
Software Engineering 4: The Software Testing Life-Cycle 1

Software Engineering 4

The Software Testing Life-Cycle

Andrew Ireland

School of Mathematical and Computer Sciences

Heriot-Watt University

Edinburgh

Software Engineering 4: The Software Testing Life-Cycle 2

Why Test?

• Devil’s Advocate:

“Program testing can be used to show the presence of

defects, but never their absence!”

Dijkstra

“We can never be certain that a testing system is

correct.”

Manna

• In Defence of Testing:

– Testing is the process of showing the presence of defects.

– There is no absolute notion of “correctness”.

– Testing remains the most cost effective approach to building

confidence within most software systems.

Software Engineering 4: The Software Testing Life-Cycle 3

Executive Summary

A major theme of this module is the integration of

testing and analysis techniques within the software

life-cycle. Particular emphasis will be placed on

code level analysis and safety critical applications.

The application and utility of static checking will

be studied through extensive use of a static

analysis tool (ESC Java) for Java.

Software Engineering 4: The Software Testing Life-Cycle 4

Low-Level Details

• Lecturers: Lilia Georgieva (G54) and Andrew Ireland (G57)

[lilia@macs.hw.ac.uk and a.ireland@hw.ac.uk]

• Class times:

– Tuesday 3.15pm EC 3.36

– Thursday 3.15pm EC 2.44

– Friday 10.15 EC 2.44 (Lecture/Workshop) EC 2.50 (Lab)

– Friday 11.15 EC 2.50 (Lab)

Format of Friday classes will vary from week-to-week.

• Web: http://www.macs.hw.ac.uk/~air/se4/

• Assessment:

– Separate assignments for CS and IT streams.

– Overall assessment: exam (75%) coursework (25%).

Software Engineering 4: The Software Testing Life-Cycle 5

Software Testing and Analysis Thread

• The Software Testing Life-Cycle:

A broad introduction to the role of testing within software

development – practical exercises in requirements testing.

• Dynamic Analysis:

A review of dynamic analysis techniques as used for code level

verification – practical exercises in dynamic analysis.

• Static Analysis:

A review of static analysis techniques within the software

development life cycle – practical exercises in static analysis.

• Safety Critical Systems:

An introduction to the software issues that arise when

developing systems where failure can lead to loss of life – case

study material from real-world applications will be reviewed.

Software Engineering 4: The Software Testing Life-Cycle 6

A Historical Perspective

• In the early days (1950’s) you wrote a program then you tested

and debugged it. Testing was seen as a follow on activity which

involved detection and correction of coding errors, i.e.

Design ⇒ Build ⇒ Test

Towards the late 1950’s testing began to be decoupled from

debugging — but still seen as a post-hoc activity.

• In the 1960’s the importance of testing increased through

experience and economic motivates, i.e. the cost of recovering

from software deficiencies began to play a significant role in the

overall cost of software development. More rigorous testing

methods were introduced and more resources made available.

Software Engineering 4: The Software Testing Life-Cycle 7

A Historical Perspective

• In the 1970’s “software engineering” was coined. Formal

conferences on “software testing” emerged. Testing seen more

as a means of obtaining confidence that a program actually

performs as it was intended.

• In the 1980’s “quality” became the big issue, as reflected in the

creation of the IEEE, ANSI and ISO standards.

• In the 1990’s the use of tools and techniques more prevalent

across the software development life-cycle.

Software Engineering 4: The Software Testing Life-Cycle 8

But What is Software Testing?

• “Testing is the process of exercising or evaluating a system or

system component by manual or automated means to verify

that it satisfies specified requirements, or to identify differences

between expected and actual results.” IEEE

• “The process of executing a program or system with the intent

of finding errors.” (Myers 1979)

• “The measurement of software quality.” (Hetzel 1983)

Software Engineering 4: The Software Testing Life-Cycle 9

What Does Testing Involve?

• Testing = Verification + Validation

• Verification: building the product right.

• Validation: building the right product.

• A broad and continuous activity throughout the software life

cycle.

• An information gathering activity to enable the evaluation of

our work, e.g.

– Does it meet the users requirements?

– What are the limitations?

– What are the risks of releasing it?

Software Engineering 4: The Software Testing Life-Cycle 10

Testing is for “Life”

Testing

Requirements

Design

Coding

Maintenance

Death

Birth

Early identification of defects & prevention of

defect migration are key goals of the testing

process.

Software Engineering 4: The Software Testing Life-Cycle 11

Some Key Issues

• A time limited activity:

– Exhaustive testing not possible.

– Full formal verification not practical.

• Must use the time available intelligently.

• Must clearly define when the process should stop.

• Ease of testing versus efficiency:

– Programming language issues.

– Software architectural issues.

• Explicit planning is essential!

Software Engineering 4: The Software Testing Life-Cycle 12

V Software Life-cycle Model

Requirements Acceptance Test

AAU ���

Architecture System Test

AAU ���

Sub-systems Sub-system Test

AAU ���

Modules Module Test

AAU ���

Coding + Unit Test

Software Engineering 4: The Software Testing Life-Cycle 13

Requirements Testing

Unambiguous: Are the definitions and descriptions of the

required capabilities precise? Is there clear delineation between

the system and its environment?

Consistent: Freedom from internal & external contradictions?

Complete: Are there any gaps or omissions?

Implementable: Can the requirements be realized in practice?

Testable: Can the requirements be tested effectively?

Software Engineering 4: The Software Testing Life-Cycle 14

Requirements Testing

• 80% of defects can be typically attributed to requirements.

• Late life-cycle fixes are generally costly, i.e. 100 times more

expensive than corrections in the early phases.

• Standard approaches to requirements testing & analysis:

– “Walk-throughs” or Fagan-style inspections (more detail in

the static analysis lecture).

– Graphical aids, e.g. cause-effect graphs, data-flow diagrams.

– Modelling tools, e.g. simulation, temporal reasoning.

Note: modelling will provide the foundation for high-level

design.

Software Engineering 4: The Software Testing Life-Cycle 15

Planning for Testing

• Forward planning crucial for estimating and minimizing costs.

• The plan should identify:

– which aspects of the system should be tested.

– a criteria for success.

– the methods and techniques to be used.

– personnel responsible for the testing.

• Mechanisms for recording, tracking and analyzing defects are

crucial to project planning and management.

Software Engineering 4: The Software Testing Life-Cycle 16

Requirements Trace-ability

Requirement Sub-system Module Code Tests

reverse-thruster Avionics EngineCtrl Lines 99,101

activation controller 100,239

conditional BrakeCtrl Lines 11,51

on landing 52,123

gear deployment

· · · · · · · · · · · · · · ·

Volatility of requirements calls for systematic tracking through to
code level test cases.

Software Engineering 4: The Software Testing Life-Cycle 17

Planning for Testing

Requirements Acceptance Test

AAU ���

-

Architecture System Test

AAU ���

-�
�
���

Sub-systems Sub-system Test

AAU ���

-�
�
���

Modules Module Test

AAU ���

-�
�
���

Coding + Unit Test

Software Engineering 4: The Software Testing Life-Cycle 18

Design Testing

• Getting the system architecture right is often crucial to the

success of a project. Alternatives should be explored explicitly,

i.e. by review early on in the design phase.

• Without early design reviews there is a high risk that the

development team will quickly become locked into one

particular approach and be blinkered from “better” designs.

• Where possible, executable models should be developed in

order to evaluate key design decisions, e.g. communication

protocols. Executable models can also provide early feedback

from the customer, e.g. interface prototypes.

• Design-for-test, i.e. put in the “hooks” or “test-points” that

will ease the process of testing in the future.

Software Engineering 4: The Software Testing Life-Cycle 19

Exploiting Design Notations: UML

Object Constraint Language (OCL): provides a language for

expressing conditions that implementations must satisfy (feeds

directly into unit testing – dynamic analysis lecture).

Use Case Diagrams: provides a user perspective of a system:

• Functionality

• Allocation of functionality

• User interfaces

Provides a handle on defining equivalence classes for unit

testing (dynamic analysis lecture).

Software Engineering 4: The Software Testing Life-Cycle 20

Exploiting Design Notations: UML

State Diagrams: provides a diagrammatic presentation for a

finite state representation of a system. State transitions provide

strong guidance in testing the control component of a system.

Activity Diagrams: provides a diagrammatic presentation of

activity co-ordination constraints within a system.

Synchronization bars provide strong guidance in testing for key

co-ordination properties, e.g. the system is free from dead-lock.

Sequence Diagrams: provides a diagrammatic presentation of

the temporal ordering of object messages. Can be used to guide

the testing of both synchronous and asynchronous systems.

Software Engineering 4: The Software Testing Life-Cycle 21

Code & Module Testing

Unit testing is concerned with the low-level structure of program

code. The key objectives of module and unit testing are:

• Does the logic work properly?

– Does the code do what is intended?

– Can the program fail?

• Is all the necessary logic present?

– Are any functions missing?

– Is there any “dead” code?

Note: Code and module testing techniques will be the focus of

static and dynamic analysis lectures.

Software Engineering 4: The Software Testing Life-Cycle 22

Sub-System Testing

• Focuses on the integration and testing of groups of modules

which define sub-systems – often referred to as integration

testing.

• Non-incremental or “big bang” approach:

– Costly on environment simulation, i.e. stub and driver

modules.

– Debugging is non-trivial.

• Incremental approach:

– Fewer stub and driver modules.

– Debugging is more focused.

• Strategies: top-down, bottom-up, function-based, thread-based,

critical-first, opportunistic.

Software Engineering 4: The Software Testing Life-Cycle 23

Testing Interfaces

Interface misuse: type mismatch, incorrect ordering, missing

parameters – should be identified via basic static analysis.

Interface misunderstanding: the calling component or client

makes incorrect assumptions about the called component or

server – can be difficult to detect if behaviour is mode or state

dependent.

Temporal errors: mutual exclusion violations, deadlock, liveness

issues – typically very difficult to detect, model checking

provides one approach.

Software Engineering 4: The Software Testing Life-Cycle 24

System Testing

Volume and stress testing: Can the system handle the required

data throughput, requests etc? What are the upper bounds?

Configuration testing: Does the system operate correctly on all

the required software and hardware configurations?

Resource management testing: Can the system exceed

memory allocation limits?

Security testing: Is the system secure enough?

Recovery testing: Use pathological test cases to test system

recovery capabilities.

Availability/reliability: Does the system meet the requirements?

Software Engineering 4: The Software Testing Life-Cycle 25

Acceptance Testing

• The objective here is to determine whether or not the system is

ready for operational use.

• Focuses on user requirements and user involvement is high

since they are typically the only people with “authentic”

knowledge of the systems intended use.

• Test cases are typically designed to show that the system does

not meet the customers requirements, if unsuccessful then the

system is accepted.

• Acceptance testing is very much to do with validation, i.e.

have we built the right product, rather than verification, i.e.

have we built the product right.

Software Engineering 4: The Software Testing Life-Cycle 26

Change Management & Testing

• Reasons for change:

– Elimination of existing defects.

– Adaptation to different application environments,

– Alteration in order to improve the quality of the product.

– Extensions in order to meet new requirements.

• Testing for change:

– Determine if changes have regressed other parts of the

software – regression testing.

– Cost-risk analysis: full regression testing or partial

regression testing?

– Effectiveness: automation and persistent test-points.

Software Engineering 4: The Software Testing Life-Cycle 27

Summary

• The testing life-cycle.

• Prevention better than cure – testing should start early both in

terms of immediate testing and planning for future testing.

• Planning is crucial given the time-limited nature of the testing

activity – planning should be, as far as possible, integrated

within your design notations and formalisms.

Software Engineering 4: The Software Testing Life-Cycle 28

References

• “The Art of Software Testing”, Myers, G.J. Wiley & Sons,

1979.

• “The Complete Guide to Testing”, Hetzel, B. QED Information

Sciences Inc, 1988.

• “Software Testing in the Real World”, Kit, E. Addison-Wesley,

1995.

• “The Object Constraint Language: precise modeling with

UML”, Warmer, J. & Kleppe, A. Addison-Wesley, 1998.

• IEEE Standard for Software Test Documentation, 1991

(IEEE/ANSI Std 829-1983)

• IEEE Standard for Software Verification and Validation Plans,

1992 (IEEE/ANSI Std 1012-1986)

