
ÉÂÔ

e-business Application Solutions on OS/390
Using Java: Volume I

A. Louwe Kooijmans, J. Cheong, R. Conway, T. Knopp, C. Lee
B. O'Donnell, H. Potter, J. Scanlon, B.M. Steinke, E. Van Aerschot

International Technical Support Organization

http://www.redbooks.ibm.com

SG24-5342-00

International Technical Support Organization

e-business Application Solutions on OS/390
Using Java: Volume I

May 1999

SG24-5342-00

ÉÂÔ

 Take Note!

Before using this information and the product it supports, be sure to read the general information in Appendix C, “Special
Notices” on page 327.

First Edition (May 1999)

This edition applies to the following products:

� OS/390 Version 2 Release 5

� Java Development Kit Version 1.1.6 for OS/390 (beta)

� Java Development Kit Version 1.1.4 for OS/390

� DB2 for OS/390 Java Database Connectivity

� Lotus Domino Go Webserver Release 5.0

� WebSphere Application Server for OS/390 V1.1 (beta)

� IBM CICS Transaction Server for OS/390 Release 3 (LA)

� CICS Gateway for Java Version 2.0

� IBM DB2 Server for OS/390 Version 5

� IBM DB2 Connect (Personal Edition), Version 5.0

� IBM IMS Transaction Server for OS/390 Version 6

� IMS TCP/IP OTMA Connection

� MQSeries for MVS/ESA V1.2

� MQSeries Bindings for Java for OS/390 (beta)

� VisualAge for Java, Enterprise Edition for OS/390

� Windows NT Version 4.00 Workstation (with fix pack 3)

 Note

This book is based on a pre-GA version of a product and may not apply when the product becomes generally available. We
recommend that you consult the product documentation or follow-on versions of this redbook for more current information.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Figures . ix

Tables . xiii

Preface . xv
The Team That Wrote This Redbook . xvi
Comments Welcome . xviii

Part 1. Overview of Java Application Environment on OS/390 1

Chapter 1. The e-business Application Framework 3
1.1 Application Server Software . 4

1.1.1 HTTP Server . 4
1.1.2 Database Services . 4
1.1.3 Transaction Services . 5
1.1.4 Messaging Services . 5

1.2 Application Integration . 6
1.3 Development Tools . 7
1.4 Java - the Strategic Language for e-business Applications 8
1.5 IBM WebSphere Application Server . 9
1.6 Development of e-business Applications for OS/390 9

Chapter 2. Java Client/Server . 11
2.1 Why Client/Server . 11
2.2 Java Client/Server Scenarios with OS/390 Today 12

2.2.1 The Client . 12
2.2.2 OS/390 . 12
2.2.3 Communication Protocols . 12

2.3 Accessing Back-End Systems on OS/390 16

Chapter 3. OS/390 Components . 19
3.1 Web Application Server Software on OS/390 19
3.2 Java Environment . 20

3.2.1 Java Bytecode . 20
3.2.2 Java Object Code . 21
3.2.3 Java e-business Connectors on OS/390 22

3.3 Back-End Systems on OS/390 . 22
3.3.1 DB2 . 22
3.3.2 CICS and Java . 24
3.3.3 MQSeries . 25
3.3.4 IMS . 25
3.3.5 MVS Datasets . 25

3.4 CORBA Server on OS/390 . 26
3.5 RMI Server on OS/390 . 26

Part 2. Configure Java Application Environment on OS/390 27

Chapter 4. Configuration of the OS/390 Web Server 29
4.1 Configuring Lotus Domino Go Webserver Release 5.0 29

 Copyright IBM Corp. 1999 iii

4.1.1 Setting Up Server Configuration Files 29
4.1.2 Locating Your Web Content . 31

4.2 WebSphere Application Server (WebAS) and ServletExpress (SE) 36
4.2.1 Configuring WebSphere Application Server for OS/390 V1.1 36
4.2.2 WebAS Properties Files . 38
4.2.3 Verifying a Successful Startup of WebAS 43
4.2.4 If Something Goes Wrong . 46
4.2.5 Running the Sample Servlet Code Shipped with DGW 5.0 48
4.2.6 Using WebAS Manager . 49

Chapter 5. Configuring Java Support on OS/390 53
5.1 JDK Installation and Setup . 53

5.1.1 Directory Structure . 53
5.1.2 Installation Method: Tar and Tarball Files 53
5.1.3 Downloading the JDK . 54
5.1.4 Verifying the Installation . 54
5.1.5 Using More than One Release of JDK 54
5.1.6 JDK Support for Websphere Application Server 55
5.1.7 Remote Abstract Windowing Toolkit (RAWT) 56

5.2 VisualAge for Java, Enterprise Edition for OS/390 58
5.2.1 Introduction . 58
5.2.2 The Orderable Package . 59
5.2.3 Software Requirements . 60
5.2.4 Installation of VisualAge for Java, Enterprise Edition for OS/390 . . . 61
5.2.5 Testing the HPJ/390 Environment . 66
5.2.6 Related Network Installations on OS/390 67

Chapter 6. Configuring VisualAge for Java on the Workstation 71
6.1 VisualAge for Java Setup for OS/390 Operation 71

6.1.1 FTP Connections . 71
6.1.2 NFS Connections . 72

6.2 Establishing a Host Session . 73
6.3 Logging on to OS/390 . 77
6.4 Installing VisualAge for Java Features . 79
6.5 Setting Up ET/390 Properties Tables . 80

6.5.1 Setting Up Properties for an Export and Bind Session 80
6.5.2 Setting Up the Properties for a Run Executable Session 83
6.5.3 Run Time Options . 83
6.5.4 Setting Up Properties for Debugging Options 83
6.5.5 Setting Up the Properties for a Run Main Session 84
6.5.6 Workstation Setup for the Debugger 88

Chapter 7. NetObjects Fusion (NOF) Version 3 93
7.1 Design of a Site . 94
7.2 NetObjects: Static vs. Dynamic Pages . 99

Chapter 8. DB2 Connectivity . 101
8.1 Configuration of DB2 Connect . 101

8.1.1 Introduction and Comments on DB2 Connect 101
8.1.2 Installing and Configuring the Client 102
8.1.3 The Architectural Possibilities . 106

8.2 Configuring the Webserver to Use DB2 109
8.2.1 Overview . 109
8.2.2 Lotus Domino Go Webserver Release 5.0 DB2 Support 109

iv e-business Application Solutions on OS/390 Using Java Vol. I

8.2.3 Installation of RRS . 110
8.3 Configuring JDBC and SQLJ in OS/390 UNIX Shell 112
8.4 Possible Pitfalls When Using DB2 from Java 113

Part 3. Develop Application Solutions for OS/390 Using Java 115

Chapter 9. DB2 Access . 117
9.1 JDBC Implementation for DB2 on OS/390 117
9.2 SQLJ Implementation for DB2 on OS/390 128

9.2.1 Including SQL Statements in an SQLJ Program 128
9.2.2 Using Java Variables and Expressions As Host Expressions 129
9.2.3 Including Comments . 129
9.2.4 Handling SQL Errors and Warnings 130
9.2.5 Including Code to Access SQLJ and JDBC Interfaces 130
9.2.6 Connecting to a Data Source . 130
9.2.7 Using Result Set Iterators to Retrieve Rows from a Result Table . 132
9.2.8 Using Positioned Iterators . 133
9.2.9 Using Named Iterators . 134
9.2.10 Using Iterators for Positioned UPDATE and DELETE Operations . 136
9.2.11 Monitoring and Modifying SQL Statement Execution 137
9.2.12 Restrictions on DB2 for OS/390 SQLJ Programs 138
9.2.13 Steps in the SQLJ Program Preparation Process 149
9.2.14 Translating SQLJ Source Code . 150
9.2.15 Customizing a Serialized Profile . 151
9.2.16 Binding a Plan for an SQLJ Program 153
9.2.17 Example of Using the SQLJ Translator 153

Chapter 10. Develop Java Solutions for CICS on OS/390 155
10.1 Overview of Internet Access to CICS on OS/390 155

10.1.1 CICS Gateway for Java . 155
10.1.2 CICS Internet Gateway . 156
10.1.3 CICS Web Interface . 157
10.1.4 EXCI CGI . 157

10.2 CICS Gateway for Java for OS/390 Architecture 158
10.2.1 CICS Gateway for Java Two-Tier Architecture 158
10.2.2 CICS Gateway for Java Three-Tier Architecture 159
10.2.3 CICS Gateway for Java - A Further Introduction 160
10.2.4 The CICS Gateway for Java Classes 162

10.3 Overview of Approach . 165
10.4 A Brief Discussion of Servlets and CICS 165
10.5 Developing a Java Application Using CICS Gateway for Java 166

10.5.1 Requirements on the Development Platform (Workstation) 166
10.5.2 Components . 166
10.5.3 CICS Gateway for Java Customization on the Workstation 169
10.5.4 Set Up TxSeries . 173
10.5.5 Prepare the COBOL Programs . 174
10.5.6 Verify Your CICS Setup . 175
10.5.7 Test Your Setup . 175
10.5.8 VisualAge for Java Setup to Develop Servlets for CICS Gateway for

Java . 178
10.5.9 Summary . 179

10.6 OS/390 Setup to Run CICS/DB2 Programs Using CICS Gateway for
Java . 179

 Contents v

10.6.1 Configuring the Webserver . 180
10.6.2 Setting Up the CICS Gateway for Java on OS/390 180
10.6.3 Running the CICS Gateway for Java (MVS) 184
10.6.4 Prepare the CICS COBOL Programs 186
10.6.5 CICS Definitions for Our Samples 188
10.6.6 Set Up the Conversion Table DFHCNV 190
10.6.7 Deploy HTML and JavaServer Pages 191
10.6.8 Deploy Servlets . 192
10.6.9 Deploy Beans . 192
10.6.10 Run the Internet MANUFACTURER Application 193
10.6.11 Running the Internet TIMEZONE Application 195
10.6.12 Problem Resolution . 195

10.7 A Closer Look at our Sample CICS Application 198
10.7.1 Overview of the CICS Gateway for Java Flow 198
10.7.2 Looking at the Code for the Create Row Operation 200

Chapter 11. Accessing IMS Transactions from the Web 207
11.1 Introduction . 207

11.1.1 Datastreams . 209
11.1.2 Attributes . 210
11.1.3 Basic Design of a Webserver Service Thread 213
11.1.4 Conversational Transactions and HTTP 214

11.2 Connecting to IMS Based on APPC . 216
11.2.1 IMS Access with Servlet and Via APPC 217
11.2.2 IMS Access from a Servlet Using APPC and Templates 227

11.3 Access to IMS Using a Servlet/MQI . 235
11.3.1 The parent Class in the MQ Solution 239
11.3.2 The CMqi2Ims Class . 240
11.3.3 The Mqi2Ims Class . 240
11.3.4 The IMSInputOutput Class . 244
11.3.5 The TMState Class . 244
11.3.6 The BuildParse Interface . 244
11.3.7 [IMSTRAN][IMSModName]edit Classes Implementing BuildParse . 244
11.3.8 libwmqjbind.so . 244

Part 4. Using Servlets and JavaServer Pages on OS/390 245

Chapter 12. Introduction . 247

Chapter 13. How Java Servlets Work . 249

Chapter 14. How a JavaServer Page (JSP) Works 251
14.1 Execution Process of JSP Code in ServletExpress 251

Chapter 15. Designing a Server_side Plugin 253
15.1 Design of Each Page . 255

15.1.1 Things to Consider . 255
15.1.2 Model 1 - JSP and JavaBean . 255
15.1.3 Model 2 - Combination of JSP and Servlet 257
15.1.4 Model 3 - JSP Only . 257

15.2 Writing JSP Code and Servlets . 258
15.2.1 NullPointer Exception . 258
15.2.2 OutOfMemory Exception . 258

vi e-business Application Solutions on OS/390 Using Java Vol. I

15.2.3 Debugging JSP Code . 259
15.2.4 The <insert> Tag . 259

Chapter 16. Samples of JSP/Servlet . 261
16.1 JSP and JavaBean . 261
16.2 Servlet and JSP . 263

16.2.1 JSP . 264

Part 5. Using VisualAge for Java ET/390 and HPJ/390 267

Chapter 17. Introduction . 269

Chapter 18. Using HPJ/390 - Scenarios . 273
18.1 Scenario I . 273
18.2 Scenario II . 274
18.3 Scenario III . 275
18.4 Using Java DLLs . 275

Chapter 19. HPJ Performance on OS/390 277
19.1 The Sample Code . 277
19.2 Summary Results . 279

Chapter 20. Remote Debugger on OS/390 281
20.1 Why to Use a Remote Debugger . 281
20.2 Getting Started with the Remote Debugger 281

20.2.1 Session Control Window . 283
20.2.2 Source Window . 283
20.2.3 Breakpoints List Window . 283
20.2.4 Program Monitor Window . 284
20.2.5 Call Stack Window . 284

Chapter 21. Performance Analyzer for OS/390 285
21.1 Why Use a Performance Analyzer . 285
21.2 Getting Started with the Performance Analyzer 285

Chapter 22. Mixing Java Bytecode and Objectcode on OS/390 289

Chapter 23. Using HPJ/390 with the Java Native Interface (JNI) 291
23.1 JNI Step-By-Step . 291
23.2 Other JNI Tips . 292

Chapter 24. The Jport Utility . 295

Appendix A. CD-ROM . 299
A.1 Directory Contents . 299
A.2 tar File . 299
A.3 Installing the Package on OS/390 . 299

A.3.1 Prerequisite Software on OS/390 . 300
A.3.2 Installing the tar File on your OS/390 Server 300
A.3.3 Moving the MVS Components to Data Sets 301
A.3.4 Configuring the Environment . 304
A.3.5 MVS Datasets on the CD-ROM . 308
A.3.6 Using the Samples . 309

 Contents vii

Appendix B. Design of the Advanced Sample Application 311
B.1 The Design of the Database . 311
B.2 The Model View Controller Architecture 311
B.3 The Class Design of the Sample Program 312

B.3.1 The Manufacturer Business Object Class 312
B.3.2 The Datamanager Class . 313
B.3.3 The Servlet As a Sample for the Model View Architecture 315

B.4 The Package Structure for the Sample Application 317
B.5 Connecting to DB2 on OS/390 . 318

B.5.1 Different Connections You Can Make 318
B.6 Explaining the Code . 319

Appendix C. Special Notices . 327

Appendix D. Related Publications . 331
D.1 International Technical Support Organization Publications 331
D.2 Redbooks on CD-ROMs . 331
D.3 Other Publications . 331
D.4 External Publications . 332

How to Get ITSO Redbooks . 333
IBM Redbook Fax Order Form . 334

Index . 335

ITSO Redbook Evaluation . 337

viii e-business Application Solutions on OS/390 Using Java Vol. I

 Figures

1. Logical View of the e-business Application Framework 3
2. Messaging Services . 6
3. Connectors in the e-business Application Framework 7
4. High-Level Overview of WebSphere Application Server 9
5. Communication Protocols using OS/390 13
6. Communication between Client and OS/390 Server Using HTTP 13
7. An Example of an RMI Application Accessing DB2 on OS/390 14
8. Communication between Client and OS/390 Server Using IIOP 15
9. Communication between Client and OS/390 Server Using Sockets . . . 15

10. Available Java APIs/Connectors for Accessing Back-End Systems on
OS/390 . 16

11. Implementation of the JVM on OS/390 . 21
12. Integration between Java and Subsystems on OS/390 22
13. Webserver Administration Protection Directives 30
14. SSL Directives in IBM-Supplied Configuration File (httpd.conf) 31
15. Standard Web Content Setup Directives 32
16. HTML Example - Frntpage.html . 32
17. Single Server - Modified Web Content Setup Directives 34
18. Single Server - HTML Example for a Home Page (index.html) 34
19. Single Server - Logging and Reporting Changes to httpd.conf 35
20. Single Server - Additional Modifications to httpd.conf 35
21. Changes in httpd.conf after Running postinstall.sh 37
22. Changes in httpd.conf by the SEconfig Tool 37
23. Example of Updated htpd.conf File . 38
24. Example of a jvm.properties File . 39
25. Example of jvm.properties File in ServletExpress 41
26. Example of the Log when WebAS is Successfully Started 44
27. Example of the WebAS event.log File after a Successful Start 45
28. The onetstat Command . 46
29. ServletManager Login Screen . 50
30. ServletManager Panels . 51
31. Infrastructure for Running AWT Applications Using the X11 Protocol . . 57
32. Infrastructure for Running AWT Applications Using RAWT 58
33. Example of profile.hpj File . 62
34. Example of HPJ Variables in /etc/.profile 63
35. Example of Settings in .javaInstall.data File 63
36. NFS Setup Using Hummingbird NFS Maestro - Binary Connection 68
37. Example of inetd.conf File . 69
38. Example of /etc/ftp.data File . 69
39. Successful NFS Mount - Binary Connection 73
40. NFS Set Up Using Hummingbird NFS Maestro - Text Connection 73
41. Setting Up a Host Session . 74
42. Adding a Host Session . 74
43. Adding a Host Session with Values . 75
44. javaInstall.data File Part 1 . 75
45. javaInstall.data File Part 2 . 76
46. ET/390 Host Sessions Dialog Box . 76
47. Refreshing a Host Session . 77
48. Logon to OS/390 Menu Option . 78
49. Logon to OS/390 Window . 78

 Copyright IBM Corp. 1999 ix

50. Features Window . 79
51. Export and Bind Session . 81
52. Bind Options . 82
53. Advanced Bind Options . 83
54. Export a Class File . 85
55. Run Main Properties . 86
56. Export a Source File . 87
57. Export a Class File for Debugging . 88
58. Export a Class File for Debugging . 90
59. Export a Source File . 91
60. Welcome to NetObject Fusion Window . 94
61. New Blank Site of NetObject Fusion . 95
62. Site View of NetObject Fusion . 95
63. Left Part of the Toolbar in NetObjects Fusion 96
64. Style View of NetObjects Fusion . 96
65. Right Side of Toolbar in NetObjects Fusion 96
66. Page Properties and the Custom Name Window in NetObjects Fusion . 97
67. Page View of NetObjects Fusion . 98
68. Expansion of Site in NetObjects Fusion 98
69. The Client Configuration Assistant . 102
70. Select a Communication Protocol . 103
71. Specify the TCP/IP Parameters . 104
72. Specify the Name of the Database . 105
73. Specify the Local Name of the Target Database 106
74. Two-Tier Client/Server Configuration (Fat Client) 107
75. Three-Tier Client/Server Configuration (Thin Client) 108
76. Example of a Simple Servlet Accessing DB2 Via JDBC 119
77. Example of a Servlet Doing a SELECT, UPDATE and INSERT Using

JDBC . 121
78. Example of an Iterator Declaration . 134
79. Example of a Named Iterator . 135
80. Example of a Simple Servlet Accessing DB2 Via SQLJ 139
81. Example of a Servlet Doing a SELECT, UPDATE and DELETE Using

SQLJ . 141
82. Accessing CICS Transactions from the Internet Using the CICS Gateway

for Java . 156
83. Accessing CICS Transactions from the CICS Internet Gateway 157
84. Accessing CICS Transactions from the Internet Using CICS Web

Interface . 157
85. Accessing CICS Transactions from the Internet Using EXCI CGI 158
86. CICS Gateway for Java Two-Tier Architecture 159
87. CICS Gateway for Java Three-Tier Architecture 160
88. CICS JavaGateway Class . 163
89. CICS Java Gateway Class for ECI . 164
90. High-Level Overview of Development Environment Architecture 166
91. CICS Gateway for Java for Windows NT Directory Structure 170
92. User-Definable Options for Starting Up the Gateway 172
93. CICS Setup Verification on NT . 175
94. Sample Input to Test Access to a CICS Program Via a JSP/Bean . . . 177
95. Sample Output to Test Access to a CICS Program Via a JSP/Bean . . 177
96. Adding the Servlet Builder in VisualAge for Java 178
97. Adding the Servlet Builder in VisualAge for Java 179
98. Example of DFHCNV . 191
99. Extract from manufact.jsp . 193

x e-business Application Solutions on OS/390 Using Java Vol. I

100. Manufacturer Application Screen . 194
101. Manufacturer Application Result Screen 194
102. Extract from timezone.jsp . 195
103. Overview of CICS/DB2 Program Access Via a Servlet 199
104. Entering Data Via an HTML Form . 200
105. An Extract of the HTML for Data Entry of Manufacturer Details 201
106. Code for the Service Method of MfServletHtml 202
107. The Manufact Class . 203
108. Extract of the buildCommarea Method 204
109. The CICSConnect Class . 204
110. Overview of CICS/DB2 Program Access Via a JSP 205
111. 3270/MFS versus Web-Based . 208
112. Server-Side Gateways to IMS . 209
113. Flow of Messages from IMS to 3270 Terminal and Back 209
114. Exchanging Messages between IMS and Browser Based on the

hashtable Concept . 214
115. Conversational Transactions and HTTP 214
116. IMS Access from a Servlet Via APPC 217
117. IMS Web Templates . 227
118. MQM Bridge to IMS Protocol . 237
119. Message Queue Manager Connections 243
120. Execution Process of JSP . 251
121. Reference HTML Page Window in NetObjects Fusion 254
122. Result Screen of Import External JSP in NetObjects Fusion 254
123. JSP Only . 257
124. Integration of the VisualAge for Java IDE and OS/390 270
125. Turning on the Debug Option for ET/390 282
126. A Scenario Using the ET/390 Debugger 283
127. Setting the Trace File Details . 286
128. The Dynamic Call Graph . 287
129. Verify Portability Option in Bind Options 295
130. Problem Report with Details Box . 296
131. Details of Unsupported Objects . 297
132. The Manufacturer Class Model . 312
133. The DataManager Class - Attributes and Methods 314
134. The Data Manager Inheritance . 314
135. The JDBC/Servlet Class Diagram . 315
136. The Servlet/JDBC Object Interaction Diagram 316

 Figures xi

xii e-business Application Solutions on OS/390 Using Java Vol. I

 Tables

1. Java APIs to Support the Network Infrastructure 8
2. Java APIs to Support the Foundation Services 8
3. Java APIs to Support the Web Application Programming Environment . . 8
4. Sample Servlets Shipped with DGW 5.0 48
5. Equivalent SQLJ and SQL Data Types 133
6. Different Options for Accessing CICS . 155

 Copyright IBM Corp. 1999 xiii

xiv e-business Application Solutions on OS/390 Using Java Vol. I

 Preface

This redbook covers many aspects of Java in relation to the OS/390 platform. It
focuses mainly on running server-side Java in the form of servlets or Java Server
Pages, and provides a technical overview of the new native code compiler for Java
on OS/390. It also explains SQLJ, which is a new technique for accessing DB2
databases.

A CD-ROM is included that provides easy-to-use sample applications.

The sample code associated with this redbook is also available in softcopy on the
Internet from the redbooks Web server.

Point your Web browser to:

 ftp://www.redbooks.ibm.com/redbooks/sg245342

Alternatively, you can go to the following URL and select Additional Materials :

 http://www.redbooks.ibm.com

An earlier redbook, Integrating Java with Existing Data and Applications on OS/390,
SG24-5142, covers general topics regarding running Java on OS/390 and gives
examples of solutions that use Java applets to communicate with OS/390 back-end
systems. For the most complete understanding of how to use Java on OS/390, we
recommend that you have both redbooks and the CD-ROM on your bookshelf.

This redbook is divided into several parts:

Part 1. An Overview of the Java Application Environment on OS/390
In this part we introduce you to the environment in which a Java
enterprise application is likely to be implemented. We present the most
widely used components and back-end subsystems and describe how
they can be integrated with Java.

Part 2. Configuring the Java Application Environment on OS/390
In this part we describe the configuration of the most essential
components on OS/390 and explain how to configure your workstation
environment for developing your applications using VisualAge for Java
Version 2 for OS/390 and NetObjects Fusion.

Part 3. Develop Application Solutions for OS/390 Using Java
In this part we show how you can build applications in Java using
existing transactions and databases. Our focus is on the usage of
servlets and JavaServer Pages to connect to DB2, IMS and CICS.

In Chapter 9, “DB2 Access” on page 117, we focus on a new way of
accessing DB2 from Java: SQLJ.

In Chapter 10, “Develop Java Solutions for CICS on OS/390” on
page 155, we show how you can develop and test on Windows NT and
run the same application on an OS/390.

In Chapter 11, “Accessing IMS Transactions from the Web” on
page 207, we show how you can access IMS from a Webserver via
different methods.

 Copyright IBM Corp. 1999 xv

Part 4. Using Servlets and JavaServer Pages on OS/390
In this part we give an overview of servlets and JavaServer Pages and
how they compare.

Part 5. Using VisualAge for Java ET/390 and HPJ/390
In this part we explain how VisualAge for Java supports the OS/390
platform with some specific features especially designed for developers
who want to use OS/390 as the runtime platform.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world working
at the International Technical Support Organization Poughkeepsie Center.

Alex Louwe Kooijmans is a senior IT Specialist at the International Technical
Support Organization, Poughkeepsie Center. Before joining the ITSO, he worked
as an application developer in MVS and AS/400 environments. During the last few
years, he mainly held assignments as an IT architect in IBM Global Services
projects. He holds a bachelor's degree in Computer Science and teaches and
writes extensively on Java in relation to the OS/390 platform.

Jeong Sik Cheong is a sales specialist in South Korea. He has two years of
experience in the Network Computing field. He holds a bachelor's degree in
Agro-chemistry from Seoul National University. His areas of expertise include Web,
Java, VisualAge for Java and Web-to-CICS solutions. He has written extensively
on JavaServer Pages.

Rich Conway is an Advisory Technical Support Specialist at the International
Technical Support Organization, Poughkeepsie Center. He has 19 years
experience in MVS and OS/390 as a systems programmer. While working at the
ITSO, he has been a project leader and has written on e-business and UNIX
Systems Services on the OS/390 platform.

Trevor Knopp is a Technical Architect in IBM New Zealand and has seven years
of experience in designing object-oriented solutions. He holds a Masters degree in
Medical Physics from the University of Otago. His areas of expertise include
object-oriented design and software development.

Chor Hock Lee is a Solution Architect in IBM Australia. He has 14 years of
experience in the Information Technology field. He holds a Bachelor of Science
degree in Computer Science from the University of New South Wales, Sydney,
Australia. His areas of expertise include e-business and Application Architecture,
Design and Development. He has written extensively on integrating CICS (on the
S/390 in particular) and Internet technologies.

Bill O'Donnell is one of the owners of OAS Software Consulting in the USA,
specializing in Java and Web deployment on OS/390. He has 15 years of
experience in Technical Support for OS/390. His areas of expertise include the
OS/390 Operating System and Java and Web deployment on OS/390.

Hilon Potter is a Senior Software Engineer in the US. He has 17 years of
experience in MVS. His areas of expertise include OS/390 Webserver, UNIX
System Services, and OS/390 new technology in general.

xvi e-business Application Solutions on OS/390 Using Java Vol. I

John Scanlon is a Senior Engineer in IBM Poughkeepsie, NY USA. He has 34
years of experience in Computer Systems. He holds a degree in Systems and
Information Science from Syracuse University. His areas of expertise include
Computer Systems Architecture, Network Architecture and Application
Development. He has written extensively on Logical Partitioning and Multimedia
Content Delivery.

Boris-Michael Steinke is an IT Specialist in Germany. He has eight years of
experience in object-oriented technologies and client/server computing. He has
studied business management at Ludwig Maxemilian University in Munich,
Germany. His areas of expertise include distributed object-orientated application
development in OO languages like C++ and Java. Currently, he is working as a
Senior Consultant for a German IT company, mainly on projects with financial
service companies. He is responsible for the development of OO approach models
and design patterns for distributed C/S applications based on Java using Internet
technologies. He also teaches OO methodologies and the Java and C++
programming language for IBM education and training in Germany and Switzerland.

Egide Van Aerschot has 30 years of field experience with many Finance and
Government customers. He was responsible for many projects involving S/390
mainframes related to IMS, DB2 and MQSeries. He designed and installed several
client server projects with Distributed Computer Environment (DCE) and Advanced
Program-to-Program Communication (APPC). In recent years he participated in
several residencies at the International Technical Support Organization and was
involved in the design of solutions to access existing data and transactions from the
Internet.

Thanks to the following people for their invaluable contributions to this project:

Terry Barthel
International Technical Support Organization, Poughkeepsie Center

Ian Burrows
IBM, Toronto Lab

Ella Buslovich
International Technical Support Organization, Poughkeepsie Center

Clarence Clark
IBM, Poughkeepsie

Christine Casey
IBM, Endicott

Evgeny Deborin
International Technical Support Organization, San Jose Center

Carol Dixon
International Technical Support Organization, Poughkeepsie Center

Mike Fulton
IBM, Toronto Lab

Bob Haimowitz
International Technical Support Organization

 Preface xvii

Sally Howard
Java Technology Centre, Hursley Park, UK

Mike Oliver
IBM, Poughkeepsie

Brian Peacock
Java Technology Centre, Hursley Park, UK

Roland Trauner
International Technical Support Organization, Poughkeepsie

Tommy Toomire
IBM, Santa Theresa Lab

Lulu Wong
IBM, Toronto Lab

 Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

� Fax the evaluation form found in “ITSO Redbook Evaluation” on page 337 to
the fax number shown on the form.

� Use the online evaluation form found at http://www.redbooks.ibm.com/

� Send your comments in an Internet note to redbook@us.ibm.com

xviii e-business Application Solutions on OS/390 Using Java Vol. I

Part 1. Overview of Java Application Environment on OS/390

In general, new technologies may bring many improvements to the Information
Systems environment, but we also expect those technologies to deliver the same
quality as we were used to in the traditional environment.

It may not be a good idea to sacrifice performance, security or reliability in an effort
to just get a fancy GUI. Especially in the OS/390 environment, in which factors as
reliability, availability, security and performance are characteristic, we need to
carefully design solutions based on new technology.

In many cases, the ideal application is most probably a mix of both new technology
and proven traditional technology. So the question can be asked, what is “new
technology,” actually?

The definition of “new technology” may change every day, but within the context of
this book, we define new technology as components that fit into the following

categories of products:

� Java language and runtime environment

 � Enterprise JavaBeans

 � Component Broker

� Distributed Object-Oriented applications

� e-business connectors between Java and subsystems

 � Webservers

In this part of the redbook we update you with the latest information about
components in the area of e-business application enablement on OS/390.

In Chapter 1, “The e-business Application Framework” on page 3, we explain how
IBM's e-business Application Framework is supported on OS/390 by means of the
WebSphere family of products.

In Chapter 2, “Java Client/Server” on page 11, we show you how the client/server
model can be used to build Java Enterprise applications.

Finally, in Chapter 3, “OS/390 Components” on page 19, we dedicate a section to
each component on OS/390 supporting the e-business Application Framework.

 Copyright IBM Corp. 1999 1

2 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 1. The e-business Application Framework

The e-business Application Framework is a platform-transparent “model” supporting
all potential functions of a Web-based e-business application.

Figure 1 gives a logical view of the framework in case an OS/390 server would be
used. But again, the OS/390 server in the picture can be easily replaced by any
other server as long as the server is compliant to the framework.

e-business Appl. Services

Web Appl. Programming Env.

Application Server
Software

Application
Integration

Network Infrastructure

Systems Management

Thin Client Web Appl.
Servers Content

Tools

External
Service

EJB

Figure 1. Logical View of the e-business Application Framework

The e-business Application Framework is composed of the following key elements:

Clients

Clients should be as thin as possible without any local application
logic.

Network Infrastructure

This supports network, directory, security, file access and print
services.

Application Server Software

This supports the applications in terms of database access,
transaction services, message queuing and so on.1

Connectors

These provide access to traditional existing data and
applications.2

1 In the Network Computing Framework, this building block was also knows as “Foundation Services.”

2 In the Network Computing Framework, this building block was also known as “Connectors.”

 Copyright IBM Corp. 1999 3

Web Application Programming Environment

This is the actual runtime environment of an application.

e-business Application Services

These are the building blocks or frameworks at an application
level that can be used to easily assemble an application for a
particular industry or solution segment.

Systems Management

This supports the full life cycle of an application from installation
and configuration, to the monitoring of its operational
characteristics, to the controlled update of changes.

Development Tools

These are used to create applications.

In 1.1, “Application Server Software” through 1.3, “Development Tools” on page 7,
we discuss the components of the e-business Application Framework that are
important to understand when reading this redbook.

1.1 Application Server Software
The Application Server Software, also known as “Foundation Services,” provides
the home for the business logic of the application and includes the HTTP server,
database and transaction services, mail and community services, groupware
services and messaging services. By means of Java classes and Beans,
integrated solutions can be built that combine the usage of various services into
one e-business application.

In the context of this book, important services are the following:

 1.1.1 HTTP Server
The HTTP server is the entry point for client requests and is responsible for the
execution of the first middle-tier logic of an e-business application. This middle-tier
logic is preferably implemented as a servlet or JavaServer Page.

If needed, the HTTP server also hosts the connectors to existing applications and
data. If Java servlets or JavaServer Pages are used, connectors are available to
almost all transaction, database and file systems on OS/390. Refer to Figure 10
on page 16 for an overview of the available connectors.

Note: In the e-business application framework, the Application Server is also
responsible for IIOP communication between application components. At the time
of writing, no such support is generally available on OS/390 yet.

 1.1.2 Database Services
The Database Services leverage existing business logic to build new Web-based
applications. Stored procedures and database application programs are supported
using the Java and JavaBeans programming model. In combination with servlets
and JavaServer Pages providing the business logic, the data access logic is
integrated using the JDBC and SQLJ specification. Refer to 3.3.1, “DB2” on
page 22 for an overview of SQLJ and JDBC and to Chapter 9, “DB2 Access” on
page 117 for details.

4 e-business Application Solutions on OS/390 Using Java Vol. I

 1.1.3 Transaction Services
Transactional processing has become the most important concept in enterprise
applications, and transaction services have become more important than ever in the
world of e-business applications.

In this world, a client request must be seen as a unit of work. Client requests must
either be 100 percent executed, or else rolled back. A two-phase commit protocol
is critical.

 1.1.4 Messaging Services
The two most important benefits of messaging services are:

 � Asynchronous processing

� Decoupling of systems

We discuss these benefits in detail in the following sections.

 1.1.4.1 Asynchronous Processing
Asynchronous processing can be best compared to a situation where you would
have a telephone conversation. Imagine the world without answering devices, as
was the case some twenty years ago. You could only deliver your message by
phone to another person by having that person actually on the phone. Otherwise,
you would have to call that person again and again until he or she picks up the
phone.

By using an answering device on the other side, you could deliver the message
anyhow, even when the other person did not pick up the phone. You would not
have to call again and again.

This situation also applies to systems that communicate with each other. When the
sending system cannot reach the receiving system, you do not want to have the
sending system blocked because the receiving system is not available.
Using message services, the sending system will keep the message in a queue
until the receiving system is available again. It will then release the message.

Another feature of messaging services is that each message gets a unique
identifier, so that the receiving system can confirm back that the message has been
received.

1.1.4.2 Decoupling of Systems
Messaging services also decouple systems. Figure 2 on page 6 gives an example
of a messaging service where a client would communicate with a host system. The
client can also be on the same computer as the host system.

 Chapter 1. The e-business Application Framework 5

SubsystemPlatform-specific
Application

Messaging
Engine

B
rid

ge

API

Client Host

Platform-specific
Application

Messaging
Engine

Queues Queues
Uniform protocol

Figure 2. Messaging Services

Typically, instead of sending a system-specific message directly to the host
application, the client will first convert its message to the uniform protocol required
by the messaging service. (APIs are available to do this, including when Java is
used). Then, the generic message will be sent to the host system, where it will be
converted back to the specific format required by the back-end system.

Imagine now that, for some reason, the back-end application will be moved to
another location, eventually even to another subsystem or platform. In that case,
you only have to use another bridge on the host system; the client remains
unchanged.

 1.2 Application Integration
The function of application integration, also known as “connectors,” is to connect
the logical middle tier to existing applications and data. The main benefit of a
connector is that it hides the specific protocol as required by the existing
transaction, database or file system.

For instance, programming a Web-client communicating with IMS via the OTMA
protocol can be more difficult than talking HTTP/Java to the logical middle tier and
then using a connector to take care of the communication between the middle tier
and IMS via the OTMA protocol.

Note that (without opening an in-depth discussion about performance), the
user-friendliness route is not necessarily the same route as the performance route.
In some cases, connectors may impose additional overhead, especially in
transactional environments with high throughput. In those cases, even the slightest
overhead may have to be cut out, leading to a more tailor-made solution without
connectors.

Figure 3 on page 7 shows the basic principle of a connector.

6 e-business Application Solutions on OS/390 Using Java Vol. I

HTTP Server

Connector

Application
Specific Client

Web Application
Server

Thin Clients

External
Services

1 HTTP Request

2 3
Application
Specific Protocols

Figure 3. Connectors in the e-business Application Framework

 1.3 Development Tools
Currently, IBM's WebSphere Studio can be used to create parts of e-business
applications. The WebSphere Studio V1.0 comes with the following products:

 � Workbench

� NetObjects Beanbuilder V1.0

� NetObjects Fusion V3.0.1

� VisualAge for Java, Professional Edition, Version 2.0

� WebSphere Application Server, Version 1.1

� Apache HTTP Server, Version 1.3.1

� Another base HTTP server

 Attention

The exact content of WebSphere Studio may change. You can assume,
however, that NetObjects and VisualAge for Java are part of the core of the
WebSphere development environment.

You can find more details on NetObjects in Chapter 7, “NetObjects Fusion (NOF)
Version 3” on page 93.

Refer to Programming with VisualAge for Java Version 2, SG24-5264, for more
details about VisualAge for Java Version 2.0.

 Chapter 1. The e-business Application Framework 7

1.4 Java - the Strategic Language for e-business Applications
The Java language is the strategic language to use for e-business applications. It
is in the nature of Java to be used in a multiplatform distributed application
environment, and the enormous availability of APIs and JavaBeans makes it very
easy to access any type of service on any type of computer. We can really say
that you are able to create a complete solution using only one programming
language and thus using only one type of skill.

On the server side, servlets, Enterprise JavaBeans and JavaServer Pages will form
the Web Application Programming environment. More than ever, Java is seen as
the strategic programming language, of course, also on OS/390.

Table 1 illustrates the Java APIs to be used for the Network Infrastructure.

Table 1. Java APIs to Support the Network Infrastructure

Service Protocol Standard API

Directory LDAP JNDI

Security CDSA, SSL, IPsec, x.509V3 JSSL, JCE

Network TCP/IP JDK java.net

File AFS/DFS JDK java.io

Print IPP/DFS JDK java.2d, JNPAPI

Table 2 illustrates the Java APIs to be used for the Foundation Services.

Table 2. Java APIs to Support the Foundation Services

Service Protocol Standard API

Mail and Community SMTP, POP3, IMAP4, IRC, NNTP,
FTP, ICalendar

Java Notes API

Groupware n/a Java Notes API

Data ODBC, DRDA JDBC, SQLJ, EJB

Transactions CORBA IIOP/OTS EJB, JTS

Message Queuing BMQS JMS

Table 3 illustrates the Java APIs to be used for the Web Application Programming
Environment.

Table 3. Java APIs to Support the Web Application Programming Environment

Service Protocol Standard API

Web Server HTTP, HTML, XML Servlets, Server-side includes

Web Browser HTTP, HTML, XML Applets, DOM Level 1

Component Model CORBA IIOP JavaBeans

Business Component Model CORBA IIOP EJB, RMI

Scripting ECMAScript JSP

8 e-business Application Solutions on OS/390 Using Java Vol. I

1.5 IBM WebSphere Application Server
The e-business Application Framework is mainly filled in by a family of products
called Websphere. IBM is committed to supporting Websphere's functionality on all
IBM platforms, including AIX, OS/390, AS/400, OS/2 and Windows.

At the time of writing, Lotus Domino Go Webserver Release 5.0 is available for
OS/390 with WebSphere Application Server 1.0 to support servlets and JavaServer
Pages. The planned GA date for WebSphere Application Server for OS/390 V1.1
tied into IBM HTTP Server Version 5.1, which in turn, is tied into OS/390 V2R7, is
March 1999. Figure 4 gives a high-level view of the Websphere functionality.

Figure 4. High-Level Overview of WebSphere Application Server

Note: The functions of the WebSphere Performance Pack are integrated as a
standard feature in HTTP Server Version 5.1 for OS/390.

1.6 Development of e-business Applications for OS/390
After reading the previous sections, you might ask how OS/390 is supported.

Currently, WebSphere Application Server Version 1.1 is available on OS/390,
supporting servlets, JavaServer Pages and connectors to the following:

 � IMS

For more details on connecting to IMS from the Webserver, refer to
Chapter 11, “Accessing IMS Transactions from the Web” on page 207.

 � CICS

For more details on connecting to IMS from the Webserver, refer to
Chapter 10, “Develop Java Solutions for CICS on OS/390” on page 155.

 Chapter 1. The e-business Application Framework 9

� Relational databases using JDBC

For more details on connecting to IMS from the Webserver, refer to Chapter 9,
“DB2 Access” on page 117.

� DB2 using SQLJ

For more details on connecting to IMS from the Webserver, refer to Chapter 9,
“DB2 Access” on page 117.

 � MQSeries

The MQSeries bindings required to access the MQSeries Manager on OS/390
are currently in beta. For more details on connecting to IMS from the
Webserver, refer to 11.3, “Access to IMS Using a Servlet/MQI” on page 235.

� MVS datasets using JRIO

Those include access to sequential, partitioned and VSAM datasets. Both
entry sequence datasets and key sequence datasets are supported.

VisualAge for Java Enterprise Edition Version 2.0 can be used to build Java and
JavaBeans to run on OS/390. NetObjects Fusion and NetObjects Scriptbuilder can
be used to create Web sites.

10 e-business Application Solutions on OS/390 Using Java Vol. I

 Chapter 2. Java Client/Server

As explained extensively in Integrating Java with Existing Data and Applications on
OS/390, SG24-5142, there are many ways to create a Java client/server application
with OS/390 as the server platform. The need to have a clear separation between
presentation logic, business logic, and data access logic has never been as
important as in the highly security-sensitive Internet world we live in today.

In 2.1, “Why Client/Server” we discuss the many advantages of client/server
computing in an Internet world. In 2.2, “Java Client/Server Scenarios with OS/390
Today” on page 12, we will give you an update on client/server models using an
OS/390 server.

 2.1 Why Client/Server
Having a clear separation between the presentation logic, business logic, and data
access logic gives you the following advantages:

 � Different technology

In Web applications, the presentation logic may be implemented using other
technology than, for instance, the data access logic. It may be easier to
implement the front-end using HTML, while the data access logic needs to be
implemented using Java code with JDBC calls.

 � Skills

Typically, the presentation layer of a Web application contains many graphics.
Building the presentation layer requires the use of specific tools capable of
generating GUIs. However, the creation of data access logic may require
in-depth knowledge of accessing the database in the most efficient way.

This is just an example of how the different layers in a client/server application
require different skills. If you have a true separation between the layers, you
may only need one skill profile per component.

 � Maintenance

Separating the presentation logic, business logic and data access logic just
makes it easier to maintain the application. We would not want to have huge
programs mixing GUI code, business logic, and data access routines.

 � Security

Especially in the Internet world, where programs are executed in the browser of
the client, you have to be careful with the code you put in the downloaded
programs. For example, a smart user may try to intercept the downloaded
code and find out the internals of a sensitive account balance application.

 � Performance

Special consideration must be given to the performance aspects of the Web
application. Executing the data access logic as part of the same program that
does the GUI may give different performance results than implementing a
separate data access module on the same server as where the database is
implemented.

 � Reliability

 Copyright IBM Corp. 1999 11

Having a server-side program in charge of data access and eventually
database connectivity gives better opportunities for maintaining the state of
connections to the database than having a direct connection from Internet client
to the database across the network.

 � Scalability

The thinner the client, the more scalable the application will be. Actually, the
only thing we would like to distribute to clients is the front-end of the
application. Ideally, this front-end would have only one server partner to
communicate with. The server partner will take care of accessing the right
database or transaction system on either the same server or another server.

2.2 Java Client/Server Scenarios with OS/390 Today
In this section we provide an update of the various infrastructures and models that
can be used to create a Java client/server application.

 2.2.1 The Client
The client can be either “thin” or “fat.” A thin client will not require any specific
systems software to run an application, except for the base operating system and a
browser. Also, a thin client will not have components of the application stored
locally on the harddisk.

For intranet types of applications we may consider a fat client in very specific
situations, but it is obvious that a fat client will have a higher maintenance and
systems management cost. Also, an application requiring a fat client is less
scalable and has more security exposures than an application using a thin client.

For Internet types of applications, there is no choice: the client has to be thin.

 2.2.2 OS/390
OS/390 is an ideal environment to implement business logic, data access logic, and
“connection” logic to get to databases, files and transaction systems. Scalability
can be achieved easily by using the WebSphere Application Server, or a
tailor-made Java application server, or by just using the socket interfaces of DB2,
CICS or IMS.

In the following sections we present the various possibilities of designing a Web
application using Java-and-WebSphere technology.

 2.2.3 Communication Protocols
When designing a distributed object-oriented application, you may choose between
the following protocols to use between the client and the server:

� HyperText Transfer Protocol (HTTP)

� Remote Method Invocation (RMI)

� Internet Inter-ORB Protocol (IIOP)

 � Direct sockets

Figure 5 on page 13 shows the protocols that are available for OS/390 at the time
of writing of this book.

12 e-business Application Solutions on OS/390 Using Java Vol. I

Java applet or
application

Java servlet

HTTP

Back-end:
TX-server
DB-server
FilesJava RMI

server

Java socket
server

RMI
TCP/IP

C
on

ne
ct

or
C

on
ne

ct
or

C
on

ne
ct

or
C

on
ne

ct
or

Client OS/390

Figure 5. Communication Protocols using OS/390

2.2.3.1 HyperText Transfer Protocol (HTTP)
HTTP is the most widely used and known protocol for Web applications. As shown
in Figure 6, documents are passed back and forth between a Web browser and
Web server using HTTP in most Internet applications.

Browser

Client OS/390 Server

HTTP
serverHTTP GET request

applet

servletSend "static" HTML document

Request servlet

Send "dynamic" HTML

1
1

3

1

2

4

DB2

Figure 6. Communication between Client and OS/390 Server Using HTTP

To do a basic Internet application based on static HTML documents and eventually
Java applets in the front-end, you will only need a HTTP Webserver installed on the
server. However, HTTP is not seen as the strategic protocol for transactional Web
applications with a high throughput and requiring a state.

The java.net package contains classes for use with HTTP.

 Chapter 2. Java Client/Server 13

2.2.3.2 Remote Method Invocation (RMI)
RMI is SUN's standard protocol for communication between Java objects residing
on different computers. It is quite easy to implement, as some IDEs support
automatic generation of the communication layer. RMI is standard supported in
JVMs of 1.1 and higher.

An RMI server application can run stand-alone on OS/390, it does not require a
Web server, and it can perform anything a regular Java application can do on
OS/390.

Ideally, the Java application server should be a multithreaded application, and
connectors should be used to communicate with the back-end systems.

Figure 7 shows an example of an RMI client/server application accessing a DB2
database on OS/390. The DB2 access is done with JDBC calls.

Client / Browser

HTTP
requests

OS/390 Server

Lotus Go
Webserver

EmployeeAccessServerSEmployeeAccessServer
RMI

requests

EmployeeApplet

EmployeeAccess

JDBC classes DB2

Figure 7. An Example of an RMI Application Accessing DB2 on OS/390

2.2.3.3 Internet Inter-ORB Protocol (IIOP)
IIOP is the standard protocol of CORBA. A key component in the CORBA
infrastructure is the “ORB.” Both the client and server will need an ORB to
communicate. On the client side, the ORB may be implemented as a plug-in in the
Web browser. On OS/390, IBM is committed to tie Component Broker's ORB into
the WebSphere Application Server.

Figure 8 on page 15 shows the communication using IIOP/CORBA in a simplified
way.

14 e-business Application Solutions on OS/390 Using Java Vol. I

Client Server

ORBORB
Java

RunTime

Java
Object

Proxy Object

IIOP

Proxy invokes method on remote object using ORB infrastructure

Figure 8. Communication between Client and OS/390 Server Using IIOP

IIOP is a more advanced protocol than HTTP or RMI, as it supports “services,” like
transaction services and messaging services.

At the time of writing, there is no generally available CORBA/IIOP support on
OS/390 yet. IBM's Component Broker/390 will support IIOP in the near future on
OS/390, and IBM CICS Transaction Server for OS/390 Release 3 (LA) will support
incoming IIOP messages from CORBA 2.0 compliant clients.

Refer to Integrating Java with Existing Data and Applications, SG24-5142, for an
overview of CORBA and IIOP Component Broker on OS/390.

 2.2.3.4 Direct Sockets
Figure 9 illustrates the use of a socket server on OS/390.

Cp1047 (UNIX) or Cp437 (MVS)

Java

Java

Non-Java

Java

Non-Java

Java

Cp037 Cp1047 (UNIX)

Socket Client Socket Server
UTF, Unicode

Bytes

Bytes

Server Back-end

Figure 9. Communication between Client and OS/390 Server Using Sockets

 Chapter 2. Java Client/Server 15

You can do almost anything using sockets. Basically, sockets are under the covers
of other protocols too. However, note that when using sockets, you will have to
take care of recovery, security and, eventually, ASCII/EBCDIC conversion yourself.

Most subsystems on OS/390 have a socket interface that can be accessed directly
from a Java applet or application running on the client, but you can also create a
Java application server that handles the client requests and communicates with the
back-end systems on OS/390.

As previously mentioned, ideally the Java application server should be a
multithreaded application and connectors should be used to communicate with the
back-end systems.

2.3 Accessing Back-End Systems on OS/390
It is difficult to consider e-business applications without also thinking of reusing
existing data and programs on OS/390. It is estimated that about 70% of the
mission-critical enterprise data is stored on mainframes running OS/390. Today, a
variety of Java APIs and connectors are available to access the subsystems of
OS/390. Most of them can be used to not only directly access the subsystem from
the client, but also access it from a servlet or JavaServer Page (JSP) running in the
WebSphere Application Server or Lotus Domino Go Webserver Release 5.0. They
all support access from a Java application or a Java application server running on
OS/390.

Figure 10 gives the status of the various APIs, or e-business connectors, as of the
date of publication of this book.

Function Available/planned Direct access from:

DB2 JDBC

SQL/J

Available now

Downloadable

OS/390 applications/
servlets

CICS CICS Gateway for Java

JCICS

Available now

GA planned for 1Q/99

OS/390 appl./ servlets
and TCP/IP clients

CICS/390 Java
Transactions

IMS IMS TCP/IP OTMA
Connection

Available now OS/390 appl./ servlets
and TCP/IP clients

MQSeries MQSeries Client for
Java

MQSeries bindings for
OS/390

Available now

Available now in Beta

OS/390 appl./ servlets
and TCP/IP clients

OS/390 appl./ servlets

VSAM files Record I/O Technology Preview OS/390 appl./ servlets

C/C++ modules JNI Available OS/390 appl./ servlets

ASM, COBOL, PL/1 JNI Available Via JNI (C stub)

GUI AWT via X11
Remote AWT

Available
Downloadable

N/A
N/A

Figure 10. Available Java APIs/Connectors for Accessing Back-End Systems on OS/390

16 e-business Application Solutions on OS/390 Using Java Vol. I

In this redbook we document most of the connection scenarios that have not yet
been documented in Integrating Java with Existing Data and Applications on
OS/390, SG24-5142.

 Chapter 2. Java Client/Server 17

18 e-business Application Solutions on OS/390 Using Java Vol. I

 Chapter 3. OS/390 Components

In this chapter we give an overview of the key products available on OS/390 to
support Web-enabled e-business applications.

In the context of this book, we assume a physical two-tier configuration, where
OS/390 runs the business logic and data access logic, and the Web client runs the
presentation logic. In order to run business logic on OS/390 using the e-business
Application Framework, the minimum to be installed is a Web Application Server
like WebAS, and Java support. Back-end systems like IMS, CICS, or MQSeries
are optional components, but most OS/390 installations do run at least a
transaction monitor and a relational database. For this reason we provide a brief
section about each of them.

3.1 Web Application Server Software on OS/390
IBM introduced the first release of the Webserver for OS/390 in December 1995.
This release was called the IBM Internet Connection Server for MVS/ESA. Since
December 1995, the Webserver for OS/390 has changed its name, as new features
became available. These names included IBM Internet Connection Server for
MVS/ESA, IBM Internet Connection Secure Server for OS/390, and Lotus Domino
Go Webserver. At the time of writing, IBM's Webserver on OS/390 is called Lotus
Domino Go Webserver Release 5.0.

In June 1998, IBM introduced Lotus Domino Go Webserver Release 5.0, including
a component called ServletExpress (SE) 1.0. In November 1998, ServletExpress
was replaced with the WebSphere Application Server for OS/390 V1.0 (WebAS).
ServletExpress or WebSphere Application Server is the component that supports
servlets for Lotus Domino Go Webserver Release 5.0.

In March 1999, WebSphere Application Server for OS/390 V1.1 will be a standard
plug-in of IBM HTTP Server for OS/390 Version 5.1. The IBM HTTP Server will be
tied into OS/390 Version 2 Release 7, delivering the same functionality as
WebSphere Application Server Version 1.1 on other platforms.

Lotus Domino Go Webserver Release 5.0 includes the following features:

 � CGI Support
� Remote Server Configuration
� EBCDIC/ASCII files access

 � Thread-level security
 � Surrogate UserID
 � MVS UserID
� SSL V2 and V3

 � Proxy functions
� Internet Connection API
� Logging and reporting

 � Performance Enhancements
 � SNMP MIB
� Automatic Browser Detection
� PICS Server Support

 � Cookie support
 � Page counter

 Copyright IBM Corp. 1999 19

 � Certificate authentication
 � Certification authority
� Internal Java Servlet Support

 � FASTCGI Support
 � RAS enhancement
� Cryptographic key size selection
� Export security 128-bit encryption
� Web Traffic Express

 � LDAP
 � Y2K-ready

For more information on the OS/390 Webserver, refer to the following publications:

� Domino Go Webserver 5.0 for OS/390: Webmaster's Guide, SC31-8691
� Domino Go Webserver 5.0 for OS/390: Planning for Installation, SC31-8690
� Domino Go Webserver 5.0 for OS/390: Messages, SC31-8692
� OS/390 R6 Domino Go Webserver 5.0 Web Programming Guide, SC34-4743

 3.2 Java Environment
Today, programs written in the Java language are supported on OS/390 in different
ways. In the following sections, we give a brief overview of what is possible today.

 Attention

In this redbook we use the term HPJ for the native code compiler for Java on
OS/390 because HPJ was IBM's internal code name.

However, the official product name is VisualAge for Java, Enterprise Edition for
OS/390.

 3.2.1 Java Bytecode
Java can be run as bytecode on OS/390 through a Java Virtual Machine (JVM).
The Java Virtual Machine has been generally available on OS/390 since September
1997 and is implemented as a so-called “external” JVM. Figure 11 on page 21
shows where the JVM is located on OS/390.

20 e-business Application Solutions on OS/390 Using Java Vol. I

OS/390

UNIX Systems
Services

JVM

HFS

HFS

HFS

HFS

Figure 11. Implementation of the JVM on OS/390

Lotus Domino Go Webserver Release 5.0 and WebSphere Application Server for
OS/390 V1.1 use a so-called “internal” JVM to run servlets. The JVM product as
such, being the Java classes and C DLLs, is the same as used in the external
JVM. When using ServletExpress or WebAS, you actually point to the JVM classes
and DLLs in the properties files.

In the near future, IMS and CICS will implement similar “internal” JVMs to run Java
transactions, while DB2 will implement a similar “internal” JVM to run Java stored
procedures.

Servlets are currently only supported in bytecode form. Refer to Integrating Java
with Existing Data and Applications on OS/390, SG24-5142, for more details about
the JVM on OS/390.

3.2.2 Java Object Code
In October 1998, IBM released the Java Native Code Compiler for OS/390, also
known as “High Performance Java for OS/390” (HPJ/390) and “High Performance
Compiler for Java for OS/390” (HPCJ/390). This compiler turns Java bytecode into
object code, with the primary objective of simply speeding up the execution of the
application.

The Java object code can be executed as a Java application in the OS/390 UNIX
System Services or as a CICS transaction in CICS Transaction Server 1.3. It
needs a specific environment in order to compile and run the code and in 5.2,
“VisualAge for Java, Enterprise Edition for OS/390” on page 58 we discuss the
configuration of the environment for the native code compiler. In Chapter 18,
“Using HPJ/390 - Scenarios” on page 273, we give a brief overview of the usage of
HPJ/390.

 Chapter 3. OS/390 Components 21

3.2.3 Java e-business Connectors on OS/390
Java components can be integrated with other subsystems on OS/390 in many
ways. Integrating Java with Existing Data and Applications, SG24-5142 discusses
several e-business connectors and how they can be applied in an Internet
environment. Figure 12 gives a brief overview of the integration between Java
applications and servlets on one side, and existing database and transaction
servers on the other side.

Language
Environment

T
C

P
/IP

15����15����

F
ire

w
al

l T
ec

hn
ol

og
y

T
X

 S
er

ve
r

Webserver

M
Q

S
er

ie
s

D
B

 S
er

ve
r

HTTP

External JVM

Applications

Servlets

Internal JVM

Figure 12. Integration between Java and Subsystems on OS/390

3.3 Back-End Systems on OS/390
In 3.3.1, “DB2” through 3.3.5, “MVS Datasets” on page 25, we briefly highlight how
Java is supported in the major subsystems on OS/390.

 3.3.1 DB2
In order for Java applications to use DB2, the programmer can use either JDBC or
SQLJ to access DB2 data from Java. Both methods can be used from a servlet or
a JavaServer Page or a Java application.

The main difference between JDBC and SQLJ is that JDBC uses “dynamic” SQL
calls and SQLJ uses “static” SQL calls. From a programming point of view, they
are very similar.

SQLJ has the advantage that it runs faster, but you need to do a few steps more in
order to prepare the program. You can find all the details regarding this process in
9.2, “SQLJ Implementation for DB2 on OS/390” on page 128, including examples.

A minor inconvenience that we found during the writing of this book was that, as
the SQLJ statements have a specific syntax (a statement always starts with a “#”),
it is hard to fully develop the code in an Integrated Development Environment
(IDE).

In contrast, JDBC runs slower, but it is easier to prepare the program.

22 e-business Application Solutions on OS/390 Using Java Vol. I

 3.3.1.1 JDBC
The DB2 for OS/390 JDBC driver provides Java applications a program interface
(API) to access DB2 on OS/390 using a local DB2 attachment (RRS). The DB2 for
OS390 JDBC driver is implemented as a JDBC-ODBC bridge (known as a Type 1
JDBC driver). A Type 1 driver maps all JDBC method invocations to ODBC calls.
Therefore, the DB2 for OS390 V5.1 JDBC driver requires that the DB2 for OS/390
Version 5.1 CLI driver support be installed.

To understand JDBC, it is helpful to know about its purpose and background. Sun
Microsystem's JavaSoft developed the specifications for a set of APIs that allow
Java applications to access relational data. The purpose of the APIs is to provide a
generic interface for writing platform-independent applications that can access any
SQL database. The APIs are defined within classes that support basic SQL
functionality for connecting to a database, executing SQL statements, and
processing results. Together, these interfaces and classes represent the JDBC
capabilities by which a Java application can access relational data.

JDBC offers a number of advantages for accessing DB2 data:

� Using the Java Language, you can write an application on any platform and
execute it on any platform with a Java Virtual Machine (JVM) installed.

� JDBC combines the benefit of running your applications in an OS/390
environment with the portability and ease of writing Java applications.

� The ability to develop an application once and execute it anywhere offers the
potential benefits of reduced development, maintenance, and systems
management cost, and flexibility in supporting diverse hardware and software
configurations.

� The JDBC interface offers the ability to change between drivers and access a
variety of databases without recoding your Java programs.

� JDBC applications do not require a precompile or bind.

 3.3.1.2 SQLJ
SQLJ is another interface from Java applications to DB2. SQLJ provides support
for embedded static SQL statements in Java applications. It is the static SQL
equivalent of JDBC. Some of the major differences between SQLJ and JDBC are:

� In most cases, SQLJ source programs are smaller than equivalent JDBC
programs because the SQLJ program preparation process provides
programming interfaces that you must write explicitly in your JDBC programs.

� SQLJ does data type checking during the program preparation process and
enforces strong typing between table columns and Java host expressions.
JDBC passes values to and from SQL tables without compile time data type
checking.

� In SQLJ programs, you can embed Java host expressions in SQL statements.
JDBC requires a separate call statement for each bind variable, and specifies
the binding by position numbers.

IBM announced early availability of SQLJ support in DB2 for OS/390 Version 5 via
APAR PQ19814 on October 30, 1998.

 Chapter 3. OS/390 Components 23

 3.3.1.3 Resource Management
When using JDBC or SQLJ on OS/390, you will need to select the type of
attachment facility to connect to DB2. JDBC or SQLJ can use either the DB2 for
OS/390 Call Attachment Facility (CAF) or the DB2 for OS/390 Recoverable
Resource Manager Services Attachment Facility (RRSAF).

An application program can use the Recoverable Resource Manager Services
Attachment Facility (RRSAF) to connect to and use DB2 to process SQL
statements, commands, or Instrumentation Facility Interface (IFI) calls. RRSAF
uses OS/390 Transaction Management and Recoverable Resource Manager
Services (OS/390 RRS).

CAF is a part of the DB2 code that allows some of the same function as RRSAF.
CAF only requires DB2 for OS/390 Version 5.1, and RRSAF requires both DB2 for
OS/390 Version 5.1 and OS/390 RRS, which is included with OS/390 Version 2
Release 5 and higher.

For Java servlets using JDBC or SQLJ on OS390, resource protection is very
important. When making a connection to DB2, the connection can be made either
in the servlet init() method or in the doGet or doPost method.

� By performing the connection in the doGet or doPost method, the connection
and disconnection to DB2 is performed for every client request. In this
scenario, use either CAF or RRSAF.

� By using the init() method to connect to DB2, the connection is only made at
the initialization time (or load time) of the servlet. In this scenario, you can only
use RRSAF. RRSAF is the facility that allows you to maintain a connect for the
life of the servlet.

For more information on JDBC or SQLJ, refer to DB2 for OS/390 Application
Programming Guide and Reference for Java Version 5, SC26-9547, which is
available from URL:

 http://www.ibm.com/software/data/db2/os39ð/sqlj.html

3.3.2 CICS and Java
CICS on OS/390 supports Java in two ways:

1. External Java applications can communicate with a CICS transaction via a
connector, called the CICS Gateway for Java. The CICS Gateway for Java can
accept input from remote clients via TCP/IP, or from a “local” client on the
same OS/390.

The local Java client can be a Java servlet, a JavaServer Page or a Java
application. Logical three-tier applications can be created easily by calling the
gateway from a servlet or JavaServer Page.

2. CICS transactions can be written in the Java language and can be run as a
CICS transaction in CICS Transaction Server 1.3. In this case the Java
language can be used as a substitute for C, COBOL or PL/1.

More details about the CICS Gateway for Java can be found in Chapter 10,
“Develop Java Solutions for CICS on OS/390” on page 155. Regarding the CICS
support for transactions written in Java, another redbook is planned to be published
in early 1999.

24 e-business Application Solutions on OS/390 Using Java Vol. I

 3.3.3 MQSeries
There are two packages that are relevant if you want to build applications on
OS/390:

� MQSeries Bindings for Java on OS/390

A Java program can communicate with an MQSeries Manager using the
MQSeries Bindings for Java on OS/3903 .

As MQSeries has connectivity options to CICS, IMS and DB2, it is not hard to
establish a connection between a Java program on one side and another
program in any of the MQSeries-supported subsystems on the other side.

The Java client program can be a servlet or a JavaServer Page or a Java
application.

Refer to 11.3, “Access to IMS Using a Servlet/MQI” on page 235 for details on
the MQSeries Bindings for Java.

The beta package can be downloaded from URL:

 http://www.ibm.com/software/ts/mqseries/beta/mqmvsjb.html

� MQSeries Client for Java

This package is discussed in detail in Integrating Java with Existing Data and
Applications on OS/390, SG24-5142. It gives you APIs to use on the client
side, from both applets and Java applications, that allow you to send and
receive messages using the MQ protocol. You will not need any code on your
local hard disk to use this package. The package is fully Java-enabled and can
be dynamically donwloaded into your browser.

 3.3.4 IMS
IMS supports Java directly by means of a connector called TCP/IP OTMA
Connection (TOC). The IMS TOC converts incoming TCP/IP messages into the
IMS-specific Open Transaction Manager Access (OTMA) protocol. APIs are
available for the Java client program to build the incoming messages and receive
back the result messages. The IMS TOC runs on OS/390, preferably on the same
system as the back-end IMS system.

Another “connector” is the IMS/ESA OTMA Callable Interface, program number
5655-158. This interface provides APIs that can be used to communicate with IMS
from a C program using the OTMA protocol. No direct support from Java is
available yet, but you can consider writing your own Java classes using JNI calls to
a C program issuing the C/I calls.

 3.3.5 MVS Datasets
Access to MVS datasets from Java is currently supported on OS/390 by the Java
Record IO (JRIO) product. At the time of writing, the product is in a “technology
preview” status and is downloadable from URL:

 http://www.ibm.com/s39ð/java/jrio.html

JRIO supports the following datasets:

3 The MQSeries Bindings for Java on OS/390 are in beta at the time of writing.

 Chapter 3. OS/390 Components 25

 � Sequential

 � Partitioned

� Entry sequence VSAM

� Key sequence VSAM

Of course, the JRIO classes can be used in servlets and JavaServer Pages,
making it easy to create a Web interface for your MVS datasets.

3.4 CORBA Server on OS/390
Common Object Request Broker Architecture (CORBA) is the standard distributed
object architecture developed by the Object Management Group consortium (OMG).
Since OMG was founded, its mission has been to define open standards in
software development so that objects written by different vendors in different
languages, running on any platform, could interoperate in a distributed environment.

IBM plans to introduce CORBA for OS/390 as a component of IBM Component
Broker for OS/390.

Refer to Integrating Java with Existing Data and Applications on OS/390,
SG24-5142, for more information.

3.5 RMI Server on OS/390
Java uses a distributed computing mechanism called Remote Method Invocation
(RMI). Using RMI, you can use a remote object on a server from a client, send
objects from a client to a server where they can run, and implement easily
maintainable, distributed objects across a corporation or Internet.

RMI can be used on OS/390 today; however, RMI currently has no security model.
The use of RMI should be restricted to secured cooperative environments, such as
corporate intranets. Sun will include Internet Inter-ORB Protocol (IIOP) in the next
iterations of RMI, so that RMI communications will benefit from the security model
of CORBA. Refer to Integrating Java with Existing Data and Applications on
OS/390, SG24-5142, for more information.

26 e-business Application Solutions on OS/390 Using Java Vol. I

Part 2. Configure Java Application Environment on OS/390

In this part we describe the minimum configuration you need on OS/390 to run
Java client/server applications. Within the context of this book we assume that you
will need a Webserver on OS/390.

Of course, you can also build applications by means of your own Java application
server on OS/390 that handles the traffic with the clients and the access to files,
databases and transactions, but the Webserver will give you many standard
features that you otherwise would have to take care of yourself.
The latest version of WebAS supports both servlets and JavaServer Pages. You
can call Beans from servlets and JSPs that can do anything a regular Java
application could do.

The configuration for the Webserver is described in Chapter 4, “Configuration of
the OS/390 Web Server” on page 29.

In this part we also describe the configuration for the latest version of VisualAge for
Java: VisualAge for Java, Enterprise Edition for OS/390. VisualAge for Java,
Enterprise Edition for OS/390 goes beyond the workstation and adds new features
on OS/390. This gives you a true cross-platform development environment for
Java specifically supporting the OS/390 developer.

5.2, “VisualAge for Java, Enterprise Edition for OS/390” on page 58 describes the
configuration of the OS/390-related components and Chapter 6, “Configuring
VisualAge for Java on the Workstation” on page 71 gives you all the details you
need in order to set up the workstation to use the OS/390 features, called ET/390.

 Copyright IBM Corp. 1999 27

28 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 4. Configuration of the OS/390 Web Server

In this chapter we discuss the configuration of the Lotus Domino Go Webserver
Release 5.0 including ServletExpress and WebSphere Application Server for
OS/390 V1.1.

 Important

Before reading this chapter, find out which Webserver product you want to
configure:

� Domino Go Webserver Version 5.0, including ServletExpress, or

� Domino Go Webserver Version 5.0, including WebSphere Application
Server Version 1.1

4.1 Configuring Lotus Domino Go Webserver Release 5.0
Once the installation tasks for the Domino Go Webserver have been completed and
some basic configuration done, you are ready to start serving HTML pages to your
clients. The following section contains additional tips for configuring Domino Go
Webserver Version 5.

4.1.1 Setting Up Server Configuration Files
The Lotus Domino Go Webserver Release 5.0 configuration file (often referred to
as the httpd.conf file) may be located in any HFS directory. If you plan to run
multiple servers, you will need multiple configuration files, one per server. You can
place all of these in the /etc directory, or you can have them located in their own
managed directories, such as /web/server1/httpd.conf and /web/server2/httpd.conf.

In managing your configuration file, you can either use the online Configuration and
Administration forms (the server must be running to use these), or you can edit the
configuration file manually.

We assume that you have started your server using the default IBM-supplied
configuration file. You can now continue using this file and customize it to your
needs. Because of the many parameter and directive changes from release to
release, you cannot use a downlevel copy of the httpd.conf file with a new level of
the Domino Go Webserver. If migrating to a new release, it is best to start out with
the sample httpd.conf file for that new release and retro-fit your local customization
to it.

After installation, your server has one authorized user ID that can be used to
access the Configuration and Administration forms. By default, the authorized user
ID is WEBADM. If you selected a different user ID during Domino Go Webserver
installation, you should edit the httpd.conf file and change all occurrences of
WEBADM,webadm to the user ID you selected.

 Copyright IBM Corp. 1999 29

4.1.1.1 Basic Single Server Configuration
If you followed the standard installation procedure for the Domino Go Webserver,
no customization work is needed to enable the Webserver to run.

Standard, in this case, means the following:

� The Webserver files have been installed in /usr/lpp/internet/server_root Check if
Frntpage.html exists in /usr/lpp/internet/server_root/pub

� You are using the default TCP/IP port (80) to access the Webserver

If you start up your Webserver, you should be able to access it using a Web
browser through TCP/IP. However, you will be prompted to provide a valid OS/390
user ID and a password because the initial setting requires this.

The following describes some of the first changes you will probably want to make to
the IBM-supplied default configuration file.

Specify the Default Access Control User ID: If you wish to allow access to your
Webserver to anyone, without the need for user verification, you might want to
change the “UserID” directive from

 UserID %%CLIENT%%

to

 UserID PUBLIC

This assumes that you are using an OS/390 (RACF) user ID of PUBLIC as your
default access user ID.

Restarting the Webserver after making this change should enable you to access
the Webserver's home page without providing a user ID.

Specify the Authorized Administrator User ID: After installation, your server has
one authorized user ID that can be used to access the Configuration and
Administration forms. By default, the authorized user ID is WEBADM. If you
selected a different user ID during Domino Go Webserver installation, you should
edit the httpd.conf file and change all occurrences of WEBADM and webadm to the
user ID you selected. Figure 13 shows the default statements that you will need to
update if you selected a different user ID.

However, access to the configuration page in order to work with the remote
administration forms will still be protected. This will be enforced by the definition
shown in Figure 13.

Protection IMW_Admin {

 ServerId IMWEBSRV_Administration

 AuthType Basic

 PasswdFile %%SAF%%

 Mask WEBADM,webadm

 }

Protect /admin-bin/\ IMW_Admin WEBADM

 Protect /reports/\ IMW_Admin WEBADM

 Protect /Usage\ IMW_Admin WEBADM

Figure 13. Webserver Administration Protection Directives

30 e-business Application Solutions on OS/390 Using Java Vol. I

SSL Security Customization for Non-SSL Mode: If you followed our
recommendation and started with the supplied sample configuration file as shipped,
the configuration directives shown in Figure 14 on page 31 appear in your
configuration file. They are related to SSL security.

 SSLClientAuth off

 sslmode on

 sslport 443

 normalmode on

 keyfile key.kdb

Figure 14. SSL Directives in IBM-Supplied Configuration File (httpd.conf)

keyfile

There is no requirement to change these parameters.

Note: However, if you leave these parameters as is, you will get the following
error message, which can be seen in the httpd.errors log when starting the server:

+ð5ðð SSL support initialization failed,

server will run only in non-secure mode without listening on ssl port

This message indicates that no setup has been done for SSL. However, the
Webserver can still be used as a normal “non-secure” server.

You can avoid getting these errors by commenting out the directives shown in
Figure 14.

If you want to set up SSL, refer to Enterprise Web Serving with the Lotus Domino
Go Webserver for OS/390, SG24-2074.

4.1.2 Locating Your Web Content
This section shows you how and where to set up your own Web content without
affecting or being affected by the IBM Web content that is provided with Domino Go
Webserver. This is important because if you place your own Web content in the
file system that IBM provides, you might find it difficult to upgrade to another
version of the Webserver, or even apply maintenance.

4.1.2.1 Standard Lotus Domino Go Webserver Release 5.0
Content Setup
The Lotus Domino Go Webserver Release 5.0 server is defined to look for Web
pages in /usr/lpp/internet/server_root/pub, with some exceptions for “special pages”
(such as remote configuration forms). This is enforced by the definitions shown in
Figure 15 on page 32.

 Chapter 4. Configuration of the OS/390 Web Server 31

#

Pass /admin-bin/webexec/\ /usr/lpp/internet/server_root/admin-bin/webexec

Exec /cgi-bin/\ /usr/lpp/internet/server_root/cgi-bin/\

Exec /admin-bin/\ /usr/lpp/internet/server_root/admin-bin/\

Exec /Docs/admin-bin/\ /usr/lpp/internet/server_root/admin-bin/\

These are the pass rules for server administration

#

Pass /icons/\ /usr/lpp/internet/server_root/icons/\

Pass /Admin/\.jpg /usr/lpp/internet/server_root/Admin/\.jpg

Pass /Admin/\.gif /usr/lpp/internet/server_root/Admin/\.gif

Pass /Admin/\.html /usr/lpp/internet/server_root/Admin/\.html

Pass /Docs/\ /usr/lpp/internet/server_root/Docs/\

Pass /reports/javelin/\ /usr/lpp/internet/server_root/pub/reports/javelin/\

Pass /reports/java/\ /usr/lpp/internet/server_root/pub/reports/java/\

Pass /reports/\ /usr/lpp/internet/server_root/pub/reports/\

Pass /img-bin/\ /usr/lpp/internet/server_root/img-bin/\

\\\ ADD NEW PASS RULES HERE \\\

Pass /\ /usr/lpp/internet/server_root/pub/\

Figure 15. Standard Web Content Setup Directives

These Exec and Pass statements force the Webserver to search for content at
particular locations in the HFS. This approach also has the effect of hiding the
structure of your file system from users of Web browsers.

The following HTML example can be used to show how the Webserver resolves the
requests. Assume that a Web browser makes a request for the home page of a
particular site. That home page is shown in Figure 16.

<html>

<head>

<TITLE>Lotus Domino Go Webserver</TITLE>

</head>

<body bgcolor="#FFFFFF">

 .1/
<hr>

<DL>

<DT>

CONFIGURATION AND ADMINISTRATION

FORMS

<DD>To set up, configure, and administer the Lotus Domino Go Webserver.

Tune your browser first.</fon

<P>

<DT>

LOTUS DOMINO

GO WEBSERVER WEB SITE

<DD>

To find useful information.<P>

<DT>

LOTUS DOMINO GO WEBSERV

<DD>

To get help when you need it.

<P>

<DT>HOW DO I GET STARTED?

<DD>Serving pages, and other basic tasks

 .

 .

 .

 .

Figure 16. HTML Example - Frntpage.html

This HTML file is found by the Webserver and is sent to the client.

32 e-business Application Solutions on OS/390 Using Java Vol. I

The client browser reads the file and finds the first reference statement in this
HTML file (line .1/ in Figure 16). This causes another GET request to be made to
the server. The request would look like this:

GET /Admin/lgmast.gif HTTP/1.ð

The server receives this request, looks for a matching configuration directive, and in
this case finds the following as shown in Figure 15 on page 32:

 Pass /Admin/\.gif /usr/lpp/internet/server_root/Admin/\.gif

The Webserver therefore translates the request to:

 /usr/lpp/internet/server_root/Admin/lgmast.gif

It is important that you understand how this example was mapped by the
Webserver to actual file system locations. Each request is mapped according to
the HTTP rules and to the configuration directives (in a top-to-bottom, first match
approach).

4.1.2.2 Web Content Setup Recommendations
Our recommendations are:

� Do not modify IBM-provided default content.

� Do not mix IBM-provided default content with your own content.

� Do not use the following locators assumed by IBM default content for your own
URLs:

/cgi-bin/ Used to address CGI programs.

/admin-bin/ Used to address CGI programs for remote administration
purposes. WEBADM password needed to access.

/Docs/admin-bin/ Used to address CGI programs for documentation.

/icons/ Used to address server icons for tree views and other
purposes.

/Admin/ Used for remote administration purposes.

/Docs/ Used for the standard documents provided with the
Webserver.

/img-bin/ Used for clickable icons.

/reports/ Used to access reports generated by service tasks from
the log files.

/reports/javelin/ Used to access reports generated by Web Traffic
Express.

/reports/java/ Used to access reports generated by Java.

� Use a separate HFS data set for your own Web content, mounted at a different
mount point than the /usr/lpp/internet/server_root path.

The following procedure shows you an easy way to start with your Webserver
setup:

1. Allocate a new HFS data set for your Web content.

2. Mount this HFS to a mount point such as /web/server1/.

3. Create the following directories:

 Chapter 4. Configuration of the OS/390 Web Server 33

/web/server1/pub Default directory containing your HTML, GIF, and
other files.

/web/server1/our-cgi Default directory containing your CGI programs.
/web/server1/reports Directory containing the server reports.
/web/server1/logs Directory containing the server logs.

4. We also recommend that you allocate and mount a separate HFS for each of
the server logs and reports.

5. Modify the Exec and Pass statements in the httpd.conf file as shown in
Figure 17.

#

Exec /our-cgi/\ /web/server1/our-cgi/\
Exec /cgi-bin/\ /usr/lpp/internet/server_root/cgi-bin/\

Exec /admin-bin/\ /usr/lpp/internet/server_root/admin-bin/\

Exec /Docs/admin-bin/\ /usr/lpp/internet/server_root/admin-bin/\

These are the pass rules for server administration

#

Pass /icons/\ /usr/lpp/internet/server_root/icons/\

Pass /Admin/\.jpg /usr/lpp/internet/server_root/Admin/\.jpg

Pass /Admin/\.gif /usr/lpp/internet/server_root/Admin/\.gif

Pass /Admin/\.html /usr/lpp/internet/server_root/Admin/\.html

Pass /Docs/\ /usr/lpp/internet/server_root/Docs/\

Pass /img-bin/\ /usr/lpp/internet/server_root/img-bin/\

Pass /reports/javelin/\ /usr/lpp/internet/server_root/pub/reports/javelin/\

Pass /reports/java/\ /usr/lpp/internet/server_root/pub/reports/java/\

#Pass /reports/\ /usr/lpp/internet/server_root/pub/reports/\

Pass /reports/\ /web/server1/reports/\
#Pass /\ /usr/lpp/internet/server_root/pub/\

Pass /Server/\ /usr/lpp/internet/server_root/pub/\
Pass /\ /web/server1/pub/\

Figure 17. Single Server - Modified Web Content Setup Directives

This modification will force the Webserver to search in your /web/server1/pub
directory for everything but the IBM-provided default content.

The HTML example in Figure 18 shows you how to set up your own home
page using the settings shown in Figure 17, and still be able to access the
remote administration forms as before. This file should be called “index.html”
or “Welcome.html” and should be placed in /web/server1/pub.

<html><head>

<title>DGW Project - Roland's Web Server</title>

</head><body bgcolor="#FFFFFF">

<h1>Welcome to my home page </h1>

This is Roland Trauner's Web server running on OS/39ð.

 ...

<hr>

Follow this link to access the

Remote Server Administration.

</html>

Figure 18. Single Server - HTML Example for a Home Page (index.html)

6. Change the ServerRoot statement to /web/server1.

34 e-business Application Solutions on OS/390 Using Java Vol. I

7. Change the logging and reporting statements to the appropriate directories, as
shown in Figure 19 on page 35.

AccessLog /web/server1/logs/httpd-log

RefererLog /web/server1/logs/referer-log

AgentLog /web/server1/logs/agent-log

ErrorLog /web/server1/logs/httpd-errors

CgiErrorLog /web/server1/logs/cgi-error

AccessLogArchive none

AccessLogExpire 15

AccessLogSizeLimit ð

ErrorLogArchive none

ErrorLogExpire 15

ErrorLogSizeLimit ð

AccessReportRoot /web/server1/reports

AccessReportDoDnsLookup Off

Figure 19. Single Server - Logging and Reporting Changes to httpd.conf

8. There are more modifications you will do to the server configuration file,
depending on the functions you wish to use. Figure 20 shows some changes
we made.

SMF All

SMFRecordingInterval ðð:15

SNMP On

SNMPCommunity public

WebMasterEMail trauner@de.ibm.com

service /cgi-bin/apicounter\ /usr/lpp/internet/bin/htcounter.so:HTCounter\

service /cgi-bin/datetime\ /usr/lpp/internet/bin/htcounter.so:HTCounter\

service /cgi-bin/text2gif\ /usr/lpp/internet/bin/htcounter.so:HTCounter\

UseMetaFiles Off

DirAccess Off

CacheLocalFile /web/server1/pub/index.html

PersistTimeout 1ð seconds

Figure 20. Single Server - Additional Modifications to httpd.conf

Other configuration file changes depend on the purpose and content of your
Webserver. You may also need to change some parameters in order to tune the
server. For more detailed information on all valid configuration file directives, see
Lotus Domino Go Webserver: Webmaster's Guide Release 5.0 for OS/390,
SC31-8691.

 Chapter 4. Configuration of the OS/390 Web Server 35

4.2 WebSphere Application Server (WebAS) and ServletExpress (SE)
In this section we discuss the configuration of WebSphere Application Server for
OS/390 V1.1 (WebAS) and ServletExpress (SE). Most of the configuration options
are the same between WebSphere Application Server for OS/390 V1.1 and
ServletExpress. For this reason, we will refer to WebAS throughout this chapter,
unless there are differences.

Configuring WebAS can be performed by using WebAS Manager or by updating
WebAS properties files. The WebAS Manager provides a graphical user interface
using a Java Applet application. The interface can be used for configuring and
managing servlets running on the WebSphere Application Server.

Most changes you make to configuration parameters from within the WebAS
Manager take effect immediately and do not require you to restart the Webserver,
eliminating server downtime. The WebAS Manager applet interface is, in fact, an
example of an applet-to-servlet communication. The applet communicates with a
servlet running under the WebSphere Application Server which manages the
Webserver servlet environment. All this is done dynamically and “on the fly.”

Note: Some changes will require the Webserver to be restarted. These include
any changes to the listening port, the parameters on the Basic Setup page, and
selective updates made to the jvm.properties file to control logging. Updating the
WebAS properties files directly will require a restart of the Webserver. We discuss
some useful direct updates at the end of this section.

4.2.1 Configuring WebSphere Application Server for OS/390 V1.1
WebSphere Application Server for OS/390 V1.1 is shipped and packaged as part of
the Lotus Domino Go Webserver Release 5.0 if you run OS/390 Release 5 or 6,
and part of IBM HTTP Server Version 5.1 if you run OS/390 Release 7. The
installation instructions are included in the WebAS Directory. Customers that
currently have Lotus Domino Go Webserver Release 5.0 with SE can order
WebSphere Application Server for OS/390 V1.1 to replace SE. See the following
documents for details:

� Program Directory for Domino Go Webserver for OS/390, GI10-6780-00

� Domino Go Webserver 5.0 for OS/390: Planning for Installation, SC31-8690

� Domino Go Webserver 5.0 for OS/390: Getting Started, included in the
package

During installation, the WebAS product, by default, is loaded in its own HFS
dataset. It is mounted at /usr/lpp/WebSphere for WebAS and
/usr/lpp/ServletExpress for SE.

Note: It is recommended that you first customize and start the Domino Go
Webserver without WebAS to test that you can successfully serve HTML pages
before you start the WebAS customization.

After you have completed the SMPE work for WebSphere Application Server, you
will need to run the WebAS post-installation tool
/usr/lpp/WebSphere/AppServer/config/postinstall.sh for WebAS or
/usr/lpp/ServletExpress/bin/SEconfig for SE. The tool is used to add specific
WebAS directives to your httpd.conf file and setup WebAS or SE properties files.

36 e-business Application Solutions on OS/390 Using Java Vol. I

For more information, refer to the installation manual for WebSphere Application
Server or ServletExpress.

The postinstall.sh for WebAS will add the directives to your httpd.conf file, as
shown in Figure 21.

ServerInit /usr/lpp/WebSphere/AppServer/lib/libadpter.so:AdapterInit

 .1/ /usr/lpp/WebSphere/AppServer/properties/server/servlet/servletservice/
 .1/ /servletservice/jvm.properties
 .

 .

Service /\.jhtml /usr/lpp/WebSphere/AppServer/lib/libadpter.so:AdapterService

Service /\.jsp /usr/lpp/WebSphere/AppServer/lib/libadpter.so:AdapterService

Service /servlet/\ /usr/lpp/WebSphere/AppServer/lib/libadpter.so:AdapterService

Pass /IBMWebAS/samples/\ /usr/lpp/WebSphere/AppServer/samples/\

Pass /IBMWebAS/Docs/\ /usr/lpp/WebSphere/AppServer/system/admin/\

Pass /IBMWebAS/doc/\ /usr/lpp/WebSphere/AppServer/doc/\

Pass /IBMWebAS/system/admin/\ /usr/lpp/WebSphere/AppServer/system/admin/\

Pass /IBMWebAS/\ /usr/lpp/WebSphere/AppServer/web/\

ServerTerm /usr/lpp/WebSphere/AppServer/lib/libadpter.so:AdapterExit

Figure 21. Changes in httpd.conf after Running postinstall.sh

Notes:

.1/ These lines have been split for redbook printing purposes; however, in
the real httpd.conf file they must be typed on one single line.

The SEconfig tool for SE will add the directives to your httpd.conf file, as shown in
Figure 22.

ServerInit /usr/lib/libadpter.so:AdapterInit

 .1/ /usr/lpp/ServletExpress/properties/server/ServletExpress/servletservice
 .

 .

Service /\.jhtml /usr/lib/libadpter.so:AdapterService

Service /\.jsp /usr/lib/libadpter.so:AdapterService

Service /servlet/\ /usr/lib/libadpter.so:AdapterService

 .

 .

Pass /ServletExpress/resources/\ /usr/lpp/ServletExpress/web/resources/en_US/\

Pass /ServletExpress/Docs/\ /usr/lpp/ServletExpress/system/en_US/admin/\

Pass /ServletExpress/\ /usr/lpp/ServletExpress/web/\

 .

ServerTerm /usr/lib/libadpter.so:AdapterExit

Figure 22. Changes in httpd.conf by the SEconfig Tool

Notes:

.1/ These lines have been split for redbook printing purposes; however, in
the real httpd.conf file they must be typed on one single line.

 Chapter 4. Configuration of the OS/390 Web Server 37

The postinstall and SEconfig tools also update the jvm.properties file with local path
information such as JAVA_HOME and the WebAS installation path.

Note: The JAVA_HOME value is obtained from the current setting of the
JAVA_HOME environment variable in your shell session. You can issue the “echo
$JAVA_HOME” command in the shell to verify proper directories of the JDK. In
addition, you can issue “java -fullversion” to verify that you have the desire release.
At the time of writing, WebAS supported JDK 1.1.1 and 1.1.4 as well as 1.1.6.

4.2.2 WebAS Properties Files
The WebAS properties files are used to control the functionality of the WebSphere
Application Server.

The properties files can be updated either by WebAS Manager or by manually
updating the files directly. These files are located in directory:
/usr/lpp/WebSphere/AppServer/properties/server/servlet/servletservice for WebAS
and directory /usr/lpp/ServletExpress/properties/server/ServletExpress/servletservice
for SE.

Because the properties files are part of the /usr/lpp/WebSphere or
/usr/lpp/ServletExpress, they may be overlaid if you install maintenance or upgrade
with SMPE. Since these files will be customized either through WebAS or SE
Manager or manually, we suggest that you take a full copy of these libraries and
leave SMPE libraries unchanged. For example, you can copy /usr/lpp/WebSphere/*
to /web/WebSphere with the UNIX command:

cp -R /usr/lpp/WebSphere /web

You might want to mount a new HFS file system at the /web/WebSphere mount
point. In addition, if you copy these files, you will need to update the httpd.conf file
and new jvm.properties file.

If you do copy the WebAS files, you will need to update the httpd.conf file to point
to the new jvm.properties file. The required change is made in Figure 23. The
example assumes you copied the files to the /web/WebSphere directory.

ServerInit /web/WebSphere/AppServer/lib/libadpter.so:AdapterInit

 .1/ /web/WebSphere/AppServer/properties/server/servlet/servletservice/
 .1/ /servletservice/jvm.properties

Figure 23. Example of Updated htpd.conf File

Notes:

.1/ These lines have been split for redbook printing purposes; however, in
the real httpd.conf file they must be typed on one single line.

The jvm.properties file is used for configuration properties for the JVM and plugin
DLLs at startup.

The jvm.properties file is pointed to by a ServerInit statement in the httpd.conf file
for the WebSphere Application Server for OS/390 V1.1.

38 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 24 on page 39 gives an example of a jvm.properties file for WebAS where
we copied /usr/lpp/WebSphere to /web/WebSphere.

@(#)jvm.properties.1.81 97/12/ð2

#

Configuration properties for JVM and plugin dll start-up

#

System Properties

IBMWebASVersion=1.ð.ð

server.root=/web/WebSphere/AppServer

server.name=servlet

server.description=IBMWebAS

java.compiler=

NCF Properties

ncf.service.name=servletservice

ncf.service.class=com.ibm.servlet.service.SEServlet

ncf.plugin.classname=com.ibm.servlet.ServletSystem

#

Enable native DLL plugin logging by setting 'ncf.native.logison'

to 'true'. Change 'ncf.native.logfile' to the <fully-qualified >

path of an alternate file location if desired.

#

ncf.native.logison=true

ncf.native.logfile=/web/webas/native.log

#

Enable JVM logging by setting 'ncf.jvm.stdoutlog.enabled'

to true. Change 'ncf.jvm.stdoutlog.file' to 'false' to write

to a Java debugging console or 'true' for output to a log file.

Uncomment the line for 'ncf.jvm.stdoutlog.popup', thus setting it

to '2' to display the combined ResourceUsage/EnableTrace/Console

popup. Otherwise, just the console popup is displayed.

Change 'ncf.jvm.stdoutlog.filename' to the <fully-qualified>

path of an alternative file location if desired.

#

ncf.jvm.stdoutlog.enabled=true

#ncf.jvm.stdoutlog.popup=2

ncf.jvm.stdoutlog.file=true

ncf.jvm.stdoutlog.filename=/web/webas/ncf.log

NCF - Admin Service Properties for BasicNCFConfig Applet

ncf.jvm.classpath=/web/WebSphere/AppServer/lib/ibmwebas.jar:

 .1//web/WebSphere/AppServer/lib/jst.jar:
 .1//web/WebSphere/AppServer/lib/jsdk.jar:
 .1//web/WebSphere/AppServer/lib/x5ð9v1.jar:
 .1//web/WebSphere/AppServer/lib:
 .1//web/WebSphere/AppServer/web/admin/classes/seadmin.jar:
 .1//web/WebSphere/AppServer/web/classes:
 .1//usr/lpp/java/J1.1/lib/classes.zip:
 .1//usr/lpp/db2/db251ð/classes/db2jdbcclasses.zip:
 .1//usr/lpp/db2/db251ð/classes/db2sqljclasses.zip:
 .1//usr/lpp/db2/db251ð/classes/db2sqljruntime.zip

Figure 24 (Part 1 of 2). Example of a jvm.properties File

 Chapter 4. Configuration of the OS/390 Web Server 39

ncf.jvm.libpath=/usr/lpp/java/J1.1/lib:

 .1//usr/lpp/java/J1.1/lib/mvs/native_threads:
 .1//web/WebSphere/AppServer/lib:
 .1//usr/lib
 .1//usr/lpp/internet/bin:
 .1//usr/lpp/db2/db251ð/lib
ncf.jvm.path=/usr/lpp/java/J1.1/bin

ncf.jvm.use.system.classpath=false

Max Java Heap Size

ncf.jvm.mx=671ð8864

Properties for Domino Go

ncf.native.httpd.cnf.path=/web/webas/httpd.conf

OS/39ð WebSphereAS 1.ð Only!

#

The ncf.jvm.threads.max property is used to increase the number of threads

that the JVM is allowed to create for threaded servlets, chaining servlets

or filtering servlets. If any of these types of servlets are being executed

this property will need to be set to accommodate the threading needs.

#ncf.jvm.threads.max=5

OS/39ð WebSphereAS 1.ð Only!

#

Define the OS/39ð OE native log debug level. The

following define the current debug levels:

#

Level ð

- OS/39ð OE specific tracing off.

#

Level 1

- Trace messages in JNI wrappers.

calls made during servlet processing.

- Trace messages in OE Data Conversion Utility

routines.

#

Level 2 (Includes Level 1.)

- Trace messages in the ICS native library for JNI

calls made to convertgetBytes_AtoE().

#

#ncf.native.os39ð.debug=ð

Figure 24 (Part 2 of 2). Example of a jvm.properties File

Notes:

.1/ These lines have been split for redbook printing purposes; however, in
the real jvm.properties file they must be typed on one single line.

Figure 25 on page 41 gives an example of a jvm.properties file for SE.

40 e-business Application Solutions on OS/390 Using Java Vol. I

Configuration properties for JVM and plugin dll start-up

#

System Properties

ServletExpressVersion=1.ð.ð

server.root=/web/ServletExpress

server.name=ServletExpress

java.compiler=

NCF Properties

ncf.service.name=servletservice

ncf.service.class=com.ibm.ServletExpress.service.SEServlet

ncf.plugin.classname=com.ibm.ServletExpress.ServletSystem

#

Enable native DLL plugin logging by setting 'ncf.native.logison'

to 'true'. Change 'ncf.native.logfile' to the <fully-qualified >

path of an alternate file location if desired.

#

ncf.native.logison=true

ncf.native.logfile=/web/java14/native.log

#

Enable JVM logging by setting 'ncf.jvm.stdoutlog.enabled'

to true. Change 'ncf.jvm.stdoutlog.file' to 'false' to write

to a Java debugging console or 'true' for output to a log file.

Change 'ncf.jvm.stdoutlog.filename' to the <fully-qualified >

path of an alternate file location if desired.

#

ncf.jvm.stdoutlog.enabled=true

ncf.jvm.stdoutlog.file=true

ncf.jvm.stdoutlog.filename=/web/java14/ncf.log

NCF - Admin Service Properties for BasicNCFConfig Applet

ncf.jvm.classpath=/usr/lpp/Java/J1.1/lib/classes.zip:

 .1//usr/lpp/db2/db251ð/classes/db2jdbcclasses.zip:
 .1//usr/lpp/ServletExpress/lib/servexp.jar:
 .1//usr/lpp/ServletExpress/lib/jsdk.jar:
 .1//usr/lpp/ServletExpress/lib/x5ð9v1.jar:
 .1//usr/lpp/ServletExpress/lib/jst.jar:
 .1//usr/lpp/ServletExpress/lib:
 .1//usr/lpp/ServletExpress/web/admin/classes
ncf.jvm.libpath=/usr/lpp/Java/J1.1/lib:

 .1//usr/lpp/Java/J1.1/lib/mvs/native_threads:
 .1//usr/lpp/ServletExpress/lib:
 .1//usr/lib
 .1//usr/lpp/internet/bin:
 .1//usr/lpp/db2/db251ð/lib
ncf.jvm.path=/usr/lpp/java14/J1.1/bin

ncf.jvm.use.system.classpath=false

Figure 25 (Part 1 of 2). Example of jvm.properties File in ServletExpress

 Chapter 4. Configuration of the OS/390 Web Server 41

Max Java Heap Size

ncf.jvm.mx=671ð8864

#

Properties for Netscape webserver V2.ð1 on AIX or SOLARIS

#

#ncf.native.outofproc.runscript=/usr/bin/servlet_eng_runner.sh

#ncf.native.outofproc.port=8ð9ð

#ncf.native.outofproc.idstring="servexp"

#ncf.native.outofproc.netscapemime=<netscape_root>/config/mime.types

#

Properties for Apache webserver on AIX or SOLARIS

#

#ncf.native.apache.outofproc.runscript=/usr/bin/apache_servlet_eng_runne

#ncf.native.apache.outofproc.port=8ð82

#ncf.native.apache.outofproc.idstring="apache-servlet-engine"

Properties for IIS

ncf.native.iis.extensionloc=/sePlugins/iis2ð.dll

Properties for Domino Go

ncf.native.httpd.cnf.path=/web/java14/httpd.conf

Figure 25 (Part 2 of 2). Example of jvm.properties File in ServletExpress

Notes:

.1/ These lines have been split for redbook printing purposes; however, in
the real jvm.properties file they must be typed on one single line.

ServletExpress supports native DLL logging and Java standard out logging. Native
DLL logging logs messages produced by the Webserver before Java is invoked.

The Java standard out logging is used for any Java system.out and system.err
print. Java standard out is very useful for adding logic in Java servlets for
debugging purposes.

Enable native DLL plugin logging by:

� Setting “ncf.native.logison” to “true.”

� Changing “ncf.native.logfile” to the fully-qualified path of an alternate file
location if desired, like /web/native.log.

The changed statements are as follows:

 ncf.native.logfile=/web/native.log

 ncf.native.logison=true

Enable JVM logging by:

� Setting “ncf.jvm.stdoutlog.enabled” to “true”

� Changing “ncf.jvm.stdoutlog.file” to “false” (to write to a Java debugging
console) or “true” (for output to a log file)

� Changing “ncf.jvm.stdoutlog.filename” to the fully-qualified path of an alternate
file location if desired.

42 e-business Application Solutions on OS/390 Using Java Vol. I

The changed statements are as follows:

 ncf.jvm.stdoutlog.enabled=true

 ncf.jvm.stdoutlog.file=true

 ncf.jvm.stdoutlog.filename=/web/ncf.log

The WebAS ncf.server.root parameter identifies WebAS's root directory for all the
system and properties files. WebAS is sensitive to the location of all WebAS files,
except the ncf and native logs.

 Ncf.server.root=/<your_new_root>/WebSphere

The servlets.properties file is used to configure the environment for servlets.

The servlets.classpath parameter is used to specify from which directory servlets
need to be loaded. The specified list of directories is useful in providing addition to
the <seroot>/servlets directory. Unlike the <seroot>/servlet directory, these
specified directories will automatically reload if the class file is changed on disk.

 Servlets.classpath=/usr1/servlets:/usr2/servlets:

The admin_port.properties file is used to store the port that ServletExpress is
listening on. The default port is 9090.

By changing this parameter, ServletExpress manager will listen on the specified
port. Unlike the other properties files, the admin_port.properties is located in
/usr/lpp/WebSphere/AppServer/properties/server/servlet/adminservice for WebAS
and /ServletExpress/properties/server/ServletExpress/adminservices for SE.

The entry for the portnumber looks as follows:

 endpoint.main.port=9ð9ð

4.2.3 Verifying a Successful Startup of WebAS
WebAS uses the services of the Java Virtual Machine, TCP/IP and OS/390 UNIX
System Services.

When you start the Webserver, check the verbose trace (-vv); you should see
messages similar to what is shown in Figure 26 on page 44.

 Chapter 4. Configuration of the OS/390 Web Server 43

GWAPI: HTTPD_extract() called

GWAPI: HTTPD_extract() args..... name= INIT_STRING ; name size= 11

GWAPI: HTTPD_extract() args..... buffer= ðx7c82988 ; buffer size= 1ð23

GWAPI: HTTPD_extract()... Looking up server and CGI variables

GWAPI: HTTPD_extract()... successful with value= "/web/candy/jvm.properties"

GWAPI: HTTPD_extract() called

GWAPI: HTTPD_extract() args..... name= SERVER_SOFTWARE ; name size= 15

GWAPI: HTTPD_extract() args..... buffer= ðx7aed288 ; buffer size= 255

GWAPI: HTTPD_extract()... Looking up server and CGI variables

GWAPI: HTTPD_extract()... successful with value= "Lotus Domino Go Webserver

North American Edition for OS/39ð/V5RðMð"

GWAPI: HTTPD_extract() called

GWAPI: HTTPD_extract() args..... name= SERVER_NAME ; name size= 11

GWAPI: HTTPD_extract() args..... buffer= ðx7aed388 ; buffer size= 255

GWAPI: HTTPD_extract()... Looking up server and CGI variables

GWAPI: HTTPD_extract()... successful with value= ""

GWAPI: HTTPD_extract() called

GWAPI: HTTPD_extract() args..... name= SERVER_PORT ; name size= 11

GWAPI: HTTPD_extract() args..... buffer= ðx7554f68 ; buffer size= 9

GWAPI: HTTPD_extract()... Looking up server and CGI variables

GWAPI: HTTPD_extract()... successful with value= "8ð"

GWAPI: HTTPD_log_error() called

GWAPI: HTTPD_log_error() args..... value= ServletExpress native plugin

initalization went OK :-) ; value size= 54

Figure 26. Example of the Log when WebAS is Successfully Started

On a successful startup, you will see messages similar to what is shown in
Figure 27 on page 45 in the
/usr/lpp/Websphere/AppServer/logs/servlet/servletservice/event.log file for WebAS
or /usr/lpp/ServletExpress/logs/ServletExpress/servletservice/event.log file for SE.

44 e-business Application Solutions on OS/390 Using Java Vol. I

ServletManager.loadStartupServlets:

invoker samPackages samMap samMsg samProfile samUsers hello snoop simple

ServletManager.instantiateServlet:

Loaded local class class com.sun.server.http.InvokerServlet.

 com.sun.server.http.InvokerServlet: init

ServletManager.loadServlet invoker:

class = com.sun.server.http.InvokerServlet class URL =<none> arguments = <no

ServletManager.instantiateServlet:

Loaded local class class com.ibm.ServletExpress.servlets.sam.ConnectCGIPackag

 com.ibm.ServletExpress.servlets.sam.ConnectCGIPackages: init

ServletManager.loadServlet samPackages:

class = com.ibm.ServletExpress.servlets.sam.ConnectCGIPackages class

URL =<none> arguments = <none>

ServletManager.instantiateServlet:

Loaded local class class com.ibm.ServletExpress.servlets.sam.ConnectCGI.

 com.ibm.ServletExpress.servlets.sam.ConnectCGI: init

ServletManager.loadServlet samMap:

class = com.ibm.ServletExpress.servlets.sam.ConnectCGI class URL =<none>

arguments = <none>

ServletManager.instantiateServlet:

Loaded local class class com.ibm.ServletExpress.servlets.sam.ConnectCGIMsg.

 com.ibm.ServletExpress.servlets.sam.ConnectCGIMsg: init

ServletManager.loadServlet samMsg:

class = com.ibm.ServletExpress.servlets.sam.ConnectCGIMsg class URL =<none>

arguments = <none>

ServletManager.instantiateServlet:

Loaded local class class com.ibm.ServletExpress.servlets.sam.ConnectCGIProfil

 com.ibm.ServletExpress.servlets.sam.ConnectCGIProfile: init

ServletManager.loadServlet samProfile:

class = com.ibm.ServletExpress.servlets.sam.ConnectCGIProfile class URL =<non

arguments = <none>

ServletManager.instantiateServlet:

Loaded local class class com.ibm.ServletExpress.servlets.sam.ConnectCGIUser.

 com.ibm.ServletExpress.servlets.sam.ConnectCGIUser: init

ServletManager.loadServlet samUsers:

class = com.ibm.ServletExpress.servlets.sam.ConnectCGIUser class URL =<none>

arguments = <none>

ServletManager.instantiateServlet:

Loaded local class class HelloWorldServlet.

HelloWorldServlet: init

ServletManager.loadServlet hello:

class = HelloWorldServlet class URL =<none> arguments = <none>

ServletManager.instantiateServlet:

Loaded local class class SnoopServlet.

SnoopServlet: init

ServletManager.loadServlet snoop:

class = SnoopServlet class URL =<none> arguments = <none>

ServletManager.instantiateServlet:

Loaded local class class SimpleServlet.

SimpleServlet: init

ServletManager.loadServlet simple:

class = SimpleServlet class URL =<none> arguments = <none>

Service started.

Figure 27. Example of the WebAS event.log File after a Successful Start

WebAS, by default, listens on port 9090. Use the onetstat command from OS/390
UNIX System Services to verify that WebAS is in a listening state, as shown in
Figure 28 on page 46.

Note: Depending on how many servlets are being loaded, it may take several
minutes (up to five minutes, in our system) after starting the Webserver before you
see WebAS listening on port 9090.

 Chapter 4. Configuration of the OS/390 Web Server 45

à ð
RCONWAY:/u/rconway: >onetstat
MVS TCP/IP onetstat CS/39ð V2R5 TCPIP Name: TCPIPOE

User Id Conn Local Socket Foreign Socket State

------- ---- ------------ -------------- -----

WEBCANDY ð6ð26 ð.ð.ð.ð..443 ð.ð.ð.ð..ð Listen

WEBCANDY ð6ð2B ð.ð.ð.ð..9ð9ð ð.ð.ð.ð..ð Listen
WEBCANDY ð6ð25 ð.ð.ð.ð..8ð ð.ð.ð.ð..ð Listen

á ñ

Figure 28. The onetstat Command

In addition to WebAS listening on port 9090, you must also watch for a message
similar to the following before accessing your Webserver:

IMW3536I SA 17616ð771ð ð.ð.ð.ð:8ð \ \ READY

4.2.4 If Something Goes Wrong
If you are having trouble getting WebAS to come up, here are some things to check
out:

1. Installations with JDK 1.1.1 (9/97 or later) should not require additional
maintenance. Installations using Lotus Domino Go Webserver Release 5.0
with JDK 1.1.4 require PTFs for both Lotus Domino Go Webserver Release 5.0
ServletExpress support and the JDK:

DGW. 5.0 APAR PQ18246

JDK 1.1.4 APARs OW34311, OW34445, OW34509, OW34447,
OW34171, and OW33911.

Installations with JDK 1.1.6 should not require additional maintenance.

2. Verify that external links for the ServletExpress DLLs have been defined (this is
only for ServletExpress. WebAS does not use external links)..

 cd /<SEroot>/lib

 ls -al lib\

Expected results:

 erwxrwxrwx /usr/lpp/ServletExpress/lib/libadpter.so -> EJSADPTR

 erwxrwxrwx /usr/lpp/ServletExpress/lib/libicsnativ.so -> EJSICSNT

Note: If these links are missing, you can generate them (while in the <SEroot>
directory) by executing the following commands:

ln -e EJSADPTR libadpter.so

ln -e EJSICSNT libicsnativ.so

3. Enable native DLL plugin logging by:

� Setting ncf.native.logison to true.

� Changing ncf.native.logfile to the fully-qualified path of an alternate file
location if desired. By default it is set to:
/usr/lpp/ServletExpress/logs/native.log

The changed statements are as follows:

 ncf.native.logfile=/usr/lpp/ServletExpress/logs/native.log

 ncf.native.logison=true

4. Enable JVM logging by:

� Setting ncf.jvm.stdoutlog.enabled to true

46 e-business Application Solutions on OS/390 Using Java Vol. I

� Changing ncf.jvm.stdoutlog.file to false (to write to a Java debugging
console), or true (for output to a log file).

� Changing ncf.jvm.stdoutlog.filename to the fully-qualified path of an
alternate file location if desired. By default it is set to:
/usr/lpp/ServletExpress/logs/ncf.log

The changed statements are as follows:

 ncf.jvm.stdoutlog.enabled=true

 ncf.jvm.stdoutlog.file=true

 ncf.jvm.stdoutlog.filename=/usr/lpp/ServletExpress/logs/ncf.log

Note: For ServletExpress, you may see the following WARNING message
with traceback statements in the ncf.log file. It can be ignored:

IBM ServletExpress WARNING: Cannot load service IBM: No service class specified.

java.lang.IllegalArgumentException: No service class specified

.at com.sun.server.ServiceManager.createService(ServiceManager.java:923)

.at com.sun.server.ServiceManager.loadService(ServiceManager.java:878)

.at com.sun.server.ServiceManager.loadServices(ServiceManager.java:5ð5)

.at com.sun.server.ServiceManager.startServices(ServiceManager.java:348)

.at com.sun.server.ServerProcess.main(ServerProcess.java:231)

.at com.ibm.ServletExpress.service.ServerProcessThread.run(ServerProcessThread)

.at java.lang.Thread.run(Thread.java)

5. When running Lotus Domino Go Webserver Release 5.0 with WebAS or SE
support, and when the Webserver is configured with a user ID of
%%CLIENT%% or a surrogate ID in the httpd.conf configuration file, clients
may receive an error 500 message.

Review the Domino Go Webserver trace log to determine if the following
messages were issued for the particular client request:

Failed access as Surrogate: <surrogate ID>, Errno: 139,

Errno2: ðbe8ð2af, Error: EDC5139I Operation not permitted.

IMWð241E Access denied - surrogateuser setup error.

 -OR-

Failed access as Surrogate: <surrogate ID>, Errno: 139,

Errno2: ð9ðcð2af, Error: EDC5139I Operation not permitted.

IMWð241E Access denied - surrogateuser setup error.

If these messages are generated for the failing client request, you must turn on
program control for the Java DLLS residing in the HFS. For instructions, see
APAR PQ18310 for details. Here is a summary of the APAR instructions:

a. Give a superuser ID Read access to the BPX.FILEATTR.PROGCTL Facility
to enable this superuser ID to update the HFS file attributes via the extattr
command:

RDEFINE FACILITY BPX.FILEATTR.PROGCTL UACC(NONE)

PERMIT BPX.FILEATTR.PROGCTL CLASS(FACILITY) ID(superuserid)

 ACCESS(READ)

SETROPTS RACLIST(FACILITY) REFRESH

b. Go into the OMVS shell using the superuser ID that you just permitted to
the BPX.FILEATTR.PROGCTL class.

 cd <JAVA_HOME>/lib/mvs/native_threads

extattr +p \.\

 ls -E

where <JAVA_HOME> is the path or the root directory for JDK.

 Chapter 4. Configuration of the OS/390 Web Server 47

6. When running Lotus Domino Go Webserver Release 5.0 with WebAS or SE
support, and when the Webserver is configured with a user ID of
%%CLIENT%% or a surrogate ID and the Keyfile directive is being used,
clients may receive an error 500 message. Review the Domino Go Webserver
trace log to determine if the following messages were issued for the particular
client request:

IMWð24ðE Access denied - unauthorized program loaded message.

If these messages are generated for the failing client request, you must turn on
program control for the C++ load library. For instructions, see APAR PQ18310
for details. Here is a summary of the APAR instructions:

Issue the following RACF commands to turn on program control for the C++
load library:

RALTER PROGRAM \ ADDMEM('CBC.SCLBDLL'//NOPADCHK) UACC(READ)

SETROPTS WHEN(PROGRAM) REFRESH

More hints and tips on how to configure WebAS can be found in APAR II11345 and
at the following URL:
 http://www.ibm.com/s39ð/nc/servlett.html

4.2.5 Running the Sample Servlet Code Shipped with DGW 5.0
There are a number of sample servlets (shown in Table 4) that are shipped with
WebAS and are automatically loaded at WebServer startup. Try to execute them to
verify that everything is configured correctly.

Note: All servlets or servlet packages migrated to your new DGW 5.0 installation
should reside in the /usr/lpp/ServletExpress/servlets/ directory. Failure to use the
default servlets directory will eliminate the dynamic reload capability of your
migrated servlets/servlet packages.

Table 4. Sample Servlets Shipped with DGW 5.0

Servlet URL to open Expected
result

Hello http://your.server.name/servlet/HelloWorldServlet Displays the
string, “Hello
World.”

Simple http://your.server.name/servlet/SimpleServlet Displays a
heading and the
text message,
“This is output
from
SimpleServlet”

Snoop http://your.server.name/servlet/SnoopServlet Echos back
information
about the HTTP
request sent by
the client

48 e-business Application Solutions on OS/390 Using Java Vol. I

4.2.6 Using WebAS Manager
Having the correct level of the JDK on your workstation is just as important as
having the correct JDK level running on the OS/390 server. WebAS Manager
requires that you have JDK 1.1 (or later) installed on your workstation.

Netscape Communicator 4.03 (or later) with the JDK 1.1 patch is required.
To check your Netscape Java level on a workstation running Windows 95 or
Windows NT, open the Java console from the Window option on the Netscape
browser menubar. If needed, the JDK is available for downloading from:

http://help.netscape.com/filelib.html

Follow the instructions on that page to download and install the update.

Microsoft Internet Explorer 4 and Sun HotJava 1.1 can also be used to access
WebAS Manager.

To start the WebAS Manager applet, enter the following URL at your Web browser:

 http://your.web.server:9ð9ð

The WebAS Manager applet will start to load and you will be prompted to enter a
valid user ID and password as shown in Figure 29 on page 50. The initial
administrator user ID and password is admin/admin. You need to log in with this
combination the first time. Once you are logged in, you can change it.

Note: When you change the admin password, it is stored in:

/usr/lpp/ServletExpress/realms/data/adminRealm/keyfile

(The password is encrypted in this file.)

 Chapter 4. Configuration of the OS/390 Web Server 49

Figure 29. ServletManager Login Screen

When you log in with the admin user ID, the applet will display a window that
shows you that WebAS is running. If you click on Manage , the WebAs Manager
configuration interface will pop up and you can start to configure and control your
servlets as shown in Figure 30 on page 51.

50 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 30. ServletManager Panels

See Chapter 5, “Configuring and managing Java Servlets” in Lotus Domino Go
Webserver: Webmaster's Guide Release 5.0 for OS/390, SC31-8691. for a
complete description of how to update WebAs Manager properties, as well as how
to configure, load and manage servlets on your system.

 Chapter 4. Configuration of the OS/390 Web Server 51

52 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 5. Configuring Java Support on OS/390

In this chapter we explain how you need to setup your environment on OS/390 in
order to use Java.

In 5.1, “JDK Installation and Setup” we outline the installation of the JDK on
OS/390. The JDK is a prerequisite for all products on OS/390 depending on Java.

5.2, “VisualAge for Java, Enterprise Edition for OS/390” on page 58 gives you all
the details for installing the OS/390 components of VisualAge for Java Enterprise
Edition for OS/390.

5.1 JDK Installation and Setup
At the time of writing, the latest generally available version of the Java
Development Toolkit for OS/390 is JDK 1.1.6 and is downloadable from the
following URL:

 http://www.ibm.com/s39ð/java

In addition, this URL outlines the latest prereqs and instructions, and you will be
able to download the lastest JDK available for OS/390. You can also order the
latest version on tape, which includes a program directory containing the prereqs
and the instructions.

Refer to URL:

 http://www.ibm.com/s39ð/java/javainst.html#prer

for the latest information regarding prereqs for Java on OS/390 and to URL:

 http://www.ibm.com/s39ð/java/javainst.html

for information regarding installation of Java for OS/390.

 5.1.1 Directory Structure
You should decide from the beginning about the directory structure in which the
JDK and other Java-related products will be installed. A possible structure is to
create the /usr/lpp/java/ directory. Then, in this directory, unpack the
downloaded JDK install file as explained in 5.1.2, “Installation Method: Tar and
Tarball Files.” The unpacking will create a subdirectory named J1.1 in the same
/usr/lpp/java/ directory. You may also install JDBC and other Java-related
packages in the same directory structure.

5.1.2 Installation Method: Tar and Tarball Files
There are two ways of installing the JDK:

1. Download a Tar file and manually install it.

2. Download a Tarball file and install it with SMP/E.

If you choose the first solution, you will have to download a Tar file (a file made
with the OS/390 UNIX System Services tar utility) and install it. You can either
enter manual UNIX commands to untar the file, or run a utility called ajvinst.exec.

 Copyright IBM Corp. 1999 53

This is a REXX installation script that is downloadable from the same place as the
Tar or Tarball files.

The second solution uses SMP/E. The Tarball file contains the SMP/E jobs and
the program directory. Run the ajvinst.exec installation script to uncompress and
install the Tarball.

5.1.3 Downloading the JDK
Go to URL for downloading the JDK onto your workstation:

 http://www.ibm.com/s39ð/java/register.html

Then, after registration, follow the directions to transfer the JDK compressed file to
your workstation.
After having stored the JDK compressed file on your workstation, transfer it to your
OS/390 server using FTP. Initiate the FTP session from the workstation, using the
FTP server running in the OS/390 machine.

5.1.4 Verifying the Installation
Your path should contain the binary directory where java is located. Type:

 export PATH=/usr/lpp/java/J1.1/bin:$PATH

Now, verify that Java is correctly installed by typing:

 java -fullversion

Java should reply with the correct version and build date of the JDK.

5.1.5 Using More than One Release of JDK
In order to use multiple releases of JDK under OS/390, the installation can simply
install different releases in separate install libraries. In the following example, we
installed JDK 1.1.4 in /usr/lpp/java14/J1.1 and we installed JDK 1.1.6 in
/usr/lpp/java16/J1.1.

To point to the different desired releases, we setup the following in /HOME/.profile:

===

JAVA, JDBC, and Servlet Environment setup

===

echo " "

echo " \\\ JAVA, JDBC, and Servlet Environment is being Setup \\\"

echo " "

export JAVA_HOME=/usr/lpp/java14/J1.1

echo "JAVA_HOME path is set to ==> " $JAVA_HOME

export PATH=$JAVA_HOME/bin:/u/odonnel/SQLJ:$PATH

echo "PATH is set to ==> " $PATH

export CLASSPATH=/usr/lpp/db2/db251ð/classes/db2jdbcclasses.zip: .1/
.1/$JAVA_HOME/lib/classes.zip:
.1/:/usr/lpp/ServletExpress/lib/jsdk.jar:
.1/:/usr/lpp/SQLJ/classes.zip:
.1/:.:
echo "CLASSPATH path is set to ==> " $CLASSPATH

export LIBPATH=/usr:/usr/lib:/usr/lpp/db2/db251ð/lib:

.1//usr/lpp/SQLJ/:
echo "LIBPATH path is set to ==> " $LIBPATH

export LD_LIBRARY_PATH=/usr/lpp/db2/db251ð/lib:/usr/lpp/SQLJ:

echo "LD_LIBRARY_PATH path is ==> " $LD_LIBRARY_PATH

echo " "

54 e-business Application Solutions on OS/390 Using Java Vol. I

echo " \\\ JAVA Environment is now set \\\"

echo " "

export DB2SQLPLANNAME=SQLJ

export DB2SQLSSID=DB51

export DB2SQLJPLANNAME=SQLJ

export DB2SQLJSSID=DB51

In the example, you will need to update JAVA_HOME to the desired JDK home
directory.

Notes:

.1/ These lines have been split for redbook printing purposes; however, in
the real jvm.properties file they must be typed on one single line.

5.1.6 JDK Support for Websphere Application Server
In order to have Java available to Websphere Application Server, you must follow
these steps:

1. Verify that the program control is turned on for Java DLLs. To verify this, go
into the OMVS shell and issue the following command:

 cd <JAVA_HOME>/lib/mvs/native_threads

 ls -E

In our example, we are using JDK 1.1.6. Note that the “p” bit is set to
represent program control.

-r-xr-xr-x -ps 1 BPXROOT TSO 5ð16ð Oct 8 23:ð4 jni_convert.o

-r-xr-xr-x -ps 1 BPXROOT TSO 139264 Oct 8 23:ð4 libagent.so

-r-xr-xr-x -ps 1 BPXROOT TSO 1ðððð Oct 8 23:ð4 libagent.x

-r-xr-xr-x -ps 1 BPXROOT TSO 43ðð8ð Oct 8 23:ð4 libagent_g.so

-r-xr-xr-x -ps 1 BPXROOT TSO 695ð912 Oct 8 23:ð4 libawt.so

-r-xr-xr-x -ps 1 BPXROOT TSO 56ð8ð Oct 8 23:ð4 libawt.x

-r-xr-xr-x -ps 1 BPXROOT TSO 1183744ð Oct 8 23:ð4 libawt_g.so

-r-xr-xr-x -ps 1 BPXROOT TSO 1183744ð Oct 8 23:ð4 libawt_g.so

-r-xr-xr-x -ps 1 BPXROOT TSO 1982464 Oct 8 23:ð4 libjava.a

-r-xr-xr-x -ps 1 BPXROOT TSO 1ððð8ð Oct 8 23:ð4 libjava.x

-r-xr-xr-x -ps 1 BPXROOT TSO 7794688 Oct 8 23:ð4 libjava_g.a

-r-xr-xr-x -ps 1 BPXROOT TSO 1ð624ð Oct 8 23:ð4 libjava_g.x

-r-xr-xr-x -ps 1 BPXROOT TSO 1ð89536 Oct 8 23:ð4 libjitc.so

-r-xr-xr-x -ps 1 BPXROOT TSO 7ðð8256 Oct 8 23:ð4 libjitc_g.so

-r-xr-xr-x -ps 1 BPXROOT TSO 24576ð Oct 8 23:ð4 libjpeg.so

-r-xr-xr-x -ps 1 BPXROOT TSO 568ð Oct 8 23:ð4 libjpeg.x

-r-xr-xr-x -ps 1 BPXROOT TSO 1ð158ð8 Oct 8 23:ð4 libjpeg_g.so

-r-xr-xr-x -ps 1 BPXROOT TSO 38ð51ð Oct 8 23:ð4 libm.a

-r-xr-xr-x -ps 1 BPXROOT TSO 89387ð Oct 8 23:ð4 libm_g.a

-r-xr-xr-x -ps 1 BPXROOT TSO 217ð88 Oct 8 23:ð4 libmath.so

-r-xr-xr-x -ps 1 BPXROOT TSO 1144ð Oct 8 23:ð4 libmath.x

-r-xr-xr-x -ps 1 BPXROOT TSO 5ð79ð4 Oct 8 23:ð4 libmath_g.so

-r-xr-xr-x -ps 1 BPXROOT TSO 4ð96ð Oct 8 23:ð4 libmmedia.so

-r-xr-xr-x -ps 1 BPXROOT TSO 64ð Oct 8 23:ð4 libmmedia.x

-r-xr-xr-x -ps 1 BPXROOT TSO 14336ð Oct 8 23:ð4 libmmedia_g.so

-r-xr-xr-x -ps 1 BPXROOT TSO 139264 Oct 8 23:ð4 libnet.so

-r-xr-xr-x -ps 1 BPXROOT TSO 832ð Oct 8 23:ð4 libnet.x

-r-xr-xr-x -ps 1 BPXROOT TSO 393216 Oct 8 23:ð4 libnet_g.so

-r-xr-xr-x -ps 1 BPXROOT TSO 4ð96ð Oct 8 23:ð4 libsysresource.so

-r-xr-xr-x -ps 1 BPXROOT TSO 88ð Oct 8 23:ð4 libsysresource.x

-r-xr-xr-x -ps 1 BPXROOT TSO 147456 Oct 8 23:ð4 libsysresource_g.so

-r-xr-xr-x -ps 1 BPXROOT TSO 1966ð8 Oct 8 23:ð4 libzip.so

-r-xr-xr-x -ps 1 BPXROOT TSO 784ð Oct 8 23:ð4 libzip.x

-r-xr-xr-x -ps 1 BPXROOT TSO 557ð56 Oct 8 23:ð4 libzip_g.so

 Chapter 5. Configuring Java Support on OS/390 55

If program control is not turned on, you can use the following procedure to turn
it on:

a. Give a superuser ID Read access to the BPX.FILEATTR.PROGCTL Facility
to enable this superuser ID the ability to update the HFS file attributes via
the extattr command:

RDEFINE FACILITY BPX.FILEATTR.PROGCTL UACC(NONE)

PERMIT BPX.FILEATTR.PROGCTL CLASS(FACILITY) ID(superuserid)

 ACCESS(READ)

SETROPTS RACLIST(FACILITY) REFRESH

b. Go into the OMVS shell using superuser ID that you just permitted to the
BPX.FILEATTR.PROGCTL class:

 cd <JAVA_HOME>/lib/mvs/native_threads

extattr +p \.\

 ls -E

where <JAVA_HOME> is the path or the root directory for JDK.

Verify the classpath, libpath, and path statement in the ServletExpress
jvm.properties file located in <SEroot>/ServletExpress/properties/server
/ServletExpress/servletservice.

ncf.jvm.classpath=/web/WebSphere/AppServer/lib/ibmwebas.jar:

 .1//web/WebSphere/AppServer/lib/jst.jar:
 .1//web/WebSphere/AppServer/lib/jsdk.jar:
 .1//web/WebSphere/AppServer/lib/x5ð9v1.jar:
 .1//web/WebSphere/AppServer/lib:
 .1//web/WebSphere/AppServer/web/admin/classes/seadmin.jar:
 .1//web/WebSphere/AppServer/web/classes:
 .1//usr/lpp/java/J1.1/lib/classes.zip:
 .1//usr/lpp/db2/db251ð/classes/db2jdbcclasses.zip:
 .1//usr/lpp/db2/db251ð/classes/db2sqljclasses.zip:
 .1//usr/lpp/db2/db251ð/classes/db2sqljruntime.zip
ncf.jvm.libpath=/usr/lpp/java/J1.1/lib:

 .1//usr/lpp/java/J1.1/lib/mvs/native_threads:
 .1//web/WebSphere/AppServer/lib:
 .1//usr/lib
 .1//usr/lpp/internet/bin:
 .1//usr/lpp/db2/db251ð/lib
ncf.jvm.path=/usr/lpp/java/J1.1/bin

Notes:

.1/ These lines have been split for redbook printing purposes; however,
in the real jvm.properties file they must be typed on one single line.

5.1.7 Remote Abstract Windowing Toolkit (RAWT)
OS/390 does not support a native GUI. A Java application using AWT classes can
only run on OS/390 if the GUI is “exported” to a client with a native GUI capability.

Typically, before you would run the Java application from the OS/390 command
line, you would start your X11 server on the client and issue this command from the
OS/390 command line, where the hostname is the hostname of the client displaying
the GUI:

 export DISPLAY=<hostname>:ð

The result would then be an X-windows-like GUI.

56 e-business Application Solutions on OS/390 Using Java Vol. I

Until recently, the X11 protocol was the only solution to make this happen.
However, this protocol is very time-consuming to use as every send and receive is
a new connection. Also, the X11 protocol requires an X11 server to be installed on
the client side to display the GUI. Under Windows/95 and Windows NT, the X11
server is not a base function, so a product has to be purchased and installed on
each client machine to run the X11 server.

Figure 31 shows the required infrastructure for the X11 protocol.

TCP/IP address 9.12.34.567

Hostname "p390a"

> EXPORT DISPLAY=p390a:0
> java DrawTest
..........

Network station
PC with X11 emulation
software

Figure 31. Infrastructure for Running AWT Applications Using the X11 Protocol

Remote AWT (RAWT) is a new solution for displaying the graphical user interface
of a Java application running on OS/390, on a client supporting a native GUI. The
big advantage of RAWT is that there is no longer a requirement for an X-server on
the client side.

RAWT consists of two parts: one on the host where the application runs, and one
on the client where the GUI will be displayed. Both components are Java-enabled,
meaning that they only require a Java Runtime Environment (JRE) to be installed.
Once the two components have been installed, they can communicate with each
other over TCP/IP. So RAWT is really “light,” requiring only TCP/IP and Java.
Figure 32 on page 58 shows the infrastructure when RAWT is used.

 Chapter 5. Configuring Java Support on OS/390 57

Client Server

O/S JVM

(User station) (Application host)

RAWT
Daemon

JVM

Figure 32. Infrastructure for Running AWT Applications Using RAWT

The RAWT component on OS/390 comes with the JDK 1.1.6 with the following PTF
installed:

OS/390 Version Release 1,2 and 3 UW57717

OS/390 Version Release 4 and 5 UW57730

OS/390 Version Release 6 and 7 UW57731

Refer to URL: http://www.ibm.com/s39ð/java/rawt.html for details.

5.2 VisualAge for Java, Enterprise Edition for OS/390
In this section we describe the configuration of the OS/390 components of
VisualAge for Java, Enterprise Edition for OS/390. The workstation-related matters
are discussed in

 Attention

In this redbook we use the term HPJ for the native code compiler for Java on
OS/390 because HPJ was IBM's internal code name.

However, the official product name is VisualAge for Java, Enterprise Edition for
OS/390.

Chapter 6, “Configuring VisualAge for Java on the Workstation” on page 71.

 5.2.1 Introduction
The VisualAge for Java Enterprise Edition for OS/390 is comprised of the following:

1. VisualAge for Java Enterprise Edition IDE (Integrated Development
Environment) running on a Windows NT workstation.

2. The Enterprise Toolkit for OS/390 (ET/390), which is a separately installed set
of plug-ins for VisualAge for Java Enterprise Edition, running on the Windows
NT workstation, which provide the facilities to:

58 e-business Application Solutions on OS/390 Using Java Vol. I

� Establish a host session with and log onto OS/390

� Export packages to OS/390 to:

– Run in the OS/390 JVM

– Compile using the HPJ/390 compiler and execute on OS/390

� Remotely debug Java applications running on the OS/390 JVM or running
as bound executables from the VisualAge for Java Graphical User Interface

� Remotely analyze the performance of Java applications running on OS/390

� Run the jport utility on the VisualAge for Java IDE (or from the OS/390
UNIX shell) to evaluate the portability of a Java package to OS/390

3. The Visual Age for Java OS/390 facilities:

� The Java Run Time Library

This feature is required by all VisualAge for Java, Enterprise Edition
customers and is used to execute fully bound Java programs. The run-time
library implements the Java APIs as fully compiled native objects and
provides for memory management (garbage collection and other system
routines). OS/390 UNIX System Services and CICS Transaction Server 1.3
are supported.

� The HPJ/390 compiler

The HPJ/390 compiler is an optimizing native code translator/binder that
statically translates Java bytecode directly into native (object) code in the
same manner as traditional compilers for C/C++, COBOL and FORTRAN.
Traditional resource intensive optimization techniques (such as dataflow
analysis and interprocedure optimization) are used to improve the
performance of the generated code. The high performance compiler/binder
fully binds the object code into an executable or dynamic link library (JLL)
that can be run in the UNIX System Services Shell or under the CICS
Transaction Server for OS/390.

5.2.2 The Orderable Package
The program number for VisualAge for Java, Enterprise Edition for OS/390 is
5655-JAV.

The VisualAge for Java, Enterprise Edition for OS/390 is packaged and orderable
as two separate features:

1. IBM VisualAge for Java, Enterprise Edition for OS/390, Version 2.x - Run Time
Feature - Required and unpriced.

Feature number 5976 for 3480 cartridge tape; feature number 6082 for 4mm
tape; and feature number 5975 for 9 track 6250 bpi tape.

2. IBM VisualAge for Java, Enterprise Edition for OS/390, Version 2.x - Compiler
Feature - Optional and priced.

Feature number 5989 for 3480 cartridge tape; feature number 6092 for 4mm
tape; and feature number 5988 for 9 track 6250 bpi tape.

The Run Time Feature is required by all customers and is needed to execute fully
bound Java Programs. Included with the Run-Time feature is the shrink-wrapped
CD package for VisualAge for Java, Enterprise Edition containing two CDs. The
two CDs contain VisualAge for Java Enterprise Edition for the Windows NT

 Chapter 5. Configuring Java Support on OS/390 59

workstation and the Enterprise toolkits for all supported host environments including
OS/390. The ET/390 plug-ins on the workstation will require a separate install after
the VisualAge for Java, Enterprise Edition for Windows NT Workstation install.

The HPJ Run Time feature on OS/390 and optionally the HPJ Compiler feature on
OS/390 are installed via an SMP/E process from the tapes described.

The HPJ Compiler feature is optional and may be used in conjunction with the
run-time feature to develop fully compiled and bound Java programs.

 5.2.3 Software Requirements
The following OS/390 programs are required to install, service and run VisualAge
for Java, Enterprise Edition for OS/390:

1. OS/390 V2R4 (5647-A01), or later with:

 � Language Environment

� UNIX System Services (OpenEdition) enabled

 � DFSMS enabled

� SMP/E Rel 1.8 (Program Number 5668-949) for installation

2. Also required for the following functions are the specified products that are
listed, along with the appropriate service levels, in Figure 11 on page 10 of the
Program Directory for VisualAge for Java, Enterprise Edition for OS/390,
Program Number 5655-JAV, Document Number GI10-4949 (product
documentation).

� C/C++ with Debug Tool on OS/390

Required to use the VisualAge for Java, Enterprise Edition for OS/390
Debugging tool. This is provided in OS/390 V2R4 and later as an optional
feature. It is provided as a dataset EQA.V1R2M0.SEQAMOD.

� OS/390 Version 2 Release 4 (or later) Host Performance Analyzer.

Required to use the VisualAge for Java, Enterprise Edition for OS/390
remote performance analysis tools. This is provided in OS/390 V2 R4 and
later as part of the optional feature - C/C++ with Debug Tool. It is provided
as a dataset CBC.SCTVMOD.

� OS/390 Version 2 Release 4 C/C++ Compiler without DEBUG Tool - only if
JNI support is required.

Required for JNI support using the OS/390 JVM or the High Performance
Compiler for Java on OS/390.

Note: If the C/C++ with Debug Tool optional feature has been installed for
Debug and/or Performance Analysis VisualAge for Java, Enterprise Edition
for OS/390 support, that is sufficient for JNI support,

Note: All of these C/C++ Debug products are supplied as optionally
installable features with the OS/390 product. To make them part of the
system, they must be enabled by an appropriate IFAPRDxx entry in the
IFAPRDxx parmlib member. This is described in OS/390 V2R6.0 Planning
for Installation, GC28-1726.

The VisualAge for Java, Enterprise Edition for OS/390 Version2 - Product
Number 5655-JAV, when ordered with OS/390 V2R7.0, is provided with an
IBM-supplied IFAPRD00 member that contains the required PRODUCT

60 e-business Application Solutions on OS/390 Using Java Vol. I

statements to enable the VAJAVA/39ð-DEBUG feature. This feature provides
the required Debug/Performance Analyzer functions.

� NFS and FTP Links

An NFS server and an FTP server are required on OS/390, and an NFS
client and an FTP client are required on the NT Workstation for
workstation-to-OS/390 remote file access and file transfer operations.

The FTP client is part of the base function of Windows NT and requires no
special configuration for VisualAge for Java, Enterprise Edition for OS/390
to be able to use it.

The FTP Server on OS/390 is part of the base TCP/IP facilities. These
facilities are part of the OS/390 base support from OS/390 V2 R4 and later
(in OS/390 V2 R7, the TCP/IP facilities will be known as eNetwork
Communications Server facilities).

See 5.2.6.3, “Setting Up FTP” on page 69 for FTP setup requirements on
OS/390 that are related to VisualAge for Java, Enterprise Edition for
OS/390

The NFS Client on the IDE Workstation is part of the base functions of
Windows NT. See 5.2.6.1, “Setting Up the NFS Client on Windows NT” on
page 67 for setting up the NFS Client on Windows NT.

The NFS Server on OS/390 is part of the base elements of OS/390 for
OS/390 V2R4 and later releases. The NFS Server was known as
DFSMS/MVS NFS until OS/390 V2 R6, at which time it became exclusive
to OS/390, had function added to it, and is now known as NFS. See
5.2.6.2, “NFS Server Setup” on page 68 for configuring the NFS Server on
OS/390.

5.2.4 Installation of VisualAge for Java, Enterprise Edition for OS/390
The Installation of the HPJ Run Time Library and the HPJ Compiler, Program
Number 5655-JAV, is provided through two FMIDs:

FMID H0A5201 VisualAge for Java Compiler, priced

FMID H0A5202 VisualAge for Java Run Time Library, no charge

The installation of these two FMIDs is detailed in the Program Directory for
VisualAge for Java, Enterprise Edition for OS/390, Program Number 5655-JAV,
Document Number GI10-4949 (product documentation).

5.2.4.1 Installation of HPJ on OS/390
The installation of the HPJ Run Time and the HPJ Compiler are described in detail
in the Program Directory for VisualAge for Java, Enterprise Edition for OS/390,
Program Number 5655-JAV, Document Number GI10-4949 (product
documentation).

As part of the SMP/E installation for both FMIDs, sample jobs are provided that
assist in the installation of VisualAge for Java. These jobs and the changes that
must be made to them for the specific installation configuration, as well as the
steps that must be followed to perform the jobs, are described in the Program
Directory product documentation.

 Chapter 5. Configuring Java Support on OS/390 61

5.2.4.2 Installation and Set Up of Directories on UNIX System
Services
The HFS directories are set up as a result of the HPOISMKD and the HPJISMKD
JOBS for the VisualAge for Java, Enterprise Edition for OS/390 Run Time Library
and the VisualAge for Java, Enterprise Edition for OS/390 HPJ Compiler
respectively.

When the installation of the Run Time Library and the HPJ Compiler is complete, it
is necessary to set the environment variables for IBMHPJ_HOME, CLASSPATH,

LIBPATH AND STEPLIB to the appropriate values.

STEPLIB should include HPJ.SHPOMOD, HPJ.SHPJMOD and CEE.SCEERUN. When both
the VisualAge for Java Runtime Library and the VisualAge for Java Compiler have
been installed, the contents of the file with default name
/usr/lpp/hpj/bin/profile.hpj as shown in Figure 33 should be appended to
/etc/profile for use by everyone, or copied into $HOME.profile for individual use
and updated to reflect the values used in your environment as shown in Figure 34
on page 63.

Note: For better performance of the VisualAge for Java Run Time Library and the
HPJ Compiler, your system programmer could copy the entire HPJ.SHPOMOD and
HPJ.SHPJMOD data sets into the LPA. If this is done, HPJ.SHPOMOD and HPJ.SHPJMOD
should be removed from the environment variable STEPLIB. Performance can also
be improved by copying the EQA.V1R2M0.SEQAMOD (Debugger) and the
CBC.SCTVMOD (Performance Analyzer) data sets into the LPA.

#

1) Change HPJ and CEE to the appropriate high-level qualifier for

VisualAge for Java, Enterprise Edition for OS/39ð and Language

Environment.

#

2) Change IBMHPJ_HOME to your install directory.

#

#--

#

export IBMHPJ_HOME="/usr/lpp/hpj"

export IBMHPJ_RTL="CEE.SCEELKED:CEE.SCEELKEX:CEE.SCEEOBJ:CEE.SCEECPP"

export CLASSPATH=$CLASSPATH:$IBMHPJ_HOME/lib

export PATH=$PATH:$IBMHPJ_HOME/bin

export LIBPATH=$LIBPATH:$IBMHPJ_HOME/lib

export STEPLIB=$STEPLIB:HPJ.SHPJMOD:HPJ.SHPOMOD:CEE.SCEERUN

#

echo '\---'

echo ' profile.java was executed '

echo '\---'

Figure 33. Example of profile.hpj File

The system programmer should append the updated profile.hpj file to /etc/profile

for general use or to the /u/"username"/.profile for individual user use.

62 e-business Application Solutions on OS/390 Using Java Vol. I

export IBMHPJ_HOME=/usr/lpp/hpj .1/
export IBMHPJ_RTL="CEE.SCEELKED:CEE.SCEELKEX:CEE.SCEEOBJ:CEE.SCEECPP" .2/
export CLASSPATH=$IBMHPJ_HOME/lib:$CLASSPATH .3/
export PATH=$IBMHPJ_HOME/bin:$PATH .4/
export LIBPATH=$IBMHPJ_HOME/lib:$LIBPATH .5/
export STEPLIB=$STEPLIB:HPJ.SHPJMOD:HPJ.SHPOMOD:CEE.SCEERUN .6/

Figure 34. Example of HPJ Variables in /etc/.profile

Notes:

.1/Set the home variable for the HPJ root.

.2/Required LE support for HPJ Compiler; CEE was used as the high level
qualifier.

.3/Append the CLASSPATH with the HPJ classes.

.4/Append the PATH with the HPJ executables.

.5/Append the LIBPATH with the HPJ executables.

.6/HPJ was used as the high level qualifier.

5.2.4.3 Customization of the javaInstall.data File
This file is used for communication between the IDE on the workstation and the
OS/390 Java Execution environment. It is used for:

� Providing default values for the fields in establishing a host session

� Providing fields for use in the tmp.cmd files that are sent to the host

The javaInstall.data file is in the /usr/lpp/hpj/ directory.

@@HPJHostName: wtsc58oe.itso.ibm.com .1/
@@HPJHome: /usr/lpp/hpj .2/
@@HPJBinderExecutablesPDSE: HPJ.SHPJMOD

@@HPJBinderMessagesPDSE: HPJ.SHPJMOD

@@HPJLERuntimeBind: CEE.SCEELKED:CEE.SCEELKEX:CEE.SCEEOBJ:CEE.SCEECPP

@@HPJLERuntimeRun: CEE.SCEERUN

@@HPJRuntime: HPJ.SHPJMOD

@@HPJDebugger: EQA.V1R2Mð.SEQAMOD .3/
@@HPJProfiler: CBC.SCTVMOD .4/
@@HPJJavaHome: /usr/lpp/java16/J1.1 .5/
@@HPJPICLHome: /usr/lpp/hpj/jdebug/engine/jdebug.jar .6/
@@HPJCICSRegion: IYKC54:IXJD78

@@HPJCICSEXCI: CICSTS13.CICS.SDFHEXCI

Figure 35. Example of Settings in .javaInstall.data File

Notes:

.1/Set the Host name to the IP name of the OS/390 host.

 Chapter 5. Configuring Java Support on OS/390 63

.2/Set the HPJHome to the directory that contains the HPJ directories and
files.

.3/This data set must be included in the OS/390 module's search path.

.4/This data set must be included in the OS/390 module's search path.

.5/HPJJavaHome is the location of the jdk that is installed on OS/390.

.6/HPJPICLHome is the home directory that contains the jdk source files
for the OS/390 host debugger

Because there was no @@HPJFTPPort specification, the default port of 021 is
assumed.

Note: If the PDSEs or PDSs specified in the following are added to the LPA, an *
(asterisk) must be added to the specification:

 � @@HPJBinderExecutablesPDSE

 � @@HPJLE RuntimeRun

 � @@HPJRuntime

 � @@HPJDebugger

 � @@HPJProfiler

5.2.4.4 Installation of the Remote Debugger for OS/390
The C/C++ with Debug Tool is an optional feature for OS/390 that can be ordered
with the original OS/390 order. After installation, it can be dynamically enabled.
This feature can be dynamically enabled by copying IFAPRD00 to a new IFAPRDxx
SYS1.PARMLIB member that you can edit to enable the VAJAVA/390-DEBUG
feature by adding the following PRODUCT statement.

PRODUCT OWNER('IBM CORP')

NAME('IBM VA JAVA/39ð')

 ID(5655-JAV)

VERSION(\) RELEASE(\) MOD(\)

 FEATURENAME('VAJAVA/39ð-DEBUG')

 STATE(ENABLED)

This will provide the required C/C++ compiler feature for use with JNI and will
provide the base DEBUG tool required for VisualAge for Java Enterprise Edition for
OS/390 using the remote debug facilities from the IDE.

Note: Refer to OS/390 V2R6.0 Planning for Installation, GC28-1726 or later, for
instructions on dynamically enabling features including alerting your IBM
representative that you are starting to use the newly enabled features.

5.2.4.5 Setting Up to Use of the Remote Debugger with OS/390
Remote debugging can be set up in the following manner:

From the IDE

� Set up the ET/390 Properties - Debugging Options

� Choose Debug Main from the ET/390 actions.

64 e-business Application Solutions on OS/390 Using Java Vol. I

This will start the remote debugger on the workstation and start the application on
the OS/390 with the TEST runtime option.

If the java source files are on OS/390 the IVJ-DBG_PATH environment variable
must be set. A good initial value for this environment variable is the value of
CLASSPATH on OS/390. You should include the statement

 export IVJ_DBG_PATH=$CLASSPATH

in the appropriate profile file.

5.2.4.6 Installation for Remote Debugging of Bytecode on
OS/390
Remote debugging of bytecode on OS/390 is currently in a technical preview
status. To perform rmote debugging of bytecode requires an auxillary debug
engine on OS/390. It is also necessary to provide a Data Information File on
OS/390 that contains the location of the auxillary debug engine on the host. This
can be accomplished as follows:

1. The VisualAge for Java, Enterprise Edition, ET/390 Toolkit contains an Extra
directory that contains the following:

� A readme file on this installation

� A \extra\jdebug.jar file (The auxiliary debug engine)

� A \extra\jdebug file (The Data Information File)

2. FTP the "\extra\jdebug.jar" file from the install CD or the file you downloaded it
into on the workstation to OS/390 HFS in binary mode to a HFS directory that
is pointed to by your OS/390 PATH environment variable.

3. ftp the "\extra\jdbug" file from the workstation to the HFS directory that is
pointed to by your OS/390 PATH environment variable.

4. Make the jdbug file executable by performing the following OE Shell command:
chmod +x jdbug

5. On OS/390 make the following changes to your OE shell environment (for
example, put in your .profile file)

� export CLASSPATH=<location of the jdebug.jar file>:$CLASSPATH

 � export JAVA_COMPILER=off

6. Invoke the bytecode debugger engine in the OS/390 shell by typing jdbug

[-qport=<TCP/IP port>].
This option sets the TCP/IP port where the host debugger expects a
connection. The default port is 8000. The host debugger is now waiting for a
connection on the specified TCP/IP port.

Note: It is necessary to set the Debugger Port number in the OS/390 HFS
directory /etc/services/.

5.2.4.7 Installation of the Performance Analyzer for OS/390
The data set CBC.SCTVMOD that contains members such as the Performance
Analyzer module CTVPFILE, is also enabled when you enable the
VAJAVA/390-DEBUG feature for IBM VisualAge for Java, Enterprise Edition.

The latest service must be applied to FMIDs H24P111 J24P112.

 Chapter 5. Configuring Java Support on OS/390 65

To run the Performance Analyzer on the host system, the CBC.SCTVMOD dataset
must be included in the OS/390 module's search path. It can be added to the Link
Pack Area by your system programmer, or you can use the export command in the
OS/390 shell to add it to your STEPLIB before you run your program, as shown in
the following example:

 export STEPLIB=CBC.SCTVMOD:$STEPLIB

Note: The sample job HPJREG, provided as part of the SMP/E install, will place a
tailored IFAPRDxx member into the SYS1.PARMLIB dataset. This will enable both
the Debug Tool and the Performance Analyzer.

5.2.4.8 Setting Up to Use the Performance Analyzer
Have your system programmer add the SCTVMOD load module data set to the
Link Pack Area. As an alternative, add the SCTVMOD load module data set to the
STEPLIB of the program. This is done by setting the STEPLIB environment
variable with the export OS/390 shell command, as shown in the following
example:

 export STEPLIB=CBC.sctvmod:$STEPLIB

Prior to creating a function trace, it is necessary to bind your program using the
-g=hook option with the hpj command. This option enables the bytecode binder to
generate hooks in the code at various points relative to a function call, or at a
function exit or exit.

When a Java application is run on the OS/390 shell, the Performance Analyzer is
started as a result of the PROFILE run time option being set on by one of the
methods described in the following examples. To enable the function tracing of a
program during its execution, you have to set the run time option PROFILE and its
suboptions. The PROFILE options can be set:

� As installation defaults at install time.

� As an hpj command's -lerunopts option which is set when you build the Java
executable. The PROFILE run time option is bound with the Java executable.

� As an export command at run time that sets _CEE_RUNOPTS.

The order of application of the PROFILE run time option is:

� The export command set at run time; if specified:

 – export _CEE_RUNOPTS="profile(on,'task')"

� The hpj command's -lerunopts option; if specified:

 – -lerunopts:PROFILE(ON,REAL)

� An installation default for the PROFILE run time option set at install time as
part of the Language Environment setup; it must be specified :

 – PROFILE(ON,REAL)

5.2.5 Testing the HPJ/390 Environment
The VisualAge for Java Run Time Library may be tested by editing and submitting
the sample job HPOJIVP to verify the correct installation of the Run Time Library.

Edit and submit a sample job HPJJIVP to verify the correct installation of the
HPJ/390 Compiler.

66 e-business Application Solutions on OS/390 Using Java Vol. I

Note: Refer to OS/390 V2R6.0 Planning for Installation, GC28-1726 or later
(depending on the OS/390 Release that you are installing VisualAge for Java,
Enterprise Edition for OS/390 on), and the service Web sites referenced in this
redbook as well as to the Program Directory for VisualAge for Java, Enterprise
Edition for OS/390, GI10-4949. to be sure that the proper service has been applied
to all programs that are part of this install.

5.2.6 Related Network Installations on OS/390
OS/390 must be configured with a full TCP/IP stack with the following functions
enabled:

� NFS Server - This comes as part of the base elements of OS/390 and must be
installed and enabled for OS/390 Release 4 and later.

� FTP Server - This comes as part of the TCP/IP stack and must be installed and
enabled.

5.2.6.1 Setting Up the NFS Client on Windows NT
The Windows NT NFS Client can be set up using the base NT nfs link facility for
both a binary link and a text link (required if the source file is to be sent to the
OS/390 host for debugging). It is necessary to specify:

� The local drive letter

 � The hostname

� The mount point on the host

� The username and the password that you are known by on the host

� The protection properties you want on the host

 � preserve case

� The port number, which should be 2049 unless your system has a customized
port address

Alternatively, if a third-party NFS facility such as Hummingbird's Maestro is
available on your workstation, you can use a graphical interface such as that shown
in Figure 36 on page 68 to set up your NFS connection.

 Chapter 5. Configuring Java Support on OS/390 67

Figure 36. NFS Setup Using Hummingbird NFS Maestro - Binary Connection

5.2.6.2 NFS Server Setup
The NFS Server on OS/390 has to be started as part of the OS/390 IPL of the
OS/390 system. The NFS Server can be started with SYS1.PROCLIB or using the
OE shell.

The NFS server should have the logout(n) parameter in the Site Attributes in the
NFS.ATTRIB data set set with the value of n equal to a value in seconds that is
consistent with a typical work session. The default NFS session time is quite small
(30 minutes). See OS/390 V2R6.0 NFS Customization and Operation, SC26-7253.

Note: It is imperative that the inetd.conf properties be set up such that the
rexecd daemon is started. This is required for remote VisualAge for Java,
Enterprise Edition for OS/390 to OS/390 operations to work. Figure 37 on page 69
shows an example of configuring this facility.

68 e-business Application Solutions on OS/390 Using Java Vol. I

/etc/inetd.conf

#

Internet server configuration database

#

Services can be added and deleted by deleting or inserting a

comment character (ie. #) at the beginning of a line

#

#==

service | socket | protocol | wait/ | user | server | server program

name | type | | nowait| | program | arguments

#==

#

otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -l

shell stream tcp nowait OMVSKERN /usr/sbin/orshd rshd -LV

login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m

exec stream tcp nowait OMVSKERN /usr/sbin/orexecd rexecd -LV

#finger stream tcp nowait OMVSKERN /usr/sbin/fingerd fingerd

Figure 37. Example of inetd.conf File

5.2.6.3 Setting Up FTP
The FTP Server must be started as part of the IPL of the OS/390 system. The
FTP server can be started either with SYS1.PROCLIB, or by using the OE shell.

To perform ET/390 Run Executable, Debug Executable, Run Main and Debug Main
actions from the VisualAge for Java IDE, the OS/390 Communications Server
(TCP/IP) Sbdataconn parameter in the /etc/ftp.data data set must be correctly
configured on the host to define the conversion between EBCDIC and ASCII code
pages. See OS/390 TCP/IP OpenEdition Implementation Guide, SG24-2141, for
more information on how to define this parameter.

Figure 38 shows the values we set in the /etc/ftp.data data set.

StartDir HFS ; Set initial FTP working directory in HFS

Primary 5ð ; Primary allocation is 5ð tracks

Secondary 2ð ; Secondary allocation is 2ð tracks

Directory 15 ; PDS allocated with 15 directory blocks

Lrecl 8ð ; Logical Record Length of 8ð

BlockSize 2896ð ; Block Size of 2896ð (1/2 trk for 339ð)

AutoRecall true ; migrated HSM files recalled automatically

AutoMount false ; non-mounted volumes mounted automatically

DirectoryMode false ; use all qualifiers (Datasetmode)

Volume TARTS2 ; Volume serial number for allocation

SpaceType TRACK ; datasets allocated in tracks

Recfm FB ; Fixed Blocked record format

Filetype SEQ ; File Type = SEQ (default)

Ctrlconn IBM-85ð ; ASCII codepage

Sbdataconn (IBM-1ð47,IBM-85ð) ; EBCDIC, ASCII codepage

Umask ð22 ; Make new HFS files rw- r-- r-- 644

Inactive 3ðð ; 5 minutes

Figure 38. Example of /etc/ftp.data File

 Chapter 5. Configuring Java Support on OS/390 69

70 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 6. Configuring VisualAge for Java on the
Workstation

In this chapter we explain how to set up VisualAge for Java Enterprise Edition for
OS/390 on the workstation in order to make use of the Enterprise Toolkit/390
(ET/390) facilities.

The configuration of the OS/390 components has been discussed in 5.2,
“VisualAge for Java, Enterprise Edition for OS/390” on page 58.

 Attention

In this redbook we use the term HPJ for the native code compiler for Java on
OS/390 because HPJ was IBM's internal code name.

However, the official product name is VisualAge for Java, Enterprise Edition for
OS/390.

6.1 VisualAge for Java Setup for OS/390 Operation
In 5.2, “VisualAge for Java, Enterprise Edition for OS/390” on page 58 we describe
the setup required on the OS/390 to install the OS/390 facilities required for:

� Standalone VisualAge for Java operations on OS/390

� Remote execution and debugging on OS/390 under control of the VisualAge for
Java, Enterprise Edition for OS/390 IDE on the workstation:

– Code Java programs at the workstation and export your bytecode to run in
a remote OS/390 Java Virtual Machine (JVM).

– For improved performance on OS/390, use the ET/390 Toolkit to bind Java
bytecode into optimized object code and run it under OS/390 UNIX System
Services as an executable or a DLL in the OS/390 shell.

– Write CICS Applications in Java and bind the Java bytecode into object
code to run under CICS/ESA.

In this chapter we describe the setup required of the IDE to establish a remote
session on OS/390 and to perform export, bind, execution and debug/performance
analysis operations on OS/390.

In 6.1.1, “FTP Connections” and 6.1.2, “NFS Connections” on page 72 we describe
the two connection methods you must implement to successfully use the ET/390
facilities.

 6.1.1 FTP Connections
Prior to using the ET/390 facilities, the workstation user must insure that FTP is
available as a client on the workstation, and as both a client and a server on
OS/390.

FTP is used by VisualAge for Java Enterprise Edition for OS/390 for the following
operations:

 Copyright IBM Corp. 1999 71

� To download the javaInstall.data file from OS/390 to the workstation, where the
data in this file is used to build a command file that is stored locally in the IDE
on the workstation for later communication to OS/390.

� To send to the OS/390 host a temporary command, built using the command
file created, associated with a bind and/or execute operation initiated on the
workstation.

� To send the output from compiler operations performed on OS/390 to the IDE
workstation, where it is displayed in the IDE log.

OS/390 comes with a full TCP/IP stack which includes an FTP server. See TCP/IP
Open Edition: User's Guide, GC31-8305, for information on using FTP in the OE
environment.

The VisualAge for Java ET/390 facilities use the OS/390 FTP server transparently
in performing the three functions just described.

Windows NT provides an FTP-enabled FTP client as part of TCP/IP. The
VisualAge for Java IDE uses the FTP facilities of the client in a manner that is
transparent to the developer on the workstation.

 6.1.2 NFS Connections
VisualAge for Java, Enterprise Edition for OS/390 requires that NFS connections
must be established between the NFS client on the workstation and the NFS server
on OS/390.

The OS/390 NFS Server (NFSS) must be installed on the OS/390 system.
DFSMS/MVS Network File System Version 1 Release 3 comes as part of the base
with OS/390 V2 Release 4 and higher. The installation process is described in
OS/390 V2R6.0 NFS User's Guide, SC26-7254.

The NFS client on the workstation can be set up by using the base Windows NT
nfs link facility as described in 5.2.6.1, “Setting Up the NFS Client on Windows
NT” on page 67. Or a graphical product such as Hummingbird's Maestro NFS
client can be used for the set up as shown in the NFS configuration dialog box in
Figure 36 on page 68

In the example shown in Figure 36 on page 68, the workstation user has mounted
the F: drive on the /u/scanlon/ HFS directory with a binary connection.

 Attention

Both a binary connection and a text NFS connection are required, because text
files must be translated between ASCII and EBCDIC, while binary files are not
translated.

Note: Sharing and Preserve Case must be checked on.

When a connection has been made successfully, the box shown in Figure 39 on
page 73 is displayed.

72 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 39. Successful NFS Mount - Binary Connection

In the example shown in Figure 40, an NFS connection is created with a text
connection.

Figure 40. NFS Set Up Using Hummingbird NFS Maestro - Text Connection

6.2 Establishing a Host Session
To establish a connection from VisualAge for Java Enterprise Edition Version 2.0 to
an ET/390 host session on OS/390, you should open, or be in, a Workbench
session and then choose Workspace from the menu bar and then Tools , ET/390,
Host Session . This will show the screen in Figure 41 on page 74.

 Chapter 6. Configuring VisualAge for Java on the Workstation 73

Figure 41. Setting Up a Host Session

If it is the first time a host session is set up, there will be no entries in the table.
The Add button should be clicked, at which point you will see the frame shown in
Figure 42.

Figure 42. Adding a Host Session

You must fill in the five text fields.

� The host session is the full IP name (computer name and domain) of the
OS/390 system you want to connect to.

� The TCP/IP address is the IP address of the host defined in the host session.

� The ET/390 Java Install Data file is the fully qualified file name of the
javaInstall.data file that was set up by your systems programmer on the
OS/390. It is likely that it will be in the HFS /usr/lpp/hpj/ directory with a
filename of javaInstall.data, but you should get this path information from your
systems programmer.

� Your FTP ID and FTP password will most likely be your user ID and password
on the OS/390 System, but you should get this information from your OS/390
systems administrator or systems programmer.

Figure 43 on page 75 shows the screen after you fill in the values.

74 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 43. Adding a Host Session with Values

Prior to adding the host session to the list of ET/390 host sessions that you can
connect to, it is necessary to retrieve the javaInstall.data file from the host.
Click Retrieve on this panel to retrieve the javaInstall.data file parameters from the
host and display them as shown in Figure 44 and Figure 45 on page 76.

Figure 44. javaInstall.data File Part 1

 Chapter 6. Configuring VisualAge for Java on the Workstation 75

Figure 45. javaInstall.data File Part 2

Check the settings in this file. If any are incorrect, have your systems programmer
change them. The javaInstall.data file settings will be downloaded and stored
locally at the IDE workstation. Parts of the javaInstall.data file will be used to build
the *.cmd* file that will be sent to the /tmp/ directory on OS/390 for an Export and
Bind, Run Executable, or Run Main (Run interpreted bytecode on OS/390 JVM)
operation.

Parts of the javaInstall.data file will be used to provide default values in the Export
and Bind properties table, such as: the CICS Region field and the host session
name.

When you are satisfied that all the specifications in the javaInstall.data file are
correct, click Close . You will then be able to click Add on the ET/390 Add Host
Session dialog box.

Figure 46 shows the ET/390 Host Sessions Dialog box after two host sessions
were added. Click Done to complete the Add a Host Session task.

Figure 46. ET/390 Host Sessions Dialog Box

If the javaInstall.data file is updated on the OS/390, it will be necessary to refresh
the Host Session by entering the Host Session dialog box shown in Figure 46 once

76 e-business Application Solutions on OS/390 Using Java Vol. I

again and highlighting the host session you wish to refresh, and then clicking
Refresh .

You will then see the ET/390 Refresh Host Sessions dialog box shown in
Figure 47.

Figure 47. Refreshing a Host Session

You can click Retrieve to verify the changes to be sure they are correct, and click
Refresh and then click Done in the ET/390 Host Sessions Dialog Box to complete
the Refresh task.

6.3 Logging on to OS/390
You must be logged on to one of the OS/390 sessions that you have established a
host session for. This will allow you to export and bind to, or execute a Java
program on, that host session.

You can log on to a host session by choosing Workspace from the Menu bar, then
choosing Tools , ET/390, Logon Data as shown in Figure 48 on page 78. This will
present you with the Specify OS/390 Logon Data Dialog Box as shown in
Figure 49 on page 78.

 Chapter 6. Configuring VisualAge for Java on the Workstation 77

Figure 48. Logon to OS/390 Menu Option

Figure 49. Logon to OS/390 Window

You will have to enter your OS/390 User logon ID and your User logon password
and then click Save to complete the logon to the OS/390 task.

78 e-business Application Solutions on OS/390 Using Java Vol. I

6.4 Installing VisualAge for Java Features
To install VisualAge for Java Features from the Workbench environment, select
File , then Quick Start , then Features .

You will see the list box with several features as shown in Figure 50.

Figure 50. Features Window

Choose the feature you need and select Add Feature .

One of the optional features is Servlet Builder. This feature was heavily used in the
development of the sample applications for this book. The Servlet Builder adds two
projects to the workbench and adds the jsdk class libraries.

 Chapter 6. Configuring VisualAge for Java on the Workstation 79

6.5 Setting Up ET/390 Properties Tables
Java Applications can be developed on the VisualAge for Java Workstation IDE
and run on OS/390 UNIX or CICS/ESA environments. Every project, package and
class has a set of ET/390 properties associated with it to allow the developer to
control the actions that are to be performed on OS/390. The ET/390 properties can
be set in panels associated with the following Sessions:

� Export and Bind Session

 – Bind Options

– Advanced Bind Options

� Run Executable Session

– Run Time Options

– Advanced Run Time Options

 – Debugging Options

 – Tracing Options

� Run Main Session

– Run Time Options

Property tables are required on a per project basis, or on a per package or per
class basis, if desired.

Note: The VisualAge for Java, Enterprise Edition for OS/390 IDE provides
excellent help on all of the panels required for setting up the properties. With the
panel displayed, click F1 and you will receive detailed help on that panel, with links
to associated topics.

6.5.1 Setting Up Properties for an Export and Bind Session
VisualAge for Java, Enterprise Edition for OS/390 allows the developer to build
OS/390 Java Executables from the workstation IDE and export and bind the
executable to OS/390.

Before performing the Export and Bind operation, the developer must first set the
ET/390 properties in the Export and Bind Session panel. This is done as follows:

� Select the package you want to export and either click the right mouse button
or click selected from the menu bar. From the pop-up window, select
Tools...ET/390...Properties . In the ET/390 Properties window, select Export
and Bind Session .

� You can either accept the inherited values if settings were previously done for
the project that this package belongs to, or you can set the fields for this
package - this choice is established by choosing Default to parent or Use
Local . Not all fields can be set at the package level; those that cannot be
selected will be grayed out.

� In the panel, set Host Session, Option set, Mount point on host, and
Mounted directory for class files . Also set the other options that you need.

See Figure 51 on page 81 for the Export and Bind session.

80 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 51. Export and Bind Session

� Select the Bind Options panel and select the Build a Java Executable option.
Specify Main class name if there is more than one main class in the package.
Set any other options that you require.

See Figure 52 on page 82 for the Bind Options.

 Chapter 6. Configuring VisualAge for Java on the Workstation 81

Figure 52. Bind Options

� Select the Advanced Bind Options panel and then select any options that you
require.

See Figure 53 on page 83 for the Advanced Bind Options.

82 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 53. Advanced Bind Options

6.5.2 Setting Up the Properties for a Run Executable Session
The ET/390 Run Executable Session Properties panel provides configuration
information for the Run Executable and Debug Executable on OS/390.

The CLASSPATH is used as the search path for Java DLLs residing on HFS and
in PDSE members.

See the online help for the other fields and their contents.

6.5.3 Run Time Options
Taken together, the run time options, the advanced runtime options, the debugging
options and the tracing options list the complete set of Language Environment
run-time options that can be used when ET/390 Run Executable and Debug
Executable actions on objects are performed.

See the online help for detailed explanations of each option field. The following
discussion offers additional detail on setting up the debug options.

6.5.4 Setting Up Properties for Debugging Options
The debugging options are used when you perform a Debug Executable action on
objects. The following options can be set:

� Start the debugger at program initiation

Starts the debugger on the host when the program is initialized and passes the
conditions (All conditions, On error, or No conditions) to the debugger.

 Chapter 6. Configuring VisualAge for Java on the Workstation 83

This is equivalent to the Language Environment runtime option TEST.

Note: Use the ET/390 debug executable action to run the debugger with the
executable on OS/390.

� Pass Conditions to the Debugger

Specifies the condition for which the debugger runs.

� Content of dump

Sets the level of information that is produced when the Language Environment
percolates a condition of severity 2 or greater beyond the first routine's stack
frame.

 � Storage information

Specifies the initialized value of heap storage when allocated, the value with
which to overwrite freed heap storage, DSA's initial value, and the amount of
storage for the LE storage manager to reserve in the event of an out-
of-storage condition.

� LOCAL TCP/IP port of the daemon

Specifies the port number (4 digits) for the debugger daemon's port on the
workstation.

Note: See the online help available via F1 for details on all of the above settings.

6.5.5 Setting Up the Properties for a Run Main Session
You can run your project's bytecode that has main methods from the VisualAge for
Java IDE. This bytecode is is set up to run on the OS/390 JVM in the following
manner:

1. Generate the source code on the IDE and compile it (performed on SAVE at
the IDE).

2. Make sure you have an NFS binary connection to the OS/390 host.

3. Select the package or class that you want to run on OS/390. Select File from
the menu bar and then Export .

4. In the Export SmartGuide, select the class files you want to export via a binary
connection.

5. Specify a drive that is mounted as binary on an HFS directory.

 6. Click Finish .

See Figure 54 on page 85.

84 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 54. Export a Class File

Now set the ET/390 properties in the Run Main Session panel in the following
manner:

� Host Session - Specify the host session you want to run the bytecode on. Note
that this specification is for the entire project.

� CLASSPATH - Specify the CLASSPATH that should be used by the OS/390
JVM to search for the required Java classes when your bytecode is running.

� Local directory for Java files - Enter the location of the source files on OS/390
for the bytecode you are going to run on OS/390 if you wish to run the
bytecode with Debugging.

See Figure 55 on page 86.

 Chapter 6. Configuring VisualAge for Java on the Workstation 85

Figure 55. Run Main Properties

To export the source files, which is required if you want to debug the bytecode on
the OS/390, perform the following:

1. In the Export SmartGuide, select the source files you want to export via a text
connection.

2. Specify a drive that is mounted as text on an HFS directory. (see Figure 56 on
page 87)

3. Click Finish to export the code to the directory on the OS/390 HFS.

See Figure 56 on page 87.

86 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 56. Export a Source File

To export the class files such that they can be debugged when running the
bytecode on OS/390, it is necessary to select the Include debug attributes in
.class files box in the Export to a directory panel.

See Figure 57 on page 88.

 Chapter 6. Configuring VisualAge for Java on the Workstation 87

Figure 57. Export a Class File for Debugging

6.5.6 Workstation Setup for the Debugger

6.5.6.1 Setting Up the Debugger Front End on the Workstation
The following steps should be performed to start the debugger daemon on the
workstation:

� Make sure the IVJ_DBG_LANG environment variable is set to JAVA on the
workstation.

� Start the remote debugger daemon on the workstation by issuing the following
command:

jdebugd -qport=nnnn -v

 – Where:

-v means display connection information.

– nnnn is the TCP/IP port number that the remote debugger daemon will
listen for an incoming requests.

88 e-business Application Solutions on OS/390 Using Java Vol. I

Note: This is the same port number that must be specified when the OS/390
executes the TEST runtime option.

Note: This port number should be specified as jdebug 8ððð/tcp in the
C:\WINNT\system32\drivers\etc\services file on the NT workstation to insure
that the proper port is obtained even if the port number is not specified in Local
TCP/IP port for the daemon in the Debugging Properties, or a jdebugd
-qport=nnnn command.

6.5.6.2 Starting the Debug Daemon
Java source files are required for debugging. They can reside either on the host or
on the workstation. The debug daemon must be started on the workstation if the
source files are kept there.

The debugger searches for Java source files for an OS/390 program that is being
debugged in the following locations:

� The host file name specified at compile time

� Paths in the export IVJ_DBG_PATH environment variable on the machine where
the application is running

� Paths in the export IVJ_DBG_PATH environment variable on the workstation
where the debugger display is running

If you want to use the IDE for developing bytecode and then debug the bytecode
from the IDE while it is running on OS/390 JVM, you have to export the bytecode to
a local drive on OS/390.

This can be done as follows:

1. Be sure you have an NFS connection to OS/390 that will receive the bytecode
file.

2. On the IDE, select the Java package or class that you want to run.

3. On the IDE, select Files...Export from the menu bar.

4. In the Export SmartGuide, choose directory , then in the Export to a directory
window select the class files you want to export via a binary connection.

5. Specify a drive that is mounted as binary on an HFS directory.

6. Select Include debug attributes in .class files

7. Click Finish to export the .class files.

See Figure 58 on page 90.

 Chapter 6. Configuring VisualAge for Java on the Workstation 89

Figure 58. Export a Class File for Debugging

To export the source files, which are required if you want to debug on OS/390, do
the following:

1. In the Export SmartGuide, select the source files you want to export via a text
connection.

2. Specify a drive that is mounted as text on an HFS directory.

3. Click Finish to export the code to the directory on the OS/390 HFS.

See Figure 59 on page 91

90 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 59. Export a Source File

For remote debugging of Java bytecode running on OS/390 from the IDE
workstation, it is necessary to connect a UI to the debugger engine. This is done
on the workstation using the following steps:

1. Set up the environment using C:\IBMVJava\eab\bin\setdbg.bat (make sure you
use the actual drive\directory where you installed VisualAge Java 2.0).

Note: You must have JDK1.1.6 installed on your NT workstation for this bat
file to execute correctly.

2. Start the debugger UI from the command line:

jdebug -qhost=<hostname> [-qport=<TCP/IP port>]

where:

<hostname> specifies the OS/390 IP name where the host debugger is
running. For example, wtsc58oe.itso.ibm.com.

-qport=<TCP/IP port> sets the TCP/IP port on which the Workstation IDE UI
will attempt to connect to the host debugger. If this option is omitted, the UI
defaults to port 8000.

 Chapter 6. Configuring VisualAge for Java on the Workstation 91

92 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 7. NetObjects Fusion (NOF) Version 3

NetObjects Fusion (NOF) is a single-user oriented product designed to create and
maintain Web sites. The HTML pages that make up the sample site and the pages
on the CD included with this redbook were created using NetObjects Fusion. The
CD also contains a 30-day trial version of NetObjects Fusion. To help you get
started, the CD and sample sites were exported from NOF and can be imported
using the trial version. Check the CD for additional information.

As a single user product, NOF is installed on a single machine, where the site
definition is created and maintained. The site is then published to the target server.
This process is the same no matter what type of system the target server is.

NOF uses FTP to perform the publishing, so it is important that you have FTP
configured as part of TCP/IP on your OS/390 system. The FTP configuration
should be set up to target the HFS.

The publishing section of NOF is easy to set up by doing the following:

1. Select the Publish icon. This will change the action bar specific to publishing.

2. Select the Publish action bar item and Publish Setup from the pull-down. This
will cause a dialog box to appear.

3. Select the HTML Output tab. The Quote type at the bottom should be straight
quotes. This will allow for the correct mapping of quotes on OS/390.

4. Select the Server Locations tab and then the Add button to create a new
definition. Specify a name for your target OS/390 system and select the
remote radio button. You need to fill in the TCP/IP name of the target system,
the subdirectory where you want the HTML created, and the user ID and
password you want to use for publishing.

5. Select the Advanced button. This will bring up an additional dialog box. Enter
the correct permission bit settings (normally 775) so the Web server can read
the pages and graphics.

6. Press Ok on all the dialog boxes, and you now have the server defined.

7. Press the Publish Site action pull-down.

8. Select the server you defined above and press Ok. The rest is automatic.

As projects grow larger and involve more people working on the Web site content,
a single user product will quickly become a problem. NetObjects has a groupware
product that will help in this area, NetObjects Authoring Server. NetObjects
Authoring Server is a groupware version of NetObjects Fusion. The basic
configuration is an NT server running the NetObjects Authoring Server code. Every
client then installs the NetObjects Authoring Client code, and one (or more) person
installs the Administration code. The administrator configures the server creating
user IDs and granting authorizations.

The administrator then creates the base site, site style and structure, and
configures the information about the target server where the Web site will be
published to. (This can be any valid server that has FTP running and a Web server
just like NetObjects Fusion). The client interface is similar to NOF except that
before you can modify a page, you need to check it out and when finished

 Copyright IBM Corp. 1999 93

modifying the page, you need to check it back in. If the initial site is built using
NOF, you can also export the site and import it into NetObjects Authoring Server,
giving you an easy migration path from a single user environment to a groupware
environment.

In the rest of this chapter, we describe step by step the creation of a Web site
using NetObjects Fusion.

7.1 Design of a Site
To develop enterprise Web applications, begin with Web site design, concentrating
on the user interface. Decide on the following matters:

� Concepts through entire Web site

� Arrangement of static content

 � Multimedia content

� Dynamic content (in other words, applications)

All Web interfaces consist of multiple static pages (although these pages are
potentially dynamically generated. Think of all content, including the applications,
as “pages.”

NetObjects Fusion can help you in the Web site design step. Using the “style”
function, you can maintain design consistency. Using the “site view” function, you
can compose and view the entire Web site layout. Using the “page view,” you can
construct each page from various components.

The application part of the Web site may consist of form tags and the elements.
These pages will be replaced with servlets or JSPs. But these are used as
presentation logic of application in tact, wired with business logic.

You can create a simple Web site. When you execute NetObjects Fusion, the
“Welcome to NetObjects Fusion” window is shown; see Figure 60.

Figure 60. Welcome to NetObject Fusion Window

94 e-business Application Solutions on OS/390 Using Java Vol. I

Select Blank site and press OK; the window shown in Figure 61 on page 95
appears. After you enter the appropriate site name, and you are ready to build a
new site.

Figure 61. New Blank Site of NetObject Fusion

Look at the Site View window as shown in Figure 62. This view shows the pages
of the site and the relationship between them (however, a relationship does not
necessarily mean a link exists yet).

Figure 62. Site View of NetObject Fusion

Now you can set the style of the site. You find the style button at the left side of
the cobalt-color toolbar; see Figure 63 on page 96.

 Chapter 7. NetObjects Fusion (NOF) Version 3 95

Figure 63. Left Part of the Toolbar in NetObjects Fusion

Press Style and we move to Style View, as shown in Figure 64.

Figure 64. Style View of NetObjects Fusion

After selecting the style you want, press Set style at the right side of the
cobalt-color toolbar; see Figure 65. From now on, NetObjects Fusion will maintain
design consistency with this selected style.

Figure 65. Right Side of Toolbar in NetObjects Fusion

Press Site to return to the Site View and change the name of the first page of the
site. Press the page tab on the properties palette, and enter the name of the page.

96 e-business Application Solutions on OS/390 Using Java Vol. I

The name is the file name excluding the extension when publishing. As an
exercise, change this name to “index.” Now, the file name of this page is
index.html.

 Attention

If you cannot see the properties window, you can turn on the window by
selecting View , properties palette or View , palettes , properties palette .

Again, if you press Custom , you can change some other names displayed on the
Web page and the file extension; see Figure 66.

Figure 66. Page Properties and the Custom Name Window in NetObjects Fusion

As an exercise, edit the page. Double-click the page icon to move to page view for
the page. In page view, you can create your own page visually; see Figure 67 on
page 98.

 Chapter 7. NetObjects Fusion (NOF) Version 3 97

Figure 67. Page View of NetObjects Fusion

Expand the site by right-clicking the page icon, and selecting New page in the
pop-up menu; see Figure 68. In this way, you can construct the tree structure of
the site. In addition, you can move a page to another position by a drag-and-drop
technique..

Figure 68. Expansion of Site in NetObjects Fusion

98 e-business Application Solutions on OS/390 Using Java Vol. I

7.2 NetObjects: Static vs. Dynamic Pages
The preceding example describes how you create static HTML pages. However,
there is another type of HTML page that needs to be addressed: a dynamic Web
page. Any HTML page that is composed or modified as a result of an application
running or server side include is called a dynamic Web page. This book describes
several ways to create dynamic Web pages, including using Java servlets and Java
server pages.

 Chapter 7. NetObjects Fusion (NOF) Version 3 99

100 e-business Application Solutions on OS/390 Using Java Vol. I

 Chapter 8. DB2 Connectivity

In this chapter we describe the setup of DB2 for the following two situations:

� Connecting to DB2 from a DB2 client

In this case you would use the Distributed Relational Database Architecture
(DRDA) to connect from a Java client application or applet to a DB2 server.

� Connecting to DB2 from a Java servlet

In this case you need to set up your DB2 environment for the usage of JDBC
or SQLJ as the bridge between the Java servlet and the DB2 server on
OS/390.

8.1 Configuration of DB2 Connect
In this section we describe how DB2 Connect can be used in combination with a
DB2 server installed on OS/390. The usage of DB2 Connect can be twofold:

1. During development of an application

A connection with the DB2 server on OS/390 can be established from the
workstation using DB2 Connect, making it possible to access directly the table
descriptions and database layout from your development tool. In this case, you
would work with your tables on OS/390 as if they were in your local DB2
database on the workstation.

2. During runtime of an application

A client can communicate with a DB2 server on OS/390 using DB2 Connect.
In this case, you are only using DB2 features and you will not need anything
else to communicate, such as a Webserver. Your client can be a Java client
using the JDBC API.

8.1.1 Introduction and Comments on DB2 Connect
While most critical data of the world's largest organizations is stored on mainframe
environments such as OS/390, there is a steadily growing number of applications
running on PCs, UNIX and Apple workstations. The demand for integration of both
platforms is continuously increasing.

As this redbook describes, there are many possible ways to accomplish this
integration. One way is by using the DB2 Connect either the Enterprise edition or
the Personal edition. Both editions are also known as DDCS Multi-User Gateway.
DB2 Connect provides a managed gateway for remote clients to access databases
stored on one of the following systems:

� DRDA server: DB2 for MVS/ESA, DB2 for AS/400, DB2 for OS/390, DB2 for
VSE and VM systems

� DB2 Universal Database servers running on OS/2, Windows NT, AIX and some
other UNIX systems

The DB2 Connect products implement a DRDA Application Requester that can
access DRDA Application Servers running on MVS, AS/400, OS/390, VM and VSE
systems. Additionally DB2 Connect provides a run-time environment for database
applications written in Java and other programming languages. Java Database

 Copyright IBM Corp. 1999 101

Connectivity (JDBC) and Microsoft's Open Database Connectivity (ODBC) are part
of the product.

DB2 Connect products provide several ways of connecting to OS/390 database
servers. One of the following network configurations could be used:

� Direct SNA or APPC connection from DB2 Connect to a DB2 DRDA host

� Direct TCP/IP connection from DB2 Connect to a DB2 DRDA host

� Indirect connection from DB2 Connect to a DRDA host via a communications
gateway

TCP/IP is core of the Java programming language. The direct TCP/IP connection
to the DRDA host is very convenient and desirable. All the following explanations
are based on a TCP/IP connection to the host.

8.1.2 Installing and Configuring the Client
For setting up a DB2 Connect connection to the mainframe, you must have TCP/IP
installed on both platforms, client and server, and running properly. On top you can
now install DB2 Connect. This is very straightforward. It does not matter whether
you install the Personal edition or the Enterprise edition.

Having the product successfully installed, the installation asks for a reboot. To start
the client configuration, you must start the Client Configuration program.
Depending on the installation, this is done automatically. If this is the first start of
the configuration, it will welcome you and ask you about adding a database.
Otherwise you will see a screen similar to Figure 69:

Figure 69. The Client Configuration Assistant

102 e-business Application Solutions on OS/390 Using Java Vol. I

Every database you want to access via DB2 Connect must be added by using the
Client Configuration Assistant. You do this by pressing the Add button. You can
choose among three options:

� You can use a profile for configuration.

� You can search the network for the desired computer and the database. (This
does not work if you are configuring a database located on a mainframe.)

� You can enter the information manually. (This is the way shown in this
example.)

Choose the third option and press Next . Since we decided to use the TCP/IP
connection, enter the information as shown in Figure 70. Having completed this,
go to the next tab.

Figure 70. Select a Communication Protocol

 Chapter 8. DB2 Connectivity 103

Figure 71. Specify the TCP/IP Parameters

Notes: Figure 71 needs to be filled out as follows:

.1/ Type in the TCP/IP name or the dotted ASCII IP address of the server
DB2 is running on.

.2/ Type in the port number on which the DB2 instance that contains the
target database is listening. It is defined in the TCP/IP services file on the
server.

.3/ If you want an entry made in the TCP/IP services file on your system
for the database server, you can optionally enter a service name.

Go to the next tab (shown in Figure 72 on page 105) and enter the name of the
database you want to connect to:

104 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 72. Specify the Name of the Database

 Important

The name of the database depends on the system you want to connect to:

� The “name” or alias of the database, if you connect to DB2 Universal
Database (UDB) or DB2 For Common Servers

� The name of the “location,” if you connect to DB2 on OS/390 (MVS)

� The “RDB” name, if you are connecting to DB2 for AS/400

� The “DBNAME,” if your DB2 is on VM/VSE

Go to the next page and specify the database alias. Enter a database description.
The alias, by default, is the same as the target database of the previous tab. Keep
in mind that the alias is the name you use in your application. It is limited to eight
characters, as shown in Figure 73 on page 106.

 Chapter 8. DB2 Connectivity 105

Figure 73. Specify the Local Name of the Target Database

If there is no JDBC Driver available, then you can register the database you are
defining as an ODBC-source on the current computer. However, DB2 has JDBC
support. No ODBC data source has to be defined. By default the Smart Guide will
define a ODBC source. Just uncheck the checkbox if you do not want the ODBC
source to be defined.

8.1.3 The Architectural Possibilities
While testing the possible access method to the data on OS/390, DB2 Connect is
very easy to use. Its installation is straightforward, the configuration quick and the
access to the database is fast.

There are basically two ways for a Java program to use DB2 Connect:

8.1.3.1 Setting Up the Fat Client Architecture
In this approach, the Java program is a Java application. All class files exist on the
local hard disk of each client workstation. Also, DB2 Connect is installed on each
workstation. The workstation is part of the local area network (LAN) and TCP/IP is
installed. Figure 74 on page 107 illustrates the architecture:

106 e-business Application Solutions on OS/390 Using Java Vol. I

OS/390 LAN
TCP/IP Network

OS/2 Workstation WinNT/95/98
Workstation

AIX/Unix
Workstation

DB2 Connect Personal Edition and
Java Runtime Environment installed

DB/2
DRDA
Host

Figure 74. Two-Tier Client/Server Configuration (Fat Client)

When using a two-tier solution, you do not have to worry about Java security
issues. You need to provide the application with three parameters:

� The JDBC driver name for DB2: COM.ibm.db2.jdbc.app.DB2Driver

� The URL of the database: jdbc:db2:<DatabaseName>

� The name of the database table

8.1.3.2 Setting Up the Thin Client Architecture
The setup for the three-tier solution is totally different from that of the two-tier.
Keep in mind that this configuration does not refer to a Webserver on OS/390, but
rather to a Webserver on a workstation connected to the OS/390 DB2.

In this approach, you first have to install and set up a Webserver and the Web
page which includes the desired applet.

Beyond that, applets being loaded remotely are part of the Java security model, the
so-called “sandbox.” That means that every applet being loaded from a remote
computer is treated as untrusted.

Depending on the browser you are using, the security restrictions implemented in
the Java Virtual Machine (JVM) of your browser do not allow you to establish a
connection to a database that resides on a computer other than the Webserver
from which the applet has been loaded.

 Chapter 8. DB2 Connectivity 107

However, this problem can be solved, since the browser treats a digitally signed
applet as trusted. For that reason you must sign the applet and provide the client
browser with a so-called “Certificate.”

Figure 75 illustrates the three-tier architecture:

Lotus Domino Go Webeserver
+ Application Source
+ DB2 Connect PE
+Java DB2 Client

+ Firewall

Networkstation
+ Java enabled

Browser

PC
+ Java enabled

Browser

OS/390

LAN
TCP/IP Network

Internet

Networkstation
+ Java enabled

Browser

DB/2
DRDA
Host

Figure 75. Three-Tier Client/Server Configuration (Thin Client)

Since this is a three-tier environment, and the physical JDBC driver is not installed
on the client machine, the setup is totally different.

Assuming that the Webserver is installed and configured and that the HTML pages
for loading the applet are accessible, the following software must be installed and
set up correctly:

� DB2 Connect is installed and the database has been added as described in
8.1.2, “Installing and Configuring the Client” on page 102.

� The DB2 JDBC Server (db2jstrt) is running and listening on a specified unused
port.

Note: At the command line you type: db2jstrt ####, where #### is the free
port number.

� The JDBC Driver classes are accessible through the CLASSPATH environment
variable.

� The applet is packed into a Java Archive (JAR) file. The jar file has been
signed and is accessible through the CLASSPATH environment variable.

Setting up the three-tier solution, you must provide the applet with three
parameters:

� The JDBC driver: COM.ibm.db2.jdbc.net.DB2Driver

108 e-business Application Solutions on OS/390 Using Java Vol. I

� The URL: jdbc:db2://YourComputer:####/TheDatabase, where YourComputer
is the IP address or the domain name of the actual workstation and #### is the
portnumber that the DB2 JDBC server is listening on (db2jstrt)

� The correct name of the table

The Web client must have a Java-enabled browser.

Note: There might be security problems because of the different Java
implementations on the different browsers and browser versions. We tested
the sample application with Netscape Communicator version 4.5 and
Microsoft Internet Explorer version 4.0

8.2 Configuring the Webserver to Use DB2
This section discusses the configuration changes needed to the Webserver in order
to support DB2 access for Java applications running on Webserver.

 8.2.1 Overview
In order for the Webserver and its Java applications to have access to DB2, you
must first enable JDBC and/or SQLJ support on OS/390. In order to support JDBC
or SQLJ on OS/390, you will need to install DB2 for OS/390 version 5.1 or above.
In addition, you will need to install DB2 for OS/390 JDBC and SQLJ Driver support
and DB2 for OS/390 Call Level Interface (CLI) support. Refer to Program Directory
for DB2 for OS/390, GI10-6973-02, for those components.

You may refer to the DB2 for OS/390 V5 Application Programming Guide and
Reference for Java, SC26-9547-00. URL:

 http://www.ibm.com/software/data/db2/os39ð/sqlj.html

Additional information can be found in DB2 for OS/390 V5 Call Level Interface
Guide and Reference, SC26-8959.

Once all of the required DB2 components are installed, we recommend you run the
sample JDBC program which is provided in the install instructions for JDBC.

8.2.2 Lotus Domino Go Webserver Release 5.0 DB2 Support
The following steps need to be followed in order to enable the OS/390 Webserver
for JDBC and SQLJ ACCESS. We assume that you are running Lotus Domino Go
Webserver Release 5.0 with either ServletExpress or WebSphere Application
Server for OS/390 V1.1.

1. In the Webserver startup proc, you will need to add the following STEPLIBS:

 //STEPLIB DD DSN=IMW.SIMWMOD1,DISP=SHR

 // DD DSN=DB2V51ð.SDSNLOAD,DISP=SHR

 // DD DSN=DB2V51ð.SDSNEXIT,DISP=SHR

2. For JDBC support, you will need to add a DD card containing the CLI
initialization dataset to the Webserver startup PROC; following is an example.
In your case, you may have another data set naming convention, in which case
you need to use your own specific CLI INI file.

//DSNAOINI DD DSN=DB2V51ðU.DB2CLI.CLIINI,DISP=SHR

 Chapter 8. DB2 Connectivity 109

The CLI INI file is used by JDBC to determine the subsystem name and some
other information.

3. You will need to update the jvm.properties as follows:

� For ncf.jvm.classpath you must add:

 /usr/lpp/db2/db251ð/classes/db2jdbcclasses.zip

and

 /usr/lpp/db2/db251ð/classes/db2sqljruntime.zip

� For ncf.jvm.libpath you must add:

 /usr/lpp/db2/db251ð/lib

4. The following is an example CLI INI we used for our examples.

[COMMON]

; DB51 is our DB2 SSID

MVSDEFAULTSSID=DB51

; TRACE is for IBM DEBUGGING

; CLITRACE is for application debugging

;be sure trace is not started before the ini is read, else this is

; missed

;be sure that you put this ini out just before the job you want to

; trace, that is, if you have a setup insert job. run that before.

; turn diagnosis trace on and increase trace buffer size

TRACE=ð

TRACE_NO_WRAP=1

TRACE_BUFFER_SIZE=2ðððððð

; turn user application trace on and direct to DD name CLITRACE

CLITRACE=ð

TRACEFILENAME=DD:CLITRACE

; Example SUBSYSTEM stanza for DSGC subsystem

[DB51]

; the MVSATTACHTYPE can be either CAF or RRSAF

MVSATTACHTYPE=RRSAF

PLANNAME=DSNACLI

; SC58DDF is our DB2 location name.

[SC58DDF]

AUTOCOMMIT=1

CONNECTTYPE=1

8.2.3 Installation of RRS
As already explained briefly in 3.3.1.3, “Resource Management” on page 24,
RRSAF is a call attach option to connect to DB2. In our testing of DB2 servlets, we
elected to use RRSAF. Information about RRS can be found in OS/390 V2R4.0
MVS Programming: Resource Recovery, GC28-1739. We followed the next steps
to implement RRS:

1. We allocated Sysplex LOGR using the following JCL:

//DEFLOGR JOB (999,POK),'DEFINE LOGR CDS',CLASS=A,REGION=4M,

 // MSGCLASS=T,TIME=1ð,MSGLEVEL=(1,1),NOTIFY=&SYSUID

 //STEP1 EXEC PGM=IXCL1DSU

 //SYSPRINT DD SYSOUT=\

 //SYSIN DD \

 DEFINEDS SYSPLEX(PLEX58)

 MAXSYSTEM(2)

110 e-business Application Solutions on OS/390 Using Java Vol. I

 DSN(SYS1.PLEX58.LOGRðð) VOLSER(TARPLX)

 CATALOG

 DATA TYPE(LOGR)

ITEM NAME(LSR) NUMBER(1ðð)

ITEM NAME(LSTRR) NUMBER(6ð)

ITEM NAME(DSEXTENT) NUMBER(1ð)

 /\

2. We updated the COUPLExx member to add the LOGR:

 COUPLE SYSPLEX(PLEX58)

 PCOUPLE(SYS1.PLEX58.CDSð2)

 DATA TYPE(LOGR)

 PCOUPLE(SYS1.PLEX58.LOGRðð)

 DATA TYPE(WLM)

 PCOUPLE(SYS1.PLEX58.WLMð4)

3. We defined LOGR policy with the following JCL:

//DEFLOGRP JOB (999,POK),'LOGR POLICY',CLASS=A,REGION=4M,

 // MSGCLASS=X,TIME=1ð,MSGLEVEL=(1,1),NOTIFY=&SYSUID

 //STEP1 EXEC PGM=IXCMIAPU

 //SYSPRINT DD SYSOUT=\

 //SYSABEND DD SYSOUT=\

 //SYSIN DD \

DATA TYPE(LOGR) REPORT(YES)

 DEFINE LOGSTREAM

 NAME(ATR.PLEX58.ARCHIVE)

 DASDONLY(YES)

 HLQ(LOGR) MODEL(NO)

 LS_SIZE(1ð24)

 STG_SIZE(1ð24)

 LOWOFFLOAD(ð) HIGHOFFLOAD(8ð)

 RETPD(15) AUTODELETE(YES)

 DEFINE LOGSTREAM

 NAME(ATR.PLEX58.RM.DATA)

 DASDONLY(YES)

 HLQ(LOGR) MODEL(NO)

 LS_SIZE(1ð24)

 STG_SIZE(1ð24)

 LOWOFFLOAD(ð) HIGHOFFLOAD(8ð)

 RETPD(15) AUTODELETE(YES)

 DEFINE LOGSTREAM

 NAME(ATR.PLEX58.MAIN.UR)

 DASDONLY(YES)

 HLQ(LOGR) MODEL(NO)

 LS_SIZE(1ð24)

 STG_SIZE(1ð24)

 LOWOFFLOAD(ð) HIGHOFFLOAD(8ð)

 RETPD(15) AUTODELETE(YES)

 DEFINE LOGSTREAM

 NAME(ATR.PLEX58.DELAYED.UR)

 DASDONLY(YES)

 HLQ(LOGR) MODEL(NO)

 LS_SIZE(1ð24)

 STG_SIZE(1ð24)

 Chapter 8. DB2 Connectivity 111

 LOWOFFLOAD(ð) HIGHOFFLOAD(8ð)

 RETPD(15) AUTODELETE(YES)

 DEFINE LOGSTREAM

 NAME(ATR.PLEX58.RESTART)

 DASDONLY(YES)

 HLQ(LOGR) MODEL(NO)

 LS_SIZE(1ð24)

 STG_SIZE(1ð24)

 LOWOFFLOAD(ð) HIGHOFFLOAD(8ð)

 RETPD(15) AUTODELETE(YES)

4. We updated the IEFSSNxx member to add RRS, as follows:

 SUBSYS SUBNAME(RRS) /\ RRS \/

5. We copied SYS1.SAMPLIB(ATRRRS) to SYS1.PROCLIB(RRS)

To run RRS, simply perform an S RRS command. We suggest adding the startup
for RRS into the COMMNDxx member in SYS1.PARMLIB. To take RRS down, you
will need to issue SETRRS CANCEL command.

8.3 Configuring JDBC and SQLJ in OS/390 UNIX Shell
In order to run JDBC or SQLJ programs directly from the OS/390 UNIX shell or use
the SQLJ translator code, you must configure your profile after JDBC and SQLJ
code has been installed. The following steps outline the environmental variables in
the profile that needs to be set:

1. Modify STEPLIB to include the SDSNEXIT and SDSNLOAD data sets:

 export STEPLIB=DSN51ð.SDSNEXIT:DSN51ð.SDSNLOAD

2. Modify LIBPATH and LD_LIBRARY_PATH to include the DLL library for DB2:

 export LIBPATH=/usr:/usr/lib:/usr/lpp/db2/db251ð/lib

 export LD_LIBRARY_PATH=/usr/lpp/db2/db251ð/lib

3. Modify CLASSPATH to include the following library:

 export CLASSPATH=/usr/lpp/db2/db251ð/classes/db2classes.zip:

 export CLASSPATH=/usr/lpp/db2/db251ð/classes/db2sqljclasses.zip:

4. Add DB2SQLJDBRMLIB to point to a MVS partitioned data set into which
DBRMs are placed. The default is prefix.DBRMLIB.DATA.

 export DB2SQLJDBRMLIB=USER.DBRMLIB.DATA

5. Add DB2SQLJPLANNAME to point to the name of the plan that is associated
with an SQLJ application. The plan is created by DB2 for OS/390 bind
process. This is only for SQLJ. (JDBC uses CLI parms.)

 export DB2SQLJPLANNAME=SQLJPLAN

6. Add DB2SQLJSSID to point to the name of the DB2 subsystem to which an
SQLJ application connects. This is only for SQLJ. (JDBC uses CLI parms.)

 export DB2SQLJSSID=DB51

7. Add DB2SQLJATTACHTYPE to specify the attachment facility that an SQLJ
application program uses to connect to DB2. The value can be CAF or
RRSAF. This is only for SQLJ. (JDBC uses CLI parms.)

 export DB2SQLJATTACHTYPE=RRSAF

112 e-business Application Solutions on OS/390 Using Java Vol. I

8.4 Possible Pitfalls When Using DB2 from Java
We encountered the following potential causes for problems when configuring the
JDBC environment for DB2 on OS/390:

� No DB2 location name has been defined.

You need to have a DB2 location name in order to use JDBC. The location
name is usually obtained by configuring DDF. Without this location name, you
cannot use JDBC.

� CLI members not bound.

You may need to re-bind the CLI members. Otherwise you might get an error
from your JDBC application indicating that something is wrong with your driver.

You can re-bind the CLI members by running job DSNTIJCL in your DB2 JCL
library.

� Insufficient authorization given to use CLI.

You may need to explicitly set the authorization for using the CLI members.
You can do this by executing the following command from SPUFI or from a job:

GRANT EXECUTE ON PLAN DSNACLI TO PUBLIC

� JDBC classes are not in CLASSPATH.

You need to have the JDBC classes added to your CLASSPATH environment
variable, in /etc/profile for Java applications and in jvm.properties for Java
servlets executed in Lotus Domino Go Webserver Release 5.0.

� JDBC native drivers are not in PATH.

You need to have the JDBC drivers added to your PATH environment variable,
in /etc/profile for Java applications and in jvm.properties for Java servlets
executed in Lotus Domino Go Webserver Release 5.0.

 Chapter 8. DB2 Connectivity 113

114 e-business Application Solutions on OS/390 Using Java Vol. I

Part 3. Develop Application Solutions for OS/390 Using Java

In this part we describe various application solutions using Java and a specific
subsystem on OS/390. All solutions make use of a Webserver, Lotus Domino Go
Webserver Release 5.0 with either ServletExpress or WebSphere Application
Server for OS/390 V1.1. For each subsystem we focus on a different element:

In Chapter 9, “DB2 Access” on page 117 we focus on programming servlets using
either JDBC or SQLJ to access DB2.

In Chapter 10, “Develop Java Solutions for CICS on OS/390” on page 155 our
starting point was a Windows NT workstation with a development environment
including a CICS server (TxSeries) and a Webserver. We developed an application
entirely on Windows NT, ran it there, and then moved the application up to OS/390.

In Chapter 11, “Accessing IMS Transactions from the Web” on page 207 we focus
on a more complicated scenario to access IMS: using the session concept.
Also, we developed a solution using the MQSeries Bindings for Java on OS/390 to
access IMS from a Java servlet or JSP.

 Copyright IBM Corp. 1999 115

116 e-business Application Solutions on OS/390 Using Java Vol. I

 Chapter 9. DB2 Access

In this chapter we make a technical comparison between two methods for
accessing DB2 on OS/390 from Java: Java Database Connectivity (JDBC) and
SQLJ.

At the time of writing, JDBC support for DB2 on OS/390 has been available for
almost a year and SQLJ has just been made available.

9.1, “JDBC Implementation for DB2 on OS/390” gives you details of the JDBC
support on OS/390 along with some sample Java code. 9.2, “SQLJ Implementation
for DB2 on OS/390” on page 128 explains how to code SQLJ statements, and
9.2.13, “Steps in the SQLJ Program Preparation Process” on page 149 outlines the
procedure to prepare your program and make it ready for use.

9.1 JDBC Implementation for DB2 on OS/390
DB2 for OS/390 supports the JDBC specification. You can download the
specification from the JDBC Website at URL:

 http://splash.javasoft.com/jdbc

You should familiarize yourself with the specification to understand how to use the
JDBC APIs. Documentation that includes detailed information about each of the
JDBC API interfaces, classes, and exceptions is also available at this Website.

DB2 for OS/390 requires the JDK for OS/390 (version 1.1.1 or higher). The
contents of the JDK include a Java compiler, a Java Virtual Machine (JVM), and a
Java Debugger. You can find out more about the JDK from the Java for OS/390
Website at URL:

 http://www.ibm.com/s39ð/java

A Java application executes under the JVM. The Java application first loads the
JDBC driver, in this case the DB2 for OS/390 JDBC driver, and subsequently
connects to a DRDA server (by invoking the DriverManager.getConnection

method).

The Java application identifies the target data source it wants to connect to by
passing a database Uniform Resource Locator (URL) to the DriverManager.

The basic structure for the URL is:

 jdbc:<subprotocol>:<subname>

The URL values for a DB2 for OS/390 data source are specified as follows:

 jdbc:db2os39ð:<location>

The location value is the DB2 LOCATION name defined in the DB2 catalog table,
SYSIBM.LOCATIONS.

When the application attempts a connection to a data source, it requests a
java.sql.Connection implementation from the DriverManager (part of the java.sql
package). The DriverManager searches all of the known java.sql.Driver

implementations for a driver that is capable of accepting the database URL. It then

 Copyright IBM Corp. 1999 117

invokes the first JDBC driver that supports the subprotocol specified in the URL and
is registered with the DriverManager.

In this case, the DB2 for OS/390 driver (which is registered with the
DriverManager) accepts the URL, and returns a java.sql.Connection

implementation that represents the database connection.

The DB2 for OS/390 JDBC driver is implemented as a “Type 1” driver. It provides
Java application support only. The Type 1 driver is one of four types of JDBC
drivers. It is implemented as a JDBC-ODBC bridge which enables the use of
existing JDBC drivers in Java programs. It translates all of the JDBC method calls
into ODBC function calls which process database requests.

Included with the driver is the ibm.sql package. This package is the DB2 for
OS/390 implementation of the java.sql JDBC API package. The package includes
all of the JDBC classes, interfaces, and exceptions.

The JDBC API consists of the abstract Java interfaces that an application program
uses to access databases, execute SQL statements, and process the results.
There are five main interfaces that perform these functions:

1. The DriverManager class loads drivers and creates database connections.

2. The connection interface handles the connection to a specific database.

3. The statement interface handles the SQL statements on a connection.

This interface has two underlying interfaces:

� The PreparedStatement interface supports any SQL statement containing
input parameter markers.

� The CallableStatement interface supports the invocation of a stored
procedure and allows the application to retrieve output parameters.

4. The ResultSet interface provides access to the results that an executed
statement generates.

Like ODBC, JDBC is a dynamic SQL interface. Writing a JDBC application is
similar to writing a C application using ODBC to access a database. When you
create a Java application that uses the JDBC interfaces, you import the java.sql
package and invoke methods according to the JDBC specification.

To help you begin coding your program, the following sample servlet will display the
SYSIBM.SYSTABLES table:

118 e-business Application Solutions on OS/390 Using Java Vol. I

//\\\

//\ sampleð1.java

//\

//\ This simple sample will demonstrate servlet using JDBC to

//\ DB2 for OS39ð.

//\\\

import java.io.\;

import java.sql.\;

import javax.servlet.\;

import javax.servlet.http.\;

public

class sampleð1 extends HttpServlet {

 static {

// \ ### 1 ###

 // \

// \ You must register the DB2 for OS39ð driver before attempting

// \ to connect. This next statement will load the driver and

// \ creates an instance of the class.

 try {

 Class.forName("ibm.sql.DB2Driver");

 }

catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 }

public void doGet (HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException

 {

 Connection con =null ;

 Statement stmt = null;

 PrintWriter out;

 res.setContentType("text/html");

 out = res.getWriter();

 out.println("<html>");

 out.println("<head><title>Hello DB2 for OS39ð</title></head>");

 out.println("<body>");

 out.println("<h1>Hello DB2 for OS39ð</h1>");

 try {

out.println("<p>\\\\ Lets try JDBC \\\\</p>");

// Create the connection

out.println("<p> Lets trying to connect to db2.</p>");

 // \\

 // \

// \ ### 2 ###

 // \

// \ In order to for JDBC to connect to DB2, you will need to \

// \ know the following: \

// \ DbLocationName will be the DB2 Location name. This can be

// \ optain from DB2 admin.

// \ Dbsubprotocol is the JDBC subprotocol. DB2OS39ð is the

// \ sub protocol for OS39ð DB2.

// \ jdbcDriver for OS39ð DB2, ibm.sql.DB2Driver is required.

// \ url is required for a database connection. It

// \ consist of protocal + subprotocol + subname.

// \ For our OS39ð DB2 example, protocol is "jdbc",

// \ subprotocol must be "DB2OS39ð, and subname is

// \ the DB2 location name.

 // \

Figure 76 (Part 1 of 2). Example of a Simple Servlet Accessing DB2 Via JDBC

 Chapter 9. DB2 Access 119

// \ jdbc also allows for user/password option. When running a

// \ servlet under the Go Domino Web Server, the user/password

// \ is ignored. The Go Domino Web Server will pass user to DB2.

// \ Go Dominto Web Server will pass either Surrogate ID, Client

// \ ID, or Server ID depending on the configuration options used.

 // \

String url = "jdbc:db2os39ð:SC58DDF";

// \ ### 3 ###

 // \

// \ Ready to estabish connection to DB2 for OS39ð URL.

// \ Note: The url is defined in the Global Static definitions above.

con = DriverManager.getConnection (url);

out.println("<p>\\\\ We are connected to DB2 for OS/39ð.</p>");

// \ ### 4 ###

 // \

// \ The statement interface needs to be established in order

// \ to execute SQL statements. SQL statements will be executed

// \ as part of the doManUpdateScreen class.

stmt = con.createStatement();

out.println("<p>\\\\ Statement Created.</P>");

// \ ### 5 ###

 // \

// \ Lets do some DB2 queries.

// \ Execute a Query and generate a ResultSet instance

ResultSet rs = stmt.executeQuery("SELECT \ FROM SYSIBM.SYSTABLES");

out.println("<p> Query now successful. Here is Results:</p>");

// \ Print all of the table names to sysout

while (rs.next()) {

String s = rs.getString(1);

out.println(" NAME = " + s);

 }

out.println("<p> Result completed</p>");

// \ Close the statement

 stmt.close();

out.println("<p> Statement Closed </p>");

// \ Close the connection

 con.close();

out.println("<p>Now we are Disconnect from DB2 for OS/39ð.</p>"

 }

catch(SQLException e) {

 out.println("Error:");

 out.println(e.toString());

 }

catch(Exception e) {

 out.println("Error:");

 out.println(e.toString());

 }

 out.println("</body></html>");

 }

}

Figure 76 (Part 2 of 2). Example of a Simple Servlet Accessing DB2 Via JDBC

Our next example demonstrates a JDBC SELECT, INSERT, and UPDATE.

120 e-business Application Solutions on OS/390 Using Java Vol. I

// \\\

// \ sampleð2.java - \

// \

// \ This sample servlet will demonstrate JDBC to OS39ð for DB2. It

// \ will perform a SELECT, UPDATE, and INSERT operations. In

// \ addition, this servlet will pass data between this servlet

// \ and the client.

// \

// \ It will use JDBC 1.ð sun standard

// \

// \ The DB2 connect was done in the doget instead of the

// \ init() since we were using CAF and did not have RRSAF running

// \ until the end of our lab work for this book. RRSAF is

// \ required if you plan on performing the connect in the init()

// \ method.

// \

// \\\

import java.io.\;

import javax.servlet.\;

import javax.servlet.http.\;

import java.sql.\; // You must import to use JDBC

import java.util.\;

public class sampleð2 extends HttpServlet

{

 // \\

// \ Define Global Static Variables to this class

// \ Note: An alternative to defining these variables as Static is

// \ to pass these using properties files.

 // \\

 // \\

 // \

// \ ### 1 ###

 // \

// \ In order to for JDBC to connect to DB2, you will need to \

// \ know the following: \

// \ DbLocationName will be the DB2 Location name. This can be

// \ obtain from DB2 admin.

// \ Dbsubprotocol is the JDBC subprotocol. DB2OS39ð is the

// \ sub protocol for OS39ð DB2.

// \ jdbcDriver for OS39ð DB2, ibm.sql.DB2Driver is required.

// \ mytable is the DB2 table being used in this program.

// \ url is required for a database connection. It

// \ consist of protocal + subprotocol + subname.

// \ For our OS39ð DB2 example, protocol is "jdbc",

// \ subprotocol must be "DB2OS39ð, and subname is

// \ the DB2 location name.

 // \

// \ jdbc also allows for user/password option. When running a

// \ servlet under the Go Domino Web Server, the user/password

// \ is ignored. The Go Domino Web Server will pass user to DB2.

// \ Go Dominto Web Server will pass either Surrogate ID, Client

// \ ID, or Server ID depending on the configuration options used.

 // \

Figure 77 (Part 1 of 8). Example of a Servlet Doing a SELECT, UPDATE and INSERT
Using JDBC

 Chapter 9. DB2 Access 121

static String DbLocationName = "SC58DDF";

static String mytable = "ODONNEL.MANUFACTURER";

static String Dbsubprotocol = "DB2OS39ð";

static String jdbcDriver = "ibm.sql.DB2Driver";

static String url = "jdbc:" +

Dbsubprotocol + ":" +

 DbLocationName;

// \ ### 2 ###

 // \

// \ You must register the DB2 for OS39ð driver before attempting

// \ to connect. This next statement will load the driver and

// \ creates an instance of the class.

 static {

 try {

 Class.forName(jdbcDriver);

} catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 }

 // \\

// \ Initialize servlet when it is first loaded \

 // \\

public void init(ServletConfig config)

 throws ServletException

 {

 super.init(config);

 }

 // \\

// \ Respond to user GET request \

 // \\

public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException,IOException

 {

res.setContentType("text/html"); //Lets setup to do some HTML

 res.setHeader("Pragma", "no-cache");

 res.setHeader("Cache-Control", "no-cache");

 res.setDateHeader("Expires", ð);

ServletOutputStream out = res.getOutputStream();

 try

 {

// \ ### 3 ###

 // \

// \ Ready to establish connection to DB2 for OS39ð URL.

// \ Note: The url is defined in the Global Static definitions above.

Connection con = DriverManager.getConnection(url);

Figure 77 (Part 2 of 8). Example of a Servlet Doing a SELECT, UPDATE and INSERT
Using JDBC

122 e-business Application Solutions on OS/390 Using Java Vol. I

// \ ### 4 ###

 // \

// \ The statement interface needs to be estabished in order

// \ to execute SQL statements. SQL statements will be executed

// \ as part of the doManUpdateScreen class.

Statement stmt = con.createStatement();

 doManUpdateScreen(req,res,stmt);

 stmt.close();

 con.close(); //Release connection

 }

 catch(SQLException e)

 {

 out.println("Error:");

 out.println(e.toString());

 }

 catch(IOException e)

 {

 out.println("Error:");

 out.println(e.toString());

 }

 out.close();

 }

 // \\

// \ Respond to user to handle Manufacturer Update Screen \

 // \\

public void doManUpdateScreen(HttpServletRequest req,

 HttpServletResponse res,

 Statement stmt)

 throws ServletException,IOException

 {

Vector ManufNameList = new Vector();

ResultSet rs ;

ServletOutputStream out = res.getOutputStream();

 String button = req.getParameter("button");

String manufacturer = req.getParameter("manufacturer");

 String address = req.getParameter("address");

 String city = req.getParameter("city");

 String state = req.getParameter("state");

 String zip = req.getParameter("zip");

 String firstname = req.getParameter("firstname");

 String lastname = req.getParameter("lastname");

 String phoneac = req.getParameter("phoneac");

 String phoneex = req.getParameter("phoneex");

 String phonenr = req.getParameter("phonenr");

 String ext = req.getParameter("ext");

 String email = req.getParameter("email");

Figure 77 (Part 3 of 8). Example of a Servlet Doing a SELECT, UPDATE and INSERT
Using JDBC

 Chapter 9. DB2 Access 123

//Servlets just hate nulls if referenced.

//sooo, I elected to remove all nulls at this time.

if (button == null) button = "NEWSELECT";

if (manufacturer == null) manufacturer = "";

if (address == null) address = "";

if (city == null) city = "";

if (state == null) state = "";

if (zip == null) zip = "";

if (firstname == null) firstname = "";

if (lastname == null) lastname = "";

if (phoneac == null) phoneac = "";

if (phoneex == null) phoneex = "";

if (phonenr == null) phonenr = "";

if (ext == null) ext = "";

if (email == null) email = "";

// \ ### 5 ###

 // \

// \ Lets do some DB2 queries.

 try {

if (button.equals("UPDATE")) {

String query2 = "update " + mytable +

" set man_address ='" + address + "', " +

" man_city ='" + city + "', " +

" man_state ='" + state + "', " +

" man_zip ='" + zip + "', " +

" man_con_last_name ='" + lastname +"', " +

" man_con_first_name ='" + firstname+"', " +

" man_con_ext ='" + ext + "', " +

" man_con_email ='" + email + "', " +

" man_last_upd_uid ='" + "JAVAID" + "', " +

" man_last_upd_date = current timestamp " +

" where man_name = '" + manufacturer + "'" ;

rs = stmt.executeQuery(query2); //Exec SQL

 }

else if (button.equals("SAVE")) {

String manlist = req.getParameter("manlist");

String query3 = "insert into " + mytable +

 " (man_name," +

 " man_address," +

 " man_city," +

 " man_state," +

 " man_zip," +

 " man_con_last_name," +

 " man_con_first_name," +

 " man_con_phone_ac," +

 " man_con_phone_ex," +

 " man_con_phone_nr," +

 " man_con_ext," +

 " man_con_email," +

 " man_last_upd_uid," +

 " man_last_upd_date)" +

Figure 77 (Part 4 of 8). Example of a Servlet Doing a SELECT, UPDATE and INSERT
Using JDBC

124 e-business Application Solutions on OS/390 Using Java Vol. I

" values ('" + manufacturer + "'," +

"'" + address + "', " +

"'" + city + "', " +

"'" + state + "', " +

"'" + zip + "', " +

"'" + lastname + "', " +

"'" + firstname + "', " +

"'" + phoneac + "', " +

"'" + phoneex + "', " +

"'" + phonenr + "', " +

"'" + ext + "', " +

"'" + email + "', " +

"'" + "JAVAID" + "', " +

" current timestamp)" ;

rs = stmt.executeQuery(query3); //Exec SQL

 }

else if (button.equals("SEARCH")) {

String manlist = req.getParameter("manlist");

String query4 = "SELECT man_name," +

 " man_address," +

 " man_city," +

 " man_state," +

 " man_zip," +

 " man_con_last_name," +

 " man_con_first_name," +

 " man_con_phone_ac," +

 " man_con_phone_ex," +

 " man_con_phone_nr," +

 " man_con_ext," +

 " man_con_email " +

" FROM " + mytable + " " +

" WHERE man_name = '" + manlist + "'";

rs = stmt.executeQuery(query4); //Exec SQL

 rs.next();

 manufacturer = rs.getString(1);

 address = rs.getString(2);

 city = rs.getString(3);

 state = rs.getString(4);

 zip = rs.getString(5);

 lastname = rs.getString(6);

 firstname = rs.getString(7);

 phoneac = rs.getString(8);

 phoneex = rs.getString(9);

 phonenr = rs.getString(1ð);

 ext = rs.getString(11);

 email = rs.getString(12);

 }

if ((button.equals("NEWSELECT")) ((// test buttons be pushed

 (button.equals("UPDATE")) ((

 (button.equals("ADD")) ((

 (button.equals("SAVE"))) {

Figure 77 (Part 5 of 8). Example of a Servlet Doing a SELECT, UPDATE and INSERT
Using JDBC

 Chapter 9. DB2 Access 125

manufacturer = "" ; // Clear fields

 address = "" ;

 city = "" ;

 state = "" ;

 zip = "" ;

 firstname = "" ;

 lastname = "" ;

 phoneac = "" ;

 phoneex = "" ;

 phonenr = "" ;

 ext = "" ;

 email = "" ;

String query1 = "SELECT man_name " +

" FROM " + mytable +

" ORDER by 1" ; //setup SQL

rs = stmt.executeQuery(query1); //Exec SQL

 while(rs.next())

 {

ManufNameList.addElement(rs.getString(1));//Save SQL Results

 }

 }

 }

 catch(SQLException e)

 {

 out.println("Error:");

 out.println(e.toString());

 }

 try {

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Manufacturer Information</title></head>");

out.print("<BODY TEXT=\"#ðððððð\" BGCOLOR=\"#FFFFFF\" LINK=\"#ððððFF

out.print(" VLINK=\"#663366\" ALINK=\"#ðððð88\"");

out.println(" BACKGROUND=\"/redfade.gif\" NOSAVE>");

out.println("<spacer type=block width=1ðð height=1ðð align=left>");

out.println("<center>Manufacturer Information</font

 out.println("

");

 out.println("<blockquote>");

out.print("<form name=dman method=get");

 out.println(" action=\"/servlet/sampleð2\">");

out.println("<table cols=2 width=9ð% ><tr>");

out.println("<td align=right width=1ðð>Manufacturer Name:</td>");

 out.println("<td>");

 if ((button.equals("NEWSELECT")) ((

 (button.equals("UPDATE")) ((

 (button.equals("SAVE")))

 {

 out.println("<select name=manlist> ");

if (ManufNameList.isEmpty()) {

out.println("<option selected> Error");

 out.println("</select>");

 }

 else {

for (int i = ð; i < ManufNameList.size(); i++) {

out.println("<option selected> " +

 ManufNameList.elementAt(i));

 }

 out.println("</select>");

 }

Figure 77 (Part 6 of 8). Example of a Servlet Doing a SELECT, UPDATE and INSERT
Using JDBC

126 e-business Application Solutions on OS/390 Using Java Vol. I

 out.println(" ");

out.println("<input type=submit value=SEARCH name=button>");

 out.println("</td></tr>");

 }

 else {

out.print("<input name=manufacturer size=3ð");

out.println(" &nmaxlength=3ð value=\"" + manufacturer.trim() + "\"

 out.println("</td></tr>");

 }

 out.println("<tr><td align=right>Address:</td> ");

out.print("<td><input name=address size=3ð ");

out.println(" &nmaxlength=3ð value=\"" + address.trim() + "\">");

 out.println("</td></tr> ");

 out.println("<tr><td align=right>City:</td> ");

 out.println("<td> ");

out.print("<input name=city size=2ð maxlength=3ð ");

out.println(" value=\"" + city.trim() + "\"> ");

 out.println(" State: ");

out.print("<input name=state size=2 maxlength=2 ");

out.println(" value=\"" + state.trim() + "\"> ");

 out.println(" Zip: ");

out.print("<input name=zip size=1ð maxlength=1ð ");

out.println(" value=\"" + zip.trim() + "\"> ");

 out.println("</td></tr> ");

 out.println("<tr> ");

out.println("<td align=right>Contact First Name:</td> ");

 out.println("<td>");

out.print("<input name=firstname size=16 maxlength=3ð ");

out.println(" value=\"" + firstname.trim() + "\"> ");

 out.println(" Last Name: ");

out.print("<input name=lastname size=16 maxlength=3ð ");

out.println(" value=\"" + lastname.trim() + "\"> ");

 out.println("</td> ");

 out.println("</tr> ");

 out.println("<tr> ");

 out.println("<td align=right>Phone:</td> ");

 out.println("<td> ");

out.print("<input name=phoneac size=3 maxlength=3 ");

out.println("value=\"" + phoneac.trim() + "\"> ");

out.print("<input name=phoneex size=3 maxlength=3 ");

out.println("value=\"" + phoneex.trim() + "\"> ");

out.print("<input name=phonenr size=4 maxlength=4 ");

out.println("value=\"" + phonenr.trim() + "\"> ");

 out.println(" Ext: ");

out.print("<input name=ext size=4 maxlength=1ð ");

out.println(" value=\"" + ext.trim() + "\"> ");

 out.println("</td> ");

 out.println("</tr> ");

 out.println("<tr> ");

 out.println("<td align=right>Email: ");

 out.println("</td> ");

 out.println("<td> ");

out.print("<input name=email size=3ð maxlength=5ð ");

out.println(" value=\"" + email.trim() + "\"> ");

 out.println("</td> ");

 out.println("</tr> ");

 out.println("</table> ");

 out.println("<center> ");

 out.println(" ");

 out.println("</center> ");

Figure 77 (Part 7 of 8). Example of a Servlet Doing a SELECT, UPDATE and INSERT
Using JDBC

 Chapter 9. DB2 Access 127

if (button.equals("SEARCH")) {

 out.println("<center> ");

out.print("<input type=submit value=NEWSELECT ");

 out.println(" name=button> ");

out.print("<input type=submit value=UPDATE ");

 out.println(" name=button> ");

out.print("<input type=submit value=ADD ");

 out.println(" name=button> ");

 out.println("</center> ");

 }

else if (button.equals("ADD")) {

 out.println("<center> ");

out.print("<input type=submit value=NEWSELECT ");

 out.println(" name=button> ");

out.print("<input type=submit value=SAVE ");

 out.println(" name=button> ");

 out.println("</center> ");

 }

else if ((button.equals("NEWSELECT")) ((

 (button.equals("SAVE")) ((

 (button.equals("UPDATE"))) {

 out.println("<center> ");

out.print("<input type=submit value=NEWSELECT ");

 out.println(" name=button> ");

out.print("<input type=submit value=ADD ");

 out.println(" name=button> ");

 out.println("</center> ");

 }

 out.println("</form> ");

 out.println("</blockquote> ");

 out.println("</body> ");

 out.println("</html> ");

} // eof try

 catch(Exception e)

 {

 out.println("Error:");

 out.println(e.toString());

 }

 }

}

Figure 77 (Part 8 of 8). Example of a Servlet Doing a SELECT, UPDATE and INSERT
Using JDBC

9.2 SQLJ Implementation for DB2 on OS/390
This section discusses the basic information about writing SQLJ programs including
SQL statements, host variables, and comments in the program. In addition, this
section will review SQL statements that are valid in an SQLJ program.

9.2.1 Including SQL Statements in an SQLJ Program
In an SQLJ program, all statements that are used for database access are in SQLJ
clauses. SQLJ clauses that contain SQL statements are called executable clauses.
An executable clause begins with the characters “#sql” and contains an SQL
statement that is enclosed in curly brackets. The SQL statement itself has no
terminating character. An example of an executable clause is:

#sql {DELETE FROM EMP};

128 e-business Application Solutions on OS/390 Using Java Vol. I

An SQLJ program can contain the following types of static SQL elements:

� SELECT, SELECT INTO, FETCH

 � INSERT

� searched UPDATE, positioned UPDATE

� searched DELETE, positioned DELETE

 � COMMIT, ROLLBACK

� CREATE, ALTER, DROP

� CALL, for calls to stored procedures in supported languages

� SET special register, SET host variable

An executable clause can appear anywhere in a program where a Java statement
can appear.

9.2.2 Using Java Variables and Expressions As Host Expressions
To pass data between a Java application program and DB2, you use host
expressions. A Java host expression is a Java simple identifier or complex
expression, preceded by a colon. The result of a complex expression must be a
single value. When you use a host expression as a parameter in a stored
procedure call, you can follow the colon with the IN, OUT, or INOUT parameter that
indicates whether the host expression is intended for input, output, or both.

The following SQLJ clause uses a host expression that is a simple Java variable
named EMPNO:

#sql {SELECT LASTNAME INTO :empname FROM EMP WHERE EMPNO='ðððð1ð'};

The following SQLJ clause calls stored procedure A and uses simple Java variable
EMPNO as an input or output parameter:

#sql {CALL A (INOUT :EMPNO)};

SQLJ evaluates host expressions from left to right before DB2 processes the SQL
statements that contain them. For example, for the following SQL clause, Java
increments variable x before DB2 executes the SELECT statement:

#sql {SELECT ACTDESC INTO :hvactdsc WHERE ACTNO=:(x++)};

Similarly, in the following example, Java determines array element yTiR and
decrements i before DB2 executes the SELECT statement:

#sql {SELECT ACTDESC INTO :hvactdsc WHERE ACTNO=:(yTi--R)};

In an executable clause, host expressions, which are Java tokens, are
case-sensitive. Everything else in an executable clause is case-insensitive, except
for delimited SQL identifiers.

 9.2.3 Including Comments
To include comments in an SQLJ program, use either Java comments or SQL
comments. Java comments are denoted by “/*,” “*/” or “//.” You can include Java
comments outside SQLJ clauses, wherever the Java language permits them.
Within an SQLJ clause, use Java comments in host expressions. SQL comments
are denoted by “*” at the beginning of a line or anywhere on a line in an SQL

 Chapter 9. DB2 Access 129

statement. You can use SQL comments in executable clauses anywhere, except in
host expressions.

9.2.4 Handling SQL Errors and Warnings
SQLJ clauses use the JDBC class java.sql.SQLException for error handling.
SQLJ generates an SQLException when an SQL statement returns a negative or
positive SQLCODE. You can use the getErrorCode method to retrieve SQLCODEs
and the getSQLState method to retrieve SQLSTATEs.

To handle SQL errors in your SQLJ application, import the java.sql.SQLException

class, and use Java try/catch blocks to modify program flow when an SQL error
occurs. For example:

 try {

#sql {SELECT LASTNAME INTO :empname

FROM EMP WHERE EMPNO='ðððð1ð'};

 }

catch(SQLException e) {

System.out.println("SQLCODE returned: " + e.getErrorCode());

 }

9.2.5 Including Code to Access SQLJ and JDBC Interfaces
Before you can execute any SQLJ clauses in your application program, you must
include code to accomplish these tasks:

� Import the Java packages for SQLJ runtime support and the JDBC interfaces
that are used by SQLJ.

� Load the DB2 for OS/390 SQLJ runtime JDBC driver and register it with the
DriverManager. To load the DB2 for OS/390 SQLJ runtime JDBC driver and
register it with the DriverManager, invoke method Class.forName with an
argument of COM.ibm.db2os39ð.sqlj.jdbc.DB2SQLJDriver.

import sqlj.runtime.\; // SQLJ runtime support

import java.sql.\; // JDBC interfaces

 try {

 Class.forName("COM.ibm.db2os39ð.sqlj.jdbc.DB2SQLJDriver");

 }

catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

9.2.6 Connecting to a Data Source
In an SQLJ application, as in any other DB2 application, you must be connected to
a data source before you can execute SQL statements. A data source in DB2 for
OS/390 is a DB2 subsystem. In other environments, a data source is usually
referred to as a database.

If you do not specify any data sources in an SQLJ program that you run on DB2 for
OS/390, DB2 connects you to the local DB2 subsystem automatically. If you want
to execute an SQL statement at another data source, you must specify a
connection context, enclosed in square brackets, at the beginning of the execution
clause that contains the SQL statement. For example, the following SQL clause
executes an UPDATE statement at the data source associated with connection
context myconn:

130 e-business Application Solutions on OS/390 Using Java Vol. I

#sql TmyconnR {UPDATE DEPT SET MGRNO=:hvmgr WHERE DEPTNO=:hvdeptno};

A connection context is an instance of a connection context class. To define the
connection context class and set up the connection context, use one of the
methods discussed in 9.2.6.1, “Connection Method 1” or 9.2.6.2, “Connection
Method 2,” before you specify the connection context in any SQL statements.

9.2.6.1 Connection Method 1
1. Execute a type of SQLJ clause called a “connection declaration clause” to

define a connection context class.

2. Invoke the constructor for the connection context class with an argument that
specifies the location name that is associated with the data source. This
argument has the form:

 jdbc:db2os39ðsqlj:location_name

Note: “location_name” must be defined in SYSIBM.LOCATIONS.

For example, suppose that you want to use the first method to set up connection
context “myconn” to access data at a data source that is associated with location
NEWYORK. First, execute a connection declaration clause to define a connection
context class:

#sql context ctx;

Then invoke the constructor for generated class ctx with the argument:
jdbc:db2os39ðsqlj:NEWYORK::

ctx myconn=new ctx(jdbc:db2os39ðsqlj:NEWYORK);

9.2.6.2 Connection Method 2
1. Execute a connection declaration clause to define a connection content class.

2. Invoke the JDBC java.sql.DriverManager.getConnection method with an
argument that specifies the location name that is associated with the data
source. That argument has the form:
 jdbc:db2os39ðsqlj:location_name

Note: “location_name” must be defined in SYSIBM.LOCATIONS.

The invocation returns an instance of class Connection, which represents a
JDBC connection to the data source.

3. Invoke the constructor for the connection context class.

For the argument of the constructor, use the JDBC connection that results from
invoking java.sql.DriverManager.getConnection. To use the second method
to set up connection context “myconn” to access data at the data source
associated with location NEWYORK, first execute a connection declaration
clause to define a connection context class:

#sql context ctx;

Then, invoke java.sql.Driver.GetConnection with the argument:

 jdbc:db2os39ðsqlj:NEWYORK:

 Connection jdbccon=DriverManager.getConnection(jdbc:db2os39ðsqlj:NEWYORK);

4. Finally, invoke the constructor for class ctx using the JDBC connection as the
argument:

 Chapter 9. DB2 Access 131

ctx myconn=new ctx(jdbccon);

SQLJ uses the JDBC java.sql.Connection class to connect to data sources.
Your application can use the following methods in the java.sql.Connection
class:

 � clearWarnings

 � close

 � commit

 � getAutoCommit

 � getMetaData

 � getWarnings

 � isClosed

 � isReadOnly

 � rollback

 � setAutoCommit

The following rules apply to the JDBC connection that you create for executing
SQLJ clauses:

� If you use any methods in class java.sql.Connection other than those
listed, SQLJ returns an error.

� The default value of autoCommit for all connections in an SQLJ program is
off. That is, DB2 does not automatically commit units of work in SQLJ
applications. You can use setAutoCommit to set autoCommit to on.

� For SQLJ, DB2 for OS/390 supports only type 1 connections. Therefore,
DB2 does not support multiple concurrent connection contexts. If an
application creates a new connection context, then DB2 attempts to create
a new type 1 DB2 connection. If the application has an incomplete unit of
work, the connection fails. However, if there are no incomplete units of
work, DB2 creates the new connection and discards the old connection.

� You cannot use a connection that you create for executing SQLJ clauses to
execute dynamic SQL statements through JDBC.

9.2.7 Using Result Set Iterators to Retrieve Rows from a Result Table
In DB2 application programs that are written in traditional host languages, you use
a cursor to retrieve individual rows from the result table that is generated by a
SELECT statement. The SQLJ equivalent of a cursor is a result set iterator. A
result set iterator is a Java object that you use to retrieve rows from a result table.
Unlike a cursor, you can pass a result set iterator as a parameter to a method.

You define a result set iterator using an iterator declaration clause The iterator
declaration clause specifies a list of Java data types. Those data type declarations
represent columns in the result table and are referred to as columns of the result
set iterator.

Table 5 on page 133 shows each SQLJ data type that you can specify in a result
set iterator declaration and the equivalent SQL data type.

132 e-business Application Solutions on OS/390 Using Java Vol. I

Table 5. Equivalent SQLJ and SQL Data Types

SQLJ data type SQL data type

java.lang.String
CHAR, VARCHAR, LONGVARCHAR, GRAPHIC, VARGRAPHIC, LONG

VARGRAPHIC .1/

java.math.BigDecimal NUMERIC, INTEGER, DECIMAL, SMALLINT, FLOAT, REAL, DOUBLE

Boolean INTEGER, SMALLINT

int, Integer SMALLINT, INTEGER, DECIMAL, NUMERIC, FLOAT, DOUBLE

float, Float SMALLINT, INTEGER, DECIMAL, NUMERIC, FLOAT, DOUBLE

double, Double SMALLINT, INTEGER, DECIMAL, DECIMAL, NUMERIC, FLOAT, DOUBLE

byte .2/
CHAR, VARCHAR, LONGVARCHAR, GRAPHIC, VARGRAPHIC, LONG,

VARGRAPHIC

java.sql.Date .3/ DATE

java.sql.Time .3/ TIME

java.sql.Timestamp
.3/

TIMESTAMP

Notes:

.1/ If the data type of a column is GRAPHIC, VARGRAPHIC or LONG
VARGRAPHIC, data is converted from CCSID 500 to Unicode when it is
retrieved from a DB2 table into a Java host expression.

.2/ SQLJ performs no data type conversion for this data type.

.3/ This class is part of the JDBC API.

There are two types of result set iterators:

 1. Positioned iterators

 2. Named iterators

The type of result set iterator that you choose depends on the way that you plan to
use that result set iterator. The following sections explain how to use each type of
iterator.

9.2.8 Using Positioned Iterators
For a positioned iterator, the columns of the result set iterator correspond to the
columns of the result table, in left-to-right order. For example, if an iterator
declaration clause has two data type declarations, the first data type declaration
corresponds to the first column in the result table, and the second data type
declaration corresponds to the second column in the result table. You declare
positioned iterators to execute FETCH statements.

For example, the following iterator declaration clause defines a positioned iterator
named ByPos with two columns. The first column is of type String and the second
column is of type Date.

#sql public iterator ByPos(String,Date);

 Chapter 9. DB2 Access 133

When SQLJ encounters an iterator declaration clause for a positioned iterator, it
generates a positioned iterator class with the name that you specify in the iterator
declaration clause. You can then declare an object of the positioned iterator class
to retrieve rows from a result table.

For example, suppose that you want to retrieve rows from a result table that
contains the values of the LASTNAME and HIREDATE columns from the employee
table. Figure 78 shows how you can declare an iterator named “ByPos” and use
an object of the generated class ByPos to retrieve those rows.

 {

#sql public iterator ByPos(String,Date);

// Declare positioned iterator class ByPos

ByPos positer; // Declare object of ByPos class

String name = null;

 Date hrdate;

#sql positer = { SELECT LASTNAME, HIREDATE FROM EMP }; :rk.1:erk.

#sql { FETCH :positer INTO :name, :hrdate }; :rk.2:erk.

// Retrieve the first row from the result table

while (!positer.endFetch()) :rk.3:erk.

{ System.out.println(name + " was hired in " +

 hrdate);

#sql { FETCH :positer INTO :name, :hrdate };

// Retrieve the rest of the rows

 }

 }

Figure 78. Example of an Iterator Declaration

Notes:

.1/This SQLJ clause executes the SELECT statement, constructs an
iterator object that contains the result table for the SELECT statement, and
assigns the iterator object to variable positer.

.2/SQLJ checks that the types of the host variables in the INTO clause
match the positional corresponding types of the iterator columns.

.3/Method endFetch(), which is a method of the generated iterator class
ByPos, returns a value of true when all rows have been retrieved from the
iterator.

9.2.9 Using Named Iterators
You can use named iterators to select rows from a result table using SQL
statements other than FETCH statements. When you declare a named iterator for
a query, you specify names for each of the iterator columns. Those names must
match the names of columns in the result table for the query. An iterator column
name and a result table column name that differ only in case are considered to be
matching names.

When SQLJ encounters a named iterator declaration, it generates a named iterator
class with the same name that you use in the iterator declaration clause. In the
named iterator class, SQLJ generates an accessor method for each column name
in the iterator declaration clause. The accessor method name is the same name as

134 e-business Application Solutions on OS/390 Using Java Vol. I

the column name in the iterator declaration clause. You use the accessor method
to retrieve data from the corresponding column of the result table.

When you execute an SQL clause that has a named iterator, SQLJ matches the
name of each iterator column to the name of a column in the result table. The
columns of the iterator do not need to be in the same order as the columns of the
result table.

The following iterator declaration clause defines named iterator ByName, which has
two columns. The first column of the iterator is named LastName and is of type
String. The second column is named HireDate and is of type Date.

#sql public iterator ByName(String LastName, Date HireDate);

You use a named iterator in an SQLJ assignment clause. An assignment clause
assigns the result table from a SELECT statement to an instance of a named
iterator class. For example:

#sql nameiter={SELECT LASTNAME, HIREDATE FROM EMP};

Figure 79 shows how you can use a named iterator to retrieve rows from a result
table that contains the values of the LASTNAME and HIREDATE columns of the
employee table.

 {

#sql public iterator ByName(String LastName, Date HireDate); .1/
ByName namiter; // Declare object of ByName class

#sql nameiter={SELECT LASTNAME, HIREDATE FROM EMP}; .2/
 String name;

 Date hrdate;

// advances to next row

 while (namiter.next()) .3/
 {

hrdate = namiter.HireDate(); .4/
// Returns value of column named HIREDATE

name = namiter.LastName();

// Returns value of column named LASTNAME

System.out.println(name + " was hired on " + hrdate);

 }

 }

Figure 79. Example of a Named Iterator

Notes:

.1/This SQLJ clause creates named iterator class ByName, which has
accessor methods LastName() and HireDate() that return the data from
result table columns LASTNAME and HIREDATE.

.2/This SQLJ clause executes the SELECT statement, constructs an
iterator object that contains the result table for the SELECT statement, and
assigns the iterator object to variable nameiter.

.3/next(), which is a method of the generated class ByName, advances the
iterator to successive rows of the result set. next() returns a value of true

 Chapter 9. DB2 Access 135

when a next row is available, and a value of false when all rows have been
fetched from the iterator.

.4/SQLJ checks that the types of the host variables in the assignment
clause match the types returned by the corresponding accessor methods.

The column names for named iterators must be valid Java identifiers. The column
names must also match the column names in the result table from which the
iterator retrieves rows. If a SELECT statement that uses a named iterator selects
data from columns with names that are not valid Java identifiers, you need to use
SQL AS clauses in the SELECT statement to give the columns of the result table
acceptable names.

For example, suppose you want to use a named iterator to retrieve the rows that
are specified by this SELECT statement:

SELECT "bad colname" FROM GOODTABLE

The iterator column name must match the column name of the result table, but you
cannot specify an iterator column name of bad colname. You must therefore use
an AS clause to rename bad colname to a valid Java identifier in the result table.
For example:

SELECT "bad colname" AS GOODCOLNAME FROM GOODTABLE

You can then declare a named iterator with a column name that is a valid Java
identifier and matches the column name of the result table:

#sql public iterator ByName(String GoodColName);

 ByName namiter;

#sql nameiter={SELECT "bad colname" AS GOODCOLNAME FROM GOODTABLE};

9.2.10 Using Iterators for Positioned UPDATE and DELETE Operations
Writing SQL statements to perform a positioned UPDATE or a positioned DELETE
is somewhat different from writing SQL statements to retrieve data from a table.
Positioned UPDATE and DELETE operations require two Java source files. In one
source file, you must declare the iterator.

In the declaration, you must use an “SQLJ implements” clause to implement the
sqlj.runtime.ForUpdate interface. You must also declare the iterator as public.
For example, use the following SQL clause to declare iterator ByPos, which has
string column EmpNo, for use in a positioned DELETE statement:

#sqlj public iterator DelByName implements sqlj.runtime.ForUpdate(String EmpNo);

You can then use the iterator in a different source file. To use the iterator:

1. Import the generated iterator class.

2. Declare an instance of the generated iterator class.

3. Assign the SELECT statement for the positioned UPDATE or DELETE to the
iterator instance.

4. Execute positioned UPDATE or DELETE statements using the iterator.

After the iterator has been created, any SQLJ source file that has addressability to
the iterator and imports the generated class can retrieve data and execute
positioned UPDATE or DELETE statements using the iterator. The authorization ID

136 e-business Application Solutions on OS/390 Using Java Vol. I

under which a positioned UPDATE or DELETE statement executes is the
authorization ID under which the DB2 package that contains the UPDATE or
DELETE executes.

For example, suppose that you have declared iterator DelByName like this in
file1.sqlj:

#sqlj public iterator DelByName implements sqlj.runtime.ForUpdate(String EmpNo);

To use DelByName for a positioned DELETE in file2.sqlj, execute the following
statements:

#sql TexecCtxR {DELETE FROM EMP WHERE SALARY > 1ðððð};

 import DelByName; .1/
 {

DelByName deliter; // Declare object of DelByName class

 String enum;

#sql deliter = { SELECT EMPNO FROM EMP

 WHERE WORKDEPT="D11"}; .2/
 while (deliter.next())

 {

enum = deliter.EmpNo(); // Get value from result table .3/
#sql { DELETE WHERE CURRENT OF :deliter }; .4/
// Delete row where cursor is positioned

 }

 }

Notes:

.1/This statement imports named iterator class DelByName, which was
created by the iterator declaration clause for DelByName in file1.sqlj.

.2/This SQLJ clause executes the SELECT statement, constructs an
iterator object that contains the result table for the SELECT statement, and
assigns the iterator object to variable deliter.

.3/This statement positions the iterator to the next row to be deleted.

.4/This SQLJ clause performs the positioned DELETE.

9.2.11 Monitoring and Modifying SQL Statement Execution
You can use methods of the SQLJ ExecutionContext class to query and modify the
characteristics of SQL statements during execution.

To execute ExecutionContext methods on an SQL statement, you must declare an
execution context and associate that execution context with the SQL statement.

To declare an execution context, invoke the constructor for ExecutionContext and
assign the result to a variable of type ExecutionContext. For example:

ExecutionContext execCtx=new ExecutionContext();

To associate an execution context with an SQL statement, specify the name of the
execution context, enclosed in square brackets, at the beginning of the execution
clause that contains the SQL statement.

You can associate a different execution context with each SQL statement. If You
also use an explicit connection context for an SQL statement, specify the

 Chapter 9. DB2 Access 137

connection context, followed by the execution context in the execution clause for
the SQL statement. For example:

#sql TconnCtx, execCtxR {DELETE FROM EMP WHERE SALARY > 1ðððð};

If you do not specify an execution context for an execution clause, SQLJ uses the
default execution context.

After you associate an execution context with an SQL statement, you can execute
ExecutionContext methods on that SQL statement. For example, you can use
method getUpdateCount() to count the number of rows deleted by a DELETE
statement:

#sql TconnCtx, execCtxR {DELETE FROM EMP WHERE SALARY > 1ðððð};

System.out.println("Deleted " + execCtx.getUpdateCount() + " rows");

9.2.12 Restrictions on DB2 for OS/390 SQLJ Programs
When you write your SQLJ programs, be aware of the following restrictions in DB2
for OS/390 SQLJ:

� You can execute only static SQL statements in your SQLJ application.

� Your program cannot have multiple concurrent connections.

� You can call stored procedures from an SQLJ application, but you cannot write
stored procedures that use SQLJ. You cannot call stored procedures that
return multiple result sets.

� DB2 for OS/390 SQLJ converts all Unicode strings to CCSID 500 before it
passes the strings to DB2. Similarly, when SQLJ passes data from character
columns to Java host variables, SQLJ converts the column data from CCSID
500 to Unicode.

� SQLJ applications run only in the call attachment facility (CAF) or Recoverable
Resource Manager Services attachment facility (RRSAF) environments.

To help you begin coding your program, the sample servlet in Figure 80 on
page 139 will display SYSIBM.SYSTABLES similar to the SAMPLE01 JDBC
sample program presented in Figure 76 on page 119:

138 e-business Application Solutions on OS/390 Using Java Vol. I

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Top of Data \\\\\\\\\\\\\\\\\\\\\\

import java.io.\;

import javax.servlet.\;

import javax.servlet.http.\;

import java.sql.\;

import sqlj.runtime.ref.\;

import sqlj.runtime.\;

import java.math.\;

// \ ### 1 ###

// \

// \ You must set connection context declaration

// \

#sql context samplesqljctx;

// \ ### 2 ###

// \

// \ You must set iterator for the select

// \

#sql iterator samplesqljIter (String NAME);

public

class sampleð3 extends HttpServlet {

 static {

 try {

// \ ### 1 ###

// \

// \ You must register the DB2 for OS39ð driver before attempting

// \ to connect. This next statement will load the driver and

// \ creates an instance of the class.

 Class.forName("COM.ibm.db2os39ð.sqlj.jdbc.DB2SQLJDriver"); }

catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 }

public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException

 {

 PrintWriter out;

 Connection con =null ;

 samplesqljctx con1 = null;

 res.setContentType("text/html");

 out = res.getWriter();

 out.println("<html>");

 out.println("<head><title>Hello OS39ð</title></head>");

 out.println("<body>");

 out.println("<h1>Hello OS39ð</h1>");

 try {

out.println("<p>\\\\ Lets try SQLJ \\\\</p>");

out.println("<p> Lets trying to connect to db2.</p>");

Figure 80 (Part 1 of 3). Example of a Simple Servlet Accessing DB2 Via SQLJ

 Chapter 9. DB2 Access 139

 // \\

 // \

 // \ ### 2 ###

 // \

 // \ In order to for SQLJ to connect to DB2, you will need to \

 // \ know the following: \

 // \ DbLocationName will be the DB2 Location name. This can be

 // \ optain from DB2 admin.

 // \ Dbsubprotocol is the JDBC subprotocol. DB2OS39ðSQLJ the

 // \ sub protocol for OS39ð DB2.

 // \ jdbcDriver for OS39ð SQLJ Driver

 // \ COM.ibm.db2os39ð.sqlj.jdbc.DB2SQLJDriver

 // \ url is required for a database connection. It

 // \ consist of protocal + subprotocol + subname.

 // \ For our OS39ð DB2 example, protocol is "jdbc",

 // \ subprotocol must be "DB2OS39ðSQLJ, and subname is

 // \ the DB2 location name.

 // \

 // \ jdbc also allows for user/password option. When running a

 // \ servlet under the Go Domino Web Server, the user/password

 // \ is ignored. The Go Domino Web Server will pass user to DB2.

 // \ Go Dominto Web Server will pass either Surrogate ID, Client

 // \ ID, or Server ID depending on the configuration options used.

 // \

String url = "jdbc:db2os39ðsqlj:SC58DDF";

 // \ ### 3 ###

 // \

 // \ Ready to establish connection to DB2 for OS39ð URL.

 // \ Note: The url is defined in the Global Static definitions above.

con1 = new samplesqljctx(url);

out.println("<p>\\\\ We are connected to DB2 for OS/39ð.</p>");

 // \ ### 4 ###

 // \

 // \ Lets do some DB2 queries.

 // \ Execute a Query

 samplesqljIter iter;

 int count=ð;

#sql con1U iter = { SELECT NAME FROM SYSIBM.SYSTABLES };

out.println("<p> Query now successful. Here is Results:</p>");

while (iter.next()) {

 System.out.println(iter.NAME());

out.println(" NAME = " + iter.NAME());

 count++;

 }

out.println("<p> Result completed. Count = " + count + "</p>");

Figure 80 (Part 2 of 3). Example of a Simple Servlet Accessing DB2 Via SQLJ

140 e-business Application Solutions on OS/390 Using Java Vol. I

 // \ ### 5 ###

 // \

 // \ Time to close

 // \

 con1.close();

out.println("<p>Now we are Disconnect from DB2 for OS/39ð.</p>");

} catch(Exception e) {

 out.println("Error:");

 out.println(e.toString());

 }

 out.println("</body></html>");

 }

}

Figure 80 (Part 3 of 3). Example of a Simple Servlet Accessing DB2 Via SQLJ

Our next example, shown in Figure 81, will demonstrate JDBC SELECT, INSERT,
and UPDATE similar to our sample02 JDBC program presented in 9.1, “JDBC
Implementation for DB2 on OS/390” on page 117:

// \\\

// \ sampleð3.java - \

// \

// \ This sample servlet will demonstrate SQLJ to OS39ð for DB2. It

// \ will perform a SELECT, UPDATE, and INSERT operations. In

// \ addition, this servlet will pass data between this servlet

// \ and the client.

// \

// \ The DB2 connect was done in the doget instead of the

// \ init() since we were using CAF and did not have RRSAF running

// \ until the end of our lab work for this book. RRSAF is

// \ required if you plan on performing the connect in the init()

// \ method.

// \

// \\\

import java.io.\;

import javax.servlet.\;

import javax.servlet.http.\;

import java.sql.\;

import sqlj.runtime.ref.\;

import sqlj.runtime.\;

import java.math.\;

import java.util.\;

// connection context declaration

#sql context sampleð3sqljctx;

public class sampleð3 extends HttpServlet

{

 // \\

// \ Define Global Static Variables to this class

// \ Note: An alternative to defining these variables as Static is

// \ to pass these using properties files.

 // \\

Figure 81 (Part 1 of 9). Example of a Servlet Doing a SELECT, UPDATE and DELETE
Using SQLJ

 Chapter 9. DB2 Access 141

 // \\

 // \

// \ ### 1 ###

 // \

// \ In order to for SQLJ to connect to DB2, you will need to \

// \ know the following: \

// \ DbLocationName will be the DB2 Location name. This can be

// \ optain from DB2 admin.

// \ Dbsubprotocol is the JDBC subprotocol. DB2OS39ðSQLJ is the

// \ sub protocol for OS39ð DB2.

// \ jdbcDriver for OS39ð DB2 the following driver is required:

 // \ COM.ibm.db2os39ð.sqlj.jdbc.DB2SQLJDriver

// \ mytable is the DB2 table being used in this program.

// \ url is required for a database connection. It

// \ consist of protocal + subprotocol + subname.

// \ For our OS39ð DB2 example, protocol is "jdbc",

// \ subprotocol must be "DB2OS39ðSQLJ, and subname is

// \ the DB2 location name.

 // \

// \ jdbc also allows for user/password option. When running a

// \ servlet under the Go Domino Web Server, the user/password

// \ is ignored. The Go Domino Web Server will pass user to DB2.

// \ Go Dominto Web Server will pass either Surrogate ID, Client

// \ ID, or Server ID depending on the configuration options used.

 // \

 sampleð3sqljctx con;

 sampleð3sqljIter1 iter1 ;

 sampleð3sqljIter2 iter2 ;

static String DbLocationName = "SC58DDF";

static String mytable = "ODONNEL.MANUFACTURER";

static String Dbsubprotocol = "DB2OS39ðSQLJ";

static String jdbcDriver =

 "COM.ibm.db2os39ð.sqlj.jdbc.DB2SQLJDriver";

static String url = "jdbc:" +

Dbsubprotocol + ":" +

 DbLocationName;

// \ ### 2 ###

 // \

// \ You must setup the iterator which will be used later in

// \ this program.

 // \

#sql public iterator sampleð3sqljIter1 (String manufacturer);

#sql public iterator sampleð3sqljIter2 (String manufacturer,

 String address,

 String city,

 String state,

 String zip,

 String lastname,

 String firstname,

 String phoneac,

 String phoneex,

 String phonenr,

 String ext,

String email) ;

Figure 81 (Part 2 of 9). Example of a Servlet Doing a SELECT, UPDATE and DELETE
Using SQLJ

142 e-business Application Solutions on OS/390 Using Java Vol. I

// \ ### 3 ###

 // \

// \ You must register the DB2 for OS39ð driver before attempting

// \ to connect. This next statement will load the driver and

// \ creates an instance of the class.

 static {

 try {

 Class.forName(jdbcDriver);

} catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 }

 // \\

// \ Initialize servlet when it is first loaded \

 // \\

public void init(ServletConfig config)

 throws ServletException

 {

 super.init(config);

 }

 // \\

// \ Respond to user GET request \

 // \\

public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException,IOException

 {

res.setContentType("text/html"); //Lets setup to do some HTML

 res.setHeader("Pragma", "no-cache");

 res.setHeader("Cache-Control", "no-cache");

 res.setDateHeader("Expires", ð);

ServletOutputStream out = res.getOutputStream();

 try

 {

// \ ### 4 ###

 // \

// \ Note: The url is defined in the Global Static definitions above.

con = new sampleð3sqljctx (url); // uses sqlj conntype 1.

 doManUpdateScreen(req,res,con);

 con.close(); //Release connection

 out.println("connection close:");

 }

 catch(SQLException e)

 {

 out.println("Error:");

 out.println(e.toString());

 }

 out.close();

 }

 // \\

// \ Respond to user to handle Manufacturer Update Screen \

 // \\

Figure 81 (Part 3 of 9). Example of a Servlet Doing a SELECT, UPDATE and DELETE
Using SQLJ

 Chapter 9. DB2 Access 143

public void doManUpdateScreen(HttpServletRequest req,

 HttpServletResponse res,

 sampleð3sqljctx con)

 throws ServletException,IOException

 {

Vector ManufNameList = new Vector();

ResultSet rs ;

ServletOutputStream out = res.getOutputStream();

 String button = req.getParameter("button");

String manufacturer = req.getParameter("manufacturer");

 String address = req.getParameter("address");

 String city = req.getParameter("city");

 String state = req.getParameter("state");

 String zip = req.getParameter("zip");

 String firstname = req.getParameter("firstname");

 String lastname = req.getParameter("lastname");

 String phoneac = req.getParameter("phoneac");

 String phoneex = req.getParameter("phoneex");

 String phonenr = req.getParameter("phonenr");

 String ext = req.getParameter("ext");

 String email = req.getParameter("email");

//Servlets just hate nulls if referenced.

//sooo, I elected to remove all nulls at this time.

if (button == null) button = "NEWSELECT";

if (manufacturer == null) manufacturer = "";

if (address == null) address = "";

if (city == null) city = "";

if (state == null) state = "";

if (zip == null) zip = "";

if (firstname == null) firstname = "";

if (lastname == null) lastname = "";

if (phoneac == null) phoneac = "";

if (phoneex == null) phoneex = "";

if (phonenr == null) phonenr = "";

if (ext == null) ext = "";

if (email == null) email = "";

Figure 81 (Part 4 of 9). Example of a Servlet Doing a SELECT, UPDATE and DELETE
Using SQLJ

144 e-business Application Solutions on OS/390 Using Java Vol. I

 // \ ### 5 ###

 // \

 // \ Lets do some DB2 queries.

 try {

if (button.equals("UPDATE")) {

 #sql conU {UPDATE ODONNEL.MANUFACTURER

 SET MAN_ADDRESS = :address,

 MAN_CITY = :city,

 MAN_STATE = :state,

 MAN_ZIP = :zip,

 MAN_CON_LAST_NAME = :lastname,

MAN_CON_FIRST_NAME = :firstname,

 MAN_CON_PHONE_AC = :phoneac,

 MAN_CON_PHONE_EX = :phoneex,

 MAN_CON_PHONE_NR = :phonenr,

 MAN_CON_EXT = :ext,

 MAN_CON_EMAIL = :email,

 MAN_LAST_UPD_UID ='JAVAID'

WHERE MAN_NAME = :manufacturer };

 }

else if (button.equals("SAVE")) {

#sql conU {INSERT INTO ODONNEL.MANUFACTURER

 (MAN_NAME,

 MAN_ADDRESS,

 MAN_CITY,

 MAN_STATE,

 MAN_ZIP,

 MAN_CON_LAST_NAME,

 MAN_CON_FIRST_NAME,

 MAN_CON_PHONE_AC,

 MAN_CON_PHONE_EX,

 MAN_CON_PHONE_NR,

 MAN_CON_EXT,

 MAN_CON_EMAIL,

 MAN_LAST_UPD_UID,

 MAN_LAST_UPD_DATE)

 VALUES (:manufacturer,

 :address,

 :city,

 :state,

 :zip,

 :lastname,

 :firstname,

 :phoneac,

 :phoneex,

 :phonenr,

 :ext,

 :email,

 'JAVAID',

CURRENT TIMESTAMP) };

 }

Figure 81 (Part 5 of 9). Example of a Servlet Doing a SELECT, UPDATE and DELETE
Using SQLJ

 Chapter 9. DB2 Access 145

else if (button.equals("SEARCH")) {

String manlist = req.getParameter("manlist");

#sql conU iter2 = {SELECT MAN_NAME,

 MAN_ADDRESS,

 MAN_CITY,

 MAN_STATE,

 MAN_ZIP,

 MAN_CON_LAST_NAME,

 MAN_CON_FIRST_NAME,

 MAN_CON_PHONE_AC,

 MAN_CON_PHONE_EX,

 MAN_CON_PHONE_NR,

 MAN_CON_EXT,

 MAN_CON_EMAIL

 FROM ODONNEL.MANUFACTURER

WHERE MAN_NAME = :manlist };

 while(iter2.next())

 {

 manufacturer = iter2.manufacturer();

 address = iter2.address();

 city = iter2.city();

 state = iter2.state();

 zip = iter2.zip();

 lastname = iter2.lastname();

 firstname = iter2.firstname();

 phoneac = iter2.phoneac();

 phoneex = iter2.phoneex();

 phonenr = iter2.phonenr();

 ext = iter2.ext();

 email = iter2.email();

 }

 }

if ((button.equals("NEWSELECT")) || // test buttons be pushed

 (button.equals("UPDATE")) ||

 (button.equals("ADD")) ||

 (button.equals("SAVE"))) {

manufacturer = "" ; // Clear fields

 address = "" ;

 city = "" ;

 state = "" ;

 zip = "" ;

 firstname = "" ;

 lastname = "" ;

 phoneac = "" ;

 phoneex = "" ;

 phonenr = "" ;

 ext = "" ;

 email = "" ;

 sampleð3sqljIter1 iter1 ;

#sql conU iter1 = { SELECT MAN_NAME

 FROM ODONNEL.MANUFACTURER

ORDER BY 1 } ;

Figure 81 (Part 6 of 9). Example of a Servlet Doing a SELECT, UPDATE and DELETE
Using SQLJ

146 e-business Application Solutions on OS/390 Using Java Vol. I

 while(iter1.next())

 {

 ManufNameList.addElement(iter1.manufacturer());//SaveResults

 }

 }

 }

 catch(SQLWarning e)

 {

 out.println("Warning:");

 out.println(e.toString());

 }

 catch(SQLException e)

 {

 out.println("Error:");

 out.println(e.toString());

 }

 try {

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Manufacturer Information</title></head>");

out.print("<BODY TEXT=\"#ðððððð\" BGCOLOR=\"#FFFFFF\"

 LINK=\"#ððððFF\"");

out.print(" VLINK=\"#663366\" ALINK=\"#ðððð88\"");

out.println(" BACKGROUND=\"/redfade.gif\" NOSAVE>");

out.println("<spacer type=block width=1ðð height=1ðð align=left>");

out.println("<center>Manufacturer Information

 </center>");

 out.println("

");

 out.println("<blockquote>");

out.print("<form name=dman method=get");

 out.println(" action=\"/servlet/sampleð3\">");

out.println("<table cols=2 width=9ð% ><tr>");

out.println("<td align=right width=1ðð>Manufacturer Name:</td>");

 out.println("<td>");

 if ((button.equals("NEWSELECT")) ((

 (button.equals("UPDATE")) ((

 (button.equals("SAVE")))

 {

 out.println("<select name=manlist> ");

if (ManufNameList.isEmpty()) {

out.println("<option selected> Error");

 out.println("</select>");

 }

 else {

for (int i = ð; i < ManufNameList.size(); i++) {

out.println("<option selected> " +

 ManufNameList.elementAt(i));

 }

 out.println("</select>");

Figure 81 (Part 7 of 9). Example of a Servlet Doing a SELECT, UPDATE and DELETE
Using SQLJ

 Chapter 9. DB2 Access 147

 }

 out.println(" ");

out.println("<input type=submit value=SEARCH name=button>");

 out.println("</td></tr>");

 }

 else {

out.print("<input name=manufacturer size=3ð");

out.println(" &nmaxlength=3ð value=\"" + manufacturer.trim() + "\">");

 out.println("</td></tr>");

 }

 out.println("<tr><td align=right>Address:</td> ");

out.print("<td><input name=address size=3ð ");

out.println(" &nmaxlength=3ð value=\"" + address.trim() + "\">");

 out.println("</td></tr> ");

 out.println("<tr><td align=right>City:</td> ");

 out.println("<td> ");

out.print("<input name=city size=2ð maxlength=3ð ");

out.println(" value=\"" + city.trim() + "\"> ");

 out.println(" State: ");

out.print("<input name=state size=2 maxlength=2 ");

out.println(" value=\"" + state.trim() + "\"> ");

 out.println(" Zip: ");

out.print("<input name=zip size=1ð maxlength=1ð ");

out.println(" value=\"" + zip.trim() + "\"> ");

 out.println("</td></tr> ");

 out.println("<tr> ");

out.println("<td align=right>Contact First Name:</td> ");

 out.println("<td>");

out.print("<input name=firstname size=16 maxlength=3ð ");

out.println(" value=\"" + firstname.trim() + "\"> ");

 out.println(" Last Name: ");

out.print("<input name=lastname size=16 maxlength=3ð ");

out.println(" value=\"" + lastname.trim() + "\"> ");

 out.println("</td> ");

 out.println("</tr> ");

 out.println("<tr> ");

 out.println("<td align=right>Phone:</td> ");

 out.println("<td> ");

out.print("<input name=phoneac size=3 maxlength=3 ");

out.println("value=\"" + phoneac.trim() + "\"> ");

out.print("<input name=phoneex size=3 maxlength=3 ");

out.println("value=\"" + phoneex.trim() + "\"> ");

out.print("<input name=phonenr size=4 maxlength=4 ");

out.println("value=\"" + phonenr.trim() + "\"> ");

 out.println(" Ext: ");

out.print("<input name=ext size=4 maxlength=1ð ");

out.println(" value=\"" + ext.trim() + "\"> ");

 out.println("</td> ");

 out.println("</tr> ");

 out.println("<tr> ");

 out.println("<td align=right>Email: ");

 out.println("</td> ");

 out.println("<td> ");

out.print("<input name=email size=3ð maxlength=5ð ");

out.println(" value=\"" + email.trim() + "\"> ");

 out.println("</td> ");

 out.println("</tr> ");

 out.println("</table> ");

 out.println("<center> ");

 out.println(" ");

 out.println("</center> ");

Figure 81 (Part 8 of 9). Example of a Servlet Doing a SELECT, UPDATE and DELETE

148 e-business Application Solutions on OS/390 Using Java Vol. I

Using SQLJ

if (button.equals("SEARCH")) {

 out.println("<center> ");

out.print("<input type=submit value=NEWSELECT ");

 out.println(" name=button> ");

out.print("<input type=submit value=UPDATE ");

 out.println(" name=button> ");

out.print("<input type=submit value=ADD ");

 out.println(" name=button> ");

 out.println("</center> ");

 }

else if (button.equals("ADD")) {

 out.println("<center> ");

out.print("<input type=submit value=NEWSELECT ");

 out.println(" name=button> ");

out.print("<input type=submit value=SAVE ");

 out.println(" name=button> ");

 out.println("</center> ");

 }

else if ((button.equals("NEWSELECT")) ||

 (button.equals("SAVE")) ||

 (button.equals("UPDATE"))) {

 out.println("<center> ");

out.print("<input type=submit value=NEWSELECT ");

 out.println(" name=button> ");

out.print("<input type=submit value=ADD ");

 out.println(" name=button> ");

 out.println("</center> ");

 }

 out.println("</form> ");

 out.println("</blockquote> ");

 out.println("</body> ");

 out.println("</html> ");

} // eof try

 catch(Exception e)

 {

 out.println("Error:");

 out.println(e.toString());

 }

 }

}

Figure 81 (Part 9 of 9). Example of a Servlet Doing a SELECT, UPDATE and DELETE
Using SQLJ

9.2.13 Steps in the SQLJ Program Preparation Process
After you write an SQLJ application, you must generate an executable form of the
application. This involves:

� Translating the source code to produce modified Java source code and
serialized profiles.

� Customizing the serialized profiles to produce DBRMs.

� Binding the DBRMs into a plan.

 Chapter 9. DB2 Access 149

9.2.14 Translating SQLJ Source Code
The first step in preparing an executable SQLJ program is to use the SQLJ
translator to generate a Java source program and one or more serialized profiles.

You must invoke the DB2 for OS/390 SQLJ translator from the OS/390 UNIX
System Services command line. The command syntax is:

 sqlj javapgm.sqlj

 -help

 -version

-dir = directory

-props = properties-file

-warn = all

 none

 verbose

 nonverbose

 portable

 nonportable

 file-list

The meanings of the parameters are:

-help Specifies that the SQLJ translator describes each of the options
that the translator supports.

-version Specifies that the SQLJ translator returns the version of the SQLJ
translator.

-dir=directory Specifies the name of the directory into which SQLJ puts output
from the translator. This output consists of Java source files and
serialized profile files. The default directory is the current directory.
The translator uses the directory structure of the SQLJ source files
when it puts the generated files in directories. For example,
suppose that you want the translator to process two files:

� file1.sqlj, which is not in a Java package

� file2.sqlj, which is in Java package sqlj.test

Also suppose that you specify the parameter “-dir=/src” when you
invoke the translator. Then the translator puts the serialized
profiles and Java source file for file1.sqlj in directory /src and puts
the serialized profiles and Java source file for file2.sqlj in directory
/src/sqlj/test.

-props=properties-file
Specifies the name of a file from which the SQLJ translator will
obtain a list of options.

-warn=warning-level
Specifies the types of messages that the SQLJ translator returns.
The meanings of the warning levels are:

all The translator displays all warnings and informational
messages. This is the default.

none The translator displays no warnings or informational
messages.

150 e-business Application Solutions on OS/390 Using Java Vol. I

verbose The translator displays informational messages about
the semantic analysis process.

nonverbose The translator displays no informational messages
about the semantic analysis process.

portable The translator displays warning messages about the
portability of SQLJ clauses.

nonportable The translator displays no warning messages about
the portability of SQLJ clauses.

file-list Specifies a list of SQLJ source files to be translated.
This is a required parameter. All SQLJ source file
names must have the extension .sqlj.

For each source file, program-name.sqlj, the SQLJ translator produces the following
files:

� The modified source program.

The modified source file is named <program name>.java. Use javac (the Java
compiler) to compile the modified source program.

� A serialized profile file for each connection context that is specified in the
program.

A serialized profile file is named <program name>_SJProfile<n>.ser, where n is
0 for the first serialized profile generated for the program, 1 for the second
serialized profile generated, and so on.

You must run the SQLJ customizer on each serialized profile file to produce a
standard DB2 for OS/390 DBRM.

9.2.15 Customizing a Serialized Profile
After you use the SQLJ translator to generate serialized profiles for an SQLJ
program, you must customize each serialized profile to produce a standard DB2 for
OS/390 DBRM. To customize a serialized profile, execute the following command
on the OS/390 UNIX System Services command line:

 db2sqljc -pgmname=DBRM-member-name

 DATE(ISO|USA|EUR|JIS)

 TIME(ISO|USA|EUR|JIS)

 SQL(ALL|DB2)

 -userid=authorization-ID serialized-profile-name

The parameters and options are:

DATE(ISO|USA|EUR|JIS) Specifies that date values that you retrieve from an SQL
table should always be in a particular format, regardless
of the format specified as the location default. For a
description of these formats, see Chapter 3 of SQL
Reference. The default is the value that was specified
during DB2 installation in the DATE FORMAT field of
Application Programming.

TIME(ISO|USA|EUR|JIS) Specifies that time values that you retrieve from an SQL
table should always be in a particular format, regardless
of the format specified as the location default. For a
description of these formats, see Chapter 3 of SQL

 Chapter 9. DB2 Access 151

Reference. The default is the value that was specified
during DB2 installation in the TIME FORMAT field of
Application Programming.

SQL(ALL|DB2) Indicates whether the source program contains SQL
statements other than those recognized by DB2 for
OS/390. SQL(ALL) is recommended for application
programs whose SQL statements must execute on a
server other that DB2 for OS/390. SQL(ALL) indicates
that the SQL statements in the program are not
necessarily for DB2 for OS/390. The SQLJ translator
then accepts statements that do not conform to the DB2
for OS/390 syntax rules. The SQLJ translator interprets
and processes SQL statements according to distributed
relational database architecture (DRDA) rules. The
SQLJ translator also issues an informational message if
the program attempts to use IBM SQL reserved words
as ordinary identifiers. SQL(ALL) does not affect the
limits of the SQLJ translator. SQL(DB2), the default,
indicates that the SQLJ translator should interpret SQL
statements and check syntax for use by DB2 for OS/390.
SQL(DB2) is recommended when the application server
is DB2 for OS/390.

-pgmname=DBRM-member-name
Specifies the name for the DBRM that the SQLJ
customizer generates. This name must be eight or
fewer characters in length and must conform to the rules
for naming members of MVS partitioned data sets.

-userid=authorization-ID
Specifies the authorization ID under which the DBRM
that the customizer generates will be bound. That
authorization ID must have the privileges to execute SQL
statements in the plan from which the DBRM is bound.

serialized-profile-name Specifies the name of the serialized profile that is to be
customized. Serialized profiles are generated by the
SQLJ translator and have names of the form
<program-name>_SJProfile<n>.ser.

In this case, “program-name” is the name of the SQLJ
source program, without the extension .sqlj., and
 n is an integer between 0 and m-1, where m is the
number of serialized profiles that the SQLJ translator
generated from the SQLJ source program.

When the SQLJ customizer runs, it modifies the contents of the serialized profile. If
the customizer runs successfully, it generates the following message:

Serialized Profile serialized-profile-name has

been customized for DB2 for OS/39ð.

You must customize all serialized profiles that were generated from all source files
that constitute an SQLJ program.

152 e-business Application Solutions on OS/390 Using Java Vol. I

9.2.16 Binding a Plan for an SQLJ Program
After you have customized the serialized profiles for your SQLJ application
program, you must bind the DBRMs that are produced by the SQLJ customizer.
You can bind the DBRMs directly into a plan or bind the DBRMs into packages and
then bind the packages into a plan. The authorization ID under which you bind the
plan must be the same as the value of the -userid parameter that you specified
when you customized the profiles. For information on binding packages and plans,
see Chapter 2 of DB2 for OS/390 V5 Command Reference, SG26-8960.

When using SQLJ programs running under WebAS, you are only allowed one plan
per WebAS server. You will need to bind all of your servlets to a DB2 package and
bind all packages to one DB2 plan per WebAS server.

9.2.17 Example of Using the SQLJ Translator
You will need to complete the configuration in the OS/390 OS/390 UNIX System
Services for SQLJ before trying this example. The configuration is discussed in
8.3, “Configuring JDBC and SQLJ in OS/390 UNIX Shell” on page 112.

After you have coded your Java program using a .sqlj extension on the file, you will
first need to run the translator. In our example, our program will be called
sample03.sqlj. Also, our example will be done on OS/390 in the UNIX shell. At the
command prompt, you will simply execute the following command:

:> sqlj sampleð3.sqlj

If there are no errors, you will get another prompt indicating that the translator
completed. In addition, the translator will create a new sample03.java file and it will
create a Serialized Profile named sample03_SJProfile0.ser.

Next, you will need to execute the Java compiler. For example, at the next
command prompt, you enter:

:> javac sampleð3.java

If there are no errors, you will get another prompt indicating that the compiler
completed. In addition, the compiler will create a new sample03.class file.

Next, you will need to execute the SQLJ profiler. For example, at the next
command prompt, you enter:

:> db2profc -pgmname=sampleð3 sampleð3_SJProfileð.ser

If there are no errors, you will get a message indicating that the Serialized Profile
sample03_SJProfile0.ser has been customized. In addition, the example above will
generate a DBRM member called SAMPLE03. It will generate the member in a
pds called <hlq>.DBRMLIB.DATA

The last step is to run the bind. Here is a sample of the bind statements we used
to bind our program.

BIND PACKAGE(SAMPLEð3) MEMBER(SAMPLEð3) ACTION(REPLACE) -

 LIBRARY('<tsoprefix>.DBRMLIB.DATA') ISOLATION(CS)

BIND PLAN(SQLJPLAN) PKLIST(SAMPLEð6.SAMPLEð6, -

 SAMPLEð7.SAMPLEð7, -

 SAMPLEð4.SAMPLEð4, -

 Chapter 9. DB2 Access 153

 SAMPLEð3.SAMPLEð3) -

ISOLATION(CS) ACTION(REPLACE) RETAIN

Note: You must make sure that appropriate access is granted for the package and
plan.

154 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 10. Develop Java Solutions for CICS on OS/390

In this chapter we describe how you can develop applications in Java accessing
CICS on OS/390.

Note that when we discuss the CICS Gateway for Java, we use the abbreviation
CJGW.

 Important

The solutions described in this chapter are based on products that were
available at the time of writing this book. New products in the area of
connecting CICS to Java may be introduced shortly after publication of this
book. However, this chapter is not meant as a technical update of the latest
CICS products, but to show you how you can integrate Java with CICS and how
you can easily develop your solution on the workstation and deploy it on
OS/390.

10.1 Overview of Internet Access to CICS on OS/390
CICS on OS/390 provides a number of ways of making it accessible from the Web.
Table 6 provides a summary of the offerings available at the time of writing this
book.

Table 6. Different Options for Accessing CICS

Description Features Where From

CICS Gateway for Java Supports any Java-enabled Web
browser

Download without charge from
www.ibm.com/software/ts/cics/
platforms/clients/. It is also
included as part of IBM CICS
Clients V2 and IBM Connectors

CICS Internet Gateway Supports any 3270 application Included in IBM Transaction
Servers, IBM Internet Connection
Servers, IBM CICS Clients V2 and
IBM Connectors

CICS Web Interface Provides direct connection to
CICS/ESA. Well suited to intranet
applications

Included in IBM CICS Transaction
Server for OS/390. Installable
function of CICS/ESA V4.1 from
11/96

EXCI CGI Well-suited to general Internet
access to CICS

SupportPac can be downloaded
without charge from the Web

10.1.1 CICS Gateway for Java
The CICS Gateway for Java (CJGW) provides two ways of accessing CICS
programs/transactions:

1. The CJGW classes may be used by a local application (for example, a servlet)
to directly access CICS programs/transactions. In this case, the CJGW runs on
the same machine as the servlet.

 Copyright IBM Corp. 1999 155

2. CJGW itself can also run as an application. When run as a Java application
(that is, UNIX daemon, or MVS started task), it allows a Java-enabled Web
browser or network computer to download a Java applet and transparently
access CICS data and applications.

ECI

local

TCP/IP

TCP/IP from applet

HTTP/HTML

HTTP/HTML

CICS Transaction
Server

EXCI

W
eb

 S
er

ve
r

C
IC

S
 J

av
a

G
at

ew
ay

C
IC

S
 S

er
ve

r

Figure 82. Accessing CICS Transactions from the Internet Using the CICS Gateway for
Java

In Figure 82, notice that there is no CICS client. Instead, the CICS Transaction
Server on OS/390 provides an EXCI interface. This interface will accept ECI calls
from a non-CICS program, but not EPI. Note that this differs from Transaction
Server on the UNIX, NT and OS/2 platforms where a CICS client is required.

 Attention

The external CICS interface (EXCI) is an application programming interface that
enables a non-CICS program (a client program) running in MVS to call a
program (a server program) running in a CICS region and to pass and receive
data by means of a communications area. The CICS application program is
invoked as if linked to by another CICS application program.

10.1.2 CICS Internet Gateway
The CICS Internet Gateway is an IBM-provided CGI script that makes a Web
browser appear like a 3270 terminal and hence provides Internet access to existing
3270 applications.

156 e-business Application Solutions on OS/390 Using Java Vol. I

CICS Transaction Server

C
IC

S
 C

lie
ntBrowser

W
eb

 S
er

ve
r

C
IC

S
 S

er
ve

r

HTTP/HTML EPI

C
IC

S
 In

te
rn

et
 G

at
ew

ay

Figure 83. Accessing CICS Transactions from the CICS Internet Gateway

10.1.3 CICS Web Interface
Support in the CICS Transaction Server for OS/390 provides a TCP/IP connection
directly into CICS (without going through a Webserver or gateway) and is the most
efficient way for a Web browser to access CICS/ESA. It requires no co-requisite
products other than TCP/IP for MVS (see Figure 84).

Browser
C

IC
S

 S
er

ve
r

T
C

P
/IP

HTTP/HTML

OS/390 or MVS/ESA

CICS/ESA 4.1 or later

Figure 84. Accessing CICS Transactions from the Internet Using CICS Web Interface

 10.1.4 EXCI CGI
IBM provides a sample of a CGI program which shows an interface between the
IBM Webserver for OS/390 (running on MVS Open Edition) and CICS/ESA. This
sample may be tailored by the user to meet specific application needs (see
Figure 85 on page 158).

 Chapter 10. Develop Java Solutions for CICS on OS/390 157

C
IC

S
 C

G
I P

ro
gr

am

W
eb

 S
er

ve
r

C
IC

S
 S

er
ve

r

HTTP/HTML

CICS ESA 4.1 or later

CGI EXCI

MVS/ESA 4.1 or later

Browser

Figure 85. Accessing CICS Transactions from the Internet Using EXCI CGI

10.2 CICS Gateway for Java for OS/390 Architecture
In this section we focus on the CICS Gateway for Java. Our interest is in servlets
and JavaServer Pages. This requires that Java be supported and to have the
ability to support the ECI interface to CICS programs. Those requirements are
well-supported by the CJGW.

CJGW on OS/390 provides two connectivity options to CICS. They are:

� Via CICS Gateway for Java Version 2.0 on MVS. We refer to this as a two-tier
architecture.

� Via CICS Gateway for Java Version 2.0 on a middle tier, being UNIX or NT.
We refer to this as a three-tier architecture.

Note that while there are many ways you can connect to CICS from the Web, as
indicated in the sections preceding this, CICS Gateway for Java provides you with
full Java support and supports the ECI interfaces.

With the Java support and combined with WebSphere Application Server, access
can be made via servlets and JSPs.

10.2.1 CICS Gateway for Java Two-Tier Architecture
Let us look at the two-tier architecture.

158 e-business Application Solutions on OS/390 Using Java Vol. I

W
eb

 S
er

ve
r

C
IC

S
 S

er
ve

r

HTTP/HTML

EXCIlocal

TCP/IP from appletHTTP/H
TML

1. HTML only

2. HTML with applet

S
er

vl
et

s/
JS

P

C
IC

S
 J

av
a

G
at

ew
ay

Browser

Browser

Figure 86. CICS Gateway for Java Two-Tier Architecture

In Figure 86, within the two-tier architecture, there are two methods of accessing
the CICS transactions/programs:

1. An HTML-only approach that uses either servlets or JSPs. Both the servlets
and JSPs will deliver only HTML. All communication with the CJGW is via the
servlets on the server. The servlet does a local call to the CJGW. With this
approach, CJGW itself need not be running.

2. An HTML plus an applet approach. It is the applet on the browser which will
communicate with the CJGW. The applet is downloaded from the Webserver
to the browser. The applet then initiates a communication channel with the
CJGW. With this approach, the CJGW needs to be running as a daemon, or
as an MVS started task, or as a long-running batch job.

Both approaches have merits and customers should choose whichever method fits
their needs best. Note that these methods can also be combined. With the
two-tier architecture, one of the key attractions is that OS/390 customers can start
simple. There is little, if any, additional software required.

10.2.2 CICS Gateway for Java Three-Tier Architecture
In a three-tier architecture, the middle tier is typically a UNIX (AIX or Solaris)
machine. It can also be another OS/390 partition/machine, or a low-end server
such as Windows NT or OS/2. The architecture is very similar to the previous
two-tier architecture.

With the three-tier architecture, the CICS Client exists as a separate component
and resides in the middle tier. In Figure 87 on page 160, you see that the CICS
client communicates with the CICS server using either the TCP62 or APPC
protocols. (If the middle tier is OS/390, use EXCI instead of the CICS client.).

 Chapter 10. Develop Java Solutions for CICS on OS/390 159

CICS Server

HTTP/HTML

TCP/IP from applet

HTTP/H
TML

1. HTML only

2. HTML with applet

C
IC

S
 C

lie
nt

W
eb

 S
er

ve
r

EPI

ECI
local

TC
P/IP or APPC

C
IC

S
 G

at
ew

ay
 fo

r
Ja

va

S
er

vl
et

s/
JS

P

Browser

Browser

Figure 87. CICS Gateway for Java Three-Tier Architecture

10.2.2.1 The TCP62 Protocol
TCP62 is a protocol mapper that allows LU6.2 applications to communicate over a
TCP/IP network with minimal SNA configuration of clients. It uses AnyNet as the
underlying protocol. The following software provides integrated AnyNet support

� On the server side, OS/390 Version 1 Release 3 or later comes with VTAM
Version 4 Release 4, which has integrated AnyNet support

� On the client side, IBM Personal Communications AS/400 and 3270 4.2 or later

 Attention

CICS Transaction Server for OS/390 Release 3, the latest of CICS for OS/390,
provides support for inbound requests to CICS/Java application programs. The
client and the CICS server establish the basis for communication using an
interface as defined by the Object Management Group (OMG): Interface
Definition Language (IDL) standard using the IIOP protocol.

10.2.3 CICS Gateway for Java - A Further Introduction
The IBM CICS Gateway for Java provides a powerful way to access CICS
transactions from the Internet. It combines the portable, architecture-neutral,
object-oriented strengths of the Java programming environment with the power,
high integrity, robustness and flexibility of CICS to bring state-of-the-art, open,
easy, access from the Internet to mission-critical business CICS applications
running on a wide variety of server platforms. This is highly relevant as various
estimates by both IBM and third parties estimate that about 70% of all
mission-critical applications run on IBM systems, which are predominantly CICS.

The CICS Gateway for Java is designed to link two different worlds: the world of
enterprise computing with its mission-critical data and the rapidly growing, universal
access world of the Internet. Java is the key that gives access to the Internet. Not

160 e-business Application Solutions on OS/390 Using Java Vol. I

only can it turn any Internet-connected computer into a universal client, but it brings
far greater richness to interaction with the Web. So, the CICS Gateway for Java
enables you and your customers and business partners, equipped with just a
Network Computer or a PC, to transact your business directly and promptly.

Java applets and Java servlets can be used with JavaServer Pages (JSP) to
access CICS transactions via the CJGW. With servlets and JSPs, you are able to
provide dynamic content based on the data from CICS transactions to your
customers in pure HTML format, or an HTML/Java applet combination. Note that in
both cases, you can always have JavaScript for the front-end. JSPs provide a nice
way to logically separate the presentation interface from the processing and data
layer.

In the CICS section of this book, we concentrate on accessing CICS transactions
via servlets and JSPs.

The CICS Gateway for Java is provided for the OS/390 (MVS), OS/2 (R), Windows
NT, AIX (R) and Solaris platforms.

The CICS Gateway for Java consists of two components:

1. A CICS Java class library, which includes three classes that provide interfaces,
and are used to communicate between the Java gateway application and a
Java application or applet. If the Java application or servlet is local (that is, on
the same machine as the CJGW), the Java application or servlet may use
these supplied classes to communicate directly with CICS
programs/transactions.

2. A supplied Java application that uses these classes can be run as an MVS
started task, long-running batch job or UNIX System Services (USS) daemon to
handle remote requests (that is, applets on browsers).

This application communicates with CICS applications running in CICS servers
through the EXCI interfaces provided by the CICS Transaction Server. The
EXCI interface enables a non-CICS client application as a subroutine. The EPI
interface (provided by CICS Client but not by EXCI) enables a non-CICS client
application to act as a logical 3270 terminal and so control a CICS 3270
application.

The CICS Java Class library consists of a number of Java classes and interfaces,
which provide a simple way of making calls to CICS programs.

The CICS Gateway for Java can concurrently manage many communication links to
connected Web browsers, and can control asynchronous conversations to multiple
CICS server systems.

The multithreaded architecture of the Gateway enables a single Gateway to support
multiple concurrently connected users.

The CICS Gateway for Java (MVS) runs directly in the OS/390 UNIX System
Services with CICS Transaction Server for OS/390 V1R2 or later as the CICS
server in a two-tier configuration. For more detail, refer to information on the CICS
Transaction Server for OS/390 V1R2 (Ivory Letter 297-393), announced on
September 9, 1997. Announcement letters may be viewed on the Internet at URL:

 http://www.ibm.com/ibmlink

 Chapter 10. Develop Java Solutions for CICS on OS/390 161

The CICS Gateway for Java incorporates NLS (including DBCS) support.
Messages and documentation are translated to a range of languages; the desired
language is selected when downloading from the Internet.
Note, however, that the correct display of translated messages and documentation
(especially in DBCS languages) is dependent on respectively the locales installed
and the capabilities of the browser being used. For more information, refer to the
CICS Home page at URL:

 http://www.ibm.com/software/ts/cics/

In this redbook, we focus on the CICS Gateway for Java Version 2.0, which may be
used with any JDK 1.1 compliant Java-enabled Web browser. At the time of
writing, the latest version, which is called CICS Transaction Gateway, is not
supported on OS/390 yet and therefore is not explored further in this book.

The CICS Gateway for Java V2.0.1 runs on a Java-enabled platform with the
following minimum levels of JDK (Java Development Toolkit) installed:

� Windows NT: JDK 1.1.4 or later

� OS/2: JDK 1.1.1 or later preferably 1.1.4

� AIX: JDK 1.1.1 or later preferably 1.1.2

� Solaris: JDK/JIT V1.1.4 for SPARC-based machines or later, with native
threads support for Solaris Version 2.5.1 or later

� OS/390: JDK 1.1.1 or later

With CICS Transaction Server for OS/390 (TM) V1R2 and later, CICS Gateway for
Java (MVS) provides equivalent ECI support, similar to that provided by the ECI of
CICS Client, and therefore operates without the need for any CICS clients.

10.2.4 The CICS Gateway for Java Classes
The CICS Gateway for Java consists of the following classes and interfaces:

� Basic classes for writing Java-client programs:

 ibm.cics.jgate.client.JavaGateway

 ibm.cics.jgate.client.ECIRequest

 ibm.cics.jgate.client.EPIRequest

 ibm.cics.jgate.client.CicsCpRequest

 ibm.cics.jgate.client.Callbackable

 ibm.cics.jgate.client.GatewayRequest

� Interface definitions for writing Gateway security classes:

 ibm.cics.jgate.security.ClientSecurity

 ibm.cics.jgate.security.ServerSecurity

� Higher-level EPI support classes:

 ibm.cics.jgate.epi.\

Figure 88 on page 163 shows the ibm.cics.jgate.client.JavaGateway class.

162 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 88. CICS JavaGateway Class

Figure 89 on page 164 shows the ibm.cics.jgate.client.ECIRequest class.

 Chapter 10. Develop Java Solutions for CICS on OS/390 163

Figure 89. CICS Java Gateway Class for ECI

However, for the purposes of our sample applications, we will use only two classes:

 � ibm.cics.jgate.client.JavaGateway

 � ibm.cics.jgate.client.ECIRequest

ibm.cics.jgate.client.JavaGateway is used to establish communication with the
long running Gateway process using Java's socket protocol (or directly, if it is
local).

ECIRequest is used to specify the CICS ECI calls which are “flowed” to the
Gateway. The Gateway channels the ECI calls through a CICS Client to the
desired CICS server applications, manages the many communication links to the
connected browser or network computers, and controls asynchronous
conversations to the CICS server systems.

 Attention

The CICS Gateway for Java (MVS) is supported only with CICS Transaction
Server for OS/390 V1R2 and higher.

The CICS Gateway for Java Version 2.0.1 (including the CICS Gateway for
Java (MVS)) uses and requires JDK 1.1 classes.

164 e-business Application Solutions on OS/390 Using Java Vol. I

The CICS Gateway for Java, supports the HTTP communications protocol as well
as the TCP protocol, enabling communication through firewalls. Note that the CICS
Gateway for Java needs to run as a Java application. It can run on the same
machine as the one used to run the Webserver.

CICS Gateway for Java, combined with Java servlets and JSPs, leads to many
powerful scenarios. For example, an HTML page in the Web client can call a Java
servlet which can call a CICS program via the CJGW. The servlet can build
dynamic HTML “on the fly” based on results returned by the CICS program.
Alternatively, a JSP page can call a JavaBean which can also interact with CJGW
and deliver dynamic HTML to the client.

If your Java servlet is on the same machine as your CICS Client, you specify “local”
(or “auto”) as the location of the CICS Gateway for Java. This allows the servlet to
directly access CICS via the CGJW classes, without the need to go through a
daemon or started task. If the Webserver is on a different machine than the
CJGW, then the servlet will communicate with the CJGW daemon (or started task)
via TCP/IP.

Another approach is to use Java applets. A Java applet in the Web-client can
directly call CICS programs and data simply by invoking the small Java class
supplied with the Gateway. When the applet is invoked, all the necessary code is
downloaded to the client platform automatically, so no work is needed to prepare
Web clients for CICS access.

The CICS Gateway for Java is downloadable from the Web if you have a CICS
Transaction Server product. Its home page is at URL:

 http://www.ibm.com/software/ts/cics/platforms/internet/cicsgw4j/

10.3 Overview of Approach
This section describes the steps required to develop and set up Web access to
CICS Transactions via Java servlets on the OS/390. We show this with and
without the use of JSPs. We used Windows NT as our development platform, and
then deployed our application on OS/390. This allowed us to utilize the productivity
tools on the workstation such as VisualAge for Java, VisualAge for COBOL,
Enterprise Version 2.2, TxSeries, DB2 UDB, NetObject ScriptBuilder, and NetObject
Fusion. It also serves to demonstrate the true platform-independence of the
finished Web applications. This provides the freedom to choose, a key promise of
the Java phenomenon.

In the next two chapters, we concentrate on several ways of developing servlets
that call and execute a sample CICS/DB2 program called MANUFACT.

10.4 A Brief Discussion of Servlets and CICS
Servlets can invoke CJGW classes to interact with CICS programs and
transactions. In a general scenario, a Web client would send a request to a
Webserver indicating that the recipient should be a servlet. The Webserver passes
on the request to the servlet with the appropriate data specified in the form of the
HTML page.

 Chapter 10. Develop Java Solutions for CICS on OS/390 165

The servlet pulls the data supplied off the request object. It then invokes the
CJGW classes directly or indirectly. Through the CJGW, the CICS program is
executed and returns the data back to the servlet, again directly or indirectly. The
servlet could build an HTML data stream in the response object and send it back to
the Web browser.

10.5 Developing a Java Application Using CICS Gateway for Java
As Java and many of the supporting pieces of software required to develop and run
the CICS/COBOL/DB2 applications run on multiple platforms, the customer has
many choices as to where to develop, and to deploy. We chose the workstation as
our development platform, with a view of running the completed application on
OS/390.

10.5.1 Requirements on the Development Platform (Workstation)
In the following sections, we list the technical requirements to develop and run
Web-based applications accessing CICS transactions via the CICS Gateway for
Java on Windows NT.

TxSeries
DB2 UDB

VA Java V2
CICS Client
DB2 Client
Browser
VA Cobol v2.2
NetObject Fusion
Websphere App Server
CICS Java Gateway

OS/390
CICS TS
DB2 for OS/390
Cobol for OS/390

Developer's machine

Development Server

Figure 90. High-Level Overview of Development Environment Architecture

Our proposed development architecture consists of doing development largely on
the workstation, and transferring the code to run on OS/390. Figure 90 shows the
various pieces of software running on the PCs, the server and OS/390.

 10.5.2 Components
We briefly discuss the roles played by each piece of software in the following
sections.

166 e-business Application Solutions on OS/390 Using Java Vol. I

 10.5.2.1 Operating Systems
On the developer's machines and on our development server, we used Windows
NT 4.0 and ServicePack 3. Note that OS/2 Warp is an alternative as the
developer's machine. The server may also be AIX or OS/2 Warp.

 10.5.2.2 Webserver
You will need a Webserver that can run WebSphere Application Server. There is a
list of supported Webservers at URL:

 http://www.ibm.com/software/webwervers/appserv/

10.5.2.3 WebSphere Application Server
The WebSphere Application Server contains a Java Servlet engine software plug-in
(that was previously referred to as ServletExpress) that allows your existing
Webservers (like the Lotus Domino Go Webserver, Apache Server, Microsoft IIS,
and Netscape Enterprise Server) to run servlets. The WebSphere Application
Server's home page is at URL:

 http://www.ibm.com/software/webservers/appserv/

The WebSphere Application Server is installed after the Webserver and a JDK is
installed. Note that WebSphere Application Server for Windows NT Version 2.0
comes bundled with both Apache and IBM HTTP Server. However, in our
examples we used WebSphere Application Server for Windows NT Version 1.1..

10.5.2.4 CICS Gateway for Java
The CICS Gateway for Java makes the communication between Java and CICS
transactions/programs possible. The CICS Gateway for Java can receive requests
from Java applets, applications and servlets. See the overview section of 10.2,
“CICS Gateway for Java for OS/390 Architecture” on page 158 for more
information on CICS Gateway for Java.

We chose to put the CICS Gateway for Java on the developer's machine as this
allows the CICS Gateway for Java classes that are used in your servlet to
communicate directly with a CICS Client without the need to run a separate CICS
Gateway for Java process.

 10.5.2.5 CICS Client
The CICS Client accepts the ECI and EPI requests to run CICS programs or
transactions to a CICS Server. If you specify “local” when you open a CICS
Gateway for Java connection, then the CICS Client must be on the same machine
as the CICS Gateway for Java. For our purposes, we have the CICS Client
software on the developer's machine.

The CICS Client home page is at URL:

 http://www.ibm.com/software/ts/cics/platforms/clients/

CICS Client for NT V2.0.4 was used during the development of our examples.
Note that there is no need for a CICS Client on OS/390; instead, it uses EXCI to
support ECI requests.

 Chapter 10. Develop Java Solutions for CICS on OS/390 167

 10.5.2.6 CICS Server
The CICS Server runs the back-end programs. These programs usually access
data controlled by CICS or a database like DB2. TxSeries 4.2 was used as our
CICS server for the development of the sample. We put TxSeries on a separate
machine to act as our CICS server. The CICS home page is at URL:

 http://www.ibm.com/software/ts/cics/

 10.5.2.7 Web Browser
You will need a Web browser to display the HTML generated by the Java servlet or
JSP. The HTML generated by our servlet (or JSP) is very simple HTML, so older
browsers should work fine. Note that the HTML generated by NetObjects Fusion
may require later versions of browsers. In our samples, we used Netscape
Communicator 4.07. Note that if you use applets, it will require the browsers to
support Java 1.1.

 10.5.2.8 JDK
The Java Development Kit (JDK) contains the runtime classes needed to test the
Java programs. While the JDK also provides utilities such as the Java compiler to
compile a Java servlet, we used VisualAge for Java to develop and compile our
samples.

The JDK was used for the installation of Domino Go Webserver and
ServletExpress. The JDK can be downloaded from URL:

 http://java.sun.com/products/jdk/1.1/

For our purposes we used JDK 1.1.6 for Windows NT.

10.5.2.9 Visualage for Java
The IDE of VisualAge for Java Enterprise Edition Version 2.0 provided us with a
powerful development environment. Some of the key features we really liked were
automatic syntax checking and class/method validation, the graphical debugging
facility of VisualAge for Java, and the version control capability.

10.5.2.10 VisualAge for COBOL
We used VisualAge for COBOL, Enterprise Version 2.2 to develop and deploy the
CICS/COBOL/DB2 backend programs. We used this product in conjunction with
DB2 UDB and TxSeries 4.2.

 10.5.2.11 Database
Our sample Cobol application accesses a DB2 table called the MANUFACTURER
table.

For the workstation, we used DB2 UDB V5. In our development setup, each of us
had the full-blown DB2 product on the workstation. An obvious alternative is to
have a central DB2 server, with the developers accessing it via a DB2 client in a
customer development environment. This is reflected in Figure 90 on page 166.

168 e-business Application Solutions on OS/390 Using Java Vol. I

 10.5.2.12 Web Pages
We used NetObjects ScriptBuilder V2 to build simple HTML and JSP pages. One
of our team members was using NetObjects Fusion, a WYSIWYG Web tool to build
professional looking pages. This is documented in Chapter 7, “NetObjects Fusion
(NOF) Version 3” on page 93.

10.5.3 CICS Gateway for Java Customization on the Workstation
This section contains information to guide you through the basic tasks associated
with running and using the CICS Gateway for Java on Windows NT.

10.5.3.1 Downloading the CICS Gateway for Java for Windows
NT
If you have not already downloaded the CICS Gateway for Java for Windows NT
package, you can download it from URL:

 http://www.ibm.com/software/ts/cics/downloads/

When you have downloaded and unpacked the package, read the README.TXT
file which tells you how to access the product web pages locally.

10.5.3.2 Installing the CICS Gateway for Java for Windows NT
The file you have downloaded is an archive file appropriate to the operating system
and language you chose for your installation platform. If you downloaded it to a
different platform, remember to transfer the file before attempting installation.

For Windows NT, the downloaded archive is a self-extracting executable file. The
following instructions use English file names:

1. Move the downloaded file to the directory where you will create the root
directory for the installation.

2. Run the downloaded file. The executable will expand now and will create a
root directory, named JGate. The result is a directory structure as shown in the
diagram in Figure 91 on page 170.

 Chapter 10. Develop Java Solutions for CICS on OS/390 169

Figure 91. CICS Gateway for Java for Windows NT Directory Structure

You will find the README.TXT file in the installation root directory JGATE.

10.5.3.3 Configure CICS Gateway for Java for Windows NT
Use the following steps to configure the CICS Gateway for Java for Windows NT:

1. Configure your Webserver for CICS Gateway for Java.

Define to your Webserver the location of the directory into which you installed
the CICS Gateway for Java (JGATE). Your Webserver's documentation will
explain how to do this.

2. Configure your programming environment for the CICS Gateway for Java.

If you wish to compile or run Java applications, add JGATE/classes to your
CLASSPATH of your environment.

3. Set the time.

You must set your locale to match your timezone to get the right time. For
example, if you set your locale to en_US, Java will be set to the time in the
eastern part of the United States.

170 e-business Application Solutions on OS/390 Using Java Vol. I

10.5.3.4 The Gateway.properties File
The Gateway.properties file allows you to set persistent properties for the CICS
Gateway for Java. These properties are read when the Gateway is started, and
can be broadly split into three categories:

General start-up properties
These properties are those that can also be specified via
command line options when the Gateway is started.

Network protocol handler properties
These properties define which network protocol handlers
are started. The Gateway supports dynamic protocol
handler loading, and so additional protocol handlers can be
added by adding entries in the properties file. Also
protocol handler specific parameters can be specified.

Platform specific properties
Some platforms may need additional properties to
determine operation of the Gateway.

The Gateway.properties file is located in, JGATE/bin/nt directory.

10.5.3.5 Starting the CICS Gateway for Java for Windows NT
You start the CICS Gateway for Java at the operating system command prompt of
the computer on which you have installed it. First, you must set your working
directory to JGATE/bin/nt.

You can use the start command in three ways with preset options, or with
user-defined options, or you can get help on startup options.

� To start the Gateway with preset options:

Preset options are those predefined in the Gateway code itself, or set in the
Gateway.properties file. If an option was not specified in the
Gateway.properties file, then the predefined Gateway value will be used. Type
JGate at the command prompt and press Enter . You will then see the startup
message:

CCL65ððI: Starting the CICS Gateway for Java with default values.

This will be followed by two lines showing the values which are being used:

CCL65ð2I: [Initial ConnectionManagers = 1 , Maximum ConnectionManagers = 1ðð ,

CCL65ð2I: Initial Workers = 1 , Maximum Workers = 1ðð, tcp: Port = 2ðð6]

� To start the Gateway with user-specified options:

The user-definable options are shown in Figure 92 on page 172.

 Chapter 10. Develop Java Solutions for CICS on OS/390 171

 -port=<port_number> - TCP/IP port number for the tcp: protocol

-initconnect=<number> - Initial number of ConnectionManager threads

-maxconnect=<number> - Maximum number of ConnectionManager threads

-initworker=<number> - Initial number of Worker threads

 -maxworker=<number> - Maximum number of Worker threads

-trace - Enable extra tracing messages

-time - Enable timing information in messages

-noinput - Disable the reading of input from the console

-nonames - Do not display TCP/IP hostnames

Figure 92. User-Definable Options for Starting Up the Gateway

To override the startup defaults, type JGate at the command prompt, followed
by start-up options you require, and press Enter. Options specified on the
command line override those specified in the Gateway.properties file. You will
now see the startup message:

CCL65ð1I: Starting the CICS Gateway for Java with user specified values.

This will be followed by two lines showing the values which are being used, for
example:

CCL65ð2I: [Initial ConnectionManagers = 1ð , Maximum ConnectionManagers = 1ðð ,

CCL65ð2I: Initial Workers = 1ð , Maximum Workers = 1ðð, tcp: Port = 2345]

� To get help on the startup options, type:

JGATE ?

10.5.3.6 Stop the CICS Gateway for Java for Windows NT
If you did not start the Gateway with the -noinput parameter, the Gateway can be
stopped by typing the correct character and pressing the Enter key in the Gateway
console session. The allowable characters may be localized for your country; the
default characters allowed are “Q” or “-.”

You can determine what characters will stop the Gateway by simply pressing the
Enter key in the Gateway console session. The following message will then be
displayed:

CCL65ð8I: Type Q or - to stop the CICS Gateway for Java.

If you have used the -noinput parameter, you must stop the Gateway process
using some other method. Some examples of such methods are :

� Enter “Ctrl-C” in the Gateway console session

� Use the NT Task Manager

172 e-business Application Solutions on OS/390 Using Java Vol. I

10.5.4 Set Up TxSeries
For development purposes, we chose the CICS Development Server as part of the
TxSeries installation. Note that, with TxSeries 4.2 for NT, the Encina SFS product
and a light version of DCE is automatically installed as part of the TxSeries
standard install. Refer to the TxSeries Quick Beginnings Guide, GC33-1879. for
installation details.

10.5.4.1 Set Up the Development CICS Region
After the installation and setup has run to its conclusion, and after the machine has
been rebooted, the following are the summary steps executed to prepare the
environment:

� Configure DCE as an RPC-only environment. For our development purposes,
this is sufficient.

You may run the following command in a DOS prompt window.

cicscp -v create dce -R

� Set up the environment variables. The installation of TxSeries creates a
number of environment variables for both CICS and Encina. You need to
create two additional ones manually. They are:

 set CICS_HOSTS=<your_machine_name>

and

 set ENCINA_BINDING_FILE=c:\var\cics_servers\server_bindings

After you set these environment variables, reboot the machine.

� Create the CICS region, listener and program definitions, as follows:

cicscp -v create region CICSNT

The creation of the CICS region will also automatically create an SFS server
which is named after the host name prefixed with an “S.”

� Start the CICS region now with the following command:

cicscp -v start region CICSNT

You can start up the CICS regions from the command line. The CICS can also
be managed via the Administration utility that comes with the TxSeries
installation. To use the Administration utility, go to the Start button, choose
CICS Server , and you should see the Administration utility as one of the
options.

� You can define your programs to CICS using “cicsadd” or you can do so via
the Administration utility. To do so with the Administration utility, right click on
the CICS region, select resources , then programs . However, for multiple
programs, it is easier to use “cicsadd.”

cicsadd -c pd -r CICSNT -B TIMEZONE PathName=/userprogs/runtime/TIMEZONE

 ProgType=program ActivateOnStartup=yes

cicsadd -c pd -r CICSNT -B MANUFACT PathName=/userprogs/runtime/MANUFACT

 ProgType=program ActivateOnStartup=yes

� Modify the \winnt\system32\drivers\etc\services file to insert the following
line:

 CICSTCP 1435/tcp #TxSeries listener

 Chapter 10. Develop Java Solutions for CICS on OS/390 173

10.5.4.2 Set Up the CICS Client
After the CICS Client is installed, modify the CICSCLI.INI file as follows:

Server = CICSNT ; Arbitrary name for the server

Description = TCP/IP Server ; Arbitrary description for the server

Protocol = TCPIP ; Matches with a Driver section below

NetName = 9.12.2.176 ; The server's TCP/IP address

Port = ð ; Use the default TCP/IP CICS port

Some of the useful commands to manage the CICS CLIENT are:

CICSCLI /s=CICSNT where CICSNT is your server name

CICSCLI /l list out the active servers

CICSCLI /x terminate the connection to your CICS server

CICSCLI /i terminate your connection immediately

Note that you need to change to the /CICSCLI/BIN directory, or have it in the path.
These commands are executed from the DOS prompt window.

10.5.5 Prepare the COBOL Programs
As noted earlier, we used VisualAge for COBOL, Enterprise Version 2.2 with
TxSeries 4.2 to develop and test our COBOL programs on the workstation. On the
workstation, TxSeries provides command files to translate, compile and linkedit
COBOL programs. These steps may be done individually, or in a combined
manner. It can call either the IBM Cobol or the MicroFocus Cobol compiler,
depending on the option specified.

For example, to translate for CICS, compile and link-edit the TIMEZONE program
using IBM's VisualAge for COBOL, Enterprise Version 2.2, issue:

cicstcl -lIBMCOB timezone.ccp

 Attention

Note the following regarding the syntax of cicstcl:

The -l indicates the language. In our case, it is VisualAge COBOL.

The output in this case is timezone.ibmcob. This must be placed in the
directory as defined to TxSeries via the Program Definitions (refer to the set-up
of TxSeries as described in 10.5.4, “Set Up TxSeries” on page 173).

If you are using the cicstcl utility (as described), you can set your compile
options via the CICS_IBMCOB_FLAGS environment variable, for example, set

CICS_IBMCOB_FLAGS=-qdynam for dynamic linking.

VisualAge for COBOL, Enterprise Version 2.2 has a nice syntax-sensitive editor
called “iwzwlx40” that you can invoke from the command line. An alternative is
to use the Workframe feature of VisualAge for COBOL, Enterprise Version 2.2
to translate, compile and linkedit your COBOL programs. Finally, remember to
point SYSLIB to your copybook directories.

174 e-business Application Solutions on OS/390 Using Java Vol. I

10.5.6 Verify Your CICS Setup
Start up a CICS client. For the purposes of this demo set-up, you may wish to set
the “Resource Level Security Key” of the test programs to public. To do this, bring
up the CICS Administration menu, right click on the CICS region, select Resources
and then Program . Then select the Security/DCE tab, and spin the “Security Key”
to public.

To verify your CICS set-up, you can bring up a CICS terminal and issue the CECI
transaction as follows:

CECI LINK PROG(TIMEZONE) COMMAREA('') LENGTH(16)

You should get the following resulting screen as shown in Figure 93.

à ð
LINK PROGRAM(TIMEZONE) COMMAREA(' ') LENGTH(16)

STATUS: COMMAND EXECUTION COMPLETE NAME=

 EXEC CICS LInk Program('TIMEZONE')

< Commarea('11-12-982ð:ð7:15')

< Length(+ððð16) >

< Datalength() > >

< SYSid() >

< Transid() >

< SYNconreturn >

á ñ

Figure 93. CICS Setup Verification on NT

10.5.7 Test Your Setup
We suggest you test your setup using the following steps:

1. Test your CICS environment as described in 10.5.4, “Set Up TxSeries” on
page 173. Leave your CICS Client running. This makes sure that your CICS
environment is ready.

2. Start up or make sure your Webserver is up and ready. Verify this by
displaying an HTML page, a servlet or a JSP that you know works.

3. Start up your CICS Gateway for Java. Look at the output. You could verify
your gateway using the supplied testeci program, which is explained later in
this section.

4. Make sure your CLASSPATH is correctly set, for example, in our case it is:

SET CLASSPATH=

 .;D:\WebSphere\AppServer\lib\ibmwebas.jar;d:\WebSphere\AppServer\classes;

 d:\WebSphere\AppServer\lib\jsdk.jar;d:\WebSphere\AppServer\lib\x5ð9v1.jar;

 d:\WebSphere\AppServer\lib;d:\WebSphere\AppServer\web\classes\ibmjbrt.jar;

 d:\WebSphere\AppServer\lib\databeans.jar;D:\JGate\classes;D:\jdk1.1.6\lib\classes.zip

5. Move the itsorb.TimeZone class to your webserver\classes directory. For
example, in our case, move the itsorb directory to the
D:\WebSphere\AppServer\classes directory. It should be on the CLASSPATH.
In this example, TIMEZONE.class sits in the
D:\WebSphere\AppServer\classes\itsorb directory.

6. Check your CICS Java Gateway using the supplied TESTECI sample, as
follows:

 Chapter 10. Develop Java Solutions for CICS on OS/390 175

java ibm.cics.jgate.test.TestECI jgate=jgate.machine.ip.address progð=TIMEZONE

 server=TOT71 commarealength=16

Refer to the supplied CICS Gateway for Java documentation for the full syntax.
You should get the following output (the bottom half is shown):

Commarea length : 16

No of programs given : 1

[ð] : TIMEZONE

=== Connect to Gateway ===

Successfully created JavaGateway

=== Available Servers ===

System : TOT71, Description : TCP/IP Server

=== Call Programs ===

About to call : TIMEZONE

 Commarea :

Extend_Mode : ð

 Luw_Token : ð

Commarea : 11-12-982ð:24:34

Return code : ð

Abend code :

Successfully closed JavaGateway

7. Move the Timezone.html and Timezone.jsp files to an appropriate directory that
is accessible by WebSphere. In our case, it is
D:\WebSphere\AppServer\samples\itso with an appropriate “pass” entry in the
httpd.cnf file.

Next, update the gateway settings to reflect your environment. Here, we show
you an extract from the timezone.jsp file. Edit the highlighted lines to reflect
your environment before running it.

<% // retrieve the fullname variable from the previous form

String fullName = request.getParameter("fullName");

// call the CICS program which will return the Time and Date

// but first set up your Gateway properties

itsorb.JGateSettings jg = new itsorb.JGateSettings();

 jg.setCicsProgram("TIMEZONE");
 jg.setCicsServer("tot71");
 jg.setCicsTranid("MANU");
 jg.setCicsJGate("auto://tot71");
 jg.setCicsUserid("CICSUSER");
 jg.setCommareaLength(16);

 timeZoneBean.callCICS(jg);

 %>

8. Open your Timezone.html using a browser in the normal way, as follows:

 http://tot71/IBMWebAS/samples/itso/Timezone.html

176 e-business Application Solutions on OS/390 Using Java Vol. I

9. When presented with the HTML page, type in your name and press the Test
button. You should see a dynamic page built by JSP using a JavaBean
displayed! Refer to Figure 94 on page 177 for our sample output.

Figure 94. Sample Input to Test Access to a CICS Program Via a JSP/Bean

For input in Figure 94, you should get the output in Figure 95.

Figure 95. Sample Output to Test Access to a CICS Program Via a JSP/Bean

 Chapter 10. Develop Java Solutions for CICS on OS/390 177

10.5.8 VisualAge for Java Setup to Develop Servlets for CICS Gateway
for Java

Before you start developing any servlets, or extend existing ones, the servlet
classes and the CICS Gateway for Java classes need to be imported into
VisualAge for Java.

WebSphere comes with the java servlet classes jar file named jst.jar. Refer to
Figure 96 for the directory structure of the contents of jst.jar file. We added the
servlet classes into a project of its own called “WebSphere.”

Figure 96. Adding the Servlet Builder in VisualAge for Java

The CICS Gateway for Java classes also need to be added to VisualAge for Java.
In our case, we created a new project for it which we called “CICS Java Gateway.”

178 e-business Application Solutions on OS/390 Using Java Vol. I

If you are using the Servlet Builder feature of VisualAge for Java, you need to add
it to the VisualAge for Java repository and workspace. To add the Servlet Builder,
select Quick Start under the File menu item of the VisualAge for Java workbench
window. From here, select Add Feature , and select Servlet Builder for the
feature you require.

You should see a window that looks like Figure 97

Figure 97. Adding the Servlet Builder in VisualAge for Java

 10.5.9 Summary
If you have followed the steps documented here, you should now have a functional
development environment which allows you to develop servlets accessing
CICS/Cobol programs via CJGW on the workstation and deploy on OS/390.

10.6 OS/390 Setup to Run CICS/DB2 Programs Using CICS Gateway
for Java

After you have developed and tested your CICS applications on the Windows NT
workstation, you can move them quite easily to the OS/390 CICS environment. Of
course, you need to have your CICS Transaction Server and CICS Gateway for
Java running on OS/390. In this section we explain how to prepare your
environment for running a Java application on OS/390, calling a CICS/DB2/COBOL
transaction via the CICS Gateway for Java.

The descriptions are based on our scenario of calling the CICS programs via
servlets based on the environment that we set up in ITSO, Poughkeepsie.

 Chapter 10. Develop Java Solutions for CICS on OS/390 179

The summary of tasks needed to set up the environment to deploy and run our
sample servlets for OS/390 are:

� Configuration of the Webserver on OS/390, being either the Lotus Domino Go
Webserver Release 5.0 with ServletExpress or WebSphere Application Server
for OS/390 V1.1

� Configuration of the CICS Gateway for Java

� Definition of our sample DB2 “manufacturer” table

� Preparation of the CICS COBOL program

� Definition of the CICS entries for COBOL programs

� Translation, compilation, link-edit and bind of the COBOL programs

� Set up of the CICS/DB2 entries for CSMI

� Customization of the Webserver for the sample programs

� Deploying the servlet(s)

� Deploying the HTML and JSP page(s)

10.6.1 Configuring the Webserver
Refer to Chapter 4, “Configuration of the OS/390 Web Server” on page 29 for
details about the setup of the Webserver and ServletExpress on OS/390.

10.6.2 Setting Up the CICS Gateway for Java on OS/390
The CICS Gateway for Java on OS/390 uses the OS/390 UNIX System Services
component of OS/390 (MVS). You will be working in a UNIX environment when
setting up CICS Gateway for Java. Be aware of case-sensitivity. The task
summary is as follows:

� Installing/verifying Java on OS/390

� Expanding the CICS Gateway for Java tar file in OS/390 UNIX System Services

� Changing the configuration file

� Setting the WEB=YES SIT Option

� Installing the CICS DFHJAVA Group

� Defining CICS Connections and Sessions

� Modifying the environment variables for CICS Gateway for Java

10.6.2.1 Installing/verifying Java on OS/390
We will assume that you have Java already installed. Refer to 5.1, “JDK
Installation and Setup” on page 53 for any further details. You may run java

-fullversion to see the version of Java on your machine. On our machine, we get
the following output:

CHORHOC @ SC61:/u/chorhoc>java -fullversion

java full version "JDK 1.1.6 IBM build m116-19981ðð9 Beta 2 (JIT enabled: jitc)"

180 e-business Application Solutions on OS/390 Using Java Vol. I

10.6.2.2 Expand CICS Gateway for Java Tar File in OS/390 UNIX
System Services
Use the tar command to expand the tar file. If you need to, you may download the
CICS Gateway for Java tar file from the Internet at URL:

 http://www.ibm.com/software/ts/cics/platforms/internet/

tar -xopf jg-11mvs.tar

10.6.2.3 Setting the WEB=YES SIT Option
You must specify the WEB=YES SIT option to enable the business logic interface.
The CICS Gateway for Java (MVS) uses business logic interface program
DFHWBA1. The default for the option is WEB=NO, so YES must be explicitly
specified.

 Attention

In CICS Transaction Server for OS/390 Version 1.3 (GA), this option cannot be
specified anymore.

10.6.2.4 Installing the DFHJAVA Group
To support CICS Gateway for Java (MVS), the DFHJVCVT program definition must
be installed in CICS TS. The definition is provided in the CICS group called
DFHJAVA.

10.6.2.5 Adding Entries to the DFHCNV Table
Java applets and applications do not execute in an EBCDIC environment, even in
the OS/390 Java Virtual Machine. Unless the applet can generate COMMAREA
data for the CICS program in the correct format and codepage, a DFHCNV table
entry is required for the program. Coding DFHCNV entries is described in CICS
Family: Communicating from CICS on System/390, SC33-1697. Note that if you
use the new CICS Transaction Gateway V3, then VisualAge for Java can generate
the translation for you. In our sample scenario, we are using CICS Gateway for
Java V2.01.

10.6.2.6 Configuring CICS Connection and Sessions
In order for the OS/390 program to use the EXCI to communicate with CICS TS,
definitions for the connection and sessions must be installed. The CICS Gateway
for Java (MVS) can use a specific or generic connection. Refer to CICS TS for
OS/390 V1R2 CICS Internet and External Interfaces Guide, SC33-1944, for a
detailed description of how to define EXCI connections and sessions.

Sample group DFH$EXCI contains sample definitions that can be used by the
CICS Gateway for Java (MVS). Installing this group creates a generic connection
that CICS Gateway for Java (MVS) uses by default. It also creates a specific
connection with the netname of BATCHCLI. For simplicity purposes, we
recommend that you use the generic connection. You can check that an EXCI
connection exists with the CEMT transaction. On our system, this is the output of
the CEMT INQUIRE CONNECTION:

I CON (EX\)

STATUS: RESULTS - OVERTYPE TO MODIFY

 Con(EXCG) Ins Irc Exci

 Con(EXCS) Net(BATCHCLI) Ins Irc Exci

 Chapter 10. Develop Java Solutions for CICS on OS/390 181

10.6.2.7 Setting Environment Variables
Environment variables are associations of names with values that can be set up
independently of programs that access them. Programs can read the values
associated with names and act on them accordingly. The OpenEdition MVS User's
Guide, SC23-3013, contains detailed descriptions of environment variables and how
they are set up. Here we describe three ways of setting the variables that the
CICS Gateway for Java (MVS) uses.

The Export Command: The OpenEdition export command can be used to set
variables before the CICS Gateway for Java (MVS) is started from a shell
command line:

/u/java/JGate/bin/mvs: >export DFHJVPIPE=JVGATE1

/u/java/JGate/bin/mvs: >export DFHJVSYSTEM_ðð="SCSCPAA9-ITSO System TS 1.2"

/u/java/JGate/bin/mvs: >export DFHJVSYSTEM_ð1="BRANCH-Main branch server"

 /u/java/JGate/bin/mvs: >JGate

CICS Gateway for Java, Version 1.1.3, 29Hð948.

(C) Copyright IBM Corporation 1996. All rights reserved.

CCL65ð1I: Starting the CICS Gateway for Java with user specified values.

CCL65ð2I: [Port = 2ðð6 , Initial Connections = 1 , Maximum Connections = 1ðð

CCL65ð2I: Initial Workers = 1 , Maximum Workers = 1ðð]

CCL65ð5I: Successfully created the initial Connection and Worker threads.

Using Export in the JGate Script: To save having to type in the export
commands each time you start the CICS Gateway for Java (MVS), you can place
the statements in the JGate script file before the Java Virtual Machine is started.
The following shows the last few lines in the script file when some export
commands are included.

 export STEPLIB=${STEPLIB}:${EXCI_OPTIONS}:${EXCI_LOADLIB}

 export DFHJVPIPE=JVGATE1

export DFHJVSYSTEM_ðð="SCSCPAA9-ITSO System TS 1.2"

export DFHJVSYSTEM_ð1="BRANCH-Main branch server"

 #

 # Start JGate

 #

 java ibm.cics.jgate.server.JGate $\

Using the STDENV DD Name in the Startup JCL: In the JCL that runs the
BPXBATCH program, you can code a DD card with the name STDENV. This
name can refer to inline data or a file that contains the name-value pairs for the
environment variables for the program that BPXBATCH starts. Here is how some
variables are coded in the JCL:

//STDENV DD \

DFHJVSYSTEM_ðð=SCSCPAA9-ITSO System TS 1.2

DFHJVSYSTEM_ð1=BRANCH-Main branch server

 /\

Quotes in Environment Variable Values: When variables are defined with the
export command, either on the command line or in the shell script, the value may
need to be surrounded by double quotes. If the value contains spaces or special
characters, double quotes are needed. In the example, discussed in “The Export
Command,” the DFHJVSYSTEM_nn variables need double quotes because of the
spaces, but DFHJVPIPE does not need double quotes.

In the example given in “Using the STDENV DD Name in the Startup JCL” double
quotes are not needed because the variables are set in JCL, not the script file.

182 e-business Application Solutions on OS/390 Using Java Vol. I

Overriding Variables: The variables that take effect when the CICS Gateway for
Java (MVS) is started are the final variables to be set. So, if JCL is used to start
the JGate script, any variables that are set in the script will override the variables of
the same name in the JCL.

Environment Variables Used by the CICS Gateway for Java (MVS): The CICS
Gateway for Java (MVS) reads environment variables to obtain its customization
options. The two options controlled by the variables are whether to use a specific
or generic EXCI connection, and which values to return for an
ECIRequest.listSystems call. Two variables affect the operation of the CICS
Gateway for Java (MVS):

 1. DFHJVPIPE

In order for the CICS Gateway for Java (MVS) to use a specific EXCI
connection, the DFHJVPIPE must be set to the netname specified in the
connection definition. If you are using the EXCI sample definitions in the
DFH$EXCI group, a specific connection called EXCS is installed. In order for
the CICS Gateway for Java (MVS) to use this connection, you must set the
value of DFHJVPIPE to BATCHCLI before starting up the gateway. If
DFHJVPIPE's value is left unset, the CICS Gateway for Java (MVS) uses the
generic connection defined to CICS.

 2. DFHJVSYSTEM_nn

You can set up to 100 variables of this form, with nn ranging from 00 to 99.
The values are the names and descriptions of CICS systems to be returned in
response to an ECIRequest.listSystems call. The value must be in the form
of a string containing the name of a system, followed by a hyphen and then its
description. For example:

/u/java: >export DFHJVSYSTEM_ðð="SCSCPAA9-ITSO System TS 1.2"

/u/java: >export DFHJVSYSTEM_ð1="BRANCH-Main branch server"

If you start up the CICS Gateway for Java (MVS) after issuing these commands
and use the TestECI program, here is the output you get:

TestECI - simple test of CICS Gateway for Java functionality

=== Test Parameters ===

CICS Gateway : wtsc52.itso.ibm.com:3ðð6

ECI Server : null

ECI UserId : null

ECI Password : null

No of programs given : ð

=== Connect to Gateway ===

Successfully created JavaGateway

=== Available Servers ===

System : SCSCPAA9, Description : ITSO System TS 1.2

System : BRANCH, Description : Main branch server

Successfully closed JavaGateway

 Important

In regard to system ID, note the following:

� On MVS, the terms system and server refer to the CICS APPLID.

� On NT or AIX, the terms system and server refer to the TCP/IP address of
the CICS region.

 Chapter 10. Develop Java Solutions for CICS on OS/390 183

10.6.3 Running the CICS Gateway for Java (MVS)
The CICS Gateway for Java (MVS) can be started either from an OpenEdition shell
prompt as an “MVS started task,” or by submitting JCL that runs the BPXBATCH
program. BPXBATCH is an OS/390-supplied program that executes OpenEdition
programs and shell scripts that reside in the HFS.

The following JCL worked fine for us when we started the gateway as a started
task on OS/390.

 //JGATE PROC

 //CICS EXEC PGM=BPXBATCH,

// PARM='SH /u/java/JGate/bin/mvs/JGate -noinput

 // -trace'

 //STDOUT DD PATH='/tmp/stdout',

 // PATHOPTS=(OWRONLY,OCREAT),

 // PATHMODE=SIRWXU

 //STDERR DD PATH='/tmp/stderr',

 // PATHOPTS=(OWRONLY,OCREAT),

 // PATHMODE=SIRWXU

 //

We successfully tested with the following JCL to start our CICS Gateway for Java
as a batch job. When the PARM parameter exceeds one line, then there must be
a continuation character on column 78. Failure to do so will result in the batch job
ending prematurely.

 //BPXBATA JOB (999,POK),'Lð6R',CLASS=A,REGION=4ð96K,

 // MSGCLASS=T,TIME=1ð,MSGLEVEL=(1,1),NOTIFY=&SYSUID

 //CICS EXEC PGM=BPXBATCH,

// PARM='SH /u/java/JGate/bin/mvs/JGate -noinput -

 // -trace'

 //\23456789ð123456789ð123456789ð123456789ð123456789ð123456789ð12345678

 //STDIN DD PATH='/dev/null',

 // PATHOPTS=(ORDONLY)

//STDOUT DD PATH='/u/chorhoc/stdout.log',

 // PATHOPTS=(OWRONLY,OCREAT),

 // PATHMODE=SIRWXU

//STDERR DD PATH='/u/chorhoc/stderr.log',

 // PATHOPTS=(OWRONLY,OCREAT),

 // PATHMODE=SIRWXU

It is assumed that the CICS Gateway for Java (MVS) is installed in the
/u/java/JGate directory.

Note that BPXBATCH does not support MVS files for its standard output and
standard error log, so you must specify HFS files. To view these files, use the TSO
oedit command or enter an OpenEdition command shell and use the OpenEdition.

10.6.3.1 Set Up Java Gateway Daemon as MVS Started Task
It is possible to run the CICS Gateway for Java using BPXBATCH as an MVS
started procedure:

1. Build the BPXBATCH JCL in your PROCLIB:

184 e-business Application Solutions on OS/390 Using Java Vol. I

 //JGCICS PROC

 //CICS EXEC PGM=BPXBATCH,

// PARM='SH /u/java/JGate/bin/mvs/JGate -noinput

 // -trace'

 //STDOUT DD PATH='/tmp/jgcicsstdout',

 // PATHOPTS=(OWRONLY,OCREAT),

 // PATHMODE=SIRWXU

 //STDERR DD PATH='/tmp/jgcicsstderr',

 // PATHOPTS=(OWRONLY,OCREAT),

 // PATHMODE=SIRWXU

 //

2. Associate the JGCICS procedure with RACF.

The JGCICS procedure must be associated with a RACF user ID that also has
a valid OMVS segment. The following command can be used to associate the
JGCICS procedure with a RACF user ID called CICSGAT.

RDEFINE STARTED JGCICS.\ STDATA(USER(CICSGAT) GROUP(CICS)

PRIVILEGED(NO) TRUSTED(NO) TRACE(NO)

3. Define PATH, JAVA_HOME and CLASSPATH environment variables.

It is important that the RACF user ID associated with the JGCICS procedure
has a valid $HOME/.profile that exports the following environment variables:

 export PATH=/usr/lpp/java14/J1.1/bin

 export JAVA_HOME=/usr/lpp/java14/J1.1

 export CLASSPATH=/usr/lpp/java14/J1.1/lib/classes.zip

 export _BPX_SHAREAS=YES (optional)

 export _BPX_SPAWN_SCRIPT=YES (optional)

Note: These values assume a certain root directory for the JDK. In your case,
you should use the directory where you actually installed the JDK.

4. Customize the /usr/lpp/jgCICS/JGate/bin/mvs/JGate shell script and
eventually place it in the desired directory.

10.6.3.2 Use the Local Gateway Function
You can use the Java classes that comprise the CICS Gateway for Java (MVS) in
your own Java applications. The local gateway function allows your MVS Java
application to access CICS without the need to explicitly run the CICS Gateway for
Java, because the Java program has direct access to the CICS TS server. The
programming interface used by Java applications is the same as the applet
interface. When used in this manner, the gateway TCP/IP address is local. The
CJGW also provides the “auto” option whereby the CJGW can decide whether it is
local or remote. This is the mode we will use in our program.

Before your application can run, you must set up the environment variables in
JGate script. The variables are:

CLASSPATH This contains the Java classes that are packaged with the
CICS Gateway for Java.

LIBPATH This contains the executables (DLLs).

LD_LIBRARY_PATH This contains the executables (DLLs).

STEPLIB This contains the CICS load datasets.

 Chapter 10. Develop Java Solutions for CICS on OS/390 185

Assuming that you have installed the CICS Gateway for Java (MVS) in the
/u/java/JGate directory, and that you are using CICS Transaction Server Version
1.3, use the following commands to set the variables before running your Java
application:

 export CLASSPATH=$CLASSPATH:/u/java/JGate/classes

 export LIBPATH=$LIBPATH:/u/java/JGate/bin/mvs

 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/u/java/JGate/bin/mvs

 export STEPLIB=$STEPLIB:CICSTS13.CICS.SDFHEXCI:CICSTS13.CICS.SDFHLOAD

Note: Again, we assume in the example that the gateway is installed in
/u/java/JGate. In your case, you should use the directory where you
actually installed your gateway.

 10.6.3.3 Using trace
The CICS Gateway for Java trace option can record information related to the
information passing between the browser and the Gateway.

To route messages and trace information to a file, specify “2> trc001” when starting
the Gateway (where trc001 is the name of your output file).

The CICS for Java Gateway messages have a CCL prefix. This is the same prefix
as that used by CICS Clients.

10.6.3.4 Manufacturer Table Setup
The table and index definition is supplied on the disk that accompanies this
redbook. Some sample data is included. You may use SPUFI to create the table
and index.

10.6.4 Prepare the CICS COBOL Programs
The supplied sample program is called MANUFACT. The program needs to be
precompiled, compiled, link-edited and binded in the normal way. The following is
a listing of the JCL we used:

//CHORHOCB JOB (999,POK),'MANUFACT',CLASS=A,MSGCLASS=T,NOTIFY=&SYSUID

//\\

//\ NAME = PRECOMP \

//\ \

//\ \

//\ DB2 PRECOMPILE THE COBOL PROGRAM \

//\ \

//\\

//\

//\

//PC EXEC PGM=DSNHPC,

// PARM='HOST(IBMCOB),XREF,SOURCE,FLAG(I),APOST'

//STEPLIB DD DSN=DB2V51ð.SDSNEXIT,DISP=SHR

// DD DSN=DB2V51ð.SDSNLOAD,DISP=SHR

//DBRMLIB DD DSN=DB2V51ðU.DBRMLIB.DATA(MANUFACT),DISP=SHR

//SYSCIN DD DSN=&&DSNHOUT,DISP=(MOD,PASS),UNIT=SYSDA,

// SPACE=(8ðð,(5ðð,5ðð))

//SYSLIB DD DSN=CHORHOC.CICS.COBOL,DISP=SHR

//SYSPRINT DD SYSOUT=\

//SYSTERM DD SYSOUT=\

//SYSUDUMP DD SYSOUT=\

//SYSUT1 DD SPACE=(8ðð,(5ðð,5ðð),,,ROUND),UNIT=SYSDA

//SYSUT2 DD SPACE=(8ðð,(5ðð,5ðð),,,ROUND),UNIT=SYSDA

186 e-business Application Solutions on OS/390 Using Java Vol. I

//SYSIN DD DSN=CHORHOC.CICS.COBOL(MANUFACT),DISP=SHR

//\

//TRN EXEC PGM=DFHECP1$,

// REGION=ðK

//STEPLIB DD DSN=CICSTS12.CICS.SDFHLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=\

//SYSPUNCH DD DSN=&&SYSCIN,

// DISP=(,PASS),UNIT=SYSALLDA,

// DCB=BLKSIZE=4ðð,

// SPACE=(4ðð,(4ðð,1ðð))

//SYSIN DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)

//\

//\\\

//\ COMPILE AND LINK THE COBOL PROGRAM

//\\\

//COBOL EXEC PGM=IGYCRCTL,REGION=2ð48K,

// PARM=(MAP,OBJ,RENT,NODYNAM,OPT,

// LIB,'DATA(31)',LIST,APOST)

//STEPLIB DD DSNAME=IGY.V2R1Mð.SIGYCOMP,DISP=SHR

//SYSPRINT DD SYSOUT=\

//SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,

// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),

// DCB=(BLKSIZE=32ðð)

//SYSLIB DD DSN=CHORHOC.CICS.COPYBOOK,DISP=SHR

// DD DSN=CICSTS12.CICS.SDFHCOB,DISP=SHR

//\ DD DSN=CICSTS12.CICS.SDFHSAMP,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSIN DD DSN=&&SYSCIN,

// DISP=(OLD,PASS)

//\

//\KED EXEC PGM=HEWL,COND=(8,LT,COBOL),REGION=4ð24K

//LKED EXEC PGM=IEWL,COND=(8,LT,COBOL),

// PARM='LIST,XREF,RENT,AMODE=31,RMODE=ANY'

//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR

// DD DSN=DB2V51ð.SDSNLOAD,DISP=SHR

// DD DSN=CICSTS12.CICS.SDFHLOAD,DISP=SHR

// DD DSN=CICSTS12.CICS.SDFHEXCI,DISP=SHR

//SYSPRINT DD SYSOUT=\

//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)

// DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=ITSO.CICS.LOAD,

// DISP=SHR

//LIB DD DSN=CICSTS12.CICS.SDFHLOAD,DISP=SHR

// DD DSN=DB2V51ð.SDSNLOAD,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(1ð,1ð))

//SYSIN DD \

 INCLUDE LIB(DFHECI)

 INCLUDE LIB(DSNCLI)

 NAME MANUFACT(R)

//\

//\

//\\\

 Chapter 10. Develop Java Solutions for CICS on OS/390 187

//\ BIND THE PROGRAM

//\\\

//BIND EXEC PGM=IKJEFTð1,COND=((4,LT,PC))

//STEPLIB DD DSN=DB2V51ð.SDSNEXIT,DISP=SHR

// DD DSN=DB2V51ð.SDSNLOAD,DISP=SHR

//DBRMLIB DD DSN=DB2V51ðU.DBRMLIB.DATA(MANUFACT),DISP=SHR

//SYSPRINT DD SYSOUT=\

//SYSTSPRT DD SYSOUT=\

//SYSUDUMP DD SYSOUT=\

//SYSIN DD \

GRANT BIND, EXECUTE ON PLAN PLNMANU TO PUBLIC;

//SYSTSIN DD \

DSN SYSTEM(DB2H)

BIND PACKAGE (MANUCOLL) MEMBER(MANUFACT) ACT(REP) ISO(CS)

BIND PLAN(PLNMANU) PKLIST(MANUCOLL.\) ACT(REP) ISO(CS)

END

/\

//\

We used a collection called MANUCOLL and a plan called PLNMANU. If you do
not have the appropriate authority, you may need to see your DBA to create it for
you. Note that the plan only needs to be created once.

10.6.5 CICS Definitions for Our Samples
CICS definitions needed to be set up for the following:

 � MANUFACT program

� DB2CONN definition for CICS to talk to DB2

� DB2Entry for the PLNMANU plan

� DB2Tran for the CSMI mirror transaction

We defined our entries in the ITSO group, which consists of:

 EX GR(ITSO)

 ENTER COMMANDS

 NAME TYPE GROUP DATE TIME

 MANUFACL PROGRAM ITSO 98.3ð7 1ð.43.31

 MANUFACT PROGRAM ITSO 98.3ð9 1ð.35.51

 MANUMAIN PROGRAM ITSO 98.3ð8 11.17.58

 TIMEZONE PROGRAM ITSO 98.294 11.19.35

 MANU TRANSACTION ITSO 98.3ð8 1ð.51.31

 DB2H DB2CONN ITSO 98.3ð8 ð9.33.23

 LS36ð4 DB2ENTRY ITSO 98.3ð8 1ð.27.33

 CECI DB2TRAN ITSO 98.3ð9 11.ðð.25

 CSMI DB2TRAN ITSO 98.3ð9 11.ðð.ð7

Note that in this list, the MANU transaction which points to MANUMAIN is used to
drive MANUFACT and may be ignored. We used it as part of our debugging only.

TIMEZONE is a simple CICS program that returns the date and time. It may be
used to test that your environment is working.

DB2H is our DB2CONN entry that sets up the interface from CICS to DB2. It looks
like the following:

188 e-business Application Solutions on OS/390 Using Java Vol. I

OBJECT CHARACTERISTICS CICS RELEASE = ð53ð

CEDA View DB2Conn(DB2H)

 DB2Conn : DB2H

 Group : ITSO

 DEscription :

 CONNECTION ATTRIBUTES

CONnecterror : Sqlcode Sqlcode ¦ Abend

 DB2id : DB2H

 MSGQUEUE1 : CDB2

 MSGQUEUE2 :

 MSGQUEUE3 :

Nontermrel : Yes Yes ¦ No

PUrgecycle : ðð , 3ð ð-59

 SIgnid : STC

STANdbymode : Reconnect Reconnect ¦ Connect ¦ Noconnect

 STATsqueue : CDB2

 TCblimit : ðð12 4-2ððð

THREADError : N9ð6D N9ð6D ¦ N9ð6 ¦ Abend

POOL THREAD ATTRIBUTES

DB2id must point to your DB2 subsystem, which in our case is DB2H. To verify
that your CICS/DB2 interface is working, you could issue the following command:

dsnc -dis thread(\)

The output would be as follows:

DSNV4ð1I =DB2H DISPLAY THREAD REPORT FOLLOWS -

DSNV4ð2I =DB2H ACTIVE THREADS -

 NAME ST A REQ ID AUTHID PLAN ASID TOKEN

 SCSCPAA9 N 3 STC ðð9A ð

SCSCPAA9 N 257 ENTRMANUððð1 CICSUSER ðð9A ð

SCSCPAA9 T \ 21 COMDDSNCððð2 CICSUSER ðð9A 195

SCSCPAA9 N 1ð POOLCSMIððð3 CICSUSER ðð9A ð

SCSCPAA9 N 13 ENTRMANUððð4 CICSUSER ðð9A ð

DISPLAY ACTIVE REPORT COMPLETE

DSN9ð22I =DB2H DSNVDT '-DIS THREAD' NORMAL COMPLETION

DFHDB23ð1 11/ð6/98 14:25:ð4 SCSCPAA9 DSNC DB2 command complete.

The DB2Entry associates the transaction ID with the plan:

OBJECT CHARACTERISTICS CICS RELEASE = ð53ð

CEDA View DB2Entry(LS36ð4)

 DB2Entry : LS36ð4

 Group : ITSO

 DEscription :

THREAD SELECTION ATTRIBUTES

 TRansid : MANU

THREAD OPERATION ATTRIBUTES

ACcountrec : None None ¦ TXid ¦ TAsk ¦ Uow

 AUTHId :

AUTHType : Userid Userid ¦ Opid ¦ Group ¦ Sign ¦ TErm

 ¦ TX

 DRollback : Yes Yes ¦ No

 PLAN : PLNMANU

 PLANExitname :

PRIority : High High ¦ Equal ¦ Low

 PROtectnum : ððð2 ð-2ððð

 THREADLimit : ðð1ð ð-2ððð

THREADWait : Pool Pool ¦ Yes ¦ No

 Chapter 10. Develop Java Solutions for CICS on OS/390 189

Note that MANU was our driver transaction which was used for testing. It may be
ignored.

All calls that come through EXCI execute under the mirror transaction called CSMI.
Therefore, this mirror transaction CSMI also needs to be associated with the DB2
plan, which in our case is PLNMANU. This used to be the Resource Control Table
(or RCT) and is a mandatory requirement for all DB2 programs.

OBJECT CHARACTERISTICS CICS RELEASE = ð53ð

CEDA View DB2Tran(CSMI)

 DB2Tran : CSMI

 Group : ITSO

Description : FOR CICS MIRROR TX

 Entry : LS36ð4

 Transid : CSMI

You may wish to auto install the ITSO group. In our case, we have added ITSO to
the list DB2STUFF. DB2STUFF is specified in the CICS SIT file as:

 GRPLIST=(DFHLIST,PAALIST,TEMPLIST,DB2STUFF),

In CICS, the DB2STUFF list contains:

 EX LIST(DB2\)

 ENTER COMMANDS

 NAME TYPE LIST DATE TIME

 ITSO GROUP DB2STUFF 98.3ð8 ð9.29.ð7

10.6.6 Set Up the Conversion Table DFHCNV
Conversion needs to be done between ASCII and EBCIDIC even though we are
running an OS/390 Webserver in the OS/390 UNIX System Services on the same
machine. This conversion is done by specifying the conversion requirements in the
CICS DFHCNV program. In Figure 98 on page 191, there are two entries, one for
the TIMEZONE sample program, and the other for the MANUFACT sample
program. In those two samples, only characters are used.

The entries for MANUFACT and TIMEZONE programs that we used are
highlighted.

190 e-business Application Solutions on OS/390 Using Java Vol. I

//DFHCNV1 JOB (999,POK),NOTIFY=&SYSUID,

// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),TIME=144ð

// EXEC DFHAUPLE,LNKED=IEWL,ASMBLR=ASMA9ð

//ASSEM.SYSUT1 DD \

 DFHCNV TYPE=INITIAL

 DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=DFHWBHH,USREXIT=NO, X

 SRVERCP=ð37,CLINTCP=437

 DFHCNV TYPE=SELECT,OPTION=DEFAULT

 DFHCNV TYPE=FIELD,OFFSET=ð,DATATYP=CHARACTER,DATALEN=32767, X

 LAST=YES

 DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=DFHWBUD,USREXIT=NO, X

 SRVERCP=ð37,CLINTCP=437

 DFHCNV TYPE=SELECT,OPTION=DEFAULT

 DFHCNV TYPE=FIELD,OFFSET=ð,DATATYP=CHARACTER,DATALEN=32767, X

 LAST=YES

 DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=AIRLIST,USREXIT=NO, X

 SRVERCP=ð37,CLINTCP=437

 DFHCNV TYPE=SELECT,OPTION=DEFAULT

 DFHCNV TYPE=FIELD,OFFSET=ð,DATATYP=BINARY,DATALEN=4

 DFHCNV TYPE=FIELD,OFFSET=4,DATATYP=CHARACTER,DATALEN=861, X

 LAST=YES

 DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=TIMEZONE,USREXIT=NO, X
 SRVERCP=ð37,CLINTCP=437
 DFHCNV TYPE=SELECT,OPTION=DEFAULT
 DFHCNV TYPE=FIELD,OFFSET=ð,DATATYP=CHARACTER,DATALEN=16, X
 LAST=YES
 DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=MANUFACT,USREXIT=NO, X
 SRVERCP=ð37,CLINTCP=437
 DFHCNV TYPE=SELECT,OPTION=DEFAULT
 DFHCNV TYPE=FIELD,OFFSET=ð,DATATYP=CHARACTER,DATALEN=271, X
 LAST=YES
 DFHCNV TYPE=FINAL

 END

/\

//LNKEDT.SYSLMOD DD DSN=ITSO.CICS.LOAD,DISP=SHR

Figure 98. Example of DFHCNV

The resulting module must be placed in a load module that is pointed to by the
DFHRPL DD card in your CICS started task job.

10.6.7 Deploy HTML and JavaServer Pages
You need to put your HTML, JSP and GIF files in a directory that is accessible as
defined by your Webserver. For example, in our case, we put it in /u/chorhoc, and
we have an entry in our httpd.conf file that looks like:

 Pass /\ /u/chorhoc/\

In our case, to test an HTML page, we would type in:

 http://wtsc61oe/manufact.html

 Chapter 10. Develop Java Solutions for CICS on OS/390 191

 10.6.8 Deploy Servlets
The servlets need to be put in the default servlet directory of the Webserver to be
used. Different Webservers may have different conventions for placing servlets.
Refer to 4.2.2, “WebAS Properties Files” on page 38 for details about specifying
your default servlet directories. In our case the default servlet directory is:

 /usr/lpp/ServletExpress/servlets

In the case of a package, the servlet may reside in a subdirectory of the default
servlets directory. For example, if you have a servlet class in a package called
itsorb.MfServletMain, then the class MfServletMain should be in the directory
/usr/lpp/ServletExpress/servlets/itsorb. Alternatively, if it is packaged in a zip
file called itsorb.zip, then itsorb.zip should be in the
/usr/lpp/ServletExpress/servlets directory.

On OS/390, verify that your Webserver is correctly set up to support servlets by
testing the SnoopServlet. The SnoopServlet can be activated by typing the
following in your browser: http://yourwebservertcpip/servlet/SnoopServlet:

The output must look as follows:

 Requested URL:

 http://wtsc61oe/servlet/SnoopServlet

 Request information:

Request method: GET

Request URI: /servlet/SnoopServlet

Request protocol: HTTP/1.1

Servlet path: /servlet/SnoopServlet

Path info: <none>

Path translated: <none>

Query string: <none>

Content length: <none>

Content type: <none>

Server name: wtsc61oe

Server port: 8ð

Remote user: <none>

Remote address: 9.12.14.71

Remote host: 9.12.14.71

Authorization scheme: <none>

 Request headers:

 Connection: Keep-Alive

User-Agent: Mozilla/4.ð7 ⅛en‘ (WinNT; I)

 Host: wtsc61oe

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, \/\

 Accept-Encoding: gzip

 Accept-Language: en

 Accept-Charset: iso-8859-1,\,utf-8

 10.6.9 Deploy Beans
The directory containing beans should be in your CLASSPATH variable. In our
case, we put it in the same directory as the servlets and point the CLASSPATH to
it. Packages must be a subdirectory of any of the paths pointed to by the
CLASSPATH environment variable.

To verify your CLASSPATH, issue:

192 e-business Application Solutions on OS/390 Using Java Vol. I

 echo $CLASSPATH

To modify your CLASSPATH, use the EXPORT command:

 EXPORT CLASSPATH=/usr/lpp/ServletExpress/servlets/itsorb.zip:${CLASSPATH}

This EXPORT command will pre-append the /usr/lpp/ServletExpress/servlets/itsorb.zip
file to the current CLASSPATH.

10.6.10 Run the Internet MANUFACTURER Application
First, update the gateway settings to reflect your environment. Figure 99 shows an
extract from the manufact.jsp file. Edit the highlighted lines to reflect your
environment before running it.

<% // retrieve the manufacturer variable from the previous form

String manuName = request.getParameter("manuName");

// set the manufacturer's name for retrieval by the CICS program

 mfBean.setManufactName(manuName);

// call the CICS program which will populate the attributes of mfBean

// but first set up your Gateway properties

itsorb.JGateSettings jg = new itsorb.JGateSettings();

 jg.setCicsProgram("MANUFACT");
 jg.setCicsServer("SCSCPAA9");
 jg.setCicsTranid("MANU");
 jg.setCicsJGate("auto://wtsc58oe.ITSO.IBM.COM");
 jg.setCicsUserid("CICSUSER");

 jg.setCommareaLength(271);

 mfBean.callCICS(jg);

 %>

Figure 99. Extract from manufact.jsp

Run the application by pointing the browser to the location of your HTML page.
Your output should look like the output shown in Figure 100 on page 194.

 Chapter 10. Develop Java Solutions for CICS on OS/390 193

Figure 100. Manufacturer Application Screen

Typing in a manufacturer that exists, such as “Logic,” will give you a result screen
as shown in Figure 101.

Figure 101. Manufacturer Application Result Screen

If you do not have a DB2 environment set up, you could try using CICS Gateway
for Java with TIMEZONE sample.

194 e-business Application Solutions on OS/390 Using Java Vol. I

10.6.11 Running the Internet TIMEZONE Application
First, update the gateway settings to reflect your environment. Figure 102 shows
an extract from the timezone.jsp file. Edit the highlighted lines to reflect your
environment before running it.

<% // retrieve the fullname variable from the previous form

String fullName = request.getParameter("fullName");

// call the CICS program which will return the Time and Date

// but first set up your Gateway properties

itsorb.JGateSettings jg = new itsorb.JGateSettings();

 jg.setCicsProgram("TIMEZONE");

 jg.setCicsServer("SCSCPAA9");
 jg.setCicsTranid("MANU");
 jg.setCicsJGate("auto://wtsc58oe.ITSO.IBM.COM");
 jg.setCicsUserid("CICSUSER");
 jg.setCommareaLength(16);

 timeZoneBean.callCICS(jg);

 %>

Figure 102. Extract from timezone.jsp

Run the application by pointing the browser to the location of your HTML page.

 Attention

This sample application is provided to show the code and definitions required to
Web-enable your CICS applications using CJGW. They have not been written
to take care of exception situations, security concerns or to show good coding
practices. They are not production-ready.

 10.6.12 Problem Resolution
If you run into problems in running the provided sample, you could try running the
Manufacturer application as a CICS transaction initially.

10.6.12.1 Testing Your CICS Setup
On your CICS terminal, turn CEDF on, clear the screen and type in MANU. You
should be able to ascertain whether the SQL statement successfully retrieved the
IBM record. The MANUFACT program will by default attempt to retrieve the IBM
record. Note that the MANUMAIN program has no screens. Its only purpose in life
is to drive the MANUFACT program.

If successful, this validates your CICS and DB2 setup.

10.6.12.2 Testing Your Java to CICS/DB2 Setup
The next step is to test the Java program with CICS/DB2 via local access to CICS
Gateway for Java As it is local, the CICS Gateway for Java daemon or started task
does not have to be up. The MANUFACT program may also be run as a Java
application. It will optionally take one parameter, which will be the manufacturer's
name. Otherwise, it defaults to “IBM.”

 Chapter 10. Develop Java Solutions for CICS on OS/390 195

Before you test, make sure your CLASSPATH and your STEPLIB environment
variables are correctly set. In our case, our CLASSPATH is:

CHORHOC @ SC61:/u/chorhoc>echo $CLASSPATH

 /usr/lpp/ServletExpress/servlets:/usr/lpp/jgCICS/JGate/classes:/usr/lpp/java16/

 J1.1/lib/classes.zip:/usr/lpp/internet/server_root/cgi-bin/icsclass.zip:/usr/lpp

 /db2/db251ð/classes/db2jdbcclasses.zip:/usr/lpp/cicsts/cicsts13/classes/dfjcics.

 jar:.:

Our MANUFACT class sits in the itsorb subdirectory of
/usr/lpp/ServletExpress/servlets

If your CLASSPATH is not correct, you will get a class not found error.

Our STEPLIB is:

à ð
CHORHOC @ SC61:/u/chorhoc>echo $STEPLIB

CICSTS13.CICS.SDFHEXCI:CICSTS13.CICS.SDFHLOAD

CHORHOC @ SC61:/u/chorhoc>

á ñ

If your STEPLIB is not set up correctly, you will get a -806 (module not found)
error.

If you run the MANUFACT program successfully, you should get the following
output:

à ð

CHORHOC @ SC61:/u/chorhoc>java itsorb.CicsManufact LOGIC

Successfully created JavaGateway Object

After flow Commarea : ðLOGIC RECORD FOUND LOGIC

ð2 LOGIC RD STUTTGART BWðððð2

STEINKE BORIS ðð2ðð2ððð2ðððððð2

BMSTEINKE@DE.IBM.COM

Return code : ð

Abend code : null

The commarea contains: ðLOGIC RECORD FOUND LOGIC

ð2 LOGIC RD STUTTGART BWðððð2 STEI

NKE BORIS ðð2ðð2ððð2ðððððð2 BMST

EINKE@DE.IBM.COM

CHORHOC @ SC61:/u/chorhoc>

á ñ

10.6.12.3 Testing Your Webserver
Initially, you may want to verify that your Webserver is configured properly by using
the supplied snoop servlet i.e. http:/<your_hostname>/servlet/snoop. snoop is a
sample servlet that comes with Websphere Application Server.

 10.6.12.4 Common Errors
Following is a description of some of the errors that we encountered, and ways to
get around these. Note that, by the time you read this book, some of these “error
conditions” may not exist anymore.

196 e-business Application Solutions on OS/390 Using Java Vol. I

RACF Access: The most common error that we made was giving insufficient
RACF access to files and directories. On our system, files that are transferred via
ftp to OS/390, by default, have no access to the public (that is, access via the
Web). The following error was encountered:

à ð
IMWð254E

Error 4ð3

Can't browse selected file.

Lotus Domino Go Webserver - North American Edition for OS/39ð V5RðMð

á ñ

You will also be able to see the MVS system log for the RACF rejections.

The directory must also be authorized for reading. Check it with the ls -al

command. Otherwise, you will end up with the following error:
5ðð Internal Server Error

The servlet named invoker at the requested URL

reported this exception itsorb.MfServletMain: Cannot load .1/
local code itsorb.MfServletMain.. Please report this to the .1/
administrator of the web server.

com.sun.server.http.InvokerException: itsorb.MfServletMain: Cannot load .1/
local code itsorb.MfServletMain. at

com.sun.server.http.InvokerServlet.service(Compiled Code) at .1/
javax.servlet.http.HttpServlet.service(Compiled Code) at

com.sun.server.ServletState.callService(Compiled Code) at

com.sun.server.ServletManager.callServletService(Compiled Code) at

com.sun.server.ProcessingState.invokeTargetServlet(Compiled Code) at

com.sun.server.http.HttpProcessingState.execute(Compiled Code) at

com.sun.server.http.stages.Runner.process(Compiled Code) at

com.sun.server.ProcessingSupport.process(Compiled Code) at .1/
com.sun.server.Service.process(Compiled Code) at

com.ibm.ServletExpress.service.SELauncher.processMultiThreaded(Compiled Code) at

com.ibm.ServletExpress.service.SEServlet.service(Compiled Code) at

com.ibm.ServletExpress.ServletSystemImp.invoke(Compiled Code) at

 com.ibm.ServletExpress.ServletSystem.icsInvoke(Compiled Code)

Notes:

.1/These lines have been split for printing purposes; however, in the real
output you would see these lines on one single line.

Case Sensitivity: This cannot be overemphasized. OS/390 UNIX System
Services is case-sensitive and many problems occur from getting the case wrong.

Miscellaneous Errors: We find that changing a JSP that has been loaded (that
is, compiled) can cause the following error. In our case, this required the
Webserver to be recycled.
5ðð Internal Server Error

The servlet named pageCompile at the requested URL

reported this exception java.lang.NullPointerException. .1/
Please report this to the administrator of the web server.

java.lang.NullPointerException at pagecompile._manufact_xjsp.service(Compiled Code) at

javax.servlet.http.HttpServlet.service(Compiled Code) at

com.sun.server.http.pagecompile.PageCompileServlet.doService(Compiled Code) at

com.sun.server.http.pagecompile.PageCompileServlet.doGet(Compiled Code) at

javax.servlet.http.HttpServlet.service(Compiled Code) at .1/
 javax.servlet.http.HttpServlet.service(Compiled Code)

at com.sun.server.ServletState.callService(Compiled Code) at

com.sun.server.ServletManager.callServletService(Compiled Code) at

com.sun.server.ProcessingState.invokeTargetServlet(Compiled Code) at

com.sun.server.http.HttpProcessingState.execute(Compiled Code) at

com.sun.server.http.stages.Runner.process(Compiled Code) at

com.sun.server.ProcessingSupport.process(Compiled Code) at .1/
 com.sun.server.Service.process(Compiled Code)

at com.ibm.ServletExpress.service.SELauncher.processMultiThreaded(Compiled Code) at

com.ibm.ServletExpress.service.SEServlet.service(Compiled Code) at

com.ibm.ServletExpress.ServletSystemImp.invoke(Compiled Code) at

 com.ibm.ServletExpress.ServletSystem.icsInvoke(Compiled Code)

 Chapter 10. Develop Java Solutions for CICS on OS/390 197

Notes:

.1/These lines have been split for printing purposes; however, in the real
output you would see these lines on one single line.

10.7 A Closer Look at our Sample CICS Application
We will begin by taking a high-level view of the flow within the CJGW.

 Attention

In the following sections we refer to various pieces of code. You can find the
code on the CD shipped with this book. Refer to Appendix A, “CD-ROM” on
page 299 for details.

10.7.1 Overview of the CICS Gateway for Java Flow
At the simplest level, the flow of program control needed to write a simple CICS
Gateway for Java client program is as follows:

1. The Java program creates and opens an instance of an
ibm.cics.jgate.client.JavaGateway object. The default JavaGateway
constructor creates a blank JavaGateway object. You must then set the correct
properties in this object using the relevant set methods. The JavaGateway is
then opened by calling the open method. The resultant JavaGateway is open
and connected to the requested CICS Gateway for Java.

2. The Java program creates an instance of one of the Gateway request classes
containing the request that it wishes to make:

� An ibm.cics.jgate.client.ECIRequest is created for an ECI request.

� An ibm.cics.jgate.client.EPIRequest is created for an EPI request.

� An ibm.cics.jgate.client.CicsCpRequest is created for querying the
codepage of the CICS Client it is connected through.

3. The Java program then flows the request to the CICS Gateway for Java using
the flow method of the JavaGateway object.

4. The Java program checks the return code of the flow operation to see whether
the request was successful.

5. The Java program then closes the JavaGateway object.

Next, we will look at the scenario where we use a HTML (mfhtml) to drive a servlet
(MfServletHtml), which calls a bean (Manufact) that interacts with the CICS
Gateway for Java classes to call the MANUFACT CICS/COBOL/DB2 program.

198 e-business Application Solutions on OS/390 Using Java Vol. I

Browser Servlet

Built and tested
in VA Java

HTTP

HTML

EXCI

CICS TS 1.3
(MANUFACT
PROGRAM)

C
IC

S
 JA

V
A

 G
A

T
E

W
A

Y
DB2

1

5

32

6

7 4

Bean

Figure 103. Overview of CICS/DB2 Program Access Via a Servlet

Referring to Figure 103, the steps involved are:

1. The browser/universal client sends an HTTP request to the Webserver.

The Webserver recognizes the /servlet/ string in the URL of the “Action”
request and calls the servlet.

If this is the first time that the servlet is requested, the Webserver will need to
load the servlet and call its init() method. Once the servlet is loaded and
compiled, it will remain after the first call, ready to service subsequent
invocations. This is why servlets are more efficient than CGI calls, because the
thread for the servlet is retained.

2. The servlet's service() method is invoked.

The service() method pulls information from the Web page via the request
object.

3. The service method instantiates the bean (Manufact) and sets its attributes
with the data from the form. It then passes control to the bean.

4. The bean sets the parameters and instantiates the JavaGateway object, and
similarly, does so for the ECIRequest object.

5. The ECIRequest object is set to MANUFACT as one of its parameters and calls
the MANUFACT program via the EXCI interface. Note that it comes in through
the CSMI mirror transaction.

6. The MANUFACT CICS program accesses the DB2 MANUFACT table via
normal static SQL calls.

7. The data, when returned to the MANUFACT bean, has been translated to
ASCII via an entry in the DFHCNV table.

8. With the values of the table results in the returned COMMAREA, the bean sets
the attributes of the bean (itself).

9. The servlet checks the return code, and builds the appropriate HTML response
stream. This reply is returned by the Webserver to the browser/universal client.

 Chapter 10. Develop Java Solutions for CICS on OS/390 199

10.7.2 Looking at the Code for the Create Row Operation
We start by looking at the mfhtml file, which presents a form for users to input the
data, as shown in Figure 104.

Figure 104. Entering Data Via an HTML Form

An extract of the HTML is shown in Figure 105 on page 201.

200 e-business Application Solutions on OS/390 Using Java Vol. I

<FORM NAME="MfForm" ACTION="/servlet/itsorb.MfServletHtml" METHOD="get">
Manufacturer Name : <INPUT TYPE="text" SIZE=3ð NAME="mfName">

Manufacturer Address : <INPUT TYPE="text" SIZE=3ð NAME="mfAddress">

Manufacturer City : <INPUT TYPE="text" SIZE=3ð NAME="mfCity">

Manufacturer State : <INPUT TYPE="text" SIZE=2 NAME="mfState">

Manufacturer Zip : <INPUT TYPE="text" SIZE=5 NAME="mfZip">

Contact Last Name : <INPUT TYPE="text" SIZE=3ð NAME="mfLname">

Contact First Name : <INPUT TYPE="text" SIZE=3ð NAME="mfFname">

Phone Account : <INPUT TYPE="text" SIZE=3 NAME="mfPhoneAc">

Phone Ext : <INPUT TYPE="text" SIZE=3 NAME="mfPhoneEx">

Phone Number : <INPUT TYPE="text" SIZE=4 NAME="mfPhoneNr">

Contact Ext : <INPUT TYPE="text" SIZE=1ð NAME="mfConExt">

Contact Email : <INPUT TYPE="text" SIZE=5ð NAME="mfConEmail">

<INPUT TYPE="submit" NAME="mfButton" VALUE="Submit">

Figure 105. An Extract of the HTML for Data Entry of Manufacturer Details

The “Action” of the form will fire off the servlet: In the highlighted line in
Figure 105, when the HTTP request reaches the Webserver, it will know that this is
meant for a servlet called “MfServletHtml” sitting in package itsorb. The
Webserver calls the MfServletHtml servlet and passes the data entered in the
fields. Those fields are identified by the NAME= parameter.

In Figure 106 on page 202 we show the source of the MfServletHtml servlet.

 Chapter 10. Develop Java Solutions for CICS on OS/390 201

public void service(HttpServletRequest req, HttpServletResponse res) throws IOException {

ServletOutputStream out = res.getOutputStream();

 try {

Manufact aMan = new Manufact();

String mfName = req.getParameter("mfName"); .1/
if (mfName != null && mfName.length() != ð) {

res.setContentType("text/html"); //Required for HTTP

 retrieveFields(req, aMan); .2/
//calls the Manufact program via the callCICS method

 aMan.callCICS(); .3/
//write the html output stream

out.println("<h1>Add operation Results</h1>

"); .4/
if (aMan.getReturnCode().equals("ð")) {

out.println("<h2> Insert successful for Manufacturer : " + mfName + "</h2>
");

} else {

out.println("<h2> Insert failed : RC = " + aMan.getReturnCode() + "</h2>");

out.println("<h2> SqlCode is : RC = " + aMan.getSqlCode() + "</h2>");

out.println("<h2> Message : " + aMan.getMessage() + "</h2>");

 }

 out.println("

");

 out.println("<H2>Thank you</H2>");

 out.close();

} else {

res.setContentType("text/html"); //Required for HTTP

out.println("<h2> Error : Manufacturer name cannot be blank </h2>");

 out.println("

");

 out.println("<H2>Thank you</H2>");

 out.close();

 }

} catch (Exception e) {

System.out.println("An error occurred : " + e);

 }

}

Figure 106. Code for the Service Method of MfServletHtml

Notes:

Whenever the MfServletHtml servlet is invoked, the service() method is
called (except for the first time, when the init() method is called first).
Looking at Figure 106, the steps involved are:

.1/Check that the manufacturer's name exists as supplied via the form.

.2/If it does, then get the data from the HTML form and set the attributes of
the Manufacturer object, which was instantiated earlier.

.3/Call the JavaGateWay classes to add the data to the Manufacturer table.
The Manufacturer object has a method called callCICS which acts as the
interface to the CICSConnect class. It is the CICSConnect class which does
the direct interface to the JavaGateWay classes.

.4/Based on the return code, build the appropriate datastream in the
response object.

The java code for the CICS samples consists of the classes:

 � Manufact

 � CICSConnect

202 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 107. The Manufact Class

Figure 107 shows the Manufact Class. Each of the attributes of this class has
getter and setter methods. The service() method of the MfServletHtml class
would use the setter methods to set the attributes.

Once the attributes are set (in the code shown, the Manufacturer name is set), the
call to CICS can be made via a call to callCICS() .

Notice that Manufact class has a main() method. However, this class does not
require a main method. It is there to allow testing it as an application outside of the
Webserver. It could be run by typing:

 java itsorb.Manufact

 Chapter 10. Develop Java Solutions for CICS on OS/390 203

Figure 108. Extract of the buildCommarea Method

In Figure 108, the code extract shows how the COMMAREA is built. In part 1,
each of the fields of the COMMAREA is replaced by an empty string, if it is null.
Then, each of the field is padded to its full length.

Note: This would not be an efficient approach for long variable length fields.

In part 2, the fields are concatenated together, thus completing the build of the
COMMAREA. With the build complete, the next step is to call the CICSConnect
class.

Figure 109. The CICSConnect Class

204 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 109 shows the CICSConnect class. The class has default values set when
instantiated. However, since each of this attributes have getters and setters, they
can be reset dynamically if required. The attribute JGateName is set to
“auto://<your_hostname>.” This allows the gateway to access the CICS Gateway
for Java classes either locally or remotely. In our case, it will always be local, since
we are using servlets running on the same machine.

This class has two main methods which are the connectToGateway() and the
executeProgram() methods. The rest are getters and setters for the attributes.

We have designed the MANUFACT program as a bean to make it reusable
between the different approaches, such as JSPs, servlets and applets. Let us start
by looking at the JSP solution.

Browser
JSP
File

Built and tested
in VA Java

HTTP

HTML

EXCI

CICS TS 1.3
(MANUFACT
PROGRAM)

C
IC

S
 JA

V
A

 G
A

T
E

W
A

Y

DB2

1

5

32

6

7 4

Bean

Figure 110. Overview of CICS/DB2 Program Access Via a JSP

Referring to Figure 110, the steps involved are:

1. The browser/universal client sends an HTTP request to the Webserver. The
Webserver recognizes the .jsp extension in the “Action” request and loads the
.jsp page. If this is the first time that the .jsp page is referenced, it will need to
compile it first. You will notice the delay in response as ServletExpress
compiles the JSP into bytecode. This bytecode is done once, and thereafter,
the JSP (in the form of a compiled servlet) is stored in cache.

2. The .jsp servlet loads the bean (MANUFACT) as specified in the .jsp page and
reads the input parameter(s) from the request object. The .jsp servlet then
passes it on to the bean, and calls the appropriate method of the bean.

3. The bean sets the parameters and instantiates the JavaGateway object, and
similarly, does so for the ECIRequest object.

4. The ECIRequest object is set to MANUFACT as one of its parameters and calls
the MANUFACT program via the EXCI interface. Note that it comes in through
the CSMI mirror transaction.

5. The MANUFACT CICS program accesses the MANUFACT table via normal
static SQL calls.

6. The data, when returned to the MANUFACT bean, has been translated to
ASCII via an entry in the DFHCNV table.

7. With the values of the table results in the returned commarea, the bean sets
the attributes of the bean.

 Chapter 10. Develop Java Solutions for CICS on OS/390 205

8. The .jsp servlet accesses the attributes of the bean via the getter methods.
The .jsp servlet then builds the HTML stream in the response object, which is
returned by the Webserver to the browser/universal client.

206 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 11. Accessing IMS Transactions from the Web

In this chapter we provide an overview of the various ways of accessing IMS
transactions from the Web. The information in the following sections is based on
samples we created during ITSO residencies.

We focus on solutions using server-side logic responsible for the connection to the
IMS back-end system. We refer you to Integrating Java with Existing Data and
Applications, SG24-5142, for solutions in which the client directly accesses IMS,
without the usage of server-side logic to make the connection.

 11.1 Introduction
In this section we cover general considerations and possible pitfalls when we want
to use existing or new IMS transactions from a browser or an applet loaded in the
HTML page.

IMS is composed of two components:

1. The Transaction Manager

This is responsible for accepting and scheduling the transactions arriving from
the terminals. Most of the current transactions are written for 3270 terminals.
This part is now often referred to as the DCCTL (Data Communication Control).

2. The Database Manager

This allows access to the DLI/FP databases. This part is now often referenced
as the DBCTL (Data Base Control).

Besides access to DL/I hierarchical databases, IMS transactions can also share
access to DB2 relational databases and MQI queues with other TMs (IMS, CICS, or
even batch). Access to those resources is coordinated through a “two-phase
commit” syncpoint protocol.

Most of the transactions have been written for 3270 in languages like COBOL, PL/I,
REXX and C, and most of the time the development was done without paying
special attention to the 3270 specifics. This is possible because of a component
called Message Format Services (MFS), which can isolate the logical message (on
the program side) from the physical message (on the presentation (device) side).

The role of MFS is to add presentation control characters on the “outbound”
message, and to rebuild the logical “inbound” message with the elements of the
physical message from the device. MFS fulfills a lot of functions which can be
described in one word: “mapping.” For further details about MFS, refer to the IMS
documentation.

MFS is only used for particular devices (in principle, 3270). In other cases, mostly
for programmed clients, MFS is bypassed. This implies that, in case programs that
have been written specifically for 3270 are used by browsers, the logical message
as required by the Message Processing Program (MPP) has to be built by the client
function.

On output, the message sent by the program is passed directly to the client.
Eventually we can act on it by using the IMS “DFSLUEE0” exit. This routine

 Copyright IBM Corp. 1999 207

enables you to edit input and output LU 6.2 messages for IMS-managed LU 6.2
conversations.

Figure 111 illustrates the difference between a traditional 3270 transaction using
MFS and a Web-based scenario using either APPC or OTMA as the IMS
communication protocol.

A
P
P
C

O
T
M
A

IMS/ESA

MFS

3270

APPC (WAN)

XCF (SYSPLEX)

APPC
CLIENT

OTMA
CLIENT

T
C
P
/
I
P

C
O
N
C
U
R
R
E
N
T

S
E
R
V
E
R

Figure 111. 3270/MFS versus Web-Based

In this book we are interested in using the transactions from a browser. This will
always happen via an intermediary gateway. IMS can be accessed via the APPC
protocol, which can be Wide Area Network (WAN) or Open Transaction Manager
Access (OTMA), which can only be used in a sysplex/monoplex environment.

The gateway will be the real client program for IMS and will run preferably on the
same OS/390 machine as the IMS Transaction Server. The gateway will need to
have a server part accepting and processing access to/from the browser through
TCP/IP with its several flavors: HTTP, sockets or IIOP. This gateway function can
be fulfilled by several components on the OS/390 side. The most important
scenarios are:

 � A Webserver

� IMS TCP/IP OTMA Connection (IMS TOC)

 � MQSeries

� A sockets server

Figure 112 on page 209 illustrates an almost complete overview of all the flavors
in accessing an IMS back-end by means of a server-side gateway.

208 e-business Application Solutions on OS/390 Using Java Vol. I

WEB SERVER

GWAPI (ICAPI)

SERVLETS

MQM

IMSTOC

CB/SERVER

A
P
P
C

O
T
M
A

BROWSER

HTML HTTP

HTTP

APPLET

RMI

MQI Channel

Client

Socket

IIOP

APPC

APPC

XCF

XCF

IMS/ESA

RMI/Server

IIOP/Server

RMI/Server

I
F

I
F

I
F

MQI
Client

M
Q
M

Figure 112. Server-Side Gateways to IMS

Whatever access method is used, in all cases we will have to deal with the aspects
of logical messages for IMS transactions. In the following section we discuss in
more detail the problems encountered when trying to use IMS 3270 transactions
from the Web.

 11.1.1 Datastreams
Figure 113 shows the exchange of messages between IMS and the browser.

3
2
7
0

APPC

MFS

OTMA

APPC

OTMA

field 1 ZZfield 2 field 3

MID image

MOD image

field 1 field 2A

attributes

A

S
B
A

field 1 X Z ZY

field
S
FR C A

S
B
A

only
modified

field

attention
key

Message

Processing

Program

I
M
S

3
2
7
0

33 44

22 11

Physical Logical

MFS

Figure 113. Flow of Messages from IMS to 3270 Terminal and Back

1. Logical outbound message

 Chapter 11. Accessing IMS Transactions from the Web 209

The logical outbound message is composed of segments. Each segment,
which is the object of a separate send by IMS, contains fields. The layout of
the message (segments) for 3270 has to correspond to the descriptions in the
Message Output Descriptor (MOD) control block. The fields in general contain
the data which has to be displayed on the screen, under the control of 3270
attributes and row/column coordinates. This control will be added by the MFS
on outbound. On some occasions, the program may have to control the layout
on the display. Attributes (which take 2 bytes) could precede the field data.
This can be determined by looking at the MOD definition (ATTR = YES).
Sometimes even more presentation control is passed by the MPP (such as
extended attributes, cursor positioning and so on).

2. Physical outbound message (3270)

MFS driven by the MOD and the Device Output Format (DOF) control, part of
FMT will generally add, in front of each data field, 5 bytes: Set Buffer Address
(SBA), ROW/COL(2) (a combined ROW/COL address), Start Field (SF) and
Attribute (ATTR).

The aspects related to these attributes are explicitly covered in other sections.
Mapping between MOD and DOF is based on name tokens, and it is not
required to have a one-to-one relationship for all fields.

An APPC/OTMA client will not see this presentation layer. The client will only
see the logical message and some presentation control (if it was passed in the
logical message), but often we will have to mimic the attributes, which would
have been set in the physical message.

3. Physical inbound message (3270)

A 3270 input datastream will contain the datafields which were considered by
the 3270 device as modified, preceded by their coordinates on the screen. The
datastream will also indicate which “tabkey” (such as Enter, PFkey and so on)
provoked the interrupt of the keyboard and inbound send.

4. Logical inbound message

The logical inbound message layout can be determined by looking at the
Message Input Descriptor (MID). In general, it will contain the modified data
from the physical input message, if they were mapped. Note that “not
modified” fields, which are not part of the physical input, will be primed under
the direction of the MID. In this case, primed means that some filler characters
can be substituted if a field was not modified by the 3270. It is also possible
that literals are added in certain positions.

The interrupt can also be translated to a logical indication (2-byte field) in the
input. The cursor location, when the interrupt key was hit, could eventually also
be propagated in the input message.

 11.1.2 Attributes
The mapping of 3270 attributes to the browser is not straightforward.

We examine those aspects in detail and conclude this chapter with an idea of how
to handle the attributes in a browser environment. The attribute sent to the device
could indicate the following:

 � Protected

210 e-business Application Solutions on OS/390 Using Java Vol. I

This is very simple to mimic. It means that this data cannot be changed, so in
general it becomes just text. If this field is also tagged as modified, this would
be not very wise in general, because the data is still available in IMS. A
conversational IMS transaction could bring an exception to this remark.

If, in conjunction with protected, a pre-modified indication was also sent, then
we are not allowed to present the data as a “text input” field. The only way to
achieve the same behavior is to send the data twice to the browser, as follows:

1. As simple text (which, of course, cannot be changed, but not sent back)

2. As “hidden field,” which is not visible, but will send back.

 � Highlighted.

We simply have to add a special layout tag (for instance, “color” or “font”) to the
text, but otherwise it is generally handled as in the previous case.

 � Modified

A pre-modified indication causes a 3270 screen to always send this field back.
If this field is also protected, a double define on the HTML page will do it.

How can we mimic the setting of the Modified Data Tag (MDT) bit for fields which
will only be sent back if modified on the screen (browser)? Obviously, we have to
display the data in an “input text” field, but what if the data is not changed? How
can we prevent the data from being sent anyway?

The use of Javascript can help. The solution described here is certainly not
exhaustive, but presents some ideas and shows the complementary character of
Javascript. The example shows a solution with IMS Web Templates (IWT). The
same solution could also be realized with JavaServer Pages (JSP). The idea is
that for each field in the form, a boolean expression is reserved in a table called
“mod.” The number of elements in this table are available through Javascript, as
follows:

nrfld = document.forms[ð].elements.length;

The booleans in the array are originally set to “false.” The idea is to have all
booleans for “modified” set to “true.” When the field is changed we drive the
setMode script via the onChange clause and set its corresponding field in the mod
table to “true.” Some fields could be mandatory or have to be considered as
“pre-modified.” Those field names are registered in a second table called “modnm.”

When we submit the page, the “on Submit” script is driven which will first turn on
the “mod” field to “true” for all registered names in the “modnm” table and then
empty all fields whose corresponding indication in the mod table has not been
changed from “false” to “true.” You may notice that each pre-modified field is
followed by a small script where it is registered in the “modnm” table.

At the end of the HTML page, we use Javascript to turn all vars in the mod table to
“false.”

Following is an excerpt of the Javascript source.

<HTML>

<HEAD>

<TITLE>How to Handle MOD tags example </TITLE>

<!---

<! JAVAscript

 Chapter 11. Accessing IMS Transactions from the Web 211

<!#--

<script language="JavaScript">

var mod = new Array(); .1/
var modnm = new Array(); .1/
var nrmodnm = ð; .1/
var nrfld = ð; .1/

<!---

function subMod() { .2/
for (var ix = ð; ix < nrfld; ix++) {

for (var iy = ð; iy < nrmodnm; iy++) {

if (document.forms[ð].elements[ix].name == modnm[iy]) {

mod[ix] = true .3/
 }

 }

 }

for (var ix = ð; ix < nrfld; ix++) {

if (mod[ix] == false) {

if (document.forms[ð].elements[ix].type == "text") { .4/
 document.forms[ð].elements[ix].value="";

document.forms[ð].elements[ix].size = ð;

<! alert("Field " + document.forms[ð].elements[ix].name + "(" + ix + ") set to NoMod");

 }

 }

 }

 return true;

}

<!---

function setMod(myfld) { .5/
for (var ix = ð; ix < nrfld; ix++) {

if (document.forms[ð].elements[ix].name == myfld.name) {

mod[ix] = true;

 document.forms[ð].mymessage.value =

"formsfld nr " + ix + " " + myfld.name + "(" + myfld.type +") has been modified";

 return;

 }

 }

alert(" Field " + myfld.name + " NOT found ");

 return;

}

<!---

</script>

</HEAD>

<BODY>

<FORM Method="post" Action="http://...url... onSubmit="subMod()">

<td><input type=text name=field1 size=25 maxlength=35 value="$(field1)"

 onChange="setMod(this)"></td> .6/

<td><input type=text name=field2 size=25 maxlength=35 value="$(field2)">

 </td>

<script>

modnm[nrmodnm] = "field2"; <- this field considered as premodified .7/
nrmodnm = nrmodnm + 1;

</script>

<!---

<! JAVAscript

<!---

<script>

nrfld = document.forms[ð].elements.length;

for (var ix = ð; ix < nrfld ; ix++) {

mod[ix] = false;

}

nrmodnm = $(nrmodnm);

document.forms[ð].mymessage.value =

"Form contains " + nrfld + " fields (Nr Premodified fields " + nrmodnm + ")";

</script>

<!---

</FORM>

</BODY>

</HTML>

These explanations relate to the preceding example:

Notes:

212 e-business Application Solutions on OS/390 Using Java Vol. I

.1/ Definitions of the “vars” and “var arrays” used in the Javascript.

.2/ The “subMod” script activated by the “Submit” button and the
“onSubmit” clause.

.3/ These “mod” fields, with corresponding fields in the “modnm” table, are
set to “true.”

.4/ The values of the “non-modified” fields are squeezed to empty.

.5/ The “setMod” script activated by the “onChange” clause on the field.

.6/ This is a field with an “onChange” clause.

.7/ This is a pre-modified field.

11.1.3 Basic Design of a Webserver Service Thread
Accessing IMS/VS transactions from the Web through the Webserver and keeping
in mind that the Webserver will act as an HTTP server for the browser and one of
its threads will act as an OTMA/APPC client for IMS requires the following steps for
our design based on a container concept:

1. Data from the browser arrives as Variable/Name-Value pairs. Those “varvals”
are put in the container, which, depending on the approach, could be a linked
list or a hashtable.

2. The information in the container, with additional hardcoded literals, has to be
used to build the input message. This can be done by Java classes or other
code (template code is an example).

3. This input message is sent to IMS via one of the available techniques (MQM,
APPC, OTMA).

4. The output from IMS/VS has to be analyzed and parsed into the existing
container. This can also be done via Java classes or template-alike code.

5. Finally, from the combined information available in the container, the output has
to be prepared in an HTML format and sent to the browser. This can be done
with JSP, Java classes or template-alike code.

Figure 114 on page 214 shows the concept of a “container” to pass messages
back and forth between the client and the server.

 Chapter 11. Accessing IMS Transactions from the Web 213

URL + Data
from Browser

Build Input
Message

IMS/ESA

Send

Receive

Template
Routine

11

5

2

3
HTT

P
Var

Val

HTTPHTM
L

Data to Browser

Template

JSP Parse Output
Message

 Segments Template
Routine

4

Java Bean

Java Bean

Container

Java
Hashtable

Linked List

Figure 114. Exchanging Messages between IMS and Browser Based on the hashtable
Concept

Some approaches will require the use of Java Native Interface (JNI). This JNI
allows the invocation of C programs from Java and the interchange of data
between both environments.

11.1.4 Conversational Transactions and HTTP
Conversational transactions in IMS are defined with a Scratch Path Area (SPA).
When a conversational transaction is started over the APPC protocol, an APPC
conversation is started over a SNA session between two LUs (see Figure 115).
Multiple parallel APPC connections (sessions) can exist between two LUs (for
instance, between the Webserver and IMS).

Conversation 1

W

E

B

S

E

R

V

E

R

I

M

S

BROWSER

?
 where is my conversation

 I worked with
conversation n

 I can prove it

CONVID

CONVID

CONVID

CONVID

CONVID

 2

3

4

n

.

HTTP

Figure 115. Conversational Transactions and HTTP

214 e-business Application Solutions on OS/390 Using Java Vol. I

The number of sessions that can exist between two LUs is limited by VTAM
definitions. Once a conversational protocol is started and not de-allocated, it is
characterized by a conversational ID and reserves a session. The session can only
be used by one conversation at the time.

This “convID” must be preserved on the client side and reused for consequent
interactions. Here lies the problem for the browser interaction. The browser talks
to the Webserver over the HTTP protocol, which is interrupted and reinstated, while
the APPC protocol between the Webserver and APPC is kept and tokenized by the
convID. When the browser returns to the Webserver and wants to continue the
initiated conversation with IMS, then the convID must be found again reclaim the
APPC tunnel.

The only way to achieve this is to keep session information for each active browser
and allow the browser to find it again by presenting a token. This token can be
sent back and forth between browser and Webserver, for instance via a “hidden
value” or a “cookie,” the latter being certainly the best.

11.1.4.1 How to Set Up a Cookie
A cookie is a block of ASCII text that can be passed to the browser by the
Webserver. The cookie is sent back to the Webserver when it is addressed by the
browser. The cookie is sent to the browser as part of the response header and
returned as part of the request header. To send the cookie, the Set-Cookie HTTP
variable has to be set, with a value containing a series of variable/value pairs.
Some of those will be user-defined, while others are special values. The following
shows the cookie which could be set up as the contents of the HTTP_set-cookie
variable. In the GWAPI environment this can be done with the HTTPD_set API.

convnr=1; adate=19121998; expires=...; path=...;

These explanations relate to the preceding example:

Notes:

� convnr and adate are user names.

� expires and path are cookie-related.

When returned from the browser, the value of the cookie can be obtained by
retrieving the HTTP_COOKIE environment variable. In the GWAPI environment we
can do it with the HTTPD_extract API.

We could deal with the session concept in the following way. Two solutions are
presented. Both are based on cookies:

1. No servlet, but GWAPI

A table is kept in the Webserver, where we reserve a number of slots
significantly greater than the maximum of conversations we could have. Each
slot has space for information like user information, timestamps, security
information and the convID of APPC.

When a certain browser works with a conversational transaction, a slot is
allocated for it and the “slotnr” is returned via a cookie to the browser. This
allows us to find the slot again and continue the conversation. This is the base
concept.

Other information that could be included in the cookie and verified at each
resumption of the session is, for instance, the conversation step, slotcode and

 Chapter 11. Accessing IMS Transactions from the Web 215

a Webserver identification. A Webserver could be restarted between two
browser interactions, in which case the cookie token is not valid anymore and
has to be renewed. The APPC conversations will have to be aborted.

2. Servlets with WebSphere

The ServletExpress function in WebSphere supports, via its Java framework,
the session concept. Objects can be preserved in the session. As objects are
opaque and can be devised and materialized by your design, whatever you
want to be preserved can be saved (for instance, in a TMState object). To
make an object known to the session object, it has to be registered by code
similar to the following excerpt:

/\ - TMState object \/

tmstate = (TMState)session.getValue("TMSTATE");

if (tmstate == null) {

tmstate = new TMState();

 session.putValue("TMSTATE",tmstate);

 }

Here, the session state should be registered under the name TMSTATE. When
we retrieve the TMSTATE and the result is null, we instanciate a new one, and
register it with a putValue. Next time, the getValue will return it. The session
manipulation is handled by WebSphere, which will build, send and handle the
cookie, containing appropriate information to keep up the session concept.

You may note that in our implementation, we put some complete connection
objects in TMstate. Keep in mind that, in practice, this means only the class
variables, but this is a good use of the object concept. The concept discussed
so far regarding the handling of the session state can also be applied to
solutions using CICS EXCI, MQM or OTMA access for servlets running in
ServletExpress.

Objects registered in the session may implement the valueBound and
valueUnbound methods and, as such, will be informed when the bounding
occurs or when the object is unbound as a result of a release of the session.

11.2 Connecting to IMS Based on APPC
In this section we look at the possibilities for accessing IMS using the APPC
protocol as follows:

� Using a servlet

 � Using templates

 Attention

In the following sections we refer to various pieces of sample code. You can
find the code on the disk enclosed in this book. Refer to Appendix A,
“CD-ROM” on page 299 for details.

216 e-business Application Solutions on OS/390 Using Java Vol. I

11.2.1 IMS Access with Servlet and Via APPC
Advanced Program-to-Program Communication (APPC) is a useful, fast and reliable
protocol that can be used in a Wide Area Network (WAN) or local (on the same
platform) environment. Depending on the environment, although externally the
same interface (for instance Common Program Interface Communication (CPIC)),
the transport mechanism will differ. This means that on the same system, between
a Webserver and IMS, storage-based transport will be used, omitting all VTAM
address space support.

We designed a sample application accessing IMS via APPC, containing several
Java classes, Java Native Interface (JNI) “glue” and C routines to do the actual
interaction with APPC. See Figure 116.

BROWSER

BROWSER A
P
P
C

IMS/ESA

v4 and up

A
P
P
C

IMS/ESA

v4 and up

APPC

A
P

P
C

HTTP

H
TT

P

JSAppc2Ims

jav2apc
JNI

Appc2Ims

C

C

SERVLET

WEB SERVER

JAVAJAVA

JAVAJAVA

C

C

Appc2Ims
connector

JAVAJAVA

HTTP

HTTP

JAVASCRIPT

JAVASCRIPT

Figure 116. IMS Access from a Servlet Via APPC

Some of the classes are part of the overall design, while others are specific to the
called transactions and have to be written for each specific TRAN and transaction
result characterized by the layout of the reply. If the ISRT of the transaction result
was done with a “ImsModName,” this modname will be the token for the output
processing.

Following is a list of Java classes and C routines used in our sample. Each item is
discussed in more detail in the next section.

parent class to instanciate the APPC framework and invoke it

itso/ibm/ims/JSAppc2Ims class

itso/ibm/ims/Appc2Ims class

itso/ibm/ims/IMSInputOutput class

itso/ibm/ims/IMSException class

itso/ibm/ims/TMState class

 Chapter 11. Accessing IMS Transactions from the Web 217

itso/ibm/ims/BuildParse interface

itso/ibm/ims/[IMSTRAN][ImsModName]edit classes implementing BuildParse

hjav2apc JNI C routine (MVS/DLL libhjav2apc.so)

hapc2ims C routine called by JNI routine hjav2apc

hhprintf For trace printing (solves Tprintf reference)

hjgetref JNI C routine (MVS/DLL libhjgetref.so)

hpRefDEf C routine called by JNI routine hjgetref

hJNIRtns C routine with JNI helper functions called by the JNI DLLs.

DFSLUEE0 IMS exit in assembler

HCMRCV Assembler assistance routine for hapc2ims

11.2.1.1 The parent Class in the APPC Solution
This class is responsible for directing and starting the APPC communication. This
is done from the Java servlet code, but for testing purposes this could also be done
in a Java “application” with a MAIN entry. The following is a code excerpt of the
parent class:

TMState tmstate = null; .1/
 JSAppc2Ims jac; .2/
 ...

Hashtable reqht; (in Batch, otherwise passed) .3/

jac = new JSAppc2Ims(); .4/
 jac.setReqht(reqht); .5/
 jac.setTmstate(tmstate); .6/
 jac.setTrclvl(trclvl); .7/
 try {

System.err.println("ImServlet_doget calling JAppc2Ims_doIms\n");

rc = jac.doIms(); .8/
} catch(IMSException e) {

System.err.println("ImServlet IMSException" +e);

 return;

 }

These explanations relate to the preceding example:

Notes:

.1/TMState is the session state object for APPC/MQI. In a servlet
environment we obtain it from the Session object. It is not mandatory to
pass it, or it can be set to “null.” It is mainly meant for conversational IMS
transactions.

.2/Reference to the JSAppc2Ims object.

.3/ “reqht” is the reference to the hashtable containing the varvals passed
with the URL. Eventually other installation-related values could be added
as in the following line:

 reqht.put(“PACKAGE,”

“itso.ibm.imsEdit”);

218 e-business Application Solutions on OS/390 Using Java Vol. I

.4/JSAppc2Ims is instanciated.

.5/The connection request hashtable is set into the JSAppc2Ims object.

.6/The TMState is set into the JSAppc2Ims object (this could be omitted).

.7/The trclvl is propagated (this could be omitted); the default is 0.

.8/The method doIms() is invoked. This will start the APPC communication
preparation, as an exception could be thrown. The statement is surrounded
by a TRY/CATCH sequence.

11.2.1.2 The JSAppc2Ims Class
The doIms() method instanciates immediately an IMSInputOutput object. This
object will contain the input data and the result data. It is connection-related (not
session-related), and is released at the end.

We also instanciate an appc2Ims object if not existing already, or recuperate the
existing one from TMState if we were already in session and the object exists. We
can follow the main excerpt here (the complete JSAppc2Ims code is included on the
CD-ROM packaged with this book).

appc2ims = getAppc2ims(); // acquire conversation related .1/
inOut = getInOut(); // acquire connection related .2/

 buildObjectFromHash(); .3/
 try {

 ((BuildParse)inOut.getClassToLoad())).buildIn(reqht,inOut); .4/
 appc2ims.setInOut(inOut);

 appc2ims.setTrclvl(trclvl);

if (trclvl > ð)

System.out.println("++JSAppc2Ims call Appc2Ims");

apcrc = appc2ims.doIms(); .5/
 buildObjectToHash(); .6/
 ((BuildParse)inOut.getClassToLoad())).parseOut(reqht,inOut); .7/
 }

catch (Exception e)

 {

IMSException ex = new IMSException("JSAppc2Ims_doIms

Error in calling APPC routines " +e);

 throw ex;

 }

/\ inquiry the Transtate of Appc2Ims,

if the state is conversational save it Transtate (Session) \/

transtate = appc2ims.getTranstate(); .8/
if (transtate == CONVERSATIONAL)

 tmstate.setAppc2ims(appc2ims);

 else {

appc2ims = null; // free the Appc2Ims object

tmstate.setAppc2ims(null); // set it to null in TMState

 }

inOut = null; .9/

These explanations relate to the preceding example:

Notes:

 Chapter 11. Accessing IMS Transactions from the Web 219

.1/The Appc2Ims object is recuperated or instanciated.

.2/An IMSInPutOutput object is instanciated.

.3/The local buildObjectFromHash propagates a group of properties into the
Appc2Ims object. The propagated values come from the passed Hash
container or from defaults stored as “final” values in the J2IMS class.
A method called inOut.loadInClassFromHash is also invoked in the
IMSInputOutput object to set connection-oriented properties, and to find the
class which will build the input String.

.4/This is a quite interesting statement. Read it from right to left. We will
invoke a buildIn method on the object established by
inOut.getClassToLoad(). This is an Edit class responding to a generic
implementation. As such, the result object is cast with the implementation
BuildParse. The InputString is now built. The build class relates to the
ImsTran.

.5/The IMSInputOutput object is set into the Appc2Ims object and the
doIms() method is invoked on this object.

.6/On return, basically the opposite will occur. The existing connection
hashtable will be populated with the results (errors) arriving from IMS, for
instance, the ImsModname. The class responsible for the parsing of the
result segments is determined. This happens by invoking the
loadOutClassToHash on the InputOutput object.

.7/We invoke here a doParse method on the object established by
inOut.getClassToLoad(). This is an Edit class responding to a generic
implementation. As such, the result object is cast with the implementation
BuildParse. This invocation works on the resulting OutputVector. The
parse class is a function of the returned ImsModName if not null or equal to
ImsTran.

.8/The conversational status of the Appc2Ims object is inquired and, if we
have a session with IMS, the entire Appc2Ims object is saved in tmstate, if
tmstate is valid.

.9/The IMSInputOutput object is released. It is connection-related.
Remember that the Appc2Ims is conserved in the tmstate object, and this
one is stored in the session.

11.2.1.3 The IMSInputOutput Class
This object is volatile and exists only during the connection. It contains mainly the
elements that are required for this exchange with IMS. This includes not only the
related fields, but also the methods to look up the classes that will be required to
build the input datastring and to parse the outputvector with the segments.

public int returnCode = ð; .1/
public int reasonCode = ð;

public Vector outputVector = null; // output vector with result segments

String imsTran = "\\\\\\\\"; // IMS transaction is TpName

boolean debugOn = false;

String imsModName = null; // IMS Modname of result

220 e-business Application Solutions on OS/390 Using Java Vol. I

Object classToLoad = null; // input/output build/parse classes

String inputString = ""; // input data

public int trclvl = ð;

 char comflag = 'S';

 loadInClassFromHash(..)

 setClassToLoad(Class.forName((String)aHashTable.get("PACKAGE")+ .2/
 "."+(String)aHashTable.get("IMSTRAN")+ "edit").newInstance());

 loadOutClassToHash(..)

 setClassToLoad(Class.forName((String)aHashTable.get("PACKAGE")+ .2/
 "."+name+"edit").newInstance());

These explanations relate to the preceding example:

Notes:

.1/All fields that are defined here belong to one connection, and do not
have to be kept over connections for the “Pseudo Session” concept.

.2/These two methods will establish the Edit classes, which are required to
build the input datastring and to parse the Output segment. Watch in
particular the use of the Class.forName function, and the dynamic build of
the classname by concatenating PACKAGE, IMSTRAN/ImsModName and
“edit.” This class, which is an implementation of the BuildParse
implementation, is instanciated and stored in this class to be used by the
JSAppc2Ims.

11.2.1.4 The Appc2Ims Class
This is the object which, in collaboration with JNI, does the real client/server work.
This is also the object which contains the APPC conversation status materialized in
the transtate and in the related ConvID, which is the APPC session token. We will
preserve this object in the TMState, which in turn is conserved in the servlets
session object. This will allow us to pick up the Appc2Ims and the associated state
to continue the interaction with IMS.

The main method here is doIms. This method will find out about the transtate and
project a CMINIT or CMSEND as required by the status. This is stored in iaction.
The doApc method invokes the JNI code. Do not consider doapcIWT, which is of
use in other instances.

We now show a code excerpt:

public int doIms() {

 /\---\/

/\ determine whether we are in conversation \/

 /\---\/

if (transtate != CONVERSATIONAL) {

iaction = MCMINIT;

} else {

iaction = MCMSEND;

 }

 Chapter 11. Accessing IMS Transactions from the Web 221

if (inOut != null)

comflag = inOut.getComflag();

apcrc = selectapc();

 return apcrc;

 }

public native int doapc(String luName, String tpName,IMSInputOutput inOut,

String Modeent, int iaction, int timeout,char comflag,

int transtate,int ipRef,int trclvl);

11.2.1.5 The IMSException Class

public class IMSException extends Exception {

public IMSException() {

 super();

 }

public IMSException(String s) {

super("IMSException :" + s);

 }

 }

11.2.1.6 The TMState Class
TMState conserves the state of the Appc2Ims object during the HTTP session, which
encompasses many HTTP interactions. Basically, we only find properties in this
class. As it is used in common with MQI, we also find in this class properties
belonging to a MQI session.

Appc2Ims appc2ims = null; // preserve the Appc2Ims object

Hashtable sessht = null;

int ipRef = ð; // int casted pointer to refdata

int trclvl = ð;

 /\---------------------------\/

public void setAppc2ims(Appc2Ims appc2ims) {

this.appc2ims = appc2ims;

 return;

 }

 /\---------------------------\/

public Appc2Ims getAppc2ims() {

 return appc2ims;

 }

11.2.1.7 The BuildParse Interface

 public interface BuildParse)

public int buildIn(Hashtable aHashtable, IMSInputOutput inOut);

public int parseOut(Hashtable aHashtable, IMSInputOutput inOut);

222 e-business Application Solutions on OS/390 Using Java Vol. I

11.2.1.8 [IMSTRAN][ImsModName]edit Classes Implementing
BuildParse
We present here one class as an example of implementing BuildParse:

public class DFSMO1edit implements BuildParse

 {

 int rc;

public int buildIn(Hashtable h, IMSInputOutput inout)

 {

rc = ð;

 return rc;

 }

 /\---\/

public int parseOut(Hashtable h, IMSInputOutput inout)

 {

 int segnr;

 String segment;

Enumeration e = inout.getOutputVector().elements();

segnr = ð;

rc = ð;

while (e.hasMoreElements()) {

segment = (String)e.nextElement();

if (segnr == ð) {

 h.put("MESSAGE",segment);

 }

 segnr++;

} // end while

 h.put("NRSEGM", ""+segnr);

 return rc;

 }

 }

This class handles IMS output which was written out with the MOD DFSMO1,
mostly system messages. Here we find only a doParse implementation. The
buildIn part is dummy, but must be there as the implementation has to complete.

Look at the name of the class: on input to IMS, we use the transaction name as the
base for the classname, whereas on output, the ImsModName is the base. If the
program inserted the output message without a Modname, or DFSLUEE0 is not
implemented, we use also the transaction name on output.

11.2.1.9 The hjav2apc.c Routine
This routine is the “glue” code between Java and the next program. It uses the JNI
interface. We pass as many parameters as possible via the call. This avoids
having to use too many JNI API calls. Using this technique, remember that there
could be a difference between the way data is stored in Java and the format it is
expected to be in C.

For instance, character data (and strings) is stored in ASCII format in Java. As we
pass directly the character or the string object, we have to take into account the
required builds or conversions in the C program. Mostly we do this with helper

 Chapter 11. Accessing IMS Transactions from the Web 223

routines located in hJNIRtns.c. For this discussion, only consider the doapc entry
point.

JNIEXPORT jint JNICALL Java_itso_ibm_ims_Appc2Ims_doapc

(JNIEnv \jne,jobject jcaller,jstring jluName,jstring jtpName,

jobject jacinout,jstring jmodeEnt,jint aciaction,jint timeout,

jchar jcomflag,jint transtate,jint ipRef,jint actrclvl)

The first two parameters are always passed by the JNI call:

� The jne parameter represents the Java Native Environment. This reference will
be required in all coming JNI calls.

� The jobject parameter is always a reference to the calling object.

� The other parameters are specified in the native method of the caller class.

Integer parameters (jint) can be used immediately. They are passed in big endian
format.

Characters (jchar) are in ACII (UTF) and have to be converted to EBCDIC on an
S/390 platform.

Strings also have to be converted to EBCDIC (C array). For this purpose we
developed a help function, as follows:

s = getCFromJString(jne,jluName,buffer,buflen,pRef,actrclvl)

For details about this function, refer to the code. The helper routine hJNIRtns
contains many other functions which can be very useful in extracting data from a
Java class or in setting data in a class.

In general, to get data from or put data to a class, or to invoke a method from C,
an absolute reference is required to the class instance. Within this class, a relative
ID to the required property or method is required.

The code presented here shows many applications of the JNI API. However, we
do not discuss JNI any further as it is beyond the scope of this redbook.

This routine, together with a few other routines, is linked into libhjav2apc, a DLL
which is defined in the Appc2Ims class, as follows:

 static

 {

 System.loadLibrary("hjav2apc");

 }

11.2.1.10 The hapc2ims.c Routine
This routine is the “work horse” of the APPC-to-IMS connection. It executes the
required sequence of APPC calls as a function of the conversation state, request
data and the return code of earlier calls. The program can be entered for the
following reasons:

 � CMINIT

224 e-business Application Solutions on OS/390 Using Java Vol. I

This starts a fresh APPC conversation. Depending on the selected transaction
defined as (CONVERSATIONAL), the APPC flow terminates by a CMRCV, in
which case the next interaction will go on with a new CMSEND. The token
used to continue the ongoing conversation is convID, and had to be saved in
one way or another. If the called transaction was not conversational, the APPC
flow terminated with a CMDEAL and a new IMS would have to restart with a
CMINIT.

 � CMSEND

This option continues a previous started transaction, which had to be
conversational. An ongoing transaction can always be deallocated by the
transaction, in which case we return to a non-conversational state.

 � CMDEAL

This option is only to be used when an existing conversation has to be
deallocated in a “forced” way.

The result of this call is a vector with output segments, a return code (which can be
a pseudo in case of a timeout), a format indication (ImsModName), if the
DFSLUEE0 exit is installed, and a convID NOT equal to blank, if the conversation
has to be continued.

11.2.1.11 The hhprintf.c Routine
The hhprintf.c routine is part of all .so modules and contains two external reference
entrypoints:

int Hprintf(REFDATA \pRef, const char \fmt, ...)

 ...

int Tprintf(REFDATA \pRef, const char \fmt, ...)

It has to be linked with the DLL modules. This routine does not execute essential
functions, except that it is responsible for directing output printed via Hprintf or
Tprintf to an adequate/available target. This decision is based on the information
and references set in the REFDATA vector passed by the Hprintf and Tprintf
request.

The pRef is a structure reference that is used to determine in which environment
the program is running. It will help us to direct the output to the appropriate
destination.

The routine is also compiled conditionally depending on the fact whether it is part of
JNI code or not.

11.2.1.12 hjgetref JNI C Routine (MVS/DLL libhjgetref.so)
This DLL, attached to the TMState class, is called to prime the REFDATA vector,
which, as mentioned before, is passed among the different C routines through the
pRef pointer. To fulfill this task, the next C routine is called. The call of this routine
is based upon the availability of a shared area, pointed by the first LE pointer of the
enclave. This is verified in the following way:

// get anchor to Global zone

function_code = QUERY;

field_number = 1;

CEE3USR(&function_code, &field_number, &field_value, &fc);

 Chapter 11. Accessing IMS Transactions from the Web 225

if (_FBCHECK (fc, CEEððð) != ð) ??<

printf("++SVS CEE3USR failed with message nr %d\n",fc.tok_msgno);

 default dummy shared area ...

 ??> else ??<

 call hpRefDef

 ??>

gshr_ptr = (THREAD_SHARED \)field_value;

11.2.1.13 hpRefDef C Routine
The hpRefDEf C routine is called by JNI module hjgetref and can only operate in
an IWT environment. In other words, the IWT init code located in gwapex01, was
setting up the required shared area. If this environment was not set up, then this
routine will not be called.

11.2.1.14 hJNIRtns C Routine
This file regroups a collection of functions that are used in a JNI environment. As
we developed a lot of JNI code, we found it useful to put them together in one
deck, and eventually extend when required.

The routines regrouped here allow for access to Java resources. This includes
access to aggregates (objects, primitives) directly specified in a class, but also
access to methods and consecutively the invocation of those. In general, to find
elements in an instanciated Java class, we need three elements:

� A reference to the class object

� The ID of the class

� The ID of the element (object, primitive or method) within the class

To find the ID of an element, a signature has to be provided. As in Java,
everything is stored and registered in ASCII(UTF), and signatures have to be
provided in ASCII. Thus, in an OS/390 environment, we have to provide translation
facilities. When dealing with strings and character fields, JNI always wants and
returns it in ASCII.

For further details about writing JNI, refer to the literature. A good explanation can
be found in Java Secrets by Eliotte Rusty Harold (IDG Books) or at the following
URL: http://www.ibm.com/java/education

 11.2.1.15 DFSLUEE0
For output messages, IMS calls the LU 6.2 Edit exit routine for each message
segment before the message segment is sent to the LU 6.2 program. The exit
routine can intercept the data sent by the application program and edit it for the
particular destination. It is also called if a message is inserted from an alternate
PCB destined for an LU 6.2 destination. This exit routine is for use with standard
IMS and modified IMS application programs. You can write the LU 6.2 Edit exit
routine to do the following:

� View the contents of a message segment and continue processing

� Change the contents of a message segment and continue processing

� Discard a message segment

For output messages, IMS calls the LU 6.2 Edit exit routine for each message
segment before the message segment is sent to the LU 6.2 program. The exit

226 e-business Application Solutions on OS/390 Using Java Vol. I

routine can intercept the data sent by the application program and edit it for the
particular destination. In our sample code we use the Exit to add the ImsModName
in front of the output datastream. The ImsModName can be considered as a
transaction code on the client side; it expresses how the datastream has to be
processed on the client side (Webserver client code, or Applet code). Our
implementation always prefixes the ImsModName to the message if it is available,
but the prefixing could be conditional on tags available in the control blocks
available passed in by the Exit.

The exit is fully explained in IMS/ESA V6 Customization Guide, SC26-8732. To
detect whether prefixing has been done or not, a small X'4141' token precedes
the 8-character ImsModName.

 11.2.1.16 HCMRCV
This routine, used in conjunction with hapc2ims, will handle the first receive call
after a transaction (apparently successful) has been sent to IMS. It handles a
timeout. Normally, for exceptional situations, a client program is immediately
informed by a return code about the malfunction of the IMS server or the
connection, and can then handle things accordingly.

In a few conditions, IMS will not reply: for instance, when the transaction is queued
in IMS, but we have a long waiting line, or no Message Processing Region has
been started for this transaction class. A transaction could also be looping.

In such conditions, we have to abort after a certain delay. HCMRCV takes care of
this timeout; two threads are started, and one waits on the IMS reply, while the
other waits for a time delay. Whichever one times out first the one which timeouts
first will present the result.

11.2.2 IMS Access from a Servlet Using APPC and Templates

Service

INIT

Terminate

Querystring

Native
jav2apc

CCCC

IMS/ESA
Contentlength

dopost

doget

doIMS

Hash
Table

TRANedit

Out
Parse

doAPC

Write
HTML

build by
JSP

IMS/ESA

A
p
p
c
2
I
m
s

A
p
p
c
2
I

m
s

In Out

doIMS

TRANedit

In
Build

J
S
A
p
p
c
2
I

m
s

Session

HTTP utils
parse

Appc2Ims restored
from session

Figure 117. IMS Web Templates

 Chapter 11. Accessing IMS Transactions from the Web 227

Why would we want to use IBM Web Templates (IWT)? What could a design like
IWT do for us? JSP solves the dynamic building of the HTML pages in a certain
way and we adopted this solution in all servlet implementations. The build of the
input message for IMS, and the parsing of the output segments from IMS, has still
to be done.

In the previous servlet cases, we did this with the TRANedit and the MODNAMEedit
classes of the itso.ibm.imsEdit package4 The aim of this implementation is to do
this task with the templates, the same ones as used in the pure IWT
implementation. From a practical point of view, the differences are the following:

� The IWT linked list CONTAINER is complemented with a hashtable.

� The JSAppc2Ims class is replaced by the IwtBase class.

This class will instanciate a AddLookHash class, which, in combination with the
JNI hjreadmc, and using the same IWT modules with some extensions, can
build the input message from the browser input, and parse the output result into
the hashtable, where it will be available for JSP processing.

The strength of this approach is that it is very simple, quickly implemented and we
use the session framework of the servlets. The code that we used is not meant to
be a product, but it shows a way to build the IMS_IN message from information in a
container.

The IO templates have an MFS “look.” On output, an IMS_OUT template allows for
the parsing of the output segments into the hashtable, and all this collected
information can be used to build in a dynamic way the browser output.

The APPC solution with templates is composed of the following:

parent class to instanciate the IWT framework and invoke it

itso/ibm/servlets/IwtBase class

itso/ibm/ims/AddLookHash class

hreadmac JNI C routine (MVS/DLL libhjreadmc.so)

itso/ibm/ims/Appc2Ims class

itso/ibm/ims/TMState class

hjav2apc JNI C routine (MVS/DLL libhjav2apc.so)

hapc2ims C routine called by JNI routine hjav2apc

hhprintf For trace printing (solves Tprintf reference)

hjgetref JNI C routine (MVS/DLL libhjgetref.so)

hpRefDEf C routine called by JNI routine hjgetref

hJNIRtns C routine with JNI helper functions called by JNI DLLs

DFSLUEE0 IMS exit in assembler

HCMRCV Assembler assistance routine for hapc2ims

4 Refer to the enclosed disk for the code.

228 e-business Application Solutions on OS/390 Using Java Vol. I

Some components are specific for the APPC/IWT solution, while others are the
same as in the solution without IWT, as discussed in 11.2.1, “IMS Access with
Servlet and Via APPC” on page 217. In the following sections we discuss the
IWT-specific components and refer to other sections for the components that are
the same as in the solution without IWT.

11.2.2.1 The parent Class
This servlet code is responsible for the instanciation of the IWT/APPC solution.
The following is a code excerpt related to this task:

 IwtBase iwtb; .1/
 ...

 tmstate.setTrclvl(trclvl);

iwtb = new IwtBase(); .2/
 iwtb.setReqht(reqht); .3/
 iwtb.setTmstate(tmstate); .4/
 iwtb.setHwriter(hwriter); .5/
 iwtb.setTrclvl(trclvl);

if (trclvl > 4) {

System.out.println("++ImServlet3_performTask IWT2 ++");

 }

rc = iwtb.doIwt(); .6/

These explanations related to the preceding example:

Notes:

.1/Reference to the IwtBase object.

.2/IwtBase is instanciated.

.3/reqht is the reference to the hashtable containing the varvals passed
with the URL. Eventually other installation-related values were added.

.4/The TMState object is set into IwtBase.

.5/The hwriter object is set so that eventually we will have the possibility
to write directly to the browser without JSP.

.6/The method doIwt() is invoked. This will start the all process.

11.2.2.2 The IwtBase Class
This class will instanciate AddLookHash, which is responsible for the “templates”
interface. The class will be called first for building the input message to IMS.
Remember that this message has to be built from information available in the
container which came from the browser.

AddLookHash al = null; .1/

process = (String)reqht.get("PROCESS"); .2/

 /\---\/

 /\ create an AddLookHash object \/

 Chapter 11. Accessing IMS Transactions from the Web 229

 /\---\/

al = new AddLookHash (reqht,macropath,hwriter,trclvl); .3/

if (ipRef == ð) { .4/
ipRef = al.getIpRef();

System.out.println("++IwtBase_doIwt ipRef was NUL is now set to

 } else

 al.setIpRef(ipRef);

if (ImsCics == IMS) .5/
impart = "%IMS_IN";

 else

impart = "%CICS_IN";

if (trclvl > ð) {

 System.out.println

("++IwtBase_doIwt_doInputBuild with skeleton");

 }

inprc = al.doInputBuild (process, impart, in_data); .6/

The input is built in a C structure and passed between the different C JNI modules
via the Refdata structure pointed by pRef. This structure was obtained earlier.

Notes:

.1/Reference to the AddLookHash object.

.2/The name of the “Process” is obtained. It is the name of the template or
DLL module which will be used for the build of the input message to IMS.

.3/AddLookHash is instanciated and we pass in some parameters:

1. reqht is the container with the “varvals.”

2. macropath is the path where the templates are located.

3. Via hwriter with a println function, we could print to the browser:

hwriter.println("
++IwtBase_doIwt with trclvl " + trclvl);

4. Via trclvl is self-explanatory; this can be used for testing purposes.

.4/ipRef is the integer value of a pointer to a REFDATA shared structure
which points to a group of other used resources. This pointer is passed
from module to module, from class to class. Here, this shared area is built
(if it was not previously built).

.5/This design is also used with CICS and EXCI. The parameter TM
indicates whether we use CICS or IMS.

.6/Here we call the InputBuild function in AddLookHash, which in turn will
invoke through a native method the appropriate JNI code located in the
libhreadmc.so DLL.

230 e-business Application Solutions on OS/390 Using Java Vol. I

The input message is kept in C-managed storage pointed by a pointer in the
refdata structure. In Java, we contain the pointer to this structure in an integer, and
as such we can pass it to other instanciated classes. That is what we are doing
with the Appc2Ims class, which is the same as the one used in the previous case.

ipRef = al.getIpRef(); .1/
 ...

if (ImsCics == IMS) {

/\ ============================ IMS access =====================

appc2ims = getAppc2ims(); .2/
if (appc2ims.getTranstate() == NON_CONVERSATIONAL) { .3/

 appc2ims.setTimeout((String)reqht.get("TIMEOUT"));

 appc2ims.setModeent((String)reqht.get("MODE_ENT"));

 appc2ims.setPluName((String)reqht.get("PLU_NAME"));

 appc2ims.setTpName((String)reqht.get("IMSTRAN"));

} /\ endif \/

 appc2ims.setIpRef(ipRef); .4/
aprc = appc2ims.doIms(); .5/

These explanations relate to the preceding example:

Notes:

.1/We get the integer value of the pointer to the reference structure.

.2/We try to get an Appc2Ims object. This will be a new one or one that
was preserved in the TMState object.

.3/Several properties are set in the Appc2Ims object.

.4/We pass the reference structure to Appc2Ims.

.5/Here we invoke APPC.

The result of this operation consists of two important elements:

1. A response structure with pointers to segments returned by IMS.

2. An ImsModName returned by IMS if the DFSLUEE0 exit is installed. We will
call this element HTMLMOD also because it characterizes what we received (a
good or bad response) and indicates how it has to be parsed and later on
presented.

htmlmod = appc2ims.getImsModName(); .1/
if (htmlmod == null)

htmlmod = procsave; .2/
transtate = appc2ims.getTranstate();

if (tmstate == null) {

if (transtate == CONVERSATIONAL)

 System.out.println ("++IwtBase_do

} else { .3/
if (transtate == CONVERSATIONAL)

 tmstate.setAppc2ims(appc2ims);

 else {

appc2ims = null; //

 Chapter 11. Accessing IMS Transactions from the Web 231

 tmstate.setAppc2ims(null); //

 }

 }

These explanations relate to the preceding example:

Notes:

.1/We try to get the ImsModName.

.2/If this object is null, we use the original process name instead.

.3/If the transaction is in a conversational state, we save the Appc2Ims
object in TMState; otherwise, we assure that the reference is null.

if (ImsCics == IMS) .1/
impart = "%IMS_OUT";

 else

impart = "%CICS_OUT";

 reqht.put("HTMLMOD",htmlmod);

if (ijsp == YES) .2/
al.setHashput('Y'); // we set output in the HASH

 else

al.setHashput('N'); // we will write HTML via IWT

outrc =al.doOutputParse(htmlmod, impart); .3/

These explanations relate to the preceding example:

Notes:

.1/As we prepare for parsing the result from IMS/CICS, we select the
appropriate option.

.2/The parse basically means the creation of additional varvals in the
container. The container will be the source for the dynamic HTML. This
build can be done by JSP or by templates. Depending on the selected
option, the parsing results will be written to the hashtable or to a Linked list.

.3/Finally, we activate the parsing and indicate which skeleton (htmlmod) to
use.

If the HTML presentation has to be built with the templates (JSP = NO), we will
invoke AddLookHash, once more for this and exit with rc=1, indicating that no JSP
processing has to be done by the servlet.

if (ijsp == YES) {

 reqht.remove("JSP");

rc = ð; // HTML has to be done by JSP .1/
 }

} else {

rc = al.doSkelHtml(htmlmod,"%HTML_OUT", hwriter); .2/

rc = 1; // HTML has been done .3/
 }

232 e-business Application Solutions on OS/390 Using Java Vol. I

These explanations relate to the preceding example:

Notes:

.1/Dynamic page by JSP, return with 0.

.2/Dynamic page by templates file, so we invoke the doSkelHtml method.

.3/We return with 1 to indicate that no further processing has to be done.

11.2.2.3 The AddLookHash Class
This class, with the collaboration of the JNI DLL libhjreadmc, is the template
services provider that we used from class IwtBase. It contains several references
to entry points in the DLL module. We can look at some definitions:

public native int dohtml(

int ipRef,String impnm,String sklnm,char hpt,.......

public native int doinBuild(

int ipRef,String impnm,String sklnm,String in_data,int trclvl);

public native int dooutParse

int ipRef,String impnm,String sklnm,int out_p,......

You can recognize the methods which were called by class IwtBase to the three
major required functions:

1. Build input for IMS from the container.

2. Parse output from IMS into the container.

3. Use the container contents to build the dynamic HTML page.

This Java class is a wrapper for a lot of native code. Besides the three major
methods, other related help functions are provided. The DLL containing all the
required entry points is named in this method by the following statement:

 static

 {

 System.loadLibrary("hjreadmc");

 }

11.2.2.4 The hreadmac.c Routine
This routine is the template processor. We do not describe it in detail here and
only provide you a sample of what could be done with this approach. We show the
templates required to make the input for one of the sample programs MANUFAIL,
and to parse the output.

 %IMS_IN

%# For IMS_IN Enter elements in following sequence

 %# --

%# pass the part name with trailing null

 %# --

MFLD=in_man LENGTH=3ð FILLUP=BLANK .1/
 %}

 Chapter 11. Accessing IMS Transactions from the Web 233

 %IMS_OUT

 %# --

 %# --

 SEGM=ð

 MFLD=ca_rc LENGTH=1 .2/
 MFLD=ca_sqlcode LENGTH=9

 MFLD=ca_message LENGTH=2ð

 MFLD=ca_cnt LENGTH=9

%DO (I) ð $(ca_cnt)

 MFLD=out_man$(I) LENGTH=3ð

 %}

 %}

These explanations relate to the preceding example:

Notes:

.1/The input is just one field, besides of course the IMS transaction code.
The field was received from the browser under the name in_man. It is
placed in the input from pos 0-30.

.2/The output contains a prefix with some header fields. They are put by
their corresponding names into the container as new varvals. The last field
is repetitive and is pulled from the IMS ouput via a do loop. The upper limit
of the do was determined by the ca_cnt. The resulting manufactors are put
in the containers with the following keyname:

 out_man_n (n = ð...ca_cnt-1)

Once in the container, they can pulled out for the building of the dynamic
HTML pages.

The hreadmac is the main file for the template processing, but in reality many of
other routines are called. These are located in other files of the IWT code:

hvarlook.c Routines to fetch values from the container

hadrfval.c Routines to put values in the container

hgetoken.c Routines to find tokens in input

hfilerd.c Routine for reading templates

hgdllent.c Routine load DLL routines

hmvsdump.c Routine to print storage in dump format

hutilrtn.c Several helper routines

11.2.2.5 The Appc2Ims Class
Refer to 11.2.1.4, “The Appc2Ims Class” on page 221 for a description of this
class.

234 e-business Application Solutions on OS/390 Using Java Vol. I

11.2.2.6 The hjav2apc.c Routine
Although this routine is the same as for the “non-IWT APPC,” we use here a
different entry point due to the way the input string for IMS and the output segment
from IMS are passed and handled. In “non-IWT” the build and parse is done by
Java classes, here it is done by template processing. The entry point used is:

JNIEXPORT jint JNICALL Java_itso_ibm_ims_Appc2Ims_doapcIWT

(JNIEnv \jne,jobject jcaller,jstring jluName,jstring jtpName,

 jint in_p,

jstring jmodeEnt,jint aciaction,jint timeout,jchar jcomflag,

jint transtate,jint ipRef,jint trclvl)

11.2.2.7 The hapc2ims.c Routine
This routine is exactly the same as in the APPC case; refer to 11.2.1.10, “The
hapc2ims.c Routine” on page 224 for any explanation.

11.2.2.8 The hhprintf.c Routine
Refer to 11.2.1.11, “The hhprintf.c Routine” on page 225 for details.

11.2.2.9 hjgetref JNI C Routine (MVS/DLL libhjgetref.so)
Refer to 11.2.1.12, “hjgetref JNI C Routine (MVS/DLL libhjgetref.so)” on page 225
for details.

11.2.2.10 hpRefDEf C Routine
Refer to 11.2.1.13, “hpRefDef C Routine” on page 226 for details.

11.2.2.11 hJNIRtns C Routine
Refer to 11.2.1.14, “hJNIRtns C Routine” on page 226 for details.

 11.2.2.12 DFSLUEE0
Refer to 11.2.1.15, “DFSLUEE0” on page 226 for details.

 11.2.2.13 HCMRCV
Refer to 11.2.1.16, “HCMRCV” on page 227 for details.

 11.2.2.14 Conclusion
IBM Web templates (IWT) is not a product, it is an “as is” bundle of routines, which
shows how easy it can be to build solutions for accessing existing IMS and CICS
transactions from the Web. JSP brings the build of dynamic HTML pages and
templates help to build and parse the messages to/from the TM systems. The
basic concept element is the container, which is referenced and populated in
almost all modules. It is the information vehicle throughout the design. The
container is considered to be a concept. The implementation, depending on the
usage, can be in a linked list or in a hashtable.

11.3 Access to IMS Using a Servlet/MQI
 Attention

In the following sections we refer to various pieces of sample code. You can
find the code on the disk enclosed in this book. Refer to Appendix A,
“CD-ROM” on page 299 for details.

 Chapter 11. Accessing IMS Transactions from the Web 235

Client programs can connect to the Message Queueing Manager (MQM) in two
ways:

1. They can connect via a direct attachment if they are running as an adjacent
process on the same platform. This will be called the MQM binding.

2. Remote clients can connect to the MQM via a bidirectional client channel. This
is the client support.

In both cases, all queues are located in the MQM. MQSeries Client for Java and
MQSeries Bindings for Java, provide support to enable Java applets and
applications to use MQSeries applications.

The two Java packages involved are:

1. MQSeries Client for Java

This is an MQSeries client written in the Java programming language for
communicating via TCP/IP. It enables Web browsers with Java applets and
applications to issue calls and queries to MQSeries, giving access to mainframe
and legacy applications over the Internet without the need for any other
MQSeries code stored on the client machine.

2. MQSeries Bindings for Java

This package enables you to write server-side MQSeries applications using the
Java programming language. These applications communicate directly with
MQSeries queue managers to provide a high-productivity and high-performance
development option.

Both packages are available for download from URL:
http://www.ibm.com/software/ts/mqseries

Figure 118 on page 237 shows clearly both options. The client option is explicitly
used and explained in Integrating Java with Existing Data and Applications,
SG24-5142.

236 e-business Application Solutions on OS/390 Using Java Vol. I

Non-Conversational Transaction

A

T

T

A

C

H

M

E

N

T

O

T

M

A

MQM V 1.1.4 / 1.2
Manager

Open Replyqueue

Connect

Open toIMSqueue

Put message in toIMSqueue

Close toIMSqueue

Close Replyqueue

Disconnect

IMS/ESA

Get message from Replyqueue
with correlid

out of syncpoint

Webserver

M

Q

I

B

I

N

D

BROWSER

HTML

JAVASCRIPT

Figure 118. MQM Bridge to IMS Protocol

In both cases, the MQI/IMS bridge is used to reach IMS. As such, the command
flow used in both cases is about the same. The MQI/IMS bridge uses two
channels through a special storage class defined as communicator with IMS. One
channel will be used as a “To Channel,” the other one is the “From Channel.”

Following are the definitions of the channels as they were used during our testing.

DEFINE STGCLASS(TOIMSB) PSID(ð1) DESCR('OTMA TO IMSB') + .1/
 REPLACE XCFGNAME(ITSOIMS) XCFMNAME(APIMSA58) .2/
 \\\\\\

DEFINE QLOCAL('MQS2.TOIMSB') + .3/
 REPLACE +

\ COMMON QUEUE ATTRIBUTES

DESCR('OTMA TO IMSB') +

 SHARE +

 NOTRIGGER +

 DEFSOPT(SHARED) +

 DEFPSIST(NO) +

\ LOCAL QUEUE ATTRIBUTES

GET(ENABLED) +

 STGCLASS(TOIMSB) +

INDXTYPE(NONE)

 \\\\\\

DEFINE QLOCAL('MQS2.FROMIMSB') + .4/
 REPLACE +

\ COMMON QUEUE ATTRIBUTES

DESCR('REPLYQ FROM IMSB') +

PUT(ENABLED) +

DEFPRTY(5) +

 DEFSOPT(SHARED) +

 DEFPSIST(NO) +

\ LOCAL QUEUE ATTRIBUTES

 Chapter 11. Accessing IMS Transactions from the Web 237

GET(ENABLED) +

 SHARE

These explanations are related to the preceding example:

Notes:

.1/The TOIMS queue is defined within the special storage class, which
binds it logically with the target IMS.

.2/The communication between IMS and MQM uses the Extended Coupling
Facility (XCF), which can be used within a sysplex. IMS and MQM systems
wanting to communicate through the bridge must belong to the same XCF
group, in this case ITSOIMS. The storage class also defines the
destination.

.3/The TOIMS queue is linked with the special for IMS defined Storage
Class.

.4/The FROMIMS queue is a normal local queue whose name will be
specified in the header in the request to IMS, so that the response from IMS
can be directed to this queue.

The communication between MQM and IMS is done over the Open Transaction
Management Adapter (OTMA) protocol. This protocol is based on XCF. The
server implementation is part of IMS while MQM is the client. The client
implementation is done in a “queue” way: one queue is the “to IMS” channel to
send messages to IMS, and another channel acts as the “from IMS” channel where
we will try to get the response. The In-Message (request) and response are
correlated by a correlationID, which is returned by the send of the request so that it
can be used as a parameter when issuing the receive tentative.

Important points to keep in mind are the following:

� The connection to an MQM manager, being a rather costly operation, should
only be done once and existing connections should be preserved and reused.

� The preceding remark, in a minor way, is also valid for the “queue opens” and
we should look for reuse of the queue handles as well.

� The main difference between the APPC convID and the MQI references to
connection and queues is that the convID is session-related, while MQI
references are thread-related. As the consecutive interactions from a browser
to a Webserver can be backed by different threads, the MQI references have to
be saved on a thread base and not on a session base. The latter is currently
not supported and a solution is expected in a “Connection framework.”

From a programming point of view, the visible differences between a Java client
program and a Java bindings program are the following:

1. When using the MQSeries bindings, a different “package” is imported:

 import com.ibm.mqbind.\;

2. The MQEnvironment object cannot and does not have to be primed with TCP/IP
and channel/port information.

238 e-business Application Solutions on OS/390 Using Java Vol. I

3. As MQM and the attached process both run on the same platform, codepage
translation is not of a direct concern as in the client case, where the client runs
in an ASCII “little endian” mode, while MVS runs in EBCDIC “big endian” mode.

4. Used in a servlet environment, we should try to reuse the connection and the
queue handles. The fact that servlet invocations belonging to the same
session can be dispatched on a different threads will require a different
approach to achieve this goal.

The list of Java classes and C routines involved follows. Each component is
discussed later.

� parent class to instanciate the MQI framework and invoke it.

 � itso/ibm/ims/CMqi2Ims class

 � itso/ibm/ims/Mqi2Ims class

 � itso/ibm/ims/IMSInputOutput class

 � itso/ibm/ims/IMSException class

 � itso/ibm/ims/TMState class

 � itso/ibm/ims/BuildParse interface

� itso/ibm/ims/[IMSTRAN][IMSModName]edit classes implementing BuildParse

� libwmqjbind.so provided with the com.ibm.mqbind package

11.3.1 The parent Class in the MQ Solution
The parent class is part of the servlet. Following is an excerpt of the code:

Hashtable thrdht = null; .1/

if (thrdht == null) {

thrdht = new Hashtable();

 }

tmstate = new TMState();

jmq = new CMqi2Ims();

 jmq.setReqht(reqht);

 jmq.setThrdht(thrdht);

 jmq.setTmstate(tmstate);

 jmq.setTrclvl(trclvl);

 jmq.setNodisc('Y');

 try i

 jmq.doIms();

} catch(IMSException e) {

System.err.println("TSmqic_main IMSException " +e);

 }

These explanations relate to the preceding example:

Notes:

.1/One additional member variable, a hashtable, has been declared to
contain all thread-related references.

The first time we use this servlet, the hashtable is instanciated. A hashtable can
contain all kinds of objects. Originally being empty, it will be populated with MQI

 Chapter 11. Accessing IMS Transactions from the Web 239

references. This hashtable, besides other elements, is passed to the CMqi2Ims

object, which then will be able to populate it after activating MQI references, so that
next time it can reused. In our implementation, we put the Qmgr object into the
hashtable.

11.3.2 The CMqi2Ims Class
This class, instead of instanciating Mqi2Ims, inherits from that class. Consequently,
all variable/method members of Mqi2Ims are reachable by CMqi2Ims. This class
concentrates on the building of the Input segment for IMS. After the build is
complete, the class invokes the inherited domqi method of Mqi2Ims. On return from
IMS, this class directs the parsing of the segments into the request hashtable. The
classes used for the IBM “Input-Build” and the “Output-Parse” are dynamically
determined at runtime, but must respond to the same Java implementation. In this
class the same classes and methods are used as in the APPC case. For further
explanation, refer to 11.2, “Connecting to IMS Based on APPC” on page 216.

11.3.3 The Mqi2Ims Class
This class contains the MQI calls wrapped in one domqi method. Internally, the
method works via a Decision Logic Table (DLT) principle. At the end of one
particular action the result is evaluated and the next action is determined.

 /\-------------------MQCONNECT-------------------------------\/

 /\\\/

 /\ \/

 /\\\/

 case MMQCONN:

qMgr = new MQQueueManager(mqMgr);

 /\--------------OPEN REPLY QUEUE----------------------------\/

 /\\\/

 /\ \/

 /\\\/

 case MMQOPENRQ:

int replyq_openOptions = MQC.MQOO_OUTPUT | MQC.MQOO_INPUT_AS_Q_DEF |

MQC.MQOO_INQUIRE | MQC.MQOO_SET;

r_queue = qMgr.accessQueue(mqReplyQueue,

 replyq_openOptions,

 mqMgr, //

null, // no dynamic qname

null); // no alternate user id

 /\--------------OPEN IMSTO QUEUE----------------------------\/

 /\\\/

 /\ \/

 /\\\/

 case MMQOPENIQ:

int putq_openOptions = MQC.MQOO_OUTPUT;

ims_queue = qMgr.accessQueue(mqImsToQueue,

 putq_openOptions,

 null, //

240 e-business Application Solutions on OS/390 Using Java Vol. I

null, // no dynamic q name

null); // no alternate user id

/\--------------PUT ON IMSTO QUEUE---------------------------\/

 /\\\/

 /\ \/

 /\\\/

 case MMQPUTIQ:

 /\---\/

toims = new MQMessage();

/\ build the message descriptor \/

toims.messageType = MQC.MQMT_REQUEST;

toims.replyToQueueManagerName = mqReplyMgr;

toims.replyToQueueName = mqReplyQueue;

toims.encoding = MQC.MQENC_NATIVE;

toims.format = "MQIMS "; // data in

toims.putApplicationType = MQC.MQAT_MVS;

toims.characterSet = mqcharset;

toims.messageId = MQC.MQMI_NONE;

toims.report = MQC.MQRO_COPY_MSG_ID_TO_CORREL_ID;

toims.persistence = MQC.MQPER_PERSISTENT;

 /\--\/

/\ build MQIIH header \/

toims.writeString("IIH "); // ð structure identifier l

 toims.writeInt(MQIIH_VERSION_1); // 4 version

toims.writeInt(MQIIH_LENGTH_1); // 8 length = 84

 toims.writeInt(MQC.MQENC_NATIVE); // 12 Encoding

 toims.writeInt(ð); // 16 Code Characterset

toims.writeString(MQFMT_NONE_ARRAY); // 2ð format input data 8

 toims.writeInt(MQIIH_NONE); // 28 flags

 toims.writeString(" "); // 32 LtermOverride

 toims.writeString(" "); // 4ð MfsMap

toims.writeString(MQFMT_NONE_ARRAY); // 48 Reply2Format

toims.writeString(MQFMT_NONE_ARRAY); // 56 Authentication

 toims.write(transactionId,ð,16); // 64 TransactionID

toims.writeString(transtate); // 8ð transtate

 toims.writeString(MQICM_COMMIT_THEN_SEND); // 81

 toims.writeString(MQISS_CHECK); // 82

 toims.writeString(" "); // 83

 /\--\/

imsTran = inOut.getImsTran();

input = inOut.getInputString();

ll = (short)(12 + input.length());

/\ build LL ZZ \/

 toims.writeShort(ll);

 toims.writeShort(ð);

imstran8 = inOut.stringPad(imsTran,' ',8);

sendString = imstran8 + input;

 toims.writeString(sendString);

/\--------------GET FROM REPLY QUEUE-------------------------\/

 /\\\/

 /\ \/

 /\\\/

 case MMQGETRQ:

MQMessage fromims = new MQMessage();

String msgId = new String(toims.messageId);

fromims.correlationId = toims.messageId;

 Chapter 11. Accessing IMS Transactions from the Web 241

 fromims.characterSet=mqcharset;

// Set the get message options..

MQGetMessageOptions gmo = new MQGetMessageOptions(); // accept the defaults

gmo.waitInterval = timeout \ 1ððð;

gmo.options = MQC.MQGMO_NO_SYNCPOINT | MQC.MQGMO_WAIT |

 MQC.MQGMO_ACCEPT_TRUNCATED_MSG;

 //------------------------------

r_queue.get(fromims, gmo, 4ð96);

 //------------------------------

String corelId = new String(fromims.correlationId);

String rmsgId = new String(fromims.messageId);

/\ message is OK \/

dataLength = fromims.getDataLength();

imsRecvLength = dataLength - MQIIH_LENGTH_1;

outputSegNum = ð;

/\ analyze MQIIH header \/

fromims.setDataOffset(4ð); // skip TO MFS ModName

 inOut.setImsModName(fromims.readString(8));

fromims.setDataOffset(64); // skip TO transactionId

 fromims.readFully(transactionId,ð,16);

fromims.setDataOffset(8ð); // skip TO transtate

transtate = fromims.readString(1);

commitmode = fromims.readString(1); // commit mode

secscope = fromims.readString(1); // security scope

currOffset = ð;

maxOffset = imsRecvLength;

fromims.setDataOffset(84); // skip TO messagedata

while (currOffset < maxOffset) {

ll = fromims.readShort();

zz = fromims.readShort();

rcvstring = fromims.readString(ll-4);

 inOut.getOutputVector().addElement(rcvstring);

 outputSegNum++;

currOffset += ll;

/\ endwhile \/

 /\--------------CLOSE IMSTO QUEUE---------------------------\/

 /\\\/

 /\ \/

 /\\\/

 case MMQCLOSIQ:

 ims_queue.close();

 /\--------------CLOSE REPLY QUEUE---------------------------\/

 /\\\/

 /\ \/

 /\\\/

 case MMQCLOSRQ:

 r_queue.close(); //

 break;

/\--------------DISCONNECT FROM MQM--------------------------\/

 /\\\/

 /\ \/

 /\\\/

 case MMQDISC:

242 e-business Application Solutions on OS/390 Using Java Vol. I

 qMgr.disconnect();

You may recognize the steps that are required to call a response mode transaction.

Two groups of elements could be saved for the next pass from the user's browser
with the Webserver:

1. Thread-related elements (Qmgr and Queue handles);
this is a performance issue.

2. Session-related elements (TransactionID, transtate);
this is required for conversational transactions.

A session has more a conceptual meaning than just being physical
connection-related. All interactions between a user and his/her browser, till it is
switched off, are considered to belong to the session.

As an example, we show the flow for a “response mode” transaction in Figure 119.

Correlation Id

ToImsQueue

O

T

M

A

I

M

S

/

V

S

FromImsQueue

B

R

I

D

G

E

IMS/VS
MQM

C

H

I

N

Bound Attached
Process

MQClient

Client Channel

MQBind

Java
Applet

Java
Servlet

Figure 119. Message Queue Manager Connections

The reasoning behind the fact that both queues (To, From) are opened at the
beginning, is that as a response mode transaction it requires an answer. This
implies that if the From queue cannot be opened successfully, it is useless to send
the transaction. The command/data flow is self-explanatory. The matching
between the input and output message is based on the correlation ID.

The receive call supports a timeout, which is required in the case of IMS. Usually a
timeout is not related to a malfunction, but is due to a queueing problem which
could result from a Message Processing Region (MPR) being not available, or from
long queueing delays.

 Chapter 11. Accessing IMS Transactions from the Web 243

11.3.4 The IMSInputOutput Class
Refer to 11.2, “Connecting to IMS Based on APPC” on page 216 for details about
this class.

11.3.5 The TMState Class
int mtranstate = ð;

byte[] mtransactionId = new byte[16];

 /\---------------------------\/

public void valueUnbound(HttpSessionBindingEvent be) {

 System.out.println("++TMState_valueUnbound");

if (mqi2ims != null) {

} else {

mqi2ims = new Mqi2Ims();

 mqi2ims.setItranstate(mtranstate);

 mqi2ims.setTransactionId(mtransactionId);

 }

 mqi2ims.runDown();

 }

 /\---------------------------\/

The TMState class contains specific variables and methods for the Mqi2Ims class
and the IMS/OTMA protocol linked to the MqiBridge.

The ValueUnbound method will be scheduled when the logical session between the
browser and the Webserver is terminated, for instance after a 30-minute inactivity
timeout. It may be required to schedule a rundown of the session-related MQM
activity. This will certainly be required when we have an outstanding IMS
conversation. The mtranstate allows us to determine whether or not we are
confronted with this case.

To terminate an IMS conversation, we should send the message /EXIT through the
queue, together with the state information that was preserved in the TMState object.

11.3.6 The BuildParse Interface
Refer to 11.2, “Connecting to IMS Based on APPC” on page 216 for details about
this class.

11.3.7 [IMSTRAN][IMSModName]edit Classes Implementing BuildParse
Refer to 11.2, “Connecting to IMS Based on APPC” on page 216 for details about
this class.

 11.3.8 libwmqjbind.so
The MQBind solution is composed of classes that are used from the Java code, but
the Java code itself refers to a DLL (.so) module written with the Java Native
Interface (JNI). This module has to be accessible via the LIBPATH.

244 e-business Application Solutions on OS/390 Using Java Vol. I

Part 4. Using Servlets and JavaServer Pages on OS/390

Server-side logic, controlled by a Webserver, has been popular since the
introduction of the first Webserver on OS/390. In the past few years, we have seen
a shift from scripting-based server-side logic (CGI) via C/C++ plugins to Java. In
Domino Go Webserver Version 4.6.1 for OS/390, Java servlet support was
introduced. In Lotus Domino Go Webserver Release 5.0, the servlet support was
extended with functionalities, such as session management, and an applet-based
browser application was added to make the configuration and management of
servlets easier.

WebSphere Application Server for OS/390 V1.1 also supports JavaServer Pages,
another interesting variation of performing Java server-side logic. The JavaServer
Page eliminates the need to have the HTML mark-up inside the Java (business
logic) programs. The JavaServer Page in itself is the mark-up (HTML) and it
contains just a tiny interface to the real Java logic.

It is hard to say if the use of JSPs will be a final solution for server-side logic, but at
least we can say that it is a very smooth way of developing applications and we
can certainly recommend it.

In this part of the book we explain JavaServer Pages in detail and make a brief
comparison with Java servlets. We also include JSP examples for your
consideration. One chapter describes how to create an entire Web site including
server-side logic using NetObjects Fusion. We will not talk about CGIs or C/C++
plugins, as we only focus on Java solutions.

 Copyright IBM Corp. 1999 245

246 e-business Application Solutions on OS/390 Using Java Vol. I

 Chapter 12. Introduction

WebAS for OS/390, included in Domino Go Webserver 5.0 for OS/390, supports a
new powerful approach for dynamic Web pages: JavaServer Pages (JSP). The
JSP function is based on an early version of the Sun Microsystems JSP
Specification 0.91. It should be noted that future releases of the WebSphere
Application Server will support 0.92 and 1.0 Sun Microsystem JSP specifications.
Major changes were introduced with 0.92 and will require changes to 0.91 JSP
code.

JSP will dynamically generate a servlet at the server side by inputting JSP code
and automatically compile the JSP (only once per update or load) into a servlet.
JSP code is simply straight HTML with imbedded Java Code. The best use of JSP
is to handle the presentation logic. JSP can call JavaBeans to handle the business
or data access logic. JavaBeans can access various resources on the server,
including files, DBMS, CICS, IMS and so on, especially through Java connectors
provided by IBM. As a result, JSP is an easy-to-use and powerful solution for
generating HTML pages with dynamic content.

Besides HTML tags, Java code and JavaBeans objects, a JSP file can contains
NCSA tags (special tags that were the first method of implementing server-side
includes), <SERVLET> tags, and other JSP syntax.

The following is an example of a JSP code accessing a Java bean to list a
directory. We are using IBM JRIO classes to perform directory listing.

<bean name="dirBean" type="ListDirectoryBean"

 introspect="no" scope="request">

 </bean>

<% String dirName = "";

String[] files = new String[1ððð] ;

if (request.getParameter("listdir") != null)

dirName = request.getParameter("listdir") ;

 %>

 <html>

<BODY BACKGROUND="./javaback.jpg" LINK="#ððððFF" VLINK="#9966FF" TEXT="#ðððððð" >

<h2>Enter File Directory or PDS to list: </h2>

<form method=get action="ListDir.jsp" >

<input name=listdir size=5ð maxlength=5ð value="<%=dirName%>">

 <h3> Note: for non hfs files, prefix with // </h3>

 <%

if (request.getParameter("listdir") != null)

 {

%><h1>Directory for <%=dirName%> </h1><%

 try {

files = dirBean.getDir(dirName);

 }

catch (Exception e)

{ %>
<h3> No Directory file found </h3><% }

for (int i = ð; i < files.length; i++)

 {

 %>
<a href="../servlet/Showfile?file=<%=dirName+"/"+files[i]%>">

 <%=files[i]%><%

 }

 }

 %>

 </form>

 </html>

Here is the ListDirectoryBean that uses IBM JRIO classes.

 Copyright IBM Corp. 1999 247

 import java.io.\;

 import com.ibm.recordio.\;

public class ListDirectoryBean {

public String[] getDir(String directoryName)

{ IDirectory dir = Directory.getInstanceOf(directoryName);

 if (!dir.exists())

{ throw new IllegalArgumentException(

"com.ibm.recordio.examples.portable.ListDirectory: \"" +

directoryName + "\" not a directory"); }

 String[] files;

files = dir.list();

 return files;

 }

 }

For more information on JSPs, refer to the IBM Websphere Application Server
Guide, downloadable from or URL:
http://www.ibm.com/software/webservers/appserv/library.html#v1o56 .

248 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 13. How Java Servlets Work

Java servlets are Java programs that run inside a Java-enabled Webserver. Java
servlets extend the function of the Webserver beyond the standard facility offered
by the Webserver. Unlike other technologies that do this, such as CGI, FastCGI,
ICAPI, GWAPI, and so on, Java servlets adhere to the JavaSoft servlet model.
This means that in principle, not only are servlets portable between platforms, but
also between Webservers from different manufacturers.

When writing a Java servlet, the Java program uses the servlet API, as specified by
Sun. The Webserver is responsible for handling the servlet environment, including
the loading of a servlet, support of the servlet API and the unloading of the servlet.
The available OS/390 Webservers will support the Java HttpServlet classes, and
the servlet will use the API defined within HttpServlet classes.

The important part to understand when using the servlet API is the usage of the
following methods:

 � init().

This method runs only once, at the time the Webserver loads the servlet. The
servlet will be loaded either as a preload request or the first time it is requested
by a client. The servlet will remain loaded until the Webserver shuts down or
until it receives a manual request by the Webserver's operator interface. In
general, the servlet will remain loaded from one client request after another.
This provides great performance advantages. An example of a function that
you would typically code in the init method is to do the initial database
connect. This means that the database connection is performed once instead
of connecting and disconnecting for each database query.

 � destroy().

This method is also performed only once. It is invoked when the Webserver is
stopped. An example of a function to code in destroy is to do a disconnect of
a database, in case the connection was performed in the init() method.

� doGet() and doPost(). One of these methods is called for each service
request from a browser and is the heart of the servlet. The incoming method
from the browser could be GET or POST. A GET request will invoke the doGet
method of a servlet and a POST request will invoke the doPost method. In
either case, the doGet() or doPost() will handle the main logic of the servlet.

Examples of Java servlets are shown in various sections in this book, one of them
using a connection to DB2.

For full documentation on the servlet API, refer to the JavaSoft Web site at URL:
http://www.javasoft.com

 Copyright IBM Corp. 1999 249

250 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 14. How a JavaServer Page (JSP) Works

JSP technology has three key elements:

 � Reusable components

 � Scripting language

 � Compiled-page objects

At development time, a developer can use reusable components and scripting
language with HTML. At runtime, written JSP code is translated to other
executable language, and then executed as a compiled page object.

In ServletExpress, JSP supports JavaBeans as reusuable components, Java as
scripting language and servlets as a compiled page object. After all, the JSP is
scripting language, but it works as a servlet internally.

14.1 Execution Process of JSP Code in ServletExpress
This section decribes how the ServletExpress “engine” handles JSP.
Understanding this process helps you solve JSP-related problems.

Figure 120. Execution Process of JSP

 Attention

The path shown in Figure 120 may be different in your case. It depends
whether you have WebSphere Application Server for OS/390 V1.1 installed or
ServletExpress. Refer to 4.2.1, “Configuring WebSphere Application Server for
OS/390 V1.1” on page 36 for details regarding the location of the Webserver
files.

Referring to Figure 120, the following steps take place when requesting a JSP:

 Copyright IBM Corp. 1999 251

1. The Web browser or servlet code requests a JavaServer Page file. The
JavaServer Page file is identified to the server by a .jsp extension.

2. The Webserver routes this request to ServletExpress.

Note: In order to enable the Webserver to do so, the following statement
should be in the httpd.conf file.

 Service /\.jsp /usr/lib/libadpter.so:AdapterService

3. ServletExpress routes this request to the pagecompile servlet.

Note: ServletExpress will create a directory called pagecompile in the
/usr/lpp/ServletExpress/servlets directory and WebAS will do so in
/usr/lpp/WebSphere/AppServer/servlets. We found that we had to change the
permission bits for the /usr/lpp/ServletExpress/servlets directory to 777 to
allow for the creation of the pagecompile directory. If you do not change the
permission bits of the servlets directory, you may receive the following
message:

Error getting compiled page.

Cannot create directory /usr/lpp/ServletExpress/servlets/pagecompile

4. The pagecompile servlet looks for the corresponding physical file to be
URL-requested. At this time, the pagecompile servlet uses a request routing
rule directed by the httpd.conf file.

Note: The following statement instructs what configuration file is used in the
jvm.properties file.

Properties for Domino Go

 ncf.native.httpd.cnf.path=/web/java14/httpd.conf

5. The pagecompile servlet checks whether the corresponding compiled page
object (servlet bytecode) exists or not.
When the URL is:

 /ServletExpress/sampleð2_vaj.jsp

then the corresponding servlet will be:

 <SEroot>/servlets/pagecompile/_ServletExpress/_sampleð2__vaj_xjsp.class

Note: The following two parameters for the pagecompile servlet specify which
directory is used in order to store the compiled page object.

workingDir By default, <SEroot>/servlets

packagePrefix By default, pagecompile

By default, all compiled page objects (servlets) belong to the subpackage
pagecompile, and the root directory for these classes is <SEroot>/servlets.
Therefore compiled page objects are placed in a subdirectory of
<SEroot>/servlets/pagecompile/.

6. At this moment, the servlet code contains a qualified name and a written
date/time of the corresponding JSP.

7. If the servlet code does not exist or has a different date/time than the JSP file,
the pagecompile servlet translates the JSP to servlet code, and then invokes
javac in order to compile the servlet to bytecode.

8. The pagecompile servlet invokes the servlet code corresponding to the JSP file
and sends the results to the Web browser or servlet through the Webserver.

252 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 15. Designing a Server_side Plugin

There are several ways to develop Java Server Pages. You can edit the files using
any editor, or an application designed specifically for JSPs.

In our examples, we use a combination of JSP, Servlets, JavaBeans and HTML.

NetObjects ScriptBuilder was designed to assist with the development of JSPs.
NetObjects ScriptBuilder has many features and benefits.

� Color syntax highlighting and syntax checking: NetObjects ScriptBuilder visually
identifies pieces of code to speed and ease development and debugging.

� Automated tasks: NetObjects ScriptBuilder speeds development and reduces
errors through one click access to AutoScripting, automatic tag insertion, and
user-definable code templates. Document/Object Map: Using NetObjects
ScriptBuilder developers can simply navigate complex Web pages or object
code by visually browsing embedded functions and scriptable objects.

� Support for multiple scripting languages: NetObjects ScriptBuilder allows
scripters to develop in the language most familiar to them, while having the
flexibility to use other technologies without changing their development
environment.

The CD that comes with this redbook also contains a 30-day trial version of
NetObjects ScriptBuilder; see the CD for additional details.

You can also integrate the development of JSPs in NetObjects Fusion. If you
already have JSP code, you can attach it to a page in the site as external HTML.
Once this is set up and if you have NetObjects ScriptBuilder installed, NetObjects
Fusion will call ScriptBuilder to edit the JSPs. The process of adding existing JSPs
is very easy, but there are two ways to do this:

� You can select File , then select Reference HTML from menu.

� Or, you can click the external HTML button from the left toolbar.

These options lead to a similar pop-up menu. Figure 121 on page 254 shows the
resulting screen.

 Copyright IBM Corp. 1999 253

Figure 121. Reference HTML Page Window in NetObjects Fusion

Figure 122. Result Screen of Import External JSP in NetObjects Fusion

In this case, NetObjects Fusion will generate a new JSP file combined of two pages
at publishing. Of course, the extension of this file should be set to .jsp and the
name of the new file (not the one of the original external JSP code), should be
used when the code is called.

If we already have servlet code, we can include it in a page by means of a servlet
tag. In this case, the extension of the file should be .shtml or .jsp. But if the file
contains just HTML tags and servlet tags, the extension .shtml is recommended.
The reason is that some problems may occur when the servlet tag calls a complex

254 e-business Application Solutions on OS/390 Using Java Vol. I

servlet in JSP files. NetObjects ScriptBuilder can assist with adding the servlet tag,
or you can add it manually.

In case of writing the Java code in the page, add a text object to the place where
the servlet will be located, right-click the object, and select Layout HTML . After the
page HTML dialog appears, click Beginning of Body tab and write the required
servlet tag.

<SERVLET NAME="JDBCServlet2" CODE="JDBCServlet2.class" CODEBASE="/servlet">

</SERVLET>

15.1 Design of Each Page
How can we construct each page in a Web application? Both JSPs and servlets
are able to execute presentation and business logic. Both can call and use Java
classes or JavaBeans. In addition, servlets can call JSPs. Therefore, there can be
various combinations for implementing Web applications.

15.1.1 Things to Consider
We all want to be able to write code easier and faster. We all also want the code
to be easy to read. In addition, we want to be able to continuously change the
code. For those purposes, we need a separation of logic in the Web application.
This is where JSP can help.

Using JSP, we can concentrate at one thing at a time, be it either the presentation
logic or the business logic. At development time, you may start with only writing
HTML, eventually in a prototyping approach with the end-users. Then, we can
extend the application with Java code to perform the business logic. At the end,
we can add a small amount of Java code to the HTML in order to connect the two
kinds of logic.

Because separation of logic is the most important merit of JSP, we need to
maximize this when we write a Web application. There are several models that can
be used. The following are three that were looked at during this residency.

15.1.2 Model 1 - JSP and JavaBean
A request from the Web browser can be sent to the Webserver, requesting a JSP
using a URL exactly like a normal HTML page. The JSP code contains static
HTML tags as presentation logic and calls Java classes containing business logic.
(This JSP code itself should not have business logic. To perform business logic,
many components having elementary functions are needed. These may be for DB
access, CICS, IMS or other back-end resources).

This is the recommended model to use. In this way you can assign the
development of the physical page to a site designer and the bean or servlet to an
application programmer. This will also allow you to create Beans and servlets that
can be used by several JSPs.

Here is an example of how a JSP can be created using this model.

1. First you build a base HTML page that matches the site style and contains the
elements that you want displayed. This example mssearch2.jsp generates a
list box with search results and a form allowing you to repeat the search with
additional information. The base HTML looks like the following.

 Chapter 15. Designing a Server_side Plugin 255

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 FINAL//EN">

<bean name="jdbcBean" type="JDBCBean" introspect="no" scope="request">

</bean>

<HTML>

<HEAD>

 <TITLE>Search</TITLE>

<META NAME="Author" CONTENT="ITSO Residency">

</HEAD>

<BODY BACKGROUND="../javaback.jpg" LINK="#ððððFF" VLINK="#9966FF" TEXT="#ðððððð" TOPMARGIN=ð

LEFTMARGIN=ð MARGINWIDTH=ð MARGINHEIGHT=ð>

<table border=1 cellmargins=ð><tr><td>

<FORM NAME="Search" action="../mssearch2.jsp" method="get">

Search

<TABLE BORDER=ð CELLSPACING=ð CELLPADDING=ð WIDTH=19ð>

<TR><TD ALIGN="LEFT">Manufacturer</TD><TD ALIGN="LEFT">

<INPUT NAME= "manlist" VALUE="" SIZE=1ð MAXLENGTH=3ð onBlur="upper_case(this)"></TD></TR>

<tr><td colspan=2 ALIGN="right"><INPUT TYPE="SUBMIT" NAME="dbaction" VALUE="List" ></form></td></tr>

</table>

</table>

<FORM NAME="detail" action="/msdetail2.jsp" method="POST" target="detail">

<center>

<SELECT NAME=manlist size=1ð onChange="launch(this)">

<!-- You want to dynamically generate the select options -->

</select>

</TABLE>

</center>

Select a Manufacturer from the list for details.

<FORM NAME="Add" action="../msdetail.jsp method="get"><INPUT TYPE="SUBMIT" NAME="dbaction" VALUE="New" >

</form>

</FORM>

<p>JDBC Bean from a JSP Sample

</BODY>

</HTML>

2. Next you add the definition of the JavaBean and the method invocations to get
the data. The methods used are defined by the application programmer. In
this case they are connect, list, and disconnect. You also need to define some
local variables to get the passed parameter and a vector to hold the results.
You could also add two Javascript functions to the HTML page to preprocess
the data before another request is made.
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 FINAL//EN">

.2/<bean name="dataBean" type="dataBean" introspect="no" scope="request">
</bean>

<bean name="jdbcBean" type="JDBCBean" introspect="no" scope="request">

</bean>

<HTML>

<HEAD>

<%

String manlist = request.getParameter("manlist");

String temp;

Vector ManufacturerList;

if (manlist == null) {

manlist = "@";

 }

manlist = manlist.toUpperCase();

.3/jdbcBean.connect();
ManufacturerList = jdbcBean.list_Manufacturer(manlist);

jdbcBean.disconnect();

%>

 <TITLE>Search</TITLE>

<META NAME="Author" CONTENT="ITSO Residency">

</HEAD>

<BODY BACKGROUND="../javaback.jpg" LINK="#ððððFF" VLINK="#9966FF" TEXT="#ðððððð" TOPMARGIN=ð

LEFTMARGIN=ð MARGINWIDTH=ð MARGINHEIGHT=ð>

<script language="JavaScript">

<!--

function upper_case(field){

 f1=field.value.toUpperCase();

 field.value=f1;

 return(true);}

function launch(list) {

 var urlstring = "../msdetail2.jsp?dbaction=VIEW&manlist="+list.optionsffllist.selectedIndex“.value;

 window.open(urlstring,"detail");}

//-->

</script>

<table border=1 cellmargins=ð><tr><td>

<FORM NAME="Search" action="../mssearch2.jsp" method="get">

Search

<TABLE BORDER=ð CELLSPACING=ð CELLPADDING=ð WIDTH=19ð>

<TR><TD ALIGN="LEFT">Manufacturer</TD><TD ALIGN="LEFT">

<INPUT NAME= "manlist" VALUE="" SIZE=1ð MAXLENGTH=3ð onBlur="upper_case(this)"></TD></TR>

<tr><td colspan=2 ALIGN="right"><INPUT TYPE="SUBMIT" NAME="dbaction" VALUE="List" ></form></td></tr>

</table>

</table>

rest is identical

3. The last piece to add is the Java code to generate the selects option tags.

256 e-business Application Solutions on OS/390 Using Java Vol. I

<SELECT NAME=manlist size=1ð onChange="launch(this)">

<%

if (ManufacturerList.isEmpty()) {

%><option selected>No search string entered

 </select>

 <% }

 else {

for (int i = ð; i < ManufacturerList.size(); i++) {

 %><option value="<%=ManufacturerList.elementAt(i)%>">

 <%=ManufacturerList.elementAt(i)%>

<% } }

 %>

</select>

15.1.3 Model 2 - Combination of JSP and Servlet
Another model is also possible, in which the servlet performs business logic and
calls a JSP or HTML as presentation logic. If the JSP is called, it can retrieve data
from the servlet through a JavaBean or an attribute of the HttpRequest object. The
servlet can also call multiple JSPs or HTML sequentially to assemble one HTML
response. This is done by coding a callpage method in the servlet.

15.1.4 Model 3 - JSP Only

<%@ LANGUAGE="Java" %>
<bean name="manDax">
</bean>
<html>
.
<% if (......... %>
.
<%=manDax.getManName()%>

</html>

JSP
(presentation logic
+ business logic)

Java classes
(base components)

ManufacturerDatastore

Manufacturer

ManufacturerManager

ManufacturerDataID

Request

Response

Figure 123. JSP Only

This model is not good from the view of separation of logic, because JSP code has
both presentation and business logic. But it is more flexible than the previous two
models, so it is useful for the quick development of simple code.

 Chapter 15. Designing a Server_side Plugin 257

15.2 Writing JSP Code and Servlets
In the following sections, we discuss various considerations to keep in mind when
writing JSP code and servlets.

 15.2.1 NullPointer Exception
When we write a JSP or a servlet, we should be very aware of the “NullPoint
Exception” in advance. If we encounter this problem, it may take a long time to
debug. The NullPoint Exception happens when a method or property of an object
with a null value is referenced. In case of an array, just referencing the index may
cause the exception.

In any case, we should not let the code reference null values. This is very
important from a productivity viewpoint.

We usually use getParameter() or getParameterValues() methods in order to get
parameters from the Web request. At this time, we should always keep in mind
that these methods may return null. Therefore, we either should write code that
checks whether return values are null or not, and then does not use the result, or
replaces it with another value if it is null.

Also note that the following code in JSP may cause NullPoint Exception:

 <SELECT><%=getXXX().trim()%>

If the getXXX() method returns a null value, the code throws NullPoint Exception
because it cannot reference the trim() method.

Similarly, we should mention the case of data access beans generated by the
VisualAge for Java Data Access Builder. When we use these beans, we usually
use setXXX(...) in order to set the property. If we use these methods with "" (an
empty) value, an SQL Exception may happen when executing the SQL statement.
Therefore, make sure not to set a property with an empty value, usually leaving it
as null.

For the getXXX() method in JSP, we recommend you use the <insert> tag, if
possible. Because this tag is able to prevent NullPoint Exception for itself, it is
safer to use.

 15.2.2 OutOfMemory Exception
If you get the OutOfMemory Exception, you need to check the <repeat> tag in the
JSP. If you do not set an “end” attribute for the <repeat> tag, the code between
<repeat> and </repeat> is executed until the index reaches 2,147,483,647 or
IndexOutOfBoundsException happens. If IndexOutOfBoundsException does not
happen, the code falls into a situation similar to an infinite loop, finally causing the
OutOfMemory Exception.

In this case, examine the Java code to which the JSP is translated by the
Webserver and make sure the IndexOutOfBoundsException is generated in time.

If this is not the case, increase the memory size for the JVM. You can specify this
with the ncf.jvm.mx attribute in the jvm.properties file, as follows:

258 e-business Application Solutions on OS/390 Using Java Vol. I

Max Java Heap Size

 ncf.jvm.mx=35ð1ð8864

15.2.3 Debugging JSP Code
If there are any problems with your JSP code, you may see the following message
in your browser:

Error getting compiled page.

Unable to compile /usr/lpp/ServletExpress/servlets/pagecompile/_IWT/_PARThtml_xjsp.java

All compiler errors will be written to the ncf.log file if you have ncf.log tracing turned
on in your jvm.properties file. You can also debug your servlet by manually
compiling the java code that was produced by the Web server in the /pagecompile/*
directory.

15.2.4 The <insert> Tag
 Important

At the time of writing, the JSP specification was still undergoing changes. At all
times, we refer you to the URL of the JSP specification to verify your code. We
also refer you to Chapter 12, “Introduction” on page 247 for the levels of JSP
supported by WebSphere Application Server for OS/390 V1.1.

The Webserver supports very useful tags for JSP. One of them is the <insert> tag
we mentioned in 15.2.1, “NullPointer Exception” on page 258. Following is the
syntax of this tag:

<insert requestparm=pvalue requestattr=avalue bean=name

 property=property_name(optional_index).subproperty_name(optional_index)

 default=value_when_null>

 </insert>

We should use this in requestparm (for parameter), requestattr (attribute of request)
and bean. When the servlet calls JSP code, we can set the attribute of request
and bean in the servlet in order to transfer some data to the JSP using
setAttribute().

There are two things to consider when using this tag:

1. We cannot reference the property of attributes with the <insert> tag. For
example, if an attribute is an array of String, we cannot use its element with the
<insert> tag. (Of course, if it is just String, we can.) Therefore, if we need to
reference the property of an object transferred from a servlet in a JSP with the
<insert> tag, the object is declared by a <bean> tag in JSP.

2. The object should be “JavaBeans” in order to reference its property with the
<insert> tag. In other words, the Java class should have some methods for the
property, and the signature of the method should abide by the JavaBeans
specification. For example, the following tags work correctly when manList
bean has String getManName(int) and String getManListName():

<insert bean=manList propety=manName(1)></insert>

<insert bean=manList propety=manListName></insert>

 Chapter 15. Designing a Server_side Plugin 259

260 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 16. Samples of JSP/Servlet

In this chapter we provide JSP and servlet examples.

16.1 JSP and JavaBean
 Important

At the time of writing, the JSP specification was still undergoing changes. At all
times, we refer you to the URL of the JSP specification to verify your code. We
also refer you to Chapter 12, “Introduction” on page 247 for the levels of JSP
supported by WebSphere Application Server for OS/390 V1.1.

This code is an example of a JSP accessing a DBMS. Instead of using a servlet,
this example uses a JavaBean JDBCBean that has most of the business logic. The
JSP code just gets the result from the bean and then puts it between HTML tags.
The sample is started as ms2.html. It creates two frames. The left frame is for
search requests and results, and the right is for individual details.

The following example is the search frame. The file is mssearch2.jsp.

.1/<%@ LANGUAGE="Java" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 FINAL//EN">

.2/<bean name="dataBean" type="dataBean" introspect="no" scope="request">
</bean>

<bean name="jdbcBean" type="JDBCBean" introspect="no" scope="request">

</bean>

<HTML>

<HEAD>

<%

String manlist = request.getParameter("manlist");

String temp;

Vector ManufacturerList;

if (manlist == null) {

manlist = "@";

 }

manlist = manlist.toUpperCase();

.3/jdbcBean.connect();
ManufacturerList = jdbcBean.list_Manufacturer(manlist);

jdbcBean.disconnect();

%>

 <TITLE>Search</TITLE>

<META NAME="Author" CONTENT="ITSO Residency">

</HEAD>

<BODY BACKGROUND="../javaback.jpg" LINK="#ððððFF"

VLINK="#9966FF" TEXT="#ðððððð" TOPMARGIN=ð LEFTMARGIN=ð MARGINWIDTH=ð MARGINHEIGHT=ð>

<script language="JavaScript">

<!--

function upper_case(field){

 f1=field.value.toUpperCase();

 field.value=f1;

 return(true);}

 Copyright IBM Corp. 1999 261

function launch(list) {

 var urlstring = "../msdetail2.jsp?dbaction=VIEW&manlist="+list.optionsffllist.selectedIndex“.value;

 window.open(urlstring,"detail");}

//-->

</script>

<table border=1 cellmargins=ð><tr><td>

<FORM NAME="Search" action="../mssearch2.jsp" method="get">

Search

<TABLE BORDER=ð CELLSPACING=ð CELLPADDING=ð WIDTH=19ð>

<TR><TD ALIGN="LEFT">Manufacturer</TD><TD ALIGN="LEFT">

<INPUT NAME= "manlist" VALUE="" SIZE=1ð MAXLENGTH=3ð onBlur="upper_case(this)"></TD></TR>

<tr><td colspan=2 ALIGN="right"><INPUT TYPE="SUBMIT" NAME="dbaction" VALUE="List" ></form></td></tr>

</table>

</table>

<FORM NAME="detail" action="/msdetail2.jsp" method="POST" target="detail">

<center>

<SELECT NAME=manlist size=1ð onChange="launch(this)">

.4/<%
if (ManufacturerList.isEmpty()) {

%><option selected>No search string entered

 </select>

 <% }

 else {

for (int i = ð; i < ManufacturerList.size(); i++) {

 %><option value="<%=ManufacturerList.elementAt(i)%>">

 .5/<%=ManufacturerList.elementAt(i)%>
<% } }

 %>

</select>

</TABLE>

</center>

Select a Manufacturer from the list for details.

<FORM NAME="Add" action="../msdetail.jsp method="get">

<INPUT TYPE="SUBMIT" NAME="dbaction" VALUE="New" ></form>

</FORM>

<p>JDBC Bean from a JSP Sample

<% System.out.println("We made it to the end"); %>

</BODY>

</HTML>

.1/Specify the script language. At this time, only Java is supported. The <%@ %>
tag is used to direct a property that affects the entire JSP code.

.2/Declare the JavaBean (=java class) used by the JSP. The name of the tag and
attribute have changed in the JSP specification. This code is based on WebSphere
Application Server 1.1.

.3/The connect(), list_Manufacturer(manlist), and disconnect() methods are used to
call the javabean and perform the data access passing it a qualifier that is used for
the search. The <% %> tag is used to identify Java code inserted between HTML
tags.

.4/In Java Server Pages, Java code is inserted between HTML tags; if you looked
at the Java servlet generated from the JSP, you see that HTML is transformed to
corresponding Java code and then inserted between the other Java code. In order
to understand this part, you need to examine the Java code first, and then imagine
the other HTML code in between.

.5/One result value is inserted between HTML. The <%= %> tag is used to insert
just one value. Note that you should not use a semi-colon (;) at the end, since the
<%@ %> tag does not require it.

262 e-business Application Solutions on OS/390 Using Java Vol. I

16.2 Servlet and JSP
In this example, a servlet receives a request from a Web browser, processes
business logic, and returns the result using JSP code.

This servlet has the same role as JDBCBean in the previous example.

Note: Part of the sample code is omitted.

import java.io.\;

import java.util.\;

import javax.servlet.\;

import javax.servlet.http.\;

.1/import com.sun.server.http.\;
import java.sql.\;

.2/import com.ibm.ivj.eab.dab.\;

.2/import com.ibm.itso.ls36ð4.jsp.dbAccess.\;

public class Sample_man_db extends HttpServlet {

 private Manufacturer ivjman = null;

 private ManufacturerDatastore ivjmanDatastore = null;

 private ManufacturerManager ivjmanManager = null;

 private boolean manListRequest = false;

 private String requestType = null;

 private IVector vec = new IVector();

 private String manNameList[] = null;

 private String manAttr[] = null;

public void service(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

 .3/connect();
 .4/setResHeader(response);
 .5/setFromRequest(request);
 .6/execute();
 .7/genBO();
 .8/genHTML(request, response);
 .9/disconnect();
}

public void genBO() throws ServletException {

 try {

// ManListRequest("", LIST, UPDATE, SAVE)

if (isManListRequest()) {

manNameList = new String [vec.size()];

for (int i = ð ; i < vec.size() ; i++) {

manNameList[i] = ((Manufacturer)vec.elementAt(i)).getMan_name();

 }

 }

// SEARCH(SELECT ONE ROW)

else if (requestType.equals("SEARCH")) manAttr = getman().getAttributeStrings();

} catch (java.lang.Throwable ivjExc) {

 handleException(ivjExc);

 }

}

public void genHTML(HttpServletRequest request,HttpServletResponse response)

throws ServletException, IOException {

 if (isManListRequest()) {

 ((HttpServiceRequest)request).setAttribute("manNameList", manNameList);

 ((HttpServiceResponse)response).callPage("/cheong/ManList.jsp", request);

 }

 if (isManSearchRequest()) {

 ((HttpServiceRequest)request).setAttribute("manAttr", manAttr);

 ((HttpServiceResponse)response).callPage("/cheong/ManSearch.jsp", request);

 }

 Chapter 16. Samples of JSP/Servlet 263

 if (isManAddRequest()) {

 ((com.sun.server.http.HttpServiceResponse)response).callPage("/cheong/ManAdd.jsp", request);

 }

}

}

.1/This is needed in order to use
com.sun.server.http.HttpServiceResponse.callPage()..

.2/These are packages of base components.

.3/.4/.5/.6/.7/.8/ .9/These are methods that carry out part of the task handling
request.

.3/Connect to DB2, using the method of the base component.

.4/Set the HTTP header. This method uses
HttpServletResponse.setContentType(), setHeader(), and SetDateHeader(). It
prevents the Web browser from caching.

.5/This method sets properties of base components that are required for
processing the request from its parameters.

.6/Execute the SQL statement.

.7/In order to pass the result of the execution, prepare the data structure.

.8/Call the JSP and pass the data structure of the result.

.9/Disconnect from DB.

 16.2.1 JSP
.1/<%@ language=JAVA%>
.2/<% String manNameList [] = (String [])request.getAttribute("manNameList"); %>

<HTML>

<HEAD>

<TITLE>Manufacturer Information</TITLE>

</HEAD>

<BODY TEXT="#ðððððð" BGCOLOR="#FFFFFF" LINK="#ððððFF" VLINK="#663366"

ALINK="#ðððð88" BACKGROUND="/redfade.gif" NOSAVE>

<spacer type=block width=1ðð height=1ðð align=left>

<center>Manufacturer Information</center>

<blockquote>

<form name=dman method=get action="/servlet/Sample_man_db">

<table cols=2 width=9ð% ><tr>

<td align=right width=1ðð>Manufacturer Name:</td>

<td>

<select name=manlist>

.3/ <% for (int i = ð ; i < manNameList.length ; i++) {%>

<option selected><%= manNameList [i]%>

<% } %>

</select>

<input type=submit value=SEARCH name=button>

</td></tr>

<tr><td align=right>Address:</td>

<td><input name=address size=3ð &nmaxlength=3ð value="">

----------- omitted ------------

</tr>

</table>

<center>

</center>

<center>

264 e-business Application Solutions on OS/390 Using Java Vol. I

<input type=submit value=LIST name=button>

<input type=submit value=ADD name=button>

</form>

</blockquote>

</BODY>

</HTML>

.1/Declare Java as the script language for JSP.

.1/Receive the attribute transferred from the servlet. String elements cannot be
referenced with the <insert> tag. To use the insert tag, you should create a new
JavaBean having this attribute as a property in the servlet and declare it with the
<bean> tag in the JSP.

.3/Insert information received from the servlet between HTML tags.

 Chapter 16. Samples of JSP/Servlet 265

266 e-business Application Solutions on OS/390 Using Java Vol. I

Part 5. Using VisualAge for Java ET/390 and HPJ/390

For serious Java application development, an Integrated Development Environment
(IDE) has become a must. When developing Java you must be able to control the
source. Also, productivity-increasing features, such as an intelligent editor and a
Visual Composition editor, can make life much easier. IBM's premier IDE for Java
is VisualAge for Java. Today, VisualAge for Java Version 2.0 is available and in
October 1998, IBM released the specific version for OS/390 developers, called
VisualAge for Java, Enterprise edition for OS/390.

VisualAge for Java, Enterprise edition for OS/390 offers a full cross-platform
Integrated Development Environment (IDE), giving you the option of performing
activities on OS/390 remotely from the workstation by means of GUIs. The specific
OS/390 facilities are grouped under the name Enterprise Toolkit/390 (ET/390).
Also, part of VisualAge for Java, Enterprise Edition for OS/390 is an OS/390
compiler and runtime.

In this part of the book, we provide you with an overview and examples of the
specific OS/390-related features. This part is not meant as a full description of
VisualAge for Java, but it will help you to get started with ET/390.

 Attention

In this redbook we use the term HPJ for the native code compiler for Java on
OS/390 because HPJ was IBM's internal code name.

However, the official product name is VisualAge for Java, Enterprise Edition for
OS/390.

 Copyright IBM Corp. 1999 267

268 e-business Application Solutions on OS/390 Using Java Vol. I

 Chapter 17. Introduction

 Attention

HPJ/390, ET/390 or Native Code Compiler; what is what?

In this book and other literature you may find different terms regarding the new
OS/390 functionalities of VisualAge for Java: HPJ/390, ET/390, Native Code
Compiler.

� HPJ/390 is known as the OS/390 component that you will need to support
the ET/390 to perform its cross-platform activities. It includes a compiler
and a runtime.

� ET/390 is the specific “plugin” toolset that gives you the specific OS/390
features on top of the VisualAge for Java Enterprise edition.

� A Native Code Compiler is a generic term for all platforms and actually
means a compiler that turns source (also Java) into object code.

Before describing the details of using ET/390 or HPJ/390, we can compare the
purpose of each product.

HPJ/390 is a compiler. It is supported by IBM on a number of IBM platforms. Its
purpose is to take Java bytecode and produce machine code for the specific
platform. Machine code can execute much more quickly than interpreted bytecode.
Of course, the machine code, unlike the bytecode, is not portable to other
platforms. This is not a problem if the bytecode is not discarded.

ET/390 is a component of the IBM VisualAge for Java Integrated Development
Environment (IDE). VisualAge for Java runs on a workstation (for example,
Windows 95/NT). To develop a Java application for OS/390, it is possible to use
the VisualAge Integrated Development Environment (IDE) on the workstation. The
ET/390 component will transparently send the Java source and/or class files to
OS/390. Once on OS/390, there are ET/390 options that allow the application to
run in the OS/390 JVM or to be built into native code using HPJ/390. Figure 124
on page 270 illustrates the integration of the VisualAge for Java IDE and the
OS/390 runtime environment.

 Copyright IBM Corp. 1999 269

Performance
Analyzer

Remote
Debugger

Native Code
Compiler

ET/390

NFS

CICS
Transaction

Server

JVM

UNIX Systems
Services

Bytecode
Compiler

NT OS/390

Figure 124. Integration of the VisualAge for Java IDE and OS/390

You may choose not to use the facilities provided by ET/390. Here is a list of some
possible development scenarios:

1. Develop directly on OS/390.

In this case, you would typically use a terminal emulator supported by OS/390
and use a command line editor to develop your code5. The techniques are:

 a. Using telnet

Having established the telnet connection, use the vi editor to create/edit the
source and use javac or hpj to compile the source.

b. Using OMVS to start the UNIX shell on the 390

Within the OMVS shell, use oedit to create/edit the source and use javac
or HPJ to compile the source.

2. Develop on a workstation (for example, Windows 95/NT) and port to OS/390.

The techniques are:

 a. Using ftp

Use any PC-based text editor to develop the source. Maybe use javac
even on the workstation to produce the class files. Then use ftp to transfer
the files from the PC to the 390.

 b. Using NFS

When using NFS, you can work directly with OS/390 directories and files
on your PC as if they would be stored locally on your hard disk. When
using NFS, you have to mount the OS/390 HFS to be used first before you
can access it.

5 In OS/390 UNIX System Services, the ISPF editor is supported by the oedit command

270 e-business Application Solutions on OS/390 Using Java Vol. I

 Important

With OS/390, an NFS mountpoint coincides with the mountpoint of one
HFS (Hierarchical File System). For each HFS to be used, you need to
do an NFS mount on the workstation. When looking at the directory in
an HFS mounted to your workstation, you cannot “jump” to a directory
in another HFS that is not mounted.

When an HFS and its directories and files have been mounted, you will be
able to operate on the files with a PC editor.

Note: The use of both FTP and NFS requires that their matching servers be
running on OS/390. Care must be taken that ASCII-to-EBCDIC translation
occurs for source files, but not for class files.

The ET/390 extensions to VisualAge for Java combine and encapsulate most of
these scenarios into a seamless environment. The result is a sophisticated
Integrated Development Environment using the powerful features of the GUI
development. Applications can be built using the visual editing tools and deployed
onto the 390 from within the IDE with the click of a button or two.

 Chapter 17. Introduction 271

272 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 18. Using HPJ/390 - Scenarios

In this publication, we use High Performance Java (HPJ) as the name for the
Native Code Compiler for Java on OS/390. A native code compiler is also
available on other platforms (for example, Windows NT).

The input to HPJ/390 is a bytecode file, like a file that is output from javac and has
the .class file extension. The output from HPJ/390 is either a dynamic load library
(DLL) or a program object (executable).

Using the HPJ/390 compiler is very similar to using any other compiler. It has a
simple command line interface with a wide range of options. Many of the options
are not commonly used.

Here is an example of a simple command to produce a program object from a Java
class file:

 hpj Example1

Notes:

� This command will produce a program object with the name a.out.

� The input file must be named Example1.class.

� The directory containing Example1.class must be in your CLASSPATH
environment variable.

� The class Example1 is not part of a package.

The final three rules are applicable to all Java compiling.

A second example is a little more realistic:

hpj -o=eg2 example.Example2

Notes:

� This command will produce a program object with the name eg2.

� The input file must be named Example2.class.

� Example2.class must be located in a directory named example.

� The directory named example must be in your CLASSPATH
environment variable.

The following are more complex scenarios using HPJ/390.

 18.1 Scenario I
Imagine that you want to build a Java executable from a package that has two
classes, as follows:

� MyExe.Main contains the main method, and it references MyExe.refClass.

� MyExe.refClass does not reference any other user Java class.

To build the HFS Java executable, use the following hpj command:

hpj -make -o=MyExe MyExe.Main

 Copyright IBM Corp. 1999 273

Both classes are bound because the -follow option is the default. When the
application is built for the first time, the -make option is not useful, but there is no
harm in specifying it. The default is -exe and the Java executable MyExe is built.

If you subsequently modify MyExe.refClass, you can use the same hpj command to
rebuild MyExe. This time, the -make option is very useful because it tells the
bytecode binder to automatically regenerate any outdated “.o” files. If a class
extends or uses the outdated class, it too will be rebuilt.

In this example, the bytecode binder regenerates both .o files because
MyExe.refClass has been updated since the last build, and MyExe.Main references
MyExe.refClass.

 18.2 Scenario II
You want to build a Java DLL with many classes that are not necessarily related.
The classes are as follows:

 � MyPackage.Read

 � MyPackage.Write

 � MyPackage.Utilities

Specifying one class with the hpj command and using -follow will not work in this
build scenario because these classes do not reference each other. You can, of
course, specify all three classes on the command line, but a simpler hpj command
can be used as follows:

hpj -jll -nofollow -o=MyPackage.jll

 -classpath=MyPackage.zip

 -include=MyPackage.\ -make

You can use multiple -include and -exclude options to specify the classes that you
want to bind without using a ZIP file, so long as the -classpath is correctly set to
find the classes. In this example the three classes are zipped into MyPackage.zip.
The hpj command builds MyPackage.jll with the three classes. Because you do
not want referenced classes to be included in the DLL, the -nofollow option is
required.

If subsequently you updated one or two of the classes and you want to rebuild
MyPackage.jll with all the updated code, you can use the same hpj command.
However, if you want to rebuild MyPackage and only update one of the classes,
you should use the -partial option, as follows:

hpj -jll -o=MyPackage.jll -include=MyPackage.\

 -nofollow -classpath=MyPackage.zip

 -partial=MyPackage.Write

In this example, MyPackage.jll is rebuilt, and MyPackage.Write class is updated in
the Java DLL. In rebuild, you simply replace the -make option in the initial build
with the -partial option. You cannot specify both -make and -partial options in
the same hpj command. You can specify the -partial option multiple times in a
single hpj command. Note that -partial forces a bytecode rebinding of that class,
and it is also more efficient than the -make option when you know ahead of time
the classes that you want to rebind. You can also specify the wildcard character (*)
in the -partial option.

274 e-business Application Solutions on OS/390 Using Java Vol. I

 18.3 Scenario III
You can specify ZIP or JAR input files in the hpj command. This is appropriate
when you want to include all the classes in the ZIP or JAR file into the build. For
example, app.jar contains two Java packages: abc.staff.queryDB and
abc.staff.verifyDB. To build a Java DLL in the PDSE member MYPACK for all
the classes in app.jar, use the hpj command as follows:

hpj app.jar -jll -nofollow

 -o="//'FRED.PDSE.LOAD(MYPACK)'"

 -alias=abc/staff/queryDB.jll

 -alias=abc/staff/verifyDB.jll

Alias names are required for Java DLLs written to PDSE members. One alias
name is specified for each Java package that is in the Java DLL. All the classes in
app.jar are included in the Java DLL. All resource files in the JAR file are ignored
because the -resource option is not specified. The Java DLL is written to
MYPACK in the FRED.PDSE.LOAD dataset.

If you only want to include a subset of the classes in the ZIP or JAR file, you
should use the -include and -exclude options and specify the ZIP or JAR file, not
as an input file, but as a file in the -classpath option, as follows:

hpj -jll -nofollow -o="//'FRED.PDSE.LOAD(MYDLL)'"

 -alias=abc/staff/queryDB.jll

 -alias=abc/staff/verifyDB.jll

 -classpath=app.zip:$CLASSPATH

 -include=abc.staff.\

 -exclude=abc.staff.verifyDB.r\

In this example, a subset of the classes in the ZIP file is used in the build. For
example, if there is an abc.staff.verifyDB.read class in the ZIP file, it would not
be included in the MYDLL PDSE member. An alias name is specified for each
Java package.

18.4 Using Java DLLs
If you have created a Java DLL, you will want to be able to reference classes and
methods that are within the DLL.

Here is a simple example that shows the procedure.

1. Create the DLL.

A file named Adll.java contains the following:

public class Adll {

public void aMethod() {

System.out.println("This is Adll.aMethod");

 }

 }

a. Use javac to create a file named Adll.class:

 javac Adll.java

b. Now, convert the bytecode to a DLL using hpj:
hpj -jll -o=Adll.jll Adll

This will create a file names Adll.jll.

 Chapter 18. Using HPJ/390 - Scenarios 275

Note: Do not delete the file named Adll.class.

2. Create the executable that will call method aMethod in class Adll in the DLL
Adll.jll.

A file named TestDll.java contains the following:

public class TestDll {

 TestDll() {

Adll ad = new Adll(); // this class is in the dll

 ad.out;

 }

public static void main(String[] args) {

TestDll td = new TestDll();

 }

 }

a. Use javac to create a file named TestDll.class:

 javac TestDll.java

b. Now convert the bytecode to an executable using hpj:

hpj -o=Test TestDll -nofollow

The -nofollow option is used to prevent the hpj from binding Adll.class
into the Test executable.

To have successfully compiled these two files, you must have the current
directory in your CLASSPATH. Now you can test that the TestDll executable
runs and that it calls the class in the DLL just by typing:

 Test

To prove that the DLL is located and loaded at runtime, you can rename or
delete the DLL and rerun the executable.

276 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 19. HPJ Performance on OS/390

The HPJ/390 compiler produces an executable file from Java bytecode. The main
reason for using HPJ/390 is to produce an executable that runs faster than
interpreted bytecode. But how much faster is the executable? Is it worthwhile
creating a native compiled version of your application?

This section attempts to answer these questions.

 Attention

It is important that the results not be considered benchmark figures. This is just
one sample program that has been used in one specific environment. The
results may not be the same in your own environment.

19.1 The Sample Code

public class Trial implements Runnable{

int anInteger = ð;

 double aDouble = ð.ð;

int numberOfLoops = 1;

 int threadNumber = ð;

public Trial(int i, int t) {

 super();

numberOfLoops = i;

 threadNumber = t;

 }

public static void main(String args[]) {

int numberOfLoops = Integer.parseInt(args[1]);

int numberOfThreads = Integer.parseInt(args[ð]);

long tð = System.currentTimeMillis();

for (int i = ð; i < numberOfThreads; i++)

new Thread(new Trial(numberOfLoops, i)).start();

// wait until all threads are completed

while (Thread.currentThread().activeCount() > 1)

 ;

long t1 = System.currentTimeMillis();

System.out.println("Time for all threads: "+(t1-tð));

 }

public void run() {

 long tð,t1,t2,t3,t4,t5,t6;

tð = System.currentTimeMillis();

for (int i = ð; i < numberOfLoops; i++)

setADouble(i);

 Copyright IBM Corp. 1999 277

t1 = System.currentTimeMillis();

for (int i = ð; i < numberOfLoops; i++)

setAnInteger(i);

t2 = System.currentTimeMillis();

for (int i = ð; i < numberOfLoops; i++)

syncSetADouble(i);

t3 = System.currentTimeMillis();

for (int i = ð; i < numberOfLoops; i++)

syncSetAnInteger(i);

t4 = System.currentTimeMillis();

for (int i = ð; i < numberOfLoops; i++)

somethingMathematical(i);

t5 = System.currentTimeMillis();

float l = numberOfLoops / (float)1ððð;

 System.out.println(

"elapsed for setDouble : " + (t1-tð)/l);

 System.out.println(

"elapsed for setInteger : " + (t2-t1)/l);

 System.out.println(

"elapsed for syncSetADouble : " + (t3-t2)/l);

 System.out.println(

"elapsed for syncSetAnInteger : " + (t4-t3)/l);

 System.out.println(

"elapsed for somethingMathematical: " + (t5-t4)/l);

 System.out.println(

"elapsed time for thread " + threadNumber+": "+(t5-tð));

 }

public void setADouble(double d) {

aDouble = d;

 }

public void setAnInteger(int i) {

anInteger = i;

 }

public void somethingMathematical(int i) {

double d = (double)i;

d = Math.sqrt(d);

d = Math.tan(d);

 }

 public synchronized void syncSetADouble(double d) {

aDouble = d;

 }

public synchronized void syncSetAnInteger(int i) {

anInteger = i;

 }

}

278 e-business Application Solutions on OS/390 Using Java Vol. I

The program takes two parameters on the command line:

1. The first parameter is the number of threads.

2. The second parameter is the number of times each method is called.

 19.2 Summary Results
Rather than get into the controversial territory of absolute performance, we confine
the results to relative performance.

For this sample, using a wide range of input values, it appears that the HPJ version
consistently performed about 4.5 times faster than the bytecode equivalent. This
held true even when the number of threads was significantly increased.

 Chapter 19. HPJ Performance on OS/390 279

280 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 20. Remote Debugger on OS/390

Part of the ET/390 component for VisualAge Java Enterprise Edition is the Remote
Debugger.

20.1 Why to Use a Remote Debugger
If you are using the ET/390 component for VisualAge Java, you will be developing
code within the VisualAge IDE on your workstation. You will use the Export and
bind option of the ET/390 to transport Java files to the 390 and have them compiled
there.

Without leaving the IDE you can use the ET/390 Remote Debugging tool to debug
your Java code as it executes on the 390.

You can use all the features of a GUI debugger to step through your code, examine
the stack, look at your program's variables and much more.

20.2 Getting Started with the Remote Debugger
Your OS/390 Systems Administrator will have to ensure that the appropriate
runtime libraries are installed. You can read more about this in 5.2, “VisualAge for
Java, Enterprise Edition for OS/390” on page 58.

You will also have to set some project properties to turn on debugging. Complete
the following steps:

1. Right-click on your project.

2. Select Tools from the pop-up menu.

3. Select ET/390 from the next pop-up menu.

4. Select Properties from the next pop-up menu.

5. A window will appear. The left side shows a graphical tree.

a. Click Export and Bind Session to expand the branch.

b. Click Bind options .

c. Click the Build a Java executable in the main window.

d. Click the Data for debug and trace checkbox in the main window.

The window as displayed in Figure 125 on page 282 illustrates this procedure.

 Copyright IBM Corp. 1999 281

Figure 125. Turning on the Debug Option for ET/390

After you have successfully performed the Export and Bind phase of ET/390, you
are ready for Remote debugging. Complete the following steps:

1. Right-click on your project.

2. Select Tools from the pop-up menu.

3. Select ET/390 from the pop-up menu.

4. Select Debug executable from the pop-up menu.

After a short delay, this should start the Remote debugger.

Figure 126 on page 283 illustrates a sample of some possible debug activities.

282 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 126. A Scenario Using the ET/390 Debugger

The is a very complex-looking screen. Not all these windows need to be present.
But they all contribute something to your knowledge of what your program is doing.
In 20.2.1, “Session Control Window” through 20.2.5, “Call Stack Window” on
page 284, we briefly describe the purpose of each window.

20.2.1 Session Control Window
This window will always be present. It lets you choose a thread to debug.

 20.2.2 Source Window
This window displays the current source. We have found it useful to confirm that
the directory and filename displayed are the ones you expect.

The line that is currently being executed is highlighted. The icons on the toolbar
give you the ability to carry out a wide variety of tasks. These include stepping into
or over a method. You can set a breakpoint by clicking the line number where you
want your program to break.

20.2.3 Breakpoints List Window
You can bring up this window by clicking the Breakpoints menu and selecting the
List All option. This window is useful for helping you to keep track of where you
have set breakpoints. It also allows you to delete a breakpoint that you no longer
require.

 Chapter 20. Remote Debugger on OS/390 283

20.2.4 Program Monitor Window
You can bring up this window by double-clicking on a variable in the source
window. This window will show you the current value of the variable. It will also
allow you to change that current value.

20.2.5 Call Stack Window
You can bring up this window by selecting the Monitors menu option and clicking
on the Display call stack option. A call stack shows the path that the program
took to get to the current line of code.

284 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 21. Performance Analyzer for OS/390

Part of the ET/390 component for VisualAge Java Enterprise Edition is the
Performance Analyzer for OS/390.

21.1 Why Use a Performance Analyzer
If you are using the ET/390 component for VisualAge Java, you will be developing
code within the VisualAge IDE on your workstation. You will use the Export and
bind option of the ET/390 to transport Java files to the 390 and have them compiled
there.

Without leaving the IDE you can use the ET/390 Performance Analyzer to help you
understand and improve the performance of your Java programs.

21.2 Getting Started with the Performance Analyzer
Your OS/390 Systems Administrator will have to ensure that the appropriate
runtime libraries are installed. You can read more about this in 5.2, “VisualAge for
Java, Enterprise Edition for OS/390” on page 58.

You will also have to set some project properties to turn on trace file logging.
Complete the following steps:

1. Right-click on your project.

2. Select Tools from the pop-up menu.

3. Select ET/390 from the next pop-up menu.

4. Select Properties from the next pop-up menu.

5. A window will appear. The left side shows a graphical tree.

a. Click Run Executable Session to expand the branch.

b. Click the Generate trace checkbox.

c. Enter the “trace file name.”

d. Enter the “Mount point on host.”

e. Enter the “Mounted directory for trace file.”

Figure 127 on page 286 shows the procedure.

 Copyright IBM Corp. 1999 285

Figure 127. Setting the Trace File Details

You should now perform the Export and Bind phase of ET/390. This is described
in 20.2, “Getting Started with the Remote Debugger” on page 281.

Now you can run the application using ET/390. Complete the following steps:

1. Right-click on your project.

2. Select Tools from the pop-up menu.

3. Select ET/390 from the next pop-up menu.

4. Select Run executable from the pop-up menu.

Running the application will have resulted in the creation of the trace file. The
Performance Analyzer will use this trace file to calculate and display performance
information.

Now you are ready to run the Performance Analyzer. Complete the following steps:

1. Right-click on your project.

2. Select Tools from the pop-up menu.

3. Select ET/390 from the next pop-up menu.

4. Select Analyze Trace from the next pop-up menu.

After a moment, the Performance Analyzer - Window Manager will appear. Click
the Analyze Trace button. A window will appear asking you to enter the “trace file
name.” You can use the browse option to find the file you specified in the Project
Properties that you set earlier in this section.

286 e-business Application Solutions on OS/390 Using Java Vol. I

There are quite a number of Function Analysis tasks that can be performed. Click
the ones you want, then click OK. In a moment, you will see a window containing
data for each task you selected.

Figure 128 shows an example of a Function Analysis. This is the Dynamic Call
Graph.

Figure 128. The Dynamic Call Graph

You can find out more about the specifics of each of these analyses and more
about the Performance Analyzer in general by using the search engine of the
VisualAge for Java Integrated Development Environment.

To use the search engine, press F1 from the VisualAge for Java IDE. Select
Information Search . Enter “Introducing the Performance Analyzer (OS/390)” or
any similar string to get more information about the Performance Analyzer.

 Chapter 21. Performance Analyzer for OS/390 287

288 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 22. Mixing Java Bytecode and Objectcode on OS/390

At the time of writing, it was not possible to use native compiled classes or refer to
methods in native compiled classes from a Java bytecode class.

The scenario where you would want to do this could be, for instance, in servlets.
We found it a very useful architecture to have a “thin” servlet (as bytecode) and let
it use native compiled classes.

Interpreting bytecode is not as efficient as running an executable (or DLL). So it
would be convenient if only the core of the servlet was in bytecod e form. The
Webserver would call this bytecode core. The bytecode would then call Java DLLs
to do the major work. This would be a major performance advantage.
Currently, servlets only run as bytecode. However, it is not unlikely that
WebSphere Application Server on OS/390 will also support native compiled servlets
in the future.

There are various ways to get around this:

1. Consider a solution that does not use servlets.

You may convert your servlet logic into another type of Java server-side
program, like an RMI server, which will run as a native compiled program itself.
In this case you could use other native compiled classes as well. However,
you probably have good reasons for using servlets, so this workaround may not
be a feasible option for you.

2. Use servlets and some remote object mechanism such as CORBA or RMI.

Another workaround, and again not an ideal one in most cases, is to build your
native compiled classes under a Java server program. The Java server
program itself is also native compiled and is able to communicate with the
servlet by means of sockets, RMI or CORBA. In that case, each request from
the servlet to do the “heavy” work would result in a request to the Java server
program. In this case, you would get communication overhead and you may
loose some of the OO advantages if you run objects “de-coupled.”

3. Convert your servlet logic into a CICS/Java transaction, which, in itself, is native
compiled. Note, however, that, in this case you have to distill the HTML
presentation from the servlet and implement an IIOP client.

 Copyright IBM Corp. 1999 289

290 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 23. Using HPJ/390 with the Java Native Interface
(JNI)

This chapter describes the steps required to use the JNI interface with HPJ on
OS/390. It makes no attempt to teach you how to program using the JNI interface.
We refer you to Essential JNI: Java Native Interface, by Rob Gordon for general
information about JNI and the following URL for specific information regarding the
usage of JNI on OS/390:

 http://www.ibm.com/s39ð/java/jni_oe.html

 23.1 JNI Step-By-Step
This example implements the “Hello World” program. HelloWorld has one method,
a native method, that displays “Hello World,” and the implementation for the native
method is provided in the C programming language.

The following steps can all be done using the OS/390 UNIX shell.

1. Write the Java Code

Create a Java programming language class named HelloWorld that declares a
native method and implements the main method:

 class HelloWorld{

public native void displayHello();

static { System.load("LIBMYJNI"); }

public static void main (String[] args) {

 new HelloWorld().displayHello();

 }

 }

2. Convert the Java Source to Bytecode Use “javac” to produce the bytecode for
the Java programming language code that you wrote in Step 1.

 javac HelloWorld.java

3. Create the .h File

Use “javah” to create a JNI-style header file (.h file) from the HelloWorld class.
The header file provides a function prototype for the implementation of the
native method displayHelloWorld(), which is defined in the HelloWorld class.

 javah HelloWorld

4. Write the Native Method Implementation

Write the implementation for the native method in a native language (such as
ANSI C) source file. The implementation will be a regular function that is
integrated with your Java programming language class.

#define _XOPEN_SOURCE_EXTENDED 1

 #include <jni.h>

 #include <stdio.h>

 #include "HelloWorld.h"

 Copyright IBM Corp. 1999 291

JNIEXPORT void JNICALL Java_HelloWorld_displayHello(

 JNIEnv \env,

 jobject obj)

 {

printf("\nJava_HelloWorld_displayHello gets control\n");

 }

5. Create a Shared Library

Use the C compiler to compile the .h file and the .c file that you created in
Steps 3 and 4 into a shared library (DLL). The following makefile will automate
this for you:

.SUFFIXES: .o .c

Makefile to generate dll LIBMYJNI

You MUST have OS/39ð Optional Feature C/C++ installed

C_DLL = LIBMYJNI

C_OBJS = HelloWorld.o

C_CMD = c89

JNI_LINK = $(IBMHPJ_HOME)/lib/HPJDLL.x

JNIINC = -I $(IBMHPJ_HOME)/include -I /usr/lpp/java16/J1.1/include \

 -I /usr/lpp/java16/J1.1/include/mvs

DLL_CFLAGS = -W "c,expo,dll,noso,noexp,noshow,nolist,lang(extended)"

DLL_LFLAGS = -v -W "l,dll,dynam=DLL,map,msglevel=4"

.c.o:

$(C_CMD) -c $(DLL_CFLAGS) -DNEEDSIEEE754 $(JNIINC) -I. $<

all: buildOE

buildOE: $(C_OBJS)

$(C_CMD) $(DLL_LFLAGS) -o$(C_DLL) $(C_OBJS) $(JNI_LINK)> $(C_DLL).map 2>&1

clean:

rm -f $(C_OBJS) $(C_DLL).map $(C_DLL).x $(C_DLL)

6. Compile the Java Bytecode Using HPJ/390

hpj HelloWorld -o=HelloWorld

And finally, run the program.

 HelloWorld

23.2 Other JNI Tips
You might consider using C++ rather than C as the native implementation, as this
provides a cleaner object oriented approach. You can find out more about JNI
using C++ and about JNI generally by using the search engine of the VisualAge for
Java Integrated Development Environment.

To use the search engine, press F1 from the VisualAge for Java IDE. Select
Information Search . Enter OS/39ð JNI to get more information about the Java
Native Interface for OS/390.

292 e-business Application Solutions on OS/390 Using Java Vol. I

If you are using the Enterprise Edition of VisualAge for Java, you may want to
explore the C++ Access Builder. This will automate many of the previous steps,
leaving you to write just the C++ implementation and, of course, the Java calling
code.

Once again, to get more information, use the VisualAge for Java IDE search
engine. Search using “C++ Access Builder.”

 Chapter 23. Using HPJ/390 with the Java Native Interface (JNI) 293

294 e-business Application Solutions on OS/390 Using Java Vol. I

Chapter 24. The Jport Utility

The Jport Utility tests packages or class files during the export and bind of a
package to OS/390, if in the setup of the properties for the bind (under the export
and bind properties) the checkbox for verify portability is checked. Figure 129
illustrates this.

Figure 129. Verify Portability Option in Bind Options

The Jport Utility checks to insure that all referenced packages and classes are
available on OS/390. One of the packages, for example, that is not provided on
OS/390 is the awt (it does provide the remote awt).

The jport utility was exercised by first doing an export and bind on a package that
only used supported packages. No log messages were received and the export
and bind proceeded to a normal conclusion. Then a package was put together that
used the java.awt package. During the export and bind of this package, a
message box appeared that indicated that an unsupported package was referenced
and the jport test failed. The export of the .class file and the .java file continued to
completion, but the bind was not performed. The log showed that the application
was not portable.

Here we show the code that used the java.awt package:

 package awttest;

 import java.awt.\;

 import java.awt.event.\;

 /\\

\ This type was created in VisualAge.

 \/

 Copyright IBM Corp. 1999 295

public class Jportawt {

 Frame frame;

 TextArea notes;

 Jportawt()

 {

frame = new Frame(" MyFrame ");

notes = new TextArea();

frame.add("Center", notes);

frame.setSize(2ðð, 3ðð);

 frame.show();

 }

 /\\

\ Starts the application.

\ @param args an array of command¡line arguments

 \/

public static void main(java.lang.String[] args) {

// Insert code to start the application here.

 new Jportawt();

 }

Figure 130 shows the problem report box that comes up when the package that
used the java.awt package has an export and bind done on it.

Figure 130. Problem Report with Details Box

Figure 131 on page 297 shows the details of the unsupported packages and
classes displayed on the browser.

296 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 131. Details of Unsupported Objects

 Chapter 24. The Jport Utility 297

298 e-business Application Solutions on OS/390 Using Java Vol. I

 Appendix A. CD-ROM

This appendix contains information regarding the contents of the enclosed
CD-ROM. You may find it necessary to refer to the code on the disk to be able to
understand 10.7, “A Closer Look at our Sample CICS Application” on page 198,
11.2, “Connecting to IMS Based on APPC” on page 216, and 11.3, “Access to IMS
Using a Servlet/MQI” on page 235.

The CD-ROM has three parts:

� A directory structure containing sample code (sources) and documentation

� A “tar” file containing the samples (both sources and run versions) for
installation on the OS/390 server

� A readme file in both PDF format and html format, containing the same text as
this appendix

 A.1 Directory Contents
The directory structure on the CD-ROM contains sample code, documentation and
links to other resources. If you have a browser installed on your workstation, your
system will automatically show the front page, index.html, after you have inserted
the CD-ROM.

It is highly recommended to have a TCP/IP connection to the Internet, because
some of the links point to URLs on the Internet.

 A.2 tar File
The tar file on the CD contains basically the same components as the directory
described in A.1, “Directory Contents”; however, the tar file is packaged in such a
way that you can easily unpack it on your OS/390 system. If you succeed in
installing the package on your OS/390 system, you can:

� Access the “content” on OS/390 from your browser

� Run the samples on the OS/390 system

A.3 Installing the Package on OS/390
In this section we describe the steps to follow to install the package on your
OS/390 system. We will not describe the installation and configuration of the
required subsystems, but we will refer to sources of information, if appropriate.

The following assumes some level of understanding of the UNIX System Services
environment. It also assumes that you have a working knowledge of Java and the
WebSphere Application Server running on OS/390.

Because selected demos use DB2 and CICS, you will need to have those
subsystems customized as well. It is beyond the scope of this section to discuss
how to install and configure DB2 and CICS, but we explain some important
prerequisites to running the Java and JSP demos.

 Copyright IBM Corp. 1999 299

Note: For IMS and MQSeries we have only included source code examples to
clarify the IMS and MQSeries chapters in the redbook. They are not meant to be
installable demos or samples.

A.3.1 Prerequisite Software on OS/390
We used the following products in the development and testing of the samples.

 Important

We mention the versions of the products that we used for the development and
testing of our samples. However, you may be able to use them with higher
versions of the products mentioned, but a newer version of a product may
require another setup or may not even support the samples as we developed
them.

� OS/390 Version 2 Release 5

� IBM WebSphere Application for OS/390 Version 1.1 (beta)

� Java for OS/390 (JDK Version 1.1.6)

� CICS Gateway for Java Version 2.0

� IBM DB2 Server for OS/390 Version 5.1

� IBM CICS Transaction Server for OS/390 Release 3 (LA)

� IBM IMS Transaction Server for OS/390 Version 6.1

� MQSeries for MVS/ESA V1.2

� MQSeries Bindings for Java for OS/390 (beta)

� DB2 for OS/390 Java Database Connectivity

� SQLJ support for DB2 Version 5 on OS/390

Refer to the following URL for availability of SQLJ:

 http://www.ibm.com/software/data/db2/os39ð/sqlj.html

A.3.2 Installing the tar File on your OS/390 Server
The size of the tar file is approximately 28 MB. Perform the following steps to
install the tar file on OS/390:

1. Logon to OS/390 and go into the omvs shell.

2. Create a directory to hold the tar file and its unpacked contents.

We recommend that you create a subdirectory inside /u, like SG245342. Also,
you may find it useful to create a separate HFS data set for the sample
package. The following JCL can be used to do this:

//HFSALLOC JOB (POK,999),HFSALL,MSGLEVEL=(1,1),MSGCLASS=X,

 // CLASS=A,NOTIFY=userid

 //\

 //STEPð1 EXEC PGM=IEFBR14

//HFS DD DSN=OMVS.SG245342.HFS,SPACE=(CYL,(16ð,5,1)), .1/
 // DSNTYPE=HFS,DCB=DSORG=PO,

 // DISP=(NEW,CATLG,DELETE),

 // STORCLAS=OPENMVS,VOL=SER=volser,UNIT=unit

Notes:

300 e-business Application Solutions on OS/390 Using Java Vol. I

.1/Depending on your type of DASD, allocate sufficient space to be
able to hold about 30 MB.

Once you have created the HFS data set, you can mount it with the following
command from TSO:

MOUNT FILESYSTEM(OMVS.SG245342.HFS) MOUNTPOINT(/u/SG245342) TYPE(HFS)

3. Open an ftp connection between your workstation and your OS/390 server.

4. Go to the directory you just created.

5. Transfer the file in binary format into the preferred subdirectory.

6. Unpack the tar file with the command:

tar -xvf SG245342.tar

This command will lead to the creation of all the subdirectories and files, as
follows:

à ð
drwxr-xr-x 3 ALEX TSO ð Apr 23 15:12 config

drwxr-xr-x 13 ALEX TSO ð Feb 16 16:36 html

drwxr-xr-x 5 ALEX TSO ð Apr 23 15:27 imsmq

drwxr-xr-x 3 ALEX TSO ð Feb 19 ð9:26 java

drwxr-xr-x 2 ALEX TSO ð Apr 23 14:28 mvs

á ñ

7. Once the unpacking is done, you may want to change the permission bits and
the owner of the directories and files in the package. Useful commands are:

� chown <userid> <name> for changing the ownership

� chmod xxx <name> for changing the permission bits

The unpacking of the tar file will result in five other subdirectories to be created:

config contains sample configuration files

html contains the Web content

imsmq contains sample sources on how to use IMS and MQ

java contains the java source and class files that make up the samples

mvs contains MVS components needed to set up and use the back-end
systems.

A.3.3 Moving the MVS Components to Data Sets
The mvs directory contains the components that you will need to set up the MVS
side of some samples. Most of them are stored in a special format called “TSO
TRANSMIT OUTDATA.”

You will find the following files in the mvs subdirectory:

 Appendix A. CD-ROM 301

à ð
-rwxr-xr-x 1 ALEX TSO 648ð Apr 26 15:1ð cobol.copybook.xmit

-rwxr-xr-x 1 ALEX TSO 112ð8ð Apr 26 15:1ð cobol.source.xmit

-rwxr-xr-x 1 ALEX TSO 69ð4ðð Apr 26 15:1ð db2.data.xmit

-rwxr-xr-x 1 ALEX TSO 675ðð Apr 26 15:12 db2.unload

-rwxr-xr-x 1 ALEX TSO 1384ð Apr 26 15:11 dbrmlib.xmit

-rwxr-xr-x 1 ALEX TSO 224ð Apr 26 15:12 dsnaoini

-rwxr-xr-x 1 ALEX TSO 5ð8ðð Apr 26 15:ð9 jcl.xmit

-rwxr-xr-x 1 ALEX TSO 3ð24ð Apr 26 15:14 load.xmit

á ñ

In order to work with these files, they must be copied to traditional MVS data sets.
You can use the TSO OGET command to pull these files out of the HFS and put
them in data sets.

You can use the following JCL to pre-allocate the data sets on OS/390.

Note: Pre-allocation is necessary to give the data sets the correct LRECL,
RECFM and BLKSIZE. You must use the LRECL and RECFM as indicated in the
following JCL.

//ALLOC JOB (POK,999),MSGCLASS=T,NOTIFY=USERID

//\

//\ Allocate the demo data sets

//\

//NCXALLO EXEC PGM=IEFBR14

//JCL DD DISP=(NEW,CATLG),SPACE=(TRK,(1ð,5)),UNIT=SYSDA,

// DCB=(LRECL=8ð,RECFM=FB,BLKSIZE=312ð),DSN=hlq.JCL.XMIT

//DATA DD DISP=(NEW,CATLG),SPACE=(TRK,(5,2)),UNIT=SYSDA,

// DCB=(LRECL=8ð,RECFM=FB,BLKSIZE=312ð),DSN=hlq.DB2.DATA.XMIT

//COBSRC DD DISP=(NEW,CATLG),SPACE=(TRK,(1ð,5)),UNIT=SYSDA,

// DCB=(LRECL=8ð,RECFM=FB,BLKSIZE=312ð),DSN=hlq.COBSRC.XMIT

//COBCPY DD DISP=(NEW,CATLG),SPACE=(TRK,(1ð,5)),UNIT=SYSDA,

// DCB=(LRECL=8ð,RECFM=FB,BLKSIZE=312ð),DSN=hlq.COBCPY.XMIT

//DBRMPY DD DISP=(NEW,CATLG),SPACE=(TRK,(1ð,5)),UNIT=SYSDA,

// DCB=(LRECL=8ð,RECFM=FB,BLKSIZE=312ð),DSN=hlq.DBRMLIB.XMIT

//LOADPY DD DISP=(NEW,CATLG),SPACE=(TRK,(2ð,1ð)),UNIT=SYSDA,

// DCB=(LRECL=8ð,RECFM=FB,BLKSIZE=312ð),DSN=hlq.LOAD.XMIT

//DSNAOI DD DISP=(NEW,CATLG),SPACE=(TRK,(5,5)),UNIT=SYSDA,

// DCB=(LRECL=8ð,RECFM=FB,BLKSIZE=312ð),DSN=hlq.DSNAOINI

//DB2UNL DD DISP=(NEW,CATLG),SPACE=(TRK,(1ð,5)),UNIT=SYSDA,

// DCB=(LRECL=4ð92,RECFM=VB,BLKSIZE=4ð96),DSN=hlq.DB2.UNLOAD

After you have allocated the data sets, use the TSO OGET command to copy the
files from the HFS to MVS data sets. Following is a sample of the commands.

302 e-business Application Solutions on OS/390 Using Java Vol. I

à ð
Menu List Mode Functions Utilities Help

 --

ISPF Command Shell

 Enter TSO or Workstation commands below:

 ===>

 Place cursor on choice and press enter to Retrieve command

 => OGET '/u/SG245342/mvs/jcl.xmit' 'hlq.JCL.XMIT' BINARY

 => OGET '/u/SG245342/mvs/db2.data.xmit' 'hlq.DB2.DATA.XMIT' BINARY

 => OGET '/u/SG245342/mvs/cobol.source.xmit' 'hlq.COBSRC.XMIT' BINARY

 => OGET '/u/SG245342/mvs/cobol.copybook.xmit' 'hlq.COBCPY.XMIT' BINARY

 => OGET '/u/SG245342/mvs/dbrmlib.xmit' 'hlq.DBRMLIB.XMIT' BINARY

 => OGET '/u/SG245342/mvs/load.xmit' 'hlq.LOAD.XMIT' BINARY

 => OGET '/u/SG245342/mvs/dsnaoini' 'hlq.DSNAOINI'

 => OGET '/u/SG245342/mvs/db2.unload' 'hlq.DB2.UNLOAD'

 =>

 =>

 F1=Help F3=Exit F1ð=Actions F12=Cancel

á ñ

Note: Notice the binary option on the OGET command in case of “xmit” files. The
dsnaoini and db2.unload files must not be copied in binary mode.

Use the TSO RECEIVE command to unpack the XMIT data sets. These data sets
were compressed using TSO TRANSMIT OUTDATASET and must be received
with TSO RECEIVE INDATASET.
Enter the command TSO RECEIVE INDATASET('<data set name>') for example, TSO
RECEIVE INDATASET('SG245342.DB2.DATA.XMIT'). TSO will now prompt you for the
data set name to store the data set being received. If the hlq you are using for
your installation is the same as your TSO PREFIX, then just press Enter to use the
default values for receiving the data set.
If you are using a different hlq for the installation of the sample code, enter
DSN('hlq.DB2.DATA'). A sample of the command is shown here.

 Appendix A. CD-ROM 303

à ð

Menu List Mode Functions Utilities Help

 __

ISPF Command Shell

Enter TSO or Workstation commands below:

===> RECEIVE INDATASET('SG245342.DB2.DATA.XMIT')

Place cursor on choice and press enter to Retrieve command

 =>

 =>

 =>

 =>

 =>

 =>

 =>

 =>

INMR9ð1I Dataset SG245342.DB2.DATA from RCONWAY on WTSC58

INMR9ð6A Enter restore parameters or 'DELETE' or 'END' +

 DSN('SG245342.DB2.DATA')

 F1=Help F3=Exit F1ð=Actions F12=Cancel

á ñ

Note: Repeat this command for every xmit data set. The dsnaoini and db2.unload
files must not be received, as they are not in TSO TRANSMIT OUTDATA format.

A.3.4 Configuring the Environment
In this section we describe the steps to perform in order to be able to use the
samples in your WebSphere Application Server. It is assumed that your HTTP
Server and the WebSphere Application Server supporting servlets are up and
running on your system. However, we give you some key additions that must be
made to your configuration files.

A.3.4.1 Configuring the WebSphere Application Server
In order to run the samples, you need to make some updates in the httpd.conf,
httpd.envvars and jvm.properties files and the started procedure.

1. Updates to your httpd.conf file:

/u/SG245342/config/webas/httpd.conf is a sample httpd.conf file that we used
for the development and testing of the samples. It contains additional PASS
statements that must be added to your Webserver's httpd.conf file.

2. Updates to your httpd.envvars file:

/u/SG245342/config/webas/httpd.envvars is a sample httpd.envvars file and
contains paths that need to be added to your Webserver's httpd.envvars file.

3. Updates to your jvm.properties file:

/u/SG245342/config/webas/jvm.properties is a sample jvm.properties file and
contains paths that need to be added to your Webserver's jvm.properties file.

The minimum to be included on top of your default WebAS class libraries in
your ncf.jvm.classpath directive are the following class libraries:

 � /usr/lpp/java16/J1.1/lib/classes.zip

This contains the JDK 1.1.6 classes.

304 e-business Application Solutions on OS/390 Using Java Vol. I

 � /usr/lpp/db2/db251ð/classes/db2jdbcclasses.zip

This is required for JDBC access to DB2 on OS/390.

 � /usr/lpp/db2/db251ð/classes/db2sqljclasses.zip

This is required for SQLJ access to DB2 on OS/390.

 � /u/SG245342/java

This directory contains the Java sample classes.

Note: In case you decided to use another subdirectory for the sample
package, you need to use that name.

 � /usr/lpp/JRIO/recordio-vsam.zip, /usr/lpp/JRIO/recordio.zip and
/usr/lpp/JRIO/recordio-nonvsam.zip

In these directories, you must have installed the JRIO classes
downloadable from URL:

 http://www.ibm.com/s39ð/java

 � /usr/lpp/jgCICS/JGate/classes

This directory contains the CICS Gateway for Java classes.

Note: The names of the directories mentioned above may be different on your
system.

The minimum to be included on top of your default WebAS executables
libraries in your ncf.jvm.libpath directive are the following:

 � /usr/lpp/java16/J1.1/lib and
/usr/lpp/java16/J1.1/lib/mvs/native_threads

These directories cntain the JDK DLLs.

 � /usr/lpp/db2/db251ð/lib

This directory contains the native drivers for JDBC.

 � /usr/lpp/jgCICS/JGate/bin/mvs

This directory contains the DLLs of the CICS Gateway for Java.

 � /usr/lpp/JRIO

This directory contains the DLLs for MVS dataset access from Java.

The ncf.jvm.path directive should contain the DLLs of the JDK 1.1.6 as well.

 A.3.4.2 SG245342.ini File
In /u/SG245342/config there is a file called “SG245342.ini.” This file is critical for
the operation of the samples. All Java servlets read this file in order to retrieve
environment variables. This file needs to be in the root directory of your
Webserver. This directory is normally the same directory as where you have the
httpd.conf file.

 Important

You need to edit the SG245342.ini file to reflect your environment.

 Appendix A. CD-ROM 305

 A.3.4.3 Configuring DB2
It is beyond the scope of this section to discuss how to install and configure DB2
on your system, but there are some key prerequisites to running the Java and JSP
demos.

1. DB2 prerequisite customization.

a. Install and customize DB2 CLI support. See DB2 for OS/390 Call Level
Interface Guide and Reference, SC26-8959 for instructions.

b. Install and customize DB2 JDBC support. See the JDBC README file for
more information.

c. Install and customize DB2 SQLJ support. See the SQLJ README file for
more information.

2. Load the DB2 database with sample data.

Run job DB2LOAD in your unpacked JCL data set. Before running, modify the
JCL to conform to your local standards.

3. Rebind the SQLJ samples and the CICS/COBOL sample.

Jobs BINDAPP and BINMANC in your unpackd JCL data set are provided for
this purpose.

4. Copy the sample DSNAOCLI file from /u/SG245342/mvs/dsnaoini to an MVS
sequential data set, as follows:

à ð
Menu List Mode Functions Utilities Help

 --

ISPF Command Shell

 Enter TSO or Workstation commands below:

===> OGET '/u/SG245342/mvs/dsnaoini' 'hlq.DSNAOINI'

á ñ

5. Customize this data set by filling in your DB2 subsystem identifier and CLI
planname. Add this data set to your Webserver's started procedure with the
following DD name:

//DSNAOINI DD DSN=hlq.DSNAOINI,DISP=SHR

6. Allocate DB2 libraries to the Webserver's procedure. Add a STEPLIB or
JOBLIB to the Webserver's procedure with the following data sets, or add them
to the system link list concatenation:

 hlq.SDSNEXIT

 hlq.SDSNLOAD

 A.3.4.4 Configuring CICS
A few of the supplied samples in this package require CICS and the CICS Java
Gateway to be customized. It is beyond the scope of this section to discuss how to
install and configure CICS and the CICS Java Gateway on your system, but there
are some key prerequisites to running the demos with CICS.

1. Install and initialize the External CICS Interface (EXCI).

The CICS Java Gateway requires that the External CICS Interface (EXCI) be
customized. EXCI is available with CICS/ESA version 4.1 and all subsequent
versions of CICS/ESA. The use of the EXCI interface is documented in CICS
TS for OS/390 V1R2 CICS Internet and External Interfaces Guide, SC33-1944.

306 e-business Application Solutions on OS/390 Using Java Vol. I

This publication describes the operation of the EXCI sample programs, as well
as the installation steps required to use the interface. EXCI must be installed
and initialized before you can use the samples.

2. Add Language Environment/370 support for CICS.

The COBOL sample programs have been linked with the COBOL runtime
library stubs that are shipped with Language Environment (LE). See CICS
Transaction Server for OS/390 V1R2 CICS System Definition Guide,
SC33-1682 for complete information on how to install Language
Environment/370 support for CICS.

3. Add the CICS sample application data set to your CICS procedure. The data
set in which you unpacked the LOADS can be added to the DFHRPL
concatenation as follows:

 //STEPLIB DD DSN=CICSTS12.SDFHAUTH,DISP=SHR

 // DD DSN=SYS1.CSSLIB,DISP=SHR

 // DD DSN=CEE.SCEECICS,DISP=SHR

 //DFHRPL DD DSN=CICSTS12.SDFHLOAD,DISP=SHR

 // DD DSN=SYS1.CSSLIB,DISP=SHR

 // DD DSN=CEE.SCEERUN,DISP=SHR

 // DD DSN=CEE.SCEECICS,DISP=SHR

 // DD DSN=hlq.LOAD,DISP=SHR

4. Data set hlq.JCL contains an assembler module, called “DFHCNV.” This
module is responsible for codepage conversion of the passed CICS
COMMAREA. Each program called from “outside” needs to have an entry in
DFHCNV. The example in hlq.JCL needs to be linked. You need to restart
your CICS region or just refresh this particular program in order to activate your
new version.

5. Add PROGRAM and TRANSACTION definitions.

In order to use the CICS application programs that are supplied in hlq.LOAD,
you have to define them to CICS. Run job hlq.JCL(ADDDEFS) to add
PROGRAM and TRANSACTION definitions for the supplied CICS application
programs.

6. Add a STEPLIB or JOBLIB to the WebSphere Application Server for OS/390
procedure with the following data set, or add it to the system link list
concatenation:

 hlq.SDFHEXCI

7. Configure the CICS Attachment Facility.

The sample CICS transactions that are supplied on the CD-ROM access data
in a DB2 database. The CICS Attachment facility needs to be configured. See
DB2 for OS/390 V5 Installation Guide, GC26-8970 for more information on how
to configure this attachment.

8. Reinitialize the WebSphere Application Server for OS/390.

You will need to stop and start WebAS to make the changes effective.

 Appendix A. CD-ROM 307

A.3.4.5 Configuring the VSAM Sample
In order to make the VSAM sample to work, you have to define a VSAM cluster
and load it with data. Job DEFVSAM in data set hlq.JCL takes care of:

1. Deleting an already VSAM cluster with the same name

2. Defining a new cluster

3. Copying a flat file with input data into the VSAM file

Note: The data provided is an unload of the DB2 manufacturer table.

4. Printing the contents of the file

A.3.5 MVS Datasets on the CD-ROM
Once you have unpacked the MVS datasets, you will find the following helpful
datasets:

hlq.JCL This dataset contains JCL for the samples. All jobs need to be
modified before they can run. The instructions are in the JCL.
The following jobs are provided:

ADDDEFS This job adds the definitions for the COBOL/CICS
sample transactions in CICS.

BINDAPP This job binds an application that uses static SQL
to access DB2. Running this job is mandatory to
be able to run an SQLJ program.

BINDMANC Running this job is mandatory to be able to run the
CICS samples on this CD-ROM.

DB2LOAD This job defines the DB2 table and loads its
contents for the samples.

DEFVSAM This job defines a VSAM cluster and copies a flat
file with records into it.

DFHCNV This is a sample job to assemble the DFHCNV for
CICS.

EXECEXCI This job can be run to test the EXCI connection to
your CICS system.

MANUFA* These jobs are required to pre-compile, compile,
link-edit and bind the COBOL/CICS transactions.

TIMEZONE This job compiles the COBOL source of the
TIMEZONE program.

hlq.LOAD This library contains the CICS LOADS for the samples.

hlq.DB2.DATA This dataset contains a member with the DDL for the DB2
sample database.

hlq.DBRMLIB This library contains DBRMs of the sample programs that use
static SQL.

hlq.COBSRC This library contains the source of the COBOL programs used in
the CICS samples.

hlq.COBCPY This library contains the source of the COBOL copybooks used
in the CICS transactions.

308 e-business Application Solutions on OS/390 Using Java Vol. I

hlq.DSNAOINI This data set contains the DB2 CLI initialization file.

hlq.DB2.UNLOAD This data set contains “flat” output from the DB2 manufacturer
table. This file ought to be used to load the VSAM file.

A.3.6 Using the Samples
Once you have installed the samples, as described in section A.3.4, “Configuring
the Environment” on page 304, and you have all the prerequisite subsystems
running, you will be able to point to the html frontpage of the sample package with
your browser, as follows:

 <tcp/ip address>:<portnumber>

 Important

You have to make sure that in your httpd.conf file, you point to the index.html
file in the html directory of the sample package.

 Appendix A. CD-ROM 309

310 e-business Application Solutions on OS/390 Using Java Vol. I

Appendix B. Design of the Advanced Sample Application

This appendix describes the layout of the database we use in our example, the
design considerations for the sample application, the class model, and the
relationship between the various classes.

B.1 The Design of the Database
Our sample program deals with a MANUFACTURER table we stored in a
MANFACT database. This is just a single table without any further or related
tables. We want to keep it as simple as possible.

The manufacturer table defines some of the major attributes of a manufacturer.
The following list shows you the defined columns.

MAN_NAME The name and unique key

MAN_ADDRESS All the address information we need

MAN_CITY

MAN_STATE

MAN_ZIP

MAN_CON_LAST_NAME The last name of the contact

MAN_CON_FIRST_NAME The contact's first name

MAN_CON_PHONE_AC The necessary phone information

MAN_CON_PHONE_EX

MAN_CON_PHONE_NR

MAN_CON_EXT

MAN_CON_EMAIL The contact's e-mail address

MAN_LAST_UPD_UID The program identification (we use JAVAID)

MAN_LAST_UPD_DATE Always the current timestamp

B.2 The Model View Controller Architecture
Since Java is an OO-programming language, and because we want to use the
same sample for all the different connectors on OS/390 described in this book, we
spend more time on the design of the class model than merely doing
straightforward coding.

Our design follows the Model View Controller architecture introduced by the famous
Gang Of Four in the mid-nineties. This design pattern defines a strong separation
between the user interface (UI), considered the “view,” and the “model,” which
represents the implementation of the data and the business logic.

The view and the model are connected through a “controller.” In OO theory, the
term messages means the communication between different classes. For that
reason, the controller-class does nothing except pass messages from the view to
the model, and vice versa.

 Copyright IBM Corp. 1999 311

For further information on the model view controller design pattern and related
topics, refer to:

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson, John Vlissides, Grady Booch,
Addison-Wesley; ISBN: 0201633612.

B.3 The Class Design of the Sample Program
In this section we provide an overview of the main classes we use in our sample
program.

B.3.1 The Manufacturer Business Object Class
We design a strong separation between the view and the model simply by having
classes that implement the business logic and other classes that represent the data
logic.

Figure 132. The Manufacturer Class Model

With the exception of MAN_LAST_UPD_UID and MAN_LAST_UPD_DATE, the
BOManufacturer class is the exact representation of the table scheme: it represents
one row of the database, with one attribute for each column. Because the
manufacturer is considered to be a business object, we add the prefix BO.

Note that MAN_LAST_UPD_UID and MAN_LAST_UPD_DATE provide system information.
They have no relationship to a manufacturer object itself, and are therefore handled
by the business logic.

All properties are defined as private class members and can be accessed only
through the setter and getter methods.

The Java class is compatible with the Java Beans component model; visual
composition in the sense of the Visual Age Java Visual Composition Editor is
possible.

We want the manufacturer data to be storable in a non-transient location.
Therefore, it implements the interfaces BOPseristent and java.io.Serializable. It
is derived from BOBase.

312 e-business Application Solutions on OS/390 Using Java Vol. I

Implementing these interfaces ensures the Java runtime environment that the
methods that are declared in the interface can be called from any other class. In
other words, the object ensures that it can retrieve messages through these
methods.

� BOPseristent declares these methods:

 – Delete
 – Insert
 – Update

The manufacturer class must provide the declared methods. Derived classes for
JDBC, CICS or SQLJ implement their own behavior for these methods by simply
implementing a method with the same name but a different function body.
Depending on the type of object, the Java runtime environment automatically calls
the correct method.

 Attention

Note that java.io.Serializable declares no methods.

However, it guarantees that the class that implements the interface can write
and read itself to and from an output stream. The implementation of RMI
makes it necessary that all objects that are going to be passed between
different machines or processes implement this interface.

BOBase has no meaning in the current system and can be extended to whatever
use.

Furthermore, we wanted all the different connectors for CICS, JDBC and SQLJ
implement a derived class for BOManufacturer.

With this approach, the BOManufacturer class, together with BOPseristent class,
ensures that the representation to the business logic or the application program is
always the same, no matter what connector type is being used.

B.3.2 The Datamanager Class
The DataManager class is the abstract representation of a connector that the
application wants to talk to. However, there are connectors available. In this
example we can make use of one of the following connectors:

� CICS Java Gateway

� JDBC or JDBC/ODBC drivers

 � SQLJ

� IMS Java Gateway

 � MQ Series

 � MVS datasets

The DataManager class gives the interface for the application. At this time, most of
the methods cannot provide a way of communicating with a specific connector.
Therefore, most of the methods and the class itself are declared as abstract. The
concrete implementation must be done in the derived classes, depending on the
connector it is designed for; see Figure 133 on page 314.

 Appendix B. Design of the Advanced Sample Application 313

Figure 133 on page 314 shows the attributes and methods of Data Manager class.

Figure 133. The DataManager Class - Attributes and Methods

Since the DataManager class is abstract, it cannot be instantiated. Concrete
implementations can be made by simply inheriting DataManager, as Figure 134
illustrates.

Figure 134. The Data Manager Inheritance

314 e-business Application Solutions on OS/390 Using Java Vol. I

Figure 134 shows a concrete implementation for the JDBC connector. The class
JDBCDataManager is specialized for JDBC access; and
JDBCManufacturerDataManager is the concrete JDBC implementation for the
manufacturer database. Moreover, the data manager can deal with a large
unlimited number of rows in the database. It also has the capability of mapping
table-rows into manufacturer objects.

There is another class of interest: BOJDBCManufacturer. This class implements the
concrete JDBC-code for the methods declared in the interface BOPersistent. This
means that any BOJDBCManufacturer object is able to insert, delete, and update
itself in and from the database.

Because there is an association between the data manager and the business
object, it does not matter what kind of connector is being used. The
connector-specific code does the deflation of the business object and the
communication to the connector through the referenced data manager object.

All other connectors in our sample application use the same approach. You can
find specialized manufacturer business objects and data managers for JDBC,
SQJL, and CICS.

B.3.3 The Servlet As a Sample for the Model View Architecture
This section shows how the servlet ms implements the model view controller
architecture. We give you an architectural overview of the way we wired our
sample application. For a better illustration, we use the Java Servlet solution.
Figure 135 shows the class diagram of the final JDBC.

<%@ LANGUAGE="Java" %>
<bean name="manDax">
</bean>
<html>
.
<% if (......... %>
.
<%=manDax.getManName()%>

</html>

JSP
(presentation logic
+ business logic)

Java classes
(base components)

ManufacturerDatastore

Manufacturer

ManufacturerManager

ManufacturerDataID

Request

Response

Figure 135. The JDBC/Servlet Class Diagram

The same communication and design is used for all other connectors. In our case
the servlet ms acts as the controller and dispatches the incoming events to the view.

 Appendix B. Design of the Advanced Sample Application 315

To keep it generic, we use factories to instantiate the selected data manager and
view. This is possible because the interface for all connectors is the DataManager,
or the BOManufacturer, or the BOPersistent interface.

After the factories create the view or the data manager, the servlet is ready to
process events through its methods doGet or doPost.

As Figure 135 on page 315 shows, the connection between the view, the business
object and the data manager is made through the base classes. As long as this
interface stays the same for all the different connectors, the application does not
have to change any of its logic. The factory creates the desired implementations
and does the cast to the base class. Then the Java runtime environment ensures
that the specific implementation of the methods is executed.

To give you another idea of the message flow between the different objects
Figure 135 on page 315 shows an Object Interaction Diagram (OID).

Figure 136. The Servlet/JDBC Object Interaction Diagram

This demonstrates the message flow between the servlet, the data manager and
the view:

As shown in this figure:

1. The Web server gets the HTML request to start a servlet. It instantiates the
servlet through its default constructor and makes a call to the servlet's init
method.

316 e-business Application Solutions on OS/390 Using Java Vol. I

2. The servlet constructs the PresentationFactory.

3. The servlet constructs the DataAccessFactory. Finally, the control returns to
the Web server.

4. The Web server makes a call to the servlet's doGet method.

5. The servlet calls the DataAccessFactory to create the
JDBCManufacturerDataManager and gets it.

6. The servlet calls the DataAccessFactory to create the JDBCManufacturer
business object.

7. The servlet calls the JDBCManufacturerDataManager to connect to the database.

8. The servlet calls the PresentationFactory to create the HTMLDetailView and
gets it.

9. The servlet calls the HTMLDetailView to update the client's HTML-page.

10. The HTML-View update method calls getDataManager on BOJDBCManufacturer.

11. The HTML-View update method calls retrieveUsing on the data manager to
return the requested manufacturer.

12. The HTML-View update method calls populateBOM on itself, rearranging the
HTML output.

13. The HTML-View update method calls update on the BOJDBCManufatcurer.

14. The HTML-View update method calls displayDetails on itself, sending HTML
to the client. The flow returns to the servlet.

15. The servlet calls the JDBCManufacturerDataManager to disconnect from the
database.

16. The server calls the servlet's destroy when the servlet's life cycle ends.

This control flow is the same for all other connectors when using the servlet as the
front end.

If the client is an applet or an application, no view factory is used. However, the
communication to the connector (DataManager) is the same.

B.4 The Package Structure for the Sample Application
Java packages are similar to subdirectories. The sample application uses several
packages, as described in the following list, to organize the classes as members of
the application.

redbook The root for the application; all member
classes are stored in subpackages.

redbook.common All classes that do not fit in one of the other
packages.

redbook.data The Business Object (BO) and its base
classes.

redbook.data.cics Business objects, derived from the one in
the data package, that implement special
functionality for the CICS connector.

 Appendix B. Design of the Advanced Sample Application 317

redbook.data.jdbc Business objects, derived from the one in
the data package, that implement special
functionality for the JDBC connector.

redbook.data.sqlj Business objects, derived from the one in
the data package, that implement special
functionality for the JDBC connector.

redbook.data.management Base package for all classes that are related
to the data management as described
earlier.

redbook.data.management.cics Datamanager classes specialized for the
CICS connector.

redbook.data.management.jdbc Datamanager classes specialized for the
JDBC connector.

redbook.data.management.sqlj Datamanager classes specialized for the
SQLJ connector.

redbook.rmi.server All classes for the OS/390 RMI application
server.

redbook.servlets All servlets used in the sample application.
Actually there is only one: the ms.
(Manufacturer Servlet).

redbook.views All classes that are common to views.

redbook.views.awt Views that are implemented using Sun's AWT
classes.

redbook.views.html Views that are implemented in Java for
generating the look and feel of the sample
application using the servlet and HTML.

B.5 Connecting to DB2 on OS/390
This section discusses the sample application and its classes that are necessary for
connecting to DB2.

B.5.1 Different Connections You Can Make
There are several ways to connect to DB2 on a OS/390 server machine:

1. Connect to DB2 using JDBC.

� You can talk directly to a OS/390 DB2 by having a servlet running on a
Web server on OS/390. Then the servlet and its Java classes do the
connection to the database. The application must load the corresponding
JDBC driver, which is:

 – ibm.sql.DB2Driver

� You can talk to the OS/390 database by having DB2 Connect installed on a
client workstation. Therefore, this workstation is considered to be the
application server. For this kind of setup, a Web server must be installed
on the application server, too. In addition to the previous setup, you can
now connect to the database in two different ways:

318 e-business Application Solutions on OS/390 Using Java Vol. I

– Using a servlet on the application server workstation. For this scenario,
the application must load the following driver:

 - COM.ibm.db2.jdbd.app.DB2Driver

– Using an applet which connects from any client to the application
server and talks to DB2 on OS/390. For this scenario you must start
the following on the application server:

 - db2jstart

The Web client running the applet must then load the following driver:

 - COM.ibm.db2.jdbd.net.DB2Driver

2. Connect to DB2 using SQLJ.

� Currently there is only one way to connect to DB2 using SQLJ. The
application server must reside on OS/390. The only driver available at the
moment is:

 – COM.ibm.db2os39ð.sqlj.jdbc.DB2SQLJDriver

B.6 Explaining the Code
Most of the code in the sample application is easy to understand. Nevertheless,
we explain the methods where the action takes place so that you get a better
understanding of what we are doing.

For each connector, you find the code that talks to or uses the connector in the
same methods.

The functionality is split: Tasks that are related to the connector itself and the
functions that deal with a couple of business objects you will find in the derived
DataManager classes. Functions that deal with just one object you will find in the
derived BOmanufacturer classes.

Since this section deals with DB2, we explain the code in the relevant methods of
the following:

 � JDBCDataManager

 � JDBCManufacturerDataManager

 � JDBCManufacturer

We start at the JDBCDataManager:

/\\

 \ connect method comment.

 \/

public final void connect() throws SQLException,

 ClassNotFoundException

{

// call the overloaded 'connect' methode

connect(getUserid(), getPassword());

}

/\\

 \ connect method comment.

 \/

public final synchronized void connect(String userId,

 Appendix B. Design of the Advanced Sample Application 319

 String password)

 throws SQLException,

 ClassNotFoundException

{

// load the JDBC-driver and register with driver manager

Class.forName(getJDBCDriver());

//userid or password ?

if(null == userId || userId.equals("")) &&

(null == password || password.equals("")))

// no password or userid !

// connect without

setConnection(DriverManager.getConnection(getUrl()));

// no, we have password or userid

 else

// connect using the userid and password

setConnection(DriverManager.getConnection(getUrl(),

 userId,

password));

 {

setConnected(true);

setStatement(getConnection().createStatement());

 }

}

/\\

 \ disconnect method comment.

 \/

public final synchronized void disconnect() throws SQLException

{

// do we have a statement ?

if(null != getStatement())

 // yes, close it

 getStatement().close();

setStatement(null);

// do we have a connection ?

if(null != getConnection())

 // yes, close it

 getConnection().close();

setConnection(null);

}

As you can see, the manager does little except connect and disconnect to and from
the database (although it also provides the application with attributes such as the
connection, the drivername and the SQL-statement).

The work is done by the JDBCManufacturerDataManager; see the following methods:

/\\

 \ This method was created in VisualAge.

 \ @return java.lang.StringBuffer

 \/

protected StringBuffer makeQuery(String query) {

// create a StringBuffer with the right

// select statement

StringBuffer sb = new StringBuffer("SELECT man_name,

 man_address,

320 e-business Application Solutions on OS/390 Using Java Vol. I

 man_city,

 man_state,").

 append(" man_zip, man_con_last_name,

man_con_first_name, man_con_phone_ac,").

 append("man_con_phone_ex, man_con_phone_nr,

man_con_ext, man_con_email ").

 append(" FROM ").append(getTableName());

sb.append(" WHERE man_name LIKE '").

append(query).append("'").

append(" ORDER BY MAN_NAME");

 return sb;

}

/\\

 \ retreive all records that match 'query'

 \ @return java.util.Enumeration

 \/

public Enumeration retrieve(String query) throws SQLException,

 NoSuchElementException

{

// all elements are stored in a Vector...

// remove, clear it

 getDataElements().removeAllElements();

// make the SQL-query

StringBuffer sb = makeQuery(query);

// execute the query, get the records in a ResultSt

ResultSet rs = getStatement().executeQuery(sb.toString());

// get the next Record in the ResultSet

while(rs.next())

 {

 // intaniate a new business object

 BOManufacturer tmpBo = new BOJDBCManufacturer(this);

 // set each column to the corresponding

 // attribute of the business object

 tmpBo.setManufacturer(rs.getString(1));

 tmpBo.setAddress(rs.getString(2));

 tmpBo.setCity(rs.getString(3));

 tmpBo.setState(rs.getString(4));

 tmpBo.setZip(rs.getString(5));

 tmpBo.setLastName(rs.getString(6));

 tmpBo.setFirstName(rs.getString(7));

 tmpBo.setPhoneac(rs.getString(8));

 tmpBo.setPhoneex(rs.getString(9));

 tmpBo.setPhonenr(rs.getString(1ð));

 tmpBo.setExt(rs.getString(11));

 tmpBo.setEmail(rs.getString(12));

 // add current object reference to the Vector

 getDataElements().addElement(tmpBo);

 }

// notify that the number of records may have changed

 fireHandleDataElementsChanged(

 new DataElementsChangedEvent(this));

 Appendix B. Design of the Advanced Sample Application 321

// return the Vector

 return getDataElements().elements();

}

/\\

 \ Get all records that match 'key',

 \ Return just a stringlist of keys (manufacturer-name)

 \ @return java.util.Enumeration

 \/

public Enumeration retrieveListOfKeys(String key)

 throws SQLException

{

// does the key ends with an '%' ?

// if not, add one

if(!key.endsWith("%")) key += "%";

// get the records that match 'key'

Enumeration e = retrieve(key);

// remove all previously stored keys

 getKeyElements().removeAllElements();

// loop through and get the keys into the vector

while(e.hasMoreElements())

 getKeyElements().addElement(

 ((BOManufacturer)e.nextElement())

 .getManufacturer());

// notify that the key vector has been changed

 fireHandleKeyElementsChanged(

 new KeyElementsChangedEvent(this));

// return the enumeration of the vector

 return getKeyElements().elements();

}

/\\

 \ Look up the on special key

 \/

public BOPersistent retrieveUsing(String key) throws Exception

{

// did we get a key ?

if(null == key || key.equals(""))

 {

 throw new Exception("Key not found");

 }

// make the query

StringBuffer sb = new StringBuffer("SELECT man_name,

 man_address,

 man_city,

 man_state,").

append(" man_zip, man_con_last_name, man_con_first_name,

 man_con_phone_ac,").

append("man_con_phone_ex, man_con_phone_nr, man_con_ext,

 man_con_email ").

append(" FROM ").append(getTableName());

sb.append(" WHERE man_name = '").

 append(key).append("'");

322 e-business Application Solutions on OS/390 Using Java Vol. I

// look up the record

 ResultSet rs = getStatement().

 executeQuery(sb.toString());

 rs.next();

// make a new business object

BOJDBCManufacturer tmpBo = new BOJDBCManufacturer(this);

// get all the attributes

tmpBo.setManufacturer(rs.getString(1));

tmpBo.setAddress(rs.getString(2));

tmpBo.setCity(rs.getString(3));

tmpBo.setState(rs.getString(4));

tmpBo.setZip(rs.getString(5));

tmpBo.setLastName(rs.getString(6));

tmpBo.setFirstName(rs.getString(7));

tmpBo.setPhoneac(rs.getString(8));

tmpBo.setPhoneex(rs.getString(9));

tmpBo.setPhonenr(rs.getString(1ð));

tmpBo.setExt(rs.getString(11));

tmpBo.setEmail(rs.getString(12));

 return tmpBo;

}

You find the update, delete and insert methods in the business object
(BOmanufacturer):

/\\

 \ Perform the delete method.

 \/

public void delete() throws SQLException

{

// get the jdbc-datamanager

JDBCDataManager jdbcMgr = (JDBCDataManager)getDataManager();

// create the statment

StringBuffer sb = new StringBuffer("delete from ").

 append(jdbcMgr.getTableName()).

 append(" where man_name = '").

 append(getManufacturer()).

 append("'");

// execute the delete

 jdbcMgr.getStatement().executeQuery(sb.toString());

}

/\\

 \ Perform the insert method.

 \/

public void insert() throws SQLException

{

// get the jdbc-datamanager

JDBCDataManager jdbcMgr = (JDBCDataManager)getDataManager();

// make the query

StringBuffer sb = new StringBuffer("insert into ").

 append(jdbcMgr.getTableName()).

 Appendix B. Design of the Advanced Sample Application 323

 append(" (man_name, man_address, man_city, man_state,

 man_zip, man_con_last_name,").

 append(" man_con_first_name, man_con_phone_ac,

 man_con_phone_ex, man_con_phone_nr,").

 append(" man_con_ext, man_con_email, man_last_upd_uid,

 man_last_upd_date)");

sb.append(" values ('").append(getManufacturer()).

 append("',").

 append("'").

 append(getAddress()).

 append("', ").

 append("'").

 append(getCity()).

 append("', ").

 append("'").

 append(getState()).

 append("', ").

 append("'").

 append(getZip()).

 append("', ").

 append("'").

 append(getLastName()).

 append("', ");

sb.append("'").append(getFirstName()).

 append("', ").

 append("'").

 append(getPhoneac()).

 append("', ").

 append("'").

 append(getPhoneex()).

 append("', ").

 append("'").

 append(getPhonenr()).

 append("', ").

 append("'").

 append(getExt()).

 append("', ").

 append("'").

 append(getEmail()).

 append("', ").

 append("'").

 append("JAVAID").

 append("', ").

 append(" current timestamp)");

// execute the statement

jdbcMgr.getStatement().executeQuery(sb.toString());

}

/\\

 \ Perform the update method.

 \/

public void update() throws SQLException

{

// get the JDBC-datamanager

JDBCDataManager jdbcMgr = (JDBCDataManager)getDataManager();

324 e-business Application Solutions on OS/390 Using Java Vol. I

// create the query

StringBuffer sb = new StringBuffer("update ").

 append(jdbcMgr.getTableName()).

 append(" set man_address ='").append(getAddress()).

 append("', man_city ='").append(getCity()).

 append("', man_state ='").append(getState()).

 append("', man_zip ='").append(getZip()).

 append("', man_con_last_name ='").

 append(getLastName()).

 append("', man_con_phone_ac ='").

 append(getPhoneac()).

 append("', man_con_phone_ex ='").

 append(getPhoneex()).

 append("', man_con_phone_nr ='").

 append(getPhonenr());

sb.append("', man_con_first_name ='").

 append(getFirstName()).

 append("', man_con_ext ='").append(getExt()).

 append("', man_con_email ='").append(getEmail()).

 append("', man_last_upd_uid ='JAVAID").

 append("', man_last_upd_date = current timestamp ").

 append("where man_name = '").

 append(getManufacturer()).append("'");

// execute the statement

jdbcMgr.getStatement().executeQuery(sb.toString());

}

 Appendix B. Design of the Advanced Sample Application 325

326 e-business Application Solutions on OS/390 Using Java Vol. I

 Appendix C. Special Notices

This publication is intended to help:

� Information Technology Architects understand how Network Computing
applications can be deployed using Webserver and Java support on OS/390.

� Application Programmers to develop Java components for OS/390 and create
solutions for connecting existing data and applications on OS/390 with Java
components in an NC environment.

� System Programmers to set up the required infrastructure on OS/390 to use
Lotus Domino Go Webserver Release 5.0, servlets, Java Server Pages, Java
applications and Java-connectors to OS/390 subsystems.

The information in this publication is not intended as the specification of any
programming interfaces that are provided by Java, VisualAge for Java, Java
Database Connectivity (JDBC), SQLJ, CICS Gateway for Java, IMS TCP/IP OTMA
Connectivity, MQSeries Client for Java and Java Server Pages.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Corporation, Dept. 600A, Mail Drop
1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and depends
on the customer's ability to evaluate and integrate them into the customer's
operational environment. While each item may have been reviewed by IBM for
accuracy in a specific situation, there is no guarantee that the same or similar
results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

 Copyright IBM Corp. 1999 327

Any pointers in this publication to external Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative to
the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java, HotJava, JavaBeans, JDK, JDBC and Solaris
are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

Advanced Application Communication
System/2

AIX

AlphaWorks AnyNet
Applet.Author AS/400
C++/MVS C/MVS
CICS CICS/ESA
CICS/MVS CICSPlex
COBOL/370 Cryptolope
DATABASE 2 DB2
DB2 Connect DB2 Client Application Enablers
DB2 Universal Database Distributed Relational Database Architecture
DRDA Encryptolope
Hummingbird IBM
IMS IMS/ESA
Language Environment MQ
MQSeries MVS (logo)
MVS/ESA Open Blueprint
OS/390 Powered by S/390
RACF S/390
SOMobjects S/390 Parallel Enterprise Server
VisualAge

328 e-business Application Solutions on OS/390 Using Java Vol. I

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

 Appendix C. Special Notices 329

330 e-business Application Solutions on OS/390 Using Java Vol. I

 Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a more
detailed discussion of the topics covered in this redbook.

D.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 333.

� Programming with VisualAge for Java Version 2, SG24-5264

� Integrating Java with Existing Data and Applications on OS/390, SG24-5142

� Enterprise Web Serving with the Lotus Domino Go Webserver for OS/390,
SG24-2074

� OS/390 TCP/IP OpenEdition Implementation Guide, SG24-2141

D.2 Redbooks on CD-ROMs
Redbooks are also available on the following CD-ROMs:

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbook SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SK2T-8040
RS/6000 Redbooks Collection (PostScript) SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037

 D.3 Other Publications
These publications are also relevant as further information sources:

� IBM HTTP Server for OS/390 Planning SC31-8690

� Domino Go Webserver 5.0 for OS/390: Webmaster's Guide, SC31-8691

� Domino Go Webserver 5.0 for OS/390: Messages, SC31-8692

� OS/390 V2R6.0 Planning for Installation, GC28-1726

� Programming Directory for Domino Go Webserver for OS/390, GI10-6780

� OS/390 V2R6.0 NFS Customization and Operation, SC26-7253

� OS/390 V2R4.0 MVS Programming: Resource Recovery, GC28-1739

� OS/390 V2R6.0 NFS User's Guide, SC26-7254

� OS/390 Release 6 Domino Go Webserver 5.0 Web Programming Guide,
SC34-4743 (available softcopy only)

� TCP/IP OpenEdition User's Guide, GC31-8305

� DB2 for OS/390 V5 Call Level Interface Guide and Reference, SC26-8959

 Copyright IBM Corp. 1999 331

� DB2 for OS/390 V5 Command Reference, SC26-8960

� DB2 for OS/390 Version 5 Application Programming Guide and Reference for
Java, SC26-9547

� Quick Beginnings Windows NT, Documentation for TXSeries V4.2, GC33-1879

� CICS Family: Communicating from CICS on System/390, SC33-1697

� CICS TS for OS/390 V1R2 CICS Internet and External Interfaces Guide,
SC33-1944

� Software Development: Processes and Performance/The WebSphere
Application Server Architecture Guide, G321-5680

� Open Edition MVS User's Guide, SC23-3013

� IMS/ESA Customization Guide, SC26-8020

 D.4 External Publications
� Java Secrets, by Elliotte Rusty Harold. Published by IDG Books Worldwide Inc,

1997, California. ISBN 0-7645-8008-8.

� Essential JNI, Java Native Interface, by Rob Gordon. Published by Prentice
Hall, 1998, New Jersey. ISBN 0-13-679895-0.

� Design Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson, John Vlissides, Grady Booch.
Published by Addison-Wesley. ISBN 0-20-163361-2.

� Java servlets, by Karl Moss. Published by McGraw-Hill, 1998. ISBN
0-07-913779-2.

332 e-business Application Solutions on OS/390 Using Java Vol. I

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

� Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download or order hardcopy/CD-ROMs redbooks from the redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

 � E-mail Orders

Send orders via e-mail including information from the redbook fax order form to:

 � Telephone Orders

 � Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information for
customers may be found at http://www.redbooks.ibm.com/ and for IBM employees at http://w3.itso.ibm.com/.

IBM Intranet for Employees

IBM employees may register for information on workshops, residencies, and redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may also view redbook, residency and workshop
announcements at http://inews.ibm.com/.

In United States: e-mail address: usib6fpl@ibmmail.com
Outside North America: Contact information is in the "How to Order" section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU
Outside North America Country coordinator phone number is in the "How to Order" section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America Fax phone number is in the "How to Order" section at this site:

http://www.elink.ibmlink.ibm.com/pbl/pbl/

 Copyright IBM Corp. 1999 333

IBM Redbook Fax Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

Ø Invoice to customer number

Ø Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

334 e-business Application Solutions on OS/390 Using Java Vol. I

 Index

Special Characters
#sql 128

Numerics
500 Internal Server Error 197

 IIMS.Database Manager 207
 IIMS.Transaction Manager 207

A
accessing back-end systems 16
accessing CICS from Java

overview 24
accessing DB2 from Java

attachment facility to use 24
CLASSPATH 112
CLI INI file, example 110
configuration for the UNIX shell 112
DB2 for OS/390 Call Attachment Facility (CAF) 24
DB2 for OS/390 Recoverable Resource Manager

Services Attachment Facility (RRSAF) 24
DB2SQLJATTACHTYPE 112
DB2SQLJDBRMLIB 112
DB2SQLJPLANNAME 112
DB2SQLJSSID 112
DD card for CLI support 109
documentation 24
enabling Lotus Domino Go Webserver Release 5.0

for DB2 access 109
jvm.properties changes 110
LD_LIBRARY_PATH 112
LIBPATH 112
overview 22
resource management 24
resource protection 24
SDSNEXIT dataset 112
SDSNLOAD dataset 112
software prerequisites 109
STEPLIB 112
STEPLIB in Domino Go Webserver startup

PROC 109
UNIX environment variables 112
which resource protection for which method 24

accessing IMS from Java
3270 attribute, hidden field 211
3270 attribute, highlighted 211
3270 attribute, protected 210
3270 attribute, text 211
3270 attributes 210
accessing IMS from the Web, overview 208
Advanced Program-to-Program Communication

(APPC) 208

accessing IMS from Java (continued)
APPC, CMINIT 224
Attribute (ATTR) 210
conversational transactions 214
ConvID 215
cookie 215
Data Base Control (DBCTL) 207
Data Communication Control (DCCTL) 207
Device Output Format Control (DOF) 210
DFSLUEE0 exit 207
IBM Web Templates (IWT) 235
Java Native Interface (JNI) 214
logical inbound message 210
logical message 207
logical outbound message 209
LU 6.2 208
mapping 3270 attributes to browser 210
message flow between IMS and 3270 209
Message Input Descriptor (MID) 210
Message Output Descriptor (MOD) 210
Message Processing Program (MPP) 207
MFS 207
MFS, the role of 207
modified 211
Modified Data Tag (MDT) 211
Open Transaction Manager Access (OTMA) 25,

208
OTMA Callable Interface 25
overview 25
physical inbound message (3270) 210
physical message 207
physical outbound message (3270) 210
presentation control characters 207
ROW/COL 210
session, maintaining 215
Set Buffer Address (SBA) 210
Start Field (SF) 210
TCP/IP OTMA Connection (TOC) 25
two-phase commit 207
Webserver service threads 213

accessing MQSeries from Java
Bindings 25
channel 237
correlationID 238
MQEnvironment object 238
MQI/IMS bridge 237
MQI/IMS bridge, definition 237
MQSeries Bindings for Java 236
MQSeries bindings package 238
MQSeries Client for Java 25, 236
overview 25, 236
queue 238

 Copyright IBM Corp. 1999 335

adding a dataset to the search path 66
Advanced Program-to-Program Communication

(APPC) 217
advantages of client/server 11
ajvinst.exec 53
AnyNet 160
AnyNet, software supporting 160
APPC

See Advanced Program-to-Program Communication
(APPC)

APPLID 183
ASCII/EBCDIC conversion 224
asynchronous processing 5
attachment facility 24
AWT applications 56

B
BATCHCLI 181
beans, directory 192

CLASSPATH 193
appending 193

benefits of messaging 5
bibliography 331
big endian 224
binding a plan for SQLJ 153
BPXBATCH 182, 184

standard error log files 184
standard output files 184

C
CAF 24
CBC.SCTVMOD 65, 66

adding to the search path 66
 IET.FTP connections 71

CECI command 175
CEMT command 181
certificate 108
CGI

See Common Gateway Interface (CGI)
CICS APPLID 183
CICS Client 167, 168, 174

commands 174
download URL 167
home page 167
on NT 167, 168

CICS Gateway for Java 24
CicsCpRequest class 198
classes 162
COMMAREA, building 204
components 161
connectivity options 158
connectToGateway method 205
DBCS 162
download URL 165

CICS Gateway for Java (continued)
ECIRequest class 198
EPI classes 162
EPIRequest class 198
executeProgram method 205
flow method 198
from JSPs 165
from servlets 165
ibm.cics.jgate.client.ECIRequest class 164
ibm.cics.jgate.client.JavaGateway class 164
in a three-tier architecture 159
interfaces 162
JavaGateway class 198
local 167
local access 159
local access to CICS 155
NLS 162
on NT 167
overview 156
remote access 156, 159
required JDK level 162
writing a simple program 198

CICS Gateway for Java on NT
adding classes 170
configuration 170
directory structure 169
download URL 169
environment variables 173
Gateway.properties file 171
general start-uo properties 171
installation 169
network protocol handler properties 171
overriding properties 172
platform specific properties 171
properties file, location 171
starting 171
starting, with preset options 171
starting, with user specified options 171
startup options, help 172
stopping 172
test output 176
TestECI program 175
testing 175
timezone locale 170
Timezone program, JSP version 176

CICS Gateway for Java on OS/390
ASCII/EBCDIC conversion 190
association of started task with RACF 185
auto option 185
BATCHCLI 183
CICS System ID 183
CLASSPATH 185
DFH$EXCI group 183
DFHCNV table 181
DFHCNV, example 190
DFHCNV, setup 190

336 e-business Application Solutions on OS/390 Using Java Vol. I

CICS Gateway for Java on OS/390 (continued)
DFHJAVA group 181
DFHJVPIPE 183
DFHJVSYSTEM_nn 183
DFHJVSYSTEM_nn variables 182
DFHJVSYSTEM_nn variables, example 183
download URL 181
ECIRequest.listSystems call 183
environment variables 182
EXCI connection, generic 183
EXCI connection, specific 183
EXCS connection 183
extracting tar file 181
JCL, example 184
LD_LIBRARY_PATH 185
LIBPATH 185
local client 24
location of DFHCNV 191
RACF 185
running local 185
started task 184
started task, environment variables 185
starting 184
STEPLIB 185
TestECI program, sample output 183
trace 186
using the gateway from a JSP 205
using the gateway from a servlet 199
variables, example 186
WEB=YES SIT option 181

CICS Internet Gateway 155, 156
CICS samples

buildCommarea extract 203
CICSConnect class 204
Manufact class 202
mfhtml extract 200
MfServletHtml 201

CICS Web Interface 155, 157
CICS, ASCII/EBCDIC conversion 190
CICS, auto installing a group 190
CICS, DB2 connection definition 188
CICS, DB2Entry 189
CICS, group definition 188
CICS, SIT file 190
CICS/Java transactions 24
CICSCLI.INI 174
cicstcl 174
COBOL/DB2 program, JCL 186
Common Gateway Interface (CGI)
Common Object Request Broker Architecture (CORBA)
communication protocols 12
compiling COBOL, on NT 174
Component Broker

See Component Broker Connector
connectors

overview 6

connectors (continued)
overview for OS/390 16
performance 6

cookie 215
cookie, how to set up 215
CORBA

See Common Object Request Broker Architecture
(CORBA)

CORBA on OS/390 26
COUPLxx member, updating 111
creating external links 46
CTVPFILE 65
cursor 132

D
database services 4
DB2 access from Java 22
DB2 Connect

adding a database 103
Client Configuration Assistant 102
Client Configuration program 102
database alias name 105
database name conventions 105
db2jstsrt 108
DDCS 101
DRDA Application Requester 101
DRDA server 101
fat client architecture 106
installing the client 102
JDBC support 101
network configurations for OS/390 102
ODBC support 101
port number 104
required parameters for a two-tier Java

application 107
required parameters for an applet in a

three-tier 108
selecting a communication protocol 103
service name 104
specifying the database name 104
specifying the server 103
TCP/IP address 104
thin client architecture 107
using for development purposes 101
using for runtime purposes 101

DB2 for OS/390 Call Attachment Facility (CAF) 24
DB2 for OS/390 Recoverable Resource Manager

Services Attachment Facility (RRSAF) 24
DB2 UDB 168
DB2, connection definition in CICS 188
DB2, DB2Entry in CICS 189
DB2, dsnc command 189
DB2CONN, example 188
DB2id 189

 Index 337

db2jstsrt 108
 IDB2.configuring the Webserver for DB2

access 109
DD card for DB2 CLI support 109
DDCS Multi-User Gateway 101
decoupling of systems 5
development of e-business applications for OS/390 9
development scenarios 270
direct sockets 15
Direct Telnet Session
Distributed Computing Environment (DCE)
Distributed Relational Database Architecture (DRDA)
Domino Go Webserver 19
DRDA

See Distributed Relational Database Architecture
(DRDA)

E
e-business Application Framework

application integration 6
application server software 4
connector overview 6
connectors 6
database services 4
development of e-business applications for

OS/390 9
development tools 7
foundation services 4
IIOP communication 4
Java APIs 8
JDBC 4
key elements 3
messaging services 5
messaging services overview 5
overview 3
SQLJ 4
the role of Java 8
transaction services 4
WebAS 9
WebAS overview 9

ECI
See External Call Interface (ECI)

ECI, testing 175
Enterprise Toolkit/390 (ET/390)

configuration 71
connection, establishing 73
connections to OS/390 71
FTP user ID 74
host session name 74
host session, adding 74
host session, refreshing 76
Java Install Data file 74
javaInstall.data file, retrieving 75
Jport utility 295
Jport utility, switching on 295

Enterprise Toolkit/390 (ET/390) (continued)
logging on to OS/390 77
NFS connections 72
performance analyzer, dynamic call graph 287
performance analyzer, function analysis tasks 287
performance analyzer, overview 285
performance analyzer, running an application 286
performance analyzer, running the 286
performance analyzer, switching on 285
performance analyzer, trace file 286
Properties tables 80
remote debugger, using 281
remote debugging, Breakpoints List window 283
remote debugging, Call Stack window 284
remote debugging, Program Monitor window 284
remote debugging, select a class for 282
remote debugging, Session Control window 283
remote debugging, Source window 283
remote debugging, switching on 281
TCP/IP address 74
tmp.cmd file 76

EPI 161
See also External Presentation Interface (EPI)

Error 403 197
ET/390 269

See also Enterprise Toolkit/390 (ET/390)
EXCI

See External CICS Interface (EXCI)
EXCI CGI 155, 157
EXCI, definition 156
export command 182

environment variables
adding to JGate script 182
defining in startup JCL 182
exporting 182

export DISPLAY command 56
Extended Coupling Facility (XCF) 238
External CICS Interface (EXCI)

CEMT INQUIRE CONNECTION 181
CGI 157
connections 181
definition 156
sample definitions 181
sessions 181

F
File I/O
File Transfer Protocol (FTP) 270
FTP support, on NT 72
FTP support, on OS/390 72

G
Go Webserver API (GWAPI)

338 e-business Application Solutions on OS/390 Using Java Vol. I

GWAPI, HTTP_extract API 215

H
High Performance Java (HPJ)

overview 21
High Performance Java/390 (HPJ/390)

-alias option 275
-classpath option 275
-exclude option 274
-exe option 274
-follow option 274
-include option 274
-make option 273, 274
-nofollow option 274
-o option 273
-partial option 274
-resource option 275
.jll files 275
.o files 274
benchmark program 277
examples 273
executables, creating 276
input 273
input, zip and jar files 275
Java Load Library (JLL) 274
Java Native Interface (JNI) 291
javaInstall.data 72
makefile for JNI 292
mixing bytecode and object code 289
output 273
PDSE member, build for 275
servlets, workarounds 289

history of Webservers on OS/390 19
HPJ/390 269, 273

See also High Performance Java/390 (HPJ/390)
HPJ/390 compiler 59
HTTP

See HyperText Transfer Protocol (HTTP)
HTTP protocol 13
HTTP server 4
HTTP_COOKIE 215
HttpServlet classes 249
HyperText Transfer Protocol (HTTP)

in Java client/server applications 13
overview 13

I
IBM HTTP Server for OS/390 19
IBM Websphere Studio 7
IEFSSNxx member, adding RRS 112
IFI 24
IIOP

See Internet Inter-ORB Protocol (IIOP)

IIOP communication on OS/390 4
IIOP protocol 14
IMS samples

[IMSTRAN][ImsModName]edit classes 223
AddLookHash class 228, 233
APPC, CMDEAL 225
APPC, CMSEND 225
APPC/templates 228
Appc2Ims class 221
Appc2Ims object 220
appcs2Ims object 219
buildIn method 220
buildObjectFromHash 220
BuildParse 220, 222
Class.forName 221
DFSLUEE0 226
doApc method 221
doIms 219
doIms method 221
doIwt method 229
doParse method 220
hapc2ims.c routine 224
HCMRCV 227
hhprintf.c routine 225
hjav2apc.c routine 223
hjgetref.c routine 225
hJNIRtns 224
hJNIRtns.c routine 226
hjreadmec 228
hpRefDef.c routine 226
hreadmac.c routine 233
IMSException class 222
IMSInputOuput object 220
IMSInputOutput class 220
IMSInputOutput object 220
inOut.getClassToLoad() 220
inOut.loadInClassFromHash method 220
InputOutput object 220
IWT parent class 229
IwtBase class 228, 229
IwtBase object 229
J2IMS class 220
JSAppc2Ims class 219, 228
libhjreadmc 233
loadOutClassToHash 220
parent class 218
reqht 218
state of Appc2Ims object 222
TMState 218, 220
TMState class 222

IMS TCP/IP OTMA Connection (TOC)
IMS TCP/IP OTMA Connection (TOC) samples
IMS TOC 25
IMS via MQSeries samples
IMS/ESA OTMA Callable Interface 25

 Index 339

IMW0254E 197
IndexOutOfBoundsException 258
Instrumentation Facility Interface (IFI) 24
Interface Definition Language (IDL)
Internet access to CICS, overview 155
Internet Connection Secure Server for OS/390

(ICSS) 19
Internet Connection Server for MVS/ESA 19
Internet Inter-ORB Protocol (IIOP)

in Java client/server applications 14
overview 14
services 15
support on OS/390 15

J
JAR file
Java APIs

in the e-business application framework 8
Java APIs in the e-business application framework 8
Java applet
Java application
Java classes

CICS Gateway for Java 162
CICS Gateway for Java EPI 162
DriverManager 117
ExecutionContext 137
HttpServlet 249
ibm.cics.jgate.client.CicsCpRequest 198
ibm.cics.jgate.client.ECIRequest 164, 198
ibm.cics.jgate.client.EPIRequest 198
ibm.cics.jgate.client.JavaGateway 164, 198
java.sql.Connection 118, 132
java.sql.SQLException 130

Java client/server
accessing back-end systems 16
advantages 11
communication protocols 12
communication protocols overview 12
different technology 11
direct sockets 15
fat client 12
HTTP protocol 13
IIOP protocol 14
maintenance 11
OS/390 connector overview 16
performance 11
reliability 11
RMI protocol 14
role of OS/390 12
role of the client 12
scalability 12
scenarios today 12
security 11
skills 11
thin client 12

Java client/server (continued)
why to use it 11

Java client/server scenarios today 12
Java Database Connectivity (JDBC)

advantages 23
brief comparison with SQLJ 22
CallableStatement interface 118
CLASSPATH 112
CLI support 23
Connection interface 118
documentation 24
DriverManager interface 118
examples 118, 120
JDBC-ODBC driver 23
jvm.properties changes for JDBC 110
LD_LIBRARY_PATH 112
location name 117
main interfaces 118
overview 23, 117
PreparedStatement interface 118
purpose and background 23
resource management 24
ResultSet interface 118
specification URL 117
Statement interface 118
support in the e-business Application Framework 4
type 1 driver 118
type 1 JDBC driver 23
URL structure 117
URL values on OS/390 117

Java Development Kit (JDK)
directory structure 53
download URL 53, 168
enabling Java for WebAS 55
installation methods 53
installation on OS/390 53
on NT 168
prerequisites information 53
support for WebAS 55
using multiple JDK releases 54
verifying the level 180

Java interfaces
CallableStatement 118
CICS Gateway for Java 162
Connection 118
DriverManager 118, 130
PreparedStatement 118
ResultSet 118
Statement 118

Java methods
Class.forName 130
connectToGateway 205
destroy 249
doGet 24, 249
doPost 24, 249
DriverManager.getConnection 117

340 e-business Application Solutions on OS/390 Using Java Vol. I

Java methods (continued)
endFetch 134
executeProgram 205
flow 198
getErrorCode 130
getSQLState 130
init 24, 199, 249
java.sql.DriverManager.getConnection 131
service 199
valueBound 216
valueUnbound 216

Java Native Interface (JNI) 214
Java object code 21

MQEnvironment 238
overview 21

Java on OS/390
external JVM 20
internal JVM 21
internal JVMs for CICS, IMS and DB2 21
location of the JVM on OS/390 20
running bytecode on OS/390 20

Java packages
com.ibm.mqbind 238
ibm.sql 118
java.sql 117
MQSeries Bindings for Java 236
MQSeries Client for Java 236

Java Record I/O (JRIO) 25
download URL 25
overview 25
supported datasets 25

Java security
certificate 108
digitally signed applet 108
Java security model 107
sandbox 107

Java security model 107
Java servlet

init() method 199
methods for connecting to DB2 24
resource protection 24
service() method 199
which resource protection for which method 24

Java Servlets 249
Java support on OS/390 20
JAVA_HOME 38
JavaBeans
javah command 291
javaInstall.data file 63

 refid.IVAJ.remote debugger, enabling 64
JavaServer Pages (JSP)

.jsp extension 252
<insert> tag 259
called by a servlet 257
CICS Timezone program 176
Creating Java Server Pages 253

JavaServer Pages (JSP) (continued)
debugging code 259
error getting compiled page 252, 259
flow 251
httpd.conf file 252
invoking a JavaBean 255
JSP called from a servlet, example 263
JSP invoking a JavaBean, example 261
location of pagecompiled JSPs 252
overview 247, 251
pagecompile servlet 252
permission bits 252
versions 247

JavaServer Pages, overview 247, 251
jchar 224
JDBC 22

See also Java Database Connectivity (JDBC)
JDK

See Java Development Kit
jint 224
JLL 59

HPJISMKD job 62
JNI

See Java Native Interface (JNI)
JNI, definition of DLL in Java 224
JNI, documentation, general 291
JNI, documentation, OS/390 specific 291
JNI, javah 291
JNI, jint 224
JNI, jobject parameter 224
JNI, native method 291
JNI, shared library 292
JNI, step-by-step 291
JNI. jne parameter 224
JNI.h file 291
JRE

See Java Runtime Environment (JRE)
JRIO 25

See also Java Record I/O (JRIO)
JSP

See JavaServer Pages
jst.jar 178
jvm.properties file 38

L
LOGR 110
LOGR, policy definition 111
Lotus Domino Go Webserver for OS/390

Configuration directives, user ID 30
contents of Version 5.0 19
documentation for Version 5.0 20
enabling DB2 access 109
June 1998 release for OS/390 19
jvm.properties changes for DB2 access 110
November 1998 release for OS/390 19

 Index 341

Lotus Domino Go Webserver for OS/390 (continued)
STEPLIB for DB2, in startup PROC 109
user ID 30

Lotus Domino Go Webserver for OS/390 Version 5.0
authorized user ID 29
changing configuration directives 30
changing httpd.conf 29
changing the authorized administrator user ID 30
changing the authorized user ID 29
changing the default access control user ID 30
Configuration directives 31, 32, 34, 35
content placement 31
content setup 31
content setup recommendations 33
default authorized user ID 29
default port 30
GET request from home page 33
home page 32
httpd.conf file 29
location of httpd.conf 29
location of your own Web content 33
mapping requests to file locations 33
running the sample servlet 48
sample servlets provided 48
setting up configuration files 29
standard error message when leaving SSL directives

unchanged 31
standard installation 30
standard location of content 31
standard location of Frntpage.html 30
standard location of Webserver files 30
Webserver setup procedure 33

M
messaging services 5

asynchronous processing 5
benefits 5
decoupling of systems 5
overview 5

MQI/IMS bridge 237
MQSeries Bindings for Java on OS/390 25
MQSeries Client for Java 25

N
native code compiler 21

See also High Performance Java (HPJ)
native method 291
Net File System (NFS) 270
NetObjects 94, 95, 97, 253, 254

adding a JSP 253
adding a servlet 254
creating a Blank site 95
editing a page 97
page view 97

NetObjects (continued)
page view function 94
setting the style 95
site view 95
style function 94
view function 94

NetObjects Scriptbuilder V2 169
 ICGJNT.properties 171

NetRexx
Netscape 49

checking the level 49
upgrading the JDK 49

NFS 72, 271
mountpoints 271
support on OS/390 72

Nullpoint exception 258

O
object code 21
omvs 270
onetstat command 45
Open Transaction Manager Access (OTMA) 25
OS/390 Transaction Management and Recoverable

Resource Manager Services 24
OTMA 25
OutOfMemory Exception 258
overview of connectors on OS/390 16

P
performance analyzer 65
portnumber on OS/390
program control for C++ load library, turning on 48
program control for Java DLLs, turning on 47

R
RACF file access 197
Remote AWT (RAWT)

overview 57
remote debugger 64

 refid.IVAJ.performance analyzer, enabling 65
Remote Method Invocation (RMI) 14, 26, 112

Configuration directives
AccessLog 35
AccessLogArchive 35
AccessLogExpire 35
AccessLogSizeLimit 35
AgentLog 35
CgiErrorLog 35
ErrorLog 35
ErrorLogArchive 35
ErrorLogExpire 35
ErrorLogSizeLimit 35
Exec 32, 34
normalmode 31

342 e-business Application Solutions on OS/390 Using Java Vol. I

Remote Method Invocation (RMI) (continued)
Configuration directives (continued)

Pass 32, 34
Protect 31
Protection IMW_Admin 31
RefererLog 35
SMF 35
SNMP 35
SSLClientAuth 31
sslmode 31
sslport 31

on OS/390 26
protocol 14
updating the IEFSSNxx member 112

Remote Procedure Call (RPC)
Resource Access Control Facility (RACF)
Resource Level Security Key 175
RMI

See also Remote Method Invocation (RMI)
in Java client/server applications 14
overview 14

RRS 24, 110, 112
documentation 110
implementation steps 110
installation 110
start command 112
stop command 112

RRSAF 24

S
sandbox 107
SE

See ServletExpress
security
ServletExpress

adding directives to httpd.conf file with SEconfig
tool 37

admin_port.properties file 43
configuration 36
default location of Webserver files 36
documentation 36
enabling DLL plugin logging 42
enabling JVM logging 42, 46
enabling native DLL plugin logging 46
error 500 message 47
external links 46
generating missing external links 46
Java standard out logging 42
location of properties files 38
native DLL logging 42
post installation tool 36
required PTFs for JDK level 1.1.4 46
startup trace log file 44

servlets
adding a servlet in NetObjects 254

servlets (continued)
destroy method 249
doGet method 249
doPost method 249
init method 249
overview 249

servlets, location 192
session, definition 243
session, in GWAPI 215
set-cookie HTTP variable 215
shared library 292
SnoopServlet 192

output 192
socket

in Java client/server applications 15
usage of a socket server on OS/390 15

SQLJ 22
ALL|DB2 option 152
assignment clause 135
authorization-ID option 152
autoCommit, default value 132
availability 23
bind package, example 153
brief comparison with JDBC 22
calling a stored procedure, example 129
case sensitivity 129
CLASSPATH 112
clauses 128
comments, including 129
connection context 131
connection declaration clause 131
customizing serialized profile, command syntax 151
data source 130
DATE option 151
DB2SQLJATTACHTYPE 112
db2sqljc 151
DB2SQLJDBRMLIB 112
DB2SQLJPLANNAME 112
DB2SQLJSSID 112
DBRM-member-name option 152
DBRM, location 153
documentation 24
error code, retrieving 130
error handling 130
error handling, class 130
error handling, example 130
evaluating host expressions 129
executable clause, example 128
executable clauses 128
ExecutionContext class 137
FETCH 133
host expression 129
host expression, example 129
import 130
iterator declaration clause 132
Java compiler 153

 Index 343

SQLJ (continued)
jvm.properties changes for SQLJ 110
LIBPATH 112
location name 131
methods in Connection class 132
modifying SQL statement execution 137
monitoring SQL statement execution 137
multiple concurrent connection contexts 132
named iterator 134
named iterator, example 135
overview 23
plans, with WebAS 153
positioned delete 136
positioned delete, example 137
positioned iterator 133
positioned iterator, example 133, 134
positioned update 136
possible static elements 129
preparation steps 149
preparation, example 153
profiler 153
resource management 24
restrictions on OS/390 138
result set iterator, types 133
result set iterators 132
serialized profile 153
serialized profile, customizing 151
serialized-profile-name option 152
SQL exception 130
SQLJ comments 129
SQLSTATE, retrieving 130
support in the e-business Application Framework 4
TIME option 151
translating source code 150
translator, command 153
translator, command syntax 150
translator, output 153

SQLJ clauses 128
SQLJ preparation steps 149
STDENV 182
STDENV, example 182

environment variables
using quotes or not 182

SYSPLEX LOGR, allocating 110

T
TCP/IP OTMA Connection 25
TCP62, definition 160
telnet 270
TestECI program 175
Timezone program, JSP version 176
transaction services 4
TxSeries 168, 173

adding programs 173
adding the listener 173

TxSeries (continued)
administration utility 173
CICS regions 173
CICS_HOSTS 173
creating CICS regions 173
DCE 173
ENCINA-BINDING_FILE 173
starting CICS regions 173

TxSeries.CECI command 175
TxSeries.CECI, output example 175

CLASSPATH 175
example on NT 175

U
updating the HFS file attributes 47
usage of a socket server on OS/390 15
UTF 224

V
VisualAge for COBOL, Enterprise Version 2.2 168
VisualAge for COBOL, Enterprise Version 2.2,

CICS_IBMCOB_FLAGS 174
VisualAge for COBOL, Enterprise Version 2.2, cicstcl

syntax 174
VisualAge for COBOL, Enterprise Version 2.2, compile

and link-edit 174
VisualAge for COBOL, Enterprise Version 2.2,

editor 174
VisualAge for Java
VisualAge for Java Enterprise Edition Version 2.0 168
VisualAge for Java for OS/390

codepage conversion 69
Compiler Feature 59
components 58
directories on OS/390 62
FMIDs 61
FTP 67
functions 58
HPJ/390 compiler 59
HPOISMKD job 62
installing IFAPRDxx member, sample job 66
introduction 58
Java Run Time Library 59
javaInstall.data file 63
javaInstall.data file, defaut location 63
javaInstall.data file, example 63
JLL 59
NFS 67
order information 59
profile.hpj file 62
required network installations 67
Run Time Feature 59
Servlet Builder, adding 179
software requirements 60

344 e-business Application Solutions on OS/390 Using Java Vol. I

VisualAge for Java for OS/390 (continued)
testing the runtime 66
updating the profile for HPJ 62

W
Web browser 168
Web design 94
WebAS

See WebSphere Application Server
WebSphere Application Server

adding directives to httpd.conf file with
postinstall.sh 37

admin_port.properties file 43
availability 9
checking the required Netscape level 49
configuration 36
contents of WebSphere Studio 7
copying the WebAS files to your own location 38
default listening port 45
default location of Webserver files 36
documentation 36
enabling Java 55
error 500 message 47
history 19
httpd.conf, location 252
in the e-business application framework 9
JAVA_HOME 38
JDK level 38
JSP support 247
jvm.properties file 38
location of properties files 38
location of the admin password 49
March 1999 release for OS/390 19
Microsoft IE and Sun Hotjava 49
ncf.server.root parameter 43
november 1998 release for OS/390 19
on Windows NT 167
onetstat command 45
overview 9
post-installation tool 36
problems 46
program control for Java DLLs, turning on 56
properties files 38
required Netscape level for WebAS Manager 49
required PTFs for JDK level 1.1.4 46
ServerInit 38
servlet classes 178
servlets.classpath parameter 43
servlets.properties file 43
sessions 216
SnoopServlet 192
SnoopServlet, output 192
startup trace log file 44
updating httpd.conf when copying the Webserver

files 38

WebSphere Application Server (continued)
updating jvm.properties when copying the Webserver

files 38
updating the properties 36
URL for starting WebAS Manager 49
using WebAS Manager 49
verbose trace option 43
verifying a successful startup 43
verifying the CLASSPATH 56
verifying the LIBPATH 56
verifying the PATH 56
WebAS Manager 36

why Java client/server applications? 11

X
X11 protocol 57

 Index 345

346 e-business Application Solutions on OS/390 Using Java Vol. I

ITSO Redbook Evaluation

e-business Application Solutions on OS/390 Using Java: Volume I
SG24-5342-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and Fax it to: USA International Access Code + 1 914 432 8264 or:

� Use the online evaluation form found at http://www.redbooks.ibm.com
� Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
__Customer __Business Partner __Solution Developer __IBM employee
__None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1999 347

S
G

24
-5

34
2-

00
P

rin
te

d
in

 t
he

 U
.S

.A
.

e-business Application Solutions on OS/390 Using Java: Volume I SG24-5342-00

ÉÂ
Ô

	e-business Application Solutions on OS/390
	Take Note!
	Contents
	 Figures
	 Tables
	 Preface
	The Team That Wrote This Redbook
	 Comments Welcome
	Part 1. Overview of Java Application Environment on OS/390
	Chapter 1. The e-business Application Framework
	 Chapter 2. Java Client/Server
	 Chapter 3. OS/390 Components
	Part 2. Configure Java Application Environment on OS/390
	Chapter 4. Configuration of the OS/390 Web Server
	Chapter 5. Configuring Java Support on OS/390
	Chapter 6. Configuring VisualAge for Java on the
	Chapter 7. NetObjects Fusion (NOF) Version 3
	 Chapter 8. DB2 Connectivity
	Part 3. Develop Application Solutions for OS/390 Using Java
	 Chapter 9. DB2 Access
	Chapter 10. Develop Java Solutions for CICS on OS/390
	Chapter 11. Accessing IMS Transactions from the Web
	Part 4. Using Servlets and JavaServer Pages on OS/390
	 Chapter 12. Introduction
	Chapter 13. How Java Servlets Work
	Chapter 14. How a JavaServer Page (JSP) Works
	Chapter 15. Designing a Server_side Plugin
	Chapter 16. Samples of JSP/Servlet
	Part 5. Using VisualAge for Java ET/390 and HPJ/390
	 Chapter 17. Introduction
	Chapter 18. Using HPJ/390 - Scenarios
	Chapter 19. HPJ Performance on OS/390
	Chapter 20. Remote Debugger on OS/390
	Chapter 21. Performance Analyzer for OS/390
	Chapter 22. Mixing Java Bytecode and Objectcode on OS/390
	Chapter 23. Using HPJ/390 with the Java Native Interface
	Chapter 24. The Jport Utility
	 Appendix A. CD-ROM
	Appendix B. Design of the Advanced Sample Application
	 Appendix C. Special Notices
	 Appendix D. Related Publications
	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form
	 Index
	ITSO Redbook Evaluation

