Staff Software Engineer
Citrix Online
Santa Barbara, CA

A Brief Introduction to
J2EE

11/27/2006

Outline

°* N-Tier Model and Containers

°* What is J2EE?

* What Makes Up J2EE?

* Architecture

* Development and Deployment of Applications
* Business Tier: EJBs

* Enterprise Integration: Distributed Messaging,
JMS and MDB

* Presentation Tier: Servlets and JSP
e Data Tier: JDBC

= & e Sl

The Three-Tier Model

il |
SQL request

T
SQL response

Database

'-

® Browser ® Business logic ® Data is stored in
handles and data model Databases and
presentation are handled by other
logic dynamically by repositories

® Browser talks the m|dd|e tiel‘

Web server via
HTTP protocol

The Three Tier Model: Pros & Cons

* Pros:
— Thin clients deployed everywhere
— Zero client management

— Support various client devices
* i.e. Web browsers, phones, handhelds, etc...

* Cons:

— Complexity is moved from the client into the middle-tier
still but it still needs to be addressed

N e e Sl

Middle Tier Issues

° Complexity moved into the middle tier

®* New problems arise (scalability, concurrency,
availability)

®* Enhanced system services need to be provided for the
middle tier applications to be manageable

— Concurrency control, Transactions
— Load-balancing, Security
— Resource management, Connection pooling

N e o il

Component-Container Model

® Developers program components that “live” inside a container.
The container provides services for scalability, load balancing,
security, etc..

J2EE Server

Browser |- /— /_
Servlet JSP Page

l Web Container 2

Application
Client Database

Application /’R | /R '
Client 'Enterprise * | Enterprise
Container Bean Bean

Client Machine EJB Container

N e e Sl

What does a container usually provide?

* Component Life Cycle

» Session Life Cycle

* Distribution Support

® Cluster Support

* Distributed Transaction Support
* Authentication and Authorization
* Management

_O N

Component Lifecycle

* Create or reuse? The CGIl way

ez > ST |

>

N Concurrent requests ==> N concurrent processes

What if N —» « ?

Component Lifecycle (2)

s

* Create or reuse?

Request-1 >
L__Request-2 >

Request-N >_

5l

Servlet Container

"Servlet Instance-1
L (worker))

Server Ingtance-2

Concurrent Requests >> # Workers >> # Processes

* What about stateful services?

Servlet Container

\

| httg://.../hello.isE > Servlet Instance-1
(worker)

.

G

[Server Instance-2
(worker)

ispatch
Dispatch

Concurrent Sessions >> # Workers >> # Processes

Distribution/Cluster Support

* What about stateful services?

7

Node-1

| httg://.../hello.isE > Servlet
B Containe

Node-2

Servlet
Containe

State synchronization is taken care of by the container

Distribution/Cluster Support

* Load Balancing and Distribution

& Node-2

Node-1

Servlet

Contalner %

Servlet --> Comp A
Comp A --> Comp B

Comp B --> Comp C

Distribution and Load Balancing are taken care of
by the Container

7

Node-1

Servlet
Container

Re-routing and session replication
is taken care of by the container

Outline

e N-Tier Model and Containers
* What is J2EE?

* What Makes Up J2EE?
* Architecture

* Development and Deployment of Applications
* Business Tier: EJBs

* Enterprise Integration: Distributed Messaging,
JMS and MDB

* Presentation Tier: Servlets and JSP
e Data Tier: JDBC

N & oy T

What Is the J2EE?

® Open and standard based platform for
developing, deploying and
managing n-tier, Web-enabled,
server-centric, and component-based

enterprise applications

- ﬁ h‘

' J2EE: An Open and Standard Solution

* A component and container model in which
container provides system services through a
set of well-defined and industry standard
services

* J2EE provides code portability; an application
written for a particular brand of J2EE application
server will work on any other implementation of
a J2EE application server.

What's In It For Developers?

* Developers can use any J2EE implementation for
development and deployment
— Use a small scale J2EE server for development

— Use high-end commercial J2EE server for scalability
and fault-tolerance in production

® There is a vast amount of J2EE community
resources

— Books, articles, tutorials, source code, best practice
guidelines, design patterns etc.

* Can use off-the-shelf 3rd-party business
components

N e e Sl

What's in it for Vendors?

* Vendors work together on specifications (JSR)
and then compete in implementations:

> More standards --> more users
> More users --> more momentum
> More momentum --> more sales

* Do not have create/maintain their own
proprietary APls

N e e Sl

What's In It For Business Customers?

» Application portability

* Many implementation choices are possible
based on various requirements

— Price, scalability (single CPU to clustered model),
reliability, performance, tools, and more

— Best of breed of applications and platforms
* Large developer pool :)

Outline

e N-Tier Model and Containers
e \What is J2EE?

* What Makes Up J2EE?
* Architecture

* Development and Deployment of Applications
* Business Tier: EJBs

* Enterprise Integration: Distributed Messaging,
JMS and MDB

* Presentation Tier: Servlets and JSP
e Data Tier: JDBC

H & N

" What Makes Up J2EE?

i - Asetof APIs and Technology
specifications

¥ ° A Development and Deployment
Platform

| < A Standard and production-quality
reference implementation

* A Compatibility Test Suite (CTS)
* Extensive documentation:
— J2EE Blueprints

— Sample source code

J2EE APIs and Technologies

e J2SE ° Servlet 2.4

* JAX-RPC e JSP 2.0

* Web Services for J2ZEE * EJB 2.1

J2EE Management ° JAXR

J2EE Deployment Connector 1.5
JMX 1.1 JACC

JMS 1.1 JAXP 1.2
JTA 1.0 avaMail 1.3
AF 1.0

What are Serviets?

* Java™ objects which extend the functionality of a
HTTP server

* Dynamic content generation

* Better alternative to CGIl, NSAPI, ISAPI, etc.
— Efficient
— Platform and server independent
— Session management
— Java-based

= & e Sl

What is JSP Technology?

* Enables separation of business logic from
presentation
— Presentation is in the form of HTML or XML/XSLT

— Business logic is implemented as Java Beans or
custom tags

— Better maintainabillity, reusability
* Extensible via custom tags
* Builds on Servlet technology

= & e Sl

What is EJB Technology?

* A server-side component technology
* Easy development and deployment of Java
technology-based application that are:

— Transactional, distributed, multi-tier, portable,
scalable, secure, ...

N e e Sl

Java Message Service (JMS)

* Messaging systems provide
— De-coupled communication
— Asynchronous communication
— Plays a role of centralized post office

* Benefits of Messaging systems

— Flexible, Reliable, Scalable communication systems
* Point-to-Point, Publish and Subscribe

* JMS defines standard Java APls to messaging
systems

* Java Naming and Directory Interface

* Utilized by J2EE applications to locate
resources and objects in portable fashion

— Applications use symbolic names to find object
references to resources via JNDI

— The symbolic names and object references have to
be configured by system administrator when the
application is deployed.

JDBC

| *Provides standard Java programming API to
relational database (via SQL)

*Vendors provide JDBC compliant driver which
| can be invoked via standard Java programming
API

| *A separate API provides pooling of JDBC
connections

N e e Sl

Standard Implementation

* Under J2EE 1.4 SDK, it is Sun Java Application
Server Platform Edition 8

* Production-quality J2EE 1.4 compliant app
server

* Free to develop and free to deploy

» Seamless upgrade path to Sun Java Application
Server Enterprise Edition

Compatibility Test Suite (CTS)

o Ultimate Java™ technology mission:
— Write Once, Run Anywhere™

— My Java-based application runs on any compatible
Java virtual machines

— My J2EE based technology-based application will
run on any J2EE based Compatible platforms

Outline

e N-Tier Model and Containers
e \What is J2EE?
e \What Makes Up J2EE?

* Architecture

* Development and Deployment of Applications
* Business Tier: EJBs

* Enterprise Integration: Distributed Messaging,
JMS and MDB

* Presentation Tier: Servlets and JSP
e Data Tier: JDBC

‘ The J2EE Platforim Architecture

Application Programming Model
g
| D

Java™ 2 SDK, Standard Edition
fcorea | [AMm| ‘Databage. [Naming / Dircctory

A
&
|ﬂ
=
>
4]
il
@
T
=
F

o
5 e v iz ﬁb

J2EE is End-to-End Solution

Firewall

J2EE
Application

Server

_ Enterprise
Enterprise

E - Information

- J B ™

: "e“ aw Systems (EIS):

Relational
Client
E\ : o Database,
’ Enterprise Legacy

Client Wegsslf“’er Jw Applications,

: Servle,ts ERP Systems

ctent

g v

s HTML/XML

: Other Services:]
JNDI, JMS, Enterprise

Client Middle JavaMail ™ Information
Tier Tier Tier

-
e A o ull

N-tier J2EE Architecture

Client-Side Server-Side Server-Side Enterprise

Presentation Presentation Business Logic Information

Browser

Pure
HTHKIL

Java
Applel

Desktop

Java " Java
ﬁp|:1i|:|=|tiun Serviet

Other Device : _ . I

J2EE »

JZEE IP'HH-EII‘I"I.'I Platfarm
Client ; o .

Web Tier EJB Tier

Applet Container Web Container EJB Container

f r b

Applet HTTP/
pp 1 JSP Servlet RMI

J2SE _

4‘

Kpp Client Container _

© App HTTP
Client HTTPS

RMI/IIOP

RMI/IIOP

-

Database

AT Eetw S B

==

Containers and Cdmpohents

Containers Components

Handle Handle

Concurrency e Presentation
Security e Business Logic
Availability

Scalability

Persistence

Transaction

Life-cycle
management

Management

N e e Sl

Containers & Components

* Containers do their work invisibly
> No complicated APls
> They control by interposition

* Containers implement J2EE
> Look the same to components

> Vendors making the containers have great freedom
to innovate

Outline

e N-Tier Model and Containers
e \What is J2EE?
e \What Makes Up J2EE?

e Architecture

* Development and Deployment of
Applications

* Business Tier: EJBs

* Enterprise Integration: Distributed Messaging,
JMS and MDB

* Presentation Tier: Servlets and JSP
e Data Tier: JDBC

N e o il

J2EE Application Development Lifecycle

* Write and compile component code
— Servlet, JSP, EJB

* Write deployment descriptors for components

* Assemble components into ready-to-deployable
package

* Deploy the package on a server

-
"

Hlustr

=

ation

Creation Assembly Deployment

r

A bled
A CCICC R VAL2EE Modules ands:lfgr;nmeented J2EE APP Processed

Component by Application by Deployer
Developer Assembler

&EE Container

-
Enterprise
Components

The Deployment Descriptor

* Gives the container instructions on how to manage
and control behaviors of the J2EE components

— Transaction
— Security
— Persistence

* Allows declarative customization (as opposed to
programming customization)

— XML file
* Enables portability of code

Outline

e N-Tier Model and Containers
e \What is J2EE?
e \What Makes Up J2EE?

e Architecture

¢ Development and Deployment of Applications
* Business Tier: EJBs

* Enterprise Integration: Distributed Messaging,
JMS and MDB

* Presentation Tier: Servlets and JSP
e Data Tier: JDBC

Client-Side Server-Side Server-Side Enterprise
Presentation _ Presentation jBusiness Logi Infénvstg,lzli‘un

Browser

Pure
L

Java
Applet

Desktop

Java . Java
Application Serviel

Other Device

J?EE
JEZEE Plati
Client | Aotz

Web Tier EJB Tier

= & e Sl

Why EJB Technology’?

® Leverages the beneflts of component- model on
the server side

* Separates business logic from system code
— Container provides system services

* Provides framework for portable components

— Over different J2EE-compliant servers
— Over different operational environments

* Enables deployment-time configuration
— Deployment descriptor

Types of Beans

* Session Beans

> Stateful session beans

> Stateless session beans
* Entity Beans

> Bean Managed Persistence (BMP)

> Container Managed Persistence (CMP)
* Message Driven Beans

> JMS (Java Message Service)
> JAXM (Java API for XML Messaging), SMTP

EJB Architecture

(Home Interface)

- -

Enterprise
JavaBeans™
Component

Database or
Component

(Remote Interface) Container
EJB Server

Session Beans

N

* Does work on behalf of a single client

> life typically is that of its client
* |s not persistent and hence relatively short lived

> Is gone when the EJB™ server crashes

* Does not represent data in data store, although
can access/update such data

* Can be transaction aware
> Can perform transaction demarcation

N e e Sl

2 Types of Session Beans

o Stateless: execute a request and return a result
without saving any client specific state
information

> transient

> temporary piece of business logic needed by a
specific client for a limited time span

e Stateful: maintains client specific state

N e e Sl

Examples of Stateless Session Bean

* Catalog
> No client specific state needs to be preserved

> Common catalog data for all clients
> The data can be retrieved from database the first time it is
accessed

* Interest calculator
> No client specific state needs to be preserved
> Common business logic for all clients

Examples of Stateful Session Bean

* Shopping cart

> Client specific state needs to be preserved for each
client
> ltems that a user wants to buy

> State will be lost when the server crashes

* Travel ticket purchasing

> Client specific state needs to be preserved for each
client
> Tickets to purchase and then confirm/cancel

4 Reusabili'ty of Stateless Session Bean
Instances

* Container transparently reuses bean instances
to serve different clients

> Pool of bean instances are created by container at
appropriate time (ex: at the time of system boot or
when the size of pool becomes too small)

> Bean instances are then recycled

> Smaller number of bean instances (pool of bean
instances) can serve larger number of clients at a

single time — Improves scalability of the system
v clients can be idle between calls

. ull

| Resource usage of Stateless Session
Beans

T R e T

* Load-balancing & Fallover (between EJB
servers) is easier since no state needs to be
preserved

> Any bean instance in any EJB server can serve any
client call

* High scalabillity since a client call can be served
by any EJB server in a clustered architecture

> In order to handle increased number of clients, just
add more memory or more EJB servers

N e e Sl

Usage Model of Stateless Session Bean

* Use it when no client specific state needs to be
preserved between calls

¢ |f stateless session bean has to deal with client
specific request

> Client then has to pass any needed information as
parameters to the business methods

> But may require the client to maintain state
information on the client side which can mean more
complex client code

Failover of Stateful Session Bean

* State is not preserved when a server crashes

* High-end commercial servers can maintain
session state even at the time of server failure

by

> maintaining server state in persistent storage

> maintaining the same state in multiple servers

-

=Y B e e il
Interaction between Client, Bean instance,
Container for Stateless Session Bean

2. allocate

instance
] 1.create(... if needed
Client

7. release instanet

3.1. new
3.2. setSessionContext
3.3. ejbCreate()

3.4. instance

6. remove()

Client

o

Interaction between Client, Bean instance,
_‘ Container for Stateful Session Bean

1.create(...)

6. method calls

8. remove()

7. method calls

2. new

3. setSessionContext()
4. ejbCreate()

N e e Sl

Atm Interface Business Methods

public class AtmBean implements SessionBean ({
// implement atm interface business methods
public void transfer (
int fromAcctId,
int toAcctld,
double amount)
throws ... {
try {
fromAccount = accountHome.findByPrimaryKey (
new Integer (fromAcctId)) ;
toAccount = accountHome.findByPrimaryKey (
new Integer (toAcctId)) ;
fromAccount.withdraw (amount) ;
toAccount.deposit (amount) ;
} catchil .. 8 B

}

// create an initial context (starting point in name tree)
javax.naming.Context ic =new
javax.naming.InitialContext () ;

// lookup jndi name (set by deployer in deployment
// descriptor)
java.lang.Object objref = ic.lookup ("Atm") ;

AtmHome home = (AtmHome)PortableRemoteObject.narrow (
objref, AtmHome.class)

//call AtmHome Create method to get Atm interface
Atm atm = home.create() ;

// call Atm business methods
atm.transfer (41476633, 4443332121, 100000) ;

Enterprise JavaBeans

(Enterprise JavaBeans)

7

Syn

onous communhnication

N\ [

(Session Bean) (

Entity Bean)

Stateless

.

Asynchrono ommunication

(Message-Driven Bean)

~\

J

Stateful

Bean managed
Persistence
(BMP)

Container managed
Persistence

(CMP)

Outline

e N-Tier Model and Containers
e \What is J2EE?
e \What Makes Up J2EE?

e Architecture

¢ Development and Deployment of Applications
e Business Tier: EJBs

* Enterprise Integration: Distributed
Messaging, JMS and MDB

* Presentation Tier: Servlets and JSP
e Data Tier: JDBC

Messaging System Concepts

* De-coupled (Loosely-coupled) communication
* Asynchronous communication

* Messages are the means of communication
between applications.

* Underlying messaging software provides
necessary support

— MOM (Message Oriented Middleware), Messaging
system, Messaging server, Messaging provider, JMS
provider: they all mean this underlying messaging
software

i o oy T

’ Messagin'g Systél'fﬁ‘ Features

* Support of two messaging models
— Point-to-point
— Publish/Subscribe

* Reliability

* Transactional operations

* Distributed messaging

* Security

Additional Features

* Some Messaging System vendors support
Guaranteed real-time delivery
Secure transactions
Auditing
Metering

Load balancing

Point-to-Point

* A message is consumed by a single consumer
* "Destination” of a message is a named queue
* First in, first out (at the same priority level)

* Sender (producer) sends a message to
a hamed queue (with a priority level)

* Receliver (consumer) extracts a message from
the queue

7 Glient consumes W7 Client

Senders Receiver
Acknowledges

Posts messages to the Receives messages on the
queue queue

= & o il

Publish/Subscribe (Pub/Sub)

* A message is consumed by multiple consumers
* "Destination” of a message is a named topic

* Producers “publish” to topic

* Consumers “subscribe” to topic

L]

il w

Publish-and-Subscribe

ﬂ;nt .
Publisher celves messages

on the topic

Posts messages to the topic 3
Subiect of icati Client
ubject of communication subscriber
A

Available to registered
participants

= & o il

When to use Pub/Sub?

* Use it when a message you send need to be
processed by multiple consumers

* Example: HR application
— Create “new hire” topic

— Many applications (“facilities”, “payroll”, etc.) subscribe
“new hire” topic

Transactional Operations

N

* Transactional production

— Sender groups a series of messages into a
transaction

— Either all messages are enqueued successfully or
none are

* Transactional consumption

— Consumer retrieves a group of messages as a
transaction

— Unless all messages are retrieved successfully, the
messages remain in a queue or topic

Transactional Scope

* Client-to-Messaging system scope

— Transaction encompasses the interaction between
each messaging client (applications) and the
messaging system

— JMS supports this

* Client-to-Client scope
— Transaction encompasses both clients
— JMS does not support this

' :_-Client-to-Messagri'r:Q S);stem
Transactional Scope

Application 1 Application 2

L savd

source: Applied Enterprise
JavaBeans|[1]

' :_-Client-to?CIient
Transactional Scope

Messaging
system

Application 1

Queue

\

Application 2

source: Applied Enterprise
JavaBeans|[1]

What is JMS?

* JMS is a set of Java interfaces and associated
semantics (APls) that define how a JMS client
accesses the facilities of a messaging system

Supports message production, distribution,
delivery

Supported message delivery semantics
Synchronous or Asynchronous
transacted

Guaranteed
Durable

What is JMS? (Continued)

* Supports existing messaging models
— Point-to-Point (reliable queue)
— Publish/Subscribe

* Message selectors (on the receiver side)
* 5 Message types

JMS and J2EE

.i-

° AIIows Java Developers to access
the power of messaging systems

* Part of the J2EE Enterprise Suite

Appllcatlun Programming Model

e

Java™ 2 SDK, Standard Edition
'CORBA | RMI 'Database | Naming / Directory

Applets] 'JavaBeans™

JMS is an API

Java™ Application

JMS API

JMS
Provider

JMS
Provider

%%

JMS
Provider

%%

JMS
Provider

%%

Progress

SonicMq

Fiorano

JMS
Provider

" Steps for Building a JMS Sender
Appllcatlon

1.Get ConnectlonFactory and Destination object (Topic
or Queue) through JNDI

2.Create a Connection

3.Create a Session to send/receive messages
4.Create a MessageProducer (TopicPublisher or

QueueSender)
5.Start Connection
6.Send (publish) messages
7/.Close Session and Connection

5l

" Locate ConnectionFactory and Destination
objects via JNDI

// Get JNDI InitialContext object
Context jndiContext = new InitialContext() ;

// Locate ConnectionFactory object wvia JNDI

TopicConnectionFactory factory =
(TopicConnectionFactory) jndiContext.lookup (
"MyTopicConnectionFactory") ;

// Locate Destination object (Topic or Queue)
// through JNDI
Topic weatherTopic =

(Topic) JjndiContext.lookup ("WeatherData") ;

" Create Connection Obiject, Session and
Publisher

// Create a Connection object from ConnectionFactory object
TopicConnection topicConnection =
factory.createTopicConnection () ;

// Create a Session from Connection object.
// 1°* parameter controls transaction

// 2" parameter specifies acknowledgment type

TopicSession session =
topicConnection.createTopicSession (false,
Session.CLIENT ACKNOWLEDGE) ;

// Create MessageProducer from Session object

// TopicPublisher for Pub/Sub

// QueueSender for Point-to-Point

TopicPublisher publisher =
session.createPublisher (weatherTopic) ;

Start Connection and Publish Message

// Until Connection gets started, message flow
// is inhibited: Connection must be started

// before messages will be transmitted.
topicConnection.start () ;

// Create a Message
TextMessage message = session.createMessage() ;
message.setText ("text:35 degrees") ;

// Publish the message
publisher.publish (message) ;

" Steps for Building a JMS Receiver
Application (non-blocking mode)

1.Get ConnectionFactory and Destination object (Topic
or Queue) through JNDI

2.Create a Connection
3.Create a Session to send/receive messages

4.Create a MessageConsumer (TopicSubscriber or
QueueReceiver)

5.Register MessagelL.istener for non-blocking mode

6.Start Connection
7/.Close Session and Connection

- ran F I =N ol
Create Message Subscriber, non-blocking
listener and

// Create Subscriber from Session object
TopicSubscriber subscriber
session.createSubscriber (weatherTopic) ;

// Create Messagelistener object
WeatherlListener mylListener
= new WeatherListener() ;

// Register Messagelistener with
// TopicSubscriber object
subscriber.setMessagelListener (myListener) ;

o - -

JMS and MDB

JMS Provider ontainer

| /Consumer | B

[B
Instances

Msg-driven
Bean Class

MDB Example

-

B A JMS Topics
| | . <Entity EJB>

Publish/subscribe

Process
MessageDrivenBean Order

Procure
Inventory

<Entity EJB>

Inventory
Management
Bean

Outline

e N-Tier Model and Containers
e \What is J2EE?
e \What Makes Up J2EE?

e Architecture

¢ Development and Deployment of Applications
e Business Tier: EJBs

e Enterprise Integration: Distributed Messaging,
JMS and MDB

* Presentation Tier: Servlets and JSP
e Data Tier: JDBC

Client-Side Server-Side Server-Side Enterprise
Presentation Presentation jBusiness Lugich Infénvstg,lzli‘un

Browser
Pure

HTHKL

Java
Applet

Desktop

Java Java
Application Serviel

Other Device

JEZEE]
Client | Aotz

Web Tier EJB Tier

e A .

What is Servlet?

® Javaw objects which are based on servlet
framework and APls and extend the functionality
of a HTTP server.

* Mapped to URLs and managed by container
with a simple architecture

* Available and running on all major
web servers and app servers

* Platform and server independent

Serviet Request and Response Model

Servlet Container

!3F0w§er

aanasars, sonnt il

Request

—_——

1
—— I
I

—_—
- —_—

/

/

< Response V\
Web Response
Server

Public class HelloServlet extends HttpServlet {

public void doGet (HttpServletRequest request,
HttpServletResponse response) {
response.setContentType ("text/html") ;

PrintWriter out = response.getWriter()
out.println("<title>Hello World!</title>");

}

N e e Sl

Advantages of Servlet

* No CGl limitations

* Abundant third-party tools and Web servers
supporting Servlet

* Access to entire family of Java APls

* Reliable, better performance and scalability
* Platform and server independent

® Secure

* Most servers allow automatic reloading of Serviet's
by administrative action

= & e Sl

What is JSP Technology?

* Enables separation of business logic from
presentation
— Presentation is in the form of HTML or XML/XSLT

— Business logic is implemented as Java Beans or
custom tags

— Better maintainability, reusabillity
* Extensible via custom tags
* Builds on Servlet technology

What is JSP page?

* A text-based document capable of returning
dynamic content to a client browser

* Contains both static and dynamic content
— Static content: HTML, XML

— Dynamic content: programming code, and JavaBeans,
custom tags

N .

JSP Sample Code

<html>
Hello World!

<jsp:useBean id="clock"
class=“calendar.JspCalendar” />
Today 1is

Day of month: <%= clock.getDayOfMonth() %>
Year: <%= clock.getYear () %>

</html>

N e o il

Should | Use Servlet or JSP?

* |n practice, servlet and JSP are used together
— via MVC (Model, View, Controller) architecture

— Servlet handles Controller
— JSP handles View

L kst R e S s <l

Servlet Life-Cycle

ttp reques

tp respo Run
Serviet

.] L]
AR E & y

doGet() and doPost() Methods

doPost()

Key: i Implemented by subclass

"-'-. ﬁ da . ‘ll

Things You Do in doGet() & doPost()

[S|

o Extract client-sent information (HT TP parameter) from
HTTP request

® Set (Save) and get (read) attributes to/from Scope
objects

® Perform some business logic or access database

- EJB

> JDBC
® Optionally forward the request to other Web
components (Servlet or JSP)

® Populate HTTP response message and send it to client

Scope Objects

* Enables sharing information among
collaborating web components via attributes
maintained in Scope objects

— Attributes are name/object pairs

* Attributes maintained in the Scope objects are
accessed with

— getAttribute() & setAttribute()

® 4 Scope objects are defined
— Web context, session, request, page

- e Sl

Four Scope Objects Accessibility

° Web context (ServletConext)

— Accessible from Web components within a Web
context

* Session

— Accessible from Web components handling a
request that belongs to the session

* Request

— Accessible from Web components handling the
request

* Page
— Accessible from JSP page that creates the object (*

N e e Sl

What is ServietContext For?

® Use by servlets to

— Set and get context-wide (application-wide) object-
valued attributes

— Get request dispatcher
» To forward to or include web component

— Access Web context-wide initialization parameters
set in the web.xml file

— Access Web resources associated with the Web
context

— Log
— Access other misc. information

e A .

Why HttpSession?

* Need a mechanism to maintain client state
across a series of requests from a same user (or
originating from the same browser) over some
period of time

— Example: Online shopping cart
°* Yet, HT TP Is stateless
* HttpSession maintains client state

— Used by Servlets to set and get the values of
session scope attributes

What is Servilet Request?

* Contains data passed from client to servlet

* All servlet requests implement ServletRequest
interface which defines methods for accessing

Client sent parameters

Obiject-valued attributes

Locales

Client and server

Input stream

Protocol information

Content type

If request is made over secure channel (HTTPS)

I =% s il

HTTP Request URL [request path]

* http: //[host] [port]/[request path]?[query string]
* [request path] is made of

— Context: /<context of web app>

— Servlet name: /<component alias>

— Path information: the rest of it
* Examples
nttp://localhost:8080/hello1/greeting
nttp://localhost:8080/hello1/greeting.jsp
nttp://daydreamer/catalog/lawn/index.html

N e e Sl

What is Serviet Response?

R

* Contains data passed from servlet to client

* All servilet responses implement
ServletResponse interface

Retrieve an output stream
ndicate content type

ndicate whether to buffer output
Set localization information

* HttpServletResponse extends ServletResponse

— HTTP response status code
— Cookies

Outline

e N-Tier Model and Containers
e \What is J2EE?
e \What Makes Up J2EE?

e Architecture

¢ Development and Deployment of Applications
e Business Tier: EJBs

e Enterprise Integration: Distributed Messaging,
JMS and MDB

e Presentation Tier: Servlets and JSP
e Data Tier: JDBC

What is JDBC?

| - Standard Java AP for accessing relational
database

- Hides database specific details from application

1 + Part of J2SE

JDBC API

)

¢ Defines a set of Java Interfaces, which are
implemented by vendor-specific JDBC Drivers

— Applications use this set of Java interfaces for performing
database operations

* Majority of JDBC API is located in java.sql package

- DriverManager, Connection, ResultSet, DatabaseMetaData,
ResultSetMetaData, PreparedStatement, CallableStatement
and Types

® Other advanced functionality exists in the javax.sq|
package

- DataSource

JDBC Driver

» Database specific implemention of JDBC
interfaces

— Every database server has corresponding JDBC
driver(s)

* http://industry.java.sun.com/products/jdbc/driver
S

® Used to make a connection to the database
— Can contain server, port, protocol etc...

- jdbc:subprotocol name:driver _dependant_databasename

— Oracle thin driver
1.jdbc:oracle:thin:@machinename:1521:dbname

— Pointbase

» jdbc:pointbase:server://localhost/sample

= & e Sl

Steps of Using JDBC

| 1.Load DB-specific JDBC driver
2.Get a Connection object
3.Get a Statement object
4.Execute queries and/or updates
5.Read results
| 6.Read Meta-data (optional step)
/.Close Statement and Connection objects

- JNDI Registratid; of a DataSource (JDBC
- Resource) Object

* The JNDI name of a JDBC resource is expected Iin
the java:comp/env/jdbc subcontext

— For example, the JNDI name for the resource of a
BookDB database could be java:comp/env/jdbc/BookDB

e Because all resource JNDI names are In the
java:comp/env subcontext, when you specify the
JNDI name of a JDBC resource enter only
jdbc/name. For example, for a payroll database,
specify jdbc/BookDB

Why Connection Pooling?

= =

* Database connection is an expensive and
limited resource

— Using connection pooling, a smaller number of
connections are shared by a larger number of clients

* Creating and destroying database connections
are expensive operations

— Using connection pooling, a set of connections are pre-
created and are available as needed basis cutting down
on the overhead of creating and destroying database

connections

N e Sl

Connection Pooling & DataSource

B - o B . T s T) b SRRk P .

* DataSource objects that implement connection
pooling also produce a connection to the
particular data source that the DataSource class
represents

* The connection object that the getConnection
method returns is a handle to a
PooledConnection object rather than being a
physical connection

— The application code works the same way

5l

" Retrieval and Usage of a DataSource

~_Object —

| * Application perform JNDI lookup operation to retrieve
DataSource object

o DataSource object is then used to retrieve a
Connection object

* |n the application's web.xml, information on external
resource, DataSource object in this case, is provided

® For Sun Java System App server, the mapping of
external resource and JNDI name is provided

— This provides further flexibility

5l

"F Example:' Retrie\;éf of DataSource Object
via JNDI

* BookDBAO.java in bookstore1 application

public class BookDBAO {
private Arraylist books;
Connection con;
private boolean conFree = true;

public BookDBAO() throws Exception ({
try {
Context initCtx = new InitialContext() ;
Context envCtx = (Context) initCtx.lookup (
"java:comp/env") ;
DataSource ds = (DataSource) envCtx.lookup (
"Jdbc/BookDB") ;
con = ds.getConnection() ;
} catch (Exception ex) {

}

Transaction

| S B T P s y L s S i T A

® One of the main benefits to using a PreparedStatement
IS executing the statements in a transactional manner

® The committing of each statement when it is first
executed is very time consuming

* By setting AutoCommit to false, the developer can
update the database more then once and then commit

the entire transaction as a whole

o Also, if each statement is dependant on the other, the
entire transaction can be rolled back and the user
notified.

"-'-. ﬁ . ‘l

JDBC Transaction Methods

.i-

° setAutoCommlt()

— If set true, every executed statement is committed
iImmediately

° commit()
— Relevant only if setAutoCommit(false)

— Commit operations performed since the opening of a
Connection or last commit() or rollback() calls

* rollback()
— Relevant only if setAutoCommit(false)
— Cancels all operations performed

Transactions Example

Connection connection = null;
try {

connection = DriverManager.getConnection
("jdbc:oracle:thin:(@machinename:1521:dbname",
"username", "password") ;

connection.setAutoCommit (false) ;

PreparedStatement updateQty =
connection.prepareStatement (

"UPDATE STORE SALES SET QTY = ?”
+” WHERE ITEM CODE = ? ");

int [][] arrValueToUpdate = { {123, 500} , {124, 250},
{125, 10}, {126, 350} };

int iRecordsUpdate =

for (int items=0 ; items < arrValueToUpdate.length ;

items++) {
int itemCode arrValueToUpdate[items] [0] ;

int qty = arrValueToUpdate[items] [1];
updateQty.setInt(1,qty) ;

updateQty.setInt(2,itemCode) ;
iRecordsUpdate += updateQty.executeUpdate() ;

}

connection.commit () ;

System.out.println (iRecordsUpdate + " record(s) have
been updated") ;

Transaction Example cont.

try |

connection.rollback() ;
} catch (SQLException sqleRollback) {

System.out.println("" + sqleRollback) ;
} finally {

try {
connection.close() ;

} catch (SQLException sqgleClose) {
System.out.println("" + sqgleClose) ;

Resources

° Partilly based on Shang Shin's Java Passion
Slides

> http://www.javapassion.com/j2ee/
* J2EE Home page
> java.sun.com/j2ee

* J2EE 1.4 SDK

> Java.sun.com/j2ee/1.4/download.html#appserv

* J2EE 1.4 Tutorial
> java.sun.com/j2ee/1.4/download.html#appserv

* J2EE Blueprints
> java.sun.com/blueprints/enterprise/index.html

o
¥ v ﬁi‘

A Brief Introduction to J2EE

Thank You

