includes the high-level JDBC API in the java.sql package. It is a core
feature of the language; so JDBC is valid for a 100 percent pure Java
development initiative.

© Copyright IBM Corp. 1998 119

Java Application

JDBC API

JDBC Driver JDBC Driver

Variable Driver
Configuration

Figure 54. JDBC General Architecture

8.1.1 JDBC API
The important JDBC classes and interfaces are:

* java.sqgl.DriverManager
 java.sgl.Connection
 java.sql.Statement

« java.sqgl.ResultSet

8.1.1.1 java.sql.DriverManager

The Dri ver Manager class handles the loading of database drivers. As the
management layer of JDBC, it works between the application and the drivers,
tp keep track of the drivers that are available and handling the establishment
of a connection between a database and the appropriate driver. Dri ver Manager
also provides control over driver login time limits, logging and tracing, and
other database system-specific features.

In most situations, only the get Connecti on() method is directly required. This
method establishes a connection to a database, and the class manages the
other details of establishing a connection.

120 Java Thin-Client Programming for a Network Computing Environment

8.1.1.2 java.sql.Connection

The Gonnect i on interface represents a session with a particular database.
Within the context of a Connecti on, SQL query or update statements are
executed (using a St at enent object), and results are returned (as a Resul t Set
object).

A database’s table information, supported grammar, stored procedures,
connection capabilities, and other database metainformation may be
obtained using the get Met aDat a() method.

8.1.1.3 java.sgl.Statement
A Satenent object is used as a container for executing an SQL statement
string and obtaining the results produced by it as a Resul t Set object.

There are in fact three types of Stat enent :

« S at enent —which provides basic methods for executing simple SQL
statements and retrieving results.

* Prepar edSt at enent —which inherits from St at enent , is used for executing a
precompiled SQL statement and adds methods for dealing with I N
parameters.

e Cal | abl et at enent —which inherits from Prepar edS at enent , is used for
executing a call to a database stored procedure and adds methods for
dealing with QUT parameters.

Only one Resul t Set per Satenent can be open at a time. If multiple Resul t Set
objects are being processed, they must have been generated using different
S at enent objects. Any open Resul t Set objects are implicity closed if a new
S at ement is executed.

8.1.1.4 java.sql.ResultSet

The Resul t Set object provides access to the resulting table of data generated
upon execution of a given Statenment. The rows in the Resul t Set table are
sequentially retrieved using the next () method, but the columns within a row
can be accessed in any order (by name or number) through a set of get
methods corresponding to the data type of the column (detailed below).

8.1.2 JDBC/SQL Data Type Mapping

Data is stored in a database according to the data type specified in the
schema definition of that database. The data types in a database differ from
those in Java, and we must therefore provide some form of mapping between
the two. Luckily, the methods available with a Resul t Set object, in combination
with the format-handling characteristics of the JDBC database driver, allow

Java Servers using JDBC 121

122

this potentially troublesome issue to be dealt with transparently. You simply
need to be aware of which Resul t Set get method to use for which column.

For example, if the get method is get String(), the data type of the
corresponding column in the database is VARGHAR the JDBC driver will convert
the VARCHAR data and return a Java Stri ng object.

Table 4 indicates the get methods recommended for retrieving the given SQL
data type (in dark shade) and those which may otherwise be legally used but
must be handled appropriately (in light shade). The get Qoj ect () method will
return any data type as a Java oj ect and is useful when the underlying data
type is a database-specific abstract type or when a generic application needs
to be able to accept any data type.

Table 4. JDBC ResultSet getXX Method / SQL Data Type Matrix

SQL datatype — | T| S| |B|R|F|D|D|N[B|C|V|L|B|V|L|ID|T|T
I{M|N[I|E|L|O|E|U|I|H|lA]|O|I|[A|O|A]I]I
N|A[T|G|A|O|U|C|M|T|A|R|N[N|R|N[T| MM
Y| L|E|l1|L|A|lB|I|E R|c|Vv|A|B|G|E|E|E
I|L|G|N T|L|MIR H| Al R| 1|V s
N|T|E|T E| Al Al R| Y[N|A T
T|N|R L| c R| C Al R A

T H R| B M
A Y P
R N
ResultSet getXX method A
! R
Y
get Byte()
get Short ()
getlnt()
get Long()
get H oat ()
get Doubl e()

get Bi gDeci nal ()

get Bool ean()

getString()

get Byt es()
get Dat e()

get Ti me()

Java Thin-Client Programming for a Network Computing Environment

ResultSet getXX method
!

SQL datatype — | T|S|! |B|R|F|D|D|N|B|C|V|L|B|V| LD T|T
I M N[I|E|L|O|E|U|I|H|A]O|I]|A|lO|A|I |1
N|A|T|G|A|O|lU|C|M|T|A|R|N|N|R|[N|T|M|M
Y|L|E|l1|L|A|B|I|E R{c|VvV|A|B|G|E|E|E
Il L|G|N T|L| MR HIA|R| 1|V S
N[I|E|T E| A1 Al R|Y|N|A T
T| N|R L|cC R| C Al R A

T H R| B M
A Y| P

R N

A

R

\

get Ti mest anp()

get Asci i Stream()

get Uni codeSt r eand)

get B narySt reang)

get (oj ect ()

8.1.3 JDBC Database Drivers

All JDBC calls are passed to a JDBC driver manager. The driver manager in
turn passes the request to the JDBC driver that can handle the request.
JDBC drivers fit into one of four categories as shown in Figure 55 on page
124.

JDBC-Net Pure-Java Driver

This driver translates JDBC calls into a database-independent network
protocol which is then translated to a database protocol by a server. In
general, this is the most flexible JDBC alternative, although not the most
widely available option at this time.

JDBC-ODBC Bridge plus ODBC Driver

There are a number of products that provide JDBC access through Open
Database Connectivity (ODBC) drivers. The ODBC binary code, and in many
cases database client code, must be loaded on each client machine that uses
this driver.

Native-API Partly-Java Driver

This kind of driver converts JDBC calls into database product-specific API
calls on the client (such as OCI for Oracle and CLI for DB2). This style of
driver also typically requires some product-specific code to be installed on
each client machine. Because this driver uses proprietary features, it is
generally obtained from the database vendor.

Java Servers using JDBC 123

124

JDBC Driver Manager

JDBC Net JDBC-ODBC JDBC JDBC
Driver Bridge Driver Driver A Driver B
e/
. Client
ODBC Diriver DB Code
Independent OoDBC Native DBMS Native DBMS
Net Protocol Protocol API Net Protocol

Figure 55. JDBC Driver Categories

Native-Protocol Pure-Java Driver

This kind of driver converts JDBC calls into a database product-specific
network protocol used by that database system (such as SQL*Net for
Oracle), thereby supporting direct connection from the Java client to that
database. Because this driver also uses proprietary features, it too must
generally be obtained from the database vendor.

The first and last of these driver categories are the preferred way to access
databases from JDBC. The second and third are considered interim
solutions, where direct pure-Java drivers are not available.

8.1.3.1 Case Study - IBM DB2 JDBC Driver
The DB2 JDBC driver supports both the JDBC-Net pure-Java (referred to
by IBM as applet driver support) and native-API partly-Java techniques.

Figure 56 illustrates how the DB2 JDBC applet driver works. The driver
consists of a JDBC client and a JDBC server. The JDBC client driver is
loaded along with the applet (or indeed servlet).

Java Thin-Client Programming for a Network Computing Environment

Note

In the case of the Lunar Medical Center HTML/servlet/JDBC
implementation, there is no client-side requirement on the browser. The
servlet acts as the JDBC client and therefore requires the JDBC driver.

When a connection to a DB2 database is requested by the applet, the driver
opens a TCP/IP socket to the JDBC server on the Web server machine. After
a connection is set up, the client sends each of the subsequent database
access requests from the applet to the JDBC server though the TCP/IP
connection. The JDBC server then makes corresponding Call Level Interface
(CLI) requests to perform the task. Upon completion, the JDBC server sends
the results back to the client through the connection.

Web Browser Web Server Host

———— >
TCP/IP

Socket

Figure 56. DB2’s JDBC "Applet Driver" Architecture

Figure 57 illustrates how a DB2-based JDBC application works. Calls to
JDBC are translated to DB2 CLI calls (through Java native methods). This
dependency requires that the DB2 Client Application Enabler (CAE)
component be installed at the client. A JDBC request flows through DB2 CLI
to the DB2 server through the normal CAE communication flow.

Java Servers using JDBC 125

DB2 Client
Java with Client
Application JDBC Application DBMS
Anabler

Figure 57. DB2’s JDBC Application Architecture

8.2 Using JDBC

The typical steps to connection and manipulation of a database using JDBC
are quite straightforward:

1. Import the Java JDBC package:

inport java.sql.*;

2. Set some useful static class variables in your code. In connecting to a
database, you will require the appropriate JDBC driver, the URI of the
database instance, and the authentication credentials. The URI takes the
a modified URL form pr ot ocol : subpr ot ocol : // host : port/ dat abase. For
example:

private static final String DRI VER = "COM i bm db2. j dbc. net. DB2Dri ver",
URL = "jdbc:db2://server. nmoon. xyz: 8888/ sanpl e",

USER = "db2adm n",
PASSWORD = "passwor d”;

3. Register the appropriate JDBC driver with the Dri ver Manager class.
Dri ver Manager maintains a list of Dri ver classes that have registered
themselves by calling the method regi sterDxi ver (), although you would
not normally call this method directly. The method is called automatically
by a driver when it is loaded. A useful technique to achieve this uses a
static initialiser block at the head of your class, as in:

static
{
try
{
d ass.forNane (DR VER;
}
catch (d assNot FoundException x)

{

X. printStackTrace (Systemout);

}
}

126 Java Thin-Client Programming for a Network Computing Environment

4. Set the connection Properti es. Typically, the connection credentials are
the only properties you need to set manually. For example:

Properties info = new Properties ();
info.put ("user", USER);
info.put ("password', PASSWRD) ;

5. Make the connection to the database. For example:
Gonnecti on connecti on = Driver Manager . get Connecti on (UR, info);

6. Create your SQL statement string/s and create a S at enent object for your
connection. For example:

selectStm = "SELECT first_nane, | ast_name FROM patient";
insertStmt="INSERT INTO ssn VALUES (1,222,AB',333)";
Statement statement = connection.createStatement();

7. Execute the statement in the database using an execution method of the
Statement object. If your statement contains a SQL query (SELECT, you use
the executeQuery() method, and receive a ResultSet object. If your
statement contains a SQL INSERT, UPDATE DELETEor DDL (such as CREATE
TABLE Oor DROP TABLE statement, you use the executeUpdate) method and
receive an integer value indicating the resulting row count of the
command. For example:

ResultSet result = statement.executeQuery(selectStmt);
int rowCount = statement.executeUpdate(insertStmt);

8. If execution of the statement results in a SQL error, an SQLException will be
thrown.

Note that the Connection automatically commits changes to the database
after executing each statement. If automatic commit has been disabled on
your database, an explicit COMMITcommand must be executed, or
database changes will not be saved.

9. Process the ResultSet . Columns in your ResultSet are numbered from 1.
For example:

system.out.printin ("Patient Records (Firsthame, Lasthame).");
while (result.next ())

{
system.out.printin(result getString(1) + ", " + result.getString(2))

}
10.Close the ResultSet and Statement objects.

result.close();
statement.close();

11.Cycle back to step 6 for further transactions, or

Java Servers using JDBC 127

12.Close the database Connecti on.

connect i on. cl ose();

If you will be conducting multiple transactions, it is better to predefine your
S atenent and Resul t Set objects with null values, and then set them as
required, as in:

ResultSet result = null;
Satenent selectStm = null;

selectStm = "SELECT first_nane, | ast_name FROM patient";
statenent = connection. createStatenent ();
result = statement.executeQuery (selectSn);

result.close ();
stat enent. cl ose ();

selectStm = "SELECT title, description FROM hi story";
stat enent = connection.createSatenent ();
result = statement.executeQuery (selectSnt);

result.close ();
stat enent. cl ose ();

8.3 The LMC’s JDBC Implementation

Let’'s examine the Java code required to implement the Lunar Medical Center
JDBC Communi cat or class used by various server components (the servlet for
example). The class stores and retrieves data using the set of database
tables defined below. This table schema corresponds to the object model
shown in Figure 58, previously discussed in Chapter 6.

128 Java Thin-Client Programming for a Network Computing Environment

PatientRecord

String firstName
String lastName
Date dateOfBirth
1| Character gender

SocialSecurityNumber SSN
Vector history
1
1 n

SocialSecurityNumber HistoryEntry
Integer firstField Date date
String middleField String title
Integer lastField String description

Figure 58. Simple Object Model for the LMC’s Systems

Table 5. SSN - Social Security Number

Column Type Length
SSN_ID INTEGER 4
PART1 SMALLINT 2
PART2 CHARACTER 2
PART3 SMALLINT 2

Table 6. Patient - Patient Data

Column Type Length
PATIENT_ID INTEGER 4
FIRST_NAME VARCHAR 40
LAST_NAME VARCHAR 40
BIRTH_DAY INTEGER 4
BIRTH_MONTH INTEGER 4
BIRTH_YEAR INTEGER 4

Java Servers using JDBC

129

Column Type Length
GENDER VARCHAR 1

Table 7. History - Patient History Data
Column Type Length
ENTRY_ID INTEGER 4
PATIENT_ID INTEGER 4
DAY INTEGER 4
MONTH INTEGER 4
YEAR INTEGER 4
TITLE VARCHAR 80
DESCRIPTION VARCHAR 1024

The ssn table holds unique Social Security Numbers that are used as the
primary key of the patient table and also act as a foreign key of the patient
hi st ory table. It should be noted that data held in Java objects is being stored
to a relational database system (and vice versa); so the code needs to
implement the necessary flattening mechanism.

It is useful to present the bulk of the class’ source code to examine how some
of the JDBC methods are used in practice. The Java class file has two
methods (with the definitions shown in bold type in the source):

« readPat i ent Recor d() —which retrieves data from the database in order to
create and return a Pati ent Record object that corresponds to a given
Soci al Securi t yNunber object

e witePatient Recor d() —for storing a Pati ent Record object’s data to the
database

inmport java.io.*;

inport java.sql.*;

inport java.util.*;

inport comibmaustin.itsc.javanc. Hospital.*;

public class Communi cator inplements Serializable
{
private static final String DRI VER = "COM i bm db2.j dbc. net. DB2Dri ver",
URL = "jdbc: db2://server. noon. xyz: 8888/ sanpl e",
USER = "db2adm n",
PASSWORD = "passwor d”;

static

{

130 Java Thin-Client Programming for a Network Computing Environment

try

{
d ass. forName (DRI VER);

}
catch (C assNot FoundException x)

{

X. printStackTrace (Systemout);

}
}

public static PatientRecord readPatientRecord (Social SecurityNunber SSN)
throws Patient Recor dException

{

Connection connection = null;
Statenent statenment = null;

try
{

Extract the Social Security Number strings from the provided object:

String sSNFirst = SSN.getFirstField () +"",
sSNM ddl e = SSN. getM ddl eField (),
sSNLast = SSN. getlLastField () + "";

String sel ectStnt;
java.sql .Date dateO'Birth = null;
bool ean pati ent Found;

Properties info = new Properties ();
info.put ("user", USER;
info.put ("password", PASSWORD);

The database connection is actually made:

connecti on = Driver Manager . get Connection (URL, info);

Dynamically create an SQL SELECT (query) statement to search the PATIENT
and SSN tables, linked on the key ID fields, to obtain the single patient record

corresponding to the provided Social Security Number:
sel ect Stmt = "SELECT first_nane, | ast _nane, bi rth_day, birth_nonth, birth_year," +
"gender FROM pati ent, ssn" +
" WHERE patient_id=ssn_id" +
" AND part1=" + sSNFirst +
" AND part2="" + sSNMddle + """ +
" AND part3=" + sSNLast;

Create a S at enent object on the connection and execute the query:

statement = connection.createStatenment ();
Resul tSet result = statenent.executeQuery (selectStnt);

If there are no records in the Resul t Set, throw an exception:

if ('result.next ())
throw new Pati ent Recor dException ("PatientRecord not found in " + URL);

Java Servers using JDBC 131

Instantiate a new Pati ent Recor d object using data extracted from the
Resul t Set :

Pati ent Record thisPatient = new PatientRecord
(
result.getString (1), result.getString (2),
result.getlnt (3) +"", result.getlnt (4) +
result.getString (6).charAt (0),
sSNFirst, sSNM ddl e, sSNLast

)

result.getlnt (5) +"",

Close these Resul t Set and St at enent objects:

result.close ();
statement. cl ose ();

Dynamically create another query statement to search the HISTORY and
SSN tables, linked on the key ID fields, to obtain all history records
associated with the patient as identified by the Social Security Number:

selectStnm = "SELECT entry_id, day, nonth, year,title, description FROM history, ssn" +
" WHERE patient _id=ssn_id" +
" AND part1=" + sSNFirst +
" AND part2="" + sSNMddle + """ +
" AND part3=" + sSNLast +
" ORDER BY entry_id";

stat enment = connection. createStatenment ();
result = statenent.executeQuery (selectStnt);

Vector thisH story = new Vector ();
H storyEntry thisEntry = null;

Moving through the Resul t Set rows, populate a vector of H st oryEnt ry objects
using the data extracted from the current Resul t Set row (note that we have to
do some minor manipulation of date values to satisfy the requirements of the
Java Dat e object):

while (result.next ())

{

thisEntry = new Hi storyEntry
(
new java.util.Date (result.getlnt (4) - 1900, result.getInt (3) - 1,

result.getint (2)),

result.getString (5),
result.getString (6)
)

t hi sH story. addEl enent (thi sEntry);

}

result.close();
st at enent . cl ose();

Add the vector of H storyEnt ry objects to the Pati ent Recor d object and return:

thisPatient.setH story(thisH story);
return thisPatient;

}

132 Java Thin-Client Programming for a Network Computing Environment

catch (Exception x)
{ /* code elided */ }
finally
{
/1 Cean up connection
try
{

Close the Connection object:

connecti on. cl ose();
}
catch (Exception x)
{ /* code elided */ }
}
}

public static void witePati entRecord (PatientRecord patientRecord)
throws Patient Recor dException
{
String sSNFirst = patientRecord.getSSN ().getFirstField () +"",
sSNM ddl e = patientRecord. get SSN ().getMddl eField (),
sSNLast = patientRecord. getSSN (). getlLastField () +"";

Connection connection = null;
Statenent statenment = null;
ResultSet result = null;

try
{
Properties info = new Properties ();
info.put ("user", USER);
info.put ("password", PASSWORD);
connection = Driver Manager . get Connection (URL, info);
int thisSsnld,

tenp,
rowl nserted;

Dynamically create a query statement to search the SSN table to try and
obtain a record corresponding to the provided Social Security Number,

thereby indicating that the patient record already exists in the database:
String selectStnt = "SELECT ssn_id FROM ssn" +
" WHERE part1=" + sSNFirst +

" AND part2="" + sSNMddle + """ +
" AND part3=" + sSNLast;

statenment = connection.createStatenent ();
result = statement.executeQuery (selectStnt);

If no record was found, new records need to be inserted:
if ('result.next ())

result.close ();
statenment. cl ose ();

Dynamically create another query statement to obtain the current maximum
identifier from the SSN table. This will be used as the basis for the ID value of

Java Servers using JDBC 133

the to-be-inserted, new Social Security Number record (note that this is not
the ideal way of doing this. If your database system supports a protected
automatic incrementing facility, use that):

String sel ect_max_ssn_stnm = "SELECT MAX(ssn_id) FROM ssn";

statenent = connection.createStatenent ();
result = statenent.executeQuery (select_max_ssn_stnt);

Add 1 to the maximum value found, or start with a new value of 1 if not found:

if (!result.next ())
thisSsnld = 1;
el se
{
tenmp = result.getlnt (1) + 1;
if (! result.wasNull ())
thisSsnld = tenp;
el se
thisSsnld = 1;
}

result.close();
st at enent . cl ose();

Dynamically create an SQL | NSERT statement to insert a new Social Security
Number record into the SSN table:

String insertSsnStmt = "I NSERT | NTO ssn VALUES (" +
thisSsnid + "," +
sSNFirst + ",'" +
sSN\Mddle + "', " +
sSNLast + ")";

statement = connection.createStatenent ();

Execute the statement and return the number of rows inserted (will not be 1 if
there was a problem):

rowm nserted = statenent.executeUpdate (insertSsnStnt);
statenment. cl ose ();

if (rownserted != 1)
throw new Pati ent RecordException ("Could not insert SSN |ID=" +
thisSsnld + " in " + UR);

Dynamically create another SQL | NSERT statement to insert a new patient
record into the PATIENT table:

String insertPatientStnt = "I NSERT I NTO patient VALUES (" +
thisSsnid +","" +
patientRecord. getFirstNanme () + "' ,'" +
patientRecord. getLastName () + "' ," +
patientRecord. getDateCBirth ().getDate () + "," +
(patientRecord.getDateCBirth ().getMnth () + 1) + "," +
(patientRecord.getDateCBirth ().getYear () + 1900) + ",’'" +

pati ent Record. get Gender () + "")";

statement = connection.createStatenent ();
rowl nserted = statenent.executeUpdate (insertPatientStnt);

134 Java Thin-Client Programming for a Network Computing Environment

statement. close ();

if (romnserted !=1)
throw new Pati ent Recor dException ("Coul d not insert Patient: |ID=" +
thisSsnld + " in " + UR);

A Social Security Number was previously found, extract the value:

thisSsnld = result.getlnt (1);
result.close ();
statenent. cl ose ();

}

Dynamically create an SQL DELETE statement to delete all records from the
HISTORY table for the associated patient:

String del eteH storyStnt = "DELETE FROM hi story" +
" WHERE patient_id=" + thisSsnld;

statement = connection.createStatenent ();
rowl nserted = statenent.executeUpdate (del eteH storyStnt);
statenment. cl ose ();

Vector thisH story = patientRecord. getH story ();
H storyEntry thisEntry=null;

String insertEntryStnt;

int thisEntrylndex = 0;

Moving through the Pati ent Record vector of H st oryEnt ry objects, dynamically
create an SQL | NSERT statement to insert the current history entry as a record
in the HISTORY table (note that we have to do some minor manipulation of
date values to deal with the contents of Java Dat e objects):

for (Enuneration e = thisH story.elements (); e.hasMoreEl enents () ;)

t hi sEnt ryl ndex++;
thisEntry = (H storyEntry) e.nextE ement ();

insertEntryStnt = "I NSERT | NTO history VALUES (" +
thisEntrylndex + "," +
thisSsnld + "," +
thisEntry.getDate ().getDate () + "," +
(thisEntry.getDate ().getMonth () + 1) + ", " +
(thisEntry.getDate ().getYear () + 1900) + ",'" +
thisEntry.getTitle () +"',’" +
thisEntry. getDescription () + "')";

statement = connection.createStatenent();
row nserted = statenent.executeUpdate (insertEntryStnt);
statement. cl ose();

if (rownserted != 1)

throw new Pati ent Recor dException ("Could not insert Hstory Entry: ID=" +
thisEntrylndex + "/" + thisSsnld + " in" + URL);

Java Servers using JDBC 135

catch(Exception x)
{ /* code elided */ }
finally

// dean up connection
try
{
connection.close ();
}
catch (Exception x)
{
throw new Pati ent Recor dException ("Problemcleaning up " + URL +
"\'n" + x.get Message());

136 Java Thin-Client Programming for a Network Computing Environment

Chapter 9. Java Servers and Socket Communication

This chapter deals with methods available in Java to slice monolithic
applications into functional units that communicate through a network, thus
making it a distributed application. The chapter introduces the Internet
Protocol (IP) and its API-using sockets. Sockets provide the functionality to
transport data blocks or data streams over the network and provide a very
elementary facility for the creation of distributed components.

At the Lunar Medical Center (LMC), the receptionist enters the patient’s data
at check-in time. LMC doctors can access this data and attach further
information about diagnosis and treatments. As with any hospital, the LMC
has many doctors and can have more than one receptionist. To let them work
in parallel and share a common set of data, they must access a
centrally-managed (but distributable) data facility.

How can the hospital applications be designed or extended to meet these
needs? The LMC designers are interested in a solution that supports their
Java-based network computing vision, and one of the options is to base the
infrastructure on non-proprietary TCP/IP (Transmission Control Protocol/
Internet Protocol) and UDP/IP (User Datagram Protocol/Internet Protocol)
communications.

9.1 Introduction to TCP/IP sockets

To establish a network connection between two parties, it is first necessary to
agree on a protocol for the communication. The most widely used,
standardized and non-proprietary protocol for computer networking is TCP/IP.

The basic procedure to set up a TCP/IP connection is to create a socket at
each communication endpoint—the server and the client.

Sockets represent the API to TCP/IP and UDP/IP. Their purpose is to hide the
details of the network from the programmer. There are three types of sockets:
e Stream
* Datagram
« Raw
Stream and datagram sockets interface to TCP and UDP protocols
respectively and are positioned above the IP network layer. The raw socket

makes use of the lower-layer IP and Internet Control Message Protocol
(ICMP). Raw and datagram sockets provide a fast service, but do not

© Copyright IBM Corp. 1998 137

138

guarantee correct and complete delivery of the data packets. Such
functionality needs to be implemented in the application. Raw and datagram
sockets also operate on single data packets rather than on continuous data
streams. The most appropriate option for the LCM designers is the stream
socket mechanism.

A socket consists of an IP address and a port number.

« An IP address is a 32-bit number. It can be represented numerically or

symbolically, such as 137. 138. 131. 253 or ww cer n. ch. The symbolic
representation (wa cer n. ch) is converted to the four-byte representation
by the Domain Name Service (DNS). In a network domain, an IP address
represents exactly one host. It is possible, however, for a given host to be
a member of more than one network domain, and in this case, the host
may possess multiple IP addresses.

A port number is a 16-bit number. Ports are required to distinguish the
different connections which might be established with one host. There are
well-known ports that are reserved for specific services like Telnet (port
23) or WWW/HTTP (port 80). Servers must register the port number that
will be used for accessing their service. Clients must know this port
address and specify it when trying to establish a connection. The client
does not have to register its port number before the connection is made, to
allow data transfer from the server to the client, but communicates its port
to the server using the initial unidirectional connection from the client to
the server. The client port number is usually chosen by the client operating
system from a list of available ports during run time.

The following sequence of operations (shown graphically in Figure 59 on
page 139) set up a bidirectional client/server communication with a
multithreaded server:

1.

o e

The server registers the port number it wishes to use for the
communication.

The server listens on the specified port for client requests.
The client initiates a connection to the server using the specified port.
The server accepts the connection.

The server starts a separate thread to service the request (necessary to
allow concurrent access).

The connection is established, and the two applications can perform their
data exchange.

The client and the server both terminate the connection.

Java Thin-Client Programming for a Network Computing Environment

client

3. client socket

server
1. server socket
> 2. listen <
4. accept

5. new thread

datalexchange v

6. read

6. write

B ——— 6. write
'> 6. read

'

7. close

7. close

I

Figure 59. Sequence of Interactions in Client/Server Socket Communication

For complex applications, it is a challenge to make sure that the system does
not enter a “deadlock” situation (where both the client and the server wait for
input at the same time). Establishing a complete, robust protocol between the
parties requires a significant effort.

9.2 Sockets with Java

Java provides access to sockets through the j ava. net package. The classes
and methods necessary to implement a typical socket-based client/server

application are:

Java Servers and Socket Communication 139

e Server Socket : This class implements server-side sockets. A server waits
for requests to come in over the network, performs some activity, and may
return a result to the requester. Important methods are:

e accept (): accept the client request

e read(): read data from the client through a stream

e wite(): write data to the client through a stream

* close(): close the stream and terminate the connection

e get I nput Strean{): return the input stream associated with the socket

e get Qut put Streang) : return the output stream associated with the socket

¢ Socket: This class implements the client-side socket. Important methods
are:

e read(): read data from the server through a stream

e wite(): write data to the server through a stream

¢ close(): close the stream and terminate the connection

e get I nput Streang): return the input stream associated with the socket

e get Qut put Strean(): return the output stream associated with the socket

9.2.1 Compatibility of Different Socket Implementations

140

The JVM definition provides a standardized run-time environment, including
the representation of data types. Because of this, exchanging data between
two Java applications is relatively painless.

Exchanging data with an application written, for example, in C through a
TCP/IP stream may be a different proposition.

C (for instance) does not define a representation for integers or floating point
numbers or other structured data types. The byte sequence of an integer in a
TCP/IP stream may consequently differ between little-endian and big-endian
machines. To overcome this problem, the idea of a defined net order for
transmission was introduced. Since Java obeys net orders, as long as the
communication partner also obeys net orders, interoperability is assured.

Note

Little-endian machines store the least significant byte first. Big-endian
machines start with the most significant byte.

Java Thin-Client Programming for a Network Computing Environment

9.3 The LMC’s Socket Implementation

The LMC's socket Conmuni cat or class is found within the
comibmaustin.itsc.javanc. Socket package, which also encapsulates
additional server functionality in two new classes Pati ent Recor dServer and
Pat i ent Recor dSer ver Thr ead. These two additional classes are required to
provide support for concurrent access to the server resources, because new
requests will need to be accepted while still servicing a client request. To
achieve this, the Pati ent Recor dSer ver class creates a new thread from the
Pat i ent Recor dSer ver Thr ead class upon acceptance of each request. Figure 60
on page 141 shows all the classes and methods in the LMC
comibmaustin.itsc.javanc. Socket package (as viewed within VisualAge for
Java).

[(_,JW'olkhench M= 3

File Edit “Workspace Selected ‘Window Help

VBB D60 H))b

@ Frojects I% F'ac:kagesl [c] Elassesl 11 Interfacesl (%] Unresalved Problemsl

5 Al Projects +]

= 7 Socket ;I
=] o Communicator
"] neal:IF'atientF!ec:on:l[Hospital.Soc:iaISec:urit_l,lr»lumber]S

"] writeF'atientF!ec:on:l[H03|:|itaI.F'atientF|ec:on:l]S
= (¥ GerPR*
mainfjava.lang. String []]S
= 3 Main®
mainfjava.lang. String []]S
=] o PatientRecards erver
"] getPatientServerHost[]S
"] getPatientServerPort[]S
mainfjava.lang. String []]S
=] o PatientR ecordServerT hread
PatientRecordServerThread(java.net. Socket]

unf) -
K| 3

SmartCard(3/30/38 3:43:53 PM)

Figure 60. Overview of the Socket Package

9.3.1 Implementing the Socket Client

The comi bmaustin.itsc.javanc. Socket .Communi cat or class provides the
readPat i ent Record() and witePati ent Record() methods for patient record
retrieval and storage, as do all other Gommuni cat or classes developed at the
LMC:

Java Servers and Socket Communication 141

« The methods first create a client socket utilizing the appropriate server
configuration (the server host name and the port number the server listens
to).

¢ Using the Socket methods get | nput Strean{) and get Qut put Strean(), object
input and output streams are created.

« The raw input and output streams are “wrapped” to allow for object
serialization.

« The objects can now be transferred using read() and wite().

¢ The client issues the cl ose() command.

public static PatientRecord readPatient Record(Soci al SecurityNunber SSN)
throws Patient Recor dExcepti on
{
Socket sock = null;
(bj ect Qut put Stream renoteQut = nul | ;
Cbj ect I nput Streamrenoteln = nul | ;
try
{
sock = new Socket (PatientRecordServer.getPatientServerHost (),

Pat i ent Recor dSer ver . get Pati ent ServerPort ());
renoteQut = new Cbj ect Qut put Stream (sock. get Qut put Stream ());
renoteCut. witeChject (SSN);
renmoteln = new Obj ect | nput Stream (sock. get I nput Stream ());

Pati ent Record patient Record = (Pati entRecord) renoteln.readject ();
return (patientRecord);

}

catch (Exception e)
throw new Pati ent Recor dException (e.get Message ());

finally

{
try

sock. cl ose ();
remoteln.close ();
remot eQut. cl ose ();

catch (Exception e)
{ /* SQUELCH */ }
}
}

public static void witePatientRecord (PatientRecord patient Record)
throws Patient Recor dExcepti on
{
Socket sock = null;
(bj ect Qut put Stream renoteQut = nul | ;
try
{
sock = new Socket (Pati ent RecordServer. get Pati ent ServerHost (),
Pat i ent Recor dSer ver . get Pati ent ServerPort ());
renot eQut = new Cbj ect Qut put Stream (sock. get Qut put Stream ());
renoteQut. witebject (patientRecord);
}

catch (Exception e)

{

142 Java Thin-Client Programming for a Network Computing Environment

throw new Pati ent Recor dException (e.get Message ());

}
finally
{
try
{
sock. close ();
renot eQut. cl ose ();
}
catch (Exception e)
{ /* SQUELCH */ }
}
}

9.3.2 Implementing the Socket Server

The Pati ent Recor dSer ver class consists of a mai n() method and methods to
allow mai n() to safely obtain the server host name and port number. The

mai n() method creates a server socket with the server port number it should
listen to. An infinite loop is used to listen for and accept client requests and to
create and start a new thread for servicing a request before returning to the
beginning of the loop.

The server makes use of multithreading and thus provides the ability to
service concurrent client requests. After the server accepts a request and a
bidirectional connection is established, both parties agree to change the port
on the server side in order not to block further requests. The new port number
is chosen by the server operating system from a list of currently unused ports.
This is the same mechanism used by the client socket to obtain a port
number. All these details are fortunately hidden in the j ava. net package and
the host operating system; so they are transparent to the Java programmer.
inport java.io.*;

inport java.net.*;

inmport comibmaustin.itsc.javanc. Hospital.*;
inport comibmaustin.itsc.javanc.File.*;

public class PatientRecordServer

{
private static final int patientServerPort = 5432;
private static final String patientServerHost = "127.0.0.1"; // |ocal host

public static String getPatientServerHost ()
{

return patient ServerHost;

}

public static int getPatientServerPort ()
{
return patientServerPort;

}

public static void main (String [] args)
throws | CException, O assNotFoundException

{
Server Socket servSock = new Server Socket (getPatientServerPort ());

Java Servers and Socket Communication 143

144

for (; ;)
{

try

{

Socket sock = servSock. accept ();
Thread serverThread = new Thread (new Pati ent RecordServer Thread (sock));
serverThread. start ();

catch (Exception e)

{
/1 code elided

}
}
}

The last component required to service the client request is the server class.
This implements the j ava. | ang. Runnabl e interface and receives the socket
reference as an argument when instantiated. The important aspect of the
class is its run() method, which is triggered by the server Thread. st art method
call in Pati ent Recor dSer ver. As both client read and write requests are utilized,
the request must be distinguished in the method:

« Because the server in both cases will first receive an object, an input
stream is opened from the socket (similar to the client code).

« Upon reception of the client object, the i nst anceof operator provides the
decision mechanism for acting on the client request:

« If the object is an instance of Soci al Securi t yNunber, then the server
should read the corresponding PatientRecord object.

« If a Pati ent Record object is received, then the object must be stored.

e Ports are a precious host-operating-system resource. Therefore, the client
and server close the connection and release their respective ports after
the exchange of data is completed.

public void run ()

{

Chj ect I nput Streamrenoteln = nul | ;
Cbj ect Qut put Stream renoteQut = nul | ;

try
{
renoteln = new Cbj ect | nput Stream (socket. getlnputStream());
Cbj ect obj = renoteln.readOject ();

if (obj instanceof Social SecurityNunber)

{
Soci al SecurityNumber SSN = (Soci al SecurityNunber) obj;
Pati ent Record patient Record =
comibmaustin.itsc.javanc. Fi |l e. Conmuni cator. readPati ent Record (SSN);
renot eQut = new Cbj ect Qut put St ream (socket . get Qut put Stream ());
renmot eQut. wi t eChj ect (pati ent Record);

else if (obj instanceof PatientRecord)

{
Pati ent Record patient Record = (PatientRecord) obj;
comibmaustin.itsc.javanc. Fi |l e. Communi cator.witePati ent Record (patientRecord);

}

Java Thin-Client Programming for a Network Computing Environment

}

catch (Exception e)
/'l code elided

}
finally
{
try
{

renot el n. cl ose();
renot eCQut . cl ose();

catch (Exception e)
{ /* exceptions fromcleaning up are ignored */ }
}
}

Prior to starting the LMC client application, the server process must be
running on the server host. This is accomplished by starting the

Pat i ent Recor dServer class on the host that is specified by the

pati ent Server Host final variable in the

comibmaustin.itsc.javanc. Socket . Coomuni cat or class.

9.4 In Summary

This chapter introduced the basic concepts of the Java socket API for
network data exchange. The LMC application has been extended to a
client/server architecture using sockets for communication. Sockets are a
powerful and capable communication mechanism. Java greatly simplifies the
use of sockets for the programmer.

Using sockets for applications that deal with serializable data streams is
appropriate. The effort necessary to map the LMC application objects to a
single 1/0 stream was quite small. In addition, no big effort to synchronize the
operations on client and server was necessary

Java Servers and Socket Communication 145

146 Java Thin-Client Programming for a Network Computing Environment

Chapter 10. Java Servers and RMI Communication

This chapter introduces Remote Method Invocation (RMI). As its name
suggests, this standard Java facility makes it possible to invoke Java
methods remotely. RMI makes it easy to develop distributed applications with
components that communicate across multiple systems in a network.

Although RMI requires more infrastructural support from the host computer
than sockets (see Chapter 9, “Java Servers and Socket Communication” on
page 137), it nevertheless offers a more effective and efficient mechanism for
developing applications requiring complex interactions between components.

10.1 RMI: An Easy Way to Implement Java Client/Server Applications

RMI allows for 100 percent pure Java solutions. With RMI, invoking methods
remotely and passing arguments and objects across the network is as easy
as for a local application. The creation of a complete distributed Java
application requires only a little more extra effort than the development of a
simple, nondistributed component.

.
RMI RMI R"D
|

Client Server

Figure 61. An RMI-Based System

RMI allows you to:

* Invoke a method on a remote object in the same manner as a local object
« Use a remote object without giving regard to its location
« Pass and return objects as arguments

Although actually made available under Java 1.02, RMI was formally
introduced in Java Version 1.1.

10.2 The RMI Architecture
RMI has a three-layer architecture (see Figure 62 on page 148) consisting of:

e The transport layer

© Copyright IBM Corp. 1998 147

« The remote reference layer

« The stub and skeleton layer

Because each of these layers has its own API, it is easy to augment RMI with
new or improved implementations, and it is anticipated that this will indeed

happen. As technologies such as CORBA's IIOP (the Internet InterOperability
Protocol) become more widespread, RMI will be updated to incorporate new

capabilities.
Client Server
Stub Stub & Skeleton

Skeleton Layer

Remote Reference Layer

Transport Layer

Figure 62. Remote Method Invocation Architecture

10.2.1 Stub and Skeleton Layer

This layer is the interface between the application and the RMI system
proper.

The Stub acts as a client-side proxy (in this case, an object that operates on
behalf of the remote server object). It implements all the interfaces available
on the remote object and during remote invocation is responsible for:

« Asking the remote reference layer for the location of the remote server
object

« Serialization of the arguments to the output stream (a process called
marshalling)

« Informing the remote reference layer that all parameter data has been
sent and thus the actual call can be performed by the server

« Unmarshalling the serialized return value

¢ Informing the remote reference layer that the call is complete
The Skeleton is a server-side proxy. It's responsibilities mirror those of the
stub. The skeleton is responsible for:

* Unmarshalling arguments

148 Java Thin-Client Programming for a Network Computing Environment

¢ Sending the call to the actual server object

* Marshalling the return value or exception back to the client-side stub

The relationship between client, server, stub, and skeleton is illustrated in
Figure 63 on page 149.

Client Stub

Interface

Skeleton Server

Client Server

Figure 63. RMI Implementation

10.2.2 Remote Reference Layer

This layer sits between the stub and skeleton layer and the transport layer. It
is potentially responsible for a number of activities, including:

* Finding the location of the remote object

* Making a point-to-point invocation (and handling automatic reconnection)
« Activation of a new server process if not done earlier

« Maintaining replication if required

The last two of these functions are not implemented in the Java 1.1 Version of
RMI, but will be offered quickly as the technology becomes more established.

10.2.3 Transport Layer
This layer is the lowest of the three layers and is responsible for:

« Maintaining a table of objects in the local JVM

¢ Establishing and maintaining the connection between two Java Virtual
Machines

« Listening for and responding to invocations

Java Servers and RMI Communication 149

< Locating the dispatcher object for the target of the remote invocation and
passing the connection to this dispatcher

The RMI transport interfaces only exist at the virtual machine level and are
not available directly to the application.

10.2.4 RMI Method Invocation Mechanism

The RMI invocation mechanism is based on the following major steps:

1. The RMI server object registers itself to a separate RMIRegistry server,
which operates at the transport layer.

2. The client object searches for and finds the remote server through the
RMIRegistry at the remote reference layer level and receives the server’s
corresponding stub object.

3. The client application invokes methods on a remote object. These
invocations are actually handled by the stub object, which is interposed
between the client and the server’s skeleton object.

The arguments are marshalled and sent across the network.

The remote call is initiated through the client stub.

The call is dispatched to the relevant object at the transport-layer level.
The arguments are unmarshalled at the server’s end.

The method specified in the call is invoked locally.

© ® N o 0 &

Return values are marshalled by the server’s skeleton object.
10.Return values are transmitted to the stub on the client side.

11.Return values are unmarshalled by the stub and passed upwards to the
caller.

10.3 RMI from a Programmer’s Perspective

150

To the RMI programmer, the only visible parts of RMI are the client, the server
and the server’s advertised interface; most of the underlying mechanism is
hidden (see Figure 64 on page 151). One aspect of the implementation is
visible; however since the transportation mechanism uses serialized object
streams, all the objects transmitted between client and server—either as
parameters or as return values—must implement the java.io. Seri al i zabl e
interface.

Java Thin-Client Programming for a Network Computing Environment

10.3.1 Server Side
The server must implement an interface (which must extend the standard
java. rni. Renot e interface) describing all the public methods available within it
that are being advertised to the clients.

In addition, the server-side class must extend
java.rm. Server. Uni cast Renot e(hj ect .

To advertise itself to clients on the network, a server must execute either the
java. rm . Nam ng. bi nd() or j ava. rni. Nani ng. rebi nd() methods, which associate
a server object with a new name or reset the value of an existing name,
respectively.

10.3.2 Client Side
From the client side, a remote method made available to the network through
the server’s advertised interface can be invoked just as if it were a local
method within the same JVM (as shown in Figure 64 on page 151).

Client

|
Interface Methods

——
]

Server

Figure 64. RMI Programmer Viewpoint

Prior to making a remote invocation, the client is required to determine the
location of the server advertising the remote method to use. To do this, the
client makes use of the java. rm . Nam ng. | ookup() method. This will return a
stub object implementing the server’s advertised interface. Stub methods
called on this object will cause the actual implementations to be invoked at
the server object.

Establishing Callbacks using RMI
It is possible to arrange for a server to call a method of the client. This
technique is called a callback and is typically used when it is necessary for

Java Servers and RMI Communication 151

152

the server object to let the client know when it has completed a requested
operation or has to inform its client of the occurrence of some other event.

Figure 65 on page 152 shows the sequence of events involved in using
callbacks:

1. Clients register a notification method with the server that will be invoked
(“called back”) when a noteworthy event occurs.

2. Aclient triggers an event for which clients are registered.

3. The server calls back to the registered client through the supplied method,

Server

Client Client

Figure 65. Using Callbacks

Establishing callbacks in RMI is relatively easy. To allow the server to call a
method of a client object, the client must also become a simple server.

It is necessary for the client to implement an interface describing the method
that the server should use when performing the callback. A simple example
is:

inport java.rm.*;
public interface Notifiable extends Renote

void notify (Integer reason) throws RenoteException;

Since the callback is purely for use between client and server, the client does
not need to bind a name in the registry. It is also not required for the client
object to extend j ava. rm . Server. Uni cast Renot ethj ect . This means that any
arbitrary object can register itself for an RMI callback:

public class dient extends Frane
inmplenents Notifiable
{

Java Thin-Client Programming for a Network Computing Environment

The client can become a server by executing the following, perhaps in it's
constructor:
try

{
Uni cast Renot eQhj ect . export Cbj ect ();

catch (Renot eException re)

/1 code elided
}

Since the client class is how acting as a server, it is necessary to execute the
rm c tool on the client code to generate the requisite stub and skeleton
classes.

To install a callback, the real server object needs to provide a remotely
callable method that is able to save a reference to the client’'s remote
interface. In the following example, this method is called
regi sterForNotification().
try

{

Serverl s = (Serverl) Nam ng.|ookup ("Server");

dient ¢ = newdient (s);
s.regi sterForNotification (c);

}
catch (Exception e)
{
/1 code elided
}

The server’s registerForNotificati on() would resemble:

private Notifiable thingToNotify;
public void registerForNotification (Notifiable n) throws RenoteException

{
this.thingToNotify = n;
}

When the server determines that a notification is needed, it executes code
similar to the following:

I nteger HEART_ATTACK = new I nteger (911);
try

{
this.thingToNotify.notify (HEART_ATTACK);
}

catch (Exception e)

{
/1 code elided

}

Callbacks are a simple and powerful tool for building object-based distributed
systems.

Java Servers and RMI Communication 153

10.3.3 RMI Security Manager

To run an RMI application, it is first necessary to download a stub
corresponding to the server object’s advertised interface. While the
downloading will be automatically handled by the RMI mechanism, a
minimum level of security is required to be in place before commencing.

RMI provides a default RM Securi t yManager class that disables all functions
except class definition and access. In case a security manager is not
established, stub loading at the client is disabled, effectively preventing RMI
from working.

Section 10.4.2, “The RMI Server Class” on page 158, shows how a hew
RM Securi t yManager can be instantiated and installed.

10.3.4 RMI Registry

Java’'s RM Regi st ry application provides a simple URL-based “white pages”
service for clients and servers. When a server starts, it ensures that its URL
is advertised in the registry. When a client needs to locate a server, it
performs a lookup on the URL to locate the server object on the network.

10.3.5 Major RMI Classes

154

To facilitate development using RMI, three packages are provided in Java
Version 1.1:

e java.rm contains the classes used on the client side to access remote
objects

This following list describes the main constituents of the package that are
required to build a client/server application with RMI.

java.rm.Renote interface
java.rm . Renot eExcepti on
java. rni. Nam ng defines interfaces to the URL-based RMIRegistry
e bind(), rebind() register a remote server object in the registry
e |l ookup() search in the registry for a remote server object
java. rm.RM Securit yManager defines a default security policy for RMI

java. rni. server. Uhi cast Renot e(hj ect base functionality for the server
object

e java.rm.server contains the class and interface framework required to
define and implement remote server objects

Java Thin-Client Programming for a Network Computing Environment

e java.rm.regi stry contains the classes and interfaces necessary to define
a registry service.

For a complete description, refer to the RMI documentation.

10.3.6 Developing with RMI
Developing with RMI requires the following major steps:
1. Create the requisite interface containing the necessary public methods.

2. Create the server-side with the remote class implementing and advertising
the appropriate interface.

3. Create a client to invoke the remote methods.

4. Generate the requisite stub and skeleton classes using the rnic tool.

Stub and skeleton are generated by running the JDK’s rnmic tool over the
remote object class.

rmc RM Server

Two new classes, with _Stub and _Skel appended to the class names, are
created.

The rnic tool also replaces a client’s normal methods calls (generated by the
j avac compiler without regard to whether RMI is involved or not) with
corresponding calls to the methods in the stub class.

In the LMC's system, the remote object class is hamed RMserver. The
generated stub and skeleton classes are:

RM server S ub
RM Server _Skel

IBM VisualAge for Java does this slightly differently, using the Tools/Remote
Method Invocation/Generates Proxies menu entry. Figure 66 on page 156
shows this menu entry.

Java Servers and RMI Communication 155

[(_,JW'olkhench [_ (2]
File Edit “Workspace Packages i (NENERCEN Method: Window Help
x i@o Jk gy Open 2™ aw
& @) R) B opento » [EREE
Go To Class/Interface. ..
@ Frojects % Packages I@ Clz J
Add ClassdInterface from Repogitory...
A 2l Packages MHew Class/Interface. . = o Methods
Add Method From Repositony... ;I + RMIServer] ;I
3 Mew Method... . s N
sun.applet Mew Ficld o Communicator # main(java.lang.Sting []
£F# sun.applet.resources - o GenPRA # readPatientRecord{Ho:
£F# sun.audio Search for References In 4 o Main® # writePatientR ecordHo:
£FF sunawt Search for Declarations In 3 _I CIRM o
£ sun.awtimage Compare With 4 o FibIServer_S kelF
i | sun.beans.feditors Replace With » o RMIServer_StubF
£FF sun beans.infos Delete...
£FF sunio Copy...
£f# sun.jdbc.odbe Move...
é Bename...
o S Wergion...
import jawva.rmi.*; Fun 3 -
import jawva.io. *;
import Hospital . *: Toalz [ata Access >|
FEEs Remaote Bean Access 3

*.7

1

* This defines the CEfift.
* Ttz extends from [Geperate javadoc...
* and use the Comminicable Interiace

public cla=s EMIServer extends java.rmi.=server. nicastRemoteObject implements Communicable {

| o

Figure 66. Generating Stub and Skeleton with IBM VisualAge for Java

156

To execute an RMI-based system:
1. Start the RMIRegistry server.

2. Ensure that the server has registered its remote interface with the
RMIRegistry at startup.

On the client side, look up the appropriate remote server.
4. Invoke the remote server object’s methods as if they were local methods.
The RMIRegistry is typically started from the command line. In Windows NT,

for instance, the appropriate command to start the registry looking at port
1099 is:

start /min rniregistry 1099

Java Thin-Client Programming for a Network Computing Environment

The VisualAge for Java Integrated Development Environment (IDE) provides

a specific dialog for this purpose, accessible through Workspace—Options—
RMI as shown in Figure 67.

[(_,:l Options E

Appearancel Appletl Behaviorl Helpl Text Editingl Listz FiMI I

— Startup

[~ Start BMI registry on Yisualtge startug

— Port Mumber

@+ Default port number

= Custam pork rumber ISDDD

— RkI Registry Contral

Fibl registry iz not curently running.

Fiestart RM| Registry... | Stop Bl Feast.. |
Defaults |

The default port will be used next time Rk registry is restarted.

Cancel |

Figure 67. Starting the RMI Registry within IBM VisualAge for Java

10.4 The LMC’s RMI Implementation

This section discusses the RMI Gommuni cat or class and the associated RMI

server application created by the LMC’s developers to support their network
computing application suite.

The following code is all found in a package with the name

comibmaustin.itsc.javanc. RM and is found on the CD-ROM accompanying
this book.

10.4.1 The RMI Server Interface

An RMI server object advertises the subset of methods for which it is

prepared to accept remote invocations through an interface that extends the
standard j ava. rm . Renot e interface.

Java Servers and RMI Communication 157

For the LMC’s RMI-based server, the interface is:

inmport java.rm.*;
inmport comibmaustin.itsc.javanc. Hospital.*;

public interface Communicabl e extends Renote

public PatientRecord readPatientRecord (Social SecurityNunber SSN)
throws Patient Recor dExcepti on, RenoteException;

public void witePatientRecord (Patient Record patient Record)
throws Patient Recor dExcepti on, RenoteException;

}

Since RMI assumes that a network error can affect any operation, it is
obligatory that each method advertised in the interface must be declared to
throw a j ava. rm . Renot eExcept i on.

10.4.2 The RMI Server Class

The LMC’s RMI server runs as an application that advertises the Conmuni cabl e
interface to client classes.

This section will step through the server’s code and describe various
important points and features.

inmport java.rm.*;

inport java.io.*;

inmport comibmaustin.itsc.javanc. Hospital.*;

public class RM Server
extends java.rm . server. Uni cast Renot e(bj ect
i npl enents Conmmuni cabl e

{
private static final String DATADIR = "C \\WNNT\\ SystenB82\\ ",
SUFFI X = ". LOG';

The URL string is exported to ensure that the client and server both have
knowledge of the server’s advertised name.

public static final String URL =
"JFO150A. i tsc. austin.i bmcom 1099/ Pat i ent Recor dRenot e";

An unusual feature of this code is the presence of a distinct no-arguments
constructor that simply calls super () (it is not normal to supply such a
constructor, since this is typically regarded as the default behavior). In this
case, RMI requires an explicit call to super () to account for the situation
where a Renot eExcept i on could be thrown.

public RM Server () throws RenoteException
{

super ();

The mai n() method is called to start the server and register it to the
RM Regi stry.

158 Java Thin-Client Programming for a Network Computing Environment

The main method first registers an RM Securi t yManager instance to allow the
download of the appropriate stub objects to the client side. The method then
creates an instance of its encapsulating class, which is then registered with
the RMIRegistry. The Nami ng. r ebi nd() method used will first remove any
preexisting value associated with the URL being registered, before giving it a
new value.

public static void main (String [] args) throws RenoteException

{
Syst em set Securi t yManager (new RM SecurityManager ());
try

{

Conmmuni cabl e comm = new RM Server ();

Nam ng. r ebi nd(URL, conm);

catch (Exception e)
{ /* code elided */ }
}

In the following method, the Pati ent Recor d object is directly serialized to a file.
An equivalent mechanism would utilize the comibmaustin.itsc.javanc.File
Communi cat or class developed for use elsewhere.

Note the way that any exception thrown by the code is propagated. To
simplify exception handling in the client code, all exceptions are converted
into a Pati ent Recor dExcept i on containing the message obtained from the real
exception to make it possible to determine the reason why the exception is
being thrown.

public PatientRecord readPatientRecord (Social SecurityNunber SSN)
throws Patient Recor dExcepti on, RenoteException
{
Cbj ectInputStreamois = nul | ;
FilelnputStreamfis = null;
try
{
fis = new Fil el nput Stream (DATADI R +

SSN. getFirstField () + SSNgetMddleField () +
SSN get LastField () + SUFFI X);

ois = new CbjectlnputStream (fis);

return ((PatientRecord) ois.readOject ());

}
catch (Exception e)

{
throw new Pati ent Recor dException (e.get Message ());
finally

{
try { ois.close (); fis.close (); } catch (Exception e) { /* SQUELCH */ }

}

public void witePatientRecord (Patient Record patient Record)
throws Patient Recor dExcepti on, RenoteException

/1 code to wite a PatientRecord elided...

}

Java Servers and RMI Communication 159

10.4.3 The RMI Client Class

The straightforward class com.ibm.austin.itsc.javanc.RMI.Communicator
implements the two methods used by application code to retrieve and update
a Pati ent Record object. For RMI, these two methods simply invoke the remote
methods advertised by a RMI server object.

The class is established as a client of the RMI server within the class
constructor.

inport java.io.*;

inmport comibmaustin.itsc.javanc. Hospital.*;
inport comibmaustin.itsc.javanc.RM.*;
inport java.rm.*;

inmport java.rm.server.*;

inport java.rmi.registry.*;

public class Communi cat or
{
private static Conmmunicable server = null;
publ i c Communi cator () throws RenoteException
{
super();
Syst em set Securi t yManager (new RM SecurityManager ());
try
{
server = (Comuni cabl) Nam ng. | ookup (RM Server. URL);
}
catch (Exception e)
{
throw new Renot eException (e.get Message ());
}
}

public static PatientRecord readPatient Record (Social SecurityNunber SSN)
throws Patient Recor dExcepti on, RenoteException

{

Pati ent Record patientRecord = nul | ;

try
{
pati ent Record = server.readPati ent Record (SSN);
}

catch (Exception e)
{ /* code elided */ }
return (patientRecord);

public static void witePatientRecord (PatientRecord patientRecord)
throws Patient Recor dExcepti on, RenoteException
{
/1 code elided
}
}

160 Java Thin-Client Programming for a Network Computing Environment

This class provides a thin wrapper to ensure that the RMI server’s advertised
methods can be treated in exactly the same fashion as any other variety of

Conmmuni cat or class.

10.5 Summary

From a programmer’s point of view, the minimum coding required to
implement RMI is detailed in the following list:

—— RMI Programming

1. The remote class must be a subclass of
java.rm. server. Uni cast Renot e(hj ect .

2. The class must also implement an interface that describes the public
methods that are being advertised for clients to invoke.

3. The interface must be a subclass of the standard j ava. rnm . Renot e
interface.

4. Each method in the remote interface must throw a
java. rm . Renot eExcept i on.

5. An RM Regi stry server must run on the machine hosting the server
object.

6. An instance of the server class must register with the RM Regi stry.

Both client and server must know the server’'s URL.

8. Generate Stub and Skeleton classes using rnic.

~

Detailed information on RMI is available on the World Wide Web at:

http://ww j avasoft. cond product s/ j dk/rm /i ndex. ht n

http://java. sun. cond product s/ j dk/ 1. 1/ docs/ gui de/ r m / spec/ r m TQOC doc. ht m

Java Servers and RMI Communication

161

162 Java Thin-Client Programming for a Network Computing Environment

Chapter 11. Client Diets

The LMC'’s developers know that when they finish their trial implementations
and come to introduce production-quality systems, they will need to use a

number of techniques to improve and optimize their code.

This chapter looks at some of the techniques and issues the LMC'’s

developers had to be aware of to produce optimized code—both in terms of
speed and size—to maximize the “thinness” of their solutions and to ensure

that they make best use of the available resources.

Optimization is a tricky task, to be carried out only when needed and with

care. The optimizer must be careful to bear in mind the following aphorism:

“We should forget about small efficiencies, say about 97% of the time:

premature optimization is the root of all evil.”
- Donald Knuth

11.1 Looking at the Options

The LMC's developers have examined many of the possible options for

optimization, including:

Table 8. Possibilities for Optimization

Speed Thinness Subject
+ Compiler facilities
+ + Pre-initialization
+ + Re-initialization
+ + Garbage collection
+ Memory access
+ Error checking
+ Packaging
+ Class loading

In Table 8 on page 163, shaded cells indicate show which aspect (speed or

size) is primarily affected by the subject being examined.

© Copyright IBM Corp. 1998

163

It is clear that some optimizations being considered will have an affect on
both the memory usage pattern of the application and it's run-time
performance. Others will primarily affect either speed or memory.

There are certain principles that apply to optimization in any computer
language, and Java is no exception. The LMC developers applied the
following very sensible rules to their optimization activities:

« Don't optimize as you go:

Write your program completely without regard to possible optimizations.
Clean, correct, and understandable code is more valuable in the long run.
If the code is too big or too slow when finished, then consider adjustments
and tweaks.

* The 80 percent /20 percent rule:

80 percent of a piece of code’s execution time is expended in 20 percent
of the code.

* The 80 percent /20 percent rule (2):
You can get 80 percent of the result with 20 percent of the effort.
e Don’t pre-guess nature:

Use profiling to find out where that 80 percent of execution time is going,
so you know where to concentrate your effort.

< Always run “before” and “after” benchmarks:

How else will you know that your optimizations actually made a
difference? If your optimized code turns out to be only slightly faster or
smaller than the original version, undo your changes and go back to the
original, clear code.

« Use the right algorithms and data structures:

Don't sequentially search through a thousand items stored in an array (an
O(n) technique) when you could use an O(1) Java hash table with no extra
effort.

These rules ensure that development effort is directed appropriately, with
certainty.

11.1.1 The Compiler and Tools

The Sun Microsystems j avac compiler is capable of optimizing the bytecodes
that it produces. In addition, the j ava interpreter is capable of producing
simple profiling information for code that it executes.

164 Java Thin-Client Programming for a Network Computing Environment

Optimization

To optimize code for execution speed, the j avac compiler accepts the switch
-Q This causes the compiler to “inline” (replace all method calls with copies of
the appropriate bodies) all the static, final and private methods in a class. The
usual time/space trade-off considerations apply here, of course. While the
code may execute faster, it will almost certainly be substantially larger than
unoptimized code; so optimization must be carefully considered and not used
in a “blanket” fashion.

Profiling
Profiling is a valuable technique for estimating the relative importance of
blocks of code (typically methods) in a class.

If the j ava interpreter is invoked with the - prof switch, it will create a file with
the name j ava. prof in the invocation directory. At execution’s end, this file
can be examined. This information can provide information to help when
deciding which methods should be further optimized.

Several other profilers exist, including:
* IBM’s own Jinsight tool (htt p: //ww al phaVer ks. i bm cond f or nul &/ j i nsi ght).
e Optimizelt (http://ww optim zeit.com)

Optimizelt is a profiling tool that allows developers to understand and
solve performance issues in their Java programs. The tool provides “hot
spot detectors” and method call graphs to make it easy to detect
excessive object allocations or time-consuming algorithms.

Other useful tools include:
e DashO-Pro(tm) (http: //ww preenptive. comi DashQ i ndex. ht m)
e Jshrink (http://waw e-t. cond j shrinkdoc. ht ni)

Both of these tools remove unused code and data and replace symbolic
names with shortened ones, resulting in smaller files that load faster and that
yield less information when decompiled.

11.1.2 Packaging, Class Loading and Pre-Initialization

Java 1.1 introduced the Java archive (JAR file): a packaging and
performance enhancing mechanism. The JAR format allows a Java applet
and its requisite components (all the associated class files, images, sounds,
and so forth) to be downloaded by a browser in a single HTTP transaction,
rather than by a new connection as each is needed. This greatly improves the

Client Diets 165

166

speed with which an applet can be loaded onto a Web page and begin
executing.

The JAR format also supports compression, which reduces the size of the file
and improves download time still further.

This mechanism should be used judiciously, however. Recall the 80 percent
/20 percent rule: 80 percent of a piece of code’s execution time is expended
in 20% of the code. In a typical application, there are large chunks of code
that do not get touched in any given execution. Downloading this code is
wasteful and time-consuming.

Instead of packaging all the code for an applet into a single JAR, the
download time can be optimized by creating a JAR file for the most frequently
used 20 percent only.

3% | 2% |
7%
3%

- | 3% | w
| 8% el RN + 2% | 3%
0 2%
38% 2%

0
3%
% 1%

Figure 68. Packaging an Applet for Efficient Download

The other 80 percent of the code can be split into second-tier packages (if
other appropriate groupings can be identified).

JAR files are specified as part of the <APPLET>tag embedded in the HTML file,
as this example shows:

<APPLET ARCH VE = "TH jar, THL. jar" CCDE = "Thing.class" WDTH = 350 HEl GHT = 100>
<PARAM NAME = "t heSound" VALUE = "pl ayne. au">
</ APPLET>

Note the way multiple archive files are specified in a comma-separated list. If
archives are used, all needed resources must be packaged in archives. This
is the case in practice, but it is different to the documentation, which says that
if a resource cannot be found in an archive, it is retrieved “in the normal
fashion."

Java Thin-Client Programming for a Network Computing Environment

It is important to bear in mind that JAR files are completely loaded into
memory when referenced. This can cause problems in low-memory
situations.

One technique that the LMC’s designers evaluated was that of preloading
classes before they were needed. This is used to improve the apparent
interactive performance of an applet or application. Without preloading,
whenever the user calls up a new type of window or makes use of some
functionality for the first time, the user can experience a long delay as the
JVM loads classes (perhaps across the network).

To ensure that the class preloading doesn’t adversely affect the execution of
the main application, it is common to perform the loading in a separate
thread. One easy way of initiating the loading is to use the

java.lang. d ass. for Nane() method, which will cause a class to be loaded by
the JVM but which will not instantiate an object or call any method of the
class.

public class PreLoad inpl ements Runnabl e

{

String [] classes;
public PreLoad (String [] classes)

{

this.classes = cl asses;

}

public void run ()
{
try
{
for (int i =0; i <classes.length; i ++)
d ass. forNane (classes [i]); /1 performthe prel oad

catch (O assNot FoundException cnfe)
{

/1 do sonething...
}
}

To use this facility requires code like:

voi d doThePreLoadl ()

{

final String [] list = {
"java. awt . Button",
"java.util.Vector",
/1 nore. ..
"org. moon. LMC. Thi ng",

new Thread (new PreLoad (list)).start ();
}

The major drawback of this technique is the necessity to pepper calls to the
doThePr eLoadl(), doThePreLoad2() ..., doThePreLoadX() methods through an
application’s code. Determining precisely when to initiate a preload is an art.

Client Diets 167

One obvious memory saving technique would be to unload classes when they
can be determined by the application to be no longer needed. With the
current JVM, this is not possible. The decision regarding when to unload a
class is made by the virtual machine and cannot be influenced at the
application level. This is unfortunate.

Unloading classes is not strictly the same as unloading objects. The garbage
collector will unload an object instance when it determines that the instance
can no longer be used by the application code. The JVM will not unload a
class until it considers that no more objects are going to be made from it “for
a while.” Objects are unloaded to reclaim application space, whereas classes
are (nominally, at least) part of the system space and are thus something
slightly different.

11.1.3 Object Recycling

168

Object creation and destruction in Java are extremely time-consuming
operations. To reduce the number of objects created and destroyed, the
LMC'’s developers introduced two guidelines:

¢ When a single object instance is allocated repeatedly (by a particular
method for example), declare a static variable to store the object between
successive method invocations. Within the method, call areinitialize
method on the stored object to ensure that it behaves as if newly
allocated.

Using this scheme, the following method:

cl ass NoRecycl e

{
public void doLotsOWrk ()
{
for (int i =10; i >=0; i --)
theMet hod (i);

private void theMethod (int i)

{

Thing usedOnce = new Thing (i);
/'l code elided

}

}
Becomes:

cl ass Recycl e

{
private static Thing usedRepeatedly = new Thing (-1);
public void doLotsCrWrk ()
{
for (int i =10; i >=0; i --)
theMethod (i);

private void theMethod (int i)
{

Java Thin-Client Programming for a Network Computing Environment

/1 instead of: usedRepeatedly = new Thing (i);
usedRepeatedly.reinitialize (i);
/'l code elided

}
}

Note that the variable usedRepeat edl y should not be considered as part of
the instance data for the class. It is effectively a “cache” for a variable.

This scheme can be described by the phrase “recycle, don’t generate
garbage.”

« When multiple instances of the object are active simultaneously and their
lifetimes cannot be localized to a single part of the application, use a
Vector to implement a free instance repository. When an object is no
longer needed, a static method adds it to the free object pool (static
methods are more efficient to invoke than instance methods, and this
reduces the overhead associated with his technique). Similarly, to obtain a
new instance of the class, another static method releases an available
instance from the repository and invokes the reinitialize method on it. The
constructors of pooled classes should be declared private so that the
application cannot allocate new instances directly.

Both techniques rely upon a reinitialize method in the optimized class. These
techniques can also be used where objects are aggregated into other objects,
but the actual programming of such situations can be involved.

11.1.4 Garbage Collection

Armed with Java's built-in garbage collection, the LMC’s developers originally
assumed that they no longer needed to worry about how memory for their
objects is allocated and when (or indeed, whether) it is released after being
used.

Although it simplifies the task of object-oriented development, garbage
collection can also cause significant performance problems. The developers
tended to create objects liberally because they perceived that they were
relatively cheap to create: The Java Virtual Machine masks the costs of
memory allocation and deallocation for objects.

On compute-intensive applications, such as servers, object creation has
significant effects. The garbage collector is supposed to only execute when
no other application threads are executing (it runs in its own low-priority
thread), thus minimally impacting an application's performance.
High-performance applications may not offer such idle periods, however; so
the garbage collector must steal time from the application, and this lowers
execution efficiency.

Client Diets 169

Garbage collection can be invoked manually, through:
Systemgce ();

If this method is invoked explicitly from time to time, when the load on the
application allows, it may be possible to lessen the undesirable “cycle
stealing” effect to some degree.

The amount of free memory available to an application can also be
measured:

| ong get Avai | abl eMenory (bool ean col | ect)

{

if (collect)

Systemge();
return (Runtinme. get Runtine().freeMenory());
}

To assist in the efficient reclamation of memory, it is always good to explicitly
set a reference to null after use. This allows the collection algorithm to more
quickly decide to reclaim an object instance. If all references to the object
were not explicitly “lost”, the decision to reclaim an object would be a lot more
involved and time-consuming.

Before an object is reclaimed by the garbage collector, its finalize method (if
one is explicitly provided) is called. At first sight, this seems to provide an
effective means of cleaning up an object. This can cause problems. When the
collector determines that an object is ripe for reclamation, it is first placed in a
finalization queue, ready to be properly reclaimed at a later date. Because the
collector can take an unspecified amount of time before calling the finalize
method, all resources associated with the yet-to-be finalized object are held.
Performance can actually be worse when explicit finalization is used.

The j ava command accepts a flag - ver bosegc, which causes the garbage
collector to announce its actions when it runs. This can be very helpful to
developers involved in tuning and optimizing. Additional flags include:

* -noasyncgc

Turns off asynchronous garbage collection. When activated, no garbage
collection takes place unless it is explicitly called or the program runs out
of memory. Garbage collection normally runs as an asynchronous thread
in parallel with other threads.

¢ -nocl assgc

170 Java Thin-Client Programming for a Network Computing Environment

Turns off garbage collection of Java classes. By default, the Java
interpreter reclaims space for unused Java classes during garbage
collection.

11.1.5 Optimizing Memory Accesses

Developers of high-performance applications are acutely aware of the
increasing divergence between processor speeds and memory access times
and the associated need to minimize memory access when possible.

In contrast to a compiled language such as C++, application performance in
Java is noticeably affected by what types of variables are accessed and how
they are accessed. For example, while stack variables are directly
addressable (and may even be placed in registers), instance variables
typically require an extra level of indirection to be accessed.

This implies the potential value of data location shifting, changing the storage
location of data based on the access patterns. For example, a data-intensive
operation would benefit from first copying instance variables into stack
variables, operating on the stack variables, and, finally, copying the stack
variables back to the permanent instance variables.

This technique is particularly useful when a method variable is accessed
repeatedly within a loop. For example, the common loop construct:

for (inti =0, ++i <=limt;)

can be improved by 25 percent (5 percent with a JIT compiler) by rewriting it
as

for (int i =limt; -- i >=0;)
to reduce the number of accesses to the | imt variable.

When optimizing memory access, it is important to be aware that the JVM
requires “scratch” memory above that explicitly used by the Java application.
In memory-constrained situations, this can become important. For instance,
to deal with a 1 MB GIF-format image file, the JVM will require about 2 MB of
extra working memory. This hidden requirement can cause a developer to
grossly underestimate the memory needs of his or her code.

The j ava command accepts a number of options that can be used to “tune” its
memory performance:
®* -NX X

Sets the maximum size of the garbage collected heap

Client Diets 171

* -Ns X
Sets the startup size of the heap
® -SS X

Each Java thread has two stacks: one for Java code and one for C code
(used by the JVM, rather than the Java code directly). The -ss option sets
the maximum stack size that can be used by C code in a thread.

* -0SS X
Sets the maximum stack size that can be used by Java code in a thread

These options allow a developer to explicitly set the memory requirements of

the JVM and can make a substantial change to Java’'s performance. These

options also make it easy to “stress test” an application to investigate its
behavior under low-memory conditions.

11.1.6 Synchronization Overheads

172

In Java, methods and code blocks may be marked with the synchr oni zed
keyword. Multiple threads cannot simultaneously execute within any of the
synchronized methods on the same class instance, and a synchronized code
block is treated like a synchronized method on the object that is provided as
an argument to the synchronized keyword. To support this capability, the Java
Virtual Machine links a monitor to each object having synchronized methods.
A monitor is a high-level thread synchronization mechanism. Whenever a
thread enters a synchronized block, it must first obtain a lock on the monitor
for the associated object.

In tests, the LMC's developers found that adding synchronization to a method
degrades performance by between 8 and 11 times, even if the application is
only executing a single thread (so that the thread could never block on the
monitor). This result indicates that the synchronization overhead is primarily
incurred in checking for the lock, rather than in actually obtaining it.

They also found that a JIT compiler cannot improve the lock access and
contention overhead at all because it has no information about the
application's structure. The performance overhead of the JIT compiler
actually slows the program execution. In contrast, the JIT compiler improves
performance slightly when the calls are unsynchronized.

Synchronization impacts application performance in subtle ways. For
example, the memory allocator is synchronized, meaning that object creation
incurs a synchronization penalty.

Java Thin-Client Programming for a Network Computing Environment

Many common functions in the Java class library are designed to be
thread-safe and are, therefore, synchronized. For example, accessing an
indexed element in a Vector requires a synchronized method call, as does
calling the next I temmethod on an associated enumeration.

In the LMC's applications, collections are only accessed by a single thread;
so this synchronization imposes considerable overhead for little benefit.

To allow the application to selectively disable this synchronization, for
example, the LMC'’s designers subclassed the Java Vector class to provide
unsynchronized access methods:

inport java.util.*;
public class EVector extends Vector

public Cbject getEl ementAt (int index)

if ((index < 0) || (index >= el ementCount))
return (null)
return (el ementData [index]);

}
/1 code elided
}

Similar issues arise in the I/O stream library, where approximately 90 percent
of the overhead of writing formatted data through a DataOutputStream is
attributable to the underlying synchronized calls to OutputStream methods.

Where the developers could not eliminate synchronization, they found that
they could occasionally improve performance by placing a series of
synchronized calls inside a single synchronization block. For example,
replacing:

for (i =0; i <count; i ++)
x.f(); /1 synchronized on x

with:
synchroni zed (x)
for (i =0; i <count; i ++)

x.f (); // synchronized on x

}

The replacement code allows the Java Virtual Machine to short-circuit the
method synchronization. It should only be used if the synchronization is
short-lived (because it will otherwise block other threads) or if no thread
contention exists.

Client Diets 173

11.1.7 Error Handling

174

The Java Virtual Machine provides native instructions to support exception
handling, in contrast to C++ which relies on compiler-generated code.

These native instructions mean that exception handling in Java is relatively
fast.

The near-zero cost of entering a try clause allows the widespread use of
exception handling (there is a larger penalty associated with actually
executing a catch clause, however) instead of explicitly error-checking when
errors are expected to be rare (the exception would rarely be thrown).
Consider the task of indexing into an array, for example:

if ((idxk >>0) & (idx < array.length))
x = array[idx];

el se
Il error

An exception-oriented approach leads to rewriting the above code block in
the following form:

try
{
X = array [idx];
}
catch (ArrayQut Cf BoundsExcepti on e)

{

/] error

}

The exception-oriented approach is 50 percent faster than the traditional
approach in the (common) case where the index is within range. As long as
the common case occurs sufficiently often relative to the exception condition,
there is a performance improvement—eliminating the error check on each
execution. This is particularly true in loops. Similar situations arise with type
casting using the i nst anceof operator versus catching A assCast Except i on.

The performance characteristics of try-catch clauses makes it possible for
developers to re-define how exceptions are used in high-performance
applications. Instead of simply using exceptions to signal errors, it becomes
possible to use exceptions to signal uncommon occurrences, even if those
occurrences do not represent actual error conditions.

This is consistent with the idea of “making the common case fast.”

Java Thin-Client Programming for a Network Computing Environment

11.1.8 Other Issues and Optimizations

As with any programming language, many other intricate optimizations are
possible. For instance, the String concatenation operator + looks innocent,
but involves a lot of behind-the-scenes work: a new StringBuffer is created,
the two arguments are added to it with append, and the final result is
converted back by the toSring() method. This is expensive both in terms of
space and time. In particular, when appending more than one String, consider
using a StringBuffer directly instead.

A much-overlooked issue is to explicitly close files after use. A file is always
closed during finalization before garbage collection, but the potentially long
delay before collection may mean that an application prematurely runs out of
available file handles.

A thread has a minimum memory requirement, even though it may be very
small. Creating many small threads may lead to inefficient memory use and
fragmentation. To minimize problems, it is better to create large-grain threads
where possible. It is also possible to use options to the JVM adjust its
requirements.

The LMC'’s developers explored many optimizations that are beyond the
scope of this book. The developers found a wealth of material to guide their
activities on the Internet, particularly at:

j ava. sun. com
wwy, j avawor | d. com

and:

http://ww. cs. cmu. edu/ ~j ch/ j ava/ opti m zation. ht ni

11.2 In Summary

These optimizations reveal that, with care, Java can be used to implement
high-performance applications.

Although future versions of the Java Virtual Machine may change the need
for the specific optimizations, many situations cannot easily be optimized
without human intervention. For example, static analysis of multithreaded
applications is still not possible; so optimizing structures to account for the
precise access patterns of a number of threads is a task that cannot be left to
a compiler.

Client Diets 175

176 Java Thin-Client Programming for a Network Computing Environment

Chapter 12. Tasty Additions

This chapter introduces Java programming for accessing SmartCards and
serial ports on a Network Computer, using the IBM Network Station 1000 as
an example.

At the Lunar Medical Center, doctors authenticate themselves with their
SmartCards and can see information regarding their patient on their Network
Computer. They can add information manually or through automatic data
retrieval from monitoring devices through the serial port available on the
Network Computer.

12.1 Introduction to SmartCards

SmartCards store the card holder’s personal information on a chip which is
embedded in a plastic carrier. Their compact and handy size together with
their robustness and resistance to harsh environments make them the
medium of choice for many applications. Figure 69 on page 177 shows the
physical properties of a SmartCard.

85.6+0.12 mm

-

53.97+0.05 mm

RST Vpp
CLK 110 -
e
e Thickness: 0.76+0.08 mm
'

Figure 69. Physical Properties of an ISO 7816 SmartCard

In contrast to simple magnetic stripe cards or memory cards, SmartCards
provide a highly secure mechanism to protect stored data from external
access. SmartCards contain a micro processor which can be used to hide
data (for example secret keys used for encryption).

Figure 70 on page 178 depicts the internal structure of the micro-computer
inside a SmartCard. It consists of a Central Processing Unit (CPU), Read
Only Memory (ROM)—which contains the Card Operating System (COS),
Random Access Memory (RAM) to store temporary data, an Electrically
Erasable Programmable Read Only Memory (EEPROM)—which can store

© Copyright IBM Corp. 1998 177

data persistently without the need for permanent external power supply, and
a serial 1/0 interface—which allows the communication with the outside
world.

No direct access from the outside world to the EEPROM is possible. An
exchange of data is only possible through the protocol implemented by the
COS. During the initialization and personalization phase of the card, the
privileges for accessing certain data in the EEPROM are defined.

ROM RAM
(Operating (Temp. Application
System) Storage)

EEPROM

(Application

Storage)

©

§ * internal Bussystem | |

2l A J |

Q Access Conditions, Keys |

sf cpu g U |
. Data Flow

Secure
Single Chip

Figure 70. Internal Structure of a SmartCard

The life cycle of a SmartCard can be subdivided into three phases:
1. Manufacturing process: printing process, chip embedding

2. Initialization and personalization phase: file creation and data updating,
thermal printing

3. Customer usage phase: use of SmartCard for particular application

178 Java Thin-Client Programming for a Network Computing Environment

Step 1 is conducted at the card factory. Step 2 is security-critical and can
either be carried out by the manufacturer or by the card provider. Under most
circumstances, some proprietary software (from the card manufacturer) is
used for the initialization.

SmartCards differ substantially from manufacturer to manufacturer.
Therefore, it is important that standards exist for their interoperability. There
are three different kinds of interoperability.

Physical Interoperability: This includes the ability to establish a

communication with the SmartCard and necessitates the standardization of
the mechanical and electrical properties. The mechanical properties include
the card dimensions and tolerances and the mechanical stability of the card.

— Note

These properties are defined by the International Standards Organization
in the de-jure standard ISO 7816-1. The positions of the electrical contacts
are defined in ISO 7816-2. The electronic specifications define, for
example, operating voltages and the low-level communication protocaol,
and are standardized in ISO 7816-3.

Syntactic Interoperability: This addresses the ability to use different
SmartCards from different manufacturers for the same functionality during the
customer usage phase. The requirement can be realized by a framework,
which provides the application developer a set of high-level card operations
and allows the card manufacturer to implement low-level functions which
encapsulate the proprietary elements. Chapter 12.1.2, “The OpenCard
Framework” on page 181, introduces such a framework. Physical
interoperability is a prerequisite for syntactic interoperability.

Semantic Interoperability: It refers to the ability of different applications to
use information stored in different formats. It is necessary to agree on a
common interpretation of the data objects. In addition, a common set of rules
for manipulating the objects is required. Guidelines for the handling of
certificate and public-key representations are an example. Syntactic
interoperability is a prerequisite for semantic interoperability.

While physical interoperability is ensured by standards conformance,
syntactic interoperability needs to be provided by a framework. The
responsibility of this framework is to bring together SmartCard and card
terminal manufacturers on one side and application developers on the other.
The OpenCard Framework does this by placing a high-level programmatic
interface at the disposal of the developer while defining the low-level interface
for implementation by the manufacturers. It supports ISO 7816-compliant

Tasty Additons 179

cards as well as others. Furthermore, OpenCard coexists with operating
system and hardware-specific specifications, like Microsoft's SmartCard
specification for personal computers.

12.1.1 The SmartCard File System

180

Access to a file system is a functionality that most SmartCards provide. It has
been standardized by the ISO 7816-4 specification and involves three
different file types:

» Master File (MF): corresponds to the root directory

e Dedicated File (DF): corresponds to a directory

« Elementary File (EF): corresponds to a standard file
Figure 71 on page 180 shows an example of an ISO 7816-4 SmartCard file
system. Each file is identified by a logical identifier, which is represented by
four-digit hexadecimal numbers. Elementary files can be specified to be

transparent (unformatted), have fixed or variable record size, or to be cyclic,
with fixed record size.

MF

DF

DF

oo

Figure 71. Example of an ISO 7816-4 SmartCard File System

Access control can be assigned to each file individually. Different access
modes like read, update or administer can be combined with access
conditions like always, never, protected, or encrypted. The file system layout
is defined during the initialization phase of the SmartCard.

Java Thin-Client Programming for a Network Computing Environment

12.1.2 The OpenCard Framework

To provide application developers with a common platform, IBM Corp.,
Netscape Communications Corporation, Oracle’s NCI, and Sun Microsystems
Inc. together developed the OpenCard Framework, the first SmartCard
standard enabling access to personalized data and services from any
Network Computer. OpenCard provides a framework for applications that use
SmartCards, and with the first reference implementation written in Java,
OpenCard provides the most portable basis possible in the emerging Network
Computer industry

Figure 72 on page 181 shows the OpenCard Framework architecture.

Application

Application
Management

CardAgent
Extensions

CardTerminal

Figure 72. Architecture of the OpenCard Framework

12.1.2.1 CardTerminal

The CardTerm nal component encapsulates the access to the card terminal.
This functionality is provided by the Java classes CardTerninal , 9 ot, and
Cardl D. GardTerninal is an abstract super class which is extended individually
for the different card terminals. For the IBM Network Station, this is done in
the package comi bm zuri ch. snart card.

The class has one or more S ot objects, each representing a physical card
slot of the terminal. From the perspective of the terminal, an actual
SmartCard is represented by the Cardl Dobject, which simply contains the
card’s response to an Answer-To-Reset (ATR) operation. Cardl D has static
information about the card’s abilities. Card resources are accessed using the
Cardl Ocomponent of the Smart Card object.

Card terminals can be dynamically added and removed by the
CardTer m nal Fact ory class, which is implemented by the card terminal
manufacturer. The CardTer m nal Regi stry class keeps track of the installed

Tasty Additons 181

card terminals and provides methods to register, unregister, and list all
installed terminals. Figure 73 on page 182 gives an overview on the hierarchy
of the main GardTerminal classes.

CardTerminalFactory CardTerminalRegistry

CardTerminal

Slot

Slot CardID

Figure 73. Class Hierarchy for the CardTerminal Component

12.1.2.2 CardAgent

The CardAgent component encapsulates details about the card operating
system. Its central class is the abstract Car dAgent class, which is responsible
for communication with the Card Operating System (COS).

The messages exchanged in the card protocol are called Application Protocol
Data Unit (APDU) and are defined in the ISO 7816-4 specification. This
protocol is not stateless, and therefore the Car dAgent class has to keep track
of the card state. Car dAgent also takes care of the optional authentication
procedure.

As with the GardTer ninal component, the central class is controlled by a
factory and a registry class. The factory class is provided by the card
operating system supplier. For a Car dl Dobject, Car dAgent Fact or yRegi st ry will
return the appropriate GCardAgent Fact ory. Figure 74 on page 182 shows the
hierarchy of the main CardAgent classes.

CardAgentFactory CardAgentFactoryRegistry

\
II JJ

CardAgent

Figure 74. Class Hierarchy for the Main CardAgent Objects

182 Java Thin-Client Programming for a Network Computing Environment

12.1.2.3 CardIO

The Cardl Ocomponent provides the main functionality for the
application-visible side of the framework. All access to the SmartCard must
make use of CGardl Oclasses. The central class is the Smart Card class, which
represents the physical SmartCard with its resources (and in particular the
file system).

Accessing the file system is done by mounting the Master File (MF) to the
Snart Car d object. The mounting method returns a Car dFi | e object,
representing the MF. All other SmartCard files can be accessed from the MF
CardFi | e object by creating new Car dFi | e objects, which then are used to
create input/output streams or random access files.

The Cardl Ocomponent provides the classes Car dFi | el nput S ream

Car dFi | eQut put St reamand Car dRandonccessFi | e, which are implementations of
the abstract classes | nput St ream Qut put St reamand the interfaces Dat al nput
and Dat aQuput from the j ava. i o package.

Because access to the files on the SmartCard can be restricted during the
initialization process, it may be necessary for the application to authenticate.
The KeyBag and KeySt or e objects contain this information and are optionally
associated with the GardFi | e object which needs authentication. A link to the
CardTerminal component can be made from the Smart Card object to the S ot
object.

The hierarchy of the main classes in the Cardl Ocomponent, for a typical
application file system, are shown in Figure 75 on page 184.

Tasty Additions 183

184

SmartCard

7

~
~
Y KeyBag
|
[
|
KeyStore
CardFile
CardFile CardFile CardFile

CardFilelnputStream CardFileOutputStream CardRandomByteAccess

Figure 75. Class Hierarchy of the CardlO Component

12.1.2.4 CardAgentExtension

The Car dAgent Ext ensi on component takes care of individual card
functionalities (such as cryptographic or electronic purse functions) in
addition to file access.

The central class Car dAgent Ext ensi on communicates with a Gar dAgent to obtain
the necessary data. Car dAgent Ext ensi on components are supplied by the COS
supplier. The component is not needed when solely accessing the SmartCard
file system.

12.1.2.5 ApplicationManagement

The Appl i cat i onManagenent component was added to the OpenCard
Framework, since modern SmartCard (due to their higher capacities) offer the
possibility to implement several applications on the same card.

The responsibility of the ApplicationManagement component is to load and
identify the list of supplied applications provided by the SmartCard and pass
the information to the appropriate applications. It may also be used to supply
applications with symbolic file names.

The component makes use of the 1ISO 7816-5 application identifiers for
unambiguous referencing of card-resident applications. The class hierarchy
of the Car dAppl i cati on component follows the same design pattern as the
CardTerminal or CardAgent component in that it provides an implemented,

Java Thin-Client Programming for a Network Computing Environment

system-wide Appl i cati onManager Fact or yRegi st ry and abstract
Appl i cati onManager Fact ory and Appl i cati onManager classes, which have to be
implemented by the card issuers.

12.2 Sample SmartCard Application

At this stage, programming to support SmartCards may seem a daunting
task, but in practice, using the OpenCard Framework results in compact,
logical code.

For this sample application:

¢ During the initialization phase of the card, a file with a fixed record size of
64 bytes with the identifier @09 has been created in the MF of a
SmartCard. (For example an IBM (MFC) Multi Function Card)

« Assume that this file does not require authentication for access. This
means that cryptography key management is not required, including the
Car dAgent Ext ent i on and Appl i cati onManagenent components.

» Before accessing the SmartCard file system, a card request must be
issued by creating a Gar dRequest object.

¢ A time-out must be granted for the request (for example. 2 minutes).

e A particular card type is not required.

/] Oreate Card Request for new or already inserted card

Car dRequest cardRequest = new Car dRequest ();
car dRequest . ti meout (120);
cardRequest . wai t Behavi or (Car dRequest . ANYCARD) ;

Next is the central part of the sample application—access to the SmartCard
file system:

 First, obtain a Shart Car d object from the card terminal registry.

¢ Mount the card and define BLOOKI NG—which means that no concurrent
accesses to the card are allowed from other processes.

* The mounting procedure returns a CardFi | e object pointing to the master
file.

* To select the file with the identifier @09, generate a new CardFi | e from the
former one pointing to the master file.

« Instantiate a file input stream, which is implemented by the
Car dFi | el nput & reamclass.

« The SmartCard data can now be accessed as if it were on a disk.

Tasty Additions 185

/1 Wait for the smart card
Smart Card card = CardTerm nal Regi stry.registry ().waitForCard (cardRequest);

/1 Access the root of the smart card file system
/1 wait until card becones avail abl e.
CardFile file = card. nount (CardFil eCpenMde. BLOCKI NG ;

/1 Open file
file = new CardFile (file, ":0009");

I/l Oreate a CardFilelnputStreamfor file and read data
di s = new Datal nput Stream (new CardFi | el nput Stream (file));

/1 code elided

Upon completion of the SmartCard data exchange and application, the
terminal session must be closed to allow further access to other processes.
For the sample application, the following comibm* command is issued:

((PHANTOMCar dTerm nal) CardTernminal Regi stry.registry ().
cardTer m nal For Narre (" PHANTQM')). cl ose ();

The complete application is:
inmport java.io.*;

import opencard.io.*;

import opencard.termnal.*;

inmport opencard.util.*;

inmport comibm zurich.smartcard.term nal.phantom *;

public static void main (java.lang.String [] args)

{
Dat al nput Stream dis = null;
Smart Card card = nul|;

CardFile root = null;
CardFile file = null;
try

{

/| Create Card Request for new or already inserted card
Car dRequest cardRequest = new CardRequest (120);
car dRequest . wai t Behavi or (Car dRequest . ANYCARD) ;

/1 Wait for the snmart card
card = CardTerm nal Registry.registry ().waitForCard (cardRequest);

/'l Access the root of the smart card file system
/1 wait until card becones avail able.
root = card. mount (CardFil eOpenMbde. BLOCKI NG) ;

/] Get user file

file = new CardFile (root, ":C009");

dis = new Datal nput Stream (new CardFil el nput Stream (file));
/1l Read in data

int len = (int) file.length ();

byte [] array = new byte [len];

dis.read (array, 0, len);

dis.close ();

186 Java Thin-Client Programming for a Network Computing Environment

// Print out file
Systemout.println ("The user file has a length of " + len + " bytes.");
for (int i =0; i <len; i ++)
Systemout.println ("Data[" + i + "] =" + array [i]);
}
catch (Exception e)
{ /* code elided */ }
finally
{
try

{
((PHANTOMCar dTer m nal)
CardTerm nal Regi stry.registry ().
car dTer m nal For Nane ("PHANTQM')).cl ose ();

}
catch (Exception e)
{ /* code elided */ }
}
}

Thoroughly amazed, the LMC designers can now extend the hospital
application. For example, the data in the @09 file can store basic patient or
hospital employee data and can be used to avoid reentering this constant
information, or could be used (in the case of an employee) to authorize use of
particular applications.

12.3 Accessing a Serial Port

— Note

Unfortunately, no medical monitoring devices were available to the authors
for data acquisition or control; so it was decided to use the popular X-10
control system (used to switch power supplies) as the testbed for
Java-based serial port access. We have chosen to connect and control an
Espresso Coffee Maker, because doctors need coffee too!

The X-10 controller sends commands to the power switches by modulating
the AC power line. It can be connected to a Network Computer (NC)
through a serial interface. The architecture of the connection is shown in
Figure 76 on page 188.

How is specific hardware attached to a generic virtual machine without
undermining the concept of portability? The Network Station (as an example
of an NC) has solved the problem by wrapping the serial interface and
providing access to it using a TCP/IP connection on a predefined port. Recall
Chapter 9, “Java Servers and Socket Communication” on page 137, which
discusses the socket facility for programming for such an architecture.

Tasty Additons 187

X-10 Module r |
AC power i

AC power

110 v—o

AC power

/.

Serial X-10 Interface
Interface \/

Figure 76. External Device Controlled by NC Using Serial Port and X-10

12.3.1 X-10 Architecture and Protocols

X-10 communicates between transmitters and receivers using digital
information signals over existing power line wiring. A complete description on
how the information is passed on the wire is available at the following Web
address:

htt p: //waw x10. comi t echnol ogyl. ht m

Some controllers provide a timer function that can be programmed by a
computer through a serial port. When they have received a set of instructions,
they can be disconnected from the computer. In this case, the NC will not be
used to program timer capabilities, but for sending direct commands (for
example N or CGFF) to the receiver.

12.3.2 Programming the X-10 CP290 Home Control Interface

The X-10 CP290 Home Contral Interface (see http:// snmart hone. con) connects
to a computer through an RS-232 interface. The characteristics of this serial
interface are:

188 Java Thin-Client Programming for a Network Computing Environment

* Baud rate: 600
« Data bits: 8

e Parity: none

« Stop bits: one

The transport layer for the transmitter/receiver hardware is managed by the
X-10 system, and the CP290 provides the means for controlling an X-10
environment from a computer. What is needed is the signal/stream protocol
between devices. Such a protocol for interaction between the NC and the
CP290 can be easily implemented in Java.

The interface and units are addressed and controlled using a sequence of
hexadecimal bytes sent on the AC wires. For example:
« Each command begins with a synchronization stream.

* The command byte is sent. Eight commands are available for the X-10
controller. The important command type for the LMC espresso machine is
the Direct Command, which supports simple ON/OFF functionality.

e X-10 organizes devices to be switched by numbering the units (from 1 to
16) and by House Code (A to P). Bytes are sent representing the House
Code and unit number of the required device. Using one bit for each unit
allows the X-10 to send the same command to multiple units at the same
time.

< Avariable number of bytes may be sent as data required by the command.
¢ A checksum byte is sent.

Upon receipt of a request sequence, a response acknowledgment is sent.
For full details on the byte representations and protocol of the CP290 device,

refer to:
http://smart horre. comi manual s/ MAN- 1130_31p. pdf

12.3.3 The Java Espresso Machine Example

To operate the X-10 appliance unit with Java, a class (for example X10Devi ce)
must be defined that represent the units and their behavior. Two public
methods on() and of f () will be called from a Java application to start and stop
the coffee maker.

The LMC coffee maker is plugged into appliance socket A3; so the necessary
steps are:

¢ Instantiate unit 3 for house code A.

Tasty Additons 189

190

« Start the coffee maker by changing the unit status to ON with the on()
method.

« After five minutes, stop the coffee maker by changing the unit status to
OFF with the of f () method

package NetworkStation;
public class MakeJava {
/ **
* This nethod nakes a good pot of Java.
*/
public static void main(String args[]) {
try {
[* create X-10 device for the coffee machine in “house” A, unit 3 */
X10Device dev =new X10Device(A, 3);
* switch on coffee machine *
dev.on();
f*wait for 5 min */
Thread.sleep(5*60*1000);
* switch off coffee machine */
dev.off();
}
catch (Exception) {}
}
}

The on() and off) method must send a sequence of bytes to the serial port.
On an NC, the serial port is addressed using the TCP/IP loopback address
(127001). The TCP/IP port that is used must be specified (for example, port
87), and since the serial port is viewed as a TCP/IP address, sending and
receiving data will be done using sockets programming.

See Chapter 13.10, “Accessing the Serial Port” on page 218, for more details
on using the NC serial port.

The X10Devi ce class execut e() method sends the array of bytes to the socket
and receives the return bytes from the CP290.

/**

* This method sends a sequence of bytes to the serial interface.
* (@aram sequence byte array to be sent
*/
private synchroni zed void execute (byte[] sequence) {
try
{
/* initialize the socket and the |/O streans */
Socket sock = new Socket (server, serverPort);

Java Thin-Client Programming for a Network Computing Environment

Dat aQut put Stream seri al Qut = new
Dat aQut put S r ean{ sock. get Qut put Streang)) ;
Dat al nput Stream serial ln = new Dat al nput St rean{
sock. get I nput Srean());
/* Let the X-10 control |l er synchroni ze */
sync(serial Qut);
/* wite the command sequence to the serial interface */
for (int i =0; i < sequence.length; i++)
serial Qut.witeByte(sequenceli]);
/* read in 12 bytes of response */
serial I n.read(response, 0, 12);
/* close streans and socket */
serial In.close();
serial Qut.close();
sock. cl ose();
}
catch (Exception e) {}
return;

}

The private method assenbl e() prepares the whole sequence of bytes for the
command and asks the execut e() method to send the data to the serial port.

The total sequence is achieved by:

¢ Generating the synchronization data (16 bytes of 0xFF) with the sync()
method

e Generating the direct command (0x01), which is hard-coded in the
assenbl e() method

¢ Generating the hex codes for the unit and house codes in the class
constructor

¢ Generating the necessary checksum in the crc() method

The full code of the X10Devi ce class is available on the enclosed CD-ROM.

12.3.3.1 Running the LMC Java Espresso Machine
Before the application is run on the NC, the NC'’s serial port must be
configured to the characteristics indicated earlier. Refer to Chapter 13.10,

“Accessing the Serial Port” on page 218, to set the Network Computer serial
port.

A simple way to access the Java application is to implement a button on the

desktop of the NC. Refer to Chapter 14.5, “Running Java Programs in the
IBM Network Station” on page 225.

Tasty Additons 191

The following steps are also required:
¢ Plug in the CP290 controller and the appliance module to AC power.
e Connect the LMC doctors’ espresso machine to the appliance module.

e Connect the CP290 to the serial port of the Network Computer.

Remember

The Java Garbage Collector has nothing to do with dirty coffee cups!

192 Java Thin-Client Programming for a Network Computing Environment

Chapter 13. NC Deployment: Using IBM Network Stations

The purpose of this chapter is to give an overview of an existing Network
Computer solution and its configuration: The /IBM Network Station 1000.
Because this area of IT development is highly dynamic, this chapter should
not be used as a reference for the setup and use of the IBM Network Station,
but instead should give a feeling what the current status for this technology
looks like.

For any case where a reference for the IBM Network Station is needed, the
appropriate documentation for the used system levels should be used. Actual
publications for the IBM Network Station can be found at:

htt p: // waw as400. i bm com net wor kst at i on/ r s6000
In case this or all the following URLSs in this chapter regarding the IBM

Network Station are changed, the generic entry point should be the IBM NC
Website at:

http://wwv i bm cond nc

In addition, this chapter provides some tips and techniques to improve the
Network Station’s performance.

13.1 Introduction

One of the key characteristics of the network computing world is that most
system resources reside on the server instead of on the client in order to
achieve at centralized administration, but parts of data processing are left on
the client.

While on one hand the administration of a classical "dumb" terminal is very
easy and therefore cheap, on the other hand, in today’s world, it lacks of
functionality and flexibility, usability and user acceptance. At the same time, a
personal workstation such as a PC provides a high level of functionality and
flexibility, but the administrative costs are often unacceptably high.

A Network Computer, such as the IBM Network Station, tries to get the best of
both worlds by offering minimum administration for the client and
enhancements that enable you to run leading-edge applications.

With its capability to run as an X-Windows server and as a 3270 or 5250
emulator, it is able to be a front-end for RS/6000 and UNIX systems as well
as for S/390 and AS/400 mainframes. And with WinCenter (from Network
Computing Devices, Inc.) it is even capable of running Windows NT
applications as a kind of Windows terminal.

© Copyright IBM Corp. 1998 193

In addition, Internet and intranet applications reachable through a Web
browser are supported as are Java applets and applications.

13.2 Software Requirements

The software requirements for our sample scenario are based on AlX running
on an RS/6000 platform consisting of either:

« AIX, Version 4.1.5, plus the IBM Network Station PTF update, or
« AIX Version 4.2.1 with the IBM Network Station Manager, or
¢ AIX Version 4.3.0 with the IBM Network Station Manager

This software includes native code for terminal support for 3270, 5250 and
X-Windows servers and the Navio Browser for the IBM Network Station as
well as a native Java Virtual Machine (JVM 1.1.2 in the current release).

All screenshots and descriptions for the IBM Network Station in this and in
the next chapter are based on the current release, 2.5, of the IBM Network
Station Manager software and on Version 2.9.7 of the Network Station’s Boot
Monitor. Actual and updated code for the Network Station can be found at

http://servi ce. boul der. i bm com nc/ r s6000/ i ndex. ht n

13.3 The Initialization Process

194

The IBM Network Station, as a thin client, needs a server to boot from. This
server acts as a repository for the system and configuration files that are
needed to start the Network Station and its user applications. The initial file,
called the boot file or kernel contains the kernel required by the Network
Station to control devices such as network and input devices as well as the
software required to support applications.

The first task of the boot file after it has been successfully downloaded from
the server is to read the configuration files and set up the defined
environment. These configuration files contain all the information about which
initial applications have to be loaded and started and about which resources
are required.

The initialization process shown in Figure 77 on page 195 involves several
tasks. These tasks are performed automatically after the IBM Network Station
has been turned on. The administrator has to configure and modify the client
only once, the first time the Network Station is turned on, in order to point it to
a specific boot server and configuration profile. Other modifications can be
performed as desired.

The four basic tasks described in the following sections are:

Java Thin-Client Programming for a Network Computing Environment

¢ Power-On Self-Test

Locating the boot server
Loading the kernel

Initialization of the environment

L]

L]

L]

Power On

Running the @

Boot Monitor

| Power-on Self-Test
Network Station | (POST)

Boot Server

Locate the Boot Server

| NS Ready
I

1
I
I
I I
L
[« NVRAM |
| - DHCP |
| ° BOOTP |
I Boot Server contacted [
-
I I
| Request kernel |
| « TFTP |
| Loading the kernel |
-
I I
Executing the | [
Kernel| |
| Request files I
I |
I Loading configuration files I
| - |
| Loading initial applications |
| - I
I
1

Figure 77. Initialization Process

NC Deployment: Using IBM Network Stations 195

13.3.1 The Power-On Self-Test

When the Network Station is powered up, it runs a special program stored in
it's Non-Volatile Random Access Memory (EPROM - Erasable Programmable
ROM). This program is called the Boot Monitor, and its first task is to perform
the Power-On Self-Test (POST), as shown in Figure 77. This test verifies that
all hardware components (such as video adapter, RAM, keyboard or mouse,
I/0 ports or network adapter) are working OK.

13.3.2 Locating the Boot Server

After the self-check, the IBM Network Station must locate the boot server to
load the boot configuration files (see Figure 78). The boot server can be
found in different ways:

« The Network Station is configured using the DHCP protocol. When using
DHCP, the IBM Network Station has no valid IP address at boot time;
therefore, it has to send an IP broadcast to identify a DHCP server. Upon
obtaining a valid IP configuration from the DHCP server, the DHCP server
can also provide information about the boot server to be used.

* The Network Station keeps its IP configuration in its Non-Volatile Random
Access Memory (NVRAM). In this case, the IP configuration consists of up
to three different boot server IP addresses from which the Network Station
tries to boot sequentially.

Both methods can be configured in the Boot Menu Panel, which is explained
in more detail in 13.4.2, “Set Network Parameters Panel” on page 201.

196 Java Thin-Client Programming for a Network Computing Environment

Copyright IBM Corp. and sthars 15988, 1996

ECopyright Netvwork Computer Devices, Inc. 1988-1997
IBM Netwwork Station

N50010 Boot Monitor Version rz. 9.1

NS0020 Video Memory 2 MB

N50030 Testing DREAM mempry &1 MEB

N50040 Keyboard Controller Type 2

N50060 Token Ring MAC Address ... 00:06:29:BE:00:23
NE007M0 Boot Monitor Resolution .. 640x480 &0H=
NE0080 Server Resolution 1024x768 T0H=z

N50500 Search for Hozt System .. .
Entering rino: 1¢ Mbos: successful

Figure 78. IBM Network Station Boot Panel

13.3.3 Loading the Kernel

When the IBM Network Station has determined and contacted the server from
where it will boot. The next step is to load the boot file called the kernel and
the configuration files from the server, as is shown in the Figure 79 on page
198. In its current release, the Network Station can access the boot data in
two different ways across the network: either using the Trivial File Transfer
Protocol (TFTP) or the Network File System (NFS).

Even with the choice of this two protocols, the recommendation is clearly to
go for NFS. TFTP has only two advantages:

« Itis very easy to configure.
« It is available on many platforms (presumably more than NFS).

Because of the ease of configuration, it is a good idea to configure the
Network Station first to use TFTP, but for a productional environment, NFS
has so many advantages over TFTP that the usage of NFS becomes almost
mandatory:

« NFS is much faster than TFTP because it uses a much bigger package
size than TFTP (8192 bytes versus 512 bytes), and it does not use a
handshake protocol after every transmitted IP package.

NC Deployment: Using IBM Network Stations 197

13.3.4

* NFS provides security options, but TFTP is an absolutely unsecured
protocol.

* NFS provides a real file system, but TFTP can just get complete files. This
becomes a deciding factor when deciding whether Java should be used on

the Network Station. In Java, it is very popular and powerful to bundle
several class files together in a ZIP file. When a class is loaded, it gets
extracted out of this ZIP file and transferred across the network. This
technique is not possible when using TFTP because TFTP does not

provide access to particular parts of a file. In this case, all class files must

exist as separate files on the server—a very unsatisfactory solution.

For more details about how to configure the boot file access protocol, please

refer to 13.4.3, “Set the Boot Parameters Panel” on page 204.

I . I A
I I . S
| |] | . N
I L .- |
—_— I I T
||] | I war N
I S B T .
I s v - L

Capyraght IBR Cazp and Sthace 1588, 1356

@ opyright Hetwork Computer Devices, Inec. 1855-1937
IEH Hatweork Station

HEOQOODGED Token Bing HRC Rddress ... 00:06:29:FEE:00:23
Hz0070 EBoot Homitor Rescolution .. 6B40x450 EOHs
HEOOE0 Ferver BEesolutieon 1024765 T0H=

HEOS00 Eearch for Host Eystem
Entering ring: 16 Hbps: successful
Fearching for IF address: EOOQOTPE

HEQS10 Eystem 9.5.1.45 contacted.
HENS20 Regquesting startup infomation
HENS30 Loading startup information

e T Tt i
E5R of 120K

Figure 79. IBM Network Station, Loading the Kernel

Initiate the Environment

If the kernel has been downloaded successful, it attempts to initialize the
environment, such as configuring the background color, the mouse speed,
setting the configured options, and starting the default applications in the
following order:

198 Java Thin-Client Programming for a Network Computing Environment

* Read the initial configuration file (standard.nsm or as specified in the
NVRAM setup) which works as a link to other configuration files.

e Set the operating characteristics of the IBM Network Station stored in the
configuration files, such the background pattern, the keyboard definition
file, and the colors name file (rgb.txt).

« Load the initial applications configured by the administrator.

After these automatically performed steps, the IBM Network Station is ready
to be used.

13.4 IBM Network Station Set Up

As described earlier, the IBM Network Station attempts to determine the boot
server after is has successfully performed the Power-On Self-Test (POST).
While the message

NSO500 Search for Host System...

appears in the Boot Panel, the Setup Utility Panel can be entered by pressing
the Esc key.

13.4.1 The NVRAM Setup Utility Panel

In order to prevent unauthorized access to the NVRAM Setup Utility Panel,
the IBM Network Station can be protected by a password (called the
Administrator password). By default, this password is not set, but in case it is,
a logon screen will appear as shown in Figure 80 on page 200. The
Administrator password is stored in the Non-Volatile Random Access Memory
(NVRAM) and is also encrypted in the configuration file, default.nsm.

In case the password is not known, it is possible to bypass the password
query by pressing F12. In this situation, it is only possible to display the boot
options, not modify them.

NC Deployment: Using IBM Network Stations 199

ECRNO1 IBM Network Station
Administrator Passumord

Type Administrator password and press Enter.

Enter=Continue FlZz=Cancel

Figure 80. IBM Network Station Password Panel

If the password is entered correctly, the IBM Network Station gives the full
choice of displaying and modifying the boot parameters shown in Figure 81
on page 201.

200 Java Thin-Client Programming for a Network Computing Environment

SCENO2 IBEM MNetwwork Station
Eetuwp Wility

F2 = THew Network Parameters

F3 = THew Boot Parameters

F4 = THiew Hardware Configuration

E5 = Set Netwmrk Parameterz

F& = Set Boot Parameters

F7T = Set Mondtor Parameterz

F# = Set Language Parameters

F9 = Terboge Diagnostic Messages Enshled

Enter=Fehoot

Figure 81. IBM Network Station Administrator Setup Ultility Panel

13.4.2 Set Network Parameters Panel

The prior section, 13.3.2, “Locating the Boot Server” on page 196, discussed
the way used by the IBM Network Station to locate the boot server in order to
load the boot and the configuration files. As mentioned earlier, there are two
possible ways to perform this task:

¢ Obtaining the IP Address from the boot server using DHCP or BOOTP
protocol

¢ Using the configuration recorded in the NVRAM

The desired option can be set by using the IP Addressed from option in the
Set Network Parameters panel, as shown in Figure 82 and Figure 83.

13.4.2.1 Obtaining the IP Address from the Network

The panel shown in Figure 82 allows you to change the type of protocol used
to obtain an IP configuration (DHCP, BOOTP or RARP). The server must
have at least one of these protocols configured: DHCP or BOOTP. These
protocols assume that the IBM Network Station only knows its own MAC
address. When the Network Station starts looking for an IP configuration
server, these servers receive the IBM Network Stations MAC address.

NC Deployment: Using IBM Network Stations 201

202

Depending on this unique data, they can look in their configuration file (for
BOOTP or DHCP) and return a predefined configuration back to the IBM
Network Station.

SCENOL IBM MNetxork Station
Let Network Paraneters
IP Mddrecsed fram _.. | riciao-t ST
DHCP TP Addvessing Order:- In=abled
BNTP TP Addvessing Order: i
EARP TP Addvessing Drder:- IH=abled

T=e oursory keys to select option

Enter=Sane Fl12=Camcel Fli=Festore Parameter

Figure 82. Set Network Parameters Panel Using with Network Option Selected

13.4.2.2 Using NVRAM

When using DHCP or BOOTP to acquire a valid IP address for the Network
Station, the configuration server is discovered through a broadcast. In case
there are multiple BOOTP or DHCP servers in the network that are providing
IP configurations to any requesting MAC address, or multiple servers having
different configurations for the same MAC address, the Network Station can
have different states after any boot process. In order to be sure that the
Network Station is booting up with the same state each time, the network
must either be administered very strictly, not allowing any "wild" BOOTP or
DHCP servers, or you assign your Network Station a valid IP configuration
from the beginning.

Knowing that most networks are not administered with an ironed fist, the most
suitable way for most environments is to go for individually assigned IP
configurations. This configuration is stored in the NVRAM (Non-Volatile
Random Access Memory). With the IP configuration, it is also necessary to
specify the IP address of at least one boot server. In case the first boot server

Java Thin-Client Programming for a Network Computing Environment

is not responding (because it is overloaded or down), it is possible to define
two more boot servers that can be contacted instead. The specified boot
servers should provide the same boot image in order to provide the Network
Station with redundant failback servers.

SCBNOS TEM Network Station

IP Mbhesed fraom Metrork NUET
Netxmrk Station IP Addvess ... 9.3.1.121
First Boot Host TP Addvess ... 9.3.1.48
Secomdd Boot Host TP Addvess . 0.o0.0.0
Third Boot Host TP Addvess ... 0.o0.0.0
Gateway TP Addvess 2.3.1. M4
Bwbmet Mask_. 2h5_2h5_205.0
Broadrast TP Rddvess 9.3.1.255

Tze owrzor keys to select opbion

Enter=Sawe Fl2=Camnrel Fli—¥ectore Parameter

Figure 83. Set Network Parameter Panel with NVRAM Option Selected

Each field of the Set Network Parameter panel shown in Figure 83 is
described as follows:

Network Station IP Address: The IP address assigned to the IBM
Network Station by the administrator.

First Boot Host IP Address: The IP address of your first boot server.
This address is provided by the
administrator.

Second Boot Host IP Address: If the environment consists of several boot
servers, this field is pointing to a backup
server in case the first boot server is
unavailable.

Third Boot Host IP Address: In case the first and second boot server are
unavailable, this field points to the last boot
server.

NC Deployment: Using IBM Network Stations 203

Gateway IP Address: The default router of the network in which
the IBM Network Station is installed.

Subnet Mask: The mask of the subnet in which the IBM
Network Station is installed.

Broadcast IP Address: The broadcast IP address of the network in
which your IBM Network Station is installed.

The upcoming new release of the IBM Network Station software includes
more configuration fields, as described in 13.11, “Coming Soon: IBM
Software Release 3” on page 221.

13.4.3 Set the Boot Parameters Panel

As previously discussed in 13.3.3, “Loading the Kernel” on page 197, the IBM
Network Station is able to use two different file services: TFTP and NFS.
Figure 84 shows the panel in which the order of use for those protocols can
be defined and where the base configuration for the protocols is done.

SCRNO0G IBM Metvwork Station
et Boot Parameters

Boot File . _ . ____ . _ ... _.._....._.... kernel

TETPF Boot Divectory

NEFS Boot Directory Fusrfnetstationf
Configuration File standard. n=m
Configuration Mrectory Ffusr fmetstationfoonfigsf
TETP Order DIi=zabled

NEL Drder 1

MOP Order _- Dizabled

LOCAL Ordey .. _____. _....... DIi=zabled

Field help messages are displagyed here

Enter=5ave FlZ2=Cancel Fll=Restore Parameter

Figure 84. Set Boot Parameters Panel

The parameters for using TFTP or NFS are described as follows:

204 Java Thin-Client Programming for a Network Computing Environment

Boot File: The name of the boot file. The default for the IBM
Network Station 1000 is kernel.63a.

TFTP Boot Directory: The name of the directory from which the boot file
can be loaded. This option is only used if TFTP is
enabled. If TFTP is not enabled, this field can
remain empty.

NFS Boot Directory: The name of the directory from which the boot file
can be loaded. As with TFTP, this option is only
used if NFS has been enabled.

Configuration File: As shown in 13.6.2, “System-Level Configuration
Files” on page 209, this file has the required links
to load other configuration files in order to set up
the environment. By default, the name of the file is
standard.nsm, but can be changed.

Configuration Directory: The name of the directory on which the
configuration file is stored.

Note

Directories require a tailing slash ("/"), because the Boot Monitor is just
concatenating the entry for the directory with the file names. Not specifying
the tailing slash results in invalid file names.

The following options can be set either to be disabled or to a value between
one and four. All values (except of "disabled") can only be assigned to one
protocol. In order to use NFS as first choice and TFTP as backup protocol,
assign "1" to NFS and "2" to TFTP, and disable all other protocols.

The following shows the preferred configuration with just NFS enabled:

TFTP Order: Leave as Disabled

NFS Order: Leave as 1. This is the preferred service, please
refer to 13.3.3, “Loading the Kernel” on page 197
for more information.

MOP Order: Leave as Disabled.
LOCAL Order: Leave as Disabled.
The new release of the IBM Network Station software modifies the fields in

the Set Boot Parameters Panel. Please refer to 13.11, “Coming Soon: IBM
Software Release 3” on page 221.

NC Deployment: Using IBM Network Stations 205

13.5 The IBM Network Station Manager

The IBM Network Station Manager (NSM) is a browser-based, user-friendly
tool that is used to configure some parameters of the IBM Network Station. A
requirement for using NSM is a graphical browser with JavaScript
capabilities.

All changes made using NSM are stored in the configuration files on the
server, as well as in the startup files. It is strongly recommended to use NSM
to perform all changes to the configuration files because NSM performs some
context checking and changes the configuration file with constant accuracy.
However, it is also possible and sometimes necessary to modify the
configuration files manually. This should only be done by an experienced
administrator using all possible precautions (if at all).

Section 13.6, “The Configuration Files” on page 208, discusses the
configuration files and some of the parameters. It will show that the use of
NSM is safer and also much more convenient than modifying the
configuration files manually with an editor.

In the current release of the IBM Network Station Manager, it is accessible on
the boot server through the following URL:

ht t p: // host nane/ Net wor kSt at i on/ en_US/ nsngr. ht m

where host nane is the name of the boot server. If a hostname is not provided
on the DNS, it is also possible to use the boot server’s IP address—as is
customary for URLSs.

When you enter the URL in the browser, NSM asks for a user name and
password. After entering a valid information for the boot server, the NSM
graphics interface appears in the browser, as shown in Figure 85 on page
207.

206 Java Thin-Client Programming for a Network Computing Environment

BM Metwork Station Manager - Netscape

“vBookmarks J‘ Location:Ihttp:.-".-"S.B.‘I.48.-"NetworkStation.-"en_US.-"nsmgr.htm VI m

Setup Tasks

& Hardware harcelona.itsc austinibm.com

& Startup

€ Desktop
Ianager

& 5250

& 327

& Internet

Iain Sereen

The IBWM Network Station Manager helps you set up and manage IBWM Network Station hardware
Close IBM Network and software for all of your users.

Station Manager
Select a task from the frame on the left.

NEM Ereor Reminder: If you will be malang updates
Ilessages and your Web Browser caches documents,

set caching to vertfy documents Every Time.

’?| | Documert: Do

Figure 85. The Network Station Manager

—— Levels of Configuration
NSM manage three levels of configuration:

« System defaults: these settings affect to all users
« Workstation defaults: these settings affect a one IBM Network Station
e User defaults: these settings affect a specific user

These three levels are shown in the main right side frame of NSM when the
Setup option has been selected.

Only the administrator has the access to all the options, a specific user is
allowed to modify the information pertinent to himself.

At the left side of the frame is the Setup Task list, which contains the following
six options:

NC Deployment: Using IBM Network Stations 207

¢ Hardware

This option provides the possibility to modify some hardware defaults,
such as the mouse, keyboard and monitor settings, on the Network Station
as well as the administrator password and more.

e Startup

This option is used to modify the user’'s work space. It provides the
possibility to configure the applications offered in the menu bar, the
applications that are automatically started after logon, and to define some
environment variables.

« Desktop Manager

This option provides the possibility to modify the screen properties, such
as screen color, font size, icon position, and more.

* 5250

This option is used to modify the default environment and the options
available for the 5250 sessions.

* 3270

This option is used to modify the default behavior and the options
available for the 3270 sessions.

¢ Internet

This section groups the options related with the Internet access, such as
the configuration of the proxies and the behavior of the browsers packed
with the IBM Network Station code.

* Network: Used to add the personal data of the user who is using the
Internet access and the configuration to establish a secure connection.

IBM Browser: Set the preferences of the browser

Navio NC Navigator: Set the preferences of the browser

Applet Viewer: Used to setting the options used to run the applet
viewer (for example, the verbose mode, the heap size, and so forth).

13.6 The Configuration Files

208

When the IBM Network Station has loaded the kernel during the boot
process, it is ready to load the configuration files containing all the necessary
information to start the work session for any user.

There are three levels of configuration files:

Java Thin-Client Programming for a Network Computing Environment

e System-level
* Workstation-level
* User-level

13.6.1 The Configuration File Syntax

Although the files are in text format and can therefore easily be modified, they
should only be modified through NSM or through any of the other GUI
applications developed for this purpose. However, it can be useful to have a
look at this file; therefore it makes sense to know about the syntax used in
these files.

« Comments are indicated with a "#" character as the first nonspace
character in a line. These lines are ignored.

« Parameter statements are used to assign values to system parameters. If
the parameter can hold more than one entry, brackets are needed as
shown below:

set exec- di sabl ed- commands = {
{login}
{ logout }
{ serial }
{dialer}
{ qui cksetup }
{ setup}
{ pref }

-~ H H# H

In this sample, the exec- di sabl e-command parameter can have multiple
values, but only serial and di al er are active, the others are commented
out.

e The adding index -1 used to add a value to an existing parameter, for
example:

exec- di sabl ed- conmands[-1] ={ "setup" }

is adding set up to the existing values of the parameter. Note that the set
command can be omitted.

13.6.2 System-Level Configuration Files

These files belong to the first level of customization. They are independent of
the user and hostname and are used to set the default behavior of the IBM
Network Station. This file resides in the /usr/netstation/configs directory.

NC Deployment: Using IBM Network Stations 209

Note

The order of the files is important because one parameter can be set many
times, but only the last value is retained. This means that the last set
statement overrides the previous one.

The files are:
standard.nsm:

required.nsm:

control.nsm:

defaults.nsm:

defaults.dft:

local.nsm:

The default initial configuration file. Its role is to call other
configuration files. Because the syntax is simple, it can
easily be modified by the user.

This file contains settings for the IBM Network Station
hardware and kernel, such as the serial and parallel port, the
autostarting applications, the modules, environment
variables, and more. If changes are required, use the Setup
Parameters option located in the User Services window
(see 13.8, “The IBM Network Station User Services” on page
213). Changes are not stored in this file, but in defaults.dft.

This file contains some default values to configure the IBM
Network Station hardware and kernel preference. If any
changes are needed, they can be done by the IBM Network
Station Manager, which inserts statements in the default.nsm
file.

Contains the modified values of control.nsm and is modified
by NSM.

Contains the modified values of required.nsm and is
modified by NSM.

Same purpose as default.dft.

Note

There is a file called configd.doc located in the /usr/netstation/configs/
directory. This file contains a brief description of any parameter and value
in order to understand the configuration files.

13.6.3 Workstation-Level Configuration Files

These files are directly related to the IBM Network Station unit. They reside in
the /usr/netstation/configs directory. These three files are workstation
dependent and are created by the administrator using NSM to modify any

210 Java Thin-Client Programming for a Network Computing Environment

workstation setting. Suppose the workstation name is stationname; the files

should be:
stationname:

stationname.nst:

stationname.trm:

This file loads other configurations files much like
standard.nsm. This file and the next two are created by
NSM when the administrator attempts to make changes
using the Workstation defaults button in the Hardware
option.

This file contain the changes made by the administrator
when choosing the Workstation defaults button in the
Hardware option.

As with the previous file, this file is created by NSM and
initially is empty. This file should be used by the
administrator to manually override the values in the
stationname.nst file.

— Note

To activate this workstation-dependent configuration, add the following
statement in default.dft:

set unit-query-for-name-at-boot = tcpip

After this change, the default configuration file that the IBM Network
Station attempts to read first in the boot process is the stationname file.

13.6.4 User-Level Configuration Files

These files contain characteristics of a specific user. They are processed
after the user has successfully logged in. These files resides in the
/usr/netstation/nsm/username/ directory, where username is the identification
of the user. These files are:

username.nsu: This file contains values to configure the work environment
of the user and is created or modified by the administrator or
the user using NSM.

username.usr: As with the previous file, it is created by NSM and initially is
empty. It can be used to manually override the values in the
username.nsu file.

NC Deployment: Using IBM Network Stations 211

13.7 The Startup Files

These files, called by startup.nsm, contain information about which menu
option and which environment variables are set in order to have a useful work
space. They are separated into three levels:

* |IBM-level

Located in the /usr/netstation/SysDefaults/ directory the startup.nsm file
contain the IBM-supplied values and should not be manually modified.
This file contains menu items to the default applications of the IBM
Network Station, such as the 5250 session, the Navio Browser, and so
forth, and the default settings for the task bar. The content of startup.nsm
is shown below:

SET TRACE ON

SET NSM HTTP_PCRT 80

SET NSM LOGQUT YES

SET NSM H DE YES

SET NSM TCPBOTTOM YES

SET NSM LOCK YES

SET NSM TASKBAR YES

MENUI TEM "NSt erni’ term -ctype tel net -xrm "NCDt erm showLocal : Fal se” -n NSterm
MENUI TEM " 5250" ns5250

MENUI TEM " 3270" ns3270

MENUI TEM "1 BM Browser" | oadb nsb

MENUI TEM " Navi o Browser" | oadb navi o
RUN wm

e System-level

Located in the /usr/netstation/nsm/SysDefaults/ directory, the startup.nsm
file contains the configuration common to all users and is configured by
the administrator using NSM. An application that should be available to
any corporate user (such as mail or calendaring) could be added to this
level.

* User-level

Located in the /usr/netstation/nsm/username/nsm/ directory, where
username is the identification of the user, the startup.nsm file contains
specific configuration for each user. It is modified by the administrator
using NSM.

Note

Section 14.5, “Running Java Programs in the IBM Network Station” on
page 225, describes the steps to add items to the task bar, such as Java
applications and applets.

212 Java Thin-Client Programming for a Network Computing Environment

13.8 The IBM Network Station User Services

The User Services window, also known as the Console window, is an
application used to access services available only from the workstation
screen. These services involve statistics information and provide the ability to
log on to other servers and to modify some configuration parameters.

It is toggled on and off using the Pause/Break key. By default, it shows the
Console window, which is used to access the message log as shown in

Figure 86.
B [l
Console Login Terminals WindowMgr Utilities Setup Statistics I
_.Il e

+

IBM Hetwork Station model 8362-A20 63a W1,1,0 #94 03-12/1998 downloaded: LAN PPP|[3
StdPkg XTRAP Audio

Copyright 1988-1997 Hetwork Computing Devices, Inc,

BSD TCPA/IP Copyright 1980, 1982-83. 1985-88 Regentz of the University of Califor
nia

DECwindows iz a trademark of Digital Equipment Corporation

“ Window System iz a trademark of ¥ Consortium. Inc,

5733-A07 (C} Copyright IBM Corp, 1997,

5733-A06 {(C} Copyright IBM Corp, 1997,

All rights reserved, US Government Users Restricted Rights -
Uze. duplication or dizclosure restricted

by GS5A ADP Schedule Contract with IBM Corp,

Licen=zed Materials - Property of IBM

JAVALtm? Copyright {c) 1993-1996 Sun Microszystems=. Inc, ALl Rights Reserved,
ACOMFIGD-I-IPADDR, IP address for this unity 9,3,1,121

KCOMFIGD-I-VERIFYING, verifying local filesystem

XCONFIGD-E-VERIFYFAILED. failed to verify local filesystem

ACONMFIGD-I-READ, reading config file: Ausrsnetstationsconfigssstandard.nsm
AUI-I-READ, reading hitmap file: Ausr/netstationsSysDefaults/ibmwall, xbm
AUI-I-READ, reading hitmap file: Ausr/netstationsSysDefaults/ibmwall, xbm
XCONFIGD-I-WROTEMYREAM. wrote settings to MYEAM

EMETSREY-E-SYSERROR. bhad net transzport error on METD connection: Inwvalid argument
AFILE-I-READ. reading RGE file: Ausr/netstation’rgh,txt

AFILE-I-READ. reading file: Ausr/netstation ®KeysymDE

|) 1=

Figure 86. The Console Window

Most available options are very intuitive; therefore only the Setup Parameters
option in the Setup menu is discussed here.

The Setup Parameters option is used to view or to modify many setup
parameters, such as Access Control, Java Environment, Boot Configuration
and so forth. Figure 87 shows the configuration window with different
configuration topics (the list is actually longer than shown in the window).

NC Deployment: Using IBM Network Stations 213

214

IBM Network Station User Services: Setup Parameters [_IJ]

File Sections

R

|—.I Access Control

|—.I ARP

|—.I Booting

|—.I [« and Startup

|—_I Configuration

[

|—_I File M:

|—_I File Service

Messages:

- Auto Save File

Apply

Restart Defaults Cancel

Figure 87. Setup Parameters Window

The changes made in this window are not permanent until you click on the
Apply button, and some of them will take effect after the next reboot (the
messages box shows it). The options most used by us in this window were:

Access Control: This option is used to restrict the access. For example, it is

Booting:

Java:

Serial:

possible limit the access to the message log, limit the local
and remote access to the serial port, configure the global
password, and more. See 13.9.2, “Allowing Remote Telnet
Session” on page 216, for an example.

Used to set the network and boot parameters of the IBM
Network Station. This option can be used as an alternative
to the Setup Utility Panel. See 13.4, “IBM Network Station
Set Up” on page 199.

Used to set the directory where the Java run-time resides
and to set the command to invoke the applet viewer.

Is necessary when any application uses the serial port. See
13.10.1, “Allowing Access to the Serial Port” on page 218,
for an example.

Java Thin-Client Programming for a Network Computing Environment

13.9 The IBM Network Station Message Log

The Console Window shown in Figure 86 is used to access the message log.
It can be brought to the screen by pressing the Pause/Break key.

This window shows all messages generated by the IBM Network Station and
any applications running in it. These messages are useful when applications
do not work properly because they provide an idea about what’'s happening.
Even so, the Console Window shows only the latest messages.
There are several ways to access the message log:

« The Console Window show in Figure 86 on page 213

e Starting a local session in the IBM Network Station

e Starting a Telnet session to the IP address of the IBM Network Station,
port 5998 (remote Telnet has to be enabled; see 13.9.2, “Allowing Remote
Telnet Session” on page 216).

13.9.1 Local Session

A local session is a command shell running on the Network Station. To start a
local session, follow these steps:

1. Toggle on the Console window from the Terminals menu.
2. Click on the New Terminal option.

3. Choose the Diag terminal as in Figure 88.

4. Press the OK button to finish.

Sort View I

Default Hosts Terminal Chooser
dummy dummy lat service ¥
Config Local — Connect to the local configuration manager

Local - Connect to the local diagnostic manager
File Local - Connect to the local file manager

Service: | Diag Met: Local =

ﬂl Update Cancel

Figure 88. The Terminal Chooser

NC Deployment: Using IBM Network Stations 215

The window shown in the Figure 89 is the Local Diagnostic Manager. It

provides the possibility to modify the size of the fonts, print the message log,
and more.

E B

File Options Fonts Cursors

Connecting to host "diagd_telnet" SUCCESS,

IEM Metwork Station model B362-A20 63 W1,1,0 #94 03-12-1998 downloaded: LAM PPP
StdPkg XTRAP Audio

Copyright 1988-1997 Hetwork Computing Devices, Inc,

BSD TCPA/IP Copyright 1980, 1982-83. 1985-88 Regentz of the University of Califor

nia

DECwindows iz a trademark of Digital Equipment Corporation

“ Window System iz a trademark of ¥ Consortium. Inc,

5733-A07 (C} Copyright IBM Corp, 1997,

5733-A06 {(C} Copyright IBM Corp, 1997,

All rights reserved, US Government Users Restricted Rights -
Uze. duplication or dizclosure restricted

by GS5A ADP Schedule Contract with IBM Corp,

Licen=zed Materials - Property of IBM

JAVALtm? Copyright {c) 1993-1996 Sun Microszystems=. Inc, ALl Rights Reserved,
ACOMFIGD-I-IPADDR. IP address for this unity 9,3,1,121

+ 0100300501

KCOMFIGD-I-VERIFYING, verifying local filesystem

XCONFIGD-E-VERIFYFAILED. failed to verify local filesystem

+ 0:00:00:10

ACONMFIGD-I-READ, reading config file: Ausrsnetstationsconfigssstandard.nsm
BUI-I-READ, reading hitmap file: Ausr/netstationsSysDefaults/ibmwall, xbm

Figure 89. Local Terminal

13.9.2 Allowing Remote Telnet Session

216

This is the best way to access the message log, but it is possible that the
administrator has the option disabled for security reasons.

The administrator can give free access to the message log or only give
access to a group of users.

If only a few users should have access to the message log, they can be
added to a control list by following these steps:

1. Gotothe Console window, select Setup -> Setup Parameters -> Access
Control to arrive at the Diagnostic Daemon section. The result is shown in
Figure 90 on page 217.

2. Select the Enable Diagnostic Access Control checkbox.

3. Add the IP address of the authorized station in the Diagnostic Access
Control List.

4. Click on Apply to save your changes.

To give free access, the administrator only needs to select the Enable
Diagnostic Access Control checkbox.

Java Thin-Client Programming for a Network Computing Environment

= IBM Network Station User Services: Setup Parameters [_IJ]
File Sections

Diag ic Daemon B
F Enable Diagnostic Access Control
Diagnostic Access Control List
Host Family B
N
9.3.1.235 Lepip
9.3.1.237 tepip
ji0150c.itsc.austin.ibm.com icpip T
=) 1=
Hew Delete
Le
=) =
Messages:

|)
- Auto Save File

Apply Restart Defaults Cancel

Figure 90. Allowing Access to the Message Log

13.9.3 Remote Telnet Session

This option is recommended when you want to closely review the messages,
maybe to print and read them later, or to look for entries that identify
problems.

Assume that the IP address of the Network Station is 9.3.1.121. In order to
start a remote session, open a Telnet session to this IP address and to port
5998. Using Windows NT, this command looks like this:

Tel net 9.3.1.121 5998

The result of this command is shown in Figure 91.

NC Deployment: Using IBM Network Stations 217

E Telnet - 9.3.1.121 & B3

LConnect Edit Temminal Help

IBHM Hetwork Station model 8362-A28 63a U1.1.8 #94 03/12/1998 downloaded: LAN PPP s
StdPkg XTRAP Audio

Copyright 1988-1997 Hetwork Computing Devices, Inc.

BSD TCP/IP Copyright 1988, 1982-83, 1985-88 Regents of the University of Califor
nia

DECwindows is a trademark of Digital Equipment Corporation

¥ Window System is a trademark of ¥ Consortium, Inc.

5733-AB7 (C) Copyright IBH Corp. 1997,
5733-AB6 (C) Copyright IBH Corp. 1997,

All rights reserved. US Government Users Restricted Rights -
Use, duplication or disclosure restricted

by GSA ADP Schedule Contract with IBHM Corp.

Licensed Materials - Property of IBH

JAVA{tm) Copyright (c) 1993-1996 Sun Microsystems, Inc. All Rights Reserved.
%CONFIGD-I-IPADDR, IP address for this unit: 2.3.1.121

+ B:080:080:61

%CONFIGD-I-VERIFYING, verifying local filesystem

%CONFIGD-E-VERIFYFAILED, failed to verify local filesystem

+ B:00:008:10

%CONFIGD-I-READ, reading config file: fusr/netstation/configs/standard.nsm
%UI-I-READ, reading bitmap file: fusr/netstation/SysDefaults/ibmwall.xbm
%UI-I-READ, reading bitmap file: fusr/netstation/SysDefaults/ibmwall.xbm
%CONFIGD-I-WROTEHURAM, wrote settings to NURAM

%NETSRU-E-SYSERROR, bad net transport error on HETD connection: Invalid argument
%FILE-I-READ, reading RGB file: fusr/netstation/rgb.txt

%FILE-I-READ, reading file: fusr/netstation/XKeysymDB

%KBM-I-READINGFILE, Reading file: /fusr/netstation/keyboards/AB83useng
%KBH-I-NUMERRORS, Total errors: @

%RTLD-I-LOADING, loading 1libx2 from /fusr/netstation/mods/1ibx2.nuws
%RTLD-I-LOADED, loaded 'IBM Hetwork Station model 8361 U1.1.8 1libx2 81/24/1998"
%RTLD-I-LOADING, loading libxt from /fusr/netstation/mods/libxt.nuws

+ B:@80:80:11

%RTLD-I-LOADED, loaded 'IBM Hetwork Station model 8361 U1.1.8 libXt 81/24/1998"
%RTLD-I-LOADING, loading libxm from fusr/netstation/mods/libxm.nus x|

Figure 91. Windows NT Telnet Session

13.10 Accessing the Serial Port

Whenever any device attached to the serial port of the IBM Network Station
has to be accessed, the serial port has to be configured, and access has to
be given to a group of users.

The access to the serial port is realized by an IP daemon listening by default,
on port 87.

13.10.1 Allowing Access to the Serial Port

If only a group of users are allowed to access the serial port, the IP address
of their systems needs to be specified as follows:

1. Go into the Console window and choose Setup -> Setup Parameters ->
Access Control to reach the Serial and Parallel Daemon section.

2. Select the Enable Serial and Parallel Access Control checkbox.

218 Java Thin-Client Programming for a Network Computing Environment

3. Add a new item in the Serial and Parallel Control List with the IP
address of the Host that should have access, and leave the family as

tepip.
4. Click Apply to save and apply the changes.

If free access to the serial port is desired, enable the Enable Serial and
Parallel Access Control checkbox.

Note

Applications running on the Network Station can access the serial port
either by their IP address or—more generically—through the loopback
address, 127.0.0.1.

— IBM Network Station User Services: Setup Parameters [a]1]
File Sections
Serial and Parallel Daemon s
| Enable Serial and Parallel Access Control
Serial and Parallel Access Control List
Host Family B
9.3.1.121 tepip
ji0150c.itsc.austin.ibm.com icpip
¥
| =]} 1~ .
Hew Delete
|
|) 1=
Messages:
A
=
P
| =) P}
- Auto Save File
Apply Restart Defaults Cancel

Figure 92. Allowing Serial Access

13.10.2 Initializing the Serial Port

If serial port is needed to access a device attached to it, the IBM Network
Station has to initialize the port to the appropriate settings by following these
steps:

1. In the Console Window, select Setup -> Setup Parameters -> Serial to
reach the configuration panel shown in Figure 93 on page 220.

2. The Serial Interfaces Table has these options:
Port Number In the used release, port 1 is the only port supported.

Port Use at Boot Leave as printer.

NC Deployment: Using IBM Network Stations 219

Current Port Use Leave as printer.

Baud Rate Depends or your application and must be between 50
and 115200 bauds.

Data Bits Depends on your application and must be 7 or 8 bits.

Stop Bits Default is 1; modify if necessary.

Parity Default is none; modify if necessary.

Handshake Default is XON/XOFF, modify if necessary.

Hangup Leave it as none.

3. Click Apply to save and apply your changes.

— IBM Network Station User Services: Setup Parameters [\JJ]

File Seclions

T T [E

[_I PPP and SLIP |

= Setal
(*) See Access Control Section for Access List and LAT Passwords...

Serial Interfaces Table

Port Humber Port Use at Boot Current Fort Use Baud Rate Data Bits __ Stop Bits
1 printer printer 500 8 1
=0 T

3etial Daemons Table

Port Humber Use Serial Protocol TCP Port
1 true a7
=)
- TCP
[|
T
=) 1=
Messages:
=
=
Le
=) 1=
- Auto Save File
Apply Restart Defaults Cancel

Figure 93. Configuring the Serial Port

220 Java Thin-Client Programming for a Network Computing Environment

13.11 Coming Soon: IBM Software Release 3

13.11.1 The

13.11.2

IBM

When this book was written, a lot of upcoming changes and improvements
were planned and should be available before the release of this book. Some
of the improvements are discussed in this section.

Setup Utility Panel

The new version allows you to load the configuration files from a server that is
not the boot server. The options have been modified to create new groups.

In the Set Network Parameters panel, add information to the following fields:

 First Configuration Host IP Address is used to indicate the IP address of
the server which has the configuration files. If this is the boot server, the
field can be left empty; if not, the IP address of the boot server has to be
entered.

e Second Configuration Host IP Address is used in the case that the first
configuration server is not available. If such a server does not exist, leave
this field empty.

The Set Boot Parameters panel only includes the first three fields of the last
version: Boot File, TFTP Boot Directory and NFS Boot Directory options.

The remaining options are in the Configuration Parameters panel. New
options that are found in the Setup Utility panel include a Second
Configuration Directory field.

Network Station Manager
The following list describes the IBM Network Station Manager.

New level of Configuration: In addition of the three levels of configuration
described in the box labeled "Levels of Configuration" on page 213, this
release adds the group defaults level. This gives the administrator the
possibility to set the environment to a specific group of users.

NC Navigator: This browser replaces both the IBM browser and the Navio
browser. It is a compatible subset of the Netscape Navigator Release 3
browser.

Lotus eSuite WorkPlace Administrator: Lotus eSuite is a set of productivity
applications that includes a spread sheet, a word processor and calendar
functions. eSuite is written in Java and was designed to run on a thin-client
environment, such as the IBM Network Station. For best performance, eSuite

NC Deployment: Using IBM Network Stations 221

should be run on a Series 1000 Network Station with 64 MB of RAM. eSuite is
already generally available.

13.11.3 Java Support

This section describes the enhancements in the IBM Network Stations Java
support.

Java Virtual Machine: Includes the 1.1.4 version of the JVM.

Java Just-In-Time Compiler: Allows you to compile the byte-codes when it
is downloaded in the IBM Network Station; this improves the performance in
the execution of the Java applications and applets.

222 Java Thin-Client Programming for a Network Computing Environment

Chapter 14. Javain the IBM Network Station

This chapter focuses on the use of Java in the IBM Network Station. It will
discuss how to successfully run Java applications and applets on the IBM
Network Station and provide some tips and techniques to avoid common
errors.

14.1 Introduction

The IBM Network Station is a typical workstation in the Network Computing
environment. Compared to a PC, it simplifies the system administration by
moving the desktop and application configuration from the desktop to the
server. However, it is possible to have individual configurations for each user.
This means, wherever users log on to a system, they’ll get their customized
configuration that gives them desktop access to everything they needs.

Java programs are part of this customized environment. Compared to the
build in 3270 or 5250 emulators or to the build in an X server, which are used
to get a view of applications running on the server, the Java application has to
run on the IBM Network Station itself. This provides the possibility to have a
sophisticated GUI, thus reducing the network traffic and reducing the CPU
load on the server itself—provided that a good application design was
implemented.

IBM Network Station Series 1000 is used because of its robust support of
business-critical applications and personal productivity tools that take
advantage of Java. In addition, this model is able to work with SmartCards
and access them with Java.

14.2 Java Virtual Machine

The Java Virtual Machine (JVM) is in charge of controlling the Java execution
environment and obtaining resources from the kernel. These are used by the
Java applications, as opposed to Java applets. Currently, the Network Station
can only run one Java application at a time, but it can start several Java
applets at the same time.

14.3 Memory Requirements

Because the IBM Network Station has no other local storage except its real
memory, it has no virtual memory capabilities. When an application runs on
the Network Station, all its code is loaded in real memory until the application
ends. Therefore, calculating the real memory requirements becomes more

© Copyright IBM Corp. 1998 223

important than on a PC, because if the limit on real memory is reached, the
system will stop.

Table 9 provides an overview of how much memory is used by the default
Network Station components.

Table 9. IBM Network Station Software Memory Requirements

Software Memory Requirements (RAM.)
Base System 5.35 MB
Java Virtual Machine 5MB

Navio NC Navigator Browser 5 MB

This means that the footprint for having the Network Station up and running is
around 5-10 MB. In order to run Java applications or Java applets using the
Navio Browser, a minimum of 32 MB is recommended. This is the minimum
amount of memory delivered with the IBM Network Station.

14.4 Java Settings

In order to use Java applications in the IBM Network Station, the Java
directory statement must be set. This can be done by using the User
Services window’s, Setup Parameters option, as shown in Figure 94, and by
following these steps:

1. Scroll down to the Java section.
2. Inthe Java directory field, write /usr/netstation/java (default).

3. Inthe AppletViewer Command, write j ava ncd. appl et . NCDAppl et i ever
(default).

4. Click on Apply to activate the settings.

It is possible to set the applet viewer parameters using the NSM. This is
shown in 13.5, “The IBM Network Station Manager” on page 206.

224 Java Thin-Client Programming for a Network Computing Environment

—-i IBM Network Station User Services: Setup Parameters [_IJ]

File Sections

X
Java
Java Directory I/usr/netstatlan/.]ava

AppletViewer Command I Java ncd,applet.HCOAppletVie u

|—_I Loadable Modul

=) 1=

Messages:
I
=
ke

|) 1=

- Auto Save File

oy [E==] EErD [

Figure 94. Java Configuration

14.5 Running Java Programs in the IBM Network Station

Setting up Java applications or applets for the use on the IBM Network
Station can be done with the IBM Network Station Manager (NSM). Java
applications or applets can either be defined to start automatically after a
user has logged on successfully to the Network Station, or they can be added
as menu items to the taskbar for easy access.

14.5.1 Adding a Java Applet Item to the Taskbar

The following describes the way to configure a Java applet to be launched
from the taskbar. As an example, we use the TicTacToe demo applet from the
Java Development Kit.

When using NSM with administration privileges from any browser with Java
Script support (such as Navio shown in Figure 95), the steps are:

1. Inthe Setup tasks, select Startup -> Menus -> System defaults to reach
the Java Applet menu section.

2. Add an item and label it Ti cTacToe.

3. Inthe Applet URL field, add the path to the HTML document starting the
applet: /usr/netstation/javal Ti cTacToe/ exanpl el. ht n

4. Finally, click on the Finish button to save all changes.

Java in the IBM Network Station 225

226

—| Navio: IBM Network Station Manager [T

Location: |_§1ttp /9. 3.1, 48 NetworkStation/en US nsmgr. htm q
Selup Tasks
Hariwaze

< Add a broveser session I

[=

& Enznns Java Applet Menu Items
© . Menus
P Menu item Iibel ApplAVEL
Taxiable
SRR * | TicTacToe | | fusrinetstation]ava/demo/TicTacToe/ exanplel. htnl |
& Deskbn Manager
Add aJava AEEIetI
e oz
€ oz
o Java Application Menu Items

Main Screen
Menu flem Tabel Application (class) name Avguments (optional)

Close TEM Metwork Station
Manager

MM Exvor Messages

EBack Finish Help

| e . 3l

Figure 95. Adding a Java Applet

The changes result an entry in the startup.nsm file as shown below:

MENUI TEM " Ti cTacToe" appl et vi ener /usr/netstation/javal/ Ti cTacToe/ exanpl el. ht m

Figure 96 shows the result of this modification after the user logs on. In the
taskbar, the TicTacToe menu item appears. As the figure also shows, it is
possible to run multiple Java applets concurrently.

Java Thin-Client Programming for a Network Computing Environment

| Hide Mtove to to

Figure 96. Multiple Applets Running on the IBM Network Station

14.5.2 Adding a Java Application Item to the Taskbar

Similar to Java applets, it is also possible to configure Java applications to be
started from the taskbar. This time, the example uses this book’s sample
code for the Lunar Medical Center login application.

When using NSM with administration privileges from any browser with Java
Script support, such as Netscape (shown in Figure 97), follow these steps:

1. Inthe Setup tasks, select Startup -> Menus -> System defaults to reach
the Java Application menu section.

2. Add an item and label it Lunar Logi n.
3. Specify the class name, in this case Min.

4. Add the base path where is your application is located to the CLASSPATH,
In this case:

[usr/netstation/javal appl i cations/ MedCent er

5. Click on the Finish button to save the changes.

The result of this operation is shown in Figure 98 on page 229

Java in the IBM Network Station 227

BM Metwork Station Manager - Netscape

“ Bookmarks A Location: Ihttp £79.3.1. 48N etwark Station/en_US Mnemar.htm l m
Setup Tasks | Java Applet Menu Items
& Hardware
Menu item lahel Applet URL
& Startup
* |
& Programs
i Merus Add a Java Applet |
Environment
¢ Variables
@ Desitop Java Application Menu Items
IManager
& 3250
& = Menu item lahel Application (class) name Arguments (optional) Class path
& Internet # |Hospital V1.0 IHDspital I I.-"’usr.-"net,st,at,ion.-"java.-"applicat,i
. Native code
Dlain Screen Maximum heap size Java stack size stack size Garbage collecti
Clase IBI Properties (optional) (10 KB or greater) (10 KB or greater) (32-128KB) Verbose Onlywhen
Hetwork Station ;I I & ER I & ER I EE - -
IManager
O MEB O MEB
1 _>l_I _ILI
HEM Error
Messages d I I x
4 I I_’I Back Finish Help
=il | Documert: Do =

Figure 97. Adding a Java Application

228

The modifications using NSM result in a new entry in the startup.nsm file. For
the example just shown, the new statement would look like following:

MENUI TEM " Lunar Logi n" java -cl asspath
/usr/netstation/javalclasses. zi p:/usr/netstation/javal/ applications/MedCenter Min

Note

When an application is not launched, it is possible to trace the problem by
turning on the verbose mode located in the same section in NSM where the
application is defined. See 14.6, “Troubleshooting Java Execution
Problems” on page 230, for an explanation of some common problems.

Figure 98 shows the logon screen of the Lunar Medical Center Java
application.

Java Thin-Client Programming for a Network Computing Environment

—| Lunar Medical Center: Login [

User ID: I

Password: I

(,rI

Los out | [

Figure 98. The Lunar Login Application in the Network Station

— Note

Unusual for Java, the path to classes.zip (on the Network Station by default
/usr/netstation/java/classes.zip) must not be part of the CLASSPATH,
because it is defined in the environment variable called NCDCLASSES.
The Java run-time on the Network Station automatically adds this variable
to the CLASSPATH whenever a Java application gets started.

14.5.3 Autostarting Java Programs and Applets

As in the previous sections, using the NSM is a comfortable way to modify the
user environment. This section shows the necessary steps to add a Java
program or applet to the autostarting list. This Java code gets executed after
the user logs on to the system.

When starting the NSM with administrator privileges in any browser with Java
Script support, follow these steps:

1. In the Setup tasks, select Startup -> Programs -> System defaults
selection. Instead of selecting System defaults, it is also possible to select
User defaults, depending on whether the changes are for a specific user
or for all users.

Java in the IBM Network Station 229

2. Scroll down to the Java Applets to AutoStart section or to the Java
Applications to Autostart section, depending on whether a Java
application or applet has to be added.

The options shown at this point are similar to the options reviewed in the
sections 14.5.1, “Adding a Java Applet Item to the Taskbar” on page 225, and
14.5.2, “Adding a Java Application Item to the Taskbar” on page 227. The
configuration panel here can be configured on the same way it was done on
the panels in these sections.

14.6 Troubleshooting Java Execution Problems

230

If the configured Java application or applet does not work property, it is useful
to activate the Console window (pressing the Pause/Break key) and opening
the messages by selecting the Messages checkbox. The messages provide
information about the problems found by the JVM.

Can not find class or class not found

The problem that causes this message is simple: the classloader used in the
application tries to load a class referenced in the application, which is not
found in the CLASSPATH. This can either happen if the class really does not
exist, or more often, when the CLASSPATH is not set correctly. Inexperienced
administrators often refer directly to the class file, forgetting that the class
itself is part of a package.

For example, a class file, aTool . cl ass, located in
/usr/netstation/java/ contibmiaustin/itsc/tools, which is part of the
package comibmaustin.itsc.tool s, can only be started as
comibmaustin.itsc.tool s.aTool . class out of the /usr/netstation/java
directory, and not at as aTool . cl ass out of the

/usr/netstation/java/ conti bniaustin/itsc/tool s directory.

Another common problem is that the missing class is part of an ZIP or JAR
archive file and this archive file has not been specified in the CLASSPATH
environment variable.

For the sample above, if the class aTool . cl ass from the package
comibmaustin.itsc.tool s has been provided in a ZIP file called AUSTOOLS. ZI P
located in the /usr/netstation/java directory, the CLASSPATH must contain
the entry /usr/netstation/java/ AUSTOOLS. ZI P in order to find the class file.

Java Thin-Client Programming for a Network Computing Environment

- IBM Network Station User Services: Console [T

Console Login Temminals WindowMgr Utillities Setup Statistics]

Y

Special Command Check. command = java

BEXECD-I-START, running command: Jjava -classpath AJusr/netstations javasMetworkSt]
ation MakeJava

Unable to initialize threads: cannot find class javaslang/Thread

7 [l 1=

Figure 99. Java Error
Out of memory

This happens because either the Network Station is really running out of
physical memory, or the Java stack is consumed and therefore must be
adjusted for the specific needs of the application environment. The Java
stack size can be modified with administrator rights using the IBM Network
Station Manager.

Error reading ZIP file

One possible reason for this error message is that the IBM Network Station
was configured to use TFTP instead of NFS in order to access files from the
server. TFTP does not allow access to particular parts of a file, and therefore
it cannot be used to extract single class files out of an archive. If TFTP has to
be used for whatever reason, the ZIP files have to be extracted (with the
stored directory structure) to the server’s file system in the correct
CLASSPATH.

—-i IBM Network Station User Services: Console [T

Console Login Temminals WindowMgr Utillities Setup Statistics]

Y

=

Special Command Check. command = java

BEXECD-I-START, running command: java -classpath Jusr/netstationsjavasclasses, z|
ip:susrsnetstations javasMetworkStation MakeJava

Jjava: error in SJusrsnetstationsjavasclasses,.zip Invalid argument
2IAVA-E-ZIPERR, java: error reading zip file AJusr/netstationsjavasclasses.zip: U
nakhle to locate end-of-central-directory record

Unable to initialize threads: cannot find class javaslang/Thread

7 [l 1=

Figure 100. Java Error
Too many copies already running

One limitation of the current release is that it can only run one Java Virtual
Machine. This makes it impossible to run Java applets and Java applications
or two Java applications at the same time. Also when using the Navio

Java in the IBM Network Station 231

browser to run Java applets, the only JVM available is used and therefore
blocks any attempt to use the JVM for a Java application. However, it is
possible to run multiple Java applets at the same time by using one JVM.

—| IBM Network Station User Services: Console |4 |_|J]

7 [l 1=

Console Login Temminals WindowMgr Utillities Setup Statistics]

Y

Special Command Check, command = java
DesktoplLauncher: java application currently running or Applet Launcher not respd
nding

AEXECD-E-PROCLIM, too many copies already running: java
AXSERVER-I-MEWCLIEWT, host "9,3,1,48" connected with blank suthorization
AFILE-I-READ. reading font file: Ausrsnetstation’fFontspcf misc 7«13, pof

=

Figure 101. Java Error
Others

If no other messages in the message log explains the problem, it is useful to
turn on the verbose mode, using NSM. Please refer to 14.5, “Running Java
Programs in the IBM Network Station” on page 225, for details.

14.7 The eSuite

The eSuite is a Java application developed by Lotus which provides a user
friendly interface for network computers. The eSuite is designed to satisfy the
enterprise users because it includes a Web browser, electronic mail,
enterprise data access, and personal information management. Every task is
a Java applet, and in this way, it allows users to add their own applets to meet
their needs.

The eSuite is composed of the WorkPlace itself and by the Administrator
application, which is in charge of customizing the environment for each user.
Of course, the application for the configuration is only accessible for users
with administrator access.

14.7.1 The WorkPlace

232

The WorkPlace is designed as a alternative for users who used "green
screen" terminals because they are easily moved into the network computers
world of the IBM Network Station.

The WorkPlace is the perfect example of an application developed for thin
clients. It is written in Java (platform independent); it is task-oriented, and it is
customizable.

Java Thin-Client Programming for a Network Computing Environment

The WorkPlace provides a set of JavaBeans-based applets including:

< eSuite calendar

e eSuite mail

e eSuite address book

« eSuite word processor

» eSuite spreadsheet

» eSuite presentation graphics

See Figure 102 for a view of the eSuite WorkPlace.

— IBM Lotus eSuite WorkPlace for demo el _I]

Figure 102. The eSuite WorkPlace

14.7.2 The Administrator
The Administrator is the Java applet used to configure the workplace

environment of the users. Figure 103 on page 234 shows the Administrator

Applet, which includes a tool bar with the following tabs:

e Users

e Groups

« Software

e Tasks

« Categories

Java in the IBM Network Station

234

—| Lotus eSuite WorkPlace Administrator [4 |_IJ|

i 4 Users: i Selected user: Administrator D administrz
Users -
Administrator o Tacks
demo v ddministrator access AdTesSonce
P er i Al files
m SEELD i eSuite copyright infor
all Users (Defaul il Event Source
oroues . . - i Find files

i Co to a web page

i How to use eSuite Waol
4 IEM home page

ig LOAP Source

4 Lotus eSuite home pac
4 Lotus home page

4 Mail Seccinn Mananar

Software

Assign
Override group defaults
add.., Delete Customize WorkPlace.. |
&;" Delete open tasks.. Customize software.., |
Cateqories
Help Exit |

Figure 103. The eSuite WorkPlace Administrator
Task and Categories

A task is the applet’s representation in the WorkPlace. The eSuite is a
customizable environment in which tasks are associated to categories. Each
task is associated to a single category and is shown in that category on the
eSuite WorkPlace, as shown in Figure 104.

The Category

: |
The Web
Search the Weh .
Go to a Weh page - The associated
Web pages | recently visited tasks
g
? The scroll
button

Figure 104. Task and Categories in the eSuite

The task corresponds to activities that users perform, such as "open a
presentation”, "create a document" or "search the Web". The categories are
used to organize the tasks. By default, every category can show three tasks

Java Thin-Client Programming for a Network Computing Environment

on the WorkPlace at the same time. If there are more thAn three tasks
associated to a category, a scroll button appears beside the tasks, providing
access to the other tasks. If a user has no access to any task assigned to a
category, the category itself is not shown on the desktop.

Software

The eSuite WorkPlace allows you to add your own Java applets and
associate them to a specific task. By choosing the Software tab, the
administrator can register an applet by specifying the applet’s location, class
name and purpose.

Groups and Users

The eSuite is organized so that tasks can either be assigned directly to a user
or to groups of users. A user automatically gets the right to use a task if he
belongs to a group to which the task is assigned. Grouping users allows
much easier management.

The Users tab allows to you add or remove users, associate users with
groups and if desired, assign tasks directly to a user. By default, all users
belong to the All Users group.

Similar to the Users tab, the Group tab allows you to add or remove groups
and assign tasks to the groups.

14.7.3 Adding a Java Applet

The following shows how to include a simple Java applet as a task to the
eSuite and how to give access to this new task.

In order to perform this task, it is not necessary to understand the following
Java code. It is only important that the Java class inherits from
java.applet.Applet in order to be an applet. The following applet is called
PerseveringScribble.java and is provided for clarification:

inport java.awt.*;

inport java.awt.event.*;

inport java.util.*;

public cl ass PerseveringScribbl e extends java. appl et. Appl et

int last_x =0, last_y = 0;

Vector nodel = new Vector ();

public voidinit ()
addMbuseli st ener

new MouseAdapt er ()

publ i c voi d nousePressed (MuseEvent e)
{ last_x =e.getX(); last_y =e.getY(); }

Java in the IBM Network Station 235

}
)
addMbuseMbdt i onLi st ener

(
new MouseMdt i onAdapt er ()

publ i c voi d nouseDragged (MuseEvent e)

{
Q@ aphi cs g = get G aphics ();
int x=e.getX(), y=e.getY();
g. set Col or (Col or. bl ack);
DrawLi ne d = new DrawLi ne (last_x, last_y, x, y);
nodel . addEl enent (d);
d.draw (Qg);
last_x =x; last_y =vy;
}
}
)s

public voi d pai nt (G aphics g)
{

Enurer ati on e = nodel . el enents ();
whi | e (e. hasMor eEl enents ())

{
((DrawkLi ne) e.nextE erment ()).draw (g);
}

}

cl ass DrawLi ne

{
private int x0,
yO,
x1,
yi;
public DrawLine (int x0, int yO, int x1, int yl)
{
this.x0 = x0;
this.y0 =yO0;
this.x1 = x1;
this.yl =yl

}
public voi d draw (Graphi cs g)

{
g. drawLi ne (x0, y0, x1, y1);
}

}

The compiled class file of this sample applet should be somewhere under the
eSuite directory. In this case, the code could be stored in the

appl i cati ons/ Per severi ngScri bbl e subdirectory. Note that eSuite uses

<Base. Root >/ to refer to its main directory. For the sample, the directory can
be referred to as:

<Base.Root>/applications/PerseveringScribble/

The Administrator task, mentioned in 14.7.2, “The Administrator” on page
233, is now used to add the sample applet as a task to the eSuite WorkPlace.

236 Java Thin-Client Programming for a Network Computing Environment

The first thing to decide is whether the task representing the new applet is
assigned to an existing category or to a new one. In case it has to be
assigned to a new category called Demo, the steps are:

1. In the Administrator, select the Categories tab and click the Add button.
2. In the Name field, enter the name Demo.

3. As an option, it is possible to associate a graphic file as an icon for the
category.

—-i Lotus eSuite WorkPlace Administrator |-I|Jj]

i Categories: &% Selected category: Calendar
) SEeadey

Users
Calandr |

Mallbos| = Add Category
0 Addres?
Writi
i & Cg:(mg Narne: Dema
Groups present
The we| I<en: . .
Wwork Fi
@- Instruc
d ﬁ?}g‘gl‘ K | Cancel | Help |
software Backar
Static
3
Tasks
% p Add.., Delste
Categories
Help Exit

Figure 105. Adding a Category

To register the applet, follow these steps:
1. Select the Software tab, click on the Add button.

2. Inthe Codebase location, enter the path where the applet is located,
<Base. Root >/ appl i cati ons/ Per severi ngscri bbl e/ .

3. Choose the No registration file option and add the title, Scri bbl e, and the

class name, PerseveringScri bbl e. Then press OK to finish.

Java in the IBM Network Station 237

—-i Lotus eSuite WorkPlace Administrator | E |_|j]

i Software: (7 selected software: eSuite mail source
vsars | —l=l Add Software |
3
£l Codebase location: URL: ations/PerseveringScribbles
W L -
Ade &8 L] - Registration file information
L
Groups L File in JAR Path:
! o
L Separate file RL
L o
% 4 { @ Noregistration file
Software L X
. Software title: _Scribble
,l Launch class name: _PerseveringScribble
Tasks 0K Cancal Help

¥

Categories

Help Exit

Figure 106. Adding a Java Applet

In order to use the applet in the WorkPlace, it must be assigned to a task. To
do this:

1. Select the Task tab and press the Add button.

2. In the name field, enter a name for the task, for example Easy Scri bbl e.
This is the name of the task that appears on the WorkPlace.

3. Select the last option under the Type of task option, called Launch an
application without a document. Then click on the Next button.

4. Because your applet is already registered, you can select Persevering
from the list box and then click the Finish button.

5. At the right side of the window, you see a field called Category. Select the
category Demo, added earlier.

As an option, it is possible to associate a graphic file to be the icon for the
task.

238 Java Thin-Client Programming for a Network Computing Environment

Lotus eSuite WorkPlace Administrator [4 |_Ij]

Tasks:

Selected task: Easy Scribble X

Users
Easy Scribble Cateqory: Demo
ol files g JEmme <)
friiey leSuite copyright inf
g B8 Event Source _ | allow multiple open instances
Find files
G Go to a weh page Display properties
How to use eSuite '
IEM horne page Bubble help:
% LDAP Source
. Lotus eSuite home Task icon: Standard file type icon
SaifEm Lotus home page
Mail Seszion Manag
Mail Source & lcon specific to task
Meszage Source
& My addresses
St 4 My calendar
Tasks My favorite Web pa
My mail
i w— Task Type: LALINGH ARPLICATION
&% GCY QDEMQ Change task action..
Categories
Help Exit

Figure 107. Adding a Task

Now that the applet is registered as a task and associated to a category, it
can be assigned directly to a user or a group of users. In this sample case,
the applet should be made available to all users and can therefore be
assigned to the group All Users. To do this, select the Groups tab. Then, in
the group list, select All Users and select the Easy Scribble task from the

Task list. Finally, press the Assign button to save the changes and make

them active.

Java in the IBM Network Station

239

i Al files

ahd eSuite copyright inf)
ald Event Source

ahd Find files

ald Co to aWeb page
ald How to use eSuite w
a4 IEM home page

ald LDAP Source

ald Lotus eSuite home

Figure 108. Associating a Task with a Group

Any user that logs on, from this moment on, will have access to this new task,
as shown in Figure 109.

Figure 109. The Scribble Applet in the WorkPlace

240 Java Thin-Client Programming for a Network Computing Environment

Figure 110 shows the Scribble applet running on the eSuite WorkPlace. What
is visible, besides our poor drawing skills, is that every applet runs embedded
in, and as an unresizeable part of, the WorkPlace.

Figure 110. The Scribble Applet Running

Java in the IBM Network Station 241

242 Java Thin-Client Programming for a Network Computing Environment

Appendix A. Brief HTML Reference

This appendix provides an overview of some of the more important HTML
tags used in the book. It is not the purpose of this book to detail every HTML
tag. For example, minor tags and the HTML frames mechanism have been
excluded. The best place to find the most current reference is on the W3C
Website at:

htt p: // waw w3. or g/ Mar kUp/

A.1 Top Level Tags

These are tags that affect an entire (or large part of a) document.
<HTM_> entire-docunent </ HTM>

The <HTML> tag defines an HTML document. The <HTML> tag should be
the first in the entire document, and the </HTML> tag should be the last.

<HEAD> head- secti on </ HEAD>

The <HEAD> tag introduces text that describes an HTML document. Most
documents have only a <TITLE> tag in the head section.

<TITLE> title-text </ TITLE>

The <TITLE> tag, which is only valid in a <HEAD> section, defines the title
of an HTML document. Browsers typically display document titles in their
title bar and in bookmark lists.

<BDY at tri but es> docunent - body </ BCDY>

The <BODY> tag introduces the body of the document. It should appear
after the head section and occupy the remainder of the document.
Attributes are available to alter the background color of the document and
the color of text, links, active links, and visited links.

Colors are specified in HTML by name (from a set of available color
names) or by a six-digit hexadecimal number with the first two digits
specifying the red value, the middle two the green value, and the last two
the blue value.

A.2 Character Formatting Tags

These are tags that change the formatting of a set of characters and do not
cause a line break.

 text </ B>

© Copyright IBM Corp. 1998 243

The bold tag defines text that should be shown in boldface.
<I>text </1>

The italic tag defines text that should be shown in italics.
<Wb text </

The underlined tag defines text that should be shown with a line
underneath it.

 text block </ FONT>

The font tag defines that its block of text should have certain attributes,
including size and color (if supported).

A.3 Block Formatting Tags

These are tags that change the formatting of a block of characters and cause
a line break before and after the tag.

<CENTER> t ext </ CENTER>
The center tag defines text that should be centered.
<HlL attributes> text </HL>

The <H1> tag defines a level 1 heading. It is typically shown in a very
large bold font with several blank lines around it. It is also used by
automatic indexers to describe a page. Attributes include alignment, no
wrapping, and position in relation to graphics.

<H2 attributes> text < H>

The <H2> tag defines a level 2 heading. It is typically shown in a large
bold font with several blank lines around it.

Heading tags are available for six levels, with decreasing visual strength.
A level 6 heading tag is typically shown in a normal font, indented, with a
blank line above it.

<HR attri but es>

The horizontal rule tag causes a horizontal line to be drawn across the
screen. There is no </HR> tag. Attributes include horizontal width, line
size, alignment, and shading characteristics.

The line break tag breaks the current line of text. There is no </BR> tag.
<P attributes>text </P>

The paragraph tag starts a new paragraph and is equivalent to two< BR>
tags. The </P> tag is optional if the tag is only to insert space between two

244 Java Thin-Client Programming for a Network Computing Environment

paragraphs, but vital when attributes are applied. Attributes include text
alignment and wrapping.

<PRE> text </ PRE>

The preformatted text tag defines text that should be shown in a fixed-
width font with the line breaks and other white space specified by the page
author (all other tags ignore multiple white spaces). Within the <PRE> tag,
there is no need to use
 tags to indicate line breaks.

<BLI NK> bl ock </ BLI NK>

The blink tag defines a block of content that should be shown flashing on
and off.

A.4 Table Tags

These are tags used to create and lay-out tables.
<TABLE attri butes> tabl e-content </ TABLE>

A table consists of an optional caption and one or more rows. Attributes
include alignment, width, bordering, cell padding, and cell spacing.

<CAPTICN at tri but e> text </ CAPTI O\>

The caption tag defines the caption of a figure or table. It is valid only
within <FIG> or <TABLE> tags. An alignment attribute is available.

<TR attri butes> table row </ TR>

The table row tag defines a row of cells that are defined with <TH> and
<TD> tags. Attributes include alignment and background color.

<TH at tri but es> tabl e header </ TH>

The table header tag defines a header cell. Attributes include column and
row spanning, wrapping and alignment.

<TD attri butes> tabl e data </ TD>

The table data tag defines a table cell. Attributes include column and row
spanning, wrapping and alignment.

A.5 List Tags

These are tags associated with lists.

<QL attributes>1list entries </ Q>

Brief HTML Reference 245

The ordered list tag introduces an ordered (numbered) list, which is made
up of List Item tags. Attributes include compacting the list, numbering
start values, type, and continuance.

<UL attributes>1list entries </ U>

The unordered list tag introduces an unordered (bulleted) list, which is
made up of List Item tags. Attributes include compacting the list and
bullet type.

<MENJ> list entries </ MENS

The menu list tag introduces a menu list, which is made up of List Item
 tags and does not include bullets or numbers before them.

<DR attribute>list entries <DR>

The directory list tag introduces a directory list, which is made up of List
Item tags and does not include bullets or numbers before them. The
items should be short so that they can be arranged into columns. The
attribute is for compacting.

<Ll attributes>text

The list item tag defines one entry in an ordered, unordered, menu, or
directory list. Other tags may be embedded in a list item. Attributes include
bullet style and renumbering.

A.6 Forms Tags
These are tags used to design and implement interactive forms.
<FORM at t ri but es> formtags </ FORW

The form tag introduces a form, which is made up of <INPUT> elements.
Using tables and other elements, a form can take on various shapes and
looks. Attributes include the action of the form and the method of
submission.

<I NPUT TYPE=/ nput -t ype NAME=f| el d- name VALUE=val ue ot her-attributes>

Input tags are available with a number of mechanisms for the user to enter
data onto an HTML form.

Available INPUT TYPEs include:
TYPE=CGHECKBOX

The checkbox type input tag specifies a Boolean choice within the form
that contains it. If more than one checkbox appears in the form with the
same name, the user can select none, which one or several of the

246 Java Thin-Client Programming for a Network Computing Environment

choices. Other attributes available include an initial selection, disabling
and positioning.

TYPE=Fl LE

The file type input tag allows the user to attach one or more files to the
form for submission. Attributes include acceptable file types, disabling
and positioning.

TYPE=H DCEN

The hidden type input tag specifies a hard-coded name-value pair
within the form. This field is not displayed to the user.

TYPE=l MACE

The image type input tag specifies an image to be presented to the
user. As soon as the user clicks on the image, the form is submitted
with the selected x y coordinates of the spot on the image and the data
for the other form fields. Attributes include image source and
alignment.

TYPE=PASSWRD

The password type input tag specifies a single-line text entry field
within the form that contains it. The value entered by the user will be
obscured as it is entered. Attributes include display size, maximum
enterable length, disabling, and alignment.

TYPE=RAD O
The radio button type input tag allows a choice among a number of
options. Normally, more than one radio button will appear in the form

with the same name. The user can then select only one of the choices.
Attributes include initial selection, disabling and alignment.

TYPE=RESET
The reset type input tag specifies a button. When the user clicks the

button, all the fields in the form are reset to their initial values. The
Value attribute defines the button’s label.

TYPEESUBM T

The submit type input tag specifies a button. When the user clicks the
button, the form’s data is submitted to the form’s ACTION, using the
defined METHOD, with NAME=value pairs. The Value attribute defines
the button’s label.

TYPE=TEXT

Brief HTML Reference 247

The text type input tag specifies a single-line text-entry field within the
form that contains it. Attributes include display size, maximum
enterable length, disabling, and alignment.

<SELECT NAME=name ot her-attri butes> option entries </ SHECT>
<CPTI ON VALUE=val ue ot her-attri but es> content

The select tag specifies a multiple-line selection box field within the form
that contains it. The user can select one or more lines if the attribute
MULTIPLE is specified. Other attributes include number of displayed
selections, initial selected option, alignment and image map options (if
utilized). If the VALUE attribute is not specified, the content of the option is
used.

<TEXTAREA NAME=nane ot her - attri but es> content </ TEXTAREA>

The text area tag specifies a multiple line text area field within the form
that contains it. The NAME attribute is a required field and is used to
identify the data for the field. Attributes include width and number of lines
of the text area, and wrapping. The content is used as an initial value for
the field. The field can be scrolled beyond the defined size to allow for
larger amounts of text to be entered.

A.7 Miscellaneous Tags

These are tags that don't fit our other categories, including the important
anchor tag (used for creating HyperText links) and inline image tags.

 link-text </ A>
 |l ink-text </ A>

The anchor tag defines either an anchor in a document or in a hyperlink.
The anchor tag must contain either a NAME attribute or an HREF attribute
respectively, or both. An anchor is used to provide a point within a
document that can be linked-to. A link defines a HyperText link, where the
link-text is highlighted. If selected, the browser replaces the document in
the current window with that retrieved according to the associated link
address. Link addresses are commonly URIs and may include an anchor
to go to a specific point within the retrieved document.

<l-- comment text -->

The comment tag is used to insert comments in your HTML code. The tag
includes the actual comment text.

<I M5 SRC=sour ce other-attributes>

The inline image tag displays an image referred to by a URI. Supported
image types are usually GIF and JPEG. Other attributes include

248 Java Thin-Client Programming for a Network Computing Environment

alignment, bordering, height and width, alternative text to display in
text-based browsers, and whether the image is an image map.

<MAP NAME=nane> area tags </ MAP>

The map tag defines a client-side image map and gives a name to a
collection of AREA tags that are superimposed over an inline image to
connect user clicks with links.

<AREA SHAPE=shape QO CRDS=co- or ds HEF=I | nk- addr ess>

The area tag defines areas that act as hotspots within an image. Typically
a map will have multiple AREA tags. The SHAPE attribute can be one of
RECT, CIRCLE, POLY, or DEFAULT. CO-ORDS gives the co-ordinates, in
pixels, measured from the upper-left corner of the image, of the defining
points for the shape. For RECT, these are left, top, right, and bottom. For
CIRCLE, they are Xcentre, Ycentre and radius. For POLY, they are x1, y1,
X2,¥y2, ... Xn, yn.

<SCR PT LANGQUAGE=] anguage><!-- script statenents --></ SCR PT>

The script tag identifies script code. This can be code to be executed at
this point of the document, or may contain functions for use later in the
document. Netscape Navigator supports JavaScript, and Microsoft
Internet Explorer 3.0 supports JScript (Microsoft JavaScript dialect) and
VBScript. The statements are usually (but not required to be) enclosed in
the comment tag, so that browsers that do not support scripting do not
render the code as part of the page’s text.

<APPLET attri but es> appl et-content </ APPLET>

The Java applet tag instructs the browser to run a Java applet referred to
by a URI. The applet-content consists of optional <PARAM> tags, ordinary
text and markup to be displayed by browsers that cannot run Java applets.
Attributes include code location, name, alignment, height, width, and
spacing. Chapter 5 looks at Applets in more detail.

<SERWLET attri but es> servlet-content </ SERVLET>

The Java servlet tag instructs the connected Web server to run a Java
servlet referred to by a URI. The servlet-content consists of optional
<PARAM> tags, ordinary text and markup to be displayed by Web servers
that cannot run Java servlets. Attributes include code location, codebase,
and servlet initialization arguments. Chapter 7 looks at Applets in more
detail.

Brief HTML Reference 249

250 Java Thin-Client Programming for a Network Computing Environment

Appendix B. Java Development: Using VisualAge for Java

This appendix introduces VisualAge for Java: It covers the following topics:

e The VisualAge family
* VisualAge Java overview
« Integrated Development Environment (IDE)
* Java support
« Navigating within VisualAge for Java
« Visual Composition Editor Team development
« Applet viewer
« Editor/Debugger/SmartGuides
« Proxy builder
The Enterprise Access Builders (EAB)
» Data Access Builder (DAX)
» System requirements
e Summary

This chapter discusses various processes and windows that you use in the
development of windows and in applications using VisualAge for Java. All
development for this redbook was performed using the Windows NT 4.0
version of the Enterprise Edition of VisualAge for Java. If you are using a
different version or the Professional Edition, there may be some slight
differences in the processes and windows discussed and shown here.

B.1 The VisualAge Family

VisualAge for Java is one of the member of the family of VisualAge products.
These products cover the complete range of client/server application
development topologies, clients, servers, and languages.

The VisualAge family supports the following programming environments:.

* VisualAge for Java

* VisualAge Generator (4GL)
* VisualAge for COBOL

* VisualAge for RPG

* VisualAge for C++

¢ VisualAge for Smalltalk

« VisualAge for Basic

« VisualAge for e-Business

¢ VisualAge for PacBase

¢ VisualAge Financial Foundation
« VisualAge 2000

© Copyright IBM Corp. 1998 251

« VisualAge WebRunner

In addition, the VisualAge product set supports application development
across the following client and server platforms.

Note: Not all VisualAge products support all the client and servers listed
here.

*» 0S/2

¢ Windows 3.1 and 3.11
¢ Windows NT

¢ Windows 95

¢ AIX

0S/390

0S/400

VisualAge uses a construction-from-parts paradigm, which eases the
migration to client/server, object-oriented, and Web-based technologies. With
the Visual Composition Editor, which is available with VisualAge for Java, you
can develop programs by visually arranging and connecting prefabricated
parts. You can also create your own reusable parts. For a complete
description of each of the VisualAge family members and supported
environments, visit the VisualAge Family Web page at:

http://ww sof tware. i bmcond ad/ .

B.2 VisualAge for Java Overview

IBM VisualAge for Java is one of the first enterprise-wide, team enabled,
incremental application development environments for Java in the industry. It
is designed to connect Java clients to existing server data, transactions, and
applications. This enables developers to extend server-based applications to
communicate with Java clients on the Internet or intranet, rather than rewrite
the application from scratch. VisualAge for Java creates 100 percent pure
Java-compatible applications, applets, and JavaBeans.

VisualAge for Java is available in three versions:

* Entry: Free, with a five hundred class limit. This version is available on the
enclosed CD-ROM.

* Professional Edition: Includes the Integrated Development Environment
(IDE)

« Enterprise Edition:

¢ Includes all Professional Edition support
« Includes the Enterprise Access Builders

252 Java Thin-Client Programming for a Network Computing Environment

e Supports the AS/400 Toolbox for Java (will be included in the
Enterprise Access Builder in the future)
e Team support will be included in the future.

Beyond the current batch-based Java tools available today, VisualAge for
Java provides:

e Superior enterprise connectivity
e Project-based team development
« A true incremental rapid application development environment for Java.

VisualAge for Java is part of the VisualAge family of products and shares
some of the components from the other VisualAge products. For example,
VisualAge for Java shares the team environment repository and image
concepts (and implementation) with the VisualAge for Smalltalk product. It
also shares the Visual Composition Editor component, which is common
across all the development environments.

With VisualAge for Java, the developer can develop 100 percent
Java-compliant JDK 1.1 applications and applets all from the same
development environment. This enables customers and Business Partners to
migrate to Java-based Web applets at their own pace along an incremental
path, including:

¢ Implementing Java extensions to their applications
« Developing whole Java applications

* Moving to client/server Java applications

* Developing Web-based Java applets

The Integrated Development Environment incorporated within the product
enables the developer to code/compile/test/debug single lines of code as well
as full-scale applications, enabling the application to scale with the business
requirement. The IDE is built around the industry leading ENVY/Developer
team development environment from OTI (an IBM subsidiary company),
which is well recognized within the object technology marketplace for its
ability to provide management facilities for small- and large-scale application
development projects. The IDE enables a developer to build and run
applications, applets, and code snippets interactively without the need to run
the compile statement (JavaC) from the command line. All applications can
be run from within the IDE without the need to export the Java source or class
files. This is achieved through the provision of a JDK 1.1-compliant Virtual
Machine (VM) within the IDE. Because you can interactively modify code and
run it without compilation, developers are able to debug code on the fly,
spotting errors in their code with the debugger, changing it, and continuing
without bringing the running application down. . .all within the VisualAge for
Java IDE.

Java Development: Using VisualAge for Java 253

VisualAge for Java is an open IDE, and developers can easily import and
export Java source and class files as well as JavaBeans that may have been
purchased by the company or made available on the WWW. The JavaBeans
support in VisualAge for Java also enables a developer to take an existing
JavaBean (for example, from the WWW), import it into VisualAge for Java,
modify the bean, and export it again for use within another JDK 1.1-compliant
development environment (for example, Symantec Cafe and Borlands
JBuilder).

Version 1 of VisualAge for Java supports JDK 1.1 (the most recent version at
the time of publication). Along with the current JDK support, VisualAge for
Java also supports all the most current standards for Java development (for
example, Java Database Connectivity (JDBC) and so forth), which is
discussed later. Because of the portability of JDK 1.1-compliant Java code,
code that is developed using VisualAge for Java should be able to run on any
Java Virtual Machine.

The initial release of the product runs on OS/2 Warp Version 4.0, Windows
NT 4.0 or Windows 95.

VisualAge for Java comes with the following core components:

¢ Integrated Development Environment:
e Hierarchy browser
e Projects Packages
¢ Classes Methods
Editor Debugger
« Applet viewer
e Team support (Enterprise edition)
e Java class libraries
« Visual Composition editor
e Enterprise Access Builders (EAB)
« Data Access Builder
* CICS Access Builder
e RMI builder
e C++ builder

All of the preceding components utilize the JDK 1.1 and Java Virtual Machine
support of VisualAge for Java.

B.3 Integrated Development Environment (IDE)

This section of the appendix covers the Integrated Development Environment
(IDE) component of VisualAge for Java.

254 Java Thin-Client Programming for a Network Computing Environment

B.3.1 Java Support

Java is a collection of classes built from the ground up, following
object-oriented (OO) principles. In Java, everything is an object except for the
standard data types inherited at the top of the hierarchy from the root class,
object.

Java classes are contained in packages. The concept of a package in Java is
a useful way of grouping classes that are related.

JDBC is the Java standard to manipulate enterprise data stored in relational
databases. It is the Java equivalent to ODBC, a widely accepted standard
developed by Microsoft. JDBC provides a standard SQL database access
interface. Constructs such as database connections, SQL statements, result
sets, and database metadata are included. With JDBC, it is possible to
develop Java applications independently of the target relational database
management system (RDBMS). Many vendors already provide (or will
provide in the near future) JDBC drivers targeted at accessing dozens of
database management systems.

In conjunction with JDBC, JavaSoft is releasing a JDBC-to-ODBC bridge.
Such a bridge provides a way for Java applications developed to the JDBC
standard to gain access to any database using the existing ODBC drivers.

Remote Method Invocation (RMI) lets programmers create Java objects
whose methods can be invoked from another Java Virtual Machine. RMI is
equivalent to a Remote Procedure Call in the nonobject world.

The JavaBeans API defines a portable, platform-neutral set of APIs for
software components. JavaBeans components can plug into existing
component architectures such as IBM’s OpenDoc, Microsoft’s
OLE/COM/Active-X architecture, or Netscape’s LiveConnect.

Java Native Interface (known previously as the native method interface in
JDK 1.0) provides the capability for a Java object to call a native platform
function typically written in C, C++, or any other language.

The internationalization support allows the development of localized applets
and applications. The global Internet demands global software; that is,
software that can be developed independently of the countries or languages
of its users, and then localized for multiple countries or regions. JDK 1.1
provides a rich set of Internationalization APIs for developing global
applications. These APIs are based on Unicode 2.0 character encoding and
include the ability to adapt text, numbers, dates, currency, and user-defined
objects to any country’s conventions.

Java Development: Using VisualAge for Java 255

Java Archive (JAR) is a platform-independent file format that aggregates
many files into one, similar in concept to a ZIP file. Multiple Java applets and
their requisite components (class files, images, and sounds) can be bundled
in a JAR file and subsequently downloaded to a browser in a single HTTP
transaction, greatly improving the download speed. The JAR format also
supports compression, which reduces the file size and further improves the
download time. In addition, the Applet author can digitally sign individual
entries in a JAR file to authenticate their origin. It is fully
backward-compatible with existing applet code and is fully extendible, being
written in Java.

The Core Java JDK 1.1 APl includes the following packages:

« Java.lang:

This package contains all the classes and interfaces of the base Java
language. It also includes the subpackage:

e Java.lang.reflect:

This package enables the Java program to examine the structure of
Java classes and to reflect upon its own structure.

« Java.util:

This is the utility package containing various utility classes and interfaces,
including random numbers, system properties, and other useful classes.
This package includes the subpackage:

e Java.util.zip:

This package provides classes for data-string checksum and
compression and archive of data streams

* Java.io:

This package provides the input/output classes and the interfaces for files
and streams. It includes also support for object serialization.

¢ Java.net:

This package is composed of classes and interfaces for handling network
operations such as TCP/IP, sockets and URLSs.

e Java.awt:

This is the abstract windowing package that allows for definition of GUI
constructs that are portable to multiple windowing systems. It also
provides printing support. The following subpackages are part of the
Java.awt package:

« Java.awt.image:

256 Java Thin-Client Programming for a Network Computing Environment

Provides the classes necessary to handle images in various formats,
such as GIF and JPEG.

* Java.awt.peer:

Provides hidden classes that map their Java.awt equivalents and are
designed to implement the GUI constructs on specific platforms, such
as Apple's Macintosh, Microsoft's Windows 95 or UNIX's Motif.

* Java.awt.datatransfer:

Defines a generic framework for interapplication data transfer including
clipboard and cut-and-paste. Most classes rely on the object
serialization API from Java.io package.

* Java.awt.event:
This packages defines three categories of classes and interfaces:

e Event classes that represent events

< Event listeners, interfaces that define necessary methods for an
object to be modified by occurrence of a particular event

« Event adaptors, no-op event listener interfaces, needed for
subclassing

Java.applet:
This package is designed to provide the behavior specifically for applets.
Java.text:

This package provides classes and interfaces for internationalization
purposes.

Java.sql:

This package provides the JDBC APIs. It allows programs to send SQL
gueries to databases and retrieve results.

Java.beans:

This package constitutes the JavaBeans APIs for creating and using
embeddable and reusable software components

Java.math:
This package provides two classes used in cryptographic support.
Java.security:

This package provides classes and interfaces that represent abstractions
of cryptographic security (private and public keys, certificates, digital
signature). Two subpackages are available:

e Java.security.acl: for manipulating access control lists

Java Development: Using VisualAge for Java 257

« Java.security.interfaces: for independent implementation design
e Java.rmi:

This package defines fundamental classes and interfaces used for
Remote Method Invocation. Three subpackages provide additional
functionalities:

e Java.rmi.dgc: classes and interfaces needed for distributed garbage
collection

e Java.rmi.registry: classes and interfaces required for a Java client to
look up for services and for a Java server to advertise the services it
provides

e Java.rmi.server: classes and interfaces that allow a Java program to
create an object that can be used remotely by other Java programs.

For a full description of the Java class library and core API, visit the JavaSoft
JDK 1.1 (currently 1.1.5 at April 1998) Web page at:

http://java. sun. cond product s/j dk/ 1. 1/ docs/ i ndex. ht ni .

B.3.2 Navigating within VisualAge for Java
This section of the appendix introduces the fundamental elements of the

VisualAge for Java IDE that are accessed from the Workbench window in the
IDE. It covers:

« Starting VisualAge for Java
* The Workbench and its hierarchy:

« Projects

« Packages

* Classes

* Interfaces

¢ Unresolved problems

* Browsers:

e Project
« Package
* Class

B.3.2.1 Starting VisualAge for Java

During the installation of VisualAge for Java, an item is added to the Windows
NT 4.0 Taskbar, IBM VisualAge for Java for Windows. This item has a
number of subitems, and selecting IBM VisualAge for Java starts VisualAge
for Java. Follow a similar process if you are using the OS/2 or Windows 95.

258 Java Thin-Client Programming for a Network Computing Environment

= Accessories
Startup 4
£ Books Orline

E Command Prampt

@ ‘Windows Messaging

ES IDE HTHL Help
ES JOK HTML Help

@ ODBC32 Admininistiatar
l Froduct Registration

@ Windows NT Explorer @ ReadMe
r_E.___ Adminigtrative Tools [Comman] 4 ﬁ Releasze Mates
Adobe » Ej SearchHTML Help
Borland JBuilder L4 Start Search Server
Bt Personal Communications L4 Stop Search Server
¥ Documents 4 X e for Java for 'y % unlnstall
IE; Setfings 5 ava Servlet Development Kit 1.0.1 4
Library Reader for Windows 4
Q] End » (& Lotus Applications v
= @ Help Main v
W Microsoft Internet Server [Commaon] 4
g Bun... =, Metscape Commuricator Professional Ediion #
:E Metzcape Mavigator 4
; Sl D Faint Shop Fro 4
4 SitePad ’

Figure 111. Starting IBM VisualAge for Java - Windows NT 4.0 Taskbar

During the startup process, VisualAge for Java loads the development image.
Because this image can be 8 MB or larger (typically in the 15 MB-25 MB
range), the startup process can take one to two minutes because the entire
image must be loaded into memory. The development image is also known as
the workspace, and these two terms are used interchangeably in this
appendix.

If this is the first time VisualAge for Java has been started, the first window
displayed is the Quick Start window.

Java Development: Using VisualAge for Java 259

| Visualhge Quick Start

7 o

Figure 112. Starting IBM VisualAge for Java - Quick Start

The Quick Start window provides a single point to perform most of the simple
tasks. However, as you become more experienced using VisualAge for Java,
you may decide to stop this window from appearing at startup.

Select Go to Workbench and press OK to go to the Workbench window.

title bar
menu bar
tool bar

pane

Figure 113. IBM Visualage for Java - Workbench

260 Java Thin-Client Programming for a Network Computing Environment

The Workbench is the main window into the workspace. You organize your
work from the Workbench. From here, you can open several other windows to
help with your tasks. As you open windows, navigate in them, create source
code, and perform other tasks, the workspace is modified. From the
Workbench, you can open specialized windows (called browsers) on
individual program elements in the workspace.

The Workbench window is split into a number of areas that are common
across most of the VisualAge for Java windows:

« Title bar
* Menu bar
* Tool bar: Provides fast access to menu items

* Notebook tabs: Provides views of the four fundamental components of
VisualAge for Java (projects, packages, classes, and interfaces) as well
as a tab for displaying any unresolved problems.

* Panes:

« Hierarchy pane: Typically, displays the component being browsed in
context with its containing components. For example, a project browser
shows all of its packages, and each package is expandable to show all
of the classes/interfaces it contains, and so forth.

* Source pane: If a method is highlighted in the hierarchy pane, the
method source code is displayed in the source pane. Similarly, if a
class/interface is highlighted in the hierarchy pane, the class/interface
definition is displayed in the source pane.

« Status line: Provides feedback to the user on the current action/mouse
position/selection, and so forth.

B.3.2.2 Component Hierarchy

Source code is stored as structured objects in the following hierarchy of
VisualAge program elements:

Proj ects
Packages
d asses or Interfaces
Met hods or constructors

You are probably already aware of the package, class or interface, and
method or constructor components that are part of the standard Java
language. In addition, VisualAge for Java includes a higher grouping level
called projects, which enables the grouping together of various packages.

Java Development: Using VisualAge for Java 261

262

Each higher level component can have multiple lower-level components. For
example, a project can contain one or more packages.

Various icons are used in each of the browsers to depict each component.
Examples of the icons used are:

g 8 e @ =

Figure 114. Project, Package, Class, Method, and Run Icons

B.3.2.3 Workbench Window

In the following Workbench window (Projects tab), the project has been
expanded to show its packages. One of these packages, the File Package
has been expanded to show its classes and interfaces (classes only in this
case). One of these classes, the GenPR Class, has been expanded to show
its method(s). The main (j ava. l ang. String[]) method, has been selected,
and its source is shown in the source pane.

Figure 115. IBM VisualAge for Java - Workbench Window

There is also a graphical view of the classes contained in this package, but a
high-resolution screen is required to gain maximum benefit from this
particular view.

Java Thin-Client Programming for a Network Computing Environment

| W orkbencl _|Opx
File Edit ‘“Workspace Claszes Methods ‘Window Help

o |ava.mmi.server. Operation -« RMIServer)
= o iava.rmi.server.HemoteDbiectA # mainfjava.lang.String []]S

A

= o |ava.mmi.server. RemoteServer # readPatientR ecord[Hozpital. 5 ocialS ecurityMumber]

= o java.mmi.server. UnicastR emaote0bject # wiitePatientR ecord[Hozpital PatientR ecord)

import jawva.rmi.*;

import jawva.io. *;

import Hospital %

SEKE

Thi= defines the Remote FPatientRecord Server

* Itz extends from UnicastREemote0bject a= an remote object
* and use the Communicable Interface

Figure 116. IBM VisualAge for Java - Class Hierarchy

B.3.2.4 Component Browsers

The next section discusses the four component browsers used extensively
within VisualAge for Java (project, package, class, and interface). Each of the
browsers is displayed from the Workbench window by selecting a component
in the Hierarchy Browser Pane of the Workbench (for example, a package)
and then selecting Open from its pop-up menu.

B.3.2.5 Project Browser

The project browser displays details on all the components within the project,
including the packages, classes, interfaces, methods, and method source
across the first three different views (tabs). The final tab on all the browsers is
an Editions tab, which displays the version/edition information about this
component, enabling the developer (even in the Professional Edition of
VisualAge for Java) to manage multiple versions/editions of
packages/classes/interfaces/methods.

Java Development: Using VisualAge for Java 263

Figure 117. IBM VisualAge for Java - Project Browser

B.3.2.6 Package Browser

The package browser displays details on all the components within the
package, including the classes, interfaces, methods, and method source
across the first two different views (tabs). As with the project browser, the
package browser has the editions tab to help manage multiple editions of the
package.

The most-used view shows the contained classes in the hierarchy in tree
format.

264 Java Thin-Client Programming for a Network Computing Environment

& Hospital 9.0.1 [H[=] B3

File Edit ‘“Workspace Claszes Methods ‘Window Help

OEICE

- Dmmmwg
£ Doctors™* - actionPerformed[iava.awt.event.ActionEvent]@
o HistoryE ntry i connd DD[iava.awt.event.ActionEvent]Q
o MeazurementEntry i connlOl [iava.awt.event.W’indowEvent]Q
o PatientR ecord i connd D2[iava.awt.event.ActionEvent]Q
o SocialS ecurityM umber i connd DB[iava.awt.event.TextEvent]Q
O staif i conml O5fiava.awt event. TextEvent| @

import jawva.io. *;
import jawva.awt. *;
import jawa. util *;
<4 import Socket | *;
<4 import File
import REMI . *;
import jawva.rmi.*;

Figure 118. IBM VisualAge for Java - Package Browser

B.3.2.7 Class Browser

The class browser is a little different in its implementation when compared
with the project and package browsers. The class browser still displays all the
subcomponents (methods) it contains: the method source in the lower pane,
and an editions tab for managing multiple editions of the components. But in
addition, there are four extra tabs:

« The Hierarchy tab displays the position of the class in the hierarchy
showing all the superclasses, both in tree and graphical format.

* The Editions in Repository tabs shows the editions available for the class
in the repository.

¢ The Visual Composition tab is used primarily for the design of visual
classes.

* The Bean Info tab displays information about the features that have been
defined for the class (if any) and allows the Bean Info to be modified.

A lot of work is performed using the Visual Composition builder and this is
discussed in the next sections. To open this browser, you select a class, click
the right mouse, and select Open.

Java Development: Using VisualAge for Java 265

CIRMI.AMIServer 9.0.3 M= 3
File Edit ‘“Workspace Claszes Methods ‘Window Help

OIS :f)) 6) 6 &) 7 \J_\:

-« RMIServer)
mainfjava.lang.String []]S
= o iava.rmi.server.HemoteServerA # readPatientR ecord[Hozpital. 5 ocialS ecurityMumber]
EB java.mmi.server. UnicastR emaote0bject # wiitePatientR ecord[Hozpital PatientR ecord)

import jawva.rmi.*;

import jawva.io. *;

import Hospital %

SEKE

Thi= defines the Remote FPatientRecord Server

* Itz extends from UnicastREemote0bject a= an remote object
* and use the Communicable Interface

Figure 119. IBM VisualAge for Java - Class Browser

B.3.3 How It Fits Together

VisualAge for Java uses three basic components to build reusable
JavaBeans and to use JavaBeans that may have been built by other tool
vendors. These three components are the Visual Composition editor, the
Features editor, and the Script editor.

VisualAge for Java comes with a large number of reusable beans or parts that
are stored either in the VisualAge image/workspace or that can be brought
into the image/workspace from the repository (sometimes called the
Parts/Beans Warehouse). Once a class or bean is in the image, a developer
can use the Visual Composition editor to connect multiple beans together to
perform the required function.

The product can also be used to develop reusable beans or to modify existing
beans. This is achieved by using a combination of the Feature editors for
properties, methods, and events, and the Script editor for actually writing the
Java code that is invoked by the various features.

266 Java Thin-Client Programming for a Network Computing Environment

B.3.3.1 JavaBeans and Classes

A Class A Bean

Figure 120. Class and Bean

A class is a template for objects that have similar behavior (methods) and
data elements (variables, properties). To use classes in visual builders (for
example, VisualAge for Java, Symantic Cafe), the class needs to have
features defined for it that allow it to be connected to other beans within a
visual development environment.

JavaBeans add standardized features and object introspection mechanisms
to classes, allowing builder tools to query components (classes or groups of
classes) about their properties, behavior, and events, thus allowing visual
builders to connect beans together that are implemented to the same
JavaBeans standard.

Individual JavaBeans vary in functionality, but most share certain common
defining features:
« Introspection - allowing a builder tool to analyze how a bean works

« Events - allowing beans to fire events, and informing builder tools about
both the events they can fire and the events they can handle

« Properties - allowing beans to be manipulated programatically

« Methods - allowing beans to perform functions implemented by the
underlying class methods

e Customization - allowing a user to alter the appearance and behavior of a
bean

Java Development: Using VisualAge for Java 267

268

e Persistence - allowing beans that have been customized in an application
builder to have their state saved and restored.

Account Hol der Nane

account Bal ance ’_ﬁ
Property

Met hod

wi t hdr awCash
deposi t Cash

Event

goneQver dr awn

Figure 121. JavaBeans - Classes, Properties, Methods and Events

In the preceding diagram, an account class has been defined with
functions/methods and variables. In addition to the account class definition,
bean features have been defined for the following definitions:

« Variable/Property
AccountHolderName
AccountBalance
* Method
WithdrawCash
DepositCash
e Event
GoneOverdrawn
In this example, there is probably a one-to-one relationship between the
account Hol der Nane and account Bal ance bean properties with instance variables

of the same name (defined in the class). There are also the wi t hdr anCash and
deposi t Cash methods with bean method features of the same name. However,

Java Thin-Client Programming for a Network Computing Environment

in addition to these four features, the bean has an event, goneQver dr awn, which
is fired from within the w t hdranCash method. Other JavaBeans can listen for
this event before taking action. For example, an Over Dr awnAccount s object may
listen for account objects to fire this event. When the account object fires the
goneQver dr awn event, the Over Dr awnAccount s object senses this automatically
(because it listening) and takes its appropriate action (sends a letter
informing the account holder of the account status and of the charges that
have been applied).

Add Action Clicked Even

Figure 122. Events and Actions between JavaBeans

In the preceding figure, there are two classes packaged as beans. The
right-most bean (for example, a push button) has a connection to the
left-most bean (for example, a listbox) and when the clicked event occurs, the
listbox performs the add function. In VisualAge for Java, this connection is
made through a series of simple steps that do actually connect the two beans
together.

A Single Bean A Composite Bean

Figure 123. Single Bean Versus Composite Bean

Java Development: Using VisualAge for Java 269

270

Beans can either be a single bean made up of individual beans/classes, or

they can be composite beans made up of two or more classes/beans. In the
preceding figure, the pushbutton is a single bean; whereas the window is a

composite bean made up of a pushbutton and a list.

The preceding figure represents single and composite beans that are visual.
Similar concepts apply to nonvisual classes/beans. For example, an array
contains a number of strings.

The previous discussion introduced the concepts (albeit, in overview) of
visual builders and of JavaBeans. In VisualAge for Java, you visually
construct many modules of your application by connecting various
JavaBeans using the Visual Composition editor (VisualAge’s visual builder).

The following list summarizes the types of connections that the Composition
editor provides. The return value is supplied by the connection’s nor nal Resul t
property. If you want to:

e Cause one data value to change another

» Use the connection type Property-to-property
* The color is dark blue
* No return Value

« Call a behavior whenever an event occurs

« Use the connection type Event-to-method
« The color is dark green
¢ Return Value

« If you want to supply an input argument

e Use the connection type Parameter
e The color is violet
« No return Value

A property-to-property connection links two property values together. This
causes the value of one property to change when the value of the other
changes. A connection of this type appears as a bidirectional dark blue line
with dots at either end. The solid dot indicates the target, and the hollow dot
indicates the source. When your part is constructed in the running
application, the target property is set to the value of the source property.
These connections never take parameters.

An event-to-method connection calls the target method whenever the source
event occurs. An event-to-method connection appears as a unidirectional
dark green arrow with the arrowhead pointing to the target.

Java Thin-Client Programming for a Network Computing Environment

A parameter connection supplies a parameter value to a method by passing
either a property’s value or the return value from another method. This
connection appears as a bidirectional violet line with dots at either end. The
solid dot indicates the target, and the hollow dot indicates the source. In
addition, the parameter names are included in the connection’s pop-up menu.
The parameter is always the source of the connection because the parameter
cannot store any values. If you connect the parameter as the target,
VisualAge reverses the direction of the connection to make the parameter the
source.

The Composition editor uses a dashed line to give you a visual clue so that
you know when a parameter connection is needed. For example, if you
connect an event to a method that requires parameter values, the connection
line between the event and the method is dashed.

In the preceding discussion, the source and target points of a connection
were introduced.

A connection is directional; it has a source and a target. The direction in
which you draw the connection determines the source and target. The part on
which the connection begins is the source, and the part on which it ends is
the target. When you make an event connection, the Composition editor
draws an arrow on the connection line between the two parts. The arrow
points from the source to the target. If information can pass through the
connection in both directions (as it can in property-to-property connections), a
hollow circle indicates the source, and a solid circle indicates the target.

Often, it does not matter which part you choose as the source or target, but
there are connections where direction is important. For example, in an event
connection, the event is always the source. If you try to make an event the
target, VisualAge automatically reverses it for you.

If the target of the connection takes input parameters, the connection line
initially appears dashed to show that it is incomplete. Many events pass data
through the connection to the target; so the connection line might appear
solid even if the target takes one input parameter and you have not otherwise
provided one.

The target of a connection can have a return value. If it does, you can treat
the return value as a no-set property of the connection and use it as the
source of another connection. This return value appears in the connection
menu for the connection as normalResult.

Java Development: Using VisualAge for Java 271

272

B.3.3.2 Building a Sample Application Window

The objective of this section of the appendix is to build a simple application
using VisualAge for Java. The sample application enables an end-user to add
parts to a list as if the user were ordering them in a parts ordering application.

Earlier in this appendix, VisualAge for Java was started, and you navigated
past the Quick Start window to the Workbench window.

From the Workbench window, select the Selected menu item; then select
the Add Project... submenu item

Note

In all future scripts, selected submenu items are formatted the same as
this: Selected --> Add Project....

The SmartGuide - Add Project window is shown: Type in the name of your
Project, TeamO1Project, and click Finish.

[(_,:l SmartGuide - Add Project

{+ Create a new project named: |TeamD1 Project
= Add project(s] from the repositony

Frezz ‘Browse' and chooze the project(z] to add.

Browse.. |

Figure 124. Add Project SmartGuide

A project named TeamO1Project is created; you are returned to the Projects
tab of the Workbench window, and the TeamO1Project is highlighted.

Open the TeamOl1Project
Bring up the TeamO1Project’s pop-up menu and select Open:

Java Thin-Client Programming for a Network Computing Environment

The TeamO1Project window opens. The title of this window is
TeamO1Project(dd/mm/yy hh:mm:ss am). The time stamp element of the
window title is an indication of the date/time when this edition of the project
was created. If the TeamO1Project window does not open up maximized, then
maximize it.

Add a New Package (Team0OlLabl) to the TeamOlProject Project
To add a new package, click the right mouse button in the Packages pane
and select Add Package from the pop-up menu.

Select the Packages --> Add Package... menu item from the TeamO1Project
window.

Enter TeamO1Project as the name of the project to which this class is added
(this is the default). Enter TeamOlLabl as the package name and click
Finish to create it.

[(_,:l SmartGuide - Add Package

Project: Team1 Project Browse... |

{* Create a new package named: Team(1Labl

(" Create a default package
= Add packages] from the repository

Frezz ‘Browse' and chooze the package(z] to add.

Browse.. |

Figure 125. Add Package SmartGuide

A new package, Team0O1Labl, is created in the TeamO1Project. The new
package is shown highlighted in the Packages pane of the TeamO1Project
window.

Add a New Class (Team01OrderEntry) to the TeamOlLabl Package
Select the Classes/Interfaces --> New Class/Interface... menu item. Enter
Team01OrderEntry as the class name. Enter java.awt.Frame as the
superclass name.

Java Development: Using VisualAge for Java 273

Notice that class nhames are case sensitive. You are creating a visual class,
and most visual classes have java.awt.Frame as their superclass.

Select the Design the class visually radio button. Click Finish to create the
class.

[(_,Jﬁmallﬁuide - Create Class or Interface E

Create & new: IEIass 'l

Enter the name and superclazs for the new class:

Clazz Mame: |TeamD1DrderEntry

Superclass: |iava.lang.Dbiect Browse...

Select a project and a package:

Project: |TeamD1 Project Browse... |

Package: |TeamD1 Lab1 Browse...

Hows would you like to start designing the class?

it source code for the class.

¥ | Browseithe class when finished

Figure 126. Add Class SmartGuide

A new class, Team01OrderEntry, is created in the TeamOlLabl package in
the TeamO1Project project. The new class is shown in the classes and
interfaces pane of the TeamO1Project window, and the Visual Composition
editor for the Team01OrderEntry class is opened and in focus.

Maximize the TeamO1lLabl.Team01OrderEntry(dd/mm/yy hh:mm:ss am)
window.

The title of the window is Team0Ol1Labl. Team01OrderEntry(dd/mm/yy
hh:mm:ss am). The suffix time-stamp element of the window title is an
indication of the date/time when this edition of the class was created, and the
prefix shows you which package.class you are working on.

274 Java Thin-Client Programming for a Network Computing Environment

€) TeamD1Lab1.Team010rderE ntry[4/6/98 6:04:24 PH) HEE
File Edit ‘workspace Options Tool: Window Help

[0 A
Al E = E A

&

.

Figure 127. IBM VisualAge for Java - Visual Composition Editor

Take a moment to review the preceding window to see the various
components on the Visual Composition editor.

Window:The window being built, usually in the top-left corner of the free-form
surface.

Free-form surface:The white space surrounding the window being built. The
free-form surface is usually used to drop nonvisual parts (for example, a
timer) that you want to utilize in your class but that you do not want to
show to the end user at run time.

Parts palette:The area on the left of the Visual Composition editor window
that contains.

Parts categories (the left-most column/scrollbar) - a container for parts.
Parts (the right-most column/scrollbar) - the parts

Sticky: The checkbox at the bottom of the parts palette. The sticky
checkbox enables you to load the cursor with a part and to
perform multiple drops of that part onto the free-form surface or
window.

Java Development: Using VisualAge for Java 275

Add the Visual Components to the Window
The completed window at run time for this section looks similar to this:

[(_,:l Order Entry Window M [=]E3

Part

I Add

List of Parts

ﬁ Exit |

Figure 128. Order Entry Window Example

Note

Do not be too concerned with the placement and alignment of parts as you
are building the window. Later, we will make it look good.

Also increase the size of the window at this point. This makes it easier to add
parts. To size a part, click on it to select it. There is a block in each corner that
indicates that it is selected. These are called resize handles. Move the mouse
pointer over one of these resize handles and press and hold the left mouse
button to drag the part to its desired size.

Now we build the Graphical User Interface by selecting parts from the parts
palette and placing them on the window. Use the completed window shown
previously as a guide. Add:

* One TextField
* Two buttons
¢ One list

* Two labels

276 Java Thin-Client Programming for a Network Computing Environment

Note

Use the hover help to recognize the parts in the parts palette. Move the
mouse pointer over the top of the part and view the online help.

Move the cursor over the parts palette and left-click on the data entry
category. Left-click on the TextField part. This loads the cursor with the
TextField. Move the cursor over the window, near to the left edge (about 10
percent in) and 20 percent down. Left-click to drop the TextField into position.
Now left-click on the Buttons category. Left-click on the Button part. Move
the cursor to the right side of the window, about 25 percent in from the right
edge and 20 percent down, and drop a button with a left-click; and then drop
another button just below the first one. Left-click on the lists category and
then on the list part.

-

=~

Figure 129. Parts - List

Move the cursor to the left side of the window about 10 percent in and 50
percent up. Left-click to drop the List. Left-click on the Data Entry category,
and left-click on:

Figure 130. Labels

Move the cursor to just above the TextField that you dropped earlier and
left-click to drop it. Add another TextField just above the list that you dropped
earlier.

Make the Window Look Good

Move the cursor over the label just above the TextField. Hold the Alt key and
left-click (Alt-left). You can now type in the text that is shown on the label.
Type the word Part: and then left-click on the free-form surface to stop editing
the label text. Move the cursor over the other label and Alt-left. Type List of
Parts. Move the cursor over the top button and Alt-left. Type Add. Move the
cursor over the bottom button and Alt-left. Type Exit. Move the cursor to the
free-form surface and left-click to stop editing. Move the cursor over the
Window title bar and double-click to open the Properties Dialog for the

Java Development: Using VisualAge for Java 277

278

window. Left-click in the value column of the title row and type in Order Entry
Window for the title of the window. Close this window by click on the x in the
upper right corner.

[(_,:l Team010rderEntiy - Properties E

IFrame‘I j
background [=]
beank ame Frame1
congtraints w35 w A7 wd2h h294
cursor DEFAULT_CURSOR
font Abcde..
foreground
iconlmage 1}
lapout <l
1esizable True

Order Entry ‘Window
I Show expert features
litle:

Figure 131. Window Properties

Move the cursor over the TextField and left-click. Move the cursor over the list
and then left-click while holding down the Ctrl key (Ctrl-left). Both parts are
now selected. You can tell a part is selected by the re-size handles. When
you have two or more parts selected, the alignment smarticons are enabled.

HYIVHYLILYHTW

Figure 132. Align Buttons

This allows you to align left, center, right, top, middle, bottom, space
horizontally, vertically, same width, and height.

Note

To learn the function of a smarticon, move the mouse over it and view the
help text.

Move the cursor to the bottom right re-size handle of the list. Click and hold
the left mouse button, and drag the re-size handle to make the list wider.
Release the button when you are happy with the width of the list. Notice that
the TextField stretches as well. Now select the Match Width smarticon. This

Java Thin-Client Programming for a Network Computing Environment

makes the TextField the same width as the list. The list is the part of
reference because it has the darker re-size handles. Still with the list and
Textfield selected, click on the Align-Left smarticon to align their left sides.
Move the cursor to the free-form surface and left-click to deselect the part.
You now know how to align and size parts. Using your own style and GUI
building skills, align the various parts to make the window look cool! Test the
application. It does not have any function, but you can see how it looks. Save
the Order Entry Window and click on the Test smarticon; then click on run on
the Command Line Argument window to test the application.

Figure 133. Test Button

You receive a message saying "Generating run-time code". This is the Visual
Composition editor saving the layout information into Java code. The
developed window is shown. Review it and close the window. You return to
the VisualAge Visual Composition window.

Before testing, make sure you have a main method similar to:

/**
* main entrypoint - starts the part when it is run as an application
* @aramargs java.lang. String[]

*/

public static void main(java.lang. String[] args) {

try {
TeanDllLabl. TeanD1Q der Entry aTean®l1QrderEntry = new

TeanDllLabl. Tean®1Q der Entry();

aTean01QrderEntry. get Framel ().setVisible (true);

} catch (Throwabl e exception) {

Systemerr. printl n("Exception occurred in nain() of java.lang. ject");
}

Add the Function

Move the cursor over the Exit button and left-click to select it. With the cursor
still over the Exit button, right-click to bring up the Buttons pop-up menu.
Select Connect and
action.actionPerformed(java.awt.event.ActionEvent).

Java Development: Using VisualAge for Java 279

280

Froperties
Open
Fromote Bean Feature. ..

Change Bean Mame...
Delete
Lapout 3

Browse Connections 3
Beorder Connections From
Tear-Off Property...

Riefresh Interface

Figure 134. Connection

Selecting Connect brings up the features available to you as defined on the
button JavaBean. The action.actionPerfomed feature listens or watches for
the default action being performed for the part. For a button, the default
action is the button being pressed or clicked.

The spider is shown. The spider allows you to connect parts (beans) together.
Move the spider to the window title bar and left-click. The connection target
pop-up window is displayed.

What happens when the Exit button is pressed? You want the window to be
closed/disposed.

Select dispose() from the pop-up window. A green connection is displayed
between the Exit button and the window.

You are now ready to visually perform the function to add text entries from the
TextField to the list. Move the cursor over the Add button and left-click to
select it. With the cursor still over the Add button, right-click to bring up the
Buttons pop-up menu. Select Connect, and action.actionPerformed. Move
the spider to the list and left-click. The connection target pop-up window is
displayed.

What happens when the Add button is pressed? You want the text/string
entered in the TextField to be added to the list. Select add (java.lang.String)
from the pop-up window.

A dashed green connection is displayed between the Add button and the list.
You have now completed half of this connection. You have told VisualAge that
when the Add button is pressed, something is added to the list, but you have
not specified what is added. You can do this now.

Move the cursor over the dashed green connection from the Add button to the
list. Left-click over the connection. Selection handles are shown along the
connection to show that it has been selected. With the cursor still over the

Java Thin-Client Programming for a Network Computing Environment

connection (but not on a selection handle), right-click to bring up the
Connections pop-up menu and select Connect --> Item.

Froperties
Fiestore Shape

Beorder Connections From exceptiondocured

normalResult
Delete —

Figure 135. Connection

Move the resulting spider over the TextField. Left-click and select Text. A
purple arrow joins the TextField to the green connection. Do not forget that
VisualAge colors each connection depending on its type. You have now
completed the window for this section.

Test it out by selecting the Test smarticon. Enter some values in the TextField
and check if the Add button adds them to the list. Test the Exit button.

This is how our completed VisualAge window looks; your window may look
similar.

[(_,:l Order Entry Window M [=]E3

Part

I Add

List of Parts

ﬁ Exit !I. |

Figure 136. Designing Connections

Version Your Application

Left-click on the Hierarchy tab. The class hierarchy is displayed showing the
Team01OrderEntry class and its superclasses. Left-click on
TeamOlLab1l.Team01OrderEntry to select it. Select the
Classes-->Version... menu item. Make sure the Automatic radio button is
selected and click on the Finish button.

Java Development: Using VisualAge for Java 281

Your class is now versioned. You can change the class at any time but you
can also go back to this version of the Team01OrderEntry class whenever
you need to.

B.3.3.3 Extending the Application
The application is now extended, and the following actions are performed:

* Add a quantity field.

Modify the behavior so that the Add pushbutton invokes a script to
concatenate the part and quantity details and then displays them in the
list.

Add a Delete button to delete existing entries in the list.

Enable/disable the Delete button when an item is selected/deselected in
the list.

Add a Java script breakpoint and modify code when the breakpoint is
invoked.

At the end of this section of the appendix, the completed development
window should look similar to this:

L) TeamO1Lab1.Team010rderEntry(4/7/98 10:07:35 AM)

File Edit ‘Workspace Options Tools ‘window Help

oy e sy yelswly

E\',Jﬂldal Entry Window

Listof Parts

(U | e e

Lo

‘l
=
g
=

Figure 137. New Application Connections

282 Java Thin-Client Programming for a Network Computing Environment

Add Standard GUI Parts
Click on the Visual Composition tab to get back to the Visual Composition
editor.

* Add a Delete button to the window.

Disable the Delete button. To modify a component's properties, double
left-click on the component to bring up its Properties window. Check on
expert features, then single left-click inside the value column for the
property name you want to modify (to bring focus to the value) and change
the value as appropriate. Change the enabled property to false and the
label to Delete.

« Add a TextField that allows the quantity of parts to be input (called the
Quantity TextField later).

Place it level with and a little to the right of the part TextField. You may
need to move some components around, and you may even have to make
the window a little larger. To resize any component, single left-click and
hold down over a resize handle and drag the mouse to the required size.
Release the mouse button to end resizing.

« Add a label part and change its text property to Quantity.

Delete Connections

You can add items from the TextFields to the list using a script in this section.
Therefore, the current connection from the Add button
(action.actionPerformed) to the list (add(java.lang.String)), taking the Text
property from the TextField, is removed. Move the cursor to the green
connection from the Add button to the list (the one just described). Single
left-click over the connection and resize handles should appear on it. If they
do not appear, you are not exactly over the connection; move the cursor and
try again if this is the case. Press the Delete key and select OK when
prompted by the confirmation message. The connection and any connections
it was supporting are deleted.

Write a New Java Method to Add Part/Quantity Text to the List

To add both the part and quantity text to the list, write a script to concatenate
the two TextFields together. Single left-click on the Methods tab and select
the Methods --> New Method... menu item. In the Method Name entry field
of the Method Properties Window, enter String formatLine (String part, String
gty) and select the Finish button.

Java Development: Using VisualAge for Java 283

284

[(_,Jﬁmallﬁuide - Create Method E

Create a new IMethod 'l in class "Team01OrderE ntry'.

Method Mame:
|String farmatLine [Sting part, Sting gty]
Access Modifier Other Maodifier

* public = [none] I abstract I~ final
" pratected private I native [static

I synchronized

Press 'Finish' to save the method, or ‘Mext' to specify thrown Exceptions.

Figure 138. Add Method SmartGuide

A new method called f ormat Li ne is created that takes two String variables
(part and quantity) and returns a string (the concatenated string).

/** * This nmethod was created by a Smart Qui de.
* @eturn java.lang. Sring

* @arampart java.lang. String

* @aramaqty java.lang. String

*/

public String formatLine(String part, String qty) {
return;

}

Modify the for nat Li ne method source as shown in the following example and
use Ctrl-S to save the modified method.
+qty;

return part +

Single left-click on the Visual Composition tab to return to editing the
window.

Make the Connections to Add the Part/Quantity to the List

Start the connection from the action.actionPerformed event of the Add button
and drop the spider over the free-form surface. The free-form surface is
outside the window that you are building. The connection target pop-up menu
appears. Select the Event to Script... menu item. The following window is
shown that lists all of the scripts you can connect to for the class being
developed.

Java Thin-Client Programming for a Network Computing Environment

[(_,JConnecl event named: actionPerformed(java.awt.e... B3

Select the method for the event-to-script connection.

Show methods in class: ITeamD‘I Lab1.Team OrderE ntry j

instance | Mew method...

void actionPerformed(java. awt. event. ActionE vent] -
void connlfjava. awt event. ActionE vent]
void connl [java. awt event. ActionE vent]
vioid conndfjaya. awt. Frame]

Hava.lang. Sting formatlinefiava lang. Sting. [ava lang Sting|
java.awt Button getButton(]

java.awt Button getButton2(]

java.awt Frame getFramel[] LI

QK I Cancel Set parameters. .. | Help |

Figure 139. Connections to Add Part/Quantity to List

Select the java.lang.String formatLine(java.lang.String, java.lang.String)
script and select OK.

A light green dashed connection is shown from the Add button to the
free-form surface. A dashed connection means that the connection requires
parameters that have not yet been supplied. Connect the part parameter for
the preceding light green dashed connection to the text property of the part
TextField.

e Connect the quantity parameter for the preceding light green dashed
connection to the text property of the quantity TextField.

e Connect the nornal Resul t parameter for the preceding light green dashed
connection to the addl ten{j ava. | ang. St ri ng) method of the list.

e Try testing the application to see if you can add parts to the list using the
script that you just created.

¢ Return back to the Visual Composition editor.

Make the Connections for the Delete Button

Connect the acti on. acti onPer f or ned event of the Delete button to the
renove(j ava. | ang. String) action of the list. There is a dashed green line
connection from the Delete button to the list.

¢ Click on the list to select it.

« Connect the sel ect edl t emproperty of the list to the item parameter of the
connection between the Delete button and the list. The green connection
now should become a solid green line.

e Connect the i ten$t at eChanged event (that is, an event is fired when the
selected item changes) of the list to the enabled() action of the Delete
button. There is a dashed green connection between the list and the
delete button.

Java Development: Using VisualAge for Java 285

286

« Double-click on the dashed green connection to open it. Click on Expert
features and then use the Set parameters button to set the value to True.
This enables the button when an item is selected in the list.

* Connect the action. act i onPer f or ned event of the Delete button to the
enabl ed() action of the Delete button. You can leave the parameter default
as false; this disables the button.

Test the part and add some part/quantity items to the list. Try to select some
items from the list to see if you can delete them. The Delete button should
only be enabled when an item is selected in the list. Keep the test window
running and continue with the next section.

Debugging Code, Setting Breakpoints, and Changing Code

With the Test window still running, return to the class browser/editor Methods
tab page. Modify the code of the f or mat Li ne method so that the line return part
+" " + gty; now reads return part + " : " + qty. Save the part with Ctrl-S.
Add another part/quantity item and see that the code you changed was used
to add this new part. Your test window should look similar to this:

[(_,:l Order Entry Window M= 3

Fart Guantity

INetwork Station ISD

List of Parts

[elete

Minicomputer 2
Desktop &
Thinkpad 15
Metwork Station (80

Exit |

Figure 140. Running the Application

With the Test window still running, return to the Class browser/editor Methods
tab page. Move the cursor to the method source pane on the

return part +" @ " + qty;

line. Right-click the mouse and select Insert/Remove Breakpoint. A blue
breakpoint marker is shown. This is the point where the code stops prior to
executing it and opens up a debugger window. If the blue breakpoint marker
does not appear, you probably were not in the first column, or you were on an
incorrect line.

Java Thin-Client Programming for a Network Computing Environment

Figure 141. The IBM VisualAge for Java Debugger - Source Window

Add another part/quantity item to the running test window. The debugger
window is shown.

¥ Debugger

Figure 142. IBM VisualAge for Java - The Debugger

The code has stopped prior to executing the statement. The uppermost pane
shows the current thread when the debugger was invoked. In the three
middle panes, the left-hand pane shows the call stack with the most recent
method at the top (call stack pane), the center pane shows the variables that
are accessible (variables pane), and the right pane shows the value of the
currently selected variable (variable value pane). The bottom pane shows the
current line in the current method (method source pane). Single left-click on
the part variable in the variables pane. The variable value pane is updated

Java Development: Using VisualAge for Java 287

288

and displays the string value of whatever you typed into your part TextField.
As you are aware, a string is an array of characters. Expand the part variable
you have selected with a single left-click on the plus (+). Then expand the
resulting char[] value entry. Select entry 0, then 1 (this assumes you typed
in a part with two or more characters). The variable value pane shows you the
values of the first two characters you typed into your part TextField.

Wisible ' ariables Walue

this ~||E
=| part
= @ chai] value

1
2

Figure 143. The IBM VisualAge for Java Debugger - Variables

Now single left-click on the

TeanD1Labl. Tean®1Q der Ent ry. connx(j ava. awt . event . Acti onEvent) entry in the
call stack pane (notice your entry is similar to connl). You see that the
variables pane, variable value pane, and method source pane are all
updated. In the method source pane, the actual code that called the current
method is highlighted (t hi s. f or nat Li ne(get Text Fi el d12() . get Text (),

get Text Fi el d11(). get Text ());). Navigate to the Methods pane of the
Team01OrderEntry Class editor/browser, traverse the list of methods, and
select the connx (for example, connl) method. This is the method that you
are currently looking at in the debugger. Return to the debugger window.
Select the top entry in the call stack pane,
TeamOlLab1l.Team01OrderEntry.formatLine(java.lang.String). Now
modify the code so that the string ":" now reads " :- ". Ctrl-S to save the
method. Select the Resume button. The debugger window blanks out as that
thread has now run to completion. Close the debugger window and navigate
back to the running test window. Your part/quantity entry has been added and
with the ":- " separator between the part and quantity.

Anywhere you have a method source window, you can modify the method,
save it, and it runs immediately with the updated code. Now select an entry in
the list of the running test window. The Delete button is now enabled. Test it
out by deleting the entry. The entry is deleted, and the Delete button is
disabled (until you select another entry in the list).

Close it Down and Version

Close the TeamOlLabl.Team01OrderEntry Class editor/browser. Version the
class by either accepting the default version name or by entering your own.
Save the workspace.

Java Thin-Client Programming for a Network Computing Environment

B.3.4 Team Development

Team development will be enabled in VisualAge for Java with the
incorporation of the ENVY/Developer from OTI, an IBM Subsidiary company.
Team development will be available as part of VisualAge for Java Enterprise

Important Information

Team support is not available in the currently released product, but is
planned in a later release.

For an individual, this allows a developer the freedom to develop code
independently from the rest of the development team, yet still within the
scope of the overall project. A developer can recall at any time a history of
individual changes made to any component made within the developer’s
image/workspace and retrieve prior versions of a component should this be
appropriate. This total flexibility in development allows a developer to try
things out in the knowledge that, at any time, a prior frozen version of a
component can be recalled. The component to be recalled can be an
individual method, an entire class/interface, a package, or a complete project.

Version control within the team development provides facilities to freeze the
development of a component (class, package, or project) so that no changes
can be made to that component. This is extremely useful when checkpointing
components within a development cycle.

With the Enterprise Edition, multiple developers can, if appropriate, work on
any component (project, package, class, or method) concurrently. In a normal
check-in, check-out philosophy, this is impossible, but within the VisualAge
for Java Enterprise Edition, this can be achieved. Despite this flexibility,
component integrity is never compromised. For further information, see the
VisualAge for Java documentation.

In the Professional Edition, each developer has a unique repository that
stores every component available, although the developer may only have a
subset of components in the image. However, in the Enterprise Edition, every
developer shares a common repository, allowing all the work to be shared
and accessed concurrently, online and in real time.

Just as in the Professional Edition, the Enterprise Edition records all changes
made to any component and who made that change. In the Enterprise
Edition, there are facilities to enable the access control rights for individual
developers to every component within the repository.

Java Development: Using VisualAge for Java 289

Therefore, because of the ease of development with fallback facilities, the
development in a RAD type environment is positively encouraged by the tool
but with all the management controls should they be necessary.

The configuration of VisualAge for Java places a development
image/workspace on the client and a repository on the client/file server in the
Professional Edition. In the Enterprise Edition, the repository has to be placed
on a shared file server. The repository holds a copy of every version of every
component for the development team, whereas the image/workspace
contains only the requested version of a subset of components. As an
example, Developerl may be working on GUI projects, packages, and
classes, and Developer2 may be working on Data access packages,
packages, and classes. The shared repository (the Enterprise Edition) holds
every edition/version of all these components, but, for example, the
Developer2 image/workspace holds only the Data access components and
not the GUI components.

In a team development environment using a file server for the repository
code, changes made by a developer to any component get written back
immediately to the repository. Therefore, the component change is
immediately made available to all other developers who may be using the
component. On a nightly basis (as part of the regular systems management
procedures), the repository should be backed up to external media.

When a developer starts VisualAge for Java, the image/workspace gets
copied from disk into memory, and it is this copy of the image that the
developer works with when adding/deleting/changing components. It is vital
that the developer saves this "in-memory" image to disk on a regular basis
(for example, once per hour). It is not catastrophic if the developer receives a
GPF after an entire series of changes since every component is still available
in the repository. However, rebuilding the image from scratch may take an
hour or two.

In addition, at regular intervals (for example, at lunch time and at end-of-day),
each individual developer should copy their working image/workspace to the
file server, and these again should be backed up on a nightly basis.

290 Java Thin-Client Programming for a Network Computing Environment

PC
vel opnent
I mage
RAM ¥~

Code File Server
Changes
€ .
Reposi tory

Backup

Figure 144. Change Management

The team development facilities enable the versioning and editing of
components. This is a simple process where the developer can create a
version of a component at any time where a version is a frozen component
that cannot be changed. Therefore, in the following diagram, there are three
separate versions of the component. The developer can assign each version
a unique name, and in the example, the versions are 1.0, 1.1, and 2.0. As
with most things in VisualAge for Java, a component can be any
class/interface, package, or project, and the developer explicitly versions
these components. Methods are the exception, and these get versioned
automatically every time a change is made to them.

1.0 | ' 11 | ' 2.0

Figure 145. Versioning

The big question is..."If a component is a version and a version is just another
name for a frozen component that cannot be changed, then how do | change
a versioned component?" The answer to this is to create an edition of the
component. An edition of a component is editable, but the original version of
the component remains in the repository should the developer need to go
back to it at any time. Therefore, the process for creating, freezing, and
changing a component (let’s say Class A) is as follows;

« Create Class A (it gets created as an edition):

Write methods

Java Development: Using VisualAge for Java 291

Define variables
» Version Class A as Class A 1.0:

Class A is frozen and cannot be changed.
« Edition Class A:

Class A can now be edited again, but version 1.0 is still available and it
needs to be restored.

* Version Class A as Class A 2.0

—— Change Management
* VERSION: A totally frozen entity, class, project (V 1.1)
* VERSIONING: Making a frozen entity from an edition
« EDITION: An editable entity, class, application (time stamping)
« EDITIONING: Making editable an entity from a version

B.3.5 Applet Viewer

292

The VisualAge for Java Applet Viewer is incorporated into the IDE. This
enables a developer to develop Java applets and to test them without having
to boot up a separate Web browser (for example, Netscape). The applet
viewer is a primitive viewer and should only be used for debugging purposes,
with the final testing being performed in a real-life Web browser. However,
because the applet viewer comes with VisualAge for Java, it supports the
level of the JDK supported by the IDE (currently JDK 1.1), whereas you may
not be certain of this level of support in some Web browsers. For example,
the current level of Netscape supports most but not all JDK 1.1 APIs.

VisualAge for Java has an applet creation SmartGuide that is accessed
through its smarticon on the toolbar.

The applet creation SmartGuide walks the developer through the process of
creating an applet and completing the tasks that usually are hand-coded into
the applet. One of the windows that is displayed as part of the SmartGuide is
included here as an example of the type of information the applet creation
SmartGuide can process. The SmartGuide - Applet Properties window allows
the setting of applet/application and thread details. Many applets can be run
as stand-alone applets and stand-alone applications. In the latter case, a

mai n() method needs to be created. In addition, should the applet perform a
long-running task or repeatable task (such as repeating animation), it is
advisable to write this as a separate thread. Again, the SmartGuide provides
the option of creating the applet to use its own thread.

Java Thin-Client Programming for a Network Computing Environment

[(_,:l SmartGuide - Create Applet E

Enter a name for the new applet:

Mame of Applet: Sampledpplet

Select a project and a package for the new applet:

Project: |TeamD1 Project Browse... |

Package: |TeamD1 Lab1 i Brawse... |

Hows would you like to start designing the applet?
* Design the applet visually.

= white source code for the applet.

¥ | Browse appletiwhen frished

Figure 146. Create Applet SmartGuide

After the applet has been created from the SmartGuide, use the class
browser to view it and to see its place in the class hierarchy. As you expect,
the applet inherits from java.applet.Applet, and its required methods are
generated also (init(), start(), stop(), destroy(), paint()).

From the applets pop-up menu, select the run --> In Applet Viewer menu
item to run the applet in the applet viewer. Outside of the IDE, an HTML file is
required to wrapper the applet so it can run in a Web browser. The HTML file
specifies the width, height, parameters, and so on of the applet. Within the
VisualAge for Java IDE, this HTML file is not required. As part of the applet
viewer, the Settings window is displayed that asks the developer to input
these HTML settings prior to the applet running.

Java Development: Using VisualAge for Java 293

[(_,:l Settings for TeamO1Lab1.5ampleApplet E

Enter the applet's attributes and parameters:
— Altribuite: P

WIDTH: Im <param names=... value=...>

E=ample: <param r timesT oRun value=53
HEIGHT: [200

I =l

¥
4 ¥

— Classpath

. Mproject_resourceshT eam1 Project;

— Codebase

Sampledpplet will run with CODEBASE = file: /#/C: /IBMV) avaside/project_rezources/Team1Project

Run Eancell Save | Reset |

Figure 147. Run Applet

B.3.6 Editor/Debugger/SmartGuides

294

In an object-oriented application development environment, developers need
to perform many similar tasks as procedural developers, but in addition, they
perform a number of different tasks as part of a RAD development process.
Specific to Java, these tasks include: add a project, package, or class
interactively.

A new project, package, or class can be added interactively (for example, a
new class can be created from many different places in the IDE including the
Workbench, Project Browser, Package Browser, and so on).

¢ Add or change a method:

Adding or changing a method is probably the most important task of an
application developer because this is the code that is actually executed in
the running application. VisualAge for Java provides the capability to
change a method at virtually any point. All browsers allow method source
editing, and the debugger also allows methods to be added and edited.

e Evaluate an expression:

Wherever a method can be entered or edited, an expression can be
evaluated. For example, a developer may write a complex, concatenated
line of Java code that needs to be tested. Instead of running the complete
application, in many cases, VisualAge for Java allows the code snippet to
be highlighted and run as is (provided it is a stand-alone piece of code).

For example, in any Method Source pane, the following code can be
entered, selected, and run:

Java Thin-Client Programming for a Network Computing Environment

Systemout. println("Hello Verld!'")

Hello World is displayed on the console window (the standard output
device of the IDE).

¢ Invoke methods:

As previously discussed, most code can be evaluated "on the spot"
without running an application; it follows from this that most methods can
also be evaluated/invoked "on the spot".

e Test, debug, set breakpoints:

The debugger within the IDE is a powerful aid to the developer. It enables
breakpoints to be set, to hop over methods, to hop into methods, to run
methods to completion, to interactively patch code, and to add new
method classes while the running thread is held.

* Patch code:

As previously stated, code can be patched at any time within the
development cycle without losing the original code. This includes patching
running code that may have caused the debugger to be invoked.

e Compile class/method incrementally:

Outside of the IDE, a developer must modify the class as a complete unit.
Therefore, if only one line of a method needs modifying, then the entire

. JAVAfile needs to be edited and compiled. Within the VisualAge for Java
IDE, individual methods can be edited and saved incrementally without the
need to recompile the entire class that contains the method being
changed.

« Maintain project database:

The team development environment has already been introduced in this
chapter, and it is this team development environment that provides a
complete project database for the development team.

¢ Syntax check code:

VisualAge for Java detects syntax errors that occur when code violates
Java syntax rules. If, for example, you misspell a keyword or forget a
semicolon, a message dialog box informs you of the type of syntax error
when you try to save the code. In addition, the input cursor in the Source
pane automatically selects the piece of code that caused the problem.

B.3.6.1 The Editor Pane

The editing pane (elsewhere called the Method Source pane) allows the
developer to;

Java Development: Using VisualAge for Java 295

296

Perform editing operations
Undo/Redo:

This option is accessed from the Edit--Revert menu item.

Search in the workspace (image) for highlighted text:

A developer can highlight some text and then select Search from the
pop-up menu to search the workspace for references to or declarations of
the highlighted text.

Insert and remove breakpoints for debugging:

A breakpoint is inserted/removed by moving the cursor to the left margin
of the line requiring a breakpoint and double-clicking. In the IDE, this
forces the debugger window to appear just before execution of this line.

e Save your changes:

When changes are saved for a method, the entire method is syntax-
checked before it is saved. At any time, the previous version can be
restored.

e Cancel your changes:

If changes have been made to a method and the developer selects
another method to change without saving the pending changes, a warning
dialog is displayed asking whether the pending changes should be saved
or not.

« Editor setup:

The editor has some default settings and these can be modified. The
default settings are as follows:

* Browser Font - Serif 10
« Comment - Red

* Default Text - Courier 10
e Error - Red

« Keyword - Blue

Literal String - Green

B.3.6.2 The Debugger

As you work in the integrated development environment, you need not launch
a special debugger virtual machine or start the virtual machine in debug
mode. The debugger opens automatically when you need it. It opens when:

« Execution hits a breakpoint that you inserted
¢ An uncaught exception occurs

* You select the debug button on any menu bar

Java Thin-Client Programming for a Network Computing Environment

You can use the debugger to step through code and inspect and change
variables. You can also fix a bug by modifying the source from within the
debugger.

VisualAge activates the debugger when one of a program’s threads
encounters a breakpoint. The top pane (the threads pane) displays the
current thread that was created when you started the applet/application and
the debugger invoked for whatever reason. In VisualAge, you create a thread
(or multiple threads) whenever you run a program or evaluate code in the
Scrapbook. When the debugger opens on a breakpoint, the threads pane
displays the thread that caused the debugger to open. The entry consists of
an internal identifier for the thread and an indication of what caused the
debugger to open.

The middle part is divided into three panes that give more details of the
current state of processing the code. From left to right, they are:

e Stackframes pane

» Variables pane: A text pane that displays the current value of a selected
variable in the variables pane

* Source pane

The stackframes pane (or thread stack pane) displays a stack trace as a list
of stackframes. Each stackframe corresponds to a method that was called.
Stackframes are in reverse chronological order (the most recent stackframe
is the top item). The debugger lets you manipulate thread execution by
dropping to a particular stackframe in the stackframes pane. This is
particularly useful if the debugger opens on an uncaught exception, since it
lets you back up and repeat the steps that caused the exception to be thrown.

The Source pane displays the source of the selected method.

The Variables pane displays a list of all the locally visible variables for the
current stackframe. If you select a variable, its current value is displayed in
the text/variable pane.

Java Development: Using VisualAge for Java 297

i Debuager IS[=] E3

File Edit ‘“Workspace Threads Stack |nspector ‘window Help

VI HIVY Y VyeospHe

Threads

Wisible ' ariables
i+ this -
+| part
=l gty

= @ chai] value

i TeamO1Labl.TeamD1OrderE ntry. connd(java. awt event.Ac

Team(1Labl.Team(1OrderEntry. actionPerformed|java. awl

+ java.awt Button. processhctionE vent(java, awt. event. Actior

+ java.awt. Button. processE vent(java. awt A4 TE vent]

1

4 jnt offzet hd
3

S -
* Thi= method was created by a SmartGuide.

* @return java.lang. String

* @param part java.lang. String

* @param gty java.lang. String

4 java.awt. Component. dispatchE ventimplfjava. awt. A TEve
|ava.awt. Component. dispatchE vent(java. awt AW TE veri'ill
3

« Source

*.
public String formatline {(String part. String gty 4
4 return js:=ksd o0 + gtvl

}
i o

Team1Lab1.Team OrderE ntry. formatLine(java.lang. Sting, java.lang Sting) (447738 11:29:52 AM)

Figure 148. The IBM VisualAge for Java - Debugger

Stepping through Methods

With the debugger’s navigation buttons, you can step through the current
method. You can use the buttons to process the current statement (which is
the one that is automatically selected), step into it, execute until the method
returns, or resume processing the thread. When the debugger opens on a
breakpoint, all the navigation buttons are enabled. By contrast, if the
debugger opens because of an uncaught exception, the navigation buttons
are disabled because the current process has hit a dead end. In this case,
you must first drop the stackframe that throws the exception to reset the
current status of processing.

¢ |nto:

Steps into the current statement and invokes the method (if any). A new
stackframe is added to the list, and the Source pane displays the source of
the method that you stepped into. Use this button to follow a method and
determine what it does.

e Qver:

Executes the statement that is currently selected in the Source pane. The
values of local variables are updated.

298 Java Thin-Client Programming for a Network Computing Environment

* Return:

Executes all statements in the method that is currently selected in the
stackframe's pane until the method is about to return and then stops. All
local variables are updated.

¢ Resume:

Continues processing. Select this button to continue running the program.
If the program is resumed successfully, its thread is removed from the
debugger.

B.3.6.3 Inspectors
You can use an inspector to view the state of objects or variables that hold
objects. With the inspector, you can:

 Inspect the result of evaluating a code fragment in the Scrapbook or in the
Variables pane of the debugger

* Open a browser on the declarations of an object's class
« Evaluate code fragments in the context of an object

¢ Change the value of an object

Using the Inspector: As an example, open an inspector on a string array
object by copying the following code to a page in the scrapbook.

String[] [] info ={

{ "Red", "Nunber", "R of RB' },
{ "Geen", "Nunber", "Gof RB' },
{ "B ue", "Nunber", "B of RB' }};
return info;

Select the code and select Inspect from the pop-up menu. The inspector
appears and shows the array object stored in the info variable. The title bar
displays the identifier for the class of the inspected object (a two-dimensional
string array). The title bar also shows the context from which you opened the
inspector (from Page 1).

The Fields pane shows the elements of the array. The Value pane shows the
value of a selected field.

The info array maps to a table with three rows and three columns (indexed 0
through 2). The top-level items in the Fields pane map to the three rows. By
expanding items 0 through 2, you see that each row consists of three
columns.

Select the second row in the first column (info[1][.0]). It holds the parameter
name Green. Internally, the string Green is represented as an array of

Java Development: Using VisualAge for Java 299

300

characters that you can view in more detail by expanding the tree in the
Fields pane. The icon () to the left of the character array indicates that the
internal representation is private.

Changing the Value of an Object
You can change the value of fields while you are inspecting an object. Follow
these steps.

1. In the Fields pane, select the field that you want to modify.

2. In the Value pane, replace the text with the value you want in the field.
3. Select Save from the pop-up menu.

The expression in the Value pane is evaluated, and if the result can be

assigned to the object, it is. When the code resumes, it uses the value. If the
result cannot be assigned, the inspector displays an error message.

B.3.6.4 Other VisualAge for Java Windows
The following section describes other VisualAge for Java windows.

The Scrapbook

The Scrapbook helps you organize code fragments and notes. You can run
any Java statement or expression from the scrapbook and control the context
in which it is compiled.

To open the scrapbook, select Scrapbook from any window pull-down menu.
The scrapbook appears with an empty page. From the scrapbook, you can
run the code fragment or open an inspector on the object that is returned as
the result of running the code. To open an inspector, select Inspect from the
pop-up menu of the selected code fragment.

For example, most programming languages and environments take
developers through the "Hello World" application as the first exercise in
learning a new language/environment. With VisualAge for Java, this can be
achieved in under a minute.

Hello World in Under a Minute:

1. Select Scrapbook from the Window pull-down menu.
2. Type: Systemout.printin("Hello Verld! ");

3. Select the line of code that you typed in Step 2.

4

. Select Run from the pop-up menu.

Java Thin-Client Programming for a Network Computing Environment

The console (the standard output device) appears and displays the string
Hello World!. The example works. The code was automatically compiled by
the built-in Java compiler and then run by the built-in Java Virtual Machine.

The Console
The console is the standard output device (System.out) for Java programs
that you run in VisualAge.

The Repository Explorer
With the Repository Explorer, you can explore the repository to view program
components that are not present in the workspace/image.

The Log
The log displays messages and warnings from VisualAge

B.3.6.5 SmartGuides/Wizards

The VisualAge for Java IDE comes with various SmartGuides (also known as
Wizards in other IDESs) that guide the developer through the repeatable
process of creating a component.

For example, the Class Creation SmartGuide takes the developer through the
standard process of creating a class including the following setup
parameters:

« Is this a class or an interface?
« Which project is the class defined in?
« Which package is the class defined in?

* What is the class name?

Which class is the superclass?

What happens when the SmartGuide completes?

¢ Open a Visual Composition editor (for example, if the class inherits
from java.awt.Frame).

« Open a class browser.
» Do not open a browser.

« Which interfaces (if any) does the class implement?

Which modifiers should be implemented?
e Public
* Abstract

¢ Final

Java Development: Using VisualAge for Java 301

¢ Should stub methods be generated?

There are a number of SmartGuides, including class creation, interface
creation, method creation, and applet creation.

B.3.7 Proxy Builder

The VisualAge for Java development environment includes a Java proxy
builder that allows the development of JavaBeans to enable a local JavaBean
to access another JavaBean located in another Java Virtual Machine (local or
remote) by using a Java proxy object.

In VisualAge for Java, the RMI access builder can generate proxy code for a
JavaBean in such a way that this JavaBean can be made accessible remotely
through the builder-generated proxy code. A client-side server proxy,
server-side server proxy, and supporting interface code are generated for
each user JavaBean. A distributed client/server application can easily be
created using these proxies. A client application can use the generated
client-side server proxy as if it were a local object even though service
requests to the client-side server proxy are actually sent over to the user
JavaBean through RMI.

Note

In this release, you can only create servers out of JavaBeans that are
generated by the C++ access builder. The tool to create distributed access
for user-written JavaBeans is not yet available.

To enable a Java application to access a Java server over RMI:
Create or modify the packages.

Create the JavaBeans.

Import the JavaBeans into the Enterprise Access Builders.
Generate the distribution proxies as JavaBeans.

Export the generated JavaBeans.

Import the generated JavaBeans into the IDE.

Write the business logic.

Assemble the client.

© 0o N o gk~ wbdpR

Assemble the server.

10.Build the application.

302 Java Thin-Client Programming for a Network Computing Environment

11.Deploy the application.
12.Run the application.

13.Regenerate code.

B.4 Enterprise Access Builder (EAB)

The Enterprise Access Builders provides a graphical method to organize,
create, and package parts generated by the following subcomponents:

« Enterprise Access Builder for data (Data Access Builder)
« Enterprise Access Builder for CICS (CICS Access Builder)

These subcomponents produce JavaBeans for access to transactions and

databases.

The following operations are available from the Enterprise Access Builders:
« Create a package to organize parts into Java packages.
« Create data access parts to provide access to the Data Access Builder.
« Create CICS parts to access CICS transactions using CICS ECI.

« Create Jar file to package multiple parts into a JAR file.

In this appendix, we focus only on the Data Access Builder.

B.4.1 Data Access Builder (DAX)

VisualAge for Java - Enterprise Access Builder for Data (referred to as Data
Access Builder or DAX) is an application development tool that you can use
to create data access classes customized for your existing relational
database tables. It allows you to create object-oriented applications quickly
and reliably by generating the source code for you. These data access
classes (which are JavaBeans) can be used directly in your Java programs
and by the VisualAge for Java IDE.

Some of the key features of the Data Access Builder are:
« JDBC to access your database:

Data Access Builder generates code that uses JDBC to access your
database. You can use the JDBC driver in IBM DB/2, JDBC-ODBC bridge
in JDK Version 1.1 or other JDBC drivers with the generated code.

« Flexibility in specifying source:

Data Access Builder generates code from database tables, from database
views, or from SQL statements that you type in.

Java Development: Using VisualAge for Java 303

Quick and simple to use:

You can simply specify a database table name and Data Access Builder
can access the table information and generate Java source code that
allows you to add, update, delete, or retrieve the data in that table.

Data manipulation operations:

Generated classes customized to your data help you perform common
database tasks such as adding, retrieving, updating, and deleting data.
Classes are also generated to allow you to use a cursor to fetch rows from
database queries that return result sets.

Add your own methods:

You can add your own methods by typing in SQL statements; Data Access
Builder generates the Java source code for you.

Stored procedure support:

You can use Data Access Builder to generate code that calls stored
procedures.

Generate code for table joins:

You can specify table joins using SQL statements, and Data Access
Builder can generate Java classes for them.

Connection and transaction services:

Separate services are provided for connection and disconnection from
your databases. In addition, commit and rollback methods are generated
to handle transaction services.

B.5 System Requirements

The current release of VisualAge for Java has the following system
requirements:

Processor: 32-bit processor (Pentium or higher, or compatible processor)
Display: SVGA 800x600 minimum (1024 x 768 recommended)
Operating system: Windows NT 4.0, Windows 95, or OS/2 Warp 4.0

Other software: TCP/IP, DAX with DB2 at the appropriate level on the
server side. Support for other databases through ODBC is also available.
An ODBC driver is required and is not shipped with VisualAge for Java.

Memory: 32 MB minimum (64 MB or more recommended)

Disk space:

304 Java Thin-Client Programming for a Network Computing Environment

EAB =55 MB
EAB + IDE = 90 MB
Swap space = 30 MB

B.6 Summary

In summary, VisualAge for Java is a full member of the VisualAge family. It
allows application developers to develop applications and Web-based applets
using the Java language.

VisualAge for Java includes a powerful and full-function integrated
development environment. The IDE is JDK 1.1 compliant, allowing the
edit/compile/test of Java applications within the IDE prior to exporting the
code for running in other JDK 1.1-compliant virtual machines and Web
browsers. Because of its compliance with the JDK 1.1 API, the VisualAge for
Java environment supports Java APIs for accessing remote components
through the RMI and JDBC APIs.

Because of the portability of JDK 1.1-compliant Java code, code that is
developed using VisualAge for Java should be able to run anywhere without
change.

The IDE enables a developer to build and run applications, applets, and code
shippets interactively without the need to run the compile statement (JavaC)
from the command line. All applications can be run from within the IDE
without the need to export the Java source or class files. This is achieved
through the provision of a JDK 1.1 compliant Virtual Machine (VM) within the
IDE and an applet viewer. Because you can interactively modify code and run
it without compilation, developers are able to debug code on the fly, spot
errors in their code with the debugger, change it, and then continue without
bringing the running application down—all within the VisualAge for Java IDE.

VisualAge for Java is an open IDE, and developers can easily import and
export Java source and class files as well as JavaBeans, which may have
been purchased by the company or made available on the WWW. The
JavaBeans support in VisualAge for Java also enable a developer to take an
existing JavaBean (for example, from the WWW), import it into VisualAge for
Java, modify the bean, and then export it again for use within another JDK
1.1 compliant development environment (for example, Symantec Cafe and
Borlands JBuilder).

The Enterprise Access Builder (EAB) provides components aid connection to
DB2-compliant data sources, CICS transactions, and other programs. It

Java Development: Using VisualAge for Java 305

extends the VisualAge for Java capabilities to make client/server
programming easier.

306 Java Thin-Client Programming for a Network Computing Environment

Appendix C. Special Notices

This publication is intended to help program designers to develop
applications for thin Java clients such as the IBM Network Station 1000. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by Javasoft. See the
PUBLICATIONS section of the IBM Programming Announcement for the IBM
Network Station and Sun’s Java for more information about what publications
are considered to be product documentation.

Any performance data contained in this document was obtained in a
controlled environment based on the use of specific data and is presented
only to illustrate techniques and procedures to assist IBM personnel to better
understand IBM products. The results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data in their specific environment. No performance data may be
abstracted or reproduced and given to non-IBM personnel without prior
written approval by Business Practices.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples contain the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

400 AlIX

AS/400 BookManager
CICS DB2

IBMO 0Ss/2

0S/390 0S/400
PROFS RS/6000
S/390 San Franciso
VisualAge

The following terms are trademarks of other companies:

© Copyright IBM Corp. 1998 307

C-bus is a trademark of Corollary, Inc.
Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

OLE, COM, Active-X are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other

countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

0S/2, 0S/390 and OS/400 are trademarks of International Business
Machine Corporation.

Other company, product, and service names may be trademarks or
service marks of others.

308 Java Thin-Client Programming for a Network Computing Environment

Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How To Get ITSO

Redbooks” on page 311.

* RS/6000 - IBM Network Station Companion Guide, SG24-2016

D.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and

receive updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number
System/390 Redbooks Collection SBOF-7201
Networking and Systems Management Redbooks Collection SBOF-7370
Transaction Processing and Data Management Redbook SBOF-7240
Lotus Redbooks Collection SBOF-6899
Tivoli Redbooks Collection SBOF-6898
AS/400 Redbooks Collection SBOF-7270
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230
RS/6000 Redbooks Collection (PostScript) SBOF-7205
RS/6000 Redbooks Collection (PDF) SBOF-8700
Application Development Redbooks Collection SBOF-7290

Collection Kit

Number

SK2T-2177
SK2T-6022
SK2T-8038
SK2T-8039
SK2T-8044
SK2T-2849
SK2T-8040
SK2T-8041
SK2T-8043
SK2T-8037

D.3 Other Publications

These publications are also relevant as further information sources:

e Java in a Nutshell, O’ Reilly, ISBN 1-56592-262-X
e Java Examples, O’ Reilly, ISBN 1-56592-371-5

« Webmaster in a Nutshell, O'Reilly, ISBN 1-56592-229-8

© Copyright IBM Corp. 1998

309

310 Java Thin-Client Programming for a Network Computing Environment

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at ht t p: // ww r edbooks. i bm com

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

PUBORDER - to order hardcopies in United States

GOPHER link to the Internet — type GOPHER WISCPCK | TSQ | BM GM
Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRI NT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRI NT GET SQ4xxxx PACKAGE (Canadi an users only)

To get lists of redbooks:
TOOLS SENDTO USDI ST MKTTOOLS MKTTOCOLS CET | TSOCAT TXT
To register for information on workshops, residencies, and redbooks:
TOOLS SENDTO WI'SCPCK TOOLS ZDI SK GET | TSOREG 1998
For a list of product area specialists in the ITSO:
TOOLS SENDTO WI'SCPCK TOOLS ZDI SK GET ORGCARD PACKAGE
Redbooks Web Site on the World Wide Web
http://w8.itso.ibm con redbooks
IBM Direct Publications Catalog on the World Wide Web
http://ww el ink.ibmnink.ibm con pbl/pbl
IBM employees may obtain LIST3820s of redbooks from this page.
REDBOOKS category on INEWS
Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL
Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an E-mail note to announce@ebst er. i bnti nk. i bm comwith the keyword
subscri be in the body of the note (leave the subject line blank). A category form and detailed
instructions will be sent to you.

© Copyright IBM Corp. 1998 311

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

* Online Orders (Do not send credit card information over the Internet) — send orders to:

IBMMAIL Internet
In United States usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada caibmbkz at ibmmail Imannix@vnet.ibm.com
Outside North America dkibmbsh at ibmmail bookshop@dk.ibm.com
» Telephone orders
United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOQU
Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish (+45) 4810-1020 - German
(+45) 4810-1420 - Dutch (+45) 4810-1620 - Italian
(+45) 4810-1540 - English (+45) 4810-1270 - Norwegian
(+45) 4810-1670 - Finnish (+45) 4810-1120 - Spanish
(+45) 4810-1220 - French (+45) 4810-1170 - Swedish
e Mail Orders — send orders to:
IBM Publications IBM Publications IBM Direct Services
Publications Customer Support 144-4th Avenue, S.W. Sortemosevej 21
P.O. Box 29570 Calgary, Alberta T2P 3N5 DK-3450 Allergd
Raleigh, NC 27626-0570 Canada Denmark
USA
» Fax — send orders to:
United States (toll free) 1-800-445-9269
Canada 1-800-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

« 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

» Direct Services — send note to sof t war eshop@net . i bm com
¢ On the World Wide Web

Redbooks Web Site http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

* Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To
initiate the service, send an E-mail note to announce@ebst er . i bnt i nk. i bm comwith the keyword
subscri be in the body of the note (leave the subject line blank).

312 Java Thin-Client Programming for a Network Computing Environment

IBM Redbook Order Form

Please send me the following:

Title

Order Number Quantity

First name Last name

Company

Address

City Postal code

Country

Telephone number Telefax number

O Invoice to customer number

VAT number

[Credit card number

Credit card expiration date Card issued to

Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

313

314 Java Thin-Client Programming for a Network Computing Environment

List of Abbreviations

AFC

APA
APDU

API

ATM

ATR
BPE

CAE

CaGl

CLI

CORBA

cos

DAX

DCE

DF
DNS
DTD

EAB

EEPROM

EF
FTP

© Copyright IBM Corp. 1998

Advanced Function
Classes

All Points Addressable

Application Protocol
Data Unit

Application Program
interface

Asynchronous Transfer
Mode

Answer-To-Reset

Business Process
Engineering

Client Application
Enabler

Common Gateway
Interface

Call Level Interface

Common Object
Request Broker
Architecture

Card Operating System

Data Access builder,
part of EAB

Distributed Computing
Environment

Dedicated File
Domain Name Service

Document Type
Definition

Enterprise Access
Builder, part of IBM
VisualAge for Java

Electrically Erasable
Programmable Read
Only Memory

Elementary File

File Transfer Protocol

GIF

GIS

HTML

HTTP

HTTPS
IAD
IBM

ICMP

IDE

IETF

IFC

1IOP

P
ISO

ITSO

JAF

JAR
JDBC

JDK
JIT

Graphic Information
Format

Geospatial Information
Systems

HyperText Markup
Language

HyperText Transfer
Protocol

Secure HTTP
Internet Access Device

International Business
Machines Corporation

Internet Control
Message Protocol

Integrated
Development
Environment, graphic
development
component of IBM
VisualAge for Java

Internet Engineering
Task Force

Internet Foundation
Classes

Internet InterOperability
Protocol

Internet Protocol

International Standards
Organization

International Technical
Support Organization

JavaBeans Activation
Framework

Java Archive

Java data base
connectivity

Java Development Kit

Just-In-Time compiler

315

JPEG

JVM
LMC
MF
MFC
MIME

NC
NCOS

NFS
NSM

NVRAM

ODBC

OMG

(0]
OSF

PDA

POST
PROFS

RAM

RDBMS

RM-ODP

RMI

ROM

316 Java Thin-Client Programming for a Network Computing Environment

Joint Photographic
Expert Group

Java Virtual Machine
Lunar Medical Center
Master File

Multi Function Card

Multipurpose Internet
Mail Extension

Network Computer

Network Computer
Operating System

Network File System

Network Station
Manager

Non-Volatile Random
Access Memory

Open Data Base
Connectivity

Object Management
Group

Object Oriented

Open Software
Foundation

Personal Digital
Assistant

Power-On Self-Test

Professional Office
System

Random Access
Memory

Relational Database
Management System

Reference Model for
Open Distributed
Processing

Remote Method
Invocation

Read Only Memory

RPC
SDK

SGML

SMTP

soL

SSi

SSL
STB
TCP

TFTP

UDP/IP

URI

URL

VM
WBT

w3c

www

Remote Procedure Call
Servlet Development
Kit

Standard Generalized
Markup Language

Simple Mail Transfer
Protocol

Structured Query
Language

Server-Side Includes
Secure Sockets Layer
Set-Top Boxes

Transmission Control
Protocol

Trivial File Transfer
Protocol

User Datagram
Protocol/Internet
Protocol

Universal Resource
Identifier

Universal Resource
Locator

Virtual Machine

Windows-Based
Terminal

World Wide Web
Consortium

World Wide Web

Index

Symbols
(Domain Name Service 138
(Transmission Control Protocol 137

Numerics
100% pure HTML 40

100% pure Java 60, 66, 76, 78, 94, 119, 147

80%/20% rule 164, 166

A

abbreviations 315
acronyms 315
Administration 26
Advanced Foundation Classes (AFC) 36
Aglets 78
APDU 182
applet 83
appletviewer 90
ATR 181
auditing 26
authentication 26
authorization 26

B

back-end data storage systems 82
bandwidth 25

Benchmarking 85

benchmarks 164

bibliography 309

big-endian 140

boot file 194

BOOTP 201

Browser 36

browser 89, 90

Business Process Engineering 31

C

C++ 58,171

Card Operating System 177
Categories 234
Centralization 12

CGl Headers 108

Class Loading 165

Class loading 163

© Copyright IBM Corp. 1998

Classes 154
BadSSNFormatException 82
Communicator 86, 93
HistoryEntry 80
PatientRecord 79
PatientRecordException 82
SocialSecurityNumber 81

CLASSPATH 87

client/server 97

clients and services 29

client-side presentation systems 82

clusters 25

Common Gateway Interface (CGI) 38, 97, 106

Communicator class 117
compiler 164
Compiler facilities 163
Compilers 85
complexities 12
component version control 28
computing sins 85
concurrent access 141
Configuration File 205
Configuration Files
control.nsm 210
defaults.dft 210
defaults.nsm 210
local.nsm 210
required.nsm 210
standard.nsm 210
stationname 211
stationname.nst 211
stationname.trm 211
username.nsu 211
username.usr 211
Console window 213
CORBA 31,77
COS 178
cycle stealing 170

D

Data Acces Buider 303
data location shifting 171
datagrams 65

DAX 303, 304

DB2 67,82

DB2 JDBC driver 124
DCE 31

317

define classes of service 25
development tools 85

DF 180

DHCP 201

digital signature 58

DNS 138

Document Type Definition (DTD) 36

E

EAB 252, 303

ecology 55

EF 180

Enterprise Access Buider (EAB) 303
Enterprise Access Builder 252
Enterprise JavaBeans 76
EPROM 196

Error checking 163

eSuite 232

Events 32

events 46

evil 163

executable content 61
Extensibility 24

E
factored 30, 86

factoring 30

failover 25

finalize 170

fithess for purpose 12

free instance repository 169
fully-qualified name 87

G

Garbage Collection 169
Garbage collection 163
garbage collection 175
GenericServlet class 111
GET Method 104
getter method 80
Groups 235

GUI 68,71

guidelines 168

H
HEAD Method 105
Headers - HTTP 100

HotJava 61
HotSpot 58
Adaptive Optimization 58
C++ 59
HTML 83, 89
HTML Conformance 39
HTML form 83
HTML form tags 42
HTML table tags 42
HTTP 91,92
HTTP client request method 103
HttpServlet class 111
HttpServletRequest class 116
HttpServletResponse 117
hyperlink 41
Hypertext Markup Language (HTML) 35
Hypertext Transfer Protocol (HTTP) 97

I

IBM Network Station 18, 223

ICMP 137

InfoBus 77

inline 165

instanceof operator 174

intermediate services 82

Internet 175

Internet Access Devices (IADs) 18
Internet Control Message Protocol 137

Internet Engineering Task Force (IETF) 97

Internet Explorer 61
Internet Foundation Classes (IFC) 36
ISO 7816 179, 180, 184

J

JAR 165, 166, 256

Java
architecture neutral 55
Architecture-Neutral 56
Dynamic 59
dynamic 55
High-Performance 58
high-performance 55
Interpreted 56
interpreted 55
Multithreaded 59
multithreaded 55
Network-Savvy 55
network-savvy 55

318 Java Thin-Client Programming for a Network Computing Environment

Object-Oriented 55

object-oriented 55

Portable 56

portable 55

Robust 57

robust 55

Secure 57

secure 55

Simple 55
Java Applet 225
Java Application 227
Java Database Connectivity (JDBC) 119
Java IDL 77
Java Just-In-Time Compiler 222
Java Naming and Directory Interface 77
Java packages 256
Java Transaction Service 77
Java Virtual Machine 222, 223
java.sgl.Connection 121
java.sgl.DriverManager 120
java.sgl.Statement 121
JavaBeans 255, 267
JavaBeans Activation Framework 77
javadoc 41
JavaOS 77
JavaPC 78
JavaScript 46, 83, 90, 91
JavaScript document object 51
JavaScript event handler 46
JavaScript history object 51
JavaScript location object 51
Javascript object heirarchy 51
JavaScript parent object 51
JavaScript self object 50
JavaScript top object 51
JavaScript window object 50
JDBC 66, 82, 83, 87, 91, 92, 255, 303

Connection 68

driver 67

DriverManager 67

ResultSet 67

Statement 68
JDBC access via ODBC 123
JDBC classes and interfaces 120
JDBC driver 123
JDBC driver manager 123
JDBC/SQL Data Type Mapping 121
JDBC-to-ODBC Bridge 255, 303
JIT 58,171, 172

JNI 255
Just-In-Time compiler 58

K
kernel 197

L

large-grain threads 175
legacy systems 26, 95
little-endian 140
logical groupings 28
Lotus eSuite 76

M

Maintenance 28
marshalling 148
medical history 80
Memory access 163
memory footprint 70
Message Log 215
MF 180, 183
middle-layer 87
Middleware 13
middleware 30
monolithic 23
multitheaded 138

N
Navio NC Navigator 208
Net-PC 18

Netscape Navigator 61
Network Computer 15
Network Computer (NC) 13
Network Computer Technical Standar
Network Computing 9
Network Computing Ideals 10
Network Computing Reality 11
Network Computing Strategy 20
Network partitioning 26
Network Sation

Serial port 187
Network Statio 18
Network Station

Serial port 191

Serial port mapped to TCP/IP 190
NFS 205
notification 32

14

319

NVRAM 199
NVRAM Setup Utility Panel 199

@]

Object Recycling 168

Open Group 14

OpenCard
ApplicationManagement 184
CardAgent 182
CardAgentExtension 184
CardlO 183
CardTerminal 181

OpenCard Framework 181

Optimization 165

optimization 85, 164

P
Packaging 163, 165
Parameters

Boot 204

Network 201
partitioning 25
peer to peer 32
Performance 25
Personal Digital Assistants 18, 62
Plug-in 37
pooled classes 169
port 98, 138, 143
portable 89
POST 196
POST Method 105
POST request method 98
Pre-Initialization 165
Pre-initialization 163
pre-loading 167
premature optimization 85
privacy 26
profiles 82
Profiling 165
profiing 85
Project Java(TM) Activator 78
proof 26
protocol 94, 98
Pure NC 18

R

Reference Model for Open Distributed Processing

(RM-ODP) 13
Re-initialization 163
relational form 82
Reliability 25
Remote Method Invocation (RMI) 147
RMI 66, 91, 94, 154, 255
Architecture 147
Callbacks 151
Mechanism 150
Programming 150, 161
Proxies 302
RMIRegistry 154
SecurityManager 154
Skeleton 148
Stub 148
Web page 161
RMIRegistry 150

S
San Francisco Project 77
sandbox 57
Scalability 25
scalability 94
scratch memory 171
Secure Sockets Layer (SSL) 106
Security 26, 57
Serial Port 218
Serializable 81
Serialization 88
server pool 26
Server Side Include (SSI) 114
Services 29
Servlet 89
servlet 83, 89, 92
Servlet Development Kit (SDK) 110
Servlet interface 111
ServletConfig interface 111
ServletContext interface 111
Servlets 109
Servlets - Web server configuration 112
setter method 80
single computer image 27
smart card 177
Answer-To-Reset 181
Application Protocol Data Unit 182
Card Operating System 177
certificate 179
COSs 177

320 Java Thin-Client Programming for a Network Computing Environment

Dedicated File 180
Elemetary File 180
encryption 177
file types 180
initialization phase 178, 180, 183, 185
interoperability 179
ISO 7816 179
life cycle 178
Master File 180
memory card 177
OpenCard framework 181
secret key 177
smart cardmagnetic stripe card 177
Sockets 66, 91, 137
sockets 65, 93
datagram 137
interoperability 140
port 138
stream 137
Software 235
SQL 66
Standardised Generalised Markup Language
(SGML) 35
Standardization 30
startup.nsm 212
stress test 172
String concatenation 175
StringBuffer 175
Structured Query Language (SQL) 119
synchronization block 173
synchronized 172

T
Task 234

TCP/IP 98, 137

TFTP 205

thin clients 14
thread-safe 173
three-tier 30, 83, 93
three-tier architecture 83
transaction 165
Transactions 91
Transparency 27
two-tier 83

two-tier architecture 83

U
UDP/IP 137

Uniform Resource Locator (URL) 37
Universal Resource Identifier (URI) 37
URL 66

User Datagram Protocol 137

Users 235

\%
validation 45
validity checks 89
visual composition editor 68
VisualAge family 251
VisualAge for Java
Applet viewer 292
Browser 258, 263, 264, 265
Changes management 289
Components 254, 261, 272
Console 301
Debugger 286, 294, 296
IDE 253, 254
Java support 254, 255
Log 301
Overview 251, 252
Proxies 302
Repository 290, 301
Requirements 304
Scrapbook 300
SmartGuide 272, 273, 274,284,292, 294, 301
Starting 258, 259
Team development 289
Versioning 281, 291
Visual Composition Editor 270, 271, 274, 275,
276, 283
Workbench 258, 260, 262, 272

W

Windows Based Terminals (WBTs) 18
WorkPlace 232

World Wide Web Consortium (W3C) 35
World-Wide Web 65

wrapper 32

wrappering 95

321

322 Java Thin-Client Programming for a Network Computing Environment

ITSO Redbook Evaluation

Java Thin-Client Programming for a Network Computing Environment
SG24-5115-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

» Use the online evaluation form found at http://www.redbooks.ibm.com
» Fax this form to: USA International Access Code + 1 914 432 8264
« Send your comments in an Internet note to redbook@us.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 =very good, 2 =good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction
Please answer the following questions:
Was this redbook published in time for your needs? Yes___ No

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

© Copyright IBM Corp. 1998 323

Java Thin-Client Programming for a Network Computing Environment

Printed in the U.SA.

SG24-5115-00

SG24-5115-00

	Figures
	Tables
	Preface
	The Team That Wrote This Book
	Comments Welcome

	Chapter 1. Introduction
	1.1 A Thin Client Application—The Lunar Medical Center Story
	1.2 About the Book
	1.3 Structure of the Book
	1.4 Who Should Read This Book
	1.5 Assumptions
	1.6 How to Use This Book

	Chapter 2. Network Computing and Network Computers
	2.1 What is Network Computing?
	2.1.1 Network Computing Ideals
	2.1.2 Network Computing Reality

	2.2 Problems with Network Computing
	2.3 The Network Computer (NC)
	2.3.1 NC Objectives
	2.3.2 NC Capabilities and Architecture
	2.3.3 NC Product Example: The IBM Network Station 1000

	2.4 A Network Computing Strategy

	Chapter 3. Distributed Applications
	3.1 The Monolithic, Nondistributed Alternative
	3.2 A Look at Some Issues
	3.3 Considering Distributed Systems Design & Development Strategies
	3.4 In Summary

	Chapter 4. HTML-Based Clients
	4.1 Browsers and Web Servers
	4.2 HTML Overview
	4.2.1 HTML Conformance
	4.2.2 Developing in HTML
	4.2.3 Simple Example
	4.2.4 Forms and Tables
	4.2.5 To Validate or Not to Validate...

	4.3 Client Intelligence - JavaScript
	4.3.1 Simple JavaScript Examples
	4.3.2 Using JavaScript

	Chapter 5. Java-Based Clients
	5.1 A Brief Overview of Java
	5.2 Client-Server Computing with Java
	5.2.1 Applets
	5.2.2 Sockets in Java
	5.2.3 Accessing an HTTP Server with Java
	5.2.4 Object-Object Communication: Remote Method Invocation (RMI)
	5.2.5 Connecting to the Database: JDBC

	5.3 The Lunar Medical Center’s Java Application
	5.4 The Lunar Medical Center’s Java Applet
	5.5 Some Java Facilities Supporting Enterprise-Wide Network Computing
	5.6 In Summary

	Chapter 6. Design Decisions
	6.1 Designing the Object Model for the Lunar Medical Center’s Systems
	6.2 Designing the Applications: Considering Alternatives
	6.2.1 Profiles Describing the Check-In Applet
	6.2.2 Profiles Describing the Main Patient View/Edit Application
	6.2.3 Profiles Considered but not Implemented
	6.2.4 Additional Factors to be Considered

	6.3 The Lunar Medical Center Implementations
	6.3.1 Nondistributed Full Application Based on Files
	6.3.2 HTML Only at the Browser with a Servlet at the Server
	6.3.3 HTML and JavaScript with HTTP to a Servlet
	6.3.4 Applet at the Browser with HTTP Connection to Java Servlet
	6.3.5 Applet with Direct JDBC Connection
	6.3.6 Java Application Using JDBC Directly
	6.3.7 Full Application Using Sockets
	6.3.8 Full Java Application Using Java RMI

	6.4 In Summary

	Chapter 7. Java Servlets and HTTP Communication
	7.1 Overview of the Hypertext Transfer Protocol and Request Methods
	7.1.1 Protocol Steps
	7.1.2 HTTP Headers and Server Status Codes
	7.1.3 Client Request Methods

	7.2 Common Gateway Interface
	7.2.1 Using CGI
	7.2.2 Problems with CGI

	7.3 Java Servlets
	7.3.1 Servlet Requirements and Usage

	7.4 The LMC’s HTTP/Servlet Implementation
	7.5 In Summary

	Chapter 8. Java Servers using JDBC
	8.1 Overview of JDBC
	8.1.1 JDBC API
	8.1.2 JDBC/SQL Data Type Mapping
	8.1.3 JDBC Database Drivers

	8.2 Using JDBC
	8.3 The LMC’s JDBC Implementation

	Chapter 9. Java Servers and Socket Communication
	9.1 Introduction to TCP/IP sockets
	9.2 Sockets with Java
	9.2.1 Compatibility of Different Socket Implementations

	9.3 The LMC’s Socket Implementation
	9.3.1 Implementing the Socket Client
	9.3.2 Implementing the Socket Server

	9.4 In Summary

	Chapter 10. Java Servers and RMI Communication
	10.1 RMI: An Easy Way to Implement Java Client/Server Applications
	10.2 The RMI Architecture
	10.2.1 Stub and Skeleton Layer
	10.2.2 Remote Reference Layer
	10.2.3 Transport Layer
	10.2.4 RMI Method Invocation Mechanism

	10.3 RMI from a Programmer’s Perspective
	10.3.1 Server Side
	10.3.2 Client Side
	10.3.3 RMI Security Manager
	10.3.4 RMI Registry
	10.3.5 Major RMI Classes
	10.3.6 Developing with RMI

	10.4 The LMC’s RMI Implementation
	10.4.1 The RMI Server Interface
	10.4.2 The RMI Server Class
	10.4.3 The RMI Client Class

	10.5 Summary

	Chapter 11. Client Diets
	11.1 Looking at the Options
	11.1.1 The Compiler and Tools
	11.1.2 Packaging, Class Loading and Pre-Initialization
	11.1.3 Object Recycling
	11.1.4 Garbage Collection
	11.1.5 Optimizing Memory Accesses
	11.1.6 Synchronization Overheads
	11.1.7 Error Handling
	11.1.8 Other Issues and Optimizations

	11.2 In Summary

	Chapter 12. Tasty Additions
	12.1 Introduction to SmartCards
	12.1.1 The SmartCard File System
	12.1.2 The OpenCard Framework

	12.2 Sample SmartCard Application
	12.3 Accessing a Serial Port
	12.3.1 X-10 Architecture and Protocols
	12.3.2 Programming the X-10 CP290 Home Control Interface
	12.3.3 The Java Espresso Machine Example

	Chapter 13. NC Deployment: Using IBM Network Stations
	13.1 Introduction
	13.2 Software Requirements
	13.3 The Initialization Process
	13.3.1 The Power-On Self-Test
	13.3.2 Locating the Boot Server
	13.3.3 Loading the Kernel
	13.3.4 Initiate the Environment

	13.4 IBM Network Station Set Up
	13.4.1 The NVRAM Setup Utility Panel
	13.4.2 Set Network Parameters Panel
	13.4.3 Set the Boot Parameters Panel

	13.5 The IBM Network Station Manager
	13.6 The Configuration Files
	13.6.1 The Configuration File Syntax
	13.6.2 System-Level Configuration Files
	13.6.3 Workstation-Level Configuration Files
	13.6.4 User-Level Configuration Files

	13.7 The Startup Files
	13.8 The IBM Network Station User Services
	13.9 The IBM Network Station Message Log
	13.9.1 Local Session
	13.9.2 Allowing Remote Telnet Session
	13.9.3 Remote Telnet Session

	13.10 Accessing the Serial Port
	13.10.1 Allowing Access to the Serial Port
	13.10.2 Initializing the Serial Port

	13.11 Coming Soon: IBM Software Release 3
	13.11.1 The Setup Utility Panel
	13.11.2 IBM Network Station Manager
	13.11.3 Java Support

	Chapter 14. Java in the IBM Network Station
	14.1 Introduction
	14.2 Java Virtual Machine
	14.3 Memory Requirements
	14.4 Java Settings
	14.5 Running Java Programs in the IBM Network Station
	14.5.1 Adding a Java Applet Item to the Taskbar
	14.5.2 Adding a Java Application Item to the Taskbar
	14.5.3 Autostarting Java Programs and Applets

	14.6 Troubleshooting Java Execution Problems
	14.7 The eSuite
	14.7.1 The WorkPlace
	14.7.2 The Administrator
	14.7.3 Adding a Java Applet

	Appendix A. Brief HTML Reference
	A.1 Top Level Tags
	A.2 Character Formatting Tags
	A.3 Block Formatting Tags
	A.4 Table Tags
	A.5 List Tags
	A.6 Forms Tags
	A.7 Miscellaneous Tags

	Appendix B. Java Development: Using VisualAge for Java
	B.1 The VisualAge Family
	B.2 VisualAge for Java Overview
	B.3 Integrated Development Environment (IDE)
	B.3.1 Java Support
	B.3.2 Navigating within VisualAge for Java
	B.3.3 How It Fits Together
	B.3.4 Team Development
	B.3.5 Applet Viewer
	B.3.6 Editor/Debugger/SmartGuides
	B.3.7 Proxy Builder

	B.4 Enterprise Access Builder (EAB)
	B.4.1 Data Access Builder (DAX)

	B.5 System Requirements
	B.6 Summary

	Appendix C. Special Notices
	Appendix D. Related Publications
	D.1 International Technical Support Organization Publications
	D.2 Redbooks on CD-ROMs
	D.3 Other Publications

	How To Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

