

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Advanced Programming for the Java(TM) 2 Platform

Training Index

Advanced Programming for the
JavaTM 2 Platform

By Calvin Austin and Monica Pawlan
November 1999

[CONTENTS] [NEXT>>]

[DOWNLOAD]

As an experienced developer on the JavaTM platform, you
undoubtedly know how fast moving and comprehensive the
platform is. Its many application programming interfaces (APIs)
provide a wealth of functionality for all aspects of application and
system-level programming. Real-world developers never use one
or two APIs to solve a problem, but bring together key
functionality spanning a number of APIs. Knowing which APIs you
need, which parts of which APIs you need, and how the APIs work
together to create the best solution can be a daunting task.

To help you navigate the Java APIs and fast-track your project
development time, this book includes the design, development,
test, and deployment phases for an enterprise-worthy auction
application. While the example application does not cover every
possible programming scenario, it explores many common
situations and the discussions leave you with a solid methodology
for designing and building your own solutions.

This book is for developers with more than a beginning level of
understanding of writing programs in the Java programming
language. The example application is written with the Java® 2
platform APIs and explained in terms of functional hows and whys,
so if you need help installing the Java platform, setting up your
environment, or getting your first application to work, you should
first read a more introductory book such as Essentials of the
Java Programming Language: A Hands-On Guide or The Java
Tutorial.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/ (1 of 4) [2001-6-13 8:07:37]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://developer.java.sun.com/developer/onlineTraining/Downloads/JDCBook.zip
http://developer.java.sun.com/developer/onlineTraining/Programming/BasicJava1/index.html
http://developer.java.sun.com/developer/onlineTraining/Programming/BasicJava1/index.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/index.html

Technology Centers

Advanced Programming for the Java(TM) 2 Platform

Note: This
tutorial is
available as a
book from online
book sellers Also,
send your
comments and
thoughts to
jdcbook@sun.com

Contents

Chapter 1: Matching Project Requirements with Technology

● Project Requirements
● Choosing the Software

Chapter 2: Auction House Application

● A Multi-Tiered Application with Enterprise Beans
● Entity and Session Beans
● Examining a Container-Managed Bean
● Container-Managed finder Methods

Chapter 3: Data and Transaction Management

● Bean-Managed Persistence and the JDBCTM Platform
● Managing Transactions
● Bean-Managed finder Methods

Chapter 4: Distributed Computing

● Lookup Services
● Remote Method Invocation (RMI)
● Common Object Request Broker Architecture (CORBA)
● JDBCTM Technology
● Servlets

Chapter 5: Java Native Interface (JNI) Technology

● JNI Example
● Strings and Arrays

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/ (2 of 4) [2001-6-13 8:07:37]

http://www.amazon.com/exec/obidos/ASIN/0201715015/o/qid=963590813/sr=8-2/ref=aps_sr_b_1_2/002-0968593-5090437
http://www.amazon.com/exec/obidos/ASIN/0201715015/o/qid=963590813/sr=8-2/ref=aps_sr_b_1_2/002-0968593-5090437
http://www.amazon.com/exec/obidos/ASIN/0201715015/o/qid=963590813/sr=8-2/ref=aps_sr_b_1_2/002-0968593-5090437
mailto:jdcbook@sun.com

● Other Programming Issues

Chapter 6. Project Swing: Building a User Interface

● Components and Data Models
● Printing API
● Advanced Printing

Chapter 7: Debugging Applets, Applications, and Servlets

● Collecting Evidence
● Running Tests and Analyzing
● Servlet Debugging
● AWT Event Debugging
● Analyzing Stack Traces
● Version Issues

Chapter 8: Performance Techniques

● Improving Performance by Design
● Connection Pooling
● Performance Features and Tools
● Performance Analysis
● Caching Client/Server Applications

Chapter 9: Deploying the Auction Application

● Java Archive File Format
● SolarisTM Platform
● Win32 Platform

Chapter 10: More Security Topics

● Signed Applets
● Writing a Security Manager

Appendix A: Security and Permissions
Appendix B: Classes, Methods, and Permissions
Appendix C: SecurityManager Methods

Epilogue

Acknowledgements

Advanced Programming for the Java(TM) 2 Platform

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/ (3 of 4) [2001-6-13 8:07:37]

Special thanks to experts Isaac Elias, Daniel Liu, and Mark
Horwath for their contributions to the advanced examples in the
book.

Reader Feedback

Tell us what you think of this book.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Advanced Programming for the Java(TM) 2 Platform

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/ (4 of 4) [2001-6-13 8:07:37]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Feedback/feedback.html
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 1: Matching Project Requirements with Technology

Training Index

Writing Advanced Applications
Chapter 1: Matching Project Requirements with Technology

[<<BACK] [CONTENTS] [NEXT>>]

One challenge in writing a book on advanced application
development for the JavaTM platform is to find a project small
enough to write about, while at the same time, complex enough to
warrant advanced programming techniques.

The project presented in this book is a web-based auction house.
The application is initially written for the Enterprise JavaBeansTM
platform. Later chapters expand the core example described here
by adding advanced functionality, improvements, and alternative
solutions to do some of the things you get for free when you use
the Enterprise JavaBeans platform.

To keep the discussion simple, the example application has only a
basic set of transactions for posting and bidding on auction items.
However, the application scales to handle multiple users, provides
a three-tiered transaction-based environment, controls security,
and integrates legacy-based systems. This chapter covers how to
determine project requirements and model the
application—important steps that should always come before
coding begins.

● Project Requirements and Modeling
● Choosing the Software

In a Rush?

This table links you directly to specific topics.

Topic Section

Auction Demonstration Duke's Auction

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/proj.html (1 of 2) [2001-6-13 8:07:50]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 1: Matching Project Requirements with Technology

Project Requirements Interview User Base
Model the Project

Modeling House Identifies Buyers and Sellers
House Determines Highest Bidder
House Notifies Buyers and Sellers
Anyone Searches for an Item
Anyone Views Items for Sale
Anyone Views Item Details
Seller Posts Items for Sale
Buyer Bids on Items
Activity Diagram

Choosing Software JavaTM APIs

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/proj.html (2 of 2) [2001-6-13 8:07:50]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 1: Project Requirements and Modeling

Training Index

Writing Advanced Applications
Chapter 1 Continued: Project Requirements and Modeling

[<<BACK] [CONTENTS] [NEXT>>]

The first step in determining project requirements is to interview
the user base to find out what they want in an online auction. This
is an important step, and one that cannot be overrated because a
solid base of user-oriented information helps you define your key
application capabilities.

Chapter 2 walks through the application code, explains how the
Enterprise JavaBeans platform works, and tells you how to run a
live demonstration. If you have never seen or used an online
auction, here are mockups of the example auction application HTML
pages.

● Interview User Base
● Model the Project

Interview User Base

For the sake of discussion and to keep things simple, this
discussion assumes interviews with the user base found auction
house and user requirements, as follows:

Auction House Requirements

● Require buyer and seller information
● Bill sellers for posting items
● Record and report the day's transactions

User Requirements
● Bid on or sell an item
● Search or view items for sale
● Notify buyer and seller of sale

Model the Project

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/proj2.html (1 of 6) [2001-6-13 8:08:07]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 1: Project Requirements and Modeling

After analyzing the requirements, you can build a use case
diagram for the application to gain a better understanding of the
elements needed in the application and how they interact.

A use case diagram shows the relationships among actors and use
cases within the system. A use case is a unique function in a
system, and an actor is the person or software that performs the
action or use case. For example, a buyer is the actor that performs
the function (use case) of bidding on an auction item, and the
seller is the actor that performs the use case of posting an item for
auction.

Not all actors are people, though. For example, the software is the
actor that determines when an item has closed, finds the highest
bidder, and notifies the buyer and seller of the sale.

The Unified Modeling Language (UML) is the tool of choice for
creating use case diagrams. The Use Case diagram below uses
UML to describe the buyer and seller use cases for the online
auction application.

In UML, systems are grouped into squares, actors are represented
by stick figures, use cases are denoted by ovals, and the lines
show how actors use the system.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/proj2.html (2 of 6) [2001-6-13 8:08:07]

http://www.rational.com/uml/resources/documentation/notation/notation5a.jtmpl

The following descriptions further define the project. These
descriptions are not part of UML, but are a helpful tool in project
definition.

House Identifies Buyers and Sellers

An auction application is used by buyers and sellers. A buyer needs
to know who the seller is to pay him or her, and the seller needs to
know who the buyers are to answer product questions and to
finalize the sale. So, to post or bid on an auction item, buyers and
sellers are required to register. Registration needs to get the
following information from buyers and sellers:

● User ID and password for buying and selling.
● Email address so highest bidder and seller can communicate

when item closes.

Writing Advanced Applications, Chapter 1: Project Requirements and Modeling

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/proj2.html (3 of 6) [2001-6-13 8:08:07]

● Credit card information so auction can charge sellers for
listing their items.

Once registered, a user can post or bid on an item for sale.

House Determines Highest Bidder

Nightly, the auction application queries the database to record and
report the day's transactions. The application find items that have
closed and determines the highest bidder.

House Notifies Buyers and Sellers

The auction application uses email to notify the highest bidder and
seller of the sale, and debit the seller's account.

Anyone Searches for an Item

Sellers and buyers enter a search string to locate all auction items
in the database.

Anyone Views Items for Sale

To popularize the auction and encourage new buyers and sellers,
the application allows anyone to view auction items without
requiring user ID and password identification. To keep things
simple, the auction lets anyone view summarized lists of items in
the following three ways:

● All items up for auction
● New items listed today
● Items due to close today

Anyone Views Item Details

The summarized lists link to the following detailed information on
each item. Detail information on auction items is available to
anyone without identification.

● Item Summary
● Auction Item number
● Current price
● Number of bids
● Date posted for auction
● Date item closes
● Seller ID
● Highest bid
● Item description

Writing Advanced Applications, Chapter 1: Project Requirements and Modeling

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/proj2.html (4 of 6) [2001-6-13 8:08:07]

Seller Posts Items for Sale

To post an item for sale, a seller needs to identify himself or
herself and describe the item for sale, as follows:

● User ID and password for seller identification
● Summary description of item
● Starting Price for bidding
● Detailed description of item
● Number of days item is available for bidding

Buyer Bids on Items

The detailed summary page for each item lets registered users
identify themselves and bid on the item by providing the following
information:

● User ID
● Password
● Bid amount

Activity Diagram

The activity diagram shows the flow of tasks within the auction
house as a whole. This diagram shows the auction application. The
solid black circle on the left shows the beginning of activities, and
the white circles with black dots in the center denote where
activities end.

Writing Advanced Applications, Chapter 1: Project Requirements and Modeling

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/proj2.html (5 of 6) [2001-6-13 8:08:07]

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 1: Project Requirements and Modeling

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/proj2.html (6 of 6) [2001-6-13 8:08:07]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 1: Choosing the Software

Training Index

Writing Advanced Applications
Chapter 1 Continued: Choosing the Software

[<<BACK] [CONTENTS] [NEXT>>]

With the application modeled and the project requirements
defined, it is time to think about which JavaTM APIs to use. The
application is clearly client and server based because you will want
to accommodate 1 to n buyers, sellers, and viewers at any one
time. Because registration and auction item data must be stored
and retrieved from somewhere, you will need an API for database
access.

JavaTM APIs

The core application can be created in a number of ways using any
of the following APIs:

1. Sockets, multithreading, and JDBCTM APIs.
2. Remote Method Invocation (RMI) and JDBC APIs.
3. Enterprise JavaBeansTM platform.

Enterprise JavaBeans provides an easy way to create thin-client
multitiered applications because it handles transaction and state
management, multithreading, resource pooling, and other complex
low-level details. The simplest way to code the auction application
is with the Enterprise JavaBeans platform.

Chapter 2 explains the core application code and how to set up and
run the example. With the application modeled and the project
requirements defined, it is time to think about which JavaTM APIs to
use. The application is clearly client and server based because you
will want to accommodate 1 to n buyers, sellers, and viewers at
any one time. Because registration and auction item data must be
stored and retrieved from somewhere, you will need an API for
database access.

[TOP]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/proj3.html (1 of 2) [2001-6-13 8:08:15]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 1: Choosing the Software

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/proj3.html (2 of 2) [2001-6-13 8:08:15]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 2: Auction Application Code

Training Index

Writing Advanced Applications
Chapter 2: Auction House Application

[<<BACK] [CONTENTS] [NEXT>>]

The example application is a web-based auction house written for
the Enterprise JavaBeansTM platform. The user interface is a set of
HTML pages that get input from and show information to the user.
Behind the HTML pages is a servlet that passes data between the
browser and the Enterprise JavaBeans server. The Enterprise
JavaBeans server handles reading from and writing to the
database.

This chapter describes the application code, how it works with the
Enterprise JavaBeans server, and where to get a Enterprise
JavaBeans server to run the example. Or, if you prefer, here is an
example mockup for the auction application.

● A Multi-Tiered Application with Enterprise Beans
● Entity and Session Beans
● Examining a Container-Managed Bean
● Container-Managed finder Methods

In a Rush?

This table links you directly to specific topics.

Topic Section

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code.html (1 of 2) [2001-6-13 8:08:55]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 2: Auction Application Code

A Multi-Tiered
Applications with
Enterprise Beans

Enterprise Beans Defined
Entity and Session Beans
Auction House Workings
Developing and Running Applications
How Multitiered Applications Work

Entity and Session
Beans

Auction Servlet
Entity Beans
Session Beans
Container Classes

Examining a Container-
Managed Bean

Member Variables
Create Method
Entity Context Methods
Load Method
Store Method
Connection Pooling
Deployment Descriptor

Container-Managed
finder Methods

AuctionServlet.searchItems
BidderBean.getMatchingItemsList
AuctionItemHome.findAllMatchingItems
AuctionItemBean Deployment Descriptor

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code.html (2 of 2) [2001-6-13 8:08:55]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

Duke's Auction
Need to clean out that old office, garage, or
closet? or looking for something so unique you
cannot find it anywhere—or at least not at a price
you are willing to pay?

Look no further. At Duke's Auction you can post
items for sale and bid what you want to pay for
the items you want.

Registration

To bid on or list an item for auction, you must
register first. Registration gives buyers a way to
pay you and us a way to contact buyers and
sellers. You only need register once, and
registration is not required to browse items on
the auction floor.

Auction Floor

The auction floor is open to anyone for browsing, but to bid on an item, you must be
registered.

● New auction items today
● Items closing today
● All items (current and closed)
● Search for Items

Post Items for Auction

Once you register, you can post items for sale at auction any time you want.

Register | New Items | Closing Items | All Items | Sell Items

Duke's Auction

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/index.html [2001-6-13 8:09:03]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/registration.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/new.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/close.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/all.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/search.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/sell.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/registration.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/new.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/close.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/all.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/sell.html

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 2: A Multi-Tiered Application with Enterprise Beans

Training Index

Writing Advanced Applications
Chapter 2 Continued: A Multi-Tiered Application with

Enterprise Beans

[<<BACK] [CONTENTS] [NEXT>>]

The proliferation of internet- and intranet-based applications has
created a great need for distributed transactional applications that
leverage the speed, security, and reliability of server-side
technology. One way to meet this need is to use a multitiered
model where a thin-client application invokes business logic that
executes on the server.

Normally, thin-client multitiered applications are hard to write
because they involve many lines of intricate code to handle
transaction and state management, multithreading, resource
pooling, and other complex low-level details. And to compound the
difficulties, you have to rework this code every time you write an
application because the code is so low-level it is not reusable.

If you could use someone's prebuilt and pretested transaction
management code or even reuse some of your own code, you
would save a lot of time an energy that you could better spend
solving the business problem. Well, Enterprise JavaBeansTM
technology can give you the help you need. The Enterprise
JavaBeans technology makes distributed transactional applications
easy to write because it separates the low-level details from the
business logic. You concentrate on creating the best business
solution and leave the rest to the underlying architecture.

This chapter describes how to create the example auction
application using the services provided by the Enterprise
JavaBeans platform. Later chapters will show how you can
customize these services and integrate these features into existing
non-EJB applications.

● Enterprise Beans Defined
● Thin-Client Programs

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code2.html (1 of 8) [2001-6-13 8:09:17]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 2: A Multi-Tiered Application with Enterprise Beans

● Multitiered Architecture
● Entity and Session Beans
● Auction House Workings
● Developing and Running Applications
● How Multitiered Applications Work

Enterprise Beans Defined

An Enterprise Bean is a simple class that provides two types of
methods: business logic and lifecycle. A client program calls the
business logic methods to interact with the data held on the
server. The container calls the lifecycle methods to manage the
Bean on the server. In addition to these two types of methods, an
Enterprise Bean has an associated configuration file, called a
deployment descriptor, that is used to configure the Bean at
deployment time.

As well as being responsible for creating and deleting Beans the
Enterprise JavaBeans server also manages transactions,
concurrency, security and data persistence. Even the connections
between the client and server are provided by using the RMI and
JNDI APIs and servers can optionally provide scalabilty through
thread management and caching.

The auction house example implements a complete Enterprise
JavaBeans solution by providing only the business logic and using
the underlying services provided by the architecture. However, you
may find that the container managed services, although providing
maximum portability, do not meet all your application
requirements. The next chapters will show how you can provide
these services in your Bean instead and also use these services in
non-Enterprise Bean applications.

Thin-Client Programs

A thin client is a client program that invokes business logic running
on the server. It is called thin because most of the processing
happens on the server. In the figure below, the servlet is the thin
client. It invokes Enterprise Beans that run on the Enterprise
JavaBeans server. It also executes logic that creates web pages
that appear in the browser.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code2.html (2 of 8) [2001-6-13 8:09:17]

Multitiered Architecture

Multitier architecture or three-tier architecture
extends the standard two-tier client and server
model by placing a multithreaded application
server between the client and the database.

Client programs communicate with the database
through the application server using high-level
and platform independent calls. The application
server responds to the client requests, makes
database calls as needed into the underlying
database, and replies to the client program as
appropriate.

The three tiers in the web-based auction house
example consists of the thin-client servlet, the
Enterprise JavaBeans server (the application
server), and the database server as shown in the
figure.

Entity and Session Beans

There are two types of Enterprise Beans: entity
Beans and session Beans. An Enterprise Bean that

implements a business entity is an entity Bean, and an Enterprise
Bean that implements a business task is a session Bean.

Typically, an entity Bean represents one row of persistent data
stored in a database table. In the auction house example,
RegistrationBean is an entity Bean that represents data for one
registered user, and AuctionItemBean is an entity Bean that
represents the data for one auction item. Entity Beans are
transactional and long-lived. As long as the data remains, the
entity Bean can access and update that data. This does not mean
you need a Bean running for every table row. Instead, Enterprise
Beans are loaded and saved as needed.

A session Bean might execute database reads and writes, but it is

Writing Advanced Applications, Chapter 2: A Multi-Tiered Application with Enterprise Beans

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code2.html (3 of 8) [2001-6-13 8:09:17]

not required. A session Bean might invoke the JDBC calls itself or it
might use an entity Bean to make the call, in which case the
session Bean is a client to the entity Bean. A session Bean's fields
contain the state of the conversation and are transient. If the
server or client crashes, the session Bean is gone. A session Bean
is often used with one or more entity Beans and for complex
operations on the data.

Session Beans Entity Beans

Fields contain conversation
state. Represents data in a database.

Handles database access for
client. Shares access for multiple users.

Life of client is life of Bean. Persists as long as data exists.

Can be transaction aware. Transactional.

Does not survive server
crashes. Survives server crashes.

Not fine-grained data handling Fine-grained data handling

Note: In the Enterprise Java Beans specification,
Enterprise JavaBeans Server support for session Beans is
mandatory. Enterprise JavaBeans server support for
entity Beans was optional, but is mandatory for version
2.0 of the specification.

Auction House Workings

The diagram shows the Enterprise Beans for the auction house
application and their relationship to the Enterprise JavaBeans
server. The thin-client server invokes business logic in the four
Enterprise Beans through their home and remote interfaces. The
Enterprise JavaBeans server in this example handles the low-level
details including database read and write operations.

The four Enterprise Beans in the example are:

● AuctionItemBean is an entity Bean that maintains information
for an auction item.

● RegistrationBean is an entity Bean that stores user
registration information.

● BidderBean is a session Bean that uses AuctionItemBean to
retrieve a list of all auction items, only new items, items due

Writing Advanced Applications, Chapter 2: A Multi-Tiered Application with Enterprise Beans

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code2.html (4 of 8) [2001-6-13 8:09:17]

to close, and items whose summary matches a search string
from the database. It also checks the user ID and password
when someone places a bid, and stores new bids in the
database.

● SellerBean is a session Bean that uses RegistrationBean to
check the user ID and password when someone posts an
auction item, and AuctionItemBean to add new auction items to
the database.

As depicted in the figure above, an entity or session Bean is really
a collection of interfaces and classes. All entity and session Beans
consist of a remote interface, home interface, and the Bean class.
The servlet looks up the Beans's home interface running in the
Enterprise JavaBeans server, uses the home interface to create the
remote interface, and invokes Bean methods through the remote

Writing Advanced Applications, Chapter 2: A Multi-Tiered Application with Enterprise Beans

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code2.html (5 of 8) [2001-6-13 8:09:17]

interface.

● An Enterprise Bean's remote interface describes the Bean's
methods, or what the Bean does. A client program or another
Enterprise Bean calls the methods defined in the remote
interface to invoke the business logic implemented by the
Bean.

● An Enterprise Bean's home interface describes how a client
program or another Enterprise Bean creates, finds (entity
Beans only), and removes that Enterprise Bean from its
container.

● The container, shown in light blue (cyan), provides the
interface between the Enterprise Bean and the low-level
platform-specific functionality that supports the Enterprise
Bean.

Developing and Running Applications

Deployment tools and an Enterprise JavaBeans server are essential
to running Enterprise JavaBeans applications. Deployment tools
generate containers, which are classes that provide an interface to
the low-level implementations in a given Enterprise JavaBeans
server. The server provider can include containers and deployment
tools for their server and will typically publish their low-level
interfaces so other vendors can develop containers and
deployment tools for their server.

The auction house example uses the Enterprise JavaBeans server
and deployment tools created by BEA Weblogic.

Because everything is written to specification, all Enterprise Beans
are interchangeable with containers, deployment tools, and servers
created by other vendors. In fact, you might or might not write
your own Enterprise Beans because it is possible, and sometimes
desirable, to use Enterprise Beans written by one or more
providers that you assemble into an Enterprise JavaBeans
application.

How Multitiered Applications Work

The goal in a multitiered application is that the client be able to
work on application data without knowing at build time where the
data is stored. To make this level of transparency possible, the
underlying services in a multitiered architecture use lookup

Writing Advanced Applications, Chapter 2: A Multi-Tiered Application with Enterprise Beans

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code2.html (6 of 8) [2001-6-13 8:09:17]

http://weblogic.beasys.com/index.html

services to locate remote server objects (the Bean's remote
interface object), and data communication services to move data
from the client, through the remote server object, to its final
destination in a storage medium.

Lookup Service

To find remote server objects at runtime, the client program needs
a way to look them up. One way to look remote server objects up
at runtime is to use the Java Naming and Directory InterfaceTM
(JNDI) API. JNDI is a common interface to existing naming and
directory interfaces. The Enterprise JavaBeans containers use JNDI
as an interface to the Remote Method Invocation (RMI) naming
service.

At deployment time, the JNDI service registers (binds) the remote
interface with a name. As long as the client program uses the
same naming service and asks for the remote interface by its
registered name, it will be able to find it. The client program calls
the lookup method on a javax.naming.Context object to ask for the
remote interface by its registered name. The javax.naming.Context
object is where the bindings are stored and is a different object
from the Enterprise JavaBeans context, which is covered later.

Data Communication

Once the client program gets a reference to a remote server
object, it makes calls on the remote server object's methods.
Because the client program has a reference to the remote server
object, a technique called data marshalling is used to make it
appear as if the remote server object is local to the client program.

Data marshalling is where methods called on the remote server
object are wrapped with their data and sent to the remote server
object. The remote server object unwraps (unmarshalls) the
methods and data, and calls the Enterprise Bean. The results of
the call to the Enterprise Bean are wrapped again, passed back to
the client through the remote server object, and unmarshalled.

The Enterprise JavaBeans containers use RMI services to marshal
data. When the Bean is compiled, stub and skeleton files are
created. The stub file provides the data wrapping and unwrapping
configuration on the client, and the skeleton provides the same
information for the server.

The data is passed between the client program and the server
using serialization. Serialization is a way to representat JavaTM

Writing Advanced Applications, Chapter 2: A Multi-Tiered Application with Enterprise Beans

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code2.html (7 of 8) [2001-6-13 8:09:17]

objects as bytes that can be sent over the network as a stream
and reconstructed on the other side in the same state they were in
went originally sent.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 2: A Multi-Tiered Application with Enterprise Beans

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code2.html (8 of 8) [2001-6-13 8:09:17]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Advanced Programming for the Java(TM) 2 Platform

Training Index

Advanced Programming for the
JavaTM 2 Platform

By Calvin Austin and Monica Pawlan
November 1999

[CONTENTS] [NEXT>>]

[DOWNLOAD]

As an experienced developer on the JavaTM platform, you
undoubtedly know how fast moving and comprehensive the
platform is. Its many application programming interfaces (APIs)
provide a wealth of functionality for all aspects of application and
system-level programming. Real-world developers never use one
or two APIs to solve a problem, but bring together key
functionality spanning a number of APIs. Knowing which APIs you
need, which parts of which APIs you need, and how the APIs work
together to create the best solution can be a daunting task.

To help you navigate the Java APIs and fast-track your project
development time, this book includes the design, development,
test, and deployment phases for an enterprise-worthy auction
application. While the example application does not cover every
possible programming scenario, it explores many common
situations and the discussions leave you with a solid methodology
for designing and building your own solutions.

This book is for developers with more than a beginning level of
understanding of writing programs in the Java programming
language. The example application is written with the Java® 2
platform APIs and explained in terms of functional hows and whys,
so if you need help installing the Java platform, setting up your
environment, or getting your first application to work, you should
first read a more introductory book such as Essentials of the
Java Programming Language: A Hands-On Guide or The Java
Tutorial.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/index.html (1 of 4) [2001-6-13 8:09:32]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://developer.java.sun.com/developer/onlineTraining/Downloads/JDCBook.zip
http://developer.java.sun.com/developer/onlineTraining/Programming/BasicJava1/index.html
http://developer.java.sun.com/developer/onlineTraining/Programming/BasicJava1/index.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/index.html

Technology Centers

Advanced Programming for the Java(TM) 2 Platform

Note: This
tutorial is
available as a
book from online
book sellers Also,
send your
comments and
thoughts to
jdcbook@sun.com

Contents

Chapter 1: Matching Project Requirements with Technology

● Project Requirements
● Choosing the Software

Chapter 2: Auction House Application

● A Multi-Tiered Application with Enterprise Beans
● Entity and Session Beans
● Examining a Container-Managed Bean
● Container-Managed finder Methods

Chapter 3: Data and Transaction Management

● Bean-Managed Persistence and the JDBCTM Platform
● Managing Transactions
● Bean-Managed finder Methods

Chapter 4: Distributed Computing

● Lookup Services
● Remote Method Invocation (RMI)
● Common Object Request Broker Architecture (CORBA)
● JDBCTM Technology
● Servlets

Chapter 5: Java Native Interface (JNI) Technology

● JNI Example
● Strings and Arrays

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/index.html (2 of 4) [2001-6-13 8:09:32]

http://www.amazon.com/exec/obidos/ASIN/0201715015/o/qid=963590813/sr=8-2/ref=aps_sr_b_1_2/002-0968593-5090437
http://www.amazon.com/exec/obidos/ASIN/0201715015/o/qid=963590813/sr=8-2/ref=aps_sr_b_1_2/002-0968593-5090437
http://www.amazon.com/exec/obidos/ASIN/0201715015/o/qid=963590813/sr=8-2/ref=aps_sr_b_1_2/002-0968593-5090437
mailto:jdcbook@sun.com

● Other Programming Issues

Chapter 6. Project Swing: Building a User Interface

● Components and Data Models
● Printing API
● Advanced Printing

Chapter 7: Debugging Applets, Applications, and Servlets

● Collecting Evidence
● Running Tests and Analyzing
● Servlet Debugging
● AWT Event Debugging
● Analyzing Stack Traces
● Version Issues

Chapter 8: Performance Techniques

● Improving Performance by Design
● Connection Pooling
● Performance Features and Tools
● Performance Analysis
● Caching Client/Server Applications

Chapter 9: Deploying the Auction Application

● Java Archive File Format
● SolarisTM Platform
● Win32 Platform

Chapter 10: More Security Topics

● Signed Applets
● Writing a Security Manager

Appendix A: Security and Permissions
Appendix B: Classes, Methods, and Permissions
Appendix C: SecurityManager Methods

Epilogue

Acknowledgements

Advanced Programming for the Java(TM) 2 Platform

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/index.html (3 of 4) [2001-6-13 8:09:32]

Special thanks to experts Isaac Elias, Daniel Liu, and Mark
Horwath for their contributions to the advanced examples in the
book.

Reader Feedback

Tell us what you think of this book.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Advanced Programming for the Java(TM) 2 Platform

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/index.html (4 of 4) [2001-6-13 8:09:32]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Feedback/feedback.html
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 2: Entity and Session Beans

Training Index

Writing Advanced Applications
Chapter 2 Continued: Entity and Session Beans

[<<BACK] [CONTENTS] [NEXT>>]

The example uses two entity Beans and two session Beans. The
entity Beans, AuctionItemBean and RegistrationBean, represent
persistent items that could be stored in a database, and the
session Beans, SellerBean and BidderBean, represent short-lived
operations with the client and data.

The session Beans are the client interface to the entity beans. The
SellerBean processes requests to add new auction items for sale.
The BidderBean processes requests to retrieve auction items and
place bids on those items. Changing and adding to the database
data in a container-managed Bean is left to the entity Beans.

● Auction Servlet
● Entity Beans
● Session Beans
● Container Classes

AuctionServlet

The AuctionServlet is essentially the second tier in the application
and the focal point for auction activities. It accepts end user input
from the browser by way of hypertext transfer protocol (HTTP),
passes the input to the appropriate Enterprise Bean for
processing, and displays the processed results to the end user in
the browser.

Here is a Unified Modeling Language (UML) class diagram for the
AuctionServlet class.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code3.html (1 of 7) [2001-6-13 8:09:42]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/auction/AuctionServlet.java
http://www.rational.com/uml/resources/documentation/notation/notation5a.jtmpl

Technology Centers

Writing Advanced Applications, Chapter 2: Entity and Session Beans

The AuctionServlet methods shown above invoke business logic
that executes on the server by looking up an Enterprise Bean and
calling one or more of its methods. When the servlet adds HTML
codes to a page for display to the user, that logic executes on the
client.

For example, the listAllItems(out) method executes code on the
client to dynamically generate an HTML page to be viewed by the
client in a browser. The HTML page is populated with the results of
a call to BidderBean that exeuctes logic on the server to generate a
list of all auction items.

private void listAllItems(ServletOutputStream out)
 throws IOException{

//Put text on HTML page
 setTitle(out, "Auction results");
 String text = "Click Item number for description
 and to place bid.";
 try{
 addLine("
"+text, out);
//Look up Bidder bean home interface.
 BidderHome bhome=(BidderHome) ctx.lookup("bidder");
//Create Bidder bean remote interface.
 Bidder bid=bhome.create();
//Call Bidder bean method through remote interface.
 Enumeration enum=(Enumeration)bid.getItemList();

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code3.html (2 of 7) [2001-6-13 8:09:42]

 if(enum != null) {
//Put retrieved items on servlet page.
 displayitems(enum, out);
 addLine("", out);
 }
 } catch (Exception e) {
//Pring error on servlet page.
 addLine("AuctionServlet List All Items error",out);
 System.out.println("AuctionServlet <list>:"+e);
 }
 out.flush();
}

Entity Beans

AuctionItemBean and RegistrationBean are entity Beans.
AuctionItemBean adds new auction items to the database and
updates the bid amount as users bid on the item. RegistrationBean
adds information to the database on registered users. Both Beans
consist of the classes described here.

AuctionItem Entity Bean

Here are the AuctionItemBean classes. Remember that these
Enterprise Beans are distributed objects that use the Remote
Method Invocation (RMI) API, so when an error occurs, an RMI
remote exception is thrown.

● AuctionItem.java
● AuctionItemHome.java
● AuctionItemBean.java
● AuctionItemPk.java

AuctionItem is the remote interface. It describes what the Bean
does by declaring the developer-defined methods that provide the
business logic for this Bean. These methods are the ones used by
the client to interact with the Bean over the remote connection.
Its name maps to the AUCTIONITEMS table shown just below.

AuctionItemHome is the home interface. It describes how the Bean is
created in, found in, and removed from its container. The
Enterprise Bean server deployment tools will provide the
implementation for this interface.

AuctionItemBean is the Enterprise Bean. It implements EntityBean,
provides the business logic for the developer-defined methods,
and implements EntityBean methods for creating the Bean and
setting the session context. This is a class that the Bean developer
needs to implement. Its field variables map to fields in the
AUCTIONITEMS table shown just below.

Writing Advanced Applications, Chapter 2: Entity and Session Beans

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code3.html (3 of 7) [2001-6-13 8:09:42]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/auction/AuctionItem.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/auction/AuctionItemHome.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/auction/AuctionItemBean.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/auction/AuctionItemPK.java

AuctionItemPK is the primary key class. The Enterprise JavaBeans
server requires a container-managed entity Bean to have a
primary key class with a public primary key field (or fields, if using
composite primary keys). The Bean developer implements this
class. The ID field is the primary key in the AUCTIONITEMS table
shown just below, so the id field is a public field in this class. The
id field is assigned a value when the primary key class is
constructed.

You can request the container manage database persistence for
an Enterprise Bean or write the code to manage the persistence
yourself. In this chapter, all beans (entity and session) are
container-managed. With container-managed Beans, all you do is
specify which fields are container managed and let the Enterprise
JavaBeans server do the rest. This is great for simple applications,
but if you are coding something that is fairly complex, you might
need more control.

How to override the underlying Enterprise JavaBeans services to
gain more control or provide similar services for non-Enterprise
JavaBean applications is covered in Chapter 3.

Auction Items Table

Here is the AUCTIONITEMS table.

create table AUCTIONITEMS (SUMMARY VARCHAR(80) ,
ID INT ,
COUNTER INT ,
DESCRIPTION VARCHAR(1000) ,
STARTDATE DATE ,
ENDDATE DATE ,
STARTPRICE DOUBLE PRECISION ,
INCREMENT DOUBLE PRECISION ,
SELLER VARCHAR(30) ,
MAXBID DOUBLE PRECISION,
BIDCOUNT INT,
HIGHBIDDER VARCHAR(30))

Registration Entity Bean

RegistrationBean consists of the same kinds of classes and
database table as the AuctionItem Bean, except the actual
business logic, database table fields, and primary key are
somewhat different. Rather than describe the classes, you can
browse them and refer back to the AuctionItem Bean discussion if
you have questions.

● Registration.java

Writing Advanced Applications, Chapter 2: Entity and Session Beans

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code3.html (4 of 7) [2001-6-13 8:09:42]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/registration/Registration.java

● RegistrationHome.java
● RegistrationBean.java
● RegistrationPK.java

Registration Table

Here is the REGISTRATION table.

create table REGISTRATION (THEUSER VARCHAR(40) ,
PASSWORD VARCHAR(40) ,
EMAILADDRESS VARCHAR(80) ,
CREDITCARD VARCHAR(40) ,
BALANCE DOUBLE PRECISION)

Session Beans

BidderBean and SellerBean are the session Beans. BidderBean
retrieves lists of auction items, searches for an item, checks the
user ID and password when someone places a bid, and stores new
bids in the database. SellerBean checks the user ID and password
when someone posts an auction item, and adds new auction items
to the database.

Both session Beans are initially deployed as stateless Beans. A
stateless Bean does not keep a record of what the client did in a
previous call; whereas, a stateful Bean does. Stateful Beans are
very useful if the operation is more than a simple lookup and the
client operation depends on something that happened in a
previous call.

Bidder Session Bean

Here are the BidderBean classes. Enterprise Beans use the Remote
Method Invocation (RMI) API, so when an error occurs, an RMI
remote exception is thrown.

There is no primary key class because these Beans are transient
and no database access is involved. To retrieve auction items from
the database, BidderBean creates an instance of AuctionItemBean,
and to process bids, it creates an instance of RegistrationBean.

● Bidder.java
● BidderHome.java
● BidderBean.java
● Auction.java

Bidder is the remote interface. It describes what the Bean does by
declaring the developer-defined methods that provide the

Writing Advanced Applications, Chapter 2: Entity and Session Beans

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code3.html (5 of 7) [2001-6-13 8:09:42]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/registration/RegistrationHome.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/registration/RegistrationBean.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/registration/RegistrationPK.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/bidder/Bidder.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/bidder/BidderHome.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/bidder/BidderBean.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/bidder/Auction.java

business logic for this Bean. These methods are the ones that the
client calls remotely.

BidderHome is the home interface. It describes how the Bean is
created in, found in, and removed from its container.

BidderBean is the Enterprise Bean. It implements SessionBean,
provides the business logic for the developer-defined methods,
and implements SessionBean methods for creating the Bean and
setting the session context.

Auction.java contains a small class that declares variables used by
BidderBean.

Seller Session Bean

SellerBean consists of the same kinds of classes as BidderBean,
except the business logic is different. Rather than describe the
classes, you can browse them and refer back to the BidderBean
discussion if you have questions.

● Seller.java
● SellerHome.java
● SellerBean.java

Container Classes

The classes needed by the container to deploy an Enterprise Bean
onto a particular Enterprise JavaBeans server are generated with
a deployment tool. The classes include _Stub.class and _Skel.class
classes that provide the RMI hooks on the client and server
respectively.

These classes are used for marshaling (moving) data between the
client program and the Enterprise JavaBeans server. In addition,
implementation classes are created for the interfaces and
deployment rules defined for our Bean.

The Stub object is installed on or downloaded to the client system
and provides a local proxy object for the client. It implements the
remote interfaces and transparently delegates all method calls
across the network to the remote object.

The Skel object is installed on or downloaded to the server system
and provides a local proxy object for the server. It unwraps data
received over the network from the Stub object for processing by

Writing Advanced Applications, Chapter 2: Entity and Session Beans

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code3.html (6 of 7) [2001-6-13 8:09:42]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/seller/Seller.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/seller/SellerHome.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/seller/SellerBean.java

the server.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 2: Entity and Session Beans

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code3.html (7 of 7) [2001-6-13 8:09:42]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 2: Examining a Container-managed Bean

Training Index

Writing Advanced Applications
Chapter 2 Continued: Examining a Container-Managed Bean

[<<BACK] [CONTENTS] [NEXT>>]

This section walks through the RegistrationBean.java code to show
how easy it is to have the container manage persistent data
storage to an underlying medium such as a database (the default).
Chapter 3 modifies RegistrationBean to use Bean-managed
persistence to handle database access and manage transactions.

● Member Variables
● Create Method
● Entity Context Methods
● Load Method
● Store Method
● Connection Pooling
● Deployment Descriptor

Member Variables

A container-managed environment needs clues about which
variables are for persistent storage and which are not. In the
JavaTM programming language, the transient keyword indicates
variables to not include when data in an object is serialized and
written to persistent storage. In the RegistrationBean.java class,
the EntityContext variable is marked transient to indicate that its
data not be written to the underlying storage medium.

EntityContext data is not written to persistent storage because its
purpose is to provide information on the container's runtime
context. It, therefore, does not contain data on the registered user
and should not be saved to the underlying storage medium. The
other variables are declared public so the container in this
example can discover them using the Reflection API.

 protected transient EntityContext ctx;

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code4.html (1 of 5) [2001-6-13 8:09:47]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/registration/RegistrationBean.java

Technology Centers

Writing Advanced Applications, Chapter 2: Examining a Container-managed Bean

 public String theuser, password, creditcard,
 emailaddress;
 public double balance;

Create Method

The Bean's ejbCreate method is called by the container after the
client program calls the create method on the remote interface and
passes in the registration data. This method assigns the incoming
values to the member variables that represent user data. The
container handles storing and loading the data, and creating new
entries in the underlying storage medium.

public RegistrationPK ejbCreate(String theuser,
 String password,
 String emailaddress,
 String creditcard)
 throws CreateException, RemoteException {

 this.theuser=theuser;
 this.password=password;
 this.emailaddress=emailaddress;
 this.creditcard=creditcard;
 this.balance=0;

Entity Context Methods

An entity Bean has an associated EntityContext instance that gives
the Bean access to container-managed runtime information such
as the transaction context.

 public void setEntityContext(
 javax.ejb.EntityContext ctx)
 throws RemoteException {
 this.ctx = ctx;
 }

 public void unsetEntityContext()
 throws RemoteException{
 ctx = null;
 }

Load Method

The Bean's ejbLoad method is called by the container to load data
from the underlying storage medium. This would be necessary
when BidderBean or SellerBean need to check a user's ID or
password against the stored values.

Note: Not all Bean objects are live at any one time. The
Enterprise JavaBeansTM server might have a configurable

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code4.html (2 of 5) [2001-6-13 8:09:47]

number of Beans that it keeps in memory.

This method is not implemented because the Enterprise JavaBeans
container seamlessly loads the data from the underlying storage
medium for you.

 public void ejbLoad() throws RemoteException {}

Store Method

The Bean's ejbStore method is called by the container to save user
data. This method is not implemented because the Enterprise
JavaBeans container seamlessly stores the data to the underlying
storage medium for you.

 public void ejbStore() throws RemoteException {}

Connection Pooling

Loading data from and storing data to a database can take a lot
time and reduce an application's overall performance. To reduce
database connection time, the BEA Weblogic server uses a JDBCTM
connection pool to cache database connections so connections are
always available when the appalication needs them.

However, you are not limited to the default JDBC connection pool.
You can override the Bean-managed connection pooling behaviour
and substitute your own. Chapter 8: Performance Techniques
explains how.

Deployment Descriptor

The remaining configuration for a container-managed persistent
Beans occurs at deployment time. The following is the text-based
Deployment Descriptor used in a BEA Weblogic Enterprise
JavaBeans server.

Text Deployment Descriptor

 (environmentProperties

 (persistentStoreProperties
 persistentStoreType jdbc

 (jdbc
 tableName registration
 dbIsShared false
 poolName ejbPool

Writing Advanced Applications, Chapter 2: Examining a Container-managed Bean

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code4.html (3 of 5) [2001-6-13 8:09:47]

 (attributeMap
 creditcard creditcard
 emailaddress emailaddress
 balance balance
 password password
 theuser theuser
); end attributeMap
); end jdbc
); end persistentStoreProperties
); end environmentProperties

The deployment descriptor indicates that storage is a database
whose connection is held in a JDBCTM connection pool called
ejbPool. The attributeMap contains the Enterprise Bean variable on
the left and the associated database field on the right.

XML Deployment Descriptor

In Enterprise JavaBeans 1.1, the deployment descriptor uses XML.
The equivalent configuration in XML is as follows:

<persistence-type>Container</persistence-type>
<cmp-field><field-name>creditcard
 </field-name></cmp-field>
<cmp-field><field-name>emailaddress
 </field-name></cmp-field>
<cmp-field><field-name>balance
 </field-name></cmp-field>
<cmp-field><field-name>password
 </field-name></cmp-field>
<cmp-field><field-name>theuser
 </field-name></cmp-field>
<resource-ref>
<res-ref-name>registration</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>

The container managed-fields here map directly to their
counterpart names in the database table. The container resource
authorization (res-auth) means the container handles the database
login for the REGISTRATION table.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

Writing Advanced Applications, Chapter 2: Examining a Container-managed Bean

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code4.html (4 of 5) [2001-6-13 8:09:48]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 2: Examining a Container-managed Bean

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code4.html (5 of 5) [2001-6-13 8:09:48]

http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 2: Container-Managed finder Methods

Training Index

Writing Advanced Applications
Chapter 2 Continued: Container-Managed finder Methods

[<<BACK] [CONTENTS] [NEXT>>]

The auction house search facility is implemented as a container-
managed finder. method. It starts when the end user types in a
search string and clicks the Submit button on the home page to
locate an auction item. As shown in the diagram, the browser
passes the search string to the AuctionServlet.searchItem method,
which then passes it to the BidderBean.getMatchingItemsList
method.

At this point, BidderBean.getMatchingItemsList passes the search
string to the findAllMatchingItems method declared in the
AuctionItemHome interface. This method is a finder method, and
container implementations vary in how they handle calls to finder
methods. BEA Weblogic containers look in the Bean's deployment
descriptor for information on a Bean's finder methods.

In the case of the search, the deployment descriptor maps the
search string passed to AuctionItemHome.findAllMatchingItems to the
summary field in the underlying AuctionItems database table. This
tells the Enterprise JavaBeansTM server to retrieve data for all
auction items with a summary field that contains text that matches
the search string.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code5.html (1 of 5) [2001-6-13 8:09:54]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://weblogic.beasys.com/index.html

Technology Centers

Writing Advanced Applications, Chapter 2: Container-Managed finder Methods

This section walks through the different parts of the finder-based
search code. Chapter 3 describes how to create a Bean-managed
search to handle complex queries and searches that span more
than one Bean type (entity and session Beans) or database tables.

● AuctionServlet.searchItems
● BidderBean.getMatchingItemsList
● AuctionItemHome.findAllMatchingItems
● AuctionItemBean Deployment Descriptor

AuctionServlet.searchItems

The searchItems method retrieves the text string from the browser,
creates an HTML page to display the search results, and passes the
search string to the BidderBean.getMatchingItemsList method.
BidderBean is a session Bean that retrieves lists of auction items
and checks the user ID and password for end users seeking to bid
on auction items.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code5.html (2 of 5) [2001-6-13 8:09:54]

The search results are returned to this method in an Enumeration
variable.

private void searchItems(ServletOutputStream out,
 HttpServletRequest request)
 throws IOException {

//Retrieve search string
 String searchString=request.getParameter(
 "searchString");

//Create HTML page
 String text = "Click Item number for description
 and to place bid.";
 setTitle(out, "Search Results");
 try {
 addLine("
"+text, out);

//Look up home interface for BidderBean
 BidderHome bhome=(BidderHome) ctx.lookup(
 "bidder");

//Create remote interface for BidderBean
 Bidder bid=bhome.create();

//Pass search string to BidderBean method
 Enumeration enum=(Enumeration)
 bid.getMatchingItemsList(searchString);

 if(enum != null) {
 displayitems(enum, out);
 addLine("", out);
 }
 } catch (Exception e) {
 addLine("AuctionServlet Search Items error",
 out);
 System.out.println("AuctionServlet <newlist>:
 "+e);
 }
 out.flush();
}

BidderBean.getMatchingItemsList

The BidderBean.getMatchingItemsList method calls the
AuctionItemHome.findAllMatchingItems method and passes it the
search string. AuctionItemBean is an entity Bean that handles
auction item updates and retrievals.

The search results are returned to this method in an Enumeration
variable.

public Enumeration getMatchingItemsList(
 String searchString)
 throws RemoteException {

 Enumeration enum=null;

Writing Advanced Applications, Chapter 2: Container-Managed finder Methods

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code5.html (3 of 5) [2001-6-13 8:09:54]

 try{
//Create Home interface for AuctionItemBean
 AuctionItemHome home = (AuctionItemHome)
 ctx.lookup("auctionitems");

//Pass search string to Home interface method
 enum=(Enumeration)home.findAllMatchingItems(
 searchString);
 }catch (Exception e) {
 System.out.println("getMatchingItemList: "+e);
 return null;
 }
 return enum;
}

AuctionItemHome.findAllMatchingItems

The AuctionItemHome.findAllMatchingItems method is not
implemented in AuctionItemBean. The AuctionItemBean finder
method implementations are defined in the AuctionItemBean
deployment descriptor when BEA Weblogic containers are used.

When using these containers, even if the Bean has finder method
implementations, they are ignored and the deployment descriptor
settings are consulted instead.

//Declare method in Home interface
 public Enumeration findAllMatchingItems(
 String searchString)
 throws FinderException, RemoteException;

AuctionItemBean Deployment Descriptor

When a Bean's finder method is called, the container consults the
deployment descriptor for that Bean to find out what data the
finder method needs to retrieve from the underlying database
table. The container passes this information to the Enterprise
JavaBeans server, which does the actual retrieval.

The deployment descriptor for AuctionItemBean provides
finderDescriptors for all finder methods declared in the
AuctionItemHome interface. The finderDescriptor for the
findAllMatchingItems method maps the search string to the summary
field in the underlying AuctionItems database table. This tells the
Enterprise JavaBeans server to retrieve the data for all table rows
with a summary field that matches the text in the search string.

(finderDescriptors
 "findAllItems()" "(= 1 1)"
 "findAllNewItems(java.sql.Date newtoday)"
 "(= startdate $newtoday)"
 "findAllClosedItems(java.sql.Date closedtoday)"

Writing Advanced Applications, Chapter 2: Container-Managed finder Methods

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code5.html (4 of 5) [2001-6-13 8:09:54]

http://weblogic.beasys.com/index.html

 "(= enddate $closedtoday)"
 "findAllMatchingItems(String searchString)"
 "(like summary $searchString)"
); end finderDescriptors

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 2: Container-Managed finder Methods

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/code5.html (5 of 5) [2001-6-13 8:09:54]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 3: Data and Transaction Management

Training Index

Writing Advanced Applications
Chapter 3: Data and Transaction Management

[<<BACK] [CONTENTS] [NEXT>>]

When you use the Enterprise JavaBeansTM architecture, data is
written to and read from the database without your writing any
SQL code to do it. But what if you do not want to store the data in
a database, or want to write your own SQL commands, or manage
transactions? You can override the built-in container-managed
persistence and implement Bean-managed persistence using your
own data storage and transaction management code.

Bean-managed persistence comes in useful when you want more
control than the container-managed persistence provides. For
example you might want to override the default of most
containers to map the data in one Bean to one row in a table,
implement your own finder methods, or customize caching.

This chapter presents two versions of the RegistrationBean class
from Chapter 2. One version reads user data from and writes it to
a file using serialized input and output streams. The other version
provides its own SQL commands for reading from and writing to
the database. It also explains how you can write your own
transaction management code.

● Bean-Managed Persistence and the JDBCTM Platform
● Managing Transactions
● Bean-Managed finder Methods

In a Rush?

This table links you directly to specific topics.

Topic Section

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp.html (1 of 2) [2001-6-13 8:10:01]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 3: Data and Transaction Management

Bean-Managed Persistence
and the JDBC Platform

● Connect to Database
● Create Method
● Load Method
● Refresh Method
● Store Method
● Find Method

Transaction Management ● Why Manage Transactions?
● Session Synchronization
● Transaction Commit Mode

Bean-Managed finder
Methods

● AuctionServlet.searchItems
● SearchBean

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp.html (2 of 2) [2001-6-13 8:10:01]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 3: Bean-Managed Persistence and the JDBC platform

Training Index

Writing Advanced Applications
Chapter 3 Continued: Bean-Managed Persistence and the

JDBCTM Platform

[<<BACK] [CONTENTS] [NEXT>>]

There might be times when you want to override container-
managed persistence and implement entity or session Bean
methods to use the SQL commands you provide. This type of Bean-
managed persistence can be useful if you need to improve
performance or map data in multiple Beans to one row in a
database table.

This section shows you how to convert the RegistrationBean.java
class to access the database with the JDBCTM PreparedStatement
class.

● Connect to Database
● Create Method
● Load Method
● Refresh Method
● Store Method
● Find Method

Connect to Database

This version of the RegistrationBean.java class establishes a
connection to the database by instantiating a static Driver class
and providing the getConnection method.

The getConnection method queries the static DriverManager class for
a registered database driver that matches the Uniform Resource
Locator (URL) . In this case, the URL is weblogic.jdbc.jts.Driver.

//Create static instance of database driver
static {
 new weblogic.jdbc.jts.Driver();
}

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp3.html (1 of 5) [2001-6-13 8:10:11]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/registration/RegistrationBean.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/registration/JDBC/RegistrationBean.java

Technology Centers

Writing Advanced Applications, Chapter 3: Bean-Managed Persistence and the JDBC platform

//Get registered driver from static instance
public Connection getConnection() throws SQLException{
 return DriverManager.getConnection(
 "jdbc:weblogic:jts:ejbPool");
 }

Create Method

The ejbCreate method assigns values to data member variables,
gets a connection to the database, and creates an instance of the
java.sql.PreparedStatement class to execute the SQL statement for
writing the data to the registration table in the database.

A PreparedStatement object is created from a SQL statement which
is sent to the database and precompiled before any data is sent.
You call the appropriate setXXX statements on the
PreparedStatement object to send the data. Keeping the
PreparedStatement and Connection objects has private instance
variables greatly reduces overhead because the SQL statement
does not have to be compiled everytime data is sent.

The last thing the ejbCreate method does is create a primary key
class with the user Id, and return it to the container.

public RegistrationPK ejbCreate(String theuser,
 String password,
 String emailaddress,
 String creditcard)
 throws CreateException, RemoteException {

 this.theuser=theuser;
 this.password=password;
 this.emailaddress=emailaddress;
 this.creditcard=creditcard;
 this.balance=0;

 try {
 con=getConnection();
 ps=con.prepareStatement("insert into registration (
 theuser, password,
 emailaddress, creditcard,
 balance) values (
 ?, ?, ?, ?, ?)");
 ps.setString(1, theuser);
 ps.setString(2, password);
 ps.setString(3, emailaddress);
 ps.setString(4, creditcard);
 ps.setDouble(5, balance);
 if (ps.executeUpdate() != 1) {
 throw new CreateException (
 "JDBC did not create a row");
 }
 RegistrationPK primaryKey = new RegistrationPK();
 primaryKey.theuser = theuser;

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp3.html (2 of 5) [2001-6-13 8:10:11]

 return primaryKey;
 } catch (CreateException ce) {
 throw ce;
 } catch (SQLException sqe) {
 throw new CreateException (sqe.getMessage());
 } finally {
 try {
 ps.close();
 } catch (Exception ignore) {}
 try {
 con.close();
 } catch (Exception ignore) {}
 }
}

Load Method

This method gets the primary key from the entity context and
passes it to the refresh method which loads the data.

 public void ejbLoad() throws RemoteException {
 try {
 refresh((RegistrationPK) ctx.getPrimaryKey());
 }
 catch (FinderException fe) {
 throw new RemoteException (fe.getMessage());
 }
 }

Refresh Method

The refresh method is programmer-supplied code to load the data
from the database. It checks the primary key value, gets a
connection to the database, and creates a PreparedStatement object
for querying the database for the user specified in the primary key.

Data is read from the database into a ResultSet and assigned to
the global member variables so the RegistrationBean has the most
up-to-date information for the user.

private void refresh(RegistrationPK pk)
 throws FinderException, RemoteException {

 if (pk == null) {
 throw new RemoteException ("primary key
 cannot be null");
 }
 Connection con = null;
 PreparedStatement ps = null;
 try {
 con=getConnection();
 ps=con.prepareStatement("select password,
 emailaddress, creditcard,
 balance from registration
 where theuser = ?");

Writing Advanced Applications, Chapter 3: Bean-Managed Persistence and the JDBC platform

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp3.html (3 of 5) [2001-6-13 8:10:11]

 ps.setString(1, pk.theuser);
 ps.executeQuery();
 ResultSet rs = ps.getResultSet();
 if (rs.next()) {
 theuser = pk.theuser;
 password = rs.getString(1);
 emailaddress = rs.getString(2);
 creditcard = rs.getString(3);
 balance = rs.getDouble(4);
 }
 else {
 throw new FinderException (
 "Refresh: Registration ("
 + pk.theuser + ") not found");
 }
 }
 catch (SQLException sqe) {
 throw new RemoteException (sqe.getMessage());
 }
 finally {
 try {
 ps.close();
 }
 catch (Exception ignore) {}
 try {
 con.close();
 }
 catch (Exception ignore) {}
 }
}

Store Method

This method gets a database connection and creates a
PreparedStatement to update the database.

public void ejbStore() throws RemoteException {
 Connection con = null;
 PreparedStatement ps = null;
 try {
 con = getConnection();
 ps = con.prepareStatement("update registration
 set password = ?,
 emailaddress = ?,
 creditcard = ?,
 balance = ?
 where theuser = ?");
 ps.setString(1, password);
 ps.setString(2, emailaddress);
 ps.setString(3, creditcard);
 ps.setDouble(4, balance);
 ps.setString(5, theuser);
 int i = ps.executeUpdate();
 if (i == 0) {
 throw new RemoteException (
 "ejbStore: Registration (
 " + theuser + ") not updated");
 }

Writing Advanced Applications, Chapter 3: Bean-Managed Persistence and the JDBC platform

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp3.html (4 of 5) [2001-6-13 8:10:11]

 } catch (RemoteException re) {
 throw re;
 } catch (SQLException sqe) {
 throw new RemoteException (sqe.getMessage());
 } finally {
 try {
 ps.close();
 } catch (Exception ignore) {}
 try {
 con.close();
 }
 catch (Exception ignore) {}
 }
}

Find Method

The ejbFindByPrimaryKey method matches the signature of the
FindByPrimaryKey method in the RegistrationHome interface. It calls
the refresh method to get or refresh the user data for the user
specified by the primary key.

The container-managed persistence version of RegistrationBean
does not implement this method because the container handles
getting and refreshing the user data.

public RegistrationPK ejbFindByPrimaryKey(
 RegistrationPK pk)
 throws FinderException,
 RemoteException {

 if ((pk == null) || (pk.theuser == null)) {
 throw new FinderException ("primary key
 cannot be null");
 }
 refresh(pk);
 return pk;
}

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 3: Bean-Managed Persistence and the JDBC platform

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp3.html (5 of 5) [2001-6-13 8:10:11]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/registration/RegistrationHome.java
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 3: Transaction Management

Training Index

Writing Advanced Applications
Chapter 3 Continued: Managing Transactions

[<<BACK] [CONTENTS] [NEXT>>]

Wouldn't it be great if every operation your application attempts
succeeds? Unfortunately, in the multi-threaded world of distributed
applications and shared resources, this is not always possible.

Why? First of all, shared resources must maintain a consistent view
of the data to all users. This means reads and writes have to be
managed so users do not overwrite each other's changes, or
transaction errors do not corrupt data integrity. Also, if you factor
in intermittent network delays or dropped connections, the
potential for operations to fail in a web-based application increases
as the number of users increases.

If operation failures are unavoidable, the next best thing is to
recover safely, and that is where transaction management fits in.
Modern databases and transaction managers let you undo and
restore the state of a failed sequence of operations to ensure the
data is consistent for access by multiple threads.

This section adds code to SellerBean from the auction house
example so it can manage its auction item insertion transaction
beyond the default transaction management provided by its
container.

● Why Manage Transactions?
● Session Synchronization

• Container-Managed Example
• Code

● Transaction Commit Mode
• Server Configuration
• Transaction Attribute Descriptions
• Isolation Level Descriptions
• Bean-Managed Example

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp4.html (1 of 10) [2001-6-13 8:11:09]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 3: Transaction Management

Why Manage Transactions?

When you access a databases using the JDBCTM application
programming interface (API), all operations are run with an explicit
auto commit by default. This means any other application viewing
this data will see the updated data after each JDBC call.

For simple applications this may be acceptable, but consider the
auction application and the sequences that occur when SellerBean
inserts an auction item. The user's account is first charged for
listing the item, and the item is then added to the list of items up
for auction. These operations involve RegistrationBean to debit the
account and AuctionItemBean to add the item to the auction list.

In auto commit mode, if the auction item insertion fails, only the
listing is backed out, and you have to manually adjust the user's
account to refund the listing charge. In the meantime, another
thread might try to deduct from the same user's account, find no
credit left, and abort when perhaps a few milliseconds later it
would have completed.

There are two ways to ensure the debit is backed out if the auction
item insertion fails:

● Add session synchronization code to a container-managed
session Bean to gain control over transaction commits and roll
backs.

● Configure JDBC services to transaction commit mode and add
code to start, stop, commit, and rollback the transaction. This
is a Bean-managed transaction and can be used with an
entity or session Bean.

Session Synchronization

A container-managed session Bean can optionally include session
synchronization to manage the default auto commit provided by
the container. Session synchronization code lets the container
notify the Bean when important points in the transaction are
reached. Upon receiving the notification, the Bean can take any
needed actions before the transaction proceeds to the next point.

Note: A session Bean using Bean-managed transactions
does not need session synchronization because it is in
full control of the commit.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp4.html (2 of 10) [2001-6-13 8:11:09]

Container-Managed Example

SellerBean is a session Bean that uses RegistrationBean to check
the user ID and password when someone posts an auction item
and debit the seller's account for a listing, and AuctionItemBean to
add new auction items to the database.

The transacton begins in the insertItem method with the account
debit and ends when the entire transaction either commits or rolls
back. The entire transaction including the 50 cents debit rolls back
if the auction item is null (the insertion failed), or if an exception
is caught. If the auction item is not null and the insertion
succeeds, the entire transaction including the 50 cents debit
commits.

Code

To use session synchronization, a session Bean implements the
SessionSynchronzation interface and its three methods, afterBegin,
beforeCompletion, and afterCompletion. This example adapts the
SellerBean.java code to use session synchronization.

public class SellerBean implements SessionBean,
 SessionSynchronization {

 private transient SessionContext ctx;
 private transient Properties p = new Properties();
 private transient boolean success = true;

 public void afterBegin() {}

 public void beforeCompletion() {
 if (!success) {
 ctx.setRollbackOnly();
 }
 }

 public void afterCompletion(boolean state) {}

afterBegin: The container calls this method before the debit to
notify the session Bean a new transaction is about to begin. You
can implement this method to do any preliminary database work
that might be needed for the transaction. In this example, no
preliminary database work is needed so this method has no
implementation.

beforeCompletion: The container calls this method when it is ready
to write the auction item and debit to the database, but before it
actually does (commits). You can implement this method to write
out any cached database updates or roll back the transaction. In

Writing Advanced Applications, Chapter 3: Transaction Management

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp4.html (3 of 10) [2001-6-13 8:11:09]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/seller/SessSynch/SellerBean.java

this example, the method calls the setRollbackOnly method on its
session context in the event the success variable is set to false
during the transaction.

afterCompletion: The container calls this method when the
transaction commits. A boolean value of true means the data
committed and false means the transaction rolled back. The
method uses the boolean value to determine if it needs to reset the
Bean's state in the case of a rollback. In this example, there is no
need to reset the state in the event of a failure.

Here is the insertItem method with comments showing where the
points where the SessionSynchronization methods are called.

public int insertItem(String seller,
 String password,
 String description,
 int auctiondays,
 double startprice,
 String summary)
 throws RemoteException {

 try{
 Context jndiCtx = new InitialContext(p);

 RegistrationHome rhome =
 (RegistrationHome) sCtx.lookup("registration");
 RegistrationPK rpk=new RegistrationPK();
 rpk.theuser=seller;
 Registration newseller=rhome.findByPrimaryKey(rpk);

 if((newseller == null) ||
 (!newseller.verifyPassword(password))) {
 return(Auction.INVALID_USER);
 }

//Call to afterBegin
 newseller.adjustAccount(-0.50);

 AuctionItemHome home = (AuctionItemHome)
 jndiCtx.lookup("auctionitems");
 AuctionItem ai= home.create(seller,
 description,
 auctiondays,
 startprice,
 summary);
 if(ai == null) {
 success=false;
 return Auction.INVALID_ITEM;
 }
 else {
 return(ai.getId());
 }

 }catch(Exception e){
 System.out.println("insert problem="+e);
 success=false;

Writing Advanced Applications, Chapter 3: Transaction Management

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp4.html (4 of 10) [2001-6-13 8:11:09]

 return Auction.INVALID_ITEM;
 }
//Call to beforeCompletion
//Call to afterCompletion

 }

Transaction Commit Mode

If you configure the JDBC services to transaction commit mode,
you can have the Bean manage the transaction. To set the JDBC
services to commit, call con.setAutoCommit(false) on your JDBC
connection. Not all JDBC drivers support commit mode, but to
have the Bean control and manage transactions, you need a JDBC
driver that does.

Transaction commit mode lets you add code that creates a safety
net around a sequence of dependent operations. The JavaTM
Transaction API (JTA) provides the hooks you need to create that
safety net. But, if you are using the Enterprise JavaBeans
architecture, you can do it with a lot less code. You only have to
configure the Enterprise JavaBeans server, and specify where the
transaction starts, stops, rolls back, and commits in your code.

Server Configuration

Configuring the Enterprise JavaBeans server involves specifying
the following settings in a configuration file for each Bean:

● An isolation level to specify how exclusive a transaction's
access to shared data is.

● A transaction attribute to specify how to handle Bean-
managed or container-managed transactions that continue in
another Bean.

● A transaction type to specify whether the transaction is
managed by the container or the Bean.

For example, you would specify these settings for the BEA
Weblogic server in a DeploymentDescriptor.txt file for each Bean.

Here is the part of the DeploymentDescriptor.txt for SellerBean that
specifies the isolation level and transaction attribute. A description
of the settings follows.

(controlDescriptors
 (DEFAULT

Writing Advanced Applications, Chapter 3: Transaction Management

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp4.html (5 of 10) [2001-6-13 8:11:09]

http://weblogic.beasys.com/index.html
http://weblogic.beasys.com/index.html

 isolationLevel TRANSACTION_SERIALIZABLE
 transactionAttribute REQUIRED
 runAsMode CLIENT_IDENTITY
 runAsIdentity guest
); end DEFAULT
); end controlDescriptors

Here is the equivalent Enterprise JavaBeans 1.1 extended markup
language (XML) description that specifies the transaction type. In
this example SellerBean is container managed.

<container-transaction>
 <method>
 <ejb-name>SellerBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <transaction-type>Container</transaction-type>
 <trans-attribute>Required</trans-attribute>
</container-transaction>

In this example, SellerBean is Bean managed.

<container-transaction>
 <method>
 <ejb-name>SellerBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <transaction-type>Bean</transaction-type>
 <trans-attribute>Required</trans-attribute>
</container-transaction>

Transaction Attribute Descriptions: An enterprise Bean uses a
transaction attribute to specify whether a Bean's transactions are
managed by the Bean itself or by the container, and how to handle
transactions that started in another Bean.

The Enterprise JavaBeans server can control only one transaction
at a time. This model follows the example set by the OMG Object
Transaction Service (OTS), and means the current Enterprise
JavaBeans specification does not provide a way to nest
transactions. A nested transaction is a new transaction that starts
from within an existing transaction. While transaction nesting is
not allowed, continuing an existing transaction in another Bean is
okay.

When a Bean is entered, the server creates a transaction context
to manage the transaction. When the transaction is managed by
the Bean, you access the context to begin, commit, and rollback
the transaction as needed.

Writing Advanced Applications, Chapter 3: Transaction Management

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp4.html (6 of 10) [2001-6-13 8:11:09]

Here are the transaction attributes with a brief description for each
one. The attribute names changed betweein the 1.0 and 1.1
versions of the Enterprise JavaBeans specification.

1.1 Specification 1.0 Specification

REQUIRED TX_REQUIRED

Container-managed transaction. The server either starts and
manages a new transaction on behalf of the user or continues
using the transaction that was started by the code that called this
Bean.

REQUIRESNEW TX_REQUIRED_NEW

Container-managed transaction. The server starts and manages a
new transaction. If an existing transaction starts this transaction,
it suspends until this transaction completes.

Specified as Bean
transaction-type in
deployment descriptor

TX_BEAN_MANAGED

Bean-managed transaction. You access the transaction context to
begin, commit, or rollback the transaction as needed.

SUPPORTS TX_SUPPORTS

If the code calling this Bean has a transaction running, include this
Bean in that transaction.

NEVER TX_NOT_SUPPORTED

If the code calling a method in this Bean has a transaction
running, suspend that transaction until the method called in this
Bean completes. No transaction context is created for this Bean.

MANDATORY TX_MANDATORY

The transaction attribute for this Bean is set when another Bean
calls one of its methods. In this case, this Bean gets the
transaction attribute of the calling Bean. If the calling Bean has no
transaction attribute, the method called in this Bean throws a
TransactionRequired exception.
Isolation Level Descriptions: An enterprise Bean uses an
isolation level to negotiate its own interaction with shared data and
the interaction of other threads with the same shared data. As the
name implies, there are various levels of isolation with
TRANSACTION_SERIALIZABLE providing the highest level of data
integrity.

Writing Advanced Applications, Chapter 3: Transaction Management

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp4.html (7 of 10) [2001-6-13 8:11:09]

Note: Be sure to verify your database can handle the
level you choose. In the Enterprise JavaBeans 1.1
specification, only Bean-managed persistence session
Beans can set the isolation level.

If the database cannot handle the isolation level, the
Enterprise JavaBeans server will get a failure when it
tries to call the setTransactionIsolation JDBC method.

TRANSACTION_SERIALIZABLE: This level provides maximum data
integrity. The Bean gets what amounts to exclusive access to the
data. No other transaction can read or write this data until the
serializable transaction completes.

Serializable in this context means process as a serial operation,
and should not be confused with serializing objects to preserve and
restore their states. Running transactions as a single serial
operation is the slowest setting. If performance is an issue, use
another isolation level that meets your application requirements,
but provides better performance.

TRANSACTION_REPEATABLE_READ: At this level, data read by a
transaction can be read, but not modified, by another transaction.
The data is guaranteed to have the same value it had when first
read, unless the first transaction changes it and writes the changed
value back.

TRANSACTION_READ_COMMITTED: At this level, data read by a
transaction cannot be read by other transactions until the frist
transaction either commits or rolls back.

TRANSACTION_READ_UNCOMMITTED: At this level, data involved in a
transaction can be read by other threads before the first
transaction either completes or rolls back. The other transactions
cannot tell if the data was finally committed or rolled back

Bean-Managed Example

SellerBean is a session Bean that uses RegistrationBean to check
the user ID and password when someone posts an auction item
and debit the seller's account for a listing, and AuctionItemBean to
add new auction items to the database.

The transacton begins in the insertItem method with the account
debit and ends when the entire transaction either commits or rolls
back. The entire transaction including the 50 cents debit rolls back

Writing Advanced Applications, Chapter 3: Transaction Management

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp4.html (8 of 10) [2001-6-13 8:11:09]

if the auction item is null (the insertion failed), or if an exception
is caught. If the auction item is not null and the insertion
succeeds, the entire transaction including the 50 cents debit
commits.

For this example, the isolation level is TRANSACTION_SERIALIZABLE,
and the transaction attribute is TX_BEAN_MANAGED. The other Beans in
the transaction, RegistrationBean and AuctionItemBean, have an
isolation level of TRANSACTION_SERIALIZABLE and a transaction
attribute of REQUIRED.

Changes to this version of SellerBean over the container-managed
version are flagged with comments.

public int insertItem(String seller,
 String password,
 String description,
 int auctiondays,
 double startprice,
 String summary)
 throws RemoteException {

//Declare transaction context variable using the
//javax.transaction.UserTransaction class
 UserTransaction uts= null;

 try{
 Context ectx = new InitialContext(p);

//Get the transaction context
 uts=(UserTransaction)ctx.getUserTransaction();

 RegistrationHome rhome = (
 RegistrationHome)ectx.lookup("registration");
 RegistrationPK rpk=new RegistrationPK();
 rpk.theuser=seller;
 Registration newseller=
 rhome.findByPrimaryKey(rpk);

 if((newseller == null)||
 (!newseller.verifyPassword(password))) {
 return(Auction.INVALID_USER);
 }

//Start the transaction
 uts.begin();

//Deduct 50 cents from seller's account
 newseller.adjustAccount(-0.50);

 AuctionItemHome home = (
 AuctionItemHome) ectx.lookup("auctionitems");
 AuctionItem ai= home.create(seller,
 description,
 auctiondays,
 startprice,
 summary);

Writing Advanced Applications, Chapter 3: Transaction Management

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp4.html (9 of 10) [2001-6-13 8:11:09]

 if(ai == null) {
//Roll transaction back
 uts.rollback();
 return Auction.INVALID_ITEM;
 }
 else {
//Commit transaction
 uts.commit();
 return(ai.getId());
 }

 }catch(Exception e){
 System.out.println("insert problem="+e);
//Roll transaction back if insert fails
 uts.rollback();
 return Auction.INVALID_ITEM;
 }
}

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 3: Transaction Management

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp4.html (10 of 10) [2001-6-13 8:11:09]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 3: Bean-managed finder Methods

Training Index

Writing Advanced Applications
Chapter 3 Continued: Bean-Managed finder Methods

[<<BACK] [CONTENTS] [NEXT>>]

The container-managed search described in Chapter 2 is based on
a finder method mechanism where the deployment descriptor,
rather than the Bean, specifies the finder method behavior. While
the finder mechanism works well for simple queries and searches,
it cannot handle complex operations that span more than one Bean
type or database table. Also, the Enterprise JavaBeansTM 1.1
specification currently provides no specification for putting finder
rules in the deployment descriptor.

So, for more complex queries and searches, you have to write
Bean-managed queries and searches. This section explains how to
write a Bean-managed version of the auction house search facility
from Chapter 2. The Bean-managed search involves changes to
the AuctionServlet.searchItems method and a new session Bean,
SearchBean.

● AuctionServlet.searchItems
● SearchBean

AuctionServlet.searchItems

The search begins when the end user submits a search string to
the search facility on the auction house home page, and clicks the
Submit button. This invokes AuctionServlet, which retrieves the
search string from the HTTP header and passes it to the searchItem
method.

Note: The search logic for this example is fairly simple.
The purpose is to show you how to move the search
logic into a separate Enterprise Bean so you can create a
more complex search on your own.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp5.html (1 of 4) [2001-6-13 8:11:13]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 3: Bean-managed finder Methods

The searchItem operation is in two parts: 1) Using
the search string to retrieve primary keys, and 2)
Using primary keys to retrieve auction items.

Part 1: The first thing the searchItems method
does is pass the search string submitted by the
end user to the SearchBean session Bean.

SearchBean (described in the next heading)
implements a Bean-managed search that
retrieves a list of primary keys for all auction
items whose Summary fields contain characters
matching the search string. This list is returned
to the searchItems method in an Enumeration
variable.

Enumeration enum=(Enumeration)
 search.getMatchingItemsList(searchString);

Part 2: The searchItems method then uses the
returned Enumeration list from Part 1 and
AuctionItemBean to retrieve each Bean in turn
by calling findByPrimaryKey on each primary
key in the list. This is a container-managed
search based on the finder mechanism
described in Chapter 2.

//Iterate through search results
while ((enum != null) &&
 enum.hasMoreElements())) {
 while(enum.hasMoreElements(in)) {

//Locate auction items
 AuctionItem ai=ahome.findByPrimaryKey((
 AuctionItemPK)enum.nextElement());
 displayLineItem(ai, out);
 }
}

SearchBean

The SearchBean.java class defines a Bean-managed search for the
primary keys of auction items with summary fields that contain
characters matching the search string. This Bean establishes a
database connection, and provides the getMatchingItemsList and
EJBCreate methods.

Database Connection

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp5.html (2 of 4) [2001-6-13 8:11:13]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/auction/searchItem.txt
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/auction/AuctionItemBean.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/search/SearchBean.java

Because this Bean manages its own database access and search, it
has to establish its own database connection. It cannot rely on the
container to do this.

The database connection is established by instantiating a static
Driver class and providing the getConnection method. The
getConnection method queries the static DriverManager class for a
registered database driver that matches the Uniform Resource
Locator (URL) . In this case, the URL is weblogic.jdbc.jts.Driver.

//Establish database connection
 static {
 new weblogic.jdbc.jts.Driver();
 }

 public Connection getConnection()
 throws SQLException {
 return DriverManager.getConnection(
 "jdbc:weblogic:jts:ejbPool");
 }

Get Matching Items List

The getMatchingItemsList method looks up AuctionItemsBean and
creates a PreparedStatement object for querying the database for
summary fields that contain the search string. Data is read from the
database into a ResultSet, stored in a Vector, and returned to
AuctionServlet.

 public Enumeration getMatchingItemsList(
 String searchString)
 throws RemoteException {

 ResultSet rs = null;
 PreparedStatement ps = null;
 Vector v = new Vector();
 Connection con = null;

 try{
//Get database connection
 con=getConnection();
//Create a prepared statement for database query
 ps=con.prepareStatement("select id from
 auctionitems where summary like ?");
 ps.setString(1, "%"+searchString+"%");
//Execute database query
 ps.executeQuery();
//Get results set
 rs = ps.getResultSet();
//Get information from results set
 AuctionItemPK pk;
 while (rs.next()) {
 pk = new AuctionItemPK();
 pk.id = (int)rs.getInt(1);
//Store retrieved data in vector
 v.addElement(pk);

Writing Advanced Applications, Chapter 3: Bean-managed finder Methods

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp5.html (3 of 4) [2001-6-13 8:11:13]

 }
 rs.close();
 return v.elements();

 }catch (Exception e) {
 System.out.println("getMatchingItemsList:
 "+e);
 return null;
 }finally {
 try {
 if(rs != null) {
 rs.close();
 }
 if(ps != null) {
 ps.close();
 }
 if(con != null) {
 con.close();
 }
 } catch (Exception ignore) {}
 }
 }

Create Method

The ejbCreate method creates an javax.naming.InitialContext
object. This is a JavaTM Naming and Directory (JNDI) class that lets
SearchBean access the database without relying on the container.

 public void ejbCreate() throws CreateException,
 RemoteException {
 Properties p = new Properties();
 p.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.TengahInitialContextFactory");
 try{
 ctx = new InitialContext(p);
 }catch(Exception e) {
 System.out.println("create exception: "+e);
 }
 }

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 3: Bean-managed finder Methods

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/bmp5.html (4 of 4) [2001-6-13 8:11:13]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 4: Distributed Computing

Training Index

Writing Advanced Applications
Chapter 4: Distributed Computing

[<<BACK] [CONTENTS] [NEXT>>]

As recently as ten years ago, distributed computing generally
meant you had client PCs in one room with a server in another
room. The problem with this architecture is if the connection to the
server is lost, clients cannot update the payroll, sales, or other
distributed company databases.

To prevent this sort of down time, different networking models
were created. One example is the master and slave server model
where if the master fails, the slaves take over. The problem with
the different networking models is they all required some form of
manual intervention and were tied to one operating system or
language. And while these approaches met some of the short-term
requirements for decreasing down time, they did not apply to
heterogeneous distributed systems consisting of mixed network
protocols and machines.

The JavaTM platform combined with other advances such as
Common Object Request Broker Architecture (CORBA), multi-
tiered servers, and wireless networks has brought the realization
of fully distributed computing a step further from the traditional
client and server approach.

Now you can build applications that include service redundancy by
default. If one server connection fails, you can seamlessly use a
service on another server. CORBA and Distributed Component
Object Model (DCOM) bridges mean that objects can be
transferred between virtually all machines and languages. And with
the new JiniTM System software, the distributed computing
environment can soon be part of everything in your home, office or
school. In short, distributed computing has never before been as
important as it is today.

● Lookup Services

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/dist.html (1 of 4) [2001-6-13 8:11:16]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 4: Distributed Computing

● Remote Method Invocation (RMI)
● Common Object Request Broker Architecture (CORBA)
● JDBCTM Technology
● Servlets

In a Rush?

This table links you directly to specific topics.

Topic Section

Lookup Services ● Java Naming and Directory Interface
(JNDI)

● Common Object Request Broker
Architecture (CORBA) Naming Service

● Interoperable Object References (IOR)
● Remote Method Invocation (RMI)
● RMI Over Internet Inter-ORB Protocol

(IIOP)
● JINI Lookup Services
● Improving Lookup Performance

Remote Method
Invocation
(RMI)

● About RMI
● RMI in the Auction Application

• Class Overview
• File Summary
• Compile the Example
• Start the RMI Registry
• Start the Remote Server

● Establishing Remote Communications
● RegistrationServer Class

• Exporting a Remote Object
• Passing by Value and by Reference
• Distributed Garbage Collection

● Registration Interface
● ReturnResults Interface
● SellerBean Class

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/dist.html (2 of 4) [2001-6-13 8:11:16]

Common Object
Request Broker
Architecture
(CORBA)

● IDL Mapping Scheme
• Quick Reference
• Setting up IDL Mappings
• Other IDL Types

● CORBA in the Auction Application
• CORBA RegistrationServer
• IDL Mappings File
• Compiling the IDL Mappings File
• Stub and Skeleton Files

● Object Request Broker (ORB)
• Making the CORBA Server Accessible
• Plugging in a New ORB
• Naming Service Access by CORBA

Clients
● Helper and Holder Classes
● Garbage Collection
● CORBA Callbacks
● Using the Any Type
● Conclusion

JDBC
Technology

● JDBC Drivers
● Database Connections
● Statements

• Callable Statements
• Statements
• Prepared Statements

● Caching Database Results
● Result Sets
● Scrolling Result Sets
● Controlling Transactions
● Escaping Characters
● Mapping Database Types
● Mapping Date types

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/dist.html (3 of 4) [2001-6-13 8:11:16]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/dist.html (4 of 4) [2001-6-13 8:11:16]

http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 4: Distributed Computing

Training Index

Writing Advanced Applications
Chapter 4: Lookup Services

[<<BACK] [CONTENTS] [NEXT>>]

Lookup services enable communications over a network. A client
program can use a lookup protocol to get information on remote
programs or machines and use that information to establish a
communication.

● One common lookup service you might already be familiar
with is Directory Name Service (DNS). It maps Internet
Protocol (IP) addresses to machine names. Programs use the
DNS mapping to look up the IP address associated with a
machine name and use the IP address to establish a
communication.

● In the same way, the AuctionServlet presented in Chapter 2
uses the naming service built into the Enterprise JavaBeansTM
architecture to look up and reference Enterprise Beans
registered with the Enterprise JavaBeansTM server.

In addition to naming services, some lookup protocols provide
directory services. Directory services such as Lightweight Directory
Access Protocol (LDAP) and Sun's NIS+ provide other information
and services beyond what is available with simple naming services.
For example, NIS+ associates a workgroup attribute with a user
account. This attribute can be used to restrict access to a machine
so only the users in the specified workgroup have access.

This chapter describes how the JavaTM Naming and Directory
Interface (JNDI) is used in the auction application to look up
Enterprise Beans. It also explains how to use some of the many
other lookup services that have become available over time. The
code to use these other services is not as simple as the lookup
code in the auction application in Chapter 2, but the advantages to
these other services can outweigh the need for more complex code
in some situations.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/lookup.html (1 of 11) [2001-6-13 8:11:20]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/auction/AuctionServlet.java

Technology Centers

Writing Advanced Applications, Chapter 4: Distributed Computing

● Java Naming and Directory Interface (JNDI)
● Common Object Request Broker Architecture (CORBA)

Naming Service
● Interoperable Object References (IOR)
● Remote Method Invocation (RMI)
● RMI Over Internet Inter-ORB Protocol (IIOP)
● JINI Lookup Services
● Improving Lookup Performance

Java Naming and Directory Interface (JNDI)

The JNDI application programming interface (API) makes it easy to
plug lookup services from various providers into a program written
in the Java language. As long as the client and server both use the
same lookup service, the client can easily look up information
registered with the server and establish communication.

The auction application session Beans use JNDI and a special JNDI
naming factory from BEA Weblogic to look up entity Beans. JNDI
services normally initialize the naming factory as a property on the
command line or as an initialization value.

First, the naming factory weblogic.jndi.TengahInitialContextFactory
is put into a java.util.Property object, then the Property object is
passed as a parameter to the InitialContexT constructor. Here is
an example ejbCreate method.

 Context ctx; //JNDI context

 public void ejbCreate()
 throws CreateException, RemoteException {
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.TengahInitialContextFactory");
 try{
 ctx = new InitialContext(env);
 }catch(Exception e) {
 System.out.println("create exception: "+e);
 }
 }

Once created, the JNDI context is used to look up Enterprise Bean
home interfaces. In this example, a reference to the Enterprise
Bean bound to the name registration is retrieved and used for
further operations.

 RegistrationHome rhome =
 (RegistrationHome) ctx.lookup("registration");
 RegistrationPK rpk=new RegistrationPK();
 rpk.theuser=buyer;

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/lookup.html (2 of 11) [2001-6-13 8:11:20]

 Registration newbidder =
 rhome.findByPrimaryKey(rpk);

On the server side, the deployment descriptor for the
RegistrationBean has its beanhomename value set to registration.
Enterprise JavaBeans tools generate the rest of the naming code
for the server.

The server calls ctx.bind to bind the name registration to the JNDI
context. The this parameter references the _stub class that
represents the RegistrationBean.

 ctx.bind("registration", this);

JNDI is not the only way to look up remote objects. Lookup
services are also available in the RMI, JINI, and CORBA platforms.
You can use these platform-specific lookup services directly or
from the JNDI API. JNDI allows the application to change the name
service with little effort. For example, here are the code changes to
have the BidderBean.ejbCreate method use the org.omb.CORBA lookup
services instead of the default BEA Weblogic lookup services.

 Hashtable env = new Hashtable();
 env.put("java.naming.factory.initial",
 "com.sun.jndi.cosnaming.CNCtxFactory");
 Context ic = new InitialContext(env);

CORBA Naming Service

The Common Object Request Broker Architecture (CORBA) defines
a specification for objects in a distributed system to communicate
with each other. Objects that use the CORBA specification to
communicate are called CORBA objects, and consist of client and
server objects.

CORBA objects can be written in any language with Interface
Definition Language (IDL) mapping. These languages include the
Java programming language, C++, and many traditional non-
object-orientated languages.

The naming lookup service, like all other CORBA specifications, is
defined in terms of IDL. The IDL module for the CORBA lookup
service is called CosNaming. Any platform with an IDL mapping, such
as the idltojava tool, can use this service to look up and discover
CORBA objects. The IDL module for the CORBA lookup service is
available in the Java 2 platform in the org.omg.CosNaming package.

The key interface in the CosNaming module is NamingContext. The
NamingContext interface defines methods to bind objects to a name,
list those bidding, and retrieve bound object references.

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/lookup.html (3 of 11) [2001-6-13 8:11:20]

In addition to these public
interfaces are helper classes.
The NameComponent helper class
is used in CORBA client and
server programs to build the
full name for the object
reference name. The full name
is an array of one or more
NameComponents that indicates
where to find the objects. The

naming scheme can be application specific.

For example in the auction application, the full name can be
defined to use auction as the root naming context, and
RegistrationBean and AuctionItemBean as children of the root
context. This in effect employs a similar naming scheme as that
used for the application class packaging.

In this example, the auction application has adapted SellerBean to
a CORBA naming service to look up the CORBA RegistrationBean.
The following code is extracted from the SellerBean, which acts as
the CORBA client, the and RegistrationServer CORBA server.

CORBA RegistrationServer

This code in the RegistrationServer program creates a
NameComponent object that indicates where to locate the
RegistrationBean using auction and RegistrationBean as the full
name.

 NameComponent[] fullname = new NameComponent[2];
 fullname[0] = new NameComponent("auction", "");
 fullname[1] = new NameComponent(
 "RegistrationBean", "");

This next code binds the fullname as a new context. The first
elements in the full name (auction in this example) are
placeholders for building the context naming tree. The last element
of the full name (RegistrationBean in this example) is the name
submitted as the binding to the object.

 String[] orbargs = { "-ORBInitialPort 1050"};
 ORB orb = ORB.init(orbargs, null) ;

 RegistrationServer rs= new RegistrationServer();
 orb.connect(rs);

 try{
 org.omg.CORBA.Object nameServiceObj =
 orb.resolve_initial_references("NameService");

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/lookup.html (4 of 11) [2001-6-13 8:11:20]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/lookup/RegistrationServer.java

 NamingContext nctx =
 NamingContextHelper.narrow(nameServiceObj);
 NameComponent[] fullname = new NameComponent[2];
 fullname[0] = new NameComponent("auction", "");
 fullname[1] = new NameComponent(
 "RegistrationBean", "");

 NameComponent[] tempComponent =
 new NameComponent[1];
 for(int i=0; i < fullname.length-1; i++) {
 tempComponent[0]= fullname[i];
 try{
 nctx=nctx.bind_new_context(tempComponent);
 }catch (Exception e){}
 }
 tempComponent[0]=fullname[fullname.length-1];

 // finally bind the object to the full context path
 nctx.bind(tempComponent, rs);

Once the RegistrationServer object is bound, it can be looked up
with a JNDI lookup using a CosNaming service provider as described
at the end of the section on JNDI, or using the CORBA name
lookup service. Either way, the CORBA name server must be
started before any look ups can happen. In the Java 2 platform,
the CORBA nameserver is started as follows:

 tnameserv

This starts the CORBA RegistrationServer on the default TCP port
900. If you need to use a different port, you can start the server
like this. On Unix systems only root can access port numbers lower
than 1025,

 tnameserv -ORBInitialPort 1091

CORBA SellerBean

On the client side, the CORBA lookup uses the NameComponent object
to construct the name. Start the object server as follows:

java registration.RegistrationServer

The difference in the client is that this name is passed to the
resolve method which returns the CORBA object. The following
code from the SellerBean object illustrates this point.

 String[] args = { "-ORBInitialPort 1050"};
 orb = ORB.init(args, null) ;
 org.omg.CORBA.Object nameServiceObj =
 orb.resolve_initial_references("NameService") ;
 nctx= NamingContextHelper.narrow(nameServiceObj);

 NameComponent[] fullname = new NameComponent[2];
 fullname[0] = new NameComponent("auction", "");
 fullname[1] = new NameComponent(
 "RegistrationBean", "");

 org.omg.CORBA.Object cobject= nctx.resolve(fullname);

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/lookup.html (5 of 11) [2001-6-13 8:11:20]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/lookup/SellerBean.java

The narrow method, from the object Helper method, is generated
by the IDL compiler, which provides a detailed mapping to
translate each CORBA field into its respective Java language field.
For example, the SellerBean.insertItem method looks up a
registration CORBA object using the name RegistrationBean, and
returns a RegistrationHome object. With the RegistrationHome object,
you can return a Registration record by calling its findByPrimaryKey
method.

 org.omg.CORBA.Object cobject= nctx.resolve(fullname);
 RegistrationHome regHome=
 RegistrationHomeHelper.narrow(cobject);
 RegistrationHome regRef =
 RegistrationHomeHelper.narrow(
 nctx.resolve(fullname));
 RegistrationPKImpl rpk= new RegistrationPKImpl();
 rpk.theuser(seller);
 Registration newseller =
 RegistrationHelper.narrow(
 regRef.findByPrimaryKey(rpk));
 if((newseller == null)||
 (!newseller.verifyPassword(password))) {
 return(Auction.INVALID_USER);
 }

Interoperable Object References (IOR)

Using a CORBA name service works for most of CORBA
applications especially when the object request brokers (ORBs) are
supplied by one vendor. However, you might find the name service
is not completely compatible among all ORBs, and you could get a
frustrating COMM_FAILURE message when the CORBA client tries to
connect to the CORBA server.

The solution is to use an Interoperable Object Reference (IOR)
instead. An IOR is available in ORBs that support the Internet Inter-
ORB protocol (IIOP). It contains the information that a naming
service would keep for each object such as the host and port
where the object resides, a unique lookup key for the object on
that host, and what version of IIOP is supported.

IOR Server

To create an IOR all you do is call the object_to_string method
from the ORB class and pass it an instance of the object. For
example, to convert the RegistrationServer object to an IOR, you
need to add the line String ref = orb.object_to_string(rs); to the
following code in the main program:

 String[] orbargs= {"-ORBInitialPort 1050"};
 ORB orb = ORB.init(orbargs, null);

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/lookup.html (6 of 11) [2001-6-13 8:11:20]

 RegistrationServer rs = new RegistrationServer();
//Add this line
 String ref = orb.object_to_string(rs);

So, instead of retrieving this object information from a naming
service, there is another way for the server to send information to
the client. You can register the returned String with a substitute
name server, which can be a simple HTTP web server because the
object is already in a transmittable format.

IOR Client

This example uses an HTTP connection to convert the IOR string
back into an object. You call the string_to_object method from the
ORB class. This method requests the IOR from the
RegistrationServer and returns the IOR string. The String is passed
to the ORB using the ORB.string_to_object method, and the ORB
returns the remote object reference:

 URL iorserver = new URL(
 "http://server.com/servlet?object=registration");
 URLConnection con = ioserver.openConnection();
 BufferedReader br = new BufferReader(
 new InputStreamReader(con.getInputStream));
 String ref = br.readLine();
 org.omg.CORBA.Object cobj = orb.string_to_object(ref);
 RegistrationHome regHome =
 RegistrationHomeHelper.narrow(cobj);

The substitute name server can keep persistent IOR records that
can survive a restart if needed.

Remote Method Invocation (RMI)

The Remote Method Invocation (RMI) API originally used its own
communication protocol called Java Remote Method Protocol
(JRMP), which resulted in having its own lookup service. Newer
releases of RMI can now use the more ubiquitous IIOP protocol, in
addition to JRMP. RMI-IIOP is covered in the next section.

The JRMP RMI naming service is similar to other lookup and
naming services. The actual lookup is achieved by calling
Naming.lookup and passing a URL parameter to that method. The
URL specifies the machine name, an optional port where the RMI
naming server, rmiregistry, that knows about that object is
running, and the remote object you want to reference and call
methods on.

For example:

 SellerHome shome =
 (SellerHome)Naming.lookup(

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/lookup.html (7 of 11) [2001-6-13 8:11:20]

 "rmi://appserver:1090/seller");

This code returns the remote SellerHome reference _stub from the
object bound to the name seller on the machine called appserver.
The rmi part of the URL is optional and you may have seen RMI
URLs without it, but if you are using JNDI or RMI-IIOP, including
rmi in the URL will save confusion later on. Once you have a
reference to SellerHome, you can call its methods.

In contrast to the JNDI lookup performed by AuctionServlet.java,
which requires a two-stage lookup to create a context and then the
actual lookup, RMI initializes the connection to the RMI name
server, rmiregistry, and also gets the remote reference with one
call.

This remote reference is leased to the client from the rmiregistry.
The lease means that unless the client informs the server it still
needs a reference to the object, the lease expires and the memory
is reclaimed. This leasing operation is transparent to the user, but
can be tuned by setting the server property
java.rmi.dgc.leaseValue value in milliseconds when starting the
server as follows:

 java -Djava.rmi.dgc.leaseValue=120000 myAppServer

RMI Over Internet Inter-ORB Protocol (IIOP)

The advent of RMI over Internet Inter-ORB Protocol (IIOP), means
existing RMI code can reference and look up an object with the
CORBA CosNaming service. This gives you greater interoperability
between architectures with little change to your existing RMI code.

Note: The rmic compiler provides the -iiop option to
generates the stub and tie classes necessary for RMI-
IIOP.

IIOP Server

The RMI-IIOP protocol is implemented as a JNDI plug-in, so as
before, you need to create an InitialContext:

 Hashtable env = new Hashtable();
 env.put("java.naming.factory.initial",
 "com.sun.jndi.cosnaming.CNCtxFactory");
 env.put("java.naming.provider.url",
 "iiop://localhost:1091");
 Context ic = new InitialContext(env);

The naming factory should look familiar as it is the same CORBA

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/lookup.html (8 of 11) [2001-6-13 8:11:20]

naming service used in the CORBA section. The main difference is
the addition of a URL value specifing the naming service to which
to connect. The naming service used here is the tnameserv program
started on port 1091.

 tnameserv -ORBInitialPort 1091

The other main change to the server side is to replace calls to
Naming.rebind to use the JNDI rebind method in the InitialContext
instance. For example:

Old RMI lookup code:

 SellerHome shome= new SellerHome("seller");
 Naming.rebind("seller", shome);

New RMI code:

 Hashtable env = new Hashtable();
 env.put("java.naming.factory.initial",
 "com.sun.jndi.cosnaming.CNCtxFactory");
 env.put("java.naming.provider.url",
 "iiop://localhost:1091");
 Context ic = new InitialContext(env);

 SellerHome shome= new SellerHome("seller");
 ic.rebind("seller", shome);

IIOP Client

On the client side, the RMI lookup is changed to use an instance of
the InitialContext in the place of RMI Naming.lookup. The return
object is mapped to the requested object by using the narrow
method of the javax.rmi.PortableRemoteObject class.
PortableRemoteObject replaces UnicastRemoteObject that was
previously available in the RMI server code.

Old RMI code:

 SellerHome shome=(SellerHome)Naming.lookup(
 "rmi://appserver:1090/seller");

New RMI code:

 Hashtable env = new Hashtable();
 env.put("java.naming.factory.initial",
 "com.sun.jndi.cosnaming.CNCtxFactory");
 env.put("java.naming.provider.url",
 "iiop://localhost:1091");
 Context ic = new InitialContext(env);

 SellerHome shome=
 (SellerHome)PortableRemoteObject.narrow(
 ic.lookup("seller"), SellerHome)

The PortableRemoteObject replaces UnicastRemoteObject previously

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/lookup.html (9 of 11) [2001-6-13 8:11:20]

available in the RMI server code. The RMI code would either
extend UnicastRemoteObject or call the exportObject method from
the UnicastRemoteObject class. The PortableRemoteObject also
contains an equivalent exportObject method. In the current
implementation, is is best to explicitly remove unused objects by
calling PortableRemoteObject.unexportObject().

JINI lookup services

(To be done later)

Improving Lookup Performance

When you run your application, if you find it would be faster to
walk the object to the other computer on a floppy, you have a
network configuration problem. The source of the problem is how
host names and IP addresses are resolved, and there is a
workaround.

RMI and other naming services use the InetAddress class to obtain
resolved host name and IP addresses. InetAddress caches lookup
results to improve subsequent calls, but when it is passed a new IP
address or host name, it performs a cross-reference between the
IP address and the host name to prevent address spoofing. If you
supply the host name as an IP address, InetAddress still tries to
verify the name of the host.

To workaround this problem, include the host name and IP address
in a hosts file on the client.

Unix Systems: On Unix, the hosts file is usually /etc/hosts.

Windows: On Winddows 95 or 98, the hosts file is
c:\windows\hosts, (the hosts.sam file is a sample file). On Windows
NT, the hosts file is c:\winnt\system32\drivers\etc\hosts

All you need to do is put these lines in your hosts file. The
myserver1 and myserver2 entries are the hosts running the remote
server and rmiregistry

127.0.0.1 localhost
129.1.1.1 myserver1
129.1.1.2 myserver2

[TOP]

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/lookup.html (10 of 11) [2001-6-13 8:11:20]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/lookup.html (11 of 11) [2001-6-13 8:11:20]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 4: Distributed Computing

Writing Advanced Applications
Chapter 4: Remote Method Invocation

[<<BACK] [CONTENTS] [NEXT>>]

The Remote Method Invocation (RMI) application programming
interface (API) enables client and server communications over the
net between programs written in the JavaTM programming
language. The Enterprise JavaBeansTM server transparently
implements the necessary Remote Method Invocation (RMI) code
so the client program can reference the Enterprise Beans running
on the server and access them as if they are running locally to the
client program.

Having RMI built into the Enterprise JavaBeans server is very
convenient and saves you coding time, but if you need to use
advanced RMI features or integrate RMI with an existing
application, you need to override the default RMI implementation
and write your own RMI code.

This chapter replaces the container-managed RegistrationBean
from Chapter 2: Entity and Session Beans with an RMI-based
registration server. The container-managed SellerBean from
Chapter 2 is also changed to call the new RMI registration server
using a Java 2 RMI lookup call.

● About RMI
● RMI in the Auction Application

• Class Overview
• File Summary
• Compile the Example
• Start the RMI Registry
• Start the Remote Server

● Establishing Remote Communications
● RegistrationServer Class

• Exporting a Remote Object
• Passing by Value and by Reference
• Distributed Garbage Collection

● Registration Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (1 of 18) [2001-6-13 8:11:27]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 4: Distributed Computing

● ReturnResults Interface
● SellerBean Class

About RMI

The RMI API lets you access a remote server object from a client
program by making simple method calls on the server object.
While other distributed architectures for accessing remote server
objects such as Distributed Component Object Model (DCOM) and
Common Object Request Broker Architecture (CORBA) return
references to the remote object, the RMI API not only returns
references, but provides these additional benefits.

● The RMI API handles remote object references (call by
reference) and can also return a copy of the object (call by
value).

● If the client program does not have local access to the class
from which a local or remote object was instantiated, RMI
services can download the class file.

Serialization and Data marshaling

To transfer objects, the RMI API uses the Serialization API to wrap
(marshal) and unwrap (unmarshal) the objects. To marshal an
object, the Serialization API converts the object to a stream of
bytes, and to unmarshal an object, the Serialization API converts a
stream of bytes into an object.

RMI over IIOP

One of the initial disadvantages to RMI was that its sole reliance on
the Java platform to write the interfaces made integration into
existing legacy systems difficult. However, RMI over Internet Inter-
ORB Protocol (IIOP) discussed in Chapter 4: Lookup Services lets
RMI communicate with any system or language that CORBA
supports.

If you combine improved integration with the ability of RMI to work
through firewalls using HTTP firewall proxying, you might find
distributing your business logic using RMI is easier than a socket-
based solution.

Note: Transfering code and data are key parts of the
JiniTM System software specification. In fact, adding a

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (2 of 18) [2001-6-13 8:11:27]

discovery and join service to the RMI services would
create something very similar to what you get in the Jini
architecture.

RMI in the Auction Application

The RMI-based RegistrationServer has the following new methods:

● A new create method for creating a new user.
● A new find method for finding a user.
● A new search method for the custom search of users in the

database.
The new custom search passes results back to the calling client by
way of an RMI callback. The RMI callback custom search is similar
to the finder methods used in the Bean- and container-managed
examples from Chapters 2 and 3, except in the RMI version, it can
take more time to generate the results because the remote
registration server calls a remote method exported by the RMI-
based SellerBean client.

If the calling client is written in the Java programming language,
and is not, for example, a web page, the server can update the
client as soon as the results are ready. But, the HTTP protocol used
in most browsers does not allow results to be pushed to the client
without a request for those results. This means the results web
page is not created until the results are ready, which can add a
small delay.

Class Overview

The two main classes in the RMI-based auction implementation are
SellerBean and the remote RegistrationServer. SellerBean is called
from AuctionServlet to insert an auction item into the database,
and check for low account balances.

The example models the Enterprise JavaBeans architecture in that
a user's registration details are separate from the code to create
and find the registration details. That is, the user's registration
details provided by the Registration.java class are separate from
the code to create and find a Registration object, which is in the
RegistrationHome.java class.

The remote interface implementation in RegistrationHome.java is
bound to the rmiregistry. When a client program wants to
manipulate a user's registration details, it must first look up the

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (3 of 18) [2001-6-13 8:11:27]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/RegistrationServer.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/SellerBean.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/SellerBean.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/RegistrationServer.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/AuctionServlet.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/Registration.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/RegistrationHome.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/RegistrationHome.java

reference to the RegistrationHome.java object in the rmiregistry.

File Summary

All the source code files for the RMI-based example are described
in the bullet list below.

● SellerBean.java: Client program that calls the
RegistrationServer.verifypasswd and
RegistrationServer.findLowCreditAccounts remote methods.
SellerBean also exports its updateResults method that
RegistrationServer calls when it completes its
RegistrationServer.findLowCreditAccounts search.

● RegistrationServer.java: Remote server object that
implements the RegistrationHome and Registration remote
interfaces.

● Registration.java: Remote interface that declares the getUser,
verifypasswd, and other remote methods for managing a
user's registration details.

● RegistrationHome.java: remote interface that declares the
create, findByPrimaryKey, and findLowCreditAccounts remote
methods that create or return instances of registration
details.

● RegistrationImpl.java: The RegistrationServer.java source file
includes the implementation for the Registration remote
interface as class RegistrationImpl

● RegistrationPK.java: Class that represents a user's
registration details using just the primary key of the database
record.

● ReturnResults.java: Remote interface that declares the
updateResults method the SellerBean class implements as a
callback.

● AuctionServlet.java: Modified version of the original
AuctionServlet class where registration accounts are created
by calling the RMI RegistrationServer directly. The auction
servlet also calls the SellerBean.auditAccounts method, which
returns a list of users with a low account balance.

The auditAccounts method is called with the following Uniform

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (4 of 18) [2001-6-13 8:11:27]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/RegistrationHome.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/SellerBean.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/RegistrationServer.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/Registration.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/RegistrationHome.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/RegistrationServer.html#RegistrationImpl
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/RegistrationPK.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/ReturnResults.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/AuctionServlet.java

Resource Locator (URL), which does a simple check to verify
the request came from the local host.

http://phoenix.eng.sun.com:7001/
 AuctionServlet?action=auditAccounts

You also need a java.policy security policy file to grant the
permissions needed to run the example on the Java 2 platforms.

Most RMI applications need the two socket permissions for socket
and HTTP access to the specified ports. The two thread
permissions, were listed in a stack trace as being needed for the
RegistrationImpl class to create a new inner thread.

In the Java 2 platform, when a program does not have all the
permissions it needs, the Java1 virtual machine (VM) generates a
stack trace that lists the permissions that need to be added to the
security policy file. See Chapter 9: Program Signing and Security
for more information.

grant {
 permission java.net.SocketPermission
 "*:1024-65535", "connect,accept,resolve";
 permission java.net.SocketPermission "*:80",
 "connect";
 permission java.lang.RuntimePermission
 "modifyThreadGroup";
 permission java.lang.RuntimePermission
 "modifyThread";
};

Compile the Example

Before describing the RMI-based code for the above classes, here
is the command sequence to compile the example on the Unix and
Win32 platforms:

Unix:
javac registration/Registration.java
javac registration/RegistrationPK.java
javac registration/RegistrationServer.java
javac registration/ReturnResults.java
javac seller/SellerBean.java
rmic -d . registration.RegistrationServer
rmic -d . registration.RegistrationImpl
rmic -d . seller.SellerBean

Win32:
javac registration\Registration.java
javac registration\RegistrationPK.java
javac registration\RegistrationServer.java
javac registration\ReturnResults.java
javac seller\SellerBean.java

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (5 of 18) [2001-6-13 8:11:27]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/java.policy

rmic -d . registration.RegistrationServer
rmic -d . registration.RegistrationImpl
rmic -d . seller.SellerBean

Start the RMI Registry

Because you are using your own RMI code, you have to explicitly
start the RMI Registry so the SellerBean object can find the remote
Enterprise Beans. The RegistrationServer uses the RMI Registry to
register or bind enterprise Beans that can be called remotely. The
SellerBean client contacts the registry to look up and get
references to the remote AuctionItem and Registration Enterprise
Beans.

Because RMI allows code and data to be transferred, you must be
sure the system classloader does not load extra classes that could
be mistakenly sent to the client. In this example, extra classes
would be the Stub and Skel class files, and the RegistrationSever
and RegistrationImpl classes, and to prevent them being
mistakenly sent, they should not appear anywhere in the CLASSPATH
when you start the RMI Registry. Because the current path could
be included automatically, you need to start the RMI Registry away
from the code workspace too.

The following commands prevent the sending of extra classes by
unsetting the CLASSPATH before starting the RMI Registry on the
default 1099 port. You can specify a different port by adding the
port number as follows: rmiregistry 4321 &. If you specify a
different port number, you must specify the same port number in
both you client lookup and server rebind calls.

Unix:
export CLASSPATH=""
rmiregistry &

Win32:
unset CLASSPATH
start rmiregistry

Start the Remote Server

Once the rmiregistry is running, you can start the remote server,
RegistrationServer. The RegistrationServer program registers the
name registration2 with the rmiregistry name server, and any
client can use this name to retrieve a reference to the remote
server object, RegistrationHome.

To run the example, copy the RegistrationServer and
RegistrationImpl classes and the associated stub classes a

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (6 of 18) [2001-6-13 8:11:27]

remotely accessible area and start the server program.

Unix:
cp *_Stub.class
 /home/zelda/public_html/registration
cp RegistrationImpl.class
/home/zelda/public_html/registration
cd /home/zelda/public_html/registration
java -Djava.server.hostname=
 phoenix.eng.sun.com RegistrationServer

Windows:
copy *_Stub.class
 \home\zelda\public_html\registration
copy RegistrationImpl.class
 \home\zelda\public_html\registration
cd \home\zelda\public_html\registration
java -Djava.server.hostname=
 phoenix.eng.sun.com RegistrationServer

The following key properties used to configure RMI servers and
clients. These properties can be set inside the program or supplied
as command line properties to the Java VM.

● The java.rmi.server.codebase property specifies where the
publicly accessible classes are located. On the server this can
be a simple file URL to point to the directory or JAR file that
contains the classes. If the URL points to a directory, the URL
must terminate with a file separator character, "/".

If you are not using a file URL, you will either need an HTTP
server to download the remote classes or have to manually
deliver the remote client stub and remote interface classes in,
for example, a JAR file.

● The java.rmi.server.hostname property is the complete host
name of the server where the publicly accessible classes
reside. This is only needed if the server has problems
generating a fully qualified name by itself.

● The java.rmi.security.policy property specifies the policy file
with the permissions needed to run the remote server object
and access the remote server classes for download.

Establishing Remote Communications

Client programs communicate with each other through the server.
The server program consists of three files. The Registration.java
and RegistrationHome.java remote interface files define the
methods that can be called remotely, and the
RegistrationServer.java class file defines the RegistrationServer

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (7 of 18) [2001-6-13 8:11:27]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/java.policy

and RegistrationImpl classes that implement the methods.

To establish remote communications, both the client and server
programs need to access the remote interface classes. The server
needs the interface classes to generate the interface
implementation, and the client uses the remote interface class to
call the remote server method implementation.

For example, SellerBean creates a reference to RegistrationHome,
the interface, and not RegistrationServer, the implementation,
when it needs to create a user registration.

Besides the server interfaces and classes, you need stub and
skeleton classes to establish remote communications. The stub and
skeleton classes needed in this example are generated when you
run the rmic compiler command on the RegistrationServer and
SellerBean classes.

The generated SellerBean, SellerBean_Stub.class and
SellerBean_Skel.class classes are needed for the callback from the
server to the SellerBean client. It is the _Stub.class file on the
client that marshals data to and unmarshals it from the server,
while the _Skel.class class does the same for the server.

Note: In the Java 2 platform, the server side,
_Skel.class file is no longer needed because its function
has been taken over by the Java Virtual Machine classes

Data Marshaling

Marshaling and unmarshaling data means that when you call the
RegistrationHome.create method from SellerBean, this call is
forwarded to the RegistrationServer_Stub.create method. The
RegistrationServer_Stub.create method wraps the method
arguments and sends a serialized stream of bytes to the
RegistrationServer_Skel.create method.

The RegistrationServer_Skel.create
method unwraps the serialized
bytestream, re-creates the
arguments to the original
RegistrationHome.create call, and
returns the result of calling the real
RegistraionServer.create method

back along the same route, but this time wrapping the data on the

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (8 of 18) [2001-6-13 8:11:27]

server side.

Marshaling and unmarshalling data is not without its complications.
The first issue is serialized objects might be incompatible across
Java Development Kit (JDKTM) releases. A Serialized object has an
identifier stored with the object that ties the serialized object to its
release. If the RMI client and server complain about incompatible
serial IDs, you might need to generate backward compatible stubs
and skeletons using the -vcompat option to the rmic compiler.

Another issue is not all objects are serialized by default. The initial
Bean-managed RegistrationBean object this example is based on
returns an Enumeration object that contains Registration elements
in a Vector. Returning this list from a remote method works fine,
but when you try to send a vector as a parameter to a remote
method, you get a runtime Marshaling exception in the Java 2
platform.

Fortunately, in the Java 2 platform the Collections API offers
alternatives to previously unmarshable objects. In this example,
an ArrayList from the Collections API replaces the Vector. If the
Collections API is not an option, you can create a wrapper class
that extends Serializable and provides readObject and writeObject
method implementations to convert the object into a bytestream.

RegistrationServer Class

The RegistrationServer class extends
java.rmi.server.UnicastRemoteObject and implements the create,
findByPrimaryKey and findLowCreditAccounts methods declared in
the RegistrationHome interface. The RegistrationServer.java source
file also includes the implementation for the Registration remote
interface as class RegistrationImpl. RegistrationImpl also extends
UnicastRemoteObject.

Exporting a Remote Object

Any object that you want to be remotely accessible needs to either
extend java.rmi.server.UnicastRemoteObject or use the exportObject
method from the UnicastRemoteObject class. If you extend
UnicastRemoteObject, you also get the equals, toString and hashCode
methods for the exported object.

Passing by Value and Passing by Reference

Although the RegistrationImpl class is not bound to the registry, it

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (9 of 18) [2001-6-13 8:11:27]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/RegistrationServer.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/RegistrationServer.java

is still referenced remotely because it is associated with the
RegistrationHome return results. Because RegistrationImpl extends
UnicastRemoteObject, its results are passed by reference, and so
only one copy of that user's registration Bean exists in the Java VM
at any one time.

In the case of reporting results such as in the
RegistrationServer.findLowCreditAccounts method, the
RegistrationImpl class copy of the remote object could be used
instead. By simply not extending UnicastRemoteObject in the
RegistrationImpl class definition, a new Registration object would
be returned for each request. In effect the values were passed but
not the reference to the object on the server.

Distributed Garbage Collection

Using remote references to objects on the server from a client
outside the server's garbage collector introduces some potential
problems with memory leaks. How does the server know it is
holding onto a reference to a Registration object that is no longer
being used by any clients because they aborted or a network
connection was dropped?

To avoid potential memory leaks on the server from clients, RMI
uses a leasing mechanism when giving out references to exported
objects. When exporting an object, the Java VM increases the
count for the number of references to this object and sets an
expiration time, or lease time, for the new reference to this object.

When the lease expires, the reference count of this object is
decreased and if it reaches 0, the object is set for garbage
collection by the Java VM. It is up to the client that maintains this
weak reference to the remote object to renew the lease if it needs
the object beyond the lease time. A weak reference is a way to
refer to an object in memory without keeping it from being
garbage collected.

This lease time value is a configurable property measured in
milliseconds. If you have a fast network, you could shorten the
default value and create a large number of transient object
references.

The following code sets the lease timeout to 2 minutes.

 Property prop = System.getProperties();
 prop.put("java.rmi.dgc.leaseValue", 120000);

The create and findByPrimaryKey methods are practically identical

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (10 of 18) [2001-6-13 8:11:27]

to the other versions of the Registration Server. The main
difference is that on the server side, the registration record is
referenced as RegistrationImpl, which is the implementation of
Registration. On the client side, Registration is used instead.

The findLowCreditAccounts method builds an ArrayList of
serializable RegistrationImpl objects and calls a remote method in
the SellerBean class to pass the results bacl. The results are
generated by an inner Thread class so the method returns before
the results are complete. The SellerBean object waits for the
updateAccounts method to be called before displaying the HTML
page. In a client written with the Java programming langauge, it
would not need to wait, but could display the update in real time.

public class RegistrationServer
 extends UnicastRemoteObject
 implements RegistrationHome {

 public registration.RegistrationPK
 create(String theuser,
 String password,
 String emailaddress,
 String creditcard)
 throws registration.CreateException{
 // code to insert database record
 }

 public registration.Registration
 findByPrimaryKey(registration.RegistrationPK pk)
 throws registration.FinderException {
 if ((pk == null) || (pk.getUser() == null)) {
 throw new FinderException ();
 }
 return(refresh(pk));
 }

 private Registration refresh(RegistrationPK pk)
 throws FinderException {

 if(pk == null) {
 throw new FinderException ();
 }

 Connection con = null;
 PreparedStatement ps = null;
 try{
 con=getConnection();
 ps=con.prepareStatement("select password,
 emailaddress,
 creditcard,
 balance from registration where theuser = ?");
 ps.setString(1, pk.getUser());
 ps.executeQuery();
 ResultSet rs = ps.getResultSet();
 if(rs.next()) {
 RegistrationImpl reg=null;
 try{

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (11 of 18) [2001-6-13 8:11:27]

 reg= new RegistrationImpl();
 }catch (RemoteException e) {}
 reg.theuser = pk.getUser();
 reg.password = rs.getString(1);
 reg.emailaddress = rs.getString(2);
 reg.creditcard = rs.getString(3);
 reg.balance = rs.getDouble(4);
 return reg;
 }else{
 throw new FinderException ();
 }
 }catch (SQLException sqe) {
 throw new FinderException();
 }finally {
 try{
 ps.close();
 con.close();
 }catch (Exception ignore) {}
 }
 }

 public void findLowCreditAccounts(
 final ReturnResults client)
 throws FinderException {
 Runnable bgthread = new Runnable() {
 public void run() {
 Connection con = null;
 ResultSet rs = null;
 PreparedStatement ps = null;
 ArrayList ar = new ArrayList();

 try{
 con=getConnection();
 ps=con.prepareStatement("select theuser,
 balance from registration
 where balance < ?");
 ps.setDouble(1, 3.00);
 ps.executeQuery();
 rs = ps.getResultSet();
 RegistrationImpl reg=null;
 while (rs.next()) {
 try{
 reg= new RegistrationImpl();
 }catch (RemoteException e) {}
 reg.theuser = rs.getString(1);
 reg.balance = rs.getDouble(2);
 ar.add(reg);
 }
 rs.close();
 client.updateResults(ar);
 }catch (Exception e) {
 System.out.println("findLowCreditAccounts: "+e);
 return;
 }
 finally {
 try{
 if(rs != null) {
 rs.close();
 }
 if(ps != null) {

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (12 of 18) [2001-6-13 8:11:27]

 ps.close();
 }
 if(con != null) {
 con.close();
 }
 }catch (Exception ignore) {}
 }
 } //run
 };
 Thread t = new Thread(bgthread);
 t.start();
 }
}

The main method loads the JDBCTM pool driver. This version uses
the Postgres database, installs the RMISecurityManager, and
contacts the RMI registry to bind the the RegistrationHome remote
object to the name registration2. It does not need to bind the
remote interface, Registration because that class is loaded when it
is referenced by RegistrationHome.

By default, the server name uses port 1099. If you want to use a
different port number, you can add it with a colon as follows:
kq6py:4321. If you change the port here, you must start the RMI
Registry with the same port number.

The main method also installs a RMIFailureHandler. If the server fails
to create a server socket then the failure handler returns true
which instructs the RMI server to retry the operation.

 public static void main(String[] args){
 try {
 new pool.JDCConnectionDriver(
 "postgresql.Driver",
 "jdbc:postgresql:ejbdemo",
 "postgres", "pass");
 } catch (Exception e){
 System.out.println(
 "error in loading JDBC driver");
 System.exit(1);
 }
 try {
 Properties env=System.getProperties();
 env.put("java.rmi.server.codebase",
 "http://phoenix.eng.sun.com/registration");
 RegistrationServer rs=
 new RegistrationServer();
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(
 new RMISecurityManager());
 }
 RMISocketFactory.setFailureHandler(
 new RMIFailureHandlerImpl());

 Naming.rebind("

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (13 of 18) [2001-6-13 8:11:27]

 //phoenix.eng.sun.com/registration2",rs);
 }catch (Exception e) {
 System.out.println("Exception thrown "+e);
 }
 }
}

class RMIFailureHandlerImpl
 implements RMIFailureHandler {
 public boolean failure(Exception ex){
 System.out.println("exception "+ex+" caught");
 return true;
 }
}

Registration Interface

The Registration interface declares the methods implemented by
RegistrationImpl in the RegistrationServer.java source file.

package registration;

import java.rmi.*;
import java.util.*;

public interface Registration extends Remote {
 boolean verifyPassword(String password)
 throws RemoteException;
 String getEmailAddress() throws RemoteException;
 String getUser() throws RemoteException;
 int adjustAccount(double amount)
 throws RemoteException;
 double getBalance() throws RemoteException;
}

RegistrationHome Interface

The RegistrationHome interface declares the methods implemented
by theRegistrationServer class. These methods mirror the Home
interface defined in the Enterprise JavaBeans example. The
findLowCreditAccounts method takes a remote interface as its only
parameter.

package registration;

import java.rmi.*;
import java.util.*;

public interface RegistrationHome extends Remote {
 RegistrationPK create(String theuser,
 String password,
 String emailaddress,
 String creditcard)
 throws CreateException,
 RemoteException;

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (14 of 18) [2001-6-13 8:11:27]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/Registration.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/RegistrationHome.java

 Registration findByPrimaryKey(RegistrationPK theuser)
 throws FinderException, RemoteException;

 public void findLowCreditAccounts(ReturnResults rr)
 throws FinderException, RemoteException;
}

ReturnResults Interface

The ReturnResults interface declares the method implemented by
the SellerBean class. The updateResults method is called from
RegistrationServer.

package registration;

import java.rmi.*;
import java.util.*;

public interface ReturnResults extends Remote {
 public void updateResults(ArrayList results)
 throws FinderException, RemoteException;
}

SellerBean Class

The SellerBean class includes the callback method implementation
and calls the RegistrationServer object using RMI. The
updateAccounts method is made accessible by a call to
UnicastRemoteObject.exportObject(this);. The auditAccounts method
waits on a Boolean object.

The updateAccounts method sends a notify to all methods waiting
on the Boolean object when it has been called from the server and
receives the search results.

package seller;

import java.rmi.RemoteException;
import java.rmi.*;
import javax.ejb.*;
import java.util.*;
import java.text.NumberFormat;
import java.io.Serializable;
import javax.naming.*;
import auction.*;
import registration.*;
import java.rmi.server.UnicastRemoteObject;
import java.util.ArrayList;

public class SellerBean
 implements SessionBean, ReturnResults {

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (15 of 18) [2001-6-13 8:11:27]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/ReturnResults.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/rmi/SellerBean.java

 protected SessionContext ctx;
 javax.naming.Context ectx;
 Hashtable env = new Hashtable();
 AuctionServlet callee=null;
 Boolean ready=new Boolean("false");
 ArrayList returned;

 public int insertItem(String seller,
 String password,
 String description,
 int auctiondays,
 double startprice,
 String summary)
 throws RemoteException {

 try{
 RegistrationHome regRef = (
 RegistrationHome)Naming.lookup(
 "//phoenix.eng.sun.com/registration2");
 RegistrationPK rpk= new RegistrationPK();
 rpk.setUser(seller);
 Registration newseller = (
 Registration)regRef.findByPrimaryKey(rpk);
 if((newseller == null) ||
 (!newseller.verifyPassword(password))) {
 return(Auction.INVALID_USER);
 }

 AuctionItemHome home = (
 AuctionItemHome) ectx.lookup(
 "auctionitems");
 AuctionItem ai= home.create(seller,
 description,
 auctiondays,
 startprice,
 summary);
 if(ai == null) {
 return Auction.INVALID_ITEM;
 }else{
 return(ai.getId());
 }
 }catch(Exception e){
 System.out.println("insert problem="+e);
 return Auction.INVALID_ITEM;
 }
 }

 public void updateResults(java.util.ArrayList ar)
 throws RemoteException {
 returned=ar;
 synchronized(ready) {
 ready.notifyAll();
 }
 }

 public ArrayList auditAccounts() {
 this.callee=callee;
 try {
 RegistrationHome regRef = (
 RegistrationHome)Naming.lookup(

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (16 of 18) [2001-6-13 8:11:27]

 "//phoenix.eng.sun.com/registration2");
 regRef.findLowCreditAccounts(this);
 synchronized(ready) {
 try {
 ready.wait();
 } catch (InterruptedException e){}
 }
 return (returned);
 }catch (Exception e) {
 System.out.println("error in creditAudit "+e);
 }
 return null;
 }

 public void ejbCreate()
 throws javax.ejb.CreateException,
 RemoteException {
 env.put(
 javax.naming.Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.TengahInitialContextFactory");
 try{
 ectx = new InitialContext(env);
 } catch (NamingException e) {
 System.out.println(
 "problem contacting EJB server");
 throw new javax.ejb.CreateException();
 }
 Properties env=System.getProperties();
 env.put("java.rmi.server.codebase",
 "http://phoenix.eng.sun.com/registration");
 env.put("java.security.policy","java.policy");
 UnicastRemoteObject.exportObject(this);
 }

 public void setSessionContext(SessionContext ctx)
 throws RemoteException {
 this.ctx = ctx;
 }

 public void unsetSessionContext()
 throws RemoteException {
 ctx = null;
 }

 public void ejbRemove() {}
 public void ejbActivate() throws RemoteException {
 System.out.println("activating seller bean");
 }
 public void ejbPassivate() throws RemoteException {
 System.out.println("passivating seller bean");
 }
}

1 As used on this web site,
the terms "Java virtual
machine" or "JVM" mean a virtual machine

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (17 of 18) [2001-6-13 8:11:27]

for the Java platform.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/rmi.html (18 of 18) [2001-6-13 8:11:27]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 4: Distributed Computing

Writing Advanced Applications
Chapter 4: Common Object Request Broker Architecture

(CORBA)

[<<BACK] [CONTENTS] [NEXT>>]

Both the Remote Method Invocation (RMI) and Enterprise
JavaBeansTM auction application implementations use the JavaTM
language to implement the different auction service tiers.
However, you might need to integrate with applications written in
C, C++ or other languages and running on a myriad of operating
systems and machines.

One way to integrate with other applications is to transmit data in
a common format such as 8 bit characters over a TCP/IP socket.
The disadvantage is you have to spend a fair amount of time
deriving a messaging protocol and mapping the various data
structures to and from the common transmission format so the
data can be sent and received over the TCP/IP connection.

This is exactly where Common Object Request Broker Architecture
(CORBA) and its Interface Definition Language (IDL) can help. IDL
provides a common format to represent an object that can be
distributed to other applications. The other applications might not
even understand objects, but as long as they can provide a
mapping between the common IDL format and their own data
representations, the applications can share data.

This chapter describes the Java language to IDL mapping scheme,
and how to replace the original container-managed
RegistrationBean with its CORBA server equivalent. The
SellerBean.java and AuctionServlet.java programs are changed to
interoperate with the CORBA RegistrationServer program.

● IDL Mapping Scheme
• Quick Reference
• Setting up IDL Mappings
• Other IDL Types

● CORBA in the Auction Application
• CORBA RegistrationServer

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (1 of 22) [2001-6-13 8:11:34]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 4: Distributed Computing

• IDL Mappings File
• Compiling the IDL Mappings File
• Stub and Skeleton Files

● Object Request Broker (ORB)
• Making the CORBA Server Accessible
• Plugging in a New ORB
• Naming Service Access by CORBA Clients

● Helper and Holder Classes
● Garbage Collection
● CORBA Callbacks
● Using the Any Type
● Conclusion

IDL Mapping Scheme

Many programming languages provide a mapping between their
data types to the common denominator IDL format, and the Java
language is no exception. The Java language can send objects
defined by IDL to other CORBA distributed applications, and
receive objects defined by IDL from other CORBA distributed
applications.

This section describes the Java language to IDL mapping scheme
and, where needed, presents issues you need to take into
consideration.

Quick Reference

Here is a quick reference table of the Java language to CORBA IDL
data types, and the runtime exceptions thrown when conversions
fail. Data types in this table that need explanation are covered
below.

Java Data Type IDL Format Runtime Exception

byte octet

boolean boolean

char char DATA_CONVERSION

char wchar

double double

float float

int long

int unsigned long

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (2 of 22) [2001-6-13 8:11:34]

long long long

long unsigned long long

short short

short unsigned short

java.lang.String string DATA_CONVERSION

java.lang.String wstring MARSHAL

Unsigned Values: The Java data types byte, short, int, and long
are represented by 8 bit, 16 bit, 32 bit and 64 bit two's-
complement integers. This means a Java short value represents
the range -215 to 215 - 1 or -32768 to 32767 inclusive. The
equivalent signed IDL type for a short, short, matches that range,
but the unsigned IDL short type uses the range 0 to 215 or 0 to
65535.

This means that in the case of a short, if an unsigned short value
greater than 32767 is passed to a program written in the Java
language, the short value is represented in the Java language as a
negative number. This can cause confusion in boundary tests for a
value greater than 32767 or less than 0.

IDL char Types: The Java language uses 16-bit unicode, but the
IDL char and string types are 8-bit characters. You can map a Java
char to an 8-bit IDL char to transmit multi-byte characters if you
use an array to do it. However, the IDL wide char type wchar is
specifically designed for languages with multi-byte characters and
allocates a fixed number of bytes as needed to contain that
language set for each and every letter.

When mapping between the Java language char type and the IDL
char type, the DATA_CONVERSION exception is thrown if the character
does not fit into 8 bits.

IDL string Types: The IDL string type can be thought of as a
sequence of IDL char types, and also raises the DATA_CONVERSION
exception. The IDL wstring type is equivalent to a sequence of
wchars terminated by a wchar NULL.

An IDL string and wstring type can either have a fixed size or no
maximum defined sized. If you try to map a java.lang.String to a
fixed size or bounded IDL string and the java.lang.String is too
large, a MARSHAL exception is raised.

Setting up IDL Mappings

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (3 of 22) [2001-6-13 8:11:34]

Java language to IDL mappings are placed in a file with a .idl
extension. The file is compiled so it can be accessed by CORBA
programs that need to send and receive data. This section explains
how to construct the mappings for package statements and the
Java data types. The section below on CORBA RegistrationServer
Implementation describes how to use this information to set up an
IDL mapping file for the CORBA Registration server.

Java packages and interfaces: Java package statements are
equivalent to the module type in IDL. The module types can be
nested, which results in generated Java classes being created in
nested sub-directories.

For example, if a CORBA program contains this package
statement:

 package registration;

the mappings file would have this IDL module mapping for it:

 module registration {
 };

If a CORBA program contains a package hierarchy like this

 package registration.corba;

the equivalent IDL module mapping is this:

 module registration {
 module corba {
 };
 };

Distributed classes are defined as Java interfaces and map to the
IDL interface type. IDL does not define access such as public or
private like you find in the Java language, but does allow
inheritance from other interfaces.

This example adds the Java Registration interface to an IDL
registration module.

 module registration {
 interface Registration {
 };
 }

This example adds the Java Registration interface to an IDL
registration module, and indicates the Registration interface
inherits from the User interface.

 module registration {
 interface Registration: User {
 };
 }

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (4 of 22) [2001-6-13 8:11:34]

Java methods: Java methods map to IDL operations. The IDL
operation looks similar to a Java method except there is no
concept of access control. You also have to help the IDL compiler
by specifying which parameters are in, inout or out, defined as
follows:

● in - parameter is passed into the method but not changed.
● inout - parameter is passed into the method and might be

returned changed.
● out - parameter might be returned changed.

This IDL mapping includes the Registration and RegistrationHome
interface methods to IDL operations using one IDL module type.

module registration {

 interface Registration {
 boolean verifyPassword(in string password);
 string getEmailAddress();
 string getUser();
 long adjustAccount(in double amount);
 double getBalance();
 };

 interface RegistrationHome {
 Registration findByPrimaryKey(
 in RegistrationPK theuser)
 raises (FinderException);
 }
}

Java Arrays: Arrays in the Java language are mapped to the IDL
array or IDL sequence type using a type definition.

This example maps the Java array double balances[10] to an IDL
array type of the same size.

typedef double balances[10];

These examples map the Java array double balances[10] to an IDL
sequence type. The first typedef sequence is an example of an
unbounded sequence, and the second typedef sequence has the
same size as the array.

typedef sequence<double> balances;
typedef sequence<double,10> balances;

Java Exception: Java exceptions are mapped to IDL exceptions.
Operations use IDL exceptions by specifying them as a raises type.

This example maps the CreateException from the auction
application to the IDL exception type, and adds the IDL raises type
to the operation as follows. IDL exceptions follow C++ syntax, so
instead of throwing an exception (as you would in the Java

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (5 of 22) [2001-6-13 8:11:34]

language), the operation raises an exception.

exception CreateException {
};

interface RegistrationHome {
 RegistrationPK create(
 in string theuser,
 in string password,
 in string emailaddress,
 in string creditcard)
 raises (CreateException);
}

Other IDL types

These other basic IDL types do not have an exact equivalent in the
Java language. Many of these should be familiar if you have used C
or C++. The Java language provides a mapping for these types so
a program written in the Java language can receive data from
programs written in C or C++.

● IDL attribute
● IDL enum
● IDL struct
● IDL union
● IDL Any
● IDL Principal
● IDL Object

IDL attribute: The IDL attribute type is similar to the get and set
methods used to access fields in the JavaBeansTM software.

In the case of a value declared as an IDL attribute, the IDL
compiler generates two methods of the same name as the IDL
attribute. One method returns the field and the other method sets
it. For example, this attribute type:

interface RegistrationPK {
 attribute string theuser;
};

defines these methods

//return user
 String theuser();
//set user
 void theuser(String arg);

IDL enum: The Java language has an Enumeration class for
representing a collection of data. The IDL enum type is different
because it is declared as a data type and not a data collection.

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (6 of 22) [2001-6-13 8:11:34]

The IDL enum type is a list of values that can be referenced by
name instead of by their position in the list. In the example, you
can see that referring to an IDL enum status code by name is more
readable than referring to it by its number. This line maps static
final int values in the final class LoginError. You can reference
the values as you would reference a static field:
LoginError.INVALID_USER.

enum LoginError {
 INVALID_USER, WRONG_PASSWORD, TIMEOUT};

Here is a version of the enum type that includes a preceding
underscore that can be used in switch statements:

switch (problem) {
 case LoginError._INVALID_USER:
 System.out.println("please login again");
 break;
}

IDL struct: An IDL struct type can be compared to a Java class
that has only fields, which is how it is mapped by the IDL compiler.

This example declares an IDL struct. Note that IDL types can
reference other IDL types. In this example LoginError is from the
enum type declared above.

struct ErrorHandler {
 LoginError errortype;
 short retries;
};

IDL union: An IDL union can represent one type from a list of
types defined for that union. The IDL union maps to a Java class of
the same name with a discriminator method used for determining
the type of this union.

This example maps the GlobalErrors union to a Java class by the
name of GlobalErrors. A default case case: DEFAULT could be added
to handle any elements that might be in the LoginErrors enum type,
and not specified with a case statement here.

 union GlobalErrors switch (LoginErrors) {
 case: INVALID_USER: string message;
 case: WRONG_PASSWORD: long attempts;
 case: TIMEOUT: long timeout;
 };

In a program written in the Java language, the GlobalErrors union
class is created as follows:

 GlobalErrors ge = new GlobalErrors();
 ge.message("please login again");

The INVALID_USER value is retrieved like this:

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (7 of 22) [2001-6-13 8:11:34]

 switch (ge.discriminator().value()) {
 case: LoginError._INVALID_USER:
 System.out.println(ge.message);
 break;
 }

Any type: If you do not know what type is going to be passed or
returned to an operation, you can use the Any type mapping, which
can represent any IDL type. The following operation returns and
passes an unknown type:

 interface RegistrationHome {
 Any customSearch(Any searchField, out count);
 };

To first create a type of Any, request the type from the Object
Request Broker (ORB). To set a value in a type of Any, use an
insert_<type> method. To retrieve a value, use the extract_<type>
method.

This example requests an object of type Any, and uses the
insert_type method to set a value.

 Any sfield = orb.create_any();
 sfield.insert_long(34);

The Any type has an assigned TypeCode value that you can query
using type().kind().value() on the object. The following example
shows a test for the TypeCode double. This example includes a
reference to the IDL TypeCode find out which type the Any object
contains. The TypeCode is used for all objects. You can analyze the
type of a CORBA object using the _type() or type() methods as
shown here.

public Any customSearch(Any searchField, IntHolder count){
 if(searchField.type().kind().value() == TCKind._tk_double){
// return number of balances greater than supplied amount
 double findBalance=searchField.extract_double();

Principal: The Principal type identifies the owner of a CORBA
object, for example, a user name. The value can be interrogated
from the request_principal field of the CORBA RequestHeader class
to make the identification. More comprehensive security and
authorization is available in the CORBA security service. Object:
The Object type is a CORBA object. If you need to send Java
objects, you have to either translate them into an IDL type or use
a mechanism to serialize them when they are transferred.

CORBA in the Auction Application

The container-managed RegistrationBean from the auction
application is completely replaced with a standalone CORBA

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (8 of 22) [2001-6-13 8:11:34]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/registration/RegistrationBean.java

RegistrationServer that implements the registration service. The
CORBA RegistrationServer is built by creating and compiling an IDL
mappings file so client programs can communicate with the
registration server.

The SellerBean.java and AuctionServlet.java files are updated to
look up the CORBA registration server.

CORBA RegistrationServer Implementation

This section describes the Registration.idl file, which maps the
RegistrationHome and Registration remote interfaces from the
Enterprise JavaBean auction application to their IDL equivalents
and shows how to compile the Registration.idl file into CORBA
registration server classes.

The CORBA registration server implements the create and
findByPrimaryKey methods from the original RegistrationBean.java
file, and is enhanced with the following two new methods to help
illustrate CORBA callbacks and how to use the Any type.

● findLowCreditAccounts(in ReturnResults rr), which uses a
callback to return a list of accounts with a low balance.

● any customSearch(in any searchfield, out long count), which
returns a different search result depending on the search field
type submitted.

IDL Mappings File

Here is the Registration.idl file that maps the data types and
methods used in the RegistrationHome and Registration programs
to their IDL equivalents.

module registration {

interface Registration {
 boolean verifyPassword(in string password);
 string getEmailAddress();
 string getUser();
 long adjustAccount(in double amount);
 double getBalance();
};

interface RegistrationPK {
 attribute string theuser;
};

enum LoginError {INVALIDUSER, WRONGPASSWORD, TIMEOUT};

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (9 of 22) [2001-6-13 8:11:34]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/corba/RegistrationServer.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/corba/Registration.idl
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/corba/Registration.idl

exception CreateException {
};

exception FinderException {
};

typedef sequence<Registration> IDLArrayList;

interface ReturnResults {
 void updateResults(in IDLArrayList results)
 raises (FinderException);
};

interface RegistrationHome {
 RegistrationPK create(in string theuser,
 in string password,
 in string emailaddress,
 in string creditcard)
 raises (CreateException);

 Registration findByPrimaryKey(
 in RegistrationPK theuser)
 raises (FinderException);
 void findLowCreditAccounts(in ReturnResults rr)
 raises (FinderException);
 any customSearch(in any searchfield, out long count);
};
};

Compiling the IDL Mappings File

The IDL file has to be converted into Java classes that can be used
in the CORBA distributed network. The Java 2 platform compiles
.idl files using the program idltojava. This program will be
eventually replaced with the idlj command.

The -fno-cpp arguments indicate there is no C++ compiler
installed.

 idltojava -fno-cpp Registration.idl

Other Java IDL compilers should also work, for example, jidl from
ORBacus can generate classes that can be used by the Java 2 ORB.

Stubs and Skeletons

Corba and RMI are similar in that compilation generates a stub file
for the client and a skeleton file for the server. The stub (or
proxy), and skeleton (or servant) are used to marshal and
unmarshal data between the client and the server. The skeleton
(or servant) is implemented by the server. In this example, the
IDL RegistrationHome interface mapping generates a
_RegistrationHomeImplBase class (the skeleton or servant class) that
the generated RegistrationServer class extends.

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (10 of 22) [2001-6-13 8:11:34]

When requesting a remote CORBA object or calling a remote
method, the client call passes through the stub class before
reaching the server. This proxy class invokes CORBA requests for
the client program. The following example is the code
automatically generated for the RegistrationHomeStub.java class.

 org.omg.CORBA.Request r = _request("create");
 r.set_return_type(
 registration.RegistrationPKHelper.type());
 org.omg.CORBA.Any _theuser = r.add_in_arg();

Object Request Broker

The center of the CORBA distributed network is the Object Request
Broker or ORB. The ORB is involved in marshaling and
unmarshaling objects between the client and server. Other
services such as the Naming Service and Event Service work with
the ORB.

The Java 2 platform includes an ORB in the distribution called the
IDL ORB. This ORB is different from many other ORBs because it
does not include a distinct Basic Object Adapter (BOA) or Portable
Object Adapter (POA).

An object adapter manages the creation and lifecycle of objects in
the CORBA distributed space. This can be compared to the
container in the Enterprise JavaBeans server managing the
lifecycle of the session and entity beans.

The AuctionServlet and SellerBean programs create and initialize a
Java 2 ORB like this:

 ORB orb = ORB.init(args, null);

In the RegistrationServer program, the server object to be
distributed is bound to the ORB using the connect method:

 RegistrationServer rs = new RegistrationServer();
 orb.connect(rs);

An object connected to an ORB can be removed with the
disconnect method:

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (11 of 22) [2001-6-13 8:11:34]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/corba/AuctionServlet.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/corba/SellerBean.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/corba/RegistrationServer.java

 orb.disconnect(rs);

Once connected to a CORBA server object, the Java 2 ORB keeps
the server alive and waits for client requests to the CORBA server.

 java.lang.Object sync = new java.lang.Object();
 synchronized(sync) {
 sync.wait();
 }

Making the CORBA Server Accessible

Although this object is now being managed by the ORB, the clients
do not yet have a mechanism to find the remote object. This can
be solved by binding the CORBA server object to a naming service.

The Java 2 naming service is called tnameserv. The naming service
by default uses port 900; however, this value can be changed by
setting the argument -ORBInitialPort portnumber when starting
tnameserv or setting the property org.omg.CORBA.ORBInitialPort
when starting the client and server processes.

These next sections describes the main method from the
RegistrationServer class.

 java.util.Properties props=System.getProperties();
 props.put("org.omg.CORBA.ORBInitialPort", "1050");
 System.setProperties(props);
 ORB orb = ORB.init(args, props);

The next lines show the initial naming reference is initialized by
requesting the service called NameService. The NamingContext is
retrieved and the name built up and bound to the naming service
as NameComponent elements. The name in this example has a root
called auction with this object being bound as RegistrationBean
from that auction root. The name could be compared to a class by
the name of auction.RegistrationBean.

 org.omg.CORBA.Object nameServiceObj =
 orb.resolve_initial_references("NameService") ;
 NamingContext nctx =
 NamingContextHelper.narrow(nameServiceObj);
 NameComponent[] fullname = new NameComponent[2];
 fullname[0] = new NameComponent("auction", "");
 fullname[1] = new NameComponent(
 "RegistrationBean", "");

 NameComponent[] tempComponent = new NameComponent[1];
 for(int i=0; i < fullname.length-1; i++) {
 tempComponent[0]= fullname[i];
 try{
 nctx=nctx.bind_new_context(tempComponent);
 }catch (Exception e){
 System.out.println("bind new"+e);}

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (12 of 22) [2001-6-13 8:11:34]

 }
 tempComponent[0]=fullname[fullname.length-1];
 try{
 nctx.rebind(tempComponent, rs);
 }catch (Exception e){
 System.out.println("rebind"+e);
 }

Plugging in a new ORB

The Java 2 IDL ORB does not currently include some of the
services available in many other commercial ORBS such as the
security or event (notification) services. You can use another ORB
in the Java 2 runtime by configuring two properties and including
any necessary object adapter code.

Using a new ORB in the registration server requires the
org.omg.CORBA.ORBClass and org.omg.CORBA.ORBSingletonClass
properties point to the appropriate ORB classes. In this example
the ORBacus ORB is used instead of the Java 2 IDL ORB. To use
another ORB, the code below should be plugged into the
RegistrationServer.main method.

In the example code, a SingletonClass ORB is used. The
SingletonClass ORB is not a full ORB, and is primarily used as a
factory for TypeCodes. The call to ORB.init() in the last line creates
the Singleton ORB.

 Properties props= System.getProperties();
 props.put("org.omg.CORBA.ORBClass",
 "com.ooc.CORBA.ORB");
 props.put("org.omg.CORBA.ORBSingletonClass",
 "com.ooc.CORBA.ORBSingleton");
 System.setProperties(props);
 ORB orb = ORB.init(args, props) ;

In the Java 2 IDL, there is no distinct object adapter. As shown in
the example code segment below, using the Basic Object Adapter
from ORBacus requires an explicit cast to the ORBacus ORB. The
Broker Object Architecture (BOA) is notified that the object is
ready to be distributed by calling the impl_is_ready(null) method.

 BOA boa = ((com.ooc.CORBA.ORB)orb).BOA_init(
 args, props);
 ...
 boa.impl_is_ready(null);

Although both the ORBSingletonClass and ORBClass ORBs build the
object name using NameComponent, you have to use a different
ORBacus Naming Service. The CosNaming.Server service is started
as follows where the -OAhost parameter is optional:

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (13 of 22) [2001-6-13 8:11:34]

 java com.ooc.CosNaming.Server -OAhost localhost -OAport 1060

Once the naming service is started, the server and client programs
find the naming service using the IIOP protocol to the host and
port named when starting the Naming service:

 java registration.RegistrationServer
 -ORBservice NameService
 iiop://localhost:1060/DefaultNamingContext

Naming Service Access by CORBA Clients

CORBA clients access the naming service in a similar way to the
server, except that instead of binding a name, the client resolves
the name built from the NameComponents.

The AuctionServlet and SellerBean classes use the following code to
look up the CORBA server:

 NameComponent[] fullname = new NameComponent[2];
 fullname[0] = new NameComponent("auction", "");
 fullname[1] = new NameComponent(
 "RegistrationBean", "");

 RegistrationHome regRef =
 RegistrationHomeHelper.narrow(
 nctx.resolve(fullname));

In the case of the ORBacus ORB, the clients also need a Basic
Object Adapter if callbacks are used as in the
SellerBean.auditAccounts method. The naming context helper is
also configured differently for the ORBacus server started earlier:

 Object obj =
 ((com.ooc.CORBA.ORB)orb).get_inet_object (
 "localhost",
 1060,
 "DefaultNamingContext");
 NamingContext nctx = NamingContextHelper.narrow(obj);

Helper and Holder classes

References to remote objects in CORBA use a Helper class to
retrieve a value from that object. A commonly used method is the
Helper narrow method, which ensures the object is cast correctly.

Holder classes hold values returned when using inout or out
parameters in a method. The caller first instantiates the
appropriate Holder class for that type and retrieves the value from
the class when the call returns. In the next example, the count
value for customSearch is set and retrieved after customSearch has
been called. On the server side the count value is set by calling
count.value=newvalue.

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (14 of 22) [2001-6-13 8:11:34]

 IntHolder count= new IntHolder();
 sfield=regRef.customSearch(sfield,count);
 System.out.println("count now set to "+count.value);

Garbage Collection

Unlike RMI, CORBA does not have a distributed garbage collection
mechanism. References to an object are local to the client proxy
and the server servant. This means each Java1 virtual machine
(JVM) is free to reclaim that object and garbage collect it if there
are no longer references to it. If an object is no longer needed on
the server, the orb.disconnect(object) needs to be called to allow
the object to be garbage collected.

CORBA Callbacks

The new findLowCreditAccounts method is called from the
AuctionServlet using the Uniform Resource Locator (URL)
http://localhost:7001/AuctionServlet?action=auditAccounts.

The AuctionServlet.auditAccounts method calls the
SellerBean.auditAccounts method, which returns an ArrayList of
Registration records.

//AuctionServlet.java
 private void auditAccounts(ServletOutputStream out,
 HttpServletRequest request) throws IOException{

// ...

 SellerHome home = (SellerHome) ctx.lookup("seller");
 Seller si= home.create();

 if(si != null) {
 ArrayList ar=si.auditAccounts();
 for(Iterator i=ar.iterator(); i.hasNext();) {
 Registration user=(Registration)(i.next());
 addLine("<TD>"+user.getUser() +
 "<TD><TD>"+user.getBalance()+
 "<TD><TR>", out);
 }
 addLine("<TABLE>", out);
 }

The SellerBean object calls the CORBA
RegistrationHome.findLowCreditAccounts method implemented in the
RegistrationServer.java file, and passes a reference to itself. The
reference is passed as the SellerBean class implements the
ReturnResults inteface declared in the Registration.idl.

//SellerBean.java
 public ArrayList auditAccounts() {
 try{

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (15 of 22) [2001-6-13 8:11:34]

 NameComponent[] fullname = new NameComponent[2];
 fullname[0] = new NameComponent("auction", "");
 fullname[1] = new NameComponent(
 "RegistrationBean", "");

 RegistrationHome regRef =
 RegistrationHomeHelper.narrow(
 nctx.resolve(fullname));
 regRef.findLowCreditAccounts(this);
 synchronized(ready) {
 try{
 ready.wait();
 }catch (InterruptedException e){}
 }
 return (returned);
 }catch (Exception e) {
 System.out.println("error in auditAccounts "+e);
 }
 return null;
 }

The RegistrationServer.findLowCreditAccounts method retrieves
user records from the database registration table that have a
credit value less than three. It then returns the list of Registration
records in an ArrayList by calling the SellerBean.updateResults
method that it has a reference to.

//RegistrationServer.java
 public void findLowCreditAccounts(
 final ReturnResults client)
 throws Finder Exception {
 Runnable bgthread = new Runnable() {
 public void run() {
 Connection con = null;
 ResultSet rs = null;
 PreparedStatement ps = null;
 ArrayList ar = new ArrayList();

 try{
 con=getConnection();
 ps=con.prepareStatement(
 "select theuser,
 balance from registration
 where balance < ?");
 ps.setDouble(1, 3.00);
 ps.executeQuery();
 rs = ps.getResultSet();
 RegistrationImpl reg=null;
 while (rs.next()) {
 try{
 reg= new RegistrationImpl();
 }catch (Exception e) {
 System.out.println("creating reg"+e);
 }
 reg.theuser = rs.getString(1);
 reg.balance = rs.getDouble(2);
 ar.add(reg);
 }
 rs.close();

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (16 of 22) [2001-6-13 8:11:34]

 RegistrationImpl[] regarray =
 (RegistrationImpl [])ar.toArray(
 new RegistrationImpl[0]);
 client.updateResults(regarray);
 }catch (Exception e) {
 System.out.println(
 "findLowCreditAccounts: "+e);
 return;
 }
 finally {
 try{
 if(rs != null) {
 rs.close();
 }
 if(ps != null) {
 ps.close();
 }
 if(con != null) {
 con.close();
 }
 }catch (Exception ignore) {}
 }
 }//run
 };
 Thread t = new Thread(bgthread);
 t.start();
 }

The SellerBean.updateResults method updates the global ArrayList
of Registration records returned by the RegistrationServer object
and notifies the SellerBean/auditAccounts method that it can return
that ArrayList of Registration records to the AuctionServlet.

 public void updateResults(Registration[] ar)
 throws registration.FinderException {
 if(ar == null) {
 throw new registration.FinderException();
 }
 try{
 for(int i=0; i< ar.length; i++) {
 returned.add(ar[i]);
 }
 }catch (Exception e) {
 System.out.println("updateResults="+e);
 throw new registration.FinderException();
 }
 synchronized(ready) {
 ready.notifyAll();
 }
 }

Using the Any type

The RegistrationServer.customSearch method uses the IDL Any type
to pass in and return results. The customSearch is called by the
AuctionServlet as follows:

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (17 of 22) [2001-6-13 8:11:34]

 http://localhost.eng.sun.com:7001/
 AuctionServlet?action=customSearch&searchfield=2

The searchfield parameter can be set to a number or a string. The
AuctionServlet.customFind method passes the search field directly
to the SellerBean.customFind method and retrieves a String that is
then displayed to the user.

 private void customSearch(ServletOutputStream out,
 HttpServletRequest request)
 throws IOException{

 String text = "Custom Search";
 String searchField=request.getParameter(
 "searchfield");

 setTitle(out, "Custom Search");
 if(searchField == null) {
 addLine("Error: SearchField was empty", out);
 out.flush();
 return;
 }
 try{
 addLine("
"+text, out);
 SellerHome home = (SellerHome)
 ctx.lookup("seller");
 Seller si= home.create();
 if(si != null) {
 String displayMessage=si.customFind(
 searchField);
 if(displayMessage != null) {
 addLine(displayMessage+"
", out);
 }
 }
 }catch (Exception e) {
 addLine("AuctionServlet customFind error",out);
 System.out.println("AuctionServlet " +
 "<customFind>:"+e);
 }
 out.flush();
 }

The SellerBean.customFind method calls the RegistrationHome object
implemented in the RegistrationServer.java class, and depending
on whether the searchField can be converted into a double or a
string, inserts this value into an object of type Any. The Any object
is created by a call to the ORB, orb.create_any();

The customFind method also uses an out parameter, count, of type
int that returns the number of records found. The value of count is
retrieved using count.value when the call returns.

//SellerBean.java
 public String customFind(String searchField)
 throws javax.ejb.FinderException,
 RemoteException{

 int total=-1;
 IntHolder count= new IntHolder();

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (18 of 22) [2001-6-13 8:11:34]

 try{
 NameComponent[] fullname = new NameComponent[2];
 fullname[0] = new NameComponent("auction", "");
 fullname[1] = new NameComponent(
 "RegistrationBean", "");

 RegistrationHome regRef =
 RegistrationHomeHelper.narrow(
 nctx.resolve(fullname));
 if(regRef == null) {
 System.out.println(
 "cannot contact RegistrationHome");
 throw new javax.ejb.FinderException();
 }
 Any sfield=orb.create_any();
 Double balance;
 try{
 balance=Double.valueOf(searchField);
 try {
 sfield.insert_double(balance.doubleValue());
 }catch (Exception e) {
 return("Problem with search value"+balance);
 }
 sfield=regRef.customSearch(sfield,count);
 if(sfield != null) {
 total=sfield.extract_long();
 }
 return(total+"
 accounts are below optimal level from" +
 count.value+" records");
 }catch (NumberFormatException e) {
 sfield.insert_string(searchField);
 Registration reg;
 if((reg=RegistrationHelper.extract(
 regRef.customSearch(
 sfield,count)))
 != null) {
 return("Found user "+reg.getUser() +"
 who has email address "+
 reg.getEmailAddress());
 }else {
 return("No users found who have email address " +
 searchField);
 }
 }
 }catch(Exception e){
 System.out.println("customFind problem="+e);
 throw new javax.ejb.FinderException();
 }
 }

The return value from the call to customFind is extracted into an
object of type Any and a String is constructed with the output
displayed to the user. For simple types, the extract_<type> method
of the Any object can be used. However, for the Registration type,
the RegistrationHelper class is used.

 Registration reg =

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (19 of 22) [2001-6-13 8:11:34]

 RegistrationHelper.extract(
 regRef.customSearch(sfield,count))

The RegistrationServer.customSearch method determines the type
of Object being passed in the searchField parameter by checking
the .type().kind().value() of the Any object.

 if(searchField.type().kind().value() ==
 TCKind._tk_double)

Finally, because the customSearch method returns an object of type
Any, a call to orb.create_any() is required. For simple types like
double, the insert_<type> method is used. For a Registration
record, the RegistrationHelper class is used:
RegistrationHelper.insert(returnResults, regarray[0]).

//RegistrationServer.java
 public Any customSearch(Any searchField,
 IntHolder count){
 Any returnResults= orb.create_any();

 int tmpcount=count.value;
 if(searchField.type().kind().value() ==
 TCKind._tk_double){
// return number of balances greater
// than supplied amount
 double findBalance=searchField.extract_double();
 Connection con = null;
 ResultSet rs = null;
 PreparedStatement ps = null;
 try{
 con=getConnection();
 ps=con.prepareStatement("select count(*) from
 registration where balance < ?");
 ps.setDouble(1, findBalance);
 ps.executeQuery();
 rs = ps.getResultSet();
 if(rs.next()) {
 tmpcount = rs.getInt(1);
 }
 count.value=tmpcount;
 rs.close();
 }catch (Exception e) {
 System.out.println("custom search: "+e);
 returnResults.insert_long(-1);
 return(returnResults);
 }
 finally {
 try{
 if(rs != null) { rs.close(); }
 if(ps != null) { ps.close(); }
 if(con != null) { con.close(); }
 } catch (Exception ignore) {}
 }
 returnResults.insert_long(tmpcount);
 return(returnResults);
 }else if(searchField.type().kind().value() ==
 TCKind._tk_string) {
 // return email addresses that match supplied address
 String findEmail=searchField.extract_string();

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (20 of 22) [2001-6-13 8:11:34]

 Connection con = null;
 ResultSet rs = null;
 PreparedStatement ps = null;
 ArrayList ar = new ArrayList();
 RegistrationImpl reg=null;
 try{
 con=getConnection();
 ps=con.prepareStatement("select theuser,
 emailaddress from registration
 where emailaddress like ?");
 ps.setString(1, findEmail);
 ps.executeQuery();
 rs = ps.getResultSet();
 while (rs.next()) {
 reg= new RegistrationImpl();
 reg.theuser = rs.getString(1);
 reg.emailaddress = rs.getString(2);
 ar.add(reg);
 }
 rs.close();

 RegistrationImpl[] regarray =
 (RegistrationImpl [])ar.toArray(
 new RegistrationImpl[0]);
 RegistrationHelper.insert(
 returnResults,
 regarray[0]);
 return(returnResults);
 }catch (Exception e) {
 System.out.println("custom search: "+e);
 return(returnResults);
 }
 finally {
 try{
 if(rs != null) { rs.close(); }
 if(ps != null) { ps.close(); }
 if(con != null) { con.close(); }
 } catch (Exception ignore) {}
 }
 }
 return(returnResults);
 }

Conclusion

As you can see, converting the application to use RMI or CORBA
requires very little change to core programs. The main difference
has been the initialization and naming service. By abstracting
these two areas in your application away from the business logic
you ease migration between different distributed object
architectures.

1 As used on this web site, the terms "Java virtual machine" or
"JVM" mean a virtual machine for the Java platform.

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (21 of 22) [2001-6-13 8:11:34]

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/corba.html (22 of 22) [2001-6-13 8:11:34]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 4: Distributed Computing

Training Index

Writing Advanced Applications
Chapter 4: JDBCTM Technology

[<<BACK] [CONTENTS] [NEXT>>]

The Bean-managed Enterprise JavaBeansTM auction application with
its Remote Method Invocation (RMI) and Common Object Request
Broker (CORBA) variants have used simple JDBCTM calls to retrieve
and update information from a database using a JDBC connection
pool. By default, JDBC database access involves opening a
database connection, running SQL commands in a statement,
processing the returned results, and closing the database
connection.

Overall, the default approach works well for low volume database
access, but how do you manage a large number of requests that
update many related tables at once and still ensure data integrity?
This section explains how with the following topics.

● JDBC Drivers
● Database Connections
● Statements

• Callable Statements
• Statements
• Prepared Statements

● Caching Database Results
● Result Sets
● Scrolling Result Sets
● Controlling Transactions
● Escaping Characters
● Mapping Database Types
● Mapping Date types

JDBC Drivers

The connection to the database is handled by the JDBC Driver

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (1 of 18) [2001-6-13 8:11:40]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 4: Distributed Computing

class. The JavaTM SDK contains only one JDBC driver, a jdbc-odbc
bridge that can communicate with an existing Open DataBase
Conectivity (ODBC) driver. Other databases need a JDBC driver
specific to that database.

To get a general idea of what the JDBC driver does, you can
examine the JDCConnectionDriver.java file. The
JDCConnectionDriver class implements the java.sql.Driver class
and acts as a pass-through driver by forwarding JDBC requests to
the real database JDBC Driver. The JDBC driver class is loaded
with a call to Class.forName(drivername).

These next lines of code show how to load three different JDBC
driver classes:

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Class.forName("postgresql.Driver");
 Class.forName("oracle.jdbc.driver.OracleDriver");

Each JDBC driver is configured to understand a specific URL so
multiple JDBC drivers can be loaded at any one time. When you
specify a URL at connect time, the first matching JDBC driver is
selected.

The jdbc-odbc bridge accepts Uniform Resource Locators (URLs)
starting with jdbc:odbc: and uses the next field in that URL to
specify the data source name. The data source name identifies the
particular database scheme you wish to access. The URL can also
include more details on how to contact the database and enter the
account.

//access the ejbdemo tables
 String url = "jdbc:odbc:ejbdemo";

This next example contains the Oracle SQL*net information on the
particular database called ejbdemo on machine dbmachine

 String url = "jdbc:oracle:thin:user/password@(
 description=(address_list=(
 address=(protocol=tcp)
 (host=dbmachine)(port=1521)))(source_route=yes)
 (connect_data=(sid=ejbdemo)))";

This next examples uses mysql to connect to the ejbdemo database
on the local machine. The login user name and password details
are also included.

 String url =
 "jdbc:mysql://localhost/ejbdemo?user=user;
 password=pass";

JDBC drivers are divided into four types. Drivers may also be
categorized as pure Java or thin drivers to indicate if they are used
for client applications (pure Java drivers) or applets (thin drivers).
Newer drivers are usually Type 3 or 4. The four types are as

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (2 of 18) [2001-6-13 8:11:40]

follows:

Type 1 Drivers

Type 1 JDBC drivers are the bridge drivers such as the jdbc-odbc
bridge. These drivers rely on an intermediary such as ODBC to
transfer the SQL calls to the database. Bridge drivers often rely on
native code, although the jdbc-odbc library native code is part of
the Java1 2 virtual machine.

Type 2 Drivers

Type 2 Drivers use the existing database API to communicate with
the database on the client. Although Type 2 drivers are faster than
Type 1 drivers, Type 2 drivers use native code and require
additional permissions to work in an applet.

A Type 2 driver might need client-side database code to connect
over the network.

Type 3 Drivers

Type 3 Drivers call the database API on the server. JDBC requests
from the client are first proxied to the JDBC Driver on the server to
run. Type 3 and 4 drivers can be used by thin clients as they need
no native code.

Type 4 Drivers

The highest level of driver reimplements the database network API
in the Java language. Type 4 drivers can also be used on thin
clients as they also have no native code.

Database Connections

A database connection can be established with a call to the
DriverManager.getConnection method. The call takes a URL that
identifies the database, and optionally, the database login user
name and password.

 Connection con = DriverManager.getConnection(url);
 Connection con = DriverManager.getConnection(url,
 "user", "password");

After a connection is established, a statement can be run against
the database. The results of the statement can be retrieved and
the connection closed.

One useful feature of the DriverManager class is the setLogStream

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (3 of 18) [2001-6-13 8:11:40]

method. You can use this method to generate tracing information
so help you diagnose connection problems that would normally not
be visible. To generate tracing information, just call the method
like this:

 DriverManager.setLogStream(System.out);

The Connection Pooling section in Chapter 8 shows you how to
improve the throughput of JDBC connections by not closing the
connection once the statement completes. Each JDBC connection
to a database incurs overhead in opening a new socket and using
the username and password to log into the database. Reusing the
connections reduces the overhead. The Connection Pool keeps a
list of open connections and clears any connections that cannot be
reused.

Statements

There are three basic types of SQL statements used in the JDBC
API: CallabelStatement, Statement, and PreparedStatement. When a
Statement or PreparedStatement is sent to the database, the
database driver translates it into a format the underlying database
can recognize.

Callable Statements

Once you have established a connection to a database, you can
use the Connection.prepareCall method to create a callable
statement. A callable statement lets you execute SQL stored
procedures.

This next example creates a CallableStatement object with three
parameters for storing account login information.

 CallableStatement cs =
 con.prepareCall("{call accountlogin(?,?,?)}");
 cs.setString(1,theuser);
 cs.setString(2,password);
 cs.registerOutParameter(3,Types.DATE);

 cs.executeQuery();
 Date lastLogin = cs.getDate(3);

Statements

The Statement interface lets you execute a simple SQL statement
with no parameters. The SQL instructions are inserted into the
Statement object when the Statement.executeXXX method is called.

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (4 of 18) [2001-6-13 8:11:40]

Query Statement: This code segment creates a Statement object
and calls the Statement.executeQuery method to select text from the
dba database. The results of the query are returned in a ResultSet
object. How to retrieve results from a ResultSet object is explained
in Result Sets below.

 Statement stmt = con.createStatement();
 ResultSet results = stmt.executeQuery(
 "SELECT TEXT FROM dba ");

Update Statement: This code segment creates a Statement object
and calls the Statement.executeUpdate method to add an email
address to a table in the dba database.

 String updateString =
 "INSERT INTO dba VALUES (some text)";
 int count = stmt.executeUpdate(updateString);

Prepared Statements

The PreparedStatement interface descends from the Statement
interface and uses a template to create a SQL request. Use a
PreparedStatement to send precompiled SQL statements with one or
more parameters.

Query PreparedStatement: You create a PreparedStatement
object by specifying the template definition and parameter
placeholders. The parameter data is inserted into the
PreparedStatement object by calling its setXXX methods and
specifying the parameter and its data. The SQL instructions and
parameters are sent to the database when the executeXXX method
is called.

This code segment creates a PreparedStatement object to select user
data based on the user's email address. The question mark ("?")
indicates this statement has one parameter.

 PreparedStatement pstmt = con.prepareStatement(
 select theuser from
 registration where
 emailaddress like ?");
//Initialize first parameter with email address
 pstmt.setString(1, emailAddress);
 ResultSet results = ps.executeQuery();

Once the PreparedStatement template is initialized, only the changed
values are inserted for each call.

 pstmt.setString(1, anotherEmailAddress);

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (5 of 18) [2001-6-13 8:11:40]

Note: Not all database drivers compile prepared
statements.

Update PreparedStatement: This code segment creates a
PreparedStatement object to update a seller's registration record.
The template has five parameters, which are set with five calls to
the apprpriate PreparedStatement.setXXX methods.

PreparedStatement ps = con.prepareStatement(
 "insert into registration(theuser, password,
 emailaddress, creditcard,
 balance) values (
 ?, ?, ?, ?, ?)");
 ps.setString(1, theuser);
 ps.setString(2, password);
 ps.setString(3, emailaddress);
 ps.setString(4, creditcard);
 ps.setDouble(5, balance);
 ps.executeUpdate();

Caching Database results

The PreparedStatement concept of reusing requests can be extended
to caching the results of a JDBC call. For example, an auction item
description remains the same until the seller changes it. If the item
receives thousands of requests, the results of the statement: query
"select description from auctionitems where item_id='4000343'"
might be stored more efficiently in a hash table.

Storing results in a hash table requires the JDBC call be
intercepted before creating a real statement to return the cached
results, and the cache entry be cleared if there is a corresponding
update to that item_id.

Result Sets

The ResultSet interface manages access to data returned from a
query. The data returned equals one row in a database table.
Some queries return one row of data while many queries return
multiple rows of data.

You use getType methods to retrieve data from specific columns for
each row returned by the query. This example retrieves the TEXT
column from all tables with a TEXT column in the dba database. The
results.next method moves to the next retrieved row until all
returned rows are processed.

 Statement stmt = con.createStatement();
 ResultSet results = stmt.executeQuery(

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (6 of 18) [2001-6-13 8:11:40]

 "SELECT TEXT FROM dba ");
 while(results.next()){
 String s = results.getString("TEXT");
 displayText.append(s + "\n");
 }
 stmt.close();

Scrolling Result Sets

Before JDBC 2.0, JDBC drivers returned read-only result sets with
cursors that moved in one direction, forwards. Each element was
retrieved by calling the next method on the result set.

JDBC 2.0 introduces scrollable results sets whose values can be
read and updated if reading and updating is supported by the
underlying database. With scrollabel result sets, any row can be
selected at random, and the result set can be traversed forwards
and backwards.

One advantage to the new result set is you can update a set of
matching rows without having to issue an additional executeUpdate
call. The updates are made using JDBC calls and so no custom SQL
commands need to be generated. This improves the portability of
the database code you create.

Both Statements and PreparedStatements have an additional
constructor that accepts a scroll type and an update type
parameter. The scroll type value can be one of the following
values:

● ResultSet.TYPE_FORWARD_ONLY
Default behavior in JDBC 1.0, application can only call next()
on the result set.

● ResultSet.SCROLL_SENSITIVE
ResultSet is fully navigable and updates are reflected in the
result set as they occur.

● ResultSet.SCROLL_INSENSITIVE
Result set is fully navigable, but updates are only visible after
the result set is closed. You need to create a new result set to
see the results.

The update type parameter can be one of the following two values:
● ResultSet.CONCUR_READ_ONLY

The result set is read only.

● ResultSet.CONCUR_UPDATABLE
The result set can be updated.

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (7 of 18) [2001-6-13 8:11:40]

You can verify that your database supports these types by calling
con.getMetaData().supportsResultSetConcurrency() method as shown
here.

 Connection con = getConnection();
 if(con.getMetaData().supportsResultSetConcurrency(
 ResultSet.SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE)) {

 PreparedStatement pstmt = con.prepareStatement(
 "select password, emailaddress,
 creditcard, balance from
 registration where theuser = ?",
 ResultSet.SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 }

Navigating the ResultSet

The fully scrollable result set returns a cursor which can be moved
using simple commands. By default the result set cursor points to
the row before the first row of the result set. A call to next()
retrieves the first result set row. The cursor can also be moved by
calling one of the following ResultSet methods:

● beforeFirst(): Default position. Puts cursor before the first
row of the result set.

● first(): Puts cursor on the first row of the result set.

● last(): Puts cursor before the last row of the result set.

● afterLast() Puts cursor beyond last row of the result set. Calls
to previous moves backwards through the ResultSet.

● absolute(pos): Puts cursor at the row number position where
absolute(1) is the first row and absolute(-1) is the last row.

● relative(pos): Puts cursor at a row relative to its current
position where relative(1) moves row cursor one row forward.

Updating the Result Set

You can update a value in a result set by calling the
ResultSet.update<type> method on the row where the cursor is
positioned. The type value here is the same used when retrieving a
value from the result set, for example, updateString updates a
String value in the result set.

This next code updates the balance for a user from the result set

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (8 of 18) [2001-6-13 8:11:40]

created earlier. The update applies only to the result set until the
call to rs.updateRow(), which updates the underlying database.
Closing the result set before calling updateRow will lose any edits
applied to the result set.

 rs.first();
 updateDouble("balance",
 rs.getDouble("balance") - 5.00);

Inserting a new row uses the same update<type> methods. The only
difference being that the method rs.moveToInsertRow is called
before and rs.insertRow() is called after the fields have been
initialized. You can delete the current row with a call to
rs.deleteRow().

Batch Jobs

By default, every JDBC statement is sent to the database
individually. Apart from the additional network requests, this
process incurs additional delays if a transaction spans several of
the statements. JDBC 2.0 lets you submit multiple statements at
one time with the addBatch method.

This next code shows how to use the addBatch statement. The calls
to stmt.addBatch append statements to the original Statement, and
the call to executeBatch submits the entire statement with all the
appends to the database.

 Statement stmt = con.createStatement();
 stmt.addBatch(
 "update registration set balance=balance-5.00
 where theuser="+theuser);
 stmt.addBatch(
 "insert into auctionitems(
 description, startprice)
 values("+description+","+startprice+")");

 int[] results = stmt.executeBatch();

The return result of the addBatch method is an array of row counts
affected for each statement executed in the batch job. If a problem
occurred, a java.sql.BatchUpdateException is thrown. An incomplete
array of row counts can be obtained from BatchUpdateException by
calling its getUpdateCounts method.

Storing Classes, Images and Other Large Objects

Many databases can store binary data as part of a row if the
database field is assigned a long raw, longvarbinary, or other
similar type. These fields can accommodate up to two Gigabytes of
data. This means if you can convert the data into a binary stream

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (9 of 18) [2001-6-13 8:11:40]

or array of bytes, it can be stored and retrieved from the database
in the same way you would store a string or double.

This technique can be used to store and retrieve images and Java
objects.

Storing and retrieving an image: It is very easy to store an
object that can be serialized or converted to a byte array.
Unfortunately, java.awt.Image is not Serializable. However, as
shown in this next code example, you can store the image data to
a file and store the the information in the file as bytes in a
database binary field.

 int itemnumber=400456;

 File file = new File(itemnumber+".jpg");
 FileInputStream fis = new FileInputStream(file);
 PreparedStatement pstmt = con.prepareStatement(
 "update auctionitems
 set theimage=? where id= ?");
 pstmt.setBinaryStream(1, fis, (int)file.length()):
 pstmt.setInt(2, itemnumber);
 pstmt.executeUpdate();
 pstmt.close();
 fis.close();

To retrieve this image and create a byte array that can be passed
to createImage, do the following:

 int itemnumber=400456;
 byte[] imageBytes;

 PreparedStatement pstmt = con.prepareStatement(
 "select theimage from auctionitems where id= ?");
 pstmt.setInt(1, itemnumber);
 ResultSet rs=pstmt.executeQuery();
 if(rs.next()) {
 imageBytes = rs.getBytes(1);
 }
 pstmt.close();
 rs.close();

 Image auctionimage =
 Toolkit.getDefaultToolkit().createImage(
 imageBytes);

Storing and retrieving an object: A class can be serialized to a
binary database field in much the same way as the image was in
the previous example. In this example, the RegistrationImpl class
is changed to support default serialization by adding implements
Serializable to the Class declaration.

Next, a ByteArrayInputStream is created to be passed as the JDBC
Binary Stream. To create the ByteArrayInputStream,
RegistrationImpl is first piped through an ObjectOutputStream to an

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (10 of 18) [2001-6-13 8:11:40]

underlying ByteArrayInputStream with a call to
RegistrationImpl.writeObject The ByteArrayInputStream is then
converted to a byte array, which can then be used to create the
ByteArrayInputStream. The create method in RegistrationServer.java
is changed as follows:

 public registration.RegistrationPK create(
 String theuser,
 String password,
 String emailaddress,
 String creditcard)
 throws registration.CreateException{

 double balance=0;
 Connection con = null;
 PreparedStatement ps = null;;

 try {
 con=getConnection();
 RegistrationImpl reg= new RegistrationImpl();
 reg.theuser = theuser;
 reg.password = password;
 reg.emailaddress = emailaddress;
 reg.creditcard = creditcard;
 reg.balance = balance;

 ByteArrayOutputStream regStore =
 new ByteArrayOutputStream();
 ObjectOutputStream regObjectStream =
 new ObjectOutputStream(regStore);
 regObjectStream.writeObject(reg);

 byte[] regBytes=regStore.toByteArray();
 regObjectStream.close();
 regStore.close();
 ByteArrayInputStream regArrayStream =
 new ByteArrayInputStream(regBytes);
 ps=con.prepareStatement(
 "insert into registration (
 theuser, theclass) values (?, ?)");
 ps.setString(1, theuser);
 ps.setBinaryStream(2, regArrayStream,
 regBytes.length);

 if (ps.executeUpdate() != 1) {
 throw new CreateException ();
 }
 RegistrationPK primaryKey =
 new RegistrationPKImpl();
 primaryKey.theuser(theuser);
 return primaryKey;
 } catch (IOException ioe) {
 throw new CreateException ();
 } catch (CreateException ce) {
 throw ce;
 } catch (SQLException sqe) {
 System.out.println("sqe="+sqe);
 throw new CreateException ();
 } finally {

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (11 of 18) [2001-6-13 8:11:40]

 try {
 ps.close();
 con.close();
 } catch (Exception ignore) {
 }
 }
 }

The object is retrieved and reconstructed by extracting the bytes
from the database, creating a ByteArrayInputStream from those
bytes to be read from an ObjectInputStream, and calling readObject
to create the instance again.

This next example shows the changes needed to the
RegistrationServer.refresh method to retrieve the registration
instance from the database.

 private Registration refresh(RegistrationPK pk)
 throws FinderException {

 if (pk == null) {
 throw new FinderException ();
 }
 Connection con = null;
 PreparedStatement ps = null;
 try {
 con=getConnection();
 ps=con.prepareStatement("
 select theclass from
 registration where theuser = ?");
 ps.setString(1, pk.theuser());
 ps.executeQuery();
 ResultSet rs = ps.getResultSet();
 if(rs.next()){
 byte[] regBytes = rs.getBytes(1);
 ByteArrayInputStream regArrayStream =
 new ByteArrayInputStream(regBytes);
 ObjectInputStream regObjectStream =
 new ObjectInputStream(
 regArrayStream);
 RegistrationImpl reg=
 (RegistrationImpl)
 regObjectStream.readObject();
 return reg;
 }
 else {
 throw new FinderException ();
 }
 } catch (Exception sqe) {
 System.out.println("exception "+sqe);
 throw new FinderException ();
 }
 finally {
 try {
 rs.close();
 ps.close();
 con.close();
 }
 catch (Exception ignore) {}

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (12 of 18) [2001-6-13 8:11:40]

 }
 }

BLOBs and CLOBs: Storing large fields in a table with the other
data is not necessarily the optimum place especially if the data has
a variable size. One way to handle large, variable sized objects is
with the Large Objects (LOBs) type. LOBs use a locator, essentially
a pointer, in the database record that points to the real database
field.

There are two types of LOBs: Binary Large Objects (BLOBs) and
Character Large Objects (CLOBs). When you access a BLOB or
CLOB, the data is not copied to the client. To retrieve the actual
data from a result set, you have to retrieve the pointer with a call
to BLOB blob=getBlob(1) or CLOB clob=getClob(1), and then retrieve
the data with a call to blob.getBinaryStream() or
clob.getBinaryStream().

Controlling Transactions

By default, JDBC statements are processed in full auto-commit
mode. This mode works well for a single database query, but if an
operation depends on several database statements that all have to
complete successfully or the entire operation is cancelled, a finer
transaction is needed.

A description of transaction isolation levels is covered in more
detail in Chapter 3: Data and Transaction Management. To use
transaction management in the JDBC platform, you first need to
disable the full auto-commit mode by calling:

 Connection con= getConnection();
 con.setAutoCommit(false);

At this point, you can either commit any following JDBC statements
or undo any updates by calling the Connection.rollback method.
The rollback call is commonly placed in the Exception handler,
although it can be placed anywhere in the transaction flow.

This next example inserts an auction item and decrements the
user's balance. If the balance is less than zero, the entire
transaction is rolled back and the auction item is removed.

 public int insertItem(String seller,
 String password,
 String description,
 int auctiondays,
 double startprice,
 String summary) {
 Connection con = null;
 int count=0;

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (13 of 18) [2001-6-13 8:11:40]

 double balance=0;
 java.sql.Date enddate, startdate;
 Statement stmt=null;

 PreparedStatement ps = null;
 try {
 con=getConnection();
 con.setAutoCommit(false);
 stmt= con.createStatement();
 stmt.executeQuery(
 "select counter from auctionitems");
 ResultSet rs = stmt.getResultSet();
 if(rs.next()) {
 count=rs.getInt(1);
 }
 Calendar currenttime=Calendar.getInstance();
 java.util.Date currentdate=currenttime.getTime();
 startdate=new java.sql.Date(
 currentdate.getTime());
 currenttime.add(Calendar.DATE, auctiondays);
 enddate=new java.sql.Date((
 currenttime.getTime()).getTime());

 ps=con.prepareStatement(
 "insert into auctionitems(
 id, description, startdate, enddate,
 startprice, summary)
 values (?,?,?,?,?,?)");
 ps.setInt(1, count);
 ps.setString(2, description);
 ps.setDate(3, startdate);
 ps.setDate(4, enddate);
 ps.setDouble(5, startprice);
 ps.setString(6, summary);
 ps.executeUpdate();
 ps.close();

 ps=con.prepareStatement(
 "update registration
 set balance=balance -0.50
 where theuser= ?");
 ps.setString(1, seller);
 ps.close();
 stmt= con.createStatement();
 stmt.executeQuery(
 "select balance from registration
 where theuser='"+seller+"'");
 rs = stmt.getResultSet();
 if(rs.next()) {
 balance=rs.getDouble(1);
 }
 stmt.close();
 if(balance <0) {
 con.rollback();
 con.close();
 return (-1);
 }

 stmt= con.createStatement();
 stmt.executeUpdate(

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (14 of 18) [2001-6-13 8:11:40]

 "update auctionitems set
 counter=counter+1");
 stmt.close();
 con.commit();
 con.close();
 return(0);
 } catch(SQLException e) {
 try {
 con.rollback();
 con.close();
 stmt.close();
 ps.close();
 }catch (Exception ignore){}
 }
 return (0);
 }

Escaping Characters

The JDBC API provides the escape keyword so you can specify the
character you want to use to escape characters. For example, if
you want to use the percent sign (%) as the percent sign and not
have it interpreted as the SQL wildcard used in SQL LIKE queries,
you have to escape it with the escape character you specify with
the escape keyword.

This next statements shows how you would use the escape keyword
to look for the value 10%.

 stmt.executeQuery(
 "select tax from sales where tax like
 '10\%' {escape '\'}");

If your program stores names and addresses to the database
entered from the command line or by way of a user interface, the
single quotes (') symbol might appear in the data. Passing single
quotes directly into a SQL string causes problems when the SQL
statement is parsed because SQL gives this symbol another
meaning unless it is escaped.

To solve this problem, the following method escapes any ' symbol
found in the input line. This method can be extended to escape
any other characters such as commas , that the database or
database driver might interpret another way.

static public String escapeLine(String s) {
 String retvalue = s;
 if (s.indexOf ("'") != -1) {
 StringBuffer hold = new StringBuffer();
 char c;
 for(int i=0; i < s.length(); i++) {
 if ((c=s.charAt(i)) == '\'') {
 hold.append ("''");
 }else {

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (15 of 18) [2001-6-13 8:11:40]

 hold.append(c);
 }
 }
 retvalue = hold.toString();
 }
 return retvalue;
}

However, if you use a PreparedStatement instead of a simple
Statement, most of these escape problems go away. For example,
instead of this line with the escape sequence:

stmt.executeQuery(
"select tax from sales where tax like
 '10\%' {escape '\'}");

You could use this line:

preparedstmt = C.prepareStatement(
 "update tax set tax = ?");

Mapping Database Types

Apart from a few JDBC types such as INTEGER that are represented
as an INTEGER in most popular databases, you might find that the
JDBC type for a table column does not match the type as it is
represented in the database. This means calls to
ResultSet.getObject, PreparedStatement.setObject and
CallableStatement.getObject() will very likely fail.

Your program can determine the database column type from the
database meta data and use that information to check the value
before retrieving it. This next code checks that the value is in fact
type INTEGER before retrieving its value.

 int count=0;
 Connection con=getConnection();
 Statement stmt= con.createStatement();
 stmt.executeQuery(
 "select counter from auctionitems");
 ResultSet rs = stmt.getResultSet();
 if(rs.next()) {
 if(rs.getMetaData().getColumnType(1) ==
 Types.INTEGER) {
 Integer i=(Integer)rs.getObject(1);
 count=i.intValue();
 }
 }
 rs.close();

Mapping Date types

The DATE type is where most mismatches occur. This is because the
java.util.Date class represents both Date and Time, but SQL has
the following three types to represent data and time information:

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (16 of 18) [2001-6-13 8:11:40]

● A DATE type that represents the date only (03/23/99).
● A TIME type that specifies the time only (12:03:59)
● A TIMESTAMP that represents time value in nanoseconds.

These three additional types are provided in the java.sql package
as java.sql.Date, java.sql.Time and java.sql.Timestamp and are all
subclasses of java.util.Date. This means you can use convert
java.util.Date values to the type you need to be compatible with
the database type.

Note: The Timestamp class loses precision when it is
converted to a java.util.Date because java.util.Date
does not contain a nanosecond field, it is better to not
convert a Timestampinstance if the value will be written
back to the database.

This example uses the java.sql.Date class to convert the
java.util.Date value returned by the call to Calendar.getTime to a
java.sql.Date.

 Calendar currenttime=Calendar.getInstance();
 java.sql.Date startdate=
 new java.sql.Date((
 currenttime.getTime()).getTime());

You can also use the java.text.SimpleDateFormat class to do the
conversion. This example uses the java.text.SimpleDateFormat class
to convert a java.util.Date object to a java.sql.Date object:

 SimpleDateFormat template =
 new SimpleDateFormat("yyyy-MM-dd");
 java.util.Date enddate =
 new java.util.Date("10/31/99");
 java.sql.Date sqlDate =
 java.sql.Date.valueOf(
 template.format(enddate));

If you find a database date representation cannot be mapped to a
Java type with a call to getObject or getDate, retrieve the value with
a call to getString and format the string as a Date value using the
SimpleDateFormat class shown above.

1 As used on this web site, the terms "Java virtual machine" or
"JVM" mean a virtual machine for the Java platform.

[TOP]

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (17 of 18) [2001-6-13 8:11:40]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jdbc.html (18 of 18) [2001-6-13 8:11:40]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 4: Distributed Computing

Training Index

Writing Advanced Applications
Chapter 4 Continued: Servlets

[<<BACK] [CONTENTS] [NEXT>>]

A servlet is a server-side program written in the JavaTM
programming language that interacts with clients and is usually
tied to a HyperText Transfer Protocol (HTTP) server. One common
use for a servlet is to extend a web server by providing dynamic
web content.

Servlets have an advantage over other technologies in that they
are compiled, have threading capability built in, and provide a
secure programming environment. Even web sites that previously
did not provide servlet support, can do so now by using programs
such as JRun or the Java module for the Apache web server.

The web-based auction application uses a servlet to accept and
process buyer and seller input through the browser and
dynamically return auction item information to the browser. The
AuctionServlet program is created by extending the HttpServlet
class. The HttpServlet class provides a framework for handling
HTTP requests and responses.

This section examines the AuctionServlet and includes information
on how to use Cookie and Session objects in a servlet.

● HttpServlet
● The init Method
● The destroy Method
● The service Method
● HTTP Requests
● Using Cookies in Servlets

• Setting a Cookie
• Retrieving a Cookie
• Generating Sessions
• Preventing Page Caching

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (1 of 18) [2001-6-13 8:11:46]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 4: Distributed Computing

• Restricting Access and Redirection
● HTTP Error Codes
● Reading GET and POST Values
● Threading
● HTTPS

HttpServlet

The AuctionServlet class extends HttpServlet, which is an abstract
class.

 public class AuctionServlet extends HttpServlet {

A servlet can be either loaded when the web server starts up or
loaded when requested by way of an HTTP URL that specifies the
servlet. The servlet is usually loaded by a separate classloader in
the web server because this allows the servlet to be reloaded by
unloading the class loader that loaded the servlet class. However,
if the servlet depends on other classes and one of those classes
changes, you will need to update the date stamp on the servlet for
it to reload.

After a servlet loads, the first stage in its lifecycle is the web server
calls the servlet's init method. Once loaded and initialized, the
next stage in the servlet's lifecycle is to serve requests. The servlet
serves requests through its service, doGet, or doPost method
implementations.

The servlet can optionally implement a destroy method to perform
clen-up operations before the web server unloads the servlet.

The init Method

The init method is only called once by the web server when the
servlet is first started. The init method is passed a ServletConfig
object containing initialization information pertaining to the web
server where the application is running.

The ServletConfig object is used to access information maintained
by the web server including values from the initArgs parameter in
the servlet properties file. Code in the init method uses the
ServletConfig object to retrieve the initArgs values by calling the
config.getInitParameter("parameter") method.

The AuctionServlet.init method also contacts the Enterprise
JavaBeans server to create a context (ctx) object. The ctx object is

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (2 of 18) [2001-6-13 8:11:46]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/auction/AuctionServlet.java

used in the service method to establish a connection with the
Enterprise JavaBeans server.

Context ctx=null;
private String detailsTemplate;

public void init(ServletConfig config)
 throws ServletException{
 super.init(config);
 try {
 ctx = getInitialContext();
 }catch (Exception e){
 System.err.println(
 "failed to contact EJB server"+e);
 }
 try {
 detailsTemplate=readFile(
 config.getInitParameter("detailstemplate"));
 } catch(IOException e) {
 System.err.println(
 "Error in AuctionServlet <init>"+e);
 }
}

The destroy Method

The destroy method is a lifecycle method implemented by servlets
that need to save their state between servlet loading and
unloading. For example, the destroy method would save the
current servlet state, and the next time the servlet is loaded, that
saved state would be retrieved by the init method. You should be
aware that the destroy method might not be called if the server
machine crashes.

public void destroy() {
 saveServletState();
}

The service Method

The AuctionServlet is an HTTP servlet that handles client requests
and generates responses through its service method. It accepts as
parameters the HttpServletRequest and HttpServletResponse request
and response objects.

● HttpServletRequest contains the headers and input streams
sent from the client to the server.

● HttpServletResponse is the output stream that is used to send
information from the servlet back to the client.

The service method handles standard HTTP client requests
received by way of its HttpServletRequest parameter by delegating

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (3 of 18) [2001-6-13 8:11:46]

the request to one of the following methods designed to handle
that request. The different types of requests are described in the
HTTP Requests section.

● doGet for GET, conditional GET, and HEAD requests.
● doPost for POST requests.
● doPut for PUT requests.
● doDelete for DELETE requests.
● doOptions for OPTIONS requests.
● doTrace for TRACE requests.

The AuctionServlet program provides its own service method
implementation that calls one of the following methods based on
the value returned by the call to
cmd=request.getParameter("action"). These method implementations
match the default implementations provided in the doGet and
doPost methods called by the default service method, but add
some auction application-specific functionality for looking up
Enterprise Beans.

● listAllItems(out)
● listAllNewItems(out)
● listClosingItems(out)
● insertItem(out, request)
● itemDetails(out, request)
● itemBid(out, request)
● registerUser(out, request)

public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {

 String cmd;
 response.setContentType("text/html");
 ServletOutputStream out = response.getOutputStream();
 if (ctx == null) {
 try {
 ctx = getInitialContext();
 }catch (Exception e){
 System.err.println(
 "failed to contact EJB server"+e);
 }
 }

 cmd=request.getParameter("action");
 if(cmd !=null) {
 if(cmd.equals("list")) {
 listAllItems(out);
 }else
 if(cmd.equals("newlist")) {
 listAllNewItems(out);
 }else if(cmd.equals("search")) {
 searchItems(out, request);
 }else if(cmd.equals("close")) {
 listClosingItems(out);
 }else if(cmd.equals("insert")) {

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (4 of 18) [2001-6-13 8:11:46]

 insertItem(out, request);
 }else if (cmd.equals("details")) {
 itemDetails(out, request);
 }else if (cmd.equals("bid")) {
 itemBid(out, request) ;
 }else if (cmd.equals("register")) {
 registerUser(out, request);
 }
 }else{
 // no command set
 setTitle(out, "error");
 }
 setFooter(out);
 out.flush();
}

HTTP Requests

A request is a message sent from a client program such as a
browser to a server program. The first line of the request message
contains a method that indicates the action to perform on the
incoming Uniform Resource Locator (URL). The two commonly
used mechanisms for sending information to the server are POST
and GET.

● GET requests might pass parameters to a URL by appending
them to the URL. GET requests can be bookmarked and
emailed and include the information to the URL of the
response.

● POST requests might pass additional data to a URL by directly
sending it to the server separately from the URL. POST
requests cannot be bookmarked or emailed and do not
change the URL of the response.

PUT requests are the reverse of GET requests. Instead of reading
the page, PUT requests write (or store) the page.

DELETE requests are for removing web pages.

OPTIONS requests are for getting information about the
communication options available on the request/response chain.

TRACE requests are for testing or diagnostic purposes because
they let the client see what is being received at the other end of
the request chain.

Using Cookies in servlets

HTTP cookies are essentially custom HTTP headers that are passed
between a client and a server. Although cookies are not

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (5 of 18) [2001-6-13 8:11:46]

overwhelmingly popular, they do enable state to be shared
between the two machines. For example, when a user logs into a
site, a cookie can maintain a reference verifying the user has
passed the password check and can use that reference to identify
that same user on future visits.

Cookies are normally associated with a server. If you set the
domain to .java.sun.com, then the cookie is associated with the
domain. If no domain is set, the cookie is only associated with the
server that created the cookie.

Setting a Cookie

The JavaTM Servlet API includes a Cookie class that you can use to
set or retrieve the cookie from the HTTP header. HTTP cookies
include a name and value pair.

The startSession method shown here is in the LoginServlet
program. In this method, the name in the name and value pair
used to create the Cookie is JDCAUCTION, and a unique identifier
generated by the server is the value.

 protected Session startSession(String theuser,
 String password,
 HttpServletResponse response) {
 Session session = null;
 if (verifyPassword(theuser, password)) {
 // Create a session
 session = new Session (theuser);
 session.setExpires (sessionTimeout + i
 System.currentTimeMillis());
 sessionCache.put (session);

 // Create a client cookie
 Cookie c = new Cookie("JDCAUCTION",
 String.valueOf(session.getId()));
 c.setPath ("/");
 c.setMaxAge (-1);
 c.setDomain (domain);
 response.addCookie (c);
 }
 return session;
 }

Later versions of the Servlet API include a Session API, to create a
session using the Servlet API in the previous example you can use
the getSession method.

 HttpSession session = new Session (true);

The startSession method is called by requesting the login action
from a POST to the LoginServlet as follows:

<FORM ACTION="/LoginServlet" METHOD="POST">

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (6 of 18) [2001-6-13 8:11:46]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/login/LoginServlet.java

<TABLE>
<INPUT TYPE="HIDDEN" NAME="action" VALUE="login">
<TR>
<TD>Enter your user id:</TD>
<TD><INPUT TYPE="TEXT" SIZE=20
 NAME="theuser"></TD>
</TR>
<TR>
<TD>Enter your password:<TD>
<TD><INPUT TYPE="PASSWORD" SIZE=20
 NAME="password"></TD>
</TR>
</TABLE>
<INPUT TYPE="SUBMIT" VALUE="Login" NAME="Enter">
</FORM>

The cookie is created with an maximum age of -1, which means
the cookie is not stored but remains alive while the browser runs.
The value is set in seconds, although when using values smaller
than a few minutes you need to be careful of machine times being
slightly out of sync.

The path value can be used to specify that the cookie only applies
to files and directories under the path set on that machine. In this
example the root path / means the cookie is applicable to all
directories.

The domain value in the example is read from the initialization
parameters for the servlet. If the domain is null, the cookie is
applied to that machines domain only.

Retrieving a Cookie

The cookie is retrieved from the HTTP headers with a call to the
getCookies method on the request:

 Cookie c[] = request.getCookies();

You can later retrieve the name and value pair settings by calling
the Cookie.getName method to retrieve the name, and the
Cookie.getValue method to retrieve the value.

LoginServlet has a validateSession method that checks the user's
cookies to find a JDCAUCTION cookie that was set in this domain:

 private Session validateSession
 (HttpServletRequest request,
 HttpServletResponse response) {
 Cookie c[] = request.getCookies();
 Session session = null;
 if(c != null) {
 Hashtable sessionTable = new Hashtable();
 for (int i=0; i < c.length &&
 session == null; i++) {
 if(c[i].getName().equals("JDCAUCTION")) {

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (7 of 18) [2001-6-13 8:11:46]

 String key = String.valueOf (c[i].getValue());
 session=sessionCache.get(key);
 }
 }
 }
 return session;
 }

If you use the Servlet session API then you can use the following
method, note that the parameter is false to specify the session
value is returned and that a new session is not created.

 HttpSession session = request.getSession(false);

Generating Sessions

The LoginServlet.validateSession method returns a Session object
represented by the Session class. The Session class uses an
identifier generated from a numeric sequence. This numbered
session identifier is the value part of the name and value pair
stored in the cookie.

The only way to reference the user name on the server is with this
session identifier, which is stored in a simple memory cache with
the other session IDs. When a user terminates a session, the
LoginServlet logout action is called like this:

 http://localhost:7001/LoginServlet?action=logout

The session cache implemented in the SessionCache.java program
includes a reaper thread to remove sessions older than a preset
time. The preset timeout could be measured in hours or days
depending on how many visitors visit the site.

Preventing Page Caching

The LoginServlet.setNoCache method sets the Cache-Control or
Pragma values (depending on which version of the HTTP protocol is
being used) in the response header to no-cache. The expiration
header Expires is also set to 0, alternatively you can set the time
to be the current system time. Even if the client does not cache
the page, there are often proxy servers in a corporate network
that would. Only pages using Secure Socket Layer (SSL) are not
cached by default.

private void setNoCache (HttpServletRequest request,
 HttpServletResponse response) {
 if(request.getProtocol().compareTo ("HTTP/1.0") == 0) {
 response.setHeader ("Pragma", "no-cache");
 } else if (request.getProtocol().compareTo
 ("HTTP/1.1") == 0) {
 response.setHeader ("Cache-Control", "no-cache");

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (8 of 18) [2001-6-13 8:11:46]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/login/Session.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/login/SessionCache.java

 }
 response.setDateHeader ("Expires", 0);
}

Restricting Access and Redirections

If you install the LoginServlet as the default servlet or servlet to
run when serving any page under the document root, you can use
cookies to restrict users to certain sections of the site. For
example, you can allow users who have cookies that state they
have logged in to access sections of the site that require a login
password and keep all others out.

The LoginServlet program checks for a restricted directory in its
init method. The init method shown below sets the protectedDir
variable to true if the config variable passed to it specifies a
protected directory. The web server configuration file provides the
settings passed to a servlet in the config variable.

public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 domain = config.getInitParameter("domain");
 restricted = config.getInitParameter("restricted");
 if(restricted != null) {
 protectedDir=true;
 }

Later on in the validateSession and service methods, the
protectedDir variable is checked and the HttpResponse.sendRedirect
method is called to send the user to the correct page based on
their login and session status.

 if(protectedDir) {
 response.sendRedirect (restricted+"/index.html");
 }else{
 response.sendRedirect (defaultPage);
 }

The init method also retrieves the servlet context for the
FileServlet servlet so methods can be called on the FileServlet in
the validateSession method. The advantage to calling methods on
the FileServlet servlet to serve the files rather than serving the
files from within the LoginServlet servlet, is you get the full
advantage of all the functionality added into the FileServlet servlet
such as memory mapping or file caching. The downside is that the
code may not be portable to other servers that do not have a
FileServlet servlet. This code retrieves the FileServlet context.

 FileServlet fileServlet=(FileServlet)
 config.getServletContext().getServlet("file");

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (9 of 18) [2001-6-13 8:11:46]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/login/LoginServlet.java

The validateSession method prevents users without a logon session
from accessing the restricted directory.

HTTP Error Codes

You can return a HTTP error code using the sendError method. For
example, the HTTP 500 error code indicates an internal server
error, and the 404 error code indicates page not found. This code
segment returns the HTTP 500 error code.

 protected void service (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException {
 response.sendError (500);
 }

Reading GET and POST Values

The Servlet API has a getParameter method in the
HttpServletRequest class that returns the GET or POST value for the
name you supply.

● The HTTP GET request handles name and value pairs as part of
the URL. The getParameter method parses the URL passed in,
retrieves the name=value pairs deliminated by the ampersand
(&) character, and returns the value.

● The HTTP POST request reads the name and value pairs from
the input stream from the client. The getParameter method
parses the input stream for the name and value pairs.

The getParameter method works well for simple servlets, but if you
need to retrieve the POST parameters in the order they were placed
on the web page or handle multi-part posts, you can write your
own code to parse the input stream.

The next example returns POST parameters in the order they were
received from the web page. Normally, the parameters are stored
in a Hashtable which does not maintain the sequence order of
elements stored in it. The example keeps a reference to each
name and value pair in a vector that can be traversed to return the
values in the order they were received by the server.

package auction;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (10 of 18) [2001-6-13 8:11:46]

public class PostServlet extends HttpServlet {
 private Vector paramOrder;
 private Hashtable parameters;

 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 }

 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 if(request.getMethod().equals("POST")
 && request.getContentType().equals(
 "application/x-www-form-urlencoded")) {

 parameters=parsePostData(
 request.getContentLength(),
 request.getInputStream());
 }

 for(int i=0;i<paramOrder.size();i++) {
 String name=(String)paramOrder.elementAt(i);
 String value=getParameter((
 String)paramOrder.elementAt(i));
 out.println("name="+name+" value="+value);
 }
 out.println("</body></html>");
 out.close();
 }

 private Hashtable parsePostData(int length,
 ServletInputStream instream) {
 String valArray[] = null;
 int inputLen, offset;
 byte[] postedBytes = null;
 boolean dataRemaining=true;
 String postedBody;
 Hashtable ht = new Hashtable();
 paramOrder= new Vector(10);
 StringBuffer sb = new StringBuffer();

 if (length <=0) {
 return null;
 }
 postedBytes = new byte[length];
 try {
 offset = 0;
 while(dataRemaining) {
 inputLen = instream.read (postedBytes,
 offset,
 length - offset);
 if (inputLen <= 0) {
 throw new IOException ("read error");
 }
 offset += inputLen;
 if((length-offset) ==0) {

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (11 of 18) [2001-6-13 8:11:46]

 dataRemaining=false;
 }
 }
 } catch (IOException e) {
 System.out.println("Exception ="+e);
 return null;
 }

 postedBody = new String (postedBytes);
 StringTokenizer st =
 new StringTokenizer(postedBody, "&");

 String key=null;
 String val=null;

 while (st.hasMoreTokens()) {
 String pair = (String)st.nextToken();
 int pos = pair.indexOf('=');
 if (pos == -1) {
 throw new IllegalArgumentException();
 }
 try {
 key = java.net.URLDecoder.decode(
 pair.substring(0, pos));
 val = java.net.URLDecoder.decode(
 pair.substring(pos+1,
 pair.length()));
 } catch (Exception e) {
 throw new IllegalArgumentException();
 }
 if (ht.containsKey(key)) {
 String oldVals[] = (String []) ht.get(key);
 valArray = new String[oldVals.length + 1];
 for (int i = 0; i < oldVals.length; i++) {
 valArray[i] = oldVals[i];
 }
 valArray[oldVals.length] = val;
 } else {
 valArray = new String[1];
 valArray[0] = val;
 }
 ht.put(key, valArray);
 paramOrder.addElement(key);
 }
 return ht;
 }

 public String getParameter(String name) {
 String vals[] = (String []) parameters.get(name);
 if (vals == null) {
 return null;
 }
 String vallist = vals[0];
 for (int i = 1; i < vals.length; i++) {
 vallist = vallist + "," + vals[i];
 }
 return vallist;
 }
}

To find out whether the request is POST or GET, call the getMethod

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (12 of 18) [2001-6-13 8:11:46]

in the HttpServletRequest class. To determine the format of the
data being posted, call the getContentType method in the
HttpServletRequest class. For simple HTML web pages, the type
returned by this call will be application/x-www-form-urlencoded.

If you need to create a post with more than one part such as the
one created by the following HTML form, the servlet will need to
read the input stream from the post to reach individual section.
Each section distinguished by a boundary defined in the post
header.

<FORM ACTION="/PostMultiServlet"
 METHOD="POST" ENCTYPE="multipart/form-data">
<INPUT TYPE="TEXT" NAME="desc" value="">
<INPUT TYPE="FILE" NAME="filecontents" value="">
<INPUT TYPE="SUBMIT" VALUE="Submit" NAME="Submit">
</FORM>

The next example extracts a description and a file from the client
browsers. It reads the input stream looking for a line matching the
boundary string, reads the content line, skips a line and then reads
the data associated with that part. The uploaded file is simply
displayed, but could also be written to disk.

package auction;

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class PostMultiServlet extends HttpServlet {

 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 }

 public void service(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 if (request.getMethod().equals("POST")
 && request.getContentType().startsWith(
 "multipart/form-data")) {

 int index = request.getContentType().indexOf(
 "boundary=");
 if (index < 0) {
 System.out.println("can't find boundary type");
 return;
 }

 String boundary =
 request.getContentType().substring(
 index+9);

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (13 of 18) [2001-6-13 8:11:46]

 ServletInputStream instream =
 request.getInputStream();
 byte[] tmpbuffer = new byte[8192];
 int length=0;
 String inputLine=null;
 boolean moreData=true;

//Skip until form data is reached
 length = instream.readLine(
 tmpbuffer,
 0,
 tmpbuffer.length);
 inputLine = new String (tmpbuffer, 0, 0,
 length);

 while(inputLine.indexOf(boundary)
 >0 && moreData) {
 length = instream.readLine(
 tmpbuffer,
 0,
 tmpbuffer.length);
 inputLine = new String (tmpbuffer, 0, 0,
 length);
 if(inputLine !=null)
 System.out.println("input="+inputLine);
 if(length<0) {
 moreData=false;
 }
 }

 if(moreData) {
 length = instream.readLine(
 tmpbuffer,
 0,
 tmpbuffer.length);
 inputLine = new String (tmpbuffer, 0, 0,
 length);

 if(inputLine.indexOf("desc") >=0) {
 length = instream.readLine(
 tmpbuffer,
 0,
 tmpbuffer.length);
 inputLine = new String (tmpbuffer, 0, 0,
 length);
 length = instream.readLine(
 tmpbuffer,
 0,
 tmpbuffer.length);
 inputLine = new String (tmpbuffer, 0, 0,
 length);
 System.out.println("desc="+inputLine);
 }
 }

 while(inputLine.indexOf(boundary)
 >0 && moreData) {
 length = instream.readLine(
 tmpbuffer,
 0,

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (14 of 18) [2001-6-13 8:11:46]

 tmpbuffer.length);
 inputLine = new String (tmpbuffer, 0, 0,
 length);
 }
 if(moreData) {
 length = instream.readLine(
 tmpbuffer,
 0,
 tmpbuffer.length);
 inputLine = new String (tmpbuffer, 0, 0,
 length);

 if(inputLine.indexOf("filename") >=0) {
 int startindex=inputLine.indexOf(
 "filename");
 System.out.println("file name="+
 inputLine.substring(
 startindex+10,
 inputLine.indexOf("\"",
 startindex+10)));
 length = instream.readLine(
 tmpbuffer,
 0,
 tmpbuffer.length);
 inputLine = new String (tmpbuffer, 0, 0,
 length);
 }
 }
 byte fileBytes[]=new byte[50000];
 int offset=0;
 if (moreData) {
 while(inputLine.indexOf(boundary)
 >0 && moreData) {
 length = instream.readLine(
 tmpbuffer,
 0,
 tmpbuffer.length);
 inputLine = new String (tmpbuffer, 0, 0, length);
 if(length>0 && (
 inputLine.indexOf(boundary) <0)) {
 System.arraycopy(
 tmpbuffer,
 0,
 fileBytes,
 offset,
 length);
 offset+=length;
 } else {
 moreData=false;
 }
 }
 }
// trim last two newline/return characters
// before using data
 for(int i=0;i<offset-2;i++) {
 System.out.print((char)fileBytes[i]);
 }
 }
 out.println("</body></html>");
 out.close();

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (15 of 18) [2001-6-13 8:11:46]

 }
}

Threading

A servlet must be able to handle multiple concurrent requests. Any
number of end users at any given time could invoke the servlet,
and while the init method is always run single-threaded, the
service method is multi-threaded to handle multiple requests.

This means any static or public fields accessed by the service
method should be restricted to simple thread access. The example
below uses the synchronized keyword to restrict access to a counter
so it can only be updated by one thread at a time:

 int counter
 Boolean lock = new Boolean(true);

 synchronized(lock){
 counter++;
 }

HTTPS

Many servers, browsers, and the Java Plug-In have the ability to
support the secure HTTP protocol called HTTPS. HTTPS is similar to
HTTP except the data is transmitted over a secure socket layer
(SSL) instead of a normal socket connection. Web servers often
listen for HTTP requests on one port while listening for HTTPS
requests on another.

The encrypted data that is sent over the network includes checks
to verify if the data has been tampered in transit. SSL also
authenticates the webserver to its clients by providing a public key
certificate. In SSL 3.0 the client can also authenticate itself with
the server, again using a public key certificate.

Public key cryptography (also called asymmetric key encryption)
uses a public and private key pair. Any message encrypted (made
unintelligible) with the private key in the pair can only be
decrypted with the corresponding public key. Certificates are
digitally signed statements generated from a trusted third party
Certificate Authority. The Certificate Authority needs proof that you
are who you say you are because clients will be trusting the
certificate they receive. It is this certificate that contains the public
key in the public and private key pair. The certificate is signed by
the private key of the Certificate Authority, and most browsers
know the public key for the main Certificate Authorities.

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (16 of 18) [2001-6-13 8:11:46]

While public key encryption is good for authentication purposes, it
is not as fast as symmetric key encryption and so the SSL protocol
uses both types of keys in the lifecycle of an SSL connection. The
client and server begin an HTTPS transaction with a connection
initialization or handshaking phase.

It is in the handshaking stage that the server is authenticated
using the certificate that the client has received. The client uses
the server's public key to encrypt messages sent to the server.
After the client has been authenticated and the encryption
algorithm or cipher has been agreed between the two parties, new
symmetric session keys are used to encrypt and decrypt any
further communication.

The encryption algorithm or cipher can be one of many popular
algorithms like Rivest Shamir and Adleman (RSA) or Data
Encryption Standard (DES). The greater the number of bits used to
make the key, the more difficult it is to break into using brute
force search techniques.

HTTPS using public key cryptography and certificates lets you
provide the amount of privacy your application needs for safe and
secure transactions. Servers, browsers, and Java Plug-In have
their own setup for enabling HTTPS using SSL communications. In
general, the steps involve the following:

● Get a private key and a digitally-signed certificate with the
matching public key.

● Install the certificate in a location specified by the software
you are using (server, browser, or Java Plug-In).

● Enable SSL features and specify your certificate and private
key files as instructed in your documentation.

You should enable SSL features according to your specific
application requirements depending on the level of security you
need. For example, you do not need to verify the identity of
customers browsing auction items, but you will want to encrypt
credit card and other personal information supplied when buyers
and sellers register to participate.

HTTPS can be used for any data not just HTTP web pages.
Programs written in the Java language can be downloaded over an
HTTPS connection, and you can open a connection to a HTTPS
server in the Java Plug-in. To write a program in the Java language
that uses SSL. SSL requires an SSL library and a detailed
knowledge of the HTTPS handshaking process. Your SSL library

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (17 of 18) [2001-6-13 8:11:46]

should cover the necessary steps as this information is restricted
by export security control.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 4: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/aucserv.html (18 of 18) [2001-6-13 8:11:46]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 5: JNI Technology

Training Index

Writing Advanced Applications
Chapter 5: JNI Technology

[<<BACK] [CONTENTS] [NEXT>>]

The JavaTM platform is relatively new, which means there could be
times when you will need to integrate programs written with the
Java language with existing non-Java language services, API
toolkits, and programs. The Java platform provides the Java Native
Interface (JNI) to help ease this type of integration.

The JNI defines a standard naming and calling convention so the
Java1 virtual machine can locate and invoke native methods. In
fact, JNI is built into the Java virtual machine so the Java virtual
machine can invoke local system calls to perform input and output,
graphics, networking, and threading operations on the host
operating system.

This chapter explains how to use JNI in programs written in the
Java language to call any libraries on the local machine, call Java
language methods from inside native code, and how to create and
run a Java VM instance. To show how you can put JNI to use, the
examples in this chapter include integrating JNI with the Xbase
C++ database API, and how you can call a mathematic function.
Xbase has sources you can download.

● JNI Example
● Strings and Arrays
● Other Programming Issues

In a Rush?

This table links you directly to specific topics.

Topic Section

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jni.html (1 of 2) [2001-6-13 8:11:50]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://www.startech.keller.tx.us/xbase/xbase.html

Technology Centers

Writing Advanced Applications, Chapter 5: JNI Technology

JNI Example ● About the Example
● Generate the Header File
● Method Signature
● Implement the Native Method
● Compile the Dynamic or Shared

Object Library
● Run the Example

Strings, Arrays, and
Fields

● Passing Strings
● Passing Arrays
● Pinning Array
● Object Arrays
● Multi-Dimensional Arrays
● Accessing Fields

Other Programming
Issues

● Language Issues
● Calling Methods
● Accessing Fields
● Threads and Synchronization
● Memory Issues
● Invocation
● Attaching Threads

1 As used on this web site, the terms "Java virtual machine" or
"JVM" mean a virtual machine for the Java platform.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jni.html (2 of 2) [2001-6-13 8:11:50]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 5: JNI Technology

Training Index

Writing Advanced Applications
Chapter 5 Continued: JNI Example

[<<BACK] [CONTENTS] [NEXT>>]

This section presents the ReadFile example program. This example
shows how you can use the JavaTM Native Interface (JNI) to invoke
a native method that makes C function calls to map a file into
memory.

● About the Example
• Native Method Declaration
• Load the Library
• Compile the Program

● Generate the Header File
● Method Signature
● Implement the Native Method
● Compile the Dynamic or Shared Object Library
● Run the Example

About the Example

You can call code written in any programming language from a
program written in the Java language by declaring a native Java
method, loading the library that contains the native code, and then
calling the native method. The ReadFile source code below does
exactly this.

However, successfully running the program requires a few
additional steps beyond compiling the Java language source file.
After you compile, but before you run the example, you have to
generate a header file. The native code implements the function
defintions contained in the generated header file and implements
the business logic as well. The following sections walk through all
the steps.

import java.util.*;

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniexamp.html (1 of 5) [2001-6-13 8:11:53]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 5: JNI Technology

class ReadFile {
//Native method declaration
 native byte[] loadFile(String name);
//Load the library
 static {
 System.loadLibrary("nativelib");
 }

 public static void main(String args[]) {
 byte buf[];
//Create class instance
 ReadFile mappedFile=new ReadFile();
//Call native method to load ReadFile.java
 buf=mappedFile.loadFile("ReadFile.java");
//Print contents of ReadFile.java
 for(int i=0;i<buf.length;i++) {
 System.out.print((char)buf[i]);
 }
 }
}

Native Method Declaration

The native declaration provides the bridge to run the native
function in the Java1 virtual machine. In this example, the loadFile
function maps onto a C function called Java_ReadFile_loadFile. The
function implementation accepts a String that represents a file
name and returns the contents of that file in the byte array.

 native byte[] loadFile(String name);

Load the Library

The library containing the native code implementation is loaded by
a call to System.loadLibrary(). Placing this call in a static initializer
ensures this library is only loaded once per class. The library can
be loaded outside of the static block if your application requires it.
You might need to configure your environment so the loadLibrary
method can find your native code library.

 static {
 System.loadLibrary("nativelib");
 }

Compile the Program

To compile the program, just run the javac compiler command as
you normally would:

 javac ReadFile.java

Next, you need to generate a header file with the native method
declaration and implement the native method to call the C
functions for loading and reading a file.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniexamp.html (2 of 5) [2001-6-13 8:11:53]

Generate the Header File

To generate a a header file, run the javah command on the
ReadFile class. In this example, the generated header file is named
ReadFile.h. It provides a method signature that you have to use
when you implement the loadfile native function.

 javah -jni ReadFile

Note: When running javah on your own classes, be sure
to use the fully-qualified class name.

Method Signature

The ReadFile.h header file defines the interface to map the Java
language method to the native C function. It uses a method
signature to map the arguments and return value of the Java
language mappedfile.loadFile method to the loadFile native
method in the nativelib library. Here is the loadFile native method
mapping (method signature):

 /*
 * Class: ReadFile
 * Method: loadFile
 * Signature: (Ljava/lang/String;)[B
 */
 JNIEXPORT jbyteArray JNICALL Java_ReadFile_loadFile
 (JNIEnv *, jobject, jstring);

The method signature parameters function as follows:

● JNIEnv *: A pointer to the JNI environment. This pointer is a
handle to the current thread in the Java virtual machine, and
contains mapping and other hosuekeeping information.

● jobject: A reference to the method that called this native
code. If the calling method is static, this parameter would be
type jclass instead of jobject.

● jstring: The parameter supplied to the native method. In this
example, it is the name of the file to be read.

Implement the Native Method

In this native C source file, the loadFile definition is a copy and
paste of the C declaration contained in ReadFile.h. The definition is
followed by the native method implementation. JNI provides a
mapping for both C and C++ by default.

Writing Advanced Applications, Chapter 5: JNI Technology

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniexamp.html (3 of 5) [2001-6-13 8:11:53]

JNIEXPORT jbyteArray JNICALL Java_ReadFile_loadFile
 (JNIEnv * env, jobject jobj, jstring name) {
 caddr_t m;
 jbyteArray jb;
 jboolean iscopy;
 struct stat finfo;
 const char *mfile = (*env)->GetStringUTFChars(
 env, name, &iscopy);
 int fd = open(mfile, O_RDONLY);

 if (fd == -1) {
 printf("Could not open %s\n", mfile);
 }
 lstat(mfile, &finfo);
 m = mmap((caddr_t) 0, finfo.st_size,
 PROT_READ, MAP_PRIVATE, fd, 0);
 if (m == (caddr_t)-1) {
 printf("Could not mmap %s\n", mfile);
 return(0);
 }
 jb=(*env)->NewByteArray(env, finfo.st_size);
 (*env)->SetByteArrayRegion(env, jb, 0,
 finfo.st_size, (jbyte *)m);
 close(fd);
 (*env)->ReleaseStringUTFChars(env, name, mfile);
 return (jb);
}

You can approach calling an existing C function instead of
implementing one, in one of two ways:

1. Map the name generated by JNI to the existing C function
name. The Language Issues section shows how to map
between Xbase database functions and Java language code

2. Use the shared stubs code available from the JNI page on the
java.sun.com web site.

Compile the Dynamic or Shared Object Library

The library needs to be compiled as a dynamic or shared object
library so it can be loaded at runtime. Static or archive libraries are
compiled into an executable and cannot be loaded at runtime. The
shared object or dynamic library for the loadFile example is
compiled as follows:

Gnu C/Linux:

gcc -o libnativelib.so -shared -Wl,-soname,libnative.so
 -I/export/home/jdk1.2/include
 -I/export/home/jdk1.2/include/linux nativelib.c
 -static -lc

Gnu C++/Linux with Xbase

Writing Advanced Applications, Chapter 5: JNI Technology

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniexamp.html (4 of 5) [2001-6-13 8:11:53]

http://java.sun.com/products/jdk/faq/jnifaq.html

g++ -o libdbmaplib.so -shared -Wl,-soname,libdbmap.so
 -I/export/home/jdk1.2/include
 -I/export/home/jdk1.2/include/linux
 dbmaplib.cc -static -lc -lxbase

Win32/WinNT/Win2000

cl -Ic:/jdk1.2/include
 -Ic:/jdk1.2/include/win32
 -LD nativelib.c -Felibnative.dll

Run the Example

To run the example, the Java virtual machine needs to be able to
find the native library. To do this, set the library path to the
current directory as follows:

Unix or Linux:
 LD_LIBRARY_PATH=`pwd`
 export LD_LIBRARY_PATH

Windows NT/2000/95:
 set PATH=%path%;.

With the library path properly specified for your platform, invoke
the program as you normally would with the interpreter command:

 java ReadFile

1 As used on this web site, the terms "Java virtual machine" or
"JVM" mean a virtual machine for the Java platform.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 5: JNI Technology

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniexamp.html (5 of 5) [2001-6-13 8:11:53]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 5: JNI Technology

Training Index

Writing Advanced Applications
Chapter 5 Continued: Strings and Arrays

[<<BACK] [CONTENTS] [NEXT>>]

This section explains how to pass string and array data between a
program written in the JavaTM programming language and other
languages.

● Passing Strings
● Passing Arrays
● Pinning Array
● Object Arrays
● Multi-Dimensional Arrays

Passing Strings

The String object in the Java language, which is represented as
jstring in Java Native Interface (JNI), is a 16 bit unicode string. In
C a string is by default constructed from 8 bit characters. So, to
access a Java language String object passed to a C or C++
function or return a C or C++ string to a Java language method,
you need to use JNI conversion functions in your native method
implementation.

The GetStringUTFChar function retrieves 8-bit characters from a 16-
bit jstring using the Unicode Transformation Format (UTF). UTF
represents Unicode as a string of 8 or 16 bit characters without
losing any information. The third parameter GetStringUTFChar
results the result JNI_TRUE if it made a local copy of the jstring or
JNI_FALSE otherwise.

C Version:
 (*env)->GetStringUTFChars(env, name, iscopy)

C++ Version:
 env->GetStringUTFChars(name, iscopy)

The following C JNI function converts an array of C characters to a

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jnistring.html (1 of 9) [2001-6-13 8:11:57]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 5: JNI Technology

jstring:

 (*env)->NewStringUTF(env, lastfile)

The example below converts the lastfile[80] C character array to
a jstring, which is returned to the calling Java language method:

 static char lastfile[80];

 JNIEXPORT jstring JNICALL Java_ReadFile_lastFile
 (JNIEnv *env, jobject jobj) {
 return((*env)->NewStringUTF(env, lastfile));
 }

To let the Java1 virtual machine know you are finished with the
UTF representation, call the ReleaseStringUTFChars conversion
function as shown below. The second argument is the original
jstring value used to construct the UTF representation, and the
third argument is the reference to the local representation of that
String.

 (*env)->ReleaseStringUTFChars(env, name, mfile);

If your native code can work with Unicode, without needing the
intermediate UTF representation, call the GetStringChars function to
retrieve the unicode string, and release the reference with a call to
ReleaseStringChars:

 JNIEXPORT jbyteArray JNICALL Java_ReadFile_loadFile
 (JNIEnv * env, jobject jobj, jstring name) {
 caddr_t m;
 jbyteArray jb;
 struct stat finfo;
 jboolean iscopy;
 const jchar *mfile = (*env)->GetStringChars(env,
 name, &iscopy);
 //...
 (*env)->ReleaseStringChars(env, name, mfile);

Passing Arrays

In the example presented in the last section, the loadFile native
method returns the contents of a file in a byte array, which is a
primitive type in the Java programming language. You can retrieve
and create primitive types in the Java language by calling the
appropriate TypeArray function.

For example, to create a new array of floats, call NewFloatArray, or
to create a new array of bytes, call NewByteArray. This naming
scheme extends to retrieving elements from, adding elements to,
and changing elements in the array. To get a new array of bytes,
call GetByteArrayElements. To add elements to or change elements
in the array, call Set<type>ArrayElements.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jnistring.html (2 of 9) [2001-6-13 8:11:57]

The GetByteArrayElements function affects the entire array. To work
on a portion of the array, call GetByteArrayRegion instead. There is
only a Set<type>ArrayRegion function for changing array elements.
However the region could be of size 1, which is equivalent to the
non-existent Sete<type>ArrayElements.

Native
Code Type Functions used

jboolean NewBooleanArray

GetBooleanArrayElements

GetBooleanArrayRegion/SetBooleanArrayRegion

ReleaseBooleanArrayRegion

jbyte NewByteArray

GetByteArrayElements

GetByteArrayRegion/SetByteArrayRegion

ReleaseByteArrayRegion

jchar NewCharArray

GetCharArrayElements

GetCharArrayRegion/SetCharArrayRegion

ReleaseCharArrayRegion

jdouble NewDoubleArray

GetDoubleArrayElements

GetDoubleArrayRegion/SetDoubleArrayRegion

ReleaseDoubleArrayRegion

jfloat NewFloatArray

GetFloatArrayElements

GetFloatArrayRegion/SetFloatArrayRegion

ReleaseFloatArrayRegion

jint NewIntArray

GetIntArrayElements

GetIntArrayRegion/SetIntArrayRegion

ReleaseIntArrayRegion

jlong NewLongArray

GetLongArrayElements

GetLongArrayRegion/SetLongArrayRegion

ReleaseLongArrayRegion

jobject NewObjectArray

Writing Advanced Applications, Chapter 5: JNI Technology

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jnistring.html (3 of 9) [2001-6-13 8:11:57]

GetObjectArrayElement/SetObjectArrayElement

jshort NewShortArray

GetShortArrayElements

GetShortArrayRegion/SetShortArrayRegion

ReleaseShortArrayRegion

In the loadFile native method from the example in the previous
section, the entire array is updated by specifying a region that is
the size of the file being read in:

 jbyteArray jb;

 jb=(*env)->NewByteArray(env, finfo.st_size);
 (*env)->SetByteArrayRegion(env, jb, 0,
 finfo.st_size, (jbyte *)m);
 close(fd);

The array is returned to the calling Java language method, which
in turn, garbage collects the reference to the array when it is no
longer used. The array can be explicitly freed with the following
call.

 (*env)-> ReleaseByteArrayElements(env, jb,
 (jbyte *)m, 0);

The last argument to the ReleaseByteArrayElements function above
can have the following values:

● 0: Updates to the array from within the C code are reflected
in the Java language copy.

● JNI_COMMIT: The Java language copy is updated, but the local
jbyteArray is not freed.

● JNI_ABORT: Changes are not copied back, but the jbyteArray
is freed. The value is used only if the array is obtained with a
get mode of JNI_TRUE meaning the array is a copy.

Pinning Array

When retrieving an array, you can specify if this is a copy
(JNI_TRUE) or a reference to the array residing in your Java
language program (JNI_FALSE). If you use a reference to the array,
you will want the array to stay where it is in the Java heap and not
get moved by the garbage collector when it compacts heap
memory. To prevent the array references from being moved, the
Java virtual machine pins the array into memory. Pinning the array
ensures that when the array is released, the correct elements are
updated in the Java VM.

Writing Advanced Applications, Chapter 5: JNI Technology

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jnistring.html (4 of 9) [2001-6-13 8:11:57]

In the loadfile native method example from the previous section,
the array is not explicitly released. One way to ensure the array is
garbage collected when it is no longer needed is to call a Java
language method, pass the byte array instead, and then free the
local array copy. This technique is shown in the section on Multi-
Dimensional Arrays.

Object Arrays

You can store any Java language object in an array with the
NewObjectArray and SetObjectArrayElement function calls. The main
difference between an object array and an array of primitive types
is that when constructing a jobjectarray type, the Java language
class is used as a parameter.

This next C++ example shows how to call NewObjectArray to create
an array of String objects. The size of the array is set to five, the
class definition is returned from a call to FindClass, and the
elements of the array are initialized with an empty string. The
elements of the array are updated by calling SetObjectArrayElement
with the position and value to put in the array.

 #include <jni.h>
 #include "ArrayHandler.h"

 JNIEXPORT jobjectArray JNICALL
 Java_ArrayHandler_returnArray
 (JNIEnv *env, jobject jobj){

 jobjectArray ret;
 int i;

 char *message[5]= {"first",
 "second",
 "third",
 "fourth",
 "fifth"};

 ret= (jobjectArray)env->NewObjectArray(5,
 env->FindClass("java/lang/String"),
 env->NewStringUTF(""));

 for(i=0;i<5;i++) {
 env->SetObjectArrayElement(
 ret,i,env->NewStringUTF(env, message[i]));
 }
 return(ret);
 }

The Java class that calls this native method is as follows:

 public class ArrayHandler {
 public native String[] returnArray();
 static{
 System.loadLibrary("nativelib");

Writing Advanced Applications, Chapter 5: JNI Technology

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jnistring.html (5 of 9) [2001-6-13 8:11:57]

 }

 public static void main(String args[]) {
 String ar[];
 ArrayHandler ah= new ArrayHandler();
 ar = ah.returnArray();
 for (int i=0; i<5; i++) {
 System.out.println("array element"+i+
 "=" + ar[i]);
 }
 }
 }

Multi-Dimensional Arrays

You might need to call existing numerical and mathematical
libraries such as the linear algebra library CLAPACK/LAPACK or
other matrix crunching programs from your Java language
program using native methods. Many of these libraries and
programs use two-dimensional and higher order arrays.

In the Java programming language, any array that has more than
one dimension is treated as an array of arrays. For example, a two-
dimensional integer array is handled as an array of integer arrays.
The array is read horizontally, or what is also termed as row order.

Other languages such as FORTRAN use column ordering so extra
care is needed if your program hands a Java language array to a
FORTRAN function. Also, the array elements in an application
written in the Java programming language are not guaranteed to
be contigous in memory. Some numerical libraries use the
knowledge that the array elements are stored next to each other in
memory to perform speed optimizations, so you might need to
make an additional local copy of the array to pass to those
functions.

The next example passes a two-dimensional array to a native
method which then extracts the elements, performs a calculation,
and calls a Java language method to return the results.

The array is passed as an object array that contains an array of
jints. The individual elements are extracted by first retrieving a
jintArray instance from the object array by calling
GetObjectArrayElement, and then extracting the elements from the
jintArray row.

The example uses a fixed size matrix. If you do not know the size
of the array being used, the GetArrayLength(array) function returns
the size of the outermost array. You will need to call the

Writing Advanced Applications, Chapter 5: JNI Technology

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jnistring.html (6 of 9) [2001-6-13 8:11:57]

GetArrayLength(array) function on each dimension of the array to
discover the total size of the array.

The new array sent back to the program written in the Java
langauge is built in reverse. First, a jintArray instance is created
and that instance is set in the object array by calling
SetObjectArrayElement.

public class ArrayManipulation {
 private int arrayResults[][];
 Boolean lock=new Boolean(true);
 int arraySize=-1;

 public native void manipulateArray(
 int[][] multiplier, Boolean lock);

 static{
 System.loadLibrary("nativelib");
 }

 public void sendArrayResults(int results[][]) {
 arraySize=results.length;
 arrayResults=new int[results.length][];
 System.arraycopy(results,0,arrayResults,
 0,arraySize);
 }

 public void displayArray() {
 for (int i=0; i<arraySize; i++) {
 for(int j=0; j <arrayResults[i].length;j++) {
 System.out.println("array element "+i+","+j+
 "= " + arrayResults[i][j]);
 }
 }
 }

 public static void main(String args[]) {
 int[][] ar = new int[3][3];
 int count=3;
 for(int i=0;i<3;i++) {
 for(int j=0;j<3;j++) {
 ar[i][j]=count;
 }
 count++;
 }
 ArrayManipulation am= new ArrayManipulation();
 am.manipulateArray(ar, am.lock);
 am.displayArray();
 }
}

#include <jni.h>
#include <iostream.h>
#include "ArrayManipulation.h"

JNIEXPORT void
 JNICALL Java_ArrayManipulation_manipulateArray
(JNIEnv *env, jobject jobj, jobjectArray elements,
 jobject lock){

Writing Advanced Applications, Chapter 5: JNI Technology

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jnistring.html (7 of 9) [2001-6-13 8:11:57]

 jobjectArray ret;
 int i,j;
 jint arraysize;
 int asize;
 jclass cls;
 jmethodID mid;
 jfieldID fid;
 long localArrayCopy[3][3];
 long localMatrix[3]={4,4,4};

 for(i=0; i<3; i++) {
 jintArray oneDim=
 (jintArray)env->GetObjectArrayElement(
 elements, i);
 jint *element=env->GetIntArrayElements(oneDim, 0);
 for(j=0; j<3; j++) {
 localArrayCopy[i][j]= element[j];
 }
 }

// With the C++ copy of the array,
// process the array with LAPACK, BLAS, etc.

 for (i=0;i<3;i++) {
 for (j=0; j<3 ; j++) {
 localArrayCopy[i][j]=
 localArrayCopy[i][j]*localMatrix[i];
 }
 }

// Create array to send back
 jintArray row= (jintArray)env->NewIntArray(3);
 ret=(jobjectArray)env->NewObjectArray(
 3, env->GetObjectClass(row), 0);

 for(i=0;i<3;i++) {
 row= (jintArray)env->NewIntArray(3);
 env->SetIntArrayRegion((jintArray)row,(
 jsize)0,3,(jint *)localArrayCopy[i]);
 env->SetObjectArrayElement(ret,i,row);
 }

 cls=env->GetObjectClass(jobj);
 mid=env->GetMethodID(cls, "sendArrayResults",
 "([[I)V");
 if (mid == 0) {
 cout <<"Can't find method sendArrayResults";
 return;
 }

 env->ExceptionClear();
 env->MonitorEnter(lock);
 env->CallVoidMethod(jobj, mid, ret);
 env->MonitorExit(lock);
 if(env->ExceptionOccurred()) {
 cout << "error occured copying array back" << endl;
 env->ExceptionDescribe();
 env->ExceptionClear();
 }
 fid=env->GetFieldID(cls, "arraySize", "I");

Writing Advanced Applications, Chapter 5: JNI Technology

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jnistring.html (8 of 9) [2001-6-13 8:11:57]

 if (fid == 0) {
 cout <<"Can't find field arraySize";
 return;
 }
 asize=env->GetIntField(jobj,fid);
 if(!env->ExceptionOccurred()) {
 cout<< "Java array size=" << asize << endl;
 } else {
 env->ExceptionClear();
 }
 return;
}

1 As used on this web site, the terms "Java virtual machine" or
"JVM" mean a virtual machine for the Java platform.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 5: JNI Technology

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jnistring.html (9 of 9) [2001-6-13 8:11:57]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 5: JNI Technology Issues

Training Index

Writing Advanced Applications
Chapter 5 Continued: Other Programming Issues

[<<BACK] [CONTENTS] [NEXT>>]

This section presents information on accessing classes, methods,
and fields, and covers threading, memory, and Java1 virtual
machine issues.

● Language Issues
● Calling Methods
● Accessing Fields
● Threads and Synchronization
● Memory Issues
● Invocation
● Attaching Threads

Language issues

So far, the native method examples have covered calling
standalone C and C++ functions that either return a result or
modify parameters passed into the function. However, C++ like
the Java language uses instances of classes. If you create a class
in one native method, the reference to this class does not have an
equivalent class in the Java language, which makes it difficult to
call functions on the C++ class that was first created.

One way to handle this situation is to keep a record of the C++
class reference and pass that back to a proxy or to the calling
program. To ensure the C++ class persists across native method
calls, use the C++ new operator to create a reference to the C++
object on the stack.

The following code provides a mapping between the Xbase
database and Java language code. The Xbase database has a C++
API and uses an initialization class to perform subsequent database
operations. When the class object is created, a pointer to this

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniref.html (1 of 13) [2001-6-13 8:12:01]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 5: JNI Technology Issues

object is returned as a Java language int value. You can use a long
or larger value for machines with greater than 32 bits.

public class CallDB {
 public native int initdb();
 public native short opendb(String name, int ptr);
 public native short GetFieldNo(
 String fieldname, int ptr);

 static {
 System.loadLibrary("dbmaplib");
 }

 public static void main(String args[]) {
 String prefix=null;
 CallDB db=new CallDB();
 int res=db.initdb();
 if(args.length>=1) {
 prefix=args[0];
 }
 System.out.println(db.opendb("MYFILE.DBF", res));
 System.out.println(db.GetFieldNo("LASTNAME", res));
 System.out.println(db.GetFieldNo("FIRSTNAME", res));
 }
}

The return result from the call to the initdb native method, the int
value, is passed to subsequent native method calls. The native
code included in the dbmaplib.cc library de--references the Java
language object passed in as a parameter and retrieves the object
pointer. The line xbDbf* Myfile=(xbDbf*)ptr; casts the int pointer
value to be a pointer of Xbase type xbDbf.

#include <jni.h>
#include <xbase/xbase.h>
#include "CallDB.h"

JNIEXPORT jint JNICALL Java_CallDB_initdb(
 JNIEnv *env, jobject jobj) {
 xbXBase* x;
 x= new xbXBase();
 xbDbf* Myfile;
 Myfile =new xbDbf(x);
 return ((jint)Myfile);
}

JNIEXPORT jshort JNICALL Java_CallDB_opendb(
 JNIEnv *env, jobject jobj,
 jstring dbname, jint ptr) {
 xbDbf* Myfile=(xbDbf*)ptr;
 return((*Myfile).OpenDatabase("MYFILE.DBF"));
}

JNIEXPORT jshort JNICALL Java_CallDB_GetFieldNo
 (JNIEnv *env, jobject jobj,
 jstring fieldname,
 jint ptr) {
 xbDbf* Myfile=(xbDbf*)ptr;
 return((*Myfile).GetFieldNo(

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniref.html (2 of 13) [2001-6-13 8:12:01]

 env->GetStringUTFChars(fieldname,0)));
}

Calling Methods

The section on arrays highlighted some reasons for calling Java
language methods from within native code; for example, when you
need to free the result you intend to return. Other uses for calling
Java native methods from within your native code would be if you
need to return more than one result or you just simply want to
modify Java language values from within native code.

Calling a Java language method from within native code involves
the following three steps:

1. Retrieve a class reference
2. Retrieve a method identifier
3. Call the Methods

Retrieve a Class Reference

The first step is to retrieve a reference to the class that contains
the methods you want to access. To retrieve a reference, you can
either use the FindClass method or access the jobject or jclass
argument to the native method.

Use the FindClass method:

 JNIEXPORT void JNICALL Java_ArrayHandler_returnArray
 (JNIEnv *env, jobject jobj){
 jclass cls = (*env)->FindClass(env, "ClassName");
 }

Use the jobject argument:

 JNIEXPORT void JNICALL Java_ArrayHandler_returnArray
 (JNIEnv *env, jobject jobj){
 jclass cls=(*env)->GetObjectClass(env, jobj);
 }

or

Use the jclass argument:

 JNIEXPORT void JNICALL Java_ArrayHandler_returnArray
 (JNIEnv *env, jclass jcls){
 jclass cls=jcls;
 }

Retrieve a Method Identifier

Once the class has been obtained, the second step is to call the
GetMethodID function to retrieve an identifier for a method you

Writing Advanced Applications, Chapter 5: JNI Technology Issues

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniref.html (3 of 13) [2001-6-13 8:12:01]

select in the class. The identifier is needed when calling the
method of that class instance. Because the Java language supports
method overloading, you also need to specify the particular
method signature you want to call. To find out what signature your
Java language method uses, run the javap command as follows:

 javap -s Class

The method signature used is displayed as a comment after each
method declaration as shown here:

bash# javap -s ArrayHandler
Compiled from ArrayHandler.java
public class ArrayHandler extends java.lang.Object {
 java.lang.String arrayResults[];
 /* [Ljava/lang/String; */
 static {};
 /* ()V */
 public ArrayHandler();
 /* ()V */
 public void displayArray();
 /* ()V */
 public static void main(java.lang.String[]);
 /* ([Ljava/lang/String;)V */
 public native void returnArray();
 /* ()V */
 public void sendArrayResults(java.lang.String[]);
 /* ([Ljava/lang/String;)V */
}

Use the GetMethodID function to call instance methods in an object
instance, or use the GetStaticMethodID function to call static
method. Their argument lists are the same.

Call the Methods

Third, the matching instance method is called using a
Call<type>Method function. The type value can be Void, Object,
Boolean, Byte, Char, Short, Int, Long, Float, or Double.

The parameters to the method can be passed as a comma-
separated list, an array of values to the Call<type>MethodA function,
or as a va_list. The va_list is a construct often used for variable
argument lists in C. CallMethodV is the function used to pass a
va_list ().

Static methods are called in a similar way except the method
naming includes an additional Static identifier,
CallStaticByteMethodA, and the jclass value is used instead of
jobject.

The next example returns the object array by calling the
sendArrayResults method from the ArrayHandler class.

Writing Advanced Applications, Chapter 5: JNI Technology Issues

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniref.html (4 of 13) [2001-6-13 8:12:01]

// ArrayHandler.java
public class ArrayHandler {
 private String arrayResults[];
 int arraySize=-1;

 public native void returnArray();

 static{
 System.loadLibrary("nativelib");
 }

 public void sendArrayResults(String results[]) {
 arraySize=results.length;
 arrayResults=new String[arraySize];
 System.arraycopy(results,0,
 arrayResults,0,arraySize);
 }

 public void displayArray() {
 for (int i=0; i<arraySize; i++) {
 System.out.println("array element
 "+i+ "= " + arrayResults[i]);
 }
 }

 public static void main(String args[]) {
 String ar[];
 ArrayHandler ah= new ArrayHandler();
 ah.returnArray();
 ah.displayArray();
 }
}

The native C++ code is defined as follows:

#include <jni.h>
#include <iostream.h>
#include "ArrayHandler.h"

JNIEXPORT void JNICALL Java_ArrayHandler_returnArray
(JNIEnv *env, jobject jobj){

 jobjectArray ret;
 int i;
 jclass cls;
 jmethodID mid;

 char *message[5]= {"first",
 "second",
 "third",
 "fourth",
 "fifth"};

 ret=(jobjectArray)env->NewObjectArray(5,
 env->FindClass("java/lang/String"),
 env->NewStringUTF(""));

 for(i=0;i<5;i++) {
 env->SetObjectArrayElement(
 ret,i,env->NewStringUTF(message[i]));
 }

Writing Advanced Applications, Chapter 5: JNI Technology Issues

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniref.html (5 of 13) [2001-6-13 8:12:01]

 cls=env->GetObjectClass(jobj);
 mid=env->GetMethodID(cls,
 "sendArrayResults",
 "([Ljava/lang/String;)V");
 if (mid == 0) {
 cout <<Can't find method sendArrayResults";
 return;
 }

 env->ExceptionClear();
 env->CallVoidMethod(jobj, mid, ret);
 if(env->ExceptionOccurred()) {
 cout << "error occured copying array back" <<endl;
 env->ExceptionDescribe();
 env->ExceptionClear();
 }
 return;
}

To build this on Linux, run the following commands:

 javac ArrayHandler.java
 javah -jni ArrayHandler

 g++ -o libnativelib.so
 -shared -Wl,-soname,libnative.so
 -I/export/home/jdk1.2/include
 -I/export/home/jdk1.2/include/linux nativelib.cc
 -lc

If you want to specify a super class method; for example, to call
the parent constructor, you can do so by calling the
CallNonvirtual<type>Method functions.

One important point when calling Java language methods or fields
from within native code is you need to catch any raised exceptions.
The ExceptionClear function clears any pending exceptions while
the ExceptionOccured function checks to see if an exception has
been raised in the current JNI session.

Accessing Fields

Accessing Java language fields from within native code is similar to
calling Java language methods. However, the set or field is
retrieved with a field ID, instead of a method ID.

The first thing you need to do is retrieve a field ID. You can use
the GetFieldID function, but specify the field name and signature in
place of the method name and signature. Once you have the field
ID, call a Get<type>Field function to set the field value. The <type>
is the same as the native type being returned except the j is
dropped and the first letter is capitalized. For example, the <type>
value is Int for native type jint, and Byte for native type jbyte.

The Get<type>Field function result is returned as the native type.

Writing Advanced Applications, Chapter 5: JNI Technology Issues

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniref.html (6 of 13) [2001-6-13 8:12:01]

For example, to retrieve the arraySize field in the ArrayHandler
class, call GetIntField as shown in the following example.

The field can be set by calling the env->SetIntField(jobj, fid,
arraysize) functions. Static fields can be set by calling
SetStaticIntField(jclass, fid, arraysize) and retrieved by calling
GetStaticIntField(jobj, fid).

#include <jni.h>
#include <iostream.h>
#include "ArrayHandler.h"

JNIEXPORT void JNICALL Java_ArrayHandler_returnArray
(JNIEnv *env, jobject jobj){

 jobjectArray ret;
 int i;
 jint arraysize;
 jclass cls;
 jmethodID mid;
 jfieldID fid;

 char *message[5]= {"first",
 "second",
 "third",
 "fourth",
 "fifth"};

 ret=(jobjectArray)env->NewObjectArray(5,
 env->FindClass("java/lang/String"),
 env->NewStringUTF(""));

 for(i=0;i<5;i++) {
 env->SetObjectArrayElement(
 ret,i,env->NewStringUTF(message[i]));
 }

 cls=env->GetObjectClass(jobj);
 mid=env->GetMethodID(cls,
 "sendArrayResults",
 "([Ljava/lang/String;)V");
 if (mid == 0) {
 cout <<Can't find method sendArrayResults";
 return;
 }

 env->ExceptionClear();
 env->CallVoidMethod(jobj, mid, ret);
 if(env->ExceptionOccurred()) {
 cout << "error occured copying
 array back" << endl;
 env->ExceptionDescribe();
 env->ExceptionClear();
 }
 fid=env->GetFieldID(cls, "arraySize", "I");
 if (fid == 0) {
 cout <<Can't find field arraySize";
 return;
 }

Writing Advanced Applications, Chapter 5: JNI Technology Issues

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniref.html (7 of 13) [2001-6-13 8:12:01]

 arraysize=env->GetIntField(jobj, fid);
 if(!env->ExceptionOccurred()) {
 cout<< "size=" << arraysize << endl;
 } else {
 env->ExceptionClear();
 }
 return;
}

Threads and Synchronization

Although the native library is loaded once per class, individual
threads in an application written in the Java language use their
own interface pointer when calling the native method. If you need
to restrict access to a Java language object from within native
code, you can either ensure that the Java language methods you
call have explicit synchronization or you can use the JNI
MonitorEnter and MonitorExit functions.

In the Java langauge, code is protected by a monitor whenever
you specify the synchronized keyword. In the Java programming
language, the monitor enter and exit routines are normally hidden
from the application developer. In JNI, you need to explicitly
delineate the entry and exit pointws of thread safe code.

The following example uses a Boolean object to restrict access to
the CallVoidMethod function.

 env->ExceptionClear();
 env->MonitorEnter(lock);
 env->CallVoidMethod(jobj, mid, ret);
 env->MonitorExit(lock);
 if(env->ExceptionOccurred()) {
 cout << "error occured copying array back" << endl;
 env->ExceptionDescribe();
 env->ExceptionClear();
 }

You may find that in cases where you want access to a local
system resource like a MFC window handle or message queue, it is
better to use one Java Thread and access the local threaded native
event queue or messaging system from within the native code.

Memory Issues

By default, JNI uses local references when creating objects inside a
native method. This means when the method returns, the
references are eligible to be garbage collected. If you want an
object to persist across native method calls, use a global reference
instead. A global reference is created from a local reference by
calling NewGlobalReference on the the local reference.

Writing Advanced Applications, Chapter 5: JNI Technology Issues

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniref.html (8 of 13) [2001-6-13 8:12:01]

You can explicitly mark a reference for garbage collection by
calling DeleteGlobalRef on the reference. You can also create a
weak style Global reference that is accessible outside the method,
but can be garbage collected. To create one of these references,
call NewWeakGlobalRef and DeleteWeakGlobalRef to mark the reference
for garbage collection.

You can even explicitly mark a local reference for garbage
collection by calling the env->DeleteLocalRef(localobject) method.
This is useful if you are using a large amount of temporary data.

 static jobject stringarray=0;

 JNIEXPORT void JNICALL Java_ArrayHandler_returnArray
 (JNIEnv *env, jobject jobj){

 jobjectArray ret;
 int i;
 jint arraysize;
 int asize;
 jclass cls, tmpcls;
 jmethodID mid;
 jfieldID fid;

 char *message[5]= {"first",
 "second",
 "third",
 "fourth",
 "fifth"};

 ret=(jobjectArray)env->NewObjectArray(5,
 env->FindClass("java/lang/String"),
 env->NewStringUTF(""));

 //Make the array available globally
 stringarray=env->NewGlobalRef(ret);

 //Process array
 // ...

 //clear local reference when finished..
 env->DeleteLocalRef(ret);
 }

Invocation

The section on calling methods showed you how to call a method
or field in a Java language program using the JNI interface and a
class loaded using the FindClass function. With a little more code,
you can create a standalone program that invokes a Java virtual
machine and includes its own JNI interface pointer that can be
used to create instances of Java language classes. In the Java 2
release, the runtime program named java is a small JNI application
that does exactly that.

Writing Advanced Applications, Chapter 5: JNI Technology Issues

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniref.html (9 of 13) [2001-6-13 8:12:01]

You can create a Java virtual machine with a call to
JNI_CreateJavaVM, and shut the created Java virtual machine down
with a call to JNI_DestroyJavaVM. A Java vitual machine might also
need some additional environment properties. These properties
can be passed to the JNI_CreateJavaVM function in a JavaVMInitArgs
structure.

The JavaVMInitArgs structure contains a pointer to a JavaVMOption
value used to store environment information such as the classpath
and Java virtual machine version, or system properties that would
normally be passed on the command line to the program.

When the JNI_CreateJavaVM function returns, you can call methods
and create instances of classes using the FindClass and NewObject
functions the same way you would for embedded native code.

Note: The Java virtual machine invocation used to be
only used for native thread Java virtual machines. Some
older Java virtual machines have a green threads option
that is stable for invocation use. On a Unix platform, you
may also need to explicitly link with -lthread or -
lpthread.

This next program invokes a Java virtual machine, loads the
ArrayHandler class, and retrieves the arraySize field which should
contain the value minus one. The Java virtual machine options
include the current path in the classpath and turning the Just-In-
Time (JIT) compiler off -Djava.compiler=NONE.

#include <jni.h>

void main(int argc, char *argv[], char **envp) {
 JavaVMOption options[2];
 JavaVMInitArgs vm_args;
 JavaVM *jvm;
 JNIEnv *env;
 long result;
 jmethodID mid;
 jfieldID fid;
 jobject jobj;
 jclass cls;
 int i, asize;

 options[0].optionString = ".";
 options[1].optionString = "-Djava.compiler=NONE";

 vm_args.version = JNI_VERSION_1_2;
 vm_args.options = options;
 vm_args.nOptions = 2;
 vm_args.ignoreUnrecognized = JNI_FALSE;

Writing Advanced Applications, Chapter 5: JNI Technology Issues

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniref.html (10 of 13) [2001-6-13 8:12:01]

 result = JNI_CreateJavaVM(
 &jvm,(void **)&env, &vm_args);
 if(result == JNI_ERR) {
 printf("Error invoking the JVM");
 exit (-1);
 }

 cls = (*env)->FindClass(env,"ArrayHandler");
 if(cls == NULL) {
 printf("can't find class ArrayHandler\n");
 exit (-1);
 }
 (*env)->ExceptionClear(env);
 mid=(*env)->GetMethodID(env, cls, "<init>", "()V");
 jobj=(*env)->NewObject(env, cls, mid);
 fid=(*env)->GetFieldID(env, cls, "arraySize", "I");
 asize=(*env)->GetIntField(env, jobj, fid);

 printf("size of array is %d",asize);
 (*jvm)->DestroyJavaVM(jvm);
}

Attaching Threads

After the Java virtual machine is invoked, there is one local thread
running the Java virtual machine. You can create more threads in
the local operating system and attach the Java virtual machine to
those new threads. You might want to do this if your native
application is multi-threaded.

Attach the local thread to the Java virtual machine with a call to
AttachCurrentThread. You need to supply pointers to the Java virtual
machine instance and JNI environment. In the Java 2 platform,
you can also specify in the third parameter the thread name
and/or group you want this new thread to live under. It is
important to detach any thread that has been previously attached;
otherwise, the program will not exit when you call DestroyJavaVM.

#include <jni.h>
#include <pthread.h>

JavaVM *jvm;

void *native_thread(void *arg) {
 JNIEnv *env;
 jclass cls;
 jmethodID mid;
 jfieldID fid;
 jint result;
 jobject jobj;
 JavaVMAttachArgs args;
 jint asize;

 args.version= JNI_VERSION_1_2;
 args.name="user";

Writing Advanced Applications, Chapter 5: JNI Technology Issues

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniref.html (11 of 13) [2001-6-13 8:12:01]

 args.group=NULL;
 result=(*jvm)->AttachCurrentThread(
 jvm, (void **)&env, &args);

 cls = (*env)->FindClass(env,"ArrayHandler");
 if(cls == NULL) {
 printf("can't find class ArrayHandler\n");
 exit (-1);
 }
 (*env)->ExceptionClear(env);
 mid=(*env)->GetMethodID(env, cls, "<init>", "()V");
 jobj=(*env)->NewObject(env, cls, mid);
 fid=(*env)->GetFieldID(env, cls, "arraySize", "I");
 asize=(*env)->GetIntField(env, jobj, fid);
 printf("size of array is %d\n",asize);
 (*jvm)->DetachCurrentThread(jvm);
}

void main(int argc, char *argv[], char **envp) {
 JavaVMOption *options;
 JavaVMInitArgs vm_args;
 JNIEnv *env;
 jint result;
 pthread_t tid;
 int thr_id;
 int i;

 options = (void *)malloc(3 * sizeof(JavaVMOption));

 options[0].optionString = "-Djava.class.path=.";
 options[1].optionString = "-Djava.compiler=NONE";

 vm_args.version = JNI_VERSION_1_2;
 vm_args.options = options;
 vm_args.nOptions = 2;
 vm_args.ignoreUnrecognized = JNI_FALSE;

 result = JNI_CreateJavaVM(&jvm,(void **)&env, &vm_args);
 if(result == JNI_ERR) {
 printf("Error invoking the JVM");
 exit (-1);
 }

 thr_id=pthread_create(&tid, NULL, native_thread, NULL);

// If you don't have join, sleep instead
//sleep(1000);
 pthread_join(tid, NULL);
 (*jvm)->DestroyJavaVM(jvm);
 exit(0);
}

1 As used on this web site, the terms "Java virtual machine" or
"JVM" mean a virtual machine for the Java platform.

[TOP]

Writing Advanced Applications, Chapter 5: JNI Technology Issues

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniref.html (12 of 13) [2001-6-13 8:12:01]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 5: JNI Technology Issues

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jniref.html (13 of 13) [2001-6-13 8:12:01]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

Training Index

Writing Advanced Applications
Chapter 6: Project Swing: Building a User Interface

[<<BACK] [CONTENTS] [NEXT>>]

The JavaTM Foundation Classes (JFC) Project Swing and Enterprise
JavaBeansTM architectures share one key design element: the
separation of data from the display or manipulation of that data. In
Enterprise JavaBeans applications, the entity bean provides a view
of the data. The underlying data storage mechanism can be
swapped out and replaced without changing the entity bean view
or recompiling any code that uses the view.

Project Swing separates the view and control of a visual
component from its contents, or data model. However, although
Project Swing does have the components that make up a Model-
View-Controller (MVC) architecture, it is more accurately described
as a model-delegate architecture. This is because the controller
part of the Project Swing interface, often the mouse and keyboard
events the component responds to, is combined with the physical
view in one User Interface delegate (UI delegate) object.

Each component, for example a JButton or a JScrollBar, has a
separate UI delegate class that inherits from the ComponentUI class
and is under the control of a separate UI manager. While each
component has a basic UI delegate, it is no longer tied to the
underlying data so a new set of delegets -- a set of metal-styled
components, for example -- can be swapped in while the
application is still running. The ability to change the look and
behavior reflects the pluggable look and feel (PLAF) feature
available in Project Swing.

This chapter describes Project Swing user interface components in
terms of the AuctionClient example application.

● Components and Data Models
● Printing API
● Advanced Printing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing.html (1 of 2) [2001-6-13 8:12:04]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

In a Rush?

This table links you directly to specific topics.

Topic Section

Components and Data
Models

● Lightweight Components
● Ordering Components
● Data Models
● Custom Cell Rendering
● Custom Cell Editing
● Specialized Event Handling
● Project Swing Directions

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing.html (2 of 2) [2001-6-13 8:12:04]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

Training Index

Writing Advanced Applications
Chapter 6 Continued: Components and Data Models

[<<BACK] [CONTENTS] [NEXT>>]

The AuctionClient program is a simple GUI application that lets
auction administrators list and browse auction items, and print
auction item reports. This section describes the Project Swing
application code, which uses lightweight components and the other
Project Swing features shown in the bullet list.

● Lightweight Components
● Ordering Components
● Data Models
● Custom Cell Rendering
● Custom Cell Editing
● Specialized Event Handling
● Project Swing Directions

Lightweight Components

All components in Project Swing, except JApplet, JDialog, JFrame
and JWindow are lightweight components. Lightweight components,

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (1 of 22) [2001-6-13 8:12:09]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/admin/AuctionClient.java

Technology Centers

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

unlike their Abstract Window Toolkit (AWT) counterparts, do not
depend on the local windowing toolkit.

For example, a heavyweight java.awt.Button running on the JavaTM
platform for the Unix platform maps to a real Motif button. In this
relationship, the Motif button is called the peer to the
java.awt.Button. If you create two java.awt.Button in an
application, two peers and hence two Motif Buttons are also
created. The Java platform communicates with the Motif Buttons
using the Java Native Interface. For each and every component
added to the application, there is an additional overhead tied to
the local windowing system, which is why these components are
called heavyweight.

Lightweight components are termed peerless components and
emulate the local window system components. A lightweight
button is represented as a rectangle with a label inside that
accepts mouse events. Adding more lightweight buttons means
drawing more rectangles.

A lightweight component needs to be drawn on something, and an
application written in the Java programming language needs to
interact with the local window manager so the main application
window can be closed or minimized. This is why the top-level
parent components mentioned above (JFrame, JApplet, and others)
are implemented as heavyweight components -- they need to be
mapped to a component in the local window toolkit.

A JButton is a very simple shape to draw. For more complex
components like JList or JTable, the elements or cells of the list or
table are drawn by a CellRenderer object. A CellRenderer object
provides flexibility because it makes it possible for any type of
object to be displayed in any row or column.

For example, a JTable can use a different CellRenderer for each
column. This code segment sets the second column, which is
referenced as index 1, to use a CustomRenderer object to create the
cells for that column.

 JTable scrollTable=new JTable(rm);
 TableColumnModel scrollColumnModel =
 scrollTable.getColumnModel();
 CustomRenderer custom = new CustomRenderer();
 scrollColumnModel.getColumn(1).setCellRenderer(custom);

Ordering Components

Each Project Swing applet or application needs at least one

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (2 of 22) [2001-6-13 8:12:09]

heavyweight container component (a JFrame, JWindow, JApplet, or
JDialog). Each of these containers with JFrame's lightweight MDI
counterpart, JInternalFrame, contains a component called a
RootPane. The JRootPane manages the additional layers used in the
container such as the JLayeredPane, JContentPane, GlassPane and the
optional JMenuBar. It also lets all emulated (lightweight)
components interact with the AWT event queue to send and
receive events. Interacting with the event queue gives emulated
components indirect interaction with the local window manager.

JLayeredPane

The JLayeredPane sits on top of the JRootPane, and as its name
implies, controls the layers of the components contained within the
boundary of the heavyweight container. The components are not
added to the JLayeredPane, but to the JContentPane instead. The
JLayeredPane determines the Z-ordering of the components in the
JRootPane. The Z-order can be thought of as the order of overlay
among various the components. If you drag-and-drop a
component or request a dialog to popup, you want that component
to appear in front of the others in the application window. The
JLayeredPane lets you layer components.

The JLayeredPane divides the depth of the container into different
bands that can be used to assign a component to a type-
appropriate level. The DRAG_LAYER band, value 400, appears above
all other defined component layters. The lowermost level of
JLayeredpane, the DEFAULT_FRAME_LAYER band, has value -3000 and is
the level of the heavyweight containers, including the MenuBar. The
bands are as follows:

Value Layer Name Component Types
-3000 DEFAULT_FRAME_LAYER JMenubar

0 DEFAULT_LAYER JButton, JTable, ..

PALETTE_LAYER
Floating components
such as JToolBar

MODAL_LAYER Modal Dialogs

400 DRAG_LAYER
Drag-and-drop
over all layers

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (3 of 22) [2001-6-13 8:12:10]

Within these general depth bands, components can be
further arranged with another numbering system to
order the components in a particular band, but this
system reverses the numbering priority. For example,
in a specific band such as DEFAULT_LAYER, components
with a value of 0 appear in front of others in that
band; whereas, components with a higher number or -
1 appear behind them. The highest number in this
scheme is the number of components minus 1, so one
way to visualize it is a vector of components that steps
through painting the components with a higher
number first finishing with the one at position 0.

For example, the following code adds a JButton to the
default layer and specifies that it appear in front of the
other components in that same layer:

 JButton enterButton = new JButton("Enter");
 layeredPane.add(enterButton,

 JLayeredPane.Default_Layer, 0);

You can achieve the same effect by calling the
LayeredPane.moveToFont method within a layer or using the
LayeredPane.setLayer method to move to a different layer.

JContentPane

The JContentPane manages adding components to heavyweight
containers. So, you have to call the getContentPane method to add
a component to the ContentPane of the RootPane. By default, a
ContentPane is initialized with a BorderLayout layout manager. There
are two ways to change the layout manager. You can call the
setLayout method like this:

 getContentPane()).setLayout(new BoxLayout())

Or you can replace the default ContentPane with your own
ContentPane, such as a JPanel, like this:

 JPanel pane= new JPanel();
 pane.setLayout(new BoxLayout());
 setContentPane(pane);

GlassPane

The GlassPane is usually completely transparent and just acts as a
sheet of glass in front of the components. You can implement your
own GlassPane by using a component like JPanel and installing it as
the GlassPane by calling the setGlassPane method. The RootPane is
configured with a GlassPane that can be retrieved by calling
getGlassPane.

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (4 of 22) [2001-6-13 8:12:10]

One way to use a GlassPane is to implement a component that
invisibly handles all mouse and keyboard events, effectively
blocking user input until an event completes. The GlassPane can
block the events, but currently the cursor will not return to its
default state if you have set the cursor to be a busy cursor in the
GlassPane. An additional mouse event is required for the refresh.

 MyGlassPane glassPane = new MyGlassPane();
 setGlassPane(glassPane);
 setGlassPane.setVisible(true); //before worker thread
 ..
 setGlassPane.setVisible(false); //after worker thread

 private class MyGlassPane extends JPanel {

 public MyGlassPane() {
 addKeyListener(new KeyAdapter() { });
 addMouseListener(new MouseAdapter() { });
 super.setCursor(
 Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));
 }
 }

Data Models

Numerous model layers are combined to form the tables of the
AuctionClient GUI. At a foundational level, the TableModel interface
and its two implementations AbstractTableModel and
DefaultTableModel provide the most basic means for storage,
retrieval and modification of the underlying data.

The TableModel is responsible for defining and categorizing the data
by its class. It also determines if the data can be edited and how
the data is grouped into columns and rows. It is important to note,
however, that while the TableModel interface is used most often in
the construction of a JTable, it is not fundamentally tied to their
display. Implementations could just as easily form the basis of a
spreadsheet component, or even a non-GUI class that calls for the
organization of data in tabular format.

The ResultsModel class is at the heart of the AuctionClient tables. It
defines a dynamic data set, dictates whether class users can edit
the data through its ResultsModel.isCellEditable method, and
provides the update method to keep the data current. The model
underlies the scrolling and fixed tables, and lets modifications to be
reflected in each view.

At a higher level, and representing an intermediate layer between
data and its graphical representation, is the TableColumnModel. At
this level the data is grouped by column in anticipation of its

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (5 of 22) [2001-6-13 8:12:10]

ultimate display in the table. The visibility and size of these
columns, their headers, and the component types of their cell
renderers and editors are all managed by the TableColumnModel
class.

For example, freezing the left-most columns in the AuctionClient
GUI is possible because column data is easily exchanged among
multiple TableColumnModel and JTable objects. This translates to the
fixedTable and scrollTable objects of the AuctionClient program.

Higher still lie the various renderers, editors, and header
components whose combination define the look and organization of
the JTable component. This level is where the fundamental layout
and display decisions of the JTable are made.

The creation of the inner classes CustomRenderer and
CustomButtonRenderer within the AuctionClient application allows
users of those classes to redefine the components upon which the
appearance of table cells are based. Likewise, the
CustomButtonEditor class takes the place of the table's default
editor. In true object-oriented fashion, the default editors and
renderers are easily replaced, affecting neither the data they
represent nor the function of the component in which they reside.

Finally, the various component user interfaces are responsible for
the ultimate appearance of the JTable. It is here the look-and-feel-
specific representation of the AuctionClient tables and their data
are rendered in final form to the user. The end result is that adding
a Project Swing front-end to existing services requires little
additional code. In fact, coding the model is one of the easier tasks
in building a Project Swing application.

Table Model

The JTable class has an associated DefaultTableModel class that
internally uses a Vector of vectors to store data internally. The
data for each row is stored in a singl Vector object while another
Vector object stores each of those rows as its constituent elements.
The DefaultTableModel object can be initialized with data in several
different ways. This code shows the DefaultTableModel created with
a two-dimensional array and a second array representing column
headings. The DefaultTableModel in turn converts the Object arrays
into the appropriate Vector objects:

 Object[][] data = new Object[][]{ {"row 1 col1",
 "Row 1 col2" },
 {"row 2 col 1",
 "row 2 col 2"}

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (6 of 22) [2001-6-13 8:12:10]

 };
 Object[] headers = new Object[] {"first header",
 "second header"};
 DefaultTableModel model = new DefaultTableModel(data,
 headers);

 table = new JTable(model);
 table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);

Creating a custom table model is nearly as easy as using
DefaultTableModel, and requires little additional coding. You can
implement a table model by implementing a method to return the
number of entries in the model, and a method to retrieve an
element at a specific position in that model. For example, the
JTable model can be implemented from
javax.swing.table.AbstractTableModel by implementing the methods
getColumnCount, getRowCount and getValueAt as shown here:

 final Object[][] data = new Object[][]{ {
 "row 1 col1",
 "row 1 col2" },
 {"row 2 col 1",
 "row 2 col 2"} };
 final Object[] headers = new Object[] {
 "first header",
 "second header"};

 TableModel model = new AbstractTableModel(){
 public int getColumnCount() {
 return data[0].length;
 }
 public int getRowCount() {
 return data.length;
 }
 public String getColumnName(int col) {
 return (String)headers[col];
 }

 public Object getValueAt(int row,int col) {
 return data[row][col];
 }
 };
 table = new JTable(model);
 table.setAutoResizeMode(
 JTable.AUTO_RESIZE_OFF);

This table is read-only and its data values are already known. In
fact, the data is even declared final so it can be retrieved by the
inner TableModel class. This is not normally the situation when
working with live data.

You can create an editable table by by adding the isCellEditable
verification method, which is used by the default cell editor, and
the AbstractTableModel method for setting a value at a position. Up
until this change, the AbstractTableModel has been handling the
repainting and resizing of the table by firing different table
changed events. Because the AbtractTableModel does not know that

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (7 of 22) [2001-6-13 8:12:10]

something has occured to the table data, you need to inform it by
calling the fireTableCellUpdated method. The following lines are
added to the AbstractTableModel inner class to allow editing of the
data:

 public void setValueAt (Object value,
 int row, int col) {
 data[row][col] = value;
 fireTableCellUpdated (row, col);
 }

 public boolean isCellEditable(int row,
 int col) {
 return true;
 }

More Table Models

A common requirement for the display of tabular data is the
inclusion of a non-scrolling column. This column provides a set of
anchor data that remains stationary and visible while its
neighboring columns are scrolled horizontally (and often out of
view). This is particularly important in cases where row data can
be identified by a unique value in the fixed column, such as a
name or identification number. The next code example uses a fixed
table column to display a list of the auction items.

The base table model in this example implements the
AbstractTableModel class. Its update method dynamically populates
the table data from a call to the database. It sends an event that
the table has been updated by calling the
fireTableStructureChanged method to indicate the number of rows
or columns in the table have changed.

package auction;

import javax.swing.table.AbstractTableModel;
import javax.swing.event.TableModelEvent;
import java.text.NumberFormat;
import java.util.*;
import java.awt.*;

public class ResultsModel extends AbstractTableModel{
 String[] columnNames={};
 Vector rows = new Vector();

 public String getColumnName(int column) {
 if (columnNames[column] != null) {
 return columnNames[column];
 } else {
 return "";
 }
 }

 public boolean isCellEditable(int row, int column){

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (8 of 22) [2001-6-13 8:12:10]

 return false;
 }

 public int getColumnCount() {
 return columnNames.length;
 }

 public int getRowCount() {
 return rows.size();
 }

 public Object getValueAt(int row, int column){
 Vector tmprow = (Vector)rows.elementAt(row);
 return tmprow.elementAt(column);
 }

 public void update(Enumeration enum) {
 try {
 columnNames = new String[5];
 columnNames[0]=new String("Auction Id #");
 columnNames[1]=new String("Description");
 columnNames[2]=new String("High Bid");
 columnNames[3]=new String("# of bids");
 columnNames[4]=new String("End Date");
 while((enum !=null) &&
 (enum.hasMoreElements())) {
 while(enum.hasMoreElements()) {
 AuctionItem auctionItem=(
 AuctionItem)enum.nextElement();
 Vector items=new Vector();
 items.addElement(new Integer(
 auctionItem.getId()));
 items.addElement(
 auctionItem.getSummary());
 int bidcount= auctionItem.getBidCount();
 if(bidcount >0) {
 items.addElement(
 NumberFormat.getCurrencyInstance().
 format(auctionItem.getHighBid()));
 } else {
 items.addElement("-");
 }
 items.addElement(new Integer(bidcount));
 items.addElement(auctionItem.getEndDate());
 rows.addElement(items);
 }
 }

 fireTableStructureChanged();
 } catch (Exception e) {
 System.out.println("Exception e"+e);
 }
 }
}

The table is created from the ResultsModel model. Then, the first
table column is removed from that table and added to a new table.
Because there are now two tables, the only way the selections can
be kept in sync is to use a ListSelectionModel object to set the
selection on the table row in the other tables that were not

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (9 of 22) [2001-6-13 8:12:10]

selected by calling the setRowSelectionInterval method.

The full example can be found in the AuctionClient.java source file:

 private void listAllItems() throws IOException{
 ResultsModel rm=new ResultsModel();
 if (!standaloneMode) {
 try {
 BidderHome bhome=(BidderHome)
 ctx.lookup("bidder");
 Bidder bid=bhome.create();
 Enumeration enum=
 (Enumeration)bid.getItemList();
 if (enum != null) {
 rm.update(enum);
 }
 } catch (Exception e) {
 System.out.println(
 "AuctionServlet <list>:"+e);
 }
 } else {
 TestData td= new TestData();
 rm.update(td.results());
 }
 scrollTable=new JTable(rm);
 adjustColumnWidth(scrollTable.getColumn(
 "End Date"), 150);
 adjustColumnWidth(scrollTable.getColumn(
 "Description"), 120);
 scrollColumnModel = scrollTable.getColumnModel();
 fixedColumnModel = new DefaultTableColumnModel();

 TableColumn col = scrollColumnModel.getColumn(0);
 scrollColumnModel.removeColumn(col);
 fixedColumnModel.addColumn(col);

 fixedTable = new JTable(rm,fixedColumnModel);
 fixedTable.setRowHeight(scrollTable.getRowHeight());
 headers = new JViewport();

 ListSelectionModel fixedSelection =
 fixedTable.getSelectionModel();
 fixedSelection.addListSelectionListener(
 new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent e) {
 ListSelectionModel lsm = (
 ListSelectionModel)e.getSource();
 if (!lsm.isSelectionEmpty()) {
 setScrollableRow();
 }
 }
 });

 ListSelectionModel scrollSelection =
 scrollTable.getSelectionModel();
 scrollSelection.addListSelectionListener(
 new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent e) {
 ListSelectionModel lsm =

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (10 of 22) [2001-6-13 8:12:10]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/admin/AuctionClient.java

 (ListSelectionModel)e.getSource();
 if (!lsm.isSelectionEmpty()) {
 setFixedRow();
 }
 }
 });

 CustomRenderer custom = new CustomRenderer();
 custom.setHorizontalAlignment(JLabel.CENTER);
 scrollColumnModel.getColumn(2).setCellRenderer(
 custom);
 scrollColumnModel.getColumn(3).setCellRenderer(
 new CustomButtonRenderer());

 CustomButtonEditor customEdit=new
 CustomButtonEditor(frame);
 scrollColumnModel.getColumn(3).setCellEditor(
 customEdit);

 headers.add(scrollTable.getTableHeader());

 JPanel topPanel = new JPanel();
 topPanel.setLayout(new BoxLayout(topPanel,
 BoxLayout.X_AXIS));
 adjustColumnWidth(
 fixedColumnModel.getColumn(0), 100);

 JTableHeader fixedHeader=
 fixedTable.getTableHeader();
 fixedHeader.setAlignmentY(Component.TOP_ALIGNMENT);
 topPanel.add(fixedHeader);
 topPanel.add(Box.createRigidArea(
 new Dimension(2, 0)));
 topPanel.setPreferredSize(new Dimension(400, 40));

 JPanel headerPanel = new JPanel();
 headerPanel.setAlignmentY(Component.TOP_ALIGNMENT);
 headerPanel.setLayout(new BorderLayout());

 JScrollPane scrollpane = new JScrollPane();
 scrollBar = scrollpane.getHorizontalScrollBar();

 headerPanel.add(headers, "North");
 headerPanel.add(scrollBar, "South");
 topPanel.add(headerPanel);

 scrollTable.setPreferredScrollableViewportSize(
 new Dimension(300,180));
 fixedTable.setPreferredScrollableViewportSize(
 new Dimension(100,180));
 fixedTable.setPreferredSize(
 new Dimension(100,180));

 innerPort = new JViewport();
 innerPort.setView(scrollTable);
 scrollpane.setViewport(innerPort);

 scrollBar.getModel().addChangeListener(
 new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 Point q = headers.getViewPosition();

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (11 of 22) [2001-6-13 8:12:10]

 Point p = innerPort.getViewPosition();
 int val = scrollBar.getModel().getValue();
 p.x = val;
 q.x = val;
 headers.setViewPosition(p);
 headers.repaint(headers.getViewRect());
 innerPort.setViewPosition(p);
 innerPort.repaint(innerPort.getViewRect());
 }
 });

 scrollTable.getTableHeader(
).setUpdateTableInRealTime(
 false);

 JPanel bottomPanel = new JPanel();
 bottomPanel.setLayout(new BoxLayout(
 bottomPanel, BoxLayout.X_AXIS));
 fixedTable.setAlignmentY(Component.TOP_ALIGNMENT);
 bottomPanel.add(fixedTable);
 bottomPanel.add(Box.createRigidArea(
 new Dimension(2, 0)));
 innerPort.setAlignmentY(Component.TOP_ALIGNMENT);
 bottomPanel.add(innerPort);
 bottomPanel.add(Box.createRigidArea(
 new Dimension(2, 0)));

 scrollPane= new JScrollPane(bottomPanel,
 JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
 JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);
 JViewport outerPort = new JViewport();
 outerPort.add(bottomPanel);
 scrollPane.setColumnHeaderView(topPanel);
 scrollPane.setViewport(outerPort);

 scrollTable.setAutoResizeMode(
 JTable.AUTO_RESIZE_OFF);
 frame.getContentPane().add(scrollPane);

 scrollTable.validate();
 frame.setSize(450,200);
 }

 void setFixedRow() {
 int index=scrollTable.getSelectedRow();
 fixedTable.setRowSelectionInterval(index, index);
 }

 void setScrollableRow() {
 int index=fixedTable.getSelectedRow();
 scrollTable.setRowSelectionInterval(index, index);
 }

 void adjustColumnWidth(TableColumn c, int size) {
 c.setPreferredWidth(size);
 c.setMaxWidth(size);
 c.setMinWidth(size);
 }

JList Model

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (12 of 22) [2001-6-13 8:12:10]

The JList component displays a vertical list of data elements and
uses a ListModel to hold and manipulate the data. It also uses a
ListSelectionModel object to enable selection and subsequent
retrieval of elements in the list.

Default implementations of the AbstractListModel and
AbstractListSelectionModel classes are provided in the Project
Swing API in the form of the DefaultListModel and
DefaultListSelectionModel classes. If you use these two default
models and the default cell renderer, you get a list that displays
model elements by calling the toString method on each object. The
list uses the MULTIPLE_INTERVAL_SELECTION list selection model to
select each element from the list.

Three selection modes are available to DefaultListSelectionModel:
SINGLE_SELECTION, where only one item is selected at a time;
SINGLE_INTERVAL_SELECTION in which a range of sequential items can
be selected; and MULTIPLE_INTERVAL_SELECTION, which allows any or
all elements to be selected. The selection mode can be changed by
calling the setSelectionMode method in the JList class.

 public SimpleList() {
 JList list;
 DefaultListModel deflist;
 deflist= new DefaultListModel();
 deflist.addElement("element 1");
 deflist.addElement("element 2");
 list = new JList(deflist);

 JScrollPane scroll = new JScrollPane(list);
 getContentPane().add(scroll, BorderLayout.CENTER);
 }

JTree Model

The JTree class models and displays a vertical list of elements or
nodes arranged in a tree-based hierarchy.

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (13 of 22) [2001-6-13 8:12:10]

A JTree object has one root node
and one or more child nodes, which
can contain further child nodes.
Each parent node can be expanded
to show all its children similiar to
directory trees familiar to Windows
users.

Like the JList and JTable
components, the JTree consists of
more than one model. The selection
model is similiar to the one detailed
for the JList model. The selection
modes have the following slightly
different names:
SINGLE_TREE_SELECTION,
DISCONTIGUOUS_TREE_SELECTION, and
CONTIGUOUS_TREE_SELECTION.

While DefaultTreeModel maintains the
data in the tree and is responsible
for adding and removing nodes, it is

the DefaultTreeMutableTreeNode class that defines the methods used
for node traversal. The DefaultTreeModel is often used to implement
custom models because there is no AbstractTreeModel in the JTree
package. However, if you use custom objects, you must implement
TreeModel. This code example creates a JTree using the
DefaultTreeModel.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.tree.*;

public class SimpleTree extends JFrame {
 public SimpleTree() {
 String[] treelabels = {
 "All Auctions",
 "Closed Auction",
 "Open Auctions"};
 Integer[] closedItems = { new Integer(500144),
 new Integer(500146),
 new Integer(500147)};

 Integer[] openItems = { new Integer(500148),
 new Integer(500149)};

 DefaultMutableTreeNode[] nodes = new
 DefaultMutableTreeNode[treelabels.length];
 DefaultMutableTreeNode[] closednodes = new
 DefaultMutableTreeNode[closedItems.length];
 DefaultMutableTreeNode[] opennodes = new

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (14 of 22) [2001-6-13 8:12:10]

 DefaultMutableTreeNode[openItems.length];

 for (int i=0; i < treelabels.length; i++) {
 nodes[i] = new
 DefaultMutableTreeNode(treelabels[i]);
 }
 nodes[0].add(nodes[1]);
 nodes[0].add(nodes[2]);

 for (int i=0; i < closedItems.length; i++) {
 closednodes[i] = new
 DefaultMutableTreeNode(closedItems[i]);
 nodes[1].add(closednodes[i]);
 }

 for (int i=0; i < openItems.length; i++) {
 opennodes[i] = new
 DefaultMutableTreeNode(openItems[i]);
 nodes[2].add(opennodes[i]);
 }
 DefaultTreeModel model=new
 DefaultTreeModel(nodes[0]);

 JTree tree = new JTree(model);

 JScrollPane scroll = new JScrollPane(tree);
 getContentPane().add(scroll, BorderLayout.CENTER);
 }

 public static void main(String[] args) {
 SimpleTree frame = new SimpleTree();
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });
 frame.setVisible(true);
 frame.pack();
 frame.setSize(150,150);
 }
}

The toString method is used to retrieve the value for the Integer
objects in the tree. And although the DefaultTreeModel is used to
maintain the data in the tree and to add or remove nodes, the
DefaultMutableTreeNode class defines the methods used to traverse
through the nodes in the tree.

A primitive search of the nodes in a JTree is accomplished with the
depthFirstEnumeration method, which is the same as the
postorderEnumeration method and works its way from the end
points of the tree first. Or you can call the preorderEnumeration
method, the reverse of the postorderEnumeration method, which
starts from the root and descends each tree in turn. Or you can
call the breadthFirstEnumeration method, which starts from the root
and visits all the child nodes in one level before visiting the child
nodes at a lower depth.

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (15 of 22) [2001-6-13 8:12:10]

The following code expands the parent node if it contains a child
node that matches the search field entered. It uses a call to
Enumeration e = nodes[0].depthFirstEnumeration(); to return a list
of all the nodes in the tree. Once it has found a match, it builds the
TreePath from the root node to the node that matched the search
to pass to the makeVisible method in the JTree class that ensures
the node is expanded in the tree.

import java.awt.*;
import java.util.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.tree.*;

public class SimpleSearchTree extends JFrame {
 JPanel findPanel;
 JTextField findField;
 JTree tree;
 JButton findButton;
 DefaultMutableTreeNode[] nodes;

 public SimpleSearchTree() {
 String[] treelabels = { "All Auctions",
 "Closed Auction",
 "Open Auctions" };
 Integer[] closedItems = { new Integer(500144),
 new Integer(500146),
 new Integer(500147) };

 Integer[] openItems ={ new Integer(500148),
 new Integer(500149)};

 nodes = new
 DefaultMutableTreeNode[treelabels.length];
 DefaultMutableTreeNode[] closednodes = new
 DefaultMutableTreeNode[closedItems.length];
 DefaultMutableTreeNode[] opennodes = new
 DefaultMutableTreeNode[openItems.length];
 for (int i=0; i < treelabels.length; i++) {
 nodes[i] = new
 DefaultMutableTreeNode(treelabels[i]);
 }
 nodes[0].add(nodes[1]);
 nodes[0].add(nodes[2]);

 for (int i=0; i < closedItems.length; i++) {
 closednodes[i] = new
 DefaultMutableTreeNode(closedItems[i]);
 nodes[1].add(closednodes[i]);
 }

 for (int i=0; i < openItems.length; i++) {
 opennodes[i] = new DefaultMutableTreeNode(
 openItems[i]);
 nodes[2].add(opennodes[i]);
 }

 DefaultTreeModel model=new

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (16 of 22) [2001-6-13 8:12:10]

 DefaultTreeModel(nodes[0]);
 tree = new JTree(model);

 JScrollPane scroll = new JScrollPane(tree);
 getContentPane().add(scroll, BorderLayout.CENTER);
 findPanel= new JPanel();
 findField= new JTextField(10);
 findButton= new JButton("find");
 findButton.addActionListener (new ActionListener() {
 public void actionPerformed (ActionEvent e) {
 String field=findField.getText();
 if (field != null) {
 findNode(findField.getText());
 } else {
 return;
 }
 }
 });
 findPanel.add(findField);
 findPanel.add(findButton);
 getContentPane().add(findPanel, BorderLayout.SOUTH);
 }
 public void findNode(String field) {
 Enumeration e = nodes[0].depthFirstEnumeration();
 Object currNode;
 while (e.hasMoreElements()) {
 currNode = e.nextElement();
 if (currNode.toString().equals(field)) {
 TreePath path=new TreePath(((
 DefaultMutableTreeNode)currNode).getPath());
 tree.makeVisible(path);
 tree.setSelectionRow(tree.getRowForPath(path));
 return;
 }
 }
 }

 public static void main(String[] args) {
 SimpleSearchTree frame = new SimpleSearchTree();
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);
 }
 });
 frame.setVisible(true);
 frame.pack();
 frame.setSize(300,150);
 }
}

JTree, JTable and JList are probably the most common models you
will want to customize. But you can use models such as
SingleSelectionModel for general data manipulation. The
SingleSelectionModel class lets you specify how data is selected in a
component.

Custom Cell Rendering

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (17 of 22) [2001-6-13 8:12:10]

As you learned above, many components have a default cell
renderer to paint each element in a table, tree or list. The default
cell renderer is usually a JLabel and displays a String
representation of the data element.

A simple custom cell renderer can extend the
DefaultXXXCellRenderer class to provide additional customization in
the getXXXCellRenderer. The DefaultTableCellRenderer and
DefaultTreeCellRenderer Components both use a JLabel to render
the cell. This means any customization that can be applied to a
JLabel can also be used in the JTable or JTree cell.

For example, the following renderer sets the background color of
the component if the auction item has received a high number of
bids:

class CustomRenderer extends DefaultTableCellRenderer {
 public Component getTableCellRendererComponent(
 JTable table,Object value,
 boolean isSelected,
 boolean hasFocus,
 int row, int column) {

 Component comp =
 super.getTableCellRendererComponent(
 table,value,isSelected,hasFocus,
 row,column);

 JLabel label = (JLabel)comp;

 if(((Integer)value).intValue() >= 30) {
 label.setIcon(new ImageIcon("Hot.gif"));
 } else {
 label.setIcon(new ImageIcon("Normal.gif"));
 }

 return label;
 }
}

The renderer is set on a column like this:

 CustomRenderer custom = new CustomRenderer();
 custom.setHorizontalAlignment(JLabel.CENTER);
 scrollColumnModel.getColumn(2).setCellRenderer(
 custom);

If the component being displayed inside the JTable column requires
more functionality than is available using a JLabel, you can create
your own TableCellRenderer. This next code example uses a JButton
as the renderer cell.

class CustomButtonRenderer extends JButton
 implements TableCellRenderer {
 public CustomButtonRenderer() {
 setOpaque(true);
 }

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (18 of 22) [2001-6-13 8:12:10]

 public Component getTableCellRendererComponent(
 JTable table, Object value,
 boolean isSelected,
 boolean hasFocus, int row,
 int column) {

 if (isSelected) {
 ((JButton)value).setForeground(
 table.getSelectionForeground());
 ((JButton)value).setBackground(
 table.getSelectionBackground());
 } else {
 ((JButton)value).setForeground(table.getForeground());
 ((JButton)value).setBackground(table.getBackground());
 }
 return (JButton)value;
 }
}

Like the default JLabel cell renderer, this class relies on an
underlying component (in this case JButton) to do the painting.
Selection of the cell toggles the button colors. As before, the cell
renderer is secured to the appropriate column of the auction table
with the setCellRenderer method:

 scrollColumnModel.getColumn(3).setCellRenderer(
 new CustomButtonRenderer());

Alternately, all JButton components can be configured to use the
CustomButtonRenderer in the table with a call to setDefaultRenderer
as follows:

 table.setDefaultRenderer(
 JButton.class, new CustomButtonRenderer());

Custom Cell Editing

In the same way that you can configure how a cell is painted in a
JTable or JTree component, you can also configure how an editable
cell responds to edits. One difference between using cell editors
and cell renderers is there is a DefaultCellEditor for all
components, but no DefaultTableCellEditor for table cells.

While separate renderers exist for JTree and JTable, a single
DefaultCellEditor class implements both the TableCellEditor and
TreeCellEditor interfaces. However, the DefaultCellEditor class has
constructors for only the JComboBox, JCheckBox, and JTextField
components. The JButton class does not map to any of these
constructors so a dummy JCheckBox is created to satisfy the
requirements of the DefaultCellEditor class.

This next example uses a custom button editor that displays the
number of days left in the auction when the button is double

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (19 of 22) [2001-6-13 8:12:10]

clicked. The double click to trigger the action is specified by setting
the value clickCountToStart to two. An exact copy of the
getTableCellEditorComponent method paints the button in edit
mode. A JDialog component that displays the number of days left
appears when the getCellEditorValue method is called. The value
for the number of days left is calculated by moving the current
calendar date towards the end date. The Calendar class does not
have a method that expresses a difference in two dates in anything
other than the milliseconds between those two dates.

class CustomButtonEditor extends DefaultCellEditor {
 final JButton mybutton;
 JFrame frame;

 CustomButtonEditor(JFrame frame) {
 super(new JCheckBox());
 mybutton = new JButton();
 this.editorComponent = mybutton;
 this.clickCountToStart = 2;
 this.frame=frame;
 mybutton.setOpaque(true);
 mybutton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 fireEditingStopped();
 }
 });
 }

 protected void fireEditingStopped() {
 super.fireEditingStopped();
 }

 public Object getCellEditorValue() {
 JDialog jd= new JDialog(frame, "Time left");
 Calendar today=Calendar.getInstance();
 Calendar end=Calendar.getInstance();
 SimpleDateFormat in=new SimpleDateFormat("yyyy-MM-dd");
 try {
 end.setTime(in.parse(mybutton.getText()));
 } catch (Exception e){
 System.out.println("Error in date"+mybutton.getText()+e);
 }
 int days = 0;
 while(today.before(end)) {
 today.roll(Calendar.DATE,true);
 days++;
 }
 jd.setSize(200,100);
 if (today.after(end)) {
 jd.getContentPane().add(new JLabel("Auction completed"));
 } else {
 jd.getContentPane().add(new JLabel("Days left="+days));
 }
 jd.setVisible(true);
 return new String(mybutton.getText());
 }

 public Component getTableCellEditorComponent(JTable table,

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (20 of 22) [2001-6-13 8:12:10]

 Object value, boolean isSelected,
 int row, int column) {

 ((JButton) editorComponent).setText(((
 JButton)value).getText());
 if (isSelected) {
 ((JButton) editorComponent).setForeground(
 table.getSelectionForeground());
 ((JButton) editorComponent).setBackground(
 table.getSelectionBackground());
 } else {
 ((JButton) editorComponent).setForeground(
 table.getForeground());
 ((JButton) editorComponent).setBackground(
 table.getBackground());
 }
 return editorComponent;
 }
 }

Specialized Event Handling

Project Swing uses the event handling classes available in the AWT
API since JDK 1.1. However, some new APIs are available in the
SwingUtilities class that are used to add some control over the
event queue. The two new event handling methods are invokeLater
and invokeAndWait. The invokeAndWait method waits for the event to
be processed in the event queue.

These methods are often used to request focus on a component
after another event has occurred that might affect the component
focus. You can return the focus by calling the invokeLater method
and passing a Thread:

 JButton button =new JButton();
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 button.requestFocus();
 }
 });

Project Swing Directions

While the basic architecture of Project Swing has stayed true to its
original design, many optimizations and improvements have been
made to components like JTable and in areas such as scrolling. Add
to this the Java HotSpotTM Performance Engine, which greatly
reduces the cost of object creation, and Project Swing can boast its
best performance to date.

However, as seen in the Analyze a Program section in the
Performance chapter, a simple 700x300 table requires nearly half

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (21 of 22) [2001-6-13 8:12:10]

a megabyte of memory when double buffered. The creation of ten
tables would probably require swapping memory to disk, severly
affecting performance on low-end machines.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/swing2.html (22 of 22) [2001-6-13 8:12:10]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 6: Building a User Interface

Training Index

Writing Advanced Applications
Chapter 6 Continued: Printing API

[<<BACK] [CONTENTS] [NEXT>>]

The JavaTM 2 platform java.awt.print package lets you print
anything that can be rendered to a Graphics or Graphics2D context
— including AWT components, Java Foundation Classes (JFC)
Project Swing (Project Swing) components, and 2D graphics. The
Printing API is easy to use. Your application tells the printing
system what to print, and the printing system determines when
each page is rendered. This callback printing model enables
printing support on a wide range of printers and systems. The
callback model also lets users print to a bitmap printer from a
computer that does not have enough memory or disk space to hold
the bitmap for an entire page.

A graphics context lets a program paint to a rendering device such
as a screen, printer, or offscreen image. Because Swing
components are rendered through a Graphics object using AWT
graphics support, it is easy to print Swing components with the
new printing API. However, AWT components are not rendered to a
graphics device, so you must extend the AWT component class and
implement the AWT component paint method.

● What is in the Package?
● Printing an AWT Component
● Printing a Project Swing Component
● Printing Graphics in Project Swing
● Print Dialog
● Page Setup Dialog
● Printing a Collection of Pages

What is in the Package?

The java.awt.print consists of the following interfaces, classes, and
exceptions. Here is where you can view the API specification.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/render.html (1 of 8) [2001-6-13 8:12:15]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://java.sun.com/products/jdk/1.2/docs/api/index.html

Technology Centers

Writing Advanced Applications, Chapter 6: Building a User Interface

● Interfaces
• Pageable
• Printable
• PrinterGraphics

● Classes
• Book
• PageFormat
• Paper
• PrinterJob

● Exceptions
• PrinterAbortException
• PrinterException
• PrinterIOException

Printing an AWT Component

The printbutton.java application displays a panel with
MyButton on it. When you click the button, the

application prints the MyButton component.

In the code, the Button class is extended to implement Printable
and includes the paint and print method implementations. The
print method is required because the class implements Printable,
and the paint method is needed to describe how the button shape
and label text looks when printed.

To see the button, the printer graphics context is translated into
the imageable area of the printer, and to see the label text, a font
is set on the printer graphics context.

In this example, the button is printed at a 164/72 inches inset
from the left imageable margin (there are 72 pixels per inch) and
5/72 inches from the top imageable margin. This is where the
button is positioned in the frame by the layout manager and those
same numbers are returned by the following calls:

int X = (int)this.getLocation().getX();
int Y = (int)this.getLocation().getY();

And here is the MyButton class code:

class MyButton extends Button
 implements Printable {

 public MyButton() {
 super("MyButton");
 }

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/render.html (2 of 8) [2001-6-13 8:12:15]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/AWT/printbutton.java

 public void paint(Graphics g) {
 //To see the label text, you must specify a font for
 //the printer graphics context
 Font f = new Font("Monospaced", Font.PLAIN,12);
 g2.setFont (f);

 //Using "g" render anything you want.
 //Get the button's location, width, and height
 int X = (int)this.getLocation().getX();
 int Y = (int)this.getLocation().getY();
 int W = (int)this.getSize().getWidth();
 int H = (int)this.getSize().getHeight();

 //Draw the button shape
 g.drawRect(X, Y, W, H);

 //Draw the button label
 //For simplicity code to center the label inside the
 //button shape is replaced by integer offset values
 g.drawString(this.getLabel(), X+10, Y+15);

 }

 public int print(Graphics g,
 PageFormat pf, int pi)
 throws PrinterException {
 if (pi >= 1) {
 return Printable.NO_SUCH_PAGE;
 }

 Graphics2D g2 = (Graphics2D) g;

 //To see the button on the printed page, you
 //must translate the printer graphics context
 //into the imageable area
 g2.translate(pf.getImageableX(), pf.getImageableY());
 g2.setColor(Color.black);
 paint(g2);
 return Printable.PAGE_EXISTS;
 }

Note: The printing Graphics2D is based on the
BufferedImage class and on some platforms does not
default to a foreground color of black. If this is the case
on your platform, you have to add
g2.setColor(Color.black) to the print method before the
paint invocation.

Printing a Project Swing Component

Printing a Project Swing component is almost the
same as printing an AWT component, except the
MyButton subclass does not need a paint method

implementation. It does, however, have a print method that calls
the paint method for the component. The paint method

Writing Advanced Applications, Chapter 6: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/render.html (3 of 8) [2001-6-13 8:12:15]

implementation is not needed because Project Swing components
know how to paint themselves.

Here is the complete printbutton.java source code for Project
Swing.

class MyButton extends JButton implements Printable {

 public MyButton() {
 super("MyButton");
 }

 public int print(Graphics g,
 PageFormat pf, int pi)
 throws PrinterException {
 if (pi >= 1) {
 return Printable.NO_SUCH_PAGE;
 }

 Graphics2D g2 = (Graphics2D) g;
 g2.translate(pf.getImageableX(),
 pf.getImageableY());
 Font f = new Font("Monospaced", Font.PLAIN,12);
 g2.setFont (f);
 paint(g2);
 return Printable.PAGE_EXISTS;
 }

If you extend a JPanel and implement Printable, you can print a
panel component and all of its contents.

public class printpanel extends JPanel
 implements ActionListener,
 Printable {

Here is the printpanel.java code that prints a JPanel object and the
JButton it contains, and the ComponentPrinterFrame.java code that
prints a JFrame object and the JButton, JList, JCheckBox, and
JComboBox components it contains.

Printing Graphics in Project Swing

In the same way the AWT example subclassed a Button component
and implemented the paint method to draw the button, you can
subclass an AWT or Project Swing component and implement the
paint method to render 2D graphics to the screen or printer. The
ShapesPrint.java" Project Swing application borrowed from The
Java Tutorial shows how this is done. It is modified for this article
to include a TextLayout object.

Writing Advanced Applications, Chapter 6: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/render.html (4 of 8) [2001-6-13 8:12:15]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/Swing/printbutton.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/Swing/printpanel.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/Swing/ComponentPrinterFrame.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/Swing/ShapesPrint.java
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/index.html

The paintComponent method calls the drawShapes method to render
the 2D graphics to the screen when the application starts. When
you click the Print button, a printer graphics context is created
and passed to the drawShapes method for printing.

Print Dialog

It is easy to display a Print dialog so the end user can interactively
change the print job properties. The actionPerformed method of the
previous Project Swing example is modified here to do just that.

Writing Advanced Applications, Chapter 6: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/render.html (5 of 8) [2001-6-13 8:12:15]

public void actionPerformed(ActionEvent e) {
 PrinterJob printJob = PrinterJob.getPrinterJob();
 printJob.setPrintable((MyButton) e.getSource());
 if(printJob.printDialog()){
 try { printJob.print(); }
 catch (Exception PrinterExeption) { }
 }
}

Note:In Project Swing, the
printJob.setPageable((MyButton) e.getSource());
statement can be written as
printJob.setPrintable((MyButton) e.getSource());. The
difference is setPrintable is for applications that do not
know the number of pages they are printing. If you use
setPrintable, you need to add if(pi >= 1){ return
Printable.NO_SUCH_PAGE: } to the beginnig of the print
method.

Page Setup Dialog

You can add a line of code that tells the PrinterJob object to
display a Page dialog so the end user can interactively modify the
page format for printing in portrait, landscape, or reverse
landscape mode. The actionPerformed method of the previous
Project Swing example is modified here to display Page and Print
dialogs.

Note: Some platforms do not support a page dialog. On

Writing Advanced Applications, Chapter 6: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/render.html (6 of 8) [2001-6-13 8:12:15]

those platforms, the pageDialog call simply returns the
passed-in PageFormat object and no dialog appears.

public void actionPerformed(ActionEvent e) {
 PrinterJob printJob = PrinterJob.getPrinterJob();
 printJob.setPrintable((MyButton) e.getSource());
 PageFormat pf = printJob.pageDialog(
 printJob.defaultPage());
 if(printJob.printDialog()){
 try { printJob.print(); } catch (Exception ex) { }
 }
}

Printing a Collection of Pages

You can use the Book class to print a collection of pages that you
append to the book. The pages can be in any order and have
different page formats.

The print2button.java
example puts the Print
and Print 2 buttons of
type MyButton on a panel.
It creates a book that
contains the pages to
print. When you click
either button, the book
prints one copy of the
Print button in landscape

mode and two copies of the Print 2 button in portrait more, as
specified in the actionPerformed method implementation shown
here.

Note: Currently a bug restricts the Solaris platform to
only print in portrait mode.

public void actionPerformed(ActionEvent e) {
 PrinterJob printJob = PrinterJob.getPrinterJob();

/* Set up Book */
 PageFormat landscape = printJob.defaultPage();
 PageFormat portrait = printJob.defaultPage();
 landscape.setOrientation(PageFormat.LANDSCAPE);
 portrait.setOrientation(PageFormat.PORTRAIT);
 Book bk = new Book();
 bk.append((Printable)b, landscape);
 bk.append((Printable)b2, portrait, 2);
 printJob.setPageable(bk);

Writing Advanced Applications, Chapter 6: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/render.html (7 of 8) [2001-6-13 8:12:15]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/Swing/print2button.java

 try { printJob.print(); } catch (Exception ex) { }
}

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 6: Building a User Interface

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/render.html (8 of 8) [2001-6-13 8:12:15]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 6: Advanced Printing

Training Index

Writing Advanced Applications
Chapter 6 Continued: Advanced Printing

[<<BACK] [CONTENTS] [NEXT>>]

The previous section explained how to print simple components
and covered techniques that can be used to print screen captures.
However, if you want to print more than one component per page,
or if your component is larger than one page size, you need to do
some additional work inside your print method. This section
explains what you need to do and concludes with an example of
how to print the contents of a JTable component.

● Multiple Components Per Page
● Components Larger Than One Page
● Printing A JTable Component
● Printing A Sales Report

Multiple Components Per Page

There are times when printing one component on a page does not
meet your printing needs. For example, you might want to include
a header on each page or print a footer with the page number--
something that isn't necessarily displayed on the screen.

Unfortunately, printing multiple customized components on a page
is not as easy as adding additional paint calls because each paint
call overwrites the output of the previous call.

The key to printing more than one component on a page, is to use
the translate(double, double) and setClip methods in the
Graphics2D class.

The translate method moves an imaginary pen to the next position
of the print output where the component can be painted and then
printed. There are two translate methods in the Graphics2D class.
To print multiple components you need the one t hat takes double

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/advprint.html (1 of 12) [2001-6-13 8:12:24]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 6: Advanced Printing

arguments because this translate method allows relative
positioning. Be sure to cast any integer values to double or float.
Relative positioning in this context means that previous calls to
translate are taken into account when calculating the new
translated point.

The setClip method is used to restrict the component to only be
painted, and therefore printed, in the area specified. This lets you
print multiple components on a page by moving the imaginary pen
to different points on the page and then painting each component
in the clip area.

Example

You can replace the print method in the Abstract Window Toolkit
(AWT) and Swing printbutton.java examples with the following
code to add the footer message Company Confidential to the page.

public int print(Graphics g, PageFormat pf, int pi)
 throws PrinterException {

 if (pi >= 1) {
 return Printable.NO_SUCH_PAGE;
 }

 Graphics2D g2 = (Graphics2D) g;
 Font f= Font.getFont("Courier");
 double height=pf.getImageableHeight();
 double width=pf.getImageableWidth();

 g2.translate(pf.getImageableX(),
 pf.getImageableY());
 g2.setColor(Color.black);
 g2.drawString("Company Confidential", (int)width/2,
 (int)height-g2.getFontMetrics().getHeight());
 g2.translate(0f,0f);
 g2.setClip(0,0,(int)width,
 (int)(height-g2.getFontMetrics().getHeight()*2));
 paint (g2);
 return Printable.PAGE_EXISTS;
}

In the new print method, the Graphics2D context is clipped before
calling the parent JButton paint method. This prevents the JButton
paint method from overwriting the bottom of the page. The
translate method is used to point the JButton paint method to
start the paint at offset 0,0 from the visible part of the page. The
visible area was already calculated by the previous translate call:

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/advprint.html (2 of 12) [2001-6-13 8:12:24]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/AWT/printbutton.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/AWT/printbutton.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/Swing/printbutton.java

 g2.translate(pf.getImageableX(), pf.getImageableY());

For some components, you might also need to set the foreground
color to see your results. In this example the text color was printed
in black.

Useful Methods To Call In The print Method

The following methods are useful for calculating the number of
pages required and for shrinking components to fit on a page:

PageFormat methods:

getImageableHeight()

returns the page height you can user for printing your output.

getImageableWidth()

returns the page width you can use for printing your output.

Graphics2D method:

scale(xratio, yratio)

scales the 2D graphics context by this size. A ratio of one
maintains the size, less than one will shrink the graphics context.

Components Larger Than One Page

The JavaTM 2 Printing API has a Book API that provides the concept
of pages. However, the Book API only adds printable objects to a
collection of printable objects. It does not calculate page breaks or
split components over multiple pages.

When printing a simple component on a page, you only have to
check for the index value being greater or equal to one and return
NO_SUCH_PAGE when this value is reached.

To print multiple pages, you have to calculate the number of pages
needed to contain the component. You can calculate the total
number of pages needed by subtracting the space taken by the
component from the value returned by getImageableHeight. Once
the total number of pages is calculated, you can run the following
check inside the print method:

 if (pageIndex >=TotalPages) {
 return NO_SUCH_PAGE;
 }

The Printing framework calls the print method multiple times until

Writing Advanced Applications, Chapter 6: Advanced Printing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/advprint.html (3 of 12) [2001-6-13 8:12:24]

pageIndex is less than or equal to TotalPages. All you need to do is
create a new page from the same component on each print loop.
This is done by treating the printed page like a sliding window over
the component. The part of the component that is to be printed is
selected by a translate call to mark the top of the page and a
setClip call to mark the bottom of the page. The following diagram
illustrates this process.

The left side of the diagram represents the page sent to the
printer. The right side contains the long component being printed
in the print method. The first page can be represented as follows:

The printed page window then slides along the component to print
the second page, page index one.

Writing Advanced Applications, Chapter 6: Advanced Printing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/advprint.html (4 of 12) [2001-6-13 8:12:24]

This process continues until the last page from the total number of
pages is reached:

Writing Advanced Applications, Chapter 6: Advanced Printing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/advprint.html (5 of 12) [2001-6-13 8:12:24]

Printing A JTable Component

The Report.java class uses many of the advanced techniques
covered in this section to print out the data and header of a JTable
component that can span many pages. The printed output also
includes a footer at the bottom with the page number.

This diagram shows how the report looks when it prints:

Writing Advanced Applications, Chapter 6: Advanced Printing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/advprint.html (6 of 12) [2001-6-13 8:12:24]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/Report.java

import javax.swing.*;
import javax.swing.table.*;
import java.awt.print.*;
import java.util.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import java.awt.Dimension;

public class Report implements Printable{
 JFrame frame;
 JTable tableView;

 public Report() {
 frame = new JFrame("Sales Report");
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(0);}});

 final String[] headers = {"Description", "open price",
 "latest price", "End Date", "Quantity"};
 final Object[][] data = {
 {"Box of Biros", "1.00", "4.99", new Date(),
 new Integer(2)},
 {"Blue Biro", "0.10", "0.14", new Date(),
 new Integer(1)},
 {"legal pad", "1.00", "2.49", new Date(),
 new Integer(1)},
 {"tape", "1.00", "1.49", new Date(),
 new Integer(1)},
 {"stapler", "4.00", "4.49", new Date(),
 new Integer(1)},
 {"legal pad", "1.00", "2.29", new Date(),
 new Integer(5)}

Writing Advanced Applications, Chapter 6: Advanced Printing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/advprint.html (7 of 12) [2001-6-13 8:12:24]

 };

 TableModel dataModel = new AbstractTableModel() {
 public int getColumnCount() {
 return headers.length; }
 public int getRowCount() { return data.length;}
 public Object getValueAt(int row, int col) {
 return data[row][col];}
 public String getColumnName(int column) {
 return headers[column];}
 public Class getColumnClass(int col) {
 return getValueAt(0,col).getClass();}
 public boolean isCellEditable(int row, int col) {
 return (col==1);}
 public void setValueAt(Object aValue, int row,
 int column) {
 data[row][column] = aValue;
 }
 };

 tableView = new JTable(dataModel);
 JScrollPane scrollpane = new JScrollPane(tableView);

 scrollpane.setPreferredSize(new Dimension(500, 80));
 frame.getContentPane().setLayout(
 new BorderLayout());
 frame.getContentPane().add(
 BorderLayout.CENTER,scrollpane);
 frame.pack();
 JButton printButton= new JButton();

 printButton.setText("print me!");

 frame.getContentPane().add(
 BorderLayout.SOUTH,printButton);

 // for faster printing turn double buffering off

 RepaintManager.currentManager(
 frame).setDoubleBufferingEnabled(false);

 printButton.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent evt) {
 PrinterJob pj=PrinterJob.getPrinterJob();
 pj.setPrintable(Report.this);
 pj.printDialog();
 try{
 pj.print();
 }catch (Exception PrintException) {}
 }
 });

 frame.setVisible(true);
 }

 public int print(Graphics g, PageFormat pageFormat,

Writing Advanced Applications, Chapter 6: Advanced Printing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/advprint.html (8 of 12) [2001-6-13 8:12:24]

 int pageIndex) throws PrinterException {
 Graphics2D g2 = (Graphics2D) g;
 g2.setColor(Color.black);
 int fontHeight=g2.getFontMetrics().getHeight();
 int fontDesent=g2.getFontMetrics().getDescent();

 //leave room for page number
 double pageHeight =
 pageFormat.getImageableHeight()-fontHeight;
 double pageWidth =
 pageFormat.getImageableWidth();
 double tableWidth = (double)
 tableView.getColumnModel(
).getTotalColumnWidth();
 double scale = 1;
 if (tableWidth >= pageWidth) {
 scale = pageWidth / tableWidth;
 }

 double headerHeightOnPage=
 tableView.getTableHeader(
).getHeight()*scale;
 double tableWidthOnPage=tableWidth*scale;

 double oneRowHeight=(tableView.getRowHeight()+
 tableView.getRowMargin())*scale;
 int numRowsOnAPage=
 (int)((pageHeight-headerHeightOnPage)/
 oneRowHeight);
 double pageHeightForTable=oneRowHeight*
 numRowsOnAPage;
 int totalNumPages=
 (int)Math.ceil((
 (double)tableView.getRowCount())/
 numRowsOnAPage);
 if(pageIndex>=totalNumPages) {
 return NO_SUCH_PAGE;
 }

 g2.translate(pageFormat.getImageableX(),
 pageFormat.getImageableY());
//bottom center
 g2.drawString("Page: "+(pageIndex+1),
 (int)pageWidth/2-35, (int)(pageHeight
 +fontHeight-fontDesent));

 g2.translate(0f,headerHeightOnPage);
 g2.translate(0f,-pageIndex*pageHeightForTable);

 //If this piece of the table is smaller
 //than the size available,
 //clip to the appropriate bounds.
 if (pageIndex + 1 == totalNumPages) {
 int lastRowPrinted =
 numRowsOnAPage * pageIndex;
 int numRowsLeft =

Writing Advanced Applications, Chapter 6: Advanced Printing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/advprint.html (9 of 12) [2001-6-13 8:12:24]

 tableView.getRowCount()
 - lastRowPrinted;
 g2.setClip(0,
 (int)(pageHeightForTable * pageIndex),
 (int) Math.ceil(tableWidthOnPage),
 (int) Math.ceil(oneRowHeight *
 numRowsLeft));
 }
 //else clip to the entire area available.
 else{
 g2.setClip(0,
 (int)(pageHeightForTable*pageIndex),
 (int) Math.ceil(tableWidthOnPage),
 (int) Math.ceil(pageHeightForTable));
 }

 g2.scale(scale,scale);
 tableView.paint(g2);
 g2.scale(1/scale,1/scale);
 g2.translate(0f,pageIndex*pageHeightForTable);
 g2.translate(0f, -headerHeightOnPage);
 g2.setClip(0, 0,
 (int) Math.ceil(tableWidthOnPage),
 (int)Math.ceil(headerHeightOnPage));
 g2.scale(scale,scale);
 tableView.getTableHeader().paint(g2);
 //paint header at top

 return Printable.PAGE_EXISTS;
 }

 public static void main(String[] args) {
 new Report();
 }
}

Print a Sales Report

The SalesReport.java Applet class prints a sales report with the
rows split over multiple pages with numbers at the bottom of each
page. Here is how the application looks when launched:

Writing Advanced Applications, Chapter 6: Advanced Printing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/advprint.html (10 of 12) [2001-6-13 8:12:24]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/SalesReport.java

You need this policy file to launch the applet:

grant {
 permission java.lang.RuntimePermission
 "queuePrintJob";
};

To launch the applet assuming a policy file named printpol and an
HTML file named SalesReport.html, you would type:

 appletviewer -J-Djava.security.policy=
 printpol SalesReport.html

This diagram shows how the report prints:

[TOP]

[This page was updated: 4-Jun-2001]

Writing Advanced Applications, Chapter 6: Advanced Printing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/advprint.html (11 of 12) [2001-6-13 8:12:24]

http://developer.java.sun.com/servlet/PrintPageServlet

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 6: Advanced Printing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/advprint.html (12 of 12) [2001-6-13 8:12:24]

http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 7: Debugging Applets, Applications, and Servlets

Training Index

Writing Advanced Applications
Chapter 7: Debugging Applets, Applications, and Servlets

[<<BACK] [CONTENTS] [NEXT>>]

An unwritten law of programming states you will spend 10 percent
of your time on the first 90 percent of a project, and the other 90
percent of your time on the remaining 10 percent. If this sounds
like any of your projects, you are probably spending that last 10
percent on debugging and integration. While there are plenty of
books and people to help you start a project, there are far fewer
resources available to help you finish it.

The good news is this chapter focuses completely on debugging
and fixing to get your project out on time. It uses real-world
examples to walk you through the simple steps to debugging and
fixing your programs. By the time you finish, you should be an
expert at troubleshooting programs written in the JavaTM language--
applets, applications, and servlets--of all shapes and sizes.

● Collecting Evidence
● Running Tests and Analyzing
● Servlet Debugging
● AWT Event Debugging
● Analyzing Stack Traces
● Version Issues

In a Rush?

If you have a pressing problem you need an answer to right now,
this table might help. It tells you where to find answers for
common problems so you can go directly to the information.

Problem Section

Program hangs or crashes Analyzing Stack Traces

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/debug.html (1 of 2) [2001-6-13 8:12:26]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 7: Debugging Applets, Applications, and Servlets

Problem in a running program Getting Behind the Seat with jdb

Java Web ServerTM problems Servlet Debugging and
Analyzing Stack Traces

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/debug.html (2 of 2) [2001-6-13 8:12:26]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 7: Collecting Evidence

Training Index

Writing Advanced Applications
Chapter 7 Continued: Collecting Evidence

[<<BACK] [CONTENTS] [NEXT>>]

The first step in trying to solve any problem is to gather as much
evidence and information as possible. If you can picture a crime
scene, you know that everything is checked, cataloged and
analyzed before any conclusions are reached. When debugging a
program, you do not have weapons, hair samples, or fingerprints,
but there is plenty of evidence you can gather that might contain
or ultimately lead to the solution. This section explains how to
gather that evidence.

● Installation and Environment
● Class Path
● Class Loading
● Including Debug Code

Installation and Environment

The JavaTM platform is a fast-moving and changing technology. You
might have more than one release installed on your system, and
those releases might have been installed as part of another
products installation. In an environment with mixed releases, a
program can experience problems due to changes to the platform
in a new version or release.

For example, if classes, libraries, or Windows registry entries from
previous installations remain on your system after an upgrade,
there is a chance the new software mix is causing your problems
and needs to be investigated and ruled out. Opportunities for
problems related to mixed software releases have increased with
the use of different release tools to deliver the Java platform
software.

The section on Version Issues at the end of this chapter provides a

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/collect.html (1 of 8) [2001-6-13 8:12:30]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 7: Collecting Evidence

complete list of major Java platform release and version
information to help you rule out software release issues. This next
section highlights the most common problems you are likely to
encounter.

Class Path

In the Java 2 platform, the CLASSPATH environment variable is
needed to specify the application's own classes only, and not the
Java platform classes as was required in earlier releases. So it is
possible your CLASSPATH environment variable is pointing at Java
platform classes from earlier releases and causing problems.

To examine the CLASSPATH, type the following at the command line:

Windows 95/98/NT:
echo %CLASSPATH%

Unix Systems:
echo $CLASSPATH

Java classes are loaded on a first come, first served basis from the
CLASSPATH list. If the CLASSPATH variable contains a reference to a
lib/classes.zip file, which in turn points to a different Java
platform installation, this can cause incompatible classes to be
loaded.

Note: In the Java 2 platform, the system classes are
chosen before any class on the CLASSPATH list to minimize
the possibility of any old broken Java classes being
loaded instead of a Java 2 class of the same name.

The CLASSPATH variable can get its settings from the command line
or from configuration settings such as those specified in the User
Environment on Windows NT, an autoexec.bat file, or a shell
startup file like .cshrc on Unix.

You can control the classes the Java1 Virtual Machine (VM) uses by
compiling your program with a special command-line option that
lets you supply the CLASSPATH you want. The Java 2 platform option
and parameter is -Xbootclasspath classpath, and earlier releases
use -classpath classpath and -sysclasspath classpath. Regardless
of which release you are running, the classpath parameter specifies
the system and user classpath, and zip or Java ARchive (JAR) files
to be used in the compilation.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/collect.html (2 of 8) [2001-6-13 8:12:30]

To compile and run the Myapp.java program with a system
CLASSPATH supplied on the command line, use the following
instructions:

Windows 95/98/NT:

In this example, the Java platform is installed in the C:\java
directory. Type everything on one line:

javac -J-Xbootclasspath:c\java\lib\tools.jar;c:
\java\jre\lib\rt.jar;c:\java\jre\lib\i18n.jar;.
 Myapp.java

You do not need the -J runtime flag to run the compiled Myapp
program, just type the following on one line:

java -Xbootclasspath:c:\java\jre\lib\rt.jar;c:
\java\jre\lib\i18n.jar;. Myapp

Unix Systems:

In this example, the Java platform is installed in the
/usr/local/java directory. Type everything on one line:

javac -J-Xbootclasspath:/usr/local/java/lib/tools.jar:
/usr/local/java/jre/lib/rt.jar:
/usr/local/java/jre/lib/i18n.jar:. Myapp.java

You do not need the -J runtime flag to run the compiled Myapp
program, just type the following on one line:

java -Xbootclasspath:/usr/local/java/jre/lib/rt.jar:
/usr/local/java/jre/lib/i18n.jar:. Myapp

Class Loading

Another way to analyze CLASSPATH problems is to locate where your
application is loading its classes. The -verbose option to the java
command shows which .zip or .jar file a class comes from when it
is loaded. This way, you will be able to tell if it came from the Java
platform zip file or from some other application's JAR file.

For example, an application might be using the Password class you
wrote for it or it might be loading a Password class from an installed
integrated development environment (IDE) tool.

You should see each jar and zip file named as in the example
below:

Writing Advanced Applications, Chapter 7: Collecting Evidence

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/collect.html (3 of 8) [2001-6-13 8:12:30]

$ java -verbose SalesReport
[Opened /usr/local/java/jdk1.2/solaris/jre/lib/rt.jar
 in 498 ms]
[Opened /usr/local/java/jdk1.2/solaris/jre/lib/i18n.jar
 in 60 ms]
[Loaded java.lang.NoClassDefFoundError from
 /usr/local/java/jdk1.2/solaris/jre/lib/rt.jar]
[Loaded java.lang.Class from
 /usr/local/java/jdk1.2/solaris/jre/lib/rt.jar]
[Loaded java.lang.Object from
 /usr/local/java/jdk1.2/solaris/jre/lib/rt.jar]

Including Debug Code

A common way to add diagnostic code to an application is to use
System.out.println statements at strategic locations in the
application. This technique is fine during development, providing
you remember to remove them all when you release your product.
However, there are other approaches that are just as simple, do
not affect the performance of your application, and do not display
messages that you do not want your customers to see. The
following are two techniques that overcome the problems with
simple System.out.println statements.

Turning Debug Information On at Runtime

The first alternative to the classic println debug statements is to
turn on debugging information at runtime. One advantage to this is
you do not need to recompile any code if problems appear at the
testing stage or on a customer site.

Another advantage is that sometimes software problems can be
attributed to race conditions where the same segment of code
behaves unpredictably due to timing between other program
interactions. If you control your debug code from the command
line instead of adding println debug statements, you can rule out
sequence problems caused by race conditions coming from the
println code. This technique also saves you adding and removing
println debug statements and having to recompile your code.

This technique requires you to use a system property as a debug
flag and include application code to test that system property
value. To turn on debug information from the command line at run
time, start the application and set the debug system property to
true as follows:

Writing Advanced Applications, Chapter 7: Collecting Evidence

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/collect.html (4 of 8) [2001-6-13 8:12:30]

java -Ddebug=true TestRuntime

The source code for the TestRuntime class needs to examine this
property and set the debug boolean flag as follows:

public class TestRuntime {
 boolean debugmode; //global flag that we test

 public TestRuntime () {

 String dprop=System.getProperty("debug");

 if ((dprop !=null) && (dprop.equals("yes"))){
 debugmode=true;
 }

 if (debugmode) {
 System.err.println("debug mode!");
 }
 }
}

Creating Debug and Production Releases at
Compile Time

As mentioned earlier, one problem with adding System.out.println
debug statements to your code is finding and removing them
before you release the product. Apart from adding unnecessary
code, println debug statements can contain information you do
not want your customers to see.

One way to remove System.out.println debug statements from
your code is to use the following compiler optimization to remove
pre-determined branches from your code at compile time and
achive something similar to a debug pre-processor.

This example uses a static dmode boolean flag that when set to
false results in the debug code and the debug test statement
being removed. When the dmode value is set to true, the code is
included in the compiled class file and is available to the
application for debugging purposes.

class Debug {

 //set dmode to false to compile out debug code
 public static final boolean dmode=true;
}

public class TestCompiletime {

Writing Advanced Applications, Chapter 7: Collecting Evidence

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/collect.html (5 of 8) [2001-6-13 8:12:30]

 if (Debug.dmode) { // These
 System.err.println("Debug message"); // are
 } // removed
}

Using Diagnostic Methods

You can use diagnostic methods to request debug information from
the Java VM. The following two methods from the Runtime class
trace the method calls and Java VM byte codes your application
uses. As both these methods produce a lot of output, it is best to
trace very small amounts of code, even as little as one line at a
time.

To enable trace calls so you will see the output, you have to start
the Java VM with the java_g or java -Xdebug interpreter commands.

To list every method as it is invoked at runtime, add the following
line before the code you wish to start tracing and add a matching
traceMethodCalls line with the argument set to false to turn the
tracing off. The tracing information is displayed on the standard
output.

// set boolean argument to false to disable
Runtime.getRuntime().traceMethodCalls(true);
callMyCode();
Runtime.getRuntime().traceMethodCalls(false);

To see each line as bytecodes as they are executed, add the
following line to your application code:

// set boolean argument to false to disable
Runtime.getRuntime().traceInstructions(true);
callMyCode();
Runtime.getRuntime().traceInstructions(false);

You can also add the following line to your application to dump
your own stack trace using the dumpStack method from the Thread
class. The output from a stack trace is explained in Analyzing
Stack Traces, but for now you can think of a stack trace as a
snapshot of the current threads running in the Java VM.

Thread.currentThread().dumpStack();

Adding Debug Information

Local variable information is not included in the core Java platform
system classes. So, if you use a debug tool to list local variables

Writing Advanced Applications, Chapter 7: Collecting Evidence

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/collect.html (6 of 8) [2001-6-13 8:12:30]

for system classes where you place stop commands, you will get
the following output, even when you compile with the -g flag as
suggested by the output. This output is from a jdb session:

main[1] locals
No local variables: try compiling with -g

To get access to the local variable information, you have to obtain
the source (src.zip or src.jar) and recompile it with a debug flag.
You can get the source for most java.* classes with the binary
downloads from java.sun.com.

Once you download the src.zip or src.jar file, extract only the files
you need. For example, to extract the String class, type the
following at the command line:

unzip /tmp/src.zip src/java/lang/String.java

or

jar -xf /tmp/src.jar src/java/lang/String.java

Recompile the extracted class or classes with the -g option. You
could also add your own additional diagnostics to the source file at
this point.

javac -g src/java/lang/String.java

The Java 2 javac compiler gives you more options than
just the original -g option for debug code, and you can
reduce the size of your classes by using -g:none, which
gives you on average about a 10 percent reduction in
size.

To run the application with the newly compiled debug class or
classes, you need to use the bootclasspath option so these new
classes are picked up first.

Type the following on one line with a space before myapp.

Win95/NT Java 2 Platform:

This example assumes the Java platform is installed in c:\java, and
the source files are in c:\java\src:

jdb -Xbootclasspath:c:\java\src;c:\java\jre\lib\rt.jar;c:
\java\jre\i18n.jar;. myapp

Writing Advanced Applications, Chapter 7: Collecting Evidence

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/collect.html (7 of 8) [2001-6-13 8:12:30]

http://java.sun.com/

Unix Systems:

This example assumes the Java platform is installed in c:\java, and
the source files are in c:\java\src.

jdb -Xbootclasspath:/usr/java/src;
/usr/java/jre/lib/rt.jar;
/usr/java/jre/i18n.jar;. myapp

The next time you run the locals command you will see the
internal fields of the class you wish to analyze.

[TOP]

1 As used on this web site, the terms "Java virtual machine" or
"JVM" mean a virtual machine for the Java platform.

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 7: Collecting Evidence

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/collect.html (8 of 8) [2001-6-13 8:12:30]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 7: Running Tests & Analyzing

Training Index

Writing Advanced Applications
Chapter 7 Continued: Running Tests and Analyzing

[<<BACK] [CONTENTS] [NEXT>>]

If you are still having problems even after you have ruled out
installation and environment problems and included debugging
code, it is time to use tools to test and analyze your program.

● Getting Behind the Seat with jdb
● Simple jdb Test Drive
● Remote Debugging
● Using Auto-Pilot
● Creating a Session Log

Getting Behind the Seat with jdb

Although there are some very good integrated development
environment (IDE) tools on the market, the JavaTM debugger tool,
jdb and its successors have an important role to play in testing and
debugging programs. Some advantages of jdb over IDE tools are it
is free, it is platform independent (some IDE tools are not), and it
runs as a separate process to the program it is debugging. The
benefit to jdb running as a separate process is you can attach a
debug session to a running program.

The downsides to using jdb are it has only a command-line
interface, and it relies on the same code you are trying to debug.
This means if there is a bug in the Java VM, jdb could break
attempting to diagnose that same bug!

The new JBUG architecture was created to solve these problems in
jdb. JBUG, amongst other things, provides a debugger helper API in
the Java VM called the Java VM Debug Interface (JVMDI). This
helper communicates with the debugging front end using the Java
Debug Wire Protocol (JDWP). The debugging front end uses the
remote Java Debug Interface (JDI) to send and receive commands

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/running.html (1 of 12) [2001-6-13 8:12:38]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 7: Running Tests & Analyzing

over the Java Debug Wire Protocol. JBug is available for Java 2
platforms, and has a jdb style front end that you will learn more
about later.

Simple jdb Test Drive

Back to the classic jdb tool. Here are some simple steps to analyze
a program using jdb. This first example debugs a program from
application startup. The Remote Debugging example shows how to
connect to a running program.

Start the Session

To begin the debug session, compile the SimpleJdbTest.java
program with full debugging information using javac and the -g
debug flag as shown. In this example, the SimpleJdbTest.java
program is an application, but it could just as well be an applet.
The procedures for debugging applications with jdb are the same
for debugging applets once the debug session has started.

javac -g SimpleJdbTest.java

Next, start the jdb tool with the program class name as a
parameter:

jdb SimpleJdbTest
Initializing jdb...
0xad:class(SimpleJdbTest)

To debug an applet in appletviewer use the -debug parameter as in
this example:

$ appletviewer -debug MyApplet.html
Initializing jdb...
0xee2f9808:class(sun.applet.AppletViewer)
>

Setting a Breakpoint and Listing Methods

At this point, the SimpleJdbTest class has only been loaded; the
class constructor has not been called. To make jdb stop when the
program is first instantiated, put a stop, or breakpoint, at the
constructor using the stop in command. When the breakpoints has
been set, instruct jdb to run your program using the run command
as follows:

stop in SimpleJdbTest.<init>
Breakpoint set in SimpleJdbTest.<init>
run

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/running.html (2 of 12) [2001-6-13 8:12:38]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/SimpleJdbTest.java

run SimpleJdbTest
running ...
main[1]
Breakpoint hit: SimpleJdbTest.<init>
 (SimpleJdbTest:10)

The jdb tool stops at the first line in the constructor. To list the
methods that were called to get to this breakpoint, enter the where
command:

main[1] where
[1] SimpleJdbTest.<init> (SimpleJdbTest:10)
[2] SimpleJdbTest.main (SimpleJdbTest:29)

The numbered method in the list is the last stack frame that the
Java VM has reached. In this case the last stack frame is the
SimpleJdbTest constructor that was called from SimpleJdbTest main.

Whenever a new method is called, it is placed on this stack list.
The Hotspot technology achieves some of its speed gains by
eliminating a new stack frame when a new method is called. To
gain a general appreciation of where the code has stopped, enter
the list command.

main[1] list
6 Panel p;
7 Button b;
8 int counter=0;
9
10 SimpleJdbTest() {
11 setSize(100,200);
12 setup();
13 }
14 void setup (){

Locating the Source

If the source to the class file stopped in is not available on the
current path, you can tell jdb to find the source with the use
command by giving it the source directory as a parameter. In the
following example the source is in a subdirectory or folder called
book.

main[1] list
Unable to find SimpleJdbTest.java
main[1] use book
main[1] list
6 Panel p;
7 Button b[];
8 int counter=0;
9
10 => SimpleJdbTest() {

Looking at a Method

Writing Advanced Applications, Chapter 7: Running Tests & Analyzing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/running.html (3 of 12) [2001-6-13 8:12:38]

To see what happens in the setup method for SimpleJdbText, use
the step command to step through the 4 lines to get to it.

main[1] step
main[1]
Breakpoint hit: java.awt.Frame.<init> (Frame:222)

But wait a minute! This is now the Frame class constructor! If you
keep stepping you follow the Frame Constructor and not the
SimpleJdbText class. Because SimpleJdbTest extends the Frame class,
the parent constructor, which in this case is Frame, is called on your
behalf.

The step up Command

You could continue stepping and eventually you will return to the
SimpleJdbTest constructor, but to return immediately, you can use
the step up command to go back to the SimpleJdbTest constructor.

main[1] step up
main[1]
Breakpoint hit: SimpleJdbTest.<init>
 (SimpleJdbTest:8)

The next Command

You can also use the next command to get to the setup method. In
this next example, the jdb tool has approximated that the source
line is outside the constructor when it processed the last step up
command. To return to the constructor, use another step
command, and to get to the setup method, use a next command.
To debug the setup method, you can step through the setup
method.

main[1] step
Breakpoint hit: SimpleJdbTest.<init>
 (SimpleJdbTest:11)
main[1] list
7 Button b[]=new Button[2];
8 int counter=0;
9
10 SimpleJdbTest() {
11 setSize(100,200);<
12 setup();
13 }
14 void setup (){
15 p=new Panel();
16 }
main[1] next
Breakpoint hit: SimpleJdbTest.<init>
 (SimpleJdbTest:12)
main[1] step

Writing Advanced Applications, Chapter 7: Running Tests & Analyzing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/running.html (4 of 12) [2001-6-13 8:12:38]

Breakpoint hit: SimpleJdbTest.setup (SimpleJdbTest:15)

The stop in Command

Another way to get to the setup method is to use the stop in
SimpleJdbTest.setup command. You can list the source again to
check where you are:

main[1] list
11 setSize(100,200);
12 setup();
13 }
14 void setup (){
15 => p=new Panel();
16 b[0]= new Button("press");
17 p.add(b[0]);
18 add(p);
19

The print Command

The first thing the setup method does is create a Panel p. If you try
to display the value of p with the print p command, you will find
that the value is null.

main[1] print p
p = null

This occurred because the line has not been executed and so field
p has not been assigned a value. You need to step over that
assignment operation with the next command and then use the
print p command again.

main[1] next

Breakpoint hit: SimpleJdbTest.setup (SimpleJdbTest:16)
main[1] print p
p = java.awt.Panel[panel0,0,0,0x0,invalid,
 layout=java.awt.FlowLayout]

Setting Breakpoints on Overloaded Methods

Although stepping through small classes is fast, as a general rule
on larger applications, it is often a lot faster to set breakpoints.
This is partly because jdb has a very simple command set and no
shortcuts, so each command has to be pasted or typed in full.

To set a breakpoint in the Button class, use stop in
java.awt.Button.<init>

Writing Advanced Applications, Chapter 7: Running Tests & Analyzing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/running.html (5 of 12) [2001-6-13 8:12:38]

main[1] stop in java.awt.Button.<init>
java.awt.Button.<init> is overloaded,
 use one of the following:
void <init>
void <init>java.lang.String)

The message explains why jdb cannot stop in this method without
more information, but the message is slightly misleading as you do
not need to specify the return type for overloaded methods, you
just need to be explicit about exactly which one of the overloaded
methods you want to stop in. To stop in the Button constructor that
creates this Button, use stop in
java.awt.Button.<init>(java.lang.String).

The cont Command

To continue the jdb session, use the cont command. The next time
the program creates a Button with a String as the constructor, jdb
stops so you can examine the output.

main[1] cont
main[1]
Breakpoint hit: java.awt.Button.<init>
 (Button:130)

If the Button class had not been recompiled with debug information
as described earlier, you would not see the internal fields from the
print command.

Clearing Breakpoints

To clear this breakpoint and not stop every time a Button is created
use the clear command. This example uses the clear command
with no arguments to display the list of current breakpoints, and
the clear command with the java.awt.Button:130. argument to
clear the java.awt.Button:130. breakpoint.

main[1] clear
Current breakpoints set:
SimpleJdbTest:10
java.awt.Button:130
main[1] clear java.awt.Button:130
Breakpoint cleared at java.awt.Button: 130

Displaying Object Details

To display details about an object, use the print command to call
the object's toString method, or use the dump command to display

Writing Advanced Applications, Chapter 7: Running Tests & Analyzing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/running.html (6 of 12) [2001-6-13 8:12:38]

the object's fields and values.

This example puts a breakpoint at line 17 and uses the print and
dump commands to print and dump the first Button object in the
array of Button objects. The dump command output has been
abbreviated.

main[1] stop at SimpleJdbTest:17
Breakpoint set at SimpleJdbTest:17
main[1] cont
main[1]
Breakpoint hit: SimpleJdbTest.setup (SimpleJdbTest:17)

main[1] print b[0]
b[0] = java.awt.Button[button1,0,0,0x0,invalid,
 label=press]
main[1] dump b[0]
b[0] = (java.awt.Button)0x163 {
private int componentSerializedDataVersion = 2
boolean isPacked = false
private java.beans.PropertyChangeSupport
 changeSupport = null
long eventMask = 4096
transient java.awt.event.InputMethodListener
 inputMethodListener = null
....
java.lang.String actionCommand = null
java.lang.String label = press
}

Ending the Session

That finishes the simple jdb examples. To terminate the jdb
session, use the quit command:

0xee2f9820:class(SimpleJdbTest)
> quit

Remote Debugging

The jdb tool is an external process debugger, which means it
debugs the program by sending messages to and from a helper
inside the Java VM. This makes it is easy to debug a running
program, and helps you debug a program that interacts with the
end user. A remote debug session from the command-line does
not interfere with the normal operation of the application.

Starting the Session

Before the Java 2 release, the only thing required to enable
remoted debugging was to start the program with the -debug flag
as the first argument, and if the application uses native libraries,
make the library name end in _g. For example, you would need to

Writing Advanced Applications, Chapter 7: Running Tests & Analyzing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/running.html (7 of 12) [2001-6-13 8:12:38]

copy nativelib.dll to nativelib_g.dll to debug with that library.

In Java 2, things are a little more complicated. You need to tell the
Java VM where the tools.jar file is by using the CLASSPATH variable.
The tools.jar file is normally found in the lib directory of the Java
platform installation.

You also need to disable the Just In Time (JIT) compiler if one
exists. The JIT compiler is disabled by setting the java.compiler
property to NONE or to an empty string. Finally, as the -classpath
option overrides any previously set user classpath, you also need
to add the CLASSPATH needed by your application.

Putting all of this together, here is the command line needed to
start a program in remote debug mode. Put this all on one line and
include all the classes you need on the command line.

Windows:

$ java -debug -classpath C:\java\lib\tools.jar;.
-Djava.compiler=NONE SimpleJdbTest
Agent password=4gk5hm

Unix:

$ java -debug -classpath /usr/java/lib/tools.jar:.
-Djava.compiler=NONE SimpleJdbTest
Agent password=5ufhic

The output is the agent password (in this case, 4gk5hm) if the
program was successfully started. The agent password is supplied
when starting jdb so jdb can find the corresponding application
started in debug mode on that machine.

To start jdb in remote debug mode, supply a host name, which can
be either the machine where the remote program was started or
localhost if you are debugging on the same machine as the remote
program, and the agent password.

jdb -host localhost -password 4gk5hm

Listing Threads

Once inside the jdb session, you can list the currently active
threads with the threads command, and use the thread
<threadnumber> command, for example, thread 7 to select the
thread to analyze. Once the thread is selected, use the where
command to see which methods have been called for this thread.

$ jdb -host arsenal -password 5ufhic

Writing Advanced Applications, Chapter 7: Running Tests & Analyzing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/running.html (8 of 12) [2001-6-13 8:12:39]

Initializing jdb...
> threads
Group system:
1. (java.lang.Thread)0x9 Signal dispatcher
 cond. waiting
2. (java.lang.ref.Reference 0xb Reference Handler
 $ReferenceHandler) cond. waiting
3. (java.lang.ref. Finalizer
 Finalizer cond. waiting
 $FinalizerThread)0xd

4. (java.lang.Thread)0xe Debugger agent
 running
5. (sun.tools.agent. Breakpoint handler
 Handler)0x10 cond. waiting
6. (sun.tools.agent. Step handler
 StepHandler)0x12 cond. waiting
Group main:
7. (java.awt. AWT-EventQueue-0
 EventDispatchThread) cond. waiting
 0x19
8. (sun.awt. PostEventQueue-0
 PostEventQueue)0x1b cond. waiting
9. (java.lang.Thread)0x1c AWT-Motif
 running
10. (java.lang.Thread)0x1d TimerQueue
 cond. waiting
11. (sun.awt. Screen Updater
 ScreenUpdater)0x1f cond. waiting
12. (java.lang.Thread)0x20 Thread-0
 cond. waiting
> thread 7
AWT-EventQueue-0[1] where
 [1] java.lang.Object.wait (native method)
 [2] java.lang.Object.wait (Object:424)
 [3] java.awt.EventQueue.getNextEvent
 (EventQueue:179)
 [4] java.awt.EventDispatchThread.run
 (EventDispatchThread:67)

Listing Source

To list the source, the thread needs to be suspended using the
suspend command. To let this thread continue use the resume
command. The example uses resume 7.

AWT-EventQueue-0[1] suspend 7
AWT-EventQueue-0[1] list
Current method is native
AWT-EventQueue-0[1] where
 [1] java.lang.Object.wait (native method)
 [2] java.lang.Object.wait (Object:424)

Writing Advanced Applications, Chapter 7: Running Tests & Analyzing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/running.html (9 of 12) [2001-6-13 8:12:39]

 [3] java.awt.EventQueue.getNextEvent
 (EventQueue:179)
 [4] java.awt.EventDispatchThread.run
 (EventDispatchThread:67)
AWT-EventQueue-0[1] resume 7

Ending the Session

When you finish debugging this program remotely, clear any
remaining breakpoints before quitting the debug session. To get a
list of remaining breakpoints use the clear command, and to
remove them enter clear class:linenumber as follows:

main[1] clear
Current breakpoints set:
SimpleJdbTest:10

main[1] clear SimpleJdbTest:10
main[1] quit

Using Auto-Pilot

One little known trick with jdb is the jdb startup file. jdb
automatically looks for a file called jdb.ini in the user.home
directory. If you have multiple projects, it is a good idea to set a
different user.home property for each project when you start jdb. To
start jdb with a jdb.ini file in the current directory, type the
following:

jdb -J-Duser.home=.

The jdb.ini file lets you set up jdb configuration commands, such
as use, without having to enter the details each time jdb runs. The
following example jdb.ini file starts a jdb session for the FacTest
class. It includes the Java platform sources on the source path list
and passes the parameter 6 to the program. It then runs and stops
at line 13, displays the free memory, and waits for further input.

load FacTest
stop at FacTest:13
use /home/calvin/java:/home/calvin/jdk/src/
run FacTest 6
memory

Here is the output from the jdb.ini file execution:

$ jdb -J-Duser.home=/home/calvin/java
Initializing jdb...
0xad:class(FacTest)
Breakpoint set at FacTest:13

Writing Advanced Applications, Chapter 7: Running Tests & Analyzing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/running.html (10 of 12) [2001-6-13 8:12:39]

running ...
Free: 662384, total: 1048568
main[1]
Breakpoint hit: FacTest.compute (FacTest:13)
main[1]

You might wonder if jdb.ini files can be used to control an entire
jdb session. Unfortunately, commands in a jdb.ini startup file are
executed synchronously, and jdb does not wait until a breakpoint is
reached before executing the next command. This makes printing
variables awkward. You can add artificial delays with repeated help
commands, but there is still no guarantee the thread will be
suspended when you need it to be.

Creating a Session Log

You can use a little-known jdb feature to obtain a record of your
debug session. The output is similar to what you see when you run
jdb -dbgtrace.

To enable jdb logging, create a file called .agentLog in the directory
where you are running jdb or java -debug. In the .agentLog file, put
the file name that you want the session information to be written
to on the first line. For example, an .agentLog file would have these
contents:

jdblog

When you next run jdb or java -debug, you will see jdb session
information as shown below. You can use this information to
retrieve the breakpoint hits and the commands entered if you need
to reproduce this debug session.

---- debug agent message log ----
[debug agent: adding Debugger agent to
system thread list]
[debug agent: adding Breakpoint handler
to system thread list]
[debug agent: adding Step handler to
system thread list]
[debug agent: adding Finalizer to
system thread list]
[debug agent: adding Reference Handler to
system thread list]
[debug agent: adding Signal dispatcher to
system thread list]
[debug agent: Awaiting new step request]
[debug agent: cmd socket:
Socket[addr=localhost/127.0.0.1,
port=38986,localport=3 8985]]

Writing Advanced Applications, Chapter 7: Running Tests & Analyzing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/running.html (11 of 12) [2001-6-13 8:12:39]

[debug agent: connection accepted]
[debug agent: dumpClasses()]
[debug agent: no such class: HelloWorldApp.main]
[debug agent: Adding breakpoint bkpt:main(0)]
[debug agent: no last suspended to resume]
[debug agent: Getting threads for HelloWorldApp.main]

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 7: Running Tests & Analyzing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/running.html (12 of 12) [2001-6-13 8:12:39]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 7: Servlet Debugging

Training Index

Writing Advanced Applications
Chapter 7 Continued: Servlet Debugging

[<<BACK] [CONTENTS] [NEXT>>]

You can debug servlets with the same jdb commands you use to
debug an applet or an application. The JavaTM Servlet Development
Kit (JSDK) provides a standalone program called servletrunner that
lets you run a servlet without a web browser. On most systems,
this program simply runs the java sun.servlet.http.HttpServer
command. You can, therefore, start a jdb session with the
HttpServer class.

A key point to remember when debugging servlets is that Java
Web server and servletrunner achieve servlet loading and
unloading by not including the servlets directory on the CLASSPATH.
This means the servlets are loaded using a custom classloader and
not the default system classloader.

● Running servletrunner in Debug Mode
● Running Java Web ServerTM in Debug Mode

Running servletrunner in Debug Mode

In this example, the servlets examples directory is included on the
CLASSPATH. You can configure the CLASSPATH for debug mode as
follows:

Unix

$ export CLASSPATH=./lib/jsdk.jar:./examples:$CLASSPATH

Windows

$ set CLASSPATH=lib\jsdk.jar;examples;%classpath%

To start the servletrunner program you can either run the supplied
startup script called servletrunner or just supply the servletrunner
classes as a parameter to jdb. This example uses the parameter to

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/servlet.html (1 of 5) [2001-6-13 8:12:42]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 7: Servlet Debugging

servletrunner.

$ jdb sun.servlet.http.HttpServer
Initializing jdb...
0xee2fa2f8:class(sun.servlet.http.HttpServer)
> stop in SnoopServlet.doGet
Breakpoint set in SnoopServlet.doGet
> run
run sun.servlet.http.HttpServer
running ...
main[1] servletrunner starting with settings:
port = 8080
backlog = 50
max handlers = 100
timeout = 5000
servlet dir = ./examples
document dir = ./examples
servlet propfile = ./examples/servlet.properties

To run SnoopServlet in debug mode, enter the following URL in a
browser where yourmachine is the machine where you started
servlet runner and 8080 is the port number displayed in the
settings output.

http://yourmachine:8080/servlet/SnoopServlet

In this example jdb stops at the first line of the servlet's doGet
method. The browser will wait for a response from your servlet
until a timeout is reached.

main[1] SnoopServlet: init

Breakpoint hit: SnoopServlet.doGet (SnoopServlet:45)
Thread-105[1]

We can use the list command to work out where jdb has stopped
in the source.

Thread-105[1] list
41 throws ServletException, IOException
42 {
43 PrintWriter out;
44
45 => res.setContentType("text/html");
46 out = res.getWriter ();
47
48 out.println("<html>");
49 out.println("<head>
 <title>Snoop Servlet
 </title></head>");
Thread-105[1]

The servlet can continue using the cont command.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/servlet.html (2 of 5) [2001-6-13 8:12:42]

Thread-105[1] cont

Running Java Web Server in Debug Mode

The JSDK release does not contain classes available in the Java
Web server and it also has its own special servlet configuration. If
you cannot run your servlet from servletrunner, then the other
option is to run the Java Web server in debug mode.

To do this add the -debug flag for the first parameter after the java
program. For example in the script bin/js change the JAVA line to
look like the following. In releases prior to the Java 2 platform
release, you will also need to change the program pointed to by
the variable $JAVA to java_g instead of java.

Before:

exec $JAVA $THREADS $JITCOMPILER $COMPILER $MS $MX \

After:

exec $JAVA -debug $THREADS $JITCOMPILER
 $COMPILER $MS $MX \

Here is how to remotely connect to the Java Web Server. The
agent password is generated on the standard output from the Java
Web Server so it can be redirected into a file somewhere. You can
find out where by checking the Java Web Server startup scripts.

jdb -host localhost -password <the agent password>

The servlets are loaded by a separate classloader if they are
contained in the servlets directory, which is not on the CLASSPATH
used when starting the Java Web server. Unfortunately, when
debugging remotely with jdb, you cannot control the custom
classloader and request it to load the servlet, so you have to either
include the servlets directory on the CLASSPATH for debugging or
load the servlet by requesting it through a web browser and then
placing a breakpoint once the servlet has run.

In this next example, the jdc.WebServer.PasswordServlet is included
on the CLASSPATH when Java Web server starts. The example sets a
breakpoint to stop in the service method of this servlet, which is
the main processing method of this servlet.

The Java Web Server standard output produces this message,
which lets you proceed with the remote jdb session:

Writing Advanced Applications, Chapter 7: Servlet Debugging

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/servlet.html (3 of 5) [2001-6-13 8:12:42]

Agent password=3yg23k

$ jdb -host localhost -password 3yg23k
Initializing jdb...
> stop in jdc.WebServer.PasswordServlet:service
Breakpoint set in jdc.WebServer.PasswordServlet.service
> stop
Current breakpoints set:
 jdc.WebServer.PasswordServlet:111

The second stop lists the current breakpoints in this session and
shows the line number where the breakpoint is set. You can now
call the servlet through your HTML page. In this example, the
servlet is run as a POST operation

<FORM METHOD="post" action="/servlet/PasswordServlet">
<INPUT TYPE=TEXT SIZE=15 Name="user" Value="">
<INPUT TYPE=SUBMIT Name="Submit" Value="Submit">
</FORM>

You get control of the Java Web Server thread when the
breakpoint is reached, and you can continue debugging using the
same techniques as used in the Remote Debugging section.

Breakpoint hit: jdc.WebServer.PasswordServlet.service
(PasswordServlet:111) webpageservice Handler[1] where
[1] jdc.WebServer.PasswordServlet.service
 (PasswordServlet:111)
[2] javax.servlet.http.HttpServlet.service
 (HttpServlet:588)
[3] com.sun.server.ServletState.callService
 (ServletState:204)
[4] com.sun.server.ServletManager.callServletService
 (ServletManager:940)
[5] com.sun.server.http.InvokerServlet.service
 (InvokerServlet:101)

A common problem when using the Java WebServer and other
servlet environments is that Exceptions are thrown but are caught
and handled outside the scope of your servlet. The catch command
allows you to trap all these exceptions.

webpageservice Handler[1] catch java.io.IOException
webpageservice Handler[1]
Exception: java.io.FileNotFoundException
 at com.sun.server.http.FileServlet.sendResponse(
 FileServlet.java:153)
 at com.sun.server.http.FileServlet.service(
 FileServlet.java:114)
 at com.sun.server.webserver.FileServlet.service(
 FileServlet.java:202)

Writing Advanced Applications, Chapter 7: Servlet Debugging

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/servlet.html (4 of 5) [2001-6-13 8:12:42]

 at javax.servlet.http.HttpServlet.service(
 HttpServlet.java:588)
 at com.sun.server.ServletManager.callServletService(
 ServletManager.java:936)
 at com.sun.server.webserver.HttpServiceHandler
 .handleRequest(HttpServiceHandler.java:416)
 at com.sun.server.webserver.HttpServiceHandler
 .handleRequest(HttpServiceHandler.java:246)
 at com.sun.server.HandlerThread.run(
 HandlerThread.java:154)

This simple example was generated when the file was not found,
but this technique can be used for problems with posted data.
Remember to use cont to allow the web server to proceed. To clear
this trap use the ignore command.

webpageservice Handler[1] ignore java.io.IOException
webpageservice Handler[1] catch
webpageservice Handler[1]

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 7: Servlet Debugging

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/servlet.html (5 of 5) [2001-6-13 8:12:42]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 7: AWT Debugging

Training Index

Writing Advanced Applications
Chapter 7 Continued: Abstract Window Toolkit Debugging

[<<BACK] [CONTENTS] [NEXT>>]

Before the new Abstract Window Toolkit (AWT) Event mechanism
introduced in JDK 1.1, events were received by a component such
as a TextField, and propagated upwards to its parent components.
This meant you could simply add some diagnostic code to the
component's handleEvent or action method to monitor the events
as they arrived.

With the introduction of JDK 1.1 and the new system event queue,
events are delivered to an event queue instead of the component
itself. The events are then dispatched from the System Event
queue to event listeners that register to be notified when an event
has been dispatched for that object.

Using AWTEventListener

You can use an AWTEventListener to monitor the AWT events from a
system event queue. This listener takes an event mask built from
an OR operation of the AWTEvents you want to monitor. To obtain a
simple list of the AWTEvent events, use the javap -public
java.awt.AWTEvent command. This example tracks the mouse and
focus events.

Note:
It is advised to not use AWTEventListener in a shipping
product as it will degrade system performance

//EventTest.java
import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/awt.html (1 of 2) [2001-6-13 8:12:46]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 7: AWT Debugging

public class EventTest extends JFrame {

 public EventTest() {
 JButton jb1=new JButton("hello");
 getContentPane().add(jb1);

 //AWTEventListener
 getToolkit().addAWTEventListener(
 new AWTEventListener() {
 public void eventDispatched(AWTEvent e) {
 System.out.println(e+"\n");
 }
 }, AWTEvent.MOUSE_EVENT_MASK |
 AWTEvent.FOCUS_EVENT_MASK
);
 }

 public static void main (String args[]) {

 EventTest et=new EventTest();
 et.setSize(300,300);
 et.pack();
 et.show();
 }
}

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/awt.html (2 of 2) [2001-6-13 8:12:46]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 7: Analyzing Stack Traces

Training Index

Writing Advanced Applications
Chapter 7 Continued: Analyzing Stack Traces

[<<BACK] [CONTENTS] [NEXT>>]

Stack traces have often been considered a mystery to developers.
There is little or no documentation available, and when you get
one or need to generate one, time is always at a premium. The
next sections uncover the secrets to debugging stack traces, and
by the end, you might consider a stack trace to be a helpful tool
for analyzing other programs--not just broken ones!

What is a stack trace produced by the JavaTM platform? It is a user
friendly snapshot of the threads and monitors in a Java1 VM.
Depending on how complex your application or applet is, a stack
trace can range from fifty lines to thousands of lines of diagnostics.

Regardless of the size of the stack trace, there are a few key
things that anyone can find to help diagnose most software
problems, whether you are an expert or very new to the Java
platform.

There are three popular ways to generate a stack trace: sending a
signal to the Java VM; the Java VM generates a stack trace for
you; or using debugging tools or API calls.

● Sending a Signal to the Java VM
● The Java VM Generates a Stack Trace
● Using Debugging Tools or API Calls Which Release Generated

the Stack Trace?
● Which Platform Generated the Stack Trace?
● Which Thread Package Was Used?
● What are the Thread States
● Examining Monitors
● Putting the Steps Into Practice
● Expert's Checklist

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/stack.html (1 of 12) [2001-6-13 8:12:53]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 7: Analyzing Stack Traces

Sending a signal to the Java VM

On UNIX platforms you can send a signal to a program with the kill
command. This is the quit signal, which is handled by the Java
Virtual Machine (VM).

Unix Systems:

For example, on the SolarisTM platform, you can use the kill -QUIT
process_id command, where process_id is the process number of
your program.

Alternately, you can enter the key sequence <ctrl>\ in the window
where the program started.

Sending this signal instructs a signal handler in the Java VM to
recursively print out all the information on the threads and monitor
inside the Java VM.

Windows 95/NT:

To generate a stack trace on the Windows 95 or Windows NT
platforms, enter the key sequence <ctrl><break> in the window
where the program is running.

The Java VM Generates a Stack Trace

If the Java VM experienced an internal error such as a
segmentation violation or an illegal page fault, it calls its own
signal handler to print out the threads and monitor information.

Using Debugging Tools or API Calls

You can generate a partial stack trace, (which in this case is only
the threads information) by using the Thread.dumpStack method, or
the printStackTrace method of the Throwable class.

You can also obtain similar information by entering where inside the
Java debugger.

If you are successful at generating a stack trace, you should see
something similar to this stack trace.

strings core | grep JAVA_HOME

In the Java 2 software release, threads that called methods
resulting in a call to native code are indicated in the stack trace.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/stack.html (2 of 12) [2001-6-13 8:12:53]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/trace1.trc

Which Release Generated The Stack Trace?

In the Java 2 release the stack trace contains the Java Virtual
Machine version string, the same information you see when using
the -version paramater.

However if there is no version string, you can stilltake a pretty
good guess at which release this stack trace came from. Obviously,
if you generated the stack trace yourself this should not be much
of an issue, but you may see a stack trace posted on a newsgroup
or in an email article.

First identify where the Registered Monitor Dump section is in the
stack trace:

● If you see a utf8 hash table lock in the Registered Monitor
Dump, this is a Java 2 platform stack trace. The final release
of the Java 2 platform also contains a version string so if a
version string is missing this stack trace may be from a Java
2 beta release.

● If you see a JNI pinning lock and no utf8 hash lock, this is a
JDK 1.1+ release.

If neither of these appears in the Registered Monitor Dump, it is
probably a JDK 1.0.2 release.

Which Platform Generated the Stack Trace?

You can also find out if the stack trace came from a Windows 95,
an NT, or UNIX machine by looking for any waiting threads. On a
UNIX machine the waiting threads are named explicitly. On a
Windows 95, or NT machine only a count of the waiting threads is
displayed:

● Windows 95/NT: Finalize me queue lock: <unowned>
Writer: 1

● UNIX: Finalize me queue lock: <unowned>
waiting to be notified "Finalizer Thread"

Which Thread Package was Used?

Windows 95 and Windows NT Java VMs are by default native
thread Java VMs. UNIX Java VMs are by default green thread Java
VMs, they use a pseudo thread implementation. To make your
Java VM use native threads you need to supply the -native
parameter, for example, java -native MyClass.

Writing Advanced Applications, Chapter 7: Analyzing Stack Traces

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/stack.html (3 of 12) [2001-6-13 8:12:53]

By verifying the existence of an Alarm monitor in the stack trace
output you can identify that this stack trace came from a green
threads Java VM.

What are the Thread States?

You will see many different threads in many different states in a
snapshot from a Java VM stack trace. This table describes the
various keys and their meanings.

Key Meaning

R Running or runnable thread

S Suspended thread

CW Thread waiting on a condition variable

MW Thread waiting on a monitor lock

MS Thread suspended waiting on a monitor lock

Normally, only threads in R, S, CW or MW should appear in the stack
trace. If you see a thread in state MS, report it to Sun
Microsystems, through the Java Developer ConnectionSM (JDC) Bug
Parade feature, because there is a good chance it is a bug. The
reason being that most of the time a thread in Monitor Wait (MW)
state will appear in the S state when it is suspended.

Monitors are used to manage access to code that should only be
run by a single thread at a time. Monitors are covered in more
detail in the next section. The other two common thread states you
may see are R, runnable threads and CW, threads in a condition
wait state. Runnable threads by definition are threads that could
be running or are running at that instance of time. On a multi-
processor machine running a true multi-processing Operating
System it is possible for all the runnable threads to be running at
one time. However its more likely for the other runnable threads to
be waiting on the thread scheduler to have their turn to run.

Threads in a condition wait state can be thought of as waiting for
an event to occur. Often a thread will appear in state CW if it is in
a Thread.sleep or in a synchronized wait. In our earlier stack trace
our main method was waiting for a thread to complete and to be
nofified of its completion. In the stack trace this appears as

"main" (TID:0xebc981e0, sys_thread_t:0x26bb0,
 state:CW) prio=5
 at java.lang.Object.wait(Native Method)
 at java.lang.Object.wait(Object.java:424)
 at HangingProgram.main(HangingProgram.java:33)

Writing Advanced Applications, Chapter 7: Analyzing Stack Traces

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/stack.html (4 of 12) [2001-6-13 8:12:53]

The code that created this stack trace is as follows:

 synchronized(t1) {
 try {
 t1.wait(); //line 33
 }catch (InterruptedException e){}
 }

In the Java 2 release monitor operations, including our wait here,
are handled by the Java Virtual Machine through a JNI call to
sysMonitor. The condition wait thread is kept on a special monitor
wait queue on the object it is waiting on. This explains why even
though you are only waiting on an object that the code still needs
to be synchronized on that object as it is infact using the monitor
for that object.

Examining Monitors

This brings us to the other part of the stack trace: the monitor
dump. If you consider that the threads section of a stack trace
identifies the multithreaded part of your application, then the
monitors section represents the parts of your application that are
single threaded.

It may be easier to imagine a monitor as a car wash. In most car
washes, only one car can be in the wash at a time. In your Java
code only one thread at a time can have the lock to a synchronized
piece of code. All the other threads queue up to enter the
synchronized code just as cars queue up to enter the car wash.

A monitor can be thought of as a lock on an object, and every
object has a monitor. When you generate a stack trace, monitors
are either listed as being registered or not. In the majority of cases
these registered monitors, or system monitors, should not be the
cause of your software problems, but it helps to be able to
understand and recognize them. The following table describes the
common registered monitors:

Monitor Description

utf8 hash table
Locks the hashtable of defined
i18N Strings that were loaded from
the class constant pool.

JNI pinning lock Protects block copies of arrays to
native method code.

Writing Advanced Applications, Chapter 7: Analyzing Stack Traces

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/stack.html (5 of 12) [2001-6-13 8:12:53]

JNI global reference lock

Locks the global reference table
which holds values that need to be
explicitly freed, and will outlive the
lifetime of the native method call.

BinClass lock
Locks access to the loaded and
resolved classes list. The global
table list of classes

Class linking lock
Protects a classes data when
loading native libraries to resolve
symbolic references

System class loader lock Ensures that only one thread is
loading a system class at a time.

Code rewrite lock Protects code when an optimization
is attempted.

Heap lock Protects the Java heap during heap
memory management

Monitor cache lock

Only one thread can have access to
the monitor cache at a time this
lock ensures the integrity of the
monitor cache

Dynamic loading lock

Protects Unix green threads JVMs
from loading the shared library
stub libdl.so more than once at a
time.

Monitor IO lock Protects physical I/O for example,
open and read.

User signal monitor
Controls access to the signal
handler if a user signal USRSIG in
green threads JVMs.

Child death monitor

Controls access to the process wait
information when using the runtime
system calls to run locals
commands in a green threads JVM.

I/O Monitor Controls access to the threads file
descriptors for poll/select events

Alarm Monitor
Controls access to a clock handler
used in green threads JVMs to
handle timeouts

Thread queue lock Protects the queue of active
threads

Writing Advanced Applications, Chapter 7: Analyzing Stack Traces

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/stack.html (6 of 12) [2001-6-13 8:12:53]

Monitor registry

Only one thread can have access to
the monitor registry at a time this
lock ensures the integrity of that
registry

Has finalization queue lock *

Protects the list of queue lock
objects that have been garbage-
collected, and deemed to need
finalization. They are copied to the
Finalize me queue

Finalize me queue lock * Protects a list of objects that can
be finalized at leisure

Name and type hash table
lock *

Protects the JVM hash tables of
constants and their types

String intern lock *
Locks the hashtable of defined
Strings that were loaded from the
class constant pool

Class loading lock * Ensures only one thread loads a
class at a time

Java stack lock * Protects the free stack segments
list

Note: * Lock only appeared in pre-Java 2 stack traces

The monitor registry itself is protected by a monitor. This means
the thread that owns the lock is the last thread to use a monitor. It
is very likely this thread is also the current thread. Because only
one thread can enter a synchronized block at a time, other threads
queue up at the start of the synchronized code and appear as
thread state MW. In the monitor cache dump, they are denoted as
"waiting to enter" threads. In user code a monitor is called into
action wherever a synchronized block or method is used.

Any code waiting on an object or event (a wait method) also has to
be inside a synchronized block. However, once the wait method is
called, the lock on the synchronized object is given up.

When the thread in the wait state is notified of an event to the
object, it has to compete for exclusive access to that object, and it
has to obtain the monitor. Even when a thread has sent a "notify
event" to the waiting threads, none of the waiting threads can
actually gain control of the monitor lock until the notifying thread
has left its synchronized code block.

Writing Advanced Applications, Chapter 7: Analyzing Stack Traces

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/stack.html (7 of 12) [2001-6-13 8:12:53]

You will see "Waiting to be notified" for threads at the wait method

Putting the Steps Into Practice

Example 1

Consider a real-life problem such as Bug ID 4098756, for example.
You can find details on this bug in JDC Bug Parade. This bug
documents a problem that occurs when using a Choice Component
on Windows 95.

When the user selects one of the choices from the Choice
Component using the mouse, everything is fine. However, when
the user tries to use an Arrow key to move up or down the list of
choices, the Java application freezes.

Fortunately, this problem is reproducible and there was a Java
stack trace to help track down the problem. The full stack trace is
in the bug report page, but you only need to focus on the following
two key threads:

"AWT-Windows" (TID:0xf54b70,
sys_thread_t:0x875a80,Win32ID:0x67,
state:MW) prio=5
java.awt.Choice.select(Choice.java:293)
sun.awt.windows.WChoicePeer.handleAction(
 WChoicePeer.java:86)

"AWT-EventQueue-0" (TID:0xf54a98,sys_thread_t:0x875c20,
Win32ID:0x8f, state:R) prio=5
java.awt.Choice.remove(Choice.java:228)
java.awt.Choice.removeAll(Choice.java:246)

The AWT-EventQueue-0 thread is in a runnable state inside the remove
method. Remove is synchronized, which explains why the AWT-
Windows thread cannot enter the select method. The AWT-Windows
thread is in MW state (monitor wait); however, if you keep taking
stack traces, this situation does not change and the graphical user
interface (GUI) appears to have frozen.

This indicates that the remove call never returned. By following the
code path to the ChoicePeer class, you can see this is making a
native MFC call that does not return. That is where the real problem
lies and is a bug in the Java core classes. The user's code was
okay.

Example 2

Writing Advanced Applications, Chapter 7: Analyzing Stack Traces

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/stack.html (8 of 12) [2001-6-13 8:12:53]

http://developer.java.sun.com/developer/bugParade/bugs/4098756.html

In this second example you will investigate a bug that on initial
outset appears to be a fault in Swing but as you will discover is
due to the fact that Swing is not thread safe.

Again the bug report is available to view on the JDC site, the bug
number this time is 4098525.

Here is a cut down sample of the code used to reproduce this
problem. The modal dialog is being created from within the JPanel
paint method.

import java.awt.event.*;
import java.awt.*;
import java.util.*;
import javax.swing.*;

class MyDialog extends Dialog
 implements ActionListener {

 MyDialog(Frame parent) {
 super(parent, "My Dialog", true);
 Button okButton = new Button("OK");
 okButton.addActionListener(this);
 add(okButton);
 pack();
 }

 public void actionPerformed(ActionEvent event) {
 dispose();
 }
}

public class Tester extends JPanel {

 MyDialog myDialog;
 boolean firstTime = true;

 public Tester (JFrame frame) throws Exception {
 super();
 myDialog = new MyDialog(frame);
 }

 void showDialogs() {
 myDialog.show();
 }

 public void paint(Graphics g) {
 super.paint(g);
 if (firstTime) {
 firstTime = false;
 showDialogs();
 }

Writing Advanced Applications, Chapter 7: Analyzing Stack Traces

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/stack.html (9 of 12) [2001-6-13 8:12:53]

http://developer.java.sun.com/developer/bugParade/bugs/4098525.html

 }

 public static void main(String args[])
 throws Exception {

 JFrame frame = new JFrame ("Test");
 Tester gui = new Tester(frame);
 frame.getContentPane().add(gui);
 frame.setSize(800, 600);
 frame.pack();
 frame.setVisible(true);
 }
}

When you run this program you find that it deadlocks straight
away. By taking a stack trace you see the these key threads.

The stack trace you have here is slightly different to the stack
trace that appears in the bug report, but caused by the same
effect. We are also using the Java 2 release to generate the trace
and supplied the option -Djava.compiler=NONE when you ran the
program so that you could see the source line numbers. The
thread to look for is the thread in MW, monitor wait which in this
case is thread AWT-EventQueue-1

"AWT-EventQueue-1" (
 TID:0xebca8c20, sys_thread_t:0x376660,
 state:MW) prio=6
 at java.awt.Component.invalidate(Component.java:1664)
 at java.awt.Container.invalidate(Container.java:507)
 t java.awt.Window.dispatchEventImpl(Window.java:696)
 at java.awt.Component.dispatchEvent(
 Component.java:2289)
 at java.awt.EventQueue.dispatchEvent(
 EventQueue.java:258)
 at java.awt.EventDispatchThread.run(
 EventDispatchThread.java:68)

If you look for that line in file java/awt/Component.java which is
contained in the src.jar archive, you see the following:

 public void invalidate() {
 synchronized (getTreeLock()) { //line 1664

This is where our application is stuck, it is waiting for the
getTreeLock monitor lock to become free. The next task is to find
out which thread has this getTreeLock monitor lock held.

To see who is holding this monitor lock you look at the Monitor

Writing Advanced Applications, Chapter 7: Analyzing Stack Traces

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/stack.html (10 of 12) [2001-6-13 8:12:53]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/trace2.trc

cache dump and in this example you can see the following:

Monitor Cache Dump:
 java.awt.Component$AWTTreeLock@EBC9C228/EBCF2408:
 owner "AWT-EventQueue-0" (0x263850) 3 entries
 Waiting to enter:
 "AWT-EventQueue-1" (0x376660)

The method getTreeLock monitor is actually a lock on a specially
created inner class object ofAWTTreeLock. This is the code used to
create that lock in file Component.java.

 static final Object LOCK = new AWTTreeLock();
 static class AWTTreeLock {}

The current owner is AWT-EventQueue-0. Thie thread called our
paint method to create our modal Dialog via a call to
paintComponent. paintComponent itself was called from an update call
of JFrame.

So where was the lock set? Well there is no simple way to find out
which stack frame actually held the lock but on a simple search of
javax.swing.JComponent you see that getTreeLock is called inside the
method paintChildren which you left at line 388.

at Tester.paint(Tester.java:39)
at javax.swing.JComponent.paintChildren(
 JComponent.java:388)

The rest of the puzzle is pieced together by analyzing the
MDialogPeer show method. The Dialog code creates a new
ModalThread which is why you see an AWT-Modal thread in the stack
trace output, this thread is used to post the Dialog. It is when this
event is dispatched using AWT-EventQueue-1 which used to be the
AWT Dispatch proxy that getTreeLock monitor access is required
and so you have a deadlock.

Unfortunately Swing code is not designed to be thread safe and so
the workaround in this example is to not create modal dialogs
inside a Swing paint methods. Since Swing has to do alot of
locking and calculations as to which parts of a lightweight
component needs to be painted it is strongly advised to not include
sychronized code or code that will result in a synchronized call
such as in a modal dialog, inside paint method.

This completes Java stack traces theory, and you should now know
what to look for the next time you see a stack trace. To save time,
you should make full use of the JDC bug search to see if the
problem you are having has already been reported by someone

Writing Advanced Applications, Chapter 7: Analyzing Stack Traces

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/stack.html (11 of 12) [2001-6-13 8:12:53]

else.

Expert's Checklist

To summarize, these are the steps to take the next time you come
across a problem in a Java program.

● Hanging, deadlocked or frozen programs: If you think
your program is hanging, generate a stack trace. Examine the
threads in states MW or CW. If the program is deadlocked, some
of the system threads will probably show up as the current
thread because there is nothing else for the Java VM to do.

● Crashed or aborted programs: On UNIX look for a core file.
You can analyze this file in a native debugging tool such as
gdb or dbx. Look for threads that have called native methods.
Because Java technology uses a safe memory model, any
corruption probably occurred in the native code. Remember
that the Java VM also uses native code so it might not be a
bug in your application.

● Busy programs: The best course of action you can take for
busy programs is to generate frequent stack traces. This will
narrow down the code path that is causing the errors, and
you can start your investigation from there.

[TOP]

1 As used on this web site, the terms "Java virtual machine" or
"JVM" mean a virtual machine for the Java platform.

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 7: Analyzing Stack Traces

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/stack.html (12 of 12) [2001-6-13 8:12:53]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 7: Version Issues

Training Index

Writing Advanced Applications
Chapter 7 Continued: Version Issues

[<<BACK] [CONTENTS] [NEXT>>]

This section provides a table that summarizes problems and
solutions related to having different versions of the JavaTM platform
installed on your system.

Product Deployment

JDK 1.0.2 Uses CLASSPATH to find and load the core system classes.

On Windows 95:
CLASSPATH=c:\java\lib\classes.zip

On Unix:
CLASSPATH=/usr/java/lib/classes.zip:.

Unix Dynamic libraries, .dll files, shared objects, and
.so files are located by the PATH variable.

Side Effects:
The Win95 Autoexec.bat file contains an outdated
CLASSPATH variable set by a user or the installation of
other applications.

The WinNT User Environment contains an old CLASSPATH
variable.

The Unix .cshrc, .profile, or .login scripts contains
wrong CLASSPATH.

The JAVA_HOME environment variable is also used by
programs so check this is not set. You can clear this
field in the Bourne shell (sh) as follows: unset JAVA_HOME

Diagnostics:

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/version.html (1 of 4) [2001-6-13 8:12:56]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 7: Version Issues

Use the -classpath option to force the Java VM to use
the command-line.CLASSPATH only: java -classpath
c:\java\lib\classes.zip;. myapp

Product Deployment

JDK 1.1 Uses relative paths to find the classes.zip file from the
Java platform installation. The CLASSPATH environment
variable is used to load application classes.

Side Effects:
Other Java releases found on the application path might
be picked up if the new JDK bin directory is not explicitly
set at the front of the PATH environment variable.

Diagnostics:
Use the -sysclasspath option to force the Java VM to use
the CLASSPATH supplied on the command line only: java -
sysclasspath c:\java\lib\classes.zip;. myapp

Product Deployment

Java 2
Platform

The platform is split into a Java Runtime Environment
(JRE) and Java compiler. The JRE is included as a
subdirectory in the release, and the traditional java and
javac programs in the bin directory invoke the real
program in the jre/bin directory. The separate jre
launcher is no longer provided, and the java program is
solely used instead.

The Java ARchive (JAR) files containing the core Java
platform system classes, rt.jar and i18.jar, are
located in the jre/lib directory with a relative search
path.

Side Effects:
If applications previously used the classes.zip file to
load the core Java platform systems, they might still try
to load an additional set of classes in error.

Diagnostics:
Use the -Xbootclasspath option to force the Java VM to
use the CLASSPATH supplied on the command line only:
java -Xbootclasspath:c:\java\jre\lib\rt.jar;

c:\java\jre\lib\i18n.jar;. myapp

You might need to supply this as a runtime option as
follows: javac -J-
Xbootclasspath:c\java\lib\tools.jar;c:
\java\jre\lib\rt.jar;c:\java\jre\lib\i18n.jar;.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/version.html (2 of 4) [2001-6-13 8:12:56]

myapp.java

Product Deployment

Java
Plug-In

On Windows 95 and Windows NT uses the registry to
find installed plug-in Java platform releases.

Side Effects:
Registry can become corrupted, or plug-in removed
physically but not from the registry.

Diagnostics:
Display the java.version and java.class.path property in
your code and display it on the Java Plug-in Console

System.out.println("version="+System.getProperty(
 "java.version"
));
System.out.println("class path="+System.getProperty(
 "java.class.path"
));

If there is a conflict, check the registry with the regedit
command, search for the word VM and if it exists, delete
it and reinstall the plug-in

Product Deployment

Netscape Uses .jar files such as java40.jar in netscape directory.

Side Effects:
Not all Netscape releases are fully JDK 1.1 compliant.
You can get upgrade patches at
http://www.netscape.com.

Diagnostics:
Start the browser on the command line with the -
classes option.

Product Deployment

Writing Advanced Applications, Chapter 7: Version Issues

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/version.html (3 of 4) [2001-6-13 8:12:56]

http://www.netscape.com/

Internet
Explorer

Uses .cab files to contain system classes. Also uses
system registry on Windows 95/NT.

Side Effects:
Use the regedit command to search for the word VM.
There is a CLASSPATH entry to which you can add your own
classes.

Diagnostics:
The registry can become corrupted. Search for
CLASSPATH using the regedit program and edit the value
that CLASSPATH points to.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 7: Version Issues

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/version.html (4 of 4) [2001-6-13 8:12:56]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 8: Performance Techniques

Training Index

Writing Advanced Applications
Chapter 8: Performance Techniques

[<<BACK] [CONTENTS] [NEXT>>]

One of the biggest challenges in developing large applications for
the JavaTM platform is to make the application meets its
performance criteria. This chapter shows you how to track down
performance bottlenecks and improve application performance.

● Improving Performance by Design
● Connection Pooling
● Performance Features and Tools
● Performance Analysis
● Caching Client/Server Applications

In a Rush?

This table links you directly to specific performance tuning topics.

Topic Section

Improving Performance by
Design

Improving Applet Download
Speed
Thread Pooling

Connection Pooling Wrapper Classes
Connection Driver
Connection Pool
Deadlocks and Hangs
Closing Connections
Example Application

Performance Features and Tools Java VM Features
JIT compilers
Third-Party Tools

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perfTech.html (1 of 2) [2001-6-13 8:13:02]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 8: Performance Techniques

Performance Analysis Profiling
Analyze a Program

Caching Client/Server
Applications

Caching One Object
Caching Many Objects

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perfTech.html (2 of 2) [2001-6-13 8:13:02]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 8: Improving Performance

Training Index

Writing Advanced Applications
Chapter 8 Continued: Improving Performance By Design

[<<BACK] [CONTENTS] [NEXT>>]

Bandwidth restrictions imposed on networks around the world
make network-based operations potential bottlenecks that can
have a significant impact on an application's performance. Many
network-based applications are designed to use connection pools
so they can reuse existing network connections and save on the
time and overhead invested in opening and closing network
connections.

Besides connection pooling, there are other features you can
design into your programs to improve performance. This chapter
explains how you can design an applet to download files and
resources more efficiently, or design a thread-based program to
use thread pooling to save on the expensive thread startup
process.

● Improving Applet Download Speed
● Thread Pooling

Improving Applet Download Speed

Applet download performance refers to the time it takes for the
browser to download all the files and resources it needs to start
the applet. An important factor affecting any applet's download
performance is the number of times it has to request data from the
server. You can reduce the number of requests by packaging the
applet images into one class file, or using JavaTM ARchive (JAR)
files.

Packaging Images into One Class

Normally, if an applet has six image buttons, that translates to six
additional requests sent back to the web server to load those
image files. Six additional requests might not seem like much on

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf.html (1 of 7) [2001-6-13 8:13:10]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 8: Improving Performance

an internal network, but given connections of lesser speed and
reliability, those additional requests can have a significant negative
impact on performance. So, your ultimate goal should be to load
the applet as quickly as possible.

One way to store images in a class file is to use an ASCII encoding
scheme such as X-PixMap (XPM). This way, rather than
maintaining the images as GIF files on the server, the files are
encoded as Strings and stored in a single class file.

This code sample uses packages from the JavaCup winner at
JavaOne 1996, which contains the XImageSource and XpmParser
classes. These classes provide all you need to read a standard XPM
file. You can see these files at SunSite.

For the initial encoding process, there are a number of graphics
tools you can use to create XPM files. On Solaris you can use
ImageTool or a variety of other GNU image packages. Go to the
Download.com web site to get the encoding software for Windows
platforms.

The following code excerpted from the MyApplet sample class loads
the images. You can see the coded String form for the images in
the XPM definition of the images.

The Toolkit class creates an Image object for each image from the
XPM Image Source object.

Toolkit kit = Toolkit.getDefaultToolkit();
 Image image;
 image = kit.createImage (new XImageSource (_reply));
 image = kit.createImage (new XImageSource (_post));
 image = kit.createImage (new XImageSource (_reload));
 image = kit.createImage (new XImageSource (_catchup));
 image = kit.createImage (new XImageSource (_back10));
 image = kit.createImage (new XImageSource (_reset));
 image = kit.createImage (new XImageSource (_faq));

The alternative technique below uses GIF files. It requires a
request back to the web server for each image loaded.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf.html (2 of 7) [2001-6-13 8:13:10]

http://www.inria.fr/koala/lehors/xpm.html
http://sunsite.utk.edu/winners_circle/developer_tools/DESVS7NU/applet.html
http://www.gnu.ai.mit.edu/software/software.html
http://download.com/
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/MyApplet.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Images.html

Image image;
 image = getImage ("reply.gif");
 image = getImage ("post.gif");
 image = getImage ("reload.gif");
 image = getImage ("catchup.gif");
 image = getImage ("back10.gif");
 image = getImage ("reset.gif");
 image = getImage ("faq.gif");

This technique reduces network traffic because all images are
available in a single class file.

● Using XPM encoded images makes the class size larger, but
the number of network requests fewer.

● Making the XPM image definitions part of your applet class
file, makes the image loading process part of the regular
loading of the applet class file with no extra classes.

Once loaded, you can use the images to create buttons or other
user interface components. This next code segment shows how to
use the images with the javax.swing.JButton class.

ImageIcon icon = new ImageIcon (
 kit.createImage (
 new XImageSource (_reply)));
JButton button = new JButton (icon, "Reply");

Using JAR Files

When an applet consists of more than one file, you can improve
download performance with Java ARchive (JAR) files. A JAR file
contains all of an applet's related files in one single file for a faster
download. Much of the time saved comes from reducing the
number of HTTP connections the browser must make.

Chapter 9: Deploying Your Application has information on creating
and signing JAR files.

The HTML code below uses the CODE tag to specify the executable
for the MyApplet applet, and the ARCHIVE tag to specify the JAR file
that contains all of MyApplet's related files. The executable
specified by the CODE tag is sometimes called the code base.

For security reasons the JAR files listed by the archive parameter
must be in the same directory or a sub-directory as the applets
codebase. If no codebase parameter is supplied the directory from

Writing Advanced Applications, Chapter 8: Improving Performance

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf.html (3 of 7) [2001-6-13 8:13:10]

where the applet was loaded is used as the codebase.

The following example specifies jarfile as the JAR file that
contains the related files for the MyApplet.class executable.

<APPLET CODE="MyApplet.class" ARCHIVE="jarfile" WIDTH="100"
HEIGHT="200"> </APPLET>

If the applet download uses multiple JAR files as shown in the next
HTML segment, the ClassLoader loads each JAR file when the applet
starts. So, if your applet uses some resource files infrequently, the
JAR file containing those infrequently used files is downloaded,
regardless of whether the resources are actually used during that
session or not.

<APPLET CODE="MyApplet.class" ARCHIVE="jarfile1, jarfile2"
WIDTH="100" HEIGHT="200"> </APPLET>

To improve performance when an applet has infrequently used
files, put the frequently used files into the JAR file and the
infrequently used files into the applet class directory. Infrequently
used files are then located and downloaded by the browser only
when needed.

Thread Pooling

The Java Developer ConnectionSM (JDC) applet servers and the
Java Web ServerTM make extensive use of thread pooling to
improve performance. Thread pooling is creating a ready supply of
sleeping threads at the beginning of execution. Because the thread
startup process is expensive in terms of system resources, thread
pooling makes the startup process a little slower, but improves
runtime performance because sleeping (or suspended) threads are
awakened only when they are needed to perform new tasks.

This code sample taken from the Pool.java class shows one way to
implement thread pooling. In the pool's constructor (shown
below), the WorkerThreads are initialized and started. The call to the
start method executes the run method of the WorkerThread, and the
call to wait in the run method suspends the Thread while the Thread
waits for work to arrive. The last line of the constructor pushes the
sleeping Thread onto the stack.

public Pool (int max, Class workerClass)
 throws Exception {

 _max = max;

Writing Advanced Applications, Chapter 8: Improving Performance

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf.html (4 of 7) [2001-6-13 8:13:10]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/Pool.java

 _waiting = new Stack();
 _workerClass = workerClass;
 Worker worker;
 WorkerThread w;
 for (int i = 0; i < _max; i++) {
 worker = (Worker)_workerClass.newInstance();
 w = new WorkerThread ("Worker#"+i, worker);
 w.start();
 _waiting.push (w);
 }
}

Besides the run method, the WorkerThread class has a wake method.
When work comes in, the wake method is called, which assigns the
data and notifies the sleeping WorkerThread (the one initialized by
the Pool) to resume running. The wake method's call to notify
causes the blocked WorkerThread to fall out of its wait state, and the
run method of the HttpServerWorker class is executed. Once the
work is done, the WorkerThread is either put back onto the Stack
(assuming the Thread Pool is not full) or terminates.

synchronized void wake (Object data) {
 _data = data;
 notify();
 }

 synchronized public void run(){
 boolean stop = false;
 while (!stop){
 if (_data == null){
 try{
 wait();
 }catch (InterruptedException e){
 e.printStackTrace();
 continue;
 }
 }

 if (_data != null){
 _worker.run(_data);
 }

 _data = null;
 stop = !(_push (this));
 }
 }

At its highest level, incoming work is handled by the performWork
method in the Pool class (shown below). As work comes in, an
existing WorkerThread is popped off of the Stack (or a new one is

Writing Advanced Applications, Chapter 8: Improving Performance

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf.html (5 of 7) [2001-6-13 8:13:10]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/HttpServerWorker.java

created if the Pool is empty). The sleeping WorkerThread is then
activated by a call to its wake method.

public void performWork (Object data)
 throws InstantiationException{
 WorkerThread w = null;
 synchronized (_waiting){
 if (_waiting.empty()){
 try{
 w = new WorkerThread ("additional worker",
 (Worker)_workerClass.newInstance());
 w.start();
 }catch (Exception e){
 throw new InstantiationException (
 "Problem creating
 instance of Worker.class: "
 + e.getMessage());
 }
 }else{
 w = (WorkerThread)_waiting.pop();
 }
 }
 w.wake (data);
}

The HttpServer.java class constructor creates a new Pool instance
to service HttpServerWorker instances. HttpServerWorker instances
are created and stored as part of the WorkerThread data. When a
WorkerThread is activated by a call to its wake method, the
HttpServerWorker instance is invoked by way of its run method.

try{
 _pool = new Pool (poolSize,
 HttpServerWorker.class);
 }catch (Exception e){
 e.printStackTrace();
 throw new InternalError (e.getMessage());
 }

This next code is in the run method of the HttpServer.java class.
Every time a request comes in, the data is initialized and the
Thread starts work.

Note: If creating a new Hashtable for each WorkerThread
presents too much overhead, just modify the code so it
does not use the Worker abstraction.

Writing Advanced Applications, Chapter 8: Improving Performance

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf.html (6 of 7) [2001-6-13 8:13:10]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/HttpServer.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/HttpServerWorker.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/HttpServer.java

try{
 Socket s = _serverSocket.accept();
 Hashtable data = new Hashtable();
 data.put ("Socket", s);
 data.put ("HttpServer", this);
 _pool.performWork (data);
 }catch (Exception e){
 e.printStackTrace();
 }

Thread pooling is an effective performance-tuning technique that
puts the expensive thread startup process at the startup of an
application. This way, the negative impact on performance occurs
once at program startup where it is least likely to be noticed.

The code examples for the thread pooling example are taken from
a multi-threaded firewall proxy example. The other files required
for this example are as follows:

Worker.java
HttpListener.java
HttpServerListener.java
HttpClient.java

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 8: Improving Performance

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf.html (7 of 7) [2001-6-13 8:13:10]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/Worker.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/HttpListener.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/HttpServerListener.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/HttpClient.java
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 8: Performance Techniques

Training Index

Writing Advanced Applications
Chapter 8 Continued: Connection Pooling

[<<BACK] [CONTENTS] [NEXT>>]

If you have used a SQL or other similar tool to connect to a
database and act on the data, you probably know that getting the
connection and logging in is the part that takes the most time. An
application can easily spend several seconds every time it needs to
establish a connection.

In releases prior to JDBCTM 2.0 every database session requires a
new connection and login even if the previous connection and login
used the same table and user account. If you are using a JDBC
release prior to 2.0 and want to improve performance, you can
cache JDBC connections instead.

Cached connections are kept in a runtime object pool and can be
used and reused as needed by the application. One way to
implement the object pool is to make a simple hashtable of
connection objects. However, a more flexible way to do it is to
write a wrapper JDBC Driver that is an intermediary between the
client application and database.

The wrapper approach works particularly well in an Enterprise
Bean that uses Bean-managed persistence for two reasons: 1)
Only one Driver class is loaded per Bean, and 2) specific
connection details are handled outside the Bean.

This section explains how to write a wrapper JDBC Driver class.

● Wrapper Classes
● Connection Driver
● Connection Pool
● Deadlocks and Hangs
● Closing Connections
● Example Application

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/conpool.html (1 of 5) [2001-6-13 8:13:13]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 8: Performance Techniques

Wrapper Classes

The wrapper JDBC Driver created for this examples consists of the
following three classes:

● JDCConnectionDriver
● JDCConnectionPool
● JDCConnection

Connection Driver

The JDCConnectionDriver.java class implements the
java.sql.Driver interface, which provides methods to load drivers
and create new database connections.

A JDCConnectionManager object is created by the application seeking
a database connection. The application provides the database
Uniform Resource Locator (URL) for the database, login user ID,
and login password.

The JDCConnectionManager constructor does the following:

● Registers the JDCConnectionManager object with the
DriverManager.

● Loads the Driver class passed to the constructor by the calling
program.

● Initializes a JDCConnectionPool object for the connections with
the database URL, login user ID, and login password passed
to the constructor by the calling program.

public JDCConnectionDriver(String driver,
 String url,
 String user,
 String password)
 throws ClassNotFoundException,
 InstantiationException,
 IllegalAccessException,
 SQLException {

 DriverManager.registerDriver(this);
 Class.forName(driver).newInstance();
 pool = new JDCConnectionPool(url, user, password);
}

When the calling program needs a database connection, it calls the
JDCConnectionDriver.connect method, which in turn, calls the
JDCConnectionPool.getConnection method.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/conpool.html (2 of 5) [2001-6-13 8:13:13]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/JDCConnectionDriver.java

Connection Pool

The JDCConnectionPool.java class makes connections available to
calling program in its getConnection method. This method searches
for an available connection in the connection pool. If no connection
is available from the pool, a new connection is created. If a
connection is available from the pool, the getConnection method
leases the connection and returns it to the calling program.

public synchronized Connection getConnection()
 throws SQLException {

 JDCConnection c;
 for(int i = 0; i < connections.size(); i++) {
 c = (JDCConnection)connections.elementAt(i);
 if (c.lease()) {
 return c;
 }
 }

 Connection conn = DriverManager.getConnection(
 url, user, password);
 c = new JDCConnection(conn, this);
 c.lease();
 connections.addElement(c);
 return c;
}

The JDCConnection.java class represents a JDBC connection in the
connection pool, and is essentially a wrapper around a real JDBC
connection. The JDCConnection object maintains a state flag to
indicate if the connection is in use and the time the connection was
taken from the pool. This time is used by the ConnectionReaper.java
class to identify hanging connections.

Deadlocks and Hangs

While many client and server databases have graceful ways to
handle deadlocks and hangs so you do not have to write code to
handle these situations, many of the newer, lightweight distributed
databases are not so well equipped. The connection pool class
provides a dead connection reaper to handle such situations.

The ConnectionReaper class decides a connection is dead if the
following conditions are met.

● The connection is flagged as being in use.
● The connection is older than a preset connection time out.
● The connection fails a validation check.

The validation check runs a simple SQL query over the connection

Writing Advanced Applications, Chapter 8: Performance Techniques

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/conpool.html (3 of 5) [2001-6-13 8:13:13]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/JDCConnectionPool.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/JDCConnection.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/JDCConnectionPool.java

to see if it throws an exception. In this example, the validation
method requests the high-level description of the database tables.
If a connection fails the validation test, it is closed, a new
connection is initiated to the database, and added to the
connection pool.

public boolean validate() {
 try {
 conn.getMetaData();
 }catch (Exception e) {
 return false;
 }
 return true;
}

Closing Connections

The connection is returned to the connection pool when the calling
program calls the JDCConnection.close method in its finally clause.

public void close() throws SQLException {
 pool.returnConnection(this);
}

Example Application

You use a connection pool in an application in a similar way to how
you would use any other JDBC driver. Here is the code for a Bean-
managed RegistrationBean. This RegistrationBean is adapted from
the auction house Enterprise JavaBeansTM example described in
Chapters 1 - 3.

When the first RegistrationBean object is created, it creates one
static instance of the JDCConnectionDriver class. This static driver
object registers itself with the DriverManager in the
JDCConnectionDriver constructor making it available for connection
requests to all RegistrationBean objects created by the client
application.

Passing the URL as jdbc:jdc:jdcpool in the getConnection method,
lets the DriverManager match the getConnection request to the
registered driver. The DriverManager uses simple String matching to
find an available driver that can handle URLs in that format.

public class RegistrationBean implements EntityBean{

 private transient EntityContext ctx;
 public String theuser, password;
 public String creditcard, emailaddress;
 public double balance;

Writing Advanced Applications, Chapter 8: Performance Techniques

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/conpool.html (4 of 5) [2001-6-13 8:13:13]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/conpool/RegistrationBean.java

//Static class instantiation
 static {
 try{
 new pool.JDCConnectionDriver(
 "COM.cloudscape.core.JDBCDriver",
 "jdbc:cloudscape:ejbdemo",
 "none", "none");
 }catch(Exception e){}
 }

 public Connection getConnection()
 throws SQLException{
 return DriverManager.getConnection(
 "jdbc:jdc:jdcpool");
 }
}

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 8: Performance Techniques

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/conpool.html (5 of 5) [2001-6-13 8:13:13]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html

Training Index

Writing Advanced Applications
Chapter 8 Continued: Performance Features and Tools

[<<BACK] [CONTENTS] [NEXT>>]

The new JavaTM Virtual Machines (VMs) have features to increase
performance, and you can use a number of tools to increase
application performance or reduce the size of generated class files.
Such features and tools improve the performance of your
application with little or no change required to your application.

● Java VM Features
● Just-In-Time Compilers
● Third-Party Tools

Java VM Features

The Java® 2 Plaftform release has introduced many performance
improvements over previous releases, including faster memory
allocation, reduction of class sizes, improved garbage collection,
streamlined monitors and a built-in JIT as standard. When using
the new Java 2 VM straight out of the box you will see an
improvement, however by understanding how the speed-ups work
you can tune your application to squeeze out every last bit of
performance.

Method Inlining

The Java 2 release of the Java VM automatically inlines simple
methods at runtime. In an un-optimized Java VM, every time a
new method is called, a new stack frame is created. The creation
of a new stack frame requires additional resources as well as some
re-mapping of the stack, the end result is that creating new stack
frames incurs a small overhead.

Method inlining increases performance by reducing the number of
method calls your program makes. The Java VM inlining code

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html (1 of 9) [2001-6-13 8:13:18]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html

inlines methods that return constants or only access internal fields.
To take advantage of method inlining you can do one of two
things. You can either make a method look attractive to the VM to
inline or manually inline a method if it doesn't break your object
model. Manual inlining in this context means simply moving the
code from a method into the method that is calling it.

Automatic VM inlining is illustrated using the following small
example:

public class InlineMe {

 int counter=0;

 public void method1() {
 for(int i=0;i<1000;i++)
 addCount();
 System.out.println("counter="+counter);
 }

 public int addCount() {
 counter=counter+1;
 return counter;
 }

 public static void main(String args[]) {
 InlineMe im=new InlineMe();
 im.method1();
 }
}

In the current state the addCount method doesn't look very
attractive to the inline detector in the VM because the addCount
method returns a value. To find out if this method is inlined, run
the compiled example with profiling enabled:

java -Xrunhprof:cpu=times InlineMe

This generates a java.hprof.txt output file. The top ten methods
will look similar to this:

CPU TIME (ms) BEGIN (total = 510)
 Thu Jan 28 16:56:15 1999
rank self accum count trace method
 1 5.88% 5.88% 1 25 java/lang/Character.
 <clinit>
 2 3.92% 9.80% 5808 13 java/lang/String.charAt
 3 3.92% 13.73% 1 33 sun/misc/
 Launcher$AppClassLoader.
 getPermissions
 4 3.92% 17.65% 3 31 sun/misc/
 URLClassPath.getLoader

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html (2 of 9) [2001-6-13 8:13:18]

 5 1.96% 19.61% 1 39 java/net/
 URLClassLoader.access$1
 6 1.96% 21.57% 1000 46 InlineMe.addCount
 7 1.96% 23.53% 1 21 sun/io/
 Converters.newConverter
 8 1.96% 25.49% 1 17 sun/misc/
 Launcher$ExtClassLoader.
 getExtDirs
 9 1.96% 27.45% 1 49 java/util/Stack.peek
10 1.96% 29.41% 1 24 sun/misc/Launcher.<init>

If you change the addCount method to no longer return a value, the
VM will inline it for you at runtime. To make the code inline friendly
replace the addCount method with the following:

public void addCount() {
 counter=counter+1;
}

And run the profiler again:

java -Xrunhprof:cpu=times InlineMe

This time the java.hprof.txt output should look different. The
addCount method has gone. It has been inlined!

CPU TIME (ms) BEGIN (total = 560)
 Thu Jan 28 16:57:02 1999
rank self accum count trace method
 1 5.36% 5.36% 1 27 java/lang/
 Character.<clinit>
 2 3.57% 8.93% 1 23 java/lang/
 System.initializeSystemClass
 3 3.57% 12.50% 2 47 java/io/PrintStream.<init>
 4 3.57% 16.07% 5808 15 java/lang/String.charAt
 5 3.57% 19.64% 1 42 sun/net/www/protocol/file/
 Handler.openConnection
 6 1.79% 21.43% 2 21 java/io/InputStreamReader.fill
 7 1.79% 23.21% 1 54 java/lang/Thread.<init>
 8 1.79% 25.00% 1 39 java/io/PrintStream.write
 9 1.79% 26.79% 1 40 java/util/jar/
 JarFile.getJarEntry
10 1.79% 28.57% 1 38 java/lang/Class.forName0

Streamlined synchronization

Synchronized methods and objects have until Java 2 always
incurred an additional performance hit as the mechanism used to

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html (3 of 9) [2001-6-13 8:13:18]

implement the locking of this code used a global monitor registry
which was only single threaded in some areas such as searching
for existing monitors. In the Java 2 release, each thread has a
monitor registry and so many of the existing bottlenecks have
been removed.

If you have previously used other locking mechanisms because of
the performance hit with synchronized methods it is now
worthwhile re-visiting this code and incorporating the new Java 2
streamlined locks.

In the following example which is creating monitors for the
synchronized block you can achieve a 40% speed up. Time taken
was 14ms using JDK 1.1.7 and only 10ms with Java 2 on a Sun
Ultra 1.

class MyLock {

 static Integer count=new Integer(5);
 int test=0;

 public void letslock() {
 synchronized(count) {
 test++;
 }
 }
}

public class LockTest {

 public static void main(String args[]) {

 MyLock ml=new MyLock();
 long time = System.currentTimeMillis();

 for(int i=0;i<5000;i++) {
 ml.letslock();
 }
 System.out.println("Time taken="+
 (System.currentTimeMillis()-time));
 }
}

Java Hotspot

The Java HotSpotTM VM is Sun Microsystem's next-generation
virtual machine implementation. The Java HotSpot VM adheres to
the same specification as the Java 2 VM, and runs the same byte
codes, but it has been re-engineered to leverage new technologies
like adaptive optimization and improved garbage collection models
to dramatically improve the speed of the Java VM.

Adaptive optimization

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html (4 of 9) [2001-6-13 8:13:18]

The Java Hotspot does not include a plug-in JIT compiler but
instead compiles and inline methods that appear it has determined
as being the most used in the application. This means that on the
first pass through the Java bytecodes are interpreted as if you did
not have a JIT compiler present. If the code then appears as being
a hotspot in your application the hotspot compiler will compiler the
bytecodes into native code which is then stored in a cache and
inline methods at the same time. See the inlining section for
details on the advantages to inlining code.

One advantage to selective compilation over a JIT compiler is that
the byte compiler can be spend more time generating highly
optimized for the areas that would benefit from the optimization
most. The compiler can also avoid compiling code that may be best
run in interpreted mode.

Earlier versions of the Java HotSpot VM were not able to optimize
code that was not currently in use. The downside to this is if the
application was in a huge busy loop the optimizer would not be
able to compile the code for area until the loop had finished. Later
Java Hotspot VM releases use on-stack replacement, meaning that
code can be compiled into native code even if it is in use by the
interpreter.

Improved Garbage Collection

The garbage collector used in the Java HotSpot VM introduces
several improvements over existing garbage collectors. The first is
that the garbage collector is termed a fully accurate collector.
What this means is that the garbage collector knows exactly what
is an object reference and what is just data. The use of direct
references to objects on the heap in a Java HotSpot VM instead of
using object handles. This increased knowledge means that
memory fragmentation can be reduced which results in a more
compact memory footprint.

The second improvement is in the use of generational copying.
Java creates a large number of objects on the heap and often
these objects are short lived. By placing newly created objects in a
memory bucket, waiting for the bucket to fill up and then only
copy the remaining live objects to a new area the block of memory
that the bucket used can be freed in one block. This means that
the VM does not have to search for a hole to fit each new object in
the heap and means that smaller sections of memory need to be
manipulated at a time.

For older objects the garbage collector makes a sweep through the

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html (5 of 9) [2001-6-13 8:13:18]

heap and compacts holes from dead objects directly, removing the
need for a free list used in earlier garbage collection algorithms.

The third area of improvement is to remove the perception of
garbage collection pauses by staggering the compaction of large
free object spaces into smaller groups and compacting them
incrementally.

Fast Thread Synchronization

The Java HotSpot VM also improves existing synchronized code.
Synchronized methods and code blocks have always had a
performance overhead when run in a Java VM. The Java HotSpot
implements the monitor entry and exit synchronization points itself
and does not depend on the local OS to provide this
synchronization. This results in a large speed improvement
especially to often heavily synchronized GUI applications.

Just-In-Time Compilers

The simplest tool used to increase the performance of your
application is the Just-In-Time (JIT) compiler. A JIT is a code
generator that converts Java bytecode into native machine code.
Java programs invoked with a JIT generally run much faster than
when the bytecode is executed by the interpreter. The Java
Hotspot VM removes the need for a JIT compiler in most cases
however you may still find the JIT compiler being used in earlier
releases.

The JIT compiler was first made available as a performance update
in the Java Development Kit (JDKTM) 1.1.6 software release and is
now a standard tool invoked whenever you use the java interpreter
command in the Java 2 platform release. You can disable the JIT
compiler using the -Djava.compiler=NONE option to the Java VM. This
is covered in more detail at the end of the JIT section.

How do JIT Compilers work?

JIT compilers are supplied as standalone platform-dependent
native libraries. If the JIT Compiler library exists, the Java VM
initializes Java Native Interface (JNI) native code hooks to call JIT
functions available in that library instead of the equivalent function
in the interpreter.

The java.lang.Compiler class is used to load the native library and
start the initialization inside the JIT compiler.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html (6 of 9) [2001-6-13 8:13:18]

When the Java VM invokes a Java method, it uses an invoker
method as specified in the method block of the loaded class object.
The Java VM has several invoker methods, for example, a different
invoker is used if the method is synchronized or if it is a native
method.

The JIT compiler uses its own invoker. Sun production releases
check the method access bit for value ACC_MACHINE_COMPILED to
notify the interpreter that the code for this method has already
been compiled and stored in the loaded class.

When does the code become JIT compiled code?

When a method is called the first time the JIT compiler compiles
the method block into native code for this method and stored that
in the code block for that method.

Once the code has been compiled the ACC_MACHINE_COMPILED bit,
which is used on the Sun platform, is set.

How can I see what the JIT compiler is doing?

The _JIT_ARGS environment variable allows simple control of the
Sun Solaris JIT compiler. Two useful values are trace and
exclude(list). To exclude the methods from the InlineMe example
and show a trace set _JIT_ARGS as follows:

Unix:
export _JIT_ARGS="trace exclude(InlineMe.addCount
 InlineMe.method1)"

$ java InlineMe
Initializing the JIT library ...
DYNAMICALLY COMPILING java/lang/System.getProperty
 mb=0x63e74
DYNAMICALLY COMPILING java/util/Properties.getProperty
 mb=0x6de74
DYNAMICALLY COMPILING java/util/Hashtable.get
 mb=0x714ec
DYNAMICALLY COMPILING java/lang/String.hashCode
 mb=0x44aec
DYNAMICALLY COMPILING java/lang/String.equals
 mb=0x447f8
DYNAMICALLY COMPILING java/lang/String.valueOf
 mb=0x454c4
DYNAMICALLY COMPILING java/lang/String.toString
 mb=0x451d0
DYNAMICALLY COMPILING java/lang/StringBuffer.<init>
 mb=0x7d690

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html (7 of 9) [2001-6-13 8:13:18]

 <<<< Inlined java/lang/String.length (4)

Notice that inlined methods such as String.length are exempt. The
String.length is also a special method as it is normally compiled
into an internal shortcut bytecode by the Java Interpreter. When
using the JIT compiler these optimizations provided by the Java
Interpreter are disabled to enable the JIT compiler to understand
which method is being called.

How to use the JIT to your advantage

The first thing to remember is that the JIT compiler achieves most
of its speed improvements the second time it calls a method. The
JIT compiler does compile the whole method instead of interpreting
it line by line which can also be a performance gain for when
running an application with the JIT enabled. This means that if
code is only called once you will not see a significant performance
gain. The JIT compiler also ignores class constructors so if possible
keep constructor code to a minimum.

The JIT compiler also achieves a minor performance gain by not
pre-checking certain Java boundary conditions such as Null pointer
or array out of bounds exceptions. The only way the JIT compiler
knows it has a null pointer exception is by a signal raised by the
operating system. Because the signal comes from the operating
system and not the Java VM, your program takes a performance
hit. To ensure the best performance when running an application
with the JIT, make sure your code is very clean with no errors like
Null pointer or array out of bounds exceptions.

You might want to disable the JIT compiler if you are running the
Java VM in remote debug mode, or if you want to see source line
numbers instead of the label (Compiled Code) in your Java stack
traces. To disable the JIT compiler, supply a blank or invalid name
for the name of the JIT compiler when you invoke the interpreter
command. The following examples show the javac command to
compile the source code into bytecodes, and two forms of the java
command to invoke the interpreter without the JIT compiler.

 javac MyClass.java
 java -Djava.compiler=NONE MyClass

or

 javac MyClass.java
 java -Djava.compiler="" MyClass

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html (8 of 9) [2001-6-13 8:13:18]

Third-Party Tools

Some of the other tools available include those that reduce the
size of the generated Java class files. The Java class file contains
an area called a constant pool. The constant pool keeps a list of
strings and other information for the class file in one place for
reference. One of the pieces of information available in the
constant pool are the method and field name.

The class file refers to a field in the class as a reference to an entry
in the constant pool. This means that as long as the references
stay the same, it does not matter what the values stored in the
constant pool are. This knowledge is exploited by several tools that
rewrite the names of the field and methods in the constant pool
into shortened names. This technique can reduce the class file by a
significant percentage with the benefit that a smaller class file
means a shorter network download.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html (9 of 9) [2001-6-13 8:13:18]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 8: Performance Analysis

Training Index

Writing Advanced Applications
Chapter 8 Continued: Performance Analysis

[<<BACK] [CONTENTS] [NEXT>>]

Another way to improve performance is with performance analysis.
Performance analysis is looking at program execution to pinpoint
where bottlenecks or other performance problems such as memory
leaks might occur. Once you know where potential touble spots
are, you can change your code to remove or reduce their impact.

● Profiling
● Analyze a Program
● Operating System Performance Tools

Profiling

The JavaTM Virtual Machines (VMs) have had the ability to provide
simple profile reports since Java Development Kit (JDKTM) 1.0.2.
However, the information they provided was limited to a sorted list
of method calls a program had called.

The Java® 2 platform software provides much better profiling
capabilities than previously available and analysis of this generated
data has been made easier by the emergence of a Heap Analysis
Tool (HAT). The heap analysis tool, as its name implies, lets you
analyze profile reports of the heap. The heap is a block of memory
the Java VM uses when it is running. The heap analysis tool lets
you generate reports on objects that were used to run your
application. Not only can you get a listing of the most frequently
called methods and the memory used in calling those methods, but
you can also track down memory leaks. Memory leaks can have a
significant impact on performance.

Download the Heap Analysis tool:

● binary

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf3.html (1 of 11) [2001-6-13 8:13:23]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/hat_bin.zip

Technology Centers

Writing Advanced Applications, Chapter 8: Performance Analysis

● source

Analyze a Program

To analyze the TableExample3 program included in the
demo/jfc/Table directory in the Java 2 platform download, you need
to generate a profile report. The simplest report to generate is a
text profile. To generate a text profile, run the application with the -
Xhprof parameter. In the final release of the Java 2 platform
software, this option was renamed -Xrunhprof. To see a list of the
currently available options run the command

java -Xrunhprof:help
Hprof usage: -Xrunhprof[:help]|[<option>=<value>, ...]

Option Name and Value Description Default

--------------------- ----------- -------

heap=dump|sites|all heap profiling all

cpu=samples|times|old CPU usage off

monitor=y|n
monitor
contention

n

format=a|b
ascii or binary
output

a

file=<file>
write data to
file

java.hprof(.txt for
ascii)

net=<host>:<port>
send data over a
socket

write to file

depth=<size> stack trace depth 4

cutoff=<value>
output cutoff
point

0.0001

lineno=y|n
line number in
traces

y

thread=y|n thread in traces? n

doe=y|n dump on exit? y

Example: java -Xrunhprof:cpu=samples,file=log.txt,
 depth=3 FooClass

The following invocation creates a text output file that you can
view without the heap analysis tool called java.hprof.txt when the
program generates a stack trace or exits. A different invocation is
used to create a binary file to use with the heap analysis tool.

 java -Xrunhprof TableExample3

 d:\jdk12\demo\jfc\Table> java -Xrunhprof TableExample3
 Dumping Java heap ... allocation sites ... done.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf3.html (2 of 11) [2001-6-13 8:13:23]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/hat_src.zip

The profile option literally logs every object created on the heap,
so even just starting and stopping the small TableExample3 program
results in a four megabyte report file. Although the heap analysis
tool uses a binary version of this file and provides a summary,
there are some quick and easy things you can learn from the text
file without using the heap analysis tool.

Note: To list all available options, use
java -Xrunhprof:help

View the Text File

Choose an editor that can handle large files and go to the end of
this file. There could be hundreds of thousands of lines, so use a
shortcut instead of scrolling, or search for the words SITES BEGIN.
You should see a list of lines that start with an increasing rank
number followed by two percentage numbers. The first entry in
this list, should look similar to the example below:

SITES BEGIN (ordered by live bytes)
 Sun Dec 20 16:33:28 1998

percent live alloc'ed stack class

rank self accum bytes objs bytes objs trace name

1 55.86% 55.86% 826516 5 826516 5 3981 [S

The [S notation at the end of the last line above indicates the first
entry is an array of the short, a primitive type. This is expected
with Swing or Abstract Window Toolkit (AWT) applications. The five
count under the objs header mean there are currently five of these
arrays, there have only been five in the lifetime of this application,
and they take up 826516 bytes. The reference key to this object is
the value listed under stack trace. To find where this object was
created in this example, search for TRACE 3981. You will see the
following:

TRACE 3981:
java/awt/image/DataBufferUShort.<init>(
 DataBufferUShort.java:50)
java/awt/image/Raster.createPackedRaster(
 Raster.java:400)
java/awt/image/DirectColorModel.
 createCompatibleWritableRaster(
 DirectColorModel.java:641)
sun/awt/windows/WComponentPeer.createImage(
 WComponentPeer.java:186)

The TableExample3 code sets a scrollpane that is 700 by 300. When

Writing Advanced Applications, Chapter 8: Performance Analysis

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf3.html (3 of 11) [2001-6-13 8:13:23]

you look at the source of Raster.java, which is in the src.jar file,
you find these statements at line 400:

 case DataBuffer.TYPE_USHORT:
 d = new DataBufferUShort(w*h);
 break;

The values w and h are the width and height from the createImage
call at the start of TRACE 3981. The DataBufferUShort constructor
creates and array of shorts as follows:

 data = new short[size];

where size is w*h. So, in theory there should be an entry for an
array of 210000 elements. You look for each instantiation of this
class by searching for trace=3981. One of the five entries will look
like this:

 OBJ 5ca1fc0 (sz=28, trace=3979,
 class=java/awt/image/DataBufferUShort@9a2570)
 data 5ca1670
 bankdata 5ca1f90
 offsets 5ca1340
 ARR 5ca1340 (sz=4, trace=3980, nelems=1,
 elem type=int)
 ARR 5ca1670 (sz=420004, trace=3981, nelems=210000,
 elem type=short)
 ARR 5ca1f90 (sz=12, trace=3982, nelems=1,
 elem type=[S@9a2d90)
 [0] 5ca1670

You can see that the data value of this raster image references an
array 5ca1670 which in turns lists 210000 elements of a short of
size 2. This means 420004 bytes of memory are used in this array.

From this data you can conclude that the TableExample3 program
uses nearly 0.5Mb to map each table. If the example application is
running on a small memory machine, you should make sure you
do not keep unnecessary references to large tables or images that
are built by the createImage method.

The Heap Analysis Tool

The Heap Analysis tool can analyze the same data for you, but
requires a binary report file as input. You can generate a binary
report file as follows:

 java -Xrunhprof:file=TableExample3.hprof,format=b
 TableExample3

To generate the binary report, close the TableExample3 window. The

Writing Advanced Applications, Chapter 8: Performance Analysis

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf3.html (4 of 11) [2001-6-13 8:13:23]

binary report file TableExample3.hprof is created when the program
exits. The Heap Analysis tool starts an HTTP Server that analyzes
the binary profile file and displays the results in HTML that you can
view with a browser.

You can get a copy of the Heap Analysis Tool from the
java.sun.com site. Once you install it, you run shell and batch
scripts in the installed bin directory so you can start the Heap
Analysis Tool server as follows:

 >hat TableExample3.hprof
 Started HCODEP server on port 7000
 Reading from /tmp/TableExample3.hprof...
 Dump file created Tue Jan 05 13:28:59 PST 1999
 Snapshot read, resolving...
 Resolving 17854 objects...
 Chasing references,
 expect 35 dots.......................
 Eliminating duplicate
 references.........................
 Snapshot resolved.
 Server is ready.

The above output tells you an HTTP server is started on port 7000
by default. To view this report enter the url http://localhost:7000
or http://your_machine_name:7000 in your web browser. If you
have problems starting the server using the scripts, you can
alternatively run the application by including the hat.zip classes
file on your CLASSPATH and use the following command:

 java hat.Main TableExample3.hprof

The default report view contains a list of all the classes. At the
bottom of this initial page are the following two key report options:

 Show all members of the rootset
 Show instance counts for all classes

If you select the Show all members of the rootset link, you see a list
of the following references because these reference are likely
targets for potential memory leaks.

 Java Static References
 Busy Monitor References
 JNI Global References
 JNI Local References
 System Class References

What youn look for here are instances in the application that have
references to objects that have a risk of not being garbage
collected. This can sometimes occur in the case of JNI if memory is
allocated for an object, the memory is left to the garbage collector

Writing Advanced Applications, Chapter 8: Performance Analysis

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf3.html (5 of 11) [2001-6-13 8:13:23]

http://java.sun.com/

to free up, and the garbage collector does not have the information
it needs to do it. In this list of references, you are mainly
interested in a large number of references to objects or objects of
a large size.

The other key report is the Show instance counts for all classes.
This lists the number of calls to a particular method. The String
and Character array objects, [S and [C, are always going to be high
on this list, but some objects are a bit more intriguing. Why are
there 323 instances of java.util.SimpleTimeZone for example?

 5109 instances of class java.lang.String
 5095 instances of class [C
 2210 instances of class java.util.Hashtable$Entry
 968 instances of class java.lang.Class
 407 instances of class [Ljava.lang.String;
 323 instances of class java.util.SimpleTimeZone
 305 instances of class
 sun.java2d.loops.GraphicsPrimitiveProxy
 304 instances of class java.util.HashMap$Entry
 269 instances of class [I
 182 instances of class [Ljava.util.Hashtable$Entry;
 170 instances of class java.util.Hashtable
 138 instances of class java.util.jar.Attributes$Name
 131 instances of class java.util.HashMap
 131 instances of class [Ljava.util.HashMap$Entry;
 130 instances of class [Ljava.lang.Object;
 105 instances of class java.util.jar.Attributes

To get more information on the SimpleTimeZone instances, click on
the link (the line beginning with 323). This will list all 323
references and calculate how much memory has been used. In this
example, 21964 bytes have been used.

 Instances of java.util.SimpleTimeZone

 class java.util.SimpleTimeZone

 java.util.SimpleTimeZone@0x004f48c0 (68 bytes)
 java.util.SimpleTimeZone@0x003d5ad8 (68 bytes)
 java.util.SimpleTimeZone@0x004fae88 (68 bytes)

 Total of 323 instances occupying 21964 bytes.

If you click on one of these SimpleTimeZone instances, you see
where this object was allocated.

 Object allocated from:

 java.util.TimeZoneData.<clinit>(()V) :
 TimeZone.java line 1222
 java.util.TimeZone.getTimeZone((Ljava/lang/String;)
 Ljava/util/TimeZone;) :

Writing Advanced Applications, Chapter 8: Performance Analysis

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf3.html (6 of 11) [2001-6-13 8:13:23]

 TimeZone.java line (compiled method)
 java.util.TimeZone.getDefault(
 ()Ljava/util/TimeZone;) :
 TimeZone.java line (compiled method)
 java.text.SimpleDateFormat.initialize(
 (Ljava/util/Locale;)V) :
 SimpleDateFormat.java line (compiled method)

In this example the object was allocated from TimeZone.java. The
source to this file is in the standard src.jar file, and on examining
this file, you can see that indeed there are nearly 300 of these
objects in memory.

 static SimpleTimeZone zones[] = {
 // The following data is current as of 1998.
 // Total Unix zones: 343
 // Total Java zones: 289
 // Not all Unix zones become Java zones due to
 // duplication and overlap.
 //---
 new SimpleTimeZone(-11*ONE_HOUR,
 "Pacific/Niue" /*NUT*/),

Unfortunately, you have no control over the memory used in this
example because it is allocated when the program first requests a
default timezone. However, this same technique can be applied to
analyzing your own application where you may be able to make
some improvements

Where the Application Spends its Time

Again, you can use the -Xrunhprof parameter to get information
about the time the application spent processing a particular
method.

You can use one of two CPU profiling options to achieve this. The
first option is cpu=samples. This option reports the result of a
sampling of the running threads of the Java VM to which a
statistical count of the frequency of the occurrence of a particular
method is used to find busy sections of the applications. The
second option is cpu=times, which measures the time taken by
individual methods and generates a sorted list ranked as a total
percentage of the CPU time taken by the application.

By using the cpu=times option, you should see something similiar to
this at the end of the output file

CPU TIME (ms) BEGIN (total = 11080)
 Fri Jan 8 16:40:59 1999
rank self accum count trace method
 1 13.81% 13.81% 1 437 sun/

Writing Advanced Applications, Chapter 8: Performance Analysis

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf3.html (7 of 11) [2001-6-13 8:13:23]

 awt/X11GraphicsEnvironment.initDisplay
 2 2.35% 16.16% 4 456 java/
 lang/ClassLoader$NativeLibrary.load
 3 0.99% 17.15% 46 401 java/
 lang/ClassLoader.findBootstrapClass

If you contrast this with the cpu=samples output, you see the
difference between how often a method appears during the
runtime of the application in the samples output compared to how
long that method took in the times output.

CPU SAMPLES BEGIN (total = 14520)
 Sat Jan 09 17:14:47 1999
rank self accum count trace method
 1 2.93% 2.93% 425 2532 sun/
 awt/windows/WGraphics.W32LockViewResources
 2 1.63% 4.56% 237 763 sun/
 awt/windows/WToolkit.eventLoop
 3 1.35% 5.91% 196 1347 java/
 text/DecimalFormat.<init>

The W32LockView method, which calls a native windows lock routine,
is called 425 times. So when it is sampled it appears in the active
runnings threads because it also takes time to complete. In
contrast, the initDisplay method is only called once, but it is the
method that takes the longest time to complete in real time.

Operating System Performance Tools

Sometimes the performance bottleneck occurs at the system or
operating system level. This is because Java VM depends on many
operating system libraries for functionality such as disk access or
networking. However, what occurs in these libraries after the Java
VM calls them is beyond the reach of most profiling tools for the
Java platform.

Here is a list of tools you can use to analyze performance problems
on some common operating systems.

Solaris Platform

System accounting reports, sar, reports the activity of the system
in terms of disk IO, user program activity, and system level
activity. If your application is using excessive amounts of memory,
it may require disk swap space, which will show up as high
percentages in the WIO column. User programs that get stuck in a
busy loop show a high percentage in the user column:

developer$ sar 1 10

Writing Advanced Applications, Chapter 8: Performance Analysis

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf3.html (8 of 11) [2001-6-13 8:13:23]

SunOS developer 5.6 Generic_105181-09 sun4u
 02/05/99

11:20:29 %usr %sys %wio %idle
11:20:30 30 6 9 55
11:20:31 27 0 3 70
11:20:32 25 1 1 73
11:20:33 25 1 0 74
11:20:34 27 0 1 72

The truss command traces and records the details of every system
call called by the Java VM to the Solaris kernel. A common way to
run truss is:

 truss -f -o /tmp/output -p <process id>

The -f parameter follows any child processes that are created, the -
o parameter writes the output to the named file, and the -p
parameter traces an already running program from its process ID.
Alternately, you can replace -p <process id> with the Java VM, for
example:

 truss -f -o /tmp/output java MyDaemon

The /tmp/output is used to store the truss output, which should
look similiar to the following:

15573: execve("/usr/local/java/jdk1.2/solaris/
 bin/java", 0xEFFFF2DC,
 0xEFFFF2E8) argc = 4
15573: open("/dev/zero", O_RDONLY) = 3
15573: mmap(0x00000000, 8192,
 PROT_READ|PROT_WRITE|PROT_EXEC,
 MAP_PRIVATE, 3, 0) = 0xEF7C0000
15573: open("/home/calvin/java/native4/libsocket.so.1",
 O_RDONLY) Err#2 ENOENT
15573: open("/usr/lib/libsocket.so.1",
 O_RDONLY) = 4
15573: fstat(4, 0xEFFFEF6C) = 0
15573: mmap(0x00000000, 8192, PROT_READ|PROT_EXEC,
 MAP_SHARED, 4, 0) = 0xEF7B00 00
15573: mmap(0x00000000, 122880, PROT_READ|PROT_EXEC,
 MAP_PRIVATE, 4, 0) = 0xEF7 80000
15573: munmap(0xEF78E000, 57344) = 0
15573: mmap(0xEF79C000, 5393,
 PROT_READ|PROT_WRITE|PROT_EXEC,
 MAP_PRIVATE|MAP_FIXED, 4, 49152)
 = 0xEF79C000
15573: close(4) = 0

In the truss output, look for files that fail when opened due to
access problems, such as error ENOPERM, or a missing file error

Writing Advanced Applications, Chapter 8: Performance Analysis

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf3.html (9 of 11) [2001-6-13 8:13:23]

ENOENT. You can also track data read or written with the truss
parameters -rall to log all data read or -wall to log all data written
by the program. With these parameters, it is possible to anaylze
data sent over a network or to a local disk.

Linux Platform

Linux has a trace command called strace. It traces systems calls to
the underlying Linux kernel. This example traces the SpreadSheet
example in the JDK demo directory.

$ strace -f -o /tmp/output
 java sun.applet.AppletViewer
 example1.html
$ cat /tmp/output

639 execve("/root/java/jdk117_v1at/java/
 jdk117_v1a/bin/java", ["java",
 "sun.applet.AppletViewer ",
 "example1.html"], [/* 21 vars */]) = 0
639 brk(0) = 0x809355c
639 open("/etc/ld.so.preload", O_RDONLY) = -1
 ENOENT (No such file or directory)
639 open("/etc/ld.so.cache", O_RDONLY) = 4
639 fstat(4, {st_mode=0, st_size=0, ...}) = 0
639 mmap(0, 14773, PROT_READ, MAP_PRIVATE,
 4, 0) = 0x4000b000
639 close(4) = 0
639 open("/lib/libtermcap.so.2", O_RDONLY) = 4
639 mmap(0, 4096, PROT_READ, MAP_PRIVATE,
 4, 0) = 0x4000f000

To obtain system information similar to the Solaris sar command,
read the contents of the file /proc/stat. The format of this file is
described in the proc man page. Look at the cpu line to get the user
and system time.

 cpu 4827 4 1636 168329

In the above example, the cpu line indicates 48.27 seconds in user
space, 0.04 at nice priority, 16.36 seconds processing system
calls, and 168 seconds idle. This is a running total; individual
entries for each process are available in /proc/<process_id>/stat.

Windows95/98/NT Platforms

There are no standard performance analysis tools included on this
platform, but the following tools are available by way of freeware
or shareware resources such as http://www.download.com .

Runtime memory analysis: Memory meter

Writing Advanced Applications, Chapter 8: Performance Analysis

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf3.html (10 of 11) [2001-6-13 8:13:23]

http://www.download.com/

Network analysis: Traceplus

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 8: Performance Analysis

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf3.html (11 of 11) [2001-6-13 8:13:23]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 8: Caching Client/Server Applications

Training Index

Writing Advanced Applications
Chapter 8 Continued: Caching Client/Server Applications

[<<BACK] [CONTENTS] [NEXT>>]

Caching is one of the first techniques used to improve the
performance of web browsers and web servers. The browser cache
makes network lookup operations unnecessary because a recent
copy of the file is kept in the local cache, and the web server cache
reduces the cost of loading the file from disk for each request. This
section explains how you can use caching in a similar way to
improve performance in many client/server applications written in
the JavaTM programming language.

The java.util.Collections API available in the Java® 2 Software
Development Kit (SDK) software makes implementing a cache
simple. This API provides the HashMap class, which works well for
caching one object, and the LinkedList class, which works well in
combination with the HashMap class for caching many objects.

● Caching One Object
● Caching Many Objects

Caching One Object

A HashMap object stores data in key and value pairs. When you put
a data value in the HashMap, you assign it a key and later use that
key to retrieve the data.

A HashMap object is very similar to a Hashtable and can be used to
keep a temporary copy of previously generated results. Objects
kept in the HashMap cache could, for example, be a list of completed
auction results.

In this case, the results of a JDBC query might be requested
hundreds of times a second by persons wanting to know who was
the highest bidder, but the completed results lists only actually

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf4.html (1 of 7) [2001-6-13 8:13:27]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 8: Caching Client/Server Applications

changes once a minute as each auction completes. You can write
your program to retrieve unchanged objects from the results cache
instead of querying the database every time and gain a significant
performance improvement.

This code example runs a database query once a minute, and
returns cached copies for requests that come between the queries.

import java.util.*;
import java.io.*;

class DBCacheRecord {
 Object data;
 long time;

 public DBCacheRecord(Object results, long when) {
 time=when;
 data=results;
 }
 public Object getResults() {
 return data;
 }
 public long getLastModified() {
 return time;
 }
}

public class DBCache {
 Map cache;

 public DBCache() {
 cache = new HashMap();
 }

 public Object getDBData(String dbcommand) {
 if(!cache.containsKey(dbcommand)) {
 synchronized(cache) {
 cache.put(dbcommand, readDBData(dbcommand));
 }
 } else {
 if((new Date().getTime()) -
 ((DBCacheRecord)cache.get(
 dbcommand)).getLastModified()>=1000) {
 synchronized(cache) {
 cache.put(dbcommand, readDBData(dbcommand));
 }
 }
 }
 return ((DBCacheRecord)cache.get(
 dbcommand)).getResults();
 }

 public Object readDBData(String dbcommand) {

/*Insert your JDBC code here For Example:
 ResultSet results=stmt.executeQuery(dbcommand);
*/
 String results="example results";
 return(new DBCacheRecord(results,new

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf4.html (2 of 7) [2001-6-13 8:13:27]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/DBCache.java

 Date().getTime()));

 }

 public static void main(String args[]) {
 DBCache d1=new DBCache();
 for(int i=1;i<=20;i++) {
 d1.getDBData(
 "select count(*) from results where
 TO_DATE(results.completed) <=SYSDATE");
 }
 }
}

Caching Many Objects

Sometimes you will want to cache more than one object. For
example, you might want to keep the most recently accessed files
on a web server in a cache. If you use a HashMap object for a
purpose like this, it will continue to grow and use a lot of memory.

If your machine has large amounts of memory and only a small
number of objects to cache then a growing HashMap may not be a
problem. However, if you are intending to cache alot of objects
then you may find that keeping only the most recent objects in the
cache provides the best use of the machines memory. You can
combine a HashMap object with a LinkedList to create what is called
a Most Recently Used (MRU) cache.

Note: There are other techniques used to constrain
cache size besides MRU. MRU is one of the simpler
algorithms.

With an MRU cache, you can place a constraint on which objects
remain in cache, and thereby, control the size of the cache. There
are three main operations that the MRU cache has to perform:

● If the cache is not full, new objects not already in the cache
are inserted at the head of the list.

● If the cache is not full and the object to be inserted already
exists in the cache, it is moved to the head of the list.

● If the cache is full and a new object is to be inserted, the last
object in the cache is removed and the new object is inserted
at the head of the list.

This diagram shows how the LinkedList and HashMap work together
to implement the operations described above. A discussion of the

Writing Advanced Applications, Chapter 8: Caching Client/Server Applications

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf4.html (3 of 7) [2001-6-13 8:13:27]

diagram follows.

MRU Cache with LinkedList and HashMap

The LinkedList provides the queue mechanism, and the entries in
the LinkedList contain the key to the data in the HashMap. To add a
new entry to the front of the list, the addFirst method is called.

● If the list is already full, the removeLast method is called and
the data entry is also removed from the HashMap.

● If an entry was already in the list, it is removed with a call to
the remove method and inserted at the front of the list with a
call to the addFirst method.

The Collections API does not implement locking, so if you remove
entries from or add entries to LinkedList or HashMap objects, you
need to lock access to these objects. You can also use a Vector or
ArrayList to get the same results as shown in the code below with
the LinkedList.

This code example uses an MRU cache to keep a cache of files
loaded from disk. When a file is requested, the program checks to
see if the file is in the cache. If the file is not in the cache, the
program reads the file from disk and places the cache copy at the
beginning of the list.

Writing Advanced Applications, Chapter 8: Caching Client/Server Applications

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf4.html (4 of 7) [2001-6-13 8:13:27]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/MRUCache.java

If the file is in cache, the program compares the modification times
of the file and cache entry.

● If the cache entry time is older, the program reads the file
from disk, removes the cache copy, and places a new copy in
the cache at the front of the LinkedList.

● If the file time is older, the program gets the file from the
cache and moves the cache copy to the front of the list.

import java.util.*;
import java.io.*;

class myFile {
 long lastmodified;
 String contents;

 public myFile(long last, String data) {
 lastmodified=last;
 contents=data;
 }
 public long getLastModified() {
 return lastmodified;
 }
 public String getContents() {
 return contents;
 }
}

public class MRUCache {

 Map cache;
 LinkedList mrulist;
 int cachesize;

 public MRUCache(int max) {
 cache = new HashMap();
 mrulist= new LinkedList();
 cachesize=max;
 }

 public String getFile(String fname) {
 if(!cache.containsKey(fname)) {
 synchronized(cache) {
 if(mrulist.size() >=cachesize) {
 cache.remove(mrulist.getLast());
 mrulist.removeLast();
 }
 cache.put(fname, readFile(fname));
 mrulist.addFirst(fname);
 }
 } else {
 if((new File(fname).lastModified())>
 ((myFile)cache.get(fname)).getLastModified()) {
 synchronized(cache) {
 cache.put(fname, readFile(fname));
 }
 }

Writing Advanced Applications, Chapter 8: Caching Client/Server Applications

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf4.html (5 of 7) [2001-6-13 8:13:27]

 synchronized(cache) {
 mrulist.remove(fname);
 mrulist.addFirst(fname);
 }
 }
 return ((myFile)cache.get(fname)).getContents();
 }

 public myFile readFile(String name) {
 File f = new File(name);
 StringBuffer filecontents= new StringBuffer();

 try {
 BufferedReader br=new BufferedReader(
 new FileReader(f));
 String line;

 while((line =br.readLine()) != null) {
 filecontents.append(line);
 }
 } catch (FileNotFoundException fnfe){
 return (null);
 } catch (IOException ioe) {
 return (null);
 }
 return (new myFile(f.lastModified(),
 filecontents.toString()));
 }

 public void printList() {
 for(int i=0;i<mrulist.size();i++) {
 System.out.println("item "+i+"="+mrulist.get(i));
 }
 }

 public static void main(String args[]) {

 // Number of entries in MRU cache is set to 10
 MRUCache h1=new MRUCache(10);
 for(int i=1;i<=20;i++) {
 // files are stored in a subdirectory called data
 h1.getFile("data"+File.separatorChar+i);
 }
 h1.printList();
 }
}

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

Writing Advanced Applications, Chapter 8: Caching Client/Server Applications

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf4.html (6 of 7) [2001-6-13 8:13:27]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Chapter 8: Caching Client/Server Applications

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf4.html (7 of 7) [2001-6-13 8:13:27]

http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Chapter 9: Distributed Computing

Training Index

Writing Advanced Applications
Chapter 9: Deploying the Auction Application

[<<BACK] [CONTENTS] [NEXT>>]

With the auction application tested, debugged, and tuned, you are
ready to deploy it. Deployment involves bundling the application
files, moving the application files to their production locations,
installing Java Plug-In so auction administrators can run the
Administration applet from their browsers, and installing the
Administration applet policy file. Java Plug-In is needed because
the Administration applet is written with Java Development Kit
(JDKTM) 1.2 APIs, but the administrators' browsers might run an
earlier version of the Java Runtime EnvironmentTM (JRE) software.

This chapter explains how to use the Java Archive (JAR) file format
to bundle and deploy the application files, and how to install Java
Plug-In and a security policy file for the SolarisTM and Win32
platforms to run the Administration applet.

● Java Archive File Format
● Solaris Platform
● Win32 Platform

In a Rush?

This table links you directly to specific topics.

Topic Section

JAR File Format ● Bundle and Deploy the HTML Files
● Bundle and Deploy the Enterprise Beans
● Bundle and Deploy the Administration

Applet

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/deploy.html (1 of 2) [2001-6-13 8:13:30]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Chapter 9: Distributed Computing

Solaris Platform ● Get Downloads
● Extract Downloaded Files
● Install Java Plug-In
● Install Java Plug-In Patches
● Install Netscape Communicator
● Check the Installation
● Convert HTML Files
● Security Policy File
● Run the Administration Applet

Win32 Platform ● Download and Install
● Convert HTML Files
● Security Policy Files
● Run the Administration Applet

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/deploy.html (2 of 2) [2001-6-13 8:13:30]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Java Applications, Chapter 9: Distributed Computing

Training Index

Writing Advanced Applications
Chapter 9 Continued: JAR File Format

[<<BACK] [CONTENTS] [NEXT>>]

Java TM Archive (JAR) file format is a compression and file
packaging format and tool for bundling executable files with other
related application files so they can be deployed as a single unit.
The auction application, has three units of files to deploy to three
different locations.

1. The HTML files that make up the auction application user
interface deploy to a publicly accessible location under the
web server.

2. The Enterprise Beans deploy to an internal location accessible
to your production installation of the Enterprise JavaBeansTM
server.

3. The Administration applet deploys to an internal location
accessible to auction administrators where it is run from their
browsers.

This section shows you how to use the jar tool to bundle and
deploy the application files.

● Bundle and Deploy the HTML Files
● Bundle and Deploy the Enterprise Beans
● Bundle and Deploy the Administration Applet

Bundle and Deploy the HTML Files

Here is the list of HTML files that make up the auction application
user interface:

● all.html
● close.html
● details.html
● index.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jar.html (1 of 6) [2001-6-13 8:13:38]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/all.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/close.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/details.html

Technology Centers

Writing Advanced Java Applications, Chapter 9: Distributed Computing

● juggler.med.gif
● new.html
● registration.html
● search.html
● sell.html

Here is the jar command to bundle them. Everything goes on one
line. This command is executed in the same directory with the
files. If you execute the command from a directory other than
where the files are, specify the full or relative pathname as
appropriate.

 jar cvf HTML.jar all.html close.html details.html
 index.html juggler.med.gif new.html
 registration.html search.html sell.html

jar is the jar command. If you type jar with no options, you get
the following help screen. You can see from the help screen that
the cf options to the jar command mean create a new JAR file
named HTML.jar and put the list of files that follows into it. The new
JAR file is placed in the current directory.

kq6py% jar
Usage: jar {ctxu}[vfm0M] [jar-file] [manifest-file]
 [-C dir] files ...
Options:
 -c create new archive
 -t list table of contents for archive
 -x extract named (or all) files from archive
 -u update existing archive
 -v generate verbose output on standard output
 -f specify archive file name
 -m include manifest information from specified
 manifest file
 -0 store only; use no ZIP compression
 -M Do not create a manifest file for the entries
 -C change to the specified directory and include
 the following file
If any file is a directory then it is processed
recursively. The manifest file name and the archive
file name needs to be specified in the same order
the 'm' and 'f' flags are specified.

Example 1: to archive two class files into an archive
 called classes.jar:
 jar cvf classes.jar Foo.class Bar.class
Example 2: use an existing manifest file 'mymanifest'
 and archive all the files in the foo/ director
 into 'classes.jar':
 jar cvfm classes.jar mymanifest -C foo/ .

To deploy the HTML files, all you have to do is move the HTML.jar
file to a publicly accessible directory under the web server and

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jar.html (2 of 6) [2001-6-13 8:13:38]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/juggler.med.gif
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/new.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/registration.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/search.html
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Auction/sell.html

decompress the JAR file:

 jar xf HTML.jar

Note: If you included a full or relative pathname when
you added the files to the JAR file, the files are placed in
the same directory structure when they are unpacked.

Bundle and Deploy the Enterprise Beans

Some Enterprise JavaBeans servers create the JAR file for you.
However, if yours does not or if you just wonder how it's done, this
section describes the steps.

Here are the server-side files you need to deploy the Enterprise
Beans. This list is taken from the original auction application
described in Chapter 2: Auction Application Code before any
modifications were made to make the Enterprise Beans container
managed. Note the inclusion of the deployment descriptor, and the
container-generated stub and skel classes.

auction Package

Here are the application files in the auction package that make up
the AuctionServlet servlet and AuctionItemBean Enterprise Bean.
Because they are all to be installed in an auction directory
accessible to the production Enterprise JavaBeans server, bundle
them together so they can be unpacked in one step in the
destination directory and placed in the acution subdirectory..

● auction.AuctionServlet.class
● auction.AuctionItem.class
● auction.AuctionItemBean.class
● auction.AuctionItemHome.class
● auction.AuctionItemPK.class
● auction.DeploymentDescriptor.txt
● AuctionItemBeanHomeImpl_ServiceStub.class
● WLStub1h1153e3h2r4x3t5w6e82e6jd412c.class
● WLStub364c363d622h2j1j422a4oo2gm5o.class
● WLSkel1h1153e3h2r4x3t5w6e82e6jd412c.class
● WLSkel364c363d622h2j1j422a4oo2gm5o.class

Here is how to bundle them. Everything goes on one line, and the
command is executed one directory above where the class files are
located.

Unix:

Writing Advanced Java Applications, Chapter 9: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jar.html (3 of 6) [2001-6-13 8:13:38]

 jar cvf auction.jar auction/*.class

Win32:
 jar cvf auction.jar auction*.class

Once the JAR file is copied to the destination directory for the
Enterprise beans, unpack it as follows. The extraction creates an
auction directory with the class files in it.

 jar xv auction.jar

registration Package

Here are the application files in the registration package that
make up the Registration Enterprise Bean.

● registration.Registration.class
● registration.RegistrationBean.class
● registration.RegistrationHome.class
● registration.RegistrationPK.class
● auction.DeploymentDescriptor.txt
● RegistrationBeanHomeImpl_ServiceStub.class
● WLStub183w4u1f4e70p6j1r4k6z1x3f6yc21.class
● WLStub4z67s6n4k3sx131y4fi6w4x616p28.class
● WLSkel183w4u1f4e70p6j1r4k6z1x3f6yc21.class
● WLSkel4z67s6n4k3sx131y4fi6w4x616p28.class

Here is how to bundle them. Everything goes on one line, and the
command is executed one directory above where the class files are
located.

Unix:
 jar cvf registration.jar registration/*.class

Win32:
 jar cvf registration.jar registration*.class

Once the JAR file is copied to the destination directory for the
Enterprise beans, unpack it as follows. The extraction creates a
registration directory with the class files in it.

 jar xv registration.jar

bidder Package

Here are the application files in the bidder package that make up
the Bidder Enterprise Bean.

● bidder.Bidder.class
● bidder.BidderHome.class
● bidder.BidderBean.class
● auction.DeploymentDescriptor.txt
● BidderBeanEOImpl_ServiceStub.class
● BidderBeanHomeImpl_ServiceStub.class

Writing Advanced Java Applications, Chapter 9: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jar.html (4 of 6) [2001-6-13 8:13:38]

● WLStub1z35502726376oa1m4m395m4w5j1j5t.class
● WLStub5g4v1dm3m271tr4i5s4b4k6p376d5x.class
● WLSkel1z35502726376oa1m4m395m4w5j1j5t.class
● WLSkel5g4v1dm3m271tr4i5s4b4k6p376d5x.class

Here is how to bundle them. Everything goes on one line, and the
command is executed one directory above where the class files are
located.

Unix:
 jar cvf bidder.jar bidder/*.class

Win32:
 jar cvf bidder.jar bidder*.class

Once the JAR file is copied to the destination directory for the
Enterprise beans, unpack it as follows. The extraction creates a
bidder directory with the class files in it.

 jar xv bidder.jar

seller Package

Here are the application files in the seller package that make up
the Seller Enterprise Bean.

● seller.Seller.class
● seller.SellerHome.class
● seller.SellerBean.class
● auction.DeploymentDescriptor.txt
● SellerBeanEOImpl_ServiceStub.class
● SellerBeanHomeImpl_ServiceStub.class
● WLStub3xr4e731e6d2x3b3w5b693833v304q.class
● WLStub86w3x4p2x6m4b696q4kjp4p4p3b33.class
● WLSkel3xr4e731e6d2x3b3w5b693833v304q.class
● WLSkel86w3x4p2x6m4b696q4kjp4p4p3b33.class

Here is how to bundle them. Everything goes on one line, and the
command is executed one directory above where the class files are
located.

Unix:
 jar cvf seller.jar seller/*.class

Win32:
 jar cvf seller.jar seller*.class

Once the JAR file is copied to the destination directory for the
Enterprise beans, unpack it as follows. The extraction creates a
seller directory with the class files in it.

 jar xv seller.jar

Bundle and Deploy the Administration Applet

Writing Advanced Java Applications, Chapter 9: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jar.html (5 of 6) [2001-6-13 8:13:38]

The Administration applet family of files consists of the
AdminApplet.java and polfile.java files.

Here is the jar command to bundle them. Everything goes on one
line, and the command is executed where the policy file is located
which is one directory above where the class files are located.

Unix:
 jar cvf applet.jar admin/*.class polfile.java

Win32:
 jar cvf applet.jar admin*.class polfile.java

To deploy the applet, copy the applet.jar file to the destination
applet directory and extract it as follows. The extraction creates an
admin directory with the Administration applet class files in it.

 jar xf applet.jar

Note: The applet uses JDK 1.2 APIs. It needs a policy
file to access the printer and Java Plug-In to run in a pre-
JDK 1.2 browser. Information on running the applet with
Java Plug-In and a security policy file can be found in the
Solaris Platform and Win32 Platform sections that follow.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Java Applications, Chapter 9: Distributed Computing

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/jar.html (6 of 6) [2001-6-13 8:13:38]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/admin/AdminApplet.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/polfile.java
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html

Training Index

Writing Advanced Applications
Chapter 9 continued: SolarisTM Operating System

[<<BACK] [CONTENTS] [NEXT>>]

JavaTM Plug-in software lets you direct applets or JavaBeansTM
components on intranet web pages to run using the Java Runtime
Environment (JRE) instead of the web browser's default virtual
machine. The Java Plug-In works with Netscape Communicator and
Microsoft Internet Explorer.

Free downloads of all the software you need to install and use Java
Plug-In are available from the download page.

● Get Downloads
● Extract Downloaded Files
● Install Java Plug-In
● Install Java Plug-In Patches
● Install Netscape Communicator
● Check the Installation
● Install the HTML Converter
● Security Policy Files

• Types of Policy Files
• Installing the Policy File
• Changing the Name or Location
• Run the Administration Applet

Get Downloads

To install and use Java Plug-In on SolarisTM 2.6 or Solaris 7, you
need the following downloads. Put the downloads in a directory
anywhere you want.

● Java Plug-In for Solaris operating systems. It is available for
either Intel or Sparc platforms.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html (1 of 7) [2001-6-13 8:13:42]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://java.sun.com/products/plugin/1.2/download/all.html

Technology Centers

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html

● Java Plug-In patches for either Solaris 2.6 or Solaris 7,
depending on which one you have.

● Netscape Communicator 4.5.1 (webstart version).

● Java Plug-In HTML Converter
These instructions were tested on a Sun Microsystems Ultra 2
running Solaris 2.6 with Netscape Communicator 4.5.1.

Extract Downloaded Files

Go to the directory where you downloaded the files and extract
each one.

Extract Java Plug-In Files:
 zcat plugin-12-webstart-sparc.tar.Z | tar -xf -

Extract Patch Files for Solaris 2.6:
 zcat JPI1.2-Patches-Solaris2.6-sparc.tar.Z | tar -xf -

Extract Netscape Navigator 4.5.1:
 zcat NSCPcom_webstart_sparc.tar.Z | tar -xf -

Install Java Plug-In

The Java Plug-In download includes a user guide that you can view
in your browser from the following directory:

 plugin-12-webstart-sparc/Java_Plug-in_1.2.2/
 common/Docs/en/Users_Guide_Java_Plug-in.html

The user guide explains how to install Java Plug-In. There are
several easy ways to do it, and the command sequence below is
one quick way that installs Java Plug-In in the default /opt/NSCPcom
directory using the pkgadd command:

 su
 <root password>
 cd ~/plugin-12-webstart-sparc
 pkgadd -d ./Java_Plug-in_1.2.2/sparc/Product

Install Java Plug-In Patches

Before you can run Java Plug-In, you have to install the patches.
You install the patches one at a time as root. The following
command sequence goes to the patch directory, lists the files, and
issues the command to install the first patch:

 cd ~/JPI1.2-Patches-Solaris2.6-sparC
 su
 <password>
 kq6py#ls
 105210-19 105490-07 105568-13

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html (2 of 7) [2001-6-13 8:13:42]

 kq6py#./105210-19/installpatch 105210-19

You will see this output when the patch is successfully installed:

 Patch number 105210-19 has beenZ successfully
 installed.
 See /var/sadm/patch/105210-19/log for details

 Patch packages installed:
 SUNWarc
 SUNWcsu

Continue installing the patches one-by-one until all patches have
successfully installed. The user's guide provides a list of required
and suggested patches and links to where you can download
additional suggested patches if you want to install them.

Install Netscape Communicator

The extracted Netscape Communicator 4.5.1 files provide a user's
guide in the /home/monicap/NETSCAPE/Netscape_Communicator_4.51/
common/Docs/en directory that explains the installation. The following
command sequence is one easy way to do it with the pkgadd
command. By default, the installation puts Netscape
Communicator in the /opt/NSCPcom directory where your Java Plug-
In and patches are also installed.

When you extracted the NSCPcom_webstart_sparc.tar.Z download, it
placed the files in a NETSCAPE directory. From the NETSCAPE directory,
execute the following command sequence:

 cd ~/NETSCAPE/Netscape_Communicator_4.51/sparc/Product
 su
 <password>
 pkgadd -d .

Check the Installation

There are two ways to check your Java Plug-In, patch, and
Netscape Communicator installation.

1. Open the Netscape Help menu and select About Plug_Ins. You
will see a list of Mime types. Check this list against the list
presented in the user's guide. If your mime types are correct,
the installation is correct and complete.

2. Start the control panel applet by loading the
/opt/NSCPcom/j2pi/ControlPanel.html file. If the applet starts,
the installation is correct and complete.

The control panel lets you change the default settings used by Java
Plug-In at startup. All applets running inside Java Plug-In use
these settings.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html (3 of 7) [2001-6-13 8:13:42]

 cd /opt/NSCPcom/j2pi
 ControlPanel &

Install the HTML Converter

Your browser will not automatically use the Java Plug-In when you
load an HTML file with an applet. You have to download and run
the Java Plug-In HTML Converter on the HTML page that invokes
the applet to direct the applet ro run using the plug-in instead of
the browser's default runtime.

Unzip the Java Plug-In HTML Converter download:

 unzip htmlconv12.zip

Add the HTMLConverter.java program or its directory to your
CLASSPATH.

Security Policy File

The auction application uses an applet running in a browser for
administrative operations. In the JavaTM 2 platform, applets are
restricted to a sandbox-like environment and need permission to
access system resources outside their restricted environment.
Applets are restricted to read operations within their local
directory. All other access operations require permission.

Types of Policy Files

You need a policy file to grant access permissions to the
Administration applet. If the applet runs on a disk other than the
disk where the browser is running, the applet will also need to be
signed. See Signed Applets for information on signing and
deploying applets.

There are three kinds of policy files: system, user, and program.
The system policy file is located in
jdk1.2/jre/lib/security/java.policy or
jre1.2/lib/security/java.policy and contains permissions for
everyone on the system.

The user policy file is located in the user's home directory. The
user policy file provides a way to give certain users additional
permissions over those granted to everyone on the system. The
permissions in the system file are combined with the permissions
in the user file.

A program policy file can be located anywhere. It is specifically

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html (4 of 7) [2001-6-13 8:13:42]

named when an application is invoked with the java command or
when an applet is invoked with applet viewer. When an application
or applet is invoked with a specific policy file, the permissions in
that policy file take the place of (are not combined with)
permissions specified in the system or user policy file. Program
policy files are used for program testing or intranet deployment of
applets and applications.

Installing the Policy File

Place the security policy file in your home directory and name it
.java.policy. When the applet tries to perform an action that
requires a policy file with a permission, the policy file is loaded
from this directory and remains in effect until you exit and restart
the browser.

If an applet tries to perform an access operation without the right
permission, it quietly quits without raising either an applet or a
browser error.

Changing the Name or Location

You can change the name and/or location of the default system or
user policy file. Edit the jdk1.2/jre/lib/security/java.security or
jre1.2/lib/security/java.security file and add a third entry
specifying the name and location of an alternative policy file.

 policy.url.1=
 file:${java.home}/lib/security/java.policy
 policy.url.2=file:${user.home}/.java.policy
 policy.url.3=file:/<mypolicyfile path and name>

Run the Administration Applet

Copy the Java Archive (JAR) file with the Administration applet and
policy file to its final location. In this example, that location is the
/home/zelda/public_html directory. Next, extract the applet class file
and policy file from the JAR file:

 cp admin.jar /home/zelda/public_html
 jar xf applet.jar

The extraction places the policy file under public_html and creates
an admin directory under the public_html directory with the applet
class file in it. Rename the policy file in the public_html directory to
.java.policy and copy it to your home directory.

In the public_html directory, create an HTML file that invokes the
Administration applet class. Be sure to include the admin directory

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html (5 of 7) [2001-6-13 8:13:42]

when you specify the applet class to the CODE option. Note that
when using Java Plug-In, you cannot have the browser load the
class file from the Java Archive (JAR) file.

<HTML>
<BODY>
<APPLET CODE=admin/AdminApplet.class
 WIDTH=550
 HEIGHT=150>
</APPLET>
</BODY>
</HTML>

Start the HTML Converter.

 java HTMLConverter

In the HTML Converter graphical user interface, select One File:,
specify the path to the admin.html file, and click the Convert button.

After the conversion completes, load the admin.html file in your
browser.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html (6 of 7) [2001-6-13 8:13:42]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html (7 of 7) [2001-6-13 8:13:42]

http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/win.html

Training Index

Writing Advanced Applications
Chapter 9 continued: Win32 Platform

[<<BACK] [CONTENTS] [NEXT>>]

On Win32 platforms, JavaTM Plug-In software is bundled with the
Java 2 Runtime Environment. Java Plug-In lets web browsers use
the Java 2 Runtime Environment to run 1.2-based applets and
JavaBeansTM components instead of the web browser's default
virtual machine. The Java Plug-In works with Netscape
Communicator and Microsoft Internet Explorer.

● Get Downloads
● Install JRE with Java Plug-In
● Install HTML Converter
● Install the Security Policy File

• Types of Policy Files
• Installing the Policy File
• Changing the Name or Location

● Run the Administration Applet
● How Does it Work?

Get Downloads

To install and use the Java Runtime Environment with Java Plug-
In, you need the following downloads. Put the downloads in a
temporary directory.

● Java Runtime Environment with Java Plug-In for Win32
Platforms.

● Java Plug-In HTML Converter

Install JRE with Java Plug-In

An optionally installable version of the Java 2 Runtime
Environment with Java Plug-In is included with the Java 2 SDK

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/win.html (1 of 5) [2001-6-13 8:13:48]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://java.sun.com/products/jdk/1.2/download-windows.html

Technology Centers

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/win.html

download. You can also download and install Java 2 Runtime
Environment with Java Plug-In separately.

Either way, install the Java 2 Runtime Environment with Java Plug-
In by double-clicking its icon and following the installation
instructions. When the installation completes, you will see the Java
Plug-In control panel on your Windows Start menu under Programs.

Install the HTML Converter

Your browser will not automatically use the Java Plug-In when you
load an HTML file with an applet. You have to download and run
the Java Plug-In HTML Converter on the HTML page that invokes
the applet to direct the applet ro run using the plug-in instead of
the browser's default runtime.

Unzip the Java Plug-In HTML Converter download:

 unzip htmlconv12.zip

Add the HTMLConverter.java program or its directory to your
CLASSPATH.

Security Policy File

The auction application uses an applet running in a browser for
administrative operations. In the JavaTM 2 platform, applets are
restricted to a sandbox-like environment and need permission to
access system resources outside their restricted environment.
Applets are restricted to read operations within their local
directory. All other access operations require permission.

Types of Policy Files

You need a policy file to grant access permissions to the
Administration applet. If the applet runs on a disk other than the
disk where the browser is running, the applet will also need to be
signed. See Signed Applets for information on signing and
deploying applets.

There are three kinds of policy files: system, user, and program.
The system policy file is located in
jdk1.2\jre\lib\security\java.policy or
jre1.2\lib\security/java.policy and contains permissions for
everyone on the system.

The user policy file is located in the user's home directory. The
user policy file provides a way to give certain users additional

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/win.html (2 of 5) [2001-6-13 8:13:48]

http://java.sun.com/products/jdk/1.2/jre/download-windows.html

permissions over those granted to everyone on the system. The
permissions in the system file are combined with the permissions
in the user file.

A program policy file can be located anywhere. It is specifically
named when an application is invoked with the java command or
when an applet is invoked with applet viewer. When an application
or applet is invoked with a specific policy file, the permissions in
that policy file take the place of (are not combined with)
permissions specified in the system or user policy file. Program
policy files are used for program testing or intranet deployment of
applets and applications.

Install the Security Policy File

Place the security policy file in your home directory and name it
java.policy. When the applet tries to perform an action that
requires a policy file with a permission, the policy file is loaded
from this directory and remains in effect until you exit and restart
the browser.

If an applet tries to perform an access operation without the right
permission, it quietly quits without raising either an applet or a
browser error.

Changing the Name or Location

You can change the name and/or location of the default system or
user policy file. Edit the jdk1.2\jre\lib\security\java.security or
jre1.2\lib\security\java.security file and add a third entry
specifying the name and location of an alternative policy file.

 policy.url.1=file:${java.home}\lib\security\java.policy
 policy.url.2=file:${user.home}\java.policy
 policy.url.3=file:\<mypolicyfile path and name>

Note: On Windows/NT machines, you might place the
policy file in the C:\Winnt\Profiles\<userid>\java.policy
directory.

Run the Administration Applet

Copy the Java Archive (JAR) file with the Administration applet and
policy file to its final location. In this example, that location is the
\home\zelda\public_html directory. Next, extract the applet class file
and policy file from the JAR file:

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/win.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/win.html (3 of 5) [2001-6-13 8:13:48]

 cp admin.jar \home\zelda\public_html
 jar xf applet.jar

The extraction places the policy file under public_html and creates
an admin directory under the public_html directory with the applet
class file in it. Rename the policy file in the public_html directory to
java.policy and copy it to your home directory.

In the public_html directory, create an HTML file that invokes the
Administration applet class. Be sure to include the admin directory
when you specify the applet class to the CODE option. Note that
when using Java Plug-In, you cannot have the browser load the
class file from the Java Archive (JAR) file.

<HTML>
<BODY>
<APPLET CODE=admin/AdminApplet.class
 WIDTH=550
 HEIGHT=150>
</APPLET>
</BODY>
</HTML>

Start the HTML Converter.

 java HTMLConverter

In the HTML Converter graphical user interface, select One File:,
specify the path to the admin.html file, and click the Convert button.

How Does It Work?

On Windows machines, the Java Plug-In finds the Java Runtime
Environment (JRE) by running the OLE custom control file
beans.ocx installed by default in the \Program
Files\JavaSoft\1.2\bin web browser directory. The OLE control
examines the Windows registry to find the Java Plug-In key and
uses the value associated with that key to find the installed JRE.

If you find that the wrong JRE is being loaded, use regedit to check
the Java Plug-In registry values for the current user. If no JRE is
installed, the control checks the Java Plug-in values for
HKEY_LOCAL_MACHINE. You should see a value for Java Runtime
Environment under Software\JavaSoft.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/win.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/win.html (4 of 5) [2001-6-13 8:13:48]

After the conversion completes, load the admin.html file in your
browser.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/win.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/win.html (5 of 5) [2001-6-13 8:13:48]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/security.html

Training Index

Writing Advanced Applications
Chapter 10: More Security Topics

[<<BACK] [CONTENTS] [NEXT>>]

This chapter presents two additional security topics that you might
find of interest.

● Signed Applets
● Writing a Security Manager

In a Rush?

This table links you directly to specific topics.

Topic Section

Signed Applets ● Signed Applet Example
● Intranet Developer
● End User
● Running an Application with a Policy File
● Signed Applets in JDK 1.1

Writing a
Security
Manager

● The FileIO Program
● The PasswordSecurityManager Program
● Run The FileIO Program
● Reference Information

[TOP]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/security.html (1 of 2) [2001-6-13 8:13:52]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/security.html

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/security.html (2 of 2) [2001-6-13 8:13:52]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html

Training Index

Writing Advanced Applications
Chapter 10: Signed Applets

[<<BACK] [CONTENTS] [NEXT>>]

A policy file can be defined to require a signature on all applets or
applications that attempt to run with the policy file. The signature
is a way to verify that the applet or applicationis from a reliable
source and can be trusted to run with the permissions granted in
the policy file.

If a policy file requires a signature, an applet or application can
get the access granted by the policy file only if it has the correct
signature. If the applet or application has the wrong signature or
no signature, it will not get access to the file.

This section walks through an example of signing an applet,
verifying the signature, and running the applet with a policy file.

● Signed Applet Example
● Intranet Developer
● End User
● Running an Application with a Policy File
● Signed Applets in JDK 1.1

Signed Applet Example

The policy file granting access can be set up to require or not
require a signature. If a signature is required, the applet has to be
bundled into a Java ARchive (JAR) file before it can be signed. This
example shows you how to sign and grant permission to an applet
so it can create demo.ini in the user's home directory when it
executes in Applet Viewer.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html (1 of 6) [2001-6-13 8:14:00]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html

These files are used for the example. You can copy them to or
create them in your working directory.

● SignedAppletDemo.java file containing the applet code
● Write.jp policy file granting access to the user's home

directory
● Applet tag embedded in the SignedApplet.html file:

<applet code="SignedAppletDemo.class"
 archive="SSignedApplet.jar"
 width=400 height=400>
 <param name=file value="/etc/inet/hosts">
</applet>

Usually an applet is bundled and signed by an intranet developer
and handed off to the end user who verifies the signature and
runs the applet. In this example, the intranet developer performs
Steps 1 through 5 and Ray, the end user, performs Steps 6
through 8. But, to keep things simple, all steps occur in the same
working directory.

1. Compile the applet
2. Create a JAR file
3. Generate Keys
4. Sign the JAR file
5. Export the Public Key Certificate
6. Import the Certificate as a Trusted Certificate
7. Create the policy file
8. Run the applet

Intranet Developer

Susan, the intranet developer, bundles the applet executable in a
JAR file, signs the JAR file, and exports the public key certificate.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html (2 of 6) [2001-6-13 8:14:00]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/SignedAppletDemo.java
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/Write.jp

1: Compile the Applet

In her working directory, Susan uses the javac command to
compile the SignedAppletDemo.java class. The output from the javac
command is the SignedAppletDemo.class.

javac SignedAppletDemo.java

2: Make a JAR File

Susan then stores the compiled SignedAppletDemo.class file into a
JAR file. The -cvf option to the jar command creates a new
archive (c), using verbose mode (v), and specifies the archive file
name (f). The archive file name is SignedApplet.jar.

jar cvf SignedApplet.jar SignedAppletDemo.class

3: Generate Keys

A JAR file is signed with the private key of the creator of the JAR
file and the signature is verified by the recipient of the JAR file
with the public key in the pair. The certificate is a statement from
the owner of the private key that the public key in the pair has a
particular value so the person using the public key can be assured
the public key is authentic. Public and private keys must already
exist in the keystore database before jarsigner can be used to sign
or verify the signature on a JAR file.

Susan creates a keystore database named compstore that has an
entry for a newly generated public and private key pair with the
public key in a certificate using the keytool command.

In her working directory, Susan creates a keystore database and
generates the keys:

keytool -genkey -alias signFiles -keystore compstore
 -keypass kpi135 -dname "cn=jones"
 -storepass ab987c

This keytool -genkey command invocation generates a key pair
that is identified by the alias signFiles. Subsequent keytool
command invocations use this alias and the key password (-
keypass kpi135) to access the private key in the generated pair.

The generated key pair is stored in a keystore database called
compstore (-keystore compstore) in the current directory, and
accessed with the compstore password (-storepass ab987c).

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html (3 of 6) [2001-6-13 8:14:00]

The -dname "cn=jones" option specifies an X.500 Distinguished
Name with a commonName (cn) value. X.500 Distinguished
Names identify entities for X.509 certificates. In this example,
Susan uses her last name, Jones, for the common name. She
could use any common name that suits her purposes.

You can view all keytool options and parameters by typing:

keytool -help

4: Sign the JAR File

JAR Signer is a command line tool for signing and verifying the
signature on JAR files. In her working directory, Susan uses
jarsigner to make a signed copy of the SignedApplet.jar file.

jarsigner -keystore compstore -storepass ab987c
 -keypass kpi135
 -signedjar
 SSignedApplet.jar SignedApplet.jar signFiles

The -storepass ab987c and -keystore compstore options specify the
keystore database and password where the private key for signing
the JAR file is stored. The -keypass kpi135 option is the password
to the private key, SSignedApplet.jar is the name of the signed
JAR file, and signFiles is the alias to the private key. jarsigner
extracts the certificate from the keystore whose entry is signFiles
and attaches it to the generated signature of the signed JAR file.

5: Export the Public Key Certificate

The public key certificate is sent with the JAR file to the end user
who will be using the applet. That person uses the certificate to
authenticate the signature on the JAR file. A certificate is sent by
exporting it from the compstore database.

In her working directory, Susan uses keytool to copy the
certificate from compstore to a file named CompanyCer.cer as
follows:

keytool -export -keystore compstore -storepass ab987c
 -alias signFiles -file CompanyCer.cer

As the last step, Susan posts the JAR and certificate files to a
distribution directory on a web page.

End User

Ray, the end user, downloads the JAR file from the distribution

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html (4 of 6) [2001-6-13 8:14:00]

directory, imports the certificate, creates a policy file granting the
applet access, and runs the applet.

6: Import Certificate as a Trusted Certificate

Ray downloads SSignedApplet.jar and CompanyCer.cer to his home
directory. Ray must now create a keystore database (raystore)
and import the certificate into it using the alias company. Ray uses
keytool in his home directory to do this:

keytool -import -alias company -file
 CompanyCer.cer -keystore
 raystore -storepass abcdefgh

7: Create the Policy File

The policy file grants the SSignedApplet.jar file signed by the alias
company permission to create demo.ini (and no other file) in the
user's home directory.

Ray creates the policy file in his home directory using either
policytool or an ASCII editor.

keystore "/home/ray/raystore";

// A sample policy file that lets a program
// create demo.ini in user's home directory
// Satya N Dodda

grant SignedBy "company" {
 permission java.util.PropertyPermission
 "user.home", "read";
 permission java.io.FilePermission
 "${user.home}/demo.ini", "write";
};

8: Run the Applet in Applet Viewer

Applet Viewer connects to the HTML documents and resources
specified in the call to appletviewer, and displays the applet in its
own window. To run the example, Ray copies the signed JAR file
and HTML file to /home/aURL/public_html and invokes Applet viewer
from his home directory as follows:

appletviewer -J-Djava.security.policy=Write.jp
 http://aURL.com/SignedApplet.html

Note: Type everything on one line and put a space after

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html (5 of 6) [2001-6-13 8:14:00]

Write.jp

The -J-Djava.security.policy=Write.jp option tells Applet Viewer to
run the applet referenced in the SignedApplet.html file with the
Write.jp policy file.

Note: The Policy file can be stored on a server and
specified in the appletviewer invocation as a URL.

Running an Application with a Policy File

This application invocation restricts MyProgram to a sandbox-like
environment the same way applets are restricted, but allows
access as specified in the polfile policy file.

java -Djava.security.manager
 -Djava.security.policy=polfile MyProgram

Signed Applets in JDK 1.1

JDK 1.1 signed applets can access local system resources if the
local system is properly set up to allow it. See the JDK 1.1 Signed
Applet Example page for details.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html (6 of 6) [2001-6-13 8:14:00]

http://java.sun.com/security/signExample/index.html
http://java.sun.com/security/signExample/index.html
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed2.html

Training Index

Writing Advanced Applications
Chapter 10 Continued: Writing a Security Manager

[<<BACK] [CONTENTS] [NEXT>>]

A security manager is a JavaTM virtual machine (VM) object that
implements a security policy. By default, the Java 2® platform
software provides a security manager that disallows all access to
local system resources apart from read and write access to the
directory and its subcirectories where the program is invoked.

You can extend the default security manager to implement
customized verifications and approvals for applets and
applications, but the implementation must include the appropriate
access verification code for every checkXXX method you override. If
you do not include this code, no access verfication check happens,
and your code breaches the system security policy.

This section uses an example application to explain how to write a
custom security manager that prompts the end user for password
identification before reading from and writing to specific files. The
implementation includes access verification code so once the end
user makes it through the password check, he or she still needs
the file read and write permissions in their policy file.

The example consists of the FileIO application, and the
PasswordSecurityManager program that provides the custom security
manager implementation.

● The FileIO Program
● The PasswordSecurityManager Program
● Run The FileIO Program
● Reference Information

The FileIO Program

The FileIO program displays a simple user interface and asks the

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed2.html (1 of 5) [2001-6-13 8:14:04]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/FileIO.java

Technology Centers

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed2.html

end user to enter some text. When the end user clicks the Click Me
button, the text is saved to a file in the end user's home directory,
and a second file is opened and read. The text read from the
second file is displayed to the end user.

Before Button Click After Button Click

The custom security manager for this program prompts the end
user to enter a password before it allows FileIO to write text to or
read text from a file. The main method of FileIO creates a custom
security manager called PasswordSecurityManager.

public static void main(String[] args){
 BufferedReader buffy = new BufferedReader(
 new InputStreamReader(System.in));
 try {
 System.setSecurityManager(
 new PasswordSecurityManager("pwd", buffy));
 } catch (SecurityException se) {
 System.err.println("SecurityManager already set!");
 }

The PasswordSecurityManager Class

The PasswordSecurityManager class declares two private instance
variables, which are initialized by the constructor when the custom
security manager is installed. The password instance variable
contains the actual password, and the buffy instance variable is an
input buffer that stores the end user's password input.

public class PasswordSecurityManager
 extends SecurityManager{

 private String password;
 private BufferedReader buffy;

 public PasswordSecurityManager(String p,
 BufferedReader b){
 super();
 this.password = p;
 this.buffy = b;
 }

The accessOK method prompts the end user for a password, verifies

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed2.html (2 of 5) [2001-6-13 8:14:04]

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/Code/PasswordSecurityManager.java

the password, and returns true if the password is correct and false
if it is not.

private boolean accessOK() {
 int c;
 String response;

 System.out.println("Password, please:");
 try {
 response = buffy.readLine();
 if (response.equals(password))
 return true;
 else
 return false;
 } catch (IOException e) {
 return false;
 }
}

Verify Access

The SecurityManager parent class provides methods to verify file
system read and write access. The checkRead and checkWrite
methods each have a version that accepts a String and another
verion that accepts a file descriptor.

This example overrides only the String versions to keep the
example simple, and because the FileIO program accesses
directories and files as Strings.

public void checkRead(String filename) {
 if((filename.equals(File.separatorChar + "home" +
 File.separatorChar + "monicap" +
 File.separatorChar + "text2.txt"))){
 if(!accessOK()){
 super.checkRead(filename);
 throw new SecurityException("No Way!");
 } else {
 FilePermission perm = new FilePermission(
 File.separatorChar + "home" +
 File.separatorChar + "monicap" +
 File.separatorChar + "text2.txt", "read");
 checkPermission(perm);
 }
 }
}

public void checkWrite(String filename) {
 if((filename.equals(File.separatorChar + "home" +
 File.separatorChar + "monicap" +
 File.separatorChar + "text.txt"))){
 if(!accessOK()){
 super.checkWrite(filename);
 throw new SecurityException("No Way!");
 } else {

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed2.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed2.html (3 of 5) [2001-6-13 8:14:04]

 FilePermission perm = new FilePermission(
 File.separatorChar + "home" +
 File.separatorChar + "monicap" +
 File.separatorChar + "text.txt" ,
 "write");
 checkPermission(perm);
 }
 }
 }
}

The checkWrite method is called before the end user input is
written to the output file. This is because the FileOutputStream class
calls SecurityManager.checkWrite first.

The custom implementation for SecurityManager.checkWrite tests for
the pathname /home/monicap/text.txt, if true prompts the end user
for the password. If the password is correct, the checkWrite method
performs the access check by creating an instance of the required
permission and passing it to the SecurityManager.checkPermission
method. This check will succeed if the security manager finds a
system, user, or program policy file with the specified permission.
Once the write operation completes, the end user is prompted for
the password two more times. The first time to read the
/home/monicap directory, and the second time to read the text2.txt
file. An access check is performed before the read operation takes
place.

Policy File

Here is the policy file the FileIO program needs for its read and
write operations. It also grants permission to the custom security
manager to access the event queue on behalf of the application
and show the application window without the warning banner.

grant {
 permission java.io.FilePermission
 "${user.home}/text.txt", "write";
 permission java.util.PropertyPermission
 "user.home", "read";
 permission java.io.FilePermission
 "${user.home}/text2.txt", "read";
 permission java.awt.AWTPermission
 "accessEventQueue";
 permission java.awt.AWTPermission
 "showWindowWithoutWarningBanner";
};

Run the FileIO Program

Here is how to run the FileIO program with the policy file:

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed2.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed2.html (4 of 5) [2001-6-13 8:14:04]

 java -Djava.security.policy=polfile FileIO

Reference Information

Appendix A: Security and Permissions describes the available
permissions and explains the consequences of granting
permissions. One way to use this information is to help you limit
what permissions a given applet or application might need to
successfully execute. Another way to use this information is to
educate yourself on the ways in which a particular permission can
be exploited by malicious code.

Appendix B: Classes, Methods, and Permissions provides lists of
Java 2 platform software methods that are implemented to
perform security access checks, the permission each requires, and
the java.security.SecurityManager method called to perform the
access check.

You can use this reference to write your own security manager
implementations or when you implement abstract methods that
perform security-related tasks.

Appendix C: SecurityManager Methods lists the permissions
checked for by the SecurityManager methods.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed2.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed2.html (5 of 5) [2001-6-13 8:14:04]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

Training Index

Writing Advanced Applications
Appendix A: Security and Permissions

[<<BACK] [CONTENTS] [NEXT>>]

All applets and any applications invoked with a security manager
must be granted explicit permission to access local system
resources apart from read access to the directory and its
subdirectories where the program is invoked. The JavaTM platform
provides permissions to allow various levels of access to different
types of local information.

Because permissions let an applet or application override the
default security policy, you should be very careful when you assign
permissions to not create an opening for malicious code to attack
your system.

This appendix describes the available permissions and explains
how each permission can create an opening for malicious attacks.
One way to use this information is to help you limit what
permissions a given applet or application might need to
successfully execute. Another way to use this information is to
educate yourself on the ways in which a particular permission can
be exploited by malicious code.

As a safeguard, never trust an unknown applet or application.
Always check the code carefully against the information in this
appendix to be sure you are not giving malicious code permission
to cause serious problems on the local system.

● Overview
● Knowing Which Permissions
● AllPermission
● AWTPermission
● FilePermission
● NetPermission
● PropertyPermission
● ReflectPermission

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (1 of 17) [2001-6-13 8:14:10]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

● RuntimePermission
● SecurityPermission
● SerializablePermission
● SocketPermission

Overview

Permissions are granted to a program with a policy file. A policy
file contains permissions for specific access. A permission consists
of the permission name, a target, and in some cases, a comma-
separated list of actions.

For example, the following policy file entry specifies a
java.io.FilePermission permission that grants read access (the
action) to the ${user.home}/text2.txt target.

grant {
 permission java.io.FilePermission
 "${user.home}/text2.txt", "read";
};

There is one policy file for Java platform installation (system) and
an optional policy file for each user. The system policy file is in
{java.home}/lib/security/java.policy, and the user policy file is in
each user's home directory. The system and user policy files are
combined. So for example,there could be a system policy file with
very few permissions granted to all users on the system, and
individual policy files granting additional permissions to certain
users.

To run an application with the security manager and a policy file
named polfile in the user's home directory, type:

 java -Djava.security.main
 -DJava.security.policy=polfile FileIO

To run an applet in appletviewer with a policy file named polfile in
the user's home directory, type:

 appletviewer
 -J-Djava.security.policy=polfile fileIO.html

When running an applet in a browser, the browser looks for the
user and system policy files to find the permissions the applet
needs to access local system resources on behalf of the user who
downloaded the applet.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (2 of 17) [2001-6-13 8:14:10]

Knowing Which Permissions

When you run an applet or invoke an application with a security
manager that needs permissions, you will get a stack trace if you
did not provide a policy file with all the needed permissions. The
stack trace contains the information you need to add the
permission to the policy file that caused the stack trace. If the
program needs additional permissions, you will keep getting stack
traces until all the required permissions are added to the policy
file. The only drawback to this approach is you have to try every
possible code path in your application.

Another way to determine which permission your program needs is
to browse Appendix B: Methods and Permissions. This appendix
tells you which Java 2 platform software methods are prevented
from executing without the listed permission. The information in
Appendix B is also useful for developers who want to write their
own security manager to customize the verifications and approvals
needed in a program.

Here is a short example to show you how to translate the first
couple of lines in a stack trace to a policy file entry. The first line
tells you access is denied. This means this stack trace was
generated because the program tried to access a system resource
without the proper permission. The second line means you need a
java.net.SocketPermission that gives the program permission to
connect to and resolve the host name for Internet Protocol (IP)
address 129.144.176.176, port 1521.

java.security.AccessControlException: access denied
 (java.net.SocketPermission
 129.144.176.176:1521 connect,resolve)

To turn this into a policy file entry, list the permission name, a
target, and an action list as follows where
java.net.SocketPermission is the permission name,
129.144.176.176:1521 is the target, and connect,resolve is the action
list.

grant {
 permission java.net.SocketPermission
 "129.144.176.176:1521", "connect,resolve";
};

AllPermission

java.security.AllPermission specifies all permissions in the system

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (3 of 17) [2001-6-13 8:14:10]

for all possible targets and actions. This permission should be used
only during testing because it grants permission to run with all
security restrictions disabled as if there were no security manager.

grant {
 permission java.security.AllPermission;
};

AWTPermission

java.awt.AWTPermission grants access to the following Abstract
Window Toolkit (AWT) targets. The possible targets are listed by
name with no action list.

grant {
 permission java.awt.AWTPermission
 "accessClipboard";
 permission java.awt.AWTPermission
 "accessEventQueue";
 permission java.awt.AWTPermission
 "showWindowWithoutWarningBanner";
};

accessClipboard: This target grants permission to post
information to and retrieve information from the AWT clipboard.
Granting this permission could allow malicious code to share
potentially sensitive or confidential information.

accessEventQueue: This target grants permission to access the
AWT event queue. Granting this permission could allow malicious
code to peek at and remove existing events from the system, or
post bogus events that could cause the application or applet to
perform malicious actions.

listenToAllAWTEvents: This target grants permission to listen to
all AWT events throughout the system. Granting this permission
could allow malicious code to read and exploit confidential user
input such as passwords.

Each AWT event listener is called from within the context of that
event queue's EventDispatchThread, so if the accessEventQueue
permission is also enabled, malicious code could modify the
contents of AWT event queues throughout the system, which can
cause the application or applet to perform unintended and
malicious actions.

readDisplayPixels: This target grants permission to read pixels
back from the display screen. Granting this permission could allow
interfaces such as java.awt.Composite that allow arbitrary code to
examine pixels on the display to include malicious code that

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (4 of 17) [2001-6-13 8:14:10]

snoops on user activities.

showWindowWithoutWarningBanner: This target grants
permission to display a window without also displaying a banner
warning that the window was created by an applet. Without this
warning, an applet might pop up windows without the user
knowing they belong to an applet. This could be a problem in
environments where users make security-sensitive decisions based
on whether the window belongs to an applet or an application. For
example, disabling the banner warning might trick the end user
into entering sensitive user name and password information.

FilePermission

java.io.FilePermission grants access to a file or directory. The
targets consist of the target pathname and a comma-separated list
of actions.

This policy file grants read, write, delete, and execute permission
to all files.

grant {
 permission java.io.FilePermission
 "<<ALL FILES>>", "read, write, delete, execute";
};

This policy file grants read and write permission to text.txt in the
user's home directory.

grant {
 permission java.io.FilePermission
 "${user.home}/text.txt", "read, write";
};

You can use the following wild cards to specify the target
pathname.

● A pathname that ends in /*, where /* is the file separator
character indicates a directory and all the files contained in
that directory.

● A pathname that ends with /- indicates a directory, and
recursively, all files and subdirectories contained in that
directory.

● A pathname consisting of a single asterisk (*) indicates all
files in the current directory.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (5 of 17) [2001-6-13 8:14:10]

● A pathname consisting of a single dash (-) indicates all files in
the current directory, and recursively, all files and
subdirectories contained in the current directory.

The actions are specified in a list of comma-separated keywords
and have the following meanings:

● read: Permission to read a file or directory.
● write: Permission to write to and create a file or directory.
● execute: Permission to execute a file or search a directory.
● delete: Permission to delete a file or directory.

When granting file permissions, always think about the
implications of granting read and especially write access to various
files and directories. The <<ALL FILES>> permission with write action
is especially dangerous because it grants permission to write to the
entire file system. This means the system binary can be replaced,
which includes the Java1 Virtual Machine (VM) runtime
environment.

NetPermission

java.net.NetPermission grants access to various network targets.
The possible targets are listed by name with no action list.

grant {
 permission java.net.NetPermission
 "setDefaultAuthenticator";
 permission java.net.NetPermission
 "requestPasswordAuthentication";
};

setDefaultAuthenticator: This target grants permission to set
the way authentication information is retrieved when a proxy or
HTTP server asks for authentication. Granting this permission could
mean malicious code can set an authenticator that monitors and
steals user authentication input as it retrieves the input from the
user.

requestPasswordAuthentication: This target grants permission
to ask the authenticator registered with the system for a
password. Granting this permission could mean malicious code
might steal the password.

specifyStreamHandler: This target grants permission to specify
a stream handler when constructing a Uniform Resource Locator
(URL). Granting this permission could mean malicious code might
create a URL with resources to which it would not normally have
access, or specify a stream handler that gets the actual bytes from
somewhere to which it does have access. This means the malicious

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (6 of 17) [2001-6-13 8:14:10]

code could trick the system into creating a
ProtectionDomain/CodeSource for a class even though the class
really did not come from that location.

PropertyPermission

java.util.PropertyPermission grants access to system properties.
The java.util.Properties class represents persistent settings such
as the location of the installation directory, the user name, or the
user's home directory.

grant {
 permission java.util.PropertyPermission
 "java.home", "read";
 permission java.util.PropertyPermission
 "os.name", "write";
 permission java.util.PropertyPermission
 "user.name", "read, write";
};

The target list contains the name of the property; for example,
java.home or os.name. The naming convention for the properties
follows the hierarchical property naming convention, and includes
wild cards. An asterisk at the end of the property name, after a dot
(.), or alone signifies a wild card match. For example, java.* or *
are valid, but *java or a*b are invalid.

The actions are specified in a list of comma-separated keywords,
and have the following meanings:

● read: Permission to read (get) a property.
● write: Permission to write (set) a property.

Granting property permissions can leave your system open to
intrusion. For example, granting permission to access the java.home
property makes the installation directory vulnerable to attack, and
granting permission to access the user.name and user.home
properties might reveal the user's account name and home
directory to code that might misuse the informaiton.

ReflectPermission

java.lang.reflect.ReflectPermission grants permission for various
reflective operations. The possible targets are listed by name with
no action list.

grant {
 permission java.lang.reflect.ReflectPermission
 "suppressAccessChecks";
};

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (7 of 17) [2001-6-13 8:14:10]

suppressAccessChecks: This target grants permission to access
fields and invoke methods in a class. This includes public,
protected, and private fields and methods. Granting this
permission could reveal confidential information and make
normally unavailable methods accessible to malicious code.

RuntimePermission

java.lang.RuntimePermission grants access to various runtime
targets such as the class loader, Java VM, and thread. The possible
targets are listed by name with no action list.

grant {
 permission java.lang.RuntimePermission
 "createClassLoader";
 permission java.lang.RuntimePermission
 "getClassLoader";
 permission java.lang.RuntimePermission
 "exitVM";
 permission java.lang.RuntimePermission
 "setFactory";
 permission java.lang.RuntimePermission
 "setIO";
 permission java.lang.RuntimePermission
 "modifyThread";
 permission java.lang.RuntimePermission
 "modifyThreadGroup";
 permission java.lang.RuntimePermission
 "getProtectionDomain";
 permission java.lang.RuntimePermission
 "setProtectionDomain";
 permission java.lang.RuntimePermission
 "readFileDescriptor";
 permission java.lang.RuntimePermission
 "writeFileDescriptor";
 permission java.lang.RuntimePermission
 "loadLibrary.<library name>";
 permission java.lang.RuntimePermission
 "accessClassInPackage.<package name>";
 permission java.lang.RuntimePermission
 "defineClassInPackage.<package name>";
 permission java.lang.RuntimePermission
 "accessDeclaredMembers.<class name>";
 permission java.lang.RuntimePermission
 "queuePrintJob";
};

The naming convention for target information where a library,
package, or class name is added follows the hierarchical property
naming convention, and includes wild cards. An asterisk at the end
of the target name, after a dot (.), or alone signifies a wild card
match. For example, loadLibrary.* or * are valid, but *loadLibrary
or a*b are not.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (8 of 17) [2001-6-13 8:14:10]

createClassLoader: This target grants permission to create a
class loader. Granting this permission might allow a malicious
application to instantiate its own class loader and load harmful
classes into the system. Once loaded, the class loader could place
these classes into any protection domain and give them full
permissions for that domain.

getClassLoader: This target grants permission to retrieve the
class loader for the calling class. Granting this permission could
enable malicious code to get the class loader for a particular class
and load additional classes.

setContextClassLoader: This target grants permission to set the
context class loader used by a thread. System code and extensions
use the context class loader to look up resources that might not
exist in the system class loader. Granting this permission allows
code to change which context class loader is used for a particular
thread, including system threads. This can cause problems if the
context class loader has malicious code.

setSecurityManager: This target grants permission to set or
replace the security manager. The security manager is a class that
allows applications to implement a security policy. Granting this
permission could enable malicious code to install a less restrictive
manager, and thereby, bypass checks that would have been
enforced by the original security manager.

createSecurityManager: This target grants permission to create
a new security manager. Granting this permission could give
malicious code access to protected and sensitive methods that
might disclose information about other classes or the execution
stack. It could also allow the introduction of a weakened security
manager.

exitVM: This target grants permission to halt the Java VM.
Granting this permission could allow malicious code to mount a
denial-of-service attack by automatically forcing the VM to stop.

setFactory: This target grants permission to set the socket
factory used by the ServerSocket or Socket class, or the stream
handler factory used by the URL class. Granting this permission
allows code to set the actual implementation for the socket, server
socket, stream handler, or Remote Method Invocation (RMI) socket
factory. An attacker might set a faulty implementation that
mangles the data stream.

setIO: This target grants permission to change the value of the

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (9 of 17) [2001-6-13 8:14:10]

System.out, System.in, and System.err standard system streams.
Granting this permission could allow an attacker to change
System.in to steal user input, or set System.err to a null output
stream, which would hide any error messages sent to System.err.

modifyThread: This target grants permission to modify threads
by calls to the stop, suspend, resume, setPriority, and setName
methods in the Thread class. Granting this permission could allow
an attacker to start or suspend any thread in the system.

stopThread: This target grants permission to stop threads.
Granting this permission allows code to stop any thread in the
system provided the code already has permission to access that
thread. Malicious code could corrupt the system by killing existing
threads.

modifyThreadGroup: This target grants permission to modify
threads by calls to the destroy, resume, setDaemon, setmaxPriority,
stop, and suspend methods of the ThreadGroup class. Granting this
permission could allow an attacker to create thread groups and set
their run priority.

getProtectionDomain This target grants permission to retrieve
the ProtectionDomain instance for a class. Granting this permission
allows code to obtain policy information for that code source. While
obtaining policy information does not compromise the security of
the system, it does give attackers additional information, such as
local file names for example, to better aim an attack.

readFileDescriptor: This target grants permission to read file
descriptors. Granting this permission allows code to read the
particular file associated with the file descriptor, which is
dangerous if the file contains confidential data.

writeFileDescriptor: This target grants permission to write file
descriptors. Granting this permission allows code to write to the
file associated with the descriptor, which is dangerous if the file
descriptor points to a local file.

loadLibrary.{library name}: This target grants permission to
dynamically link the specified library. Granting this permission
could be dangerous because the security architecture is not
designed to and does not extend to native code loaded by way of
the java.lang.System.loadLibrary method.

accessClassInPackage.{package name} This target grants
permission to access the specified package by way of a class

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (10 of 17) [2001-6-13 8:14:10]

loader's loadClass method when that class loader calls the
SecurityManager.checkPackageAcesss method. Granting this
permission gives code access to classes in packages to which it
normally does not have access. Malicious code may use these
classes to help in its attempt to compromise security in the
system.

defineClassInPackage.{package name}: This target grants
permission to define classes in the specified package by way of a
class loader's defineClass method when that class loader calls the
SecurityManager.checkPackageDefinition method. Granting this
permission allows code to define a class in a particular package,
which can be dangerous because malicious code with this
permission might define rogue classes in trusted packages like
java.security or java.lang, for example.

accessDeclaredMembers: This target grants permission to
access the declared members of a class. Granting this permission
allows code to query a class for its public, protected, default
(package), and private fields and methods. Although the code
would have access to the private and protected field and method
names, it would not have access to the private and protected field
data and would not be able to invoke any private methods.
Nevertheless, malicious code may use this information to better
aim an attack. Additionally, malicious code might invoke any public
methods or access public fields in the class, which could be
dangerous if the code would normally not be able to invoke those
methods or access the fields because it cannot cast the object to
the class or interface with those methods and fields.

queuePrintJob: This target grants permission to initiate a print
job request. Granting this permission could allow code to print
sensitive information to a printer or maliciously waste paper.

SecurityPermission

java.security.SecurityPermission grants access to various security
configuration parameters. The possible targets are listed by name
with no action list. Security permissions currently apply to methods
called on the following objects:

● java.security.Policy, which represents the system security
policy for applications.

● java.security.Security, which centralizes all security
properties and common security methods. It manages
providers.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (11 of 17) [2001-6-13 8:14:10]

● java.security.Provider, which represetns an implementation
of such things as security algorithms (DSA, RSA, MD5, or SHA-
1) and key generation.

● java.security.Signer, which manages private keys. Even
though, Signer is deprecated, the related permissions are
available for backwards compatibility.

● java.security.Identity, which manages real-world objects
such as people, companies, or organizations whose identities
can be authenticated using their public keys.

grant {
 permission java.security.SecurityPermission
 "getPolicy";
 permission java.security.SecurityPermission
 "setPolicy";
 permission java.security.SecurityPermission
 "getProperty.os.name";
 permission java.security.SecurityPermission
 "setProperty.os.name";
 permission java.security.SecurityPermission
 "insertProvider.SUN";
 permission java.security.SecurityPermission
 "removeProvider.SUN";
 permission java.security.SecurityPermission
 "setSystemScope";
 permission java.security.SecurityPermission
 "setIdentityPublicKey";
 permission java.security.SecurityPermission
 "setIdentityInfo";
 permission java.security.SecurityPermission
 "addIdentityCertificate";
 permission java.security.SecurityPermission
 "removeIdentityCertificate";
 permission java.security.SecurityPermission
 "clearProviderProperties.SUN";
 permission java.security.SecurityPermission
 "putProviderProperty.<provider name>";
 permission java.security.SecurityPermission
 "removeProviderProperty.SUN";
 permission java.security.SecurityPermission
 "getSignerPrivateKey";
 permission java.security.SecurityPermission
 "setSignerKeyPair";
};

getPolicy: This target grants permission to retrieve the system-
wide security policy. Granting this permission discloses which
permissions would be granted to a given application or applet.
While revealing the policy does not compromise the security of the
system, it does provide malicious code with additional information
it could use to better aim an attack.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (12 of 17) [2001-6-13 8:14:10]

setPolicy: This target grants permission to set the system-wide
security policy. Granting this permission could allow malicious code
to grant itself all the necessary permissions to successfully mount
an attack an attack on the system.

getProperty.{key}: This target grants permission to retrieve the
security property specified by {key}. Depending on the particular
key for which access has been granted, the code may have access
to the list of security providers and the location of the system-wide
and user security policies. While revealing this information does
not compromise the security of the system, it does provide
malicious code with additional information which it may use to
better aim an attack.

setProperty.{key}: This target grants permission to set the
security property specified by {key}. This could include setting a
security provider or defining the location of the the system-wide
security policy. Malicious code that has permission to set a new
security provider may set a rogue provider that steals confidential
information such as cryptographic private keys. In addition,
malicious code with permission to set the location of the system-
wide security policy may point it to a security policy that grants the
attacker all the necessary permissions it requires to successfully
mount an attack on the system.

insertProvider.{provider name}: This target grants permission
to add the new security provider specified by {provider name}.
Granting this permission allows the introduction of a possibly
malicious provider that could do such things as disclose the private
keys passed to it. This is possible because the Security object,
which manages the installed providers, does not currently check
the integrity or authenticity of a provider before attaching it.

removeProvider.{provider name}: This target grants
permission to remove the provider specified by {provider name}.
Granting this permission could change the behavior or disable
execution of other parts of the program. If a provider requested by
the program has been removed, execution might fail.

setSystemScope: This target grants permission to set the system
identity scope. Granting this permission could allow an attacker to
configure the system identity scope with certificates that should
not be trusted. This could grant code signed with those certificates
privileges that would be denied by the original identity scope.

setIdentityPublicKey: This target grants permission to set the
public key for an Identity object. If the identity is marked trusted,

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (13 of 17) [2001-6-13 8:14:10]

this allows an attacker to introduce its own public key that is not
trusted by the system's identity scope.This could grant code signed
with that public key privileges that would be otherwise denied.

SetIdentityInfo: This target grants permission to set a general
information string for an Identity object. Granting this permission
allows attackers to set the general description for an identity.
Doing so could trick applications into using a different identity than
intended or prevent applications from finding a particular identity.

addIdentityCertificate: This target grants permission to add a
certificate for an Identity object. Granting this permission allows
attackers to set a certificate for an identity's public key making the
public key trusted to a wider wider audience than originally
intended.

removeIdentityCertificate: This target grants permission to
remove a certificate for an Identity object. Granting this
permission allows attackers to remove a certificate for an identity's
public key. This could be dangerous because public key suddenly
becomes considered less trustworthy than it otherwise would be.

printIdentity: This target grants permission to print out the name
of a principal, the scope in which the principal is used, and whether
the principal is considered trusted in that scope. The printed scope
could be a filename, in which case it might convey local system
information. For example, here is a sample printout of an identity
named carol, who is marked not trusted in the user's identity
database:

carol[/home/luehe/identitydb.obj][not trusted].

clearProviderProperties.{provider name} This target grants
permission to clear a Provider object so it no longer contains the
properties used to look up services implemented by the provider.
Granting this permission disables the lookup of services
implemented by the provider. This could change the behavior or
disable execution of other parts of the program that would
normally utilize the Provider, as described under the
removeProvider.{provider name} permission above.

putProviderProperty.{provider name}: This target grants
permission to set properties for the specified provider. The
provider properties each specify the name and location of a
particular service implemented by the provider. Granting this
permission allows code to replace the service specification with
another one with a different implementation and could be

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (14 of 17) [2001-6-13 8:14:10]

dangerous if the new implementation has malicaious code.

removeProviderProperty.{provider name}: This target grants
permission to remove properties from the specified provider.
Granting this permission disables the lookup of services
implemented by the provider making them inaccessible. Granting
this permission to malicious code could allow the malicious code to
change the behavior or disable execution of other parts of the
program that would normally utilize the Provider object, as
described under the removeProvider.{provider name} permission
above.

getSignerPrivateKey: This target grants permission to retrieve
the private key of a Signer object. Private keys should always be
kept secret. Granting this permission could allow malicious code to
use the private key to sign files and claim the signature came from
the Signer object.

setSignerKeyPair: This target grants permission to set the public
and private key pair for a Signer object. Granting this permission
could allow an attacker to replace the target's key pair with a
possibly weaker (smaller) key pair. This would also allow an
attacker to listen in on encrypted communication between the
target and its peers. The target's peers might wrap an encryption
session key under the target's new public key, which would allow
the attacker (who possesses the corresponding private key) to
unwrap the session key and decipher the communication data
encrypted under that session key.

SerializablePermission

java.io.SerializablePermission grants access to serialization
operations. The possible targets are listed by name with no action
list.

grant {
 permission java.io.SerializablePermission
 "enableSubclassImplementation";
 permission java.io.SerializablePermission
 "enableSubstitution";
};

enableSubclassImplementation: This target grants permission
to implement a subclass of ObjectOutputStream or ObjectInputStream
to override the default serialization or deserialization of objects.
Granting this permission could allow code to use this to serialize or
deserialize classes in a malicious way. For example, during
serialization, malicious code could store confidential private field

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (15 of 17) [2001-6-13 8:14:10]

data in a way easily accessible to attackers; or, during
deserialization malicious code could deserialize a class with all its
private fields zeroed out.

enableSubstitution: This target grants permission to substitute
one object for another during serialization or deserialization.
Granting this permission could allow malicious code to replace the
actual object with one that has incorrect or malignant data.

SocketPermission

The java.net.SocketPermission permission grants access to a
network by way of sockets. The target is a host name and port
address, and the action list specifies ways to connect to that host.
Possible connections are accept, connect, listen, and resolve.

This policy file entry allows a connection to and accepts
connections on port 7777 on the host puffin.eng.sun.com.

grant {
 permission java.net.SocketPermission
 "puffin.eng.sun.com:7777",
 "connect, accept";
};

This policy file entry allows connections to, accepts connections on,
and listens on any port between 1024 and 65535 on the local host.

grant {
 permission java.net.SocketPermission
 "localhost:1024-",
 "accept, connect, listen";
};

The host is expressed with the following syntax as a DNS name, as
a numerical IP address, or as localhost (for the local machine).
The asterisk (*) wild card can be included once in a DNS name
host specification. If included, it must be in the left-most position,
as in *.sun.com.

 host = (hostname | IPaddress)[:portrange]
 portrange = portnumber | -portnumber |
 portnumber-[portnumber]

The port or port range is optional. A port specification of the form N-
, where N is a port number, means all ports numbered N and
above, while a specification of the form -N indicates all ports
numbered N and below.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (16 of 17) [2001-6-13 8:14:11]

The listen action is only meaningful when used with localhost, and
the resolve (resolve host/ip name service lookups) action is implied
when any of the other actions are present.

Granting code permission to accept or make connections to remote
hosts may be dangerous because malevolent code can more easily
transfer and share confidential data among parties that might not
otherwise have access to the data.

Note: On Unix platforms, only root is normally allowed
access to ports lower than 1024.

[TOP]

1 As used on this web site, the terms "Java virtual machine" or
"JVM" mean a virtual machine for the Java platform.

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html (17 of 17) [2001-6-13 8:14:11]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

Training Index

Writing Advanced Applications
Appendix B: Classes, Methods, and Permissions

[<<BACK] [CONTENTS] [NEXT>>]

A number of JavaTM 2 platform methods are implemented to verify
access permissions. This means that before they execute, they
verify that there is a system, user, or program has a policy file
with the required permissions for execution to continue. If no such
permission is found, execution stops with an error condition.

The access verification code passes the required permissions to the
security manager, and the security manager checks that
permission against the policy file permissions to determine
whether to access. This means that Java 2 platform API methods
are associated with specific permissions, and specific permissions
are associated with specific java.security.SecurityManager methods.

This appendix lists the Java 2 platform methods, the permission
associated with each method, and the
java.security.SecurityManager method called to verify the existence
of that permission. You need this information when you implement
certain abstract methods or create your own security manager so
you can include access verification code to keep your
implementations in line with Java 2 platform security policy. If you
do not include access verification code, your implementations will
bypass the built-in Java 2 platform security checks.

● java.awt.Graphics2D
● java.awt.ToolKit
● java.awt.Window
● java.beans.Beans
● java.beans.Introspector
● java.beans.PropertyEditorManager
● java.io.File
● java.io.FileOutputStream
● java.io.ObjectInputStream

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (1 of 20) [2001-6-13 8:14:18]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

● java.io.ObjectOutputStream
● java.io.RandomAccessFile
● java.lang.Class
● java.lang.ClassLoader
● java.lang.Runtime
● java.lang.SecurityManager
● java.lang.System
● java.lang.Thread
● java.lang.ThreadGroup
● java.lang.reflect.AccessibleObject
● java.net.Authenticator
● java.net.DatagramSocket
● java.net.HttpURLConnection
● java.net.InetAddress
● java.net.MulticastSocket
● java.net.ServerSocket
● java.net.Socket
● java.net.URL
● java.net.URLConnection
● java.net.URLClassLoader
● java.rmi.activation.ActivationGroup
● java.rmi.server.RMISocketFactory
● java.security.Identity
● java.security.IdentityScope
● java.security.Permission
● java.security.Policy
● java.security.Provider
● java.security.SecureClassLoader
● java.security.Security
● java.security.Signer
● java.util.Locale
● java.util.Zip

java.awt.Graphics2D

public abstract void setComposite(Composite comp)
java.Security.SecurityManager.checkPermission
java.awt.AWTPermission "readDisplayPixels"

The access verification code for setComposite should call
java.Security.SecurityManager.checkPermission and pass it
java.awt.AWTPermission "readDisplayPixels" when a Graphics2D

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (2 of 20) [2001-6-13 8:14:18]

context draws to a Component on the display screen and the
Composite is a custom object rather than an AlphaComposite
object.

java.awt.Toolkit

public void addAWTEventListener(
 AWTEventListener listener,
 long eventMask)
public void removeAWTEventListener(
 AWTEventListener listener)
checkPermission
java.awt.AWTPermission "listenToAllAWTEvents"

~~~~~~~~~

public abstract PrintJob getPrintJob(
       Frame frame, String jobtitle,
       Properties props)
checkPrintJobAccess
java.lang.RuntimePermission "queuePrintJob"

~~~~~~~~~

public abstract Clipboard
 getSystemClipboard()
checkSystemClipboardAccess
java.awt.AWTPermission "accessClipboard"

~~~~~~~~~

public final EventQueue 
       getSystemEventQueue()
checkAwtEventQueueAccess
java.awt.AWTPermission "accessEventQueue"

java.awt.Window

Window()
checkTopLevelWindow
java.awt.AWTPermission 
       "showWindowWithoutWarningBanner"

java.beans.Beans

public static void setDesignTime(
       boolean isDesignTime)
public static void setGuiAvailable(
       boolean isGuiAvailable)
checkPropertiesAccess
java.util.PropertyPermissions "*", "read,write"

java.beans.Introspector

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (3 of 20) [2001-6-13 8:14:18]



public static synchronized void 
       setBeanInfoSearchPath(String path[])
checkPropertiesAccess
java.util.PropertyPermissions "*", "read,write"

java.beans.PropertyEditorManager

public static void registerEditor(
       Class targetType, 
       Class editorClass)
public static synchronized void 
       setEditorSearchPath(String path[])
checkPropertiesAccess
java.util.PropertyPermissions "*", "read,write"

java.io.File

public boolean delete()
public void deleteOnExit()
checkDelete(String)
java.io.FilePermission "{name}", "delete"

~~~~~~~~~

public boolean exists()
public boolean canRead()
public boolean isFile()
public boolean isDirectory()
public boolean isHidden()
public long lastModified()
public long length()
public String[] list()
public String[] list(FilenameFilter filter)
public File[] listFiles()
public File[] listFiles(FilenameFilter filter)
public File[] listFiles(FileFilter filter)
checkRead(String)
java.io.FilePermission "{name}", "read"

~~~~~~~~~

public boolean canWrite()
public boolean createNewFile()
public static File createTempFile(
        String prefix, String suffix)
public static File createTempFile(
        String prefix,  String suffix,
        File directory)
public boolean mkdir()
public boolean mkdirs()
public boolean renameTo(File dest)
public boolean setLastModified(long time)
public boolean setReadOnly()
checkWrite(String)
java.io.FilePermission "{name}", "write"

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (4 of 20) [2001-6-13 8:14:18]



java.io.FileInputStream

FileInputStream(FileDescriptor fdObj)
checkRead(FileDescriptor)
java.lang.RuntimePermission "readFileDescriptor"

~~~~~~~~~

FileInputStream(String name)
FileInputStream(File file)
checkRead(String)
java.io.FilePermission "{name}", "read"

java.io.FileOutputStream

FileOutputStream(FileDescriptor fdObj)
checkWrite(FileDescriptor)
java.lang.RuntimePermission "writeFileDescriptor"

~~~~~~~~~

FileOutputStream(File file)
FileOutputStream(String name)
FileOutputStream(String name, boolean append)
checkWrite(String)
java.io.FilePermission "{name}", "write"

java.io.ObjectInputStream

protected final boolean 
       enableResolveObject(boolean enable);
checkPermission
java.io.SerializablePermission 
       "enableSubstitution"

~~~~~~~~~

protected ObjectInputStream()
protected ObjectOutputStream()
checkPermission
java.io.SerializablePermission
 "enableSubclassImplementation"

java.io.ObjectOutputStream

protected final boolean
 enableReplaceObject(boolean enable)
checkPermission
java.io.SerializablePermission
 "enableSubstitution"

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (5 of 20) [2001-6-13 8:14:18]

java.io.RandomAccessFile

RandomAccessFile(String name, String mode)
RandomAccessFile(File file, String mode)
checkRead(String)
java.io.FilePermission "{name}", "read"

In both these methods the mode is r.

~~~~~~~~~

RandomAccessFile(String name, String mode)
checkRead(String) and checkWrite(String)
java.io.FilePermission "{name}", "read,write"

In this method the mode is rw. 
~~~~~~~~~

java.lang.Class

public static Class forName(
 String name, boolean initialize,
 ClassLoader loader)
checkPermission
java.lang.RuntimePermission("getClassLoader")

The access verification code for this method calls checkPermission
and pass it java.lang.RuntimePermission("getClassLoader") when
loader is null and the caller's class loader is not null.

~~~~~~~~~

public Class[] getClasses()
checkMemberAccess(this, Member.DECLARED)
java.lang.RuntimePermission 
       "accessDeclaredMembers"
java.lang.RuntimePermission 
       "accessClassInPackage.{pkgName}

The access verification code for this class and each of its 
superclasses calls checkMemberAccess(this, Member.DECLARED). If the 
class is in a package, checkPackageAccess({pkgName}) is also called. 
By default, checkMemberAccess does not require permission if this 
class's classloader is the same as that of the caller. Otherwise, it 
requires java.lang.RuntimePermission "accessDeclaredMembers". If 
the class is in a package, java.lang.RuntimePermission 
"accessClassInPackage.{pkgName}" is also required. 
~~~~~~~~~

public ClassLoader getClassLoader()
checkPermission
java.lang.RuntimePermission "getClassLoader"

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (6 of 20) [2001-6-13 8:14:18]

If the caller's class loader is null, or is the same as or an ancestor
of the class loader for the class whose class loader is being
requested, no permission is needed. Otherwise,
java.lang.RuntimePermission "getClassLoader" is required.
~~~~~~~~~

public Class[] getDeclaredClasses()
public Field[] getDeclaredFields()
public Method[] getDeclaredMethods()
public Constructor[] 
       getDeclaredConstructors()
public Field getDeclaredField(
       String name)
public Method getDeclaredMethod(...)
public Constructor 
       getDeclaredConstructor(...)
checkMemberAccess(this, Member.DECLARED)
checkPackageAccess({pkgName})
java.lang.RuntimePermission 
       "accessDeclaredMembers
java.lang.RuntimePermission 
       "accessClassInPackage.{pkgName}

If Class is in a package, the access verification code should call 
checkPackageAccess({pkgName}) and pass it 
java.lang.RuntimePermission "accessClassInPackage.{pkgName}. 

If Class is not in a package, the access verification code for these 
methods should call checkMemberAccess(this, Member.DECLARED) and 
pass it java.lang.RuntimePermission 
"accessClassInPackage.{pkgName}. 

~~~~~~~~~

public Field[] getFields()
public Method[] getMethods()
public Constructor[] getConstructors()
public Field getField(String name)
public Method getMethod(...)
public Constructor getConstructor(...)
checkMemberAccess(this, Member.PUBLIC)
checkPackageAccess({pkgName})
java.lang.RuntimePermission
 "accessClassInPackage.{pkgName}

If Class is not in a package, the access verification code for these
methods calls checkMemberAccess(this, Member.PUBLIC), but no
permission is passed.

If Class is in a package, the access verification code for these
methods should call checkPackageAccess({pkgName}) and pass it
checkPackageAccess({pkgName}).

~~~~~~~~~

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (7 of 20) [2001-6-13 8:14:18]



public ProtectionDomain 
       getProtectionDomain()
checkPermission
java.lang.RuntimePermission "getProtectionDomain"

java.lang.ClassLoader

ClassLoader()
ClassLoader(ClassLoader parent)
checkCreateClassLoader
java.lang.RuntimePermission "createClassLoader"

~~~~~~~~~

public static ClassLoader
 getSystemClassLoader()
public ClassLoader getParent()
checkPermission
java.lang.RuntimePermission "getClassLoader"

If the caller's class loader is null or is the same as or an ancestor
of the class loader for the class whose class loader is being
requested, no permission is needed. Otherwise,
java.lang.RuntimePermission "getClassLoader" is required.

java.lang.Runtime

public Process exec(String command)
public Process exec(String command,
 String envp[])
public Process exec(String cmdarray[])
public Process exec(String cmdarray[],
 String envp[])
checkExec
java.io.FilePermission "{command}", "execute"

~~~~~~~~~

public void exit(int status)
public static void 
       runFinalizersOnExit(boolean value)
checkExit(status) where status is 0 for 
       runFinalizersOnExit
java.lang.RuntimePermission "exitVM"

~~~~~~~~~

public void load(String lib)
public void loadLibrary(String lib)
checkLink({libName})
java.lang.RuntimePermission
 "loadLibrary.{libName}"

In these methods {libName} is the lib, filename or libname
argument.

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (8 of 20) [2001-6-13 8:14:18]

java.lang.SecurityManager

<all methods>
checkPermission
See Security Manager Methods.

java.lang.System

public static void exit(int status)
public static void
 runFinalizersOnExit(boolean value)
checkExit(status) where status is 0 for
 runFinalizersOnExit
java.lang.RuntimePermission "exitVM"

~~~~~~~~~

public static void load(String filename)
public static void loadLibrary(
        String libname)
checkLink({libName})
java.lang.RuntimePermission 
       "loadLibrary.{libName}"

In these methods {libName} is the lib, filename or libname 
argument. 
~~~~~~~~~

public static Properties getProperties()
public static void setProperties(Properties props)
checkPropertiesAccess
java.util.PropertyPermission "*", "read,write"

~~~~~~~~~

public static String getProperty(String key)
public static String getProperty(String key, 
                         String def)
checkPropertyAccess
java.util.PropertyPermission "{key}", "read"

~~~~~~~~~

public static void setIn(InputStream in)
public static void setOut(PrintStream out)
public static void setErr(PrintStream err)
checkPermission
java.lang.RuntimePermission "setIO"

~~~~~~~~~

public static String setProperty(String key, 
                         String value)
checkPermission
java.util.PropertyPermission "{key}", "write"

~~~~~~~~~

public static synchronized void

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (9 of 20) [2001-6-13 8:14:18]

 setSecurityManager(SecurityManager s)
checkPermission
java.lang.RuntimePermission "setSecurityManager"

java.lang.Thread

public ClassLoader getContextClassLoader()
checkPermission
java.lang.RuntimePermission "getClassLoader"

If the caller's class loader is null or is the same as or an ancestor
of the context class loader for the thread whose context class
loader is being requested, no permission is needed. Otherwise,
java.lang.RuntimePermission "getClassLoader" is required.

~~~~~~~~~

public void setContextClassLoader
       (ClassLoader cl)
checkPermission
java.lang.RuntimePermission 
       "setContextClassLoader"

~~~~~~~~~

public final void checkAccess()
public void interrupt()
public final void suspend()
public final void resume()
public final void setPriority
 (int newPriority)
public final void setName(String name)
public final void setDaemon(boolean on)
checkAccess(this)
java.lang.RuntimePermission "modifyThread"

~~~~~~~~~

public static int 
       enumerate(Thread tarray[])
checkAccess({threadGroup})
java.lang.RuntimePermission "modifyThreadGroup"

~~~~~~~~~

public final void stop()
checkAccess(this).
checkPermission
java.lang.RuntimePermission "modifyThread"
java.lang.RuntimePermission "stopThread"

The access verification code should call checkAccess and pass it
java.lang.RuntimePermission "modifyThread", unless the current
thread is trying to stop a thread other than itself. In this case, the
access verification code should call checkPermission and pass it
java.lang.RuntimePermission "stopThread".
~~~~~~~~~

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (10 of 20) [2001-6-13 8:14:18]



public final synchronized void 
       stop(Throwable obj)
checkAccess(this). 
checkPermission
java.lang.RuntimePermission "modifyThread"
java.lang.RuntimePermission "stopThread"

The access verification code should call checkAccess and pass it 
java.lang.RuntimePermission "modifyThread" unless the current 
thread is trying to stop a thread other than itself or obj is not an 
instance of ThreadDeath. In this case, the access verification code 
should call checkPermission and pass it java.lang.RuntimePermission 
"stopThread". 
~~~~~~~~~

Thread()
Thread(Runnable target)
Thread(String name)
Thread(Runnable target, String name)
checkAccess({parentThreadGroup})
java.lang.RuntimePermission "modifyThreadGroup"

~~~~~~~~~

Thread(ThreadGroup group, ...)
checkAccess(this) for ThreadGroup methods, or
checkAccess(group) for Thread methods
java.lang.RuntimePermission "modifyThreadGroup"

java.lang.ThreadGroup

public final void checkAccess()
public int enumerate(Thread list[])
public int enumerate(Thread list[],
       boolean recurse)
public int enumerate(ThreadGroup list[])
public int enumerate(ThreadGroup list[],
       boolean recurse)
public final ThreadGroup getParent()
public final void 
       setDaemon(boolean daemon)
public final void setMaxPriority(int pri)
public final void suspend()
public final void resume()
public final void destroy()
checkAccess(this) for ThreadGroup methods, or
checkAccess(group) for Thread methods
java.lang.RuntimePermission "modifyThreadGroup"

~~~~~~~~~

ThreadGroup(String name)
ThreadGroup(ThreadGroup parent,
String name)
checkAccess({parentThreadGroup})
java.lang.RuntimePermission "modifyThreadGroup"

~~~~~~~~~

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (11 of 20) [2001-6-13 8:14:18]



public final void interrupt()
checkAccess(this)
java.lang.RuntimePermission "modifyThreadGroup"
java.lang.RuntimePermission "modifyThread"

The access verification code for this method also requires 
java.lang.RuntimePermission "modifyThread" because the 
java.lang.Thread interrupt() method is called for each thread in 
the thread group and in all of its subgroups. 
~~~~~~~~~

public final void stop()
checkAccess(this)
java.lang.RuntimePermission "modifyThreadGroup"
java.lang.RuntimePermission "modifyThread"
java.lang.RuntimePermission "stopThread"

The access verification code for this method also requires
java.lang.RuntimePermission "modifyThread" and possibly
java.lang.RuntimePermission "stopThread" because the
java.lang.Thread stop() method is called for each thread in the
thread group and in all of its subgroups.

java.lang.reflect.AccessibleObject

public static void setAccessible(...)
public void setAccessible(...)
checkPermission
java.lang.reflect.ReflectPermission
 "suppressAccessChecks"

java.net.Authenticator

public static PasswordAuthentication
 requestPasswordAuthentication(InetAddress addr,
 int port,
 String protocol,
 String prompt,
 String scheme)
checkPermission
java.net.NetPermission
 "requestPasswordAuthentication"

~~~~~~~~~

public static void 
       setDefault(Authenticator a)
checkPermission
java.net.NetPermission "setDefaultAuthenticator"

java.net.DatagramSocket

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (12 of 20) [2001-6-13 8:14:18]



public void send(DatagramPacket p)
checkMulticast(p.getAddress()) 
checkConnect(p.getAddress().getHostAddress(),  
            p.getPort())
java.net.SocketPermission((
            p.getAddress()).getHostAddress(), 
            "accept,connect")
java.net.SocketPermission "{host}","resolve"

The access verification code for send calls checkMulticast in the 
following case: 

if (p.getAddress().isMulticastAddress()) {
  java.net.SocketPermission(
    (p.getAddress()).getHostAddress(), 
     "accept,connect")
}

The access verification code for send calls checkConnect in the 
following case: 

else {
  port = p.getPort();
  host = p.getAddress().getHostAddress();
  if (port == -1) java.net.SocketPermission 
                "{host}","resolve";
  else java.net.SocketPermission 
                "{host}:{port}","connect"
}

~~~~~~~~~

public InetAddress getLocalAddress()
checkConnect({host}, -1)
java.net.SocketPermission "{host}", "resolve"

~~~~~~~~~

DatagramSocket(...)
checkListen({port})

The access verification code for this method calls checkListen and 
passes in socket permissions as follows: 

if (port == 0)
  java.net.SocketPermission "localhost:1024-",
                    "listen";
else
  java.net.SocketPermission "localhost:{port}",
                    "listen"

~~~~~~~~~

public synchronized void receive(DatagramPacket p)
checkAccept({host}, {port})
java.net.SocketPermission "{host}:{port}",
 "accept"

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (13 of 20) [2001-6-13 8:14:18]

java.net.HttpURLConnection

public static void setFollowRedirects(boolean set)
checkSetFactory
java.lang.RuntimePermission "setFactory"

java.net.InetAddress

public String getHostName()
public static InetAddress[]
 getAllByName(String host)
public static InetAddress getLocalHost()
checkConnect({host}, -1)
java.net.SocketPermission "{host}", "resolve"

java.net.MulticastSocket

public void joinGroup(InetAddress mcastaddr)
public void leaveGroup(InetAddress mcastaddr)
checkMulticast(InetAddress)
java.net.SocketPermission(
 mcastaddr.getHostAddress(),
 "accept,connect")

~~~~~~~~~

public synchronized void 
       send(DatagramPacket p, byte ttl)
checkMulticast(p.getAddress(), ttl) 
checkConnect(p.getAddress().getHostAddress(),  
            p.getPort())
java.net.SocketPermission((
            p.getAddress()).getHostAddress(),
             "accept,connect")
java.net.SocketPermission "{host}","resolve"

The access verification code for send calls checkMulticast in the 
following case: 

if (p.getAddress().isMulticastAddress()) {
  java.net.SocketPermission(
    (p.getAddress()).getHostAddress(), 
     "accept,connect")
}

The access verification code for this method calls checkConnect in 
the following case: 

else {
  port = p.getPort();
  host = p.getAddress().getHostAddress();
  if (port == -1) java.net.SocketPermission 
       "{host}","resolve"
  else java.net.SocketPermission 
       "{host}:{port}","connect"

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (14 of 20) [2001-6-13 8:14:18]



}

~~~~~~~~~

MulticastSocket(...)
checkListen({port})

The access verification code for this method calls checkListen in the
following case:

if (port == 0)
 java.net.SocketPermission
 "localhost:1024-", "listen";
else
 java.net.SocketPermission
 "localhost:{port}","listen"

java.net.ServerSocket

ServerSocket(...)
checkListen({port})

The access verification code for this method calls checkListen in the
following case:

if (port == 0)
 java.net.SocketPermission
 "localhost:1024-","listen";
else
 java.net.SocketPermission
 "localhost:{port}","listen"

~~~~~~~~~

public Socket accept()
protected final void implAccept(Socket s)
checkAccept({host}, {port})
java.net.SocketPermission 
       "{host}:{port}", "accept"

~~~~~~~~~

public static synchronized void
 setSocketFactory(...)
checkSetFactory
java.lang.RuntimePermission "setFactory"

java.net.Socket

public static synchronized void
 setSocketImplFactory(...)
checkSetFactory
java.lang.RuntimePermission "setFactory"

~~~~~~~~~

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (15 of 20) [2001-6-13 8:14:18]



Socket(...)
checkConnect({host}, {port})
java.net.SocketPermission 
       "{host}:{port}", "connect"

java.net.URL

public static synchronized void 
       setURLStreamHandlerFactory(...)
checkSetFactory
java.lang.RuntimePermission "setFactory"

~~~~~~~~~

URL(...)
checkPermission
java.net.NetPermission "specifyStreamHandler"

java.net.URLConnection

public static synchronized void
 setContentHandlerFactory(...)
public static void setFileNameMap(
 FileNameMap map)
checkSetFactory
java.lang.RuntimePermission "setFactory"

java.net.URLClassLoader

URLClassLoader(...)
checkCreateClassLoader
java.lang.RuntimePermission "createClassLoader"

java.rmi.activation.ActivationGroup

public static synchronized ActivationGroup
 createGroup(...)
public static synchronized void setSystem(
 ActivationSystem system)
checkSetFactory
java.lang.RuntimePermission "setFactory"

java.rmi.server.RMISocketFactory

public synchronized static void setSocketFactory(...)
checkSetFactory
java.lang.RuntimePermission "setFactory"

java.security.Identity

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (16 of 20) [2001-6-13 8:14:18]

public void addCertificate(...)
checkSecurityAccess("addIdentityCertificate")
java.security.SecurityPermission
 "addIdentityCertificate"

~~~~~~~~~

public void removeCertificate(...)
checkSecurityAccess("removeIdentityCertificate")
java.security.SecurityPermission 
       "removeIdentityCertificate"

~~~~~~~~~

public void setInfo(String info)
checkSecurityAccess("setIdentityInfo")
java.security.SecurityPermission
 "setIdentityInfo"

~~~~~~~~~

public void setPublicKey(PublicKey key)
checkSecurityAccess("setIdentityPublicKey")
java.security.SecurityPermission 
       "setIdentityPublicKey"

~~~~~~~~~

public String toString(...)
checkSecurityAccess("printIdentity")
java.security.SecurityPermission
 "printIdentity"

java.security.IdentityScope

protected static void setSystemScope()
checkSecurityAccess("setSystemScope")
java.security.SecurityPermission
 "setSystemScope"

java.security.Permission

public void checkGuard(Object object)
checkPermission(this)

This Permission object is the permission checked.

java.security.Policy

public static Policy getPolicy()
checkPermission
java.security.SecurityPermission "getPolicy"

~~~~~~~~~

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (17 of 20) [2001-6-13 8:14:18]



public static void setPolicy(Policy policy);
checkPermission
java.security.SecurityPermission "setPolicy"

~~~~~~~~~

java.security.Provider

public synchronized void clear()
checkSecurityAccess("clearProviderProperties."
 +{name})
java.security.SecurityPermission
 "clearProviderProperties.{name}"

In this method name is the provider name.

~~~~~~~~~

public synchronized Object put(Object key, 
                       Object value)
checkSecurityAccess("putProviderProperty."
                       +{name})
java.security.SecurityPermission 
       "putProviderProperty.{name}"

In this method name is the provider name. 
~~~~~~~~~

public synchronized Object remove(Object key)
checkSecurityAccess("removeProviderProperty."
 +{name})
java.security.SecurityPermission
 "removeProviderProperty.{name}"

In this method name is the provider name.

java.security.SecureClassLoader

SecureClassLoader(...)
checkCreateClassLoader
java.lang.RuntimePermission "createClassLoader"

java.security.Security

public static void getProperty(String key)
checkPermission
java.security.SecurityPermission "getProperty.{key}"

~~~~~~~~~

public static int addProvider(Provider provider)
public static int insertProviderAt(
                Provider provider, 
                int position);

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (18 of 20) [2001-6-13 8:14:18]



checkSecurityAccess("insertProvider."
                +provider.getName())
java.security.SecurityPermission 
        "insertProvider.{name}"

~~~~~~~~~

public static void removeProvider(String name)
checkSecurityAccess("removeProvider."+name)
java.security.SecurityPermission "removeProvider.{name}"

~~~~~~~~~

public static void setProperty( String key, 
                        String datum)
checkSecurityAccess("setProperty."+key)
java.security.SecurityPermission 
                        "setProperty.{key}"

java.security.Signer

public PrivateKey getPrivateKey()
checkSecurityAccess("getSignerPrivateKey")
java.security.SecurityPermission 
       "getSignerPrivateKey"

~~~~~~~~~

public final void setKeyPair(KeyPair pair)
checkSecurityAccess("setSignerKeypair")
java.security.SecurityPermission
 "setSignerKeypair"

java.util.Locale

public static synchronized void setDefault(
 Locale newLocale)
checkPermission
java.util.PropertyPermission
 "user.language","write"

java.util.zip.ZipFile

ZipFile(String name)
checkRead
java.io.FilePermission "{name}","read"

[TOP]

[This page was updated: 4-Jun-2001]

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (19 of 20) [2001-6-13 8:14:18]

http://developer.java.sun.com/servlet/PrintPageServlet

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appB.html (20 of 20) [2001-6-13 8:14:18]

http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Writing Advanced Applications, Appendix C: Security Manager Methods

Training Index

Writing Advanced Applications
Appendix C: Security Manager Methods

[<<BACK] [CONTENTS] [NEXT>>]

This table shows which permissions are checked for by the default
implementations of the java.lang.SecurityManager methods. Each
of the check methods calls the SecurityManager.checkPermission
method with the indicated permission, except for the checkConnect
and checkRead methods that take a context argument. The
checkConnect and checkRead methods expect the context to be an
AccessControlContext and they call the context's checkPermission
method with the specified permission.

public void checkAccept(String host, int port);
java.net.SocketPermission "{host}:{port}", "accept";

public void checkAccess(Thread g);
java.lang.RuntimePermission "modifyThread");

public void checkAccess(ThreadGroup g);
java.lang.RuntimePermission "modifyThreadGroup");

public void checkAwtEventQueueAccess();
java.awt.AWTPermission "accessEventQueue";

public void checkConnect(String host, int port);
if (port == -1)
 java.net.SocketPermission "{host}","resolve";
else
 java.net.SocketPermission "{host}:{port}","connect";

public void checkConnect(String host, int port,
 Object context);
if (port == -1)
 java.net.SocketPermission "{host}","resolve";
else
 java.net.SocketPermission "{host}:{port}","connect";

public void checkCreateClassLoader();
java.lang.RuntimePermission "createClassLoader";

public void checkDelete(String file);
java.io.FilePermission "{file}", "delete";

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appC.html (1 of 3) [2001-6-13 8:14:24]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/

Technology Centers

Writing Advanced Applications, Appendix C: Security Manager Methods

public void checkExec(String cmd);
if (cmd is an absolute path)
 java.io.FilePermission "{cmd}", "execute";
else
 java.io.FilePermission "-", "execute";

public void checkExit(int status);
java.lang.RuntimePermission "exitVM");

public void checkLink(String lib);
java.lang.RuntimePermission "loadLibrary.{lib}";

public void checkListen(int port);
if (port == 0)
 java.net.SocketPermission "localhost:1024-","listen";
else
 java.net.SocketPermission "localhost:{port}","listen";

public void checkMemberAccess(Class clazz, int which);
if (which != Member.PUBLIC) {
 if (currentClassLoader() != clazz.getClassLoader()) {
 checkPermission(
 new java.lang.RuntimePermission(
 "accessDeclaredMembers"));
 }
}

public void checkMulticast(InetAddress maddr);
java.net.SocketPermission(
 maddr.getHostAddress(),"accept,connect");

public void checkMulticast(InetAddress maddr, byte ttl);
java.net.SocketPermission(
 maddr.getHostAddress(),"accept,connect");

public void checkPackageAccess(String pkg);
java.lang.RuntimePermission
 "accessClassInPackage.{pkg}";

public void checkPackageDefinition(String pkg);
java.lang.RuntimePermission
 "defineClassInPackage.{pkg}";

public void checkPrintJobAccess();
java.lang.RuntimePermission "queuePrintJob";

public void checkPropertiesAccess();
java.util.PropertyPermission "*", "read,write";

public void checkPropertyAccess(String key);
java.util.PropertyPermission "{key}", "read,write";

public void checkRead(FileDescriptor fd);
java.lang.RuntimePermission "readFileDescriptor";

public void checkRead(String file);
java.io.FilePermission "{file}", "read";

public void checkRead(String file, Object context);
java.io.FilePermission "{file}", "read";

public void checkSecurityAccess(String action);

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appC.html (2 of 3) [2001-6-13 8:14:24]

java.security.SecurityPermission "{action}";

public void checkSetFactory();
java.lang.RuntimePermission "setFactory";

public void checkSystemClipboardAccess();
java.awt.AWTPermission "accessClipboard";

public boolean checkTopLevelWindow(Object window);
java.awt.AWTPermission "showWindowWithoutWarningBanner";

public void checkWrite(FileDescriptor fd);
java.lang.RuntimePermission "writeFileDescriptor";

public void checkWrite(String file);
java.io.FilePermission "{file}", "write";

public SecurityManager();
java.lang.RuntimePermission "createSecurityManager";

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Writing Advanced Applications, Appendix C: Security Manager Methods

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appC.html (3 of 3) [2001-6-13 8:14:24]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/end.html

Training Index

Writing Advanced Applications
Epilogue

[<<BACK] [CONTENTS]

Closing comments go here.

Note: This is a work in progress. Please let us know
what you would like to see in this book by sending your
comments and questions to us at the following address:
jdcbook@sun.com

Related Materials

For more information on multithreading, see the JDC article A
Simple, Multithreaded Web Server.

About the Authors

Calvin Austin is a staff engineer at Sun Microsystems, and a
cofounder of the Java Developer ConnectionSM (JDC). He has
written articles for the JDC and presented twice at JavaOne. His
main interests are CORBA, databases and Swing. In particular he
is recognized for his expertise in debugging applications and
analyzing stack traces.

Calvin holds an Honors degree in Computer Science from Leeds
University in the United Kingdom.

Monica Pawlan, a staff writer for the Java Developer ConnectionSM
(JDC), is author of Essentials of the Java Programming Language:
A Hands-On Guide (Addison-Wesley, 2000), and co-author of
Advanced Programming for the Java 2 Platform (Addison-Wesley,
2000).

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/end.html (1 of 2) [2001-6-13 8:14:28]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
mailto:jdcbook@sun.com
http://developer.java.sun.com/developer/technicalArticles/Networking/Webserver/index.html
http://developer.java.sun.com/developer/technicalArticles/Networking/Webserver/index.html
http://java.sun.com/people/monicap

Technology Centers

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/end.html

Guest Authors

Tony Squier is an engineer at Sun Microsystems and a cofounder
of the JDC. He developed most of the servlets that drive the web
site, including the session management and registration servlets.
He also played a leading role in creating many JDC applets
including Chat, DiscussionGroup, and others.

Tony has a Master's Degree in Computer Science with
specialization in Software Engineering, a Bachelors of Arts in
Communications, and a Minor in Computer Science -- all from
California State University, Sacramento. Tony is a member of the
Association for Computing Machinery and has interest in object
oriented software development, user interface design, and
client/server applications.

[TOP]

[This page was updated: 4-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/end.html (2 of 2) [2001-6-13 8:14:28]

http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

 Requires login

Early Access
Downloads

Bug Database
Submit a Bug
View Database

Newsletters
Back Issues
Subscribe

Learning Centers
Articles
Bookshelf
Code Samples
New to Java
Question of the Week
Quizzes
Tech Tips
Tutorials

Forums

Tutorials

Tutorials & Short Courses

JavaTM Series

● The Java Tutorial
● The Swing Tutorial

Java Developer
ConnectionSM

● Java Embedded ServerTM
Technology
(November 2000)
● JavaBeansTM 101 Tutorial,
Part III
(January 2001)
● JavaBeansTM 101 Tutorial,
Part II
(November 2000)
● JavaBeansTM 101 Tutorial,
Part I
(October 2000)
● Java 3DTM API Tutorial
(September 2000)
● A New Era for Java Protocol
Handlers
(August 2000)
● JavaTM Advanced Imaging
Tutorial
(July 2000)
● Writing Enterprise
Applications for the JavaTM 2
Enterprise Edition Reference
Implementation
(June 2000)
● Essentials of the JavaTM

jGuru Short Courses

The JDC hosts a
series of short courses by
jGuru.com (formerly known as
the MageLang Institute)

● Fundamentals of the
JavaMailTMAPI
(April 2001)
● Language Essentials Short
Course
(February 2001)
● JDBCTM 2.0 Fundamentals
Short Course
(December 2000)
● JavaServer PagesTM
Fundamentals
(September 2000)
● AWT Fundamentals
(July 2000)
● Enterprise
JavaBeansTM(EJBTM) Technology
Fundamentals
(May 2000)
● Fundamentals of RMI
(February 2000)
● Introduction to CORBA
(December 1999)
● Introduction to the
Collections Framework
(September 1999)
● Introduction to the
JavaBeansTM API
● Effective Layout

http://developer.java.sun.com/developer/onlineTraining/index.html (1 of 4) [2001-6-13 8:14:38]

http://java.sun.com/index.html
http://java.sun.com/a-z/index.html
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/onlineTraining/
http://java.sun.com/products/
http://developer.java.sun.com/developer/
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/
http://developer.java.sun.com/developer/community/
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies
http://developer.java.sun.com/servlet/PrintPageServlet
http://developer.java.sun.com/developer/earlyAccess/
http://java.sun.com/cgi-bin/bugreport.cgi/
http://developer.java.sun.com/developer/bugParade/index.jshtml
http://developer.java.sun.com/developer/techDocs/Newsletters/
http://developer.java.sun.com/subscription/
http://developer.java.sun.com/developer/technicalArticles/
http://developer.java.sun.com/developer/Books/
http://developer.java.sun.com/developer/codesamples/
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/qow/archive/
http://developer.java.sun.com/developer/Quizzes/
http://developer.java.sun.com/developer/TechTips/
http://developer.java.sun.com/developer/onlineTraining/
http://forum.java.sun.com/
http://web2.java.sun.com/docs/books/tutorial/
http://web2.java.sun.com/docs/books/tutorial/uiswing/index.html
http://developer.java.sun.com/developer/products/wireless
http://developer.java.sun.com/developer/products/wireless
http://developer.java.sun.com/developer/onlineTraining/Beans/beans3/
http://developer.java.sun.com/developer/onlineTraining/Beans/beans3/
http://developer.java.sun.com/developer/onlineTraining/Beans/beans02/
http://developer.java.sun.com/developer/onlineTraining/Beans/beans02/
http://developer.java.sun.com/developer/onlineTraining/Beans/bean01/
http://developer.java.sun.com/developer/onlineTraining/Beans/bean01/
http://developer.java.sun.com/developer/onlineTraining/java3d/
http://developer.java.sun.com/developer/onlineTraining/protocolhandlers/
http://developer.java.sun.com/developer/onlineTraining/protocolhandlers/
http://developer.java.sun.com/developer/onlineTraining/javaai/
http://developer.java.sun.com/developer/onlineTraining/javaai/
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://developer.java.sun.com/developer/onlineTraining/Programming/BasicJava2/index.html
http://www.jguru.com/
http://developer.java.sun.com/developer/onlineTraining/JavaMail/index.html
http://developer.java.sun.com/developer/onlineTraining/JavaMail/index.html
http://developer.java.sun.com/developer/onlineTraining/JavaIntro/
http://developer.java.sun.com/developer/onlineTraining/JavaIntro/
http://developer.java.sun.com/developer/onlineTraining/Database/JDBC20Intro/
http://developer.java.sun.com/developer/onlineTraining/Database/JDBC20Intro/
http://developer.java.sun.com/developer/onlineTraining/JSPIntro/
http://developer.java.sun.com/developer/onlineTraining/JSPIntro/
http://developer.java.sun.com/developer/onlineTraining/awt/
http://developer.java.sun.com/developer/onlineTraining/EJBIntro/
http://developer.java.sun.com/developer/onlineTraining/EJBIntro/
http://developer.java.sun.com/developer/onlineTraining/EJBIntro/
http://developer.java.sun.com/developer/onlineTraining/rmi/
http://developer.java.sun.com/developer/onlineTraining/corba/
http://developer.java.sun.com/developer/onlineTraining/collections/index.html
http://developer.java.sun.com/developer/onlineTraining/collections/index.html
http://developer.java.sun.com/developer/onlineTraining/Beans/JBeansAPI/index.html
http://developer.java.sun.com/developer/onlineTraining/Beans/JBeansAPI/index.html
http://developer.java.sun.com/developer/onlineTraining/GUI/AWTLayoutMgr/index.html

Technology Centers

Java JumpStart

Get a free copy of
the Java
JumpStartTM Edition
from Sun
Developer
EssentialsTM
software program.
This CD set
includes the lastest
versions of JESETM,
J2EETM, J2M2TM,
ForteTM for Java,
Community Edition
Java IDE, and
much more.

Tutorials

Programming Language: A
Hands-On Guide, Part 2*

(July 1999)
● Essentials of the JavaTM
Programming Language: A
Hands-On Guide, Part 1*

(March 1999)
● Advanced Programming for
the JavaTM 2 Platform
(November 1999)
● Enterprise JavaBeansTM
Tutorial
(February 1999)
● Java 2DTM: Styled Text
(September 1998)

Management
(May 1999)
● Fundamentals of
JFC/Swing: Part II
(April 1999)
● Fundamentals of
JFC/Swing: Part I
(March 1999)
● Fundamentals of JavaTM
Servlets
(January 1999)
● Fundamentals of Java
Security
(November 1998)
● JavaBeansTM Short Course
(October 1997)
● JDBCTM Short Course
(October 1997)

Tutorials by Category

Downloads
If you find it easier to download a tutorial or short course and work
offline, look here for downloadable zip and PDF files.

Java Platform Programming

● The Java Tutorial (Java Series)
● Essentials of the JavaTM Programming Language: A Hands-On

Guide, Part 1
● Essentials of the JavaTM Programming Language: A Hands-On

Guide, Part 2
● Advanced Programming for the JavaTM 2 Platform--JDC

Note: The Java Tutorial, Essentials of the Java
Programming Language and Advanced Programming for
the Java 2 Platform are available as books from online
book sellers.

Beans

● JavaBeansTM, Part II (Updated, November 2000)
● JavaBeansTM, Part I (Updated, October 2000)

http://developer.java.sun.com/developer/onlineTraining/index.html (2 of 4) [2001-6-13 8:14:38]

http://developer.java.sun.com/developer/surveys/restricted/java_jumpstart.html
http://developer.java.sun.com/developer/surveys/restricted/java_jumpstart.html
http://developer.java.sun.com/developer/surveys/restricted/java_jumpstart.html
http://developer.java.sun.com/developer/onlineTraining/Programming/BasicJava2/index.html
http://developer.java.sun.com/developer/onlineTraining/Programming/BasicJava2/index.html
http://developer.java.sun.com/developer/onlineTraining/Programming/BasicJava1/index.html
http://developer.java.sun.com/developer/onlineTraining/Programming/BasicJava1/index.html
http://developer.java.sun.com/developer/onlineTraining/Programming/BasicJava1/index.html
http://developer.java.sun.com/developer/onlineTraining/Beans/EJBTutorial/index.html
http://developer.java.sun.com/developer/onlineTraining/Beans/EJBTutorial/index.html
http://developer.java.sun.com/developer/onlineTraining/Media/2DText/
http://developer.java.sun.com/developer/onlineTraining/GUI/AWTLayoutMgr/index.html
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing2/index.html
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing2/index.html
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing1/index.html
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing1/index.html
http://developer.java.sun.com/developer/onlineTraining/Servlets/Fundamentals/index.html
http://developer.java.sun.com/developer/onlineTraining/Servlets/Fundamentals/index.html
http://developer.java.sun.com/developer/onlineTraining/Security/Fundamentals/abstract.html
http://developer.java.sun.com/developer/onlineTraining/Security/Fundamentals/abstract.html
http://developer.java.sun.com/developer/onlineTraining/Beans/JBShortCourse/index.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html
http://developer.java.sun.com/developer/onlineTraining/Downloads/index.html
http://java.sun.com/docs/books/tutorial/index.html
http://developer.java.sun.com/developer/onlineTraining/Programming/BasicJava1/index.html
http://developer.java.sun.com/developer/onlineTraining/Programming/BasicJava1/index.html
http://developer.java.sun.com/developer/onlineTraining/Programming/BasicJava2/index.html
http://developer.java.sun.com/developer/onlineTraining/Programming/BasicJava2/index.html
http://www.amazon.com/exec/obidos/ASIN/0201703939/o/qid=963596417/sr=8-3/re
http://www.amazon.com/exec/obidos/ASIN/0201707209/o/qid%3D957218666/sr%3D8-
http://www.amazon.com/exec/obidos/ASIN/0201707209/o/qid%3D957218666/sr%3D8-
http://www.amazon.com/exec/obidos/ASIN/0201715015/o/qid=963590813/sr=8-2/re
http://www.amazon.com/exec/obidos/ASIN/0201715015/o/qid=963590813/sr=8-2/re
http://developer.java.sun.com/developer/onlineTraining/Beans/

● Introduction to the JavaBeansTM API
● JavaBeansTM Short Course
● Enterprise JavaBeansTM Tutorial

Collections

● Introduction to the Collections Framework

Distributed Computing

● JDBCTM 2.O Fundamentals Short Course
● JavaServer Pages Fundamentals
● Protocol Handlers
● Introduction to CORBA
● JDBCTM Short Course, JDK 1.1
● Fundamentals of RMI
● Fundamentals of JavaTM Servlets

Graphics and Media

● Java 3DTM API
● JavaTM Advanced Imaging
● Java 2DTM: Styled Text

Graphical User Interfaces (GUIs)

● AWT Fundamentals
● The Swing Tutorial
● Fundamentals of JFC/Swing: Part I-Part II
● Effective Layout Management

Java 2 Enterprise Edition

● Writing Enterprise Applications for the JavaTM 2 Enterprise
Edition Reference Implementation

Security

● Fundamentals of Java Security

[This page was updated: 8-Jun-2001]

Products & APIs | Developer Connection | Docs & Training | Online Support
Community Discussion | Industry News | Solutions Marketplace | Case Studies

Tutorials

http://developer.java.sun.com/developer/onlineTraining/index.html (3 of 4) [2001-6-13 8:14:38]

http://developer.java.sun.com/developer/onlineTraining/collections/index2.html
http://developer.java.sun.com/developer/onlineTraining/distributed
http://developer.java.sun.com/developer/onlineTraining/Media/
http://developer.java.sun.com/developer/onlineTraining/GUI/
http://developer.java.sun.com/developer/onlineTraining/J2EE/
http://developer.java.sun.com/developer/onlineTraining/Security/
http://developer.java.sun.com/servlet/PrintPageServlet
http://java.sun.com/products/
http://developer.java.sun.com/developer/index.html
http://developer.java.sun.com/developer/infodocs/
http://developer.java.sun.com/developer/support/index.html
http://developer.java.sun.com/developer/community/index.html
http://java.sun.com/industry/
http://java.sun.com/solutions
http://java.sun.com/casestudies

Glossary | Feedback | A-Z Index

For more information on Java technology
and other software from Sun Microsystems, call:
(800) 786-7638
Outside the U.S. and Canada, dial your country's
AT&T Direct Access Number first.

Copyright © 1995-2001 Sun Microsystems, Inc.
All Rights Reserved. Terms of Use. Privacy Policy.

Tutorials

http://developer.java.sun.com/developer/onlineTraining/index.html (4 of 4) [2001-6-13 8:14:38]

http://java.sun.com/docs/glossary.html
http://developer.java.sun.com/feedback/index.html
http://java.sun.com/a-z/index.html
http://www.att.com/tollfree/international/dialguide/
http://www.sun.com/
http://www.sun.com/
http://www.sun.com/share/text/termsofuse.html
http://www.sun.com/privacy/

	sun.com
	Advanced Programming for the Java(TM) 2 Platform
	Writing Advanced Applications, Chapter 1: Matching Project Requirements with Technology
	Writing Advanced Applications, Chapter 1: Project Requirements and Modeling
	Writing Advanced Applications, Chapter 1: Choosing the Software
	Writing Advanced Applications, Chapter 2: Auction Application Code
	Duke's Auction
	Writing Advanced Applications, Chapter 2: A Multi-Tiered Application with Enterprise Beans
	Advanced Programming for the Java(TM) 2 Platform
	Writing Advanced Applications, Chapter 2: Entity and Session Beans
	Writing Advanced Applications, Chapter 2: Examining a Container-managed Bean
	Writing Advanced Applications, Chapter 2: Container-Managed finder Methods
	Writing Advanced Applications, Chapter 3: Data and Transaction Management
	Writing Advanced Applications, Chapter 3: Bean-Managed Persistence and the JDBC platform
	Writing Advanced Applications, Chapter 3: Transaction Management
	Writing Advanced Applications, Chapter 3: Bean-managed finder Methods
	Writing Advanced Applications, Chapter 4: Distributed Computing
	Writing Advanced Applications, Chapter 4: Distributed Computing
	Writing Advanced Applications, Chapter 4: Distributed Computing
	Writing Advanced Applications, Chapter 4: Distributed Computing
	Writing Advanced Applications, Chapter 4: Distributed Computing
	Writing Advanced Applications, Chapter 4: Distributed Computing
	Writing Advanced Applications, Chapter 5: JNI Technology
	Writing Advanced Applications, Chapter 5: JNI Technology
	Writing Advanced Applications, Chapter 5: JNI Technology
	Writing Advanced Applications, Chapter 5: JNI Technology Issues
	Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface
	Writing Advanced Java Applications, Chapter 6: Project Swing: Building a User Interface
	Writing Advanced Applications, Chapter 6: Building a User Interface
	Writing Advanced Applications, Chapter 6: Advanced Printing
	Writing Advanced Applications, Chapter 7: Debugging Applets, Applications, and Servlets
	Writing Advanced Applications, Chapter 7: Collecting Evidence
	Writing Advanced Applications, Chapter 7: Running Tests & Analyzing
	Writing Advanced Applications, Chapter 7: Servlet Debugging
	Writing Advanced Applications, Chapter 7: AWT Debugging
	Writing Advanced Applications, Chapter 7: Analyzing Stack Traces
	Writing Advanced Applications, Chapter 7: Version Issues
	Writing Advanced Applications, Chapter 8: Performance Techniques
	Writing Advanced Applications, Chapter 8: Improving Performance
	Writing Advanced Applications, Chapter 8: Performance Techniques
	http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/perf2.html
	Writing Advanced Applications, Chapter 8: Performance Analysis
	Writing Advanced Applications, Chapter 8: Caching Client/Server Applications
	Writing Advanced Applications, Chapter 9: Distributed Computing
	Writing Advanced Java Applications, Chapter 9: Distributed Computing
	http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/solaris.html
	http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/win.html
	http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/security.html
	http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed.html
	http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/signed2.html
	http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/appA.html
	Writing Advanced Applications, Appendix B: Classes, Methods, & Permissions
	Writing Advanced Applications, Appendix C: Security Manager Methods
	http://developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/end.html
	Tutorials

	HGOMCEAMDINMOBLMMNPKNDHNIDGMAMBL:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	MINBLDNEGJGBJCOBBEOBFIGOMBPCLGDG:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	OOOPLJOOMANFANFCJFHBFIILNDFEILMA:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	CPAENHJBBOBMJPONABOFJCCIKIDKHLEL:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	FOLIIHDOFPCIJEGNNAPKPAPNGCEIHMLL:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	OEACICKILBAGDLKNAGEHEEGJODAEBMMJ:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	CJLAGFJLGECCJANAHLHEKKAECDKBCHIJ:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	HINLCLCAPPBBJIGANKDMNEIFFLFJPPPD:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	KNIBLDFBHLBOHMBFKPONKEJBCMLKFGMK:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	CFALNOFACPLMPCNECNFHBFEIPKABNHOE:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	JJFEGAODLCDEICKCBJPCGFIFMKHABBMP:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	OHBMDPGDCIMLOFIPCIKOMMGMKGKPLIOB:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	EKEBFNAPFEKACJICDGOOGHNAEFLMKCAH:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	BDOKFFPJFGGCMGEIGHIANBFENLHNLLPL:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	DMIDJEDFFFPGOBMIFPJPHFEILMOOCPLH:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	MNGGEPKAHGHONLGJPFCAOIGLPBHJGLAK:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	ELIEMHKHEEFPIHDOBLKOILALNKJCEPMH:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	HBMKANBMKLDLMCKIIBEKLAGKBMMNINIH:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	FNELEKMPJFINHIMLJLBBDNIBIMOOOJKH:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	CANMIEDBJFPKHKNGCBGIIKFHJOKJKCHM:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	NKCIDNIDIDIFNLIIJCDPEMNMGMIEMNNN:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	JLEPCGILDGALPLAHGBIPMINBGJPPCGCF:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	CDIALPKFGBGGKMPKFDMJKFIJMGOHJLIF:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	BIFHMEFINPIPHEPLANOPBLFEHJPFPEPN:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	KLJOCIPDJDOLBCKNDAKLDBJILFKLEJGE:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	AHHAIELINMKHAHBBCMLKOAGEIOPFNENC:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	KLMFIEJBNJIFCFIHBMNFJMCCPKMBPFFA:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	AKGNLIICDFPLKALMMJFLEBNMHJPNOGFA:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	CCKJKMGDNAEGPONNLPMBEJOMOLFABHNC:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	DNCJBLHIGBNDFPCHLNMEKMHAAOCCNIJN:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	DMDIEFOIJKBFHAOEGDFMAHHBDNHLDKNEKE:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	MKKAGNCHAHINJPIKFMAHDBIKLIIONOPJPB:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	FDPOHIOEHJEGPFAGPKHDPGGDKDELMCDG:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	HLOLKFEAJDKCMJBAJPPCGLMJALHKEJHF:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	NMNPNGGHFAFMAHNAJGCNGACGDJOENGNOGE:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	DMLBFHPEJBIJPNAIMJOLLIBPBFGMKLFB:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	PALEFHAMOCEMBLLCJJEHGNFGJAIOBCOK:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	CLOBHEONMNJAENNGFBEJDDADBEMIIPKK:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	ECAIJEDOJEDDFDFFNODPJMKKBOIMJNOO:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	DCMPIAEAIKMCGNFMAHEMDBKOGOFEKFINPN:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	LLHABJPDFNOCJKAJMIOGOMNFJPLBHKCB:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	CPLKEHCCHCKKNPMGCFNPMMOIPLBHGHBL:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	DABBJHFKIBMBMGNDJOLPPKLEBKDPLEIO:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	KLHPJABIBKLCNCFNOKHIDNBCDMCFBJNK:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	JNGGNHHKAKHFHLIJFNHCBDHJOGOJKLDJ:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	JKGLPGGNNIHLGDKKHCPMDCJAPOLCGELE:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	NAPHJLAGMJEJHIKBELOHHNKBCLNKKDDB:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	JNBHGGEMHOOOFNJJKOMIHINPMBICFMFMFH:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	NOGDLIFMFMNJEHIJAEFAPDBFBFOFGKFKGG:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	JBJLJAHDNJCHIEMGBGGFFGBHAJIBNFEG:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	CNBAJINLMHLILCNEMEJOJGFGNMNJOGKP:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	OGGIEPKBBKHGPGKOFMDADKPJKBCHCKLJCH:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

	PANMDKAMOJOCKAJDOHMOPGMMDDJEIJJB:
	form1:
	x:
	f1:

	f2:

	form2:
	x:
	f1: [#]

	f2:

