
SG24-5425-00

International Technical Support Organization

http://www.redbooks.ibm.com

Connecting Domino to the Enterprise Using Java

Christophe Toulemonde, Justine Grose, Ari Pratiwi, Boyd Stratton

Connecting Domino to the Enterprise Using Java

June 1999

SG24-5425-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (June 1999)

This edition applies to Release 4.6 and Release 5.0 of Domino

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix F, “Special Notices” on page 247.

Take Note!

Contents

Figures .ix

Tables .xi

Preface . xiii
The Team That Wrote This Redbook . xiv
Comments Welcome . xv

Part 1. e-business Components . 1

Chapter 1. IBM Application Framework for e-business 3
1.1 System Model . 3
1.2 Architecture . 4

1.2.1 Clients . 5
1.2.2 Network Infrastructure . 5
1.2.3 Application Server Software . 6
1.2.4 Application Integration . 6
1.2.5 Web Application Programming Environment 7
1.2.6 e-business Application Services . 7
1.2.7 Systems Management . 8
1.2.8 Development Tools. 8

Chapter 2. Java . 9
2.1 A Programming Language . 9
2.2 Java Virtual Machine . 12
2.3 Remote Method Invocation (RMI) . 13
2.4 Development . 15

2.4.1 Java Development Kit . 15
2.4.2 Java Servlet Development Kit . 15
2.4.3 Java Database Connectivity . 15
© Copyright IBM Corp. 1999 iii

2.5 Application Architecture . 17
2.5.1 Java Applets. 17
2.5.2 Java Applications . 19
2.5.3 Java Servlets . 19
2.5.4 JavaBeans . 20
2.5.5 Java Server Pages . 20
2.5.6 Enterprise JavaBeans. 21
2.5.7 How Servlets and Enterprise JavaBeans Differ 26

Chapter 3. CORBA . 29
3.1 Implementation. 29

3.1.1 Object Request Broker . 30
3.1.2 From the Client to the Server . 30

3.2 CORBA Services . 33
3.3 Internet Inter-ORB Protocol . 33

Chapter 4. Domino . 37
4.1 Domino Application Server . 38
4.2 Domino and Enterprise Integration . 42
4.3 DECS . 44
4.4 Lotus Enterprise Integrator . 45
4.5 Domino and Java . 45

4.5.1 Java Language . 45
4.5.2 CORBA Support . 46
4.5.3 CORBA Implementation . 48
4.5.4 Domino JDBC Driver . 49
4.5.5 Lotus Connector Java Classes . 52

Chapter 5. Database Management Systems . 55
5.1 DB2 . 55
5.2 DB2 and Java. 56

5.2.1 DB2 JDBC Support . 56
5.2.2 Java User-Defined Functions and Stored Procedures. 58
5.2.3 SQLJ . 58

5.3 Domino and DB2 . 59

Chapter 6. Online Transaction Processing . 61
6.1 CICS . 61
6.2 CICS and Java . 62

6.2.1 CICS Gateway for Java . 63
6.2.2 CICS Universal Client . 63
6.2.3 CICS Java Class Library. 63
6.2.4 TerminalServlet Servlet . 64
6.2.5 Set of EPI Java Beans . 64
iv Connecting Domino to the Enterprise Using Java

6.3 Domino and CICS . 65

Chapter 7. Messaging Middleware . 67
7.1 MQSeries . 67

7.1.1 A Single, Multi-Platform API . 68
7.1.2 Assured Message Delivery . 69
7.1.3 Faster Application Development . 70
7.1.4 Time Independent Processing . 70
7.1.5 Application Parallelism . 71

7.2 MQSeries and Java . 72
7.2.1 MQSeries Client for Java . 73

7.2.2 MQSeries Bindings for Java . 73
7.2.3 MQSeries Java Classes . 74
7.2.4 MQSeries Trigger Monitor for Lotus Notes Agents 76

7.3 Domino and MQSeries . 77

Chapter 8. WebSphere . 79
8.1 WebSphere Product Family . 79

8.1.1 WebSphere Application Server . 80
8.1.2 WebSphere Studio . 81
8.1.3 WebSphere Performance Pack. 82

8.2 WebSphere Application Server. 83
8.2.1 Servlet Runtime Environment . 84
8.2.2 Enterprise JavaBeans Server . 84

8.3 Domino and WebSphere . 87
8.3.1 Advantages of Using Domino with WebSphere 89
8.3.2 Recommendations of Use. 89

Part 2. Installation and Setup . 91

Chapter 9. Java . 93

Chapter 10. Domino . 95
10.1 Java Applet . 95
10.2 Release 4.6 . 95

10.2.1 Installation . 95
10.2.2 Java Agent Support . 97
10.2.3 Java Servlet Support . 99

10.3 Release 5.0 . 101
10.3.1 HTTP and DIIOP Tasks . 101
10.3.2 Java Agent Support . 101
10.3.3 JavaUserClasses . 103
10.3.4 Servlet Manager . 104
10.3.5 Designer Setup. 105
v

10.3.6 Run-Time Requirements . 106
10.4 Domino Object Classes . 106
10.5 Domino Driver for JDBC . 108
10.6 Java Classes for Lotus Connectors . 109

Chapter 11. Enterprise Resources . 111
11.1 DB2 . 111
11.2 CICS Transaction Gateway . 113
11.3 MQSeries . 115

11.3.1 Installation . 115

Chapter 12. WebSphere . 117
12.1 Installation . 117
12.2 Application Server Manager . 118

12.2.1 Enterprise JavaBeans. 120
12.2.2 Servlet Manager . 125

Part 3. Connecting Domino . 129

Chapter 13. Applets . 133
13.1 Domino Applet Support . 133
13.2 Structure of an Applet. 134

13.2.1 Domino R4.6 Java Applet . 134
13.2.2 Domino R5 Applet . 135

13.3 Writing a DB2 and Domino Applet . 136
13.4 Downloading and Displaying an Applet. 141

13.4.1 From a Domino Form . 141
13.4.2 From an HTML Page . 144

13.5 Java Applets and Enterprise Integration . 144

Chapter 14. Java Applications . 147
14.1 Domino Driver for JDBC Application . 148

14.1.1 Security . 150
14.2 Local Access to the Domino Object Classes. 151

14.2.1 Security . 154
14.3 Local Access Using the Lotus Connectors 154
14.4 JDBC, DOM, or LC to Domino Data? . 157

14.4.1 Domino Driver for JDBC or Domino Object Classes? 158
14.4.2 Lotus Connectors . 158

Chapter 15. Agents . 161
15.1 Structure of an Agent . 162
15.2 Triggering an Agent . 164
15.3 From Domino to the Enterprise Using MQSeries 165
vi Connecting Domino to the Enterprise Using Java

15.3.1 Setup . 165
15.3.2 Writing the Agent . 167
15.3.3 Remarks and Comments . 171

15.4 From the Enterprise to Domino Using MQSeries 176

Chapter 16. Servlets . 181
16.1 Domino Java Servlet Manager . 181
16.2 Structure of a Servlet . 182
16.3 Writing a CICS Java Program. 183
16.4 CICS Connected Servlet . 184

16.4.1 Development Environment Setup . 184
16.4.2 Writing the Servlet . 184
16.4.3 Triggering the Servlet . 188

Chapter 17. A Comparison . 189
17.1 Java Program Types . 189
17.2 Use of Java versus LotusScript . 191

Part 4. Domino and WebSphere . 195

Chapter 18. WAS Servlet Manager . 197
18.1 Installation . 197
18.2 Settings . 197
18.3 Alias . 198
18.4 Security . 199

Chapter 19. WAS Enterprise JavaBeans Server 203
19.1 Employee EJB . 203
19.2 Domino Agent . 205

19.2.1 Settings . 206
19.2.2 Writing the JavaAgent Agent . 207
19.2.3 Form Running the Java Agent . 210
19.2.4 Running the Example . 211

19.3 Domino Servlet. 213
19.3.1 Setup . 213
19.3.2 Writing the Dom_Empl Servlet . 213
19.3.3 Form Running the Servlet . 217
19.3.4 Running the Servlet . 217
19.3.5 Agent or Servlet When Using EJB . 218

Appendix A. Applet Example . 219

Appendix B. Servlet Example . 223
vii

Appendix C. Application Example . 227
C.1 Domino JDBC Driver . 227
C.2 Domino Objects Classes . 229
C.3 Lotus Connector . 231

Appendix D. Agent Example . 233
D.1 Domino Agent to the Enterprise Using MQSeries 233
D.2 The Enterprise to a Domino Agent Using MQSeries 237

Appendix E. WebSphere Example . 241
E.1 EJBAgent . 241
E.2 Dom_Empl Servlet . 242

Appendix F. Special Notices . 247

Appendix G. Related Publications . 251
G.1 International Technical Support Organization Publications 251
G.2 Redbooks on CD-ROMs. 251
G.3 Other Publications . 252

How to Get ITSO Redbooks . 253
How IBM Employees Can Get ITSO Redbooks . 253
How Customers Can Get ITSO Redbooks. 254
IBM Redbook Order Form . 255

Glossary . 257

List of Abbreviations . 263

Index . 267

ITSO Redbook Evaluation . 279
viii Connecting Domino to the Enterprise Using Java

Figures

1. Architecture of IBM Application Framework for e-business 4
2. Application Framework for e-business Web Application Programming 7
3. Java Compiler . 10
4. Remote Method Invocation . 14
5. JDBC Driver Types . 17
6. Java Applet . 18
7. Servlet Process Flow . 19
8. EJB Core Elements . 23
9. EJB Server and Container . 24
10. CORBA Components. 29
11. CORBA Architecture . 31
12. Domino Application Services . 39
13. Domino Enterprise Integration Solutions . 43
14. Domino CORBA Architecture. 47
15. Domino CORBA Implementation . 48
16. Domino Driver for JDBC . 50
17. DB2 JDBC Implementation . 57
18. Notes/Domino Access to DB2 . 59
19. CICS Java Support . 62
20. Notes/Domino Access to CICS . 65
21. Messaging and Queueing . 68
22. MQSeries Platform Coverage . 69
23. Processing Requests in Parallel . 71
24. MQSeries Java Support. 72
25. Notes/Domino Access to MQSeries. 78
26. WebSphere Family . 80
27. Enterprise Java Server . 85
28. Domino and WebSphere Positioning . 88
29. Domino R4.6 Integrated Development Environment 97
30. Java Console Started from Domino 4.6 . 98
© Copyright IBM Corp. 1999 ix

31. Reimporting Java Classes . 99
32. Domino R5 Java Integrated Development Environment 102
33. Importing Java Support Classes into the Project 103
34. Java Servlet Configuration. 104
35. Java Classes for Domino R4.6 . 107
36. WebSphere Application Server Plugins Selection Panel 118
37. WebSphere Application Server Administration . 119
38. Deploying an EJB . 123
39. WebSphere Administration - Servlet Aliases . 126
40. Checking WAS Servlet Manager . 127

41. Create Java Applet . 142
42. Locate Java Applet Files . 142
43. Applet Parameters . 143
44. Java Application Environment . 147
45. Servlet Configuration Settings . 198
46. Servlet Alias . 199
47. Access Control List . 200
48. Protect a Resource Setting . 201
49. EJBAgentA Agent . 206
50. EJB Classes Imported . 207
51. Example Domino Form for Running the Java Agent 211
52. Fill the Surname Field with "s" . 212
53. The Agent Result from the EJB . 212
54. EJB Cannot Find the Data . 213
55. Result Printed on the Web . 218
x Connecting Domino to the Enterprise Using Java

Tables

1. SQL and Domino Mapping. 52
2. CLASSPATH Environment Variable Values . 93
3. Domino Applet Support . 133
4. Domino Driver for JDBC and Domino Object Classes. 158
5. Agent Triggers . 164
6. Comparison of Java Program Types . 189
7. Comparison of Domino Object Classes Access 192
8. Data Types. 192
© Copyright IBM Corp. 1999 xi

xii Connecting Domino to the Enterprise Using Java

Preface

Organizations are making Java, Domino, and enterprise applications the
foundations for their e-business strategies. Java is the Internet object-oriented
programming language. Domino combines the open networking environment of
the Internet standards and protocols with the powerful application facilities of
Notes. Enterprise applications have proven their reliability in the processing of
business transactions by supporting high-transaction volumes and secure, large,
structured databases. Therefore e-business applications are Domino
applications connected to enterprise services and developed in Java.

This redbook explains how to use Java to create Domino applications integrated
with enterprise resources. It introduces the new CORBA support offered with
Domino R5. It shows how to create applets, agents, and servlets that access
DB2, CICS, and MQSeries resources. It covers the connection using:

• The IBM connectors such as the DB2 JDBC driver, the CICS Transaction
Gateway, and the MQSeries Client for Java

• The Java libraries that support the new Lotus connectors to DB2, CICS, and
MQSeries

This redbook also explains the use of Domino with WebSphere application
server. It shows how to integrate an Enterprise JavaBean managed by
WebSphere in a Domino application.

A full set of working samples illustrates the different types of Java
applications and their connection to the enterprise resources.

This redbook will help managers and system architects to understand the
Java support of Domino as well as its connection to the enterprise. It will help
the developers to create a Domino application in Java that is integrated with
enterprise resources.
© Copyright IBM Corp. 1999 xiii

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Christophe Toulemonde is a Senior ITSO Specialist for client/server and
network computing at the Application Development and Data Management
ITSO, San Jose Center. He writes extensively and teaches IBM classes
worldwide on all areas of client/server and network computing. Before joining
the ITSO, Christophe worked as a Technical Manager in an IBM subsidiary,
Datablue, in France. You can reach him by e-mail at toulemon@us.ibm.com.

Justine Grose is a senior IT Specialist working for the EMEA Application
Integration Middleware (AIM) Technical Sales group based in Hursley,
England. She has worked in IBM for 10 years, with 4 years of experience in
Transaction Systems and Lotus Domino. She holds a degree in Physics from
the University of Bath. Her areas of expertise include MQSeries and its
integration with Lotus Domino, in particular the MQLSX and MQEI. Justine
wrote and teaches course MQ07 "MQSeries Connections to Domino" for IBM
Education & Training and has created various other workshops in this
area.You can reach Justine by e-mail at justine_grose@uk.ibm.com.

Ari Pratiwi is an e-business Sales Specialist in Indonesia. She has 2.5 years
of experience in the Lotus Domino field. She has worked at IBM for 1.5 years
in a software department and the last 1 year in an e-business department.
She holds a degree in Information Technology from Bandung Institute of
Technology, Indonesia. Her areas of expertise include Lotus Domino
application programming, Lotus Domino system administrating and object-
oriented programming. You can reach Ari by e-mail at apratiwi@id.ibm.com

Boyd Stratton is a Product Specialist at Lotus in the UK. Boyd has been
working in the IT industry for 11 years. The last 5 of those years have been for
Lotus development where he has been heavily involved with Notes/Domino
xiv Connecting Domino to the Enterprise Using Java

application design, and Enterprise Integration. You can reach Boyd by e-mail at
boyd_stratton@lotus.com.

Thanks to the following people for their invaluable contributions to this
project:

Joaquin Picon
International Technical Support Organization, San Jose Center

John Akerley
International Technical Support Organization, San Jose Center

Martha Hoyt
Lotus Product Manager, Lotus Development

Michele Pennel
Lotus Product Manager, Lotus Development

Mary Peterson
Lotus Product Manager, Lotus Development

Peter Niblett
MQSeries Strategy, IBM Hursley

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 279
to the fax number shown on the form.

• Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

• Send us a note at the following address:

redbook@us.ibm.com
xv

xvi Connecting Domino to the Enterprise Using Java

Part 1. e-business Components

The Web is changing every aspect of our lives, but no area is undergoing as
rapid and significant a change as the way businesses operate. As businesses
incorporate Internet technology into their core business processes they start
to achieve real business value. Today, companies large and small are using
the Web to communicate with their partners, to connect with their backend
data systems, and to transact commerce. This is e-business — where the
strength and reliability of traditional information technology meet the Internet.

This new Web +IT paradigm merges the standards, simplicity and
connectivity of the Internet with the core processes that are the foundation of
business. The new killer apps are interactive, transaction intensive, and let
people do business in more meaningful ways.

In the following chapters, we set the IT scenery needed to create an
e-business application:

• The framework, combining proven development and deployment
methodologies and battle-tested products

• Java, the programming language and execution environment

• The enterprise resources, such as Domino, relational database
management systems, online transaction processing systems, and
messaging facilities.
© Copyright IBM Corp. 1999 1

2 Connecting Domino to the Enterprise Using Java

Chapter 1. IBM Application Framework for e-business

IBM's Application Framework for e-business helps you achieve e-business
critical mass quickly and safely, combining proven development and
deployment methodologies and battle-tested products. Building e-business
solutions is more effective when you have a blueprint.

The IBM framework is a multi-platform guide to transforming legacy systems
into e-business capabilities. There is no need to scrap systems and rebuild
because e-business applications are the glue between legacy data and the
Internet. The framework allows you to expand your business by moving
applications to new platforms and expanding or adding rich functionality to
applications.

1.1 System Model

The IBM Application Framework for e-business provides a model for
designing e-business solutions. The framework is based on an n-tier
distributed environment where any number of tiers of application logic and
business services are separated into components that communicate with
each other across a network. In its most basic form, the framework can be
depicted as a logical three-tier computing model, meaning that there is a
logical, but not necessarily physical, separation of processes. This model is
designed to support thin clients with high-function Web application and
enterprise servers.

A prototypical three-tier architecture consists of:

• Tier 1:

A client tier containing logic related to the presentation of information (for
example, the graphical user interface) and requests to applications
through a browser or Java applet.
© Copyright IBM Corp. 1999 3

• Tier 2:

Web application servers containing the business logic and processes that
control the reading and writing of data.

• Tier 3:

Servers that provide the data storage and transaction applications used by
the Web application server processes.

The application elements residing in these three logical tiers are connected
through a set of industry-standard protocols, services, and software
connectors.

1.2 Architecture

The application framework for e-business architecture provides a full range of
services for developing and deploying e-business applications. Because it is
based on industry standards, the framework has the ability to integrate
multiple components provided by any vendor.

Figure 1 on page 4 illustrates the key elements of the framework.
4 Connecting Domino to the Enterprise Using Java

Figure 1. Architecture of IBM Application Framework for e-business

The framework architecture is composed of the following key elements:

• Clients based on a thin client, Web browser/Java applet model that
enables universal access to framework applications, and on-demand
delivery of application components.

• A network infrastructure that provides services such as TCP/IP, directory,
and security whose capabilities can be accessed via open, standard
interfaces and protocols.

• Application server software that provides a platform for e-business
applications and includes an HTTP server, database and transaction
services, mail, and groupware services.

• Application integration that provides access to existing data and
applications.

• A Web application programming environment that provides the server-side
servlet and Enterprise Java programming environment for creating
dynamic and robust e-business applications.

• e-business application services that provide higher level application-
specific functionality to facilitate the creation of e-business solutions.

• Systems management functions that accommodate the unique
management requirements of network computing across all elements of
the system, including users, applications, services, infrastructure, and
hardware.

• Development tools to create, assemble, deploy, and manage applications.

1.2.1 Clients
Application framework for e-business clients are thin clients, meaning that
little or no application logic is executed on the client and therefore relatively
little software is required to be installed on the client. In this model,
applications are managed on the server and dynamically downloaded
on-demand to requesting clients. As such, the client portions of new
applications should be implemented in HTML, Dynamic HTML, XML, and
Java applets. The framework supports a broad range of fixed, mobile, and
Tier 0 clients such as personal data assistants, smartcards, digital cellphones
from IBM and other industry leaders, based on industry initiatives such as the
Network Computer Profile, and the Mobile Network Computer Reference
Specification.

1.2.2 Network Infrastructure
The application framework for e-business network infrastructure provides a
IBM Application Framework for e-business 5

platform for the entire framework. It includes the following services, all based
on open standards:

• TCP/IP and network services like DHCP, which dynamically assigns IP
addresses as devices enter and leave the network.

• Security services based on public key technology that support user
identification and authentication, access control, confidentiality, data
integrity, and non-repudiation of transactions.

• Directory services that locate users, services, and resources in the
network.

• Mobile services that provide access to valuable corporate data to the
nomadic computing user.

• Client management services that support the setup, customization, and
management of network computers, managed PCs, and in the future Tier
0 devices such as smartcards, digital cellphones, and so forth.

• File and print services that are accessed and managed by way of a
standard Web browser interface.

1.2.3 Application Server Software
The application server software provides the core functionality required to
develop and support the business logic of e-business applications running on
the Web application server. It includes the following services:

• An HTTP server that coordinates, collects, and assembles Web pages
composed from static and dynamic content and delivers them to
framework clients.

• Mail and community services that provide e-mail messaging, calendaring
and group scheduling, chat, and newsgroup discussions.

• Groupware services that provide a rich shared virtual workspace and
support the coordination of business workflow processes.

• Database services that integrate the features and functions of an
object-relational database with those of the Web application server.

• Transaction services that extend the Web application server by providing a
highly available, robust, expandable and secure transaction application
execution environment.

1.2.4 Application Integration
The application integration component of the framework allows disparate
applications, potentially written in different programming languages and built
on different architectures, to communicate with each other. The bulk of
today's critical data and application (especially transaction) programs reside
on and use existing enterprise systems.
6 Connecting Domino to the Enterprise Using Java

Application integration allows Web clients and servers to work together with
this data and these application programs, seamlessly linking the strength of
the Internet with the strength of the enterprise. Three methods of integration
are supported:

• Connectors are gateway software that provide linkage between the Web
server and services that are reached through the use of application-
specific protocols.

• Messaging services provide robust, asynchronous communication and
message brokering facilities that support a publish/subscribe model of
communication including message transformations.

• Managed object services enable object wrappering of existing application
logic written in any language. As a result, existing application logic is
extended to object-oriented environments.

1.2.5 Web Application Programming Environment
The Web application programming environment, based on Java servlets,
Enterprise Java services and Enterprise JavaBean components, provides an
environment for writing dynamic, transactional, secure business applications
on Web application servers. Services are provided that promote separation of
business and presentation logic enabling applications to dynamically adapt
and tailor content based on user interests and client devices.
IBM Application Framework for e-business 7

Figure 2. Application Framework for e-business Web Application Programming

1.2.6 e-business Application Services
The e-business application services are building blocks that facilitate the
creation of e-business solutions. They are higher level application-oriented
components that conform to the framework programming model. They build
on and extend the underlying framework infrastructure and foundation

services with functions required for specific types of applications, for
example, e-commerce applications. As a result, e-business solutions can be
developed faster with higher quality. Examples of framework e-business
application services include payment services, catalog services, and order
management services.

1.2.7 Systems Management
Within an enterprise, systems management services provide the core
functionality that supports end-to-end management across networks,
systems, middleware and applications. The application framework for
e-business provides the tools and services that support management of the
complete lifecycle of an application from installation and configuration, to the
monitoring of its operational characteristics such as availability and security,
to the controlled update of changes. Across multiple enterprises, the
framework provides a collaborative management approach for establishing
and following procedures to share information and coordinate problem
resolution with business partners. This collaborative approach includes policy
management, data repository, scheduling and report generation.

1.2.8 Development Tools
The application framework for e-business provides a broad range of tools to
enable creation, deployment and management of e-business applications for
Internet, extranet and intranet environments. It also supports integrating 3rd
party tools into the development process. The framework supports the
different skill sets involved in developing Web applications, providing tools
that target specific skill sets, and facilitates collaboration among members of
the development team.
8 Connecting Domino to the Enterprise Using Java

Chapter 2. Java

Java is an object-oriented programming language and execution environment
that offers significant new opportunities for software development,
interoperability and portable execution. In this section we introduce the
technology, explain the basics and position Java and Java technology.

Java was designed by Sun Microsystems to be small, portable, fast and safe,
characteristics that are an essential part of Java's success, as they made
Java an ideal language for the explosion in growth of the World-Wide Web
and the Internet.

2.1 A Programming Language

Java is a high-level programming language that is simple to use. Java is
object oriented, but without all the complications of other object-oriented
languages such as C++ or Smalltalk. It has a single inheritance model, simple
data types, and code that is organized into classes. These classes provide an
excellent way to package functions.

Java has the following characteristics:

• Platform-independent

You can write Java programs with an editor of your choice. The source
code is plain ASCII code. You can transfer this source code to any system
that can read ASCII code. Then you can compile this code using the Java
compiler for that system. The compiler generates Java bytecode. The
bytecode again can be transferred to any Java-enabled operating system
to run it, or if it is an applet, to run it within a Java-enabled browser.

Figure 3 on page 10 shows how Java programs are compiled and
distributed. The bytecode generated by any Java compiler runs on any
machine that supports Java.
© Copyright IBM Corp. 1999 9

Figure 3. Java Compiler

• Distributed

Java is inherently distributed. The Java class libraries contain routines for
coping with TCP/IP protocols such as FTP and HTTP. Java programs can
access URLs as easily as a file system.

The user can download the Java bytecode of our program from the
Internet and run it on his or her own system. That means that anyone with
access to your Web server can load and run your applet with no prior
installation needed on his or her machine. When an update to the program
10 Connecting Domino to the Enterprise Using Java

is required, you simply update the applet on your Web server and the user
automatically receives the latest version the next time he or she accesses
the applet.

This significantly reduces the cost of program service and updates.

• Secure

Java is intended to run in networked/distributed environments, and
emphasis has been placed on security. Java programs cannot overrun
their run-time stack, cannot corrupt memory outside of their process

space, and when downloaded from the Internet, cannot even read or write
local files.

• Robust

Java performs early checking for possible problems, dynamic (run-time)
checking, and eliminates situations that are error prone. Java uses a
concept of references that eliminates the possibility of overwriting memory
and corrupting data.

The following features are what make it robust:

• Java eliminates pointer manipulation, so that the memory usage is
encapsulated in classes specifically built for that purpose.

• Java maintains run-time integrity by ensuring that distribution and
dynamic linking have not introduced errors into the code (in addition to
type checking at compile time). The interpreter ensures that the
bytecode has not been tampered with and that transmission errors
have not modified the code.

• Java eliminates the common problems of out-of-bounds array access
attempts in C and C++. Java always catches accesses to invalid array
elements. Some are caught at compile time and others at runtime,
when computing index values.

• Java supports multithreading by providing synchronization modifiers in
the language. At the object level, threaded applications can inherit
classes specifically created for that purpose. The priority of specific
threads can be set by applications to suit specific needs, allowing
unique modes of preemptive multitasking.

• Object-oriented

Like Smalltalk and C++, Java is an object-oriented programming
language. However, it is not a hybrid like C++. Java uses the concepts of
classes and objects, instances, interfaces, methods, single inheritance,
encapsulation, and polymorphism.
Java 11

With Java you have many classes for the main functions you need. So it is
easy to start writing your first application or applet. The following
packages are included in Java:

• Language package (java.lang)

This package provides the elementary classes for strings, arrays and
elementary data types.

• Utility package (java.util)

This package includes classes for the support of handling vectors,
stacks, hash tables, encoding and decoding.

• I/O package (java.io)

This package includes classes for standard input and output, as well as
file I/O.

• Applet package (java.applet)

This package provides support to interact with the browser.

• Abstract Window Toolkit (AWT) package (java.awt)

This package was used mainly by us to build the GUI (graphical user
interface). It provides support to control the visual aspects of your
application or applet. Objects such as buttons, scroll bars, text fields,
lists and fonts are available in this class.

• Network package (java.net)

For communication with other applications, this package provides the
basic support to communicate with peer programs over the network, as
well as standard protocols such as TCP, FTP and URL access.

• JDBC package (java.sql)

This package provides support to access relational DBMS.

2.2 Java Virtual Machine

At the core of the Java concept and implementation is the Java Virtual
Machine (JVM). This is a complete software microprocessor with its own
instruction set and operation (op) codes. The JVM provides automatic
memory management, garbage collection and other functions for the
programmer.

The IBM JVM, as are most other JVMs, is implemented by licensed source
12 Connecting Domino to the Enterprise Using Java

code from Sun Microsystems. The source code is provided in C and Java
languages and is highly portable. It has been already ported by IBM to many
platforms: IBM AIX, OS/2, OS/400, OS/390 and Microsoft Windows 3.11.

The JVM is the essence of Java. That is, the JVM provides the machine
independence which is the most significant advantage of Java. While the
Java Virtual Machine is not unique and there have been other software
microprocessors over the past 20 years, it is the first and only one to achieve
wide-scale acceptance. This is primarily a result of Sun Microsystems making
the source code for the Virtual Machine available under license, thus making

it much quicker to implement via the source code than implement from
scratch working from a reference document.

2.3 Remote Method Invocation (RMI)

RMI is SUN's standard protocol for communication between Java objects
residing on different computers. RMI provides a way for client and server
applications to invoke methods across a distributed network of clients and
servers running the JVM. RMI is supported in JVMs of 1.1 and higher. You
can invoke methods on the remote RMI object like you would on a local Java
object.

The following paragraph has been taken from this Web site:

http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmi-protocol.doc.
html

RMI makes use of two other protocols for its on-the-wire format: Java Object
Serialization and HTTP. The Object Serialization protocol is used to marshal
call and return data. The HTTP protocol is used to “POST” a remote method
invocation and obtain return data when circumstances warrant. It is
cross-platform but not cross-language.

Ideally, the Java application server should be a multithreaded application and
connectors are used to communicate with the backend systems.

Figure 4 on page 14 shows an example of an RMI client/server application.
Java 13

Figure 4. Remote Method Invocation

RMI allows Java objects running on different virtual machines to
communicate with one another. Remote objects implement a remote interface
that defines which methods a client can invoke. Clients can send any
message defined in this interface to the remote object, and the Java RMI
handles the routing of the message sent under the covers. To the client, the
object appears local. This type of message sending is often referred to as
by-reference.

In addition to remote references, you can also pass copies of an object from
one machine to another. This is known as by-value. Passing an object
by-value requires that the object be converted to a byte stream before it is
14 Connecting Domino to the Enterprise Using Java

passed and then converted from the byte stream back to an object after it is
received. In Java this is known as object serialization.

The java.rmi.Naming class provides a naming service registry that maps a
name to a remote object. Each entry in the registry has a reference to a
remote object and a name associated with the reference. Java clients get the
references to remote objects by performing a registry lookup, using the
object’s name.

2.4 Development

In this section we explain the different components required to develop Java
programs.

2.4.1 Java Development Kit
If you want to develop Java applets or applications, you need to install the
Java Development Kit (JDK) on your machine.

Each release of the JDK contains the following: the Java compiler, JVM, Java
class libraries, Java applet viewer, Java debugger, and other tools. JDK
Version 2.1 is the latest set of Java technologies made available to licensed
developers by Sun Microsystems. However, in this redbook we use JDK 1.1.6
since our tools and drivers only support this version.

JDK 1.1.6 is available on the Sun Web site for Windows platforms, and on the
IBM Java Web site for IBM platforms (AIX, OS/2, OS/390 (UNIX Services),
OS/400, and VM/ESA).

2.4.2 Java Servlet Development Kit
The Java Servlet Development Kit (JSDK) contains a simple servlet engine
for developing and testing servlets, the javax.servlet package sources, and
API documentation. JSDK Version 2.0 is available on the Sun Web site for
Windows platforms.

2.4.3 Java Database Connectivity
Java Database Connectivity (JDBC) is an object interface that allows Java
applications, applets, servlets, and agents to retrieve and manipulate data in
database management systems using SQL. The interface allows a single
application to connect to many different types of databases through a
standard protocol. JDBC handles details such as connecting to a database,
Java 15

fetching query results, committing or rolling back transactions, and converting
SQL types to and from Java program variables. JDBC is implemented as a
driver manager and multiple drivers. Each driver links the application to a
specific type of database.

JDBC was first introduced in JDK 1.1. The JDBC classes and interfaces are
part of the java.sql package. The major components of JDBC are the JDBC
driver manager and the underlying drivers. JDBC uses the driver manager to
handle finding and connecting to a driver. A JDBC data source consists of the
data the user application wants to access and its associated parameters.

Each JDBC driver processes JDBC method invocations, sends SQL
statements to a specific data source, and returns results to the application.

JDBC drivers generally fit into one of four types:

• The JDBC-ODBC bridge provides JDBC access via ODBC drivers.
NotesSQL (the Domino/Notes ODBC driver) may be used with the
JDBC-ODBC bridge.

• A native-API partly-Java driver converts JDBC calls into calls on the client
API for the DBMS in question. This style of driver requires that some
binary code be loaded on the client machine. Domino Driver for JDBC is a
Type 2 driver.

• A net-protocol all-Java driver translates JDBC calls into a
DBMS-independent net protocol which is then translated to a DBMS
protocol by a server. This net server middleware is able to connect its
all-Java clients to many different databases. This is the most flexible Java
alternative.

• A native-protocol all-Java driver converts JDBC calls into the network
protocol used by DBMSs directly. This allows a direct call from the client
machine to the DBMS server and is a practical solution for Internet
access.

Figure 5 on page 17 shows all the types of JDBC drivers.
16 Connecting Domino to the Enterprise Using Java

Figure 5. JDBC Driver Types

IBM for DB2 and Lotus for Domino have built JDBC-based products. Other
companies, such as Informix, Merant (previously Intersolv), Oracle, Sybase,
Symantec, or WebLogic have endorsed the JDBC database access API.

2.5 Application Architecture

In this section we explain the different types of Java programs and
components.

2.5.1 Java Applets
Java 17

A Java applet is a small application program that is downloaded to and
executed on a Web browser or network computer. A Java applet typically
performs the type of operations that client code would perform in a
client/server architecture. It edits input, controls the screen, and
communicates transactions to a server, which in turn performs the data or
database operations.

Applets are created with dedicated Java development tools such as
VisualAge from IBM, Symantec’s Visual Cafe, and Microsoft’s Visual J++.

These tools often assist the developer by allowing most of the applet to be
created visually, and then automatically generating the Java source code.

Figure 6 on page 18 shows a Java applet executing on a Web browser.

Figure 6. Java Applet

Applets have certain restrictions imposed on them, mainly for security
reasons. Applets have no access to the workstation they run on to prevent
malicious acts to the operating system by rogue applets. However using
security technologies such as Netscape’s Object-Signing, and Microsoft’s
Authenticode, it is possible to grant higher levels of access to applets, and be
safe in the knowledge that the applet is from a trusted party.

Another important security restriction to be aware of is that applets can only
communicate back across the network with the server from which they
originated.
18 Connecting Domino to the Enterprise Using Java

The downloading of applets should not have a significant performance impact
on response time because the applets are typically not very large. In fact,
applets, by performing processing on the browser or network computer, can
improve the overall browser performance by eliminating iterations with the
Web server. Note that, just as images are cached in Web browsers, applets
are cached, thereby minimizing the frequency of applet downloading. A
current performance consideration is the iterative compiling of the Java
bytecode at the time of execution. This consideration, however, is rapidly
being addressed by the industry and is losing its importance.

2.5.2 Java Applications
A Java application is a program written in Java that executes locally on a
computer. It allows programming operations in addition to those used in
applets which can make the code platform dependent. It can access local
files, create and accept general network connections, and call native C or
C++ functions in machine-specific libraries.

2.5.3 Java Servlets
A Java servlet is a protocol and platform-independent server-side software
component, written in Java. Servlets run on a Web server machine inside a
Java-enabled server, that is, a server that can start the JVM to support the
use of Java servlets. They dynamically extend the capabilities of the server
because they provide services over the Web, using the request-response
paradigm.

From a high-level perspective, the servlet process flow would be:

1. The client sends a request to the server.

2. The server sends the request information to the servlet.

3. The servlet builds a response and passes it to the server. The response is
dynamically built, and the contents of the response usually depend on the
client's request.

4. The server sends the response back to the client.

Figure 7 on page 19 shows the servlet process flow.
Java 19

Figure 7. Servlet Process Flow

Servlets look like ordinary Java programs. The servlets import particular Java
packages that belong to the Java servlet API. Servlets can be loaded when
the Web server starts, and therefore be resident in memory waiting to be
called. Because servlets are object bytecodes that can be dynamically loaded

off the Web, we could say that servlets are to the server what applets are to
the client. However, servlets run inside servers, so they do not need a
graphical user interface (GUI). In this sense servlets are also called faceless
objects.

2.5.4 JavaBeans
According to its inventors at JavaSoft, “A JavaBean is a reusable software
component that can be manipulated visually using a builder tool.”

The JavaSoft definition allows for a broad range of components that can be
thought of as beans. Beans can be visual components, such as buttons or
entry fields, or even an entire spreadsheet application. Beans can also be
non-visual components, encapsulating business tasks or entities such as
processing employee paychecks, a bank account, or even an entire credit
rating component. Non-visual beans still have a visual representation, such
as an icon and/or name, to allow visual manipulation. While this visual
representation may not appear to the user of an application, non-visual beans
are depicted on-screen so developers can work with them.

Beans can only be manipulated and reused if they are built in a standardized
way. To build beans, JavaSoft provides the JavaBeans API, an architecture
that defines a software component model for Java. The JavaBeans
architecture delivers four key benefits:

• Support for a range of component granularity as beans may come in
different shapes and sizes.

• Portability as the API is platform neutral. A bean, especially non-visual
components, developed under Windows, for example, should behave the
same whether it is run under OS/2 Warp, UNIX, or even OS/390.

• Uniform, high-quality API as, ideally, every platform that supports Java will
support the entire JavaBeans API.

• Simplicity as the API is simple, universal and compact, easy to learn and
20 Connecting Domino to the Enterprise Using Java

begin to use.

The Beans API defines the distinguishing characteristics of a bean, such as
how they look and feel.

2.5.5 Java Server Pages
Java Server Pages (JSP) enable server-side Java and JavaBeans to be
integrated into HTML Web pages. JSP is analogous to how Active Server
Pages (ASP) enable the integration of server-side ActiveX into HTML Web
pages. Without JSP, using servlets to run server-side Java or JavaBeans and

HTML can be difficult to write and maintain, because both are mixed together
inside the servlet. JSP makes it possible to keep server-side Java separate
from the voluminous HTML used for the Web browser GUI. Here's how
WebSphere does it:

• JSP defines HTML tags that enable HTML pages to call server-side
JavaBeans.

• JSP defines a Java Servlet API that enables a servlet to call JSP HTML
pages.

For instance, when a servlet receives a request (for example, a button click)
from a Web browser client, it calls one or more JavaBeans. Once the
response is formulated using a variety of database, transaction, and/or
business logic JavaBeans:

• Servlets can pass the response to Web browsers by invoking a JSP HTML
page

• Without JSP, servlets need to format an HTML Web page dynamically
inside the servlet.

• Hand coded and/or generated HTML inside servlets is hard to maintain
or enhance over time.

• Competitive Web application servers generate non-JSP HTML and
combine it into large servlets.

• Accessing JavaBeans directly from JSP HTML pages is as easy as calling
a Java method or property

• JSP allows the Java developer to focus on writing the data,
transactional, or business logic Java.

• JSP allows the GUI developer to focus on writing or generating HTML.

2.5.6 Enterprise JavaBeans
Java 21

Enterprise JavaBeans (EJB) is a specification of the server-side component
architecture for the Java platform. It defines the EJB component architecture
and the interface between the EJB server (see 8.2.2, “Enterprise JavaBeans
Server” on page 84 for more information) and the EJB components.

The EJB architecture has the following characteristics:

• Transactional

EJB transactions use a subset of the Java Transaction Service (JTS) API
for programmatically starting and stopping transactions. JTS supports

distributed transactions that can span multiple databases on multiple
systems.

• Portable

EJB components may run on any EJB server on any operating system.

• Multi-tier

You can partition and deploy your application onto three or more
interacting tiers, the client providing the presentation logic, the application
server providing the business logic, and the data server providing the
business data.

• Distributed

EJBs are intended to live on one machine and be invoked remotely from
another machine.

• Scalable

The following is a list of just a few product families which support or will
support a container for EJBs:

• TP monitors such as BEA Tuxedo or IBM TX Series

• Component Transaction servers such as IBM Component Broker
Connectors (CB-Connector) or Microsoft Transaction Server

• CORBA platform, such as Inprise VisiBroker/ITS, or IBM Component
Broker Connector

• Web platform such as IBM WebSphere Application Server

• Database management systems, such as IBM DB2, Oracle, or Sybase

• Secure

EJB architecture is built on the standard Java security services supported
in the JDK 1.1.x. Java security supports authentication and authorization
services to restrict access to secure objects and methods.
22 Connecting Domino to the Enterprise Using Java

• Protocol neutral

EJBs are based on industry-standard protocols such as TCP/IP, IIOP,
JRMP, HTTP, and even DCOM.

Figure 8 on page 23 illustrates the core elements defined by the EJB
specification.

Figure 8. EJB Core Elements

How EJB Works
The EJB server provides an environment that supports the execution of
applications developed using Enterprise JavaBeans technology. It manages
and coordinates the allocation of resources to the application.

The EJB server must provide one or more EJB containers, which provide
homes for enterprise beans. An EJB container manages the enterprise beans
contained within it. For each enterprise bean, the container is responsible for
registering the object, providing a remote interface for the object, managing
the active state for the object, and coordinating distributed transactions.
Optionally, the container can also manage all persistent data within object.

Any number of EJB classes can be installed in a single EJB container. A
particular class of enterprise bean is assigned to one and only one EJB
container, but a container may not necessary represent a physical location.
Java 23

The physical manifestation of an EJB container is not defined in the
Enterprise JavaBeans specification. An EJB container could be implemented
as physical entity, such as multithread process within an EJB server. It also
could be implemented as a logical entity that can be replicated and
distributed across any number of systems and processes.

Enterprise beans are deployed in an EJB container within an EJB server (as
illustrated in Figure 9 on page 24).

Figure 9. EJB Server and Container

The EJB container acts as a liaison between the client and the enterprise
bean. At deployment time, the container automatically generates an EJB
Home interface to represent the enterprise bean class and an EJB Object
interface for each enterprise bean instance. The EJB Home (as a bean
identifier) interface is accessible through the Java naming and directory
interface (JNDI), it identifies the enterprise bean class, and is used to create,
find, and remove enterprise bean instances. The EJB Object (as a client
view) interface provides access to the business methods within the bean
based on deployment descriptor settings. All client requests directed at the
EJB Home or EJB Object interfaces are intercepted by the EJB container to
insert lifecycle, transaction, state, security, and persistence rules on all
operations.

EJB Components
The Enterprise JavaBeans specification defines four entities:
24 Connecting Domino to the Enterprise Using Java

• Server
• Container
• Client
• Bean

EJB Server
EJB components—the beans—are server-side components written in Java
and contain only the business logic. The system-level services such as
transaction management, threading, and persistence are managed for the
bean by the EJB server. The EJB server manages the various elements
making up an EJB environment. It manages the EJB containers and provides

the required support services such as transaction management, persistence,
and client access using a JNDI-accessible naming space used by the client to
locate the enterprise beans.

EJB Container
The EJB Container is a facility that manages one or more EJB classes and
their instances. It is designed to handle EJB lifecycle, transaction, and
security management. It makes the required services available to the
component.

Client
The client’s view of the EJB is provided by two interfaces:

• The Home Interface, which provides methods for creating, destroying and
locating enterprise beans in the container.

A client can use the JNDI to look up the name of a particular EJB class in
the name space on the server using JNDI. The Home interface allows the
client to create or remove an EJB object.

• The Remote Interface, which defines the business methods offered by an
enterprise bean class.

Bean
EJB classes and instances—in short, beans—implement three categories of
methods:

• Methods for creating, locating, and accessing instances of the bean,
corresponding to those in its home interface

• Methods supporting the business logic, corresponding to those in its
remote interface

• Methods for interacting with the container

(As these are not intended for client access, they are hidden.)
Java 25

You can develop two types of beans:

• Session bean

These represent a conversation with a client, and as such, a logical
extension of the client program running on the server. Stateless beans
don’t maintain their state across method calls. They are different than
stateful beans, which maintain client-specific session information.

• Entity bean

The most common use of entity beans is to represent persistent data that
is maintained either directly in a database or accessed by way of a

backend application as objects. Persistence can be
container-managed—the entity bean data is automatically maintained by
the container using a mechanism of its choosing. Persistence can also be
bean-managed—the bean is entirely responsible for storing and retrieving
its instance data.

Entity objects are transactional and they are recoverable following a
system crash.

Deployment descriptor
A deployment descriptor provides information that is used by the container
when the bean is deployed. A deployment descriptor contains the transaction
and security attributes, the EJB environment properties, the names of the
EJB class, its Home and Remote interfaces.

EJB-jar file
This file is an EJB’s package, and is usually distributed to every machine that
needs the EJB’s functions. The package can be a collection of enterprise
beans, or a complete application system. The EJB-jar file contains
information outlining the contents of the file, the enterprise bean class files, a
DeploymentDescriptor which tells the EJB container how to manage and
control the enterprise bean and, optionally, the environment properties files.

2.5.7 How Servlets and Enterprise JavaBeans Differ
Servlets are the server-side equivalent of applets. They differ from applets in
that they have no user interface and do not use either the Abstract Window
Toolkit (AWT) or Swing. They are intended as the Java replacements for the
Common Gateway Interface (CGI) programs.

Most Web servers support the use of CGI programs to connect to external
programs. CGI programs can return both dynamic and static HTML
documents. They are typically used to gather and return information from
forms and databases. The main advantage of Java servlets is their platform
26 Connecting Domino to the Enterprise Using Java

independence and the security that they provide. They should be seen as
extensions of your Web server.

Enterprise JavaBeans depend for security on the servlets that are provided
with Enterprise Server for Java. Their advantage lies in their persistence,
component architecture, and reusability.

EJBs may also be more simple to program than servlets as many functions
are managed outside the bean. Functions such as distribution, transaction,
security, and persistence are generated during the deployment phase of the
bean.

The main point here is that a given application may use a combination of
servlets, JSPs, and EJBs.
Java 27

28 Connecting Domino to the Enterprise Using Java

Chapter 3. CORBA

Common Object Request Broker Architecture (CORBA) is the standard
distributed object architecture developed by the Object Management Group
consortium (OMG). Since the founding of the OMG, its mission has been to
define open standards in software development so that objects written by
different vendors in different languages, running on any platform, could
interoperate in a distributed environment.

3.1 Implementation

The design of CORBA is based on the OMG Object Model, which defines
common object semantics in order to have the same external visible
characteristics between objects.

A CORBA implementation has four discrete elements:

• The Object Request Broker (ORB), through which objects
intercommunicate.

• Object Services, which define system-level services that are added to the
ORB. Examples of these services are naming, security, persistence, and
transaction.

• Common Facilities, which define application-level services. Examples of
these services are components, compound documents, and other vertical
facilities.

• Application Objects, which attempt to capture the real-world behavior of
things such as bank accounts, customers, and even airplanes.

Figure 10 on page 29 depicts the relationships among these components.
© Copyright IBM Corp. 1999 29

Figure 10. CORBA Components

3.1.1 Object Request Broker
The ORB is the piece of middleware that establishes the client/server
relationship between objects. It intercepts any requests that the client makes,
is responsible for finding an object that can implement that request, passes
the required parameters, invokes the method, and returns the result. The
client does not need to be aware of the physical location of the object, its
programming language, its operating system, or any other specific
information regarding its whereabouts. The ORB shields that information from
the client.

Some of the responsibilities of an ORB are:

• Locating and instantiating objects on remote machines

• Marshalling method parameters in a consistent way between any
combination of programming languages and operating systems

• Invoking methods on remote objects, using static invocation (compile-time
resolution) or dynamic invocation (run-time resolution)

• Routing callback methods from the server to the appropriate client objects

The ORB provides all these services, and more, transparently. All you, as a
developer, have to do is provide the appropriate initialization parameters to
the ORB, and the rest is handled seamlessly by the ORB implementation.

3.1.2 From the Client to the Server
CORBA is a standard for a distributed application in which computers
remotely invoke methods on objects residing on other computers. CORBA
allows interconnection of objects and applications regardless of language,
location or computer architecture.

We can summarize these concepts as follows:

• CORBA objects can be located anywhere on a network.
30 Connecting Domino to the Enterprise Using Java

• CORBA objects can interoperate with objects on other platforms.

• CORBA objects can be written in any programming language for which
there is a mapping from the OMG interface definition language (IDL) to
that language. (Mappings currently specified include Java, C++, C,
Smalltalk, COBOL and Ada.)

Figure 11 on page 31 shows the architecture of a CORBA-compliant
application invoking multiple objects on multiple computers.

Figure 11. CORBA Architecture

Using CORBA, you can design a distributed system where various
components (user interface, business logic, database access, and so on) are
packaged in separate programs running on different machines. Each
component communicates with the other only through its published interface,
and can therefore be maintained separately.

CORBA Client Components
When a CORBA-compliant object wants to use a method located in another
object, it calls the stub, that is, the code contained in said stub files. The stub
then uses the local ORB, sends the request and receives the response. The
object does not need to know anything about the ORB or the actual location
CORBA 31

of the server. All CORBA clients and servers communicate through ORBs.
JDK 1.2 contains an ORB that allows you to write CORBA-compliant Java
programs.

From the client's perspective, these local stub classes are the same as the
actual implementations. Internally, these stub classes act as a local proxy for
the remote server objects and define how clients invoke corresponding
remote services on servers. Once a successful request has been made to
instantiate a remote server object, a reference ID to that object is returned.
Future method requests on that remote object are sent with the reference ID

to the remote server and executed on the remote object via the CORBA
server components with data being returned if required. This is seamless to
the programmer.

The client stubs are created by first defining your server interfaces using the
CORBA IDL language. The CORBA IDL defines the type of objects, their
attributes, the methods they export, and the method parameters. The CORBA
IDL is language neutral and totally declarative; that is, it contains no
implementation details. There must be one IDL definition per interface. You
can think of an interface as a class definition without the implementation. The
IDL file is pre-compiled into the language of the client and the server by a
CORBA pre-compiler.

The stub then uses the local ORB, sends the request and receives the
response. The object does not need to know anything about the ORB or the
actual location of the server. All CORBA clients and servers communicate
through ORBs. The ORB is the transportation bus for CORBA object requests
to and from remote objects. The bus uses IIOP as the transport protocol
between ORBs. (IIOP is described in 3.3, “Internet Inter-ORB Protocol” on
page 33.)

Other CORBA components loaded down to the client include Client Side
Objects (CSO). These classes feature caching, helper and holder classes, a
binary compatibility layer, and the ability to run on other protocols (for
example, XML and DCOM). These are transparent to the developer. Helper
classes contain methods that manipulate IDL types. A helper Java class is
defined for each IDL type and interface. Holder classes provide the
parameter passing modes that Java does not.

CORBA Server Component
On retrieving IIOP requests, the server ORB uses the Basic Object Adapter
(BOA) in combination with the Implementation Repository to pass parameters
and method requests to the required server object via the server stubs. The
32 Connecting Domino to the Enterprise Using Java

server stubs communicate with the actual object implementation.

• Basic Object Adapter

The BOA is a run-time core ORB communication service for instantiating
server objects, passing requests, and assigning object IDs (object
references).

• Server IDL Stub

The server stub provides interfaces to each service provided by the
server. On the server side, the stub is called a skeleton. It plays the

symmetric role of the stub: it gathers the request's parameters and sends
back the response.

• Implementation Repository

This is a run-time repository of object information such as the classes that
a server supports, which objects are instantiated, and their IDs.

3.2 CORBA Services

A CORBA system provides many services to control the environment and to
access system resources such as networks, databases, security, and so on.

The main services offered by a CORBA system are:

Naming Service It provides the naming resolution ability, that is, the
binding between the object and a name which
identifies it.

Event Service It is responsible for the event notifications (in
synchronous or asynchronous mode) between
objects.

Life Cycle Service It defines the conventions for creating, copying,
moving and deleting objects locally and remotely.

Persistent Object Service
It defines a set of interfaces to support object storage
management, for example database interfacing.

Transaction Service
It provides the specification for running objects in a
multiple transaction environment, implements the Unit
of Work (UOW) concept, as well as object commit and
rollback.

Security Service It provides a complete framework for distributed object
CORBA 33

security. It supports authentication, access control
lists, confidentiality, and non-repudiation.

3.3 Internet Inter-ORB Protocol

The standard network protocol that CORBA uses for inter-object
communication across networks is Internet Inter-ORB Protocol (IIOP). IIOP is
actually the TCP/IP implementation of a more general protocol, the General
Inter-ORB Protocol (GIOP) that can work on any kind of connection-oriented
transport protocol. GIOP specifies a set of message formats and common

data representations for communication between ORBs. It is designed to
work over any connection-oriented transport protocol.

IIOP specifies how IIOP messages are exchanged over a TCP/IP network.
IIOP is basically TCP/IP with some CORBA-defined message exchanges that
serve as a common backbone protocol. It defines an architecturally neutral
format for representing data, which tries to minimize the processing time
devoted to message exchange. IIOP is a more advanced protocol than HTTP
or RMI, as it supports services, like transaction services and messaging
services.

The IIOP architecture is quite simple. A client and a server can exchange
messages of seven different types, as follows (note that the originator of the
message is given between parentheses as Client, Server or Both):

Request (Client) Clients send requests to a server to invoke remote
objects. Requests contain the desired operation and all
the parameters.

Reply (Server) If a request specifies that it expects a response, the server
sends a reply message.

LocateRequest (Client)
Some requests are potentially large because they contain
a large amount of data (for example, a high-definition
image sent to a storage server). Before sending a large
Request message, the client might send a LocateRequest
message to check if the server is accepting these
requests, or if the object to be invoked is now located on
another server.

LocateReply (Server)
The server's answer to a LocateRequest message. It can
inform the client that the requested object is indeed on the
server, that it has moved to another one, or that it is
34 Connecting Domino to the Enterprise Using Java

unknown.

CancelRequest (Client)
A client may want to inform a server that it no longer
expects an answer to a given pending Request or
LocateRequest, so the server can quit processing that
request. This is roughly the equivalent of the Stop button
of your browser.

CloseConnection (Server)
The server is closing the connection, and all pending
Request and LocateRequest messages are lost.

MessageError (Both)
A reply informing the other party that its message was
incorrectly formatted.

Fragment (Both) This type of message is used to split messages into
several parts that are either very large or have sizes that
cannot be determined beforehand.
CORBA 35

36 Connecting Domino to the Enterprise Using Java

Chapter 4. Domino

Domino is a line of server software that supports your organization's
messaging and Web application needs. Domino helps you improve your
effectiveness by integrating all communication, collaboration and business
application needs. Domino servers are based on a single architecture, so you
can choose the one that meets your current needs knowing it has the
flexibility and power to grow when you do.

Built on an open, unified architecture, Domino delivers secure
communication, collaboration and business applications. Domino R5 Servers
set a new standard for rich Internet messaging, ease of administration,
integration with backend systems and reliability.

Domino Server Family
The Domino Server Family allows you to quickly and easily start with what
you need today — whether that is messaging or applications — and extend
your Domino infrastructure investment whenever you are ready. The Domino
server family is comprised of three core servers:

• Domino Mail Server

Domino Mail Server combines full support for the latest Internet mail
standards with Domino's industry-leading messaging capabilities, all in
one manageable and reliable infrastructure. Its integrated, cross-platform
services include Web access, group scheduling, collaborative
workspaces, and newsgroups, all of which are accessible from a Web
browser or other standards-based client.

Domino Mail Server is used for messaging only. Customers who want to
deploy their own applications on the Domino server should consider
Domino Application Server or Domino Enterprise Server.

• Domino Application Server
© Copyright IBM Corp. 1999 37

Domino Application Server is an open, secure platform optimized to
deliver collaborative Web applications that integrate your enterprise
systems with rapidly changing business processes.

Domino Application Server combines integrated messaging and
application serving. It delivers best-of-breed messaging as well as an
open secure Web application platform. The server easily integrates
backend systems with front-end business processes.

• Domino Enterprise Server

Domino Enterprise Server delivers all the functionality of Domino Mail and
Application Servers, reinforced with clustering for the high availability and
reliability required by mission-critical applications.

Clients for Domino R5.0
Previous versions of Lotus Domino had one, all-purpose client that would be
used by users, administrators, and application developers. With Lotus
Domino R4.6, a special client for developers called Lotus Notes Designer for
Domino was introduced.

As a result of the strong focus on ease-of-use in the design of Lotus Domino
R5.0, three individual clients are now available. They are:

• Notes R5: the user’s client

Notes R5 is state-of-the-art e-mail, calendaring, group scheduling, Web
access and information management, all integrated in an easy-to-use and
customizable environment.

• Domino Administrator R5: the administrator’s client

Domino Administrator is a new, integrated administration control panel
that provides simple, yet flexible administration for your Domino
environment.

• Domino Designer R5: the developer’s client

Domino Designer R5 is an integrated development environment. It
enables developers to rapidly build secure Web applications that
incorporate enterprise data and streamline business processes.

Most of the functionality in Lotus Domino can also be accessed from Web
browsers.

In the following, we concentrate the description on the Domino Application
Server used for our tests.
38 Connecting Domino to the Enterprise Using Java

4.1 Domino Application Server

Domino Application Server R5 allows you to integrate easily your Domino
applications and enterprise systems. It leverages current information assets
with built-in connection services for live access to relational databases,
transaction systems and ERP applications.

It is optimized for collaboration and provides comprehensive application
services like workflow and messaging, so you can easily build and manage
integrated, collaborative solutions.

You can deploy and maintain the applications with its integrated development
tools, standards support and unmatched server-to-server replication. But
Domino is also open as you can use your favorite HTML authoring tools, Java
IDEs and scripting tools to create Domino applications.

Domino Application Server is an open, secure platform optimized to support
rapid delivery of collaborative Web applications that integrate your enterprise
systems with dynamic business processes. Domino Enterprise Connection
Services (DECS) provides rapid connectivity to enterprise data using a visual
mapping interface.

Figure 12 on page 39 shows the different services of a Domino application
server available to Web applications.
Domino 39

Figure 12. Domino Application Services

CORBA/IIOP support lets you integrate Domino with your application
architecture. This support extends Domino application services to Web
clients allowing you to serve Lotus Notes clients and Web browsers with the
same application.

With its comprehensive development environment, the Domino Application
Server lets you move beyond static Web sites to create high-value business
solutions that include workflow, content management and highly flexible

security. With Domino, you can easily create self-service applications like
e-commerce and customer care, and connect them to backend systems.

The flexible security of Domino allows you to personalize access to data and
applications based on individual and group roles. It is also extended to HTML
files and other data, for pervasive security no matter how or where Web
content is stored.

The Domino R5 HTTP engine delivers outstanding performance and Java
servlet support.

Domino Application Server offers the following services:

• Object store

Documents in a Domino database can contain any number of objects and
data types, including text, rich text, numerical data, structured data,
images, graphics, sound, video, file attachments, embedded objects, and
Java and ActiveX applets. The object store also lets your Domino
applications dynamically present information based on variables such as
user identity, user preferences, user input, and time.

• Search engine

A built-in full text search engine makes it easy to index and search
documents stored in Domino and files in the file system.

• Security

Integrated X.509 support lets you register new users with Notes and/or
X.509 certificates. S/MIME support ensures message integrity for all client
types, including SSL V3 for IIOP and LDAP clients. Authentication via
trusted third-party directories reduces complexity and duplication of
information.

• Directory

The directory supports a multi-enterprise infrastructure of any size and
40 Connecting Domino to the Enterprise Using Java

integrates with other directories via full support for LDAP V3, the open
standard for directory access. Its extensible schema allow you to store any
information you choose.

• Workflow

With Domino workflow support, you can define processes to route and
track documents, to coordinate activities both within and beyond your
organization.

• Messaging

An advanced client/server messaging system with built-in calendaring and
scheduling enables individuals and groups to send and share information
easily. Message transfer agents (MTAs) seamlessly extend the system to
Simple Mail Transfer Protocol (SMTP)/Multipurpose Internet Mail
Extension (MIME), X.400, and cc:Mail messaging environments. The
Domino messaging service provides a single server supporting a variety of
mail clients: Post Office Protocol V3 (POP3), Internet Message Access
Protocol V4 (IMAP4), Message Application Programming Interface
(MAPI), and Lotus Notes clients.

• Development environment

Domino Designer is optimized to work with Domino, and features a
complete set of visual tools for rapid development and deployment of
secure, e-business solutions. It supports your favorite tools for HTML
authoring, Java development, and scripting.

• Domino objects

Domino offers a collection of software objects that expose Domino
functionality to several language bindings including Java, JavaScript
LotusScript, and, due in 1999, OLE and COM. This allows you to switch
programming languages without having to learn new ways to program for
Domino.

• Domino Enterprise Connection Services (DECS)

Domino Application Server includes DECS, for live access to enterprise
systems. DECS supports a wide range of enterprise systems, including
DB2, Oracle, Sybase, ODBC, EDA/SQL, SAP, PeopleSoft, JD Edwards,
Oracle Applications, MQSeries, CICS, and more. Without programming,
DECS allows you to create Web applications that access or update
enterprise data in real-time, via persistent, parallel, pooled connections.

Domino Application Server delivers reliability and manageability with:

• Transactional logging for Domino databases
Domino 41

• Backup support and APIs to allow tight integration with third-party backup
tools on all Domino platforms, including NT, UNIX, AS/400 and S/390

• High availability services such as online indexing and database
compaction, fast server restart and more

• Remote server management options

• Centralized control of Notes desktops

• Mail Server capabilities

4.2 Domino and Enterprise Integration

Lotus provides services for connecting Domino R5 to relational database
management systems, transaction processing systems, enterprise resource
planning applications, and unstructured data. These services present the
user with a common interface to the many enterprise systems. As shown in
Figure 13 on page 43, the basic services are as follows:

• Domino Enterprise Connection Services: provides a real-time forms-based
interface to enterprise data. DECS is an add-in task bundled with the
Domino server. DECS is available since Domino R4.6.3.

• Lotus Enterprise Integrator (LEI): provides scheduled and event-driven
high-speed data transfer and synchronization capabilities between
Domino and enterprise systems. LEI is a separate product.

• Lotus Connector LotusScript Extension (LC LSX): provides LotusScript
access to enterprise systems. The LC LSX is bundled with Domino R4.6.3
and above, and LEI 3.0.

• Lotus Connector Java classes provide Java access to enterprise systems
using the Lotus Connectors. The LC Java classes are available on the
Lotus Enterprise Integration Web site, and are bundled with LEI 3.0.

• Lotus Connector API: provides C/C++ access to enterprise systems. The
LC API is available on the Lotus Enterprise Integration Web site.

Underlying the above services are individual connectors for the supported
enterprise systems.
42 Connecting Domino to the Enterprise Using Java

Figure 13. Domino Enterprise Integration Solutions

For current users, LEI is an upgrade of NotesPump and connectors are
analogous to links. DECS is functionally similar to the RealTime Notes activity
in LEI and NotesPump. DECS and LEI are supported by Domino R4.6.3 and
above, as well as R5.

For LotusScript and Java programmers, the LC LSX and LC Java classes
provide a common interface to all enterprise systems. You can still use the
ODBC (LS:DO), DB2, MQSeries, and SAP R/3 LSXs available with Domino
R4 and compatible with R5.

Lotus Connectors
Domino 43

Lotus connectors (LC) exist to permit access to external data sources from
Domino for relational database management systems, enterprise resource
planning systems, transaction processing systems, directory services, and
other services. The connectors are outlined below.

• Relational Database Management Systems (DBMS)

Listed below are the relational database management systems
connectors. These connectors are bundled with DECS and LEI.

• DB2
• ODBC

• Oracle
• Sybase
• EDA/SQL

• Enterprise Resource Planning Applications

Listed below are the enterprise resource planning (ERP) connectors.
These connectors are all separate products.

• J.D. Edwards One World
• Oracle Financial Applications
• PeopleSoft
• SAP R/3
• Lawson Enterprise/400

• Transaction Processing Systems

Listed below are the online transaction processing (OLTP) system
connectors. These connectors are all separate products.

• CICS
• IMS
• MQSeries
• Transarc Encina TXSeries
• BEA Tuxedo

• Directory Services

Listed below are the directory services connectors. These connectors are
bundled with DECS and LEI.

• Domino Directory
• Lightweight Directory Access Protocol (LDAP)
• Novell Directory Services (NDS)

• Other Services

Listed below are additional connectors. These connectors are bundled
with DECS and LEI.
44 Connecting Domino to the Enterprise Using Java

• File System
• Notes
• Text

4.3 DECS

Domino R5 also includes the Domino Enterprise Connection Services
(DECS) for building live connections between Domino pages and forms, to
data from relational databases. To set up the connections, you simply use the
DECS template application to identify your forms and fields that will contain

external source data, and to define the real-time connection settings. You can
set up native connections for DB2, Oracle, Sybase, EDA/SQL, and more. A
Domino server add-in task passes the real-time connection instructions to the
Domino Extension Manager, which monitors the server for your user-initiated
events. When events are intercepted (such as opening a form), the extension
manager transfers the appropriate query to the external source, which
performs the query on behalf of the end user. Results are presented to the
user in real-time, as if the data were stored natively in Domino. No coding is
required when using DECS.

4.4 Lotus Enterprise Integrator

Lotus Enterprise Integrator (LEI) performs data transfer, data
synchronization, and other activities between data sources. A data source
can be Domino or any LC-supported enterprise system. Data activities occur
on a scheduled or event-driven basis and are capable of high-volume,
high-speed transfers.

LEI 3.0 can be administered through a Domino R4.6 server or later, and can
move data from any Domino or Notes server. LEI 3.0 is an upgrade of
NotesPump 2.5a.

4.5 Domino and Java

Domino R5 is a complete Web application server which fully supports the
Java environment. Domino applications can be written in Java as you can call
into the Domino object interface from a Java program. Domino also supports
CORBA to build distributed Domino applications. Finally, Domino supports
JDBC calls to allow Java programs access to Domino data.

4.5.1 Java Language
Domino 45

Domino R5 supports many Internet models of programming, so you can
choose your favorite language when designing Web applications—whether
that language is JavaScript, Java, HTML 4.0, or LotusScript.

Java and JavaScript support are now both available within Designer. The
Domino Designer R5 includes a Java editor and Java Virtual Machine (JVM)
for developing applications. This allows you to create and compile Java
agents, and edit all scripts and formulas, all from within Designer.

With native support for JavaScript and HTML in the Notes client, you can now
design applications that run the same on the Web as they do within Notes. In

addition, Domino R5 allows you to use third-party design tools, such as
NetObjects Fusion, NetObjects ScriptBuilder, and IBM VisualAge for Java.

From a Java program coded as an application, a Domino agent, an applet, or
a servlet, you can call into the Domino object interface. In Domino R5, you
need to import the lotus.domino package. The lotus.domino package has the
same content as the R4.6 lotus.notes package, and supports the classes,
methods, and enhancements of the new release.

The lotus.domino classes allow you to access named databases
(lotus.notes.Database class), views and folders (lotus.notes.View class), and
documents (lotus.notes.Document class) within a database, and items within
a document (lotus.notes.Item and lotus.notes.RichTextItem classes). The
session class (lotus.notes.Session class) is the root of the Domino object
hierarchy, providing access to the other Domino objects, and represents the
Domino environment of your Java program.

4.5.2 CORBA Support
Domino R5 unveils support for CORBA, so you can build robust, distributed
applications. The ORB technology and Java allow you to create client
applications that are dynamically loaded from the server with transparent
access to the server-side Domino objects. While Notes client applications
have been able to access Domino objects for quite some time, CORBA and
IIOP support in Domino R5 expands this access to Web clients. Your primary
access to this ORB is through Java applets or applications. For example, you
can place a custom Java applet on a form and have that applet access
objects in either the Notes client or a Web browser. For the Notes client,
you're actually using the local Java interfaces. For the browser, you're using
the CORBA-remote objects; that is, the applet uses IIOP to connect back to
the ORB on the server.

CORBA allows you to create client-side objects that talk IIOP across the wire
46 Connecting Domino to the Enterprise Using Java

to the server-side ORB, which is hard-wired to Domino’s backend classes for
better performance. The main purpose is to offload the server by projecting
its services to the client. This means, for example, that a browser application
can now execute locally with minimal interaction between itself and the
Domino server. For instance, you can interact with your server-based mail
locally, without involving the server in each user transaction.

With support for CORBA and IIOP, Domino now allows you to create
client/server Web applications that take advantage of the Domino objects and
application services. In addition, you can now access backend relational
databases for enhanced data integration using DECS. In previous releases,

when you designed a Web application, the Domino objects classes—formerly
known as the remote backend classes, or the Notes Object Interfaces
(NOI)—allowed you to access data that was not on display in the browser.
These backend classes were LotusScript or Java objects. In R5, these
objects are available to the browser using CORBA (see Figure 14 on page
47).

Figure 14. Domino CORBA Architecture

What this means is that now your Web application is similar to your Notes
application in terms of programmability. In a Notes application, you could
always manipulate data that was on display, as well as data in other
databases. In a Web application, you had to wait for a user to open or save a
Domino 47

Web page to access this same data. CORBA allows you to access the data
without the user opening or saving the Web document; instead, you can use
Java or JavaScript.

You can also embed a CORBA applet in a document or a form using the same
procedure as for any other applet. You can use a browser to view embedded
CORBA applets on a Domino server. It is no longer necessary to set alternate
HTML. A CORBA property box setting tells Domino to provide the HTML
source that the applet needs to make an IIOP connection back to the server.

4.5.3 CORBA Implementation
Domino R5 uses CORBA-to-Java programs on remote clients such as applets in
browsers, and stand-alone Java applications to access the Domino objects on
the Domino server. From an implementation standpoint, a remote client
instantiates and references Domino objects as if they were resident on the client.
In fact, these objects are instantiated at the Domino server. When the client is
referencing these objects it is actually communicating with the objects on the
server. This is seamless to the programmer (see Figure 15 on page 48).

Figure 15. Domino CORBA Implementation

Java Client IDL
There is one IDL definition file per Domino object C++ class that is exposed
48 Connecting Domino to the Enterprise Using Java

to CORBA. IDL files are published for developers to create their own stubs.
The Java Client IDL stubs are contained in the lotus.domino package in the
NCSO.jar file. This jar file also contains the Java Client ORB classes.

The jar file is automatically loaded down to a browser client if it is designated
as a CORBA applet via the Properties box.

Domino R5 Java Client ORB
The Domino R5 Java Client ORB is essentially a complete Server ORB but
has been stripped down and compressed, and also provided with enhanced

security allowing clients to use SSL to create authenticated sessions with the
server.

The Java Client ORB classes are contained in the NCSO.jar file. Currently,
the ORB is instantiated once per getSession() method invocation. Two
applets could have more than one instantiation of the ORB per HTML page.
Technologies like the InfoBus could fix this situation by sharing the same
session object reference.

Domino R5 Server ORB Implementation
The Server ORB is the broker which receives requests from objects to access
other objects. It functions as a sophisticated router which passes the
requested information to the requested object. It also passes information
back to the requester, as necessary.

The R5 ORB allows Domino objects to load and respond to client IIOP
requests. Its primary use is for doing client-side processing in Domino Web
applications. The R5 ORB is a modified version of IBM's ORB. A significant
portion of the original IBM ORB has been stripped out, including the interface
repository. Improvements have also been made to address issues such as
scalability. Other customer-created ORBs may also run on the Domino server.

On Windows NT, this ORB is released as a DLL. The two things Lotus
eliminated from the ORB (by hard-wiring) are the Location Service and the
Name Service. Other than that it is a standard CORBA object server.

This Server ORB process can be loaded at server startup by placing it in the
notes.ini file:

ServerTasks =<other tasks>,http,diiop

The Server ORB listens to IIOP requests on a different port than HTTP. This
port can be changed via the server document.
Domino 49

4.5.4 Domino JDBC Driver
The Lotus Domino Driver for JDBC allows Java programmers to use any
JDBC standard-enabled application tool to access Lotus Domino databases
as easily as any relational database.

The Domino driver for JDBC makes Domino databases look like other
relational backend sources to the SQL tool or application interface by
producing result sets that mirror the relational model. An application can also
perform a SQL Join of data from Domino with data from a relational database
such as Oracle, Sybase, or DB2 (see Figure 16 on page 50).

Figure 16. Domino Driver for JDBC

JDBC provides Java programmers with a uniform interface to a wide range of
relational databases, and provides a common base on which higher level
tools and interfaces can be built. JDBC is now a standard part of Java.

Lotus Domino Driver for JDBC is another step in the Lotus commitment to
open standards and accessibility to Domino databases and services so that
customers can integrate Domino into any corporate system regardless of
their enterprise configuration or tools selection.

Product features include:
50 Connecting Domino to the Enterprise Using Java

• Java standard access to Domino 4.5x and 4.6x databases

• Compatible with Netscape Communicator 4.05

• Compatible with Microsoft Internet Explorer 4.01 with service pack 1

• Includes signed and unsigned versions for maximum flexibility when
creating Java applets which use JDBC

• Year 2000 ready, so correctly reads and interprets dates in 2-digit
(mm/dd/yy) or 4-digit (mm/dd/yyyy) format

• Tested with IBM's Visual Age for Java, IBM's WebSphere, Lotus eSuite
DevPack, Borland's JBuilder, and Symantec's Visual Cafe Web application
development tools

• Multithreaded for Web use

Classes
The Domino driver for JDBC implements JDBC interfaces as the following
main classes:

• lotus.jdbc.domino.DominoDriver class

Domino implements the java.sql.Driver interface in its DominoDriver class.

• lotus.jdbc.domino.DominoConnection class

A connection represents a session with the Domino driver for JDBC. You
need a connection to execute SQL statements and get the results.

• lotus.jdbc.domino.DominoStatement and
lotus.jdbc.domino.DominoPreparedStatement classes

You use a statement object to execute an SQL statement and obtain a
result set.

A prepared statement is a compiled SQL statement that may handle
parameters.

• lotus.jdbc.domino.DominoResultSet class

Using the ResultSet object, you have access to a table of data generated
by executing an SQL statement. The table rows are retrieved in sequence,
but columns within a row can be accessed in any order.

• lotus.jdbc.domino.DominoResultSetMetaData class

You use this class to find out the types and properties of the columns in a
result set.

• lotus.jdbc.domino.DominoDatabaseMetaData class
Domino 51

The DatabaseMetaData class provides information about the database as
a whole.

Universal Relation
The Domino driver for JDBC recognizes both Domino forms and views as
tables. Table 1 on page 52 shows how SQL components map to Domino
components.

Table 1. SQL and Domino Mapping

In addition to forms and views, the Domino database contains a table that has
the same name as the database. This table is called the Universal Relation.
The Universal Relation contains all fields defined in all forms in the Domino
database. The Universal Relation is the only true table in a Domino database.
As a result, SQL tables created with the Domino driver for JDBC behave
more like SQL views than traditional relational database tables.

For example, with the JDBC driver, you can create a Domino form with the
CREATE TABLE statement. However, the DROP TABLE statement deletes

SQL Component Domino
Component

Comments

Table Form,
View,
or
Universal Relation

Domino forms and views are recognized
as tables. However, a Domino database
contains only one real table, referred to
as the Universal Relation. This table has
the same name as the database.

Column Form Field
or
View Column

Avoid the use of column names that are
JDBC/ODBC or SQL reserved words or
that contain characters other than
alphabetics, numerics, dollar sign ($), or
underscore.

Index View All sorted columns refer directly to fields
in a single form.

View View Except for private views, all Domino
views are reported as SQL views.
52 Connecting Domino to the Enterprise Using Java

the Domino form, but it does not delete any data from the database. Using
DROP TABLE with the Domino driver for JDBC is like deleting an SQL view.
The data remains in the database. You can view the data through other forms
or views that use the same field names, or by referencing the Universal
Relation table.

4.5.5 Lotus Connector Java Classes
The Lotus connector Java classes provide programmatic access to enterprise
data through a common set of classes. The programmer uses a single model

no matter the enterprise source. Programming provides more control and
additional capabilities over DECS and LEI.

The classes use the same connectors as DECS and LEI to access the
enterprise data. During the residency we used an evaluation version of the
Lotus connector Java classes and the final product may change.

Classes
The Lotus Connector classes are imported in the Java program using the
following statement:

import lotus.lcjava.*;

The LC classes become available:

• lotus.lcjava.LCSession class

You must create an LCSession object before using any other LC Java
facilities. The LCSession object contains global state information and error
information.

• lotus.lcjava.LCConnection class

The LCConnection class represents an instance of a connector to provide
access to an enterprise system. Multiple connections can be allocated to a
single connector.

• lotus.lcjava.LCFieldList class

The LCField class is the primary class for manipulating data through a
connection. It binds fields together with names and an implied order.

• lotus.lcjava.LCStream class

The LCStream class is a general class for text and binary data.

• lotus.lcjava.LCCurrency class

The LCCurrency class represents fixed point data.
Domino 53

• lotus.lcjava.LCDatetime class

The LCDatetime represents date and time data.

• lotus.lcjava.LCDatetimeParts class

The LCDatetimeParts class supports LCDatetime and consists of public
variables to access date and time data.

54 Connecting Domino to the Enterprise Using Java

Chapter 5. Database Management Systems

The database management system (DBMS) is a software system that
controls the creation, organization, and modification of a database and
access to the data stored within it.

Business-critical applications rely on the data managed by a DBMS. Many
enterprises are recognizing the value of their data, utilizing it in data
warehousing solutions, data mining, and decision support systems.

Relational DBMSs (RDBMS) are distinguished by their structure, which is
relational rather than hierarchical.

Relational DBMS applications can:

• Capture, manage and share an organization’s structured data.

• Implement immediate access or updates to the data source.

• Control concurrent operations by using locking and isolation levels that
ensure database integrity.

• Often require network connections to support functions like locking and
journaling by the transaction systems.

• Determine the components used to build network infrastructure. Sharing
applications externally may require external users to conform to a
pre-determined set of network specifications.

• Have rigorously defined on-storage physical and logical database
schema, requiring designers to translate business terms into highly
structured RDBMS domains and entities.

An example of an RDBMS is IBM DB2.
© Copyright IBM Corp. 1999 55

5.1 DB2

The DB2 family offers open, industrial-strength database management for
business intelligence, transaction processing, and a broad range of
applications for all types of businesses. It is the backbone database server in
many of the world’s largest corporations, handling over 7.7 billion
transactions worldwide every day.

DB2 is a relational DBMS that enables you to store, query, update, insert, or
delete data in a database from local or remote client applications. It facilitates
all database administration tasks such as configuring, backing up and

recovering data, managing directories, scheduling jobs, and managing
media.

The product family spans operating systems such as AIX, HP-UX, SCO
OpenServer, SINIX, Sun Solaris, OS/2, OS/400, OS/390 and Windows (95
and NT).

In DB2 terminology a database is a collection of tables, or a collection of table
spaces and index spaces. This is different from the Domino concept of a
database, which is a collection of documents and design elements used in
the creation and display of the documents.

Typically, the (data access) interfaces to DB2 are:

• Structured Query Language (SQL)

• Call Level Interface (CLI) or ODBC

• REXX

• Query products

5.2 DB2 and Java

In this section, we explain the Java support in DB2.

Java support in DB2 consists of three pieces:

• Client side: Java Database Connectivity (JDBC)

• Server side: Java user-defined functions (UDF) and stored procedures

• Support for the Embedded SQL for Java API (SQLJ)

5.2.1 DB2 JDBC Support
On the client side, DB2 uses JDBC. JDBC is a Java API for client access to a
56 Connecting Domino to the Enterprise Using Java

relational database such as DB2. DB2 Universal Database (UDB) Version 5
includes support for the JDBC API, as distributed with Java Development Kit
1.1. DB2 Version 2.1.2 includes support for an earlier version of the JDBC
API running under JDK 1.0.2. We refer to these as client-side Java support.

DB2 provides two distinct JDBC implementations (as shown in Figure 17 on
page 57).

Figure 17. DB2 JDBC Implementation

The DB2 JDBC implementations are:

• Application JDBC driver

Using this driver, you can build Java applications that rely on the DB2 CAE
to connect to DB2.

• Applet JDBC driver

Using this driver, you can build Java applets that do not require any DB2
component code on the client.
Database Management Systems 57

Each uses a distinct JDBC implementation: the application or applet JDBC
driver. These JDBC drivers are implemented as wrappers to the DB2
implementation of CLI, the X/Open Call Level Interface; the latter is much like
the Microsoft ODBC API. Just like CLI, JDBC is a dynamic SQL interface,
where SQL statements in transactions are all evaluated on-the-fly. There are
no prep or bind steps needed to run a JDBC program.

On the other hand, JDBC presents a convenient object-oriented version of
CLI which makes a JDBC program's structure resemble classical embedded
SQL programs.

5.2.2 Java User-Defined Functions and Stored Procedures
On the server side, DB2 allows developers to extend the database server
with Java user-defined functions and stored procedures. User-defined
functions allow the SQL query language to be extended with new scalar and
table functions. We refer to this as server-side Java support.

Scalar user-defined functions may be used in an SQL expression to compute
a complex function of several values in a given row. Table functions (new in
DB2 UDB 5) may be used in the FROM clause in a query, so tables may be
created on-the-fly from a user program, a row at a time. For example, DB2
extenders generally interface to DB2 as UDFs called in queries. Java UDFs
enable developers to create their own extenders in Java.

Stored procedures are parts of a database application that are executed at
the database server instead of the client. They are called as subroutines from
the client, and may perform SQL transactions or other work. This work does
not pay penalties for network delay or poor client performance. Java stored
procedures allow Java applications to be factored into pieces, some of which
run at the client and some at the server.

5.2.3 SQLJ
DB2 SQLJ allows you to create, build, and run embedded SQL for Java
applications, applets, and stored procedures. These contain static SQL and
use embedded SQL statements that are bound to a DB2 database. SQLJ also
supports calling user-defined functions (UDFs).

SQLJ consists of a set of programming extensions that define the interaction
between SQL and Java. It contains a set of clauses that extend Java
programs to include static SQL constructs. An SQLJ translator is a utility that
transforms those SQLJ clauses into standard Java code that can access the
database through a call interface. The output of an SQLJ translator is a
generated Java source program that can then be compiled by any Java
58 Connecting Domino to the Enterprise Using Java

compiler. Java programs containing embedded SQL can be subjected to
static analysis of SQL statements for the purposes of syntax checking, type
checking and schema validation.

SQLJ supports only static SQL constructs as it relies upon JDBC for support
of dynamic SQL, and does not attempt to replicate the features of JDBC.

5.3 Domino and DB2

Figure 18 on page 59 shows the different ways a Notes or Domino application
can access DB2 data.

Figure 18. Notes/Domino Access to DB2

A variety of integration techniques and products are available to leverage the
data storage and manipulation power of DB2 and the messaging and
groupware capabilities of Domino. They fall within the following categories:

• Native programmatic Domino access to DB2 from a LotusScript program

• @DbFunctions
• LotusScript Data Option (LS:DO)
Database Management Systems 59

• DB2 LotusScript extension (DB2LSX)
• Lotus Connector LotusScript extension (LC LSX) and the Lotus

Connector for DB2

• Native programmatic Domino access to DB2 from a Java program using

• DB2 JDBC applet or application drivers
• Domino JDBC-ODBC driver
• Lotus Connector Java classes and the Lotus Connector for DB2

• Native non-programmatic Domino access to DB2

• Domino Enterprise Connection Services (DECS)

• Lotus Enterprise Integrator Realtime Notes activity

• Server-to-server high-volume data transfer

• Lotus Enterprise Integrator (formerly called NotesPump)

• Domino access to DB2 data through a transaction system

• MQSeries and CICS Connections for Domino

• Domino on a Windows platform

• ActiveX Data Object (ADO)
60 Connecting Domino to the Enterprise Using Java

Chapter 6. Online Transaction Processing

Online Transaction Processing (OLTP) systems provide system-level
services such as rollback, backup and recovery facilities, and logging and
auditing functions.

Transaction processing applications can rely on the OLTP system to provide
these system-level services, together with resource coordination.

6.1 CICS

IBM’s Customer Information Control System (CICS) has been available for 30
years. Found at the heart of large online networks, CICS opens the door to
application compatibility with platforms like IBM's AIX, OS/2, OS/400, OS/390
and VSE, as well non-IBM environments such as Windows NT, HP, Digital
and Sun. This gives you an easy route to client/server computing, and the
software brings your system the ability to develop and implement applications
on whichever platforms make the most business sense.

The business applications running in a CICS system consist of a set of CICS
transactions, which are often executed by many users at the same time. A
CICS transaction consists of one or more CICS programs. CICS provides
functions that allow users to concurrently execute those transactions and
ensures the consistency and integrity of data that those transactions access.

Distributed program link (DPL) enables a CICS application program to link to
a program on a remote CICS system. The linked-to program executes and
returns control to the calling program. It can be thought of as a type of remote
procedure call (RPC).

The CICS communication area (COMMAREA) is the data area that can be
passed to CICS programs when the programs are called by another program.
© Copyright IBM Corp. 1999 61

The calling program could be a CICS program using the DPL API or the ECI
API. The invoked program receives the data as a parameter. The program
must contain a definition of a data area to allow access to the passed data.

The External Call Interface (ECI) is a remote call from a workstation's
application to a CICS program on a server. ECI enables a non-CICS client
application to call a CICS application synchronously (that is, the calling
program waits for a response from the linked-to program) or asynchronously
(that is, the two programs continue to execute independently) as a
subroutine. The client application communicates with the CICS server

program, using the COMMAREA, and the CICS client software. At the CICS
server, the ECI looks like a DPL from a partner CICS system.

CICS clients also support the External Presentation Interface (EPI) API. The
CICS EPI enables existing CICS applications to send and receive 3270 data
streams (for example, a CICS BMS transaction) to and from the client
application as though it were conversing with a 3270 terminal. The client
application captures this data and processes it as desired.

6.2 CICS and Java

The CICS Transaction Gateway Version 3 incorporates, in a single integrated
product, all components required to link Java applets, applications, and
servlets, into any CICS server. The contents of the CICS Transaction
Gateway include (see Figure 19 on page 62):

• A Java gateway application

• A CICS Universal Client

• A CICS Java class library

• The TerminalServlet servlet

• A set of EPI Java beans
62 Connecting Domino to the Enterprise Using Java

Figure 19. CICS Java Support

6.2.1 CICS Gateway for Java
The CICS Gateway for Java is a Java gateway application that is usually
resident (for security reasons) on a Web server workstation. It communicates
with CICS applications running in CICS servers through the ECI or EPI
interfaces provided by the CICS Universal Clients. This Java application was
previously available in the IBM CICS Gateway for Java.

6.2.2 CICS Universal Client
The CICS Universal Client provides the ECI and EPI interfaces, as well as
terminal emulation function. The ECI interface enables a non-CICS client
application to call a CICS program synchronously or asynchronously as a
subroutine. The EPI interface enables a non-CICS client application to act as
a logical 3270 terminal and so control a CICS 3270 application. The CICS
Universal Clients allow communication with CICS servers over the NetBIOS,
TCP/IP, and APPC protocols, depending on the platform.

6.2.3 CICS Java Class Library
The CICS Java class library includes classes that provide an application
programming interface (API), and are used to communicate between the Java
Gateway application and a Java application (applet or servlet). The class
JavaGateway is used to establish communication with the gateway process,
and uses Java's sockets protocol. The ECIRequest class is used to specify
the ECI calls that are sent to the gateway. The EPIRequest class is used to
specify the EPI calls that are sent to the gateway. These Java classes were
previously available in the IBM CICS Gateway for Java product.

(In addition to the former CICS Gateway for Java, the CICS Transaction
Gateway also contains the functionality of the CICS Internet Gateway.)

The gateway implementation combines the strengths of Java and CICS's
client/server function to provide installations with a unique set of Internet
Online Transaction Processing 63

functions for business-critical Internet applications:

• Automatic version control

• Security/integrity

• Protocol support/connectivity

• Performance

• Portability

• Application development

The multi-threaded gateway and CICS clients can communicate
asynchronously with CICS servers either on the same processor or across
TCP/IP or SNA communication links.

The gateway can be used in various configurations. Multiple gateway
processors can be used in parallel against the same CICS servers, or a
single gateway processor can connect to multiple CICS server systems, for
example as might be contained in an RS/6000 Scalable POWERParallel (SP)
processor complex.

The gateway classes are:

• JGateConnection

Used to establish communication with the long running gateway process
using Java's sockets protocol.

• ECIRequest

Used to specify the CICS ECI call which is sent to the gateway. The
gateway channels the ECI call through a CICS client to the desired CICS
server applications, manages the many communication links to the
connected browser or network computers, and controls asynchronous
conversations to the CICS server systems.

• EPIRequest

Used to specify the CICS EPI call which is sent to the gateway. The
gateway channels the EPI call through a CICS client to the desired CICS
server applications as for ECIRequest.

• CicsCpRequest

Queries the code page of the CICS client.

6.2.4 TerminalServlet Servlet
The TerminalServlet allows you to use a Web browser as an emulator for a
64 Connecting Domino to the Enterprise Using Java

3270 CICS application running on a CICS server. The TerminalServlet can be
used with a Web server or a servlet engine that provides support equivalent
to JSDK Version 1.1 or later.

6.2.5 Set of EPI Java Beans
The set of EPI Java beans allows you to create Java front-ends for existing
CICS 3270 applications, without any additional programming.

6.3 Domino and CICS

Figure 20 on page 65 shows the different ways a Notes or Domino application
can access CICS transactions.

Figure 20. Notes/Domino Access to CICS

A variety of integration techniques and products are available to leverage the
data storage and manipulation power of CICS and the messaging and
groupware capabilities of Domino. They fall within the following categories:

• Native programmatic Domino access to CICS from a LotusScript program

• MQSeries Enterprise Integrator (MQEI)
• MQSeries LotusScript extension (MQLSX)
• Lotus Connector LotusScript extension (LC LSX) and the Lotus
Online Transaction Processing 65

Connector for CICS (not available yet)

• Native programmatic Domino access to CICS from a Java program

• CICS Transaction Gateway
• Lotus Connector Java classes and the Lotus Connector for CICS (not

available yet)

• Native non-programmatic Domino access to CICS (not available yet)

• Domino Enterprise Connection Services (DECS)
• Lotus Enterprise Integrator (formerly called NotesPump)

66 Connecting Domino to the Enterprise Using Java

Chapter 7. Messaging Middleware

A networked company today can do business anytime, anywhere, using
advanced technology such as electronic commerce to get ahead of those
who still conduct business the old fashioned way. But integration can be a
nightmare.

In the past, a business application would probably have been run at a single
site, on a single computer with software from a single vendor. Today,
networked applications are distributed across different locations. Often
customers, suppliers and business partners will be part of integrated
business processes, which must support users with a variety of software and
hardware which may not be compatible.

This is where messaging middleware comes in. It can helps you integrate
your business, giving you a simple way to solve the complex problem of
reliable transfer of information between applications in a fast-changing
distributed computing environment.

An example of messaging middleware is IBM's award winning MQSeries.
MQSeries allows you to take whatever applications, databases or system
components you need, and simply integrate them all into a single coherent
business information system.

7.1 MQSeries

MQSeries is IBM’s robust messaging middleware product family. It enables
businesses to develop applications based on asynchronous messaging
principles. An application can put information into a message and pass it to
another application through the use of a queue as illustrated in Figure 21 on
page 68.
© Copyright IBM Corp. 1999 67

Figure 21. Messaging and Queueing

MQSeries provides:

• A single, multi-platform API

• Assured message delivery

• Faster application development

• Time independent processing

• Application parallelism

7.1.1 A Single, Multi-Platform API
MQSeries has a simple, consistent programming API across a wide range of
platforms and networks protocols. Since its initial release in 1993, MQSeries
68 Connecting Domino to the Enterprise Using Java

has increased its platform coverage to support over 30 platforms and a range
of network protocols. Figure 22 on page 69 shows the platforms for which
MQSeries is available. Some platforms only support MQSeries clients, while
other platforms offer an MQSeries queue manager and a client, or the
possibility to attach a client.

The MQSeries API, the message queue interface (MQI), has a rich set of
features, such as triggering, priorities, data conversion and dynamic queues.
These features give application designers the flexibility to use MQ in a wide
variety of solutions.

Figure 22. MQSeries Platform Coverage

MQSeries clients only provide access to the MQI and must be attached to a
queue manager to use the queueing service.

7.1.2 Assured Message Delivery
MQSeries is robust middleware. Middleware is essentially the application
enabling layer between your application and the operating system.
Importantly, MQSeries assures the delivery of messages between
applications. This delivery is assured to be a once and once only delivery.

The basic elements of MQSeries work together to pass messages between
applications and assure delivery. These elements are:

• The message queue interface (MQI) that enables application programs to
Messaging Middleware 69

use the facilities provided by MQSeries.
• The queue manager which manages resources, such as queues, and

access to them.
• The message channel agent (MCA) which ensures the delivery of

messages for queues on other queue managers.

For application A to pass information into application B (as illustrated in
Figure 21 on page 68), application A needs to use the MQI to PUT a
message. Application A only requires the queue name that it should use; it
does not need to know where application B resides. The queue manager will
then resolve the queue name. If not a local queue on that queue manager, the

queue manager will store the message (on a transmission queue) and the
message channel agent (or channel) then becomes responsible for moving
the message to the target queue manager, and the intended queue. The
initial queue manager retains a copy of the message until the channel has
safely delivered it. Receiving application B can GET the message from its
local queue as soon as it is ready to process it.

The MQSeries product provides a command interface for MQSeries object
definition. Queues, channels and other MQSeries resources must, in general,
be defined to the queue manager before they can be used. MQSeries object
names are case sensitive and must be unique within one queue manager and
object type. Queue manager names must be unique within a network of
queue managers.

Each MQSeries message consists of a message descriptor (MQMD) whose
contents are architected by MQSeries, and application data whose contents
are entirely application-dependent.

7.1.3 Faster Application Development
In an open-systems environment, communications coding is complex and
difficult to manage. MQSeries handles any networking complexities and
leaves you to concentrate on the business logic of your application. It enables
business applications to exchange information across different operating
system platforms in a way that is straightforward and easy to implement.
Shielding you from the complexities of network communications speeds up
application development, and can reduces development costs by up to 40%.

7.1.4 Time Independent Processing
Synchronous application communications, such as Remote Procedure Call
(RPC) only work if the target application is available when called. The
requesting application must wait for the reply before proceeding.
70 Connecting Domino to the Enterprise Using Java

MQSeries is based on asynchronous processing and is therefore time
independent processing. That is to say, while MQSeries can provide
synchronous communications between applications, it is not reliant on the
network or target application being available immediately. It delivers the
message when the network and/or target application becomes available.

Asynchronous processing does not have to mean slow processing. With
MQSeries you can still achieve high performance and throughput. Messages
can be placed on queues and retrieved from queues instantaneously.

7.1.5 Application Parallelism
MQSeries’s use of messages and queues enables parts of a business
application to be handled in parallel. For example, task A might generate
three inquiries to be processed by independent tasks B, C and D, as shown in
Figure 23 on page 71, with the replies being processed by a further task E.
Splitting an application into tasks this way and being able to process some
tasks in parallel means that your response time may be faster than
conventional direct communication.
Messaging Middleware 71

Figure 23. Processing Requests in Parallel

The MQSeries product family is based on a simple concept; however, you
should refer to the MQSeries manuals for detailed information on how to
implement MQSeries in your environment and how to utilize the MQI in your
applications. Most MQSeries manuals can be viewed on the Web at:
http://www.software.ibm.com/ts/mqseries/library/manuals

MQSeries provides various additional tools. In this redbook, we make use of
the MQSeries Client for Java and the MQSeries Trigger Monitor for Lotus
Notes agents.

7.2 MQSeries and Java

MQSeries Version 5 provides two different types of Java support:

• MQSeries Client for Java

Enables Java applets and applications to use MQSeries applications
through a Web browser or applet viewer. It is written entirely in Java and
provides you the same messaging APIs as MQSeries's COBOL and C
interfaces but with a Java class library countenance.

• MQSeries Bindings for Java

Enable Java applications to connect directly to an MQSeries queue
manager.

Both products include the MQSeries for Java classes (see Figure 24 on page
72).
72 Connecting Domino to the Enterprise Using Java

Figure 24. MQSeries Java Support

MQSeries is the tool of choice for heterogeneous platforms containing a
mixture of Java and other operating environments. Using MQSeries Version 5
and its Java client is a matter of setting up MQSeries channels, establishing
queues and adding a few Java statements to your programs. For more details
refer to the MQSeries for Java documentation.

7.2.1 MQSeries Client for Java
MQSeries Client for Java is an MQSeries client written in the Java
programming language for communicating through TCP/IP. It enables Web
browsers and Java applets to issue calls and queries to MQSeries giving
access to mainframe and legacy applications over the Internet without the
need for any other MQSeries code on the client machine.

The MQSeries Client for Java enables application developers to exploit the
power of the Java programming language to create applets and applications
which can run on any platform that supports the Java run-time environment.
These factors combine to dramatically reduce the development time for
multi-platform MQSeries applications and future enhancements to applets are
automatically picked up by end users when the applet code is downloaded.

The MQSeries Client for Java is shipped as part of the V5 MQSeries Client on
AIX, HP-UX, OS/2, Sun Solaris and Windows NT. These MQSeries clients
can be obtained with the MQSeries product or downloaded from the
MQSeries Web site. The MQSeries Client for Java obtained in this way,
provides MQSeries V5 function and is capable of running with JDK V1.1.1 or
later. The MQSeries Client for Java can also be obtained for other platforms,
such as Windows 95, from the MQSeries Web site as SupportPac MA83. The
MQSeries Client for Java supplied with this SupportPac provides MQSeries
V2 function and runs with JDK V1.02.

7.2.2 MQSeries Bindings for Java
The MQSeries Bindings for Java enable you to write MQSeries applications
using the Java programming language. These applications communicate
directly with MQSeries queue managers to provide a high-productivity,
high-performance development option.

The MQSeries Bindings for Java also enable application developers to exploit
the power of the Java programming language to create applications which
Messaging Middleware 73

can run on any platform that supports the Java run-time environment. These
factors combine to dramatically reduce the development time for
multi-platform MQSeries applications.

The MQSeries Bindings for Java provide the same programming interface as
the MQSeries Client for Java, but they use Java native methods to call
directly into the existing queue manager API rather than communicating
through an MQSeries server connection channel. This provides better
performance for Java MQSeries applications than the equivalent function
written to use the MQSeries Client for Java. Unlike the MQSeries Client for
Java, applications written using the bindings for Java cannot be downloaded

as applets and they cannot be run inside an applet viewer or Web browser.
However, as the MQSeries Client for Java, and the MQSeries Bindings for
Java share a common programming interface, application code can be
quickly and easily modified to run in either environment.

To develop applets or applications that use the MQSeries Bindings for Java,
you also need to have JDK 1.1.1 (or later) on your machine.

7.2.3 MQSeries Java Classes
MQSeries for Java contains the following classes all prefixed with
com.ibm.mq (or for the MQSeries Bindings for Java with com.ibm.mqbind).
All these classes extend the java.lang.Object class, unless otherwise
indicated:

• MQChannelDefinition

Used to pass information concerning the connection to the queue
manager to the send, receive and security exits.

• MQChannelExit

Defines context information passed to the send, receive and security exits
when they are invoked. The exitResponse data member should be set by
the exit to indicate what action the MQSeries Client for Java should take
next.

• MQEnvironment

Contains static data members which control the environment in which an
MQQueueManager object (and its corresponding connection to MQ) is
constructed. You should always set the values in the MQEnvironment
class before constructing an MQQueueManager instance.

• MQException

Extends java.lang.Exception. Thrown whenever an MQ error occurs. You
can change the java.io.PrintStream to indicate which exceptions are
74 Connecting Domino to the Enterprise Using Java

logged by setting the value of MQException.log. The default value is
System.err. Constants beginning MQCC_ are MQSeries completion
codes, and constants beginning MQRC_ are MQSeries reason codes.
TMQGetMessageOptions

Contains options that control the behavior of MQQueue.get.

• MQManagedObject

Superclass for MQQueueManager, MQQueue and MQProcess provides
the ability to inquire and set attributes for the following objects:

• MQDistributionList

Created through the MQDistributionList constructor or through the
accessDistributionList method for MQQueueManager. A distribution list
represents a set of open queues to which a message can be sent using
a single call to the put() method. This class can only be used with
MQSeries V5.

• MQProcess

Provides inquire operations for MQ processes.

• MQQueueManager

Used to create a connection to the named queue manager.

• MQQueue

Provides inquire, set, put and get operations for MQ queues. The
inquire and set capabilities are inherited from MQ.MQManagedObject.

• MQMessage

Represents both the message descriptor and the data for an MQ
message. There are a group of readXXX methods for reading data from a
message, and a group of writeXXX data for writing data into a message.
The format of numbers and strings used by these read and write methods
can be controlled by the encoding and characterSet data members. The
remaining data members contain control information that accompanies the
application message data when a message travels between sending and
receiving applications. Implements java.io.DataInput, java.io.DataOutput.

• MQMessageTracker

Inherited by MQDistributionListItem, where it is used to tailor message
parameters for a given destination in a distribution list.

• MQDistributionListItem

Represents a single item (queue) within a distribution list.

• MQPutMessageOptions
Messaging Middleware 75

Contains options that control the behavior of MQQueue.put. This class
contains no get version or set version methods. When used with
distribution lists, a Version 2 structure (for MQSeries V5) is automatically
used.

The following Java interfaces also extend the java.lang.Object class:

• MQC

The MQC interface defines all the constants used by the MQSeries Java
programming interface. To refer to one of these constants from within your
programs, simply prefix the constant name with MQC.

• MQReceiveExit (MQSeries Client for Java only)

Allows you to examine and possibly alter the data received from the queue
manager by the MQSeries Client for Java. To provide your own receive
exit, define a class that implements this interface. Create a new instance
of your class and assign the MQEnvironment.receiveExit variable to it
before constructing your MQQueueManager object.

• MQSecurityExit (MQSeries Client for Java only)

Allows you to customize the security flows that occur when an attempt is
made to connect to a queue manager. To provide your own security exit,
define a class that implements this interface. Create a new instance of
your class and assign the MQEnvironment.securityExit variable to it
before constructing your MQQueueManager object.

• MQSendExit (MQSeries Client for Java only)

Allows you to examine and possibly alter the data sent to the queue
manager by the MQSeries Client for Java. To provide your own send exit,
define a class that implements this interface. Create a new instance of
your class and assign the MQEnvironment.sendExit variable to it before
constructing your MQQueueManager object.

7.2.4 MQSeries Trigger Monitor for Lotus Notes Agents
Some MQSeries applications that service queues run continuously, so they
are always available to retrieve messages that arrive on the queues. When
the number and frequency of messages arriving on the queues is
unpredictable it may not be desirable to have the application continuously
running. In this case, applications could be consuming system resources
even when there are no messages to retrieve.

An alternative is to use triggering. This means that your application runs only
when it has a message or batch of messages to process, depending on how
you set the MQSeries application queue attributes.
76 Connecting Domino to the Enterprise Using Java

The MQSeries Trigger Monitor for Lotus Notes agents is a modified version of
the standard MQSeries trigger monitor, with support for triggering Lotus
Notes agents in addition to other MQSeries application types. It can be used
to trigger any Notes agent, including those written using the MQSeries link
LotusScript Extension (MQLSX), the MQSeries Enterprise Integrator (MQEI),
or in our case the MQSeries Client for Java.

The MQSeries Trigger Monitor for Lotus Notes agents is available from the
MQSeries Web site as a SupportPac: MA3L for OS/2 and MA7E for Windows

NT. (It is hoped that versions for AIX, HP-UX and Sun Solaris will also be
made available.)

The trigger monitor is a continuously-running program that uses only a small
amount of system resources. In order to use it you need three things:

1. An application program queue known to your Notes agent

2. An initiation queue

3. A process definition containing details of the Notes agent

Example MQ definitions are shown in “From the Enterprise to Domino Using
MQSeries” on page 176.

You start the trigger monitor from the command line with the following syntax:

runmqtnm [-m QueueManagerName] [-q InitiationQueueName]
runmqtnc [-m QueueManagerName] [-q InitiationQueueName]

where the runmqtnm command expects an MQSeries queue manager to be
installed on the same machine, while runmqtnc makes use of an MQSeries
client (not the MQSeries Client for Java). If no parameters are entered, the
default queue manager and queue SYSTEM.DEFAULT.INITIATION.QUEUE
are used.

7.3 Domino and MQSeries

Figure 25 on page 78 shows the different ways a Notes or Domino application
can access MQSeries applications.
Messaging Middleware 77

Figure 25. Notes/Domino Access to MQSeries

A variety of integration techniques and products are available to leverage the
data storage and manipulation power of MQSeries and the messaging and
groupware capabilities of Domino. They fall within the following categories:

• Native programmatic Domino access to MQSeries from a LotusScript
program

• MQSeries Enterprise Integrator (MQEI)
• MQSeries LotusScript extension (MQLSX)
• Lotus Connector LotusScript extension (LC LSX) and the Lotus

Connector for MQSeries (not available yet)

• Native programmatic Domino access to MQSeries from a Java program

• MQSeries Client for Java
78 Connecting Domino to the Enterprise Using Java

• MQSeries Bindings for Java
• Lotus Connector Java classes and the Lotus Connector for MQSeries

(not available yet)

• Native non-programmatic Domino access to MQSeries (not available yet)

• Domino Enterprise Connection Services (DECS)
• Lotus Enterprise Integrator (formerly called NotesPump)

Chapter 8. WebSphere

As the use of the Internet and intranets has increased, there has been a rapid
progression from the publishing of static HTML pages to running applications
over the Web. The trend now is towards the convergence of business
processes, that is the integration of applications.

The focus for requirements can be split into three areas:

1. Infrastructure services

• Component services

• Web services

2. Application services

• Component consumption

• Provider/consumer of external services

Security - Messaging - Directory - and so on...

• Legacy and enterprise connectivity

• Productive development tools

3. Advanced services

• Workflow

• Business rules

• Mobile services

• Repository

8.1 WebSphere Product Family

The IBM WebSphere software product line is a set of software products that
© Copyright IBM Corp. 1999 79

help customers build and manage high-performance Web sites to ease the
transition from simple Web publishing to advanced e-business Web
applications.

WebSphere is a core element of IBM’s e-business strategy. It brings together
three markets:

• Web computing, with its rapid development, rapid deployment and
scalability

• Java computing, with its object-oriented, portable applications

• Enterprise computing, with its transactional integrity and control

The WebSphere family, along with Lotus Domino, represents the industry's
most complete range of Web application server environments that support
business applications from simple Web publishing through enterprise-scale
transaction processing.

The WebSphere family integrates the Web server, transaction processing,
Web commerce and distributed component technologies of IBM's WebSphere
Application Server.

The product line also includes WebSphere Studio, an integrated set of Web
development tools and WebSphere Performance Pack, Web facilities
management software that supports rapid growth of high-volume Web sites.

Figure 26 on page 80 shows the different components of the WebSphere
family.
80 Connecting Domino to the Enterprise Using Java

Figure 26. WebSphere Family

In the following we describe each component of the family:

8.1.1 WebSphere Application Server
WebSphere Application Server (WAS) lets you achieve your write once, use
everywhere goal for servlet development. The product consists of a
Java-based servlet engine that is independent of both your Web server and
its underlying operating system.

WAS offers a choice of server plug-ins that are compatible with the most
popular server APIs. The supported Web servers are:

• Lotus Domino R5

• Lotus Domino Go Webserver

• Netscape Enterprise Server

• Netscape FastTrack Server

• Microsoft Internet Information Server

• Apache Server

WAS runs on multiple platforms: AIX, OS/2, OS/390, Sun Solaris and
Windows NT.

In addition to the servlet engine and plug-ins, WAS provides:

• Implementation of the JavaSoft Java Servlet API, plus extensions of and
additions to the API.

• Sample applications that demonstrate the basic classes and the
extensions.

• The Application Server Manager, a graphical interface that makes it easy
to set options for loading local and remote servlets, to set initialization
parameters, to specify servlet aliases, to create servlet chains and filters,
to monitor resources used by WAS, to monitor loaded servlets and active
servlet sessions, to log servlet messages, and to perform other servlet
management tasks.

8.1.2 WebSphere Studio
WebSphere Studio combines graphical development wizards with tools for
Web site design and Java development. These wizards and tools simplify and
speed the application development process, and include:
WebSphere 81

• Web Development Workbench - a Web site project organizer and launch
platform.

• Servlet generation wizards - for building Java servlets to access JDBC
databases and JavaBean components.

• VisualAge for Java, Professional Edition V2.0 - IBM's award-winning Java
application development environment for building Java applications,
applets, servlets and JavaBean components.

• NetObjects Fusion V3.0 - allows Web site developers to design and
produce an entire Web site, including individual pages and all links. It

features automated site building, automatic link management, remote
database access, and design and publishing capabilities.

• NetObjects BeanBuilder V1.0 - the visual authoring tool for combining
JavaBeans and Java applets, BeanBuilder allows individuals overseeing
the content of online business processes to create more compelling,
highly interactive Web sites with revolutionary ease-of-use. NetObjects
ScriptBuilder V3.0 - combines a text-based script editor and development
tools for creating and editing HTML, script and Java server pages.

8.1.3 WebSphere Performance Pack
WebSphere Performance Pack is built up of three main components, which
permit you to reduce Web server congestion, increase content availability and
improve Web server general performance:

1. File sharing

The file sharing component is an enterprise file system that enables
cooperating hosts (clients and servers) to efficiently share file system
resources across both local area networks and wide area networks. It
provides non-disruptive real-time replication of information across multiple
servers, which guarantees data consistency, availability, global stability
and administrative efficiency, which are required by large distributed Web
sites or by Web sites with volatile content, which require considerable
administrative effort to maintain such things as content links, URLs, and
file I/O mapping.

2. Caching and filtering

The caching and filtering component is a caching proxy server that
provides highly scalable caching and filtering functions associated with
receiving requests and serving URLs. With tunable caching capable of
supporting high cache hit rates, this component can reduce bandwidth
costs and provide more consistent rapid customer response times.
82 Connecting Domino to the Enterprise Using Java

3. Load balancing

The load balancing component is a server that is able to dynamically
monitor and balance TCP servers and applications in real time. The main
advantage of the load balancing component is that it allows heavily
accessed Web sites to increase capacity, since multiple TCP servers can
be dynamically linked into a single entity that appears in the network as a
single logical server.

8.2 WebSphere Application Server

WAS is a Java-based application environment for building, deploying and
managing Internet and intranet Web applications. This complete set of
products expands to fit your Web application server needs, ranging from the
simple to the advanced to the enterprise level.

WAS provides a secure and scalable run-time environment server, with
additional SSL-based security and performance features, that supports Java
servlets and JavaServer page scripting.

Three editions of WAS are available to meet your needs:

• Standard Edition combines the control and portability of server-side
business applications with the performance and manageability of Java
technologies to offer a comprehensive Java-based Web application
platform. It enables powerful interactions with enterprise databases and
transaction systems.

Standard Edition provides you with an open, standards-based, Web server
deployment platform and includes Web site development and
management tools to help accelerate the process of moving to e-business.
It provides support for Java servlets and JSPs.

Standard Edition focuses on a servlet manager, high-performance
database connections, and application services for session and state
management.

• Advanced Edition, which builds off the Standard Edition, introduces a key
element for the purpose of our book: server capabilities for applications
built to Sun's Enterprise JavaBean specification. Deploying and managing
JavaBean components provides a stronger CORBA implementation that
maps to portable Java technologies.

Advanced Edition provides enhanced support for scaling your Web site
into a secure, transactional e-business application site. This edition
WebSphere 83

connects Web applications to existing databases and host-based
transaction systems, and offers sophisticated tools to simplify distributed
component-based application development.

• Enterprise Edition, which enhances the Advanced Edition, offers a robust
solution to grow e-business applications into mission-critical enterprise
environments. It combines TXSeries, IBM's world-class transactional
application environment (providing the CICS and Encina products), with
the full distributed object and business process integration capabilities of
Component Broker.

WAS's Java environment supports multiple Web servers. This allows you to
choose between the native Domino, Apache, Microsoft IIS or Netscape Web
servers. Using Domino R5 you can also substitute the native application
server function (servlet engine) in Domino with WAS Standard Edition 2.0.

8.2.1 Servlet Runtime Environment
The Servlet Runtime Environment provides a fast engine for running
server-side Java servlets and JavaBeans. Java servlets can be used to
coordinate I/O between server-side JavaBeans and Web browser HTML
clients. Servlets facilitate layering and separating the presentation logic,
business logic, and backend data access logic. Server-side JavaBeans are
used for business logic and access to backend databases, transactions and
existing applications.

Within the middle-tier and the WAS environment, the focus here is on the
servlet engine, which is Java-based. The servlet runtime provides the
Sun/JavaSoft APIs for the Java servlet environment, including the servlet life
cycle: init, service, destroy. Servlets can be preloaded, so that when a client
request comes in, a servlet is loaded and waiting to act on it. Servlets send
and receive most of their data through output and input streams. These
streams are supplied each time a servlet is invoked using the service
callback.

The servlet manager creates instances of the servlets, deploys them,
manages their execution, and provides tracing and monitoring facilities for
them. Servlets themselves handle HTTP requests, maintain an HTTP session
with the client, produce presentation logic via HTML, stream and
non-transactional business logic. Servlets can also call componentized
functions or routines built as JavaBeans. These beans can be called to
connect to or interface with remote systems of various types and formats
using different native APIs.
84 Connecting Domino to the Enterprise Using Java

8.2.2 Enterprise JavaBeans Server
WAS provides an Enterprise JavaBeans Server (EJS) for the EJBs, a
run-time engine with high-performance database and transaction
connections, and similar application services. It provides a base for the
execution of EJBs.

The server is the outermost container of the various elements making up an
EJB environment. It offers the following services:

• Container run-time environment

EJS is able to support EJB containers providing client access,
multi-threading, and memory management.

• Access to a distributed transaction system

In WAS Version 2.0, EJS implements a distributed transaction service.

• Access to a data store

EJS uses DB2 UDB to support the persistent storage of entity beans.

• Access to a naming service

A JNDI-accessible naming space is used by clients to locate the
enterprise beans. A container registers the home interface with a
JNDI-compliant naming service in order for clients to gain access to the
home interface and through it to the beans.

• Provide operation resources

EJS provides operation resources such as processes and execution
threads, memory, networking facilities, etc. to the containers and the
elements within.

Figure 27 on page 85 shows the architecture of the Enterprise Java Server.
WebSphere 85

Figure 27. Enterprise Java Server

This server handles running the business logic, which ensures transactional
integrity. It is a managed object framework and deals with the life-cycle and
persistence issues of the enterprise beans it manages.

Clients communicate with the EJB application using a variety of protocols
such as RMI. Browsers can invoke the EJB application through a servlet
running on the HTTP server. The browser communicates with the servlet
using HTTP, and the servlet communicates with the EJB application using
RMI.

The Java platform provides some APIs that enable the EJB to access
enterprise services and data resources, such as:

• Java Transaction Services (JTS), for invoking transaction services

• Java Naming and Directory Interface (JNDI), for accessing naming and
directory services

• Java DataBase Connectivity(JDBC) and Java SQL (JSQL), for accessing
data in existing databases through a common interface

• RMI, for creating remote interfaces to distributed computing on the Java
platform
86 Connecting Domino to the Enterprise Using Java

8.3 Domino and WebSphere

Effective Web strategies require both collaboration and transaction
capabilities. Together, Domino and WebSphere offer you all the capabilities
needed to build, run, and manage high value e-business applications:

• Domino provides a powerful environment for developing and running
collaborative applications (WWW, intranet or extranet), messaging and
enterprise calendaring and scheduling.

As a Web application server, Domino is optimized to manage work and
information flow, and to facilitate electronic relationships through focused
business collaboration. Domino also provides a highly productive rapid
application development environment.

• WebSphere is a line of Web application servers with graduated
capabilities optimized to manage the execution of distributed transactions
and components, and to meet the performance and throughput needs of
applications ranging from simple Web sites to sophisticated enterprise
systems.

WebSphere provides an ideal foundation for building, deploying and
managing Java-based transactional Web applications. In its different
versions, it provides:

• The foundation of Web server deployment, site development and
management

• Security, transaction capability, connection to existing databases and
host transaction systems and simplifies distributed component-based
application development

• Full distributed object and integration capabilities required of a
transaction system

The positioning of Domino and WebSphere is illustrated in Figure 28 on page
88.
© Copyright IBM Corp. 1999 87

Figure 28. Domino and WebSphere Positioning

In many Web applications, which require both collaboration and transaction
capabilities, deploying both Domino and WebSphere is the appropriate
solution. Domino provides the rich set of application services that WebSphere
application servers can use, and WebSphere provides the robust transaction
management that Domino applications can use.

Domino complements WebSphere by offering a set of services which expand
the power and interactive nature of a Web site through workflow and
collaboration functionality. Lotus Domino has a focus on collaboration and
interaction through broad business applications which can rely on workflow
88 Connecting Domino to the Enterprise Using Java

capabilities, whereas WebSphere’s focus is on transaction processing and
serving up Java bean applets. Together they form a powerful solution.

Domino and WebSphere can be easily linked to comprise a complete system
capable of many tasks from global workgroup collaboration and interactive
multilingual Web application development, to transactional systems based on
Java components. Connector software and joint ship vehicles for Domino and
WebSphere demonstrate how they work together:

• Domino R5 incorporates the Standard Edition of WebSphere as part of the
Domino run-time environment.

• VisualAge for Java includes Domino Java class descriptions that
WebSphere can use to invoke Domino object services.

• Domino allows Java agents to invoke EJBs managed by WebSphere
Advanced Edition.

Lotus will also offer a connector to integrate Domino with the transaction
management services of WebSphere Enterprise Edition.

8.3.1 Advantages of Using Domino with WebSphere
WebSphere is a Java-based execution and management platform. The use of
WebSphere with Domino enhances the intersection of Domino's collaboration
and e-mail strengths with IBM's transactional products.

The IBM WebSphere Application Server provides better performance than
other server function extensions, because it runs as an in-process plug-in
with the server. It fully supports the latest session-tracking APIs, including
session clustering (sharing of HTTP sessions among several Web servers). It
also provides a JDBC-based user profile class that can be used in
conjunction with sessions to further personalize your Web site. And it
includes CORBA support, a configuration interface, robust security features
and more.

EJB Support
WAS contains an EJB manager. EJBs provide a component architecture for
multitiered, distributed Java applications. The EJB infrastructure provides
transactional and system services for the application components, making
distributed, client/server applications easier to develop, deploy, manage and
maintain.

JDBC Connection Management
A JDBC connection manager is provided as part of the servlet engine in
WAS. It provides a bean interface and maintains a pool of active JDBC
89

connections to a database, hence improving performance and throughput.

Enhanced Servlet Support
Servlet queues in WAS help to ensure the reliability, security and throughput
of the server.

8.3.2 Recommendations of Use
Lotus Domino and IBM WebSphere Application Server are both robust Web
application servers that meet different customer needs. Lotus Domino is ideal
for customers who are focusing on collaborative/workflow solutions and want

to build intranet and extranet Web applications that integrate their business
processes with those IT systems. For example, a new supplier suggestion
system might be built using Lotus Domino that allows suppliers, through an
extranet, to send in documents with their suggestions, which are then
processed in a workflow system to generate cost savings for the company.

The IBM WebSphere Application Server is ideal for organizations building
more transactional Web applications using Java servlets, Enterprise
JavaBeans and Java-based connectors. WebSphere Application Server is a
deployment and management platform that enables companies to upgrade
from a publishing-based Web presence on HTTP servers to e-business
solutions. For example, WebSphere Application Server is the foundation on
which the next release of IBM Net.Commerce will provide e-commerce
capabilities that allow customers to set up electronic storefronts with a more
personalized, dynamic selling environment.

Using WebSphere Application Server, customers can build highly scalable
dynamic front-ends to legacy applications. Requirements that are driven more by
the desire to integrate your content and data with your business processes, imply
you should consider the enterprise integration, collaborative, messaging,
workflow, and process management capabilities of Domino.

The IBM/Lotus e-business strategy leads to a preferred option of using
Domino with WAS. Domino will handle HTML requests and workflow
applications. WAS will provide the Web server and deal with all servlets and
Java applications. The direction is also to utilize VisualAge for Java to
create/modify Java programs, as it provides a superior development and
testing environment (even for Domino agents) than Domino R5.

Ultimately, the result should be that users see better scalability and reliability
in their applications, by combining the strengths of these products.
90 Connecting Domino to the Enterprise Using Java

Part 2. Installation and Setup

In this part, we explain how to install and set up the different tools that
support the development and execution of Domino applications that connect
to the Enterprise using Java.
© Copyright IBM Corp. 1999 91

92 Connecting Domino to the Enterprise Using Java

Chapter 9. Java

In this chapter we explain the installation and settings needed to support Java
and JDBC. We concentrate on the installation and configuration for the
Windows NT platform that we used during our tests.

Java Development Kit
If you want to develop Java applets or applications, you need to install JDK
Version 1.1 or higher on the server. JDK Version 1.1 is available on the Sun
Web site for Windows platforms, and on the IBM Java Web site for IBM
platforms (AIX, OS/2, OS/390 (UNIX Services), OS/400, and VM/ESA).

Java Servlet Development Kit
The Java Servlet Development Kit (JSDK) contains a simple servlet engine
for developing and testing servlets, the javax.servlet package sources, and
API documentation. JSDK Version 2.0 is available on the Sun Web site for
Windows platforms.

Java Database Connectivity
The JDBC API is a SUN standard data access interface. This API provides
Java programmers with universal access to a wide range of relational
databases. JDBC is included in JDK 1.1.

Environment Variables
To run Java programs, the system must be able to access the required Java
class files. Table 2 on page 93 gives the different values that must be added
to the CLASSPATH environment variable if you need the corresponding Java
package.

Table 2. CLASSPATH Environment Variable Values

Directory Java Package

. (dot) Local package and class files
Java 93

c:\domino\notes.jar Domino classes

c:\domino\NCSO.jar Domino CORBA classes

c:\domino\JdbcSqllib\JdbcDomino.jar Domino Driver for JDBC classes

c:\lotus\domino\lcjava.zip Lotus Connector Java classes

c:\jdk1.1.7\lib\classes.zip JDK 1.1.7 classes

c:\jsdk2.0\lib\jsdk.jar Java servlet classes

c:\sqllib\java\db2java.zip DB2 classes

Modify the path to fit your own installation.

c:\ibm\ctg\classes\ctgclient.jar Java CICS application classes

c:\ibm\ctg\classes\ctgserver.jar Java CICS local gateway classes

c:\mqm\java\lib;
c:\mqm\tools\javaclnt\samples\En_US

MQSeries client for Java

c:\mqm\java\lib;
c:\mqm\tools\mqbind\samples\En_US

MQSeries binding for Java classes

Directory Java Package
94 Connecting Domino to the Enterprise Using Java

Chapter 10. Domino

In this chapter, we explain the installation and setup of the Domino
environment for both releases of Domino as the Java support has changed
between the releases.

10.1 Java Applet

Before you can add a Java applet to a Domino or a Notes application, you
must set up your workstation to enable Java applets (Advanced option of the
user preferences). If you want to link to applets on the Web, make sure your
Location document specifies a valid Web proxy.

10.2 Release 4.6

In this section we explain how to set up and configure Domino R4.6 to
support the Java environment.

10.2.1 Installation
You may have to modify the Lotus Notes initialization file (notes.ini) to support
the tools.

HTTP Server
To load the Domino HTTP Web server task automatically, add the following
line to notes.ini:

ServerTask=<any other tasks>,HTTP

When you restart the server, it loads the HTTP Web server task. The
following line appears on the server console:

01/01/98 11:23:36 AM HTTP Web Server started
Domino 95

JavaUserClasses
Domino needs to be able to find all classes of a server agent or servlet, not
just the agent or servlet itself. The act of compiling the agent does not pull in
the outside packages; they are just referenced by the class. There is no
concept of static linking in Java because every class is dynamically linked at
runtime. When the JVM in Domino or Notes loads the agent class, it also
resolves and tries to load other classes that the agent class uses. If it cannot
find a class that it needs, you get the ClassNotFoundException. The JVM in
Domino looks for classes in three places:

• JavaUserClasses

If you have a JavaUserClasses setting in notes.ini, this list is searched for
any needed classes. This list is similar in format to the more familiar
CLASSPATH environment variable. It can contain directories, jar files,
and/or zip files.

• Notes and Java core classes

Next, the various Notes and Java core class archives are searched, such
as:

• Notes Java classes (Notes.jar)

• Domino servlet classes (icsclass.jar)

• Core Java classes (rt.jar and i18n.jar)

• Attached with the agent

These are any classes, resources, or whatever else you decide to include
when you define the agent. The JVM runs through the list of attachments
and looks for the needed class. If any of the attachments are jar or zip
files, they are searched internally for the required class or resource.

If after looking in these three places the JVM cannot find the class or
resource, you get an appropriate error message.

Classpath
To develop Java servlets, you have to make the Domino servlets classes
available to your Java IDE. If you are using the JDK, add servlet classes to
the CLASSPATH:

CLASSPATH=<other path>;c:\notes\icsclass.jar

In Java applications the CLASSPATH environment variable is set properly to
find the package. To minimize outside interference and sources of strange
errors, Domino does not use CLASSPATH; rather it constructs its own
internal class path, using the JavaUserClasses setting and its own core
classes.
96 Connecting Domino to the Enterprise Using Java

Agent Scheduling
When using scheduled agents, add the following lines:

AMgr_DocUpdateAgentMinInterval=1
AMgr_DocUpdateEventDelay=1

The agent manager responds to events as soon as possible.

You may have to enable locally scheduled agents in the UserPreferences
section under File/Tools.

10.2.2 Java Agent Support
Domino R4.6 does not have an integrated development environment (IDE)
that supports Java.The creation of a Java agent must, therefore, be done
outside of Domino. This can mean using javac (to compile code written using
a text editor)

javac class_name .java

or a visual tool such as VisualAge for Java (refer to the redbook Using
VisualAge for Java to Develop Domino Applications, SG24-5424 for more
details).

Domino R4.6 does provide support for Java and it is possible to select Java
as the language of your agent (as illustrated in Figure 29 on page 97), and to
import the class or classes that constitute your agent.
Domino 97

Figure 29. Domino R4.6 Integrated Development Environment

If you run the agent from the Notes client, output goes to the Java debug
console. To see the console, choose File - Tools - Show Java Debug Console.
Output from scheduled agents goes to the Notes log. This is useful for
debugging your agent as it displays any print statements (as illustrated in
Figure 30 on page 98), but is not a complete debugger.

Figure 30. Java Console Started from Domino 4.6

You can run the agent from a browser by putting the following @command in
an action hotspot, button ("Web access: Use JavaScript when generating
pages" must be in effect), WebQueryOpen event, or WebQuerySave event:

@Command([ToolsRunMacro]; "My agent name")

You must use the PrintWriter object to print to the browser. However, print
output is discarded for a WebQueryOpen event or if "Web access: Use
JavaScript when generating pages" is in effect.
98 Connecting Domino to the Enterprise Using Java

However, besides this there is little in terms of development support for Java
agents in Domino 4.6.

Remember, if you modify your Java code, you will need to reimport the
compiled class into the agent. Select the class in the Agent screen (refer to
Figure 29 on page 97) and click the Reimport Class Files... button to display
the screen shown in Figure 31 on page 99.

Figure 31. Reimporting Java Classes

Do not be too hasty following a reimport when running your agent on a
Domino Server invoked from the Web. You need to restart your HTTP Web
server before the change takes affect using the load command:

> tell http q
02/25/99 04:45:34 PM HTTP Web Server shutdown
> l http
02/25/99 04:45:46 PM HTTP Web Server shutdown

The practice of using the reimport function is recommended, although it does
not seem to be necessary if running only on a Notes client. A simple way to
ensure you are running the code you think you should be running is to include
a print statement specifying the level of the agent at the beginning of your
Java code.

10.2.3 Java Servlet Support
Domino 99

To use the servlet manager in Domino R4.6, you have to:

1. Load the Domino Web HTTP server task.

This can be done manually by starting the HTTP task on the server using
the following command:

load http

or by starting the HTTP task automatically each time the Domino server is
started.

2. Enable the Java servlet support

In Domino R4.6, support for servlets is disabled by default. To enable
servlet support, add the following line:

DominoEnableJavaServlets=1

When you restart the server, it loads the JVM and locates the
ServletManager Java class, adding the icsclass.jar file to the CLASSPATH
environment variable automatically. As the servlet support is loading, the
following three lines appear on the server console:

01/01/98 11:23:36 AM HTTP Web Server started
01/01/98 11:23:38 AM JVM: Java Virtual Machine initialized
01/01/98 11:23:38 AM Java Servlet Manager initialized

3. Install servlets.

To install a servlet, whether one you wrote or a pre-built one, you create a
Servlet subdirectory in the Domino server data directory and copy the
compiled servlets into that directory. Add a setting for JavaUserClasses to
include a path for the directory that contains the servlets, as well as the
directories that may contain any additional classes used by the servlet:

JavaUserClasses=c:\notes\data\domino\servlet;c:\sqllib\java\db2java.zip

4. Register the servlet.

To access a servlet from the Web, it must be registered in a Domino
servlet configuration file, servlet.cnf, in the Domino data directory on the
server. This file holds details of the servlets to load, whether to load at
startup time, initialization parameters and URL mappings for your servlet.

The following example registers the NoParamServlet servlet that requires
no startup parameters and is started on demand:

Servlet NoParamServlet Registration
Servlet NoParamServlet {
}
URL to trigger the Servlet
Service NoParamServlet /Servlet/MyFirstServlet
100 Connecting Domino to the Enterprise Using Java

In this example the NoParamServlet servlet can be triggered using the
following URL:

http://MyCompany.com/Servlet/MyFirstServlet

The following example registers the TwoParamServlet servlet that
requires two startup parameters (Username and CaseSensitive) and is
loaded automatically when the servlet manager starts:

#Servlet TwoParamServlet Registration
Servlet TwoParamServlet {
Username=GenericUser

CaseSensitive=No
GO_LOAD_STARTUP=Yes
}
URL to trigger the Servlet
Service TwoParamServlet /Servlet/FindCustomer

In this example the TwoParamServlet servlet can be triggered using the
following URL:

http://MyCompany.com/Servlet/FindCustomer

10.3 Release 5.0

In this section we explain how to set up and configure Domino R5 to support
the Java environment.

10.3.1 HTTP and DIIOP Tasks
To load the Domino HTTP Web server task and the CORBA task
automatically, add the following line in the Lotus Notes initialization file
(notes.ini):

ServerTask=<any other tasks>,HTTP,DIIOP

When you restart the server, it loads both tasks. The following lines appear
on the server console:

03/21/99 11:23:38 AM DIIOP Server started on oxygen.almaden.ibm.com
03/21/99 11:23:36 AM HTTP Web Server started

When Domino is running, you can start the tasks with the load console
command.

10.3.2 Java Agent Support
In Domino R5 there is an IDE for Java. This allows you to create a Java agent
Domino 101

within Domino in the same way as you would create a LotusScript agent.
Alternatively, Java classes can still be imported as for Domino R4.6.

The IDE automatically includes statements in your new agent when you
select to create it in Java, as shown in Figure 32 on page 102.

Figure 32. Domino R5 Java Integrated Development Environment

To develop a Java agent, you can use, apart from a simple text editor and the
java compiler shipped with the JDK, the Domino R5 designer or a visual Java
development tool such as VisualAge for Java.
102 Connecting Domino to the Enterprise Using Java

The Domino R5 designer allows you to display and paste Notes and Java
constants, constructors and methods into your agent code. It helps you to
create agents only. To create servlets you need to create your code
externally.

The Java debugging environment is rudimentary in Domino as you use print
method to the standard output to control the code. Domino offers also a Java
console that can be used to debug foreground agents. For background
agents, you have to use the Domino server console.

If you want a full environment to create and debug Java agents, you should
use an IDE such as VisualAge for Java that allows you to display and paste
Notes and Java constants, constructors and methods into any Java program,
that is: agent, applet, or servlet. VisualAge for Java, with its connection to the
AgentRunner, is a good choice for complex agent coding. The completed
code can then be cut and paste into a Java agent, or the class used in an
Imported Java agent.

10.3.3 JavaUserClasses
The JavaUserClasses statement in the notes.ini file is not strictly required in
R5, if you are using Java code in your agent, although it can make creating
agents (especially those using EJBs) easier. When using Java code in your
agent, it is possible to Edit Project and add supporting Java classes to the
agent (as illustrated in Figure 33 on page 103 and discussed in more detail in
“Domino Agent” on page 205).
Domino 103

Figure 33. Importing Java Support Classes into the Project

If, however, you are using imported Java code, it would appear that all
supporting Java classes still need to be listed in the JavaUserClasses
statement.

The need or otherwise for a JavaUserClasses statement is only really
significant if you:

• Distribute the Domino application between multiple servers, in which case
you will need to remember to update the notes.ini file on each server.

• Use a model where the agent code will actually be executed on Notes
client machines. In this case, the need for a JavaUserClasses statement
in each user’s notes.ini file would not be desirable.

Remember also that with R5, you may have two notes.ini files: one in the
c:\lotus\domino\notes.ini directory if you installed the server, and one in the
c:\lotus\notes\notes.ini directory if you installed a client.

10.3.4 Servlet Manager
With Domino R5.0 the process for enabling the servlet manager is much
simpler, although there are more configuration options. Most parameters for
controlling the servlet manager are now in the Domino directory.

To set up the servlet configuration, open the server document in the Domino
directory, select the Internet Protocols - Domino Web Engine tab. Figure
34 on page 104 shows the servlet configuration parameters section of the
Domino server document.

Figure 34. Java Servlet Configuration

To support servlets in Domino R5, you have to:

1. Enable the servlet manager.

Select one of the following options in the Java servlet support field of the
servlet configuration parameters panel:
104 Connecting Domino to the Enterprise Using Java

Domino Servlet Manager
The Domino HTTP task loads both the JVM and the
native servlet manager.

Third Party Servlet Support
The HTTP task loads the JVM, but not the Domino
servlet manager. This allows the use of third-party
servlet managers such as IBM's WebSphere
Application Server. In 12.2.2, “Servlet Manager” on
page 125, we explain how to use WebSphere
Application Server as the servlet manager.

In this panel, you can also specify the path in a URL that signals Domino
that the URL refers to a servlet (Servlet URL path), the list of paths which
the servlet manager class loader searches to find servlets and their
dependent classes (Class path), and the list of URL file extensions that
signal Domino that a URL refers to a servlet (Servlet file extensions).
Refer to the Domino Designer help file for additional information.

2. Set the servlet properties

Special properties for individual servlets can be specified in a text file
called servlets.properties located in the Domino data directory. The
following properties can be specified:

• Alias

• Initialization arguments

• URL extension mapping

• Load at servlet manager startup

The following example registers the TwoParamServlet servlet that
requires two startup parameters (Username and CaseSensitive) and is
loaded automatically when the servlet manager starts:

#Servlet TwoParamServlet Registration
Servlet.FindCustomer.code=TwoParamServlet
servlet TwoParamServlet.initArgs=Username=GenericUser,CaseSensitive=No
servlet.startup=TwoParamServlet

3. Configure additional parameters

You can configure any of the other servlet configuration parameters in the
server document. Refer to the Domino Designer help file for more
information.

10.3.5 Designer Setup
You need to install Domino Designer R5 to compile a Java program that uses
Domino 105

the lotus.domino package.

The notes.ini initialization file must contain the following line:

ALLOW_NOTES_PACKAGE_APPLETS=1

If you are developing stand-alone Java applications, you have to include the
following CLASSPATH environment variable:

CLASSPATH=<other path>;.;c:\notes\domino\java\ncso.jar;c:\notes\Notes.jar

Notes.jar contains the high-level lotus.domino package, the
lotus.domino.local package for local calls, and the R4.6 lotus.notes package

for compatibility. NCSO.jar contains the high-level lotus.domino package, and
the lotus.domino.corba package for remote calls.

10.3.6 Run-Time Requirements
A machine running a Java application that makes local Domino calls must
contain Domino R5 (Client, Designer, or Server) and must include Notes.jar in
the CLASSPATH.

A machine running a Java application that makes remote Domino calls need
not contain Domino R5, but must contain NCSO.jar and must include it in the
CLASSPATH.

A machine running a Domino R5 agent that makes Domino calls must include
Notes.jar in the CLASSPATH.

A machine running an applet that makes Domino calls needs no Domino
software or CLASSPATH assignments.

10.4 Domino Object Classes

In Domino R4.6, a set of Java classes that accessed the Notes Object
Interface (NOI) was introduced into the Notes client and Domino server.
Based on the NOI classes, Domino R5 contains an enhanced set of Java
classes to support the Domino object classes.

Domino agents as well as Java applications whether at the client or the
server can be written in Java and utilize these Java Notes classes to access
Domino information.

These are the same backend objects accessible through LotusScript and
OLE. In Java, the Session class is the root class of the Java package. The
Domino object classes do not include the front-end classes rooted at
106 Connecting Domino to the Enterprise Using Java

NotesUIWorkstation. Figure 35 on page 107 shows the Java classes to
access backend objects in Domino R4.6.

In Domino R5 only, remote Java programs can access the Domino object
classes on the Domino server using CORBA/IIOP network communication
mechanisms.

Figure 35. Java Classes for Domino R4.6

If you are using Domino R5, you also can implement CORBA applications.
We give the description of the CORBA implementation in Chapter 21,
“Domino with CORBA” on page 227.

The Domino Java classes are provided in the following packages:

• Domino R4.6 notes.jar file contains all R4.6 lotus.notes classes.

• Domino R5 notes.jar file contains:

• R4.6 lotus.notes classes. This package allows Domino R4.6 agents
and applications to run unchanged.

lotus.notes.DbDirectory lotus.notes.International

lotus.notesDateRange

lotus.notes.Form

lotus.notes.AOL

lotus.notes.Log

lotus.notes.Item lotus.notes.V iewColumn

lotus.notes.ACLEntry

lotus.notes.DateTim e

lotus.notes.Newsletter

lotus.notes.Registration

lotus.notes.Nam elotus.notes.RichText.Item

lotus.notes.Em beddedObject

lotus.notes.RichTextStyle

lotus.notes.DocumentCollection

Inherits

lotus.notes.Session

lotus.notes.Agent

lotus.notes.AgentContext

lotus.notes.Database

lotus.notes.Document

lotus.notes.View
Domino 107

• R5 lotus.domino classes. This package improves the functions of the
existing classes and provides new classes.

• Domino R5 NCSO.jar file contains the CORBA implementation of the
lotus.domino classes. It is used by remote Java applications and applets
only.

You have to import the correct package in your program. The notes.jar
archive file containing the package must be in the CLASSPATH of your
machine. The CLASSPATH environment variable should point to the Domino
Java classes archive file as in the following example:

CLASSPATH=<any other path/archive>;c:\notes\notes.jar

With Domino R4.6 and for local Domino R5 access, to run a Java program
that uses the Notes classes, the Domino server or the Notes client must be
installed on the machine for both compilation and execution. The PATH
environment variable must include the Notes directory. For example:

set PATH=c:\notes;%path%

Domino Java classes can be used in applications and agents:

• Java applications can import the lotus.notes package and use the
backend classes provided that Domino/Notes is installed on the machine
both for compilation and running.

• Domino/Notes agents can be simple actions, formulas, LotusScript
programs, and Java programs. In Domino R4.6, Java programs must be
written outside of Notes and imported because the R4.6 IDE does not
support Java.

In R4.6, the Java classes cannot be used in applets for reasons of
accessibility and security. The lotus.notes package makes calls into
Domino/Notes DLLs. A browser could not load the DLLs (security restriction)
even if they happened to be on the browser's machine. If you want to use the
Java classes in applets, then Domino R5 should be used.

Java programs cannot be attached to front-end objects. For example, a Java
program cannot be a form event in the manner of a LotusScript program.

10.5 Domino Driver for JDBC

The Domino driver for JDBC is a Type2 JDBC driver for accessing Domino
databases; that is, it converts JDBC calls into Domino calls using Domino
API.
108 Connecting Domino to the Enterprise Using Java

The Domino driver for JDBC is available on the following Intel platforms:

• Microsoft Windows 95 and 98
• Microsoft Windows NT 4.0 or higher

To install the Domino driver for JDBC, you first need to install either Domino
Designer or Lotus Notes. Notes database files can reside on a server. You do
not need to have local copies of these files, but must have at least reader
access to them through Notes.

Domino driver for JDBC also requires the Java Virtual Machine 1.1.

After the installation, you need to check the setting of the CLASSPATH
environment variable. It should point to the Domino driver for JDBC classes
file (JdbcDomino.jar) as in the following example:

CLASSPATH=c:\notes\JdbcSql\lib\JdbcDomino.jar;

The native code needed by the Domino driver for JDBC is contained in three
DLLs: JdbcDomino.dll, JdbcDriver.dll and JdbcRniDomino.dll.

You can download the Domino driver for JDBC from the Lotus developer Web
site at:

http://www.lotus-developer.com

10.6 Java Classes for Lotus Connectors

The Java classes for Lotus Connectors (LC Java classes) extend use of the
Lotus Connectors to Java. The programming model is independent of
individual connectors. This eliminates the need to learn each system, but
allows experienced users to access specific system features.

Through the LC Java classes, Java agents, applications, and applets can
retrieve and act upon data from enterprise systems.

Software Requirements
Obtain the LC Java software and documentation from
www.eicentral.lotus.com the Lotus Enterprise Integration Web site. It also
comes bundled with LEI.

Make the following adjustments to the CLASSPATH and PATH environment
variables:

• CLASSPATH

Add the file lcjava.zip. This file is typically installed in your Domino, LEI
Domino 109

Java, or program directory.

• PATH

Add the directory to which LC Java was installed. This is typically your
Domino or LEI program directory.

For example:

set CLASSPATH=%CLASSPATH%;c:\notes\domino\java\lcjava.zip
set PATH=%PATH%;c:\notes

If you are developing Java agents, create a Domino environment variable
named JavaUserClasses and add the file lcjava.zip. For example:

JavaUserClasses=c:\notes\domino\java\lcjava.zip

Put the following import statement in your program:

import lotus.lcjava.*;
110 Connecting Domino to the Enterprise Using Java

Chapter 11. Enterprise Resources

In our project we used three enterprise systems that our examples connect
to:

• DB2 Universal Database Version 5.2

• CICS OS/2

• MQSeries Version 5

11.1 DB2

In this section we present the installation and configuration required for DB2
Universal Database Version 5.2 for Windows NT (DB2 UDB).

The Domino application can access DB2 data either locally on the DB2 server
or remotely using DB2 CAE or DB2 Connect.

• Local access

The Domino server (or in specific cases, the Lotus Notes client) accesses
the DB2 database using the DB2 server installed on the same machine. In
this configuration, the operating system must support both Domino (or
Lotus Notes) and the DB2 server, for example, OS/2, Windows NT, AIX,
HP-UX, OS/400, and OS/390. No network protocol configuration is
needed.

If you are developing and running applets that use the DB2 JDBC Applet
driver to connect to DB2, you have to install DB2 UDB on the same
machine. In that case, the applet connects to the DB2 JDBC applet server
which runs on the same machine from which the applet was downloaded.

• Using DB2 CAE

The Domino server (or the Lotus Notes client) accesses the DB2 server
Enterprise Resources 111

running DB2 UDB on an Intel or UNIX platform. In this configuration you
must install DB2 CAE on the Domino server (or the Lotus Notes client) and
configure communication to the DB2 server, using a compatible protocol.

• Using DB2 Connect

The Domino server (or the Lotus Notes client) accesses the DB2 server on
AS/400 or S/390 using DRDA. Two configurations are possible:

• With DB2 Connect Personal Edition installed on the Domino server (or
the Lotus Notes client), you can access the DB2 database. You have to
configure communication to the DB2 server using a compatible
protocol.

• With DB2 Connect Enterprise Edition installed on a gateway, you can
access the DB2 database. You must install DB2 CAE on the Domino
server (or the Lotus Notes client) and configure communication to the
gateway using a compatible protocol. On the gateway, you also have to
configure communication to the DB2 server using a compatible
protocol.

JDBC Support
To write DB2 JDBC applets or agents for use in a Domino application, you
have to install DB2 (server or client) on the same machine as your Domino
server.

DB2 UDB Version 5 includes support for the JDBC API, as distributed with
JDK 1.1. JDBC is available as a no-charge feature to all DB2 for OS/390
Version 5 customers. The AS/400 Toolbox for Java, a library of Java classes
that give Java programs easy access to AS/400 data and resources, includes
a JDBC driver to access DB2/400 databases.

With DB2 UDB Version 5, you can use DB2 JDBC support to run the following
types of Java programs:

• Java applications, which rely on DB2 CAE to connect to DB2

• Java applets, which do not require any other DB2 component code on the
client

Java can also be used on the server to write user-defined functions, stored
procedures, and table functions.

PATH and CLASSPATH
After installing DB2, the PATH environment variable is updated to reflect the
DB2 directory, such as:

PATH=<other paths>;c:\sqllib\bin ;
112 Connecting Domino to the Enterprise Using Java

To be able to develop Java programs that use the DB2 Java classes, you
have to update the CLASSPATH environment variable to include the jar files
supplied by DB2.

CLASSPATH=<other paths>;.;c:\sqllib\java\db2java.zip

DB2 Java Application Support
To test a Java application, you can just start it from the desktop or command
line, like any other application. The DB2 JDBC driver handles the JDBC API
calls from your application and uses DB2 CAE to communicate the requests
to the server and receive the results.

DB2 Java Applet Support
Because Java applets are delivered over the Web, you treat them a bit
differently from Java applications.

To run your applet, you need a Java-enabled Web browser on the client
machine. When you load your HTML page, the applet tag downloads the Java
applet to your machine, which then downloads the Java class files, including
the com.ibm.db2.java.sql and com.ibm.db2.jdbc.net classes and DB2's JDBC
driver. When your applet calls the JDBC API to connect to DB2, the JDBC
driver establishes separate communications with the DB2 database through
the JDBC applet server residing on the DB2 server.

To run your applets, follow these steps:

1. Start the DB2 JDBC applet server on your Web server by entering:

db2jstrt portno

where portno is the number of the unused TCP/IP port that you specified
in the applet file.

2. On your client system, start your Web browser and load the HTML file that
embeds your applet.

11.2 CICS Transaction Gateway

In this section we present the installation, configuration required for the CICS
Transaction Gateway for Windows NT.

More complex scenarios for installing and configuring the CICS Transaction
Gateway and CICS Universal Client are described in the redbook, Revealed!
CICS Transaction Gateway with More CICS Clients Unmasked, SG24-5277.

JDK
A prerequisite for running the CICS Transaction Gateway is a supported level
Enterprise Resources 113

of JDK. On the Windows NT platform, the CICS Transaction Gateway
requires JDK 1.1.6 or later, with the JIT update. Check that your version of
the JDK is supported by the CICS Transaction Gateway.

PATH and CLASSPATH
After installation, the PATH environment variable is updated to reflect the
CICS Transaction Gateway directory, such as:

PATH=<other paths>;c:\IBM\CTG\BIN ;

To be able to develop Java programs that use the CICS Transaction Gateway
classes, you have to update the CLASSPATH environment variable to include

the jar files supplied by the CICS Transaction Gateway. In addition to the
ctgclient.jar file, the ctgserver.jar file is required on the CLASSPATH
environment variable if you want to use the local CICS Transaction Gateway
during your testing.

Servlets also use the local CICS Transaction Gateway. Therefore, you must
specify the ctgserver.jar file on the CLASSPATH used by the Web server:

CLASSPATH=<other paths>;
c:\IBM\CTG\classes\ctgclient.jar;
c:\IBM\CTG\classes\ctgserver.jar

Web Server
CICS Transaction Gateway needs the support of a Web server such as
Domino, Lotus Domino Go Webserver, or Microsoft IIS.

If you are going to run Java servlets, you will need a Web server or a servlet
engine that provides servlet support equivalent to JSDK Version 1.1 or later,
such as:

• Lotus Domino R4.6 or R5

• IBM WebSphere Version 1.0 or later

CICS Universal Client V3
CICS Transaction Gateway incorporates CICS Universal Clients Version 3.
On Windows NT, the CICS Universal Client can communicate with CICS
servers using NetBIOS, TCP/IP, APPC, TCP62 (APPC communication over a
TCP/IP network).

CICS Initialization File
The client initialization file contains configuration information used to inform
the CICS Transaction Gateway of the servers it can connect to and the
necessary communication protocols. Here is the cicscli.ini file we used in our
114 Connecting Domino to the Enterprise Using Java

environment to connect our Domino server to the CICS server:

;* IBM CICS Universal Client - Initialization File *
; Client section
Client = *

MaxServers = 1
MaxRequests = 256
MaxBufferSize = 32
LogFile = CICSCLI.LOG
TraceFile = CICSCLI.TRC
DumpFile = CICSCLI.DMP
DumpMemSize = 16

; Server section

Server = CICSOS2
Description = TCP/IP Server
Protocol = TCPIP
NetName = samoa.almaden.ibm.com
Port = 1435
UpperCaseSecurity = N

; Driver section
Driver = TCPIP

DriverName = CCLWNTIP

11.3 MQSeries

In this section we present the installation and configuration required for the
MQSeries Client for Java and the MQSeries Bindings for Java on the
WIndows NT platform.

11.3.1 Installation
We installed both MQSeries Client for Java and MQSeries Bindings for Java.

Prerequisites
Both products require JDK 1.1.1 or higher installed on the machine.

To run MQSeries Client for Java applets (for example the installation
verification program) inside a Web browser, you need a browser that can run
Java 1.1.1 applets.

PATH and CLASSPATH
After the installation, we set the CLASSPATH environment variable to the
following values:

• For MQSeries Client for Java:

CLASSPATH=<paths>;c:\mqm\java\lib;c:\mqm\tools\javaclnt\samples\En_US;
Enterprise Resources 115

• For MQSeries Bindings for Java:

CLASSPATH=<paths>;c:\mqm\java\lib;c:\mqm\tools\mqbind\samples\En_US;

Verification
To verify our MQSeries Client for Java installation, we used the sample Java
applet (mqjavac.html), included with the MQSeries Client for Java.

To verify our MQSeries Bindings for Java installation, we used the verification
program (MQIVP) provided with the MQSeries Bindings for Java.

Web Server Configuration
If you install the MQSeries Client for Java on the Domino server you can
download and run MQSeries Client applications on machines which do not
have the MQSeries Client for Java installed locally.

To make the MQSeries Client for Java files accessible to Domino, you need
to set up Domino configuration to point to the directory where the client is
installed.

MQSeries Bindings for Java and WebSphere
If you plan to use the MQSeries Bindings for Java with WebSphere on
Windows NT and you are running MQSeries for Windows NT V5.0, a useful
hint for better performance is to ensure that you have PTF U200091 applied
to MQSeries.

The particular APAR you require is IC20925. This APAR adds function to
improve the performance of MQSeries for Windows NT V5.0 in a Windows NT
domain environment, particularly when MQSeries is started as a service via
scmmqm.

WebSphere on NT has a useful management console, which only works if the
servlet service is set to run as the system account in the services control panel.
The system account cannot be added into the mqm group as other users would
be, but this APAR helps MQ find a definition for a user ID of SYSTEM on the local
machine.

To obtain the fix go to:

http://www.software.ibm.com/ts/mqseries/support/summary/wnt.html
116 Connecting Domino to the Enterprise Using Java

Chapter 12. WebSphere

In this chapter we explain the installation and setup of the WebSphere
environment.

12.1 Installation

WebSphere complements Domino in two areas:

• Servlet manager

• Enterprise JavaBeans server

If you want to replace the Domino servlet manager with the WebSphere
servlet manager, you have to install WebSphere on the same machine as the
Domino server. In that case, WebSphere uses the Domino HTTP server as its
Web server.

If you want to use the EJB support of WebSphere only, then you can install
WebSphere on another machine. In that case, the machine running
WebSphere will also need an HTTP server that can be one of the following:

• Lotus Domino R5

• Lotus Domino Go Webserver

• Netscape Enterprise Server

• Netscape FastTrack Server

• Microsoft Internet Information Server

• Apache Server

We installed WebSphere on the same machine as Domino, because we
wanted to test EJB and servlet support. During the installation of WebSphere
we selected Domino R5 as our Web server (see Figure 36 on page 118).
WebSphere 117

Figure 36. WebSphere Application Server Plugins Selection Panel

12.2 Application Server Manager

After the WebSphere installation has completed, you have to configure it in
order to deploy the EJB or to use its servlet manager. To configure
WebSphere, you use the Application Server Manager.

To start the Application Server Manager, enter this URL from your Web
browser:

http://your.server.name:9527/

The manager starts and displays the login page. We use admin as the login
user ID and password.

Figure 37 on page 119 shows the main menu of the Application Server
Manager.
118 Connecting Domino to the Enterprise Using Java

Figure 37. WebSphere Application Server Administration

The navigation area on the left-hand side of the Application Server Manager
enables you to:

• Customize settings for a variety of Application Server components such
as:

• Administrator user ID and password
• Connection pools to the data server
• Directory server to Application Server, connecting Application Server

security and your existing directory server security
• Java compiler settings

• Configure servlets and set up aliasing and filtering to:
WebSphere 119

• Define configuration information and initialization parameters for
individual servlets

• Specify servlet aliases

• Use the Enterprise Java Services (EJS) to:

• Enable EJB support
• Define containers in which to deploy your EJB’s JAR files
• Deploy JAR files holding EJBs

• Establish and maintain security by defining users, groups, resources, and
access control lists

• Collect and monitor Application Server, connection, and servlet data

We first verify that the basic JVM settings are correctly initialized. In
particular, the WAS CLASSPATH should point to the Domino and DB2 jar files
as we are not using the system CLASSPATH. Select Setup - Java Engine
and verify that the Application Server CLASSPATH has the following setting:

c:\JDK11~1.7B\lib\classes.zip;c:\WEBSPH~1\APPSER~1\classes;c:\WEBSPH~1\APP
SER~1\web\classes;c:\Lotus\Domino\notes.jar;c:\sqllib\java\db2java.zip

12.2.1 Enterprise JavaBeans
In our test, we used the Employee Enterprise JavaBean, a sample EJB
provided by WAS. In the following we explain how we deploy and test the
bean using WAS before accessing it from a Domino agent or servlet.

Configuring DB2
The Employee EJB sample supplied uses the SAMPLE database provided by
DB2 UDB V5.2. You have to configure DB2 by following these steps:

• Start DB2 server.

To start a DB2 server, open a DB2 command window from the DB2 menu
and enter the commands:

db2start
db2admin start

Alternatively, open the Services window from your Control panel and start
the DB2 - DB2 and DB2 - DB2DAS00 processes.

• Create the SAMPLE database.

To create the SAMPLE database, open the DB2 menu and select First
Steps to create the SAMPLE database. It is important to create this
particular database this way to ensure that it has the entries that are used
by the Phone sample.
120 Connecting Domino to the Enterprise Using Java

Alternatively, you can create the SAMPLE database using the following
command in a DB2 command window:

db2sampl

• Create an alias for the employee table.

When you select the First Steps application or run the db2sampl
command, DB2 creates sample tables using a schema of the ID of the
user connected on the Windows NT workstation. You may have to create
an alias to use db2admin required by the Employee bean.

To check the schema, open a DB2 command line processor window from
the DB2 menu and enter the following commands:

db2 => connect to sample

Database Connection Information
Database server = DB2/NT 5.2.0
SQL authorization ID = CHRISTO
Local database alias = SAMPLE

db2 => list tables

Table/View Schema Type Creation time
------------- --------- ------ ------------------------
DEPARTMENT CHRISTO T 1999-03-18-18.42.30.136001
EMPLOYEE CHRISTO T 1999-03-18-18.42.30.807001
STAFF CHRISTO T 1999-03-18-18.42.29.415001
......

You create an alias using the following command:

db2 => CREATE ALIAS DB2ADMIN.EMPLOYEE FOR CHRISTO.EMPLOYEE
DB20000I The SQL command completed successfully

Getting Started with Application Server
Check that DB2—the DB2 - DB2 and DB2 - DB2DAS00 processes— is
running, using the Services window from your Control panel.

Start your Domino Web server. If WAS has been installed with Lotus Domino
R5.0 as Application Server plug-in (see 12.1, “Installation” on page 117), then
WebSphere is started automatically. The Location Server Daemon, the
Persistent Name Service and the EJS runtime are started in addition to your
Web server.

Now you are ready to start the Application Server Manager by going to the
URL:
WebSphere 121

http://your.server.name:9527/

and logging in using admin for user and password.

There are two changes that you should check to verify your configuration:

1. Check that the db2java.zip file has been added to your server's
CLASSPATH.

• From the Application Server Manager, select Setup - Java Engine .

• Select the Paths tab and add the following to your Application Server
CLASSPATH: c:\sqllib\java\db2java.zip or the equivalent if it is not
already there.

2. Check that the Database Container Authentication is correct:

• From the Application Server Manager initial screen, select Enterprise
Java Services - Containers .

• For the defaultEntityContainer check that the Container User ID and
password are correct for your database. By default DB2 UDB is set up
with db2admin for user ID and password.

Managing Containers
WebSphere Application Server is installed with two containers. From
Application Server Manager select Enterprise Java Services - Containers .
This shows two containers that are already defined and also the contents of
each container. The Employee file is deployed in the defaultEntityContainer.
The second container is called defaultSessionContainer and is empty. If you
are not going to use this container you should remove it. In general you
should have no empty containers as this may cause problems.

Deploying EJBs
From the menu select Enterprise Java Services - EJB JAR files . The
samples are ready to be deployed (AnimalServer, EmployeeServer,
HelloServer, SimpleServer, StockServer, and Inc.). If an EJB is already
deployed, the name of the container is shown in the bottom panel.

Figure 38 on page 123 shows how to deploy the EmployeeServer JAR file.
You have to highlight the JAR file, select Deploy, and from the Deploy Jar
File into a Container panel choose the relevant container. The EmployeeBean
is an entity bean and has to be deployed in the defaultEntityContainer. Select
Deploy.
122 Connecting Domino to the Enterprise Using Java

Figure 38. Deploying an EJB

If the EJB is already deployed, the dialog box shows three options:

Regenerate Is used for JAR files that have never been deployed; it
creates the stubs, skeletons, and database tables
necessary in a deployed EJB.

Redeploy Existing Is used for any predeployed samples; it uses the
existing stubs and skeletons contained in the JAR file
and creates the necessary database tables.

Cancel Allows you to revert to the previous screen.
WebSphere 123

To deploy the other samples, highlight the JAR file, select a container for your
file, and press the Deploy button. To help you decide which type of container
to deploy your EJB in, the type of bean, session or entity, is listed on the right
side of the panel next to each bean. If it has only one type of bean, deploy
that bean into the relevant container. If your JAR file has both entity beans
and session beans you must deploy it into both.

You have to stop and restart your Domino server for this to take effect.

Running the Client
WAS provides a simple Web-based phone book application based on the
existing DB2 table of employee information in the SAMPLE database. The
phone book sample is based on the Employee EJB. It illustrates the use of
container-managed persistence entity beans and how they can be mapped
onto existing DB2 tables by modifying the code generated by the stand-alone
deployment tool. It also shows how entity beans can be accessed directly by
a servlet and JSP.

The phone book sample is based on the Employee Enterprise JavaBean, a
container-managed persistence entity bean that is mapped onto the
EMPLOYEE table included as part of the SAMPLE database distributed with
the DB2 product. The EMPLOYEE table contains over a dozen different
columns, of which only six are used by the Employee bean. The phone book
sample shows how the SQL statements in the persister class generated by
the stand-alone deployment tool can be modified in a straightforward manner
to accommodate the actual data contained in an existing DB2 table.

The phone book sample also shows how entity beans can be accessed
through a client application written using the servlet and JSP capabilities of
WAS, allowing user access to the application through a Web browser without
requiring any Java code or infrastructure on the user's system.

To run the phone book sample application you can enter the following URL
from your browser:

http://your.server.name/servlet/PhoneBook

The Web page that appears allows you to run any of the Web-based
Application Server samples:

• To run the phone example, select the Find a Phone number link.

• Next, a Web page appears containing a form prompting you to enter the
last name of the person you wish to look up. You can enter either a
124 Connecting Domino to the Enterprise Using Java

complete last name or just the first few letters of the name. The case of
the letters entered is not important. Some examples of names contained in
the sample DB2 EMPLOYEE table are "Brown", "Smith" and "Lee".

• Once you have entered the name, select the button next to the Entry field.
After a delay while the matching Employee beans are retrieved, the Web
page will be redisplayed with a table of the names and phone numbers of
the employees whose last name matches the name you entered.

• If you wish, you can enter a different last name and click the form button to
request a new name lookup. You can leave the phone book application at
any time by selecting a different URL or closing your Web browser.

12.2.2 Servlet Manager
Domino offers the ability to use a third-party’s servlet manager instead of the
native Domino R5 servlet manager. This is useful if your third-party servlet
manager offers you more functionality than the one integral to Domino R5.

We used WAS as the third-party servlet manager. In our tests we used build
165 of Domino R5 along with WAS V2.01. Both of these were installed on the
same Microsoft NT server. Selecting this option during the WebSphere
installation modifies the http.cnf file of the Domino server adding a service
handler for URLs.

##
Service /*.jhtml e:\WebSphere\AppServer\plugins\nt\go46.dll:service_exit
Service /*.shtml e:\WebSphere\AppServer\plugins\nt\go46.dll:service_exit
Service /*.jsp e:\WebSphere\AppServer\plugins\nt\go46.dll:service_exit
Service /servlet/* e:\WebSphere\AppServer\plugins\nt\go46.dll:service_exit

ServerInit e:\WebSphere\AppServer\plugins\nt\go46.dll:init_exit
e:\WebSphere\AppServer\properties\bootstrap.properties

ServerTerm e:\WebSphere\AppServer\plugins\nt\go46.dll:term_exit
Pass /IBMWebAS/samples/* e:\WebSphere\AppServer\samples*
Pass /IBMWebAS/* e:\WebSphere\AppServer\web*

By default WAS is started automatically when the HTTP server is started.
However, you can stop and start the WebSphere servlet service using the
Service icon of the control panel.

As shown in Figure 39 on page 126, we used the WAS Administration
application to check the invoker parameter under the Servlet Aliases section.
We checked that the parameter matched the service /servlet defined in the
httpd.cnf file of the Domino server.
WebSphere 125

Figure 39. WebSphere Administration - Servlet Aliases

Once completed, WAS is ready to run your servlets. If you installed WAS on
the C: drive, the default servlet root directory is:

c:\WebSphere\AppServer\servlets.

In this directory you should place the .class or .jar files that make up your
servlets. Remember to create subdirectories beneath this directory to mirror
the package hierarchy your servlets are in.

To test the installation, WAS provides the SnoopServlet servlet. In your Web
browser, enter the following URL:
126 Connecting Domino to the Enterprise Using Java

http://your.server.name/servlet/snoop

Figure 40 on page 127 shows an example of the output of the SnoopServlet
servlet.

Figure 40. Checking WAS Servlet Manager
WebSphere 127

128 Connecting Domino to the Enterprise Using Java

Part 3. Connecting Domino

Lotus first provided Java support in Domino R4.6. Domino Java classes
parallel the LotusScript backend classes. You can use these classes from any
Java program, within the Domino Designer environment or outside of it, as long
as Domino R4.6 or later is installed on the machine.

Java programs can take various forms. Our discussions in Part 3 will focus
on:

• Applets

Java programs designed to execute as part of a Web page. The
possibilities for using an applet with Domino to integrate to the enterprise
are very limited (limited to Domino R5 with CORBA) and no example code
is provided.

• Servlets

Java programs designed to execute on a Web server. We use an example
that calls a CICS transaction from a Web browser, with Domino as our
Web server.

• Applications

Stand-alone, Web-independent Java programs. We use an example that
connects to a DB2 database, independent from Domino, and then uses
the DB2 data to update a Domino application.

• Agents

These are design elements of a Domino application that can execute Java
code. In our example we connect to an MQSeries application from a Notes
client or a Web browser.

You will notice that we give only one example of each Java program type and
that each talks to a different enterprise resource. It would be wrong of us to
© Copyright IBM Corp. 1999 129

imply that the enterprise resource being targeted was irrelevant; the method
you use to set up the connection to the enterprise resource and the way that
information is passed between Domino and the enterprise resource will differ
between DBMSs, OLTP systems, and messaging systems. However, the
details of connecting to the enterprise resource will not be affected by
whether you choose to use a servlet rather than a Java agent.

Our selection of an enterprise resource in our Java program examples does
not represent a recommendation for that enterprise type. However, we do
give some comparisons and recommendations for Java program types in

Chapter 17, “A Comparison” on page 189. The source code for our examples
is given in the appendixes.

A factor that will affect the connection to the enterprise resource is your
choice of tool. The tools available to Java programs include:

• For database access:

• Domino Java classes (where Domino is the data store)

• JDBC

• Lotus Connectors using the Lotus Connector Java class library, for
example:

• Lotus Connector for DB2
• Lotus Connector for EDA/SQL
• Lotus Connector for ODBC
• Lotus Connector for Oracle
• Lotus Connector for Sybase

• For OLTP access:

• CICS Transaction Gateway

• IMS Client for Java

• Lotus Connectors using the Lotus Connector Java class library, for
example:

• Lotus Connector for CICS
• Lotus Connector for IMS
• Lotus Connector for BEA Tuxedo

• For application access through messaging middleware:

• MQSeries Client for Java

• MQSeries Bindings for Java

• Lotus Connectors using the Lotus Connector Java class library:
130 Connecting Domino to the Enterprise Using Java

• Lotus Connector for MQSeries

• For access to enterprise resource planning (ERP) packages:

• Lotus Connectors using the Lotus Connector Java class library, for
example:

• Lotus Connector for J.D. Edwards
• Lotus Connector for Oracle Financials
• Lotus Connector for SAP
• Lotus Connector for PeopleSoft

For information about the tools listed here, refer to the following URLs:

http://java.sun.com/products/jdbc/
http://www.software.ibm.com/webservers/connectors/
http://www.eicentral.lotus.com/eibu_knowbase.nsf/

In Part 3, we give examples of using a few of these tools while discussing the
standard Java support provided within Domino R4.6 and R5. We use the term
standard, in order to distinguish between the support provided by Domino
itself and those enhancements that can be gained with the addition of
WebSphere or CORBA (see Part 4, “Domino and WebSphere” on page 195).

Java programs can perform the same tasks as LotusScript programs. For
those of you who are used to developing applications in LotusScript, limited
comparisons between Java and LotusScript can be found in Appendix A,
“Use of Java versus LotusScript” on page 215.
131

132 Connecting Domino to the Enterprise Using Java

Chapter 13. Applets

Applets are small Java programs that run within a Web browser client. Since
Java is a full-featured programming language, the inclusion of Java applets
on a Web page can provide very rich and sophisticated Web-based
applications to the Web-user.

13.1 Domino Applet Support

Any Domino server above Version 4.5 will host Java applets, but there are
some important distinctions between what is available to you in Domino 4.6
and Release 5.

Table 3 on page 133 summarizes the applet support in Domino.

Table 3. Domino Applet Support

With Domino 4.5 and above, applets running in a remote client, be that a Web
browser or Notes client, have limited access to the services offered by a
Domino server. Services such as creating documents, sending e-mail, and

Domino Server Client Type Applet Support?
Applet access to
Domino server
object store?

Domino R4.6

Web browser Yes
Not directly, URL
access only

Lotus Notes Client
Release 4.6x

Yes
Not directly, URL
access only

Domino R5

Web browser Yes
CORBA

Lotus Notes Client
Release 5

Yes
Native local access
to Domino objects
© Copyright IBM Corp. 1999 133

searching databases are not available to the applet. One workaround to this
that offers some degree of access to the power of Domino servers, is to have
your applet make URL queries against a Domino server (through the
java.net.URL class). The returned HTML can then be processed and used
within your applet. This approach whilst possible, is cumbersome.

For true interaction with a Domino Server from a remote Java applet, Domino
Release 5 is the greatly preferred solution. Release 5 supports CORBA, the
remote object technology. CORBA allows remote applets to make calls to
remote server objects as if they were there on the Web browser workstation.

The ability to fully access the Domino server object model from a Web
browser with Release 5, opens up many possibilities for Domino-based Web
applications.

For more information on the CORBA implementation in Domino Release 5,
refer to 4.5.2, “CORBA Support” on page 46.

13.2 Structure of an Applet

In this section we explain the structure of a Domino Java applet. A simple
applet has security restrictions. It cannot write or read the local file system
(that includes loading dynamic link libraries from the local file system), or run
any program on the local machine. An applet can neither communicate with,
nor access, any server other than the one on which, and from which, it was
originally stored and loaded.

We also introduce how to create an applet that can access the DOM of
Domino R5. This applet can perform Domino tasks, such as opening a
session, retrieving information from a database and accessing Domino
documents.

13.2.1 Domino R4.6 Java Applet
All Java applets must derive from, or be a subclass of, a class called Applet.
This class is located in a package called java.applet. This class provides the
appropriate structure that all Java applets must follow. And specifically, it has
unique methods in it that specify an interface that the Web browser assumes
to be there.

The key methods that you must implement or override are:

init() method
The init() method is executed to set up the graphical user interface. This
134 Connecting Domino to the Enterprise Using Java

method is called when the applet is first loaded or reloaded. The initialization
might include reading and parsing any parameters to the applet, setting up an
initial state, or loading images or fonts.

start() method
The start() method is executed every time the Web page is shown. This
method can be called many times during the life-cycle of the applet and also
every time the applet is stopped.

stop() method
The stop() method is executed when the Web page is no longer shown.

destroy() method
The destroy() method is executed when the applet is no longer needed and
can be discarded. This method enables the applet to clean up after itself just
before it is freed or the browser exits.

13.2.2 Domino R5 Applet
In Domino R5 you can write an applet that uses CORBA to access Domino
classes, thereby allowing it to access named databases, views, documents,
and other Domino backend objects.

The Domino server hosts the applet and downloads the applet to the browser
when requested.

To develop an applet that can access Domino backend objects, you extend
the AppletBase class and put the functional code in the following methods:
notesAppletInit(), notesAppletStart(), notesAppletStop(),
notesAppletDestroy(). These methods are called by the standard applet
methods init(), start(), stop() and destroy(), as implemented by the
AppletBase class.

As this class already implements the standard applet methods init(), start(),
stop() and destroy(), you cannot create or override them in your applet.
Instead these final methods call the following methods: notesAppletInit(),
notesAppletStart(), notesAppletStop(), notesAppletDestroy(). AppletBase is
new with Domino 5.0 and the lotus.domino package. These methods are also
contained in the AppletBase class and are not final. If you want to implement
the functionality that you would normally in the traditional Applet methods,
you must override the respective notesAppletXXX() method in your Applet
class.

When you develop a Domino R5 applet, you do not have to distinguish
between local and remote access in your code. AppletBase makes local calls
if the Applet is running through the Notes client and remote CORBA calls if it
Applets 135

is running through a browser.

To access a Session object within your applet you use the getSession()
inherited instance method of the AppletBase class. The getSession() method
call will also instantiate and initialize the client-side ORB as well as request a
remote Session object reference from the Domino server. Each applet in an
HTML page that invokes the getSession() method will instantiate another
client ORB. As this situation has to be avoided, methods for inter-applet
communication such as the InfoBus technology may be used to overcome
this problem.

13.3 Writing a DB2 and Domino Applet

The following example explains how to develop an applet that:

• Uses CORBA to access a database on a Domino server

• Lists all the documents of the database using a view

• Allows the selection of one document key in the list

• Allows access to a DB2 database using the selected key to display
additional information

Only the important part of the code is shown here. For a complete listing of
the applet, refer to Appendix A, “Applet Example” on page 219.

Import Statements
We first load all the required packages needed to create our applet:

• Java package to write Java code

• Java awt to support graphical user interface

• Java JDBC classes to support JDBC access

• DB2 Java classes to access DB2 using the DB2 JDBC Applet driver

• Domino package to use Domino backend classes

The following import statements perform the task:

import java.applet.*;
import java.awt.*;
import lotus.domino.*;
import COM.ibm.db2.*;
import java.sql.* ;

To access the Domino server from the applet and use its backend classes
you have to import the lotus.domino package into your code. The applet uses
136 Connecting Domino to the Enterprise Using Java

the CORBA-enabled Java classes to access the remote Domino R5 server.
To support remote calls, the Domino server must be running the HTTP and
DIIOP server tasks.

Db2DominoApplet
Our class starts by extending the AppletBase class, and defining a few global
variables for the class.

public class Db2DominoApplet extends AppletBase implements
java.awt.event.ItemListener {

//Intitialization for Domino
Session s;

Database db;
DocumentCollection dcol;
String dbname = "SG245425T";
String server = "oxygen";
String viewname = "Employee\\Last Name";
String user = "Administrator";
String pwd = "password";
//Initialization for DB2
Connection con;
Statement stmt;
ResultSet rs;
ResultSetMetaData rsmd = null;
String name;
String sqlinit = "SELECT LASTNAME, FIRSTNME,SALARY, BONUS, COMM

FROM christo.employee where empno ='";
String sqlend = "'";
String userdb2 = "db2admin" ;
String pwddb2 = "db2admin" ;

notesAppletInit Method
The notesAppletInit() method is called once when the Web server loads the
applet. In this method, we initialize all fields of the user interface and connect
to Domino (connectDomino method) and DB2 (connectDomino method). If
the connections are successful, we access Domino to get the information
(accessDominoDatabase method).

public void notesAppletInit() {
super.notesAppletInit();
try {

setName("Db2DominoApplet");
setLayout(null);
setSize(364, 416);
add(getLabel1(), getLabel1().getName());
add(getEmployeeNumberList(), getEmployeeNumberList().getName());
...
Applets 137

connectDomino() ;
connectDB2() ;
accessDominoDatabase() ;

} catch (java.lang.Throwable ivjExc) {
handleException(ivjExc);

}
}

connectDomino Method
The Session class is the root of the Domino backend object containment
hierarchy. Depending on the type of Java program, use the following methods
to create a session object:

• For applications making local calls:

NotesFactory.createSession()

• For applications making remote calls,

NotesFactory.createSession(String host)
or
NotesFactory.createSession(String host, String user, String pwd)

• For agents:

AgentBase.getSession()

• For applets:

AppletBase.openSession()
or
AppletBase.openSession(String user, String pwd) and
AppletBase.closeSession(Session session)

The user and password parameters of NotesFactory.createSession(String
host, String user, String pwd) and AppletBase.openSession(String user,
String pwd) must be a user name and Internet password in the Domino
Directory on the server being accessed. If a name and password are not
specified, anonymous access must be permitted by the server.

public void connectDomino() {
try {

s = this.openSession("Administrator","password");
if (s==null) { // not able to make the connection

System.out.println("Unable to create a session with the server") ;
return ;

}

138 Connecting Domino to the Enterprise Using Java

System.out.println("Connected on server :" + s.getServerName());
System.out.println("for User :" + s.getCommonUserName());

} catch (NotesException e) {
System.out.println("Error in Connecting Domino Server");
e.printStackTrace();

}

accessDominoDatabase
Once the applet has established the connection to the Domino database, we
can use various methods to access the database, create a collection of

documents, access the documents in a sorted order using a view, and finally
access a specified document and its items.

The getDatabase method of the Session class accesses a specified
database. You provide the name of the server, or null for local, and the name
of the database. The getView method of the Database class accesses a
specified view. The get---Document methods of the View class allow you to
access a specific document in the view (replace --- with First, Last, Next,
Nth). The getItemValue--- methods of the Document class allow you to
access a specific field of the document (replace --- with Integer, String,
Double).

public void accessDominoDatabase() {
try {

// Access Database
db = s.getDatabase(s.getServerName(), dbname);
//List All Documents
dcol = db.getAllDocuments();
System.out.println("Database \"" + dbname + "\" has "

+ dcol.getCount() + " documents");
//Get the Document through a view
View view = db.getView(viewname);
Document doc = view.getFirstDocument();
// Document doc;
String [] val = new String[dcol.getCount()];
//String[] val;
for (int i = 1; i <= dcol.getCount(); i++) {

val[i] = doc.getItemValueString("EMPNO");
getEmployeeNumberList().add(val[i]);
doc = view.getNextDocument(doc);

}
} catch (NotesException e) {

System.out.println("Error in Access Database");
e.printStackTrace();
Applets 139

}
}

connectDB2
We used JDBC to connect to the DB2 database. To load the DB2 applet
JDBC driver, we used the forName method that creates an instance of the
driver and registers it with the JDBC driver manager. We established a
connection using the getConnection method of the DriverManager class,
passing the URL. A DB2 applet JDBC driver URL always begins with jdbc as
protocol, db2 as subprotocol, followed by the name of the DB2 server, the

TCP/IP port number where the DB2 applet JDBC server is listening, and the
name of the database.

public void connectDB2() {
try {

String port = "999";
Class.forName("COM.ibm.db2.jdbc.net.DB2Driver"); // .newInstance();
// construct the URL (sample is the database name)
String url = "jdbc:db2://" + server + ":" + port + "/sample";
// connect to database with userid and password
con = DriverManager.getConnection(url, userdb2, pwddb2);
System.out.println("Connection DB2 OK");

} catch (Exception e) {
System.out.println("Error in Connecting DB2 Server") ;
e.printStackTrace();

}
}

accessDB2Database
When the user selects an employee number displayed on the applet, a query
is triggered to fetch additional data from the DB2 database.

We created a SQL statement containing the query. We executed the query
using this SQL statement. This query generates a result set. The result set is
read to get the additional data to the applet fields. As the query generated a
result set containing only one row, we used the next() method only once to
access that row.

public void accessDB2Database(String empno) {
try {

String query ;
stmt = con.createStatement() ;
query = sqlinit + empno + sqlend ;
rs = stmt.executeQuery(query) ;

} catch (Exception e) {
140 Connecting Domino to the Enterprise Using Java

System.out.println("Error in AccessDB2Database") ;
e.printStackTrace();

}
}

public void employeeNumberList_ItemStateChanged(java.awt.event.ItemEvent
event, String empno) {

try {
if (event.getStateChange() != java.awt.event.ItemEvent.SELECTED) {

return;
}

accessDB2Database(empno);
if (!rs.next()) {

System.out.println("No Corresponding row");
} else {

getLastNameTextField().setText(rs.getString(1));
getFirstNameTextField().setText(rs.getString(2));
getSalaryTextField().setText(rs.getString(3));
getBonusTextField().setText(rs.getString(4));
getCommTextField().setText(rs.getString(5));

}
} catch (Exception e) {

e.printStackTrace();
}

}

13.4 Downloading and Displaying an Applet

The applet is downloaded as bytecode which is interpreted and executed by
the JVM of the Web browser.

The applet can edit screen input, generate screen output, and communicate
back to the computer from which it was downloaded. Multiple applets can
execute concurrently.

The downloading of applets should not have a significant performance impact
on response time because the applets are typically not very large. In fact,
applets, by performing processing on the browser or network computer, can
improve the overall browser performance by eliminating iterations with the
Web server. Note that, just as images are cached in Web browsers, applets
are cached, thereby minimizing the frequency of applet downloading. A
current performance consideration is the iterative compiling of the Java
bytecode at the time of execution. This consideration, however, is rapidly
being addressed by the industry and is losing its importance.
Applets 141

Applets can be embedded in a Domino form or in an HTML page. In the
following we describe how to reference an applet in both environments.

13.4.1 From a Domino Form
In a Domino form, you can create a Java applet in a rich text field of a Domino
form. You can use the following options (see Figure 41 on page 142):

• Using a link to an existing applet on a Web server

• Importing the applet into the Domino form

Figure 41. Create Java Applet

If you choose to link to an applet on a Web server, you have to specify the
base URL and the applet class name. The NCSO jar and cab files must be
located in the HTML directory on the Domino server.

If you choose the import option, you have to specify the applet class name
and its directory. You must import all applet related classes into Domino (see
Figure 42 on page 142).
142 Connecting Domino to the Enterprise Using Java

Figure 42. Locate Java Applet Files

After creating the applet, you modify the applet parameters such as its width
and height using its properties box (see Figure 43 on page 143).

Figure 43. Applet Parameters

In the applet parameter properties box, you can also specify if the applet uses
the Domino CORBA classes. When this option is selected, Domino
automatically includes the NCSO.jar file and adds applet parameters to the
applet HTML tag before serving the document to the Web browser:
Applets 143

<APPLET WIDTH="300" HEIGHT="500"
CODEBASE="/sg245425.nsf/cb77cc059215d0488825673c006c4a9d/$FILE"
CODE="itso.sg245425.applet.Db2DominoApplet.class"
ARCHIVE="Db2DominoApplet.jar,db2java.zip,NCSOC.jar">

<PARAM NAME="NOI_IOR"
VALUE="IOR:01ffffff2900000049444c3a6c6f7475732f646f6.....
......ffffff00000000">
<PARAM NAME="NOI_COOKIE_URL" VALUE="/sg245425.nsf?GetOrbCookie">
</APPLET>

The NOI_IOR parameter is the object reference to the DOM server. This is
the object on which you call the getSession().

The NOI_COOKIE parameter ensures single user login; that is, the CORBA
applet is not challenged for a user name and password again. The cookie
comes from the server when the client logs on.

13.4.2 From an HTML Page
Applets begin execution by loading the HTML page that contains them. Either
the appletviewer or a Web browser is required to run applets. A browser
detects an applet by processing an <applet> HTML tag. The <applet> tag
instructs the Web browser to load the applet in a particular location on the
Web page. When this Web page is displayed, the Java code that makes up
the applet is fetched from your Web server, and then run in your client as part
of the Web page.

Applets are invoked through the use of the applet HTML parameter:

<applet code="ReptApplt.class" width=325 height=275 archive="db2java.zip">
</applet>

with:

code=represent the name of the applet. Typically, it would be some
filename.class.

width=represents the width in pixels within your web page where the Java
applet executes and displays its information.

height= represents the height in pixels within your web page where the Java
applet executes and displays its information.

archive=represent the name of the archive file to download with the applet
(refer to the Java documentation for others parameters)

13.5 Java Applets and Enterprise Integration
144 Connecting Domino to the Enterprise Using Java

Generally, applets are used to provide the user interface (UI) in a Web-based
application, rather than actually doing the work of hosting a conversation with
say a CICS or DB2 machine. The main reason for this is that Java applets
must be kept fairly small to ensure acceptable performance. Since applets
must be downloaded and run each time they are used, keeping them small is
desirable.

However, a signed applet is able to make calls to external libraries on the
client workstation. For example, you can develop an applet that uses the DB2
CAE to fetch data from the local DB2 databases.

To access the enterprise directly the applet must be authenticated. For
security reasons applets are not able to make calls to other programs running
on the workstation, unless they are signed and authenticated as coming from
a trusted supplier. Without this trust it is impossible to make a call from an
applet to, for example, the DB2 clients that you have running on your users’
machines. To provide the authentication services required to implement this
type of architecture you need to adopt one of the security models provided by
the respective Web browser companies such as Netscape’s Object-Signing
and Microsoft’s Authenticode.

It is also important to note that the applet itself is unable to communicate with
another machine other than the server it originated from, but if the applet can
access external libraries (that is, it is trusted to do so), the external library
could establish a connection with an enterprise system and pass the results
back to the applet. In this scenario there would, of course, be the need for
external library software (to gain access to the enterprise) to be installed on
each Web browser workstation.

In general, this two-tier approach of applet-to-enterprise is practical for
smaller projects within the enterprise. When the requirement is for many
hundreds of users to access complex enterprise systems then other services
are required as part of your overall solution. Features like connection
management, load balancing and transaction management are often
mandatory, but providing these features from an applet is difficult and
cumbersome. It is more pragmatic for features of this nature to be provided
from a centralized point, rather than the decentralized nature of having
applets talk to your enterprise systems directly. This three-tier approach has
the middle tier performing the interaction with the enterprise system on behalf
of the applets. For example, you may have your applets talking to a number
of servlets on your Domino server, and the servlets in turn perform the actual
communication with the enterprise system.
Applets 145

146 Connecting Domino to the Enterprise Using Java

Chapter 14. Java Applications

A Java application is a program written in Java. To create the application, you
can use any Java development environment such as IBM VisualAge for Java.
If you don't own a Java development environment, you can install the Java
Development Kit (JDK). The JDK provides a compiler you can use to compile
all kinds of Java programs. It also provides an interpreter you can use to run
Java applications.

To run the Java application, you need to install the JVM for your hardware
platform. Figure 44 on page 147 depicts a Java program, such as an
application or applet, that's running on the JVM supporting the Java API. As
the figure shows, the Java API and Virtual Machine insulates the Java
program from hardware dependencies.

Figure 44. Java Application Environment

As a platform-independent environment, Java can be a bit slower than native
code. However, smart compilers, well-tuned interpreters, and just-in-time
bytecode compilers can bring Java's performance close to that of native code
without threatening portability.
© Copyright IBM Corp. 1999 147

As with any application, a Java application can connect to Domino as well as
the enterprise DBMS or OLTP. Unlike Java applets or Java servlets, which
are Internet-based applications, Java applications can be used in a local
architecture that does not require Internet or intranet connections.

To illustrate how to code a Java application, we have created two applications
that access a Domino environment. The first uses the Domino driver for
JDBC and manipulates Domino data, while the second uses the Domino Java
classes directly.

14.1 Domino Driver for JDBC Application

This section describes how to write a Java application that uses the Domino
driver for JDBC to access Domino data. Writing a JDBC application is similar
to writing an ODBC application, but in Java.

Only the important part of the code is shown here. For a complete listing of
the application, refer to Appendix C.1, “Domino JDBC Driver” on page 227.

Import Statements
We first load all the required packages needed to create the application:

• Java package, to write Java code

• JDBC package, to write a JDBC application

• The Domino driver for JDBC package

import java.util.*;
import java.sql.*;
import lotus.jdbc.domino.*;

DominoJDBC Sample
Our DominoJDBCSample defines the entry point of this Java application. The
main method is defined as a class method (static), can be called by any
object (public), and does not return any values (void).

public class DominoJDBCSample {
public static void main (String[] args) {

Loading the Domino Driver for JDBC
The forName method creates an instance of the driver and registers it with
the JDBC driver manager.

Class.forName("lotus.jdbc.domino.DominoDriver");

Establishing a Connection
148 Connecting Domino to the Enterprise Using Java

To establish a connection, we use the getConnection method of the
DriverManager class, passing the URL. A Domino driver for JDBC URL
always begins with jdbc as protocol, domino as subprotocol, followed by the
name of the Domino or Notes database. For example:

• To open the database DomDemo.nsf in the Domino data directory of the
current machine:

Connection con ;

String connStr = "jdbc:domino/DomDemo.nsf"
con = DriverManager.getConnection(connSrt,"","");

• To open the database DomDemo.nsf in the Domino data directory of the
Domino server named Oxygen:

String connStr = "jdbc:domino/DomDemo.nsf/Oxygen"
con = DriverManager.getConnection(connSrt,"","");

The second and third parameters—the user ID and password in many JDBC
systems—of the getConnection method are not needed in the Domino driver
for JDBC.

Creating and Executing an SQL Statement
Use the createStatement method of the connection object to create an SQL
statement. Use the executeQuery method of the statement object to execute
SELECT statements that produce a result set. Use the executeUpdate
method of the statement object to execute INSERT, UPDATE, and DELETE
statements and any data definition language statement such as CREATE
TABLE.

Domino is more flexible about names than SQL. When naming a form or view,
Domino allows many special characters that are not part of the SQL syntax,
for example the backslash identifying a hierarchical view (Product\By Name)
or a space. This syntax is supported by the Domino driver for JDBC. Enter the
name between double quotes.

Views in Domino/Notes databases list documents in a specific order. Avoid
selecting from a table based on a view and then specifying a different sort
order. When you specify a different sort order on an existing view, Domino
driver for JDBC creates a temporary table on your workstation and re-sorts
the documents. Creating a large temporary table and sorting the documents
in that table will take a long time.

Statement stmt ;
ResultSet rs ;
String sql = "SELECT * FROM \"Employee\\Last Name\" ;
Java Applications 149

//Create Statement
stmt = con.createStatement();

//Execute Statement
rs = stmt.executeQuery(sql)

Manipulating Data
Once you have obtained a result set, you can get the metadata, information
about the types and properties of a column in the result set. As the query
generated the result set, we used the next() method in a loop to read the
entire row using the getObject() method.

ResultSet rs ;
ResultSetMetaData rsmd = null ;

rsmd = rs.getMetaData() ;
//# of columns in the result set
colcount = rsmd.getColumnCount();
//Name of column i
colName(i) = rsmd.getColumnName(i) ;
//loop through the result set
while (rs.next()) {

for (int i = 1; i <= colCount; i++) {
Object obj = rs.getObject(i);
boolean nl = rs.wasNull();
if (nl)

printCol(len[i], "null");
else

printCol(len[i], obj.toString());
}

System.out.println();
}

Closing Statements
When you have finished using the objects, you have to close them using the
close method of each object.

rs.close();
stmt.close();

Closing the Connection
When you have finished with the application, you need to close the
connection using the close method of the connection object.

con.close();

14.1.1 Security
150 Connecting Domino to the Enterprise Using Java

When you create a connection to the Domino server and try to access the
Domino data through JDBC, Domino looks for the ID file referenced in the
notes.ini file of the machine running the Java application. It prompts you for
the password.

This is the same security that is in place with any Notes C API application.
This is why Domino does not support the sending of a user name and
password through the API; doing so would breach Domino security. To run an
application unattended without ever receiving a password prompt, you must
use a non-password-protected ID. You can remove password protection from
your ID by clearing it (File - Tools - User ID - Clear Password), unless your

Domino administrator required a password to be used when your ID was
created. In that case, you won't be able to clear it.

If you run an applet over a network that uses the Domino driver for JDBC,
security is important. One approach to security is to allow applets to run only
within the browser's sandbox. Another approach to security is to sign the
driver's archive files (jar or Java archive files for Netscape
Navigator/Communicator, and cab or cabinet files for Microsoft Internet
Explorer). The process of signing the driver identifies the creator of the
signed files. The user is then prompted to choose to allow this signed file
access to restricted operations like loading native Domino files. Because the
Domino driver for JDBC needs to communicate with Domino, it must go
outside the sandbox. You may create your own signed archive files, or use
those provided with the Domino driver for JDBC.

14.2 Local Access to the Domino Object Classes

This section describe how to write a Java application that uses Notes
backend objects and access Domino data. Domino R4.6 users as well as
Domino R5 users may implement such applications. As local calls access
run-time code on the local machine, you must install Domino server or Notes
client on the local machine.

The Notes classes for Java are similar to the LotusScript classes.

Only the important part of the code is shown here. For a complete listing of
the application, refer to Appendix C.2, “Domino Objects Classes” on page
229.

In general, creating a Java stand-alone application program which is
importing Notes classes should include the following:

Import Statements
Java Applications 151

We first load the Domino Java package needed to create the application.

import lotus.domino.*;

Main Statement
A Java application that uses the Notes objects must use the
lotus.notes.NotesThread class, which extends java.lang.Thread. It contains
some special per-thread housekeeping code.

There are three ways to organize the application using the Notes classes:

• Extend the NotesThread class and use its runNotes method as the entry
point to the functional code.

To execute the method, the main method creates a new object of the class
it is in (the class that extends NotesThread) and calls the start method.
The start method is overloaded in lotus.notes.NotesThread to call
runNotes.

public class DominoTestDirectNotesThread extends NotesThread {
// Starts the application.

public static void main(java.lang.String[] args) {
try {

DominoTestDirectNotesThread thread1 = new
DominoTestDirectNotesThread();

thread1.start();
thread1.join();

} catch (Exception e) {
e.printStackTrace();

}
}
}
public void runNotes() {
// Entry Point Method
.....
}

• Implement the Runnable interface and use the run method of the
java.lang.Thread class as the entry point to the functional code.

To execute the method, the main method creates a new object of the class
it is in (the class that implements Runnable), creates a new NotesThread
object passing to it the Runnable object, and calls the start method.

public class DominoTestDirectRunnable implements Runnable {
// Starts the application.

public static void main(java.lang.String[] args) {
try {
152 Connecting Domino to the Enterprise Using Java

DominoTestDirectRunnable thread1 = new DominoTestDirectRunnable();
NotesThread nt = new NotesThread((Runnable) thread1);
nt.start();
nt.join();

} catch (Exception e) {
e.printStackTrace();

}
}
}
public void run() {
// Entry Point Method
......

}

• Call the static sinitThread and stermThread methods of the NotesThread
class to explicitly start and terminate a thread. If you do use these
methods, be sure to call stermThread exactly one time for each call to
sinitThread.

public class DominoTestDirect {
// Starts the application.

public static void main (java.lang.String argv[]) {
try {

NotesThread.sinitThread() ;
Session s = Session.newInstance
......

} catch (NotesException e) {
e.printStackTrace();

}
finally
{

NotesThread.stermThread() ;
}
}

Session, Database, View Methods
Depending on the organization of the application, the entry point of the Java
application can be:

• runNotes() when extending NotesThread

• run() when implementing the Runnable interface

• main() when calling the static NotesThread methods.

public void runNotes() {
String dbname = "SG245425T";
String servername = "china" ;
String viewname = "Employee\\Last Name" ;
try {
Java Applications 153

A session object is necessary to do anything with the Notes classes. In
applications, the newInstance static method of the Session class creates the
necessary object.

System.out.println("Session");
Session s = Session.newInstance() ;

The getDatabase method of the Session class accesses a specified
database. You provide the name of the server, or null for local, and the name
of the database. For local databases, the name is relative to the Notes data
directory unless you supply a full path name. The suffix default is nsf.

Database db = s.getDatabase(servername, dbname) ;
System.out.print("Database "+ dbname + "has been last modified on");
System.out.println(db.getLastModified()) ;

The getView method of the Database class accesses a specified view.

View view = db.getView(viewname) ;
Vector columns = view.getColumns();

The get---Document methods of the View class allow you to access a specific
document in the view (replace --- with First, Last, Next, Nth).

System.out.println("View " + viewname + "contains the following documents");
Document doc = view.getFirstDocument();
.....

The getItemValue--- methods of the Document class allow you to access a
specific field of the document (replace --- with Integer, String, Double).

while (doc != null) {
System.out.println("Last Name: " + doc.getItemValueString("LASTNAME"));
...
System.out.println("Salary : " + doc.getItemValueInteger("SALARY"));
doc = view.getNextDocument(doc);
}

14.2.1 Security
To enable Java applications to use Notes classes, Domino will look for the ID
file referenced in the notes.ini file on the machine where the application is
running. You have to enter the password if this ID file is password-protected.

14.3 Local Access Using the Lotus Connectors

This section describes how to write a Java application that uses the Lotus
Connector Java classes to access Domino data. As local calls access
154 Connecting Domino to the Enterprise Using Java

run-time code on the local machine, you must install Domino server or Notes
client on the local machine, as well as the Lotus Connector Java classes.

The Lotus Connector Java classes are similar in functionality to the Lotus
Connector LotusScript extension.

Only the important part of the code is shown here. For a complete listing of
the application, refer to Appendix C.3, “Lotus Connector” on page 231.

This application accesses a Domino database and selects documents using a
selection criteria.

Import Statements
We need to load the Lotus Connector Java package to create the application.

import lotus.lcjava.*;

Main Statement
Our Java application is standard. We don’t have any special requirement.

public static void main(java.lang.String[] args) {
LCSession session = null;
LCConnection connection = null;
try {

LCSession and LCConnection
You must create an LCSession object before using any other LC Java
facilities. The LCSession object contains global state information.

The LCConnection class represents an instance of a Lotus connector,
providing access capabilities to the enterprise system. Multiple connections
can be allocated to a single connector.

The LCConnection constructor identifies the enterprise system by name (first
parameter) or session token (second parameter). The connection method
establishes a connection. Before establishing the connection, you must set
the properties that apply to the connection. In our case, we set the server
name and the database name. We also set the metadata and the Notes form
name, since the selection formula does not include any information about the
type of data accessed.

// Create LC session
session = new LCSession(0);
System.out.println("Session ready");
// Create LC Connection to Notes
connection = new LCConnection("notes", 0);
System.out.println("Connection to Notes OK");
connection.setPropertyJavaString(LCTOKEN.SERVER, "oxygen/Almaden");
Java Applications 155

connection.setPropertyJavaString(LCTOKEN.DATABASE,
"sg245425\\sg245425T.nsf");

connection.setPropertyJavaString(LCTOKEN.METADATA, "Employee");
connection.connection();

Field Lists
We now set up the field lists for the query, the result set returned by the
query, and the data fetched from the result set.

//Set the data field lists
LCFieldlist keyList = new LCFieldlist(1, 0);
LCFieldlist resultList = new LCFieldlist(1, 0);

LCFieldlist fetchList = new LCFieldlist(1, 0);

Key Field List
We want to select only the documents of employees belonging to department
D11.

//Set up the key
LCField keyField = new LCField();

// the key column
keyList.append("WORKDEPT", LCTYPE.TEXT, keyField);
keyField.setFlags(LCFIELDF.KEY);

// the key value
LCStream Workdept = new LCStream("D11");
keyField.setStream(1, Workdept);

Result Set Field List
We now set up the result set field list. In this list we specify which fields have
to be returned by the connector. LASTNAME, FIRSTNME, SALARY, and
BONUS are the fields of the Domino document. lastName, firstName, salary,
and bonus are the Lotus connector fields.

LCField lastName = new LCField();
LCField firstName = new LCField();
LCField salary = new LCField();
LCField bonus = new LCField();
resultList.append("LASTNAME", LCTYPE.TEXT, lastName);
resultList.append("FIRSTNME", LCTYPE.TEXT, firstName);
resultList.append("SALARY", LCTYPE.FLOAT, salary);
resultList.append("BONUS", LCTYPE.FLOAT, bonus);

Get the Result Set
We are now ready to execute the query to get the result set. We use the
select method of the connection object. If available from the source,
returnedRows is set to the number of rows returned.

connection.setPropertyJavaString(LCTOKEN.FIELD_LIST,
156 Connecting Domino to the Enterprise Using Java

"LASTNAME,FIRSTNME,SALARY,BONUS");
Integer returnedRows = new Integer(0);
connection.select(keyList, 1, resultList, returnedRows);

Manipulate the Result Set
We can now manipulate the result set, entering a loop to display all the data
fetched from the Notes database.

// Set up and fetch the result
LCField lastNameF = new LCField();
LCField firstNameF = new LCField();
LCField salaryF = new LCField();

LCField bonusF = new LCField();
fetchList.append("LASTNAME", LCTYPE.TEXT, lastNameF);
fetchList.append("FIRSTNME", LCTYPE.TEXT, firstNameF);
fetchList.append("SALARY", LCTYPE.FLOAT, salaryF);
fetchList.append ("BONUS", LCTYPE.FLOAT, bonusF) ;
int rc = 0;
rc = connection.fetch(fetchList, 1, 1);
while (rc != LCFAIL.END_OF_DATA) {

System.out.println("Name: " + lastNameF.toJavaString());
System.out.println("First Name: " + firstNameF.toJavaString());
System.out.println("Salary: " + salaryF.toJavaString());
System.out.println("Bonus: " + bonusF.toJavaString()) ;
rc = connection.fetch(fetchList, 1, 1);

}

Error Handling
The LCSession constructor and many other LC methods throw an
LCException, which extends java.lang.Exception. LCException contains the
method getLCErrorCode to get an integer error code specific to LC. The
LCSession method getStatusText returns the message associated with an
error.

catch (LCException e) {
int err = e.getLCErrorCode();
System.out.println(err) ;
String errmsg = session.getStatusText(err);
System.out.println(errmsg);

}

14.4 JDBC, DOM, or LC to Domino Data?

To access Domino data, you can use one of the following methods:

• Domino driver for JDBC
Java Applications 157

• Domino object classes

• Lotus Connector for Notes database

14.4.1 Domino Driver for JDBC or Domino Object Classes?
Table 4 on page 158 summarizes the differences between Domino driver for
JDBC and Domino object classes.

Table 4. Domino Driver for JDBC and Domino Object Classes

If you are familiar with developing JDBC applications, you can easily develop
applications that access Domino data using the Domino driver for JDBC. The
architecture of an application accessing Domino data is identical to an
application accessing any relational DBMS using JDBC. Although Domino is
not a relational database, you can access and manipulate the Domino data
using the SQL.

The Domino object classes allow you to access Domino data and Domino
objects such as applications, agents, forms,... With Domino R5, the
application can run on a remote machine and access the Domino object
classes using CORBA. Using Domino object classes, Domino data is just
another Domino object. Domino object classes are based on the same model
as the Domino LotusScript classes. If you know how to develop Domino
applications using LotusScript, you will find the Domino object classes
architecture very similar. The Java class names are the same as for

Description Domino driver for
JDBC

Domino Object
Classes

Local Access Data Data and Applications

Remote Access Data Data and Applications

Access method to Domino data SQL and JDBC Domino object classes
and CORBA

Software installed on the server Domino Driver for JDBC None

Classes to import lotus.jdbc.domino.* lotus.notes.* in R4.6
lotus.domino.* in R5.0
158 Connecting Domino to the Enterprise Using Java

LotusScript with the Notes prefix omitted.

14.4.2 Lotus Connectors
One advantage of using the Lotus Connector Java classes is the portability of
the code for every source supported.

In our sample, we created the Lotus Connector application to access a Notes
database and its Employee documents. This application can be easily
changed to support a DB2 database and its Employee table.

Assuming you have a DB2 table that contains the same data as the Notes
database, you only have to change the setting of the connection object
(differences are shown like this) to change the data source from Notes to
DB2:

// Create LC Connection to DB2
connection = new LCConnection(" db2", 0);
System.out.println("Connection to Db2 OK");
connection.setPropertyJavaString(LCTOKEN.DATABASE, "sample");
connection.setPropertyJavaString(LCTOKEN.METADATA,

"db2admin.employee") ;
connection.setPropertyJavaString(LCTOKEN.USERID, "db2admin");
connection.setPropertyJavaString(LCTOKEN.PASSWORD, "db2admin");
connection.connection();

In our sample, we also had to change the format of the numeric fields
(SALARY and BONUS), because they were defined as FLOAT in Notes and
NUMERIC in DB2.
Java Applications 159

160 Connecting Domino to the Enterprise Using Java

Chapter 15. Agents

Agents are discrete, embedded programs that perform a specific task in a
database. They are not tied to a specific Domino view or form. This agent
concept is almost unique to Lotus Domino as an application server and its
Lotus Notes clients.

An agent requires three things:

1. Instructions about when to run

2. Instructions about which documents to process

3. A program that processes the selected documents

An agent can be invoked in various ways:

• Manually from a Notes client

• Triggered by a selected event, such as the arrival of new mail or the
creation/modification of a document

• Triggered from a Web browser, although some functions supported by the
Notes client are not valid from a Web browser

• Programmatically from another agent or application

• Scheduled to run periodically

The options for selecting which document(s) to process include:

• All documents in the database

• New documents

• Changed documents

• Documents that meet search criteria

Agents in Domino can be:
© Copyright IBM Corp. 1999 161

• Simple actions

• Formulas

• LotusScript programs

• Java programs

The level of control provided by agents makes them an attractive way of
programming. Agents have a couple of other advantages over servlets and
applications: security and transportability.

Domino agents are automatically signed by the person who created or last
modified them. Personal agents are only available for modification and
execution by that person. Shared agents can be invoked by anyone with
access to the database and modified by those with designer access or
greater. Domino agents run with a particular user’s identity, whether run on
the Domino server or the Notes client. Agents that execute on the Notes
client (whether in the foreground or background) run with the identity and,
therefore, the access authority of the user. The agent signer’s access
authority is used for background agents running on the server.

By default, a shared background agent that runs from the Web uses the
access rights of the agent signer to determine if the agent can run and how
much access it has to the server's file system. Each Web user who is allowed
to run the agent should be registered in the Public Address Book (known as
the Domino Directory in Domino R5) and be named in the ACL and the server
document with the appropriate rights. Agents invoked by a Web user, who
has not been authenticated, run with the special identity of Anonymous, if this
access has been permitted on the server. To add more security to a Web agent,
force Domino to check the access rights of registered Web users.

Agents are a design element of a database, just like any form or view in that
database. This means that they are transported with the database whenever
it is moved, copied or replicated. Thus, Java agents are an integral part of a
Domino application.

Agents have advantages, but you should not forget that Java servlets and
applications can be written to run in isolation. Java agents, on the other hand,
must run with Domino.

Agents written in Java can communicate with enterprise applications. We use
MQSeries to illustrate our discussion of agents, as this allows us to show you
a method of communicating from the enterprise into Domino.
162 Connecting Domino to the Enterprise Using Java

In the following sections, we explain the structure of an agent and how to
trigger it. We give two examples of agents that connect to and from the
enterprise using MQSeries.

15.1 Structure of an Agent

Domino agents have full access to the standard Java run-time services. They
can access other Java libraries (with the appropriate import statement, for
example, JDBC or the MQSeries Java classes), URLs and network sockets.

An agent extends the AgentBase class, which extends the NotesThread
class. The class that contains the agent code must be public.

The entry point for any Domino agent in Java must be a method called
NotesMain(). Other methods can be called from NotesMain(), but
NotesMain() is where the execution of functional code starts.

For output to browsers, assign a PrintWriter object using the getAgentOutput
method of the AgentBase class. If the agent is never run from a browser, you
can use System.out as usual although the PrintWriter object also works.

So, with these pieces of information, the starting point for any Java agent is
going to be along the following lines:

import lotus.notes.*; // Include Notes package
import java.io.PrintWriter;
public class class_name extends AgentBase {
public void NotesMain() {

try {
PrintWriter pw = getAgentOutput();
String username = s.getUserName();
pw.println("Your Notes user name is " + username + ".");

} catch(NotesException e) {
e.printStackTrace();
}

}
}

Domino agents written in Java can be multithreaded, making use of the
java.lang.Thread class. This gives agents written in Java an advantage over
those written in LotusScript.

There are no software prerequisites, for invoking an agent from a Web
browser. The agent will always run on the Domino server and it is the Domino
server that must meet any software prerequisites.
Agents 163

15.2 Triggering an Agent

Table 5 lists the available methods to trigger an agent.

Table 5. Agent Triggers

Agents run either on the Notes client or on the Domino server.

If your agent runs on the Notes client, you may have to install the enterprise
Java library, for example the MQSeries Client for Java, on the Notes client.
For example, an agent executes locally on the Notes client if you trigger the
agent manually from an Action menu or if the application invokes it by use of an
@Command([ToolsRunMacro;""]) hidden in a form.

Alternatively, agents can run on the Domino server. In that configuration, you

Trigger Details

URL ?OpenForm

Open page/form event WebQueryOpen (R4.6 and R5)
$$QueryOpenAgent (R4.5)

Save page/form event WebQuerySave (R4.6 and R5)
$$QuerySaveAgent (R4.5)

Schedule Hourly
Daily
Weekly
Monthly

Database event When New Mail has Arrived
Document Created or Modified
Document Pasted

Manually Action Menu
Agent list
@Command
164 Connecting Domino to the Enterprise Using Java

have to install the enterprise Java library on the server. For example, you can
trigger an agent with database events such as If Documents Have Been
Created or Modified. Saving a new or modified document into the
server-based application causes the Domino Agent Manager to schedule the
execution of the agent on the server. In the agent runs on the server, there is
no additional software prerequisite for the Notes client machine.

Another option to consider is the runOnServer method of the Agent class.
Using this method, a Notes client application can trigger the execution of the
agent on the remote server that hosts the agent's parent database. The
database must be on a remote server. No parameters can be passed with, or

returned by, the method. It is, therefore, not always possible to use the
runOnServer method and certainly not a sensible option with a Web browser.
However, from a Notes client, it may be the right option, as it has the
advantage of executing the agent on the Domino server without requiring the
intervention of the agent manager.

The method returns an integer indication of the completion status and you
code it in the following way:

Agent agent = db.getAgent(" agent_name ");
int status = agent.runOnServer();

Java code cannot be used in form events. If you wish to use this Java
method, you must put the code into a locally executed agent. To avoid
creating this additional agent, you can use the equivalent RunOnServer
method of the LotusScript Agent class in a form event.

15.3 From Domino to the Enterprise Using MQSeries

MQSeries lets applications, such as Domino applications, use message
queuing to participate in message-driven processing.

In this example we use the MQSeries Client for Java (as discussed in 3.8.2,
“The MQSeries Client for Java” on page 35). We connect from a Domino
application to an MQSeries application with a Java agent. Our target
MQSeries application is written in C and runs on a Windows NT machine, but
could be any MQ-enabled application, running on any supported platform.

Our agent extracts the requested part number from the Domino document,
together with the required quantity. This document is created from a Notes
client or from a Web browser. The target application, DominoToMQAppl,
provides the inventory level for the specified part number and indicates
whether our required quantity can be supplied from stock or not. If we were
writing a complete Domino application, we would need to extract other
Agents 165

information about the customer. We have chosen to ignore this requirement,
as it would probably be processed as a different part of the workflow in a
complete application.

15.3.1 Setup
Queue Manager Setup
Our queue manager must be configured to accept incoming connection
requests from the MQSeries clients. This requires the following on our
Windows NT target machine:

• Define a server connection channel using the following procedure. We can
use the default channel, SYSTEM.DEF.SVRCONN, or using the runmqsc
program, we can define a new specific channel. A specific channel would
need to be defined along the following lines:

DEF CHL("JAVA.CHANNEL") CHLTYPE(SVRCONN) TRPTYPE(TCP) +
MCAUSER(" ") DESCRIPTION("Channel for MQSeries Client for Java")

(There is no need to set the MQSERVER environment variable on the
client machine, as the MQSeries Client for Java uses the MQEnvironment
object to store this information.)

• Start a listener program with the following command:

runmqlsr -t tcp [-m QMgr_name] [-p 1414]

• The queue manager must also have definitions for the queues we use. In
our case, that means two local queue definitions:

DEFINE QLOCAL('MQAPPL.Q') REPLACE +
DESCR('Request queue for MQ application')

DEFINE QLOCAL('MQAPPL.RQ') REPLACE +
DESCR('Reply queue for MQ application')

Domino Setup
In order to access the MQSeries Java class library successfully we must add
its path to the JavaUserClasses statement in the notes.ini file, together with
the path of the directory we will use to develop our code:

JavaUserClasses=...;c:\mqm\java\lib;c:\mqm\tools\javaclnt\samples\En_us

Agent Invocation
In this example, our agent is invoked in the following ways:

• A Notes client user creates a new document from our form, or modifies an
existing document, and clicks the Submit button:

@Command([ViewRefreshFields]);
@Command([FileSave]);
166 Connecting Domino to the Enterprise Using Java

@Command([ToolsRunMacro];" agent_name ");

• A Web browser user creates a new document from our form, or modifies
an existing document, and clicks the Submit button:

The document is saved into Domino and the agent named in the
$$QuerySaveAgent field on the form is invoked.

This requires the MQSeries Client for Java on both the Domino server
machine and the Notes client machine. To avoid installing the MQSeries
Client for Java on the Notes client we could use the If Documents Have Been
Created or Modified run option of the agent and have our Submit button

simply save the document to the Domino server. We are then dependent on
the agent manager to schedule the agent and the agent itself needs to use
the DocumentCollection class to select appropriate documents for
processing.

Every program needs a method of reporting errors and passing other
information to a user. Running from a Notes client, System.out prints to the
Java console. When our agent is invoked from a Web browser, any
System.out printouts appear in the Notes log (as they do for scheduled
agents). In order to display output to Web browsers, we need to assign a
PrintWriter object.

15.3.2 Writing the Agent
In the following section we explain how we developed the agent. Only the
important part of the code is shown here. For a complete listing of the agent,
refer to Appendix D.1, “Domino Agent to the Enterprise Using MQSeries” on
page 233.

Import Statements
We first load all the required packages needed to create our servlet:

• Java package, to write Java code

• PrintWriter package, to print to the browser

• Domino package, to use Domino backend classes

• MQSeries Java package, to connect to MQSeries

The following import statements perform the task:

import java.lang.*;
import java.io.PrintWriter;
import lotus.notes.*; // Include Notes package
import com.ibm.mq.*; // Include MQ package
Agents 167

MqDom2Ent Agent
Our class starts by extending the AgentBase class, and defining a few global
variables for the class:

public class Mqdom2ent extends AgentBase {
// Variables used by MQSeries
String hostname = "ob.almaden.ibm.com"; // hostname to connect to
String channel = "SYSTEM.DEF.SVRCONN"; // channel name used by client
int iPort = 1414; // default port 1414
String qManager = "DEF_QMNGR"; // queue manager to connect to
String requestQueue = "MQAPPL.Q"; // queue to put request to
String replyQueue = "MQAPPL.RQ"; // queue to get reply from

MQQueueManager qMgr; // queue manager object
MQQueue requestQ; // Request queue object
MQQueue replyQ; // Reply queue object

NotesMain Method
The NotesMain method is the entry point to the functional code of the agent:

public void NotesMain() {
try {

Notes Initialization
We first need to initialize a session with the Domino server. The Session
class is the root of the Domino backend object containment hierarchy. We
used the getSession() method of AgentBase as we are writing an agent.

AgentContext represents the agent environment, since the current program is
running as an agent.

We assigned a java.io.PrintWriter object with the getAgentOutput() method of
AgentBase, and write using the println() method of the PrintWriter object. This
method works for output to Notes clients and Web browsers from agents.

For foreground agents, System.out and System.err output goes to the Java
debug console. For locally scheduled agents, System.out and System.err
output goes to the Domino log:

Session session = getSession();
AgentContext ac = session.getAgentContext();
Database db = ac.getCurrentDatabase();
Document doc = ac.getDocumentContext();
System.out.println("Document in use, UID: " + doc.getUniversalID());
PrintWriter pw = getAgentOutput();

Extract from the Domino Document
As this agent is triggered from an action on an opened document, we can
extract required information from the document:
168 Connecting Domino to the Enterprise Using Java

String partNumber = doc.getItemValueString("I_PARTNO");
String quantity = doc.getItemValueString("I_QUANTITY");

MQSeries Initialization
Before we can connect to a queue manager we must establish the properties
of our MQEnvironment object. As Java does not have properties, these are
referred to as static data members. The MQEnvironment object holds
information equivalent to an MQSERVER environment variable setting and
more:

MQEnvironment.channel = "SYSTEM.DEF.SVRCONN";

MQEnvironment.hostname = "ob";
MQEnvironment.port = 1414;

A channel name must be specified. If the hostname and port are not set they
default to localhost and port 1414, but no protocol specifier is defined as the
Java client always communicates using TCP/IP. Other class members that
can be set include user ID, password and CCSID.

Connecting to the Queue Manager
The creation of the MQQueueManager object and connection to it is then a
straightforward step:

qMgr = new MQQueueManager(qManager);
if (qMgr.isOpen) {

System.out.println("Connection to qmgr open");
}

Once our connection to the queue manager is established we can open
queues, set put message options, put a message(s) to a queue(s), set get
message options, get a message(s), close queues and disconnect from the
queue manager, as we would with any other MQSeries program.

Opening the Queues
After setting options on the queues, we can open them:

int openOptionsOut = MQC.MQOO_OUTPUT;
int openOptionsIn = MQC.MQOO_INPUT_SHARED;
requestQ = qMgr.accessQueue(requestQueue,

openOptionsOut,
null, // default q manager
null, // no dynamic q name
null); // no alternate user id

replyQ = qMgr.accessQueue(replyQueue,
openOptionsIn,
null, // default q manager
null, // no dynamic q name
Agents 169

null); // no alternate user id

Creating the MQ Request Message Object
We are responsible for building the message we wish to put. We must build it
in the correct order and use the appropriate data types. We should also set
any required parameters of the MQMD. If, in our example, we need to take
the requested part number from the document as character text and the
required quantity as a short and put them in that order into our request
message, we can code it in the following way:

MQMessage requestMsg = new MQMessage();

requestMsg.characterSet = 437;
requestMsg.encoding = 546;
requestMsg.writeString(partNumber);
if (quantity == null)

requestMsg.writeShort(0);
else

requestMsg.writeShort(Short.parseShort(quantity));
requestMsg.messageType = MQC.MQMT_REQUEST;
requestMsg.format = MQC.MQFMT_STRING;
requestMsg.replyToQueueName = replyQueue;
requestMsg.replyToQueueManagerName = qManager;

Putting the Message on the Request Queue
To put the message on the queue, we first set the message options accepting
the default values and then use the put() method of the request queue object:

MQPutMessageOptions pmo = new MQPutMessageOptions();
requestQ.put(requestMsg, pmo);

Receiving a Message from the Reply Queue
To receive a message from the reply queue, we first define a buffer where to
receive the message:

MQMessage replyMsg = new MQMessage();

To ensure that we only retrieve the message specifically intended to our
request, we use the correlation ID:

replyMsg.correlationId = requestMsg.messageId;

We have to set the options for receiving the message such as how long to
wait for the reply message:

MQGetMessageOptions gmo = new MQGetMessageOptions();
gmo.waitInterval = 1000;
gmo.options = MQC.MQGMO_WAIT;
170 Connecting Domino to the Enterprise Using Java

We can read the reply message from the queue and move the received
information back to the document:

replyQ.get(replyMsg, gmo, 300);
String replyPartNumber = replyMsg.readString(3);
String replyQuantity = Short.toString(replyMsg.readShort());
String replyInventory = Integer.toString(replyMsg.readInt());
if (replyMsg.getDataLength() != 0) {

String replyComments =
replyMsg.readString(replyMsg.getDataLength());

doc.replaceItemValue("I_COMMENTS", replyComments.trim());
}

doc.replaceItemValue("I_PARTNO", replyPartNumber);
doc.replaceItemValue("I_QUANTITY", replyQuantity);
doc.replaceItemValue("I_INVENTORY", replyInventory);

Saving and Displaying the Updated Document
Once the document has been updated, we can save it and display it back to
the Web user:

doc.save(true, true);
String accessType = doc.getItemValueString("AccessType");
System.out.println("Access type is: " + accessType);
if (accessType.equals("WebClient")) {

pw.println("[/" + db.getFileName() + "/All+Documents/"
+ doc.getNoteID() + "?OpenDocument]");

}

Finally Block
To conclude our example, we use the finally block to close any open queues
and disconnect from the queue manager:

finally {
try {

if (requestQ.isOpen)
requestQ.close();

if (replyQ.isOpen)
replyQ.close();

if (qMgr.isOpen) {
System.out.println("Disconnecting from queue manager");
qMgr.disconnect();

}
} catch (Exception e) {

e.printStackTrace();
}

}

15.3.3 Remarks and Comments
Agents 171

In this section, we give you some remarks and comments on the development
of an MQSeries Java program. They highlight some techniques that you may
find interesting to use in your own application

Building the Message
We are responsible for building the message we wish to put. We must build it
in the correct order and use the appropriate data types. We should also set
any required parameters of the MQMD. If, in our example, we need to take
the requested part number from the document as character text and the

required quantity as a short and put them in that order into our request
message, we can code it in the following way:

MQMessage requestMsg = new MQMessage();
requestMsg.writeString(partNumber);
requestMsg.writeShort(Short.parseShort(quantity));

requestMsg.messageType = MQC.MQMT_REQUEST;
requestMsg.format = MQC.MQFMT_STRING;
requestMsg.replyToQueueName = replyQueue;
requestMsg.replyToQueueManagerName = qManager;

Both the read and write methods support a range of data types. The range is
wider than the equivalent LotusScript Read and Write methods provided in
the MQMessage class of the MQLSX or the EIMessage class of the MQEI.
The supported data types include:

• Byte

A single byte or an array of bytes can be read from or written into the
message buffer. This includes support for packed decimals.

• Boolean

A boolean can be read from or written into the message buffer.

• Character

A Unicode character or a sequence of Unicode characters (such as a
string) can be read from or written into the message buffer.

• Float

A float or double can be read from or written into the message buffer. The
encoding data member determines the behavior of these methods.

• Integer

An integer, either short or long, can be read from or written into the
message buffer. The encoding data member determines the behavior of
172 Connecting Domino to the Enterprise Using Java

these methods.

• Object

An object can be read from or written into the message buffer.

• String

A string can be read from or written into the message buffer. The codeset
identified by the characterSet data member determines whether
conversion is required.

• UTF

UTF is an encoding of Unicode characters, and more generally the
universal character set (UCS), and is used for transmission and storage.
UTF stands for UCS transformation format.

CharacterSet and Encoding
The characterSet data member of the MQMessage class specifies the coded
character set identifier of character data in the application message data.The
behavior of the read and write methods using character data is altered
accordingly. The default is to use the coded character set of the queue
manager, that is to set the encoding to MQC.MQCCSI_Q_MGR.

Changing the value of the CCSID used, affects the way that the queue
manager you connect to translates information in the MQSeries headers. If
you change the client's CCSID to be the same as that of the queue manager
to which you are connecting you can gain a performance benefit at the queue
manager since it no longer attempts to translate the message headers. The
default value for a Java client is "819" (ISO-8859-2).

We have mentioned another way of setting the characterSet used by the
client, the MQEnvironment.CCSID data member. It is supposed to override
the code page, but is not always effective. It can also leave the
MQMD.characterSet field set to zero, so the server (and data conversion exit)
has no way of finding out what the code page actually was. This is a bug, and
should hopefully be fixed in MQSeries V5.1. Until then, we recommend that
you not rely on using the MQEnvironment.CCSID.

Using the default CCSID can get you in trouble if you have clients with
different CCSIDs all connecting to the same target. We declare the
characterSet explicitly in our code to avoid any such problems.

The encoding data member specifies the representation used for numeric
values in the application message data; this applies to binary, packed decimal
and floating point data. The behavior of the read and write methods for these
Agents 173

numeric formats is altered accordingly. The default is MQC.MQENC_NATIVE,
which is made up of individual settings for binary integers, packed-decimal
integers and floating-point integers.

The following encodings are defined for binary integers:

• MQC.MQENC_INTEGER_NORMAL

This defines big-endian integers and by default is used by Java.

• MQC.MQENC_INTEGER_REVERSED

This defines little-endian integers and is typically the default for other
PC-based programs.

If no encoding is explicitly set the default value for a Java client is "273".

The characterSet of "819" and encoding of "273" are the natural values for Java,
and the client doesn't really know what the server is. We found that when our
part number and quantity were passed to the NT target with these default
settings, the characters were handled without problem, but the short, for
example a required quantity of "45" was seen as "002D" rather than "2D00".
This is a result of a big-endian, little-endian mismatch.

To correct this problem, we set characterSet and encoding for our message
prior to writing the message contents:

MQMessage requestMsg = new MQMessage();
requestMsg.characterSet = 437;
requestMsg.encoding = 546;
requestMsg.writeString(partNumber);
requestMsg.writeShort(Short.parseShort(quantity));

where characterSet of "437" and encoding of "546" are the values typically
used by both our client NT and our target NT environments (and those that
would automatically be used by a LotusScript agent running in the same
Domino machine as our Java agent). Our encoding could also be set to
MQC.MQENC_INTEGER_REVERSED. This would appear in the MQMD as an
encoding of "2".

Reading the Reply
While your target application may well use the MQGMO_CONVERT option
set to perform a get with convert, we do not recommend using the equivalent
MQC.MQGMO_CONVERT in your Java programs. There is usually no need,
as conversion is done by the read methods.

(The use of the MQGMO_CONVERT option is generally recommended in
MQSeries. Using this option ensures that you only convert once, in case you
pass through an intermediate server, and gives you the option to convert only
174 Connecting Domino to the Enterprise Using Java

the messages you want converted. (On MVS, you need MQSeries V1.1.4 or
later to use the MQGMO_CONVERT option.))

Reading the contents of a reply message is similar to writing the contents of a
request message, in that we must know where in the message the required
information is and in what format. Using the read methods we can read in
information from the message buffer. The setDataOffset(int offset), seek (int
pos) and skipBytes(int n) methods allow us to move past information that isn’t
required.

The target application required a 3-character string containing the part
number and a short (2 bytes) containing the quantity as input. It returns those
same two pieces of information at the beginning of the reply message,
followed by an integer containing the inventory level (4 bytes) and a 101
character string containing comments. (There is a difference here between
Java data types and those used by LotusScript. In LotusScript a long is
defined as 4 bytes and an integer is only 2 bytes. This and other differences
between Java and LotusScript are given in Appendix A, “Use of Java versus
LotusScript” on page 215.) Our code, to read in the information and update
the document was along the following lines:

String replyPartNumber = replyMsg.readString(3);
String replyQuantity = Short.toString(replyMsg.readShort());
String replyInventory = Integer.toString(replyMsg.readInt());
String replyComments = replyMsg.readString(replyMsg.getDataLength());

doc.replaceItemValue("I_PARTNO", replyPartNumber);
doc.replaceItemValue("I_QUANTITY", replyQuantity);
doc.replaceItemValue("I_INVENTORY", replyInventory);
doc.replaceItemValue("I_COMMENTS", replyComments.trim());

Publishing the Results
Java cannot be attached to front-end objects, as there is no equivalent to the
LotusScript NotesUIDocument class. Saving the document allows Notes
users to see the updated document when they refresh their view, but we
cannot reload or refresh the document for them automatically using Java. For
our Web browser user, we can however, publish the document back to them.
So, once we have updated fields in our document, we add code along the
following lines:

doc.save(true, true);

String accessType = doc.getItemValueString("AccessType");
System.out.println ("Access type is: " + accessType);

if (accessType.equals("WebClient"))
Agents 175

{
pw.println ("[/"

+ db.getFileName()
+ "/All+Documents/"
+ doc.getNoteID()
+ "?OpenDocument]");

}

AccessType is a hidden field on our form containing the following code:

IsWebClient:=@IsMember("$$WebClient";@UserRoles);
@If(IsWebClient;"WebClient";"NotesClient")

Exception Handling
We catch any exceptions, looking for specific exceptions from MQSeries or
Domino, before handling all other exceptions. An MQSeries class throws an
MQException. We can check for a specific completionCode or reasonCode
and identify the exceptionSource:

catch (MQException mqex) {
System.out.println("An MQ error occurred:"+

" Completion code " + mqex.completionCode +
" Reason code " + mqex.reasonCode +
" from: " + mqex.exceptionSource);

if (mqex.reasonCode == 2085) {
System.out.println("The explanation is: Unknown object name.");

} else {
if (mqex.reasonCode == 2033) {

System.out.println("The explanation is: No message
available.");

} else {
System.out.println("No specific explanation available for this

error, please refer to the MQ Application Programming Reference");
}

}

15.4 From the Enterprise to Domino Using MQSeries

A Domino agent can be initiated in a number of ways (see Table 5 on page
164). Normally, however, an agent cannot be set to run as a result of an
action taking place elsewhere. So, if we wish to make updates in a Domino
application as a result of unsolicited information coming from an enterprise
application, what can we do?

In this example we use the MQSeries Trigger Monitor for Lotus Notes agents
(as discussed in 7.2.4, “MQSeries Trigger Monitor for Lotus Notes Agents” on
page 76), to start our Java agent from outside of Domino. Using this modified
176 Connecting Domino to the Enterprise Using Java

trigger monitor program together with the MQSeries Client for Java, allows us
to take information from an MQSeries message, sent from the enterprise
application, and use it to create or update the relevant Domino document(s)
in the appropriate Domino application(s).

We use MQToDominoAppl, a modified version of the previous example’s
target MQSeries application. The MQToDominoAppl application is used to
represent an enterprise application that notifies Domino of particular events.
In our case, that event would be a change in inventory level for a part
number. We can mimic this event-triggered notification by sending a request
(PUT only) to MQToDominoAppl, which in turn sends a response containing

the part number (3 characters), its inventory level (an integer) and an optional
comment (101 characters) to the replyToQueue specified in the request
message.

Additional MQSeries Definitions
In this example, the output from the application is sent to a triggered queue
with the following associated MQSeries definitions:

DEFINE QLOCAL('MQAPPL.TQ') REPLACE +
DESCR('Enterprise to Domino Queue') +
BOQNAME('NOTES.BACKOUT.REQUEUEQ') +
INITQ('MQAPPL.NOTES.AGENT.INITQ') +
PROCESS('MQAPPL.NOTES.AGENT.PROCESS') +
TRIGGER +
TRIGTYPE(FIRST) +
TRIGDATA('')

DEFINE QLOCAL('MQAPPL.NOTES.AGENT.INITQ') REPLACE +
DESCR('Sample Triggered Notes Agent Initiation Queue')

DEFINE QLOCAL('NOTES.BACKOUT.REQUEUEQ') REPLACE

DEFINE PROCESS('MQAPPL.NOTES.AGENT.PROCESS') REPLACE +
APPLTYPE(22) +
APPLICID('mqjava.nsf Enterprise to Domino Agent') +
USERDATA('')

In the process definition, the application type of "22" indicates that the
application to be started is a Domino agent. (The curious setting of "22" is
used to represent Domino agents, while other valid settings include CICS,
OS2 and WINDOWSNT.).

The application identifier parameter specifies both the name of the agent
database (mqjava.nsf) and the name of the agent (Enterprise to Domino
Agent). The agent name must be exact, including any spaces. We would
Agents 177

recommend cutting and pasting the agent name from Domino to your
definitions file in order to ensure that it is correct.

The user data parameter can be used by the agent, but if not required can be
left blank (single quotes with space between) or omitted from the definition.

Running the Trigger Monitor
In addition to creating these definitions for our queue manager, we must start
the trigger monitor to detect the arrival of messages. The trigger monitor must
run local to our Domino environment in order to start the agent. So, for our
configuration we require an MQSeries client on our local machine to provide

the client connection to the queue manager. To tell the system which channel
to use and how to find it, we use the MQSERVER environment variable that
defines the name of the channel, the communication method to be used, and
the MQSeries server name. In our environment:

SET MQSERVER=SYSTEM.DEF.SVRCONN/TCP/ob

If more than one channel is required in your environment, for example, you
need to connect to more than one queue manager, you should make use of
the MQCHLLIB and MQCHLTAB environment variables to point to the client
channel definition table.

We start the client version of the trigger monitor, specifying the initialization
queue we defined (and if not the default queue manager, the queue
manager):

runmqtnc [-m QMgr_name] -q MQAPPL.NOTES.AGENT.INITQ

Agent Setup
Our agent is created as a shared agent, with the run option of "Manually From
Actions Menu" and "Run once (@Commands may be used)" specified. The
code in our agent does not differ greatly from that in our first example.
However, we need only open one queue (for input) and perform a GET with
no proceeding PUT. (The full code from this example is given in Appendix
D.2, “The Enterprise to a Domino Agent Using MQSeries” on page 237.) We
also need to select the document to act on in a different way.

In our first example, the agent was called from a specific document and this
document was then updated with the results of the inquiry. When we
communicate only from the enterprise to Domino, the correct document or
documents to create/update may vary depending on the content of the
message. The selection of the document or documents can be done in
several ways, for example, assuming the database is the same database as
contains the agent:
178 Connecting Domino to the Enterprise Using Java

• If you will always be using the exact same document:

Document doc = db.getDocumentByUNID(" UniversalId ");

• If the document always exists in a particular view and is the first or only
document in that view:

View view = db.getView(" View_name");
Document doc = view.getFirstDocument();

• If there is a suitable key displayed in a sorted column of the view that can
be used to select the correct document:

String partnum = myMsg.readString(3);

Document doc = view.getDocumentByKey(partnum);

• If instead we are selecting multiple documents we use the
DocumentCollection class to build a collection of documents that we can
then update.

In our example, we have chosen to update a summary table in one document
to show the inventory level for all part numbers.

CharacterSet, Encoding and Byte Alignment
The characterSet and encoding of the message we receive are set by the
queue manager. In our case, these values are set to "437" and "546"
respectively. We don’t have to set any values, although we could choose to
explicitly set our encoding to "546" or MQC.MQENC_INTEGER_REVERSED
("2"). Setting the encoding to MQC.MQENC_INTEGER_NORMAL ("1") prior
to reading the integer would result in a very different number being displayed
in our document. Naturally, the setting of the encoding and characterSet are
dependent on the nature of the sending enterprise resource.

Another factor controlled by the sending enterprise resource is the packing or
byte alignment of the data. When we modified the original C program for use
as the "enterprise sender" application in this example, we compiled it with
different options by accident. When we then tried to receive the integer as the
second piece of information in the message, we consistently saw a very
different number in the document from that expected.

An inventory level of "5" was being displayed as "1280". Our integer is being
returned in little endian encoding from the enterprise, that is as "05 00 00 00",
but we were reading "00 05 00 00". This was not an encoding problem.The
getMessageLength and getDataLength methods of the MQMessage object
showed us that our 108-byte message structure was actually being received
as a 112-byte message. We were in fact ignoring the last byte of our integer
and reading a spurious byte at the front. Our C compiler had byte aligned the
message structure. We may never have seen this problem if our part number
Agents 179

had been set as 4 characters rather than 3!

Basically, you need to understand the structure and format of all information
being exchanged. To resolve the problem we have two options:

1. Change the C compiler options on the "enterprise sender" program.

This would be an easy option for our example, but might not be acceptable
to an organization that chooses to byte align for other applications in their
enterprise.

2. Reflect the aligned structure in the agent.

We can do this by reading in a dummy byte between the part number and
the inventory level, or by using one of the mechanisms for moving past
unrequired message data.

Starting the Agent
Once the document(s) is selected, the remaining operations are the same as
in our first example. The difference here being that our agent is started by the
arrival of a message on a specific queue. This might be due to an enterprise
event as in our example here. Alternatively, you could choose to use this
mechanism for processing replies generated by a Domino request. That is to
say, rather than having an agent that sends a request message and waits a
given period of time for a reply from the enterprise application, you could
instead have two agents: one is started by the creation/update of a
document, takes information from the document, sends the request message
and finishes; the second is started by the arrival of the reply message and
updates the document.
180 Connecting Domino to the Enterprise Using Java

Chapter 16. Servlets

Servlets are Java-written programs that run on your Web server. These
programs when triggered, usually through a URL, perform a task for you, for
example fetch some data from an enterprise system, and typically return with
a page of HTML. Parameters can be passed to your servlet through the URL.

The servlet technology created by Sun, is an extension to the standard Java
language and you need to download the JSDK, from the JavaSoft Web site
(http://java.sun.com), if you want to run or create your own servlets.

16.1 Domino Java Servlet Manager

Servlets are controlled by the Domino Java Servlet Manager which is part of the
HTTP server task.

Using servlets with Domino has a number of advantages that may make them
appropriate for your particular solution. They run on the Domino server which
places no requirement on the Web browser to support Java. Servlets can be
loaded and initialized when the Web server loads. Once loaded they are held
in memory, running in the server’s JVM process, and subsequently are
triggered extremely quickly. This gives you a performance benefit over CGI
programs or Domino agents which must be reloaded.

Support for Java servlets has been available as part of Domino from Version
4.6. The configuration details for setting up the servlet manager supplied with
Domino differ a fair amount between R4.6.x and R5. The steps required to set
up the servlet manager are given below, and generally things are a little
easier with Domino R5.

We explain how to configure the servlet manager in “Java Servlet Support” on
page 99 for Domino R4.6, and in “Servlet Manager” on page 104 for Domino R5.
© Copyright IBM Corp. 1999 181

Domino R5 Java servlet manager is based on Sun’s JSDK 2.0.

In addition, Domino R5 also supports the use of a third party servlet manager.
We provide details of how to use the servlet manager that is supplied with
IBM’s WebSphere product instead of the default Domino servlet manager in
“Servlet Manager” on page 125.

Loading/Unloading Servlets
To unload a servlet from memory, you must stop and restart the HTTP task on
the server, using the following commands:

Tell http quit

load http

The restart command forces a refresh of settings in the server document that
relate to the servlet manager, or HTTP task, but it doesn’t destroy already
loaded servlets. It’s important to remember this when your developing your
servlet, to ensure your using the servlet you have just modified, and not one
that is still cached in memory.

16.2 Structure of a Servlet

To write a servlet, you extend the Servlet class and define Java methods for
establishing and managing connections. Servlets offer valuable features such
as thread-safe code, automatic memory management, and built-in networking
support.

HTTP Servlet Class
The javax.servlet.http package provides interfaces and classes for writing
http servlets. The HttpServlet class () contains the init(), destroy(), and
service() methods. The init() and destroy() methods are inherited. You can
override the class methods you need to create your own servlet.

init() Method
The init() method executes only once when the server loads the servlet. You
can configure the server to load the servlet when the server starts or when a
client first accesses the servlet. The init() is not repeated regardless of how
many clients access the servlet. The default init() method is usually adequate
but can be overridden typically to manage servlet-wide resources. For
example, you might write a custom init() to load GIF images only one time,
improving the performance of servlets that return GIF images and have
multiple client requests. Another example is initializing a database
connection. This method will not be called again. The init() method is
guaranteed to complete before the service() method is called.
182 Connecting Domino to the Enterprise Using Java

destroy() Method
The destroy() method executes only once when the server stops and unloads
the servlet. Typically, servlets are stopped as part of the process of bringing
the server down. The default destroy() method is usually adequate, but can
be overridden, typically to manage servlet-wide resources. For example, if a
servlet accumulates statistics while it is running, you might write a destroy()
method that saves the statistics to a file when the servlet is unloaded.
Another example is closing a database connection. When the server unloads
a servlet, the destroy() method is called after all service() method calls
complete or after a specified time interval. Where threads have been

spawned from within the service() method, and the threads have long-running
operations, those threads may be outstanding when the destroy() method is
called. Because this is undesirable, make sure those threads are ended or
completed when the destroy() method is called.

service() Method
The service() method is the heart of the servlet. Unlike init() and destroy(), it
is invoked for each client request. In HttpServlet, the service() method
already exists.The default service function invokes the do function
corresponding to the method of the HTTP request. For example, if the HTTP
request method is GET, doGet() is called by default. A servlet should override
the do functions for the HTTP methods that the servlet supports. Because the
HttpServlet.service() method checks whether the request method calls the
appropriate handler method, it is not necessary to override the service()
method. Only override the appropriate do method.

16.3 Writing a CICS Java Program

At the simplest level, the flow of program control needed to write a simple
CICS Transaction Gateway Java-client program is as follows:

1. The Java program creates and opens an instance of an
com.ibm.ctg.client.JavaGateway object.

The default JavaGateway constructor creates a blank JavaGateway
object. You must then set the correct properties in this object using the
relevant set methods. The JavaGateway is then opened by calling the
open method.

2. The Java program creates an instance of one of the gateway request
classes containing the request that it wishes to make, that is:

• A com.ibm.ctg.client.ECIRequest is created for an ECI request.

• A com.ibm.ctg.client.EPIRequest is created for an EPI request.
Servlets 183

• A com.ibm.ctg.client.CicsCpRequest is created for querying the code
page of the CICS Universal Client it is connected through.

3. The Java program then flows the request to the CICS Transaction
Gateway using the flow method of the JavaGateway object.

4. The Java program checks the return code of the flow operation to see
whether the request was successful.

5. The program continues to create request objects and flow them through
the JavaGateway object, as appropriate.

6. The Java program then closes the JavaGateway object.

16.4 CICS Connected Servlet

In the ExampleServletV2 servlet, data is drawn from both a Domino database
and a CICS transaction and presented back to the user in the browser.

The servlet takes the employee number parameter (Empno) from the URL
used to trigger the servlet. The parameter is used to fetch the related
document from a Notes database, by using it as a key in a view. The
document is then displayed in a frame on the screen.

The servlet then uses the Surname field returned from the Notes document
as a parameter to a CICS program to fetch further information about the
person, including address and credit rating data and this information is
displayed in the remaining frame.

16.4.1 Development Environment Setup
The code makes use of IBM’s CICS Java Gateway, which is now included as
part of the CICS Transaction Gateway. The JAR files that make up the CICS
Java gateway must be included in the JavaUserClasses entry in the
Notes.ini.

JavaUserClasses=
C:\Program Files\IBM\CICS Transaction Gateway\classes\ctgclient.jar;
C:\Program Files\IBM\CICS Transaction Gateway\classes\ctgserver.jar

It is not sufficient to use the CLASSPATH setting in the Servlet section of the
server document. Since these JAR files make reference to external libraries,
and the security employed by the servlet manager disallows that, you must
load the class files this way; otherwise, you will receive errors when trying to
use the CICS Java Gateway.

16.4.2 Writing the Servlet
In the following section we explain how we developed the servlet. Only the
184 Connecting Domino to the Enterprise Using Java

important part of the code is shown here. For a complete listing of the servlet,
refer to Appendix B, “Servlet Example” on page 223.

Import Statements
We first load all the required packages needed to create our servlet:

• Java package, to write Java code

• Java servlet extensions packages, to create an HTTP servlet

• Domino package, to use Domino backend classes

• CICS package, to connect to CICS

The following import statements perform the task:

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import lotus.domino.*;
import com.ibm.ctg.client.*;

To access the local Domino server from the servlet we imported the
lotus.domino package into the Java code. This enabled us to use the Domino
backend classes from within the servlet. You can create servlets that access
a Domino R5 server remotely through the CORBA-enabled Java classes. To
support remote calls, the Domino server must be running the HTTP and
DIIOP server tasks.

CICSServlet
Our class starts by extending the HttpServlet class, and defining a few
globals for the class:

public class CICSServlet extends HttpServlet {
JavaGateway jgaConnection;
ServletContext context;

private static int CICS_COMMAREALENGTH = 131;
......

init Method
The init() method is called once when the Web server loads the servlet. In this
method, we open the connection to the Java Gateway.

The Java program creates and opens an instance of a
com.ibm.ctg.client.JavaGateway object. The default JavaGateway
constructor creates a blank JavaGateway object. We then set the correct
Servlets 185

properties in this object using the relevant set methods.

In our sample we used the local transaction gateway (local: protocol). The
local JavaGateway object communicates directly to a locally installed CICS
client. No network connection is used between the Java program and the
CICS client, and no CICS Transaction Gateway is required to be running
locally. Given the requirement to communicate to a locally installed CICS
client, a local JavaGateway object is generally only applicable for use in a
Java application or servlet.

We finally open the JavaGateway.

We also turn on the CICS tracing if we need it for debugging. The output is
placed in the miscellaneous events section of the Notes log:

public void init (ServletConfig config) {
try {

com.ibm.ctg.client.T.setDebugOn(true);
com.ibm.ctg.client.T.setTimingOn(true);

jgaConnection = new JavaGateway();
jgaConnection.setURL("local:");
jgaConnection.open();

}

doGet Method
The doGet method is run on response of a GET request from HTML. The
doGet method is run every time the Domino server receives a trigger URL for
the servlet.

In this method we use the getParameter method of the HttpServletRequest
class to fetch the parameter from the URL.

The doGet method then uses this parameter as a key to find a document in
the Domino database.

If the document has been found, the doGet method call the CICS program
using the PerformCICSTransaction method:

public void doGet (HttpServletRequest request,
HttpServletResponse response) throws IOException {

try {
ServletOutputStream out = response.getOutputStream();
response.setContentType("text/html");
// Kick off Notes
NotesThread.sinitThread();
// Get the value of the EmpNo variable from the URL
String empKey = request.getParameter("EmpNo");
186 Connecting Domino to the Enterprise Using Java

if(empKey != null) // As long as we have a value to work with
{

// Open up the database and get the view we want
Session s = NotesFactory.createSession();
Database db = s.getDatabase("","test.nsf");
View view = db.getView("CustomerLookupView");

// Look for our key
Document doc = view.getDocumentByKey(empKey, true);

if (doc != null)
{

// Go get the data from CICS,

performCICSTransaction(doc,out);
// And return results to the browser
createReturnHTML(doc,out);

}
......
......

}

performCICSTransaction Method
Input to a CICS transaction is made through the CICS communication area
(COMMAREA). The COMMAREA is the data area that can be passed to
CICS programs when the programs are called by another program. The
calling program—in our sample, the Java servlet— uses the ECI API.

In this method, we first fetch the Surname field from the NotesDocument
object passed to us from the doGet method, and build up our COMMAREA
with the createCommArea method described above.

We build an ECIRequest object. An ECIRequest object defines all the details
of an ECI call to a CICS server. It defines which CICS server to make the
request to, the CICS user ID and password to use, the CICS program to be
run on the server, and the COMMAREA to pass to CICS.

We flow the ECIRequest object to the gateway or the client using the
JavaGateway.flow method.

If we have results back from CICS to process we then place this information
onto our NotesDocument:

public void performCICSTransaction(Document notesDoc,
ServletOutputStream out) {

ECIRequest eciRequest = null;
try {

.....
// Get the surname to pass to the CICS transaction
Servlets 187

String lookName = notesDoc.getItemValueString("Surname");
// Build up the CommArea that we will pass to CICS
byte [] commArea = createCommArea(lookName);

// Create our eciRequest
eciRequest = new ECIRequest("CICSOS2",// CICS Server

"SYSAD", // UserId, null for none
"SYSAD", // Password, null for none
"VSAMSERV", // Program name
commArea, // Commarea
ECIRequest.ECI_NO_EXTEND,
ECIRequest.ECI_LUW_NEW);

eciRequest.Cics_Rc = 0;

// Call CICS
jgaConnection.flow(eciRequest);
// If the CICS transaction happened OK
// then sort out the returned CommArea into our NotesDocument
if (eciRequest.Commarea != null) {

......}

Supporting Methods
We have also created some supporting methods that are used in the servlet.
Here is a brief description of the methods:

• createCommArea method

Format the COMMAREA exchanged with the CICS program.

• createReturnHTML method

Put together the HTML that we return to the user.

• outputSimpleTableLine method

Output a table row (with 2 columns) in HTML. This is called by
createReturnHTML.

16.4.3 Triggering the Servlet
Once the servlet is completed you have to copy it to the Domino/Servlet
folder (or wherever you have set the servlet home in the server document).

If your servlet is part of a named Java package then include the package
name as new folder under your Servlet home folder. For example, a servlet
named MyServlet.class which is part of a TestPackage Java package, should
be placed in a folder as follows:

(My Servlet Folder)/TestPackage/

If you don’t do this you will receive Wrong Name errors on the Domino server
188 Connecting Domino to the Enterprise Using Java

console.

Finally if you wish to pass initialization parameters, provide aliases for your
servlet, or dictate that the servlet should be loaded on startup of the servlet
manager, you must set your servlets.properties file appropriately.

In our sample, we trigger the servlet using the following URL that passes an
employee number:

www.myserver.com/Servlet/ExampleServlet2.ExampleServletV2?EmpNo=100

Chapter 17. A Comparison

In this chapter we compare the selection criteria for different types of Java
programs. We also compare the use of Java and LotusScript for developing
Domino applications.

17.1 Java Program Types

In this section, we summarize the criteria for the different Java programs that
you can use:

• Applet

• Servlet

• Application

• Agent

In Table 6 we have highlighted these criteria and make some
recommendations as to when to use each type.

Table 6. Comparison of Java Program Types

Function / Program Applet Servlet Application Agent

Supported by:

Web browser Yes Yes (through URL) No Yes (through URL)

Notes client Yes No No Yes

Java application No No Yes No

Domino server No Yes Yes Yes

Other HTTP server No Yes Yes No

Access to DOM:
© Copyright IBM Corp. 1999 189

Web browser No (through URL) N/A N/A No (through URL)

Notes client No (through URL) No Yes Yes

Java application N/A Yes Yes N/A

Domino server N/A Yes Yes Yes

Other HTTP server N/A Yes Yes N/A

Methods for Starting:

Manually No Yes (using
WebSphere)

Yes Yes

Scheduled No No (exec could be
used)

No (exec could
be used)

Yes

URL Yes? Yes No Yes

HTML tag Yes Yes No No

Other event No No No Yes (including
MQSeries Trigger
Monitor for Lotus
Notes agents)

Access enterprise Yes (if signed) Yes Yes Yes

Security Signed applets
offer increased
access, while still
providing security

Run with privilege
of server

Run with privilege
of given user or
agent signer and
ACL can be
applied

Tracking User defined.
With CORBA and
R5 has access to
lotus.domino.log
class

User defined. Has
access to R4
lotus.notes.log
class or R5
lotus.domino.log
class

User defined.
Has access to
R4
lotus.notes.log
class or R5
lotus.domino.lo
g class

Notes log
automatically
tracks agents if
appropriate
setting is used 1

Recommended use Simple user
oriented
programs, that
can be offloaded
from the server

High volume Web
or intranet
situations.
Servlets are
cached by the
servlet manager,

When
customized
user interface
required or
program needs
to be

As with servlets,
but where more
robust security or
better integration
with Domino
services is

Function / Program Applet Servlet Application Agent
190 Connecting Domino to the Enterprise Using Java

so can be very
responsive

executable
outside context
of any other
application or
server

required. Agents
are, however, only
loaded when
required

Notes:
1 - Set LOG_AGENTMANAGER=1 in the notes.ini initialization file

17.2 Use of Java versus LotusScript

This section provides some comparisons between the use of Java and the
Lotus-unique language LotusScript.

Our experience in writing with Java, when coming from a background of
LotusScript, shows that the two have great similarities. Java Notes classes
parallel the LotusScript Notes backend classes for the most part. Although
Java does provide multithreading support and additional access to external
network Java classes (for example TCP and sockets).

You can use the Java classes from any Java program, within the Notes
Designer environment or outside of it, although the requirement with Java is
for Domino R4.6 or later. LotusScript can only be used in agents or other
design elements of Domino as it is a language embedded in Domino.

Java programs are generally written in blocks, that is sequences of
statements: a try block followed by one or more catch blocks (catching
exceptions thrown by the try block) and possibly finishing with a finally block.
This is not dissimilar from the structure in a LotusScript agent, if you consider
the try block as the initialize event, the catch blocks as the event handlers
and the finally block as the terminate event. However, in Java a try block and
its associated catch blocks can follow another try block and catch block(s) or
be nested within another try block.

The similarities between LotusScript and Java can cause you to expect
everything to be approached in the same way and that is not the case. Some
of the differences are purely syntactical, while others reflect the different
origins of the two languages: Java evolving from C++, and LotusScript from
BASIC.

Some simple examples of coding differences would include:

• A Java program is generally made up of a collection of (class) files. The
A Comparison 191

file designated as the base class, is the starting point for the agent
program.

• Even if several methods are included in the same file, Domino will look to
begin code execution in a method called NotesMain.

• Java is very case sensitive! The name of the class, the variable name, the
method name and URLs must all be written exactly.

• Java programs cannot be attached to front-end objects. That is to say,
there is no equivalent to the LotusScript NotesUIDocument class. One
noticeable consequence of this, is that it is not possible to refresh the

document while open on the Notes client. Instead the user must close the
document and refresh the view.

• It is not possible for Java programs to be used in form events in the way
LotusScript programs can be used. This and the fact that Java has no
access to front-end objects, make it a less popular choice for a Notes
client-based application.

• Another interesting comparison is that of access to the Domino object
classes or Notes object interface (NOI) as it was known in R4.6. This is
illustrated in Table 7 on page 192.

Table 7. Comparison of Domino Object Classes Access

• Java only supports methods, while LotusScript provides classes with both
methods and properties. In order to inquire on or set what would otherwise
be properties of an object, Java implements methods of getXXX and
setXXX:

db.setTitle = "Set the title of the database";
String dbTitle = db.getTitle();

The empty parentheses are required on the getXXX as it is a method and
all methods are followed with parentheses that may contain arguments.

• Java data types are not necessarily the same as the LotusScript data
types; for example, Table 8 on page 192 shows us the three numeric data
types that might commonly be used in a Domino agent:

Program Java Client LotusScript
Client

Java Server LotusScript
Server

Applet No No No No

Servlet No No Yes No

Application Yes No Yes No

Agent Yes Yes Yes Yes
192 Connecting Domino to the Enterprise Using Java

Table 8. Data Types

• Variants used in LotusScript to contain any data type (including arrays and
object instances) are not available in Java. Java instead supports method

Data Type Java LotusScript

Short 2 bytes Not defined (implemented as
2 bytes in MQLSX, MQEI)

Integer 4 bytes 2 bytes

Long 8 bytes 4 bytes

name overloading, where multiple methods share the same name.
Overloaded methods are differentiated by the number and type of the
arguments passed into the method. Arrays can be returned using the
java.lang.Vector class, which uses the Object type.

• The Java "if" statement needs a boolean expression, for example:

if (replyQ.isOpen)
if (replyComments.equals(""))

• In LotusScript the NotesDocument class is an expanded class and form
fields can be used there as properties of the document, leading to easy
manipulation such as:

doc.StatusField = "Loan approved"

Java does not support expanded classes.
A Comparison 193

194 Connecting Domino to the Enterprise Using Java

Part 4. Domino and WebSphere

For the time being, Enterprise JavaBeans (EJBs) and CORBA are considered
by many analysts as the most promising and best technologies for
implementing multitiered, enterprise-level, server-based, cross-platform
applications.

In this part we look at the use of WebSphere with Domino and the advantages
that can be gained.

WebSphere's support for Domino allows Java servlet applications to be
written to run in either environment and allows the same base Java servlet
code to execute in both products. Applications can also call back and forth
between the WebSphere and Domino environments through the use of Java.
In addition, the capabilities of Domino and WAS can be combined in a server
farm, where multiple Web servers work together transparently to fulfill the
needs of a single Web-based solution.

Together, WAS and Domino offer a comprehensive range of Web application
server environments that support business applications from simple Web
publishing through enterprise-scale transaction processing and collaborative
business solutions.

WAS reflects the evolution from traditional Web servers that served HTML
pages to a Web application server serving industrial-strength business
applications. In order to set Domino and WAS up to work together, we should
first understand the three tiers of WAS:

• HTTP engine

Handles HTTP requests including requests for CGI programs, GIF files
and HTML files. This tier can be scaled to run multiple engines in a cluster
feed by an HTTP sprayer (or load balancer). The HTTP server itself can
be selected from a list of supported servers:
© Copyright IBM Corp. 1999 195

• Lotus Domino R5
• Lotus Domino Go Webserver
• Netscape Enterprise Server
• Netscape FastTrack Server
• Microsoft Internet Information Server
• Apache Server

In our configuration, WAS uses the Domino HTTP engine. Servlets
requests are authenticated and authorized by the HTTP engine, but are
then passed to the Java servlet engine.

• Servlet manager

The Websphere Java Servlet engine plugs into the Domino HTTP engine
using proprietary plug-in APIs. The engine manages servlet requests and
passes the data back to the client. The engine also handles requests for
JSP or server-side HTML scripting. Handling applications and dynamic
content requests requires multiprocess support to ensure an
industrial-strength solution. The Websphere Java Servlet engine supports
a single process until it is required to provide support for multiple Java
processes, at which time it adds servlet queues. As the WAS
administrator, you determine how many queues can be established and
define a policy for the use of each queue.

• Enterprise JavaBeans Server

The Enterprise JavaBeans Server runs the business logic and ensures
transactional integrity, with Java transactional services (JTS) and the Java
naming and directory interface (JNDI).

In the following chapters we explain:

• How to use the WAS Servlet Engine with Domino

• How to access EJBs from a Domino application
196 Connecting Domino to the Enterprise Using Java

Chapter 18. WAS Servlet Manager

We explained in 12.2.2, “Servlet Manager” on page 125 how to configure the
WAS servlet manager to be an alternate servlet manager for Domino. In this
configuration, we use the WAS servlet manager to manage our servlets. In
Chapter 16, “Servlets” on page 181 we explained how to develop a CICS
servlet called ExampleServletV2. In this chapter we use the WAS servlet
manager to manage our servlet.

18.1 Installation

By default, WAS looks for servlet class files in the servlet root directory. Copy
your compiled servlet class files to that directory. You can load servlets from
an alternate servlet directory using a reloadable servlet directory. If the
servlets are in a package, mirror the package structure as subdirectories
under the servlet or reloadable servlet directory. If your servlets import
additional classes that you have developed, it is recommended that you copy
those classes to the servlet directory.

We copied the ExampleServletV2 servlet into the servlet root directory.

18.2 Settings

If you want to set servlet initialization parameters, use the WebSphere
Application Server Manager to configure the servlet (see Figure 45 on page
198).
WAS Servlet Manager 197

Figure 45. Servlet Configuration Settings

In this panel, you can define the settings of your servlet such as:

• The unique name of the servlet

• A text describing the servlet

• The associated class file for the servlet

• Whether the Web server loads the servlet when the server starts

• Whether the Web server should load or unload the servlet immediately

• The servlet properties

18.3 Alias
198 Connecting Domino to the Enterprise Using Java

To associate servlets with aliases by which they will be known, use the
Aliases page. After setting up a servlet alias, you can connect to the servlet
by entering the alias into a server-side include or URL. Aliases are
particularly useful for servlet chaining. Figure 46 on page 199 shows how we
defined the servletCICS alias for the ExampleServletV2 servlet. The alias
must begin with /servlet/.

Figure 46. Servlet Alias

18.4 Security

WAS provides a servlet security feature. You can create a user group, a set of
users, and an access control list, and then add a servlet to the list of
resources protected by that access list.

If the users are already defined in Domino, you don’t need to create new IDs
in WebSphere. WebSphere can reference the Domino users using LDAP.

Once a servlet has been configured in WAS, you can create Users, User
Groups, Access Control, and declare the servlet as a Resource.

To test this security feature, you have to declare the users in WAS using a
user ID and a password. You may also create user groups that contain
multiple users.

You also can create access control lists (ACLs). Figure 47 on page 200
shows how we created the SecurityTest ACL.
WAS Servlet Manager 199

Figure 47. Access Control List

The SecurityTestACL ACL contains one user, christo. You can also add
groups of users and computers. For every member of the ACL, you assign
permissions. You can assign permissions for "files and folders" and
"Servlets":

• The Servlets selection refers to permissions that an executing servlet has,
such as opening sockets, reading files, etc.

• The files and folders selection sets permissions to access a servlet, such
as GET and POST.

In our example, christo has permission to use the GET and POST methods
on files, folders, and by extension, servlets that are protected by this ACL.

We used the Resource page to protect resources by assigning resources to
an access control list that specifies who can use the resource. Figure 48 on
200 Connecting Domino to the Enterprise Using Java

page 201 shows how we set the protection of the ExampleServletV2 servlet
using the SecurityTestACL ACL. You can also protect a directory resource
using its full path name.

Figure 48. Protect a Resource Setting

When using a Web browser you enter the URL of the protected resource,
then WAS prompts you for a user ID and a password. In our sample, only
user christo, is allowed to access the servlet.
WAS Servlet Manager 201

202 Connecting Domino to the Enterprise Using Java

Chapter 19. WAS Enterprise JavaBeans Server

In this chapter we describe how to create a Domino agent and a Domino
servlet that access an Enterprise JavaBean managed by WebSphere.

We first introduce the Employee EJB used during the test.

19.1 Employee EJB

In our test, we created a Domino application that could access an existing
EJB shipped with WAS. The Employee EJB is part of the Phone book sample
application.

Employee EJB is a container-managed persistence entity bean that is
mapped onto the Employee table included as part of the Sample database
distributed with the DB2 product. The Employee table contains over a dozen
different columns, of which only six are used by the Employee bean. The
Phone sample shows how the SQL statements in the persister class
generated by the stand-alone deployment tool can be modified in a
straightforward manner to accommodate the actual data contained in an
existing DB2 table.

The Employee EJB is a container-managed bean; that is, it does not have
any persistence code in the bean’s method. Instead the container provider’s
tools have generated the necessary functions at deployment time and
implemented them in the container. The Employee EJB is completely
independent from the data store.

Our Domino application is just a client application that integrates existing
EJBs. To access EJBs, clients need to be able to access the container that
contains the Home and the Remote interfaces.
© Copyright IBM Corp. 1999 203

The client-side programming model for accessing EJBs is described in the
EJB specification. These classes have the following characteristics:

• They hide the low-level complexity of accessing an EJB.

• They are JavaBeans (EJBs are not JavaBeans - they share the JavaBean
name because they are component models for Java, not because they
have anything in common technically).

• They can be used as session EJBs.

In the design of cooperative or composite EJB applications, there are
programming dependencies between the EJBs that make up the applications.

In particular, it is necessary for the business logic in the implementation of
some EJBs to have access to the client interfaces, stubs, and helper classes
of other EJBs. Currently, you stage the development of the EJBs in order to
make the stubs and helpers available to the other EJBs.

Home Interface
The Home interface of the Employee EJB provides information which is used
by the container. The EJB provider has to supply:

• Extensions to the javax.ejb.EJBHome interface

• A create method which is used to create another session bean

• A finder method used by entity beans to identify a database

• Related exceptions

Our Domino application—the client application—uses the JNDI to look up the
name of the Employee EJB class in the name space on the server using
JNDI.

Here is the Home interface of the Employee EJB (EmployeeHome.java):

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import javax.ejb.FinderException;
import java.util.Enumeration;
import java.rmi.RemoteException;
public interface EmployeeHome extends EJBHome {

public Employee create (EmployeeKey employeeKey)
throws RemoteException, CreateException;

public Employee findByPrimaryKey (Object employeeKey)
throws RemoteException, FinderException;

public Enumeration findByLastName (String lastName)
throws RemoteException, FinderException;

public Enumeration findByDepartment (String department)
throws RemoteException, FinderException;
204 Connecting Domino to the Enterprise Using Java

public Enumeration findAll ()
throws RemoteException, FinderException;

}

In the example, the following methods have been extended:

• create

• findByPrimaryKey

• findByLastName

• findByDepartment

• findAll

Remote Interface
The Remote interface defines the business methods for use in the EJB. The
EJB defines and extends the existing javax.ejb.EJBObject interface. The EJB
provider must:

• Extend the javax.ejb.EJBObject interface.

• Provide a corresponding method in the EJB class for each method defined
in the remote interface. For example, the matching method must have the
same name, number, and types in its arguments and the same return type,
as well as the relevant exceptions.

Here is the Remote interface of the Employee EJB (Employee.java):

import javax.ejb.EJBObject;
import java.rmi.RemoteException;
public interface Employee extends EJBObject {

public String getEmployeeNumber () throws RemoteException;
public String getLastName () throws RemoteException;
public String getFirstName () throws RemoteException;
public String getMiddleInitial () throws RemoteException;
public String getDepartment () throws RemoteException;
public String getPhoneNumber () throws RemoteException;

}

In this remote interface six business methods have been added:

• getEmployeeNumber
• getLastName
• getFirstName
• getMiddleInitial
• getDepartment
• getPhoneNumber
WAS Enterprise JavaBeans Server 205

In the following sections, we show how to access this Employee bean from a
Domino agent and from a Domino servlet.

19.2 Domino Agent

Using Domino Designer R5, we created the EJBAgentA agent that accesses
the Employee EJB.

Our EJBAgentA Domino agent uses the JavaAgent base class that extends
the AgentBase class.

19.2.1 Settings
Figure 49 on page 206 shows how we created the EJBAgentA Domino agent.

Figure 49. EJBAgentA Agent

Using Domino Designer, we created a new Java agent. This agent can run on
206 Connecting Domino to the Enterprise Using Java

the Domino server or the Notes client as long as the core EJB classes are
accessible from the agent. In our example we import all the requested files in
the document.

To specify the packages that are required by this agent, we click on the Edit
Project button. Figure 50 on page 207 shows the windows where you can
specify all the agent files.

Figure 50. EJB Classes Imported

We have to import the following files:

• JavaAgent.java, added automatically by Domino Designer, containing our
agent source classes

• EmployeeBean.java, to ease the development by adding method
definitions in the IDE

• EmployeeServer.jar, the deployed EJB

• ejs.jar, core EJB classes

19.2.2 Writing the JavaAgent Agent
In the following we explain how we developed the agent. Only the important
part of the code is shown here. For a complete listing of the agent, refer to
WAS Enterprise JavaBeans Server 207

Appendix E.1, “EJBAgent” on page 241.

Import Statements
We first load all the required packages needed to create our agent:

• Java package, to write Java code

• Domino package, to use Domino backend classes

• EJB package, to use EJB classes

• Employee EJB package, to access the EJB

The following import statements perform the task:

import lotus.domino.*;
import java.util.*;
import java.io.*;
import javax.ejb.*;
import com.ibm.ejs.samples.phone.*;

JavaAgent Agent
Our class starts by extending the AgentBase class.

We define a private variable for the type of EJB and define a string containing
the full name of the EJB:

public class JavaAgent extends AgentBase {
private static final String employeeHomeName =

"com.ibm.ejs.samples.phone.EmployeeHome";
private EmployeeHome employeeHome;

NotesMain Method
The NotesMain() method is the entry point to the functional code of the agent:

public void NotesMain() {
try {

Notes Initialization
We first need to initialize a session with the Domino server. The Session
class is the root of the Domino backend object containment hierarchy. We
used the getSession() method of AgentBase as we are writing an agent.

AgentContext represents the agent environment as the current program is
running as an agent.

As the agent is started from a Domino document, we get the document using
the getDocumentContext() method of the AgentContext class, and read one
of its fields using the getItemValueString() method of the Document class:

Session session = getSession();
208 Connecting Domino to the Enterprise Using Java

AgentContext agentContext = session.getAgentContext();
Document doc = agentContext.getDocumentContext();
String surname = doc.getItemValueString("Surname");

EJB Home Interface Localization and Object Lookup
An EJB client uses the JNDI API to locate the EJB’s Home interface. When
the interface has been found, the EJB client creates an instance of the EJB.

The first step for our client is to use the JNDI naming services to locate a
name server. This involves creating an initial context. We also indicate the
address of the name server:

java.util.Hashtable properties = new java.util.Hashtable(2);
javax.naming.InitialContext initContext = null;
try
{

properties.put(javax.naming.Context.PROVIDER_URL,
"iiop://krypton.almaden.ibm.com:9019");

properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.jndi.CosNaming.CNInitialContextFactory")

initContext = new javax.naming.InitialContext(properties);
} catch (javax.naming.NamingException e) {

System.out.println("Error retrieving the initial context: "
+ e.getMessage());

return;
}

The next step is to look up the required object, the EJB’s Home interface. The
Employee EJB was configured with a JNDI Home name of EmployeeHome.
As we are using CORBA’s CosNaming, a CORBA object is returned by the
lookup() method which was then subsequently narrowed to be of type
EmployeeHome:

if (employeeHome == null)
try {

java.lang.Object o = initContext.lookup("EmployeeHome");
if (o instanceof org.omg.CORBA.Object)

employeeHome=EmployeeHomeHelper.narrow((org.omg.CORBA.Object) o);
}
catch (javax.naming.NamingException e) {

System.out.println("Error retrieving the home interface: "
+ e.getMessage());

return;
}

Starting the EJB
After retrieving an EmployeeHome instance, we can now retrieve the
WAS Enterprise JavaBeans Server 209

collection of Employee instances using a last name. We pass the key for the
request (surname) using the findByLastName() method of the EJB’s Home
interface. We receive the result as an enumeration.

We used the EmployeesBean class that was developed in the Phone
application to manipulate the Employee instances. This manipulation could
have been done directly from the enumeration:

Enumeration employees = employeeHome.findByLastName(
surname.trim().toUpperCase() + "%");

EmployeesBean emp = new EmployeesBean (employees);

Receiving the Data
We test the success of the request using the isEmpty() property of the
Employee EJB. If the request was successful, that is the bean has matched
names using the hasMatches() method of the Employee EJB, we can then
receive the names with the getLastName() method of the Employee EJB and
move them to the document:

if (!emp.isEmpty()) {
if (emp.hasMatches()) {

if (!employees.hasMoreElements()){
doc.replaceItemValue("R_Surname_0", emp.getLastName(0));
doc.replaceItemValue("R_FirstName_0", emp.getFirstName(0));
....

Ending the Agent
When we finish handling the results, we can save the updated document and
close the connection to the EJB. We can run the garbage collector to remove
the unused objects from memory. You can ignore this process, as Java runs
the garbage collector automatically:

doc.save(true,true);
employees = null;
emp = null;
System.gc();

19.2.3 Form Running the Java Agent
To run the EJBAgent, we created the EJBAccess form that contains the field
used as input for the EJB. The input field is called Surname.

To run the Java agent we added the following formula to the form:

@Command([FileSave]);
@Command([ToolsRunMacro]; "EJBAgentA")

To receive the results from the bean, we added output fields (R_Surname,
210 Connecting Domino to the Enterprise Using Java

R_FristName,...) for each corresponding value received from the EJB, that is,
each column of the DB2 table that we wanted to be displayed.

Figure 51 on page 211 shows the design of the EJBAccess form.

Figure 51. Example Domino Form for Running the Java Agent

19.2.4 Running the Example
To run the example, you need to:
WAS Enterprise JavaBeans Server 211

1. Compose the EJBAccess Domino form.

2. Fill in the Surname field with any characters (see Figure 52 on page 212).

Figure 52. Fill the Surname Field with "s"

3. Click the Search for details button.

4. Using the EJB, the example displays the result in a table (see Figure 53
on page 212).
212 Connecting Domino to the Enterprise Using Java

Figure 53. The Agent Result from the EJB

If the EJB cannot find the specified data, the sample application fills the
R_Empty field with "Name not found" (see Figure 54 on page 213).

Figure 54. EJB Cannot Find the Data

19.3 Domino Servlet

We also tested the connection to an EJB using a Domino servlet. Here, two
configurations are possible:

• The servlet is managed by the Domino Java servlet manager and can
access the EJB managed by the WebSphere application server running on
a separate machine.

• The servlet is managed by the WebSphere servlet manager running under
the HTTP task of the Domino server.

19.3.1 Setup
To develop and run a servlet you need to add the EJB classes and the
support classes into the ..\domino\data\servlet\ directory.

We modified the notes.ini initialization file as follows (on one line):

JavaUserClasses=<other paths>;
d:\websphere\appserver\samples\ejs\EmployeesBean.class;
WAS Enterprise JavaBeans Server 213

d:\websphere\appserver\deployedEJBs\EmployeeServer.jar;

Refer to 10.3.4, “Servlet Manager” on page 104 for additional information on
how to set up the servlet manager in Domino R5.

19.3.2 Writing the Dom_Empl Servlet
In the following we explain how we developed the servlet. Only the important
part of the code is shown here. For a complete listing of the servlet, refer to
Appendix E.2, “Dom_Empl Servlet” on page 242.

Import Statements
We first load all the required packages needed to create our servlet:

• Java package, to write Java code

• Java servlet extensions packages, to create an HTTP servlet

• Domino package, to use Domino backend classes

• EJB package, to use EJB classes

• Employee EJB package, to access the EJB

The following import statements perform the task:

import lotus.notes.*;
import java.util.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.sun.server.http.HttpServiceRequest;
import com.sun.server.http.HttpServiceResponse;
import com.ibm.ejs.samples.phone.*;

Dom_Empl Servlet
Our class starts by extending the HttpServlet class, AgentBase class.

We define a private variable for the type of EJB and define a string containing
the full name of the EJB:

public class Dom_Empl extends HttpServlet {
private static final String employeeHomeName =

"com.ibm.ejs.samples.phone.EmployeeHome";
EmployeeHome employeeHome;

init Method
The init() method is called once when the Web server loads the servlet. In this
method, we search the EJB and create a connection to its Home interface:
214 Connecting Domino to the Enterprise Using Java

public void init(ServletConfig config) {

An EJB client uses the JNDI API to locate an EJB’s Home interface. When
the interface has been found, the EJB client creates an instance of the EJB.

The first step for our client is to use the JNDI name services to locate a name
server. This involves creating an initial context. We also indicate the address
of the name server:

java.util.Hashtable properties = new java.util.Hashtable(2);
javax.naming.InitialContext initContext = null;
try {

properties.put(javax.naming.Context.PROVIDER_URL,
"iiop://krypton.almaden.ibm.com:9019");

properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.jndi.CosNaming.CNInitialContextFactory");

initContext = new javax.naming.InitialContext(properties);

The next step is to look up the required object, the EJB’s Home interface. The
Employee EJB was configured with a JNDI Home name of EmployeeHome.
As we are using CORBA’s CosNaming, a CORBA object is returned by the
lookup() method which was then subsequently narrowed to be of type
EmployeeHome:

if (employeeHome == null)
try {

java.lang.Object o = initContext.lookup("EmployeeHome");
if (o instanceof org.omg.CORBA.Object) {

employeeHome=EmployeeHomeHelper.narrow((org.omg.CORBA.Object) o);
}

} catch (javax.naming.NamingException e) {
System.out.println("Error retrieving the home interface: "

+ e.getMessage());
return;

}
}

doGet Method
The doGet method is run on response of a GET request from HTML. The
doGet method is run every time the Domino server receives a trigger URL for
the servlet. We set an output stream to be able to publish for Web users.

We call the static sinitThread method to explicitly start a Notes thread.

We use the GetParameter method of the HttpServletRequest class to fetch
the parameter from a Domino document field called Surname.
WAS Enterprise JavaBeans Server 215

We create a new session with the Domino server, access the database
(getDatabase()), access the view (getView()), and get the last document from
the view (getLastDocument()):

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

try {
ServletOutputStream out = response.getOutputStream();
response.setContentType("text/html");
NotesThread.sinitThread();
String lastName = request.getParameter("Surname");

.....
Session session = Session.newInstance();
Database db = session.getDatabase("", "EJBAgent.nsf");
View view = db.getView("AllDocuments");
Document doc = view.getLastDocument();

Starting the EJB
We have retrieved an EmployeeHome instance. We can now retrieve the
collection of Employee instances using a last name. We pass the key for the
request (surname) using the findByLastName() method of the EJB’s Home
interface. We receive the result as an enumeration.

We used the EmployeesBean class that was developed in the Phone
application to manipulate the Employee instances. This manipulation could
have been done directly from the enumeration:

Enumeration employees = employeeHome.findByLastName(
surname.trim().toUpperCase() + "%");

EmployeesBean emp = new EmployeesBean (employees);

Receiving the Data
We test the success of the request using the isEmpty() property of the
Employee EJB. If the request was successful, that is the bean has matched
names using the hasMatches() method of the Employee EJB, then we can
receive the names with the getLastName() method of the Employee EJB, and
move them to the document or print them to the Web:

if (!emp.isEmpty()) {
if (emp.hasMatches()) {

if (!employees.hasMoreElements()){
doc.replaceItemValue("R_Surname_0", emp.getLastName(0));
doc.replaceItemValue("R_FirstName_0", emp.getFirstName(0));
....
doc.save(true,true)
col1 = doc.getItemValueString("R_Surname_0");
216 Connecting Domino to the Enterprise Using Java

col2 = doc.getItemValueString("R_FirstName_0");
...
outputSimpleTableLine(out, col1,col2,...) ;

Ending the Servlet
When we finish handling the results, we can close the connection to the EJB.
We can run the garbage collector to remove the unused objects from
memory. You can ignore this process as Java runs the garbage collector
automatically:

employees = null;
emp = null;

System.gc();

19.3.3 Form Running the Servlet
We used the same form defined for the agent process (see “Form Running
the Java Agent” on page 210). To run the servlet, we added a button to the
form with the following formula:

@Command([FileSave]);
@URLOpen("http://krypton:999/servlet/Dom_Empl?Surname="+Surname)

19.3.4 Running the Servlet
You can run the servlet from a Web browser or a Notes client.

From a Web browser, you need to:

• Access the Domino form using the following URL:

http://krypton/EJBAgent.nsf/EJBAccess?OpenForm

• Fill the Surname field with any characters.

• Click the Search using a servlet button.

• Using the EJB, the example displays the result in a table. The process
may seem slow the first time it is run, as the server must initialize the
servlet.

Note : If you change your servlet programs, you have to copy the new classes
into the Domino servlet directory and reload the HTTP task using the
commands:

tell http quit
load http.
WAS Enterprise JavaBeans Server 217

Figure 55. Result Printed on the Web

19.3.5 Agent or Servlet When Using EJB
In this section we give some advice for selecting the type of Domino program
when you need to use an EJB.

To develop a Domino agent that access an EJB, you need to include all the
core EJB classes as well as all the supporting classes in the agent. As the
Domino agent is discarded when it finishes, there is no way to keep the
reference to the used EJB. Each time the agent is started, it creates a
connection to the EJB Home interface and this process may take a while.

On the other hand, a Domino servlet has two important methods: init() and
doGet(). The init() method is run at the initialization of the servlet; therefore, it
runs per servlet lifecycle. In this method, we can create a connection to the
218 Connecting Domino to the Enterprise Using Java

EJB Home interface and keep it as long as the servlet is running. So, the first
user may get a degraded response time as the servlet initializes the
connection to the EJB. The next users running the servlet get a quick
response time as the servlet processes only the doGet() method where we
invoke the EJB to run the backend processes.

Appendix A. Applet Example

This appendix contains the code for creating the DB2 Domino applet. We
used VisualAge for Java to create the applet. In the following list, we omitted
all the methods generated directly by VisualAge for Java.

package itso.sg245425.applet;

import java.applet.*;
import java.awt.*;
import lotus.domino.*;
import COM.ibm.db2.*;
import java.sql.* ;
/**

* This type was created in VisualAge.
*/

public class Db2DominoApplet extends AppletBase implements java.awt.event.ItemListener {
//Intitialization for Domino
Session s;
Database db;
DocumentCollection dcol;
String dbname = "SG245425T";
String server = "oxygen";
String viewname = "Employee\\Last Name";
String user = "Administrator";
String pwd = "password";
//Initialization for DB2
Connection con;
Statement stmt;
ResultSet rs;
ResultSetMetaData rsmd = null;
String name;
String sqlinit = "SELECT LASTNAME, FIRSTNME,SALARY, BONUS, COMM FROM christo.employee

where empno ='";
String sqlend = "'";
String userdb2 = "db2admin" ;
String pwddb2 = "db2admin" ;

Font font = new Font("Dialog", Font.BOLD, 24);
String str = "Welcome to VisualAge";
int xPos = 5;
private TextField ivjBonusTextField = null;
private TextField ivjCommTextField = null;
private List ivjEmployeeNumberList = null;
private TextField ivjFirstNameTextField = null;
© Copyright IBM Corp. 1999 219

private Label ivjLabel1 = null;
private Label ivjLabel2 = null;
private Label ivjLabel21 = null;
private Label ivjLabel211 = null;
private Label ivjLabel2111 = null;
private Label ivjLabel22 = null;
private TextField ivjLastNameTextField = null;
private TextField ivjSalaryTextField = null;

/**
* Connect to DB2
*/

public void accessDB2Database(String empno) {
try {

String query ;
stmt = con.createStatement() ;
query = sqlinit + empno + sqlend ;

rs = stmt.executeQuery(query) ;

} catch (Exception e) {
System.out.println("Error in AccessDB2Database") ;
e.printStackTrace();

}
}
/**

* Connect to Domino
*/

public void accessDominoDatabase() {
try {

// Access Database
db = s.getDatabase(s.getServerName(), dbname);
//List All Documents
dcol = db.getAllDocuments();
System.out.println("Database \"" + dbname + "\" has " + dcol.getCount() +

" documents");
//Get the Document through a view
View view = db.getView(viewname);
Document doc = view.getFirstDocument();
// Document doc;
String [] val = new String[dcol.getCount()];
//String[] val;
for (int i = 1; i <= dcol.getCount(); i++) {

val[i] = doc.getItemValueString("EMPNO");
getEmployeeNumberList().add(val[i]);
doc = view.getNextDocument(doc);

}
} catch (NotesException e) {

System.out.println("Error in Access Database");
e.printStackTrace();

}
}
/**

* Connect to DB2
*/

public void connectDB2() {
try {

String port = "999";
Class.forName("COM.ibm.db2.jdbc.net.DB2Driver"); // .newInstance();
// construct the URL (sample is the database name)
String url = "jdbc:db2://" + server + ":" + port + "/sample";
// connect to database with userid and password
con = DriverManager.getConnection(url, userdb2, pwddb2);
System.out.println("Connection DB2 OK");
220 Connecting Domino to the Enterprise Using Java

} catch (Exception e) {
System.out.println("Error in Connecting DB2 Server") ;
e.printStackTrace();

}
}
/**

* Connect to Domino
*/

public void connectDomino() {
try {

s = this.openSession("Administrator","password");
System.out.println("Connection OK on server :" + s.getServerName());
System.out.println("Connection OK for User :" + s.getCommonUserName());

} catch (NotesException e) {
System.out.println("Error in Connecting Domino Server");

e.printStackTrace();
}

}
/**

* Comment
*/

public void employeeNumberList_ItemStateChanged(java.awt.event.ItemEvent event,
String empno) {

try {
if (event.getStateChange() != java.awt.event.ItemEvent.SELECTED) {

return;
}
accessDB2Database(empno);
if (!rs.next()) {

System.out.println("No Corresponding row");
} else {

getLastNameTextField().setText(rs.getString(1));
getFirstNameTextField().setText(rs.getString(2));
getSalaryTextField().setText(rs.getString(3));
getBonusTextField().setText(rs.getString(4));
getCommTextField().setText(rs.getString(5));

}
} catch (Exception e) {

e.printStackTrace();
}

}
/**

* main entrypoint - starts the part when it is run as an application
* @param args java.lang.String[]
*/

public static void main(java.lang.String[] args) {
try {

Frame frame;
try {

Class aFrameClass = Class.forName("com.ibm.uvm.abt.edit.TestFrame");
frame = (Frame)aFrameClass.newInstance();

} catch (java.lang.Throwable ivjExc) {
frame = new Frame();

}
Db2DominoApplet aDb2DominoApplet;
Class iiCls = Class.forName("itso.sg245425.applet.Db2DominoApplet");
ClassLoader iiClsLoader = iiCls.getClassLoader();
aDb2DominoApplet =

(Db2DominoApplet)java.beans.Beans.instantiate(iiClsLoader,"itso.sg245425.applet.Db2Domin
oApplet");

frame.add("Center", aDb2DominoApplet);
frame.setSize(aDb2DominoApplet.getSize());
frame.setVisible(true);
Applet Example 221

} catch (Throwable exception) {
System.err.println("Exception occurred in main() of java.applet.Applet");
exception.printStackTrace(System.out);

}
}
/**

* Initializes the applet.
*/
public void notesAppletInit() {

super.notesAppletInit();
try {

setName("Db2DominoApplet");
setLayout(null);
setSize(364, 416);
add(getLabel1(), getLabel1().getName());

add(getEmployeeNumberList(), getEmployeeNumberList().getName());
add(getLabel2(), getLabel2().getName());
add(getLastNameTextField(), getLastNameTextField().getName());
add(getLabel21(), getLabel21().getName());
add(getFirstNameTextField(), getFirstNameTextField().getName());
add(getLabel211(), getLabel211().getName());
add(getBonusTextField(), getBonusTextField().getName());
add(getLabel22(), getLabel22().getName());
add(getSalaryTextField(), getSalaryTextField().getName());
add(getLabel2111(), getLabel2111().getName());
add(getCommTextField(), getCommTextField().getName());
initConnections();
connEtoC2();
connectDomino() ;
connectDB2() ;
accessDominoDatabase() ;

} catch (java.lang.Throwable ivjExc) {
handleException(ivjExc);

}
}
/**

* Called to start the applet. You never need to call this method
* directly, it is called when the applet's document is visited.

*/
public void notesAppletStart() {

super.notesAppletStart();
}
/**

* Called to stop the applet. It is called when the applet's document is
* no longer on the screen. It is guaranteed to be called before destroy()
* is called. You never need to call this method directly.

*/
public void notesAppletStop() {

super.notesAppletStop();
}
}

222 Connecting Domino to the Enterprise Using Java

Appendix B. Servlet Example

This appendix contains the source code of the Domino servlet that accesses
the enterprise using CICS.

package ExampleServletV2;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import lotus.notes.*;
import com.ibm.ctg.client.*;

/**
* This type was created in VisualAge.
*/

public class ExampleServletV2 extends HttpServlet {
JavaGateway jgaConnection;
ServletContext context;
private static int CICS_COMMAREALENGTH = 131;
private static int CICS_FIRSTNAME_POS = 24;
private static int CICS_FIRSTNAME_LEN = 10;
private static int CICS_ADDRESS_POS = 34;
private static int CICS_ADDRESS_LEN = 15;
private static int CICS_CITYSTATE_POS = 49;
private static int CICS_CITYSTATE_LEN = 15;
private static int CICS_POSTCODE_POS = 64;
private static int CICS_POSTCODE_LEN = 15;
private static int CICS_CREDIT_RATING_POS = 79;
private static int CICS_CREDIT_RATING_LEN = 2;
private static int CICS_COMMENTS_POS = 81;
private static int CICS_COMMENTS_LEN = 50;

/**
* ExampleServletV2 constructor comment.
*/

public ExampleServletV2() {
super();

}
/**

* This method was created in VisualAge.
* @param lookName java.lang.String
*/

public byte [] createCommArea(String lookName) {
// Set up Commarea buffer
Servlet Example 223

ByteArrayOutputStream byteBuf = new ByteArrayOutputStream(131);
try
{

// Start writing the COMMAREA
String byteStr = null;
byteStr = "2";
byteBuf.write(byteStr.getBytes());//Server state
byteStr = "0";
byteBuf.write(byteStr.getBytes());//Return Value
byteBuf.write((byte)5);//Server_key_size (2 Byte Short)
byteBuf.write((byte)0);
int c; // Record Number 5 bytes
for (c=0;c<5;byteBuf.write((byte)0),c++);
lookName = lookName.toUpperCase();// Force the surname to uppercase
byteBuf.write(lookName.getBytes(),0,lookName.length()); // Surname to look for
int size = byteBuf.size();

// Pad out rest of Commarea to required length
for (c=0;c<(CICS_COMMAREALENGTH-size);c++)

byteBuf.write((byte)0);
}
catch (IOException e) {};
return byteBuf.toByteArray();

}
/**

* This method was created in VisualAge.
* @param document doc
* @param outstuff out
*/

public void createReturnHTML(Document doc, ServletOutputStream out)
{

try
{

String col1;
String col2;
out.println("This frame has been generated by the Servlet.

");
out.println("<TABLE WIDTH=\"100%\" BORDER=1>");
outputSimpleTableLine(out,"DATA FROM DOMINO (VIA DOM)",

"DATA FROM CICS (VIA JAVA GATEWAY)");
col1 = "Name : " + doc.getItemValueString("Firstname") + " "

+ doc.getItemValueString("Surname");
col2 = "Address : " + doc.getItemValueString("CICS_ADDRESS");
outputSimpleTableLine(out,col1,col2);
col1 = "Job : " + doc.getItemValueString("Job");
col2 = "Postcode: " + doc.getItemValueString("CICS_POSTAL_CODE");
outputSimpleTableLine(out,col1,col2);
col1 = "";
col2 = "Credit Rating : " + doc.getItemValueDouble("CICS_CREDIT_RATING");
outputSimpleTableLine(out,col1,col2);
out.println("</TABLE>");

} catch (Exception e) {e.printStackTrace();}
}
/**

* This method was created in VisualAge.
* @param request javax.servlet.http.HttpServletRequest
* @param response javax.servlet.http.HttpServletResponse
* @exception java.io.IOException The exception description.
*/

public void doGet (HttpServletRequest request, HttpServletResponse response) throws
IOException {

try {
ServletOutputStream out = response.getOutputStream();
response.setContentType("text/html");
NotesThread.sinitThread(); // Kick off Notes
// Get the value of the EmpNo variable from the URL
224 Connecting Domino to the Enterprise Using Java

//eg. www.mysite.com?Empno=1000
String empKey = request.getParameter("EmpNo");
if(empKey != null) // As long as we have a value to work with
{

// Open up the database and get the view we want
Session s = NotesFactory.createSession();
Database db = s.getDatabase("","test.nsf");
View view = db.getView("CustomerLookupView");
Document doc = view.getDocumentByKey(empKey, true);// Look for our key
if (doc != null) // ..and as long as we find something
{

performCICSTransaction(doc,out); // Go get the data from CICS,
createReturnHTML(doc,out);// And return results to the browser

}
else

out.println("Sorry, data not found. Please try again
");
}
else

out.println("Sorry the EmpNo parameter can not be found
");
}
catch (Exception e) { e.printStackTrace(); }// Basic error handler
finally {NotesThread.stermThread();}// Clean up

}
/**

* This method was created in VisualAge.
* @param config javax.servlet.ServletConfig
*/

public void init(ServletConfig config) {
try {

com.ibm.ctg.client.T.setDebugOn(true);
com.ibm.ctg.client.T.setTimingOn(true);
jgaConnection = new JavaGateway();
jgaConnection.setURL("local:");
jgaConnection.open();

}
catch (IOException e) {};

}
/**

* This method was created in VisualAge.
* @param out javax.servlet.ServletOutputStream
* @exception java.lang.Exception The exception description.
*/

public void outputSimpleTableLine(ServletOutputStream out,String col1, String col2)
{

try {
out.println("<TR VALIGN=top><TD WIDTH=\"50%\">"

+ col1 + "</TD><TD WIDTH=\"50%\">"
+ col2 + "</TD></TR>");

}catch (Exception e) {e.printStackTrace();}
}
/**

* This method was created in VisualAge.
* @param Document doc
*/

public void performCICSTransaction(Document notesDoc,ServletOutputStream out) {
ECIRequest eciRequest = null;
try
{

if (!jgaConnection.isOpen())// check we do actually have a connection to CICS
{

out.println("
JGate Connection is not open,");
return;

}

Servlet Example 225

// Get the surname to pass to the CICS trasaction
String lookName = notesDoc.getItemValueString("Surname");
// And build up the CommArea that we will pass to CICS
byte [] commArea = createCommArea(lookName);
// Create our eciRequest
eciRequest = new ECIRequest("CICSOS2", // CICS Server

"SYSAD", // UserId, null for none
"SYSAD", // Password, null for none
"VSAMSERV", // Program name
commArea,// Commarea
ECIRequest.ECI_NO_EXTEND,
ECIRequest.ECI_LUW_NEW);

eciRequest.Cics_Rc = 0;
// Call CICS
jgaConnection.flow(eciRequest);

// If the CICS transaction happened OK
// then sort out the returned CommArea into our NotesDocument

if (eciRequest.Commarea != null) {
String tmpString;
tmpString = new String(eciRequest.Commarea,

CICS_FIRSTNAME_POS,CICS_FIRSTNAME_LEN);
notesDoc.replaceItemValue("CICS_FIRST_NAME",tmpString);
tmpString = new String(eciRequest.Commarea,

CICS_ADDRESS_POS,CICS_ADDRESS_LEN);
notesDoc.replaceItemValue("CICS_ADDRESS",tmpString);
tmpString = new String(eciRequest.Commarea,

CICS_CITYSTATE_POS,CICS_CITYSTATE_LEN);
notesDoc.replaceItemValue("CICS_CITY_STATE",tmpString);
tmpString = new String(eciRequest.Commarea,

CICS_POSTCODE_POS,CICS_POSTCODE_LEN);
notesDoc.replaceItemValue("CICS_POSTAL_CODE",tmpString);
// Credit rating is a 2 byte short, Low byte, High Byte)
// and with 255 as an integer to flip byte valus > 127
int creditRatingValueByte1 =

eciRequest.Commarea[CICS_CREDIT_RATING_POS] & 255;
int creditRatingValueByte2 =

eciRequest.Commarea[CICS_CREDIT_RATING_POS+1] & 255;
Integer creditRatingValue =

new Integer(creditRatingValueByte1 + (255*creditRatingValueByte2));
notesDoc.replaceItemValue("CICS_CREDIT_RATING",creditRatingValue);
tmpString = new String(eciRequest.Commarea,

CICS_COMMENTS_POS,CICS_COMMENTS_LEN);
out.println("
" + tmpString);

}
}
catch (Exception e){ e.printStackTrace();};

}
}

226 Connecting Domino to the Enterprise Using Java

Appendix C. Application Example

This appendix contains the source code of the three Java applications.

C.1 Domino JDBC Driver
package itso.sg245425.application;

import java.math.*;
import java.sql.*;
import java.util.*;
import lotus.jdbc.domino.*;
/**

* This type was created in VisualAge .
*/

public class DominoJDBC {
/**

* DominoTest constructor comment.
*/

public DominoJDBC() {
super();

}
/**

* Starts the application.
* @param args an array of command-line arguments
*/

public static void fill(String s, int times)
{

if (times <= 0)
return;

for (int i=0; i<times; i++)
{

System.out.print(s);
}

}
/**

* Starts the application.
* @param args an array of command-line arguments
*/

public static void main(java.lang.String[] args) {
// Insert code to start the application here.
Connection con;
Statement stmt;
Application Example 227

ResultSet rs;
ResultSetMetaData rsmd = null;
String name;
String sql = "SELECT * FROM \"Employee\\Last Name\"";
String connStr = "jdbc:domino/sg245425\\SG245425T.nsf/oxygen";
java.text.DecimalFormat moneyForm = new java.text.DecimalFormat("##,###.##");
try {

try {
Class.forName("lotus.jdbc.domino.DominoDriver");

} catch (ClassNotFoundException e) {
System.out.println("ClassNotFoundExecption: " + e.getMessage());

}
// GET CONNECTION
System.out.println();
System.out.println("Connecting to URL " + connStr);
con = DriverManager.getConnection(connStr, "", "");

System.out.println();
// Create Statement
stmt = con.createStatement();
// Execute statement
rs = stmt.executeQuery(sql);
System.out.println("Executing... " + sql);
System.out.println();
// Get Result set metadata
rsmd = rs.getMetaData();
// Find number of columns in the result set
int colCount = rsmd.getColumnCount();
// Array to hold max display size per column
int[] len = new int[colCount + 1];
//print the column labels
printColLabel(colCount, len, rsmd);
// New line
System.out.println();
//print the rows
printColText(colCount, len, rs);
// Close the statement
stmt.close();
// Close the connection
con.close();

} catch (Exception e) {
System.out.println(e.getMessage());

}
}
/**

* Starts the application.
* @param args an array of command-line arguments
*/

public static void printCol(int len, String s)
{

System.out.print(s);
fill(" ",len-s.length());
System.out.print(" ");

}
/**

* Starts the application.
* @param args an array of command-line arguments
*/

public static void printColLabel(int colCount, int[] len, ResultSetMetaData rsmd) {
try {

// Print column Labels as header
for (int i = 1; i <= colCount; i++) {

// Get column label.
String label = rsmd.getColumnLabel(i);
// Store the maximum of display size or label length
228 Connecting Domino to the Enterprise Using Java

if (label.length() > 10)
len[i] = label.length();

else
len[i] = 10;

// Print label
System.out.print(label);
// Pad with blanks
fill(" ", len[i] - label.length());
// Column seperator
System.out.print(" ");

}
// New line
System.out.println();
for (int i = 1; i <= colCount; i++) {

fill("-", len[i]);

System.out.print(" ");
}

} catch (Exception e) {
System.out.println(e.getMessage());

}
}
/**

* Starts the application.
* @param args an array of command-line arguments
*/

public static void printColText(int colCount, int[] len, ResultSet rs) {
try {

// Fetch all rows in the result set
while (rs.next()) {

for (int i = 1; i <= colCount; i++) {
Object obj = rs.getObject(i);
boolean nl = rs.wasNull();
if (nl)

printCol(len[i], "null");
else

printCol(len[i], obj.toString());
}
// New line

System.out.println();
}

} catch (Exception e) {
System.out.println(e.getMessage());

}
}
}

C.2 Domino Objects Classes
package itso.sg245425.application;

import java.math.*;
import java.sql.*;
import java.util.*;
import lotus.domino.*;
/**

* This type was created in VisualAge.
*/

public class DominoApplicationNotesThread extends NotesThread {
/**

* DominoTest constructor comment.
*/
Application Example 229

public DominoApplicationNotesThread() {
super();

}
/**

* Starts the application.
* @param args an array of command-line arguments
*/

public static void main(java.lang.String[] args) {
// Insert code to start the application here.
try {

DominoApplicationNotesThread thread1 = new DominoApplicationNotesThread();
thread1.start();
thread1.join();

} catch (Exception e) {
e.printStackTrace();

}
}
/**

* Starts the application.
* @param args an array of command-line arguments
*/

public static void printCol(View view) {
try {

Document doc = view.getFirstDocument();
while (doc != null) {

System.out.println("Last Name : " + doc.getItemValueString("LASTNAME"));
System.out.println("First Name : " + doc.getItemValueString("FIRSTNME"));
System.out.println("Employee # : " + doc.getItemValueString("EMPNO"));
System.out.println("Salary : " + doc.getItemValueInteger("SALARY"));
System.out.println("Bonus : " + doc.getItemValueInteger("BONUS"));
System.out.println("Commission : " + doc.getItemValueInteger("COMM"));
System.out.println();
doc = view.getNextDocument(doc);

}
} catch (NotesException e) {

e.printStackTrace();
}

}
/**

* Starts the application.
* @param args an array of command-line arguments
*/

public static void printColLabel(View view) {
try {

Vector columns = view.getColumns();
if (columns.size() != 0) {

for (int i = 0; i < columns.size(); i++) {
ViewColumn column = (ViewColumn) columns.elementAt(i);
String vtitle = column.getTitle();
if (vtitle == null)

vtitle = "No Title";
System.out.print(" " + vtitle);

}
}
System.out.println();

} catch (Exception e) {
System.out.println(e.getMessage());

}
}
/**

* Starts the application.
* @param args an array of command-line arguments
*/
230 Connecting Domino to the Enterprise Using Java

public void runNotes() {
String dbname = "SG245425\\SG245425T";
String servername = "oxygen";
String viewname = "Employee\\Last Name";
try {

// GET Session
System.out.println("Session");

Session s = NotesFactory.createSession();

// Access Database
System.out.println("Database");
Database db = s.getDatabase(servername, dbname);
// Open Database
System.out.print("Database " + dbname + "has been last modified on");

System.out.println(db.getLastModified());

// get View
System.out.println("View " + viewname + "contains the following columns:");
View view = db.getView(viewname);
printColLabel(view);
// Get Documents from the view
System.out.println("View " + viewname + "contains the following documents");
printCol(view);

} catch (NotesException e) {
e.printStackTrace();

}
}
}

C.3 Lotus Connector
package itso.sg245425.application;

import lotus.lcjava.*;
/**

* This type was created in VisualAge.
*/

public class LotusConnectorNotesData {
/**

* LotusConnectorNotesData constructor comment.
*/

public LotusConnectorNotesData() {
super();

}
/**

* Starts the application.
* @param args an array of command-line arguments
*/

public static void main(java.lang.String[] args) {
// Insert code to start the application here.
LCSession session = null;
LCConnection connection = null;
try {

// Create LC session
session = new LCSession(0);
System.out.println("Session ready");
// Create LC Connection to Notes
connection = new LCConnection("notes", 0);
System.out.println("Connection to Notes OK");
Application Example 231

connection.setPropertyJavaString(LCTOKEN.SERVER, "oxygen/Almaden");
connection.setPropertyJavaString(LCTOKEN.DATABASE, "sg245425\\sg245425T.nsf");
connection.setPropertyJavaString(LCTOKEN.METADATA, "Employee");
connection.connection();
System.out.println("Connection to Notes database ready");
//Set the data field lists
LCFieldlist keyList = new LCFieldlist(1, 0);
LCFieldlist resultList = new LCFieldlist(1, 0);
LCFieldlist fetchList = new LCFieldlist(1, 0);
//Set up the key
LCField keyField = new LCField();
// the key column
keyList.append("WORKDEPT", LCTYPE.TEXT, keyField);
keyField.setFlags(LCFIELDF.KEY);
// the key value

LCStream Workdept = new LCStream("D11");
keyField.setStream(1, Workdept);
System.out.println("Key Initialized");
// Set up the result set
LCField lastName = new LCField();
LCField firstName = new LCField();
LCField salary = new LCField();
LCField bonus = new LCField();
resultList.append("LASTNAME", LCTYPE.TEXT, lastName);
resultList.append("FIRSTNME", LCTYPE.TEXT, firstName);
resultList.append("SALARY", LCTYPE.FLOAT, salary);
resultList.append("BONUS", LCTYPE.FLOAT, bonus);
System.out.println("result set Set Up");
// Get the result set (LASTNAME, FIRSTNME, SALARY, BONUS)
connection.setPropertyJavaString(LCTOKEN.FIELD_LIST,

"LASTNAME,FIRSTNME,SALARY,BONUS");
Integer returnedRows = new Integer(0);
connection.select(keyList, 1, resultList, returnedRows);
System.out.println("Result Set OK, #" + returnedRows);
// Set up and fetch the result
LCField lastNameF = new LCField();
LCField firstNameF = new LCField();
LCField salaryF = new LCField();
LCField bonusF = new LCField();
fetchList.append("LASTNAME", LCTYPE.TEXT, lastNameF);
fetchList.append("FIRSTNME", LCTYPE.TEXT, firstNameF);
fetchList.append("SALARY", LCTYPE.FLOAT, salaryF);
fetchList.append ("BONUS", LCTYPE.FLOAT, bonusF) ;
int rc = 0;
rc = connection.fetch(fetchList, 1, 1);
while (rc != LCFAIL.END_OF_DATA) {

System.out.println("Name: " + lastNameF.toJavaString());
System.out.println("First Name: " + firstNameF.toJavaString());
System.out.println("Salary: " + salaryF.toJavaString());
System.out.println("Bonus: " + bonusF.toJavaString()) ;
rc = connection.fetch(fetchList, 1, 1);

}
} catch (LCException e) {

int err = e.getLCErrorCode();
System.out.println(err) ;
String errmsg = session.getStatusText(err);
System.out.println(errmsg);

}
}
}

232 Connecting Domino to the Enterprise Using Java

Appendix D. Agent Example

This appendix contains the source code of the Domino Java agents that
access the enterprise using MQSeries.

D.1 Domino Agent to the Enterprise Using MQSeries
// ===
// mqdom2ent
// ===
//
// Example of Using MQSeries Client for Java within Domino Agent
// Notes Client or Web Browser initiation (Web publish with if statement)
// Pointed to queue manager DEF_QMNGR on OB machine
//
// Input to enterprise:
// part number (3 characters)
// quantity (short)
//
// Output from enterprise:
// part number (3 characters)
// quantity (short)
// inventory level (integer)
// comments (101 characters)
//
// ===
import java.lang.*;
import java.io.PrintWriter;
import lotus.notes.*; // Include Notes package
import com.ibm.mq.*; // Include MQ package
public class mqdom2ent extends AgentBase
{

//*--
// Variables
//*--

String hostname = "ob.almaden.ibm.com"; // hostname to connect to
String channel = "SYSTEM.DEF.SVRCONN"; // name of channel for client to use
int iPort = 1414; // port, assumed to be 1414 unless specified

String qManager = "DEF_QMNGR"; // queue manager to connect to
String requestQueue = "MQAPPL.Q"; // queue to put request to
String replyQueue = "MQAPPL.RQ"; // queue to get reply from
Agent Example 233

MQQueueManager qMgr; // queue manager object use in try and finally
MQQueue requestQ; // queue object use in try and finally
MQQueue replyQ; // queue object use in try and finally

// Method: Main Calling Method
// ---------------------------

public void NotesMain()

{
System.out.println("Now executing mqdom2ent class, last modified 22/02/99 09:50");
System.out.println("NotesMain method starting");

try
{

// Notes initialization...

Session session = getSession();
AgentContext ac = session.getAgentContext();
Database db = ac.getCurrentDatabase();
Document doc = ac.getDocumentContext();
System.out.println("Document in use, UID: " + doc.getUniversalID());
PrintWriter pw = getAgentOutput();

// Extract required information from document...

String partNumber = doc.getItemValueString("I_PARTNO");
String quantity = doc.getItemValueString("I_QUANTITY");

// MQ initialization...

MQEnvironment.hostname = hostname;
MQEnvironment.port = iPort;
MQEnvironment.channel = channel;

System.out.println("About to try connecting to qmgr: " + qManager);
System.out.println("Using channel: " + channel);
System.out.println("and hostname: " + hostname);

// Create a connection to the queue manager...

qMgr = new MQQueueManager(qManager);

if (qMgr.isOpen)
{
System.out.println("Connection to qmgr open");
}

// Set up the options on the queues we wish to open...
// Note: All MQ Options are prefixed with MQC (i.e. as constants) in Java
// Note: MQOO_INQUIRE & MQOO_SET are always included by default

int openOptionsOut = MQC.MQOO_OUTPUT;
int openOptionsIn = MQC.MQOO_INPUT_SHARED;

// Now open the queues...

System.out.println("About to try opening the queues: "
+ requestQueue + ", " + replyQueue);

requestQ = qMgr.accessQueue(requestQueue,
openOptionsOut,
null, // default q manager
null, // no dynamic q name
234 Connecting Domino to the Enterprise Using Java

null); // no alternate user id
replyQ = qMgr.accessQueue(replyQueue,

openOptionsIn,
null, // default q manager
null, // no dynamic q name
null); // no alternate user id

// Create the MQ request message object..

MQMessage requestMsg = new MQMessage();

System.out.println("CharacterSet set to: " + requestMsg.characterSet);
System.out.println("Encoding set to: " + requestMsg.encoding);
requestMsg.characterSet = 437;
requestMsg.encoding = 546;

System.out.println("Explicitly set the characterSet and encoding");
System.out.println("CharacterSet set to: " + requestMsg.characterSet);
System.out.println("Encoding set to: " + requestMsg.encoding);

System.out.println("Write part number " + partNumber + " into message");
requestMsg.writeString(partNumber);
System.out.println("Write quantity " + quantity + " into message");
// if the quantity field is blank, the writeShort will fair, so make it zero
if (quantity==null)

requestMsg.writeShort(0);
else

requestMsg.writeShort(Short.parseShort(quantity));

requestMsg.messageType = MQC.MQMT_REQUEST;
requestMsg.format = MQC.MQFMT_STRING;
requestMsg.replyToQueueName = replyQueue;
requestMsg.replyToQueueManagerName = qManager;

// Specify the put message options...
// accept the defaults, MQPMO_DEFAULT
MQPutMessageOptions pmo = new MQPutMessageOptions();

// put the message on the queue

requestQ.put(requestMsg,pmo);
System.out.println("The request message was successfully put");

// Define an MQ message buffer to receive the reply message into...

MQMessage replyMsg = new MQMessage();
replyMsg.correlationId = requestMsg.messageId;

// Set the get message options..

MQGetMessageOptions gmo = new MQGetMessageOptions();
gmo.waitInterval = 1000;
gmo.options = MQC.MQGMO_WAIT;

// Now get the reply message off the queue...

replyQ.get(replyMsg, gmo, 300);

System.out.println("The reply message was successfully received");
System.out.println("reply characterSet = " + replyMsg.characterSet);
System.out.println("reply encoding = " + replyMsg.encoding);

// replyMsg.encoding = MQC.MQENC_INTEGER_REVERSED;
Agent Example 235

if (replyMsg.getMessageLength() != 0)
{

String replyPartNumber = replyMsg.readString(3);
String replyQuantity = Short.toString(replyMsg.readShort());
String replyInventory = Integer.toString(replyMsg.readInt());

System.out.println("The part number received: " + replyPartNumber);
System.out.println("the quantity: " + replyQuantity);
System.out.println("and inventory: " + replyInventory);
System.out.println("The datalength is now: " + replyMsg.getDataLength());
if (replyMsg.getDataLength() != 0)
{

String replyComments =replyMsg.readString(replyMsg.getDataLength());
doc.replaceItemValue ("I_COMMENTS", replyComments.trim());

}

doc.replaceItemValue("I_PARTNO", replyPartNumber);
doc.replaceItemValue("I_QUANTITY", replyQuantity);
doc.replaceItemValue ("I_INVENTORY", replyInventory);

}
else
{

// If there is no message data...
doc.replaceItemValue("I_COMMENTS", "No data available");

}

// Save the updates to the document...

doc.save(true, true);

// If agent was invoked by Web user, publish the updated document back to the Web...

String accessType = doc.getItemValueString("AccessType");
System.out.println ("Access type is: " + accessType);
if (accessType.equals("WebClient"))
{

pw.println ("[/"+db.getFileName()
+"/All+Documents/"+doc.getNoteID()+"?OpenDocument]");

}

}

// If an error has occured in the above, try to identify what went wrong.
// Was it an MQ error?
catch (MQException mqex)
{

System.out.println("An MQ error occurred: Completion code " +
mqex.completionCode +
" Reason code " + mqex.reasonCode +
" from: " + mqex.exceptionSource);

if (mqex.reasonCode==2085)
{

System.out.println("The explanation is: Unknown object name.");
}
else
{

if (mqex.reasonCode==2033)
{

System.out.println("The explanation is: No message available.");
}
else
{

System.out.println("No specific explanation available for this error,
236 Connecting Domino to the Enterprise Using Java

please refer to the MQ Application Programming Reference");
}

}
}

// Was it a Notes error?
catch (NotesException nex)
{

System.out.println("An Notes error occurred: " + nex);
}

// Was it a Java buffer space error?
catch (java.io.IOException jex)
{

System.out.println("An error occurred whilst writing to the message buffer: "

+ jex);
}
// Any other error...
catch (Exception e)
{

e.printStackTrace();
}

finally
{

// Tidy up before exiting (error or not)...
System.out.println("and finally...");

try
{

if (requestQ.isOpen)
requestQ.close();

if (replyQ.isOpen)
replyQ.close();

if (qMgr.isOpen)
{

System.out.println ("Disconnecting from queue manager");
qMgr.disconnect();

}
}
catch (Exception e)
{

e.printStackTrace();
}

}

} // end of NotesMain

} // end of Agent

D.2 The Enterprise to a Domino Agent Using MQSeries
// ===
// mqent2dom
// ===
//
// Example of Using MQSeries Client for Java within Domino Agent
// Enterprise initiation
// Pointed to queue manager DEF_QMNGR on OB machine
Agent Example 237

//
// Output from enterprise:
// part number (3 characters) aligned to 4 bytes
// inventory level (integer)
// comments (101 characters) aligned to 104 bytes
//
// ===
//

import com.ibm.mq.*; // Include MQ package
import lotus.notes.*; // Include Notes package
import java.lang.*;

public class mqent2dom extends AgentBase

{
//*--
// Variables
//*--

String hostname = "ob.almaden.ibm.com"; // hostname to connect to
String channel = "SYSTEM.DEF.SVRCONN"; // name of channel for client to use
int iPort = 1414; // port, assumed to be 1414 unless specified

String qManager = "DEF_QMNGR"; // queue manager to connect to
String inputQueue = "MQAPPL.TQ"; // triggered queue to get input from

MQQueueManager qMgr; // queue manager object use in try and finally
MQQueue inputQ; // queue object use in try and finally

// Method: Main Calling Method
// ---------------------------

public void NotesMain()

{
System.out.println("Now executing mqent2dom class, last modified 22/02/99 at 14:30");

System.out.println("NotesMain method starting");

try
{

// Notes initialization

Session session = getSession();
AgentContext ac = session.getAgentContext();
Database db = ac.getCurrentDatabase();
View view = db.getView("Inventory Summary");
Document doc = view.getLastDocument();
System.out.println("Document in use, UID: " + doc.getUniversalID());

// MQ initialization

MQEnvironment.hostname = hostname;
MQEnvironment.port = iPort;
MQEnvironment.channel = channel;

System.out.println("About to try connecting to qmgr: " + qManager);
System.out.println("Using channel: " + channel);
System.out.println("and hostname: " + hostname);

// Create a connection to the queue manager...

qMgr = new MQQueueManager(qManager);
238 Connecting Domino to the Enterprise Using Java

if (qMgr.isOpen)
{
System.out.println("Connection to qmgr open");
}

// Set up the options on the queue we wish to open...
// Note: All MQ Options are prefixed with MQC (i.e. as constants) in Java
// Note: MQOO_INQUIRE & MQOO_SET are always included by default

int openOptionsIn = MQC.MQOO_INPUT_SHARED;

// Now open the queue...

System.out.println("About to try opening the queue");

inputQ = qMgr.accessQueue(inputQueue,
openOptionsIn,
null, // default queue manager
null, // no dynamic queue name
null); // no alternate user id

// Define an MQ message buffer to receive the message into..

MQMessage inputMsg = new MQMessage();

// Set the get message options..
// accept the defaults (MQGMO_DEFAULT)
MQGetMessageOptions gmo = new MQGetMessageOptions();

// Now get the message off the queue...

inputQ.get(inputMsg, gmo, 300);

System.out.println("The message was successfully received");
System.out.println("The encoding is: " + inputMsg.encoding);
System.out.println("The character set is: " + inputMsg.characterSet);

// inputMsg.encoding = MQC.MQENC_INTEGER_REVERSED;

if (inputMsg.getMessageLength() != 0)
{

String inputPartNumber = inputMsg.readString(3);
String dummy = String.valueOf(inputMsg.readByte());
String inputInventory = String.valueOf(inputMsg.readInt());

String fieldToUpdate = "PN"+inputPartNumber+"_INVENTORY";
System.out.println("The field to update with inventory is: " + fieldToUpdate);
doc.replaceItemValue (fieldToUpdate, inputInventory);
String inputComments = inputMsg.readString(inputMsg.getDataLength());
String commentsField = "PN"+inputPartNumber+"_COMMENTS";
doc.replaceItemValue (commentsField, inputComments.trim());

doc.save(true, true);
view.refresh();
}

}

// If an error has occured in the above, try to identify what went wrong.
// Was it an MQ error?
catch (MQException mqex)
{

System.out.println("An MQ error occurred: Completion code " +
Agent Example 239

mqex.completionCode +
" Reason code " + mqex.reasonCode);

}
// Was it a Notes error?
catch (NotesException nex)
{

System.out.println("An Notes error occurred: " + nex);
}
// Was it a Java buffer space error?
catch (java.io.IOException jex)
{

System.out.println("An error occurred whilst writing to the message buffer: " +
jex);

}
catch (Exception e)

{
e.printStackTrace();

}

finally
{

System.out.println("and finally...");

try
{

if (inputQ.isOpen)
inputQ.close();

if (qMgr.isOpen)
{

System.out.println ("Disconnecting from queue manager");
qMgr.disconnect();

}
}
catch (Exception e)
{

e.printStackTrace();
}

}

} // end of NotesMain

} // end of Agent
240 Connecting Domino to the Enterprise Using Java

Appendix E. WebSphere Example

This appendix contains the source code of the Domino agent and the Domino
servlet that access the Employee EJB.

E.1 EJBAgent
import lotus.domino.*;
import java.util.*;
import java.io.*;
import javax.ejb.*;
import com.ibm.ejs.samples.phone.*;

public class JavaAgent extends AgentBase {

private static final String employeeHomeName =
"com.ibm.ejs.samples.phone.EmployeeHome";

private EmployeeHome employeeHome;

public void NotesMain() {

try {

// Get Domino Session
Session session = getSession();
AgentContext agentContext = session.getAgentContext();
Document doc = agentContext.getDocumentContext();

// get Surname from Domino Document
String surname = doc.getItemValueString("Surname");
System.out.println("Surname : "+surname);
System.out.println(employeeHomeName);
System.out.println("employees home : "+employeeHome);

// Find EJB

java.util.Hashtable properties = new java.util.Hashtable(2);
javax.naming.InitialContext initContext = null;
try // Attempt to get Context for our EJB
{

properties.put(javax.naming.Context.PROVIDER_URL,
WebSphere Example 241

"iiop://krypton.almaden.ibm.com:9019");
properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.jndi.CosNaming.CNInitialContextFactory");
initContext = new javax.naming.InitialContext(properties);

}
catch (javax.naming.NamingException e) {

System.out.println("Error retrieving the initial context: "
+ e.getMessage());

return;
}

if (employeeHome == null)
try // Now try and get a handle to our EJB
{

System.out.println("Retrieving the home interface...");
// this is the JNDI name

java.lang.Object o = initContext.lookup("EmployeeHome");
if (o instanceof org.omg.CORBA.Object)

employeeHome = EmployeeHomeHelper.narrow((org.omg.CORBA.Object) o);
}
catch (javax.naming.NamingException e) {

System.out.println("Error retrieving the home interface: "
+ e.getMessage());

return;
}

Enumeration employees = employeeHome.findByLastName(
surname.trim().toUpperCase() + "%");

EmployeesBean emp = new EmployeesBean (employees);

if (!emp.isEmpty()) {
if (emp.hasMatches()) {

// if number of the results = 1
if (!employees.hasMoreElements()){

doc.replaceItemValue("R_Surname_0", emp.getLastName(0));
doc.replaceItemValue("R_FirstName_0", emp.getFirstName(0));
doc.replaceItemValue("R_PhoneNumber_0", emp.getPhoneNumber(0));
doc.replaceItemValue("R_Initial_0", emp.getMiddleInitial(0));
doc.replaceItemValue("R_Department_0", emp.getDepartment(0));

} else{
// if number of the results > 1
int i = 0;
while (employees.hasMoreElements()) {

doc.replaceItemValue("R_Surname_"+i, emp.getLastName(i));
doc.replaceItemValue("R_FirstName_"+i, emp.getFirstName(i));
doc.replaceItemValue("R_PhoneNumber_"+i,

emp.getPhoneNumber(i));
doc.replaceItemValue("R_Initial_"+i, emp.getMiddleInitial(i));
doc.replaceItemValue("R_Department_"+i, emp.getDepartment(i));
emp.getNextData(i);
i++;

}
}

} else {
doc.replaceItemValue("R_Empty", "Name not found");

}

doc.save(true,true);
employees = null;
emp = null;
System.gc();

}
} catch(Exception e) {

e.printStackTrace();
242 Connecting Domino to the Enterprise Using Java

}
}

}

E.2 Dom_Empl Servlet
//Import
import lotus.notes.*;
import java.util.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

import com.sun.server.http.HttpServiceRequest;
import com.sun.server.http.HttpServiceResponse;
import com.ibm.ejs.samples.phone.*;

//PhoneBook' servlet class:

public class Dom_Empl extends HttpServlet {
private final static String kIBMCopyright = "(c) Copyright IBM Corporation 1999";

// Constants
private static final String employeeHomeName =

"com.ibm.ejs.samples.phone.EmployeeHome";
// Fields
EmployeeHome employeeHome;
// Static fields
// Service request handler
public void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

try {
ServletOutputStream out = response.getOutputStream();
response.setContentType("text/html");
NotesThread.sinitThread();
String lastName = request.getParameter("Surname");
if ((lastName == null) || lastName.equals("")) {

return;
}
// CREATE A CONNECTION TO DOMINO
Session session = Session.newInstance();
Database db = session.getDatabase("", "EJBAgent.nsf");
View view = db.getView("AllDocuments");
Document doc = view.getLastDocument();
System.out.println("finding the data........");
// FIND THE DB2 DATA USING EJB
Enumeration employees =

employeeHome.findByLastName(lastName.trim().toUpperCase() + "%");
EmployeesBean emp = new EmployeesBean(employees);
if (!emp.isEmpty()) {

if (emp.hasMatches()) {
String col1;
String col2;
String col3;
String col4;
String col5;
out.println("Result from Servlet

");
out.println("

");
out.println("<TABLE WIDTH=\"100%\" BORDER=1>");
outputSimpleTableLine(out, "Surname",
WebSphere Example 243

"FirstName", "MidInitial",
"Department", "PhoneNumber");

// if number of the results = 1
if (!employees.hasMoreElements()) {

doc.replaceItemValue("R_Surname_0", emp.getLastName(0));
doc.replaceItemValue("R_FirstName_0", emp.getFirstName(0));
doc.replaceItemValue("R_PhoneNumber_0", emp.getPhoneNumber(0));
doc.replaceItemValue("R_Initial_0", emp.getMiddleInitial(0));
doc.replaceItemValue("R_Department_0", emp.getDepartment(0));
doc.save(true, true);
col1 = doc.getItemValueString("R_Surname_0");
col2 = doc.getItemValueString("R_FirstName_0");
col3 = doc.getItemValueString("R_Initial_0");
col4 = doc.getItemValueString("R_Department_0");
col5 = doc.getItemValueString("R_PhoneNumber_0");

outputSimpleTableLine(out, col1, col2, col3, col4, col5);
} else {

// if number of the results > 1
int i = 0;
while (employees.hasMoreElements()) {

doc.replaceItemValue("R_Surname_" + i, emp.getLastName(i));
doc.replaceItemValue("R_FirstName_" + i, emp.getFirstName(i));
doc.replaceItemValue("R_PhoneNumber_" + i,

emp.getPhoneNumber(i));
doc.replaceItemValue("R_Initial_" + i,

emp.getMiddleInitial(i));
doc.replaceItemValue("R_Department_" + i,

emp.getDepartment(i));
emp.getNextData(i);
i++;

}
doc.save(true, true);
int j = 0;
while (j < i) {

col1 = doc.getItemValueString("R_Surname_" + j);
col2 = doc.getItemValueString("R_FirstName_" + j);
col3 = doc.getItemValueString("R_Initial_" + j);
col4 = doc.getItemValueString("R_Department_" + j);
col5 = doc.getItemValueString("R_PhoneNumber_" + j);
outputSimpleTableLine(out, col1, col2, col3, col4, col5);
j++;

}
}
out.println("</TABLE>");
System.out.println("Done");

}
} else {

doc.replaceItemValue("R_Empty", "Name not found");
out.println("Name not found");

}
employees = null;
emp = null;
System.gc();

} catch (Exception exception) {
}
return;

}
public void init(ServletConfig config) {

// FIND THE EJB and CREATE A CONNECTION WITH THE EJB HOME INTERFACE
System.out.println("Running the Initialization ");
java.util.Hashtable properties = new java.util.Hashtable(2);
javax.naming.InitialContext initContext = null;
try // Attempt to get Context for our EJB
244 Connecting Domino to the Enterprise Using Java

{
properties.put(javax.naming.Context.PROVIDER_URL,

"iiop://krypton.almaden.ibm.com:9019");
properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.jndi.CosNaming.CNInitialContextFactory");
initContext = new javax.naming.InitialContext(properties);

} catch (javax.naming.NamingException e) {
System.out.println("Error retrieving the initial context: " + e.getMessage());
return;

}
if (employeeHome == null)

try // Now try and get a handle to our EJB
{
// this is the JNDI name
java.lang.Object o = initContext.lookup("EmployeeHome");

if (o instanceof org.omg.CORBA.Object) {
employeeHome = EmployeeHomeHelper.narrow((org.omg.CORBA.Object) o);

}
} catch (javax.naming.NamingException e) {

System.out.println("Error retrieving the home interface: " + e.getMessage());
return;

}
}

// Private methods
public void outputSimpleTableLine(ServletOutputStream out,

String col1, String col2, String col3, String col4, String col5) {
try {

out.println("<TR VALIGN=top><TD WIDTH=\"50%\">" + col1
+ "</TD><TD WIDTH=\"50%\">" + col2 + "</TD></TR>"
+ col3 + "</TD></TR>" + col4 + "</TD></TR>" + col5 + "</TD></TR>");

} catch (Exception e) {
e.printStackTrace();

}
}

}

WebSphere Example 245

246 Connecting Domino to the Enterprise Using Java

Appendix F. Special Notices

This publication is intended to help information systems architects, Java and
Domino developers to integrate Domino applications with enterprise
ressources using Java. The information in this publication is not intended as
the specification of any programming interfaces that are provided by Domino,
DB2, CICS, and MQSeries. See the PUBLICATIONS section of the Lotus
Programming Announcement for Domino Release 5.0 for more information
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.
© Copyright IBM Corp. 1999 247

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers

attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of the Lotus Development Corporation in
the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

DB2 CICS
MQSeries IBM
MVS

Lotus Domino
Lotus Notes Notes
248 Connecting Domino to the Enterprise Using Java

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries. (For a complete list
of Intel trademarks see www.intel.com/dradmarx.htm)

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Special Notices 249

250 Connecting Domino to the Enterprise Using Java

Appendix G. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

G.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 253.

The books of the Lotus Solution for the Enterprise Collection are:

• Volume 1 - Lotus Notes: An Enterprise Application Platform, SG24-4837

• Volume 2 - Using DB2 in a Domino Environment, SG24-4918

• Volume 3 - Using the IBM CICS Gateway for Lotus Notes, SG24-4512

• Volume 4 - Lotus Notes and the MQSeries Enterprise Integrator,
SG24-2217

• Volume 5 - NotesPump: The Enterprise Data Mover, SG24-5255

These publications are also relevant as further information sources:

• Using VIsualAge for Java to Develop Domino Applications, SG24-5424

• Lotus Domino Release 5: A Developer’s Handbook, SG24-5331

• Designing Web Applications Using Lotus Notes Designer for Domino 4.6,
SG24-2183

• The Domino Defense: Security in Lotus Notes and the Internet,
SG24-4848

• Java Network Security, SG24-2109

• Enterprise Integration with Domino for S/390, SG24-5150
© Copyright IBM Corp. 1999 251

• Using VisualAge for Java Enterprise Version 2 to Develop CORBA and
EJB Applications, SG24-5276

• Revealed! CICS Transaction Gateway with More CICS Clients Unmasked,
SG24-5277

G.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and
receive updates 2-4 times a year at significant savings.

G.3 Other Publications

This publication is also relevant as further information source:

• Programming Domino 4.6 with Java, Groupware for the Internet, by Bob
Balaban ISBN: 1558515836

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038

Lotus Redbooks Collection SBOF-6899 SK2T-8039
Tivoli Redbooks Collection SBOF-6898 SK2T-8044
AS/400 Redbooks Collection SBOF-7270 SK2T-2849

RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
RS/6000 Redbooks Collection (PDF Format) SBOF-8700 SK2T-8043

Application Development Redbooks Collection SBOF-7290 SK2T-8037
252 Connecting Domino to the Enterprise Using Java

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com/ .

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/

• PUBORDER – to order hardcopies in the United States

• Tools Disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLCAT REDPRINT
TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type the following command:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1998

• REDBOOKS Category on INEWS

• Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL
© Copyright IBM Corp. 1999 253

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and
information about redbooks, workshops, and residencies in the following ways:

• Online Orders – send orders to:

• Telephone Orders

• Mail Orders – send orders to:

• Fax – send orders to:

• 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)
254 Connecting Domino to the Enterprise Using Java

• On the World Wide Web

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the
Redbooks Web Site (http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in
progress; not all redbooks become redpieces, and sometimes just a few chapters will be published
this way. The intent is to get the information out much quicker than the formal publishing process
allows.

Redpieces

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Country
255

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Invoice to customer number

Credit card number

Credit card expiration date SignatureCard issued to

256 Connecting Domino to the Enterprise Using Java

Glossary

application programming interface (API). A
set of calling conventions defining how a service
is invoked through a software package.

applet. A Java program designed to run within a
Web browser. Contrast with application.

application. In Java programming, a
self-contained, stand-alone Java program that
includes main() method. Contrast with applet.

bean . A definition or instance of a JavaBeans
component.

browser . An Internet-based tool that lets users
browse Web sites.

call level interface (CLI) . A callable application
program interface (API) for database access,
which is an alternative to an embedded SQL
application program interface. In contrast to
embedded SQL, CLI does not require
precompiling or binding by the user, but instead
provides a standard set of functions to process
SQL statements and related services at run
time.

Customer Information Control System
(CICS). A distributed online transaction
processing system designed to support a
network of many terminals. The CICS family of
products is available for a variety of platforms
ranging from a single workstation to the largest
mainframe.

CICS Access Builder . A VisualAge for Java
Enterprise tool that generates beans to access
CICS transactions through the CICS Gateway
© Copyright IBM Corp. 1999

for Java and CICS Client.

CICS Client . A server program that processes
CICS ECI calls, forwarding transaction requests
to a CICS program running on a host.

CICS Gateway for Java . A server program that
processes Java ECI calls and forwards CICS
ECI calls to the CICS Client.

class . An aggregate that defines properties,
operations, and behavior for all instances of that
aggregate.
client. As in client/server computing, the
application that makes requests to the server
and, often, handles the necessary interaction
with the user.

client/server. A form of distributed processing,
in which the task required to be processed is
accomplished by a client portion that requests
services and a server portion that fulfills those
requests. The client and server remain
transparent to each other in terms of location
and platform. See client and server.

commit . The operation that ends a unit of work
to make permanent the changes it has made to
resources (transaction or data).

Common Gateway Interface (CGI) . A standard
protocol through which a Web server can
execute programs running on the server
machine. CGI programs are executed in
response to requests from Web client browsers.

Common Object Request Broker
Architecture (CORBA) . A middleware
specification which defines a software bus—the
Object Request Broker (ORB)—that provides
the infrastructure

communications area (COMMAREA) . In a
CICS transaction program, a group of records
that describes both the format and volume of
data used.

conversational. A communication model
where two distributed applications exchange
information by way of a conversation; typically
one application starts (or allocates) the
257

conversation, sends some data, and allows the
other application to send some data. Both
applications continue in turn until one decides to
finish (or deallocate). The conversational model
is a synchronous form of communication.

Data Access Builder . A VisualAge for Java
Enterprise tool that generates beans to access
and manipulate the content of
JDBC/ODBC-compliant relational databases.

database. (1) A collection of related data
stored together with controlled redundancy

according to a scheme to serve one or more
applications. (2) All data files stored in the
system. (3) A set of data stored together and
managed by a database management system.

database management system (DBMS). A
computer program that manages data by
providing the services of centralized control, data
independence, and complex physical structures
for efficient access, integrity, recovery,
concurrency control, privacy, and security.

DB2 Call Level Interface (CLI). The DB2 call
level interface is an alternative SQL interface for
the DB2 family of products and takes full
advantage of DB2 capability.This implementation
closely follows industry standards, such as
X/OPEN, to enhance application portability.
Currently, the DB2 Call Level Interface functions
are compatible with ODBC 2.0, and contain
DB2-specific APIs to help exploit DB2 capability.

DB2 for MVS/ESA . An IBM relational database
management system for the MVS operating
system.

DCE. Distributed Computing Environment.
Adopted by the computer industry as a de facto
standard for distributed computing. DCE allows
computers from a variety of vendors to
communicate transparently and share resources
such as computing power, files, printers, and
other objects in the network.

distributed processing. Distributed processing
is an application or systems model in which
function and data can be distributed across
multiple computing resources connected on a
LAN or WAN. See client/server computing.

Builder generates beans and C++ wrappers that
let your Java programs access C++ DLLs.

e-business Either (a) the transaction of business
over an electronic medium such as the Internet or
(b) a business that uses Internet technologies
and network computing in their internal business
processes (via intranets), their business
relationships (via extranets), and the buying and
selling of goods, services, and information (via
electronic commerce.)

external call interface (ECI). An API that
enables a non-CICS client application to call a
CICS program as a subroutine. The client
application communicates with the server CICS
program using a data area called a COMMAREA.

external presentation interface (EPI). An API
that allows a non-CICS application program to
appear to the CICS system as one or more
standard 3270 terminals. The non-CICS
application can start CICS transactions and send
and receive standard 3270 data streams to those
transactions.

Enterprise Access Builders (EAB) . In
VisualAge for Java Enterprise, a set of
code-generation tools.

See also CICS Access Builder and Data Access
Builder.

file transfer protocol (FTP). The basic Internet
function that enables files to be transferred
between computers. You can use it to download
files from a remote, host computer, as well as to
upload files from your computer to a remote, host
computer. See Anonymous FTP.

gateway . A host computer that connects
258 Connecting Domino to the Enterprise Using Java

distributed program link (DPL) enables an
application program executing in one CICS
system to link (pass control) to a program in a
different CICS system. The linked-to program
executes and returns a result to the linking
program. This process is equivalent to remote
procedure calls (RPCs). You can write
applications that issue RPCs that can be received
by members of the CICS family.

dynamic link library (DLL) . A file containing
executable code and data bound to a program at
run time rather than at link time. The C++ Access

networks that communicate in different
languages. For example, a gateway connects a
company’s LAN to the Internet.

graphical user interface (GUI) . A type of
interface that enables users to communicate with
a program by manipulating graphical features,
rather than by entering commands. Typically, a
graphical user interface includes a combination of
graphics, pointing devices, menu bars and other
menus, overlapping windows, and icons.

HotJava A Java-enabled Web and intranet
browser developed by Sun Microsystems, Inc.
HotJava is written in Java.

hypertext markup language (HTML). The basic
language that is used to build hypertext
documents on the World Wide Web. It is used in
basic, plain ASCII-text documents, but when
those documents are interpreted (called
rendering) by a Web browser such as Netscape,
the document can display formatted text, color, a
variety of fonts, graphic images, special effects,
hypertext jumps to other Internet locations, and
information forms.

hypertext transfer protocol (HTTP) . The
protocol for moving hypertext files across the
Internet. Requires an HTTP client program on
one end, and an HTTP server program on the
other end. HTTP is the most important protocol
used in the World Wide Web (WWW). See also
Client, Server, WWW.

HTTP request . A transaction initiated by a Web
browser and adhering to HTTP. The server
usually responds with HTML data, but can send
other kinds of objects as well.

hypertext . Text in a document that contains a
hidden link to other text. You can click a mouse
on a hypertext word and it will take you to the text
designated in the link. Hypertext is used in
Windows help programs and CD encyclopedias
to jump to related references elsewhere within
the same document. The wonderful thing about
hypertext, however, is its ability to link—using
HTTP over the Web—to any Web document in
the world, yet still require only a single mouse
click to jump clear around the world.

interface . A set of methods that can be accessed
by any class in the class hierarchy. The Interface
page in the Workbench lists all interfaces in the
workspace.

Internet . The vast collection of interconnected
networks that all use the TCP/IP protocols and
that evolved from the ARPANET of the late
1960’s and early 1970’s.

intranet . A private network inside a company or
organization that uses the same kinds of software
that you would find on the public Internet, but that
is only for internal use. As the Internet has
become more popular, many of the tools used on
the Internet are being used in private networks.
For example, many companies have Web servers
that are available only to employees.

Internet protocol (IP). The rules that provide
basic Internet functions.

See TCP/IP.

Java . Java is a new programming language
invented by Sun Microsystems that is specifically
designed for writing programs that can be safely
downloaded to your computer through the
Internet and immediately run without fear of
viruses or other harm to your computer or files.
Using small Java programs (called applets, Web
pages can include functions such as animations,
calculators, and other fancy tricks. We can expect
to see a huge variety of features added to the
Web using Java, since you can write a Java
program to do almost anything a regular
computer program can do, and then include that
Java program in a Web page.

Java archive (JAR). A platform-independent file
259

Internet Inter-ORB Protocol (IIOP) . An industry
standard protocol that defines how General
Inter-ORB Protocol (GIOP) messages are
exchanged over a TCP/IP network. The IIOP
makes it possible to use the Internet itself as a
backbone ORB through which other ORBs can
bridge.

integrated development environment (IDE) . A
software program comprising an editor, a
compiler, and a debugger. IBM's VisualAge for
Java is an example of an IDE.

format that groups many files into one. JAR files
are used for compression, reduced download
time, and security. Because the JAR format is
written in Java, JAR files are fully extensible.

JavaBeans . In JDK 1.1, the specification that
defines the platform-neutral component model
used to represent parts. Instances of JavaBeans
(often called beans) may have methods,
properties, and events.

Java Database Connectivity (JDBC) . In JDK
1.1, the specification that defines an API that

enables programs to access databases that
comply with this standard.

Java Development Kit (JDK) The Java
Development Kit 1.1 is the latest set of Java
technologies made available to licensed
developers by Sun Microsystems. Each release
of the JDK contains the following: the Java
Compiler, Java Virtual Machine, Java Class
Libraries, Java Applet Viewer, Java Debugger,
and other tools.

Java Foundation Classes (JFC) Developed by
Netscape, Sun, and IBM, JFCs are building
blocks that are helpful in developing interfaces to
Java applications. They allow Java applications
to interact more completely with the existing
operating systems.

LAN . Local area network. A computer network
located at a user’s establishment within a limited
geographical area. A LAN typically consists of
one or more server machines providing services
to a number of client workstations.

LU type 6.2 (LU 6.2). A type of logical unit used
for CICS intersystem communication (ISC). LU
6.2 architecture supports CICS
host-to-system-level products and CICS
host-to-device-level products. APPC is the
protocol boundary of the LU 6.2 architecture.

logical unit of work (LUW). An update that
durably transforms a resource from one
consistent state to another consistent state. A
sequence of processing actions (for example,
database changes) that must be completed
before any of the individual actions can be
regarded as committed. When changes are

typically a short packet of information that does
not necessarily require a reply. Messaging
implements asynchronous communications

method. A fragment of Java code within a class
that can be invoked and passed a set of
parameters to perform a specific task.

Multipurpose Internet Mail Extension (MIME).
The Internet standard for mail that supports text,
images, audio, and video.

online transaction processing (OLTP). A style
of computing that supports interactive
applications in which requests submitted by
terminal users are processed as soon as they are
received. Results are returned to the requester in
a relatively short period of time. An online
transaction-processing system supervises the
sharing of resources to allow efficient processing
of multiple transactions at the same time.

object . (1) A computer representation of
something that a user can work with to perform a
task. An object can appear as text or an icon. (2)
A collection of data and methods that operate on
that data, which together represent a logical
entity in the system. In object-oriented
programming, objects are grouped into classes
that share common data definitions and methods.
Each object in the class is said to be an instance
of the class. (3) An instance of an object class
consisting of attributes, a data structure, and
operational methods. It can represent a person,
place, thing, event, or concept. Each instance
has the same properties, attributes, and methods
as other instances of the object class, though it
has unique values assigned to its attributes.
260 Connecting Domino to the Enterprise Using Java

committed (by successful completion of the LUW
and recording of the synch point on the system
log), they do not need to be backed out after a
subsequent error within the task or region. The
end of an LUW is marked in a transaction by a
synch point that is issued by either the user
program or the CICS server, at the end of task. If
there are no user synch points, the entire task is
an LUW.

messaging . A communication model whereby
the distributed applications communicate by
sending messages to each other. A message is

ODBC Driver. An ODBC driver is a dynamically
linked library (DLL) that implements ODBC
function calls and interacts with a data source.

ODBC Driver Manager. The ODBC driver
manager, provided by Microsoft, is a DLL with an
import library. The primary purpose of the Driver
Manager is to load ODBC drivers. The Driver
Manager also provides entry points to ODBC
functions for each driver and parameter validation
and sequence validation for ODBC calls.

Open Database Connectivity (ODBC) . A
Microsoft-developed C database application

programming interface (API) that allows access
to database management systems calling
callable SQL, which does not require the use of a
SQL preprocessor. In addition, ODBC provides
an architecture that allows users to add modules
called database drivers that link the application to
their choice of database management systems at
run time. This means applications no longer need
to be directly linked to the modules of all the
database management systems that are
supported.

Object Request Broker (ORB). A CORBA term
designating the means by which objects
transparently make requests and receive
responses from objects, whether they are local or
remote.

protocol . (1) The set of all messages to which an
object will respond. (2) Specification of the
structure and meaning (the semantics) of
messages that are exchanged between a client
and a server. (3) Computer rules that provide
uniform specifications so that computer hardware
and operating systems can communicate. It’s
similar to the way that mail, in countries around
the world, is addressed in the same basic format
so that postal workers know where to find the
recipient’s address, the sender’s return address
and the postage stamp. Regardless of the
underlying language, the basic protocols remain
the same.

proxy . An application gateway from one network
to another for a specific network application such
as Telnet of FTP, for example, where a firewall’s
proxy Telnet server performs authentication of the
user and then lets the traffic flow through the

elsewhere. The location of the procedures is
transparent to the calling application.

sandbox. A restricted environment, provided by
the Web browser, in which Java applets run. The
sandbox offers them services and prevents them
from doing anything naughty, such as doing file
I/O or talking to strangers (servers other than the
one from which the applet was loaded). The
analogy of applets to children led to calling the
environment in which they run the sandbox.

schema . In the Data Access Builder, the
representation of the database that will be
mapped. In the Data Access Builder, the mapping
contains a set of definitions for all attributes
matching all the columns for your database table,
view, or SQL statement, information required to
generate Java classes.

server . A computer that provides services to
multiple users or workstations in a network; for
example, a file server, a print server, or a mail
server.

Socket Secure (SOCKS). The gateway that
allows compliant client code (client code made
socket secure) to establish a session with a
remote host.

Swing. A Java GUI component kit that simplifies
and streamlines the development of windowing
components, such as menus, tool bars, dialogs
and the like that are used in graphically based
applets and applications. Swing is integrated into
the JDK.

Transmission Control Protocol/Internet
Protocol (TCP/IP). The basic programming
foundation that carries computer messages
261

proxy as if it were not there. Function is
performed in the firewall and not in the client
workstation, causing more load in the firewall.
Compare with socks.

Remote Method Invocation (RMI) . In JDK 1.1,
the API that allows you to write distributed Java
programs, allowing methods of remote Java
objects to be accessed from other Java virtual
machines.

Remote Procedure Call (RPC) . A
communication model where requests are made
by function calls to distributed procedure

around the globe via the Internet. The suite of
protocols that defines the Internet. Originally
designed for the UNIX operating system, TCP/IP
software is now available for every major kind of
computer operating system. To be truly on the
Internet, your computer must have TCP/IP
software.

thin client Thin client usually refers to a system
that runs on a resource-constrained machine or
that runs a small operating system. Thin clients
don't require local system administration, and

they execute Java applications delivered over the
network.

transaction. A unit of processing (consisting of
one or more application programs) initiated by a
single request. A transaction can require the
initiation of one or more tasks for its execution.

transaction processing. A style of computing
that supports interactive applications in which
requests submitted by users are processed as
soon as they are received. Results are returned
to the requester in a relatively short period of
time. A transaction processing system supervises
the sharing of resources for processing multiple
transactions at the same time.

Uniform Resource Locator (URL). Standard to
identify resources on the World Wide Web

virtual machine (VM) A software program that
executes other computer programs. It allows a
physical machine, a computer, to behave as if it
were another physical machine.

Web server The server component of the World
Wide Web. It is responsible for servicing requests
for information from Web browsers. The
information can be a file retrieved from the
server's local disk or generated by a program
called by the server to perform a specific
application function.

workstation. A configuration of input/output
equipment at which an operator works. A terminal
or microcomputer, usually one that is connected
to a mainframe or a network, at which a user can
perform applications.

World Wide Web (WWW or Web). A graphic
hypertextual multimedia Internet service.
262 Connecting Domino to the Enterprise Using Java

List of Abbreviations

API application
programming interface

AR application requester

AS application server

ASP active server page

ACL access control list

APPC Advanced
Program-to-Program
Communication

ASCII American National
Standard Code for
Information
Interchange

AWT abstract window toolkit

BLOB binary large object

BOA basic object adapter

CAE client application
enabler

CGI Common Gateway
Interface

CICS Customer Information
Control System

CLI call level interface

CLOB character large object

CORBA Common Object
Request Broker
Architecture
© Copyright IBM Corp. 1999

DBCLOB double-byte character
large object

DBMS database management
system

DB2LSX DB2 LotusScript
Extension

DCE distributed computing
environment

DECS Domino Enterprise
Connection Services
DLL dynamic link library

DPL dynamic program link

DNS domain name server

DRDA Distributed Relational
Database Architecture

EBCDIC extended binary coded
decimal interchange
code

ECI external call interface

EPI external presentation
interface

EJB Enterprise JavaBean

ERP enterprise resource
planning

ESA Enterprise Systems
Architecture

FTP file transfer protocol

GIOP General Inter-ORB
Protocol

GUI graphical user interface

HTML Hypertext Markup
Language

HTTP Hypertext Transfer
Protocol

IBM International Business
Machines Corporation

IDE integrated development
263

environment

IDL interface definition
language

IIOP Internet Inter-ORB
Protocol

IMAP Internet Message
Access Protocol

ITSO International Technical
Support Organization

JDBC Java database
connectivity

JDK Java Development Kit

JNDI Java naming and
direcory interface

JSDK Java Servlet
Development Kit

JSP Java server page

JTS Java Transaction
Service

JVM Java virtual machine

LAN local area network

LC Lotus Domino
Connector

LDAP Lightweight Directory
Access Protocol

LEI Lotus Enterprise
Integrator for Domino

LS:DO LotusScript Data
Option

LSX LotusScript Extension

LUW logical unit of work

MAPI messaging application
program interface

MIME Multipurpose Internet
Mail Extension

MQEI MQSeries Enterprise
Integrator

MQI message queue

NDS NetWare Directory
Service

NetBIOS Network Basic
Input/Output System

NNTP NetNews Transfer
Protocol

NOI Notes object interface

NOS Notes object store

NT Microsoft Windows NT
(new technology)

ODBC open database
connectivity

OLAP online analytical
processing

OLE object linking and
embedding

OLTP online transaction
processing

OMG Object Management
Group

ORB object request broker

OS/2 Operating System/2

OSF Open Software
Foundation

PC personal computer

PIM personal information
manager

POP Post Office Protocol

RACF Resource Access
264 Connecting Domino to the Enterprise Using Java

interface

MQLSX MQSeries link
LotusScript Extension

MVS Multiple Virtual Storage

MTA message transfer agent

NC network computer

NCF network computing
framework

Control Facility

RAD rapid application
development

RMI remote method
invocation

RPC remote procedure call

RSA Rivest Shamir Adleman

RUW remote unit of work

SDK software developer's kit

SET secure electronic
transaction

SMP symmetric
multiprocessors

SMTP Simple Mail Transfer
Protocol

SNA Systems Network
Architecture

SNMP Simple Network
Management Protocol

SMTP Simple Mail Transfer
Protocol

SQL structured query
language

SSL secure sockets layer

TCP/IP Transmission Control
Protocol/Internet
Protocol

UDB Universal Database

UDF user-defined function

UDT user-defined data type

UPM User Profile Manager

URL uniform resource
locator

WAN wide area network

WAS WebSphere Application
Server

XML extended markup
language
265

266 Connecting Domino to the Enterprise Using Java

Index

Symbols
<Applet> 144
@Command 98, 164
@DbFunction 59

Numerics
1414 169
9527 118

A
abstract window toolkit

See AWT
access control 5
access control list

See ACL
accessQueue method 169
ACL 119, 199
active server page

See ASP
ActiveX 20
ADO 60
agent

accessing an EJB 205, 207
and MQSeries Trigger Monitor 176
attaching JAVA resources 96
compared 189, 218
Domino Java support 97, 101
scheduling 96
structure 162
trigger 164
using MQSeries 165

AgentBase class 138, 163, 208
AgentContext 168, 208
© Copyright IBM Corp. 1999

alias 121, 188, 198
ALLOW_NOTES_PACKAGE_APPLETS 105
AMgr_DocUpdateAgentMinInterval 96
AMgr_DocUpdateEventDelay 96
append method 156
applet

compared 189
DB2 JDBC driver

See DB2 applet JDBC driver
Domino support 133
downloading and displaying 141
HTML parameter 144
Java definition 17
parameters 143
restrictions 18
structure 134
viewer 15
writing with DB2 and Domino 136

Applet class 134
AppletBase class 135, 138
application

compared 189
DB2 JDBC driver

See DB2 application JDBC driver
development and CICS Transaction Gateway
63
e-business services 7
framework 3
integration 5, 6
Java definition 19
security 154
server 3

application requester
See AR

application server
See AS

Application Server Manager 81
architecture 3
ASP 20
asynchronous 70
authentication 5, 122
availability 41
AWT 12, 26

B
backup 41
basic object adapter
267

See BOA
BEA Tuxedo 22
bean

See also EJB and JavaBean
session and entity 25

binary large object
See BLOB

BOA 32
boolean 172
bus 32
byte 172

C
C++ 11
caching 82
CAE and DB2 application JDBC driver 57
call level interface

See CLI
callback 30
cc:Mail 41
certificate 40
CGI 26
channel 70, 168
character

large object
See CLOB and DBCLOB

set 170
unicode 172

characterSet 170
CICS

and Domino 65
and Java 62, 183
Domino integration techniques 65
initialization file 114
Java class library 63
presentation 61

CICS Gateway for Java 63
CICS Transaction Gateway 62, 63, 65, 113
CICS Universal Client 63
cicscli.ini 114
CicsCpRequest class 64, 183
class

AgentBase 138, 163, 208
Applet 134
AppletBase 135, 138
CicsCpRequest 64, 183
DominoConnection 51
DominoDatabaseMetaData 51
DominoDriver 51

keyField 156
keyList 156
LCConnection 53, 155
LCCurrency 53
LCDatetime 53
LCDatetimeParts 53
LCException 157
LCFieldList 53
LCSession 53, 155
LCStream 53
MQChannelDefinition 74
MQChannelExit 74
MQDistributionList 74
MQEnvironment 74
MQException 74, 176
MQGetMessageOptions 74
MQManagedObject 74
MQMessage 75, 169
MQMessageTracker 75
MQProcess 74
MQPutMessageOptions 75
MQQueue 74
MQQueueManager 74, 169
NotesFactory 138
NotesThread 151, 163
Session 139, 153

ClassNotFoundException 95
CLASSPATH environment variable 93, 96, 114,
184
CLI 56
client

EJB 24
management services 6
tier 3

client application enabler
See CAE

close method 150
268 Connecting Domino to the Enterprise Using Java

DominoPreparedStatement 51
DominoResultSet 51
DominoResultSetMetaData 51
DominoStatement 51
DriverManager 139, 148
ECIRequest 63, 64, 183, 187
EPIRequest 63, 183
expanded 193
HttpServlet 182, 214
HttpServletRequest 186, 215
JavaGateway 183
JGateConnection 64

collaboration 38
COM 41
com.ibm.ctg.client package 183
com.ibm.db2.java.sql package 113
com.ibm.db2.jdbc.net package 113
com.ibm.mq package 74
com.ibm.mqbind package 74
command interface 70
COMMAREA 61, 187
Common Gateway Interface

See CGI
Common Object Request Broker Architecture

See CORBA
community services 6
concurrency 55
confidentiality 5
connection method 155
connectivity and CICS Transaction Gateway 63
connectors 6
container 23, 85, 122, 204
container-managed 203
context 208
conversion of message 174
CORBA

and Domino 46, 48
and Domino R5 39, 101, 107
and EJB 22
and JDK 31
and WAS 83
CosNaming 209, 215
definition 29
Domino classes 143
services 33

correlation Id 170
createCommArea method 187
createSession method 138
createStatement method 149
ctgclient.jar 114, 184
ctgserver.jar 114, 184

D
data

structured 55
data, unstructured 40
database 5

connection pool 83
container authentication 122
management system

local or remote access from Domino 111
presentation 55

DB2 applet JDBC driver 57, 112
DB2 Applet JDBC server 140
DB2 application JDBC driver 57, 112
db2admin start 120
db2java.zip 112
db2jstrt 113
DB2LSX 59
db2sampl 120
db2start 120
DBMS 43, 55
DCOM 22
debugger 15
DECS

and CICS 65
and DB2 59
and MQSeries 78
description 41
Domino feature 39
presentation 44

defaultEntityContainer 122
delivery of messages 68
deployment descriptor 26
descriptor

deployment, EJB 26
MQSeries message 70

destroy method 135, 182
development

environment in Domino 41
Java tool 17
tools for IBM Application Framework 8
tools in IBM Application Framework 5

DHCP 5
diiop task 49
directory

and Domino 40
269

See DBMS
services 6

DB2
and Domino 59
and EJB 22
and JDBC 56, 59
and WAS 85
Domino integration tecchniques 111
Domino integration techniques 59
Java support 56, 112
LC Java classes 59
loading the JDBC driver 139

and LC 44
distributed

EJB 22
Java language 10
transaction service 85

Distributed Relational Database Architecture
See DRDA

doGet method 183, 186, 215
Domino

Administrator R5 38
and CICS 65
and CORBA 46, 48

and DB2 59
and Java 45
and MQSeries 77
and special characters 149
and WebSphere 87, 89
applet and rich text field 141
applet support 133
Application Server R5 38
DB2 integration techniques 59, 65, 111
Designer R5 38, 45
enabling Java applet 95
Java servlet support in R4.6 99
Java servlet support in R5 104
MQSeries integration techniques 78
object 158
object classes 48, 106, 151, 192
objects 46
R4.6 Java support 95
R5 Java support 101
server family 37
servlet manager 104, 196
setting 95, 101
Web server task 95, 101

Domino Driver for JDBC
description 108
using in a Java application 148

Domino Enterprise Connection Services
See DECS

DominoConnection class 51
DominoDatabaseMetaData class 51
DominoDriver class 51
DominoEnableJavaServlets 100
DominoPreparedStatement class 51
DominoResultSet class 51
DominoResultSetMetaData class 51
DominoStatement class 51
double 172

e-commerce 8
EJB

access with a servlet 213
accessing with an agent 207
agent or servlet 218
and IBM Application Framework 5
and WAS 83
and WebSphere 89
client-side programming 203
definition 21
deploying 118, 122
Employee sample 203
home interface 24
object interface 24
operations 23
package 26
remote interface 25

EJS 84, 119, 121, 196
ejs.jar 207
Employee EJB 120, 203
EmployeeBean.java 207
EmployeeServer.jar 207
encoding 170, 179
Enterprise JavaBean

See EJB
enterprise resource planning

See ERP
entity bean 25, 203
environment variable

CLASSPATH 93, 96, 114
MQSERVER 166

EPI 62, 183
EPIRequest class 63, 183
ERP 44
event service 33
exception handling 176
executeQuery method 149
270 Connecting Domino to the Enterprise Using Java

DPL 61
DRDA and Domino access 111
DriverManager class 139, 148
dynamic

checking 11
invocation 30

E
e-business 5
ECI 61, 183
ECIRequest class 63, 64, 183, 187

executeUpdate method 149
expanded class 193
extended markup language

See XML

F
faceless object 20
fetch method 157
field list 155
file

services 6

sharing 82
file transfer protocol

See FTP
filtering 82
findByLastName method 209, 216
float 172
flow method 187
form 210
forName method 139, 148
framework 3

G
garbage collection 12
gateway 6
General Inter-ORB Protocol

See GIOP
GET 183, 200, 215
getAgentOutput method 163, 168
getConnection method 139, 148
getDatabase method 139, 153, 215
get---Document method 139, 154
getDocumentContext method 208
getItemValue--- method 139, 154
getItemValueString method 168, 208
getLastDocument method 215
getLCErrorCode method 157
getObject method 149
GetParameter method 215
getParameter method 186
getSession method 49, 135, 138, 144, 168, 208
getStatusText method 157
getView method 139, 154, 215
GIOP 33
groupware services 6

H

HttpServletRequest class 186, 215
Hypertext Markup Language

See HTML
Hypertext Transfer Protocol

See HTTP

I
i18n.jar 96
IBM Application Framework 3
IBM Component Broker 22
IBM TX Series 22
IBM WebSphere Application Server

See WAS
IBM WebSphere Family 79
icsclass.jar 96
ID file 150
identification 5
IDL 48
if 193
If Documents Have Been Created or Modified event
164
IIOP 22, 32, 33
IMAP4 41
implementation repository 33
InfoBus 49
init method 134, 182, 214
initialization parameters 188
instantiate a CORBA object 30
integer 172
integrated development environment

See IDE
integration methods 59, 65, 78
integrity

and CICS Transaction Gateway 63
and IBM Application Framework 5
Java feature 11
271

home interface 24, 204, 208, 214
hostname 169
HTML

and IBM ApplicationFramework 5
applet parameter 144

HTTP
and EJB 22
and WAS 195
Domino task 40, 95, 101
server 5, 6

http.cnf 125
HttpServlet class 182, 214

interface
home 24
object 24
remote 14, 25

interface definition language
See IDL

Internet Inter-ORB Protocol
See IIOP

invocation of a CORBA object 30

J
jar file, EJB 26

Java
and CICS 62, 183
and DB2 56
and Domino 45
and Domino Objects 41
and LotusScript 191
and MQSeries 72
applet 4
application 19
CICS class library 63
DB2 support 112
definition 9
development tool 17
EPI bean 64
programming language 9
type of programs 189

Java database connectivity
See JDBC

Java Development Kit
See JDK

Java naming and direcory interface
See JNDI

Java server page
See JSP

Java Servlet Development Kit
See JSDK

Java Transaction Service
See JTS

Java virtual machine
See JVM

java.applet package 12, 134
java.awt package 12
java.io package 12
java.lang package 11
java.net package 12
java.rmi.Naming package 14
java.sql package 12, 15

JDBC
and DB2 56, 112
and WebSphere 89
DB2 applet driver

See DB2 applet JDBC driver
DB2 application driver

See DB2 application JDBC driver
installation 93
loading the DB2 driver 139
Lotus Domino Driver 49, 108
package 12
presentation 15
using in a Java application 148

JdbcDomino.dll 109
JdbcDomino.jar 109
JdbcDriver.dll 109
JDBC-ODBC bridge 16
JdbcRniDomino.dll. 109
JDK 15, 31, 93
JGateConnection class 64
JNDI 24, 85, 196, 204, 208
journal 55
JRMP 22
JSDK 15, 93
JSP 20, 124, 196
JTS 21, 196
JVM

and Domino Designer 45
and servlets 19
definition 12

K
key, public 5
keyField class 156
keyList class 156
272 Connecting Domino to the Enterprise Using Java

java.sql.Driver package 51
java.util package 11
JavaAgent.java 207
JavaBeans

and JSP 21
definition 20

javac 97
JavaGateway class 183
JavaScript 41, 45
JavaUserClasses 95, 103
javax.naming 209
javax.servlet package 15, 93, 182

L
LC 43
LC Java classes 52, 65, 78, 109, 154
LC LSX 42, 59, 65, 78
LCConnection class 53, 155
LCCurrency class 53
LCDatetime class 53
LCDatetimeParts class 53
LCException class 157
LCFieldList class 53
lcjava.zip 109
LCSession class 53, 155

LCStream class 53
LDAP 40, 44
LEI 42, 45, 60, 65, 78
life cycle service 33
Lightweight Directory Access Protocol

See LDAP
listener 166
load

balancing 82
command 99, 182

localhost 169
localization of an EJB 208
locate a CORBA object 30
Location Server Daemon 121
lock 55
long 172
lookup method 209, 215
Lotus Domino Connector

See LC
Lotus Domino Driver for JDBC 49
Lotus Enterprise Integrator for Domino

See LEI
lotus.domino package 46, 105
lotus.jdbc.domino package 51
lotus.lcjava package 53
lotus.notes package 46
LotusScript 41, 191
LotusScript Data Option

See LS:DO
LotusScript Extension

See LSX
LS:DO 59

M
mail services 6
managed object services 7

transfer agent
See MTA

messaging 7, 38, 40, 67
messaging application program interface

See MAPI
metadata 155
method

accessQueue 169
append 156
close 150
connection 155
createCommArea 187
createSession 138
createStatement 149
destroy 135, 182
doGet 183, 186, 215
executeQuery 149
executeUpdate 149
fetch 157
findByLastName 209, 216
flow 187
forName 139, 148
getAgentOutput 163, 168
getConnection 139, 148
getDatabase 139, 153, 215
get---Document 139, 154
getDocumentContext 208
getItemValue--- 139, 154
getItemValueString 168, 208
getLastDocument 215
getLCErrorCode 157
getObject 149
GetParameter 215
getParameter 186
getSession 49, 135, 138, 144, 168, 208
getStatusText 157
getView 139, 154, 215
273

MAPI 41
marshalling method parameters 30
MCA 69
memory

management 12
overwriting 11

message
and MQSeries 67
building 171
conversion 174
descriptor 70
encoding 170, 179

init 134, 182, 214
lookup 209, 215
narrow 209
newInstance 153
next 140, 149
notesAppletDestroy 135
notesAppletInit 135
notesAppletStart 135
notesAppletStop 135
NotesMain 163, 168, 208
openSession 138
println 168

put 170
readString 170
run 152
runNotes 152
select 156
service 183
setFlags 156
setPropertyJavaString 156
setStream 156
sinitThread 153, 215
start 134
stemThread 153
stop 134
writeShort 170
writeString 170

Microsoft Transaction Server 22
MIME 41
Mobile Network Computer Reference Specifica-
tion 5
mobile services 6
MQC.MQENC_INTEGER_NORMAL 173
MQC.MQENC_INTEGER_REVERSED 173
MQChannelDefinition class 74
MQChannelExit class 74
MQDistributionList class 74
MQEI 65, 78
MQEnvironment class 74
MQException class 74, 176
MQGetMessageOptions class 74
MQGMO_CONVERT 174
MQI 68
MQIVP 115
mqjavac.html 115
MQLSX 65, 78
MQManagedObject class 74
MQMD 70, 169
MQMessage class 75, 169

MQSeries Bindings for Java 73, 78, 115
MQSeries Client for Java 73, 78, 115, 165
MQSeries Enterprise Integrator

See MQEI
MQSeries link LotusScript Extension

See MQLSX
MQSeries Trigger Monitor for Lotus Notes agents
76, 176
MQSERVER environment variable 166
MTA 41
Multipurpose Internet Mail Extension

See MIME
multithread 11, 163

N
naming services 33, 208
narrow method 209
NCSO.jar 48, 106, 142
NDS 44
Network Computer Profile 5
network infrastructure 4
newInstance method 153
next method 140, 149
NOI 47, 106, 192
NOI_COOKIE 144
NOI_IOR 144
non-repudiation 5
NoParamServlet 100
Notes client 38
Notes object interface

See NOI and also DOM
Notes object store

See NOS
notes.ini 49, 95, 101, 103, 213
Notes.jar 96, 105
notesAppletDestroy method 135
274 Connecting Domino to the Enterprise Using Java

MQMessageTracker class 75
MQProcess class 74
MQPutMessageOptions class 75
MQQueue class 74
MQQueueManager class 74, 169
MQSeries

and Domino 77
and Java 72
Domino integration techniques 78
presentation 67
supported data types 172

MQSeries and CICS Connections for Domino 60

notesAppletInit method 135
notesAppletStart method 135
notesAppletStop method 135
NotesFactory class 138
NotesMain method 163, 168, 208
NotesThread class 151, 163
NotesUIWorkstation 106

O
object

CORBA service 29
interface

See also NOI
model and Domino 41
oriented programming language 11
store 40

See also NOS
object interface 24
Object Management Group

See OMG
object request broker

See ORB
ODBC 16, 56
OLE 41
OLTP 44, 61
OMG 29
online analytical processing

See OLAP
online transaction processing

See OLTP
open database connectivity

See ODBC
openSession method 138
ORB 29, 34, 46, 48, 135
OS/390 Java support 112
OS/400 Java support 112
out-of-bounds array 11

P
package

applet 12
com.ibm.ctg.client 183
com.ibm.db2.java.sql 113
com.ibm.db2.jdbc.net 113
com.ibm.mq 74
com.ibm.mqbind 74
EJB 26
I/O 12

utility 11
Persistent Name Service 121
persistent object service 33
Phone book sample 124, 203
pointer 11
POP3 41
port

1414 169
9527 118

portability
and CICS Transaction Gateway 63
and EJB 22

portability of LC 158
Post Office Protocol

See POP3
print services 6
println method 168
PrintWriter 98, 163, 167
programming

Java 9
object-oriented language 11
Web environment 7

properties box 143
property 192
protocol 22, 139
public key 5
put method 170

Q
queue 67
queue manager 165

R
RDBMS 43
readString method 170
Realtime Notes activity 60
275

java.applet 134
java.awt 12
java.net 12
java.rmi.Naming 14
java.sql 12, 15
java.sql.Driver 51
javax.servlet 15, 93, 182
language 11
lotus.domino 46, 105
lotus.jdbc.domino 51
lotus.lcjava 53
lotus.notes 46

reference in Java 11
regenerate EJB 123
remote interface 14, 25, 205
remote method invocation

See RMI
remote unit of work

See RUW
Resource Access Control Facility

See RACF
restart command 182
restriction in applet 18
result set 155

REXX 56
rich text field 141
RMI 13, 86
RPC 61, 70
rt.jar 96
run method 152
runmqlsr 166
runmqsc 166
runmqtnc 77
runmqtnm 77
Runnable interface 152
runNotes method 152
runOnServer 164, 165

S
S/MIME 40
sandbox 151
scalablility 22
secure sockets layer

See SSL
security

and CICS Transaction Gateway 63
and DOM 154
and Domino 40
and Domino Driver for JDBC 150
and Domino R5 client ORB 49
and EJB 22
and Java 10
and servlet 199
and WAS 83
CORBA service 33
services 5
technology 18

select method 156
server

document 184

and WAS 84, 119
and WebSphere 89
compared 189, 218
description 19
Domino R4.6 configuration file 100
enabling Domino R4.6 support 99
loading and unloading 181
manager 83, 104, 125, 196, 197
running 217
structure 182
TerminalServlet 64
triggering 188

servlet.cnf 100
servlets.properties 105, 188
session

bean 25
management 83

Session class 139, 153
setFlags method 156
setPropertyJavaString method 156
setStream method 156
signing an applet 18, 151
Simple Mail Transfer Protocol

See SMTP
sinitThread method 153, 215
Smalltalk 11
SMTP 41
SnoopServlet 126
software developer’s kit

See SDK
sort order 149
special character 149
SQL 15, 56
SQLJ 58
SSL 40
start method 134
state management 83
276 Connecting Domino to the Enterprise Using Java

EJB 23
tier 3

ServerTask 95, 101
service

CORBA 29, 33
method 183

servlet
accessing an EJB 213
and CICS 184
and Domino R5 104
and IBM Application Framework 5
and JSP 21

static invocation 30
stemThread method 153
stop method 134
store

See also NOS
string 172
structured data 55
structured query language

See SQL
stub 31, 32
subprotocol 139
Swing 26

symmetric multiprocessor
See SMP

system management 5
system model of IBM Application Framework 3
SYSTEM.DEF.SVRCONN 166
SYSTEM.DEFAULT.INITIATION.QUEUE 77
systems management services 8

T
TCP/IP 5, 22
tell command 99
TerminalServlet servlet 64
thin client 5
ToolsRunMacro 98, 164
transaction

and EJB 21
and IBM Application Framework 5
and WAS 83
CORBA service 33
logging 41
non-repudiation 5
services 6

transmission queue 70
triggering

a servlet 188
an agent 164

trusted party 18
TwoParamServlet 100, 105
TXSeries 83
type of JDBC driver 16

U
UDF 58
unicode character 172
uniform resource locator

See URL

version control 63
view 149
VisiBroker/ITS 22
VisualAge for Java 46, 81, 102

W
wait interval 170
WAS

and EJB 84
and security 199
Application Server Manager 118
installation 117
presentation 83
servlet manager 83, 84, 104, 125, 197

Web
application programming environment 5

Web browser 4
Web server

Domino task 95, 101
WAS Support 81

WebQueryOpen 98
WebQuerySave 98
WebSphere

and Domino 87, 89
and MQSeries Binding for Java 116
family 79
JSP 20
Performance Pack 82
Studio 81

workflow 38
writeShort method 170
writeString method 170

X
X.400 41
X.509 40
277

Universal Database
See DB2 UDB

universal relation 52
unstructured data 40
user-defined data type

See UDT
user-defined function

See UDF

V
variant 192

XML 5

278 Connecting Domino to the Enterprise Using Java

© Copyright IBM Corp. 1999 279

ITSO Redbook Evaluation

Connecting Domino to the Enterprise Using Java
SG24-5425-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete
this questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.
SG24-5425-00

C
onnecting

D
om

ino
to

the
E

nterprise
U

sing
Java

S
G

2
4-5

425
-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. IBM Application Framework for e-business
	1.1 System Model
	1.2 Architecture
	1.2.1 Clients
	1.2.2 Network Infrastructure
	1.2.3 Application Server Software
	1.2.4 Application Integration
	1.2.5 Web Application Programming Environment
	1.2.6 e-business Application Services
	1.2.7 Systems Management
	1.2.8 Development Tools

	Chapter 2. Java
	2.1 A Programming Language
	2.2 Java Virtual Machine
	2.3 Remote Method Invocation (RMI)
	2.4 Development
	2.4.1 Java Development Kit
	2.4.2 Java Servlet Development Kit
	2.4.3 Java Database Connectivity

	2.5 Application Architecture
	2.5.1 Java Applets
	2.5.2 Java Applications
	2.5.3 Java Servlets
	2.5.4 JavaBeans
	2.5.5 Java Server Pages
	2.5.6 Enterprise JavaBeans
	2.5.7 How Servlets and Enterprise JavaBeans Differ

	Chapter 3. CORBA
	3.1 Implementation
	3.1.1 Object Request Broker
	3.1.2 From the Client to the Server

	3.2 CORBA Services
	3.3 Internet Inter-ORB Protocol

	Chapter 4. Domino
	4.1 Domino Application Server
	4.2 Domino and Enterprise Integration
	4.3 DECS
	4.4 Lotus Enterprise Integrator
	4.5 Domino and Java
	4.5.1 Java Language
	4.5.2 CORBA Support
	4.5.3 CORBA Implementation
	4.5.4 Domino JDBC Driver
	4.5.5 Lotus Connector Java Classes

	Chapter 5. Database Management Systems
	5.1 DB2
	5.2 DB2 and Java
	5.2.1 DB2 JDBC Support
	5.2.2 Java User-Defined Functions and Stored Procedures
	5.2.3 SQLJ

	5.3 Domino and DB2

	Chapter 6. Online Transaction Processing
	6.1 CICS
	6.2 CICS and Java
	6.2.1 CICS Gateway for Java
	6.2.2 CICS Universal Client
	6.2.3 CICS Java Class Library
	6.2.4 TerminalServlet Servlet
	6.2.5 Set of EPI Java Beans

	6.3 Domino and CICS

	Chapter 7. Messaging Middleware
	7.1 MQSeries
	7.1.1 A Single, Multi-Platform API
	7.1.2 Assured Message Delivery
	7.1.3 Faster Application Development
	7.1.4 Time Independent Processing
	7.1.5 Application Parallelism

	7.2 MQSeries and Java
	7.2.1 MQSeries Client for Java
	7.2.2 MQSeries Bindings for Java
	7.2.3 MQSeries Java Classes
	7.2.4 MQSeries Trigger Monitor for Lotus Notes Agents

	7.3 Domino and MQSeries

	Chapter 8. WebSphere
	8.1 WebSphere Product Family
	8.1.1 WebSphere Application Server
	8.1.2 WebSphere Studio
	8.1.3 WebSphere Performance Pack

	8.2 WebSphere Application Server
	8.2.1 Servlet Runtime Environment
	8.2.2 Enterprise JavaBeans Server

	8.3 Domino and WebSphere
	8.3.1 Advantages of Using Domino with WebSphere
	8.3.2 Recommendations of Use

	Chapter 9. Java
	Chapter 10. Domino
	10.1 Java Applet
	10.2 Release 4.6
	10.2.1 Installation
	10.2.2 Java Agent Support
	10.2.3 Java Servlet Support

	10.3 Release 5.0
	10.3.1 HTTP and DIIOP Tasks
	10.3.2 Java Agent Support
	10.3.3 JavaUserClasses
	10.3.4 Servlet Manager
	10.3.5 Designer Setup
	10.3.6 Run-Time Requirements

	10.4 Domino Object Classes
	10.5 Domino Driver for JDBC
	10.6 Java Classes for Lotus Connectors

	Chapter 11. Enterprise Resources
	11.1 DB2
	11.2 CICS Transaction Gateway
	11.3 MQSeries
	11.3.1 Installation

	Chapter 12. WebSphere
	12.1 Installation
	12.2 Application Server Manager
	12.2.1 Enterprise JavaBeans
	12.2.2 Servlet Manager

	Chapter 13. Applets
	13.1 Domino Applet Support
	13.2 Structure of an Applet
	13.2.1 Domino R4.6 Java Applet
	13.2.2 Domino R5 Applet

	13.3 Writing a DB2 and Domino Applet
	13.4 Downloading and Displaying an Applet
	13.4.1 From a Domino Form
	13.4.2 From an HTML Page

	13.5 Java Applets and Enterprise Integration

	Chapter 14. Java Applications
	14.1 Domino Driver for JDBC Application
	14.1.1 Security

	14.2 Local Access to the Domino Object Classes
	14.2.1 Security

	14.3 Local Access Using the Lotus Connectors
	14.4 JDBC, DOM, or LC to Domino Data?
	14.4.1 Domino Driver for JDBC or Domino Object Classes?
	14.4.2 Lotus Connectors

	Chapter 15. Agents
	15.1 Structure of an Agent
	15.2 Triggering an Agent
	15.3 From Domino to the Enterprise Using MQSeries
	15.3.1 Setup
	15.3.2 Writing the Agent
	15.3.3 Remarks and Comments

	15.4 From the Enterprise to Domino Using MQSeries

	Chapter 16. Servlets
	16.1 Domino Java Servlet Manager
	16.2 Structure of a Servlet
	16.3 Writing a CICS Java Program
	16.4 CICS Connected Servlet
	16.4.1 Development Environment Setup
	16.4.2 Writing the Servlet
	16.4.3 Triggering the Servlet

	Chapter 17. A Comparison
	17.1 Java Program Types
	17.2 Use of Java versus LotusScript

	Chapter 18. WAS Servlet Manager
	18.1 Installation
	18.2 Settings
	18.3 Alias
	18.4 Security

	Chapter 19. WAS Enterprise JavaBeans Server
	19.1 Employee EJB
	19.2 Domino Agent
	19.2.1 Settings
	19.2.2 Writing the JavaAgent Agent
	19.2.3 Form Running the Java Agent
	19.2.4 Running the Example

	19.3 Domino Servlet
	19.3.1 Setup
	19.3.2 Writing the Dom_Empl Servlet
	19.3.3 Form Running the Servlet
	19.3.4 Running the Servlet
	19.3.5 Agent or Servlet When Using EJB

	Appendix A. Applet Example
	Appendix B. Servlet Example
	Appendix C. Application Example
	C.1 Domino JDBC Driver
	C.2 Domino Objects Classes
	C.3 Lotus Connector

	Appendix D. Agent Example
	D.1 Domino Agent to the Enterprise Using MQSeries
	D.2 The Enterprise to a Domino Agent Using MQSeries

	Appendix E. WebSphere Example
	E.1 EJBAgent
	E.2 Dom_Empl Servlet

	Appendix F. Special Notices
	Appendix G. Related Publications
	G.1 International Technical Support Organization Publications
	G.2 Redbooks on CD-ROMs
	G.3 Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	List of Abbreviations
	Index
	ITSO Redbook Evaluation

